

Lecture Notes in Artificial Intelligence 6188
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

FoLLI Publications on Logic, Language and Information

Editors-in-Chief

Luigia Carlucci Aiello, University of Rome "La Sapienza", Italy

Michael Moortgat, University of Utrecht, The Netherlands

Maarten de Rijke, University of Amsterdam, The Netherlands

Editorial Board

Carlos Areces, INRIA Lorraine, France

Nicholas Asher, University of Texas at Austin, TX, USA

Johan van Benthem, University of Amsterdam, The Netherlands

Raffaella Bernardi, Free University of Bozen-Bolzano, Italy

Antal van den Bosch, Tilburg University, The Netherlands

Paul Buitelaar, DFKI, Saarbrücken, Germany

Diego Calvanese, Free University of Bozen-Bolzano, Italy

Ann Copestake, University of Cambridge, United Kingdom

Robert Dale, Macquarie University, Sydney, Australia

Luis Fariñas, IRIT, Toulouse, France

Claire Gardent, INRIA Lorraine, France

Rajeev Goré, Australian National University, Canberra, Australia

Reiner Hähnle, Chalmers University of Technology, Göteborg, Sweden

Wilfrid Hodges, Queen Mary, University of London, United Kingdom

Carsten Lutz, Dresden University of Technology, Germany

Christopher Manning, Stanford University, CA, USA

Valeria de Paiva, Palo Alto Research Center, CA, USA

Martha Palmer, University of Pennsylvania, PA, USA

Alberto Policriti, University of Udine, Italy

James Rogers, Earlham College, Richmond, IN, USA

Francesca Rossi, University of Padua, Italy

Yde Venema, University of Amsterdam, The Netherlands

Bonnie Webber, University of Edinburgh, Scotland, United Kingdom

Ian H. Witten, University of Waikato, New Zealand

Anuj Dawar Ruy de Queiroz (Eds.)

Logic, Language,
Information
and Computation

17th International Workshop, WoLLIC 2010
Brasilia, Brazil, July 6-9, 2010
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Anuj Dawar
University of Cambridge
Computer Laboratory
J.J. Thomson Avenue
Cambridge, CB3 0FD, UK
E-mail: anuj.dawar@cl.cam.ac.uk

Ruy de Queiroz
Universidade Federal de Pernambuco
Centro de Informática
Avenida Prof Luis Freire s/n
Cidade Universitária
50740-540 Recife, PE, Brazil
E-mail: ruy@cin.ufpe.br

Library of Congress Control Number: 2010928907

CR Subject Classification (1998): F.4.1, F.3, F.4, I.2.3, G.2, I.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-13823-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13823-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at WoLLIC 2010: 17th Workshop on
Logic, Language, Information and Computation held during July 6–9, 2010, on
the campus of Universidade de Braśılia (UnB), Brazil.

The Workshop on Logic, Language, Information and Computation (WoL-
LIC) is an annual event, meeting every year since 1994, which aims at fostering
interdisciplinary research in pure and applied logic. The idea is to have a forum
which is large enough in the number of possible interactions between logic and
the sciences related to information and computation, and yet is small enough to
allow for concrete and useful interaction among participants.

The present volume contains 13 contributed papers that were selected from
among 32 submissions after a rigorous review by the Program Committee. Each
submission was reviewed by at least two, and on average three, Program Com-
mittee members.

This volume also contains papers or abstracts that relate to the seven invited
talks presented at the workshop. Between them, these papers give a snapshot of
some fascinating work taking place at the frontiers between computation, logic,
and linguistics.

We are grateful to all the people who made this meeting possible and are
responsible for its success: the members of the Program Committee and the
external reviewers, the invited speakers, the contributors, and the people who
were involved in organizing the workshop.

On behalf of the entire WoLLIC community, we would also like to express
our gratitude to our institutional sponsors and supporters. WoLLIC 2010 was
sponsored by the Association for Symbolic Logic (ASL), the Interest Group in
Pure and Applied Logics (IGPL), the Association for Logic, Language and In-
formation (FoLLI), the European Association for Theoretical Computer Science
(EATCS), the Sociedade Brasileira de Computação (SBC), and the Sociedade
Brasileira de Lógica (SBL). We expect to receive financial support from the
Brazilian government (through CAPES, grant PAEP-2759/2010-85), Universi-
dade de Braśılia (UnB), CNPq and FAPDF.

The reviewing for the workshop and the preparation of the proceedings were
prepared with the assistance of the EasyChair conference management sys-
tem, for which we wish to express our gratitude to its main developer, Andrei
Voronkov.

April 2010 Anuj Dawar
Ruy de Queiroz

Organization

Program Chair

Anuj Dawar Cambridge

Program Committee

Veronica Becher Buenos Aires
Raffaella Bernardi Bolzano
Ricardo Bianconi São Paulo
Vasco Brattka Cape Town
Bob Coecke Oxford
Adriana Compagnoni Stevens
Marcelo Coniglio Campinas
Valentin Goranko Copenhagen
Rosalie Iemhoff Utrecth
Makoto Kanazawa National Institute of Informatics, Japan
Giuseppe Longo CNRS & ENS, Paris
Hasegawa Masahito Kyoto U, Japan
Michael Mislove Tulane
Michael Norrish NICTA, Canberra
Bart Selman Cornell
Scott Weinstein Pennsylvania
Balder ten Cate ENS, Cachan

Steering Committee

Samson Abramsky
Johan van Benthem
Joe Halpern
Wilfrid Hodges
Daniel Leivant
Angus Macintyre
Grigori Mints
Hiroakira Ono
Ruy de Queiroz

Local Organization

Mauricio Ayala-Rincon University of Brasilia, Brazil (Co-chair)
Flavio L. C. Moura University of Brasilia, Brazil

VIII Organization

Claudia Nalon University of Brasilia, Brazil
Anjolina G. de Oliveira Federal University of Pernambuco, Brazil
Ruy de Queiroz Federal University of Pernambuco, Brazil

(Co-chair)

External Reviewers

Romain Beauxis
Arnold Beckmann
Dietmar Berwanger
Will Brian
Diego Calvanese
Sergio Daicz
Joerg Flum
Birte Glimm
Healfdene Goguen
Joos Heintz
Neil Immerman
Bruce Kapron
Roman Kuznets
Catherine Meadows
Mariano Moscato
Hans de Nivelle
Dusko Pavlovic
Mariano Rodriguez
Vladimir Rybakov
Mehroosh Sadrzadeh
Robert Seely
Inanc Seylan
Benjamin Spector
Cristoph Sticksel
Alwen Tiu
Clint Van Alten

Table of Contents

Entailment Multipliers: An Algebraic Characterization of Validity for
Classical and Modal Logics (Invited Talk) . 1

Marcelo Finger and Mauricio S.C. Hernandes

A CTL-Based Logic for Program Abstractions (Invited Talk) 19
Martin Lange and Markus Latte

Application of Logic to Integer Sequences: A Survey (Invited Talk) 34
Johann A. Makowsky

The Two-Variable Fragment with Counting Revisited (Invited Talk) 42
Ian Pratt-Hartmann

Intuitionistic Logic and Computability Theory (Invited Talk) 55
Sebastiaan A. Terwijn

Foundations of Satisfiability Modulo Theories (Invited Talk) 58
Cesare Tinelli

Logical Form as a Determinant of Cognitive Processes 59
Michiel van Lambalgen

Formal Lifetime Reliability Analysis Using Continuous Random
Variables . 84

Naeem Abbasi, Osman Hasan, and Sofiène Tahar

Modal Logics with Counting . 98
Carlos Areces, Guillaume Hoffmann, and Alexandre Denis

Verification of the Completeness of Unification Algorithms à la
Robinson . 110

Andréia B. Avelar, Flávio L.C. de Moura, André Luiz Galdino, and
Mauricio Ayala-Rincón

Mechanisation of PDA and Grammar Equivalence for Context-Free
Languages . 125

Aditi Barthwal and Michael Norrish

On the Role of the Complementation Rule for Data Dependencies over
Incomplete Relations . 136

Flavio Ferrarotti, Sven Hartmann, and Sebastian Link

Decidability and Undecidability Results on the Modal μ-Calculus with
a Natural Number-Valued Semantics . 148

Alexis Goyet, Masami Hagiya, and Yoshinori Tanabe

X Table of Contents

Solving the Implication Problem for XML Functional Dependencies
with Properties . 161

Sven Hartmann, Sebastian Link, and Thu Trinh

On Anaphora and the Binding Principles in Categorial Grammar 176
Glyn Morrill and Oriol Valent́ın

Feasible Functions over Co-inductive Data . 191
Ramyaa Ramyaa and Daniel Leivant

Interval Valued Fuzzy Coimplication . 204
Renata H.S. Reiser, Benjamin C. Bedregal, and
Gesner A.A. dos Reis

Reduction of the Intruder Deduction Problem into Equational
Elementary Deduction for Electronic Purse Protocols with Blind
Signatures . 218

Daniele Nantes Sobrinho and Mauricio Ayala-Rincón

Intersection Type Systems and Explicit Substitutions Calculi 232
Daniel Lima Ventura, Mauricio Ayala-Rincón, and
Fairouz Kamareddine

Generalising Conservativity . 247
Richard Zuber

Author Index . 259

Entailment Multipliers: An Algebraic

Characterization of Validity for Classical and
Modal Logics

Marcelo Finger� and Mauricio S.C. Hernandes��

Department of Computer Science
Institute of Mathematics and Statistics

University of Sao Paulo
mfinger@ime.usp.br, mauhcs@gmail.com

Abstract. We propose a novel algebraic characterisation of the classical
notion of validity in terms of boolean rings, called entailment multipliers.
We demonstrate the existence of such multipliers and show how they can
be used to derive stronger entailment statements. An interesting property
of multipliers lies in their behaviour as invariants in a proof, a fact that is
used to show how several inference systems can be employed to compute
entailment multipliers. A similar characterisation of validity for modal
logics is presented.

1 Introduction

The notions of logical consequence and logical validity have been explored under
several points of view, mostly in terms of proof-theory and semantic entailment
relations, but also in algebraic terms. In this work we propose an algebraic
characterisation of the notion of logical validity, and study its relationship with
proof-theoretical and semantic approaches.

Algebraic formulation of logics is usually presented in terms of boolean alge-
bras and lattices. Here, however, we use as an underlying structure a boolean
ring; the main motivation for the use of such structure comes from the work of
Carnielli [6]. As usual, formulas can be represented algebraically as terms, and
ring properties allow us to represent formulas in a more compact way.

Classical validity statements presented in terms of semantic entailment ex-
pressions or proof-theoretical sequents can be expressed as polynomials over
boolean rings, where variables are inserted as multipliers of terms obtained from
the algebraic translation of formulas in the validity statements. The main result
of this work claims that such a statement is classically valid iff the corresponding
polynomial has roots when equated to the unit (the 1-roots).

On a different perspective, an application of this result can be seen as follows.
It is quite widespread the opinion that proving a mathematical statement is
� Partly supported by CNPq grant PQ 301294/2004-6 and FAPESP project

2008/03995-5.
�� Partly supported by CNPq grant 131263/2008-0.

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 1–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 M. Finger and M.S.C. Hernandes

more than knowing its validity. Proving brings insight, which may lead to a
generalisation of the original statement.

The existence of entailment multipliers allows us to make such opinion formal,
that is, we show how, given proof of a theorem, one can employ the entailment
multipliers (that is, the 1-roots of the polynomial associated to the validity
expression) to effectively compute a generalisation of the original theorem.

In this setting, given a proof of a validity statement S:

A1, . . . , An |= B1, . . . , Bm

we compute another validity statement S′

A′
1, . . . , A

′
n |= B′

1, . . . , B
′
m

that is stronger than S, S′ ≥ S, in the sense that:

– Ai |= A′
i, 1 ≤ i ≤ n; and

– B′
j |= Bj , 1 ≤ j ≤ m

That is, both S and S′ are valid, and S′ has a weaker antecedent or a stronger
conclusion, or both. Clearly, ≥ is a partial order. For example, from a Modus
Ponens statement SMP = A→ B,A |= B, with the aid of entailment multipliers
we can compute a stronger S′

MP = A → B,A ∨ B |= B. Several methods of
computing the entailment multipliers are analysed associated to several proof
methods.

1.1 Comparisons with the Literature

The method in the literature that best approaches ours is the use of Hilbert
Nullstellensatz for propositional refutations, which was initially suggested by
Lovász [12] and was independently proposed again in [1] and later developed
in a series of works on what has bee termed the algebraic propositional proof
system [13, 5, 2, 4].

In this approach, formulas are transformed into polynomials over a fixed al-
gebraically closed field F . Satisfiability of a formula A is mapped as an equation
QA(x̄) = 0, where QA(x̄) is the translation of the formula A as a polynomial
over variables x̄. Extra equations of the form x2

i + xi = 0 are needed to ensure
that each xi ∈ x̄ takes only values 0 or 1. Theorem proving is made by refu-
tation, trying to show that a set of formulas is unsatisfiable. In such setting,
one can apply Hilbert’s (weak) Nullstellensatz, that states that a set a system
of equations Qi(x̄) = 0 does not have a solution in F iff there are polynomials
Pi(x̄) such that

∑
i Pi(x̄)Qi(x̄) = 1.

Although there is a similarity between this approach and ours, the main dif-
ference lies in the fact that it deals with fields, so that variables can take any
variables over a field. This makes the translation of a polynomial back into a
formula somewhat different. By using boolean rings, the translation back into
formulas is immediate, and this fact will be used to proof-theoretical applications

Entailment Multipliers: An Algebraic Characterization of Validity 3

1.2 Organisation of the Paper

The rest of the paper develops as follows. After introducing some definitions and
notation, Section 2 introduces boolean rings and proves the existence of entail-
ment multipliers for valid statements. In Section 2.1 we show how the existence
of “small multipliers” is related to the problem NP=coNP, and in Section 2.2
we show how entailment multipliers can be used to generate stronger entailment
statements. In Section 3 we show how to compute entailment multipliers along
the proof constructions using the inference systems of Resolution and Gentzen
Sequent Calculus. We then show how the idea of multipliers generalises to exten-
sions of propositional classical logics, such as Normal Modal Logics in Section 4.
The paper concludes with some remarks and proposals of future work.

Notation

We consider formulas built over a countable set of propositional atoms P =
{p0, p1, . . .} and connectives ¬, ∧, ∨ and →. We represent formulas by upper
case Latin letters: A, B, C, etc. We represent sets or multisets of formulas by
upper case Greek letters, such as Γ , Δ, Φ and Ψ . A valuation is a function that
maps each atomic symbol in P in {0, 1}, which is then generalised to formulas
in the usual way; a valuation v is said to satisfy formula A if v(A) = 1. A set of
formulas Γ is satisfiable if there is a v such that for every A ∈ Γ , v(A) = 1.

An entailment statement is an expression of the form Γ |= Δ; such a statement
is valid if every valuation that satisfies every A ∈ Γ also satisfies some B ∈ Δ.
The proof-theoretic counterpart of entailment statements are sequents, which are
expressions of the form Γ � Δ, where Γ is the sequent’s antecedent and Δ its
consequent. A sequent may be proven using several distinct inference systems,
represented by �I ; such a system is sound and complete with respect to the
semantic entailment iff Γ |= Δ iff Γ �I Δ.

Algebraic terms are represented by lower case Latin letters: a, b, c, etc. Alge-
braic variables are represented by x, y, z, etc. All representations may be sub-
scripted or superscripted.

2 Entailment Multipliers

For the purposes of this paper, a ring is an algebraic structure R = 〈R, ·,+, 0, 1〉
where R is a set, 0, 1 ∈ R and for every a, b, c ∈ R the following holds:

(r1) (a+ b) + c = a+ (b + c);
(r2) 0 + a = a+ 0 = a;
(r3) there is −a ∈ R such that a+ (−a) = (−a) + a = 0;
(r4) a+ b = b+ a;
(r5) (a · b) · c = a · (b · c);
(r6) a · b = b · a;
(r7) 1 · a = a · 1 = a;
(r8) a · (b+ c) = a · b+ a · c.

4 M. Finger and M.S.C. Hernandes

A boolean ring B = 〈B, ·,+, 0, 1〉 is a ring subjected to the conditions, for
every a ∈ B:

(b1) a · a = a;
(b2) a+ a = 0

In a boolean ring, the structure · is interpreted as conjunction, + is exclusive-or,
0 is the bottom and 1 is the top. Note that every element is its own inverse,
x + x = 0 (that is, (B,+, 0) is an Abelian group of order 2). Also note that
the power of any variable is at most 1. As 0 is defined by (b2), a boolean ring
is sometimes represented as B = 〈B, ·,+, 1〉. The degree of the term is defined
as usual, namely, degree(0) = degree(1) = 0, degree(xi) = 1, degree(a + b) =
max{degree(a), degree(b)}, degree(a · b) = degree(a) + degree(b). As usual, we
sometimes write ab for a · b.

For every propositional formula A, let At be its standard translation as a term
of A; similarly, let if a is a term of A, aϕ is its formula translation. The term
and formula translations are defined as follows.

�t = 1
⊥t = 0
pt

i = xi

(¬A)t = At + 1
(A ∧ B)t = At · Bt

(A ∨ B)t = (At + 1) · (Bt + 1) + 1
(A → B)t = At · (Bt + 1) + 1

1ϕ = �
0ϕ = ⊥
xϕ

i = pi

(a · b)ϕ = aϕ ∧ bϕ

(a + b)ϕ =

⎧⎨⎩
¬aϕ , b = 1
(aϕ ∧ ¬bϕ)∨

(¬aϕ ∧ bϕ) , b �= 1

It is immediate that a = (aϕ)t and that A ≡ (At)ϕ.
The relationship between boolean rings and sequents is established by the

following result.

Proposition 2.1. The statement A1, . . . , An |= B1, . . . , Bm is valid iff(
n∏

i=1

At
i

)
·

⎛⎝ m∏
j=1

(Bt
i + 1)

⎞⎠ = 0 (1)

Lemma 2.2. Suppose {A1, . . . , An} is an unsatisfiable set of propositional for-
mulas. Then there are terms a1, . . . , an such that

n∑
i=1

ai · (At
i + 1) = 1. (2)

Proof. By induction on n. For the base case, consider n = 1, so that A1 is an
inconsistent formula. As a result At

1 = 0, and take a1 = 1. Then a1 · (At
1 + 1) =

1 · (0 + 1) = 1.
Suppose the set {A1, . . . , An+1} with n+ 1 elements is inconsistent; then the

set {A1, . . . , An∧An+1} with n elements is clearly inconsistent, and we can apply
the induction hypothesis, so there are a1, . . . , an such that(

n−1∑
i=1

ai · (At
i + 1)

)
+ an · (At

n · At
n+1 + 1) = 1. (3)

Entailment Multipliers: An Algebraic Characterization of Validity 5

To solve (3), it suffices to provide a′n, a
′
n+1 such that

a′n · (At
n + 1) + a′n+1 · (At

n+1 + 1) = an · (At
n ·At

n+1 + 1). (4)

There are many possible solutions to (4). One could make a′n = an ·At
n+1 and

a′n+1 = an; or a′n = an · (At
n · At

n+1 + 1) and a′n+1 = an · At
n. In either case, we

have a set of multipliers for {A1, . . . , An+1}. �

Note that the possible multipliers for a given inconsistent set are not unique. In
fact, in the proof above, the inductive case can generate a potentially different
set of multipliers for every pair of formulas chosen in {A1, . . . , An+1}. The sum
is called a 1-sum.

Example 2.3. Consider the inconsistent set of formulas A,C → ¬A,B →
C,B. It is easy to verify that

1 · (a+ 1) + 1 · (ca) + a · (b(c+ 1)) + a(c+ 1) · (b+ 1) = 1 (5)

so a possible attribution of multipliers to this set is 1, 1, a, a(c+ 1). �

The converse of Lemma 2.2 also holds.

Lemma 2.4. Let Γ = {A1, . . . , An} be a set of formulas such that
∑n

i=1 ai ·
(At

i + 1) = 1 for terms a1, . . . , an. Then Γ is unsatisfiable.
Proof. We prove by induction on n. For the base case n = 1, so a1 · (At

1 +1) = 1,
which holds iff a1 = At

1 + 1 = 1. So At = 0 and Γ is inconsistent.
Consider now

∑n
i=1 ai · (At

i +1) = 1. By multiplying both sides by At
1 ·At

2 the
first two terms of the sum are cancelled and after some regrouping we obtain

n∑
i=3

(At
1 ·At

2 · ai) · (At
i + 1) = At

1 · At
2. (6)

Adding At
1 ·At

2 + 1 to both sides of (6) yields(
n∑

i=3

(At
1 ·At

2 · ai) · (At
i + 1)

)
+ (At

1 · At
2 + 1) = 1 (7)

The left hand side of (7) is a sum of n − 1 terms, where the multiplier of
the last term is 1. By the induction hypothesis, we obtain that the set {A1 ∧
A2, A3, . . . , An} is unsatisfiable, so Γ is unsatisfiable. �

Definition 2.5 (Characteristic Polynomial). Given an entailment state-
ment S = A1, . . . , An |= B1, . . . , Bm, its characteristic polynomial over variables
x1, . . . , xn, y1, . . . , ym is cp(S) = x1 · (At

1 + 1) + . . . + xn · (At
n + 1) + y1 · Bt

1 +
. . .+ ym · Bt

m .
The characteristic polynomial has 1-roots if there are terms a1, . . . , an,

b1, . . . , bm such that∑n
i=1 ai · (At

i + 1) +
∑m

j=1 bj ·Bt
j = 1. (1-roots)

6 M. Finger and M.S.C. Hernandes

Theorem 2.6 (Entailment Multipliers). A classical entailment statement
S is valid iff its characteristic polynomial cp(S) has 1-roots.

Proof. If A1, . . . , An |= B1, . . . , Bm then the set {A1, . . . , An,¬B1, . . . ,¬Bm} is
unsatisfiable. So, by applying Lemma 2.2, the 1-roots are obtained.

Conversely, if cp(S) has 1-roots, by Lemma 2.4, {A1, . . . , An,¬B1, . . . ,¬Bm}
is an unsatisfiable set, so A1, . . . , An |= B1, . . . , Bm holds. �

We use the notation of Labelled Deduction System (LDS) [10] to designate a
formula and its corresponding entailment multiplier as the label. So a statement
is now represented as:

x1 : A1, . . . , xn : An |= y1 : B1, . . . , ym : Bm

to indicate that the statement A1, . . . , An |= B1, . . . , Bm is valid with the corre-
sponding 1-roots.

Example 2.7. Consider the statement A,C → ¬A,B → C,B |= (A ∨B) ∧C.
As its antecedent is the unsatisfiable set of Example 2.3, we obtain the following
multiplier labelled sequent:

1 : A, 1 : C → ¬A, a : B → C, a(c + 1) : B |= 0 : (A ∨B) ∧ C

Note that 0-labelled formulas play no part in the validity of the statement. �

There is a naive way to compute multipliers. Let A1, . . . , An be a set of incon-
sistent formulas, then we we compute multipliers a1, . . . , an by making a1 = 1
and for 2 ≤ i ≤ n

ai =
i−1∏
j=1

At
j (8)

that is, a2 = At
1, a3 = At

1 ·At
2, . . ., an = At

1 · · ·At
n−1. This is a direct consequence

of the equation
n∑

i=1

⎛⎝i−1∏
j=1

At
j

⎞⎠ · (At
i + 1) = 1, (9)

which can be easily verified.
It is important to note that the multipliers computed by (8) depends on the

order of the formulas. It is also possible to simplify those multipliers.

Example 2.8. Consider again the set of inconsistent formulas in Example 2.3.
By applying equation 9 we obtain the multipliers:

1 : A, a : C → ¬A, a(ca+ 1) : B → C, a(ca+ 1)(b(c+ 1) + 1) : B

On the other hand, by considering the same set in reverse order we obtain

b(b(c+ 1) + 1)(ca+ 1) : A, b(b(c+ 1) + 1) : C → ¬A, b : B → C, 1 : B

or
bc : A, b : C → ¬A, 1 : B → C, 1 : B

after some simplification. �

Entailment Multipliers: An Algebraic Characterization of Validity 7

In this method, prior to simplification, the degree of the last multiplier is n− 1,
which indicates that this may not be a good way to obtain small multipliers.
Section 3 presents other ways of computing entailment multipliers, which are
associated to proof systems.

2.1 Multipliers and the NP = coNP Problem

There is a basic asymmetry between NP-complete problems and coNP-complete
problems, which is reflected in logic as well. If a set of formulas is satisfiable, it
suffices to provide a valuation to have a polynomial-time computable witness of
satisfiability. No such tractable witness is known to exist for unsatisfiability (or
validity).

Here, we propose that entailment multipliers as a candidate for validity wit-
ness. The complexity of the verification is the number of operations (sums, prod-
ucts, fatorings or other forms of term simplification) to transform the left-hand
side of the 1-sum to 1.

In this case, a small witness for the validity of a sequent would be a set of
entailment multipliers such that the number of operations to verify the 1-sum
is bounded by a polynomial on the number of distinct atomic formulas in the
sequent. However, it is not clear that such a set of multipliers always exists.

Lemma 2.9. If every valid sequent has a small witness set of entailment mul-
tipliers, then NP=coNP.

Proof. The existence of a small witness set of entailment multipliers provides
an NP algorithm for deciding classical propositional validity, which is a coNP
problem. This implies NP=coNP [11]. �

The search space of multipliers for a given entailment can be quite big, as the set
of multipliers for a given entailment is far from unique. In fact, each proof method
may compute a different set of multipliers, which we investigate in Section 3.

2.2 Strengthening Entailment Expressions

The use of entailment multipliers suggests a way to strengthen entailment
expressions.

Theorem 2.10 (Stronger Entailment). Let S = A1, . . . , An |= B1, . . . , Bm

be a valid statement with multipliers a1, . . . , an,b1, . . . , bm. Then:

(a) For 1 ≤ k ≤ n, the statement S′ = A1, . . . , (¬aϕ
k)∨Ak, . . . , An |= B1, . . . , Bm

is valid with multipliers a1, . . . , ak−1, 1, ak+1, . . . , an,b1, . . . , bm, such that
S′ ≥ S.

(b) For 1 ≤ l ≤ m, the statement S′′ = A1, . . . , An |= B1, . . . , b
ϕ
l ∧Bl, . . . , Bm is

valid with multipliers a1, . . . , an,b1, bj−1, 1, bj+1, . . . , . . . , bm, such that
S′′ ≥ S.

8 M. Finger and M.S.C. Hernandes

Proof. From the fact that S is valid with multipliers a1, . . . , an,b1, . . . , bm we
have that

n∑
i=1

ai · (At
i + 1) +

m∑
j=1

bj ·Bt
j = 1. (10)

Then:

(a) The term translation [(¬aϕ
k)∨Ak]t = ((ak+1)+1)(At

k+1)+1 = ak(At
k+1)+1,

such that (10) can be rewritten as⎛⎝ n∑
i=1,i�=k

ai · (At
i + 1) +

m∑
j=1

bj · Bt
j

⎞⎠+ 1 · (ak(At
k + 1) + 1 + 1) = 1. (11)

By Theorem 2.6 we have that S′ is valid with multipliers a1, . . . , ak−1, 1,
ak+1, . . . , an, b1, . . . , bm. We also have that Ai = A′

i for 1 ≤ i �= k ≤ n,
Bj = B′

j for 1 ≤ j ≤ m and Ak |= (¬aϕ
k) ∨Ak, so S′ ≥ S.

(b) Totally analogous. �

Theorem 2.10 implies that, if we start with a valid statements S we “incorporate”
one of its multipliers into new a statement S′ ≥ S; clearly, S′ is strictly stronger
than S when the multiplier is not 1. But then we can again apply Theorem 2.10
to S′, choosing a different non-unit multiplier, obtaining an even stronger valid
statement. This process can be iterated until we obtain a statement whose mul-
tipliers are all 1.

Corollary 2.11. Given a valid entailment statement S

S = a1 : A1, . . . , an : An |= b1 : B1, . . . , bm : Bm

we can build a lattice of valid entailment statements (S, Γ) where the elements
of S are valid statements obtained by applying Theorem 2.10 to every subset of
formulas in S. The statement S is the bottom of the lattice and the top statement
is S�:

¬aϕ
1 ∨A1, . . . ,¬aϕ

n ∨An |= bϕ1 ∧B1, . . . , b
ϕ
m ∧Bm

3 Computing Entailment Multipliers

The naive method to compute entailment multipliers has a series of inconve-
niences. It may take an exponential number of steps, which may even lead to
the storage of an exponential number of terms. As a result, the multipliers may
use exponential space.

However, we believe that each kind of inference system may provide at least
one method of computing entailment multipliers. In fact, each sound inference
method consists of a set of transformations that preserve the validity, or the
truth value, such that at each step the 1-sum is an invariant. Therefore, at each
transformation step one can compute new multipliers from previous ones. We
now investigate this statement for two proof methods: resolution and Gentzen
Sequent Calculus.

Entailment Multipliers: An Algebraic Characterization of Validity 9

3.1 Resolution

Propositional resolution is a refutation method in which one shows the incon-
sistency of a set of formulas in clausal form by deriving ⊥ from it. The main
inference step is the resolution rule

A ∨ pi ¬pi ∨B
A ∨B

This inference step can be simulated as an algebraic operation. Note that
(xi + 1) is a factor of (A∨ pi)t +1, and similarly, xi is a factor of (¬pi ∨B)t +1.
We can construct multipliers mA and mB for the resolvents such that mA · ((A∨
pi)t +1) = y ·(xi+1) and mB ·((¬pi∨B)t +1) = y ·xi. In this case, the resolution
step can be simulated by the algebraic operation

y · (xi + 1) + y · xi = y (12)

The multipliers for an original formula is the multiplication of all those factors
that label the path from the formula to the final contradiction, ⊥; if more than
one path exists, take the sum of them. This method is better understood by
means of an example.

Example 3.1. The set of formulas {¬s ∨ q,¬p ∨ q, p ∨ s,¬q}, is inconsistent.
This can be shown by a labeled resolution graph in Figure 1, in which each edge
is labeled with the term corresponding to the negation of the resolved literal.

¬s ∨ q ¬q ¬p ∨ q p ∨ s

¬s ¬p

s

⊥

q + 1 q q q + 1

p + 1

s
p

s + 1

Fig. 1. Edge-labeled resolution graph

The term corresponding to a path going from a top formula to ⊥ is the product
of all labels. The multiplier of a top formula is the sum of all path terms. In this
way, we compute the multipliers for each formula:

(q + 1)s : ¬s ∨ q, qs + qp(s + 1) : ¬q,
(q + 1)p(s + 1) : ¬p ∨ q, (p + 1)(s + 1) : p ∨ s

The multipliers a of a : A can be simplified by deleting from it the factors
occurring in At + 1, so we end up with

1 : ¬s ∨ q, s + p(s + 1) : ¬q,
(s + 1) : ¬p ∨ q, 1 : p ∨ s

10 M. Finger and M.S.C. Hernandes

Finally, we note that the verification of the 1-sum is isomorphic to the res-
olution graph, as shown in Figure 2; each transformation step is an applica-
tion of (12). In this sense, we can say that resolution is simulated by algebraic
methods. �

(q + 1)s + qs + qp(s + 1) + (q + 1)p(s + 1) + (p + 1)(s + 1)

s p(s + 1)

s + 1

1

Fig. 2. Reduction of 1-sum isomorphic to resolution graph in Figure 1

Formally, define an edge-labeled resolution graph as a resolution graph in which
edges are labeled with a term (¬p)t, where p is the reduced literal. This is the
input for Algorithm 1 computing entailment multipliers.

Algorithm 1. Resolution-based computation of entailment multipliers
Input : an edge-labeled resolution graph G.
Output : entailment multipliers for the top nodes of G.

Let A1, . . . , An be the top nodes of G, an inconsistent set of formulas.
for each path P from a top node to ⊥ do

term(P) =
∏{l|l is a label in P}

end for
for i = 1 to n do

ai =
∑{term(P)|P starts at Ai}

delete from ai factors occurring in (At
i + 1)

end for
return the set {ai : Ai|1 ≤ i ≤ n}

Theorem 3.2. Algorithm 1 computes a set of multipliers such that the verifi-
cation of the 1-sum as a set of applications of (12) is isomorphic to the input
edge-labeled resolution graph. �

3.2 Sequent Calculus

There are many presentations of the sequent calculus. As our interest lies in
calculi that promote the use of non-analytic cuts, we present a cut-based sequent
calculus, in which the cut rule is not eliminable, and is in fact the only branching
rule [9]. This version of the sequent calculus is closely related to KE tableau [8],
which is a decision procedure for full propositional classical logic.

Entailment Multipliers: An Algebraic Characterization of Validity 11

In the sequent calculus, the 1-sum is seen as an invariant over each deduction
step, such that every rule that transforms a provable sequent into another prov-
able sequent has to preserve it. In this way, the multipliers of a sequent rule’s
conclusion will be described as a combination of the multipliers of the rule’s
premises.

So in this presentation formulas are labeled with entailment multiplier, and
in a sequent Γ � Δ, the antecedent Γ and the consequent Δ are multisets of
term labeled formulas of the form a : A; if Γ = a1 : A1, . . . , an : An, by b : Γ we
mean b · a1 : A1, . . . , b · an : An.

Γ, a : A, b : B 	 Δ

Γ, a(At + 1) + b(Bt + 1) : A ∧ B 	 Δ
(∧)

Γ 	 Δ, a : A

Γ, aAt : B 	 Δ, a : A ∧ B
(∧1)

Γ 	 Δ, a : A

Γ, aAt : B 	 Δ, a : B ∧ A
(∧2)

Γ 	 Δ, a : A, b : B

Γ 	 Δ, aAt + bBt : A ∨ B
(∨)

Γ, a : A 	 Δ

Γ, a : A ∨ B 	 Δ, a(At + 1) : B
(∨ 	1)

Γ, a : A 	 Δ

Γ, a : B ∨ A 	 Δ, a(At + 1) : B
(∨ 	2)

Γ, a : A 	 Δ, b : B

Γ 	 Δ, a(At + 1) + bBt : A → B
(→)

Γ, b : B 	 Δ

Γ, b : A → B, b(Bt + 1) : A 	 Δ
(→	1)

Γ 	 a : A,Δ

Γ, a : A → B 	 Δ, aAt : B
(→	2)

Γ 	 Δ, a : A

Γ, a : ¬A 	 Δ
(¬)

Γ, a : A 	 Δ

Γ 	 Δ, a : ¬A
(¬)

Fig. 3. Connective rules propagating multipliers from premiss to conclusion

As usual in sequent presentation, there are connective rules and structural
rules, and the 1-sum invariant must be kept in all of them. Figure 3 presents the
connective rules for cut-based sequent propositional inferences and the structural
rules are presented in Figure 4. If labels are omitted from Figures 3 and 4, one
obtains the cut-based rules of [9].

Structural rules have several peculiarities. The cut rule affects all multipliers
in the sequent; in all other rules, only a restricted set of multipliers are affected.
As we are dealing with multisets, there is no need to define structural rules
for commutativity and associativity. We deal with multisets instead of sets to
deal properly with the right and left contraction rules, in which the multipliers
of contracted formulas have to be added. The weakening structural rule (also
called monotonicity) is taken care of by the presence of Γ and Δ in the Axiom

12 M. Finger and M.S.C. Hernandes

rule; Γ and Δ may be empty, or they may contain formulas which are irrelevant
to the deduction, and are thus 0-labeled. The Axiom rule has no premiss and
produces a 1-label to the relevant formulas.

0 : Γ, 1 : A 	 1 : A, 0 : Δ
(Axiom)

Γ1 	 Δ1, a1 : A a2 : A,Γ2 	 Δ2

At + 1 : Γ1, A
t : Γ2 	 At + 1 : Δ1, A

t : Δ2
(Cut)

Γ, a1 : A, a2 : A 	 Δ

Γ, (a1 + a2) : A 	 Δ
(Contract)

Γ 	 Δ, a1 : A, a2 : A

Γ 	 Δ, (a1 + a2) : A
(Contract)

Fig. 4. Structural rules propagating multipliers

A sequent proof tree is a tree whose leaves are instantiations of Axiom, and
whose internal nodes are sequents obtained by the application of some connective
or structural rule. A sequent S is provable if there is a sequent proof tree with
S at its root.

Example 3.3. As an example, consider the proof, of A→ B,C → A � C → B:

1 : B � 1 : B
(→�)

1 : A→ B, b+ 1 : A � 1 : B
(→�)

1 : A→ B, b+ 1 : C → A, (b+ 1)(a+ 1) : C � 1 : B
(�→)

1 : A→ B, b+ 1 : C → A � (b + 1)(a+ 1)(c+ 1) + 1 : C → B

The entailment multipliers are computed simultaneously with the deduction.
�

It is worth noting that at each deduction step in Example 3.3 the 1-sum holds.
This is called 1-sum-invariant propagation.

Lemma 3.4 (1-sum-invariant propagation). For every sequent rule in Fig-
ures 3 and 4, if the 1-sum holds for the premises it also holds for the conclusion.
Proof. We first note that the (Axiom) rule has no premiss. In its conclusion we
have 1 · (Bt) + 1 · B = 1, so (Axiom) keeps the 1-sum.

We show propagation of one connective and one structural rule. Consider rule
(� ∧1), and let C correspond to the sum of members of Γ and D to that of Δ.
Assuming the 1-sum holds for the rules antecedent, we have:

C +D + aAt = 1. (13)

But the we have that

aAt(Bt + 1) + aAtBt = aAt, (14)

Entailment Multipliers: An Algebraic Characterization of Validity 13

such that, by substituting (14) into (13) we obtain

C +D + aAt(Bt + 1) + aAtBt = 1 (15)

which corresponds to the conclusion of (� ∧1).
Now consider the cut rule. The left and right sequents in the premiss corre-

spond to, respectively,

C1 +D1 + a1A
t = 1 [×(At + 1)] (16)

C2 +D2 + a2(At + 1) = 1 [×At] (17)

such that, by multiplying (16) by (At + 1) and (17) by At and adding both
equations we obtain:

(At + 1)C1 + (At + 1)D1 +AtC2 +AtD2 = (At + 1) +At = 1 (18)

which corresponds to the conclusion of the cut rule, as desired. The other cases
are analogous and are omitted. �

Theorem 3.5. The labeled sequent rules in Figures 3 and 4 correctly compute
a set of entailment multipliers.

Proof. By induction on the length of the proof. The basic case is one application
of (Axiom). The induction cases are dealt by Lemma 3.4. �

The labeled rules of Figures 3 and 4 are not the only possible ones, and many
other 1-sum-invariant ways to propagate entailment multipliers are possible.

4 Multipliers for Normal Modal Logics

As modal logics are extensions of classical propositional logic, the result on en-
tailment multipliers extends quite naturally to those logics. We consider here
only normal modal logics, that can be dealt with in algebraic terms by boolean
algebras with operators [3], which in our case becomes a boolean ring with op-
erators.

On the logic side, we extend the propositional language by considering the
unary connective �, and we extend the formula formation rules such that if A is
a modal formula �A is also a modal formula, which is read “A is necessary”. The
connective ♦ is considered a derived connective, ♦A =def ¬�¬A, which is read
as “A is possible”. A axiomatisation of normal modal logics is given by a set of
axioms and a set of inference rules. The minimal modal logic K is axiomatised
by the following axioms:

A0 All propositional classical tautologies
K �(p→ q)→ (�p→ �q)

14 M. Finger and M.S.C. Hernandes

and the inference rules of Modus Ponens (from � A → B and � A infer � B)
and of Necessitation (from � A infer � �A). A deduction of a formula A is a
sequence of formulas A1, . . . , An = A such that each Ai is an instance of an
axiom or is obtained from previous formulas in the sequence by an application
of an inference rule. If A is deducible, we represent it by � A and call it a modal
theorem. Different modal logics are generated by adding extra axioms, and we
represent �M A to represent theoremhood in modal logic M .

Furthermore, if Γ is a finite set of modal formulas, we represent Γ �M A is
�M

∧
Γ → A. If Γ is an infinite set of modal formulas, we write Γ �M A if there

is a finite set Γ0 ⊂ Γ such that Γ0 �M A.
On the semantic side, we employ the usual Kripke-structures for normal modal

logics, which consists of a pair 〈W,R〉, where W is a set, usually called a set of
possible worlds and R ⊆W ×W is a binary relation on W , usually called an ac-
cessibility relation [7]. A Kripke model for modal logics is a tripleM = 〈W,R, g〉,
where 〈W,R〉 is a Kripke-structure and g : P → 2W is a modal valuation that
associates each (atomic) propositional symbol to a set of possible worlds, namely
the worlds in which the symbol is true. If w ∈ W is a possible world, M is a
Kripke-model and A is a modal formula, we writeM, w |= A if A is true at work
w in model M, which is inductively defined as:

– M, w |= p iff p is atomic and w ∈ g(p);
– M, w |= ¬A iff M, w �|= A;
– M, w |= A ∧B iff M, w |= A and M, w |= B;
– M, w |= �A iff for every w′ accessible from w (that is, Rww′ holds) then
M, w′ |= A.

The formula A is modally valid, |= A if M, w |= A for every world w ∈ W
and for every model M. Different normal modal logics are created by imposing
restrictions on the accessibility relation R. For modal logic M , we write the (lo-
cal) modal entailment expression A1, . . . , An |=M B1, . . . , Bm if for every model
M = 〈W,R, g〉 in the class of models of M , and for every w ∈W , if M, w |= Ai

for all 1 ≤ i ≤ n, then for some Bj, 1 ≤ j ≤ m, M, w |= Bj .
On the algebraic side, we consider a boolean ring with operator �, B =

〈B, ·,+, 1,�〉. In normal modal logics, the operator � respects the following
restrictions, for every a, b ∈ B:

(op1) �1 = 1;
(op2) �(a · b) = (�a) · (�b).
A modal term a is algebraically valid if we can show that a = 1. For other

normal modal logics, extra equations involving � have to be added.
In the translation from formulas to terms and from terms to formulas, we

have to add the following:

(�A)t = �At (�a)ϕ = �aϕ

As modal logics are extensions of classical propositional logics and modal
validity is taken care of by �-equations, it is expected that entailment multipliers
generalise to modal logics. We first see a few examples relating to modal logic K.

Entailment Multipliers: An Algebraic Characterization of Validity 15

Example 4.1. Consider the statement

�(p→ q),�p �K �q

for which the modal polynomial is

x1 · (�(p(q + 1) + 1) + 1) + x2 · (�p+ 1) + y · (�q)

and we see that this polynomial has 1-roots for x1 = y = �p and x2 = 1 :

�p · (�(pq + p+ 1) + 1) + (�p+ 1) + �p ·�q
= �p ·�(pq + p+ 1) +���p+���p+ 1 + �(pq)
= �(pq + �p+ �p) + 1 + �(pq)
= ����(pq) + 1 +����(pq)
= 1

Normality conditions are applied in the first and second steps; simplifications
are indicated. �

Now consider modal logic T, which extends modal with an axiom:

(T) �p→ p

On the algebraic side, we have to add an equality that corresponds to the
validity of that axiom, namely

(�p→ p)t = 1
⇔ p ·�p+ �p+ 1 = 1
⇔ p ·�p = �p

On the semantic side this logic T forces the accessibility relation to be reflex-
ive, namely

∀w(Rww)

Example 4.2. We take as an example the following statement

�(p→ q), p �T q

for which the modal polynomial is

x1 · (�(p(q + 1) + 1) + 1) + x2 · (p+ 1) + y · q

and we see that this polynomial has 1-roots for x1 = p(q+1), x2 = 1 and y = p:

p(q + 1) ·�(p(q + 1) + 1) + 1)
�������������������

+ (p+ 1) + p · q

=
����������������������
p(q + 1) · (p(q + 1) + 1) ·�(p(q + 1) + 1) + p(q + 1) + p+ 1 + pq

= ��pq + �p+ �p+ 1 +��pq

= 1

where the first step uses the property �x = x�x, and then we use x · (x+1) = 0
to eliminate the only subterm containing a �. �

16 M. Finger and M.S.C. Hernandes

We proceed by considering modal logic S4, which extends modal logic T with
the axiom:

(4) �p→ ��p

Again, on the algebraic side, besides the algebraic equation for logic T, we
have to add an equality that corresponds to the validity of that axiom, namely

(�p→ ��p)t = 1
⇔ ��p ·�p+ �p+ 1 = 1
⇔ ��p ·�p = �p

On the semantic side the logic S4 forces the accessibility relation to be reflex-
ive and transitive, namely

∀w(Rww) ∧ ∀w∀w′∀w′′(Rww′ ∧Rw′w′′ → Rww′′)

Example 4.3. We take as a final S4-example the following statement

�(p→ q),��p �S4 ��q

for which the modal polynomial is

x1 · (�(p(q + 1) + 1) + 1) + x2 · (��p+ 1) + y ·��q

and we see that this polynomial has 1-roots for x1 = ��p, x2 = 1 and y = ��p:

��p · (�(pq + p+ 1) + 1) + (��p+ 1) + ��p ·��q
= ��p ·�(pq + p+ 1) +�����p+�����p+ 1 + ��p ·��q
= �(�p · (pq + p+ 1)) + 1 + ��p ·��q
= �(qp�p

���
+ p�p

���
+ �p) + 1 + ��p ·��q

= �(q�p+���p+���p) + 1 + ��p ·��q
= �q ·��p+ 1 + ��p ·��q

����

= ���������q ·��q ·��p+ 1 +����������p ·��q ·�q
= 1

where the first step uses the distribution property; the second step uses the
normality condition to join ��p and �(pq+ p+1); the third step applies distri-
bution laws; the forth step applies �x = x�x; after some further simplification,
the sixth step applies both �x��x = �x and �x = x�x, and some final sim-
plification leads to the desired equality to the unit. �

Theorem 4.4. Let M be a normal modal logic defined with a finite set of ax-
ioms A1, . . . , An. On the algebraic side, suppose the equalities At

i = 1 hold,
1 ≤ i ≤ n. Then a modal statement Γ �M A is derivable iff its associated modal
polynomial has 1-roots.

Entailment Multipliers: An Algebraic Characterization of Validity 17

Proof (Sketch). Γ �M A is provable iff �M

∧
Γ → A is deducible from the

axioms. In this deduction, the algebraic translation of every formula must be
equal to 1. When the last step is reached, we have that (

∧
Γ → A)t = 1, such

that by classical manipulations we obtain the multipliers for Γ �M A.
On the other hand, if there are multipliers for Γ �M A, by classical ma-

nipulations we obtain a multiplier a for �M

∧
Γ → A. Using the same modal

algebraic equalities that were used to show that the multipliers are 1-roots to
the statement, we show that a = 1. �

5 Conclusion

Entailment multipliers are a characterisation of validity for propositional and
modal classical logics. Furthermore, entailment multipliers can be seen as a proof
invariants for several inference systems, which allows for the computation of
multipliers in parallel with a proof-construction.

Future work on the interactions of algebraic and proof-theoretical methods
aims at investigating the use of entailment multipliers to the computation of
non-analytic cuts that allow for the computation of short proofs.

We also plan to investigate entailment multipliers for first-order logic, many-
valued logics and other non-classical logics.

References

[1] Beame, P., Cook, S., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative com-
plexity of NP search problems. In: Proceedings of the 27th ACM Symposium on
Theory of Computing, pp. 303–314 (1995)

[2] Beame, P., Impagliazzo, R., Kraj’icek, J., Pitassi, T., Pudl’ak, P.: Lower bounds
on hilbert’s nullstellensatz and propositional proofs. In: Proceedings of the London
Mathematical Society, vol. 73, pp. 1–26 (1996)

[3] Blackburn, P., de Rijke, M., de Venema, Y.: Modal Logic. Cambridge Tracts in
Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge
(2001)

[4] Buss, S., Impagliazzo, R., Krajicek, J., Pudlak, P., Razborov, A.A., Sgall, J.: Proof
complexity in algebraic systems and bounded depth frege systems with modular
counting. Computational Complexity 6(3), 256–298 (1997)

[5] Buss, S., Pitassi, T.: Good degree bounds on Nullstellensatz refutations of the
induction principle. In: Proceedings from the 11th IEEE Conference on Compu-
tational Complexity, pp. 233–242 (1996)

[6] Carnielli, W.: Polynomial ring calculus for many-valued logics. In: Proceedings
of 35th International Symposium on Multiple-Valued Logic, Calgary, Canad, pp.
20–25. IEEE Computer Society, Los Alamitos (2005)

[7] Chellas, B.F.: Modal Logic — an Introduction. Cambridge University Press, Cam-
bridge (1980)

[8] D’Agostino, M., Mondadorip, M.: The taming of the cut. Classical refutations
with analytic cut. Journal of Logic and Computation 4, 285–319 (1994)

[9] Finger, M., Gabbay, D.: Cut and pay. Journal of Logic, Language and Informa-
tion 15(3), 195–218 (2006)

18 M. Finger and M.S.C. Hernandes

[10] Gabbay, D.: Labelled Deductive Systems, vol. 1. Oxford University Press, Oxford
(1996)

[11] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

[12] Lovász, L.: Bounding the independence number of a graph. Annals of Discrete
Mathematics 16, 213–223 (1982)

[13] Pitassi, T.: Algebraic propositional proof systems. In: Immerman, N., Kolaitis,
P. (eds.) Descriptive Complexity and Finite Models. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 31, pp. 214–244. DIMACS
(1996)

A CTL-Based Logic for Program Abstractions

Martin Lange1 and Markus Latte2

1 Dept. of Elect. Eng. and Computer Science, University of Kassel, Germany
2 Dept. of Computer Science, Ludwig-Maximilians-University Munich, Germany

Abstract. We define an action-based extension of the branching-time
temporal logic CTL which allows path quantifiers to be restricted by
formal languages. The main purpose of this logic is its use in abstract
interpretation. A reduction from a concrete system to an abstract one
may contain spurious traces which can render the verification of the ab-
stract system useless with respect to the concrete one. We pick up the
suggestion to verify a modified property on the abstract system instead
of the one that the concrete system is supposed to have. The logic in-
troduced here enables a systematic modification of such properties. We
present some ways of such a modification which aim at implicitly exclud-
ing spurious traces in the verification of abstracted systems.

1 Introduction

Model checking is one of the most successful automatic verification techniques
for all kinds of programs: hardware, protocols, reactive software, etc. In model
checking, the program to be verified is given as a transition systems representing
the operational semantics of a program with states and transitions between the
states, and the property specifying correctness of the program is formalised in a
temporal logic.

Various temporal logics have been introduced for model checking. The most
prominent ones are the linear-time temporal logic LTL [14] and the branching-
time temporal logic CTL [7]. These are not only incomparable in terms of their
expressive power but also — and partly thus — incomparable in terms of their
pragmatics. CTL model checking is easier than LTL model checking (P- vs.
PSPACE-complete [5,15]) whereas LTL satisfiability checking is easier than CTL
satisfiability checking (PSPACE- vs. EXPTIME-complete [15,7]).

These results, in particular the model checking complexities, hold w.r.t. fi-
nite models. However, many programs, in particular software, occupy an infinite
state space. Clearly, model checking infinite-state programs is undecidable in
general but it remains decidable for certain classes of infinite-state programs,
e.g. pushdown processes, and weak temporal logics like CTL and LTL. It is still
just PSPACE-complete for LTL but EXPTIME-complete for CTL [3,19].

This does not immediately enable automatic program verification for infinite-
state programs because of several reasons. Programs may not fall into these
classes, in particular if the cause for infinity is the use of variables over un-
bounded domains etc., or the relatively high worst-case complexities may not

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 19–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

20 M. Lange and M. Latte

allow efficient implementations in practice. In such cases, it may be necessary
to employ a technique that generally reduces the complexity of the underlying
verification problem at the expense of total correctness: abstraction [6]. It is
also applicable in cases of finite systems where state-space explosion renders the
verification problem inefficient in practice.

Abstraction is the process of transforming a transition system T into a (typ-
ically) smaller transition system T abs which contains at least some of the infor-
mation that is present in T . Verification of the smaller system is then easier or
even possible. However, the abstraction must be chosen such that the verification
of the abstract system allows to make assertions about the underlying property
and the original system.

Consider, for instance, one of the most well-known abstraction schemes, called
∃∃-abstraction. There, states of the abstract transition system T abs result from
collapsing sets of states of the original transition system T , and there is a tran-
sition between collapsed states S and T iff there are s ∈ S and t ∈ T with a
transition from s to t in the original system. It is not hard to see that the runs
or paths of T abs form a superset of the paths of T . Every path in T can be found
in T abs but the latter also contains spurious traces which are paths that only
arise as artefacts of the abstraction but do not exist in the original system T .
Now consider a class of simple properties ϕ to be checked on T , namely tem-
poral properties which quantify over paths in a universal manner only. It is the
case that T abs |= ϕ implies T |= ϕ for such ϕ but not vice-versa because of the
relationship between paths in T abs and in T . Thus, if the abstracted system is
correct w.r.t. ϕ then so is the original one. If the abstracted system is faulty then
nothing is known about the original one because the reason for the error may
be a spurious trace. Still, abstraction can thus enable the verification of systems
which cannot be model checked under normal circumstances at the expense of
completeness for instance.

It turns out that this is all very well in theory but in practice it happens very
often that the abstracted system fails the desired property, i.e. spurious traces
interfere with the verification task too much. Now note that there is no reason
for considering the original property on the abstracted system. This observation
has led to suggestions regarding the weakening of universally path quantified
properties, for instance by considering fair traces in the abstract system only [2].
This does work in certain cases. However, there is no general relationship between
the abstraction scheme and fairness which would guarantee it to work in many
cases. A more precise weakening would relativise the path quantification in the
property to be checked on the abstract system to paths occurring in the original
system. Note that, if this was possible, then it would not only be restricted to
∃∃-abstractions and universally path quantified properties. The same could be
done with existentially path quantified properties and all kinds of abstractions.

For this purpose, we suggest a logic which is based on the commonly used
branching-time temporal logic CTL and which allows relativised path quantifiers.
While there are logics around with very high expressive power, even temporal
ones, these typically extend the modal μ-calculus by incorporating all kinds

A CTL-Based Logic for Program Abstractions 21

of expressive operators. Such logics are more or less useless in the setting of
abstraction. We propose to base such a logic on a commonly used logic L such
that the problem of determining T |= ϕ for some ϕ ∈ L can be transformed into
the problem of determining T abs |= ϕabs for an abstracted system T abs and a
property ϕabs which incorporates information that gets lost between T and T abs

into ϕ. Maybe this could even be automised such that to the outside, only T
and ϕ would be visible which underpins the need for ϕ to belong to a commonly
used specificaton logic and therefore ϕabs to be something based upon that.

In Sect. 2 we introduce Path Relativised Computation Tree Logic (CTLrel). It
is a simple branching-time temporal logic which is interpreted – like action-based
CTL [13] – over transition systems with labeled edges. It extends CTL by allow-
ing path quantifiers to be restricted. The restriction is realised by languages of
ω-words aiming at maximal flexibility for the abstraction process. Hence, CTLrel

is in fact a family of branching-time temporal logics parametrised by a class of
formal languages of ω-words. Sect. 3 then exemplifies the possible use of this
logic in the framework of abstraction.

CTLrel is closely related to Propositional Dynamic Logic with the Delta opera-
tor (ΔPDL) [17,12]. This relationship is, for instance, exploited in Sect. 4 where
we first analyse the complexity of model checking and satisfiability problems
depending on the class of languages used for quantifier relativisation. From the
discussion above it should be clear that model checking is an important problem
for such a logic in such a framework. Satisfiability checking is, too. Note that
a satisfiable formula CTL formula could easily become unsatisfiable when path
quantifiers are arbitrarily relativised. A decidable logic then allows such formulas
to be automatically checked before they are being used in verification.

