
A CTL-Based Logic for Program Abstractions

Martin Lange1 and Markus Latte2

1 Dept. of Elect. Eng. and Computer Science, University of Kassel, Germany
2 Dept. of Computer Science, Ludwig-Maximilians-University Munich, Germany

Abstract. We define an action-based extension of the branching-time
temporal logic CTL which allows path quantifiers to be restricted by
formal languages. The main purpose of this logic is its use in abstract
interpretation. A reduction from a concrete system to an abstract one
may contain spurious traces which can render the verification of the ab-
stract system useless with respect to the concrete one. We pick up the
suggestion to verify a modified property on the abstract system instead
of the one that the concrete system is supposed to have. The logic in-
troduced here enables a systematic modification of such properties. We
present some ways of such a modification which aim at implicitly exclud-
ing spurious traces in the verification of abstracted systems.

1 Introduction

Model checking is one of the most successful automatic verification techniques
for all kinds of programs: hardware, protocols, reactive software, etc. In model
checking, the program to be verified is given as a transition systems representing
the operational semantics of a program with states and transitions between the
states, and the property specifying correctness of the program is formalised in a
temporal logic.

Various temporal logics have been introduced for model checking. The most
prominent ones are the linear-time temporal logic LTL [14] and the branching-
time temporal logic CTL [7]. These are not only incomparable in terms of their
expressive power but also — and partly thus — incomparable in terms of their
pragmatics. CTL model checking is easier than LTL model checking (P- vs.
PSPACE-complete [5,15]) whereas LTL satisfiability checking is easier than CTL
satisfiability checking (PSPACE- vs. EXPTIME-complete [15,7]).

These results, in particular the model checking complexities, hold w.r.t. fi-
nite models. However, many programs, in particular software, occupy an infinite
state space. Clearly, model checking infinite-state programs is undecidable in
general but it remains decidable for certain classes of infinite-state programs,
e.g. pushdown processes, and weak temporal logics like CTL and LTL. It is still
just PSPACE-complete for LTL but EXPTIME-complete for CTL [3,19].

This does not immediately enable automatic program verification for infinite-
state programs because of several reasons. Programs may not fall into these
classes, in particular if the cause for infinity is the use of variables over un-
bounded domains etc., or the relatively high worst-case complexities may not

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 19–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

20 M. Lange and M. Latte

allow efficient implementations in practice. In such cases, it may be necessary
to employ a technique that generally reduces the complexity of the underlying
verification problem at the expense of total correctness: abstraction [6]. It is
also applicable in cases of finite systems where state-space explosion renders the
verification problem inefficient in practice.

Abstraction is the process of transforming a transition system T into a (typ-
ically) smaller transition system T abs which contains at least some of the infor-
mation that is present in T . Verification of the smaller system is then easier or
even possible. However, the abstraction must be chosen such that the verification
of the abstract system allows to make assertions about the underlying property
and the original system.

Consider, for instance, one of the most well-known abstraction schemes, called
∃∃-abstraction. There, states of the abstract transition system T abs result from
collapsing sets of states of the original transition system T , and there is a tran-
sition between collapsed states S and T iff there are s ∈ S and t ∈ T with a
transition from s to t in the original system. It is not hard to see that the runs
or paths of T abs form a superset of the paths of T . Every path in T can be found
in T abs but the latter also contains spurious traces which are paths that only
arise as artefacts of the abstraction but do not exist in the original system T .
Now consider a class of simple properties ϕ to be checked on T , namely tem-
poral properties which quantify over paths in a universal manner only. It is the
case that T abs |= ϕ implies T |= ϕ for such ϕ but not vice-versa because of the
relationship between paths in T abs and in T . Thus, if the abstracted system is
correct w.r.t. ϕ then so is the original one. If the abstracted system is faulty then
nothing is known about the original one because the reason for the error may
be a spurious trace. Still, abstraction can thus enable the verification of systems
which cannot be model checked under normal circumstances at the expense of
completeness for instance.

It turns out that this is all very well in theory but in practice it happens very
often that the abstracted system fails the desired property, i.e. spurious traces
interfere with the verification task too much. Now note that there is no reason
for considering the original property on the abstracted system. This observation
has led to suggestions regarding the weakening of universally path quantified
properties, for instance by considering fair traces in the abstract system only [2].
This does work in certain cases. However, there is no general relationship between
the abstraction scheme and fairness which would guarantee it to work in many
cases. A more precise weakening would relativise the path quantification in the
property to be checked on the abstract system to paths occurring in the original
system. Note that, if this was possible, then it would not only be restricted to
∃∃-abstractions and universally path quantified properties. The same could be
done with existentially path quantified properties and all kinds of abstractions.