In Sect. 5 we consider the use of CTLrel in the framework of abstract interpre-
tation. We suggest a generic use of the path quantifier relativisation in CTLrel

formulas whcih forms the basis for two heuristics that aim at implicitly excluding
spurious traces in the verification of abstracted systems. Finally, Sect. 6 contains
remarks about future work.

2 CTL with Path Relativisation

Models of CTL with path relativisation are transition systems which — as op-
posed to ordinary CTL models and like models of action-based CTL — also
have labeled edges and need not be total. Let Σ be a finite alphabet and P be
a countably infinite set of atomic propositions. A transition system is a tuple
T = (S,−→, λ) where S is a set of states, −→ ⊆ S×Σ×S is the transition relation,
and λ : S → 2P labels each state with a finite set of propositions that are true
in this state. We write s a−→ t instead of (s, a, t) ∈ −→.

Let T = (S,−→, λ) be a transition system. An α : S → S is an abstraction
function for T if it satisfies the following consistency condition for all s, t ∈ S:
if α(s) = α(t) then λ(s) = λ(t). The function introduces an equivalence relation
∼α on S where s ∼α s

′ iff α(s) = α(s′) . Equivalence classes and the quotient
set are written as []α and S/α, respectively. An equivalence class is called an

22 M. Lange and M. Latte

abstract state. We may omit the index α whenever α is clear from the context.
The abstraction of T w.r.t. α is the transition system T α = (S/α,−→α, λα) such
that for all a ∈ Σ:

– t
a−→α t

′ iff there are s ∈ t and s′ ∈ t′ such that s a−→ s′, and
– λα([t]α) = λ(t).

Note that the consistency condition above ensures well-definedness of the label-
ing function λα.

In order to simplify technical details, we assume that Σ always contains a
special character d and that each transition system has a distinct state end with
s d−→ end for every s including end itself. Furthermore, end has no other incoming
or outgoing transitions than these. This means that transition systems are total
in the sense that in any state at least a d-action is possible. However, afterwards
nothing else is possible any more. Thus, taking a d-transition somehow indicates
being in a deadlock state.

A path in T is an infinite sequence π = s0, a0, s1, a1, . . ., alternating between
states and edge labels, s.t. si

ai−−→ si+1 for all i ≥ 1. Note that the assumption
above ensures that no maximal paths other than infinite ones exist. We write
ΠT (s) for the set of all paths through T that start in s. An initial path is a
prefix of a path which ends at a state.

A path π = s0, a0, s1, a1, . . . determines in a unique way the ω-word a0a1a2 . . .
over Σ. Abusing notation we will identify a path with its determined word of
edge labels and sometimes simply write π ∈ L for a path π and a language L.
As usual, Σω denotes the set of all infinite words over Σ.

Formulas of CTL with path relativisation, CTLrel, are built like CTL formulas
with the difference that path quantifiers are syntactically indexed by languages of
ω-words. We present the logic in positive normal form which simplifies statements
about fragments later on.

ϕ ::= q | ¬q | ϕ ∨ ϕ | ϕ ∧ ϕ | EXaϕ | AXaϕ | EL(ϕUϕ) | EL(ϕRϕ) |
AL(ϕUϕ) | AL(ϕRϕ)

where q ∈ P , a ∈ Σ, and L ⊆ Σω.
A formula is purely existential if does not contain any subformula of the form

AXaψ, AL(ψ1Uψ2) or AL(ψ1Rψ2). Similarly, it is purely universal if it does not
contain any subformula of the form EXaψ, EL(ψ1Uψ2) or EL(ψ1Rψ2).

Clearly, languages L in the index of a path quantifier are infinite sets of infi-
nite words in general, and the question of syntactic representation of such lan-
guages arises. Here we consider automata as such representations, in particular
nondeterministic Büchi automata (NBA) for ω-regular languages [4], nondeter-
ministic Büchi visibly-pushdown automata (NBVPA) [1] for ω-visibly-pushdown
languages, and nondeterministic Büchi pushdown automata (NBPDA) [16] for
ω-context-free languages. By CTLrel[ωREG], CTLrel[ωVPL] and CTLrel[ωCFL]
we denote the sets of formulas in which annotated languages are regular, visibly
pushdown or context-free, respectively.

A CTL-Based Logic for Program Abstractions 23

set

set

ticktickticktick

set set

tick

ring

set

tickticktick

set set
ring

tick

0 1 2 3 4

210 > 2

T abs

T

Fig. 1. Transition system of an alarm clock and an abstraction

We allow more propositional and temporal operators as abbreviations: tt :=
q ∨¬q and ff := q ∧¬q for some q ∈ P , as well as QLFϕ := QL(ttUϕ), QLGϕ :=
QL(ffRϕ), and Q(ϕ ◦ ψ) := QΣω(ϕ ◦ ψ) for Q ∈ {E, A} and ◦ ∈ {U, R}.

The semantics of CTLrel is given as follows. Let T = (S,−→, λ) be a transition
system as above. In particular, all paths in it are infinite. For any s ∈ S we have:

T , s |= q iff q ∈ λ(s)
T , s |= ¬q iff q �∈ λ(s)

T , s |= ϕ ∨ ψ iff T , s |= ϕ or T , s |= ψ

T , s |= ϕ ∧ ψ iff T , s |= ϕ and T , s |= ψ

T , s |= EXaϕ iff there is t ∈ S s.t. s a−→ t and T , t |= ϕ

T , s |= AXaϕ iff for all t ∈ S : if s a−→ t then T , t |= ϕ

T , s |= EL(ϕUψ) iff ∃π = s0, a0, s1, a1, . . . ∈ ΠT (s) s.t. a0a1a2 . . . ∈ L and
∃i ∈ N with T , si |= ψ and ∀j < i : T , sj |= ϕ

T , s |= EL(ϕRψ) iff ∃π = s0, a0, s1, a1, . . . ∈ ΠT (s) s.t. a0a1a2 . . . ∈ L and
∀i ∈ N : T , si |= ψ or ∃j < i s.t. T , sj |= ϕ

T , s |= AL(ϕUψ) iff ∀π = s0, a0, s1, a1, . . . ∈ ΠT (s) : if a0a1a2 . . . ∈ L then
∃i ∈ N with T , si |= ψ and ∀j < i : T , sj |= ϕ

T , s |= AL(ϕRψ) iff ∀π = s0, a0, s1, a1, . . . ∈ ΠT (s) if a0a1a2 . . . ∈ L then
∀i ∈ N : T , si |= ψ or ∃j < i s.t. T , sj |= ϕ

3 Examples

As a first example, consider an alarm clock T which can be set to count down
an arbitrary number of steps and then ring. Its transition system is depicted in
the top of Fig. 1. Clearly, an alarm clock should ring eventually once it is set

24 M. Lange and M. Latte

to a certain time, therefore, the alarm clock should not have a state from which
an infinite tick-path exists. This property is specifiable in action-based CTL as
AG¬EGticktt.

Now consider an abstraction which identifies all counter values that are greater
than 2. This introduces a tick-loop in the state representing all such values. The
abstracted system T abs is depicted at the bottom of Fig. 1.

It should be clear that T |= AG¬EGticktt since every sequence of tick-actions
must eventually lead to the state with counter value 0 and that has no outgoing
tick-action. On the other hand, T abs �|= AG¬EGticktt since state “> 2” is reachable
and has an infinite tick-trace. Note that this trace is spurious. It is possible to
mend this fault though by introducing fairness and excluding this spurious trace.
Take, for instance the fairness predicate Φ := GF tick ⇒ GF ring, i.e. if infinitely
many ticks are being done then also infinitely many rings are being done. Now
it is the case that T abs |=fair AG¬EGticktt under this fairness predicate, meaning
that the CTL path quantifiers in this formula now only range over fair paths,
i.e. those that satisfy the fairness predicate Φ. Note that the spurious trace does
not, hence, the property holds under this assumption.

While this does work in this particular case, the introduction of a fairness
predicate seems rather arbitrary as well as its choice. Furthermore, the chosen
fairness predicate almost contradicts the correctness property at hand. Hence,
this is almost like only considering that part of the abstracted system which does
satisfy the correctness property and then showing that it does indeed. In other
words, finding the right fairness predicate may be as hard as showing correctness
of the original system.

CTLrel offers a more fine-tuned and more systematic way of amending the cor-
rectness properties. We will consider another example in which the introduction
of fairness is not able to exclude spurious traces that easily. Consider a system
containing a buffer into which items can be placed and from which items can be
taken. It works such that once something is taken out, it can only be emptied
and nothing more can be put into it. The transition system T is depicted on top
in Fig. 2. An abstraction T abs which collapses all states containing more than 2
buffer items is depicted below that.

Now consider the correctness property stating that at no point is it possible
to execute an out-action followed by an in-action. In action-based CTL it can
be written as AG¬EXoutEXintt. Clearly, it is satisfied by the original system T
and not satisfied by the abstraction T abs because of the spurious trace through
the self-loop in the state representing all large buffer contents. The important
observation about this is, though, that no fairness predicate can exclude all
the spurious traces which cause the violation of the correctness property. This
is simply because fairness is concerned with the infinite occurrence of states /
actions, etc. or the absence thereof. The characteristics of the spurious traces
in this case, however, is the single occurrence of an in-action after a single out-
action. It is therefore sensible to restrict the path quantification to traces of the
form inω ∪ in∗out∗dω where action d indicates, as introduced above, a transition
into an imaginary deadlock state.

A CTL-Based Logic for Program Abstractions 25

in in in in in

out out out out

out out out out

T

in in

out out

out

in

out

out
in

T abs

Fig. 2. Transition system of a buffer system and an abstraction

The issue about the right choice of path relativisation still persists, though.
As in the first example, the trace predicate inω ∪ in∗out∗dω is somehow found
miraculously. However, CTLrel allows for a more automatic approach. Note that
T is indeed a visibly pushdown system with push-action in and pop-action out.
The language of its traces is a visibly pushdown language (ωVPL), characterised
by the property that no out-action occurs after in in-action and on any prefix,
the number of out-actions is at most as high as the number of in-actions. Let
L be that language. Using CTLrel it is then possible to replace the correctness
property above by AG¬EL∩Σ∗ out in ΣωFtt for instance and test that on the ab-
stracted system. Note how this restricts path quantification to traces which are
present in the original system only. This is of course the essence of excluding
spurious traces.

4 Results on CTLrel

We are particularly interested in the complexity of the model checking and satisfi-
ability checking problem for CTLrel relative to the class of formal languages used
for the quantifier restrictions. Upper bounds can easily be obtained by relating it
to ΔPDL? — Propositional Dynamic Logic with Tests and the Delta operator —
over the corresponding class. We therefore first analyse the relationship between
CTLrel and well-known logics like that one.

4.1 Expressivity

CTLrel is situated between two cornerstones: CTL [7] and ΔPDL? [11] i. e. re-
cursive PDL together with delta operators. The former is well-known. The latter

26 M. Lange and M. Latte

is modal logic over a Kleene algebra of accessibility relations with tests. The delta
operator then takes a specification formalisms for infinite words and turns it into
an existential quantification over paths labeled with a word in this language. This
is of course very similar to the mechanism used in purely existential formulas in
CTLrel. For a comparison to CTL we simply interpret the usual CTL models as
CTLrel models with a single edge label only.

Theorem 1. CTL ≤lin CTLrel[A] for Σω ∈ A, and CTL �lin CTLrel[A] for
A � ωREG.

Proof. The embedding of CTL is trivial using Σω as a quantifier restriction, and
writing EXψ as EXaψ for the unique action a the occurs in the underlying models.

For the strictness, consider ϕ:=ELGtt for a language L �∈ REG. If this formula
had an equivalent CTL-formula then there would be also a Büchi tree automaton
which recognizes exactly the models of ϕ in a certain representation [18]. Hence,
there would also be a Büchi word automaton which accepts precisely the words
in L which contradicts L �∈ ωREG. ��

We remark that CTLrel does not seem to be an extension of action-based CTL.
For instance, the formula EFaq in action-based CTL expresses that there is a
path of the form a∗Σω such that q holds in the first state after the a∗ prefix.
Clearly, CTLrel does not provide a mechanism which can transform information
between moments on a path and the inner structure of words in the language
restricting those paths.

Theorem 2. CTLrel[A] �lin ΔPDL?[A].

Proof. The embedding is proved by induction on the structure of formulas in
CTLrel[A]. We detail only the case of θ := EAϕUψ for an automaton A with
states Q, initial state q0, and final states F . Let ϕ′ and ψ′ be the translations
of ϕ and ψ, respectively. The translation of θ is 〈B〉tt where B is an automaton
of the same kind as A with states containing Q× {0, 1}, initial state (q0, 0) and
final states F × {1}. Let p a

act
�� q denote a transition in A leading from state

p by reading a ∈ Σ to state q while performing operation act on the stack—if
applicable. Then B contains the following three transitions.

(q, 0)
?ϕ′

nop
�� a

act
�� (q′, 0) (q, 0)

?ψ′

nop
�� a

act
�� (q′, 1) (q, 1) a

act
�� (q′, 1)

For the strictness, we consider the property “there is a path on which p holds
infinitely often”. Obviously, this property is expressible by a delta operator in
ΔPDL?[ωREG]. For the sake of contradiction, assume that there is CTLrel[A]-
formula ϕ expressing this property. Hence, ϕ also characterizes this property over
transition systems over a singleton alphabet Σ. For such systems the quantifiers
are relativized either to ∅ or to Σω . Hence, ϕ can be understood as a CTL-
formula. But fairness is not expressible as a CTL-formula [8]. ��

A CTL-Based Logic for Program Abstractions 27

4.2 Model Checking

Theorem 3 (Upper and lower bounds). The model checking problem for
CTLrel[A] over a finite transition system is

– in PTIME if A is ω-context-free, and
– hard for PTIME if Σω ∈ A.

Proof. Given a formula ϕ ∈ CTLrel[A] and a transition system T = (S,−→, λ),
we compute inductively the set of states in T which satisfy a subformula of ϕ.
Thereto, we extend λ with those formulas. The cases are similar to that of pure
CTL. We detail the case of a formula EL(ϕUψ) for L ∈ A. For presentation assume
that L is given as a Büchi automatonA = (Q, q0, δ, F) whereQ is the set of states,
q0 ∈ Q, the transition relation δ ∈ Q×Σ×Q, and F ⊆ Q are the final states. We
construct for every state s ∈ S an automaton B := (Q×S×{0, 1}, (q0, s, 0), δ′, F ′)
recognizing witnessing paths for EL(ϕUψ) starting at s. The last component of
the state is 1 iff the eventuality is satisfied. So, δ′ consists of

((q, s, 0), a, (q′, s′, 0)) if ϕ ∈ λ(s)
((q, s, i), a, (q′, s′, 1)) if ψ ∈ λ(s) or i = 1

where each line requires q′ ∈ δ(q, a) and s a−→ s′ for some a ∈ Σ. Finally, F ′ :=
F ×S ×{1}. A similiar construction is available for PDAs. The emptiness check
for this ω-PDA can be done in PTIME [3]. Finally, CTL is hard for PTIME.
Hence, so is CTLrel[A]. ��

4.3 Satisfiability

Theorem 4. The satisfiability problem for CTLrel[ωCFL] is undecidable.

Proof. Remember that the universality problem (is L = Σ∗?) for context-free
languages (of finite words) is undecidable. Now let L ∈ CFL over some Σ and
consider the formula ϕL := EΣ∗dωF¬q ∧ ALdωGq.

Remember the assumption about paths in CTLrel models being of the form
Σω ∪ Σ∗dω. The first conjunct then says that one of them is of the form Σ∗dω

and satisfies ¬q at some point. The second conjunct says that all paths in Ldω

satisfy q everywhere. Hence, if L = Σ∗ then ϕL is clearly unsatisfiable. On the
other hand, if there is a w ∈ Σ∗ \L then ϕL is for example satisfied in the model
which has a single path wdω such that ¬q holds somewhere on this path. ��

Therefore, we consider smaller classes of languages. Those with particular nice
algorithmic and algebraic properties are ωREG and ωVPL for instance.

Theorem 5. The satisfiability problem for CTLrel[ωREG] is EXPTIME-complete,
and for CTLrel[ωVPL] is 2-EXPTIME-complete.

28 M. Lange and M. Latte

Proof. The membership follows from Thm. 2 using that ΔPDL?[ωREG] is in
EXPTIME [9] and that ΔPDL?[ωVPL] is in 2-EXPTIME [12]. Moreover, the
logic CTLrel[ωREG] is EXPTIME-hard as CTL is [10] so. For the hardness of
CTLrel[ωVPL] one can extend the proof [12] of Löding et al. that PDL plus
a certain visibly pushdown language is 2-EXPTIME hard. Besides a standard
embedding, one ΔPDL?[ωVPL]-expression needs to be rephrased as it uses an
alternating between test operators and labels which is not directly expressible in
CTLrel[ωVPL]. An another modification takes account of total transition system.

��

5 CTL with Path Relativisation in Abstraction

For the subsequent discussion, we fix a transition system T = (S,−→, λ) and an
abstraction function α : S → S. Since the transition relation of the abstraction
T α is defined by existential quantification, a simple induction yields the following
statement.

Proposition 6. For s ∈ S we have

– If ϕ is purely existential then T , s |= ϕ implies T α, [s]α |= ϕ.
– If ϕ is purely universal then T α, [s]α |= ϕ implies T , s |= ϕ.

Hence, it suffices to verify universally quantified formulas on the abstract system,
and a positive answer carries over to the concrete system. In general, complete-
ness, i.e. the converse direction, does not hold since the abstraction might admit
spurious traces. A negative model checking result on the abstract system there-
fore need not reflect an error in the concrete system but it could. In order not
to stall the design cycle of a system in the verification phase by having negative
model checking results too often, one would like to “get as close to completeness
as possible”. This clearly requires purely existential formulas to be strengthened
and purely universal formulas to be weakened. We therefore propose a general
mechanism which uses the path quantifier relativisation in CTLrel and realises
this strengthening and weaking at the same time. Hence, it is applicable to
arbitrary formulas, not just those that are purely existential or universal.

Definition 7. Let L ⊆ Σω be a language. The restriction of a CTLrel-formula
ϕ w.r.t. L is defined as the homomorphic extension over(
QL′(ψ1 ◦ ψ2)

)
� L :=QL′∩L

(
(ψ1 � L) ◦ (ψ2 � L)

)
where Q ∈ {E, A}, ◦ ∈ {U, R}.

Note that ωREG and ωVPL are closed under intersections, hence, CTLrel[ωREG]
and CTLrel[ωVPL] are closed under restrictions with languages of these respec-
tive classes.

A nice property to have would be the following. For all transition systems T ,
for all abstraction functions α for T there exists a language L �= ∅ such that for
all purely existential formulas ϕ we have: T α, [s]α |= ϕ � L implies T , s |= ϕ.
This is not possible however. Assume it was true. Then, it would also apply to

A CTL-Based Logic for Program Abstractions 29

transition systems over a singleton alphabet Σ. But then L = Σω and therefore
ϕ � L ≡ ϕ. Hence, this property would imply the missing converse directions in
Prop. 6 which are easy to refute by counterexample.

In the following we therefore present two heuristics which aim at exluding
spurious traces through quantifier relativisation. The first one is rather simple
and mainly meant to explain the problems involved in this approach. The second
one is more sophisticated and aims at closing down on completeness by making
certain requirements on the abstraction.

5.1 A Suffix Heuristic

Suppose T is a transition system with some initial state s, and T α is its ab-
straction w.r.t. some α. Take the CTL formula ϕ = AGEFq expressing liveness
with respect to some proposition q. A natural candidate for the restriction of
the path quantifiers in ϕ would be L := ΠT (s), i.e. the language of all paths
in L. Note that not even then does the result of T α, [s]α |= ϕ � L transfer in
any way to T , s |= ϕ. The reason for this is the fact that ΠT (s) describes all
paths starting in s. However, note that the AG-operator intuitively requires the
subformula EFq to be interpreted in arbitrary states of T , not just s. Hence, EFq
should be restricted to paths which start in those states that the formula itself
is interpreted in. This would require the subformula to “know” which state it is
interpreted in. In other words, the existential quantifier should be restricted to
certain suffixes of words in ΠT (s).

This could even mean that ELFq is interpreted in the starting state of a path
which eventually satisfies q but the restriction to L is too rigid and excludes this
path. Hence, while one aims at excluding as many spurious traces as possible,
one would also exclude good traces. This calls for an overapproximation in order
to fix this problem.

Definition 8. Let L ⊆ Σω. The suffix-closure of L is

Suff (L) := {w ∈ Σω | ∃v ∈ Σ∗ s.t. vw ∈ L}.

The heuristics presented here proposes to reduce the verification task of
T , s |= ϕ on the concrete side to T α, [s]α |= ϕ � Suff (ΠT) on the abstract
side. Note that the existential quantifier in the definition of Suff (L) realises an
overapproximation in the sense that – coming back to the example above – the
subformula EFq would of course still be interpreted in an arbitrary but reachable
state t of the system, but the quantifier relativisation would restrict the existen-
tial path quantifier to suffixes of paths from s. Since some of these pass through
t, we have ΠT (t) ⊆ Suff (ΠT (s)), and the restricted formula does not exclude
good traces. It remains to see how well this does at excluding spurious traces.

Clearly, this heuristic would be worthless if the considered classes of formal
languages were not closed under suffixes. However, this is not the case.

Proposition 9. For all C ∈ {ωREG, ωVPL, ωCFL} and for all L ∈ C we have
Suff (L) ∈ C.

30 M. Lange and M. Latte

5.2 A Local Heuristic

Note that the approach suggested in the previous section is global in a sense. Here
we propose a local approach which focus on the abstract states, their connections,
and the spurious traces that are created within those states.

Definition 10. For a concrete state s in T we define its abstraction language
as a subset of Σ∗ ∪Σω by

Ls := {a0 . . . an | there is an initial path s0a0 . . . an−1sn in T s. th.
si ∈ [s] for all 0 ≤ i < n and sn /∈ [s] }

∪ {a0a1 . . . | there is a path s0a0s1a1 . . . in T s. th.
si ∈ [s] for all i ∈ N }

The abstract language of the abstraction T α is Lα :=
(⋃

s∈S Ls

)ω.

In other words, the abstract language of a state describes all traces within its
class. In particular, fragments of spurious traces are excluded. The language Lα

is an over-approximation of the transition system. Indeed, it also admits words
in LsLtLα when [s] and [t] are not connected. But, therefore, Lα might have a
more condensed description than T itself.

Prop. 6 can be strengthened by a restriction which is compatible with the
induced equivalence classes.

Lemma 11 (Soundness). For any purely existential formula ϕ we have that
T , s |= ϕ implies T α, [s]α |= ϕ � L, for any L ⊇ LsLα and s ∈ S.

Proof. Induction on ϕ. We sketch the case ϕ = EL′(ψ0Uψ1) only. Consider a
witnessing path π := s0, a0, s1, a1, Then πα := [s0]α, a0, [s1]α, a1, . . . is a
path in T α. By induction hypothesis we have T α, [s]α |= EL′((ψ0 � L)U(ψ1 � L)).
A subsequence of πα might loop in just one equivalence class. This observation
gives rise to a factorization along which πα ∈ LsLα can be shown. ��

For the converse implication we synchronize traces in the abstract system with
those in the concrete one.

Definition 12. The abstraction T α is syntactically traceable iff [s] a−→α[s0] and
[s] a−→α[s1] imply s0 = s1 for all s, s0, s1 ∈ S and a ∈ Σ with [s0] �= [s] �= [s1].

Syntactical traceablity is a rather strong and artificial property as it requires
that a label determines the targeted state. None of our introductive examples
enjoy this property. However in our examples, not the label but the course of the
considered trace uniquely specifies the next equivalence class. This observation
motivates the following definition.

Definition 13. The abstraction T α is semantically traceable iff for all paths π̂
in T α and for all states s0, s1 ∈ S it holds that π ∈ L(Ls0Lα ∩ Ls1Lα) implies
s0 = s1 where L = Σ∗ ∩ (

⋃
s∈S Ls)∗.

A CTL-Based Logic for Program Abstractions 31

In the alarm clock example, assume that the sequence set tick leads to the class
“> 2”. Then the label tick either keeps the trace in this class or brings it to the
class “1”. Hence, the abstracted system is not syntactically traceable. However, it
is semantically traceable as the number of ticks before the clock rings determines
the next state.

Proposition 14. If T α is syntactically traceable then it is also semantically
traceable.

Theorem 15 (Conditional Completeness). Let T be semantically traceable.
Suppose that for the formulas ψ0, ψ̂0, ψ1 and ψ̂1

T α, [s]α |= ψ̂i implies T , s |= ψi (1)

holds for s ∈ S and i ∈ {0, 1}. Then for ◦ ∈ {U, R}, s ∈ S and L′ ⊆ Σω we have

T α, [s]α |= EL∩L′(ψ̂0 ◦ ψ̂1) implies T , s |= EL(ψ0 ◦ ψ1) (2)

where L′ := LsLα.

Proof. Let π̂ := ŝ0a0ŝ1a1 . . . be a path witnessing the premise of the equation (2).
It remains to show that there exists a path π—and not just a sequence of states—
in T which follows π̂. Given that, the property (1) completes the proof. The path
π̂ can be factorized using L′ such that the (finite or infinite) word determined
by a factor is in Lt for t ∈ S. The first factor is in Ls. Along this factorization
we construct π as follows. Assume a factor and a path ending at a concrete state
such that its abstraction is the first state in the considered factor. For the first
factor this path consists of the state s only. Now, the word of the factor is in Lt

for some t ∈ S. Therefore, the definition of this language admits two possibilities.
Either, there is an infinite path in [t]α, then we are done. Or there is a finite
path π′ in [t]α and a label a ∈ Σ leading π′ to a state outside of [t]α. Then we
extend π by π′ and the said label. By the definition of “semantically traceable”,
the following node is uniquely determined. ��

Although the restriction on the formulas seems to be rather artificial it avoids
the suffix problem. However, the consistency condition for abstraction functions
ensures that any formula without E and A meets the property (1). Together with
Lem. 11, we have completeness of our method with respect to a certain class of
formulas.

Corollary 16 (Conditional Faithfulness). Let T be semantically traceable
and let ϕ be a formula without EX, AX, and nested quantifiers. We have

T α, [s]α |= ϕ � L′ iff T , s |= ϕ (3)

for L′ := LsLα.

The language L′ used by the previous theorem and corollary is subsumed by
Lα. Hence, modelchecking ϕ � Lα on the abstract system is almost as good as
checking ϕ � L′.

32 M. Lange and M. Latte

Note that Cor. 16 is only formulated for formulas without the next-time op-
erators. The fragment for which Cor. 16 states completeness and thus full elimi-
nation of spurious traces is therefore in some sense the stutter-invariant part of
CTLrel only.

6 Conclusion and Further Work

We have presented a framework for the transformation of correctness properties
which should go hand in hand with the transformation of a concrete system into
an abstract one. The goal of this transformation is to minimise the significance
of spurious traces in the abstract model. We have then suggested two heuristics
for certain transformations within this framework.

The work contained herein is obviously not completed. It remains to be seen
how these heuristics perform in practice, i.e. how often they can confirm absence
of errors in a concrete system (w.r.t. purely universal properties for instance)
by confirming that the abstract system is error-free. A dealbreaker may also be
the computation of the involved languages which are being factorised into the
property. It remains to be seen whether efficient algorithms for these computation
problems exist.

On the theoretical side, it is of course possible to consider extensions of CTLrel.
It is not too difficult to see that one could introduce test predicates into the
formal languages without losing any of the complexity results. Another obvious
extension would be CTL∗

rel, i.e. CTL∗ with path relativisation in the same style.
This would have a significantly higher complexity in both model checking and
satisfiability checking though.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th Ann. ACM
Symp. on Theory of Computing, STOC 2004, pp. 202–211 (2004)

2. Bosnacki, D., Ioustinova, N., Sidorova, N.: Using fairness to make abstractions
work. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 198–215.
Springer, Heidelberg (2004)

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

4. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
Congress on Logic, Method, and Philosophy of Science, pp. 1–12. Stanford Univer-
sity Press, Stanford (1962)

5. Clarke, E.M., Emerson, E.A.: Synthesis of synchronization skeletons for branching
time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131,
pp. 52–71. Springer, Heidelberg (1982)

6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. Journal of the ACM 50(5),
752–794 (2003)

A CTL-Based Logic for Program Abstractions 33

7. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. Journal of Computer and System Sciences 30, 1–24
(1985)

8. Emerson, E.A., Halpern, J.Y.: “sometimes” and “not never” revisited: on branching
versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

9. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs.
In: Annual IEEE Symposium on Foundations of Computer Science, pp. 328–337
(1988)

10. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences 18(2), 194–211 (1979)

11. Löding, C., Lutz, C., Serre, O.: Propositional dynamic logic with recursive pro-
grams. J. Log. Algebr. Program. 73(1-2), 51–69 (2007)

12. Löding, C., Serre, O.: Propositional dynamic logic with recursive programs. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 292–306.
Springer, Heidelberg (2006)

13. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

14. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Symp. on Foundations
of Computer Science, FOCS 1977, Providence, RI, USA, pp. 46–57. IEEE, Los
Alamitos (1977)

15. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
Journal of the Association for Computing Machinery 32(3), 733–749 (1985)

16. Staiger, L.: Handbook of formal languages. In: ω-languages. Beyond words, vol. 3,
pp. 339–387. Springer, Heidelberg (1997)

17. Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily
decidable. Information and Control 54(1/2), 121–141 (1982)

18. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. J. Comput. Syst. Sci. 32(2), 183–221 (1986)

19. Walukiewicz, I.: Pushdown processes: Games and model-checking. Information and
Computation 164(2), 234–263 (2001)

Application of Logic to Integer Sequences:

A Survey

Johann A. Makowsky�

Department of Computer Science
Technion–Israel Institute of Technology, Haifa, Israel

janos@cs.technion.ac.il

Abstract. Chomsky and Schützenberger showed in 1963 that the se-
quence dL(n), which counts the number of words of a given length n
in a regular language L, satisfies a linear recurrence relation with con-
stant coefficients for n, or equivalently, the generating function gL(x) =∑

n dL(n)xn is a rational function. In this talk we survey results con-
cerning sequences a(n) of natural numbers which

– satisfy linear recurrence relations over Z or Zm, and
– have a combinatorial or logical interpretation.

We present the pioneering, but little known, work by C. Blatter and E.
Specker from 1981, and its further developments, including results by I.
Gessel (1984), E. Fischer (2003), and recent results by T. Kotek and the
author.

For Ernst Specker on the
occasion of his 90th birthday

1 Sequences of Integers and Their Combinatorial
Interpretations

In this talk we discuss sequences a(n) of natural numbers or integers which arise
in combinatorics. Many such sequences satisfy linear recurrence relations with
constant or polynomial coefficients. The traditional approach to the study of
such sequences consists of interpreting a(n) as the coefficients of a generating
function g(x) =

∑
n a(n)xn, and of using analytic methods, to derive properties

of a(n), cf. [FS09]. There is a substantial theory of how to verify and prove
identities among the terms of a(n), see [PWZ96].

We are interested in the case where a(n) admits a combinatorial or a logical
interpretation, i.e., a(n) counts the number of some relations or functions on
the set [n] = {1, . . . , n} which have a certain property possibly definable in
some logical formalism (with or without its natural order). To make this precise,
we assume the audience is familiar with the very basics of Logic and Finite
� Partially supported by a grant of the Fund for Promotion of Research of the

Technion–Israel Institute of Technology and grant ISF 1392/07 of the Israel Sci-
ence Foundation (2007-2010).

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 34–41, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Application of Logic to Integer Sequences: A Survey 35

Model Theory, cf. [EF95, Lib04]. A more general framework for combinatorial
interpretations of counting functions is described in [BLL98]. Lack of time does
not allow us to use this formalism in this talk. We shall mostly deal with the
logics SOL, Second Order Logic, and MSOL, Monadic Second Order Logic.
Occasionally, we formulate statements in the language of automata theory and
regular languages and use freely the Büchi-Elgot-Trakhtenbrot Theorem which
states that a language is regular iff it is definable in MSOL when we view its
words of length n as ordered structures on a set of n elements equipped with
unary predicates, cf. [EF95].

We define a general notion of combinatorial interpretations for finite ordered
relational structures.

Definition 1 (Combinatorial interpretation). A combinatorial interpreta-
tion K of a(n) is given by

(i) a class of finite structures K over a vocabulary
τ = {R1, . . . Rr} = {R̄} or τord = {<nat, R̄}
with finite universe [n] = {1, . . . , n} and a relation symbol <nat for the
natural order on [n].

(ii) The counting function dK(n), which counts the number of relations

dK(n) =| {R̄ on [n] : 〈[n], <nat, R̄〉 ∈ K} |

such that dK(n) = a(n).
(iii) A combinatorial interpretation K is a pure combinatorial interpretation

of a(n) if K is closed under τ-isomorphisms. In particular, if K does not
depend on the natural order <nat on [n], but only on τ .

Intuitively speaking, a combinatorial interpretation K of a(n) is a logical inter-
pretation of a(n) if K is definable by a formula in some logic formalism, say full
Second Order Logic.

Definition 2 (Logical interpretation and Specker sequences)

(i) A combinatorial interpretation K of a(n) is an SOL-interpretation (MSOL-
interpretation) of a(n), if K is definable in SOL(τord) (MSOL(τord)).

(ii) Pure SOL-interpretations (MSOL-interpretation) of a(n) are defined
analogously.

(iii) We call a sequence a(n) which has a logical interpretation in some fragment
L of SOL an L-Specker sequence, or just a Specker sequence if the fragment
is SOL1.

Remarks 1

(i) If a(n) has a combinatorial interpretation then for all n ∈ N we have
a(n) ≥ 0.

1 E. Specker was to the best of my knowledge the first to introduce MSOL-definability
as a tool in analyzing combinatorial interpretations of sequences of non-negative
integers.

36 J.A. Makowsky

(ii) There are only countably many Specker sequences.
(iii) Every Specker sequence is computable, and in fact it is in � ·PH, [HV95],

hence computable in exponential time.
(iv) The set of Specker sequences is closed under the point-wise operations of

addition and multiplication. The same holds for MSOL-Specker sequences.

2 Linear Recurrences

We are in particular interested in linear recurrence relations which may hold
over Z or Zm.

Definition 3 (Recurrence relations). Given a sequence a(n) of integers we
say a(n) is

(i) C-finite or rational if there is a fixed q ∈ N\{0} for which a(n) satisfies for
all n > q

a(n+ q) =
q−1∑
i=0

pia(n+ i)

where each pi ∈ Z.
(ii) P-recursive or holonomic if there is a fixed q ∈ N\{0} for which a(n) sat-

isfies for all n > q

pq(n) · a(n+ q) =
q−1∑
i=0

pi(n)a(n+ i)

where each pi is a polynomial in Z[X] and pq(n) �= 0 for any n. We call
it simply P-recursive or SP-recursive, if additionally pq(n) = 1 for every
n ∈ Z.

(iii) MC-finite (modularly C-finite), if for every m ∈ N,m > 0 there is q(m) ∈
N\{0} for which a(n) satisfies for all n > q(m)

a(n+ q(m)) =
q(m)−1∑

i=0

pi(m)a(n+ i) mod m

where q(m) and pi(m) depend only on m, and pi(m) ∈ Z. Equivalently,
a(n) is MC-finite, if for all m ∈ N the sequence a(n) (mod m) is ultimately
periodic.

(iv) hypergeometric if a(n) satisfies for all n > 2

p1(n) · a(n+ 1) = p0(n)a(n)

where each pi is a polynomial in Z[X] and p1(n) �= 0 for any n. In other
words, a(n) is P-recursive with q = 1.

The terminology C-finite and holonomic are due to [Zei90]. P-recursive is due to
[Sta80]. P-recursive sequences were already studied in [Bir30, BT33].

Application of Logic to Integer Sequences: A Survey 37

The following are well known, see [FS09, EvPSW03].

Lemma 1

(i) Let a(n) be C-finite. Then there is a constant c ∈ Z such that a(n) ≤ 2cn.
(ii) Furthermore, for every holonomic sequence a(n) there is a constant γ ∈ N

such that | a(n) |≤ n!γ for all n ≥ 2.
(iii) The sets of C-finite, MC-finite, SP-recursive and P-recursive sequences are

closed under addition, subtraction and point-wise multiplication.

In general, the bound on the growth rate of holonomic sequences is best possible,
since a(n) = n!m is easily seen to be holonomic for integer m, [Ger04].

Proposition 1. Let a(n) be a function a : N → Z.

(i) If a(n) is C-finite then a(n) is SP-recursive.
(ii) If a(n) is SP-recursive then a(n) is P-recursive.
(iii) If a(n) is SP-recursive then a(n) is MC-finite.
(iv) If a(n) is hypergeometric then a(n) is P-recursive.

Moreover, the converses of (i), (ii), (iii) and (iv) do not hold, and no implication
holds between MC-finite and P-recursive.

Proposition 2

(i) There are only countably many P-recursive sequences a(n).
(ii) There are continuum many MC-finite sequences.

3 Logical Interpretations and Linear Recurrences

Modular recurrence relations for sequences with combinatorial interpretation are
studied widely, cf. [Fla82, Ges84]. A logical approach to this topic was pioneered
in [BS81, BS83] and further pursued in [Spe88, Spe05]. C. Blatter and E. Specker
have shown:

Theorem 1 (C. Blatter and E. Specker, [BS81]). Let a(n) be a Specker se-
quence which has a pure MSOL-interpretation K over a finite vocabulary which
contains only relation symbols of arity at most two. Then a(n) is MC-finite.

Remarks 2

(i) Theorem 1 is not true for MSOL-interpretations with order, i.e. which are
not pure, cf. [FM03].

(ii) E. Fischer, [Fis03], showed that it is also not true if one allows relation
symbols of arity ≥ 4, see also [Spe05].

(iii) In the light of Remark 1(ii) and Proposition 2(ii) there cannot be a converse
of Theorem 1.

38 J.A. Makowsky

In 1984 I. Gessel proved the following related result:

Theorem 2 (I. Gessel, [Ges84]). Let K be a class of (possibly) directed graphs
of bounded degree d which is closed under disjoint unions and components. Then
dK(n) is MC-finite.

Remark 3. Theorem 2 does not use logic. However, let K be a class of connected
finite directed graphs, and let K̄ be the closure of K under disjoint unions. It is
easy to see that K is MSOL-definable iff K̄ is MSOL-definable. Let us call a
class of directed graphs K a Gessel class if K is closed under disjoint unions and
components and its members are of bounded degree. Therefore, naturally arising
Gessel classes are likely to be definable in SOL or even MSOL.

The notion of degree can be extended to arbitrary relational structures A via
the Gaifman graph of A, cf. [EF95]. Inspired by Theorem 1 and Theorem 2, E.
Fischer and the author showed:

Theorem 3 (E. Fischer and J.A. Makowsky, [FM03]). Let a(n) be a
Specker sequence which has a pure MSOL-interpretation K over any finite rela-
tional vocabulary (without restrictions on the arity of the relation symbols), but
which is of bounded degree. Then a(n) is MC-finite.

Let K be a combinatorial or logical interpretation of a(n). In [Spe88] E. Specker
asks whether one can formulate a definability condition on K which ensures that
a(n) is SP-recursive. There are really two questions here:

Question A: Can one formulate a definability condition on combinatorial in-
terpretations K of a(n) which ensures that a(n) is SP-recursive.

Question B: Can one formulate a definability condition on pure combinatorial
interpretations K of a(n) which ensures that a(n) is SP-recursive.

We shall see that the answer to Question A is in the affirmative, but that Ques-
tion B remains open.

We first note that for C-finite sequences the answer to Question A is affirma-
tive.

Theorem 4 (N. Chomsky and M. Schützenberger, [CS63]). Let dL(n)
be a counting function of a regular language L. Then dL(n) is C-finite.

The converse is not true. However, we proved recently the following:

Theorem 5 ([KM09]). Let a(n) be a function a : N → Z which is C-finite.
Then there are two regular languages L1, L2 with counting functions d1(n), d2(n)
such that a(n) = d1(n)− d2(n).

Remark 4. We could replace the difference of two sequences in the expression
a(n) = d1(n)−d2(n) by a(n) = d3(n)−cn where d3(n) also comes from a regular
language, and c ∈ N is suitably chosen.

Using the well-known characterization of regular languages in MSOL, Theorem
4 and Theorem 5 can be combined, using Lemma 1.

Application of Logic to Integer Sequences: A Survey 39

Theorem 6. Let a(n) be a function a : N → Z. a(n) is C-finite iff there are two
MSOL-Specker sequences d1(n), d2(n), where the sequences d1(n), d2(n) have
MSOL-interpretations over a fixed finite vocabulary which contains <nat and
otherwise only unary relation symbols, such that a(n) = d1(n)− d2(n).

4 P-Recursive (Holonomic) Sequences

In the final part of the talk we answer E. Specker’s Question A positively by giv-
ing two a characterization of P-recursive sequences both inspired by Theorem 6.
We also discuss why Question B seems harder to answer.

Both characterizations involve regular languages L over an alphabet Σ, or
equivalently, both use MSOL-interpretations.

In the first characterization, regular languages are augmented by a set of le-
gal Lattice Paths, and are called LP -interpretations and have no weights. More
precisely, we count not only words in L, but the words together with func-
tions which map positions of the word w of length n into [n] subject to certain
mild restrictions. The graphs of these functions are reminiscent of lattice paths,
[GJ83, GR96].

In the second characterization, regular languages are equipped with weights
which depend both on the letter in the word, and the position of this letter.
They are called PW -interpretations. More precisely, we count weighted words
in a language L where the weight is defined by a position specific scoring ma-
trix, widely used in computational biology to search DNA and protein databases
for sequence similarities, cf. [SSGE82, AMS+97]. This approach is also reminis-
cent to counting weighted homomorphisms, cf. [BCL+06]. Position-independent
weights on words were used in [NZ99] for the extension of the powerful (and so
far under-utilized) Goulden-Jackson Cluster method for finding the generating
function for the number of words avoiding, as factors, the members of a pre-
scribed set. In [Ges84] position-independent weights are used to prove modular
congruences.

Acknowledgments

All the new results in this survey are taken from T. Kotek’s ongoing work on
his Ph.D. thesis [KM10b, KM10a]. I would like to thank T. Kotek for allowing
me to use entire passages from our joint manuscripts in this extended abstract
of my invited lecture.

References

[AMS+97] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller,
W., Lipman, D.J.: Gapped blast and psi-blast: a new generation of pro-
tein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

[BCL+06] Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Counting
graph homomorphisms. In: Klazar, M., Kratochvil, J., Loebl, M., Ma-
tousek, J., Thomas, R., Valtr, P. (eds.) Topics in Discret mathematics,
pp. 315–371. Springer, Heidelberg (2006)

40 J.A. Makowsky

[Bir30] Birkhoff, G.D.: General theory of irregular difference equations. Acta
Mathematica 54, 205–246 (1930)

[BLL98] Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-like
Structures. Encyclopedia of Mathematics and its Applications, vol. 67.
Cambridge University Press, Cambridge (1998)

[BS81] Blatter, C., Specker, E.: Le nombre de structures finies d’une th’eorie à
charactère fin. Sciences Mathématiques, Fonds Nationale de la recherche
Scientifique, Bruxelles, 41–44 (1981)

[BS83] Blatter, C., Specker, E.: Modular periodicity of combinatorial sequences.
Abstracts of the AMS 4, 313 (1983)

[BT33] Birkhoff, G.D., Trjitzinsky, W.J.: Analytic theory of singular difference
equations. Acta Mathematica 60, 1–89 (1933)

[CS63] Chomsky, N., Schützenberger, M.P.: The algebraic theory of context free
languages. In: Brafford, P., Hirschberg, D. (eds.) Computer Programming
and Formal Systems, pp. 118–161. North Holland, Amsterdam (1963)

[EF95] Ebbinghaus, H.D., Flum, J.: Finite Model Theory. In: Perspectives in
Mathematical Logic, Springer, Heidelberg (1995)

[EvPSW03] Everest, G., van Porten, A., Shparlinski, I., Ward, T.: Recurrence Se-
quences. Mathematical Surveys and Monographs, vol. 104. American
Mathematical Society, Providence (2003)

[Fis03] Fischer, E.: The Specker-Blatter theorem does not hold for quaternary
relations. Journal of Combinatorial Theory, Series A 103, 121–136 (2003)

[Fla82] Flajolet, P.: On congruences and continued fractions for some classical
combinatorial quantities. Discrete Mathematics 41, 145–153 (1982)

[FM03] Fischer, E., Makowsky, J.A.: The Specker-Blatter theorem revisited. In:
Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 90–
101. Springer, Heidelberg (2003)

[FS09] Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge Univer-
sity Press, Cambridge (2009)

[Ger04] Gerhold, S.: On some non-holonomic sequences. Electronic Journal of
Combinatorics 11, 1–7 (2004)

[Ges84] Gessel, I.: Combinatorial proofs of congruences. In: Jackson, D.M., Van-
stone, S.A. (eds.) Enumeration and design, pp. 157–197. Academic Press,
London (1984)

[GJ83] Goulden, I.P., Jackson, D.M.: Combinatorial Enumeration. Interscience
Series in Discrete Mathematics. Wiley, Chichester (1983)

[GR96] Gessel, I.M., Ree, S.: Lattice paths and Faber polynomials. In: Balakr-
ishnan, N. (ed.) Advances in combinatorial methods and applications to
probability and statistics, pp. 3–14. Birkhäuser, Basel (1996)

[HV95] Hemaspaandra, V.: The satanic notations: Counting classes beyond �P
and other definitional adventures. SIGACTN: SIGACT News (ACM Spe-
cial Interest Group on Automata and Computability Theory) 26 (1995)

[KM09] Kotek, T., Makowsky, J.A.: Definability of combinatorial functions
and their linear recurrence relations. Electronically available at
arXiv:0907.5420 (2009)

[KM10a] Kotek, T., Makowsky, J.A.: Application of logic to generating functions:
Holonomic sequences. Manuscript (2010)

[KM10b] Kotek, T., Makowsky, J.A.: A representation theorem for holonomic se-
quences. Manuscript (2010)

[Lib04] Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

Application of Logic to Integer Sequences: A Survey 41

[NZ99] Noonan, J., Zeilberger, D.: The Goulden-Jackson cluster method: Exten-
sions, applications and implementations. J. Differ. Equations Appl. 5(4-
5), 355–377 (1999)

[PWZ96] Petkovsek, M., Wilf, H., Zeilberger, D.: A=B. AK Peters, Wellesley
(1996)

[Spe88] Specker, E.: Application of logic and combinatorics to enumeration prob-
lems. In: Börger, E. (ed.) Trends in Theoretical Computer Science, pp.
141–169. Computer Science Press, Rockville (1988); Reprinted in: Ernst
Specker, Selecta, Birkhäuser 1990, pp. 324–350

[Spe05] Specker, E.: Modular counting and substitution of structures. Combina-
torics, Probability and Computing 14, 203–210 (2005)

[SSGE82] Stormo, G.D., Schneider, T.D., Gold, L., Ehrenfeucht, A.: Use of the
’perceptron’ algorithm to distinguish translational initiation sites in e.
coli. Nucleic Acid Research 10, 2997–3012 (1982)

[Sta80] Stanley, R.P.: Differentiably finite power series. European Journal of
Combinatorics 1, 175–188 (1980)

[Zei90] Zeilberger, D.: A holonomic systems approach to special functions iden-
tities. J. of Computational and Applied Mathematics 32, 321–368 (1990)

The Two-Variable Fragment with Counting

Revisited

Ian Pratt-Hartmann

School of Computer Science
University of Manchester

Manchester M13 9PL
United Kingdom

http://www.cs.man.ac.uk/~ipratt

Abstract. The satisfiability and finite satisfiability problems for the
two-variable fragment of first-order logic with counting were shown in [5]
to be in NExpTime. This paper presents a simplified proof via a result
on integer programming due to Eisenbrand and Shmonina [2].

Keywords: Logic, complexity, counting quantifiers.

1 Introduction

The two-variable fragment with counting quantifiers, here denoted C2, is the set
of function-free, first-order formulas containing at most two variables, but with
the counting quantifiers ∃≤C , ∃≥C and ∃=C (for every C > 0) allowed. Thus, for
example, the sentences

No professor supervises more than three students
Every student is supervised by at most one professor

may be formalized using the respective C2-formulas:

¬∃x(professor(x) ∧ ∃≥4y(student(y) ∧ supervises(x, y)))
∀x(student(x) → ∃≤1y(professor(y) ∧ supervises(y, x))).

The satisfiability problem for C2, denoted Sat-C2, is the problem of deter-
mining whether a given C2-formula has a model. The finite satisfiability prob-
lem for C2, denoted Fin-Sat-C2, is the problem of determining whether a given
C2-formula has a finite model. Since C2 lacks the finite model property, these
problems are distinct. Both problems, however, were shown in [5] to be in
NExpTime, thus improving earlier results in [3] and [4]. The proof given in that
paper features a long, combinatorial argument to show that, if a C2-formula has
a model at all, then it has a model in which only a small number of distinct ‘local
configurations’ arise. The present paper presents a shorter and more perspicuous
proof via a result on integer programming due to Eisenbrand and Shmonina [2].

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 42–54, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cs.man.ac.uk/~ipratt

The Two-Variable Fragment with Counting Revisited 43

2 Preliminaries

In the sequel, all signatures will be silently assumed to be purely relational. This
results in no loss of generality, as function-symbols are not allowed in C2, and
individual constants can easily be simulated by means of unary predicates. We
further assume, also without loss of generality, that all predicates have arity 1
or 2. Finally, we assume all structures to be finite or countably infinite. If ϕ is
a C2-formula, we write ‖ϕ‖ to denote the total number of symbols in ϕ. Here,
we assume numerical subscripts in counting quantifiers to be coded as binary
strings. Thus, for example, the number of symbols contributed by a quantifier
∃≤C is approximately �logC�, where �r� denotes the smallest integer greater
than or equal to r. In this paper, all logarithms are base 2.

We begin with the reduction of C2-formulas to ‘Scott-form’.

Lemma 1. Let ψ be a C2-formula. We can generate, in time bounded by a poly-
nomial function of ‖ψ‖, a quantifier-free C2-formula α, a list of positive integers
C1, . . . , Cm and a list of binary predicates f1, . . . , fm (m ≥ 1) such that the
formulas ψ and

ϕ = ∀x∀y(α ∨ x ≈ y) ∧
∧

1≤h≤m

∀x∃=Ch
y(fh(x, y) ∧ x �≈ y) (1)

are satisfiable over the same domains containing at least C + 1 elements, where
C = maxh Ch.

Proof. Routine adaptation of the re-naming technique used in [7].

Henceforth, then, we may restrict attention to C2-formulas of the form (1), since
the truth of ψ in a model of size C or less can evidently be checked in time
bounded by an exponential function of ‖ψ‖. In the ensuing analysis of such
formulas, the binary predicates f1, . . . , fm will play a special role. We adopt the
following (non-standard) terminology.

Definition 1. Let Σ be a signature, and f1, . . . , fm (m ≥ 1) a tuple of distinct
binary predicates in Σ. The pair 〈Σ, (f1, . . . , fm)〉 is called a classified signature,
and the f1, . . . , fm are referred to as its featured predicates.

Let Σ be a signature (not necessarily classified). We follow standard terminology,
and say that a 1-type (over Σ) is a maximal consistent set of equality-free literals
over Σ involving only the variable x. Likewise, a 2-type (over Σ) is a maximal
consistent set of equality-free literals over Σ involving only the variables x and
y. Reference to Σ is suppressed where clear from context. If A is any structure
interpreting Σ, and a ∈ A, then there exists a unique 1-type π(x) over Σ such
that A |= π[a]; we denote π by tpA[a]. If, in addition, b ∈ A is distinct from a,
then there exists a unique 2-type τ(x, y) over Σ such that A |= τ [a, b]; we denote
τ by tpA[a, b]. We do not define tpA[a, b] if a = b. If π is a 1-type, we say that
π is realized in A if there exists a ∈ A with tpA[a] = π. If τ is a 2-type, we say
that τ is realized in A if there exist distinct a, b ∈ A with tpA[a, b] = τ .

44 I. Pratt-Hartmann

Notation 1. Let τ be a 2-type over a signature Σ. The result of transposing the
variables x and y in τ is also a 2-type, denoted τ−1; and the set of literals in τ
not featuring the variable y is a 1-type, denoted tp1(τ). We write tp2(τ) for the
1-type tp1(τ

−1).

Note that tp2(τ) is the result of taking the set of literals in τ not featuring the
variable x, and then replacing y throughout by x.

Remark 1. If τ is any 2-type over a signature Σ, A is a structure interpreting Σ,
and a, b are distinct elements of A such that tpA[a, b] = τ , then tpA[b, a] = τ−1,
tpA[a] = tp1(τ) and tpA[b] = tp2(τ).

The following terminology, relating to classified signatures, is non-standard:

Definition 2. Let A be a structure interpreting a classified signature 〈Σ, f̄〉 and
C a positive integer. We say that A is C-bounded if, for all a ∈ A and all featured
predicates f in f̄ ,

1 ≤ |{b ∈ A \ {a} | A |= f [a, b]}| ≤ C.

We say that A is bounded if it is C-bounded for some C.

Thus, A is C-bounded just in case, for every featured predicate f , no element
of A is non-reflexively related to more than C elements of A by f , and every
element of A is non-reflexively related to some element of A by f .

Remark 2. If ϕ is of the form (1), C ≥ maxh Ch and A |= ϕ, then A is C-
bounded.

Definition 3. Let 〈Σ, f̄〉 be a classified signature, and let τ be a 2-type over
Σ. We say that τ is a message-type (over Σ) if f(x, y) ∈ τ for some featured
predicate f . If τ is a message-type such that τ−1 is also a message-type, we say
that τ is invertible. On the other hand, if τ is a 2-type such that neither τ nor
τ−1 is a message-type, we say that τ is a silent 2-type.

Thus, a 2-type τ is an invertible message-type if and only if there are featured
predicates f and f ′ such that f(x, y) ∈ τ and f ′(y, x) ∈ τ . The terminology is
meant to suggest the following imagery. Let A be a structure interpreting the
classified signature in question. If tpA[a, b] is a message-type μ, then we may
imagine that a sends a message (of type μ) to b. If μ is invertible, then b replies
by sending a message (of type μ−1) back to a. If tpA[a, b] is silent, then neither
element sends a message to the other.

3 A Result on Solutions to Integer Programming
Problems

Our strategy in analysing the problems Sat-C2 and Fin-Sat-C2 is to reduce them
to integer programming problems. Having done so, we shall employ a variant of
a result of Eisenbrand and Shmonina [2] (also used in [6] in connection with the
one-variable fragment with counting).

The Two-Variable Fragment with Counting Revisited 45

Lemma 2. Let E be a set of m linear inequalities of the form

a0 + a1x1 + · · ·+ anxn ≤ b0 + b1x1 + · · ·+ bnxn,

in variables x1, . . . , xn, where a0, b0 ∈ N and ai, bi ∈ {0, 1} for all i (1 ≤ i ≤ n).
If E has a solution over N, then it has a solution over N in which at most
5m(logm+ 1) variables take non-zero values.

Proof. Routine adaptation of [6, Theorem 1].

Notice that the bound in Lemma 2 depends only on the number of equations,
and not on the number of variables, nor indeed on the sizes of the constant
terms.