For this purpose, we suggest a logic which is based on the commonly used
branching-time temporal logic CTL and which allows relativised path quantifiers.
While there are logics around with very high expressive power, even temporal
ones, these typically extend the modal μ-calculus by incorporating all kinds

A CTL-Based Logic for Program Abstractions 21

of expressive operators. Such logics are more or less useless in the setting of
abstraction. We propose to base such a logic on a commonly used logic L such
that the problem of determining T |= ϕ for some ϕ ∈ L can be transformed into
the problem of determining T abs |= ϕabs for an abstracted system T abs and a
property ϕabs which incorporates information that gets lost between T and T abs

into ϕ. Maybe this could even be automised such that to the outside, only T
and ϕ would be visible which underpins the need for ϕ to belong to a commonly
used specificaton logic and therefore ϕabs to be something based upon that.

In Sect. 2 we introduce Path Relativised Computation Tree Logic (CTLrel). It
is a simple branching-time temporal logic which is interpreted – like action-based
CTL [13] – over transition systems with labeled edges. It extends CTL by allow-
ing path quantifiers to be restricted. The restriction is realised by languages of
ω-words aiming at maximal flexibility for the abstraction process. Hence, CTLrel

is in fact a family of branching-time temporal logics parametrised by a class of
formal languages of ω-words. Sect. 3 then exemplifies the possible use of this
logic in the framework of abstraction.

CTLrel is closely related to Propositional Dynamic Logic with the Delta opera-
tor (ΔPDL) [17,12]. This relationship is, for instance, exploited in Sect. 4 where
we first analyse the complexity of model checking and satisfiability problems
depending on the class of languages used for quantifier relativisation. From the
discussion above it should be clear that model checking is an important problem
for such a logic in such a framework. Satisfiability checking is, too. Note that
a satisfiable formula CTL formula could easily become unsatisfiable when path
quantifiers are arbitrarily relativised. A decidable logic then allows such formulas
to be automatically checked before they are being used in verification.

In Sect. 5 we consider the use of CTLrel in the framework of abstract interpre-
tation. We suggest a generic use of the path quantifier relativisation in CTLrel

formulas whcih forms the basis for two heuristics that aim at implicitly excluding
spurious traces in the verification of abstracted systems. Finally, Sect. 6 contains
remarks about future work.

2 CTL with Path Relativisation

Models of CTL with path relativisation are transition systems which — as op-
posed to ordinary CTL models and like models of action-based CTL — also
have labeled edges and need not be total. Let Σ be a finite alphabet and P be
a countably infinite set of atomic propositions. A transition system is a tuple
T = (S,−→, λ) where S is a set of states, −→ ⊆ S×Σ×S is the transition relation,
and λ : S → 2P labels each state with a finite set of propositions that are true
in this state. We write s a−→ t instead of (s, a, t) ∈ −→.

Let T = (S,−→, λ) be a transition system. An α : S → S is an abstraction
function for T if it satisfies the following consistency condition for all s, t ∈ S:
if α(s) = α(t) then λ(s) = λ(t). The function introduces an equivalence relation
∼α on S where s ∼α s′ iff α(s) = α(s′) . Equivalence classes and the quotient
set are written as []α and S/α, respectively. An equivalence class is called an

22 M. Lange and M. Latte

abstract state. We may omit the index α whenever α is clear from the context.
The abstraction of T w.r.t. α is the transition system T α = (S/α,−→α, λα) such
that for all a ∈ Σ:

– t
a−→α t

′ iff there are s ∈ t and s′ ∈ t′ such that s a−→ s′, and
– λα([t]α) = λ(t).

Note that the consistency condition above ensures well-definedness of the label-
ing function λα.

In order to simplify technical details, we assume that Σ always contains a
special character d and that each transition system has a distinct state end with
s d−→ end for every s including end itself. Furthermore, end has no other incoming
or outgoing transitions than these. This means that transition systems are total
in the sense that in any state at least a d-action is possible. However, afterwards
nothing else is possible any more. Thus, taking a d-transition somehow indicates
being in a deadlock state.

A path in T is an infinite sequence π = s0, a0, s1, a1, . . ., alternating between
states and edge labels, s.t. si

ai−−→ si+1 for all i ≥ 1. Note that the assumption
above ensures that no maximal paths other than infinite ones exist. We write
ΠT (s) for the set of all paths through T that start in s. An initial path is a
prefix of a path which ends at a state.

A path π = s0, a0, s1, a1, . . . determines in a unique way the ω-word a0a1a2 . . .
over Σ. Abusing notation we will identify a path with its determined word of
edge labels and sometimes simply write π ∈ L for a path π and a language L.
As usual, Σω denotes the set of all infinite words over Σ.