We need to generalize this result slightly to deal with infinite solutions.

Notation 2. Let N∗ denote the set N∪{ℵ0}. We extend the ordering > and the
arithmetic operations + and · from N to N∗ in the obvious way. Specifically, we
define ℵ0 > n for all n ∈ N; we define ℵ0+ℵ0 = ℵ0·ℵ0 = ℵ0 and 0·ℵ0 = ℵ0·0 = 0;
we define n+ℵ0 = ℵ0 +n = ℵ0 for all n ∈ N; and we define n · ℵ0 = ℵ0 ·n = ℵ0

for all n ∈ N such that n > 0. Under this extension, > remains a total order,
and +, · remain associative and commutative.

A system of linear inequalities defining an integer programming problem can of
course be re-interpreted so that solutions are sought not over N but over N∗.
(We always assume that the coefficients occurring in such problems are in N.)
As an example, the single inequality x1 ≥ x1 + 1 has no solutions over N, but it
does have a solution over N∗, namely, x1 = ℵ0.

Lemma 3. Let E be a system of m linear inequalities as in Lemma 2. If E has a
solution over N∗, then E has a solution over N∗ in which at most 5m(logm+ 1)
variables take non-zero values.

Proof. Pick some solution of E over N∗, and list those inequalities whose right-
hand sides are infinite for this solution. For each such inequality, pick one variable
xi with infinite value whose coefficient bi is 1. By re-ordering the variables if nec-
essary, let x1, . . . , xk be the selected variables, xk+1, . . . , x	 the other variables
taking infinite values, and x	+1, . . . , xn the variables taking finite values. Let
E ′ be the set of inequalities in E whose right- (and therefore left-) hand sides
are finite for the given solution. Clearly, the coefficients a1, . . . , a	 and b1, . . . , b	
are all zero for these inequalities. Assuming � < m, E ′ therefore has a solution
(0, . . . , 0, x′	+1, . . . , x

′
n) over N with at most 5(m−�)(log(m−�)+1) non-zero val-

ues. But then (ℵ0, . . . ,ℵ0, 0, . . . , 0, x′	+1, . . . , x
′
n), with k ℵ0s, is a solution for E .

4 The Main Result

The principal challenge in establishing upper complexity bounds for Sat-C2 and
Fin-Sat-C2 consists in the very general nature of the structures we must work
with. The following two notions help to reduce this generality slightly.

46 I. Pratt-Hartmann

Definition 4. Let A be a structure interpreting a classified signature 〈Σ, f̄〉. We
say that A is chromatic if, for all a, a′, a′′ ∈ A:

1. if a �= a′ and tpA[a, a′] is an invertible message-type, then tpA[a] �= tpA[a′];
and

2. if a, a′, a′′ are all distinct and both tpA[a, a′] and tpA[a′, a′′] are invertible
message-types, then tpA[a] �= tpA[a′′].

Thus, a structure is chromatic just in case distinct elements connected by a chain
of 1 or 2 invertible message-types always have distinct 1-types.

Remark 3. Let A be a chromatic structure interpreting a classified signature
〈Σ, f̄〉, and let π′ be a 1-type over Σ. Let a be an element of A. Then there is
at most one element a′ ∈ A \ {a} with 1-type π′ such that a sends an invertible
message to a′. Furthermore, if tpA[a] = π′, then there is no such element a′.

Definition 5. Let A be a structure interpreting a signature Σ, and Z a positive
integer. We say that A is Z-differentiated if, for every 1-type π over Σ, the
number u of elements in A having 1-type π satisfies either u ≤ 1 or u > Z.

Thus, in a Z-differentiated structure, every 1-type is realized either at most once
or more than Z times (possibly infinitely often).

The following lemmas have straightforward proofs [5, Lemmas 2 and 3].

Lemma 4. Let A be a C-bounded structure interpreting a classified signature
〈Σ, f̄〉, and m = |f̄ |. Then A can be expanded to a chromatic structure A′ by
interpreting �log((mC)2 + 1)� new unary predicates.

Lemma 5. Let A be a chromatic structure interpreting a classified signature
〈Σ, f̄〉, and Z a positive integer. Let Σ′ be the signature obtained by adding
�logZ� new unary predicates to Σ. Then A can be expanded to a chromatic,
Z-differentiated structure interpreting the classified signature 〈Σ′, f̄〉.

Our next task is to acquire the means to talk about ‘local configurations’ in
bounded structures interpreting a classified signature.

Notation 3. Fix a classified signature 〈Σ, f̄〉 with f̄ = (f1, . . . , fm) and |Σ| = s.
We assume a standard enumeration

π1, . . . , πL

of the 1-types over Σ, with arbitrary ordering, where L = 2s. We likewise assume
a standard enumeration

μ1, . . . , μM∗ , μM∗+1, . . . , μM ,

of the message-types over 〈Σ, f̄〉, where μ1, . . . , μM∗ are the invertible message-
types, and μM∗+1, . . . , μM the non-invertible message-types. (Otherwise, the or-
dering in this enumeration is again arbitrary.)

The Two-Variable Fragment with Counting Revisited 47

Table 1. Quick reference guide to symbols used in connection with a classified signature
〈Σ, f̄〉

s the number of symbols in Σ
π1, . . . , πL the 1-types over Σ
μ1, . . . , μM∗ the invertible message-types over 〈Σ, f̄〉
μM∗+1, . . . , μM the non-invertible message-types over 〈Σ, f̄〉
σ1, . . . , σN the C-bounded star-types over 〈Σ, f̄〉

The above notation, which will be used throughout this section, is summarized
in the first four rows of Table 1. We remark that M ≤ m24s−1.

Definition 6. Let A be a bounded structure interpreting a classified signature
〈Σ, f̄〉, and let a be an element of A. The star-type of a in A, denoted stA[a], is
the M -tuple σ = (v1, . . . , vM) of natural numbers where, for all j (1 ≤ j ≤M),

vj = |{b ∈ A \ {a} : tpA[a, b] = μj}|.

Evidently, σ satisfies the condition

vj > 0 implies tp1(μj) = tpA[a],

for all j (1 ≤ j ≤ M). Accordingly, we take a star-type over 〈Σ, f̄〉 to be any
M -tuple σ of natural numbers satisfying the condition

vj > 0 and vj′ > 0 implies tp1(μj) = tp1(μj′),

for all j, j′ (1 ≤ j < j′ ≤ M). We denote the number vj by σ[j], for all j
(1 ≤ j ≤M). A bounded structure A is said to realize a star-type σ if, for some
a ∈ A, stA[a] = σ.

Thus, stA[a] is a description of a’s ‘local environment’ in A. We remark that, if A
is not bounded, and a ∈ A, then the cardinalities |{b ∈ A \ {a} : tpA[a, b] = μj}|
may be infinite. For this reason, we restrict attention to bounded structures
when talking about star-types of elements.

Certain important characteristics of bounded structures depend only on the
star-types they realize.

Definition 7. Let 〈Σ, f̄〉 be a classified signature, with f̄ = (f1, . . . , fm), and
let σ be a star-type over 〈Σ, f̄〉. We say that σ is C-bounded, for C > 0, if for
all h (1 ≤ h ≤ m),

1 ≤
∑
{vj | 1 ≤ j ≤M and fh(x, y) ∈ μj} ≤ C.

Furthermore, we say that σ is chromatic if, for every 1-type π′ over Σ, the sum

c =
∑
{vj | 1 ≤ j ≤M∗ and tp2(μj) = π′}

satisfies c ≤ 1, and satisfies c = 0 if π′ = π.

48 I. Pratt-Hartmann

Lemma 6. Let A be a bounded structure interpreting a classified signature 〈Σ, f̄〉.
Then A is C-bounded if and only if every star-type realized in A is C-bounded. Fur-
thermore, A is chromatic if and only if every star-type realized in A is chromatic.

Proof. Immediate once the definitions are unravelled.

The important point about C-bounded star-types over a finite classified signa-
ture 〈Σ, f̄〉 is that there are only finitely many of them. Indeed, for a given
〈Σ, f̄〉, and given C, we may enumerate them in a standard way as

σ1, . . . , σN , (2)

just as we did with the 1-types and message-types (Table 1). Simple calculation
shows that N ≤ (C + 1)M , where M is the number of message-types. It is easy
to see that N is in general doubly-exponential in s = |Σ|; however, the results of
Section 3 will ensure that this is no problem. Beware that the listing (2) depends
on the bound C of the star-types in question: this parameter is left implicit to
reduce notational clutter.

Having obtained characterizations of ‘local environments’ in structures in-
terpreting classified signatures, we turn our attention to larger-scale aspects
of those structures. We begin by considering the special role played by silent
2-types.

Definition 8. Let 〈Σ, f̄〉 be a classified signature. Define Π(2) to be the set of
unordered pairs of (not-necessarily distinct) 1-types over Σ:

Π(2) = {{π, π′} | π, π′ 1-types over Σ}.

We call an element of Π(2) a quiet pair (in A) if there exist distinct a, a′ ∈ A
with tpA[a] = π and tpA[a′] = π′, such that the 2-type tpA[a, a′] is silent.

Quiet pairs can always be found in structures with populous 1-types [5, Lemma 4]:

Lemma 7. Let A be a C-bounded structure interpreting a classified signature
〈Σ, f̄〉, and m = |f̄ |. Suppose that π and π′ are 1-types over Σ (not necessarily
distinct), both realized in A more than (mC + 1)2 times. Then {π, π′} is a quiet
pair.

For the purpose of determining satisfiability of C2-formulas, we can afford to be
somewhat relaxed about the silent 2-types any putative model realizes.

Definition 9. Let 〈Σ, f̄〉 be a classified signature, Π(2) the set of unordered
pairs of 1-types over Σ, and Ξ the set of silent 2-types over 〈Σ, f̄〉. A regulator
over 〈Σ, f̄〉 is a partial function θ :⊆ Π(2) → Ξ such that

{tp1(θ({π, π′})), tp2(θ({π, π′}))} = {π, π′},

for every {π, π′} ∈ dom(θ). Further, let A be a structure interpreting 〈Σ, f̄〉.
We say that θ is a regulator for A, if dom(θ) is the set of quiet pairs in A, and
for every {π, π′} in this set, and any pair of distinct a, a′ ∈ A with tpA[a] = π,
tpA[a′] = π′ and tpA[a, a′] silent, either tpA[a, a′] = θ({π, π′}) or tpA[a′, a] =
θ({π, π′}). Finally, we call A regular if it has a regulator.

The Two-Variable Fragment with Counting Revisited 49

Roughly, a regular structure A is one in which, for any quiet pair {π, π′}, we can
identify a silent 2-type, θ({π, π′}), that relates—in one direction or the other—
all the pairs of distinct elements a and a′ having respective 1-types π and π′

such that tpA[a, a′] is silent.

Lemma 8. Let ϕ be any formula of the form (1) over a signature Σ, let f̄ =
(f1, . . . , fm), and suppose A is a structure over the classified signature 〈Σ, f̄〉
such that A |= ϕ. Then there exists a regular structure B over 〈Σ, f̄〉 with the
same domain, such that B |= ϕ. Moreover if A is chromatic (Z-differentiated,
for some Z > 0), then so is B.

Proof. Consider any quiet pair {π, π′} in A, and pick distinct b, b′ such that
tpA[b] = π and tpA[b′] = π′, with ξ = tpA[b, b′] silent. Suppose now that
there exist distinct a, a′ ∈ A such that tpA[a] = π and tpA[a′] = π′, but
tpA[a, a′] �= ξ and tpA[a′, a] �= ξ. Let us alter A to obtain a model A′ (say)
by setting tpA′

[a, a′] = tpA[b, b′]; evidently, A′ |= ϕ. Carrying out this transfor-
mation uniformly yields the required model B.

With the above apparatus at our disposal, we are in a position to characterize
entire structures in terms of the patterns of local configurations they exhibit.

Definition 10. Let 〈Σ, f̄〉 be a classified signature, C a positive integer, and
σ1, . . . , σN the standard enumeration of C-bounded star-types over 〈Σ, f̄〉. A
frame is a quintuple F = 〈Σ, f̄ , C,K, θ〉, where K is a non-empty subset of
{1, . . . , N}, and θ is a regulator over 〈Σ, f̄〉. We call F chromatic if every σk

(k ∈ K) is chromatic. Further, let A be a bounded structure interpreting 〈Σ, f̄〉.
We say that F describes A just in case {σk | k ∈ K} is exactly the set of
star-types realized in A, and θ is a regulator for A.

Lemma 9. Let A be a C-bounded regular structure over a classified signature
〈Σ, f̄〉. Then A is described by a frame of the form F = 〈Σ, f̄ , C,K, θ〉. Further,
if A is chromatic, then so is F .

Proof. Lemma 6.

Let ϕ be a formula of the form (1). If F describes A, then F contains all the
information needed to determine whether A |= ϕ:

Definition 11. Let ϕ be any formula of the form (1) over a signature Σ, let
f̄ = (f1, . . . , fm), and let F = 〈Σ, f̄ , C,K, θ〉 be a frame, where C ≥ Ch for all
h (1 ≤ h ≤ m). We write F |= ϕ if the following conditions are satisfied:

1. for all k ∈ K and all j (1 ≤ j ≤ M), if σk[j] > 0 then |=
∧
μj → α(x, y) ∧

α(y, x);
2. for all k ∈ K and all h (1 ≤ h ≤ m), the sum of all the σk[j] (1 ≤ j ≤ M)

such that fh(x, y) ∈ μj equals Ch.
3. for all {π, π′} ∈ dom(θ), |=

∧
θ(π, π′)→ α(x, y) ∧ α(y, x).

50 I. Pratt-Hartmann

Lemma 10. Let ϕ, F be as in Definition 11, and suppose A is a bounded struc-
ture over 〈Σ, f̄〉 such that F describes A. Then A |= ϕ if and only if F |= ϕ.

Proof. Immediate once the definitions are unravelled.

Lemma 9 tells us that every bounded regular structure is described by some
frame. However not every frame describes a structure; and it is important for us
to define a class of frames which do. The following notation will prove useful to
this end.

Notation 4. Let 〈Σ, f̄〉 be a classified signature and C > 0. With reference
to the standard enumerations of Table 1, and, for integers i, k in the ranges
1 ≤ i ≤ L, 1 ≤ k ≤ N , we write:

oik =

{
1 if, for some j (1 ≤ j ≤M), σk[j] > 0 and tp1(μj) = πi

0 otherwise;

pik =

{
1 if, for all j (1 ≤ j ≤M), tp2(μj) = πi implies σk[j] = 0
0 otherwise;

rik =
∑
j∈J

σk[j], where J = {j |M∗ + 1 ≤ j ≤M and tp2(μj) = πi};

sik =
∑
j∈J

σk[j], where J = {j | 1 ≤ j ≤M and tp2(μj) = πi}.

In addition, for integers i, j in the ranges 1 ≤ i ≤ L, 1 ≤ j ≤M∗, we write:

qjk = σk[j].

To understand the meanings of these constants, suppose A is a C-bounded struc-
ture interpreting 〈Σ, f̄〉. Then, for all i, j and k in the appropriate ranges:

1. oik = 1 just in case every element with star-type σk has 1-type πi;
2. pik = 1 just in case no element with star-type σk sends a message to any

element having 1-type πi;
3. qjk counts how many messages of (invertible) type μj any element having

star-type σk sends;
4. rik is the total number of elements having 1-type πi to which any element

having star-type σk sends a non-invertible message; and
5. sik is the total number of elements having 1-type πi to which any element

having star-type σk sends a message.

The following notion now gives us a way of providing a ‘statistical summary’
of structures. Recall the extended natural numbers introduced in Notation 2.

Definition 12. Let 〈Σ, f̄〉 be a classified signature, C a positive integer, and A
a C-bounded structure interpreting 〈Σ, f̄〉. Let σ1, . . . , σN be the standard enu-
meration of the C-bounded star-types. The C-histogram of A is the N -tuple
HistC(A) = (w1, . . . , wN) of elements of N∗, where, for all k (1 ≤ k ≤ N),

wk = |{a ∈ A : stA[a] = σk}|.

The Two-Variable Fragment with Counting Revisited 51

The following notation will be useful when talking about (putative) histograms
of structures.

Notation 5. Fix some frame F (and hence the associated constants of Nota-
tion 4), and let w1, . . . , wN be variables. We employ the letters ui (1 ≤ i ≤ L),
vj (1 ≤ j ≤M∗) and xii′ (1 ≤ i ≤ L, 1 ≤ i′ ≤ L) as shorthand for the following
expressions:

ui =
∑

1≤k≤N

oikwk vj =
∑

1≤k≤N

qjkwk xii′ =
∑

1≤k≤N

oikpi′kwk.

To understand the meanings of these expressions, suppose first that A is a
bounded, regular structure, described by F = 〈Σ, f̄ , C,K, θ〉, and that
HistC(A) = (w1, . . . , wN). Then

1. ui is the number of elements a ∈ A such that tpA[a] = πi;
2. vj is the number of pairs 〈a, b〉 ∈ A2 such that a �= b and tpA[a, b] = μj ;
3. xii′ is the number of elements a ∈ A such that tpA[a] = πi and a does not

send a message to any element having 1-type πi′ .

We can now give our long-awaited criterion for a frame to describe a structure.

Definition 13. Let F = 〈Σ, f̄ , C,K, θ〉 be a frame, Z a positive integer, m =
|f̄ |, and L, M∗, M , N the constants defined in Table 1. A Z-solution of F is
an N -tuple w̄ = (w1, . . . , wN) of elements of N∗ such that, for all k (1 ≤ k ≤ N),
wk > 0 if and only if k ∈ K, and such that the following conditions are satisfied
for all i (1 ≤ i ≤ L), all i′ (1 ≤ i′ ≤ L), and all j (1 ≤ j ≤M∗):

(C1) vj = vj′ , where j′ is such that μ−1
j = μj′ ;

(C2) if ui = 0, then
∑
{wk | sik > 0} = 0; if ui = 1, then

∑
{wk | sik > 1} = 0;

(C3) ui ≤ 1 or ui > Z;

(C4) if ui ≤ 1, then for all positive integers D ≤ mC, we have either xi′i ≥ D
or
∑
{wk | oik = 1 and ri′k ≥ D} = 0;

(C5) if {πi, πi′} �∈ dom(θ), then either ui ≤ 1 or ui′ ≤ 1;

(C6) if {πi, πi′} �∈ dom(θ), then for all positive integers D ≤ mC, we have
either xi′,i ≤ D or

∑
{wk | oik = 1 and ri′k ≤ D} = 0.

We say that w̄ is finite if each of its elements is in N. If F has a (finite) Z-
solution, we say that F is (finitely) Z-solvable.

Remark 4. Noting that the constants ri′k in Definition 13 are bounded by mC,
we see that conditions (C4) and (C6) may be more simply formulated as the
collections of conditions

(C4∗) if oik = 1 and ui ≤ 1, then ri′k ≤ xi′i;

(C6∗) if {πi, πi′} �∈ dom(θ) and oik = 1, then ri′k ≥ xi′i,

respectively, for all i (1 ≤ i ≤ L), i′ (1 ≤ i′ ≤ L) and k (1 ≤ k ≤ N). The reason
for the rather awkward formulation adopted above will emerge presently.

52 I. Pratt-Hartmann

The two main lemmas of this section may now be stated. They tell us that,
for sufficiently large Z, we may treat (finitely) Z-solvable, chromatic frames as
substitutes for (finite) bounded, Z-differentiated chromatic structures.

Lemma 11. Let F = 〈Σ, f̄ , C,K, θ〉 be a frame, m = |f̄ |, and Z ≥ (mC + 1)2

be an integer. If A is a (finite) bounded, Z-differentiated, structure described by
F , then HistC(A) is a (finite) Z-solution for F .

Proof (Sketch). See [5, Lemma 13] for full details. It is a routine matter to
check the conditions (C1)–(C6). Observe that condition (C3) is immediate
from the assumption that A is Z-differentiated. We note in addition that the
same assumption may be used in conjunction with Lemma 7 (of this paper)
to show that condition (C5) obtains. For suppose {πi, πi′} �∈ dom(θ). Since F
describes A, {πi, πi′} cannot be a quiet pair; hence either ui ≤ Z or ui′ ≤ Z;
whence ui ≤ 1 or ui′ ≤ 1.

Lemma 12. Let F = 〈Σ, f̄ , C,K, θ〉 be a chromatic frame, m = |f̄ |, and Z ≥
3mC be an integer. If F has a (finite) Z-solution, then there exists a (finite)
bounded structure A such that F describes A.

Proof (Sketch). See [5, Lemma 14] for full details. For every k ∈ K, let Ak be a
set of cardinality wk, and let A be the disjoint union of the Ak. We imagine Ak

as a set of elements having star-type σk, and show that, under the conditions
(C1)–(C6), these star-type instances can be assembled into a well-defined model
A with domain A. The construction depends crucially on the assumptions that
the frame F is chromatic, and that condition (C3) obtains.

The next lemma tells us that, if Z-solvability is what interests us, we may restrict
attention to small frames:

Lemma 13. Let Z be a positive integer, F ′ = 〈Σ, f̄ , C,K ′, θ〉 a (finitely) Z-
solvable frame, m = |f̄ | and s = |Σ|. Then there exists a non-empty K ⊆ K ′

such that the frame F = 〈Σ, f̄ , C,K, θ〉 is also (finitely) Z-solvable, and |K| ≤
p(mC)2p(s), where p is a fixed polynomial.

Proof. There are fixed polynomials p′, q′ such that p′(mC)2q′(s) bounds the
number of equations (C1)–(C6) in Definition 13. (Note that this claim would
in general be false if we had replaced (C4) and (C6) by their simpler variants,
(C4∗) and (C6∗).) By Lemmas 2 and 3, there is a polynomial p such that F
has a (finite) solution w1, . . . , wN with at most p(mC)2p(s) non-zero values (but
not none). Now let K = {k ∈ K ′|wk �= 0}.

It is well known that the problem of determining whether a system E of linear
inequalities has a solution over N is NPTime-complete [1], and similarly for
solutions over N∗. Indeed, if E has a solution over N, then it has a solution
whose size (measured in terms of the number of bits required) is bounded by a
polynomial function of the total number of bits used to encode E .

The Two-Variable Fragment with Counting Revisited 53

Theorem 1. The problems Sat-C2 and Fin-Sat-C2 are in NExpTime.

Proof. Let a C2-formula ψ be given. By Lemma 1, we may compute a formula ϕ of
the form (1) in polynomial time, such that ϕ and ψ are satisfiable over the same
domains of size greater than C = max({Ch|1 ≤ h ≤ m}). Let Z = (mC + 1)2:
note that Z ≥ (mC)2 + 1, and also Z ≥ 3mC. Let Σ be the signature of ϕ
together with 2�log(Z)� new unary predicates, and let f̄ = (f1, . . . , fm). Thus
〈Σ, f̄〉 is a classified signature. Write s = |Σ|.

We claim that ϕ is (finitely) satisfiable if and only if there exists a chromatic
(finitely) Z-solvable frame F = 〈Σ, f̄ , C,K, θ〉 such that |K| ≤ p(mC)2p(s) and
F |= ϕ, where p is some fixed polynomial, independent of ϕ. Suppose first that ϕ
has a (finite) model A′. Evidently, A′ is C-bounded. By Lemmas 4, 5 and 8, ϕ has
a (finite) C-bounded, chromatic, Z-differentiated, regular model A over 〈Σ, f̄〉.
By Lemma 9, there exists a chromatic frame F = 〈Σ, f̄ , C,K, θ〉 describing A; by
Lemma 10, F |= ϕ; and by Lemma 11, F has a (finite) Z-solution. Taking p to be
the fixed polynomial of Lemma 13, we may assume without loss of generality that
|K| ≤ p(mC)2p(s). Conversely, suppose that F = 〈Σ, f̄ ,K,C, θ〉 is a chromatic
frame such that F |= ϕ, and F has a (finite) Z-solution. By Lemma 12, there
exists a (finite) structure A such that F describes A, and by Lemma 10, A |= ϕ.

Consider the following non-deterministic procedure, where q1, q2 and q3 are
fixed polynomials, and n = ‖ϕ‖.

1. Guess a chromatic frame F = 〈Σ, f̄ , C,K, θ〉 with |K| ≤ 2q1(n) and check
that F |= ϕ;

2. Guess a system of at most 2q2(n) linear inequalities E (propositionally)
entailing the conditions (C1)–(C6) for F to have a Z-solution.

3. Guess a tuple w̄ of elements of N∗ whose size (number of bits) is bounded
by 2q3(n).

4. If w̄ is a solution for E , succeed; else fail.

For all polynomials q1, q2 and q3, this procedure runs in time bounded by an
exponential function of ‖ϕ‖. But the claim of the previous paragraph shows that,
for suitable q1, q2 and q3, it has a successfully terminating run if and only ϕ is
satisfiable. This proves that Sat-C2 is in NExpTime. To do the same for Fin-
Sat-C2, we simply modify line 3 to insist that w̄ be a tuple of natural numbers.

It is well known that the satisfiability (= finite satisfiability) problem for the
two-variable fragment of first-order logic without counting quantifiers is already
NExpTime-hard. Thus, the NExpTime bound of Theorem 1 is tight.

Corollary 1. Let ϕ be a formula of C2. If ϕ is finitely satisfiable, then it is
satisfiable in a structure of size bounded by a doubly exponential function of
‖ϕ‖.

Proof. In the proof of Theorem 1, if the system E of equations in line 3 of the
procedure has a solution over N, then it has a solution every element of which
has size (number of bits) bounded by a polynomial function of ‖E‖, and hence
by a singly exponential function of ‖ϕ‖.

54 I. Pratt-Hartmann

It was shown in [3] that there exists a sequence {ϕn} of finitely satisfiable C2-
formulas where ‖ϕn‖ is bounded above by a polynomial function of n, but the
size of the smallest model of ϕn is bounded below by 22n

. Thus, the doubly-
exponential bound of Corollary 1 is tight.

Acknowledgment

The author is indebted to Dr. Yevgeny Kazakov for helpful discussions on the
topic of this paper.

References

1. Borosh, I., Treybig, L.: Bounds on the positive integral solutions of linear Diophan-
tine equations. Proceedings of the American Mathematical Society 55(2), 299–304
(1976)

2. Eisenbrand, F., Shmonina, G.: Carathéodory bounds for integer cones. Operations
Research Letters 34(5), 564–568 (2006)

3. Grädel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In:
Proceedings of the 12th IEEE Symposium on Logic in Computer Science, pp. 306–
317. IEEE Online Publications (1997)

4. Pacholski, L., Szwast, W., Tendera, L.: Complexity results for first-order two-
variable logic with counting. SIAM Journal on Computing 29(4), 1083–1117 (1999)

5. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quan-
tifiers. Journal of Logic, Language and Information 14, 369–395 (2005)

6. Pratt-Hartmann, I.: On the computational complexity of the numerically definite
syllogistic and related logics. Bulletin of Symbolic Logic 14(1), 1–28 (2008)

7. Scott, D.: A decision method for validity of sentences in two variables. Journal of
Symbolic Logic 27, 477 (1962)

Intuitionistic Logic and Computability Theory

Sebastiaan A. Terwijn

Radboud University Nijmegen
Department of Mathematics

P.O. Box 9010
6500 GL Nijmegen
The Netherlands

terwijn@math.ru.nl

1 Tutorial 1: Intuitionistic Logic

In this first tutorial we review the basics of intuitionistic logic. We start with
L. E. J. Brouwer’s philosophy of mathematics, intuitionism, and the subsequent
formalization by Heyting [1] of its underlying logic. The Brouwer–Heyting–Kol-
mogorov interpretation is an informal manner (in fact consisting of various ideas
lumped together) of motivating the formal rules of deduction in this logic. Hey-
tings formalization in 1930 was quickly followed by the birth of the theory of
computation in the 1930’s, and it was immediately suggested that the two should
be combined. Kleene’s realizability interpretation [3] was one such attempt, that
later turned out to be a very useful tool in studying constructive logic in all
sorts of ways (cf. [6] for a recent treatment). We discuss the various semantics
for intuitionistic logic, and give some necessary lattice-theoretic background on
Heyting algebras. We also discuss the principles of intuitionistic provability, that
are still not completely understood, in contrast to the classical case. The concept
of admissible rule, not very useful classically, is crucial here (cf. [2]).

2 Tutorial 2: Computability Theory

In this second tutorial we briefly review the basic notions of computability theory,
viz. the notion of computable function, Turing reducibility and relativization, c.e.
sets and the arithmetical hierarchy. We point out some of the basic connections
between these and proof-theoretic notions such as arithmetical provability. We
discuss continuous functions of the reals and the way these are related to the
notion of computable functional. Computable functionals play an important part
in relating intuitionistic logic to computability. Finally we discuss Π0

1 -classes,
that is, set of reals definable by computable trees. These play a central role in
computability theory, and are also connected to the topic of these lectures. Most
of this background material can be found in [11].

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 55–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

56 S.A. Terwijn

3 Computability Theoretic Interpretations of
Intuitionistic Logic

In this talk we discuss some of the more recent developments in the area between
intuitionistic logic and the theory of computation, in particular the relation
with the Medvedev and Muchnik lattices. In a sketchy paper, Kolmogorov [4]
suggested to interpret the intuitionistic propositional calculus IPC as a “calculus
of problems”. Later Medvedev investigated several ways in which this could be
made precise, and introduced the lattice that now bears his name [5]. Sorbi
[9] is a nice survey paper about the Medvedev lattice. Although initially this
approach was unsuccessful in capturing IPC, later work of Skvortsova [7] showed
that it could be made to work after all. We explain Skvortsova’s result, which is
a culmination of ideas from proof theory, lattice theory, and computability, and
we discuss recent work with Sorbi [10] about the extent of this approach.

The Medvedev and Muchnik lattices are also of independent interest in the
study of computational properties of sets of reals. Both lattices can be seen as
generalizations of the Turing degrees, going from singletons to arbitrary sets of
reals. In particular the notions of Medvedev and Muchnik reducibility have been
applied in recent years to the study of Π0

1 -classes, following work of Simpson (cf.
e.g. [8]). We also discuss connections between this topic and intuitionistic logic,
and in particular the role played by the set of complete extensions of Peano
Arithmetic [12].

References

1. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussisischen Akademie von Wissenschaften, Physikalisch-mathematische Klasse,
42–56 (1930)

2. Iemhoff, R.: On the rules of intermediate logics. Archive for Mathematical
Logic 45(5), 581–599 (2006)

3. Kleene, S.C.: On the interpretation of intuitionistic number theory. Journal of
Symbolic Logic 10, 109–124 (1945)

4. Kolmogorov, A.: Zur Deutung der intuitionistischen Logik. Mathematische Zeit-
schrift 35(1), 58–65 (1932)

5. Medvedev, Y.T.: Degrees of difficulty of the mass problems. Dokl. Akad. Nauk.
SSSR 104(4), 501–504 (1955)

6. van Oosten, J.: Realizability: An introduction to its categorical side. Studies in
logic and the foundations of mathematics, vol. 152. Elsevier, Amsterdam (2008)

7. Skvortsova, E.Z.: A faithful interpretation of the intuitionistic propositional calcu-
lus by means of an initial segment of the Medvedev lattice. Sibirsk. Math. Zh. 29(1),
171–178 (in Russian, 1988)

8. Simpson, S.G.: Π0
1 sets and models of WKL0. In: Reverse Mathematics 2001. Lec-

ture Notes in Logic, vol. 21. ASL (2005)
9. Sorbi, A.: The Medvedev lattice of degrees of difficulty. In: Cooper, S.B., Slaman,

T.A., Wainer, S.S. (eds.) Computability, Enumerability, Unsolvability: Directions
in Recursion Theory, London. Mathematical Society Lecture Notes, vol. 224, pp.
289–312. Cambridge University Press, Cambridge (1996)

Intuitionistic Logic and Computability Theory 57

10. Sorbi, A., Terwijn, S.A.: Intermediate logics and factors of the Medvedev lattice.
Annals of Pure and Applied Logic 155, 69–85 (2008)

11. Terwijn, S.A.: Syllabus computabiliy theory, Vienna. Available at the author’s web
pages (2004)

12. Terwijn, S.A.: The Medvedev lattice of computably closed sets. Archive for Math-
ematical Logic 45(2), 179–190 (2006)

13. Terwijn, S.A.: Constructive logic and computational lattices, habilitation thesis,
Technical University of Vienna (2007)

Foundations of

Satisfiability Modulo Theories

Cesare Tinelli�

Department of Computer Science
The University of Iowa
tinelli@cs.uiowa.edu

Satisfiability Modulo Theories (SMT) studies methods for checking the (un)-
satisfiability of first-order formulas with respect to a given logical theory T .
Distinguishing features of SMT, as opposed to traditional theorem proving, are
that the background theory T need not be finitely or even first-order axiomati-
zable, and that specialized inference methods are used for each theory of inter-
est. By being theory-specific and restricting their language to certain classes of
formulas (such as, typically but not exclusively, quantifier-free formulas), these
methods can be implemented into solvers that are more efficient in practice than
general-purpose theorem provers.

While originally developed to support deductive software verification, SMT is
now also finding applications in several other areas of computer science such as,
for instance, hardware verification, model checking, automated test case gener-
ation, planning, and optimization.

In addition to devising, studying and implementing efficient theory solvers for
restricted fragments of a growing number of theories, a considerable research
effort in the field has been devoted to the development of generic methods for
extending the scope and capabilities of theory solvers and combining them mod-
ularly. This effort has benefited from a fruitful interplay between practice, with
the development of powerful and efficient architectures for SMT reasoners, and
theory, with the development of inference systems aimed at capturing the essence
of those architectures, facilitating the study of their logical properties and sug-
gesting ways to extend and improve them.

This talk provides an overview of the theoretical work on the logical foun-
dations of modern SMT systems, highlighting current results as well as present
research challenges and future opportunities.

� The author’s own research described in this talk was made possible with the partial
support of grants #0237422, #0551646 and #0914877 from the US National Science
Foundation and grant #FA9550-09-1-0517 from the US Air Force Office of Scientific
Research.

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, p. 58, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Logical Form as a Determinant of Cognitive

Processes

Michiel van Lambalgen

ILLC/Department of Philosophy
University of Amsterdam
Nieuwe Doelenstraat 15
NL1012CP Amsterdam
Fax: +31 20 5254503

M.vanLambalgen@uva.nl

Abstract. We discuss a research program on reasoning patterns in sub-
jects with autism, showing that they fail to engage in certain forms of
non-monotonic reasoning that come naturally to neurotypical subjects.
The striking reasoning patterns of autists occur both in verbal and in
non-verbal tasks. Upon formalising the relevant non-verbal tasks, one
sees that their logical form is the same as that of the verbal tasks. This
suggests that logical form can play a causal role in cognitive processes,
and we suggest that this logical form is actually embodied in the cogni-
tive capacity called ’executive function’.

1 Introduction

The title of this paper may seem provocative, given the current near-consensus
that logic, albeit important in the genesis of cognitive science, has no explanatory
role to play in the study of cognitive processes. This dim view of logic has come
about as a consequence of many different pressures, that will be discussed shortly.
But let us first give the briefest of outlines of why and in what sense logic is
cognitively relevant.

The key notion is that of logical form. This is not to be conceived of in the man-
ner of an elementary logic textbook: one takes a sentence in natural language,
translates this tant bien tant mal in the language of classical or intensional logic,
and calls the translation the logical form of the sentence. On this conception of
logical form, it pertains only to verbal material, it is a syntactic concept, and
it is based on a fixed choice of syntax, semantics and notion of validity (namely
those embodied in classical or intensional logic).

The conception of logical form advocated here is different in that it eliminates
normative considerations. That is, instead of starting with a logic (e.g. classical
logic) that one deems to be normatively justified and trying to fit that logic to the
data, one uses logic descriptively: one tries to fit a logic, i.e. a particular choice of
syntax, semantics and notion of validity, to the data, ideally deriving predictions
about what will be observed in further experiments. As we will see below, most
arguments for the irrelevance of logic to the study of cognitive processes adopt

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 59–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

60 M. van Lambalgen

a normative stance toward logic; but it may not be immediately obvious that
a descriptivist approach can be made relevant to cognitive science, given that
most practitioners in the field believe that logic has failed to deliver. The bulk of
this paper will try to make the case for logic using reasoning patterns in autistic
subjects as an example; but we first consider some a priori objections against
the use of logic as a modelling tool in cognitive science.

1.1 Why Logic Has Come to Be Seen as Irrelevant for Cognitive
Science

1. experiments with reasoning tasks, such as the famous Wason selection task
[25], show that logical form is not a determinant of reasoning

2. logic cannot deal with vagueness and graded concepts
3. logic cannot deal with uncertainty and must be replaced by probability the-

ory, which is after all the calculus of uncertainty
4. what we know about the neocortex suggests that the computations executed

by the brain are very different from logical computations
5. the computational complexity of logic is too high for logic to be a realistic

model of cognition

A full discussion would divert us from our main topic, but we will focus on two
issues to give a flavour of the arguments and counterarguments. To set the stage,
we begin by discussing the selection task and its aftermath. Wason’s original task
was presented by means of a form as depicted in figure 1. The reader, who has
probably seen the task before, should realise that this is all the information
provided to the subjects, in order to appreciate the tremendous difficulty posed
by this task.

Below is depicted a set of four cards, of which you can see only the exposed
face but not the hidden back. On each card, there is a number on one of its
sides and a letter on the other.

Also below there is a rule which applies only to the four cards. Your task is
to decide which if any of these four cards you must turn in order to decide if the
rule is true. Don’t turn unnecessary cards. Tick the cards you want to turn.

Rule: If there is a vowel on one side, then there is an even number on the
other side.

Cards:

A K 4 7

Fig. 1. Wason’s selection task

This experiment has been replicated many times, with stable results. If one
formulates the ruleIf there is a vowel on one side, then there is an even number
on the other side. as an implication p→ q, then the observed pattern of results
is typically given as in table 1. Wason believed there to be only one ‘logically
correct’ answer, namely p,¬q, and concluded that according to this standard, the

Logical Form as a Determinant of Cognitive Processes 61

Table 1. Typical scores in the selection task

p p, q p,¬q p, q,¬q misc.

35% 45% 5% 7% 8%

vast majority of reasoners are irrational. In addition, the selection task was used
to argue that most adults do not reach what Piaget [10] considered the pinnacle of
cognitive development, the formal operational stage, which is basically mastery
of classical propositional logic. Not only do subjects typically fail to master
the modus tollens inference supposed to be at work here, they do not even
have a workable concept of logical form to guide their reasoning. For if Wason’s
‘abstract’ rule If there is a vowel on one side, then there is an even number
on the other side.is replaced by the ‘concrete’ rule if you want to drink alcohol,
you have to be over 18, performance suddenly jumps to more acceptable levels,
around 75%. These two reasoning tasks – ‘abstract’ and ‘concrete’ – have the
same logical form. If logical form determines performance in a task, performance
on these tasks must be comparable. The data show that performance differs
considerably, whence logical form is irrelevant to reasoning. A tacit inference
followed: if logic plays no role in reasoning, why would it play a role in other
domains of cognition? There is much to say against this line of argument (see
[16,18]), but here we continue with the argument from uncertainty.

This argument contrasts logic, which is supposed to be dealing in certain truth
only, with real life, where

. . . it is, in fact, rational by the highest standards to take proper account of
the probability of one’s premises in deductive reasoning (Stevenson and Over
[21, p. 615]).

. . . performing inferences from statements treated as absolutely certain is un-
common in ordinary reasoning. We are mainly interested in what subjects will
infer from statements in ordinary discourse that they may not believe with
certainty and may even have serious doubts about [21, p. 621].

It is a moot point whether the implied contrast is at all valid (see Stenning
and van Lambalgen [20] for discussion), but for our present purposes it suffices
to note that logic is widely perceived to fail on this score. A whole research
program, ‘Rational Analysis’ as practised by Oaksford and Chater [6] is built on
this perception. Here is another representative quote:

[M]uch of our reasoning with conditionals is uncertain, and may be overturned
by future information; that is, they are non-monotonic. But logic based ap-
proaches to inference are typically monotonic, and hence are unable to deal
with this uncertainty. Moreover, to the extent that formal logical approaches
embrace non-monotonicity, they appear to be unable to cope with the fact that
it is the content of the rules, rather than their logical form, which appears to
determine the inferences that people draw. We now argue that perhaps by
encoding more of the content of people’s knowledge, by probability theory, we
may more adequately capture the nature of everyday human inference. This

62 M. van Lambalgen

seems to make intuitive sense, because the problems that we have identified
concern how uncertainty is handled in human inference, and probability is the
calculus of uncertainty [5, p. 100]; see also [6].

But can all uncertainty be modelled by probability theory? We first give a
theoretical argument that casts doubt on this assumption (cf. [19]), and will then
consider concrete cases of uncertainty where Bayesian probability goes awry.
Consider what is presupposed by the main inference algorithm of probability
theory, Bayesian conditionalisation. This is an algorithm that gets us from the
a priori probability P0(A) of an event A to the a posteriori probability P1(A)
given total evidence E:

P1(A) = P0(A | E) =
P0(E | A)P0(A)

P0(E)
.

Here, the first equality holds by stipulation; the stipulation is intuitively justified
only if E represents all the available evidence. The second equality holds in virtue
of the definition of conditional probability. But one sees that for this algorithm
to work two conditions must be satisfied

1. the a priori probability P0 must be defined on all possible evidence E
2. moreover, for all possible evidence E, P0(E) > 0.

To use Donald Rumsfeld’s infamous terminology, probability theory deals with
the ‘known unknowns’ (the space of events is known, but not their truth value),
but it is fairly helpless in the face of the ‘unknown unknowns’ (the case where
the space of events is itself not completely known). By the second property
just listed, one is barred from assuming that the ‘unknown unknowns’ all have
probability 0, because this implies they can never be used for Bayesian updating.
Therefore these events must be known in the sense of being incorporated into
the event algebra and they must have non-zero probability; but these demands
taken together entail totally unrealistic estimation and memory requirements.
Therefore it makes sense to look for alternatives to Bayesianism.

We proceed to give two concrete examples that involve these ‘unknown un-
knowns’.

1. Causal reasoning. A causal relationship holds only in a closed system; it is
however impossible to specify in advance all the ways in which events may
interfere with this closed system. For example, if a stationary billiard ball
is hit by a moving billiard ball, it takes over the momentum of the moving
ball, but it doesn’t if I take it off the billiard table at the instant of collision.

2. Unknown preconditions, also known as the ‘frame problem’. If I promise to
make my guest a coffee using my espresso machine, I simply assume that all
the preconditions for the machine to work properly are satisfied. They may
not, in which case I will be brought up short. Nevertheless, I do not check
whether these conditions are satisfied, I will in fact be ignorant of most of
these preconditions, and hence I cannot have a probability distribution over
these conditions from which to compute the chances that I can make my
guest happy with an espresso.

Logical Form as a Determinant of Cognitive Processes 63

In all such cases there is genuine uncertainty in the sense of lack of knowledge,
and so probability theory does not apply. But logics can be useful, as long as they
are non-monotonic. Such logics often operate on the closed world assumption:
if you have no reason to assume event E occurs, you may assume it does not
occur. Here it is not necessary to posit probability theory’s fixed event algebra
to which the events E must belong. An example can help to illustrate the point.
Let us return for a while to my espresso machine. Let p stand for ‘I push the
button’, and q for ‘coffee starts flowing into the cup’. Then the proper logical
form for the conditional ‘if I push the button, then coffee starts flowing into the
cup’ is not the classical material implication p→ q. The reason is that if there is
an occasion on which I push the button but no coffee is produced, the material
implication would have to be declared false, and hence useless to describe the
operation of the espresso machine. Instead one should use an ’exception-tolerant’
rule informally rendered as ‘if I push the button, and nothing abnormal is the
case, then coffee is produced’, or more formally as (*) p ∧ ¬ab → q. Here the
closed world assumption becomes operative. It entails that if we have no concrete
information that an abnormality has occurred we may assume it hasn’t, i.e. we
conclude ¬ab. Together with the premise p we then get conclusion q. However,
suppose that even though I pushed the button, the machine fails to produce
coffee. I then conclude, not that the conditional (*) is wrong, but that something
abnormal has occurred. I may for example notice that the machine is not plugged
in, which leads to a concrete meaning for the abnormality: if r represents ‘the
machine is plugged in’, then we have ¬r → ab. I don’t see any other possible
causes for the malfunctioning, however, and again by closed world reasoning
I conclude that the machine’s not being plugged in is the only source of the
abnormality, formally ¬r ↔ ab or equivalently r ↔ ¬ab, whence I obtain a new
conditional from (*), namely p∧r → q. Since I have now plugged in the machine
and pushed the button, I expect the machine to produce coffee. The kind of
reasoning just given cannot be represented in Bayesian probability theory; for
an extended argument see [20,19].

Notice incidentally that we have analysed a non-verbal task in logical terms.
Indeed, on the conception of logic advocated here also non-verbal tasks can have
a logical form, and in fact a logical form that can be the same as that of a verbal
task. This observation will turn out to be important below.

2 Marr’s Levels of Explanation and Logic

In the face of such formidable objections as listed in the previous section, it seems
a daunting task to defend a continuing role for logic in cognitive science. Still,
this is what we shall do. We shall argue, using Marr’s model of explanation in
cognitive science [4, Chapter 1], that the criticisms directed against logic fall foul
of a confusion of levels. More importantly, we show that logic, rightly conceived,
can still make a positive contribution to explanation and prediction in cognitive
science. The case we focus on is autism. This may seem stony ground indeed:
why would there be a role for logic in autism? This disorder, about which more

64 M. van Lambalgen

below, has been variously characterised as due to a deficit in ‘theory of mind’, as
defective central processing, as a disorder of affect, and as executive dysfunction,
to mention but a few proposed aetiologies. On the face of it, logic has little to
do with any of these.

Considering the place of logic in cognitive explanation will clarify these mat-
ters. As a starting point we look at David Marr’s three levels of cognitive inquiry

1. identification of the information processing task as an input–output func-
tion;1 the competence model is relative to the information processing task
considered

2. specification of an algorithm which computes that function
3. neural implementation of the algorithm specified

This tripartite scheme of explanation should be read neither bottom-up nor top-
down, but as a set of constraints; for example, the algorithm may be determined
both by the competence model and by what is known about neural computation.
The competence model is formulated in terms of ideal, mathematical entities and
is as such not directly applicable to the real world. It is ideal in two different
senses of the term: firstly because it operates with idealised input and output,
and secondly because it gives an ideal norm as a mapping from (idealised) input
to (idealised) output. There is no reason to expect that actual performance, even
when optimal, will always conform to the norm set by the competence model.

In a nutshell, our view of the role of logic in cognitive science is this; logics can
act as descriptions of competence models various information processing tasks
(Marr’s first level). We will illustrate this by considering the cognitive capacity
known as executive function.

3 A Common Failure in Psychiatric Disorders: Executive
Function

‘Executive function’ is an umbrella term for processes responsible for higher-
level action control that are necessary for maintaining a goal and achieving it
in possibly adverse circumstances. There is no unanimity on how to partition
executive function into meaningful subcomponents, but we may take executive
function to be composed of planning, initiation, inhibition, coordination and
control of action sequences, leading toward a goal held in working memory. The
reason for our interest in psychiatric disorders is our conviction that there is a
strong connection between logic and executive function: at a logical level, the
operation of executive function can be described as conditional reasoning and
aberrations thereof. This may seem surprising, especially given the prevalent
conception of reasoning as a conscious and somewhat laborious activity start-
ing from explicitly given premisses. How then can fast and largely automatic
executive function be profitably described by a logic? It will turn out, however,
that the logics most useful in this context, variants of closed world reasoning,
do allow fast and automatic processing.
1 Marr calls this the ‘computational level’, but this term is infelicitous in view of the

next level. We prefer the term ‘competence model’ instead.

Logical Form as a Determinant of Cognitive Processes 65

4 Logic and Executive Function

We said above that executive function is composed of planning, initiation, inhi-
bition, coordination and control of action sequences leading toward a goal held in
working memory. In the following we abstract from the co-ordination and control
component, and concentrate on goal maintenance, planning and (contextually
determined) inhibition.

By definition, planning consists in the construction of a sequence of actions
which will achieve a given goal, taking into account properties of the world and
the agent, and also events that might occur in the world. The relevant properties
include stable causal relationships obtaining in the world, and also what might
be termed ‘inertia’, in analogy with Newton’s first law. If a property has been
caused to hold by the occurrence of an event, we expect that the property persists
until it is terminated by another event. This is the inertial aspect of causality:
a property does not cease to hold (or come to hold) spontaneously, without
identifiable cause. Such inertia is a prerequisite for successful action in the world;
and we will have to find a formal way to express it. It does however not suffice
for successful planning.

The problem is that in the definition of planning, , ‘will achieve’ definitely
cannot mean: ‘provably achieves in classical logic’, because of the notorious frame
problem: it is impossible to take into account all eventualities whose occurrence
might be relevant to the success of the plan, but classical logic forces one to
consider all models of the premisses, including those that contain farfetched
possibilities. Therefore the question arises: how to characterize formally what
makes a good plan?

A reasonable informal suggestion is: the plan works to the best of one’s present
knowledge. More formally, this idea can be reformulated semantically as: the
plan achieves the goal in a ‘minimal model’ of reality; where a minimal model
is characterized by the property that, very roughly speaking, every proposition
is false which you have no reason to assume to be true. In particular, in the
minimal model no events occur which are not forced to occur by the data, and
only explicitly mentioned causal influences are represented in the model. This
makes planning a form of non-monotonic reasoning.

We thus postulate that the logical form underlying planning is closed world
reasoning: the principle which (roughly) says that every proposition which is not
forced to hold by the data available can be assumed to be false. This applies to
propositions about occurrences of events as well as to those expressing causal re-
lationships. One may identify a number of areas in which closed world reasoning
is applicable, each time in slightly different form:

1. lists: train schedules, airline databases, . . .
2. diagnostic reasoning and abduction
3. unknown preconditions
4. causal and counterfactual reasoning

66 M. van Lambalgen

5. attribution of beliefs and intentions2

6. construction of discourse models, in particular event structures from verb
tenses

It is of some interest that several psychiatric disorders come with disturbances in
one or more forms of reasoning from this list. Children with ADHD (‘attention-
deficit hyperactivity disorder’) tend to have difficulties with ordering events in
a narrative. Autists have difficulties with at least 3, 4 and 5. They also have a
special relationship with lists, in the sense that they feel lost without lists, such
as timetables to organise daily activities; they have great difficulty accommo-
dating unexpected changes to the timetable, and try to avoid situations such as
holidays in which rigid schedules are not applicable. One may view this as an
extreme version of closed world reasoning, sometimes even applied in inappro-
priate circumstances. But before one concludes from this that autists are good
at closed world reasoning to the point of over-applying it, one must carefully dis-
tinguish several components of closed world reasoning. On the one hand, there is
the inference from given premisses to a conclusion. In [18, Chapter 8] it is shown
that such inferences can be executed fast by suitable neural networks. In a wider
sense, non-monotonic reasoning also involves ‘pre-processing’ the given situation
or discourse, that is, encoding the law-like features of a situation in a particular
type of premisses. Laws and regularities always allow exceptions, and skill at
‘exception handling’ is required – which involves identifying and encoding the
relevant exceptions, and knowing when ‘enough is enough’. Autists appear to
do worse than normals on this last aspect, although they behave normally with
respect to the non-monotonic inferences themselves.

We have thus identified closed world reasoning as a component of executive
function. A good formal representation of closed world reasoning as relevant
to planning is the event calculus as formulated in logic programming [23]. An
informal description suffices for our purposes here. Planning involves a goal, a
description of the current situation, a description of causal effects and precon-
ditions of actions. The program then derives a sequence of actions which will
achieve the goal if no unforeseen events occur, but execution must be stopped
and plan recomputed if relevant change of context occurs.

This puts constraints on the neural implementation of the planning algorithm,
in the sense that at least the following components are required: working mem-
ory needs to hold the goal and the current world model, semantic memory is
necessary for the storage of causal properties of actions, and of a general theory
of causality; working memory again computes the sequence of actions compris-
ing the plan. In the logical model of executive function proposed here inhibition
is represented through the special logical form of causal properties of actions,
where the link from action to effect is mediated by a slot labelled ¬ab:

A ∧ ¬ab → E (1)

2 It may not be obvious that this is a planning problem at all, but section 5.2 will
make clear why this is so.

Logical Form as a Determinant of Cognitive Processes 67

This conditional is read as ‘if A and nothing abnormal is the case, then E’,
where the expression ‘nothing abnormal is the case’ is governed by closed world
reasoning. For instance, if there is nothing known about a possible abnormality,
i.e. if the causal system is closed, one concludes ¬ab, hence from A it follows that
E. If however there is information of the form C → ab, i.e. if there is a context
C which constitutes an abnormality, and C is the case, then the link from A
to E is inhibited. In the neural model of closed world reasoning proposed in
[18, Chapter 8], ab corresponds to an (artificial) neuron situated between the
neurons for A and E, such that C is connected to ab via an inhibitory link;
and this is the general way of incorporating contextual influences. Defects in the
inhibitory neurons would thus lead to deficient context processing, as we see in
autism. In [18, Chapter 9] we present some recent evidence indicating that in
the brain of autists inhibition is compromised at the neurological level, among
other reasons because inhibitory interneurons are underdeveloped. This theme
will not be pursued here. Instead we concentrate on reasoning.

5 Non-monotonicity in Autism: Rules and Exceptions

Autism is a clinical syndrome first described by Leo Kanner in the 1940s, often
first diagnosed in children around 2–3 years of age as a deficit in their affective
relations and communication. The autistic child typically refuses eye-contact, is
indifferent or hostile to demonstrations of affection, and exhibits delayed or ab-
normal communication, repetitive movements (often self-harming) and is rather
indifferent to pain. Autistic children do not engage spontaneously in make-believe
play and show little interest in the competitive social hierarchy, and in personal
possessions. Autism comes in all severities – from complete lack of language and
severe retardation, to mild forms continuous with the ‘normal’ range of person-
alities and IQs. Autism is sometimes distinguished from Asperger’s syndrome
– ‘autism without language impairment’? – but Asperger’s is probably just the
mild end of the autistic spectrum. Autistic children share many symptoms shown
by deaf and by blind infants, possibly because of the social isolation imposed
by these conditions. There are known biochemical abnormalities associated with
autism. There is some evidence of a probably complex genetic basis. Psychologi-
cal analyses of autistic functioning are not inconsistent with or exclusive of such
biochemical or genetic level analyses.

More than any other psychiatric disorder, autism has captured the imagina-
tion of the practitioners of cognitive science, because, at least according to some
theories, it holds the promise of revealing the essence of what makes us human.
This holds especially for the school which views autism as a deficit in ‘theory of
mind’, the ability to represent someone else’s feelings and beliefs. Some go so far
as to claim that in this respect autists are like our evolutionary ancestors, given
that chimpanzees have much less ‘theory of mind’ than humans. Although we
believe such claims need to be qualified, we still agree that autism is important
from the point of view of cognitive science.

68 M. van Lambalgen

5.1 Theory of Mind and Reasoning

A famous experiment, the ‘false belief’ task [9], investigates how autistic subjects
reason about other people’s belief. The standard design of the experiment is as
follows. A child and a doll (Maxi) are in a room together with the experimenter.
Maxi and child witness a bar of chocolate being placed in a box. Then Maxi
is removed from the room. The child sees the experimenter move the chocolate
from the box to a drawer. Maxi is brought back in. The experimenter asks the
child: ‘Where does Maxi think the chocolate is?’ The answers to this question
reveal an interesting cut-off point, and a difference between autists and normally
developing children. Before the age of about 4 years , the normally developing
child responds where the child knows the chocolate to be (i.e. the drawer); after
that age, the child responds where Maxi must falsely believe the chocolate to
be (i.e. the box). By contrast, autists go on answering ‘in the drawer’ for a long
time.

This experiment has been repeated many times, in many variations, with fairly
robust results. Some versions can easily be done at home. There is for instance
the ‘Smarties’ task, which goes as follows. Unbeknownst to the child-subject, a
box of Smarties is emptied and refilled with pencils. The child is asked: ‘What
do you think is in the box?”, and it happily answers: ‘Smarties!’ It is then shown
the contents of the box. The pencils are put back into the box, and the child is
now asked: ‘What do you think your [absent] mother will say is in the box?’ We
may then observe the same critical age: before age 4, the child answers: ‘Pencils!’,
whereas after age 4 the child will say: ‘Smarties!’

The outcomes of these experiments have been argued to support the ‘theory
of mind deficit’ hypothesis on the cause of autism. Proposed by Leslie in 1987 [3],
it holds that human beings have evolved a special ‘module’ devoted specifically
to reasoning about other people’s minds. As such, this module would provide
a cognitive underpinning for empathy. In normals the module would constitute
the difference between humans and their ancestors – indeed, chimpanzees seem
to be able to do much less in the way of mind-reading. In autists, this module
would be delayed or impaired, thus explaining abnormalities in communication
and also in the acquisition of language, if it is indeed true that the development
of joint attention is crucial to language learning (as claimed for instance by
Tomasello [22]).

This seems a very elegant explanation for an intractable phenomenon, and it
has justly captured the public imagination. Upon closer examination the question
arises whether it is really an explanation, rather than a description of one class
of symptoms. For instance, the notion of a ‘module’ is notoriously hazy. In this
context it is obviously meant to be a piece of dedicated neural circuitry. In
this way, it can do the double duty of differentiating us from our ancestors and
being capable of being damaged in isolation. But it is precisely this isolation, or
‘encapsulation’ as Fodor called it, that is doubtful. One reason is that evolution
does not generally proceed by adding new modules, but instead by tweaking
old ones, and another is that much of the problem of functionally characterising
human reasoning about minds is about interactions between modules. ‘Theory of

Logical Form as a Determinant of Cognitive Processes 69

mind’ requires language to formulate beliefs in and it also entails a considerable
involvement of working memory. However, as soon as one realises that a ‘module’
never operates in isolation, then the ‘theory of mind deficit’ hypothesis begins to
lose its hold. We are now invited to look at the (possibly defective) interactions
of the ‘module’ with other cognitive functions (language, working memory, . . .),
which leads to the possibility that defects in these functions may play a role in
autism.

Apart from these theoretical problems, it is experimentally controversial at
what stage ‘theory of mind’ abilities emerge. False-belief tasks were initially pro-
posed as diagnosing a lack of these abilities in normal three-year-olds and their
presence in normal four-year-olds [3]. Others have proposed that irrelevant lin-
guistic demands of these tasks deceptively depress three-year-olds’ performance.
For example, in the ‘Maxi’ task, the child sees the doll see the chocolate placed
in a box, and then the child but not the doll sees the chocolate moved to the
drawer. Now if the child is asked ‘Where will the doll look for the chocolate
first?’ (instead of ‘Where will the doll look for the chocolate?’) then children as
young as two can sometimes solve the problem [14].3

5.2 Reasoning in the False Belief Task

It is tempting to view the false belief task as concerned with reasoning about
belief, and hence to attempt a formalisation of the reasoning in some variant
of multi-agent epistemic logic. However, a more fine-grained analysis is possible,
taking account of the way in which beliefs are formed and maintained. From this
analysis it will become clear that the ‘theory of mind’ capacity is much less sui
generis than commonly thought, and in fact intimately linked with executive
function.

We will now analyse attribution of belief as it occurs in the false belief task
as consisting of three components

1. awareness of the causal relation between perception and belief, which can be
stated in the form: ‘if ϕ is true in scene S, and agent a sees S, then a comes
to believe ϕ’.

2. awareness of the inertial properties of belief: beliefs do not form sponta-
neously, but must be generated by limited number of causes, such as percep-
tion and inference

3. inhibition of response tendencies when necessary; more generally the involve-
ment of executive function

An agent solving the task correctly first of all needs to have an awareness of
the causal relation between perception and belief, component 1. Applied to the
situation at hand, this means that Maxi comes to believe that the chocolate is in
the box. An application of the principle of inertia (component 2 now yields that
3 Replications of this experiment have not been successful, but there are other quite

puzling indications that the standard false belief tasks underestimate children’s ca-
pacities. It has been observed for example that even when children give the wrong
answer, their eyes tend to focus on the correct (i.e. ‘false belief’) location [7].

70 M. van Lambalgen

Maxi’s belief concerning the location of the chocolate persists unless an event
occurs which causes him to have a new belief, incompatible with the former. The
story does not mention such an event, whence it is reasonable to assume – using
closed world reasoning – that Maxi still believes that the chocolate is in the box
when he returns to the experimenter’s room. An explanation for performance in
the false belief also needs to account for the incorrect answers given by children
younger than 4 and autists. These subjects almost always answer ‘in the drawer’,
when asked where Maxi believes the chocolate to be.

This is where component 3 comes in. Normal and autistic performance in the
false belief task are both analysed as conditional reasoning with instances of the
general executive function rule 1. The agent a is supposed to be governed by
response rules of the type

Ba(ϕ) ∧ ¬aba,ϕ → Ra(ϕ), (2)

in words

If agent a Believes ϕ and nothing abnormal is the case, then he Reports ϕ

The key to understanding performance in the task is the competition between
two different instances of 2

1. ϕ represents the actual location of the chocolate (known to the agent)
2. ϕ represents Maxi’s belief about the location of the chocolate

After substitution, the two resulting response rules can be made to inhibit each
other by suitable conditions on the abnormalities. Let p represent the actual
location of the chocolate, then we have the following substitution instance of 2

Ba(p) ∧ ¬aba,p → Ra(p) (3)

To model this, we borrow a notion from executive dysfunction theory, and hy-
pothesise that the ‘prepotent response’ is always for the child to answer where
it knows the chocolate to be. In some children, this response can be inhibited,
in other children it cannot, for various reasons which we shall explore below.

5.3 Executive Dysfunction and the Box Task

Russell’s executive function deficit theory [12] takes as basic the observation that
autists often exhibit severe behavioural perseveration. They go on carrying out
some routine when the routine is no longer appropriate, and exhibit great diffi-
culty in switching tasks when the context calls for this (that is, when switching
is not governed by an explicit rule). This perseveration, also observed in certain
kinds of patients with frontal cortex damage, would give rise to many of the
symptoms of autism: obsessiveness, insensitivity to context, inappropriateness
of behaviour, literalness of carrying out instructions. Task-switching is the brief
of executive function.

Indeed, executive function is called upon when a plan has to be redesigned
by the occurrence of unexpected events which make the original plan unfeasible.

Logical Form as a Determinant of Cognitive Processes 71

Autists indeed tend to suffer from rather inflexible planning. This phenomenon
is illustrated in a paradigmatic experiment designed by Hughes and Russell [15],
the ‘box task’ (see figure 2).

Fig. 2. Russell’s box task

The task is to get the marble which is lying on the platform (the truncated
pyramid) inside the box. However, when the subject puts her hand through the
opening, a trapdoor in the platform opens and the marble drops out of reach.
This is because there is an infrared light-beam behind the opening, which, when
interrupted, activates the trapdoor-mechanism. The switch on the left side of the
box deactivates the whole mechanism, so that to get the marble you have to flip
the switch first. In the standard set-up, the subject is shown how manipulating
the switch allows one to retrieve the marble after she has first been tricked by
the trapdoor mechanism.

Even though this task is non-verbal, the pattern of results is strikingly similar
to that exhibited in the false belief task: normally developing children master
this task by about age 4, and before this age they keep reaching for the marble,
even when the marble drops out of reach all the time. Autistic children go on
failing this task for a long time. The performance on this task is conceptualised
as follows. The natural, ‘prepotent’, plan is to reach directly for the marble, but
this plan fails. The child then has to re-plan, taking into account the information
about the switch. After age 4 the normally developing child can indeed integrate
this information, that is, inhibit the pre-potent response, and come up with a
new plan. It is hypothesised that autists cannot inhibit this prepotent response
because of a failure in executive function. But to add precision to this diagnosis
we have to dig deeper.

It is important to note here, that the ability to plan and re-plan when the
need arises due to changed context, is fundamental to human cognition, no less
fundamental than ‘theory of mind’ abilities. Human beings (and other animals
too) act, not on the basis of stimulus-response chains, but on the basis of (pos-
sibly distant) goals which they have set themselves. That goal, together with
a world-model lead to a plan which suffices to reach the goal in the assumed

72 M. van Lambalgen

circumstances. But it is impossible to enumerate a priori all events which might
possibly form an obstacle in reaching the goal. It is therefore generally wise to
keep open the possibility that one has overlooked a precondition, while at the
same time not allowing this uncertainty to inhibit one’s actions. It is perhaps
this flexibility that autists are lacking. This point can be reformulated in logical
terms. The autist’s concept of a rule is one in which the consequent invariably
follows the antecedent. By contrast, a normal subject’s rule is more likely to be
of the exception-tolerant variety. Indeed, Russell writes

[T]aking what one might call a ‘defeasibility stance’ towards rules is an innate
human endowment – and thus one that might be innately lacking . . . [H]umans
appear to possess a capacity – whatever that is – for abandoning one relatively
entrenched rule for some novel ad hoc procedure. The claim can be made,
therefore, that this capacity is lacking in autism, and it is this that gives rise
to failures on ‘frontal’ tasks – not to mention the behavioural rigidity that
individuals with the disorder show outside the laboratory [13, p. 318].

Russell goes on to say that one way this theory might be tested is through the
implication that ”children with autism will fail to perform on tasks which require
an appreciation of the defeasibility of rules such as ‘sparrows can fly’.” This is
what we shall do; but to get started we first need a logical description of what
goes on in the box task.

5.3.1 Closed World Reasoning in the Box Task
For the formalisation we borrow some self-explanatory notation from the situa-
tion calculus. Let c be a variable over contexts, then the primitives are

– the predicate do(a, c), meaning ‘perform action a in context c’
– the function result(a, c), which gives the new context after a has been per-
formed in c.

The actions we need are g (‘grab’), u (‘switch up’), d (‘switch down’). We
furthermore need the following context-dependent properties:

– possess(c): the child possesses the marble in c
– up(c): the switch is up in c (= correct position)
– down(c): the switch is down in c (= wrong position).

The following equations give the rules appropriate for the box task

down(c) ∧ do(u, c)¬ab′(c) → up(result(u, c)) (4)
do(g, c) ∧ ¬ab(c) → possess(result(g, c)) (5)

We first model the reasoning of the normal child > 4 yrs. Initially, closed world
reasoning for ab(c) gives ¬ab(c), reducing the rule 5 to

do(g, c)→ possess(result(g, c)) (6)

Logical Form as a Determinant of Cognitive Processes 73

which prompts the child to reach for the marble without further ado. After
repeated failure, she reverts to the initial rule 5, and concludes that after all
ab(c). After the demonstration of the role of the switch, she forms the condition

down(c) → ab(c) (7)

She then applies closed world reasoning for ab to 7, to get

down(c) ↔ ab(c) (8)

which transforms rule 5 to

do(g, c) ∧ up(c) → possess(result(g, c)) (9)

Define context c0 by putting c = result(u, c0) and apply closed world reasoning
to rule 4, in the sense that ab′(c) is set to ⊥ due to lack of further information,
and → is replaced by ↔. Finally, we obtain the updated rule, which constitutes
a new plan for action

down(c0) ∧ do(u, c0) ∧ c = result(u, c0) ∧ do(g, c)→ possess(result(g, c)) (10)

As in the previous tasks, both the normal child younger than 4, and the autistic
child are assumed to operate in effect with a rule of the form

do(g, c)→ possess(result(g, c)) (11)

which cannot be updated, only replaced in toto by a new rule such as 10.
It is tempting to speculate on the computational complexities of both these

procedures. Russell wrote that ‘humans appear to possess a capacity – whatever
that is – for abandoning one relatively entrenched rule for some novel ad hoc
procedure [13, p. 318]’. The preceding considerations suggest that ‘abandoning
one relatively entrenched rule’ may indeed be costly, but that normal humans
get around this by representing the rule in such a way that it can be easily
updated. It is instructive to look at the computation that the normal child older
than 4 is hypothesised to be performing. The only costly step appears to be
the synthesis of the rule 7; the rest is straightforward logic programming which
is very efficient. The rule 5 is never abandoned; a new rule is derived without
having to ditch 5 first.

To close this discussion, we compare the false belief task to the box task
from the point of view of the formal analysis. The tasks are similar in that for
successful solution one must start from rules of the form A ∧ ¬ab → E, identify
conditions which constitute an abnormality, and apply closed world reasoning;
and also that in both cases a failure of ab to exercise its inhibitory function leads
to the inability to inhibit the prepotent response. A difference is that in the false
belief task, one needs a ‘theory’ relating ab to sensory, or inferred, information,
whereas it suffices to operate with rules for actions in the box task.

74 M. van Lambalgen

5.4 The Suppression Task as a Formal Analogue of the Box Task

When considered formally, all tasks mentioned have a logical structure in com-
mon, besides showing undeniable differences. The common logical structure is
closed world reasoning applied to possible exceptions. The question is whether
the formal analogies between the tasks are indicative of a single cognitive func-
tion exercised in these tasks. We claim there is: it is executive function, concep-
tualised as reasoning with exception-tolerant, mutually inhibiting conditionals.4

It is therefore an interesting challenge to try to devise a task which captures
precisely this common core. Surprisingly, a task with the required properties
has been around for a long time, although it was not treated as such: Byrne’s
‘suppression task’ [1].

If one presents a subject with the following premisses:

(1) a. If she has an essay to write she will study late in the library.
b. She has an essay to write.

roughly 90% of subjects5 draw the conclusion ‘She will study late in the library’
(we will later discuss what the remaining 10% may be thinking). Next suppose
one adds the premiss

(2) If the library is open, she will study late in the library.

and one asks again: what follows? In this case, only 60% concludes ‘She will
study late in the library’. This known as the ‘suppression’ of modus ponens.

However, if instead of the above, the premiss

(3) If she has a textbook to read, she will study late in the library

is added, then the percentage of ‘She will study late in the library’–conclusions
is around 95%.

In this type of experiment one investigates not only modus ponens (MP),
but also modus tollens (MT), and the ‘fallacies’ affirmation of the consequent
(AC), and denial of the antecedent (DA), with respect to both types of added
premisses, (2) and (3). The results are that MT is suppressed in the presence of a
premiss of the form (2) (but not (3)), and that both AC and DA are suppressed
in the presence of a premiss of the form (3) (but not (2)).

Byrne interpreted her data in terms of the ‘mental rules’ – ‘mental models’
debate, viewing the results as support for the latter. In [17], we gave a very
different interpretation of the suppression phenomenon as an instance of closed
world reasoning, of whch the following is a brief synopsis.

5.5 A Formal Analysis

Byrne viewed the suppression effect mainly as showing that subjects are not
guided by the rules of classical logic, but instead let their inferences be
4 Here one shouldn’t think of reasoning as a conscious activity, but as a largely auto-

matic process describable in logical terms.
5 The figures we use come from the experiment reported in [2], since the experiments

reported in this study have more statistical power than those of [1].

Logical Form as a Determinant of Cognitive Processes 75

determined by semantic content. We believe a more informative account of the
suppression effect can be given, also establishing its relevance outside the rea-
soning domain, namely as showing that (normal) subjects are capable of flexible
management of rules in context. For instance, normal subjects generally allow
rules to have exceptions (and actions to have unknown preconditions), and they
are quite good at exception-handling. This capacity involves some form of closed
world reasoning, which counsels to take an exception into account if and only if
one is forced to do so. To take our paradigmatic example, in

‘If Marian has an essay to write she will study late in the library.
Marian has an essay to write.’

no exception is made salient, therefore the subject can draw the modus ponens
inference: ‘She will study late in the library’. The addition of premiss (2)

‘If the library is open, Marian will study late in the library’

makes salient a possibly disabling condition in first rule, namely the library’s
being shut. But since no other disabling conditions are mentioned, it is assumed
that there aren’t any. The task at hand is to turn this intuition into a formal
model.

Here we sketch how a formal analysis could go; the full technical treatment can
be found in Stenning and van Lambalgen [17]. Speaking informally, we represent
conditionals such as

If Marian has an essay to write she will study late in the library.

as defaults of the form

If Marian has an essay to write, and nothing abnormal is the case, she
will study late in the library.

As in our attempted formalization of the box task, the italicized phrase in-
troduces an overt marker for a possible abnormality or unknown precondition,
which can be given concrete semantic content by other material given by the
discourse. The claim is that this is a natural thing for a subject to do, because
most rules indeed have exceptions, or unstated preconditions.

Formally, we write a conditional as

p ∧ ¬ab → q,

where ab is a proposition letter representing an unspecified abnormality. The
logic governing ab is closed world reasoning. We will forego the general defini-
tion of this type of non-monotonic reasoning (including the properties of the
implication symbol → used in the formalization), but will illustrate the idea by
means of examples related to the suppression task.

In general, one may give ab concrete content by adding implications of the
form

s→ ab,

76 M. van Lambalgen

which express that the eventuality denoted by s constitutes an abnormality. Now
suppose that there are n such implications in all, i.e., we have the implications

s1 → ab, . . . , sn → ab.

In the absence of further implications beyond the n mentioned, we want to
conclude that we have listed all abnormalities. This can be done by defining ab
as

ab ↔
∨
i≤n

si.

Two special cases are of particular interest. If n = 1, i.e. if we only have the
implication s → ab, the definition yields ab ↔ s. Furthermore, for the case
n = 0, the definition entails that ab is false, i.e. ¬mathitab. That is, if there is
no information about the abnormality ab, we assume it does not occur.

These formal stipulations will help us explain the logic behind the suppression
task. We do two illustrative cases; for the full treatment we refer to [17].

Modus ponens. Consider again

If Marian has an essay to write she will study late in the library.
Marian has an essay to write.

Formally, this becomes
p ∧ ¬ab → q; p.

Closed world reasoning yields ¬ab, which suffices to draw the conclusion q.
Therefore modus ponens also follows in this nonclassical context, once closed
world reasoning is applied. Failure to apply modus ponens may then be evidence
of a resistance to apply closed world reasoning to the abnormality.6

The situation becomes slightly more complicated in the case of a further type
(3) premiss:

If Marian has an essay to write she will study late in the library.
If Marian has an exam she studies late in the library.
Marian has an essay to write.

There are now two conditional premisses, each with its own disabling abnormal-
ity. The formalization thus becomes

p ∧ ¬ab → q; r ∧ ¬ab′ → q; p.

Since the discourse does not provide information either about ab or about ab′,
they are both set to false, that is, we have ¬ab and ¬ab′. The discourse thus
becomes equivalent to

p ∨ r→ q; p,

which again justifies the conclusion q.

Logical Form as a Determinant of Cognitive Processes 77

Real complications arise in the case of a premiss of type (2):

If Marian has an essay to write she will study late in the library.
If the library is open Marian studies late in the library.
Marian has an essay to write.

Again there are two conditional premisses, each with its own disabling abnor-
mality, but in this case there is interaction, because the antecedent of the second
conditional highlights a possible precondition. The formalization is therefore not

p ∧ ¬ab → q; r ∧ ¬ab′ → q; p,

as it was in the previous case, but rather

p ∧ ¬ab → q; r ∧ ¬ab′ → q;¬r → ab; p,

where the added underlined implication reflects the assumption that the second
conditional has made an abnormality for the first conditional salient. Closed
world reasoning applied to this implication yields ab ↔ ¬r, and if we then
substitute r for ¬ab in the first conditional we get

p ∧ r → q,

to which modus ponens can no longer be applied. The conclusion from this formal
exercise is that suppression of modus ponens can be explained as an instance of
closed world reasoning. This is definitely not to say that subjects should choose
this underlying formal representation. It is very well possible to stick to the
classical interpretation of the conditional, not containing a marker for a possible
exception, in which case modus ponens should not be suppressed – indeed this
is a plausible hypothesis to explain what autists appear to be doing.

Denial of the antecedent. Fallacies and their suppression can be explained simi-
larly. As an example we treat denial of the antecedent, in the case of the premisses

If Marian has an essay to write she will study late in the library.
Marian does not have an essay to write.

The premisses can be formalized as

p ∧ ¬ab → q; ¬p,

and since there is no information about ab, by closed world reasoning one may
assume ¬ab. This particular fallacy involves more closed world reasoning how-
ever: one also has to assume that, in the absence of further information, p∧¬ab
is the only reason to conclude q, so that we have in effect

q ↔ p ∧ ¬ab.

Given ¬p, it indeed follows from this that ¬q.

78 M. van Lambalgen

Suppose we now add a further conditional premiss of type (3), to get

If Marian has an essay to write she will study late in the library.
If Marian has an exam she studies late in the library.
Marian does not have an essay to write.

The formalization is

p ∧ ¬ab → q; r ∧ ¬ab′ → q; ¬p.

Closed world reasoning yields ¬ab and ¬ab′, which reduces the formalized pre-
misses to

p→ q; r → q; ¬p.
Closed world reasoning applied to the two implications p→ q and r → q yields

q ↔ p ∨ r,

from which given only ¬p nothing follows. The addition of the second conditional
premiss may thus lead to a suppression of DA inferences.

It is of some importance for our discussion of the autism data to distinguish
the two forms of closed world reasoning that play a role here. On the one hand
there is the closed world reasoning applied to abnormalities or exceptions, which
takes the form: ‘assume only those exceptions occur which are explicitly listed’.
On the other hand there is the closed world reasoning applied to rules, which
takes the form of diagnostic reasoning: ‘if B has occurred and the only known
rules with B as consequent are A1 → B, . . . , An → B, then assume one of
A1, . . . , An has occurred’. These forms of closed world reasoning are in principle
independent, and in our autist population we indeed see a dissociation between
the two.

6 Autists and the Suppression Task

Given the formal analogy between the box task and the suppression task, we
are led to expect that autists have a very specific difficulty with closed world
reasoning about exceptions:

(4) Autists can apply closed world reasoning, but have a decreased ability in
handling exceptions to rules.

We thus expect a refusal to suppress the inferences MP and MT in case the
second conditional premise is of the additional type. To show that the problem
is really specific to exceptions, and not a problem about integrating new infor-
mation, or with closed world reasoning generally, one may look at autists’ rea-
soning with AC and DA, in which case suppression is independent of exception-
handling. Here one would expect behaviour which is comparable to normals.
One must thus distinguish two forms of closed world reasoning that play a role
here. On the one hand there is closed world reasoning applied to abnormalities

Logical Form as a Determinant of Cognitive Processes 79

or exceptions, which takes the form: ‘assume only those exceptions occur which
are explicitly listed’. On the other hand there is closed world reasoning applied
to rules, which takes the form of diagnostic reasoning: ‘if B has occurred and
the only known rules with B as consequent are A1 → B, . . . , An → B, then
assume one of A1, . . . , An has occurred’. These forms of closed world reasoning
are in principle independent, and in our autist population we indeed observed a
dissociation between the two.

Table 2 presents the data as relevant to the suppression task (data taken from
Pijnacker et al [11]).

Table 2. Results on suppression task in autists (n=28) and matched controls (n=28).
Taken from [11].

As predicted, suppression of fallacies (DA and AC) with an alternative premiss
does occur and the percentages we find are roughly the same as those found in
research with normal subjects (cf. table 2). Suppression of MP, by contrast,
is much rarer in our subjects than in normals. In the dialogues subjects often
ignored the additional premiss completely in their overt reasoning. With regard
to suppression of MT the results are less dramatic, and harder to interpret, in
particular because the rate of endorsement for MT with an alternative premiss
is somewhat higher than that for the base case. Nevertheless, the percentage of
MT conclusions drawn to problems with an additional premiss is higher than for
the normal subjects – autists are not suppressing.

80 M. van Lambalgen

These observations lend some support to the hypothesis (4), that it is specifi-
cally processing exceptions that creates difficulties for autistic subjects. DA and
AC showed the pattern familiar from neurotypical subjects, suggesting that this
type of closed world reasoning, where exceptions do not figure, presents no diffi-
culties. The behaviour in MP and MT conditions (especially the former), where
implicit exceptions need to be acknowledged to achieve suppression, was differ-
ent from neurotypical subjects, showing much less suppression. Perhaps (4) is
not the ultimate formulation of the hypothesis, but that there is something very
distinct about autists’ handling of defeasible rules seems certain.

7 An Apparent Counterexample: The ‘Tubes Task’

Here we discuss some potential problems with the ‘logical’ account of executive
dysfunction raised by other pieces of data. The box task is superficially similar
to another task devised by Russell, the ‘tubes task’.

Fig. 3. Russell’s tubes task

What one sees in this schematic drawing is a series of four holes into which a
ball can be dropped, to land in a small container below. A ball dropped through
the leftmost opening will end up in the catch-tray directly underneath, but a
ball dropped through the rightmost opening travels through an opaque tube
to end up in the catch-tray which is second from left. The child sees the ball
being dropped through an opening, and has to retrieve it from one of the catch-
trays below. When the ball is dropped in the rightmost opening, children of
age 3 or younger tend to look in the catch-tray directly underneath the opening,

Logical Form as a Determinant of Cognitive Processes 81

probably applying the (defeasible) rule that things fall vertically. Older children,
including also autistic children, manage to inhibit the ‘prepotent’ response and
search in the correct catch-tray, adequately representing the trajectory of the
ball as guided by the tube.

The apparent puzzle posed by performance on this task is that in this case
autistic children are able to switch rules effortlessly. Russell explains this by a
distinction between ‘arbitrary’ rules imposed by the experimenter (as in the box
task), and rules based on fairly transparent physical principles (as in the tubes
task). Autists would be impaired on the former but not the latter, incidentally
showing that autism, viewed as executive dysfunction, must be a rather spe-
cific executive deficit. If both kinds of defeasible rules require the same kind of
closed world reasoning about abnormalities, the hypothesis that it is this form
of reasoning that is difficult for autists, is defeated.

The first thing to observe here is that the rules involved in the two tasks
have different logical forms, and so require different reasoning. In the box task,
correct performance hinges on the ability to amend the antecedent of the rule,
whereas in the case of the tubes task it is the consequent (i.e. the catch-tray)
that has to be changed. In the box task, the original plan has to be changed by
incorporating another action,, whereas in the case of the tubes task one action
has to be replaced by another. This suggests that what happens in the tubes task
need not be viewed as rule-switching, but can also been seen as the application
of a single IF-THEN-ELSE rule, where the action to be taken depends on the
satisfaction or non-satisfaction of an explicit precondition: unimpeded fall of the
ball. On this analysis, the difference between box task and tubes task would
be that in the former case a new rule has to be synthesized on the spot by
exception-handling, whereas in the latter case the switch is between components
of a given single rule.

It seems that autistic subjects have less difficulty with synthesizing an IF-
THEN-ELSE rule from instructions shown to them, then with rule-construction
by exception-handling. Indeed, a standard ‘Go/No Go’ task is of the IF-THEN-
ELSE form. For instance, in one such task, subjects were shown different letters
of the alphabet that flashed one at a time on a computer screen. They were asked
to respond by pressing a key in every case except when they saw the letter X. The
first task was a Go task, in which the letter X never appeared and in this way
subjects were allowed to build up a tendency to respond. Immediately afterward,
subjects performed a Go/No Go task in which the letter X did appear in the
lineup, at which point the subject had to control the previously built impulse to
respond. Autists are not particularly impaired at such a task, although they do
become confused when they have to shift rapidly between one target stimulus
and another (Ozonoff et al. [8]).

At a more abstract level, what the analysis of the empirical difference between
the box and tubes tasks just given highlights is that, before one can discuss
whether autists have difficulties with rule-switching, the proper definition of
‘rule’ in this context has to be clarified. If the preceding considerations are
correct, than a rule can be more general than the ‘condition – action’ format.

82 M. van Lambalgen

8 Conclusion: The Role of Logic in Cognitive Processes

The hidden message of the preceding discussion is that logic plays a role in
the description of cognitive processes if these processes involve planning. In the
analysis presented here there is a continuity between rigidity in motor behaviour,
lack of flexibility in planning, and insensitivity to possible exceptions to rules,
whether verbal or non-verbal. Elsewhere, we have argued that the same planning
mechanism appears to be operating from motor planning all the way to discourse
integration (see van Lambalgen and Hamm [23]), and that there is an explanation
in logical terms for difficulties with discourse comprehension and production
observed in some psychiatric disorders, notably ADHD ([24]).

Planning has a distinctive logical form, which is different from classical logic,
but has considerable cognitive advantages, such as the existence of an implemen-
tation in artificial neural nets [18, Chapter 8]. However, what is characteristic
of the approach outlined above is that explanations of cognitive phenomena are
not sought at Marr’s algorithmic and neural levels, as theories in cognitive sci-
ence tend to do, but rather at Marr’s computational level, by means of logical
descriptions of planning and its failures. One consequence of such a strategy is
that theories that are perceived to be very different and whose relative merits
are hotly debated (such as theory of mind deficit and executive dysfunction in
the case of autism), upon analysis turn out to be two sides of the same coin,
and not at all in opposition. Likewise, such a logical analysis has the potential
to tighten the relationship between theory and experimental predictions.

References

1. Byrne, R.M.J.: Suppressing valid inferences with conditionals. Cognition 31, 61–83
(1989)

2. Dieussaert, K., Schaeken, W., Schroyen, W., d’Ydewalle, G.: Strategies during
complex conditional inferences. Thinking and Reasoning 6(2), 125–161 (2000)

3. Leslie, A.: Pretence and representation: the origins of a ‘theory of mind’. Psycho-
logical Review 94, 412–426 (1987)

4. Marr, D.: Vision: A Computational investigation into the human representation
and processing of visual information. W.H. Freeman, San Fransisco (1982)

5. Oaksford, M., Chater, N.: Probabilities and pragmatics in conditional inference:
suppression and order effects. In: Hardman, D., Macchi, L. (eds.) Thinking: psy-
chological perspectives on reasoning, judgment and decision making, vol. 6, pp.
95–122. John Wiley & Sons, Chichester (2003)

6. Oaksford, M., Chater, N.: Bayesian rationality. Oxford University Press, Oxford
(2007)

7. Onishi, K.H., Baillargeon, R.: Do 15-month-old infants understand false beliefs?
Science 308, 255–258 (2005)

8. Ozonoff, S., Strayer, D.L., McMahon, W.M., Filloux, F.: Executive function abili-
ties in children with autism and tourette syndrom: an information-processing ap-
proach. Journal of Child Psychology and Psychiatry 35, 1015–1032 (1994)

9. Perner, J., Leekham, S., Wimmer, H.: Three-year olds’ difficulty with false belief:
the case for a conceptual deficit. British Journal of Developmental Psychology 5,
125–137 (1987)

Logical Form as a Determinant of Cognitive Processes 83

10. Piaget, J.: Logic and psychology. Manchester University Press, Manchester (1953)
11. Pijnacker, J., Geurts, B., van Lambalgen, M., Buitelaar, J., Kan, C., Hagoort,

P.: Conditional reasoning in high-functioning adults with autism. Neuropsycholo-
gia 47(3), 644–651 (2009)

12. Russell, J.: Autism as an executive disorder. Oxford University Press, Oxford
(1997)

13. Russell, J.: Cognitive theories of autism. In: Harrison, J.E., Owen, A.M. (eds.)
Cognitive deficits in brain disorders, pp. 295–323. Dunitz, London (2002)

14. Siegal, M., Beattie, K.: Where to look first for children’s knowledge of false beliefs.
Cognition 38, 1–12 (1991)

15. Smid, H.: Reasoning with rules and exceptions in autism. Msc thesis, ILLC, Ams-
terdam (2005), http://staff.science.uva.nl/~michiell

16. Stenning, K., van Lambalgen, M.: A little logic goes a long way: basing experiment
on semantic theory in the cognitive science of conditional reasoning. Cognitive
Science 28(4), 481–530 (2004)

17. Stenning, K., van Lambalgen, M.: Semantic interpretation as reasoning in non-
monotonic logic: the real meaning of the suppression task. Cognitive Science 29(6),
919–960 (2005)

18. Stenning, K., van Lambalgen, M.: Human reasoning and cognitive science. MIT
Press, Cambridge (2008)

19. Stenning, K., van Lambalgen, M.: ‘Non-monotonic’ does not mean ‘probabilistic’
(Commentary on Oaksford and Chater’s ‘Précis of Bayesian Rationality)’. Behav-
ioral and Brain Sciences 32(1), 102–103 (2009)

20. Stenning, K., van Lambalgen, M.: Logic in a noisy world. In: Oaksford, M. (ed.)
The psychology of conditionals. Oxford University Press, Oxford (2010)

21. Stevenson, R., Over, D.: Deduction from uncertain premisses. Quarterly Journal
of Experimental Psychology A 48(3), 613–643 (1995)

22. Tomasello, M.: Constructing a language. A usage-based theory of language acqui-
sition. Harvard University Press, Boston (2003)

23. van Lambalgen, M., Hamm, F.: The proper treatment of events. Blackwell, Oxford
(2004)

24. van Lambalgen, M., van Kruistum, C., Parigger, E.M.: Discourse processing in
attention-deficit hyperactivity disorder (ADHD). Journal of Logic, Language and
Information 17, 467–487 (2008)

25. Wason, P.C.: Reasoning about a rule. Quarterly Journal of Experimental Psychol-
ogy 20, 273–281 (1968)

http://staff.science.uva.nl/~michiell

Formal Lifetime Reliability Analysis Using

Continuous Random Variables

Naeem Abbasi, Osman Hasan, and Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

{n ab,o hasan,tahar}@ece.concordia.ca

Abstract. Reliability has always been an important concern in the de-
sign of engineering systems. Recently proposed formal reliability analysis
techniques have been able to overcome the accuracy limitations of tradi-
tional simulation based techniques but can only handle problems involv-
ing discrete random variables. In this paper, we extend the capabilities
of existing theorem proving based reliability analysis by formalizing sev-
eral important statistical properties of continuous random variables, for
example, the second moment and the variance. We also formalize com-
monly used reliability theory concepts of survival function and hazard
rate. With these extensions, it is now possible to formally reason about
important reliability measures associated with the life of a system, for
example, the probability of failure and the mean-time-to-failure of the
system operating in an uncertain and harsh environment, which is usu-
ally continuous in nature. We illustrate the modeling and verification
process with the help of an example involving the reliability analysis of
electronic system components.

1 Introduction

Tragedies such as the industrial accident in the union carbide pesticide plant in
Bhopal India [2], space shuttles Columbia and Challenger accidents [18], and the
high-speed train accident near the village of Eschede in Lower Saxony in Ger-
many [13] all highlight the importance of design reliability in various disciplines
of engineering. The reliability of a system is defined as the probability that it
will adequately perform its specified purpose for a specified period of time under
the specified environmental conditions [14]. The two most popular representa-
tions of the distribution of the lifetime of a system are the survival function and
the hazard function [14]. The survival function describes the probability that a
system is functioning at any time t, and the hazard function describes the failure
risk at a time t.

Traditionally, reliability analysis has been done using paper and pencil and
simulation based approaches. In engineering applications, the paper and pencil
approach very quickly becomes impractical because of the amount of detail in-
volved. Simulation based reliability analysis is popular because of the availability
of a number of automated tools. Unfortunately, the simulation based analysis

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 84–97, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Formal Lifetime Reliability Analysis 85

is neither accurate not can it truly model random behavior. Computer simula-
tions rely on floating-point numbers representation of system parameters which
can lead to errors in reliability analysis and thus can have costly consequences.
Moreover, simulation based techniques use pseudo random number generators
for simulating the random behavior and require a large amount of computing
resources. Formal methods based techniques are 100% accurate and allow the
modeling and analysis of true random behavior and thus provide an alternative
approach for reliability analysis of the critical parts of a system.

In this paper, we build on the work of [10] and [11] and formalize important
definitions of the statistical properties of continuous random variables that play
an important role in reliability engineering. The work in [11] deals with discrete
random variables whereas the work in [10] only presents the formal verification
of expectation properties for continuous random variables. In this paper, we
verify a general expression for the second moment of positive continuous random
variables, that range over a positive unbounded interval [0,∞), hence suitable
for modeling lifetime behavior of engineering system components.

E[X2] = lim
n→∞

[
n2n−1∑

i=0

(
i

2n
)2P

{
i

2n
≤ X <

i+ 1
2n

}
+ nP (X ≥ n)

]
(1)

where X is the random variable and P represents the probability measure. We
utilize this general expression to verify several important reliability analysis re-
lated statistical properties such as the second moment and variance of the ex-
ponential random variable.

The rest of the paper is organized as follows: Section 2 reviews related work.
Section 3 presents the formalization and verification of statistical properties of
continuous random variables. Section 4 describes the formalization of reliability
theory concepts of survival and hazard functions. For illustration purposes, Sec-
tion 5 presents the reliability analysis of a capacitor. Finally, Section 6 concludes
the paper.

2 Related Work

One of the earliest example of detailed reliability studies in engineering systems
dates back to 1938 [4]. In this study, factors for the improvement of service
reliability for electrical power systems were considered. In the field of electronics
the concepts of reliability were initially introduced after second world war to
improve the performance of communication and navigational systems [16].

In order to predict the reliability one must model the system and its con-
stituent components in such a way that captures the failure mechanisms. For
example in case of electronic systems a method called the part failure method
has been shown to be very accurate [5]. This method has been extensively used
by military engineers to predict useful life times of systems and to develop highly
reliable systems and equipments. This method is based on calculation of failure
rates of individual components that make up the system and then by using appro-
priate formulas transform it into the reliability of the whole system. Standards

86 N. Abbasi, O. Hasan, and S. Tahar

such as [6,7,17] are some of the examples which specify adequate performance re-
quirements and environmental conditions for reliability modeling, analysis, and
risk assessment.

In order to analyze systems formally in a theorem proving environment it is
important to have an infrastructure for reasoning about the underlying mathe-
matical concepts of probability and statistics. Until recently it was only possible
to reason about reliability problems that involved discrete random variable in
a theorem proving environment. Hurd [12] formalized a probability theory and
discrete random variables in the HOL theorem prover [8]. Building upon [12],
Hasan [9] formalized statistical properties of single and multiple discrete random
variables. Hasan [9] also formalized a class of continuous random variables for
which the inverse CDF functions can be expressed in a closed form. Hasan et.
al [11] presented higher-order-logic formalizations of some core reliability theory
concepts and successfully formalized and verified the conditions for almost al-
ways repairability for reconfigurable memory arrays in the presence of stuck-at
and coupling faults. In this paper, we build upon the higher-order-logic formal-
ization of [11], and formalize new representations of the lifetime distributions,
namely the survival and hazard functions, and statistical properties such as the
moments and variance of continuous random variables which was not possible in
the framework presented in [11]. In [10], Hasan et. al formalized expectation for
both bounded and unbounded continuous random variables in the HOL theorem
prover. Their work utilized the Lebesgue integration theory developed in [3] and
[15]. In this paper, we utilize the formalization of Borel sigma algebra of [15] and
several key Lebesgue integral properties of [3].

Other formal methods based techniques, such as probabilistic model checking,
can be used to analyze reliability, however, they do not have support for the
verification of statistical properties (moments and variance) of the commonly
used lifetime distributions [1,19]. The proposed reliability analysis approach on
the other hand is capable of handling both probabilistic and statistical reliability
properties.

3 Statistical Properties of Lifetime Distributions

In this section, we present the formalization of the definitions of several impor-
tant statistical properties of random variables in HOL. These statistical properties
summarize some of the most important aspects of the probability distribution of a
random variable. For example, the coefficients of skewness is a measure of symme-
try of the probability distribution of a random variable. Other formalized defini-
tions include the expectation of a function of a random variable, first, second and
n-th moments, variance, standard deviation, mean absolute deviation, and coeffi-
cients of variation and kurtosis of a random variable, as summarized in Table 1. In
these formalized definitions, rv is a random variable. m represents a probability
space defined as: m = (U , E ,P), where U is a sample space, E is a set of events,
and P is the probability measure. The function expec represents the expectation
or the first moment of the random variable.

Formal Lifetime Reliability Analysis 87

Table 1. Statistical Properties and their HOL Formalizations

Property Definition HOL Formalization

expec. h(X) E[h(X)] 	 ∀m rv h. fun rv m rv h = expec m (λx. h (rv x))

first moment E[X]=μ 	 ∀m rv. first moment m rv = expec m (λx. rv x)

second 	 ∀m rv. second moment m rv =
moment E[X2]=μ2 expec m (λx. (rv x) pow 2)

Nth 	 ∀m rv N. nth moment m rv N =
moment E[XN]=μN expec m (λx. (rv x) pow N)

variance 	 ∀m rv. variance m rv = expec m
σ2 (λx. ((rv x) - expec m rv) pow 2)

standard 	 ∀m rv. std dev m rv =
deviation σ sqrt(variance m rv)

coef. of 	 ∀m rv. coef of var m rv =
variation σ

μ
(std dev m rv)/(expec m rv)

mean abs. 	 ∀m rv. m abs dev m rv =
deviation E[|X − μ|] expec m (λx. abs((rv x) - expec m rv))

coef. 	 ∀m rv. skew m rv = expec m

of E[(X−μ
σ

)3] (λx. ((rv x) - expec m rv) pow 3)
skewness =α3 /((std dev m rv) pow 3)

coef. 	 ∀m rv. kurt m rv = expec m

of E[(X−μ
σ

)4] (λx. ((rv x) - expec m rv) pow 4)
kurtosis =α4 /((std dev m rv) pow 4)

3.1 Verification of Statistical Properties

The verification of the second moment relation for an unbounded continuous
random variable, given in Equation (1), is described in this section.

Definition 1: Second Moment of a Random Variable
� ∀ rv. second moment (U , E ,P) rv =

∫
U rv2 dP

The function second moment accepts a probability space, (U , E ,P), and a random
variable rv that maps infinite Boolean sequences to real numbers [9]. In Hurd’s
[12] formalization of the probability space (U , E ,P), U represents the universal
set of all Boolean sequences.

Theorem 1 formally states the second moment relation for a positive valued
unbounded continuous random variable.

Theorem 1: Second Moment of an Unbounded Random Variable
� ∀ rv. (∀ s. 0 ≤ rv s) ∧ (∀ x. {s

∣∣ rv s ≥ x} ∈ E)
(∀ x y. x < y ⇒ {s

∣∣ x ≤ rv s < y} ∈ E) ⇒(
second moment (U , E ,P) rv =

lim
n→∞

[∑n2n−1
i=0 (i

2n
)2P
{
s

∣∣∣∣ i
2n
≤ rv s < i+1

2n

}
+ nP

{
s

∣∣∣∣ rv s ≥ n

}])
The first assumption in Theorem 1 states that the random variable rv is positive.
The second and third assumptions guarantee that the sets that arise in this

88 N. Abbasi, O. Hasan, and S. Tahar

verification are measurable events. The entire range of the unbounded random
variable is divided into two main intervals, namely [0, n) and [n,∞). The first
interval corresponds to [0, n2n−1] summation term, while the second term covers
the rest of the positive unbounded interval. It is assumed that the sequence (rvn)
is defined as:

rvn(x) =
∑n2n−1

i=0 (i
2n

)I⎧⎨⎩s

∣∣∣∣ i
2n
≤rv s< i+1

2n

⎫⎬⎭
(x) + nI

{
s

∣∣∣∣ rv s ≥ n

}
(x)

where IA(x) is a real-valued function of a set A, such that: IA(x) = 1 if x ∈ A,
and IA(x) = 0 if x /∈ A.

In order to utilize any definition or property of Lebesgue integration theory
with the above theorem, we first needed to show that the triplet (U , E ,P) is a
measure space with a positive measure. We verified these conditions based on
the corresponding theorems available in Hurd’s [12] formalization of the prob-
ability space (E ,P) along with the definition of measure in [3] under the given
assumptions.

The convergence of a positive measurable function to the Lebesgue integral
property [3] and the Modus Ponens (MP) rule are then used to split the proof goal
of Theorem 1 into the following five subgoals. They correspond to the monotonic-
ity (equation 2) and positive simple-function requirement on rvn (equations 3,
4, and 5) and the three other assumptions (equation 6) described below [3]:

mono increasing

⎡⎢⎢⎣n2
n−1∑

i=0

(
i

2n
)2I⎧⎨⎩s

∣∣∣∣ i
2n
≤rv s< i+1

2n

⎫⎬⎭
(x) + nI

{
s

∣∣∣∣ rv s ≥ n

}⎤⎥⎥⎦ (2)

⎡⎢⎢⎣n2
n−1∑

i=0

(
i

2n
)2I⎧⎨⎩s

∣∣∣∣ i
2n
≤rv s< i+1

2n

⎫⎬⎭
(x) + nI

{
s

∣∣∣∣ rv s ≥ n

}⎤⎥⎥⎦ ≤ rv(x)2 (3)

lim
n→∞

⎡⎢⎢⎣n2
n−1∑

i=0

(
i

2n
)2I⎧⎨⎩s

∣∣∣∣ i
2n
≤rv s< i+1

2n

⎫⎬⎭
(x) + nI

{
s

∣∣∣∣ rv s ≥ n

}⎤⎥⎥⎦ = rv(x)2 (4)

∃y. lim
n→∞

[
n2n−1∑
i=0

(
i

2n
)2P
{
s

∣∣∣∣ i

2n
≤ rv s <

i + 1

2n

}
+ nP

{
s

∣∣∣∣ rv s ≥ n

}]
= y

(5)(
∀i.(i < 2n)⇒

{
s

∣∣∣∣ i
2n
≤ rv s < i+1

2n

}
∈ E
)
∧
(
∀i.0 ≤ i

2n

)
∧
(
FINITE{i|i < 2n}

)
(6)

Formal Lifetime Reliability Analysis 89

We verified the monotonically increasing property in the first subgoal based on
the following two facts. First, the indicator function in the subgoal only becomes
1 for only one interval or one particular value of i. Second, as the argument of the
sequence, i.e., n, increases the intervals become finer and the resulting value of
the sequence becomes larger and from the way rvn is defined, it is then possible
to show that rv2

n(x) ≤ rv2
n+1(x).

The second subgoal, which corresponds to the pre-conditions for the function
rvn to be a positive simple-function, consists of three subgoals. These three sub-
goals can be discharged based on the third assumption of Theorem 1, arithmetic
reasoning and set theory principles, respectively.

We consider two cases for the third subgoal. For the case when i < n2n, the
third subgoal is true as there is only one i, say i′, for which the real value of (rv x)
would fall in the interval [i

2n ,
i+1
2n) out of all n2n possible values for i. Thus the

indicator function would be 1 for this particular i only and 0 otherwise, which
means that the summation would be equal to (i′

2n)2. Now, substituting this value
for the summation in the third subgoal along with the fact that rv x lies in the
interval [i′

2n ,
i′+1
2n) leads to its verification. Similar reasoning and properties of

rvn are used to discharge the case when i ≥ n2n.
The fourth subgoal is proved using the definition of limit of a real sequence,

the monotonicity of the given sequence and reasoning regarding the indicator
function similar to the previous subgoal. Finally, the real sequence in the fifth
subgoal can be verified to be pointwise convergent by verifying that it is mono-
tonic, just like the sequence in the first subgoal since the probability term will
only be non-zero for one particular value of i, either between 0 and n2n inter-
val or when i is greater than or equal to n2n. In both cases, it is shown that
rvn(x) ≤ rv(x) thus concluding the verification of Theorem 1.

3.2 Moments and Variance of Lifetime Distributions

In this section, we utilize Theorem 1 for the verification of the second moment
and variance properties of the exponential random variable. The second moment
for the continuous exponential random variable, is formalized as follows:

Theorem 2: Second Moment of the Exponential(m) Random Variable
� ∀ m. (0 < m) ⇒

(
second moment (U , E ,P) (exp rv m) = 2

m2

)
We start the proof process by rewriting the left hand side using the general
second moment theorem for the unbounded random variables (Theorem 1).

lim
n→∞

∑n2n−1
i=0 (i

2n
)2P
{
s

∣∣∣∣ i
2n
≤ (exp rv m) s < i+1

2n

}
+P

{
s

∣∣∣∣ n ≤ (exp rv m) s

}
= 2

m2

Then using set theory properties and the definition of CDF of the exponential
random variable, we show that

90 N. Abbasi, O. Hasan, and S. Tahar

P

{
s

∣∣∣∣ i
2n
≤ (exp rv m) s < i+1

2n

}
+ nP

{
s

∣∣∣∣ n ≤ (exp rv m) s

}
=
[
(e−m i

2n)(1− e−
m
2n) + ne−mn

]
We then rewrite the left hand side of the subgoal with the above result and
arrive at the following subgoal.

lim
n→∞

[∑n2n−1
i=0 (i

2n
)2(e−m i

2n)(1 − e−
m
2n) + ne−mn

]
= 2

m2

In order to evaluate the limit terms, we first prove the following sum of a sequence
containing terms of type (i2Pi).∑M−1

i=0(i
2Pi) = PM(M2P2−2M2P+M2−2MP2+2MP+P2+P)

(P−1)3 − P(P+1)
(P−1)3

We then specialize this result for the case when M = n2n and P = e
−m
2n as

follows:∑n2n−1
i=0 i2(e−

m
2n)i = n222ne

−m
2n

(n2n)

(e−
m
2n −1)

− 2(n2n)(e
−m
2n

(n2n+1))

(e−
m
2n −1)2

+ (e
−m
2n

(n2n)−1)(e
−m
2n)(e

−m
2n +1)

(e−
m
2n −1)3

Using the above results and with a fair amount of rewriting effort together with
product and sum limit theorems, we arrive at the following subgoal.

lim
n→∞

[−n2e−mn] + lim
n→∞

[
− 2ne−mne

−m
2n

2n(1−e
−m
2n)

]
+ lim

n→∞

[
− (e−mn−1)(e

−m
2n)(e

−m
2n +1)

22n(1−e
−m
2n)2

]
+ lim

n→∞
[ne−mn] = 2

m2

We then show that the first and fourth terms on the left hand side of the
above subgoal approach zero as n tends to ∞, that is, lim

n→∞

[
−n2e−mn

]
=

0 and lim
n→∞

[ne−mn] = 0.
The evaluation of the second and third limit terms required a lot of rewriting

effort in HOL, and the proof steps are explained in the following. First we prove
the following two limit expressions in HOL using L’hopital’s rule.

lim
x→0

[
xemx

1−e−mx

]
= lim

x→0

[
x(−memx)+emx

0−(−me−mx)

]
= 1

m
, and

lim
x→0

[
x

1−e−mx

]
= lim

x→0

[
1

0−(−me−mx)

]
= 1

m

Then we specialize the above two results for the case when x = 1
2n and show

that lim
n→∞

[
e
−m
2n

2n(1−e
−m
2n)

]
= 1

m
and lim

n→∞

[
1

2n(1−e
−m
2n)

]
= 1

m

Then using the sum and product limit theorem we rewrite the second and
third limit terms as follows:

Formal Lifetime Reliability Analysis 91

lim
n→∞

[
2ne−mn e

−m
2n

2n(1−e
−m
2n)

]
= (2)

(
lim
n→∞

[ne−mn]
)(

lim
n→∞

[
e
−m
2n

2n(1−e
−m
2n)

])
= (2)(0)(1

m
) = 0

lim
n→∞

[
− (e−mn−1)(e

−m
2n)(e

−m
2n +1)

22n(1−e
−m
2n)2

]
=

lim
n→∞

[−(e−mn − 1)] lim
n→∞

[
e−mn

2n(1−e
−m
2n)

](
lim
n→∞

[
e−mn

2n(1−e
−m
2n)

]
+ lim

n→∞

[
1

2n(1−e
−m
2n)

])
=

(1)(1
m
)(1

m
+ 1

m
) = 2

m2

Finally, we substitute these limits in the above subgoal and show that the left
hand side is equal to the right hand side thus completing the proof of the second
moment of the exponential random variable.

Theorem 3: Variance of the Exponential(m) Random Variable
� ∀ m. (0 < m) ⇒

(
variance (U , E ,P) (exp rv m) = 1

m2

)
The verification steps for the variance of the exponential random variable involve
some rewriting using the definition of the variance and the expectation and the
second moment theorems. The resulting subgoal (2

m2) − (1
m)2 = 1

m2 is easily
shown to be true, based on arithmetic reasoning, thus completing the proof of
the variance of the exponential random variable.

4 Reliability Theory Formalization

In this section, we present the formalization of the concepts of survival and
hazard functions.

4.1 Survival Function

The survival function represents the probability that a component is functioning
at one particular time t and is formalized in HOL as follows:

Definition 2: Survival Function
� ∀rv. survival function = (λt. 1 - CDF rv t)

where CDF is the cumulative distribution function of random variable rv. Both
survival function and CDF in HOL are of type (((num → bool) → real) → real
→ real).

Theorem 4: Survival Function, Exponential(m) Random Variable
� ∀ m t. (0 < m) ∧ (0 ≤ t) ⇒

(survival function (λs. exp rv m s) t = (λs. e−ms) t)

Theorem 4 was verified using the definitions of survival function and CDF of
exponential random variable together with set theory properties. If T represents
the Time-to-Failure of an electronic system component, for example, then using

92 N. Abbasi, O. Hasan, and S. Tahar

Theorem 4, we can now formally reason about probabilities of failure events at
any time t i.e., P{T ≤ t}, or between any two times t1 and t2, i.e., P{t1 ≤ T ≤ t2}.

Besides Theorem 4, we also formally verified three important existence prop-
erties of the survival function in HOL:

Property 1: Survival function at time 0 is equal to 1
� ∀rv. (∀x. CDF in events bern rv x) ⇒

(survival function rv 0 = 1)

where the assumption of Property 1 ensures that events of the type {s|fs ≤ x},
which define the CDF, are in the sample space.

Property 2: Survival function approaches 0 for very large values of times
� ∀rv. (∀x. CDF in events bern rv x) ⇒

(λn. survival function rv ((λn. &n) n)) → 0

and

Property 3: Survival function is a non increasing function
� ∀rv a b. (a<b) ∧ (∀x. CDF in events bern rv x) ⇒

(survival function rv b ≤ survival function rv a)

4.2 Hazard Function

The hazard function or instantaneous failure rate is used to model the amount
of risk associated with a component at a given time t and is formalized in HOL
as follows:

Definition 3: Hazard Function
� ∀rv t. hazard function rv t = @l.

((λa. (survival function rv t - survival function rv (t + a))
/ ((a) (survival function rv t))) → l) 0

The HOL function hazard function takes as input a random variable rv and a
real value t and returns a real value l such that the incremental parameter a in
the above definition approaches zero.

Using the definitions of hazard function, survival function, and CDF of ex-
ponential random variable we formally verify that the hazard function of an
exponential random variable is a constant and is given by its parameter m.

Theorem 5: Hazard Function, Exponential(m) Random Variable
� ∀ m t. (0 < m) ∧ (0 ≤ t) ⇒

(hazard function (λs. exp rv m s) t = m)

The hazard function gives an indication of how a component ages. Its units are
usually given as the number of failures per unit time. A larger hazard function
suggests that the component is under greater risk of failure. Using Theorem 5,
we can now formally reason about the amount of failure risks associated with a
component when operating under certain stress conditions. The results presented
in this section are 100% accurate, completely general and exhaustive as opposed
to simulation based techniques where approximate numerical results are available
for a very restricted set of parameters.