Formulas of CTL with path relativisation, CTLrel, are built like CTL formulas
with the difference that path quantifiers are syntactically indexed by languages of
ω-words. We present the logic in positive normal form which simplifies statements
about fragments later on.

ϕ ::= q | ¬q | ϕ ∨ ϕ | ϕ ∧ ϕ | EXaϕ | AXaϕ | EL(ϕUϕ) | EL(ϕRϕ) |
AL(ϕUϕ) | AL(ϕRϕ)

where q ∈ P , a ∈ Σ, and L ⊆ Σω.
A formula is purely existential if does not contain any subformula of the form

AXaψ, AL(ψ1Uψ2) or AL(ψ1Rψ2). Similarly, it is purely universal if it does not
contain any subformula of the form EXaψ, EL(ψ1Uψ2) or EL(ψ1Rψ2).

Clearly, languages L in the index of a path quantifier are infinite sets of infi-
nite words in general, and the question of syntactic representation of such lan-
guages arises. Here we consider automata as such representations, in particular
nondeterministic Büchi automata (NBA) for ω-regular languages [4], nondeter-
ministic Büchi visibly-pushdown automata (NBVPA) [1] for ω-visibly-pushdown
languages, and nondeterministic Büchi pushdown automata (NBPDA) [16] for
ω-context-free languages. By CTLrel[ωREG], CTLrel[ωVPL] and CTLrel[ωCFL]
we denote the sets of formulas in which annotated languages are regular, visibly
pushdown or context-free, respectively.

A CTL-Based Logic for Program Abstractions 23

set

set

ticktickticktick

set set

tick

ring

set

tickticktick

set set
ring

tick

0 1 2 3 4

210 > 2

T abs

T

Fig. 1. Transition system of an alarm clock and an abstraction

We allow more propositional and temporal operators as abbreviations: tt :=
q ∨¬q and ff := q ∧¬q for some q ∈ P , as well as QLFϕ := QL(ttUϕ), QLGϕ :=
QL(ffRϕ), and Q(ϕ ◦ ψ) := QΣω(ϕ ◦ ψ) for Q ∈ {E, A} and ◦ ∈ {U, R}.

The semantics of CTLrel is given as follows. Let T = (S,−→, λ) be a transition
system as above. In particular, all paths in it are infinite. For any s ∈ S we have:

T , s |= q iff q ∈ λ(s)
T , s |= ¬q iff q �∈ λ(s)

T , s |= ϕ ∨ ψ iff T , s |= ϕ or T , s |= ψ

T , s |= ϕ ∧ ψ iff T , s |= ϕ and T , s |= ψ

T , s |= EXaϕ iff there is t ∈ S s.t. s a−→ t and T , t |= ϕ

T , s |= AXaϕ iff for all t ∈ S : if s a−→ t then T , t |= ϕ

T , s |= EL(ϕUψ) iff ∃π = s0, a0, s1, a1, . . . ∈ ΠT (s) s.t. a0a1a2 . . . ∈ L and
∃i ∈ N with T , si |= ψ and ∀j < i : T , sj |= ϕ

T , s |= EL(ϕRψ) iff ∃π = s0, a0, s1, a1, . . . ∈ ΠT (s) s.t. a0a1a2 . . . ∈ L and
∀i ∈ N : T , si |= ψ or ∃j < i s.t. T , sj |= ϕ

T , s |= AL(ϕUψ) iff ∀π = s0, a0, s1, a1, . . . ∈ ΠT (s) : if a0a1a2 . . . ∈ L then
∃i ∈ N with T , si |= ψ and ∀j < i : T , sj |= ϕ

T , s |= AL(ϕRψ) iff ∀π = s0, a0, s1, a1, . . . ∈ ΠT (s) if a0a1a2 . . . ∈ L then
∀i ∈ N : T , si |= ψ or ∃j < i s.t. T , sj |= ϕ

3 Examples

As a first example, consider an alarm clock T which can be set to count down
an arbitrary number of steps and then ring. Its transition system is depicted in
the top of Fig. 1. Clearly, an alarm clock should ring eventually once it is set

24 M. Lange and M. Latte

to a certain time, therefore, the alarm clock should not have a state from which
an infinite tick-path exists. This property is specifiable in action-based CTL as
AG¬EGticktt.

Now consider an abstraction which identifies all counter values that are greater
than 2. This introduces a tick-loop in the state representing all such values. The
abstracted system T abs is depicted at the bottom of Fig. 1.