Formal Lifetime Reliability Analysis 93

5 Reliability Analysis of a Capacitor

Capacitors are an essential component of many electrical systems ranging from
basic electronics used in medical devices to avionics used in aircrafts, artificial
satellites and space shuttles. Uninterruptable power supplies and inverters com-
monly used in renewable energy power systems contain capacitors for filtering
and smoothing of rectified power line voltages. Moreover, they are used in elec-
trical power transmission and distributions networks for power factor correction.
Their reliability is absolutely essential for correct behavior of electronics used in
safety critical systems and in efficient operation of electrical power systems.

Exponential distribution is the most appropriate distribution for modeling
the reliability behavior of a capacitor. The exponential probability distribution
parameter in reliability theory is sometimes also called the failure rate. Definition
4 gives the base failure rate for a capacitor [5].

Definition 4: Base Failure Rate, Capacitor
� ∀ A B VRop Ns Top NT G H.

res failure rate base A B VRop Ns Top NT G H =
(A) (real pow (real pow (VRop / Ns) H + 1) B)
(exp (real pow ((Top + 273) / NT) G))

where A is the adjustment and B is the shaping factor (specified in [5]), VRop is the
electrical stress ratio and is defined as the ratio of the operating to rated power.
Ns is a stress constant, Top is the operating temperature, NT is the temperature
constant, and G and H are called the acceleration constants (specified in [5]).
The HOL function real pow takes two real numbers as input and returns a real
number. The returned number is equal to the first argument raised to the power
of second argument of the function (i.e., real pow A b = Ab). exp represents the
exponential function. In the part failure method, the quality and environment
stress factors are used to adjust the base failure rate of a component according
to the operating environment and expected stress levels. The definitions of these
two factors are given in [5] and are formalized in HOL as follows.

Definition 5: Quality Stress Factor
� ∀ quality.

cap stress factor quality quality =
(if quality = 0 then 15 / 10 else
(if quality = 1 then 1 else
(if quality = 2 then 3 / 10 else
(if quality = 3 then 1 / 10 else 3 / 100))))

Definition 6: Environment Stress Factor
� ∀ environment.

cap stress factor environment environment =
(if environment = 0 then 1 else
(if environment = 1 then 1 else
(if environment = 2 then 2 else

94 N. Abbasi, O. Hasan, and S. Tahar

(if environment = 3 then 4 else
(if environment = 4 then 5 else
(if environment = 5 then 7 else
(if environment = 6 then 15 / 2 else
(if environment = 7 then 8 else 15))))))))

The HOL formalization of these stress factors accepts a natural number as input
and returns the corresponding stress value. The formalization of the capacitor
part failure rate, operating in a certain environment under certain electrical
stress levels, is given in Definition 7.

Definition 7: Part Failure Rate, Capacitor
� ∀ A B VRop Ns Top NT G H n m.

cap failure rate part A B VRop Ns Top NT G H n m =
(cap failure rate base A B VRop Ns Top NT G H)
(cap stress factor environment n) (cap stress factor quality m)

5.1 Capacitor Lifetime Model

The capacitor life time in HOL is modeled using a function that takes as input
the capacitor failure rate and returns a function of exponential random variable
of type ((num→bool)→real).

Definition 8: Capacitor Lifetime Model
� ∀ A B VRop Ns Top NT G H n m. cap lifetime model
cap failure rate part A B VRop Ns Top NT G H n m = (λs. exp rv
(cap failure rate part A B VRop Ns Top NT G H n m) s)

5.2 Verification of Reliability Properties

The survival and hazard functions and three important statistical properties of
capacitor life time are presented in this section.

Survival and Hazard Functions. Theorems 6 and 7 formally prove the sur-
vival and hazard function properties of the capacitor.

Theorem 6: Survival Function, Exponential Random Variable
� ∀ A B VRop Ns Top NT G H n m t.

(0 < t) ∧ (0 < A) ∧ (0 ≤ B) ∧ (0 ≤ G) ∧ (0 ≤ H) ∧
(0 < Ns) ∧ (0 < NT) ∧ (0 ≤ VRop) ∧ (VRop ≤ 1) ∧
(0 ≤ n) ∧ (0 ≤ m) ⇒ (survival function (λs.
exp rv (cap failure rate part A B VRop Ns Top NT G H n m) s) t
= exp(-(cap failure rate part A B VRop Ns Top NT G H n m) t))

All assumptions except for (0 < t) ensure that the capacitor part failure rate
(cap failure rate part A B VRop Ns Top NT G H n m) is a positive real number.

Formal Lifetime Reliability Analysis 95

Theorem 7: Hazard Rate, Exponential Random Variable
� ∀ A B VRop Ns Top NT G H n m t.

(0 < t) ∧ (0 < A) ∧ (0 ≤ B) ∧ (0 ≤ G) ∧ (0 ≤ H) ∧
(0 < Ns) ∧ (0 < NT) ∧ (0 ≤ VRop) ∧ (VRop ≤ 1) ∧
(0 ≤ n) ∧ (0 ≤ m) ⇒ (hazard function (λs.
exp rv (cap failure rate part A B VRop Ns Top NT G H n m) s) t
= cap failure rate part A B VRop Ns Top NT G H n m)

The proof of Theorem 7 involved rewriting with the definitions of survival and
hazard functions, part failure rate and the CDF of the exponential random
variable. The limit term is simplified using L’hopital’s rule.

Statistical Properties. We formally verified several statistical properties of
the capacitor lifetime using the proposed reliability analysis method in the HOL
theorem prover. Three of which are presented below, namely, the mean, the
second moment, and the variance of Time-to-Failure of the capacitor.

Theorem 8: Mean Time-to-Failure (MTTF), Exponential(m)
� ∀ A B VRop Ns Top NT G H n m t.

(0 < t) ∧ (0 < A) ∧ (0 ≤ B) ∧ (0 ≤ G) ∧ (0 ≤ H) ∧
(0 < Ns) ∧ (0 < NT) ∧ (0 ≤ VRop) ∧ (VRop ≤ 1) ∧
(0 ≤ n) ∧ (0 ≤ m) ⇒ mttf (U , E ,P) (λs.
exp rv (cap failure rate part A B VRop Ns Top NT G H n m) s) =

1
(cap failure rate partABV RopNsTopNTGHnm)

Theorem 9: Second Moment of Time-to-Failure, Exponential(m)
� ∀ A B VRop Ns Top NT G H n m t.

(0 < t) ∧ (0 < A) ∧ (0 ≤ B) ∧ (0 ≤ G) ∧ (0 ≤ H) ∧
(0 < Ns) ∧ (0 < NT) ∧ (0 ≤ VRop) ∧ (VRop ≤ 1) ∧
(0 ≤ n) ∧ (0 ≤ m) ⇒ second moment (U , E ,P) (λs.
exp rv (cap failure rate part A B VRop Ns Top NT G H n m) s) =

2
(cap failure rate partABV RopNsTopNTGHnm)2

Theorem 10: Variance of Time-to-Failure, Exponential(m)
� ∀ A B VRop Ns Top NT G H n m t.

(0 < t) ∧ (0 < A) ∧ (0 ≤ B) ∧ (0 ≤ G) ∧ (0 ≤ H) ∧
(0 < Ns) ∧ (0 < NT) ∧ (0 ≤ VRop) ∧ (VRop ≤ 1) ∧
(0 ≤ n) ∧ (0 ≤ m) ⇒ variance (U , E ,P) (λs.
exp rv (cap failure rate part A B VRop Ns Top NT G H n m) s) =

1
(cap failure rate partABV RopNsTopNTGHnm)2

The proofs of the above statistical properties were greatly facilitated by corre-
sponding exponential random variable statistical properties, described in Sec-
tion 3. It is important to note that the reliability analysis results proved in this
section are completely generic expressions rather than numerical values as is the
case in simulation based techniques. Moreover these results are 100% accurate
as we are dealing with real numbers rather than floating point numbers as is the

96 N. Abbasi, O. Hasan, and S. Tahar

case in simulation based techniques. Such analysis was not previously possible
in a theorem proving environment and we believe it to be a major step forward
in the direction of the formal reliability analysis of engineering systems.

6 Conclusions

In this paper, we presented an approach for the reliability analysis of engineer-
ing systems in the sound environment of the HOL theorem prover. The ap-
proach builds upon existing formalizations of continuous random variables. We
presented the formalization of two commonly used lifetime distribution repre-
sentations, namely the survival and hazard functions. We also presented the for-
malizations of several important statistical properties of random variables and
the formal proof of a general expression for the second moment of a continuous
random variable using probability, measure and Lebesgue integration theories.
We then used this expression to prove the second moment and variance relations
for the exponential random variable. The usefulness of the proposed reliability
analysis method was demonstrated with the help of reliability analysis of a ca-
pacitor, an essential building block in electrical and electronic systems. The HOL
formalization and proof effort described in this paper took approximately 110
man-hours and consists of around 4000 lines of HOL code.

We are currently working on the formalization of other lifetime probability
distributions such as Weibull and Gamma distributions to further enhance the
proposed reliability analysis approach. The proposed method at this time allows
one to define arbitrary lifetime distributions as long as a closed form expression
for its CDF inverse exists, which makes it suitable for a large set of reliability
analysis problems in engineering. We also plan to conduct the reliability analysis
of multi component systems with and without redundancy.

References

1. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model Checking Algorithms
for Continuous time Markov Chains. IEEE Transactions on Software Engineer-
ing 29(4), 524–541 (2003)

2. Broughton, E.: The Bhopal Disaster and its Aftermath: A Review. Environmental
Health 4(6), 1–6 (2005)

3. Coble, A.: Anonymity, Information and Machine-assisted Proof. PhD Thesis, Uni-
versity of Cambridge, Cambridge, UK (2009)

4. Dean, S.M.: Considerations involved in making system investments for improved
service reliability. EEI Bulletin (6), 491–496 (1938)

5. U. S. Department of Defence. Reliability Prediction of Electronic Equipment, Mil-
itary handbook, MIL-HDBK-217B (1974)

6. U. S. Department of Defense. Reliability-Centered Maintenance (RCM) Require-
ments for Naval Aircraft, Weapon Systems, and Support Equipment, MIL-HDBK-
2173 (1998)

7. FIDES. Reliability Methodology for Electronic Systems (2009)

Formal Lifetime Reliability Analysis 97

8. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

9. Hasan, O.: Formal Probabilistic Analysis using Theorem Proving. PhD Thesis,
Concordia University, Montreal, QC, Canada (2008)

10. Hasan, O., Abbasi, N., Akbarpour, B., Tahar, S., Akbarpour, R.: Formal Reasoning
about Expectation Properties for Continuous Random Variables. In: Cavalcanti,
A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 435–450. Springer, Heidelberg
(2009)

11. Hasan, O., Tahar, S., Abbasi, N.: Formal Reliability Analysis using Theorem Prov-
ing. IEEE Transactions on Computers 59(5), 579–592 (2010)

12. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD Thesis, University
of Cambridge, Cambridge, UK (2002)

13. Investigative Documentary on National Geographic Channel. Derailment at
Eschede (High Speed Train Wreck), Seconds From Disaster (2007)

14. Leemis, L.M.: Reliability, Probabilistic Models and Statistical Methods (2009)
15. Mhamdi, T., Hasan, O., Tahar, S.: On the Formalization of the Lebesgue Inte-

gration Theory in HOL. In: Interactive Theorem Proving. LNCS, vol. 6172, pp.
387–402. Springer, Heidelberg (2010)

16. Myers, R.H., Ball, L.W.: Reliability Engineering for Electronic Systems. Wiley,
Chichester (1964)

17. Institute of Electrical and Electronics Engineers. IEEE Standard Reliability Pro-
gram for the Development and Production of Electronic Systems and Equipment,
IEEE 1332 (1998)

18. Rogers Commission report, Report of the Presidential Commission on the Space
Shuttle Challenger Accident, vol. 1, ch.4. p. 72 (1986),
http://history.nasa.gov/rogersrep/v1ch4.htm

19. Rutten, J., Kwaiatkowska, M., Normal, G., Parker, D.: Mathematical Techniques
for Analyzing Concurrent and Probabilisitc Systems. CRM Monograph Series,
vol. 23. American Mathematical Society, Providence (2004)

http://history.nasa.gov/rogersrep/v1ch4.htm

Modal Logics with Counting

Carlos Areces, Guillaume Hoffmann, and Alexandre Denis

INRIA Nancy Grand Est, France
{firstname.lastname}@loria.fr

Abstract. We present a modal language that includes explicit opera-
tors to count the number of elements that a model might include in the
extension of a formula, and we discuss how this logic has been previously
investigated under different guises. We show that the language is related
to graded modalities and to hybrid logics. We illustrate a possible appli-
cation of the language to the treatment of plural objects and queries in
natural language. We investigate the expressive power of this logic via
bisimulations, discuss the complexity of its satisfiability problem, define
a new reasoning task that retrieves the cardinality bound of the extension
of a given input formula, and provide an algorithm to solve it.

1 Counting, Modally

Suppose there are at least two apples (say, on the table, but we don’t care at
the moment where the apples are). First-order logic (FOL) with equality has
no problem expressing this fact1:

∃x.∃y.(x �= y ∧ Apple(x) ∧ Apple(y)).

We can actually dispense with equality, if we introduce counting quantifiers [1]

∃≥2x.Apple(x).

But suppose that we want to dispense with quantifiers instead, and count in
terms of a propositional (or a modal) language. The following representation
seems quite natural (arguably, even more natural than the first-order counter-
parts with or without counting quantifiers)

Apple ≥ 2.

In this paper we will investigate propositional and modal languages extended
with such counting operators. Let us be bold and introduce, already, the formal
syntax and semantics of the basic modal logic with counting MLC, the main
language we want to explore:

1 It is well known that FOL can express any finite counting quantifier.

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 98–109, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Modal Logics with Counting 99

Definition 1 (Syntax). Let Prop = {p1, p2, . . . } (the propositional symbols)
and Rel = {r1, r2, . . . } (the relational symbols) be disjoint, countable infinite
sets. The set Forms of formulas of MLC over signature 〈Prop,Rel〉 is defined as:

Forms ::= ⊥ | p | ¬ϕ | (ϕ1 ∧ ϕ2) | 〈r〉ϕ | (ϕ ≥ n) | (ϕ ≤ n),

for p ∈ Prop, r ∈ Rel, ϕ,ϕ1, ϕ2 ∈ Forms and n a natural number. Other Boolean
and modal operators are defined as usual, and we define (ϕ = n) as (ϕ ≥ n)∧(ϕ ≤
n), (ϕ > n) as (ϕ ≥ (n+1)) and (ϕ < n) as (ϕ ≤ (n−1)) if n > 0 or ⊥ otherwise.

We will call PLC the “propositional fragment,” i.e., the fragment obtained by
dropping 〈r〉ϕ. Let us now introduce the semantics.

Definition 2 (Semantics). Given a signature S = 〈Prop,Rel〉, a model for
S is a tuple 〈W, (Rr)r∈Rel, V 〉, satisfying the following conditions: (i) W �= ∅
(elements in W are called states); (ii) each Rr is a binary relation on W (usually
called accessibility relations); (iii) V : Prop → 2W is a labeling function.

Given the model M = 〈W, (Rr)r∈Rel, V 〉 and w ∈ W , the semantics for the
different operators is defined as follows:

M, w |= p ⇐⇒ w ∈ V (p), p ∈ Prop
M, w |= ¬ϕ ⇐⇒ M, w �|= ϕ
M, w |= ϕ ∧ ψ ⇐⇒ M, w |= ϕ and M, w |= ψ
M, w |= 〈r〉ϕ ⇐⇒ there is w′ such that Rr(w,w′) and M, w′ |= ϕ
M, w |= (ϕ ≥ n) ⇐⇒ |{w | M, w |= ϕ}| ≥ n
M, w |= (ϕ ≤ n) ⇐⇒ |{w | M, w |= ϕ}| ≤ n.

We will say that a formula ϕ is satisfiable, if there is a model M and a state w
in its domain such that M, w |= ϕ. For a set of formulas Γ ∪ {ϕ} we say that
Γ |= ϕ if and only if for any model M and any w in its domain M, w |= Γ
implies M, w |= ϕ (this relation is sometimes called local entailment). The
extension ||ϕ||M of a formula ϕ in a model M is the set {w | M, w |= ϕ}, and
the theory of w in M, notation ThM(w), is the set {ϕ | M, w |= ϕ}. When
the model M is clear from context we will drop the super-indexes. We will write
M, w ≡MLC M′, w′ if ThM(w) = ThM

′
(w′).

It should be clear from Definitions 1 and 2 that MLC is indeed the basic modal
logicML [2] extended with the counting operators. We will be mainly discussing
extensions of ML for simplicity. We could have naturally added the counting
operators to any modal logic, e.g., temporal logic with counting.

The MLC language and, in particular, its sublanguage PLC have been inves-
tigated under different guises. PLC is introduced as the logic S5n by Fine in [3]
where the, by now well studied, notion of graded modalities was introduced. The
semantic definition of the graded modality 〈r〉nϕ is given by the condition

M, w |= 〈r〉nϕ ⇐⇒ |{w′ | Rr(w,w′) and M, w′ |= ϕ}| ≥ n.

S5n is the logic obtained when the 〈r〉n operator is restricted to models where
Rr is interpreted as an equivalence relation. Now, if Rr is the universal relation,

100 C. Areces, G. Hoffmann, and A. Denis

then 〈r〉nϕ is trivially equivalent to (ϕ ≥ n). But a well known result (see,
e.g. [2]) establishes that the modal logic of the universal relation coincides with
the modal logic obtained when we only require the accessibility relation to be
an equivalence relation. The main contribution of [3] is to provide sound and
complete axiomatizations for these languages. The original results of Fine were
extended by van der Hoek and de Rijke in [4,5]. In addition to providing further
axiomatizations, investigating normal forms, and establishing the complexity of
the satisfiability problem for different logics with graded modalities, the authors
propose these languages as a modal framework where some ideas from the Theory
of Generalized Quantifiers [6] could be investigated by means of modal tools.

The relation between MLC and graded modalities was also discovered in the
field of description logics. In this area, graded modalities are called cardinality
restrictions and Baader et al. investigate in [7] concept cardinality restrictions
which coincide exactly with the counting operators we defined. Interestingly, they
decide to add concept cardinality restrictions not as operators of the concept
language, but as a more expressive kind of terminological axioms, and they
remark that they can express classical terminological axioms of the form ϕ % ψ.
ϕ % ψ is satisfied in the model if the interpretation of ϕ is a subset of the
interpretation of ψ, and indeed this is the case exactly when ((ϕ ∧ ¬ψ) ≤ 0).
The main contribution of [7] is the definition of sound, complete and terminating
tableaux calculus for these languages. A detailed complexity analysis of their
satisfiability problem and optimal tableau calculi are given in [8].

Another way of explaining why counting operators can express terminological
axioms is realizing that they can express the universal modality Aϕ [9]:

M, w |= Aϕ ⇐⇒ for all w′,M, w′ |= ϕ.

Aϕ is equivalent to ((¬ϕ) ≤ 0), and ϕ % ψ is equivalent to A(ϕ→ ψ). Actually,
counting modalities can also express nominals (i.e., special propositional symbol
whose interpretations are restricted to singleton subsets of the domain) by just
stating (p = 1) for p a propositional symbol, and hence they can be considered
also as hybrid logics [10].

In this article, we provide new results about the MLC language. Our first
contribution is conceptual, rather than technical, and it can be simple put as
follows. The counting operators (ϕ ≥ n) and (ϕ ≤ n) are interesting on their own,
independently of their relation with graded modalities. They are global operators
(with a behavior similar to the universal modality or satisfiability operators), and
they can be naturally combined with local operators (as is commonly done in
hybrid languages). They are also modular, and they can naturally be added to
any modal language. In a slogan: counting operators are the modal counterpart
of first-order counting quantifiers.

In Section 2 we show how MLC can be used as representation language in a
natural language application modeling queries including plurals. In Section 3 we
will investigate the expressive power of MLC using a suitable notion of bisimu-
lation. In Section 4 we first discuss the complexity of the satisfiability problem,
drawing from previously known results, we then introduce a new reasoning task
and devise an algorithm to solve it.

Modal Logics with Counting 101

2 Representing Plurals in Natural Language

We discuss here a possible representation of plurals and references in MLC, in-
tended to be used in natural language processing tasks such as reference resolu-
tion or generation as is done in, e.g., [11]. The idea is to represent the information
introduced in a discourse as a set of MLC formulas Γ , and to be able to ex-
press and answer queries of the form “how many of a certain kind of objects are
there?” in this context. This representation does not aim to solve all the issues
concerning the use of plurals in natural language (e.g., the distributive versus
collective readings of certain adjectives when applied to sets of objects), which
are known to be difficult to model [12]. For further details see, for example, [13].

As we saw in the previous section,MLC enables us to assert the cardinality of
a proposition in the model. For example, Γ = {(Apple∧Red) = 2} represents the
sentence “there are two red apples”, and the query “how many (Apple∧Red)?”
should return “2”. But suppose that we want to refer to “two red apples” (i.e.,
we don’t know how many red apples are there in total, but we want to refer
to two of them). For the representation of this kind of reference we need to be
able to name the referred group of object by, for example, introducing a new
propositional symbol a1 and adding to Γ the formula2:

“two red apples”: (a1 = 2) ∧ (a1 % (Apple ∧Red))

In this case, a query “how many (Apple ∧ Red)?” cannot be answered (i.e., is
undefined) since the total number of apples in the model is not known. But the
query “how many a1?” should return “2”.

If now we add that there are also two green apples and want to refer to that
group, we need to introduce another propositional symbol a2 and add to Γ :

“two green apples”: (a2 = 2) ∧ (a2 % (Apple ∧Green))

Now, the number of apples that are in the group formed by a1 and a2 (i.e., a1∨a2)
is also undefined because nothing prevents those two sets from overlapping. If
we explicitly say that the group are disjoint (a1 % ¬a2) or that the colors are
mutually exclusive (Green % ¬Red) for that we should be able to answer “4”.

Suppose that now we learn that “three of the apples are rotten.” This reference
creates a new group containing all the apples mentioned up to now:

(a3 % (a1 ∨ a2)) ∧ ((a1 ∨ a2) % a3)

And then assert that three of them are rotten by adding to Γ (a3∧Rotten) = 3).
If we further discover that all the red apples are rotten (a1 % Rotten), querying
for “how many green apples are rotten,” i.e., “how many (a2 ∧ Rotten)” will
returns “1”.

In Section 4 we introduce the inference task of counting that corresponds to
the finite cardinality queries we just discussed. But first, in the next section, we
investigate in detail the expressive power of MLC.
2 Remember that ϕ ψ is a short hand for A(ϕ → ψ) or, equivalently, (ϕ ∧ ¬ψ) ≤ 0.

102 C. Areces, G. Hoffmann, and A. Denis

3 The Expressive Power of MLC
To get more familiar with the language, let us start with some examples of what
can be expressed in MLC. We can, for example, fix the size of the model to any
finite cardinality by setting

(& = n)

for n a natural number. The formula also shows that, if numbers are coded in
binary, then neither MLC nor PLC has the polysize model property.

Proposition 1. If numbers are coded in binary, then there are formulas in PLC
(and hence also in MLC) whose only models are exponentially larger.

Notice that counting operators can be nested. For example ((p ≥ 1) ≥ 1) is a well
formed formula, which it is actually equivalent to (p ≥ 1). But, as it is discussed
in [4], every formula in MLC is equivalent to a formula where each counting
operator appears under the scope of neither modal nor counting operators. The
proof uses the fact that for any counting subformula σ appearing in a formula
ϕ we have that the following is valid

ϕ[σ] ↔ (σ → ϕ[σ/&]) ∧ (¬σ → ϕ[σ/⊥])

Other operators with a global semantics, like the universal modality A or satis-
fiability operators i:, have the same property. Notice though, that the formula
we obtain after extracting all counting operators can be exponentially larger. If
we only require equi-satisfiability (and not equivalence), we can use the method
of [14] to obtain a formula which is only polynomially larger. We will return to
this issue in Section 4.

As we mentioned in the introduction, the hybrid logic H(A) (the basic modal
logic extended with nominals and the universal modality [10]) is a sublogic of
MLC, as the language can express nominals and the universal modality. It can
even express the difference modality Dϕ [15] with semantics

M, w |= Dϕ ⇐⇒ there is w′ �= w and M, w′ |= ϕ

as Dϕ is equivalent to (ϕ → (ϕ ≥ 2)) ∧ (¬ϕ → (ϕ ≥ 1)). On the other hand,
the expressive power of counting and graded modalities is incomparable. We will
establish this in Theorem 3 using a suitable notion of bisimulation forMLC that
we now introduce

Definition 3 (Bisimulation). A bisimulation between two models M = 〈W,
(Rr)r∈Rel, V 〉 and M′ = 〈W ′, (R′

r)r∈Rel, V
′〉 is a non-empty binary relation E

between their domains (that is, E ⊆W×W ′) such that whenever wEw′ we have:

Atomic harmony: w and w′ satisfy the same propositional symbols.
Zig: if Rrwv then there exists a point v′ ∈W ′ such that vEv′ and R′

rw
′v′.

Zag: if R′
rw

′v′ then there exists a point v ∈ W such that vEv′ and Rrwv.
Bijectivity: E contains a bijection between W and W ′.

Modal Logics with Counting 103

For two models M and M′ and two elements w and w′ in their respective do-
mains, we write M, w � M′, w′ if there exists a bisimulation between M, w and
M′, w′ linking w and w′.

Theorem 1. If M, w � M′, w′ then M, w and M′, w′ satisfy the same formu-
las of MLC.

Proof. Assume there is a bisimulation E betweenM andM′. Because of Atomic
harmony, Zig and Zag, we know that E preserves all formulas of the basic modal
language [2]. We only need to consider the counting operators.

Suppose then that ϕ = (ψ ≥ n) and let f be one bijection that by defini-
tion is contained in the bisimulation linking M and M′. Assume that M, w |=
(ψ ≥ n). By inductive hypothesis f(||ψ||M) ⊆ ||ψM′ || and because f is a injec-
tive |f(||ψ||M)| ≥ n, hence M′, w′ |= (ψ ≥ n). For the other direction, assume
M′, w′ |= (ψ ≥ n). Because f is a bijection we can consider f−1(||ψ||M′

) which
has size greater than n , and by inductive hypothesis we know that it is a subset
of ||ψ||M. Hence M, w |= (ψ ≥ n). The case for ϕ = (ψ ≤ n) is similar.

As usual, the converse is not necessarily true but it holds on finite models.

Theorem 2. Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be two finite models
and (w,w′) ∈ W ×W ′, M, w �M′, w′ if and only if M, w ≡MLC M′, w′.

Proof. The implication from left to right is given by Theorem 1. For the other
implication, we have to prove that ≡MLC is a bisimulation between M and M′

that links w and w′. Atomic harmony, Zig and Zag are proved in the standard
way (see [2]). To prove that ≡MLC contains a bijection reason as follows.

Consider every pair of subsets (C,C′), C ⊆ W , C′ ⊆ W ′ such that for all
(a, b) ∈ C×C′, M, a ≡MLC M′, b. There is at least one such pair by hypothesis.
Enumerate these pairs as (C1, C

′
1), . . . , (Cn, C

′
n) (as the model is finite there is

only a finite number of them), and let Σ1, . . . , Σn be such that Σi = Th(a) for
some a ∈ Ci∪C′

i (by construction all elements in Ci∪C′
i satisfy the same formulas

ofMLC). Now choose for each i, ϕi ∈ Σi such that for all j �= i, ϕi �∈ Σj . Notice
that |Ci| = |||ϕi||M| and that |C′

i| = |||ϕi||M
′ |, we want to prove that |Ci| = |C′

i|.
But by hypothesis M, w ≡MLC M′, w′, and then M, w |= ϕi = n if and only if
M′, w′ |= ϕi = n.

As Ci and C′
i have the same cardinality we can define an injective function

f :
⋃
Ci →

⋃
C′

i, such that for a ∈ Ci, f(a) ∈ C′
i. It only rests to prove that f

is total and surjective.
Suppose there is a ∈ W such that a �∈

⋃
Ci, then there is no element a′

in W ′ such that M, a ≡MLC M′, a′. For each a′i ∈ W ′, let ϕi be a formula
such that ϕi ∈ Th(a) but ϕi �∈ Th(a′). But then M, w |= (

∧
ϕi ≥ 1) while

M, w′ �|= (
∧
ϕi ≥ 1) contradicting hypothesis. In a similar way we can prove

that f is surjective.

Notice thatMLC-bisimulations are not isomorphisms. The following two models,
for example, are MLC-bisimilar but not isomorphic.

104 C. Areces, G. Hoffmann, and A. Denis

M M′

M andM′ can be differentiated by the first order sentences ∃x.∀y.(¬R(x, y)∧
¬R(y, x)). But there is no MLC formula which is globally true in one model but
false in the other. On the other hand, [6] proves that every sentence of first-order
logic with equality and only monadic propositional symbols is equivalent to the
translation of a formula in PLC.

We now return to the comparison of MLC and graded modalities.

Theorem 3. The expressive power of counting modalities and graded modalities
is incomparable (when interpreted on the set of all possible models).

Proof. Consider the following two models M and M′. It is not difficult to verify
that the dotted arrows defines a MLC-bisimulation.

w

M
w′

M′

M, w �|= 〈r〉2& while M′, w′ |= 〈r〉2& while no formula of MLC can differen-
tiate w and w′3. For the other direction, just consider a model with one state
and another model with two states. Clearly, the models cannot be distinguished
using graded modalities (as they can only count the number of successors) but
the counting forma formula (& ≤ 1) differentiates them.

4 Inference in MLC
The complexity of the satisfiability problem forMLC and PLC have been studied
in the literature. As we mention in Section 3, when dealing with complexity we
should take care of whether numbers are coded in unary or binary. Let us call
Lu and Lb the unary and binary coding, respectively, for either MLC or PLC.
Then, the previously established results are as follows.
3 The proof goes through using the same models even if we add past operators to the

language, as the bisimulation shown also satisfies the standard conditions Zig−1 and
Zag−1 which preserve past operators [2].

Modal Logics with Counting 105

Theorem 4. 1. PLCu-SAT is NP-complete [5].
2. MLCu-SAT is ExpTime-complete [16,8].
3. PLCb-SAT is NP-hard and in PSpace [4].
4. MLCb-SAT is ExpTime-hard and in 2-NExpTime [8].

Proof. Hardness in all cases is clear, we only comment on the upper bounds.
The proof of 1) is via the polysize model property. The proof of 2) is by a linear
satisfiability preserving translation into H(A) as we will show below. The proof
of 3) is by a direct algorithm that solves satisfiability. The proof of 4) is by a
linear satisfiability preserving translation into C2, first order logic with only two
variables and counting quantifiers.

The satisfiability problem is not our main focus here, although it is going to be
an essential part of the following inference task “exactly how many ϕ states are
implied by the theory Γ ?” Formally

Definition 4. Let Γ ∪ {ϕ} be a finite set of formulas in MLC, we define the
function |ϕ| in Γ as follows4

|ϕ| in Γ =
{
n if Γ |= (ϕ = n) and Γ consistent
undefined otherwise

For instance, given Γ = {(p = 2), (q = 3), (¬(p ↔ ¬q) ≤ 0)}, we have that
|p ∨ q| in Γ will be defined as 5.

We will show an algorithm that solves this task using any model building
procedure. In particular we will show how model building algorithms for H(A)
like those proposed in [17,18] can be used. We introduce first the notion of
negation normal form for MLC.

Definition 5. Given ϕ ∈ Forms the negation normal form of ϕ is obtained
applying the following rules

¬¬ϕ � ϕ
¬(ϕ1 ∧ ϕ2) � (¬ϕ1) ∨ (¬ϕ2)
¬(ϕ1 ∨ ϕ2) � (¬ϕ1) ∧ (¬ϕ2)

¬〈r〉ϕ � [r]¬ϕ
¬[r]ϕ � 〈r〉¬ϕ

¬(ϕ ≥ 0) � ⊥
¬(ϕ ≥ n) � ϕ ≤ (n− 1) for n > 0
¬(ϕ ≤ n) � ϕ ≥ (n+ 1)

As we mentioned in Section 3, every formula in MLC is equivalent to a formula
where each counting operators has been extracted and it appears under the scope
of neither modal nor counting operators. Each MLC formula is equivalent to its
extracted, negation normal form. Let MLCen be set of extracted formulas of
MLC in negation normal form. We now present a translation from MLCen to
4 We recall that the implication |= is to be taken as local, see Definition 2.

106 C. Areces, G. Hoffmann, and A. Denis

H(A) formulas, which follows a very similar procedure to the one presented by
Tobies for Description Logics in [8]. Trπ works by traversing formulas and adding
new nominals so that counting claims are preserved (π is used to ensure that
we always introduce new nominals, initially π is set to the empty string; i:ϕ is a
satisfiability statement defined in H(A) as A(¬i ∨ ϕ)).

Trπ(p) = p
Trπ(¬ϕ) = ¬Trπ(ϕ)

Trπ(ϕ ∧ ψ) = Trπ0(ϕ) ∧ Trπ1(ψ)
Trπ(ϕ ∨ ψ) = Trπ0(ϕ) ∨ Trπ1(ψ)
Trπ(〈r〉ϕ) = 〈r〉Trπ(ϕ)
Trπ([r]ϕ) = [r]Trπ(ϕ)

Trπ(ϕ ≥ n) = (
∧

1≤i<j≤n x
π
i :¬xπ

j) ∧ (
∧

1≤i≤n x
π
i :ϕ)

Trπ(ϕ ≤ n) = A(¬ϕ ∨
∨

1≤i≤n x
π
i)

in particular Trπ(ϕ ≥ 0) = & and Trπ(ϕ ≤ 0) = A(¬ϕ).
Let us call ϕHπ the formula obtained from theMLC formula ϕ by first extract-

ing counting operators, transforming into negation normal form, and applying
Trπ; we write ϕH when π is the empty prefix.

Suppose now that M is a model satisfying ϕH returned by the model builder.
We will show that counting has not been affected by the translation.

Definition 6. We call a model M′ a naming extension of M if it is a conser-
vative extension of M for an extended language that only adds nominals.

Theorem 5. Let ϕ ∈ MLC, and π an arbitrary prefix. Then M, w |= ϕ if and
only if M′, w |= ϕHπ for M′ a naming extension of M.

Proof. We can disregard the extraction and negation normal form steps of the
transformation since they are equivalence preserving.
[⇒] The atomic, negation and modal connectors cases are immediate. For any
model M let us represent as M+N any naming extension of M where N is
the function that assigns nominals to elements of the domain of M. Assume
M, w |= ϕ1 ∧ ϕ2, i.e., M, w |= ϕ1 and M, w |= ϕ2. By induction hypothesis
M+N1, w |= ϕHπ0

1 andM+N2, w |= ϕHπ1
2 . AsN1 andN2 are defined on different

nominals we can obtain N = N1 ∪ N2 and we have M+N,w |= ϕHπ0
1 ∧ ϕHπ1

2 ,
and hence M+N,w |= (ϕ1 ∧ ϕ2)Hπ . The case for ϕ1 ∨ ϕ2 is handled similarly.

Assume M, w |= ϕ ≥ n, i.e., there exist n different states v1 to vn such that
for all 1 ≤ i ≤ n, M, vi |= ϕ. For any π, choose N =

⋃
1≤i≤n(xπ

i , vi) to obtain
M+N,w |= (

∧
1≤i<j≤n x

π
i :¬xπ

j) ∧ (
∧

1≤i≤n x
π
i :ϕ) as needed.

Now, assume M, w |= ϕ ≤ n. Let v1 to vm (m ≤ n) be all the states of
M satisfying ϕ. For any π, introduce n nominals xπ

1 to xπ
n and a mapping N

such that for 1 ≤ i ≤ n there exists j, 1 ≤ j ≤ m such that (xπ
i , vj) ∈ N (two

nominals can be true in the same state). Then M+N, u |= ¬ϕ ∨
∨

1≤i≤n xi for
u an arbitrary state, and M+N,w |= ϕH.
[⇐] Let ϕ ∈MLC and π an arbitrary prefix, and M′ a naming extension of M
such that M′, w |= ϕHπ . If ϕ is a modal formula the implication is trivial.

Modal Logics with Counting 107

Assume M′, w |= (ϕ ≥ n)Hπ . By definition M′, w |= (
∧

1≤i<j≤n x
π
i :¬xπ

j)∧
(
∧

1≤i≤n x
π
i :ϕ). Since xπ

1 to xπ
n are all true at different states M, w |= ϕ ≥ n.

Assume M′, w |= (ϕ ≤ n)H(π), i.e., M′, w |= A(¬ϕ ∨
∨

1≤i≤n x
π
i). Then an

arbitrary u of M′, M′, u |= ¬ϕ ∨
∨

1≤i<n x
π
i . Hence, either M′, u |= ¬ϕ or

M′, u |= xπ
i for a given i ∈ [[1..m]], ie {u} = V (xπ

i) for i ∈ [[1..m]]. So there can
not be more than n distinct states satisfying ϕ in M′ and M, w |= ϕ ≤ n. ��
Thus we can say that for a given MLC formula ϕ, a model of ϕH is a model
of ϕ. We can now present the algorithm that carries out the reasoning task of
counting. Given P a decision procedure forH(A), Γ a finite set ofMLC formulas
and ϕ a MLC formula:

1: if P (ΓH) returns UNSAT then
2: return ‘undefined’
3: else
4: let n = |||ϕ||M| for M a model returned by P
5: if P ((Γ ∧¬(ϕ = n))H) returns UNSAT then
6: return n
7: else
8: return ‘undefined’
9: end if

10: end if
Intuitively, our counting algorithm uses a model of the theory Γ to have a can-
didate answer n to the question “how many ϕ are implied by Γ ?”. We then test
satisfiability of (Γ ∧ ¬(ϕ = n))H to get the answer.

Theorem 6. The algorithm above computes |ϕ| in Γ .

Our solving of the counting task relies essentially on the satisfiability problem
and on the model building task carried out by the previously mentioned decision
procedures. Another way of carrying this out would be to go the proof-theoretic
way and directly try to derive the cardinality of ϕ given a theory Γ . However,
this involves using an axiomatization of MLC which we currently lack, so given
the tools we have, the satisfiability-based approach seems more adequate.

A more feasible alternative would be to solve the satisfiability problem in
MLC directly. As some tableaux systems for Decription Logics with global
counting already exist [7], a dedicated calculus for MLC seems easy to obtain.
For a practical implementation, combining tableaux with arithmetic reasoning,
as it has been done in [19,20,21], seems a good direction to take. The idea is
to separate the counting constraints of the tableau and solve them with a con-
straint programming or a linear integer programming system. Thus unsatisfiable
tableaux can be found efficiently even for large cardinality constraints.

5 Conclusions

In this paper we investigated various aspects of modal logics containing the
counting quantifiers (ϕ ≥ n) and (ϕ ≤ n), motivated by the natural language
application of representing and querying plural objects in a discourse.

108 C. Areces, G. Hoffmann, and A. Denis

These quantifiers have been introduced before in different areas (generalized
quantifiers, modal logics, and description logics), and some of their previously
known properties have been outlined (existence of extracted normal forms, com-
plexity of the satisfiability problem, etc.). In this article we investigate expressive
power and inference.

With respect to the former, we introduce the notion of MLC bisimulations,
prove that it preservesMLC formulas and that it characterizesMLC-equivalent
finite models. A natural next step would be to investigate “van Benthem char-
acterization” results [22]. I.e., to verify whether any formula of the first-order
language with equality (in the appropriate signature) invariant under MLC
bisimulations is equivalent to the translation of an MLC formula. We strongly
conjecture that this is the case.

With respect to inference, we defined a new task that given a theory Γ and
a formula ϕ returns the cardinality of the extension of ϕ in any model of Γ if
such cardinality is fixed to be a finite natural number. We show that this task
can be solved in terms of a calculus for the hybrid logic H(A) that can return
a model for any satisfiable formula (e.g., tableaux based calculi as those defined
by [17,18]). The proposed algorithm involves a translation into H(A) that might
return an exponentially larger formula even when numbers are coded in unary.
We conjecture that the polynomial satisfiability preserving translation of [14]
could be used instead (but assuming, again, that numbers are coded in unary).
The complexity of the problem when numbers are coded in binary is open. As we
mentioned in Section 4, the complexity of satisfiability for MLC and PLC when
numbers are coded in unary has been established [5,16,8]. On the other hand,
to our knowledge the problem is still open when numbers are given in binary.

References

1. Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44,
12–36 (1957)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

3. Fine, K.: In so many possible worlds. Notre Dame Journal of Formal Logics 13(4),
516–520 (1972)

4. van der Hoek, W., de Rijke, M.: Generalized quantifiers and modal logic. Journal
of Logic, Language and Information 2(1), 19–58 (1993)

5. van der Hoek, W., de Rijke, M.: Counting objects. Journal of Logic and Compu-
tation 5(3), 325–345 (1995)

6. Westerst̊ahl, D.: Quantifiers in formal and natural languages. In: Gabbay, D., Guen-
thner, F. (eds.) Handbook of Philosophical Logic, vol. IV, pp. 1–1331. Reidel, Dor-
drecht (1989)

7. Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts. Ar-
tificial Intelligence 88(1-2), 195–213 (1996)

8. Tobies, S.: Complexity results and practical algorithms for logics in Knowledge
Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen
(2001)

9. Goranko, V., Passy, S.: Using the universal modality: Gains and questions. Journal
of Logic and Computation 2(1), 5–30 (1992)

Modal Logics with Counting 109

10. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem,
J. (eds.) Handbook of Modal Logics, pp. 821–868. Elsevier, Amsterdam (2006)

11. Varges, S., Deemter, K.V.: Generating referring expressions containing quantifiers.
In: Proc. of IWCS 2006 (2005)

12. Asher, N., Wang, L.: Ambiguity and anaphora with plurals in discourse. In: Proc. of
Semantics and Linguistic Theory 13 (SALT 13), University of Washington, Seattle,
Washington (2003)

13. Franconi, E.: A treatment of plurals and plural quantifications based on a theory
of collections. In: Minds and Machines, pp. 453–474 (1993)

14. Areces, C., Goŕın, D.: Coinductive models and normal forms for modal logics. Logic
Journal of the IGPL (to appear, 2010)

15. de Rijke, M.: The modal logic of inequality. The Journal of Symbolic Logic 57(2),
566–584 (1992)

16. Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid
temporal logics. Logic Journal of the IGPL 8(5), 653–679 (2000)

17. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. Journal of Logic and
Computation 17(3), 517–554 (2007)

18. Kaminski, M., Schneider, S., Smolka, G.: Terminating tableaux for graded hybrid
logic with global modalities and role hierarchies. In: Giese, M., Waaler, A. (eds.)
TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 235–249. Springer, Heidelberg
(2009)

19. Ohlbach, H.J., Koehler, J.: Modal logics, description logics and arithmetic reason-
ing. Artif. Intell. 109(1-2), 1–31 (1999)

20. Haarslev, V., Timmann, M., Möller, R.: Combining tableaux and algebraic methods
for reasoning with qualified number restrictions. In: Proc. of Description Logics
2001, pp. 152–161 (2001)

21. Faddoul, J., Farsinia, N., Haarslev, V., Möller, R.: A hybrid tableau algorithm for
ALCQ. In: Proc. of ECAI 2008, pp. 725–726. IOS Press, Amsterdam (2008)

22. van Benthem, J.: Modal correspondence theory. In: Gabbay, D., Guenthner, F.
(eds.) Handbook of Philosophical Logic, vol. 2, pp. 167–247. Springer, Heidelberg
(1984)

Verification of the Completeness of Unification

Algorithms à la Robinson�

Andréia B. Avelar1,��, Flávio L. C. de Moura2, André Luiz Galdino3,
and Mauricio Ayala-Rincón1,2,���

Departamentos de 1Matemática e 2Ciência da Computação
Universidade de Braśılia, Braśılia, Brazil

3Departamento de Matemática, Universidade Federal de Goiás, Catalão, Brazil
andreia@mat.unb.br, {ayala,flaviomoura,galdino}@unb.br

Abstract. This work presents a general methodology for verification of
the completeness of first-order unification algorithms à la Robinson devel-
oped in the higher-order proof assistant PVS. The methodology is based
on a previously developed formalization of the theorem of existence of
most general unifiers for unifiable terms over first-order signatures. Ter-
mination and soundness proofs of any unification algorithm are proved
by reusing the formalization of this theorem and completeness should
be proved according to the specific way in that non unifiable inputs are
treated by the algorithm.

1 Introduction

In a previous development, done in the PVS proof assistant [15], a formalization
of the theorem of existence of most general unifiers (mgu’s) for unifiable terms
over first-order theories was presented. That development was given as the PVS
theory unification [1]. The formalization was based on three constructive op-
erators: given a pair of unifiable terms as input, the first one generates the first
position of conflict whenever the terms are different; the second one builds a
resolution for the conflict and; the third one builds an mgu. These operators use
the powerful machinery of types available in PVS in order to build a dependent
type of pairs of unifiable terms as input. Thus, these operators correspond to
a sound and complete unification algorithm restricted to unifiable terms in the
style of Robinson’s original unification algorithm [17]. This theorem of existence
is enough for several applications, as for instance, for a formalization of the well-
know Knuth-Bendix Critical Pair Theorem [12] presented in [10]. The failure
cases that appear for non unifiable terms are not treated in that formalization.
But all the proof techniques applied are reusable as a general methodology use-
ful to verify termination and soundness of unification algorithms in this style

� Work supported by the District Federal Research Foundation - FAP-DF 8-
004/2007.

�� Author supported by the Brazilian Research Council CNPq.
��� Corresponding author partially supported by the Brazilian Research Council

CNPq.

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 110–124, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Verification of the Completeness of Unification Algorithms 111

of unification. The verification of completeness of any unification algorithm de-
pends upon proving that the specific treatment of the failure cases given by the
unification algorithm is adequate.

In [17], a constructive proof of correctness of the unification algorithm was
introduced in order to prove, by contradiction, the completeness of the resolu-
tion method for the propositional calculus. The introduced unification algorithm
either gives as output an mgu for each unifiable pair of terms, or fails whenever
the terms are not unifiable. The proof of correctness of this algorithm consists
in proving that the algorithm always terminates, and that, when it terminates
an mgu is provided if and only if the terms are unifiable. Several variants of this
first-order unification algorithm appear in well-known textbooks on computa-
tional and mathematical logic, semantics of programming languages, rewriting
theory, etc (e.g., [14,7,4,3,2]). Since the formalization follows the classical proof
schema, which is one of the main positive aspects of the current work, no analytic
presentation of this proof will be given here.

The general proof methodology is illustrated by a specification of a unification
algorithm provided in the PVS theory robinsonunification that imports the
theory unification. Both theories are available in the NASA Langley PVS Li-
braries and at http://ayala.mat.unb.br/publications.html inside the PVS
library trs for term rewriting systems, that was introduced in [9]. Among the
rewriting results formalized in trs can be mentioned the critical pair theorem
[10] and Newman’s lemma [8].

Sections 2 and 3 present basic notions on first-order unification and explain
how these notions were specified, respectively. Section 4 presents a specification
of a unification algorithm à la Robinson; Section 5 explains how the verification
methodology works in order to prove termination and soundness for the case of
unifiable terms. Section 6 illustrates the solution to prove completeness, that is,
it shows how to deal with failure in unification. Related work and conclusions
are then presented.

2 Basic Notions on First-Order Unification

Consider a signatureΣ in which function symbols and their associated arities are
given (that is, the arity n (n ∈ N) for each function symbol f in Σ is known) and
a enumerable set V of variables is given. The set of well-defined terms, denoted
by T (Σ, V), over the signature Σ and the set V is recursively defined as:

– x ∈ V is a well-defined term;
– for each n-ary function symbol f ∈ Σ and well-defined terms t1, . . . , tn,
f(t1, . . . , tn) is a well-defined term.

Note that constants are 0-ary function symbols, and hence are well-defined terms.
In the sequel, for brevity “terms” instead of “well-defined terms” will be used.
A substitution in T (Σ, V), by convention denoted by lowercase Greek letters,

is a function from a finite set of variables to T (Σ, V).

112 A.B. Avelar et al.

Definition 1 (Substitution). A substitution σ is defined as a function from
V to T (Σ, V), such that the domain of σ, defined as the set of variables {x | x ∈
V, σ(x) �= x} and denoted by Dom(σ), is finite.

The homomorphic extension of a substitution from the set V to T (Σ, V) is given
as usual and denoted as σ̂.

Definition 2 (Homomorphic extension of a substitution). The homo-
morphic extension of a substitution σ, denoted as σ̂, is inductively defined over
the set T (Σ, V) as
– xσ̂ := xσ;
– f(t1, . . . , tn)σ̂ := f(t1σ̂, . . . , tnσ̂).

Given the notion of homomorphic extension, it is possible to define substitution
composition.

Definition 3 (Composition of substitutions). Consider two substitutions σ
and τ , its composition is defined as the substitution σ◦τ such that Dom(σ◦τ) =
Dom(σ) ∪Dom(τ) and for each variable x in this domain, x(σ ◦ τ) := (xτ)σ̂.

Two terms s and t are said to be unifiable whenever there exists a substitution
σ such that sσ = tσ.

Definition 4 (Unifiers). The set of unifiers of two terms s and t is defined as

U(s, t) := {σ | sσ = tσ}

Definition 5 (Most generality of substitutions). Given two substitutions
σ and τ , σ is said to be most general than τ whenever, there exists a substitution
γ such that γ ◦ σ = τ . This is denoted as σ ≤ τ .

Definition 6 (Most General Unifier). Given two terms s and t such that
U(s, t) �= ∅. A substitution σ such that for each τ ∈ U(s, t), σ ≤ τ , is said to
be a most general unifier of s and t. For short it is said that σ is an mgu of s
and t.

Now, it is possible to state the theorem of existence of mgu’s.

Theorem 1 (Existence of mgu’s). Let s and t be terms built over a signature
T (Σ, V). Then, U(s, t) �= ∅ implies that there exists an mgu of s and t.

The analytic proof of this theorem is constructive and the first introduced proof
was by Robinson itself in [17]. In this paper, a unification algorithm was intro-
duced, which either gives as output a most general unifier for each unifiable pair
of terms or fails when there are no unifiers. The proof of correctness of this algo-
rithm, which consists in proving that the algorithm always terminates and that
when terminates gives an mgu implies the existence theorem. Several variants of
this first-order unification algorithm appear in well-known textbooks on compu-
tational and mathematical logic, semantics of programming languages, rewriting
theory, etc. (e.g., [14,7,4,3,2]). Since the formalization follows the classical proof
schema, no analytic presentation of this proof will be given here.

Verification of the Completeness of Unification Algorithms 113

3 Specification of Basic Notions

The subtheory robinsonunification, inside the theory trs, imports subtheo-
ries for substitution, terms and positions, among others. The most relevant no-
tions related with unification are inside the sub-theories positions, subterm
and substitution. The PVS notions used for specifying these basic concepts
are taken from the prelude theories for finite sequences and finite sets.
Namely, finite sequences are used to specify well-formed terms which are built
from variables and function symbols with their associated arities. For doing this
the PVS DATATYPE mechanism is applied to define recursive types.

term[variable: TYPE+, symbol: TYPE+, arity: [symbol -> nat]] :
DATATYPE

BEGIN
vars(v:variable): vars?
app(f:symbol,

args:{args:finite_sequence[term] |
args‘length=arity(f)}): app?

END term

Notice that the fact that a term is well-formed, that is, that function symbols are
applied to the right number of arguments is guaranteed by typing the arguments
of each function symbol f as a finite sequence of length arity(f).

Finite sets and sequences are also used to specify sets of subterms and sets of
term positions, as is shown below.

The (finite) set of positions of a term t is recursively defined on the structure
of the term as follows, where only empty seq is a set containing only an empty
finite sequence, that is the set containing the root position only.

positionsOF(t: term): RECURSIVE positions =
(CASES t OF

vars(t): only_empty_seq,
app(f, st): IF length(st) = 0

THEN only_empty_seq ELSE
union(only_empty_seq,
IUnion((LAMBDA (i: upto?(length(st))):

catenate(i, positionsOF(st(i-1))))))
ENDIF

ENDCASES)
MEASURE t BY <<

In the subtheory subterm, the subterm of t at position p also is specified in a
recursive way (now on the length of p), as follows:

114 A.B. Avelar et al.

subtermOF(t: term, (p: positions?(t))): RECURSIVE term =
(IF length(p) = 0 THEN t ELSE

LET st = args(t), i = first(p), q = rest(p) IN
subtermOF(st(i-1), q) ENDIF)

MEASURE length(p)

where first and rest are constructors that return, respectively, the first element
and the rest of a finite sequence, and positions?(t) is the (dependent) type of
all positions in t, which is specified as follows:

positions?(t: term): TYPE = {p: position | positionsOF(t)(p)}

Several necessary results on terms, subterms and positions are formalized by
induction on the structure of terms following the lines of these definitions. For
instance, properties such as the one that states that the set of positions of a
term is finite (lemma positions of terms finite in the subtheory positions)
and the one that states that the set of variables occurring in a term is finite
(lemma vars of term finite in the subtheory subterm) are proved by struc-
tural induction on terms. Also, several useful rules for computing with positions
and subterms are specified. For example,

pos_subterm: LEMMA
FORALL (p, q: position, t: term):

positionsOF(t)(p o q)
=> subtermOF(t, p o q) = subtermOF(subtermOF(t, p), q)

is formalized in the subtheory subterm, where p o q means the concatenation
of the sequences p and q denoted by pq in standard rewriting notation, and its
proof is given by induction on the length of p according to the formal definitions
given above.

The subtheory substitution specifies the algebra of substitutions in which
the type of substitutions is built as functions from variables to terms sig : [V
-> term] with finite domain: Sub?(sig): bool = is finite(Dom(sig)) and
Sub: TYPE = (Sub?). Also, the notions of domain, range, and the variable range
are specified, closer to the usual theory of substitution as presented in well-known
textbooks (e.g., [2]). These notions are specified as follows:

Dom(sig): set[(V)] = {x: (V) | sig(x) /= x}
Ran(sig): set[term] =
{y: term | EXISTS (x: (V)): member(x, Dom(sig)) & y = sig(x)}

VRan(sig): set[(V)] =
IUnion(LAMBDA (x | Dom(sig)(x)): Vars(sig(x)))

where the operator IUnion can be found in the PVS prelude theory, (V) de-
note the type of all terms that are variables and Vars(t) denotes the set of all
variables occurring in a term t.

Also, in the subtheory substitution the homomorphic extension ext(sig)
of a substitution sig is specified inductively over the structure of terms, and the
composition of two substitutions, denoted by comp, is specified as

Verification of the Completeness of Unification Algorithms 115

comp(sigma, tau)(x: (V)): term = ext(sigma)(tau(x))

In standard rewriting notation, the homomorphic extension of a substitution σ
from its domain of variables to the domain of terms is denoted by σ̂, but to
simplify notation, usually textbooks do not distinguish between a substitution σ
and its extension σ̂. In the formalization this distinction should be maintained
carefully.