It should be clear that T |= AG¬EGticktt since every sequence of tick-actions
must eventually lead to the state with counter value 0 and that has no outgoing
tick-action. On the other hand, T abs �|= AG¬EGticktt since state “> 2” is reachable
and has an infinite tick-trace. Note that this trace is spurious. It is possible to
mend this fault though by introducing fairness and excluding this spurious trace.
Take, for instance the fairness predicate Φ := GF tick ⇒ GF ring, i.e. if infinitely
many ticks are being done then also infinitely many rings are being done. Now
it is the case that T abs |=fair AG¬EGticktt under this fairness predicate, meaning
that the CTL path quantifiers in this formula now only range over fair paths,
i.e. those that satisfy the fairness predicate Φ. Note that the spurious trace does
not, hence, the property holds under this assumption.

While this does work in this particular case, the introduction of a fairness
predicate seems rather arbitrary as well as its choice. Furthermore, the chosen
fairness predicate almost contradicts the correctness property at hand. Hence,
this is almost like only considering that part of the abstracted system which does
satisfy the correctness property and then showing that it does indeed. In other
words, finding the right fairness predicate may be as hard as showing correctness
of the original system.

CTLrel offers a more fine-tuned and more systematic way of amending the cor-
rectness properties. We will consider another example in which the introduction
of fairness is not able to exclude spurious traces that easily. Consider a system
containing a buffer into which items can be placed and from which items can be
taken. It works such that once something is taken out, it can only be emptied
and nothing more can be put into it. The transition system T is depicted on top
in Fig. 2. An abstraction T abs which collapses all states containing more than 2
buffer items is depicted below that.

Now consider the correctness property stating that at no point is it possible
to execute an out-action followed by an in-action. In action-based CTL it can
be written as AG¬EXoutEXintt. Clearly, it is satisfied by the original system T
and not satisfied by the abstraction T abs because of the spurious trace through
the self-loop in the state representing all large buffer contents. The important
observation about this is, though, that no fairness predicate can exclude all
the spurious traces which cause the violation of the correctness property. This
is simply because fairness is concerned with the infinite occurrence of states /
actions, etc. or the absence thereof. The characteristics of the spurious traces
in this case, however, is the single occurrence of an in-action after a single out-
action. It is therefore sensible to restrict the path quantification to traces of the
form inω ∪ in∗out∗dω where action d indicates, as introduced above, a transition
into an imaginary deadlock state.

A CTL-Based Logic for Program Abstractions 25

in in in in in

out out out out

out out out out

T

in in

out out

out

in

out

out
in

T abs

Fig. 2. Transition system of a buffer system and an abstraction

The issue about the right choice of path relativisation still persists, though.
As in the first example, the trace predicate inω ∪ in∗out∗dω is somehow found
miraculously. However, CTLrel allows for a more automatic approach. Note that
T is indeed a visibly pushdown system with push-action in and pop-action out.
The language of its traces is a visibly pushdown language (ωVPL), characterised
by the property that no out-action occurs after in in-action and on any prefix,
the number of out-actions is at most as high as the number of in-actions. Let
L be that language. Using CTLrel it is then possible to replace the correctness
property above by AG¬EL∩Σ∗ out inΣωFtt for instance and test that on the ab-
stracted system. Note how this restricts path quantification to traces which are
present in the original system only. This is of course the essence of excluding
spurious traces.

4 Results on CTLrel

We are particularly interested in the complexity of the model checking and satisfi-
ability checking problem for CTLrel relative to the class of formal languages used
for the quantifier restrictions. Upper bounds can easily be obtained by relating it
to ΔPDL? — Propositional Dynamic Logic with Tests and the Delta operator —
over the corresponding class. We therefore first analyse the relationship between
CTLrel and well-known logics like that one.

4.1 Expressivity

CTLrel is situated between two cornerstones: CTL [7] and ΔPDL? [11] i. e. re-
cursive PDL together with delta operators. The former is well-known. The latter

26 M. Lange and M. Latte

is modal logic over a Kleene algebra of accessibility relations with tests. The delta
operator then takes a specification formalisms for infinite words and turns it into
an existential quantification over paths labeled with a word in this language. This
is of course very similar to the mechanism used in purely existential formulas in
CTLrel. For a comparison to CTL we simply interpret the usual CTL models as
CTLrel models with a single edge label only.

Theorem 1. CTL ≤lin CTLrel[A] for Σω ∈ A, and CTL �lin CTLrel[A] for
A � ωREG.

Proof. The embedding of CTL is trivial using Σω as a quantifier restriction, and
writing EXψ as EXaψ for the unique action a the occurs in the underlying models.

For the strictness, consider ϕ:=ELGtt for a language L �∈ REG. If this formula
had an equivalent CTL-formula then there would be also a Büchi tree automaton
which recognizes exactly the models of ϕ in a certain representation [18]. Hence,
there would also be a Büchi word automaton which accepts precisely the words
in L which contradicts L �∈ ωREG. ��

We remark that CTLrel does not seem to be an extension of action-based CTL.
For instance, the formula EFaq in action-based CTL expresses that there is a
path of the form a∗Σω such that q holds in the first state after the a∗ prefix.
Clearly, CTLrel does not provide a mechanism which can transform information
between moments on a path and the inner structure of words in the language
restricting those paths.

Theorem 2. CTLrel[A] �lin ΔPDL?[A].

Proof. The embedding is proved by induction on the structure of formulas in
CTLrel[A]. We detail only the case of θ := EAϕUψ for an automaton A with
states Q, initial state q0, and final states F . Let ϕ′ and ψ′ be the translations
of ϕ and ψ, respectively. The translation of θ is 〈B〉tt where B is an automaton
of the same kind as A with states containing Q× {0, 1}, initial state (q0, 0) and
final states F × {1}. Let p a

act
�� q denote a transition in A leading from state

p by reading a ∈ Σ to state q while performing operation act on the stack—if
applicable. Then B contains the following three transitions.

(q, 0)
?ϕ′

nop
�� a

act
�� (q′, 0) (q, 0)

?ψ′

nop
�� a

act
�� (q′, 1) (q, 1) a

act
�� (q′, 1)

For the strictness, we consider the property “there is a path on which p holds
infinitely often”. Obviously, this property is expressible by a delta operator in
ΔPDL?[ωREG]. For the sake of contradiction, assume that there is CTLrel[A]-
formula ϕ expressing this property. Hence, ϕ also characterizes this property over
transition systems over a singleton alphabet Σ. For such systems the quantifiers
are relativized either to ∅ or to Σω . Hence, ϕ can be understood as a CTL-
formula. But fairness is not expressible as a CTL-formula [8]. ��

A CTL-Based Logic for Program Abstractions 27

4.2 Model Checking

Theorem 3 (Upper and lower bounds). The model checking problem for
CTLrel[A] over a finite transition system is

– in PTIME if A is ω-context-free, and
– hard for PTIME if Σω ∈ A.

Proof. Given a formula ϕ ∈ CTLrel[A] and a transition system T = (S,−→, λ),
we compute inductively the set of states in T which satisfy a subformula of ϕ.
Thereto, we extend λ with those formulas. The cases are similar to that of pure
CTL. We detail the case of a formula EL(ϕUψ) for L ∈ A. For presentation assume
that L is given as a Büchi automaton A = (Q, q0, δ, F) whereQ is the set of states,
q0 ∈ Q, the transition relation δ ∈ Q×Σ×Q, and F ⊆ Q are the final states. We
construct for every state s ∈ S an automaton B := (Q×S×{0, 1}, (q0, s, 0), δ′, F ′)
recognizing witnessing paths for EL(ϕUψ) starting at s. The last component of
the state is 1 iff the eventuality is satisfied. So, δ′ consists of

((q, s, 0), a, (q′, s′, 0)) if ϕ ∈ λ(s)
((q, s, i), a, (q′, s′, 1)) if ψ ∈ λ(s) or i = 1

where each line requires q′ ∈ δ(q, a) and s a−→ s′ for some a ∈ Σ. Finally, F ′ :=
F ×S ×{1}. A similiar construction is available for PDAs. The emptiness check
for this ω-PDA can be done in PTIME [3]. Finally, CTL is hard for PTIME.
Hence, so is CTLrel[A]. ��

4.3 Satisfiability

Theorem 4. The satisfiability problem for CTLrel[ωCFL] is undecidable.

Proof. Remember that the universality problem (is L = Σ∗?) for context-free
languages (of finite words) is undecidable. Now let L ∈ CFL over some Σ and
consider the formula ϕL := EΣ∗dωF¬q ∧ ALdωGq.

Remember the assumption about paths in CTLrel models being of the form
Σω ∪ Σ∗dω. The first conjunct then says that one of them is of the form Σ∗dω

and satisfies ¬q at some point. The second conjunct says that all paths in Ldω

satisfy q everywhere. Hence, if L = Σ∗ then ϕL is clearly unsatisfiable. On the
other hand, if there is a w ∈ Σ∗ \L then ϕL is for example satisfied in the model
which has a single path wdω such that ¬q holds somewhere on this path. ��

Therefore, we consider smaller classes of languages. Those with particular nice
algorithmic and algebraic properties are ωREG and ωVPL for instance.

Theorem 5. The satisfiability problem for CTLrel[ωREG] is EXPTIME-complete,
and for CTLrel[ωVPL] is 2-EXPTIME-complete.