Several important results, that are useful for the development of subtheory
unification were formalized in the subtheory substitution, as for instance,
the property that states that the application of an homomorphic extension of a
substitution preserves of the original set of positions of the term. This property
is specified as,

ext_preserv_pos: LEMMA
FORALL (p: position, s: term, sigma: Sub):

positionsOF(s)(p) => positionsOF(ext(sigma)(s))(p)

4 Specification of Unification Algorithms

The methodology of verification of first-order unification algorithms is based
on the formalization of the existence of first-order mgu’s as presented in the
theory unification which consists of 57 lemmas from which 30 are type proof
obligations or type correctness conditions (TCCs) that are lemmas automatically
generated by the type-checker of the prover. The specification file has 272 lines
and its size is 9.5 KB and the proof file has 11.424 lines and 638.4 KB. The
verification of the completeness of a unification algorithm is given in the theory
robinsonunification and consists of 49 lemmas from which 25 are TCCs in a
specification file of 252 lines of code (9.0 KB) and a file of proofs of 12.397 lines
of proofs (747.8 KB).

The notion of most general substitution is given as

<=(theta, sigma): bool = EXISTS tau: sigma = comp(tau, theta)

From this definition, one proves that the relation <= is a pre-order, that is, it
is reflexive and transitive. The notions of unifier, unifiable, the set of unifiers of
two terms and a mgu of two terms are defined as

unifier(sigma)(s,t): bool = ext(sigma)(s) = ext(sigma)(t)

unifiable(s,t): bool = EXISTS sigma: unifier(sigma)(s,t)

U(s,t): set[Sub] = {sigma: Sub | unifier(sigma)(s,t)}

mgu(theta)(s,t): bool = member(theta, U(s,t)) &
FORALL sigma: member(sigma, U(s,t)) => theta <= sigma

Several auxiliary lemmas related with the previous notions were also formalized;
for instance, unifier o formalizes the fact that, whenever σ ∈ U(sθ, tθ), σ ◦ θ ∈
U(s, t).

116 A.B. Avelar et al.

unifier_o: LEMMA member(sig, U(ext(theta)(s),ext(theta)(t)))
=> member(comp(sig,theta), U(s,t))

The key point of the proposed general methodology of proof is to reuse the proof
techniques inside the theory unification. In this theory, a unification algorithm,
called unification algorithm, restricted to unifiable terms, is given for which
the main two properties formalized are:

– the restricted algorithm terminates and
– it is sound, that is, it gives as output an mgu of the (unifiable) inputs.

Thus, reusing the proof techniques for formalizing these two properties, it is
possible to complete the verification of any unification algorithm that has as
input two terms that may not be unifiable. What remains in order to verify a
unification algorithm is to prove the completeness of the specific treatment
of the exception cases; i.e., to prove the completeness of the treatment of non
unifiable terms according to the specific algorithmic methodology.

The unification algorithm inside unification receives two unifiable terms as
arguments, gives a substitution as output and is specified as follows:

unification_algorithm(s: term, (t: term | unifiable(s,t))):
RECURSIVE Sub =
IF s = t THEN identity
ELSE LET sig = sub_of_frst_diff(s, t) IN
comp(unification_algorithm((ext(sig))(s),(ext(sig)(t))) , sig)

ENDIF
MEASURE Card(union(Vars(s), Vars(t)))

In this specification, the function sub of frst diff provides the linkage sub-
stitution, that is the one that resolves the first conflict appearing from left to
right between the two terms s and t. The proof of the existence of this link-
age substitution, that is a link from a variable to a term without occurrences
of this variable is formalized inside the theory unification and the method-
ology of proof is reusable for any unification algorithm in the Robinson style.
In the theory robinsonunification, the type dependence on the parameters t
and s is eliminated in order to obtain a constructive unification algorithm for
unrestricted terms. In general, completeness of any algorithm should be proved
guaranteeing that it detects all possible fail cases, that is, conflicts without res-
olution, whenever the terms are not unifiable. Inside robinsonunification is
specified a unification algorithm as the operator robinson unif algorithm.

robinson_unif_algorithm(s, t: term): RECURSIVE Sub =
IF s = t THEN identity
ELSE LET sig = link_of_frst_diff(s,t) IN

IF sig = fail THEN fail
ELSE LET sigma = robinson_unif_algorithm(ext(sig)(s),

ext(sig)(t)) IN

Verification of the Completeness of Unification Algorithms 117

IF sigma = fail THEN fail ELSE comp(sigma, sig) ENDIF
ENDIF

ENDIF
MEASURE Card(union(Vars(s), Vars(t)))

This operator calls the function link of frst diff, that in contrast to the func-
tion sub of frst diff, used by the unification algorithm operator, allows
as parameters different unrestricted terms and gives as output either “fail” or
a linkage substitution, whenever the first found conflict between the terms is
solvable. The key point of any unification algorithm à la Robinson is exactly the
way which unresolved conflicts are reported.

The operator link of frst diff has as parameters two different terms and
invokes the operator first diff that returns the position of the first conflict
between these terms.

link_of_frst_diff(s: term , (t: term | s /= t)): Sub =
LET k: position = first_diff(s,t) IN
LET sp = subtermOF(s,k) , tp = subtermOF(t,k) IN
IF vars?(sp)
THEN IF NOT member(sp, Vars(tp))

THEN (LAMBDA (x: (V)): IF x = sp THEN tp ELSE x ENDIF)
ELSE fail ENDIF

ELSE
IF vars?(tp)THEN
IF NOT member(tp, Vars(sp)
THEN (LAMBDA (x: (V)): IF x = tp THEN sp ELSE x ENDIF)
ELSE fail ENDIF

ELSE fail ENDIF
ENDIF

The specification of the operator first diff is presented below. The parameters
of this operator are two unrestricted, but different terms.

first_diff(s: term, (t: term | s /= t)): RECURSIVE position =
(CASES s OF
vars(s): empty_seq,
app(f, st):
IF length(st) = 0 THEN empty_seq ELSE
(CASES t OF
vars(t): empty_seq,
app(fp, stp):
IF f = fp THEN LET k: below[length(stp)] =
min({kk: below[length(stp)] |

subtermOF(s,#(kk+1)) /= subtermOF(t,#(kk+1))}) IN
add_first(k+1,first_diff(subtermOF(s,#(k+1)),

subtermOF(t,#(k+1))))
ELSE empty_seq ENDIF

118 A.B. Avelar et al.

ENDCASES) ENDIF
ENDCASES)

MEASURE s BY <<

Inside unification the functions resolving diff and sub of frst diff play
the same role as the functions first diff and link of frst diff, respectively,
but the latter can receive as argument non unifiable terms.

5 Reusing the Proof Technology: Termination and
Soundness

Exactly the same inductive proof technology applied in the theory unification
is possible for formalizing the properties of the corresponding operators in the
theory robinsonunification for unifiable inputs. Here, it is explained how the
properties of termination and soundness are formalized for unifiable inputs inside
unification.

Termination. The formalization of this property follows the usual proof method-
ology: to prove that after each recursive input the measure, that is given by the
number of variables occurring in the terms, decrease. The measure of the operator
unification algorithm is the cardinality of the union of the sets of variables oc-
curring in its parameters s and t. The PVS type-checker automatically generates
the type proof obligation below that guarantees termination.

unification_algorithm_TCC6: OBLIGATION
FORALL (s, (t | unifiable(s, t))):
NOT s = t =>
(FORALL (sig: Sub):

sig = sub_of_frst_diff(s, t) =>
Card(union(Vars(ext(sig)(s)), Vars(ext(sig)(t))))
<
Card(union(Vars(s), Vars(t))))

This TCC is not automatically proved and it requires the proof of the auxiliary
lemma:

vars_ext_sub_of_frst_diff_decrease: LEMMA
FORALL (s: term, t: term | unifiable(s, t) & s /= t):

LET sig = sub_of_frst_diff(s, t) IN
Card(union(Vars(ext(sig)(s)), Vars(ext(sig)(t))))
< Card(union(Vars(s), Vars(t)))

The proof of this lemma requires the existence of a linkage substitution σ for
the first conflicting position, which maps a variable into a term without occur-
rences of this variable. This guarantees that the mapped variable disappears from
the instantiated terms σ̂(s) and σ̂(t), and hence the decreasingness property
holds.

Verification of the Completeness of Unification Algorithms 119

Soundness. Inside the theory unification the correctness of the restricted
unification algorithm is given by the lemma:

unification:LEMMA unifiable(s,t) => EXISTS theta: mgu(theta)(s,t)

The proof of this lemma is obtained from two auxiliary lemmas: the first one,
states that the substitution given by the operator unification algorithm is,
in fact, a unifier and the second one that it is an mgu.

unification_algorithm_gives_unifier: LEMMA
unifiable(s,t) => member(unification_algorithm(s, t), U(s, t))

unification_algorithm_gives_mg_subs: LEMMA
member(rho, U(s, t)) => unification_algorithm(s, t) <= rho

The former lemma is proved by induction on the cardinality of the set of variables
occurring in s and t, for which, three auxiliary lemmas are necessary:

– the lemma vars ext sub of frst diff decrease described in the previous
subsection, which guarantees that the cardinality of the set of variables de-
creases;

– the lemma

ext_sub_of_frst_diff_unifiable: LEMMA
FORALL (s: term, t: term | unifiable(s, t) & s /= t):

LET sig = sub_of_frst_diff(s, t) IN
unifiable(ext(sig)(s), (ext(sig)(t)))

which states that the instantiations of two different and unifiable terms sσ̂
and tσ̂ with the substitution σ that resolves the first conflict between these
terms, are still unifiable; and

– the lemma unifier o presented in Section 4, which states that for any unifier
θ of sσ̂ and tσ̂, θ ◦ σ is a unifier of s and t.

The formalization of the lemma unification algorithm gives mg subs is done
by induction on the same measure. For proving this lemma two auxiliary lemmas
are applied: the lemma vars ext sub of frst diff decrease and the lemma
presented below, which states that for each unifier ρ of s and t, two different
and unifiable terms, and given σ the substitution that resolves the first difference
between these terms, there exists θ such that θ ◦ σ = ρ.

sub_of_frst_diff_unifier_o: LEMMA
FORALL (s: term, t: term | unifiable(s, t) & s /= t):

member(rho, U(s, t)) =>
LET sig = sub_of_frst_diff(s, t) IN

EXISTS theta: rho = comp(theta, sig)

120 A.B. Avelar et al.

6 Treatment of Exceptions: Proof of Completeness

The theory robinsonunification illustrates the application of the methodol-
ogy of proof. The main operators inside this theory give a treatment of failing
cases in such a way that whenever unsolvable conflicts between non unifiable
terms are detected (by the operator first diff) the substitution “fail” is
returned. This substitution is built explicitly as the substitution with the single-
ton domain {xx} and image ff(xx), where xx and ff are, respectively, a spe-
cific variable and a unary function symbol. In this way, the substitution fail
is discriminated from any other possible unifier which is built by the function
robinson unif algorithm, for all pair of terms. The formalization of the property
of termination follows the same indcutive techniques of the ones used in the proof
of the lemma vars ext sub of frst diff decrease in the theory unification.

In the theory robinsonunification termination is formalized, as it is usually
done in the literature on unification, as the lemma termination lemma presented
below. This states that for two terms s and t whose first difference is solvable by
the linkage substitution σ (sig) the cardinality of the set of variables occurring
in s and t is bigger than the cardinality of the set of variables occurring in sσ̂
and tσ̂.

termination_lemma : LEMMA
FORALL (s : term, t : term | s /= t):

LET sig = link_of_frst_diff(s, t) IN
NOT sig = fail =>
Card(union(Vars(ext(sig)(s)), Vars(ext(sig)(t))))
< Card(union(Vars(s), Vars(t)))

The formalization of the previous lemma is obtained by applying the two main
lemmas presented below. The former, states that whenever the first difference is
solvable the linkage substitution has as domain a singleton and the latter that
the set of variables occurring in sσ̂ and tσ̂ is exaclty the set of variables occurring
in the terms s and t minus the unique variable in the domain of σ.

dom_link_of_frst_diff_is : LEMMA
FORALL (s : term, t : term | s /= t):
LET sig = link_of_frst_diff(s, t) IN

NOT sig = fail AND p = first_diff(s, t) =>
IF vars?(subtermOF(s, p))
THEN Dom(sig) = singleton(subtermOF(s, p))
ELSE Dom(sig) = singleton(subtermOF(t, p))

ENDIF

union_vars_ext_link : LEMMA
FORALL (s : term, t : term | s /= t) :

LET sig = link_of_frst_diff(s, t) IN
NOT sig = fail =>

Verification of the Completeness of Unification Algorithms 121

union(Vars(ext(sig)(s)), Vars(ext(sig)(t)))
= difference(union(Vars(s), Vars(t)), Dom(sig))

Similarly, the approach of formalization of the property of soundness is followed
in the theory robinsonunification in order to verify the lemmas below.

robinson_unif_algorithm_gives_unifier : LEMMA
unifiable(s,t) IFF
member(robinson_unif_algorithm(s, t), U(s, t))

robinson_unif_algorithm_gives_mg_subs : LEMMA
member(rho, U(s, t)) =>

robinson_unif_algorithm(s, t) <= rho

The former lemma states that the algorithm gives as output a unifier, whenever
the input terms are unifiable, and the latter lemma that the output is in fact an
mgu of the input unifiable terms. It is important to remark that completeness
of the unification algorithm holds, but for unifiable terms. The formaliza-
tion approach is extended for unifiable terms for the robinson unif algorithm
operator obtaining what it called here soundness. Both lemmas are proved by
induction on the measure of the operator robinson unif algorithm, that is the
cardinality of the set of variables occurring in the input terms.

In order to obtain completeness, two additional lemmas that distinguish the
selected fail substitution from any possible unifier are necessary. These lemmas
respectively state that, for unifiable inputs, the substitution built by the opera-
tor robinson unif algorithm has as domain a subset of variables occurring in
the input terms, and as range terms whose variables also range in this set and
that conform a set of variables disjoint from the domain. This distinguish the
substitution fail from any resolving substitutions.

rob_uni_alg_dom_subset_union_vars: LEMMA
unifiable(s, t) =>

LET sigma = robinson_unif_algorithm(s, t) IN
subset?(Dom(sigma), union(Vars(s), Vars(t)))

rob_uni_alg_dom_ran_disjoint: LEMMA
unifiable(s,t) =>

LET sigma = robinson_unif_algorithm(s, t) IN
subset?(VRan(sigma) ,

difference(union(Vars(s), Vars(t)), Dom(sigma)))

Also, it is necessary to formalize an auxiliary lemma that states that the algo-
rithm gives as output fail exactly when the input terms are not unifiable.

robinson_unif_algorithm_fails_iff_non_unifiable : LEMMA
NOT unifiable(s,t) IFF robinson_unif_algorithm(s,t) = fail

122 A.B. Avelar et al.

All previous lemmas were proved by induction on the cardinality of variables
occurring in the terms s and t.

The completeness theorem states that, for given terms s and t, the operator
robinson unif algorithm either returns fail or the mgu of these terms cor-
rectly. Its formalization follows easily from the previous lemmas on soundness
and failure.

completeness_robinson_unif_algorithm : THEOREM
IF unifiable(s,t) THEN mgu(robinson_unif_algorithm(s,t))(s,t)

ELSE robinson_unif_algorithm(s,t) = fail
ENDIF

Notice that in the specific approach to deal with failing cases given in the theory
robinsonunification, the property of idempotence is a simple corollary proved
as consequence of the selection of fail.

7 Related Work

To the best of our knowledge, the first formalization of the unification algorithm
was given by Paulson [16]. Paulson’s formalization of Manna and Waldinger’s
theory of unification was done in the theorem prover LCF and subsequently this
approach was followed by Konrad Slind in the theory Unify in the proof assistant
Isabelle/HOL from which an improved version called unification is available
now. Similarly to our approach, idempotence of the computed unifiers is unnec-
essary to prove neither termination nor correctness of the specified unification
algorithm.

In contrast with our termination proof, which is based on the fact that the
number of different variables occurring in the terms being unified decreases after
each step of the unification algorithm (Section 5), the termination proof of the
theory Unify is based on separated proofs of non-nested and nested termination
conditions and the unification algorithm is specified based on a specification of
terms built by a binary combinator operator.

Additional facts that make our formalization closer to the usual theory of
unification (algorithms) as presented in well-known textbooks (e.g., [14,2]), is
the decision to present terms as a data type built from variables and the operator
app that builds terms as an application of a function symbol (of a given arity)
to a sequence of terms with the right size. In this way, the substitution was
specified as a function from variables to terms and its homomorphic extension
is straightforward.

An algorithm similar to Robinson’s one was extracted from a formalization
done in the Coq proof assistant [18]. That formalization uses a generalized notion
of terms, that uses binary constructors in the style of Manna and Waldinger,
whose translation to the usual notation is not straightforward.

In [19], Ruiz-Reina et al presented a formalization in ACL2 of the correctness
of an implementation of an O(n2) run-time unification algorithm. The specifica-
tion is based on Corbin and Bidot’s development [6] as presented in [2] in which

Verification of the Completeness of Unification Algorithms 123

terms are represented as directed acyclic graphs (DAGs). The merit of this for-
malization is that by taking care of an specific data structure such as DAGs
for representing terms, the correctness proof results much more elaborated than
the current one. But here, the focus is to have a natural mechanical proof of the
completeness of any unification algorithm in the Robinson style, reusing the gen-
eral methodology for the verification of termination and soundness, which come
from the proof of existence of mgu’s for unifiable terms. Although the represen-
tation of terms is sophisticated (via DAGs), the refereed formalization diverges
from textbooks proofs of correctness of the unification algorithm in which it is
first-order restricted. In fact, instead of representing second-order objects such
as substitutions as functions from the domain of variables to the range of terms,
they are specified as first-order association lists. In our approach, taking the
decision to specify substitutions as functions allows us to apply all the theory
of functions available in the higher-order proof assistant PVS, which makes our
formalization very close to the ones available in textbooks.

Programming and proving are closely related in what concerns the construc-
tion of correct software. In fact, declarative programming style is much closer
to formal specification than imperative programming, and this permits one to
think about the extraction of executable code from a PVS specification. In [11], a
unification algorithm à la Robinson is specified, and functional code is generated
via a translator that is in its prototype stage. This specification of the unifica-
tion algorithm is proved sound and complete but it just claims that whenever
the given terms are unifiable, the output substitution is the most general one.
This property can be proved using the technology provided by our specification.

8 Conclusions and Future Work

The formalization of the theorem of existence of mgu’s for unifiable terms, pre-
viously developed in PVS, provides general proving techniques for the treatment
of the properties of termination and soundness of unification algorithms. For the
treatment of non necessarily unifiable terms, this methodology can be reused
taking into account how the exceptions or failing cases are specifically treated
by any algorithm. The application of the general methodology of verification of
completeness was illustrated by showing how verification is given for a speci-
fication of the unification algorithm in which the failing cases were (correctly)
detected and distinguished by giving as output a non-idempotent substitution.

Recently, in [5], a certified resolution algorithm for the propositional calculus
is extracted from a Coq specification. This specification uses the built in pattern
matching of the Coq proof assistant that is enough to deal with resolution in
the propositional calculus. An extension to first-order logic will requires first-
order unification and hence an explicit treatment of unification as presented
here. As future work, it is of great interest the extraction of certified unification
algorithms alone, or in several contexts of its possible applications such as the
ones of first-order resolution and of type inference. Notice that for doing this it
is essential to give constructive specifications such as the current one. Several

124 A.B. Avelar et al.

contributions on the extraction of executable code from PVS specifications were
given in [13], among others.

References

1. Avelar, A.B., de Moura, F.L.C., Ayala-Rincón, M., Galdino, A.: A Formalization
of The Existence of Most General Unifiers. Universidade de Braśılia (2010),
http://ayala.mat.unb.br/publications.html

2. Baader, F., Nipkow, T.: Term Rewriting and All That. CUP (1998)
3. Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems by TeReSe.

Cambridge Tracts in Theor. Comput. Sci., CUP, vol. 55 (2003)
4. Burris, S.N.: Logic for Mathematics and Computer Science. Prentice Hall, Engle-

wood Cliffs (1998)
5. Constable, R., Moczydlowski, W.: Extracting the resolution algorithm from a

completeness proof for the propositional calculus. Annals of Pure and Applied
Logic 161(3), 337–348 (2009)

6. Corbin, J., Bidoit, M.: A Rehabilitation of Robinson’s Unification Algorithm. In:
IFIP Congress, pp. 909–914 (1983)

7. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, Heidel-
berg (1984)

8. Galdino, A.L., Ayala-Rincón, M.: A Formalization of Newman’s and Yokouchi
Lemmas in a Higher-Order Language. J. of Form. Reasoning 1(1), 39–50 (2008)

9. Galdino, A.L., Ayala-Rincón, M.: A PVS Theory for Term Rewriting Systems. In:
Proceedings of the 3rd Workshop on Logical and Semantic Frameworks, with Ap-
plications (LSFA). Electr. Notes Theor. Comput. Sci., vol. 247, pp. 67–83. Elsevier,
Amsterdam (2009)

10. Galdino, A.L., Ayala-Rincón, M.: A Formalization of the Knuth-Bendix(-Huet)
Critical Pair Theorem. J. of Automated Reasoning, doi: 10.1007/s10817-010-9165-
2 (2010)

11. Jacobs, B., Smetsers, S., Schreur, R.W.: Code-carrying theories. Formal Asp. Com-
put. 19(2), 191–203 (2007)

12. Knuth, D.E., Bendix, P.B.: Simple Words Problems in Universal Algebras. In:
Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Perga-
mon Press, Oxford (1970)

13. Lensink, L., Muñoz, C., Goodloe, A.: From verified models to verifiable code.
Technical Memorandum NASA/TM-2009-215943, NASA, Langley Research Cen-
ter, Hampton VA 23681-2199, USA (June 2009)

14. Lloyd, J.W.: Foundations of Logic Programming. In: Symbolic Computation –
Artificial Intelligence, 2nd edn., Springer, Heidelberg (1987)

15. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verification System. In:
Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 748–752. Springer, Hei-
delberg (1992)

16. Paulson, L.C.: Verifying the Unification Algorithm in LCF. Science of Computer
Programming 5(2), 143–169 (1985)

17. Robinson, J.A.: A Machine-oriented Logic Based on the Resolution Principle. Jour-
nal of the ACM 12(1), 23–41 (1965)

18. Rouyer, J.: Développement de l’algorithme d’unification dans le calcul des con-
structions. Technical Report 1795, INRIA (1992)

19. Ruiz-Reina, J.-L., Mart́ın-Mateos, F.-J., Alonso, J.-A., Hidalgo, M.-J.: Formal Cor-
rectness of a Quadratic Unification Algorithm. J. of Automated Reasoning 37(1-2),
67–92 (2006)

http://ayala.mat.unb.br/publications.html

Mechanisation of PDA and Grammar Equivalence for
Context-Free Languages

Aditi Barthwal1 and Michael Norrish2,1

1 Australian National University
Aditi.Barthwal@anu.edu.au
2 Canberra Research Lab., NICTA

Michael.Norrish@nicta.com.au

Abstract. We provide a formalisation of the theory of pushdown automata
(PDAs) using the HOL4 theorem prover. It illustrates how provers such as HOL
can be used for mechanising complicated proofs, but also how intensive such a
process can turn out to be. The proofs blow up in size in way difficult to predict
from examining original textbook presentations. Even a meticulous text proof has
“intuitive” leaps that need to be identified and formalised.

1 Introduction

A context-free grammar provides a simple and precise mechanism for describing the
methods by which phrases in languages are built from smaller blocks, capturing the
“block structure” of sentences in a natural way. The simplicity of the formalism makes
it amenable to rigorous mathematical study. Context-free grammars are also simple
enough to allow the construction of efficient parsing algorithms using pushdown au-
tomata (PDAs). These “predicting machines” use knowledge about their stack contents
to determine whether and how a given string can be generated by the grammar. For ex-
ample, PDAs can be used to to build efficient parsers for LR grammars, some of which
theory we have already mechanised [1].

This paper describes the formalisation of CFGs (Section 2) and PDAs (Section 3)
using HOL4 [4], following Hopcroft & Ullman [2]. The formalisation of this theory is
not only interesting in its own right, but also gives insight into the kind of manipula-
tions required to port a pen-and-paper proof to a theorem prover. The mechanisation
proves to be an ideal case study of how intuitive textbook proofs can blow up in size,
and how details can change during formalisation. The crux of the paper is in Sections 4
and 5, describing the mechanisation of the result that the two formalisms are equivalent
in power.

The theory outlined in this paper is part of the crucial groundwork for bigger re-
sults such as the SLR parser generation cited above. The theorems, even though well-
established in the field, become novel for the way they have to be “reproven” in a
theorem prover. Proofs must be recast to be concrete enough for the prover: patching
deductive gaps which are easily grasped in a text proof, but beyond the automatic ca-
pabilities of the tool. The library of proofs, techniques and notations developed here
provides the basis from which further work on verified language theory can proceed at
a quickened pace.

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 125–135, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

126 A. Barthwal and M. Norrish

2 Context-Free Grammars

A context-free grammar (CFG) is represented in HOL using the following type
definitions:

symbol = NTS of ’nts | TS of ’ts
rule = rule of ’nts => (’nts, ’ts) symbol list
grammar = G of (’nts, ’ts) rule list => ’nts

(The => arrow indicates curried arguments to an algebraic type’s constructor. Thus, the
rule constructor is a curried function taking a value of type ’nts (the symbol at the
head of the rule), a list of symbols (giving the rule’s right-hand side), and returning an
(’nts,’ts) rule.)

Thus, a rule pairs a value of type ’nts with a symbol list. Similarly, a grammar
consists of a list of rules and a value giving the start symbol. Traditional presentations
of grammars often include separate sets corresponding to the grammar’s terminals and
non-terminals. It’s easy to derive these sets from the grammar’s rules and start symbol,
so we shall occasionally write a grammar G as a tuple (V, T, P, S) in the proofs to
come. Here, V is the list of non-terminals, T is the list of terminals, P is the list of
productions and S is the start symbol.

Definition 1. A list of symbols (or sentential form) s derives t in a single step if s is of
the form αAγ, t is of the form αβγ, and if A → β is one of the rules in the grammar.
In HOL:

HOL Definition 1
derives g lsl rsl ⇐⇒

∃ s1 s2 rhs lhs.
s1 ++ [NTS lhs] ++ s2 = lsl ∧ s1 ++ rhs ++ s2 = rsl ∧
rule lhs rhs ∈ rules g

(The infix ++ denotes list concatenation. The ε denotes membership.)

We write (derives g)∗ sf1 sf2 to indicate that sf2 is derived from sf1 in zero
or more steps, also written sf1 ⇒∗ sf2 (where the grammar g is assumed). This is con-
cretely represented using what we call derivation lists. If an arbitrary binary relation R
holds on adjacent elements of � which has x as its first element and y as its last element,
then this is written R � � � x → y . In the context of grammars, R relates senten-
tial forms. Later we will use the same notation to relate derivations in a PDA. Using the
concrete notation has simplified automating the proofs of many theorems. We will also
use the rightmost derivation relation, rderives, and its closure.

Definition 2. The language of a grammar consists of all the words (lists of only termi-
nal symbols) that can be derived from the start symbol.

HOL Definition 2
language g =

{ tsl | (derives g)∗ [NTS (startSym g)] tsl ∧ isWord tsl }

Mechanisation of PDA and Grammar Equivalence 127

3 Pushdown Automata

The PDA is modelled as a record containing the start state (start or q0), the start-
ing stack symbol (ssSym or Z0), list of final states (final or F) and the next state
transitions (final or δ).

pda =
<| start : ’state;

ssSym : ’ssym;
next : (’isym, ’ssym, ’state) trans list;
final : ’state list |>

The input alphabets (Σ), stack alphabets (Γ) and the states for the PDA (Q) can be
easily extracted from the above information. In the proofs, we will refer to a PDAM as
the tuple (Q,Σ, Γ, δ, q0, Z0, F) for easy access to the components. We have used lists
instead of sets to avoid unncessary finiteness constraints in our proofs.

The trans type implements a single transition. A transition is a tuple of an ‘op-
tional’ input symbol, a stack symbol and a state, and the next state along with the stack
symbols (possibly none) to be added onto the current stack. The trans type describes
a transition in the PDA’s state machine. The next field of the record is a list of such
transitions.

trans = (’isym option # ’ssym # ’state) # (’state # ’ssym list)

In HOL, a PDA transition in machineM is expressed using a binary relation on “instan-
taneous descriptions” of the tape, the machine’s stack, and its internal state. We write
M � (q,i::α,s) → (q ′,i ′,s ′) to mean that in state q , looking at input i with
stack s , M can transition to state q ′, with the input becoming i ′ and the stack becoming
s ′. The input i ′ is either the same as i::α (referred to as an ε move) or is equal to
α. Here, consuming the input symbol i corresponds to SOME i and ignoring the input
symbol is NONE in the trans type.

Using the concrete derivation list notation, we write ID M � � � x → y to
mean that the list � is a sequence of valid instantaneous descriptions for machine M ,
starting with description x and ending with y. Transitions are not possible in the state
where the stack is empty and only ε moves are possible in the state where the input is
empty. In this paper, we will consider the language “accepted by empty stack” (laes):1

Definition 3 (Language accepted “by empty stack”)

laes (M) = { w |M � (q0, w, Z0)→∗ (p, ε, ε) for some p in Q}

To be consistent with the notation in Hopcroft and Ullman, predicate laes is referred
to as N(M) in the proofs to follow. When the acceptance is by empty stack, the set of
final states is irrelevant, so we usually let the list of final states be empty.

1 In the background mechanisation we have proved that this language is equivalent to the other
standard notion: “accepted by final state”.

128 A. Barthwal and M. Norrish

In the remainder of the paper we focus on the equivalence of PDAs and CFGs. Con-
structing a PDA for a CFG is a straightforward process so instead we devote much of
the space to explaining the construction of a CFG from PDA and its equivalence proof.
In order to illustrate the huge gap between a textbook vs. theorem prover formalisation,
we try to follow Hopcroft and Ullman as closely as possible. As in the book, for the con-
struction of a PDA from a CFG, we assume the grammar is in Greibach normal form.

4 Constructing a PDA for a CFG

LetG = (V, T, P, S) be a context-free grammar in Greibach normal form generatingL.
We construct machineM such that M = (q, T, V, δ, q, S, φ), where δ(q, a, A) contains
(q, γ) whenever A → aγ is in P . Every production in a grammar that is in GNF has
to be of the form A → aα, where a is a terminal symbol and α is a string (possi-
bly empty) of non-terminal symbols (isGnf). The automaton for the grammar is con-
structed by creating transitions from the grammar productions, A → aα that read the
head symbol of the RHS (a) and push the remaining RHS (α) on to the stack. The ter-
minals are interpreted as the input symbols and the non-terminals are the stack symbols
for the PDA.

trans q (rule � r) = ((SOME (HD r),NTS �,q),q,TL r)
grammar2pda g q =
(let ts = MAP (trans q) (rules g) in

〈start := q; ssSym := NTS (startSym g); next := ts;
final := []〉)

(Here HD returns the first element in the list and TL returns the remaining list. Function
MAP applies a given function to each element of a list.)

The PDA M simulates leftmost derivations of G. Since G is in Greibach normal
form, each sentential form in a leftmost derivation consists of a string of terminals x
followed by a string of variables α. M stores the suffix α of the left sentential form on
its stack after processing the prefix x. Formally we show that

S
l⇒∗ xα by a leftmost derivation if and only if (q, x,A) →∗

M (q, ε, α) (1)

This turns out to be straightforward process in HOL and is done by representing the
grammar and the machine derivations using derivation lists. Let dl represent the gram-
mar derivation from S to xα and dl′ represent the derivation from (q, x,A) to (q, ε, α)
in the machine. Then an induction on dl gives us the “if” portion of (1) and induction
on dl′ gives us the “only if” portion of (1). Thus, we can conclude the following,

HOL Theorem 1
∀ g. isGnf g ⇒ ∃m. x ∈ language g ⇐⇒ x ∈ laes m

5 Constructing a CFG from a PDA

The CFG for a PDA is constructed by encoding every possible transition step in the
PDA as a rule in the grammar. The LHS of each production encodes the starting and

Mechanisation of PDA and Grammar Equivalence 129

final state of the transition while the RHS encodes the contents of the stack in the
final state.

Let M be the PDA (Q, δ, q0, Z0, φ) and Σ and Γ the derived input and stack alpha-
bets, respectively. We construct G = (V,Σ, P, S) such that V is a set containing the
new symbol S and objects of the form [q, A, p]; for q and p in Q, and A in Γ .

The productions P are of the following form: (Rule 1) S → [q0, Z0, q] for each
q in Q; and (Rule 2) [q, A, qm+1] → a[q1, B1, q2][q2, B2, q3]...[qm, Bm, qm+1] for
each q, q1, q2, ..., qm+1 in Q, each a in Σ ∪ {ε}, and A,B1, B2, ..., Bm in Γ , such that
δ(q, a, A) contains (q1, B1B2...Bm) (if m = 0, then the production is [q, A, q1] → a).
The variables and productions of G have been defined so that a leftmost derivation in
G of a sentence x is a simulation of the PDA M when fed the input x. In particular, the
variables that appear in any step of a leftmost derivation inG correspond to the symbols
on the stack of M at a time when M has seen as much of the input as the grammar has
already generated.

From text to automated text: For Rule 1 we only have to ensure that the state q is in
Q. On the other hand, there are multiple constraints underlying the statement of Rule 2
which will need to be isolated for mechanisation and are summarised below.

C2.1 The states q, q1 and p belong in Q (a similar statement for terminals and non-
terminals can be ignored since they are derived);

C2.3 the corresponding machine transition is based on the values of a andm and steps
from state q to some state q1 replacing A with B1...Bm;

C2.3 the possibilties of generating the different grammar rules based on whether a = ε,
m = 0 or a is a terminal symbol;

C2.4 if m > 1 i.e. more than one nonterminal exists on the RHS of the rule then
C2.4.1 α is composed of only nonterminals;
C2.4.2 a nonterminal is an object of the form [q, A, p] for PDA from-state q and

to-state p, and stack symbol A;
C2.4.3 the from-state of the first object is q1 and the to-state of the last object is

qm+1;
C2.4.4 the to-state and from-state of adjacent nonterminals must be the same;
C2.4.5 the states encoded in the nonterminals must belong to Q.

Whether we use a functional approach or a relational one, the succinctness of the above
definition is hard to capture in HOL. Using relations we can avoid concretely computing
every possible rule in the grammar and thus work at a higher level of abstraction. The
extent of details to follow are characteristic of mechanising such a proof. The relation
pda2grammar captures the restrictions on the rules for the grammar corresponding to
a PDA.

HOL Definition 3
pda2grammar M g ⇐⇒
pdastate (startSym g) /∈ statesList M ∧
set (rules g) = p2gStartRules M (startSym g) ∪ p2gRules M

The nonterminals are a tuple of a from-state, a stack symbol and a to-state, the states
and the stack symbols belonging to the PDA. As long as one of the components is not

130 A. Barthwal and M. Norrish

in the PDA, our start symbol will be new and will not overlap with the symbols con-
structed from the PDA. The first conjunct of pda2grammar ensures this. The function
p2gStartRules corresponds to Rule 1 and the function (p2gRules) ensures that
each rule conforms with Rule 2. As already mentioned, Rule 2 turns out to be more com-
plicated to mechanise due to the amount of detail hidden behind the concise notation.

The p2gRules predicate (see Figure 1) enforces the conditions C2.1, C2.2, C2.3
(capturing the four possibilities for a rule, A → ε; A → a, A → aα, where a is a
terminal symbol and A → α for nonterminals α).

HOL Definition 4
p2gRules M =

{rule (q,A,q1) [] | ((NONE,A,q),q1,[]) ∈ M.next} ∪
{rule (q,A,q1) [TS ts] |
((SOME (TS ts),A,q),q1,[]) ∈ M.next} ∪

{rule (q,A,p) ([TS ts] ++ L) |
L �= [] ∧
∃mrhs q1.

((SOME (TS ts),A,q),q1,mrhs) ∈ M.next ∧
ntslCond M (q1,p) L ∧ MAP transSym L = mrhs ∧
p ∈ statesList M } ∪

{rule (q,A,p) L |
L �= [] ∧
∃mrhs q1.

((NONE,A,q),q1,mrhs) ∈ M.next ∧ ntslCond M (q1,p) L ∧
MAP transSym L = mrhs ∧ p ∈ statesList M }

Fig. 1. Definition of p2gRules

Condition ntslCond captures C2.4 by describing the structure of the components
making up the RHS of the rules whenα is nonempty (i.e. has one or more nonterminals).
The component [q, A, p] is interpreted as a non-terminal symbol and q (frmState) and
p (toState) belong in the states of the PDA (C2.4.2), the conditions on q′ and ql that
reflects C2.4.3 condition on q1 and qm+1 respectively, C2.4.4 using relation adj and
C2.4.5 using the last conjunct.

HOL Definition 5
ntslCond M (q ′,ql) ntsl ⇐⇒
EVERY isNonTmnlSym ntsl ∧
(∀ e1 e2 p s. ntsl = p ++ [e1; e2] ++ s ⇒ adj e1 e2) ∧
frmState (HD ntsl) = q ′ ∧ toState (LAST ntsl) = ql ∧
(∀ e. e ∈ ntsl ⇒ toState e ∈ statesList M) ∧
∀ e. e ∈ ntsl ⇒ frmState e ∈ statesList M

(The ; is used to separate elements in a list and LAST returns the last element in a list.)

The constraints described above reflect exactly the information corresponding to the
two criteria for the grammar rules. On the other hand, it is clear that the automated
definition looks and is far more complex to digest. Concrete information that is eas-
ily gleaned by a human reader from abstract concepts has to be explicitly stated in a
theorem prover.

Mechanisation of PDA and Grammar Equivalence 131

Now that we have a CFG for our machine we can plunge ahead to prove the following.

Theorem 1. If L is N(M) for some PDA M , then L is a context-free language.

To show that L(G) = N(M), we prove by induction on the number of steps in a
derivation of G or the number of moves ofM that

(q, x,A) →∗
M (p, ε, ε) iff [q, A, p] l⇒∗

G x . (2)

5.1 Proof of the “if” portion of (2)

First we show by induction on i that if (q, x,A) →i (p, ε, ε), then [q, A, p]⇒∗ x.

HOL Theorem 2
ID M 	 dl � (q,x,[A]) → (p,[],[]) ∧ isWord x ∧
pda2grammar M g ⇒
(derives g)∗ [NTS (q,A,p)] x

Proof. The proof is based on induction on the length of dl . The crux of the proof is
breaking down the derivation such that a single stack symbol gets popped off after
reading some (possibly empty) input.

Let x = aγ and (q, aγ,A) → (q1, γ, B1B2...Bn) →i−1 (p, ε, ε). The single step is
easily derived based on how the rules are constructed. For the i− 1 steps, the induction
hypothesis can be applied as long as the derivations involve a single symbol on the
stack. The string γ can be written γ = γ1γ2...γn where γi has the effect of popping
Bj from the stack, possibly after a long sequence of moves. Note that B1 need not be
the nth stack symbol from the bottom during the entire time γ1 is being read by M .
In general, Bj remains on the stack unchanged while γ1, γ2...γj−1 is read. There exist
states q2, q3, ..., qn+1, where qn+1 = p, such that (qj , γj , Bj) →∗ (qj , ε, ε) by fewer
than imoves (qj is the state entered when the stack first becomes as short as n− j+1).
These observations are easily assumed by Hopcroft and Ullman or for that matter any
human reader. The more concrete construction for mechanisation is as follows.

Filling in the gaps: For a derivation of the form, (q1, γ, B1B2...Bn) →i (p, ε, ε), this
is asserted in HOL by constructing a list of objects (q0, γj, Bj , qn) (combination of the
object’s from-state, input, stack symbols and to-state), such that (q0, γj , Bj)→i (qn, ε),
where i > 0, γj is input symbols reading which stack symbol Bj gets popped off from
the stack resulting in the transition from state q0 to qn. The from-state of the first object
in the list is q1 and the to-state of the last object is p. Also, for each adjacent pair e1 and
e2 , the to-state of e1 is the same as the from-state of e2 . This process of popping off
theBj stack symbol turns out to be a lengthy one and is reflected in the proof statement
of HOL Theorem 3.

To be able to prove this, it is neccessary to provide the assertion that each derivation
in the PDA can be divided into two parts, such that the first part (list dl0) corresponds to
reading n input symbols to pop off the top stack symbol. This is our HOL Theorem 4.

The proof of above is based on another HOL theorem that if (q, γη, αβ) →i (q′, η, β)
then we can conclude (q, γ, α) →i (q′, ε, ε) (proved in HOL). This is a good example
of a proof where most of the reasoning is “obvious” to the reader. This when translated

132 A. Barthwal and M. Norrish

HOL Theorem 3
ID M 	 dl � (q,inp,stk) → (qf ,[],[]) ⇒
∃ �.

inp = FLAT (MAP tupinp �) ∧ stk = MAP tupstk � ∧
(∀ e. e ∈ MAP tuptost � ⇒ e ∈ statesList M) ∧
(∀ e. e ∈ MAP tupfrmst � ⇒ e ∈ statesList M) ∧
(∀ h t.

� = h::t ⇒
tupfrmst h = q ∧ tupstk h = HD stk ∧
tuptost (LAST �) = qf) ∧

∀ e1 e2 pfx sfx.
� = pfx ++ [e1; e2] ++ sfx ⇒
tupfrmst e2 = tuptost e1 ∧
∀ e.

e ∈ � ⇒
∃m.

m < |dl | ∧
NRC (ID M) m (tupfrmst e,tupinp e,[tupstk e])

(tuptost e,[],[])

(Relation NRC R m x y is the RTC closure of R from x to y in m steps.)

HOL Theorem 4
ID p 	 dl � (q,inp,stk) → (qf ,[],[]) ⇒
∃ dl0 q0 i0 s0 spfx.
ID p 	 dl0 � (q,inp,stk) → (q0,i0,s0) ∧ |s0 | = |stk | − 1 ∧
(∀ q ′ i ′ s ′. (q ′,i ′,s ′) ∈ FRONT dl0 ⇒ |stk | ≤ |s ′|) ∧
((∃ dl1.

ID p 	 dl1 � (q0,i0,s0) → (qf ,[],[]) ∧ |dl1 | < |dl | ∧
|dl0 | < |dl |) ∨

(q0,i0,s0) = (qf ,[],[]))

(Predicate FRONT � returns the list � minus the last element.)

into a theorem prover results in a cascading structure where one has to provide the
proofs for steps that are considered “trivial”. The gaps outlined here are just the start of
the bridging process between the text proofs and the mechanised proofs.

Proof resumed: Once these gaps have been taken care of, we can apply the inductive
hypothesis to get

[qj , Bj , qj+1]
l⇒∗ γj for 1 ≤ j ≤ n. (3)

This leads to, a[q1, B, q2][q2, B2, q3]...[qn, Bn, qn+1]
l⇒∗x.

Since (q, aγ,A)→ (q1, γ, B1B2...Bn), we know that

[q, A, p] l⇒ a[q1, B, q2][q2, B2, q3]...[qn, Bn, qn+1], so finally we can conclude that

[q, A, p] l⇒∗ aγ1γ2...γn = x.

Mechanisation of PDA and Grammar Equivalence 133

The overall structure of the proof follows Hopcroft and Ullman but for each assertion
made in the book, we have to provide concrete proofs before we can proceed any further.
These proofs were quite involved, only a small subset of which has been shown above
due to space restrictions.

5.2 Proof of the “only if” portion of (2)

Now suppose [q, A, p]⇒i x. We show by induction on i that (q, x,A) →∗ (p, ε, ε).

HOL Theorem 5
derives g 	 dl � [NTS (q,A,p)] → x ∧ q ∈ statesList M ⇒
isWord x ⇒
pda2grammar M g ⇒
M 	 (q,x,[A]) →∗ (p,[],[])

Proof. The basis, i = 1, is immediate, since [q, A, p] → x must be a production of G
and therefore δ(q, x,A) must contain (p, ε). Note x is ε or in Σ here. In the inductive
step, there are three cases to be considered. The first is the trivial case, [q, A, p] ⇒ a,
where a is a terminal. Thus, x = a and δ(q, a, A) must contain (p, ε). The other two
possibilities are, [q, A, p] ⇒ a[q1, B1, q2]...[qn, Bn, qn+1] ⇒i−1 x, where qn+1 = p
or [q, A, p] ⇒ [q1, B1, q2]...[qn, Bn, qn+1] ⇒i−1 x, where qn+1 = p. The latter case
can be considered a specialisation of the first one such that a = ε. Then x can be written
as x = ax1x2...xn, where [qj , Bj, qj+1] ⇒∗ xj for 1 ≤ j ≤ n and possibly a = ε.
This has to be formally asserted in HOL. Let α be of length n. If α ⇒ m β, then α
can be divided into n parts, α = α1α2...αn and β = β1β2...βn, such that αi ⇒ i βi in
i ≤ m steps.

HOL Theorem 6
derives g 	 dl � x → y ⇒
∃ �.

x = MAP FST � ∧ y = FLAT (MAP SND �) ∧
∀ a b.

(a,b) ∈ � ⇒
∃ dl ′. |dl ′| ≤ |dl | ∧ derives g 	 dl ′ � [a] → b

(The FLAT function returns the elements of (nested) lists, SND returns the second ele-
ment of a pair.)

InsertingBj+1...Bn at the bottom of each stack in the above sequence of ID’s gives us,

(qj , xj , BjBj+1...Bn) →∗ (qj+1, ε, Bj+1...Bn). (4)

The first step in the derivation of x from [q, A, p] gives us,

(q, x,A) → (q1, x1x2...xn, B1B2...Bn) (5)

is a legal move ofM . From this move and (4) for j = 1, 2, ..., n, (q, x,A) →∗ (p, ε, ε)
follows. In Hopcroft and Ullman, the above two equations suffice to deduce the result
we are interested in.

134 A. Barthwal and M. Norrish

Unfortunately, the sequence of reasoning here is too coarse-grained for HOL4 to han-
dle. The intermediate steps need to be explicitly stated for the proof to work out using
a theorem prover. These steps can be further elaborated as follows.2 By our induction
hypothesis,

(qj , xj , Bj) →∗ (qj+1, ε, ε). (6)

Now consider the first step, if we insert x2...xn after input x1 andB2...Bn at the bottom
of each stack, we see that

(q1, x1...xn, B1...Bn) →∗ (p, ε, ε). (7)

Another fact that needs to be asserted explicitly is reasoning for (7).
This is done by proving the affect of inserting input/stack symbols on the PDA tran-

sitions. Now from the first step, (5) and (7), (q, x,A) →∗ (p, ε, ε) follows.

Equation (2) with q=q0 andA=Z0 says [q0, Z0, p] ⇒∗ x iff (q0, x, Z0) →∗ (p, ε, ε).
This observation, together with Rule 1 of the construction of G, says that S ⇒∗ x if
and only if (q0, x, Z0) →∗ (p, ε, ε) for some state p. That is, x is in L(G) if and only
if x is in N(M) and we have

HOL Theorem 7
pda2grammar M g ∧ isWord x ⇒
((derives g)∗ [NTS (startSym g)] x ⇐⇒

∃ p. M 	 (M.start,x,[M.ssSym]) →∗ (p,[],[]))

To avoid the above being vacuous, we additionally prove the following:

HOL Theorem 8
INFINITE U(:δ) ⇒ ∀m. ∃ g. pda2grammar m g

The INFINITE condition is on the type of state in the PDA. This is necessary to be
a able to choose a fresh state (not in the PDA) to create the start symbol of the grammar
as mentioned before.

6 Related Work and Conclusions

In the field of language theory, Nipkow [3] provided a verified and executable lexical
analyzer generator. This work is the closest in nature to the mechanisation we have
done.

A human reader is not concerned with issues such as finiteness of sets which have
to be dealt with explicitly in a theorem prover. The form of definitions (relations vs.
functions) has a huge impact on the size of the proof as well as the ease of automation.
These do not necessarily overlap. A number of what we call “gap” proofs have been
omitted due to space restrictions. These “gaps” cover the deductive steps that get omit-
ted in a textbook proof and the intermediate results needed because of the particular
mechanisation technique. Formalisation of a theory results in tools, techniques and an
infrastructure that forms the basis of verifying tools based on the theory for example

2 Their HOL versions can be found as part of the source code.

Mechanisation of PDA and Grammar Equivalence 135

parsers, compilers, etc. Working in a well understood domain is useful in understand-
ing the immense deviations that automation usually results in. More often than not the
techniques for dealing with a particular problem in a domain are hard to generalise. The
only solution in such cases is to have an extensive library at one’s call.

The mechanised theory of PDAs is ∼9000 lines and includes various closure proper-
ties of CFGs such as union, substitution and inverse homomorphism. It took 6 months
to complete the work which includes over 600 lemmas/theorems. HOL sources for the
work are available at http://users.rsise.anu.edu.au/˜aditi/.

Acknowledgements. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

References

1. Barthwal, A., Norrish, M.: Verified, executable parsing. In: Castagna, G. (ed.) ESOP 2009.
LNCS, vol. 5502, pp. 160–174. Springer, Heidelberg (2009)

2. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, Reading (1979)

3. Nipkow, T.: Verified lexical analysis. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS,
vol. 1479, pp. 1–15. Springer, Heidelberg (1998)

4. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008); See also the
HOL website at http://hol.sourceforge.net

http://users.rsise.anu.edu.au/~aditi/
http://hol.sourceforge.net

On the Role of the Complementation Rule for

Data Dependencies over Incomplete Relations

Flavio Ferrarotti1, Sven Hartmann2, and Sebastian Link1

1 School of Information Management, Victoria University of Wellington, New Zealand
2 Institut für Informatik, Technische Universität Clausthal, Germany

Abstract. Recently, an axiomatization for functional dependencies
(FDs) and multivalued dependencies (MVDs) has been established where
arbitrary attributes can be specified as NOT NULL. That is, the infor-
mation stored over such attributes must not be incomplete. The axiom-
atization subsumes previous axiomatizations of FDs and MVDs where
every attribute is declared to be NOT NULL, and where no attribute is
declared to be NOT NULL. We establish axiomatizations which under-
pin formally the intuition that the complementation rule is a mere means
of database normalization. The results unburden the existing theory of
the strong assumption that all attributes are known at the time when
the dependencies are specified. The findings extend and unify previous
results for the special cases above.

1 Introduction

A database system manages a collection of persistent information in a shared,
reliable, effective and efficient way. Most commercial database systems are still
founded on the relational model of data [10]. Data administrators utilize various
classes of data dependencies to restrict the relations in the database to those
considered meaningful to the application at hand. According to [12] functional
dependencies (FDs) capture around two-thirds, and multivalued dependencies
(MVDs) around one-quarter of all uni-relational dependencies (those defined
over a single relation schema) that arise in practice. In particular, MVDs are
frequently exhibited in database applications [37], e.g. after denormalization or
in views [1]. While research on this topic has been extensive, only very recently
a theory has been established that can reason about FDs and MVDs exhibited
by relations that satisfy arbitrary NOT NULL constraints [21].

Example 1. Consider a table SUPPLIES with column headers A(rticle),
S(upplier), L(ocation) and C(ost). The table collects information about suppliers
that deliver articles from a location at a certain cost.

CREATE TABLE Supplies
(Article CHAR[20],
Supplier VARCHAR NOT NULL,
Location VARCHAR NOT NULL,
Cost CHAR[8]);

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 136–147, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Role of the Complementation Rule for Data Dependencies 137

Suppose the database management system enforces the following constraints:
The FD A→ S says that for every article there is a most one supplier, the FD
AL→ C says that the costs are determined by the article and the location, and
the MVD S � AC says that the supplier determines the article and cost pairs
independently of the location. Do the following meaningful constraints also need
to be enforced explicitly, or are they already enforced implicitly: i) the MVD
A � L and ii) the FD A→ C? ��

Indeed, the declaration of Supplier and Location as NOT NULL guarantees that
both A � L and A → C are implied by A → S; AL → C and S � AC.
However, reasoning about FDs and MVDs in the presence of an arbitrary null-
free subschema (NFS), i.e. the set of attributes declared NOT NULL, is subtle.
For example, if S is not declared NOT NULL, then neither the FD nor the MVD
is implied. Consequently, the opportunity to specify an arbitrary NFS provides
the data administrator with a flexible mechanism to control the expressiveness
of the consequence relation. Dedicated tools for reasoning about FDs and MVDs
in the presence of arbitrary NFSs have been established [21]. The set

D = {RF,DF,UF,UM, TM, CR
M, IFM, TFM}

of inference rules from Table 1 is a finite axiomatization [21].

Example 2. Let R = ASLC, Rs = SL, Σ = {A→ S;AL → C;S � AC} as in
Example 1. The inference

A→ S S � AC

IFM : A � S CR
M : S � L RF : A→ A

TM : A � L IFM : A � A
UM : A � AL AL→ C
TFM : A→ C

shows that A � L and A→ C can be inferred from Σ by D. Since D is sound,
in particular, it follows that both dependencies are implied by Σ. ��

The inference in Example 2 can be criticized in two different aspects. When
inferring MVDs, then applications of the R-complementation rule CR

M should be
restricted to the very last step of the inference (if necessary at all). The ability
to have inferences with this property for all implied MVDs would establish an
axiomatization that appropriately reflects the database normalization process.
Moreover, for every implied FD there should be an inference with no applications
of the R-complementation rule CR

M at all. The desirability of these two features
has already been motivated and axiomatizations with these features have been
established for the special cases where every attributes is NOT NULL [8,9,29]
and where every attribute is NULL [30]. In this paper, we will show that the
axiomatization D has neither of these features. Subsequently, we will establish a
finite axiomatization with both features. The results provide a unifying frame-
work for all previous findings on these issues.

138 F. Ferrarotti, S. Hartmann, and S. Link

Example 3. Suppose the four attributes Article, Supplier, Location and Cost
only constitute the fragment of a view that we are currently aware of. That is,
the underlying schema information is undetermined. Therefore, applications of
the MVD complementation rule are not sound in this setting since the underlying
universe is no longer known. For example, while the MVD S � AC implies the
MVD S � L over the schema Supplies, S � AC does not imply S � L when
the schema is undetermined. Consequently, if S � L is perceived as a meaningful
semantic constraint that must be enforced by the DBMS, then we need to specify
this MVD explicitly as well. ��

As a second contribution of this paper we establish a finite axiomatization for the
combined class of FDs, MVDs and arbitrary null-free subschema over undeter-
mined universes. Again, this result subsumes all previous findings on this subject,
in particular the special case where every attribute is NOT NULL [8,9,29] and
the special case where every attribute is NULL [30].

Organization. We summarize previous work in Section 2. The basic definitions
are given in Section 3. In Section 4 we establish an axiomatization of FDs and
MVDs in the presence of an arbitrary NFS that enjoys both of the features.
We establish an axiomatization over undetermined universes in Section 5. We
conclude in Section 6.

2 Related Work

Data dependencies have been studied thoroughly in the relational model of
data, cf. [1]. Applications comprise almost the full range of database topics,
e.g. normalization, requirements engineering and schema validation, data min-
ing, database security, view maintenance and query optimization. They have
received considerable attention in other data models as well . New application
areas involve data cleaning, data transformations, consistent query answering,
data exchange and data integration.

FDs capture around two-thirds and MVDs around one-quarter of all uni-
relational dependencies that arise in applications [12,37]. For total relations, Arm-
strong [3] established the first axiomatization for FDs. Beeri, Fagin, and Howard
extended this axiomatization to the combined class of FDs and MVDs [6]. Biskup
[8], Link [29] and Biskup/Link [9] studied notions of FD and MVD implication
where the underlying set of attributes is not fixed. In the same papers, axioma-
tizations were presented that clarify the role of the R-complementation rule as
a mere means of database normalization [8,9,29]. In general, axiomatizations can
be applied by designers and administrators to validate the specification of explicit
knowledge, to design and fine-tune databases or to optimize queries. An axiom-
atization ensures that all opportunities of utilizing implicit knowledge have been
exploited. An analysis of the completeness argument can provide invaluable hints
for finding algorithms that efficiently decide the implication problem.