28 M. Lange and M. Latte

Proof. The membership follows from Thm. 2 using that ΔPDL?[ωREG] is in
EXPTIME [9] and that ΔPDL?[ωVPL] is in 2-EXPTIME [12]. Moreover, the
logic CTLrel[ωREG] is EXPTIME-hard as CTL is [10] so. For the hardness of
CTLrel[ωVPL] one can extend the proof [12] of Löding et al. that PDL plus
a certain visibly pushdown language is 2-EXPTIME hard. Besides a standard
embedding, one ΔPDL?[ωVPL]-expression needs to be rephrased as it uses an
alternating between test operators and labels which is not directly expressible in
CTLrel[ωVPL]. An another modification takes account of total transition system.

��

5 CTL with Path Relativisation in Abstraction

For the subsequent discussion, we fix a transition system T = (S,−→, λ) and an
abstraction function α : S → S. Since the transition relation of the abstraction
T α is defined by existential quantification, a simple induction yields the following
statement.

Proposition 6. For s ∈ S we have

– If ϕ is purely existential then T , s |= ϕ implies T α, [s]α |= ϕ.
– If ϕ is purely universal then T α, [s]α |= ϕ implies T , s |= ϕ.

Hence, it suffices to verify universally quantified formulas on the abstract system,
and a positive answer carries over to the concrete system. In general, complete-
ness, i.e. the converse direction, does not hold since the abstraction might admit
spurious traces. A negative model checking result on the abstract system there-
fore need not reflect an error in the concrete system but it could. In order not
to stall the design cycle of a system in the verification phase by having negative
model checking results too often, one would like to “get as close to completeness
as possible”. This clearly requires purely existential formulas to be strengthened
and purely universal formulas to be weakened. We therefore propose a general
mechanism which uses the path quantifier relativisation in CTLrel and realises
this strengthening and weaking at the same time. Hence, it is applicable to
arbitrary formulas, not just those that are purely existential or universal.

Definition 7. Let L ⊆ Σω be a language. The restriction of a CTLrel-formula
ϕ w.r.t. L is defined as the homomorphic extension over
(
QL′(ψ1 ◦ ψ2)

)
� L :=QL′∩L

(
(ψ1 � L) ◦ (ψ2 � L)

)
where Q ∈ {E, A}, ◦ ∈ {U, R}.

Note that ωREG and ωVPL are closed under intersections, hence, CTLrel[ωREG]
and CTLrel[ωVPL] are closed under restrictions with languages of these respec-
tive classes.

A nice property to have would be the following. For all transition systems T ,
for all abstraction functions α for T there exists a language L �= ∅ such that for
all purely existential formulas ϕ we have: T α, [s]α |= ϕ � L implies T , s |= ϕ.
This is not possible however. Assume it was true. Then, it would also apply to

A CTL-Based Logic for Program Abstractions 29

transition systems over a singleton alphabet Σ. But then L = Σω and therefore
ϕ � L ≡ ϕ. Hence, this property would imply the missing converse directions in
Prop. 6 which are easy to refute by counterexample.

In the following we therefore present two heuristics which aim at exluding
spurious traces through quantifier relativisation. The first one is rather simple
and mainly meant to explain the problems involved in this approach. The second
one is more sophisticated and aims at closing down on completeness by making
certain requirements on the abstraction.

5.1 A Suffix Heuristic

Suppose T is a transition system with some initial state s, and T α is its ab-
straction w.r.t. some α. Take the CTL formula ϕ = AGEFq expressing liveness
with respect to some proposition q. A natural candidate for the restriction of
the path quantifiers in ϕ would be L := ΠT (s), i.e. the language of all paths
in L. Note that not even then does the result of T α, [s]α |= ϕ � L transfer in
any way to T , s |= ϕ. The reason for this is the fact that ΠT (s) describes all
paths starting in s. However, note that the AG-operator intuitively requires the
subformula EFq to be interpreted in arbitrary states of T , not just s. Hence, EFq
should be restricted to paths which start in those states that the formula itself
is interpreted in. This would require the subformula to “know” which state it is
interpreted in. In other words, the existential quantifier should be restricted to
certain suffixes of words in ΠT (s).

This could even mean that ELFq is interpreted in the starting state of a path
which eventually satisfies q but the restriction to L is too rigid and excludes this
path. Hence, while one aims at excluding as many spurious traces as possible,
one would also exclude good traces. This calls for an overapproximation in order
to fix this problem.

Definition 8. Let L ⊆ Σω. The suffix-closure of L is

Suff (L) := {w ∈ Σω | ∃v ∈ Σ∗ s.t. vw ∈ L}.

The heuristics presented here proposes to reduce the verification task of
T , s |= ϕ on the concrete side to T α, [s]α |= ϕ � Suff (ΠT) on the abstract
side. Note that the existential quantifier in the definition of Suff (L) realises an
overapproximation in the sense that – coming back to the example above – the
subformula EFq would of course still be interpreted in an arbitrary but reachable
state t of the system, but the quantifier relativisation would restrict the existen-
tial path quantifier to suffixes of paths from s. Since some of these pass through
t, we have ΠT (t) ⊆ Suff (ΠT (s)), and the restricted formula does not exclude
good traces. It remains to see how well this does at excluding spurious traces.