One of the most important extensions of Codd’s basic relational model [10]
is incomplete information [11,23,26]. This is mainly due to the high demand for

On the Role of the Complementation Rule for Data Dependencies 139

the correct handling of such information in real-world applications. Approaches
to deal with incomplete information comprise incomplete relations, or-relations
or fuzzy relations. In this paper we focus on incomplete relations. In the liter-
ature many kinds of null values have been proposed; for example, “missing” or
“value unknown at present” [15], “non-existence” [31], “inapplicable” [15], “no
information” [38] and “open” [14]. Most of the previous work on data depen-
dencies is based on Zaniolo’s no-information interpretation. This interpretation
is valid for most database instances that occur in practice, since SQL allows
only one unmarked null value. Consequently, the no information interpretation
can model missing as well as incomplete information. Only recently, the set
D = {RF,DF,UF,UM, TM, CR

M, IFM, TFM} was shown to form an axiomatization
for the combined class of FDs and MVDs in the presence of an arbitrary null-free
subschema Rs [21], cf. Table 1. Moreover, it was shown [21] that the implication
of FDs and MVDs in the presence of an arbitrary NFS Rs is equivalent to that
of a fragment in Cadoli and Schaerf’s Rs-3 logics [32]. The theory has unified
previously orthogonal frameworks. For example, Beeri, Fagin and Howard’s ax-
iomatization [6] is covered when every attribute is NOT NULL, i.e. whenRs = R.
Lien’s axiomatization [27] is subsumed as the special case where every attribute
is NULL, i.e., when Rs = ∅. Finally, Atzeni and Morfuni’s axiomatization [4]
AM = {RF,DF,UF, TF} for FDs in the presence of an arbitrary NFS Rs is also
subsumed. Link [30] presented an axiomatization for the class of MVDs that
clarifies the role of the R-complementation rule, but only for the special case
where every attribute is NOT NULL.

3 Preliminaries

We summarize the basic notions of data dependencies over partial relations.
Let A = {A1, A2, . . .} be a (countably) infinite set of distinct symbols, called

attributes (column names). A relation schema is a finite non-empty subset R
of A. Each attribute A of a relation schema R is associated with an infinite
domain dom(A) which represents the possible values that can occur in column
A. To encompass incomplete information every column may have a null value,
denoted by ni ∈ dom(A). The intention of ni is to mean “no information”. This
interpretation can model missing as well as incomplete information [4,38].

For attribute setsX and Y we may writeXY for X∪Y . IfX = {A1, . . . , Am},
then we may write A1 · · ·Am for X . In particular, we may write simply A to
represent the singleton {A}. A tuple over R (R-tuple or simply tuple, if R is
understood) is a function t : R →

⋃
A∈R

dom(A) with t(A) ∈ dom(A) for all

A ∈ R. The null value occurrence t(A) = ni associated with an attribute A in
a tuple t means that no information is available about the attribute A for the
tuple t. For X ⊆ R let t[X] denote the restriction of the tuple t over R to X .
A (partial) relation r over R is a finite set of tuples over R. Let t1 and t2 be
two tuples over R. It is said that t1 subsumes t2 if for every attribute A ∈ R,
t1[A] = t2[A] or t2[A] = ni holds. In consistency with previous work [4,27,38],
the following restriction will be imposed, unless stated otherwise: No relation

140 F. Ferrarotti, S. Hartmann, and S. Link

shall contain two tuples t1 and t2 such that t1 subsumes t2. With no null values
present this means that no duplicate tuples occur.

For a tuple t over R and a set X ⊆ R, t is said to be X-total if for all A ∈ X ,
t[A] �= ni. Similar, a relation r over R is said to be X-total, if every tuple t of r
is X-total. A relation r over R is said to be a total relation if it is R-total.

We recall projection and join operations [4,27]. Let r be some relation over R.
Let X be some subset of R. The projection r[X] of r on X is the set of tuples t
for which (i) there is some t1 ∈ r such that t = t1[X] and (ii) there is no t2 ∈ r
such that t2[X] subsumes t and t2[X] �= t. For Y ⊆ X , the Y -total projection
rY [X] of r on X is rY [X] = {t ∈ r[X] | t is Y -total}. Given an X-total relation
r over R and an X-total relation s over S such that X = R∩ S the natural join
r �� s of r and s is the relation over R ∪ S which contains those tuples t for
which there are tuples t1 ∈ r and t2 ∈ s with t1 = t[R] and t2 = t[S] [4,27].

Functional dependencies are important for the relational [5,7,10] and other
data models [2,16,17,18,19,20,22,24,25,28,33,34,35,36]. According to Lien [27],
a functional dependency with nulls (FD) over R is a statement X → Y where
X,Y ⊆ R. The FDX → Y overR is satisfied by a relation r overR (|=r X → Y)
if and only if for all t1, t2 ∈ r the following holds: if t1 and t2 are X-total and
t1[X] = t2[X], then t1[Y] = t2[Y]. For total relations the FD definition reduces
to the standard definition of a functional dependency [1], and so is a sound
generalization. It is also consistent with the no-information interpretation [4,27].

In fact, tuples with nulls in attributes in X cannot cause a violation of the FD
X → Y : the nulls mean that no information is available about those attributes.
Two X-total tuples t1, t2 where t1[X] = t2[X] and t2 is A-total while t1 is not,
violate any FD X → Y with A ∈ Y : t1 indicates that no information is available
about the value for A associated with t1[X], while t2 indicates that the value
for A associated with t2[X] = t1[X] does exist. Hence, it violates the natural
requirement of an FD that if the values for X are the same for two tuples, both
tuples must contain the same information for the attributes in Y .

According to Lien [27], a multivalued dependency with nulls (MVD) over R
is a statement X � Y where X,Y ⊆ R. The MVD X � Y over R is satisfied
by a relation r over R (|=r X � Y) if and only if for all t1, t2 ∈ r the following
holds: if t1 and t2 are X-total and t1[X] = t2[X], then there is some t ∈ r such
that t[XY] = t1[XY] and t[X(R− Y)] = t2[X(R− Y)]. Informally, the relation
r satisfies X � Y when every X-total value determines the set of values on Y
independently of the set of values on R−Y . It has been shown that |=r X � Y
if and only if rX [R] = rX [XY] �� rX [X(R−Y)] [27]. Again, the MVD definition
is a sound generalization of the standard definition over total relations [13].

Following Atzeni and Morfuni [4], a null-free subschema (NFS) over the re-
lation schema R is a an expression Rs where Rs ⊆ R. The NFS Rs over R is
satisfied by a relation r over R (|=r Rs) if and only if r is Rs-total. SQL al-
lows the specification of attributes as NOT NULL, cf. Example 1. Hence, the
set of attributes declared NOT NULL forms the single NFS over the underlying
relation schema.

On the Role of the Complementation Rule for Data Dependencies 141

For a set Σ of constraints over some relation schema R, we say that a relation
r over R satisfies Σ (|=r Σ) if r satisfies every σ ∈ Σ. If for some σ ∈ Σ the
relation r does not satisfy σ we say that r violates σ (and violates Σ) and write
�|=r σ (�|=r Σ). We will consider different classes C of constraints over a single
relation schema, e.g. FDs and MVDs.

In schema design data dependencies are normally specified as semantic con-
straints on the relations intended to be instances of the schema.

During the design process or the lifetime of a database one usually needs to
determine further dependencies which are implied by the given ones. Let R be
a relation schema, let Rs ⊆ R denote an NFS over R, and let Σ ∪ {ϕ} be a set
of data dependencies over R in the class C. We say that Σ R-implies ϕ in the
presence of Rs (Σ |=R

Rs
ϕ) if every relation r over R that satisfies Σ and Rs also

satisfies ϕ. If Σ does not R-imply ϕ in the presence of Rs we may also write
Σ �|=R

Rs
ϕ.

For a set Σ of data dependencies in C over a relation schema R and an NFS
Rs over R, let Σ∗

(R,Rs) = {ϕ ∈ C | Σ |=R
Rs
ϕ} be its semantic closure. In order to

determine the logical consequences of a set of FDs and MVDs with respect to
R-implication one can utilise a syntactic approach by applying inference rules,
e.g. those in Table 1. These inference rules have the form

premise
conclusion

condition,

and inference rules without any premises are called axioms. An inference rule is
called sound for the R-implication of dependencies in the presence of an NFS,
if whenever the set of dependencies in the premise of the rule and the NFS
are satisfied by some relation over R and the dependencies and NFS satisfy
the conditions of the rule, then the relation also satisfies the dependency in the
conclusion of the rule. For a finite set Σ ∪ {ϕ} of dependencies and a set R of
inference rules let Σ �R ϕ denote the inference of ϕ from Σ by R. That is,
there is some sequence γ = [σ1, . . . , σn] of dependencies such that σn = ϕ and
for every σi is an element of Σ or results from an application of an inference rule
in R to some dependencies in {σ1, . . . , σi−1}. For a finite set Σ of dependencies
in C, let Σ+

R = {ϕ | Σ �R ϕ} be its syntactic closure under inferences by R.
A set R of inference rules is said to be sound (complete) for the R-implication
of dependencies in C in the presence of an NFS if for every relation schema R,
for every NFS Rs over R and for every set Σ of dependencies in C over R we
have Σ+

R ⊆ Σ∗
(R,Rs) (Σ∗

(R,Rs) ⊆ Σ+
R). The (finite) set R is said to be a (finite)

axiomatization for the R-implication of dependencies in C in the presence of an
NFS if R is both sound and complete for the R-implication of dependencies in
C in the presence of an NFS.

4 Appropriate Reasoning

The goal of this section is to establish an axiomatization for the R-implication
of FDs and MVDs in the presence of an NFS that enjoys the features described

142 F. Ferrarotti, S. Hartmann, and S. Link

in the introduction. For this purpose we assume that sets R of inference rules do
not contain rules that are dependent on the underlying relation schema R with
the exception of the R-complementation rule CR

M. First we extend the notion of
an appropriate inference system [9] to the presence of an arbitrary NFS.

Definition 1. Let R denote a set of inference rules that is complete for the
R-implication of FDs and MVDs in the presence of an NFS.

R is said to be complementary for the R-implication of FDs and MVDs if
for every relation schema R, for every NFS Rs over R, for every set Σ of FDs
and MVDs over R, and for every MVD ϕ over R such that ϕ is R-implied by
Σ in the presence of Rs there is an inference of ϕ from Σ by R in which the
R-complementation rule CR

M is applied at most once and if it is applied, then it
is applied only in the very last step of the inference.

R is said to be adequate for the R-implication of FDs and MVDs if for every
relation schema R, for every NFS Rs over R, for every set Σ of FDs and MVDs
over R, and for every FD ϕ over R such that ϕ is R-implied by Σ in the presence
of Rs there is an inference of ϕ from Σ by R in which the R-complementation
rule CR

M is not applied at all.
R is said to be appropriate for the R-implication of FDs and MVDs in the

presence of an NFS if R is complementary and adequate. ��

The next result illustrates that the properties of complementarity and adequacy
cannot be taken for granted.

Theorem 1. D is neither complementary nor adequate for the R-implication of
FDs and MVDs in the presence of an NFS. ��

An immediate question is whether there exist any axiomatizations that are com-
plementary and/or adequate. Before we can give an affirmative answer to this
question, we introduce additional inference rules that we will require to identify
such axiomatizations.

Lemma 1. The additive null transitivity rule T ∗
M, null subset rule SM and mixed

null subset rule SFM are sound for the R-implication of FDs and MVDs in the
presence of an NFS. ��

We are now ready to present our first main result. For this purpose let

U = {RF,DF,UF,UM, T ∗
M, TM,SM, IFM, TFM,SFM}

and let F = U ∪ {CR
M}. The completeness of D implies the completeness of F,

and Lemma 1 shows that F is an axiomatization for the R-implication of FDs
and MVDs in the presence of an NFS. We will now show that F is appropriate.
The proof is constructive in the sense that it can be utilized to transform any
inference that does not enjoy the features into an inference that does.

Theorem 2. Let Σ be a set of FDs and MVDs over relation schema R, and
Rs ⊆ R. For every inference γ from Σ by the system D there is an inference ξ
from Σ by the system F with the following properties:

On the Role of the Complementation Rule for Data Dependencies 143

Table 1. Inference rules for FDs and MVDs in the presence of an NFS Rs

XY → Y

X → Y Z

X → Y
(reflexivity, RF) (decomposition, DF)

X → Y ; X → Z

X → Y Z

X → Y ; Y → Z

X → Z
Y ⊆ XRs

(FD union, UF) (null transitivity, TF)

X � Y ; X � Z

X � Y Z

X � W ; Y � Z

X � ZW
Y ⊆ X(W ∩ Rs)

(MVD union, UM) (additive null transitivity, T ∗
M)

X � W ; Y � Z

X � Z − W
Y ⊆ X(W ∩ Rs)

X � W ; Y � Z

X � Z ∩ W
Y ⊆ XRs; (Y − X) ∩ W = ∅

(null pseudo-transitivity, TM) (null subset, SM)

X � Y

X � R − Y
(R-complementation, CR

M)

X → Y

X � Y

X � W ; Y → Z

X → Z ∩ W
Y ⊆ XRs; (Y − X) ∩ W = ∅

(implication, IFM) (null mixed subset, SFM)

X � W ; Y → Z

X → Z − W
Y ⊆ X(W ∩ Rs)

(null mixed pseudo-transitivity, TFM)

1. if γ infers an MVD, then
– γ and ξ infer the same MVD,
– in ξ the R-complementation rule is applied at most once, and
– if the R-complementation rule is applied in ξ, then it is applied as the

last rule.
2. if γ infers an FD, then

– γ and ξ infer the same FD, and
– in ξ the R-complementation rule is not applied at all. ��

As an example of Theorem 2 we illustrate how the inappropriate inferences by
the system D from Example 2 can be replaced by appropriate inferences by the
system F.

Example 4. Let R = ASLC, Rs = SL, Σ = {A→ S;AL → C;S � AC} as in
Example 2. First we show an inference of the MVD A � L from Σ and Rs that
utilizes the R-complementation rule CR

M only in the last step.

144 F. Ferrarotti, S. Hartmann, and S. Link

A→ S
IFM : A � S S � AC

T ∗
M : A � ACS

CR
M : A � L

Next we show an inference of the FD A → C from Σ and Rs that does not
require any application of the R-complementation rule CR

M.

A→ S

IFM : A � S S � AC
T ∗

M : A � ACS AL→ C
SFM : A→ C

For the application of the null mixed subset rule SFM note that AL ⊆ ALS and
(AL−A)∩ACS = ∅ hold. In particular, the example showcases applications of
the additive null transitivity rule T ∗

M and the null mixed subset rule SFM. ��

Corollary 1. F is an appropriate finite axiomatization for the R-implication of
FDs and MVDs in the presence of an NFS. ��

Among others Theorem 2 shows that U is nearly complete for the R-implication
of FDs and MVDs in the presence of an NFS. Indeed, U enables us to infer
every R-implied FD. Moreover, for every R-implied MVD X � Y the system U
enables us to infer X � Y itself or X � R− Y .

Corollary 2. Let Σ ∪ {ϕ} be a finite set of FDs and MVDs over the relation
schema R. Then

– If ϕ denotes an FD, then: ϕ ∈ Σ+
F if and only if ϕ ∈ Σ+

U .
– If ϕ denotes the MVD X � Y , then: X � Y ∈ Σ+

F if and only if X � Y ∈
Σ+

U or X � (R− Y) ∈ Σ+
U . ��

Another interpretation of Corollary 2 is the following: if U is utilized to infer
FDs, then the underlying universe does not need to be fixed at all; and if U is
utilized to infer MVDs, then the fixing of a universe can be deferred until the
very last step of the inference.

5 Undetermined Universes

The system U is almost complete for the R-implication of FDs and MVDs in the
presence of an NFS. We show now that if we do not fix a relation schema R,
then U is actually complete for the corresponding notion of implication.

FDs, MVDs and NFSs are syntactical expressions as before, but their attribute
sets are finite subsets of our countably infinite set A. Let Dom(r) denote the
domain of a relation r, i.e., the set of attributes over which the relation is defined.
For an FD or MVD σ let lhs(σ) and rhs(σ) denote the attribute sets on the left-
hand side and right-hand side, respectively. That is, lhs(σ) = X and rhs(σ) = Y

On the Role of the Complementation Rule for Data Dependencies 145

if σ denotes the MVD X � Y or the FD X → Y . Let Attr(σ) denote the set of
attributes that occur in σ, i.e., Attr(σ) = lhs(σ)∪ rhs(σ). A relation r is said to
satisfy the FD X → Y if XY ⊆ Dom(r) and for all tuples t1, t2 ∈ r the following
holds: if t1[X] = t2[X] and t1 is X-total, then t1[Y] = t2[Y]. A relation r is said
to satisfy the MVD X � Y if Attr(σ) ⊆ Dom(r) and for all tuples t1, t2 ∈ r the
following holds: if t1[X] = t2[X] and t1 is X-total, then there is some t ∈ r such
that t[XY] = t1[XY] and t[X(Dom(r) − Y)] = t2[X(Dom(r) − Y)]. Finally, a
relation r satisfies the NFS Rs if Rs ⊆ Dom(r) and r is Rs-total.

Definition 2. Let Σ ∪{ϕ} be a set of FDs and MVDs and Rs an NFS. We say
that Σ implies ϕ in the presence of Rs if and only if every relation r satisfies
the following condition: if ∪σ∈ΣAttr(σ)∪Attr(ϕ)∪Rs ⊆ Dom(r) and r satisfies
all σ ∈ Σ and Rs, then r also satisfies ϕ. ��
The notions of soundness and completeness are simply adapted to the context
of undetermined universes by dropping the reference to the underlying relation
schema R from the corresponding notions in the context of fixed universes.

Let Σ ∪ {ϕ} be a set of FDs and MVDs, Rs an NFS, and let R be some
relation schema such that ∪σ∈ΣAttr(σ)∪Attr(ϕ)∪Rs ⊆ R holds. Based on the
definition of an MVD and FD, respectively, the following hold:

1. If ϕ denotes an MVD, then Σ R-implies ϕ in the presence of Rs whenever
Σ implies ϕ in the presence of Rs, but not necessarily vice versa.

2. If ϕ denotes an FD, then Σ R-implies ϕ in the presence of Rs if and only if
Σ implies ϕ in the presence of Rs.

Next we illustrate that R-implication of an MVD does not necessarily entail the
implication of the MVD.

Example 5. The MVD S � A,C Supplies-implies the MVD S � L in the
presence of Rs = ∅, but S � A,C does not imply S � L in the presence of Rs:

Supplier Article Cost Location Quantity
Taratua&Co Kea ni Gisborne 2
Taratua&Co Kea ni Wellington 3

.

��
We are now able to state our second main result of this paper.

Theorem 3. The set U is a finite axiomatization for the implication of FDs
and MVDs in the presence of an NFS over undetermined universes. ��

6 Conclusion

We have established two finite axiomatizations of functional and multivalued
dependencies over attribute sets in which arbitrarily many attributes can be
declared NOT NULL. The axiomatizations capture the notion of semantic im-
plication over fixed and undetermined universes, respectively. Together, they
provide strong formal evidence for the intuition that the complementation rule
is a mere means of database normalization. The results generalize several previ-
ous findings on the subject.

146 F. Ferrarotti, S. Hartmann, and S. Link

Acknowledgement

This research is supported by the Marsden fund council from Government fund-
ing, administered by the Royal Society of New Zealand. The second author is
supported by a research grant of the Alfried Krupp von Bohlen and Halbach
foundation, administered by the German Scholars organization.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Arenas, M., Libkin, L.: A normal form for XML documents. ACM Trans. Database
Syst. 29(1), 195–232 (2004)

3. Armstrong, W.W.: Dependency structures of database relationships. Information
Processing 74, 580–583 (1974)

4. Atzeni, P., Morfuni, N.: Functional dependencies and constraints on null values in
database relations. Information and Control 70(1), 1–31 (1986)

5. Beeri, C., Bernstein, P.: Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979)

6. Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and
multivalued dependencies in database relations. In: SIGMOD Conference, pp. 47–
61. ACM, New York (1977)

7. Bernstein, P.: Synthesizing third normal form relations from functional dependen-
cies. ACM Trans. Database Syst. 1(4), 277–298 (1976)

8. Biskup, J.: Inferences of multivalued dependencies in fixed and undetermined uni-
verses. Theor. Comput. Sci. 10(1), 93–106 (1980)

9. Biskup, J., Link, S.: Appropriate reasoning about data dependencies in fixed and
undetermined universes. In: FoIKS Conference, pp. 58–77 (2006)

10. Codd, E.F.: A relational model of data for large shared data banks. ACM Com-
mun. 13(6), 377–387 (1970)

11. Codd, E.F.: Extending the database relational model to capture more meaning.
ACM Trans. Database Syst. 4(4), 397–434 (1979)

12. Delobel, C., Adiba, M.: Relational database systems. North Holland, Amsterdam
(1985)

13. Fagin, R.: Multivalued dependencies and a new normal form for relational
databases. ACM Trans. Database Syst. 2(3), 262–278 (1977)

14. Gottlob, G., Zicari, R.: Closed world databases opened through null values. In:
VLDB Conference, pp. 50–61. IEEE Computer Society, Los Alamitos (1988)

15. Grant, J.: Null values in a relational data base. Inf. Process. Lett. 6(5), 156–157
(1977)

16. Hartmann, S., Kirchberg, M., Link, S.: A subgraph-based approach towards func-
tional dependencies for XML. In: SCI Conference, pp. 200–205 (2003)

17. Hartmann, S., Koehler, H., Link, S., Trinh, T., Wang, J.: On the notion of an
XML key. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2008. LNCS, vol. 4925,
pp. 114–123. Springer, Heidelberg (2008)

18. Hartmann, S., Link, S.: Characterising nested database dependencies by fragments
of propositional logic. Ann. Pure Appl. Logic 152(1-3), 84–106 (2008)

19. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009)

On the Role of the Complementation Rule for Data Dependencies 147

20. Hartmann, S., Link, S.: Numerical constraints on XML data. Inf. Comput. 208(5),
521–544 (2010)

21. Hartmann, S., Link, S.: When data dependencies over SQL tables meet the Logics
of Paradox and S-3. In: PODS Conference (2010)

22. Hartmann, S., Link, S., Schewe, K.-D.: Weak functional dependencies in higher-
order data models. In: Seipel, D., Turull-Torres, J.M.a. (eds.) FoIKS 2004. LNCS,
vol. 2942, pp. 134–154. Springer, Heidelberg (2004)

23. Imielinski, T., Lipski Jr, W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

24. Langeveldt, W., Link, S.: Empirical evidence for the usefulness of Armstrong re-
lations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3),
352–374 (2010)

25. Levene, M., Loizou, G.: Axiomatisation of functional dependencies in incomplete
relations. Theor. Comput. Sci. 206(1-2), 283–300 (1998)

26. Levene, M., Loizou, G.: Database design for incomplete relations. ACM Trans.
Database Syst. 24(1), 80–125 (1999)

27. Lien, E.: On the equivalence of database models. J. ACM 29(2), 333–362 (1982)
28. Link, S.: Consistency enforcement in databases. In: Bertossi, L., Katona, G.O.H.,

Schewe, K.-D., Thalheim, B. (eds.) Semantics in Databases 2001. LNCS, vol. 2582,
pp. 122–143. Springer, Heidelberg (2003)

29. Link, S.: Charting the completeness frontier of inference systems for multivalued
dependencies. Acta Inf. 45(7-8), 565–591 (2008)

30. Link, S.: On the implication of multivalued dependencies in partial database rela-
tions. Int. J. Found. Comput. Sci. 19(3), 691–715 (2008)

31. Mikinouchi, A.: A consideration on normal form of not-necessarily-normalised re-
lation in the relational data model. In: VLDB Conference, pp. 447–453 (1977)

32. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artif. Intell. 74,
249–310 (1995)

33. Toman, D., Weddell, G.: On keys and functional dependencies as first-class citizens
in description logics. J. Autom. Reasoning 40(2-3), 117–132 (2008)

34. Vincent, M., Liu, J., Liu, C.: Strong functional dependencies and their application
to normal forms in XML. ACM Trans. Database Syst. 29(3), 445–462 (2004)

35. Weddell, G.: Reasoning about functional dependencies generalized for semantic
data models. ACM Trans. Database Syst. 17(1), 32–64 (1992)

36. Wijsen, J.: Temporal FDs on complex objects. ACM Trans. Database Syst. 24(1),
127–176 (1999)

37. Wu, M.: The practical need for fourth normal form. In: ACM SIGCSE Conference,
pp. 19–23 (1992)

38. Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1), 142–
166 (1984)

Decidability and Undecidability Results

on the Modal μ-Calculus
with a Natural Number-Valued Semantics

Alexis Goyet1, Masami Hagiya2, and Yoshinori Tanabe3

1 Ecole Normale Supérieure
2 University of Tokyo

3 National Institute of Informatics, Japan

Abstract. In our previous study, we defined a semantics of modal μ-
calculus based on min-plus algebra N∞ and developed a model-checking
algorithm. N∞ is the set of all natural numbers and infinity (∞), and
has two operations min and plus. In our semantics, disjunctions are inter-
preted by min and conjunctions by plus. This semantics allows interesting
properties of a Kripke structure to be expressed using simple formulae.
In this study, we investigate the satisfiability problem in the N∞ se-
mantics and show decidability and undecidability results: the problem is
decidable if the logic does not contain the implication operator, while it
becomes undecidable if we allow the implication operator.

1 Introduction

The modal μ-calculus, which uses fixed-point operators, can express various
properties of Kripke structures, such as reachability and the existence of infinite
paths, both accurately and simply [1].

To enhance the expressiveness of the modal μ-calculus, attempts have been
made to define semantics that interpret formulae through algebra using richer
structures than those used in the standard semantics (i.e., interpreting formu-
lae as true or false). For example, De Morgan algebras are used to express the
logics that allows uncertainty or inconsistency, and model checking techniques
have been explored [2,3]. Heyting-valued Kripke structures are also investigated
in connection with the intuitionistic logic [4]. In the researches of weighted au-
tomata [5,6], weights are taken from semirings.

We have proposed a semantics of modal μ-calculus in which the truth values
of formulae are members of N∞ = N∪{∞} [7]. N∞ is an algebra called min-plus
algebra with two binary operations, one is taking the minimum and the other
the sum. The algebraic properties of min-plus algebras have been extensively
studied and they have been applied to solve problems in formal language the-
ory, such as the finite power property problem [8]. They are also widely used to
analyze discrete event systems, optimization, etc. [9]. What is important in our

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 148–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Decidability and Undecidability Results on the Modal μ-Calculus 149

context is that a min-plus algebra is a commutative dioid, which can be regarded
as a generalization of Boolean algebra. Thus, we have naturally decided that in
our N∞ semantics, the disjunction is interpreted by the min operator, which
corresponds to the join operator of the Boolean algebra, and the conjunction is
interpreted by the plus operator, which corresponds to the meet operator. The
truth and the falsehood are also naturally interpreted by 0 and ∞, respectively.
Using this semantics, various quantitative values of Kripke structure can be rep-
resented by formulae of the modal μ-calculus, such as the shortest path between
two states or the number of states that satisfies a property.

Let L be the modal μ-calculus with our N∞ semantics and L− the sublogic of
L in that the implication operator does not appear. The model checking problem
and the satisfiability problem are two fundamental problems of the modal μ-
calculus. We have established a solution to the former for L− [7] and for L [10].
In this paper, we investigate the latter. In the N∞ semantics, the truth value
�ϕ�K(s) of a formula ϕ at a state s of a Kripke structure K is an element of N∞.
The satisfiability problem in this semantics can be stated as to decide whether
there is a Kripke structure K and its state s such that �ϕ�K(s) = 0.

We have two main results. One is that the satisfiability problem of L is unde-
cidable. We prove this by reducing Post’s correspondence problem [11]. The main
reason of this undecidability is that one can compare truth values of two formu-
lae. In fact, we show that the following extension of the satisfiability problem for
L− is undecidable: for given closed formulae ϕ and ψ of L−, determine whether
there is a Kripke structure K and its state s such that �ϕ�K(s) = �ψ�K(s). The
undecidability result for L directly follows from this fact.

The other is that the satisfiability problem of L− is decidable. We show this
by reducing the problem to the satisfiability problem of the modal μ-calculus
with the standard semantics. To achieve this, for closed formula ϕ of L−, we
define its translation, namely, formulae tr(ϕ, 0) and tr(ϕ,∞) of the standard
modal μ-calculus such that �tr(ϕ, 0)�K(t) = 0 is realized (i.e., ϕ is satisfiable)
if and only if tr(ϕ, 0) is satisfiable and �tr(ϕ,∞)�K(t) = ∞ is realized if and
only if tr(ϕ,∞) is satisfiable. The difficulty lies in the case of tr(νXϕ,∞). In
the standard semantics, refuting νXϕ amounts to finding a witness that ϕ is
false with finitely many repetitions. This no longer holds for the N∞ semantics,
because an infinite sum of finite values (truth) can be infinite (falsehood). The
key fact to overcome the difficulty is that the value of νXϕ is infinite if and only if
the following conditions are satisfied: (1) the claim that the value may be infinite
cannot be refuted through infinitely many repetitions and (2) a witness that
shows the value must be positive can be obtained after finitely many repetitions.

The remainder of this paper is organized as follows. In Section 2, the vari-
ants of the modal μ-calculus considered in this paper are introduced and the
N∞-semantics is defined. In Section 3, the undecidability result is presented. In
Section 4, we define the translation and describe an outline of the decidability
result. Section 5 concludes the paper.

150 A. Goyet, M. Hagiya, and Y. Tanabe

�false�ρ(t) = ∞ �1�ρ(t) = 1 �p�ρ(t) = L(p, t) �X�ρ(t) = ρ(X, t)

�ψ1 ∨ ψ2�
ρ(t) = min(�ψ1�

ρ(t), �ψ2�
ρ(t)) �ψ1 ∧ ψ2�

ρ(t) = �ψ1�
ρ(t) + �ψ2�

ρ(t)

�ψ1 → ψ2�
ρ(t) = �ψ2�

ρ(t) .− �ψ1�
ρ(t) �¬ψ�ρ(t) = �ψ → false�ρ(t)

�♦ψ�ρ(t) = min(�ψ�ρ(t′) | (t, t′) ∈ R) ��ψ�ρ(t) =
∑

(�ψ�ρ(t′) | (t, t′) ∈ R)

�μXψ�ρ(t) = inf{Fα(t) | α ∈ On}, where Fα(t′) = inf{�ψ�ρ[X �→Fβ](t′) | β < α}
�νXψ�ρ(t) = sup{Gα(t) | α ∈ On}, where Gα(t′) = sup{�ψ�ρ[X �→Gβ](t′) | β < α}

Fig. 1. Value of formulae

2 Preliminaries

2.1 Syntax and Semantics

Let PS be the set of propositional symbols and PV be the set of propositional
variables. The formulae of language L is defined as follows:

ϕ ::= false | 1 | p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | ¬ϕ | ♦ϕ | �ϕ | μXϕ | νXϕ

where p ∈ PS and X ∈ PV. All occurrences of X in μXϕ and νXϕ must be
positive in ϕ. The sublogic L− of L consists of all the formulae in which the
operator “→” does not appear. (Note that the negation operator still exists in
L− although it could be defined in terms of the implication operator.)
K = (T,R, L) is a Kripke structure for L if T is a set, R ⊆ T × T , and L :

PS×T → N∞. The set of Kripke structures for L is denoted by KSL. T , R, and
L are written as |K|, K.R, and K.L, respectively. A function ρ : PV× T → N∞
is called a valuation.

For formula ϕ of L and t ∈ T , the value �ϕ�K,ρ(t) ∈ N∞ of ϕ at t is given in
Figure 1. K and/or ρ are omitted if they are clear from the context. In the figure,
On is the class of ordinal numbers. For any function f , f [a '→ b] is the function
g whose domain is dom(f) ∪ {a}, and whose values are defined by g(a) = b and
g(x) = f(x) for any x ∈ dom(f) \ {a}.

Because N∞ is only a commutative dioid and not a Boolean algebra, one of
the distributive laws �ϕ∨ (ψ1 ∧ψ2)�(t) = �(ϕ∨ψ1)∧ (ϕ∨ψ2)�(t) does not hold,
although the other, �ϕ∧ (ψ1 ∨ψ2)�(t) = �(ϕ∧ψ1)∨ (ϕ∧ψ2)�(t), does hold. Also,
�¬�ϕ�(t) = �♦¬ϕ�(t) does not necessarily hold if a state has infinite successors.
The definition for the implication is similar to the definition in Heyting-valued
models for the intuitionistic logic. (Note that a .− b for a, b ∈ N∞ is the smallest
x ∈ N∞ that satisfies b + x ≥ a.) The definition for the negation is defined
naturally using the implication.

We introduce a set AV that consists of the four “abstract” values of N∞: Zer,
Fin, Pos, and Inf. Their meanings are given by a function γ : AV → P(N∞)
defined by γ(Zer) = {0}, γ(Inf) = {∞}, γ(Pos) = N∞ \ {0}, and γ(Fin) =
N∞ \ {∞}.

Decidability and Undecidability Results on the Modal μ-Calculus 151

Let a ∈ AV. A closed formula ϕ of L is a-satisfiable if there is K ∈ KSL and
t ∈ |K| such that �ϕ�K(t) ∈ γ(a). Formula ϕ is satisfiable if it is Zer-satisfiable.

For each p ∈ PS, we consider new propositional symbols p0 and p∞, and
denote the set of all such symbols by PS′: PS′ = {p0 | p ∈ PS} ∪ {p∞ | p ∈ PS}.
Let Mod′ be the set of two new modality symbols “1” and “∞:” Mod′ = {1,∞}.
We denote the standard modal μ-calculus with propositional symbols PS′ and
modality symbols Mod′ by L′: its formulae are defined by:

ϕ ::= p′ | X | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈m〉ϕ | [m]ϕ | μXϕ | νXϕ

where p′ ∈ PS′, m ∈ Mod′, and X is a propositional variable. Again, X must
be positive in μXϕ and νXϕ. The semantics of L′ is defined through Kripke
structures K′ = (S,R′, L′) where S is a set, R′ : Mod′ → P(S × S), and L′ :
PS′ → P(S), in the standard manner [1,12]. (For each m ∈ Mod′, R′(m) is the
transition relation for m.) The set of Kripke structure for L′ is denoted by KSL′ .
The satisfaction relation is denoted by K′, s |= ϕ′ for s ∈ S and formula ϕ′ of L′.
We then have all classical relations such as s |= ¬(ϕ′ ∨ ψ′) ⇐⇒ s |= ¬ϕ′ ∧¬ψ′.

We need to introduce a few notations. Let ϕ be a formula of L or L′. The
symbol σ is used to stand for either fixed-point operator, μ or ν. If the binding
formula of propositional variableX in a given formula ϕ is σXψ, we denote σXψ
by BF(X), ψ by BFS(X), and σ by σX . Variable X is called a μ-variable (resp.
ν-variable) if σX = μ (resp. σX = ν). The set of μ-variables (resp. ν-variables) is
denoted by PVμ (resp. PVν). When ψ1 is a subformula of ψ2, we write ψ1 ≤ ψ2.
For X,Y ∈ PV, we write X (Y if BF(X) ≤ BF(Y), and X ≺ Y if X (Y and
X �= Y .

2.2 Application of the Semantics

Using this semantics, any natural number-valued function defined on the state
space of Kripke structures by using fixed-point operations with addition and
taking the minimum as basic operations can be represented by a formula of the
modal μ-calculus. Examples of values calculated using such a function contain
the shortest path, the proof number in a game tree, or the number of states that
satisfies a particular property. Examples are also found in data flow analysis.

For example, the shortest path from a state s to a state that satisfies p is
�μX(p ∨ ♦(1 ∧X))�(s). For more discussion, refer to Section 4 of [13].

3 Undecidability

In this section, we prove that the problem of whether two formulae of L− can
be of equal value is undecidable. From this fact, it directly follows that the
satisfiability problem of logic L is undecidable.

Let us give names to related problems. FORMEQ is the following problem:
for two given formulae ϕ and ψ of L−, decide whether there is a Kripke struc-
ture K = (S,R,L) and s ∈ S such that �ϕ�K(s) = �ψ�K(s). FORMLEQ is

152 A. Goyet, M. Hagiya, and Y. Tanabe

the problem obtained from FORMEQ by replacing �ϕ�K(s) = �ψ�K(s) with
�ϕ�K(s) ≤ �ψ�K(s).

We will show that both FORMEQ and FORMLEQ are undecidable by reduc-
ing Post’s correspondence problem PCP [11] of alphabet {0, 1} to these prob-
lems. As an intermediate problem, we introduce EQFIN, which is to decide,
for given formulae ϕ1, . . . , ϕk and ψ1, . . . , ψk of L−, whether there is a Kripke
structure K = (S,R,L) and s ∈ S such that �ϕi�

K(s) = �ψi�
K(s) <∞ for every

i = 1, . . . , k.
Let m be a natural number and ϕ be a formula in L. We define formula m

by 0 = true and m+ 1 = m ∧ 1. Here, true is an abbreviation for ¬false.
Formula m ∗ ϕ is defined by 0 ∗ ϕ = true and m ∗ ϕ = ((m − 1) ∗ ϕ) ∧ ϕ. We
have �m�(t) = m and �m ∗ ϕ�(t) = m · (�ϕ�(t)).

Lemma 1. EQFIN can be reduced to FORMEQ and FORMLEQ.

Proof. Assume that formulae ϕi and ψi are given for i = 1, . . . , k.
Let ϕ′

i = (2 ∧ ϕi) ∨ (¬ϕi) and ψ′
i = (2 ∧ ψi) ∨ (1 ∧ ¬ψi). We then have

�ϕ′
i�(t) = �ψ′

i�(t) if and only if �ϕi�(t) = �ψi�(t) <∞.
Let ϕ′ be (ϕ′

1∧ψ′
1)∧· · ·∧(ϕ′

k ∧ψ′
k) and ψ′ be 2∗ (ϕ′

1∨ψ′
1)∧· · ·∧2∗ (ϕ′

k ∨ψ′
k).

Clearly �ϕ′�(t) ≤ �ψ′�(t) if and only if �ϕ′�(t) = �ψ′�(t) if and only if for all
i = 1, . . . , k, �ϕ′

i�(t) = �ψ′
i�(t), which is equivalent to �ϕi�(t) = �ψi�(t) <∞.

Our remaining task is to reduce PCP to EQFIN. Assume that finite number
of pairs (α1, β1), . . . , (αn, βn) of words from alphabet {0, 1} are given. We need
to decide whether there exists a non-empty sequence i1, . . . , im of indices such
that αi1 · · ·αim = βi1 · · ·βim . Without loss of generality, we can assume that
(αi, βi) �= (αj , βj) if i �= j.

We will introduce a few definitions and notations. A formula ϕ is a condition
if for any Kripke structure K = (S,R,L) and s ∈ S, �ϕ�K(s) is either 0 or ∞. A
sequence of states (si)i is a path if (si, si+1) ∈ R for all i such that si and si+1

are defined.
For any word α, its reversed word is denoted by ←−α . We define c(α) as the

value of←−α regarded as a binary number, and d(α) as 2|α|, where |α| is the length
of α. For example, c(10110) = 011012 = 13 and d(10110) = 25 = 32. Note that
α is uniquely determined from c(α) and d(α).

We will now introduce several formulae to describe properties of sequences of
the pairs. Their definitions are given in Figure 2, where p ∈ PS, x ∈ N, and pT,
pE, pCA, pDA, pCB, and pDB are different fixed propositional symbols.

Their intended meanings are as follows: Geq(p, x) has the value 0 if there is a
path that starts from an adjacent state to the current state, that is of length x,
and that reaches to a node where the value of p is finite. Eq(p, x) has the value
0 if x is the maximum length of such paths. These are conditions.

In a Kripke structure, some nodes represents a pair (αi, βi). The propositional
symbol pT is used to mark states. They form a sequence, and pE is used to
mark the end of the sequence. We need to express that these states actually
form a sequence, i.e., they do not branch or form a cycle. For this purpose, we
use Formulae NumTiles and LenTiles. Consider an unwound tree of the states

Decidability and Undecidability Results on the Modal μ-Calculus 153

Geq(p, 0) = true Geq(p, x + 1) = ♦(¬¬p ∧ Geq(p, x))

Eq(p, x) = Geq(p, x) ∧ ¬Geq(p, x + 1)

NumTiles = νX(¬pT ∨ (¬¬pT ∧ 1 ∧ �X))

LenTiles = νX(¬pT ∨ (¬¬pT ∧ 1 ∧ ♦X))

Tile(α, β) = ¬¬pT ∧ ¬pE ∧ Eq(pC
A, c(α)) ∧ Eq(pD

A, d(α)) ∧ Eq(pC
B, c(β)) ∧ Eq(pD

B , d(β))

StrA = μX((1 ∧ ¬¬pE) ∨
n∨

i=1

(Tile(αi, βi) ∧ c(αi) ∧ (d(αi) ∗ ♦X)))

StrB = μX((1 ∧ ¬¬pE) ∨
n∨

i=1

(Tile(αi, βi) ∧ c(βi) ∧ (d(βi) ∗ ♦X)))

Fig. 2. Formulae used in EQFIN

that hereditarily satisfy pT beginning at state s. Then, �NumTiles�(s) equals
the number of the nodes of the tree and �LenTiles�(s) is the depth of the tree.
Therefore, the states with pT form a finite list if and only if �NumTiles�(s) =
�LenTiles�(s) <∞.

When �Tile(α, β)�(s) = 0 for a state s, we consider that s represents a pair
(α, β). Note that for any state s, there is at most one such pair (α, β).

If �pE�(s) < ∞, then �StrA�(s) = 1. On the other hand, if �pE�(s) = ∞
and �Tile(αi, βi)�(s) = 0, then �StrA�(s) = c(αi) + d(αi) · min{�StrA�(s′) |
(s, s′) ∈ R}). Therefore, the |αi| least significant bits of the binary expression
of number �StrA�(s) is ←−αi. Suppose that states s1, . . . , sm, sEND forms a list,
1 ≤ i1, . . . , im ≤ n, �Tile(αij , βij)�(sj) = 0 for j = 1, . . . ,m, �pE�(sEND) = 0,
�pT�(s) =∞ if s �∈ {s1, . . . , sm}, and �pE�(s) = ∞ if s �= sEND. Then, the binary
expression of �StrA�(s1) is 1←−−−−−−−αim · · ·αi1 and that of �StrB�(s1) is 1

←−−−−−−−
βim · · ·βi1 .

Lemma 2. PCP can be reduced to EQFIN.

Proof. We only give a proof sketch here based on the intended meanings of the
formulae mentioned above.

As an instance of EQFIN, we take the following pairs of formulae: (ϕ1, ψ1) =
(NumTiles,LenTiles), (ϕ2, ψ2) = (StrA, StrB), and (ϕ3, ψ3) = (¬pE, true).

Suppose that there is a Kripke structure K = (S,R,L) and s ∈ S such that
�ϕl�

K(s) = �ψl�
K(s) < ∞ for l = 1, 2, 3. By the equation for l = 1, there

exists a sequence of states s1, . . . , sm that satisfy pT and that forms a list. By
the equation for l = 2, for each j = 1, . . . ,m, there is a unique index ij such
that �Tile(αij , βij)�(sj) = 0, and we have 1←−−−−−−−αim · · ·αi1 = 1

←−−−−−−−
βim · · ·βi1 . Therefore,

αi1 · · ·αim = βi1 · · ·βim . Finally, the equation for l = 3 guarantees m ≥ 1.
If there is a sequence of indices i1, . . . , im such that αi1 · · ·αim = βi1 · · ·βim ,

we construct a Kripke structure K = (S,R,L) and s ∈ S such that �ϕi�
K(s) =

�ψi�
K(s) < ∞, as illustrated in Figure 3, where L is defined as follows: for

p = pT and p = pE, L(p, s) = 0 if p is marked in the circle for that s in the
figure; otherwise, L(p, s) = ∞. For y ∈ {C,D}, ξ ∈ {A,B}, j ∈ {1, . . . ,m}, and

154 A. Goyet, M. Hagiya, and Y. Tanabe

Fig. 3. Kripke structure for EQFIN

k ∈ N, L(py
ξ , s

k
j) = 0 if k ≤ y(ξij); otherwise, L(py

ξ , s
k
j) =∞. Using the intended

meanings of the formulae, one can see that �ϕl�(s1) = �ψl�(s1) < 0 holds for
l = 1, 2, 3.

By combining Lemmas 1 and 2, we have:

Theorem 1. Problems FORMEQ and FORMLEQ are undecidable.

Corollary 1. The satisfiability problem of L is undecidable.

Proof. FORMLEQ can be reduced to the satisfiability problem of L: for given
formulae ϕ and ψ of L−, ϕ → ψ is a formula in L and �ϕ�(t) ≤ �ψ�(t) is
equivalent to �ϕ→ ψ�(t) = 0.

4 Decidability

It can be shown that the satisfiability problem of L− is decidable. In this paper,
however, due to the page limitation, we will not give its proof for which an
interested reader can refer to [14]. Instead, the intuition is presented in this
section.

4.1 Outline of the Decidability Proof

Let ϕ be a closed formula in L− and a ∈ AV. We want to decide whether there
is K ∈ KSL and t ∈ |K| such that �ϕ�K(t) ∈ γ(a). For this purpose, we introduce
a translation (Section 4.2): for a closed formula ϕ of L− and a ∈ AV, a closed
formula tr(ϕ, a) is defined so that the following theorem holds:

Theorem 2. ϕ is a-satisfiable if and only if tr(ϕ, a) is satisfiable.

This theorem gives a decision procedure for L−, because L′ is decidable.
We introduce a concept called (ϕ, a)-simulation between (K, t) and (K′, s),

where K ∈ KSL, K′ ∈ KSL′ , t ∈ |K|, and s ∈ |K′|. With regard to the simulation,
we can prove the following lemma (Lemmas 8-10 of [14]).

Decidability and Undecidability Results on the Modal μ-Calculus 155

Lemma 3
(1) If the simulation exists, we have �ϕ�K(t) ∈ γ(a) ⇐⇒ K′, s |= tr(ϕ, a).
(2) If formula ϕ of L− is a-satisfiable, then there exist K, K′, t, s, and (ϕ, a)-

simulation between (K, t) and (K′, s) such that �ϕ�K(t) ∈ γ(a).
(3) If formula ψ of L′ is satisfiable, then there exist K, K′, t, s, and (ϕ, a)-

simulation between (K, t) and (K′, s) such that K′, s |= ψ.

Theorem 2 immediately follows from Lemma 3: if ϕ is a-satisfiable, we find,
by (2), K, K′, t, s and a simulation such that �ϕ�K(t) ∈ γ(a), and we have
K′, s |= tr(ϕ, a) by (1). The other direction is shown using (3).

We will not give the definition of the simulation, which is rather complex.
Instead, we just mention here that the simulation guarantees the correspondence
between the number of the successors in K and the modality of the successor
in K′; if the former is finite, the latter should be 1 (∈ Mod′), and if the former
is infinite, the latter should be ∞ (∈ Mod′). For example, suppose a (�ϕ, Inf)-
simulation exists between (K, t) and (K′, s), and t ∈ |K| has successors ti for all
i ∈ N. If �ϕ�(ti) = 1 for all i ∈ N, then, ��ϕ�(t) = ∞. In this case, s has an ∞-
successor s′ (i.e., (s, s′) ∈ R(∞)) such that s′ |= tr(ϕ,Pos). On the other hand,
if �ϕ�(t0) = ∞ and �ϕ�(ti) = 0 for all i ∈ N \ {0}, then s has an 1-successor s′

such that s′ |= tr(ϕ, Inf). By referring to Figure 4 in the next section, you can
see that s |= tr(�ϕ, Inf) holds in both cases.

4.2 Translation

Let us denote the set of functions from PV × AV to {0, 1, 2, 3} by V . In order
to define tr(ϕ, a), we first define tr(ϕ, a, V) for V ∈ V as in Figure 4. Then, the
translation tr(ϕ, a) is defined as tr(ϕ, a, VI), where VI is defined by VI(X, a) = 0
for all X and a. For translation examples, refer to the appendix. In the rest of
this section, we explain the intuition of the translation.

For a given closed formula ψ, we define two translations tr(ψ,Zer, V) and
tr(ψ, Inf, V), where ψ is a subformula of ϕ. These are formulae of L−; the former
means �ϕ�(t) = 0, the latter �ϕ�(t) = ∞. The other two formulae tr(ϕ,Pos, V)
and tr(ϕ,Fin, V) appearing in Figure 4 are their negations. Let us temporarily
ignore the third parameter V .

We consider the propositional symbols p0 and p∞ as expressions of �p�(t) = 0
and �p�(t) =∞, respectively. With this in mind, the first line of Figure 4 can be
read naturally. The translations of 1 are also natural.

Let us skip the propositional variable X . The translations of negation, dis-
junction, and conjunction are natural from the definitions in Figure 1.

For the diamond and box operations, the two modalities introduced in L′

distinguish situations with finite successors from those with infinite successors.
For example, consider tr(�ψ, Inf), which means ��ψ�(t) = ∞. There are two
cases. In one case, there is a successor t′ of t that satisfies �ψ�(t′) = ∞. In the
other case, there are infinitely many successors t′ of t such that �ψ�(t′) > 0. This
observation leads to the definition in Figure 4.

156 A. Goyet, M. Hagiya, and Y. Tanabe

tr(p, Zer, V) = p0 ∧ ¬p∞. tr(p,Pos, V) = ¬p0 ∨ p∞.
tr(p, Inf, V) = ¬p0 ∧ p∞. tr(p, Fin, V) = p0 ∨ ¬p∞.
tr(1, Zer, V) = tr(1, Inf, V) = false. tr(1, Fin, V) = tr(1, Pos, V) = true.
tr(X, a, V) = tr(BF(X), a, V).

tr(¬ψ, Zer, V) = tr(¬ψ, Fin, V) = tr(ψ, Inf, V [(X, a) �→ 3 | V (X, a) = 2]).
tr(¬ψ, Pos, V) = tr(¬ψ, Inf, V) = tr(ψ, Fin, V [(X, a) �→ 3 | V (X, a) = 2]).

tr(ψ1 ∨ ψ2, a, V) =

{
tr(ψ1, a, V) ∨ tr(ψ2, a, V) if a ∈ {Zer, Fin}.
tr(ψ1, a, V) ∧ tr(ψ2, a, V) if a ∈ {Inf, Pos}.

tr(ψ1 ∧ ψ2, a, V) =

{
tr(ψ1, a, V) ∧ tr(ψ2, a, V) if a ∈ {Zer, Fin}.
tr(ψ1, a, V) ∨ tr(ψ2, a, V) if a ∈ {Inf, Pos}.

tr(♦ψ, a, V) =

{
〈1〉tr(ψ, a, V) ∨ 〈∞〉tr(ψ, a, V) if a ∈ {Zer, Fin}.
[1]tr(ψ, a, V) ∧ [∞]tr(ψ, a, V) if a ∈ {Inf, Pos}.

tr(�ψ, a, V) =

{
[1]tr(ψ, a, V) ∧ [∞]tr(ψ,Zer, V) if a ∈ {Zer, Fin}.
〈1〉tr(ψ, a, V) ∨ 〈∞〉tr(ψ,Pos, V) if a ∈ {Inf, Pos}.

If V (X, a) = 1 or V (X, a) = 2, tr(μXψ, a, V) = tr(νXψ, a, V) = Xa.
If V (X, a) = 3, tr(μXψ, a, V) = tr(νXψ, a, V) = Xneg.
If V (X, a) = 0,

tr(μXψ, a, V) =

{
μXa tr(ψ, a, V ′[(X, a) �→ 1]) if a ∈ {Zer, Fin}.
νXa tr(ψ, a, V ′[(X, a) �→ 1]) if a ∈ {Inf , Pos}.

tr(νXψ, Zer, V) = νXZer tr(ψ, Zer, V ′[(X, Zer) �→ 1]).
tr(νXψ, Pos, V) = μXPos tr(ψ, Pos, V ′[(X, Pos) �→ 1]).
tr(νXψ, Fin, V) =

νXnegμXFin (tr(ψ, Fin, V ′[(X, Fin) �→ 2]) ∨ tr(νXψ,Zer, V ′[(X, Fin) �→ 2])).
tr(νXψ, Inf, V) =

μXnegνXInf (tr(ψ, Inf, V ′[(X, Inf) �→ 2]) ∧ tr(νXψ, Pos, V ′[(X, Inf) �→ 2])).

(V ′ = V [(Y, a) �→ 0 | Y ≺ X, a ∈ AV])

Fig. 4. Translation

In some cases of the fixed-point operator, the following simple definitions
work: tr(σXψ, a) = σXtr(ψ, a) for a ∈ {Zer,Fin} and tr(σXψ, a) = σXtr(ψ, a)
for a ∈ {Inf,Pos}, where σ is the other operator, namely, μ = ν and ν = μ. Now,
we go back to the propositional variable. We want a simple definition, namely,
tr(X, a) = X . However, for this definition to work, at least the value of a should
be the same as that of when the binding fixed-point operator σX was processed.
Otherwise, X must be “expanded” again, namely, tr(X, a) = tr(BF(X), a). The
third parameter V is introduced for this purpose: V (X, a) = 1 means that the
value was a when σX was processed.

However, tr(νXψ,Fin, V) has its own problem. The combination of ν and Fin
(or its complement Inf) is different from the other combinations (and from the
standard semantics) in that the calculation of the fixed-point may not terminate

Decidability and Undecidability Results on the Modal μ-Calculus 157

because there is an infinite, strictly increasing sequence in N∞. We found a key
fact (Lemma 12 (5) of [14]), which can be expressed using a game between the
prover and the refuter: If �ϕ�(s) <∞ holds, then the prover can reach a node of
the game that claims the value is zero. This discussion leads us to an improved
(but still incorrect) definition: tr1(νXψ,Fin) = μXFin(tr(ψ,Fin)∨tr(νXψ,Zer)).

The remaining issue corresponds to the negation. A double negation resets
any finite value of a formula to 0. Therefore, if a computing path passes nega-
tion symbols infinitely many times, the value remains finite regardless other
conditions. To reflect the fact, we introduce another propositional variable Xneg.
The two values 2 and 3 of V (ϕ, a) are used to remember whether the path has
encountered the negation symbol.

5 Conclusions

We presented decidability and undecidability results on the modal μ-calculus
with the N∞-semantics. The logic is decidable if it does not contain the implica-
tion operator. On the other hand, the satisfiability problem becomes undecidable
if the logic contains the implication operator.

In the future, we plan to strengthen our decidability result to the problem in
the form of �ϕ�K(t) = n for a given formula ϕ and n ∈ N∞. It might be difficult
to extend our translation to this problem, because we need to handle complex
conditions. Instead, we plan to utilize a game expression of the N∞ semantics
that we have recently established [15], combined with the standard technique of
alternating automata [16].

Acknowledgements

This work was partially supported by Kakenhi, Grant-in-Aid for Scientific Re-
search (C-21500006), from the Japan Society for the Promotion of Science.