Clearly, this heuristic would be worthless if the considered classes of formal
languages were not closed under suffixes. However, this is not the case.

Proposition 9. For all C ∈ {ωREG, ωVPL, ωCFL} and for all L ∈ C we have
Suff (L) ∈ C.

30 M. Lange and M. Latte

5.2 A Local Heuristic

Note that the approach suggested in the previous section is global in a sense. Here
we propose a local approach which focus on the abstract states, their connections,
and the spurious traces that are created within those states.

Definition 10. For a concrete state s in T we define its abstraction language
as a subset of Σ∗ ∪Σω by

Ls := {a0 . . . an | there is an initial path s0a0 . . . an−1sn in T s. th.
si ∈ [s] for all 0 ≤ i < n and sn /∈ [s] }

∪ {a0a1 . . . | there is a path s0a0s1a1 . . . in T s. th.
si ∈ [s] for all i ∈ N }

The abstract language of the abstraction T α is Lα :=
(⋃

s∈S Ls
)ω.

In other words, the abstract language of a state describes all traces within its
class. In particular, fragments of spurious traces are excluded. The language Lα
is an over-approximation of the transition system. Indeed, it also admits words
in LsLtLα when [s] and [t] are not connected. But, therefore, Lα might have a
more condensed description than T itself.

Prop. 6 can be strengthened by a restriction which is compatible with the
induced equivalence classes.

Lemma 11 (Soundness). For any purely existential formula ϕ we have that
T , s |= ϕ implies T α, [s]α |= ϕ � L, for any L ⊇ LsLα and s ∈ S.

Proof. Induction on ϕ. We sketch the case ϕ = EL′(ψ0Uψ1) only. Consider a
witnessing path π := s0, a0, s1, a1, Then πα := [s0]α, a0, [s1]α, a1, . . . is a
path in T α. By induction hypothesis we have T α, [s]α |= EL′((ψ0 � L)U(ψ1 � L)).
A subsequence of πα might loop in just one equivalence class. This observation
gives rise to a factorization along which πα ∈ LsLα can be shown. ��

For the converse implication we synchronize traces in the abstract system with
those in the concrete one.

Definition 12. The abstraction T α is syntactically traceable iff [s] a−→α[s0] and
[s] a−→α[s1] imply s0 = s1 for all s, s0, s1 ∈ S and a ∈ Σ with [s0] �= [s] �= [s1].

Syntactical traceablity is a rather strong and artificial property as it requires
that a label determines the targeted state. None of our introductive examples
enjoy this property. However in our examples, not the label but the course of the
considered trace uniquely specifies the next equivalence class. This observation
motivates the following definition.

Definition 13. The abstraction T α is semantically traceable iff for all paths π̂
in T α and for all states s0, s1 ∈ S it holds that π ∈ L(Ls0Lα ∩ Ls1Lα) implies
s0 = s1 where L = Σ∗ ∩ (

⋃
s∈S Ls)

∗.

A CTL-Based Logic for Program Abstractions 31

In the alarm clock example, assume that the sequence set tick leads to the class
“> 2”. Then the label tick either keeps the trace in this class or brings it to the
class “1”. Hence, the abstracted system is not syntactically traceable. However, it
is semantically traceable as the number of ticks before the clock rings determines
the next state.

Proposition 14. If T α is syntactically traceable then it is also semantically
traceable.

Theorem 15 (Conditional Completeness). Let T be semantically traceable.
Suppose that for the formulas ψ0, ψ̂0, ψ1 and ψ̂1

T α, [s]α |= ψ̂i implies T , s |= ψi (1)

holds for s ∈ S and i ∈ {0, 1}. Then for ◦ ∈ {U, R}, s ∈ S and L′ ⊆ Σω we have

T α, [s]α |= EL∩L′(ψ̂0 ◦ ψ̂1) implies T , s |= EL(ψ0 ◦ ψ1) (2)

where L′ := LsLα.

Proof. Let π̂ := ŝ0a0ŝ1a1 . . . be a path witnessing the premise of the equation (2).
It remains to show that there exists a path π—and not just a sequence of states—
in T which follows π̂. Given that, the property (1) completes the proof. The path
π̂ can be factorized using L′ such that the (finite or infinite) word determined
by a factor is in Lt for t ∈ S. The first factor is in Ls. Along this factorization
we construct π as follows. Assume a factor and a path ending at a concrete state
such that its abstraction is the first state in the considered factor. For the first
factor this path consists of the state s only. Now, the word of the factor is in Lt
for some t ∈ S. Therefore, the definition of this language admits two possibilities.
Either, there is an infinite path in [t]α, then we are done. Or there is a finite
path π′ in [t]α and a label a ∈ Σ leading π′ to a state outside of [t]α. Then we
extend π by π′ and the said label. By the definition of “semantically traceable”,
the following node is uniquely determined. ��

Although the restriction on the formulas seems to be rather artificial it avoids
the suffix problem. However, the consistency condition for abstraction functions
ensures that any formula without E and A meets the property (1). Together with
Lem. 11, we have completeness of our method with respect to a certain class of
formulas.

Corollary 16 (Conditional Faithfulness). Let T be semantically traceable
and let ϕ be a formula without EX, AX, and nested quantifiers. We have

T α, [s]α |= ϕ � L′ iff T , s |= ϕ (3)

for L′ := LsLα.

The language L′ used by the previous theorem and corollary is subsumed by
Lα. Hence, modelchecking ϕ � Lα on the abstract system is almost as good as
checking ϕ � L′.

32 M. Lange and M. Latte

Note that Cor. 16 is only formulated for formulas without the next-time op-
erators. The fragment for which Cor. 16 states completeness and thus full elimi-
nation of spurious traces is therefore in some sense the stutter-invariant part of
CTLrel only.

6 Conclusion and Further Work

We have presented a framework for the transformation of correctness properties
which should go hand in hand with the transformation of a concrete system into
an abstract one. The goal of this transformation is to minimise the significance
of spurious traces in the abstract model. We have then suggested two heuristics
for certain transformations within this framework.

The work contained herein is obviously not completed. It remains to be seen
how these heuristics perform in practice, i.e. how often they can confirm absence
of errors in a concrete system (w.r.t. purely universal properties for instance)
by confirming that the abstract system is error-free. A dealbreaker may also be
the computation of the involved languages which are being factorised into the
property. It remains to be seen whether efficient algorithms for these computation
problems exist.

On the theoretical side, it is of course possible to consider extensions of CTLrel.
It is not too difficult to see that one could introduce test predicates into the
formal languages without losing any of the complexity results. Another obvious
extension would be CTL∗

rel, i.e. CTL∗ with path relativisation in the same style.
This would have a significantly higher complexity in both model checking and
satisfiability checking though.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th Ann. ACM
Symp. on Theory of Computing, STOC 2004, pp. 202–211 (2004)

2. Bosnacki, D., Ioustinova, N., Sidorova, N.: Using fairness to make abstractions
work. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 198–215.
Springer, Heidelberg (2004)

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

4. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
Congress on Logic, Method, and Philosophy of Science, pp. 1–12. Stanford Univer-
sity Press, Stanford (1962)

5. Clarke, E.M., Emerson, E.A.: Synthesis of synchronization skeletons for branching
time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131,
pp. 52–71. Springer, Heidelberg (1982)

6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. Journal of the ACM 50(5),
752–794 (2003)

A CTL-Based Logic for Program Abstractions 33

7. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. Journal of Computer and System Sciences 30, 1–24
(1985)

8. Emerson, E.A., Halpern, J.Y.: “sometimes” and “not never” revisited: on branching
versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

9. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs.
In: Annual IEEE Symposium on Foundations of Computer Science, pp. 328–337
(1988)

10. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences 18(2), 194–211 (1979)

11. Löding, C., Lutz, C., Serre, O.: Propositional dynamic logic with recursive pro-
grams. J. Log. Algebr. Program. 73(1-2), 51–69 (2007)

12. Löding, C., Serre, O.: Propositional dynamic logic with recursive programs. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 292–306.
Springer, Heidelberg (2006)

13. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

14. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Symp. on Foundations
of Computer Science, FOCS 1977, Providence, RI, USA, pp. 46–57. IEEE, Los
Alamitos (1977)

15. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
Journal of the Association for Computing Machinery 32(3), 733–749 (1985)

16. Staiger, L.: Handbook of formal languages. In: ω-languages. Beyond words, vol. 3,
pp. 339–387. Springer, Heidelberg (1997)

17. Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily
decidable. Information and Control 54(1/2), 121–141 (1982)

18. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. J. Comput. Syst. Sci. 32(2), 183–221 (1986)

19. Walukiewicz, I.: Pushdown processes: Games and model-checking. Information and
Computation 164(2), 234–263 (2001)

	A CTL-Based Logic for Program Abstractions
	Introduction
	CTL with Path Relativisation
	Examples
	Results on CTLrel
	Expressivity
	Model Checking
	Satisfiability

	CTL with Path Relativisation in Abstraction
	A Suffix Heuristic
	A Local Heuristic

	Conclusion and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