References

1. Kozen, D.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27(3),
333–354 (1983)

2. Gurfinkel, A., Chechik, M.: Multi-valued model checking via classical model check-
ing. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp.
263–277. Springer, Heidelberg (2003)

3. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
281–293. Springer, Heidelberg (2004)

4. Kameyama, Y., Kinoshita, Y., Nishizawa, K.: Weighted Kripke structures and
refinement of models. In: 23rd Conference of Japan Society for Software Science
and Technology (2006)

5. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1-2), 69–86 (2007)

158 A. Goyet, M. Hagiya, and Y. Tanabe

6. Meinecke, I.: A weighted μ-calculus on words. In: Developments in Language The-
ory, 13th International Conference, DLT 2009, pp. 384–395 (2009)

7. Ikarashi, D., Tanabe, Y., Nishizawa, K., Hagiya, M.: Modal μ-calculus on min-plus
algebra N∞. In: 10th Workshop on Programming and Programming Languages
(PPL 2008), Japanese Society on Software Science and Technology, pp. 216–230
(2008)

8. Simon, I.: Limited subsets of a free monoid. In: 19th Annual Symposium on Foun-
dations of Computer Science, pp. 143–150 (1978)

9. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity:
An Algebra for Discrete Event Systems. John Wiley & Sons, Chichester (1992)

10. Ikarashi, D., Tanabe, Y., Nishizawa, K., Hagiya, M.: Modal μ-calculus on min-plus
algebra N-infinity. In: Computer Software, Japan Society for Software Science and
Technology (to appear)

11. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Amer. Math.
Soc. 52(4), 264–268 (1946)

12. Zappe, J.: Modal μ-calculus and alternating tree automata. In: Grädel, E., Thomas,
W., Wilke, T. (eds.) Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp.
171–184. Springer, Heidelberg (2002)

13. Tanabe, Y., Hagiya, M.: Fixed-point computations over functions on integers with
operations min, max and plus. In: 6th Workshop on Fixed Points in Computer
Science (FICS 2009), pp. 108–115 (2009)

14. Goyet, A., Hagiya, M., Tanabe, Y.: Decidability and undecidability results of modal
μ-calculi with N∞ semantics. In: PRO Workshop, Information Processing Society
of Japan (June 2009),
http://cent.xii.jp/tanabe.yoshinori/09/06/ninfmu.pdf

15. Tanabe, Y., Hagiya, M.: Games and natural number-valued semantics of the modal
μ-calculus. In: 26th Conference of Japan Society for Software Science and Tech-
nology (2009), http://cent.xii.jp/tanabe.yoshinori/09/09/72.pdf

16. Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree automata empti-
ness. In: 30th Annual ACM Symposium on the Theory of Computing, pp. 224–233
(1998)

17. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg. 8(2) (2001)

Appendix: Translation Examples

Let us compute ψ′
1p = tr(ϕ1,Pos), where ϕ1 = νX(p ∧�X).

ψ′
1p = tr(ϕ1,Pos, VI)

= μXPos tr(p ∧�X,Pos, V2)
= μXPos (tr(p,Pos, V2) ∨ tr(�X,Pos, V2))
= μXPos ((¬p0 ∨ p∞) ∨ 〈1〉tr(X,Pos, V2) ∨ 〈∞〉tr(X,Pos, V2))
= μXPos ((¬p0 ∨ p∞) ∨ 〈1〉tr(ϕ1,Pos, V2) ∨ 〈∞〉tr(ϕ1,Pos, V2))
= μXPos ((¬p0 ∨ p∞) ∨ 〈1〉XPos ∨ 〈∞〉XPos)

where V2 = VI[(X,Pos) '→ 1]. This formula means that a state that satisfies ¬p0
or p∞ is reachable through transitions labeled by 1 or ∞ (i.e., any transition).

http://cent.xii.jp/tanabe.yoshinori/09/06/ninfmu.pdf
http://cent.xii.jp/tanabe.yoshinori/09/09/72.pdf

Decidability and Undecidability Results on the Modal μ-Calculus 159

t00

a1 = 1 b1 = 0

a0 = 0

a2 = ∞ b2 = 1

· · ·

· · ·

· · ·

· · · · · · · · · · · ·

t10

t20

t11

t21

t12

t22

s00

s10

s20

s11

s21

· · · · · ·

b1 = 0

b2 = 1

p0p0

p0

p∞

K K′

1

1

1

∞

∞

∞

Fig. 5. Kripke structures K and K′

Next, we try ψ′
1i = tr(ϕ1, Inf).

ψ′
1i = tr(ϕ1,Pos, VI)

= μXnegνXInf(tr(p ∧�X, Inf, V3) ∧ tr(ϕ1,Pos, V3))
= μXnegνXInf((tr(p, Inf, V3) ∨ tr(�X, Inf, V3)) ∧ ψ′

1p) (1)

= μXnegνXInf(((¬p0 ∧ p∞) ∨ 〈1〉tr(X, Inf, V3) ∨ 〈∞〉tr(X,Pos, V3)) ∧ ψ′
1p)

= μXnegνXInf(((¬p0 ∧ p∞) ∨ 〈1〉XInf ∨ 〈∞〉tr(ϕ1,Pos, V3)) ∧ ψ′
1p)

= μXnegνXInf(((¬p0 ∧ p∞) ∨ 〈1〉XInf ∨ 〈∞〉ψ′
1p) ∧ ψ′

1p) (2)

≡ νXInf(((¬p0 ∧ p∞) ∨ 〈1〉XInf ∨ 〈∞〉ψ′
1p) ∧ ψ′

1p) (3)

where V3 = VI[(X, Inf) '→ 2]. In (1) and (2), the same computation as in
tr(ϕ1,Pos, VI) was applied. For (3), note that Xneg appears only in the bind-
ing fixed-point operator. Here, ψ1 ≡ ψ2 means that ψ1 and ψ2 are equivalent,
i.e., for any Kripke structure K′ and its state s′, K′, s′ |= ψ1 if and only if
K′, s′ |= ψ2.

Let us consider the following Kripke structures K = (T,R, L) ∈ KSL and
K′ = (S,R′, L′) ∈ KSL′ . T = {tnm | n,m ∈ N}. (tnm, tkl) ∈ R ⇐⇒ k = n+ 1,
m = 0. For any n ∈ N, there is some an, bn ∈ N∞ such that R(p, tn0) = an and
R(p, tnm) = bn for any m > 0. S = {snm | n ∈ N, m ∈ {0, 1}}. (snm, skl) ∈
R′(0) ⇐⇒ k = n+ 1, m = l = 0. (snm, skl) ∈ R′(∞) ⇐⇒ k = n+ 1, m = 0,
l = 1. L′ is defined so that sn0 ∈ L′(p0) ⇐⇒ an = 0, sn0 ∈ L′(p∞) ⇐⇒
an = ∞, sn1 ∈ L′(p0) ⇐⇒ bn = 0, and sn1 ∈ L′(p∞) ⇐⇒ bn = ∞. Figure 5
illustrates a pair of instances of these Kripke structures. It can be shown that
there is a (ϕ1, Inf)-simulation between (K, t00) and (K′, s00).

Assume an = 1 for all n ∈ N. In this case, we have �ϕ1�(t00) = ∞. (This can be
shown as follows: let Fn = �ϕ1�(tn0). Then, Fn = �p�(tn0) +Σm∈N�ϕ1�(tnm) ≥
�p�(tn0) + �ϕ1�(tn0) = an + Fn+1 = 1 + Fn+1.) It is not difficult to show that
K′, s00 |= ψ′

1i: in the terminology of game expression [17], Player 1 (the refuter)
cannot select ψ′

1p at the first stage because K′, s00 |= ψ′
1p, then Player 0 (the

prover) selects first 〈1〉XInf and then s10. Both players keep selecting in the same
way, and finally, because the fixed-point operator is ν, Player 0 wins.

160 A. Goyet, M. Hagiya, and Y. Tanabe

If there exists some n ∈ N such that an = ∞, then both �ϕ1�(t00) = ∞ and
K′, s00 |= ψ′

1i hold. In this case, Player 0 selects ¬p0 ∧ p∞ when he reaches sn0.
Similarly, if there exists some n ∈ N such that bn+1 > 0, then both �ϕ1�(t00) =
∞ and K′, s00 |= ψ′

1i hold. Player 0 selects 〈∞〉ψ′
1p at sn0.

On the other hand, if an <∞ for all n ∈ N∞, bn = 0 for all n ∈ N∞\{0}, and
there exists some k ∈ N∞ such that an = 0 for all n ≥ k, then �ϕ1�(t00) < ∞
and K′, s00 �|= ψ′

1i. In this case, Player 1 switches to ψ′
1p at sk0.

Next example contains the negation symbol: ϕ2 = νY (p ∧ �¬¬Y). Let us
compute ψ′

2i = tr(ϕ2, Inf).

ψ′
2i = tr(ϕ2, Inf, VI)

= μYnegνYInf(tr(p ∧�¬¬Y, Inf, V4) ∧ tr(ϕ2,Pos, V4)) (4)

where V4 = VI[(Y, Inf) '→ 2]. The first term:

tr(p ∧�¬¬Y, Inf, V4)
= tr(p, Inf, V4) ∨ tr(�¬¬Y, Inf , V4)
= (¬p0 ∧ p∞) ∨ 〈1〉tr(¬¬Y, Inf , V4) ∨ 〈∞〉tr(¬¬Y,Pos, V4)
= (¬p0 ∧ p∞) ∨ 〈1〉tr(¬Y,Fin, V5) ∨ 〈∞〉tr(¬Y,Fin, V5)
= (¬p0 ∧ p∞) ∨ 〈1〉tr(Y, Inf, V5) ∨ 〈∞〉tr(Y, Inf, V5)
= (¬p0 ∧ p∞) ∨ 〈1〉tr(ϕ2, Inf, V5) ∨ 〈∞〉tr(ϕ2, Inf, V5)
= (¬p0 ∧ p∞) ∨ 〈1〉Yneg ∨ 〈∞〉Yneg (5)

where V5 = VI[(Y, Inf) '→ 3]. When the negation symbol is processed, all the
values of the third argument (V4, in this case) which are now 2 are changed to 3,
in order to mark that the remainder is in the scope of the negation symbol. The
second term of (4):

tr(ϕ2,Pos, V4)
= μYPos tr(p ∧�¬¬Y,Pos, V4)
= μYPos (tr(p,Pos, V4) ∨ tr(�¬¬Y,Pos, V4))
= μYPos ((p0 ∨ p∞) ∨ 〈1〉tr(¬¬Y,Pos, V4) ∨ 〈∞〉tr(¬¬Y,Pos, V4))
= μYPos ((p0 ∨ p∞) ∨ 〈1〉tr(¬Y,Fin, V5) ∨ 〈∞〉tr(¬Y,Fin, V5))
= μYPos ((p0 ∨ p∞) ∨ 〈1〉Yneg ∨ 〈∞〉Yneg)
≡ (p0 ∨ p∞) ∨ 〈1〉Yneg ∨ 〈∞〉Yneg (6)

Therefore, and since (5) implies (6), we have:

ψ′
2i ≡ μYnegνYInf (((¬p0 ∧ p∞) ∨ 〈1〉Yneg ∨ 〈∞〉Yneg)
≡ μYneg (((¬p0 ∧ p∞) ∨ 〈1〉Yneg ∨ 〈∞〉Yneg) (7)

In fact, because all finite values become zero by the double negation, the value
of ϕ2 can be infinite only if a state with infinite value is reachable, which (7)
exactly states.

Solving the Implication Problem for XML

Functional Dependencies with Properties

Sven Hartmann1, Sebastian Link2, and Thu Trinh1

1 Clausthal University of Technology, Germany
2 Victoria University of Wellington, New Zealand

Abstract. Due to the complex nature of XML, finding classes of in-
tegrity constraints for XML data that are both expressive and practical
is an important but challenging task. In this paper, we study a class
of XML functional dependencies (called pXFDs) defined on the basis of
tree homomorphism. We establish a semantic equivalence between the
implications problems for pXFDs and for propositional Horn clauses,
which guarantees linear time decidability of pXFD implication. Hence,
pXFDs cannot only be used to capture relevant data semantics, but also
be reasoned about efficiently.

1 Introduction

Functional dependencies were first introduced by Codd together with the rela-
tional data model [5]. Since then important applications of functional depen-
dencies have been encountered, e.g., in database design, data management, data
security, data mining, and data cleansing. Functional dependencies are a valu-
able aid for capturing the semantics of data, e.g., to express business rules that
hold in the the fragment of reality represented by the database. Once specified
at design time of a database they can be exploited during run time, e.g., for
enforcing data integrity, avoiding update anomalies, and rewriting queries to op-
timise response times. Most importantly, functional dependencies are the basis
for schema normalisation that aims at generating “well-designed” databases.

More recently, the eXtensible Markup Language (XML) has emerged as a
well-accepted and widely used data model for heterogenous or complex data in
many application domains, including e-science, business integration and service
computing. Today, all major DBMS support the storage and processing of XML
data. With the increasing amounts of persistent XML data, there is an acute need
for developing concepts, algorithms and techniques for efficiently organising and
handling XML data. As XML was originally conceived as the W3C standard for
exchanging data over the web, it provides only limited capabilities for specifying
the semantics of data. Consequently, the study of functional dependencies and
other integrity constraints has been identified as an important yet challenging
topic of XML research [8,14,17,21].

For the relational data model there is a single ubiquitous notion of functional
dependency that can be found in most database textbooks: a functional depen-
dency (FD) X → Y states that whenever two tuples in a database table agree

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 161–175, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 S. Hartmann, S. Link, and T. Trinh

on each attribute in X then they must also agree on each attribute in Y . In
contrast, the complex nature of XML has sparked a multitude of proposals for
XML functional dependency (XFD), including [1,9,18,20]. The varying propos-
als deviate in their expressiveness, but are all justified by natural occurrence
in XML data. Roughly speaking, there are several reasonable options how to
generalise the notions of “tuple”, “attribute”, and “agreement” to XML.

The successful application of functional dependencies in relational databases
has been based on a thorough investigation of their logical and computational
characteristics. As for relational databases, being able to reason about a class
of XFDs efficiently will be critical in our ability to apply XFDs for tasks such
as integrity enforcement, query optimisation, and schema normalisation. So far,
only very few classes of XFDs are known to have tractable logical implication
and, even then, only under certain conditions. Thus the search for practical
formalisms of XML functional dependency that can be reasoned about efficiently
remains a challenge.

[1]

E entry

Ecategory

E
format
“Print”

E
section

“Wedding”

E
noOfImg

“1”

E category

E
format

“Digital”

E
section
“Nude”

E
noOfImg

“1”

[22]

[26]

[27] [28] [29]

[30]

[31] [32] [33]

E
year

“2009”

E
entrant
“Lin”

E
competition

“WPPI”

[23] [24] [25] E
fees

“55euros”

[38]

E category

E
format

“Digital”

E
section
“Nature”

E

noOfImg
“4”

[34]

[35] [36] [37]

E category

E
format

“Digital”

E
section

“Wedding”

E
noOfImg

“1”

E entry

E
year

“2009”

E
entrant
“Binh”

E
competition

“WPPI”

Ecategory

E
format
“Print”

E
section
“Nature”

E
noOfImg
“1”

E category

E
format
“Print”

E
section
“Nude”

E
noOfImg
“4”

[5]

[6] [7] [8]

[9]

[10] [11] [12]

[13]

[14] [15] [16]

[17]

[18] [19] [20]

[21]
E

fees
“75euros”

E country

E participation

E photography

E
name

“U.S.A”

[2]

[3]

[4]

Fig. 1. An XML data tree T ′
photo with photographic entries

Example 1.1. In this paper, we are concerned with a class of XFDs that extend a
proposal in [9]. For motivation, consider an XML document with data on images
entered into a photography competition1, depicted as a data tree in Fig. 1. It is
regular practice for the competition organisers to fix the pricing plan every year
based on the number of images entered per section per format.

Suppose, for example, the entry fees
charged for the WPPI1 competition
2009 were as follows:

format: Digital Print

1 image in 1 section 10 euros 15 euros
4 images in 1 section 30 euros 50 euros

1 cf. Wedding & Portrait Photographers International, http://www.wppionline.com/

Solving the Implication Problem for XML Functional Dependencies 163

In T ′
photo only the total fees paid by each entrant are recorded, as the pricing

schedule is stored in a separate place. It is easy to see that we have the following
integrity constraint:

Constraint 1. For every competition and year, the collection of information
about the number of images entered into each section in each format determines
the total fees of an entry.

Using a path-based XFD as proposed, e.g., in [1,18,22], the closest that we come
to expressing the constraint above is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

photography/participation/country/entry/competition,
photography/participation/country/entry/year ,
photography/participation/country/entry/category/format ,
photography/participation/country/entry/category/section,
photography/participation/country/entry/category/noOfImg

⎫⎪⎪⎪⎬⎪⎪⎪⎭
→ {photography/participation/country/entry/fees}

But this is not what we want to express: In the data tree T ′
photo, there are

two entrants for WPPI 2009 having the same collection of formats, the same
collection of sections, and the same collection of numbers of images, but the
fees charged to them are different. This means that the path-based XFD above
is violated in T ′

photo. On the other hand, however, the data tree T ′
photo satisfies

Constraint 1 as it complies with the given pricing schedule.
Constraint 1 helps to pinpoint two limitations of most XFD proposals in the

literature: agreement is decided by i) comparing singular data items (rather than
collections), and ii) considering paths independently from one another (rather
than jointly as a tree structure). Both issues motivated the XFD proposal in [9]
which is capable of expressing integrity constraints like Constraint 1: it allows
subtrees of the schema tree to occur as “attributes” in the left and right hand
side of an XFD. Here, we extend this idea further by considering an even wider
notion of “attributes”. For motivation, take the following integrity constraint:

Constraint 2. For every entry, the information about the format and section
determines the category.

In other words, the constraint states that no entry has multiple categories with
the same format and section. Such a functional dependency stipulates a unique-
ness constraint that allows one to identify specific nodes within the data tree.
This is particularly useful when looking for a syntactic characterisation for the
absence of data redundancy - an important indicator of a well-designed schema.

Contribution. We study a class of XFDs that extend the proposal in [9]. We
prove the associated implication problem to be equivalent to that of proposi-
tional Horn clauses, thus generalising an important result of Fagin for relational
FDs. This gives rise to a linear-time algorithm for deciding implication for these
XFDs. Thus we have found a new class of XFDs that are both expressive and
practical. Incidentally, our proof of semantic equivalence also shows that finite
and unrestricted implication coincides for the class of XFDs under inspection.

164 S. Hartmann, S. Link, and T. Trinh

Organisation. Section 2 surveys related work, and Section 3 assembles basic
terminology. In Section 4 we define the class of XFDs considered in this paper.
Section 5 contains our major result on the semantic equivalence of logical impli-
cation for these XFDs and propositional Horn clauses. We give an example in
Section 6 and conclude in Section 7 with consequences and future work plans.

2 Related Work

The efficiency with which we are able to reason about functional dependencies
(i.e., decide implication) plays an important role in our ability to capitalise on
their applications. The implication problem for relational FDs has been well-
studied: The first axiomatisation for the implication of relational FDs was given
by Armstrong [2]. Thus FD implication can be tackled by examining the enumer-
ation of possible derivations. Several algorithmic approaches have emerged, often
based on the Armstrong axioms. One of the earliest is due to Beeri and Bern-
stein [3]. The implication problem for relational FDs turned out to be solvable
in linear time. This complexity result can also be concluded from the seminal
work of Fagin [7] who related the implication of relational FDs to propositional
logic. In fact, he proved that the implication problems for relational FDs and
for propositional Horn clauses coincide. For propositional Horn clauses, however,
the implication problem is equivalent to the well-studied satisfiability problem
which can be solved in linear time, e.g., through unit propagation [4,6].

In the case of XML, the implication problem has been studied for a few se-
lected classes of XFDs. Arenas and Libkin [1] showed that for their “tree-tuple”
XFDs the implication problem can be solved in polynomial time in the pres-
ence of two restricted kinds of DTDs. In particular, for simple DTDs which
corresponds to our schema trees, they obtained a quadratic time algorithm. In
the presence of two other kinds of DTDs they prove the implication problem
for “tree-tuple” XFDs to be coNP-complete. In general, however, they notice
that the implication of “tree-tuple” XFDs is not finitely axiomatisable due to a
non-trivial interaction with DTDs. Hartmann and Trinh [11,15] gave a finite ax-
iomatisation for the implication of “tree-tuple” XFDs in the presence of schema
trees, while Kot and White [12] found a finite axiomatisation for the implica-
tion of “tree-tuple” XFDs in the absence of a DTD and in the presence of some
special kinds of DTDs. An axiomatisation for “pre-image” XFDs proposed in
[9] was sketched in [10]. Vincent et al. [18] gave a sound set of inference rules
for the implication of their class of “closest node” XFDs which, however, is only
complete for the special case where the left hand sides contain no more than
a single path. The relationship of “closest node” XFDs and “tree-tuple” XFDs
has been discussed in [19]: both XFD proposals only coincide under very strong
assumptions that severely detract from the syntactic flexibility of XML.

The XFDs studied in this paper complement the expressive power of exist-
ing classes of path-based XFDs, in particular “tree-tuple” and “closest node”
XFDs. There are meaningful functional dependencies that can be expressed as
the former but not the latter, and vice versa.

Solving the Implication Problem for XML Functional Dependencies 165

3 Preliminaries

An XML tree is a rooted tree T with finite node set VT , arc set AT , root rT ,
and mappings name : VT → Names and kind : VT → {E,A}. In an XML tree,
the symbols E and A indicate elements and attributes, with attributes only
appearing as leaf nodes. An XML data tree is an XML tree T ′ with a mapping
valuation : LT ′ → String assigning string values to leaves. An XML schema tree
is an XML tree T with frequencies ?, 1, ∗,+ assigned to its arcs, where i) arcs
to attribute nodes may only have frequency ? or 1 and, ii) no two siblings have
the same name and kind.

We use XML schema trees as structural summaries for collections of XML
data trees. The notion of compatibility conveys that a particular XML data tree
conforms to the structural summary given by an XML schema tree T at hand. We
say that an XML data tree T ′ is T -compatible whenever there is a homomorphism
φ : VT ′ → VT (i.e., root-preserving, name-preserving, kind-preserving and arc-
preserving mapping) such that for every vertex v′ of T ′ and every arc a =
(φ(v′), w) of T , the number of arcs a′ = (v′, w′) mapped to a is at most one if
a has frequency label ?, exactly one if a has frequency label 1, at least one if a
has frequency label +, and arbitrarily many if a has frequency label ∗.

E country

E entry

E categoryE year

E section

E competition

E noOfImg

?
E feesE entrant

E format

+

?+

E participation

*

E photography

?

E
code

?
E

name

Fig. 2. The data tree T ′
photo is compatible to the XML schema tree Tphoto shown here

For every node v in an XML tree there is a unique path from the root to
v. In an XML schema tree T we call a path simple iff it contains no arcs with
frequency other than ? and 1. Furthermore, we call a node v in T simple iff the
path from the root to v is simple. Given a node v, a node n which has a (possibly
empty) path to v is called a v-ancestor. We can also say v is a descendant of
n or n is an ancestor of v. By ǍT (v) we denote the set of all v-ancestors of T .
Furthermore, n is a simple ancestor of v (or equivalently v is a simple descendant
of n) iff the path connecting n with v is simple. Clearly, each node is also its
own (simple) ancestor and (simple) descendant, and each simple node is a simple
descendant of the root node. We use vlbl to refer to a node with name lbl.

Let T be an XML tree, and LT ⊆ VT be a given set of leaves of T . A walk of
T is a path from the root of T to a member of LT and every walk containing v is

166 S. Hartmann, S. Link, and T. Trinh

called a v-walk. A subgraph W of T is a (possibly empty) set of walks of T and,
a subgraph of T is a v-subgraph iff each of its walks contains v. By ŠT (v) we
denote the set of all v-subgraphs of T . It is easy to see that ŠT (v) contains the
empty set and is closed under the union, intersection and difference operators.
Clearly a walk or subgraph of T is again an XML tree.

For convenience, we made an effort to use only XML schema trees whose
leaves have mutually distinct names as examples in this paper. This saves space
as it allows us to refer to a walk by the name of its leaf, and correspondingly we
refer to a subgraph by a set of leaf names. Moreover, for a subgraph X consisting
of a single walk B we tend to write B instead of {B}. Note that we use these
abbreviations due to space limitations and do not exclude other cases.

The total v-subgraph, denoted by T (v), is the set of all v-walks of XML tree
T . The homomorphism φ between a T -compatible data tree T ′ and schema tree
T induces a mapping of the total subgraphs of T ′ to the total subgraphs of T .
For a fixed node v of T , a pre-image tree of v in T ′ is just a total w-subgraph
with φ(w) = v. Suppose every node in a data tree has a unique node id, then
the node id for a node w in the data tree also identifies the total w-subgraph in
the data tree. By PT ′(v) we denote the set of all pre-image trees of v in T ′.

E e n try

E c a te g o ry

E se c tio n

E e n tra n t

E fo rm a t

+

+

E c o u n try

E p a r tic ip a tio n

*

E p h o to g ra p h y

?

E en try

E
e n tra n t
“ B in h ”

E ca teg o ry

E
fo rm a t
“ P rin t”

E
se c tio n
“N a tu re ”

E ca teg o ry

E

fo rm a t
“ P rin t”

E
se c tio n
“N u d e”

E ca teg o ry

E

fo rm a t
“ D ig ita l”

E
sec tio n

“ W ed d in g ”

[1]

[5]

[8]
[9]

[1 0] [1 1]

[1 3]

[1 4] [1 5]

[1 7]

[1 8] [1 9]

E co u n try

E p a r tic ip a tio n

E p h o to g ra p h y

[2]

[3]

Fig. 3. A subgraph {entrant, format, section} of Tphoto and the projection of the
pre-image tree i2 of ventry to this subgraph

4 XML Functional Dependencies with Properties

Next we formally define the class of XFDs investigated in this paper. Throughout
let T be an XML schema tree, T ′ a T -compatible data tree, and v a node
of T . As discussed we need to say how we want to generalise the notions of
“tuple”, “attribute”, and “agreement” from the definition of relational FDs. In
the subsequent definition, we will use the v-pre-image trees as “tuples”, while
the v-ancestors and v-subgraphs will be used as “attributes”. For short, we will
collectively call the members of ǍT (v) ∪ ŠT (v) the v-properties of T .

“Agreement” will be defined on the basis of tree homomorphism. Given two
XML trees T1 and T2, we say that they are isomorphic or copies of one another
if there is a homomorphism φ : VT1 → VT2 which is bijective and φ−1 is a ho-
momorphism. In particular, we call such a mapping φ a (tree) isomorphism. A
subgraph U of T1 is a subcopy of T2 if U is isomorphic to some subgraph of T2.

Solving the Implication Problem for XML Functional Dependencies 167

To explain when two pre-image trees “agree” on a v-property we need to state
what the projection of a pre-image tree to a v-property is. Intuitively projecting
to a v-property yields either nodes or XML trees depending on whether we
consider a v-ancestor or v-subgraph, and thus we have two cases:

Definition 4.1 (projection). For a v-property X of T , the projection of T ′

to X, denoted by T ′|X , is:

– the set of all pre-images of X in T ′, if X is a v-ancestor of T , or
– the union of all subcopies of X in T ′, if X is a v-subgraph of T .

In the literature, two notions of agreement are popular when comparing frag-
ments of XML data: node-equality and value-equality. We use node-equality
when comparing the projection to v-ancestors, and value-equality when compar-
ing projection to v-subgraphs.

Definition 4.2 (property-equality, .=). Property-equality holds as follows:

– Two sets p, q of nodes in an XML data tree T ′ are property-equal iff p = q.
– Two XML data trees p, q are property-equal iff there exists a valuation-

preserving isomorphism φ : Vp → Vq between p and q.

In words, we say “pre-image trees p1, p2 agree on X” to mean p1|X .= p2|X .
Likewise, we say “pre-image trees p1, p2 differ on X” to mean p1|X � .= p2|X .

Definition 4.3 (pXFD). An XML functional dependency with properties
(pXFD) over T is an expression v : X → Y where X ,Y are sets of v-properties
of T . Herein, v is called the target, X the LHS, and Y the RHS.
T ′ satisfies the pXFD v : X → Y, written as |=T ′ v : X → Y, iff for any two

pre-image trees p1, p2 ∈ PT ′ (v) we have p1|X .= p2|X for all X ∈ X imply
p1|Y .= p2|Y for all Y ∈ Y. We also say that the pXFD holds in T ′.

Note that we never omit outer set parentheses for sets of v-properties. In par-
ticular, a (possibly empty) of v-property is always enclosed in set parentheses. ∅
denotes the empty v-subgraph, while {} denotes the empty set of v-properties.

Example 4.1. The data tree T ′
photo in Fig. 1 satisfies the pXFDs

ventry : {competition, year, {format, section, noOfImg}} → {fees} (1)
vcategory : {ventry , {format, section}} → {vcategory} (2)

which capture Constraints 1 and 2, respectively. But T ′
photo violates the pXFDs

ventry : {competition, year, format, section, noOfImg} → {fees}
ventry : {{format, section}} → {ventry} .

We like to emphasise that the addition of v-ancestors as “attributes” to XML
functional dependencies is quite a powerful extension. A v-ancestor in the left
hand side of a pXFD (as for example ventry in (2)) may be regarded as a context

168 S. Hartmann, S. Link, and T. Trinh

that restricts the validity of a functional dependency to parts of the entire XML
data tree (here the pre-image trees of ventry).

A v-ancestor on the right hand side of a pXFD may be used to capture a
categorisation or grouping of nodes. For example, the pXFD

ventry : {competition} → {vcountry}

expresses that all entries for the same competition must be grouped under the
same country. Probably most interesting is the inclusion of the target v into the
right hand side of a pXFD to capture the uniqueness of nodes. For example,
vcategory in the right hand side of the pXFD (2) just reflects the uniqueness
constraint stipulated by Constraint 2 in the introduction.

Syntactically, one can specify a large number of pXFDs since the number of
subsets of v-properties is exponential in the number of v-properties. In practice,
however, we can restrict ourselves to a smaller subclass of pXFDs without loosing
expressiveness. We call the pXFDs in this subclass canonical. Each pXFD can
be rewritten as a canonical pXFD by translating non-essential v-properties into
essential ones. We give details in the appendix.

Our paper is motivated by the implication problem for XML functional de-
pendencies. A set of pXFDs Σ implies a pXFD σ, denoted by Σ |= σ, iff every
T -compatible data tree which satisfies all pXFDs in Σ also satisfies σ. The pXFD
implication problem is to decide, given any setΣ∪{σ} of pXFDs, whetherΣ |= σ.

5 The Semantic Equivalence Theorem

Our objective is to establish a semantic equivalence between the implication
of pXFDs and propositional Horn clauses that generalises the seminal result of
Fagin for relational FDs to XML. For that, we need a Horn encoding that uses
propositional horn clauses for encoding the given pXFDs but also the inherent
structural properties associated with the underlying XML tree. We assume some
familiarity with propositional logic, cf. [13]. A Horn clause over some given set
of literals V is a clause (i.e., a disjunction of literals) with at most one positive
(i.e., non-negated) literal.

Let ϕ : EŠ
T (v) ∪EǍ

T (v) → V be a mapping that assigns propositional vari-
ables to the essential v-properties of T . If σ is a canonical pXFD
v : {X1, . . . , Xj} → {Y1, . . . , Yk} then, let

Hσ = {ϕ(X1) ∧ . . . ∧ ϕ(Xj) ⇒ ϕ(Y1), . . . , ϕ(X1) ∧ . . . ∧ ϕ(Xj)⇒ ϕ(Yk)}

be the Horn encoding of σ. For a set Σ of pXFDs, let HΣ be the union of
the sets Hσ for all σ ∈ Σ. Furthermore, we capture information about inherent
inter-relationships among essential v-properties by the base translation:

HT = {ϕ(W)⇒ ϕ(Z) |W,Z ∈ EŠ
T (v) and W covers Z and Z �= ∅}

∪{ϕ(n) ⇒ ϕ(m) | n,m ∈ EǍ
T (v) and m is an immediate essential

ancestor of n and n �= rT }
∪{ϕ(n) ⇒ ϕ(U) | {n} = ϑ({v}) and U is a v-unit}
∪{ϕ(∅), ϕ(rT)}

Solving the Implication Problem for XML Functional Dependencies 169

where a v-subgraphW is said to cover a v-subgraph Z iffW is the union of Z and
just one additional v-walk of T , and an essential v-ancestor m is an immediate
essential ancestor of another essential v-ancestor n iff n is the next essential
v-ancestor which can be reached from m.

An example for the Horn encoding is given in Section 6. To decrease the
size of the base translation, we made use of the transitive nature of logical
implication to consider only covering v-subgraphs and immediate essential an-
cestor/descendant essential v-ancestors. It is, of course, possible to use the more
general notion of subgraph containment and ancestor/descendant relationship
but this is likely to result in a considerably larger set of Horn clauses for the
base translation.

Using the Horn encoding above we state our main result in this paper:

Theorem 5.1 (Semantic Equivalence Theorem for pXFDs). The follow-
ing statements are equivalent:

1. Σ implies σ,
2. Σ implies σ in the world of two-v-pre-image data trees,
3. HΣ ∪HT logically implies Hσ.

Σ is said to imply σ in the world of two-v-pre-image data trees iff every T -
compatible data tree containing precisely two pre-image trees of v that sat-
isfies all pXFDs in Σ also satisfies σ. To prove (1.⇔2.) we show that every
T -compatible data tree that witnesses Σ |= σ to be false contains a two-v-pre-
image data tree that already witnesses the same fact.

The proof of (2.⇔3.) relies on a special connection between boolean assign-
ment for propositional variables and the agreement of two pre-image trees of
v. With this connection, it is possible to determine a boolean (truth) assign-
ment witnessing a logical implication of Horn clauses from a two-v-pre-image
T -compatible XML data tree witnessing the corresponding canonical pXFD im-
plication, and vice versa. We use proof by the contrapositive. One direction fol-
lows easily from the characteristics of such representative boolean assignments,
while the other direction additionally relies on the ability to construct a two-v-
pre-image data tree from some input boolean assignment B such that the the
resulting data tree has B as a representative boolean assignment.

For the proof of (2.⇔3.) we need to relate boolean assignments to two-v-pre-
image data trees in such a way that pXFDs are satisfied in T ′ precisely when
their corresponding Horn clauses evaluate to true under the boolean assignment:

Definition 5.1 (representative boolean assignment). Let T be an XML
schema tree and ϕ : EŠ

T (v) ∪EǍ
T (v)→ V be a mapping assigning propositional

variables to the essential v-properties of T . Further, let B be a boolean assign-
ment of all propositional variables in V. The boolean assignment B is said to
be representative of a given T -compatible two-v-pre-image data tree T ′ where
PT ′(v) = {p1, p2} iff the equivalence B(ϕ(W)) = true iff p1|W .= p2|W holds for
every essential v-property W ∈ EŠ

T (v) ∪EǍ
T (v).

170 S. Hartmann, S. Link, and T. Trinh

Two important characteristics of boolean assignments B representing two-v-pre-
image data trees are crucial here. The first lemma is analogous to the Semantic
Lemma of Fagin [7] and relates the satisfaction of pXFDs in T ′ to the truth
value of the corresponding Horn clauses under B. The second lemma affirms
that every Horn clause belonging to base translation HT evaluates to true under
B. This attests to the fact that the base translation only encodes inherent inter-
relationships among essential v-properties with respect to property-equality.

Lemma 5.1 (Semantic Lemma). Let B be a boolean assignment which is
representative of some T -compatible two-v-pre-image data tree T ′. Let σ be a
canonical pXFD v : X → Y over T . Then σ holds in T ′ iff every Horn clause in
the set Hσ evaluates to true under B.

Lemma 5.2 (Triviality Lemma). Let B be a boolean assignment which is
representative of some T -compatible data tree T ′. Then every Horn clause in
HT evaluates to true under B.

For the proof of (2.⇔3.) we further need to construct a T -compatible two-v-pre-
image data tree having some specified representative boolean assignment. That
is, we create a T -compatible two-v-pre-image data tree whose pre-image trees of
v agree precisely on some given set of v-properties. From the triviality lemma
and our earlier observations about property-equality when identifying essential
v-properties, it is clear that the input set of v-properties cannot be arbitrary,
rather it must possess certain characteristics:

Definition 5.2 (equality set). An equality set ET is a subset of v-properties
such that the following conditions all hold:

– The subset of v-ancestors (i.e., ǍET = ET ∩ ǍT (v)) must contain the root
node rT ; be complete (i.e., if a v-ancestor is in the set then all of its ances-
tors are also in the set); if a v-ancestor is in the set then all of its simple
descendants are also in the set; and not contain the target node v.

– The subset of v-subgraphs (i.e., ŠET = ET ∩ ŠT (v)) must contain the empty
subgraph ∅; be complete (i.e., if a v-subgraph is in the set then all v-subgraph
contained in it are also in the set); and if two v-reconcilable v-subgraph X,Y
are in the set then also v-subgraph X ∪ Y is in the set.

We use a two-phase combinatorial approach for constructing a two-v-pre-image
data tree that agrees precisely on the v-properties in a given equality set:

1. Firstly, we construct two distinct T -compatible pre-image trees of v which
agree precisely on v-subgraphs in the given input equality set.

2. Secondly, we merge the constructed pre-image trees to form a T -compatible
data tree in which the pre-image trees share precisely the v-ancestors in the
given input equality set.

There is no conflict between the two phases since the former deals exclusively
with descendants of v and the latter only with nodes not descended from v. An
outline of the construction is given in the appendix. For a complete proof of
Theorem 5.1 we refer the interested reader to [16].

Solving the Implication Problem for XML Functional Dependencies 171

6 An Example for Applying the Semantic Equivalence

The following example demonstrates how Theorem 5.1 can be used to de-
cide implication of pXFDs. Recall the XML schema tree Tphoto in Fig. 2
and consider its node ventry. The essential ventry-properties are vparticipation,
vcountry, ventry , competition, year, entrant, and all subgraphs contained in
{format,section,noOfImg}.

We study an instance of the pXFD implication problem. Let σ be the
pXFD ventry : {competition, year, entrant} → {fees}, and let Σ consist of
the pXFDs ventry : {competition, {format, section, noOfImg}} → {fees}, and
ventry : {competition, year, entrant} → {ventry}.

For a fixed mapping ϕ from the set of essential ventry-properties to proposi-
tional variables, the Horn encoding introduced above yields the following:

Hσ =
{
ϕ(competition∧ ϕ(year) ∧ ϕ(entrant)⇒ ϕ(fees)

}
HΣ =

{
ϕ(competition) ∧ ϕ({format, section, noOfImg})⇒ ϕ(fees),
ϕ(competition) ∧ ϕ(year) ∧ ϕ(entrant)⇒ ϕ(ventry)

}

HTphoto
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ({format, section, noOfImg})⇒ ϕ({format, section}),
ϕ({format, section, noOfImg})⇒ ϕ({format, noOfImg}),
ϕ({format, section, noOfImg})⇒ ϕ({section, noOfImg}),
ϕ({format, section})⇒ ϕ(format),
ϕ({format, section})⇒ ϕ(section),
ϕ({format, noOfImg})⇒ ϕ(format),
ϕ({format, noOfImg})⇒ ϕ(noOfImg),
ϕ({section, noOfImg})⇒ ϕ({section}),
ϕ({section, noOfImg})⇒ ϕ({noOfImg),
ϕ(ventry)⇒ ϕ(vcountry),

ϕ(ventry)⇒ ϕ(competition),
ϕ(ventry)⇒ ϕ(year),
ϕ(ventry)⇒ ϕ(entrant),
ϕ(ventry)⇒ ϕ({format, section, noOfImg}),
ϕ(ventry)⇒ ϕ(fees),

ϕ(∅),
ϕ(vparticipation)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
To decide whether σ is implied by Σ, one can check whether there is a boolean

assignment which makes all formulas in HΣ ∪ HTphoto
become true and the

single formula h ∈ Hσ becomes false. To make h become false, we need to set
B(ϕ(competition)) = true, B(ϕ(year)) = true, B(ϕ(entrant)) = true, and
B(ϕ(fees)) = false. Then, to make the second formula in HΣ become true we
must further set B(ϕ(ventry)) = true. Further, to make the formulas in HTphoto

become true, we need to set B(ϕ({format, section, noOfImg}) = true.
However, the resulting assignment B is invalid as it causes the first formula in

HΣ to become false. Hence, we cannot find a boolean assignment as required.

172 S. Hartmann, S. Link, and T. Trinh

That is, Hσ is a logical consequence of HΣ ∪HTphoto
and we can correspondingly

conclude that Σ implies σ.

7 Conclusion and Future Directions

The Semantic Equivalence Theorem enables us to solve the pXFD implication
problem via Horn satisfiability: Σ |= σ holds unless Hσ is not a logical conse-
quence of HΣ ∪HT . This corresponds to the question: For some h ∈ Hσ, is there
a boolean assignment B of the propositional variables such that each proposi-
tional formula in the set HΣ ∪HT ∪ {¬h} evaluates to true? This is the Horn
Satisfiability problem (Horn-SAT) which is decidable in linear time [4,6].

Corollary 7.1. The problem of whether Σ implies σ can be decided in time
linear in the total number of essential v-properties of T .

Thus, this paper identifies a new class of XFDs for which implication can be
decided efficiently. This makes it practical for XML data architects to use our
XFDs as integrity constraints in XML design to capture relevant data seman-
tics. This contributes to the general objective of studying the trade-off between
expressiveness and tractability of integrity constraints for XML.

The Semantic Equivalence Theorem has some immediate applications: we
successfully used it for identifying and proving an axiomatisation for pXFDs,
and for decision support in constraint acquisition, cf. [16]. We further record:

Corollary 7.2. The finite and the unrestricted (i.e., when considering infinite
XML data trees, too) implication problem of pXFDs coincide.

Several areas emerge as possible directions for future work. It would be helpful
to establish a similar semantic equivalence for other classes of XFDs, but also for
pXFDs in the presence of further classes of DTDs such as #-DTDs or DTDs with
a small number of disjunctions. The study of XML functional dependencies is
motivated by the large number of potential applications, e.g., in database design,
database tuning, or query optimisation as for relational FDs. The investigation
of such opportunities will further justify the practicality of the class of pXFDs.
We have started investigating XML normal forms based on pXFDs, cf. [16].

References

1. Arenas, M., Libkin, L.: A normal form for XML documents. ACM ToDS 29, 195–
232 (2004)

2. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP
Congress, pp. 580–583 (1974)

3. Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal
form relational schemas. ACM ToDS 4, 30–59 (1979)

4. Chang, C., Lee, R.: Symbolic Logic and Mechanical Theorem Proving. Academic
Press, London (1987)

5. Codd, E.F.: Further normalization of the data base relational model. IBM Research
Report RJ909 (1971)

6. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. J. Log. Program. 1, 267–284 (1984)

Solving the Implication Problem for XML Functional Dependencies 173

7. Fagin, R.: Functional dependencies in a relational data base and propositional logic.
IBM J. Research Dev. 21, 543–544 (1977)

8. Fan, W.: XML constraints: Specification, analysis, and applications. In: Andersen,
K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 805–809.
Springer, Heidelberg (2005)

9. Hartmann, S., Link, S.: More functional dependencies for XML. In: Kalinichenko,
L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798,
pp. 355–369. Springer, Heidelberg (2003)

10. Hartmann, S., Link, S., Trinh, T.: Efficient reasoning about XFDs with pre-image
semantics. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E.
(eds.) DASFAA 2007. LNCS, vol. 4443, pp. 1070–1074. Springer, Heidelberg (2007)

11. Hartmann, S., Trinh, T.: Axiomatising functional dependencies for XML with fre-
quencies. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS, vol. 3861, pp. 159–178.
Springer, Heidelberg (2006)

12. Kot, L., White, W.M.: Characterization of the interaction of XML functional de-
pendencies with DTDs. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS,
vol. 4353, pp. 119–133. Springer, Heidelberg (2006)

13. Rautenberg, W.: A Concise Introduction to Mathematical Logic. Springer, Heidel-
berg (2006)

14. Suciu, D.: On database theory and XML. SIGMOD Rec. 30, 39–45 (2001)
15. Trinh, T.: Axiomatising functional dependencies for XML with frequencies. Mas-

ter’s thesis, Massey University (2004)
16. Trinh, T.: XML Functional Dependencies based on Tree Homomorphisms. PhD

thesis, Clausthal University of Technology (2009)
17. Vianu, V.: A Web odyssey: from Codd to XML. SIGMOD Rec. 32, 68–77 (2003)
18. Vincent, M.W., Liu, J., Liu, C.: Strong functional dependencies and their applica-

tion to normal forms in XML. ACM ToDS 29, 445–462 (2004)
19. Vincent, M.W., Liu, J., Mohania, M.K.: On the equivalence between FDs in XML

and FDs in relations. Acta Inf. 44, 207–247 (2007)
20. Wang, J., Topor, R.W.: Removing XML data redundancies using functional and

equality-generating dependencies. In: ADC 2005, pp. 65–74 (2005)
21. Widom, J.: Data management for XML: Research directions. IEEE Data Eng. Bull.

22, 44–52 (1999)
22. Yu, C., Jagadish, H.V.: XML schema refinement through redundancy detection

and normalization. VLDB J. 17, 203–223 (2008)

Appendix

We use the appendix to assemble some more technical details that may provide
further insight into the results presented in this paper.

Canonical XFDs. Firstly, we explain when a v-property is essential, and how
the proposed translation ϑ into canonical pXFDs works. Let EǍ

T (v) be the set
of all v-ancestors whose incoming arc has frequency other than ? or 1. We call
the members of EǍ

T (v) essential v-ancestors. To check property-equality of a
set X Ǎ of v-ancestors, it is sufficient to consider the lowest v-ancestor in this
set. Instead of such a v-ancestor, it is equivalent to consider its highest simple
ancestor, which is still essential. Thus, if X Ǎ is non-empty then ϑ(X Ǎ) denotes
the singleton set containing the highest simple ancestor of the lowest contained
node lca(X Ǎ) ∈ X Ǎ. Otherwise, if X Ǎ is empty, then ϑ(X Ǎ) = {}.

174 S. Hartmann, S. Link, and T. Trinh

We also consider essential v-subgraphs. It is clear that two pre-image trees
which agree on some v-subgraph X must also agree on all v-subgraphs contained
in X . On the other hand, two pre-image trees may agree on two v-subgraphs
X,Y but still differ on the union v-subgraphX ∪ Y . For example, recall the XML
data tree T ′

photo and its ventry-walks format and section. Can we say when
agreement on two v-subgraphs X,Y forces agreement on their union X ∪ Y ? We
found the following condition: Two distinct v-subgraphs X,Y are v-reconcilable
iff X contains every w-walk in Y or Y contains every w-walk in X , whenever
X,Y share some arc (u,w) of frequency other than ? and 1 where w is a proper
descendant of v. For an example, take the ventry-walks entrant and year.

Given two v-reconcilable v-subgraphs X,Y and any two pre-image trees p, q
we can show that p1|X .= p2|X and p1|Y .= p2|Y iff p1|X∪Y

.= p2|X∪Y .
Let EŠ

T (v) be the smallest subset of ŠT (v) such that the empty v-subgraph
and every singleton v-subgraph consisting of a single v-walk belong to EŠ

T (v)
and such that, if two v-subgraphs X,Y ∈ EŠ

T (v) are not v-reconcilable then
X ∪ Y ∈ EŠ

T (v). We call the members of EŠ
T (v) essential v-subgraphs. For a set

X Š of v-subgraphs take all all essential v-subgraphs that are contained in some
member of X Š, and among these take only the ones that are maximal with
respect to subgraph containment. This gives us ϑ(X Š).

There is a practical way of finding all essential v-subgraphs: A v-unit is a v-
subgraph U that consists of i) a single v-walk in which every proper descendant
of v has an incoming arc of frequency ? or 1; or ii) all w-walks where w is the
proper descendant of v whose incoming arc is the only arc in the path from v to
w with frequency ∗ or +. Note that each v-walk belongs to exactly one v-unit.
We can prove that a v-subgraph is essential iff it is contained in a v-unit.

Given a set X of v-properties, let X Ǎ be the v-ancestors and X Š the v-
subgraphs in it. Then the translation is ϑ(X) = ϑ(X Š) ∪ ϑ(X Ǎ).

Definition 7.1 (canonical pXFD). A pXFD v : X → Y is a canonical pXFD
iff X = ϑ(X) and Y = ϑ(Y).

We can prove that a data tree T ′ satisfies v : X → Y if and only if T ′ satisfies
v : ϑ(X) → ϑ(Y). That is, it is indeed sufficient to study canonical pXFDs.

Construction of two-pre-image data trees. Next, we briefly outline the
two-phase approach proposed in Section 5 for constructing a two-v-pre-image
data tree which will agree precisely on the v-properties in some given equality
set ET . For our purposes here, we found an alternative form of input beneficial.
For that, an equality set of v-properties is transformed into a corresponding set
of v-properties on which the two pre-image trees must minimally differ :

Definition 7.2 (non-equality set). Given an equality set of v-properties ET ,
the corresponding non-equality set NET is given by

NET = {n ∈ ǍT (v) | n �∈ ET and � ∃ a proper ancestor m of n s.t. m �∈ ET }
∪ ⊆−min({W ∈ ŠT (v) |W �∈ ET })

Solving the Implication Problem for XML Functional Dependencies 175

where ⊆−min(S) denotes the subset of v-subgraphs belonging to set S which are
minimal with respect to subgraph containment.

Non-equality sets observe some nice characteristics: The members of a non-
equality set are pairwise incomparable with respect to ancestor/descendant re-
lationships and subgraph containment. All v-subgraphs in a non-equality set
are essential, and a non-empty non-equality set contains precisely one essential
v-ancestor with an incoming arc of frequency other than ? and 1.

For the construction under discussion, we look for two pre-image trees p1, p2
that differ on a single essential v-subgraph W ∈ NET but agree on every v-
subgraph properly contained inW . For a data tree T ′ in which leaves are assigned
the value “0” or “1”, let the ones-subgraph X be the largest v-subgraph for which
val(T ′|B) = “1” iff the v-walk B is contained in X . In the first phase, we can
consider each v-unit independently and use the following construction steps:

proc construct-pre-image-trees one-subgraph(W, U)

Initialise pW
1 , pW

2 as empty XML trees
for all (possibly empty) v-subgraph X which is contained in W do

Create a copy cX of U whose ones-subgraph is X
if |X| is odd then

pW
1 =Merge cX with pW

1 on η(U)
else

pW
2 =Merge cX with pW

2 on η(U)
end if

end for
return pW

1 , pW
2

By “merging” two data trees on some node w we mean that the merged data
trees must share every node except their respective pre-images of w and its
descendants. Observe that a data tree cannot contain multiple copies of U unless
U itself contains more than one walk. If U is a singleton then there is only one
copy of U to merge with the empty tree, which trivially returns the copy of U .
If U is not a singleton, then it has an identifying node η(U) whose incoming arc
is the only arc on the path from v to η(U) having frequency other than ? and 1
which is shared by all walks in U .

By repeating the previous construction and merging the resulting data trees,
we obtain for each v-unit U two U -compatible pre-image trees of v which
minimally differ on every v-subgraph in NET |U = ⊆−min({W ∈ ŠT (v) |
W is contained in U and W ∈ NET }). Note that NET |U can only have more
than one member when U consists of more than one v-walk, and we have again
some proper descendant η(U) of v with incoming arc of frequency other than
? and 1. Thus, we can merge the pre-image trees pWj

i (i = 1, 2, Wj ∈ NET |U)
such that they share as many nodes as possible except their pre-images of η(U)
and its descendants.

Finally, we combine the subtrees constructed for the individual v-units to form
a T -compatible data tree containing precisely two pre-image trees which agree
on precisely those v-properties belonging to the given equality set ET .

On Anaphora and the Binding Principles

in Categorial Grammar

Glyn Morrill1 and Oriol Valent́ın2

1 Universitat Politècnica de Catalunya
morrill@lsi.upc.edu

http://www-lsi.upc.edu/~morrill/
2 Universitat Pompeu Fabra
oriol.valentin@upf.edu

Abstract. In type logical categorial grammar the analysis of an ex-
pression is a resource-conscious proof. Anaphora represents a particular
challenge to this approach in that the antecedent resource is multiplied in
the semantics. This duplication, which corresponds logically to the struc-
tural rule of contraction, may be treated lexically or syntactically. Fur-
thermore, anaphora is subject to constraints, which Chomsky (1981)[1]
formulated as Binding Principles A, B, and C. In this paper we con-
sider English anaphora in categorial grammar including reference to the
binding principles. We invoke displacement calculus, modal categorial
calculus, categorial calculus with limited contraction, and entertain ad-
dition of negation as failure.

1 Introduction

Principles A, B and C of Chomsky (1981)[1] identify conditions on reflexive
and personal pronouns in English. Principle A points to contrasts such as the
following:1

(1) a. Johni likes himselfi.
b.*Johni thinks Mary likes himselfi.

According to Principle A a reflexive requires a local c-commanding antecedent.
Principle B refers to contrasts such as:

(2) a.*Johni likes himi.
b. Johni thinks Mary likes himi.

According to Principle B a personal pronoun must not have a local c-commanding
antecedent. Principle C filters examples such as:

(3) a.*Hei likes Johni.
b.*Hei/j thinks Billi likes Johnj.

According to Principle C a personal pronoun cannot c-command its antecedent.
1 The research reported in the present paper was supported by DGICYT project

SESAAME-BAR (TIN2008-06582-C03-01).

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 176–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Anaphora and the Binding Principles in Categorial Grammar 177

In categorial grammar the duplication of the antecedent semantic resource can
be performed lexically or syntactically. We consider treating anaphora lexically
by assignment of pronouns to higher-order types with lexical semantic contrac-
tion in displacement calculus (Morrill and Valent́ın 2010)[8], and syntactically
with the limited syntactic contraction of Jaeger (2005)[5]. In Section 2 we define
the displacement calculus D, a calculus which deals with discontinuous phe-
nomena. Like the Lambek calculus L, which it subsumes, D is a sequence logic
without structural rules which enjoys Cut-elimination, the subformula property,
and decidability. In Section 3 we look at reflexives and Principle A. In Sec-
tion 4 we consider personal pronouns and Principle B. In Section 5 we look at
Principle C.

2 Displacement Calculus

The types of the calculus of displacement D classify strings over a vocabulary
including a distinguished placeholder 1 called the separator. The sort i ∈ N
of a (discontinuous) string is the number of separators it contains and these
punctuate it into i+1 maximal continuous substrings or segments. The types of
D are sorted into types Fi of sort i by mutual recursion as follows:

(4) Fj := Fi\Fi+j under
Fi := Fi+j/Fj over

Fi+j := Fi·Fj product
F0 := I product unit
Fj := Fi+1↓kFi+j , 1 ≤ k ≤ i+1 infix

Fi+1 := Fi+j↑kFj , 1 ≤ k ≤ i+1 extract
Fi+j := Fi+1.kFj , 1 ≤ k ≤ i+1 discontinuous product
F1 := J discontinuous product unit

Where A is a type we call its sort sA. The set O of configurations is defined as
follows, where Λ is the empty string and [] is the metalinguistic separator:

(5) O ::= Λ | [] | F0 | Fi+1{O : . . . : O︸ ︷︷ ︸
i+1 O′s

} | O,O

Note that the configurations are of a new kind in which some type formu-
las, namely the type formulas of sort greater than one, label mother nodes
rather than leaves, and have a number of immediate subconfigurations equal
to their sort. This signifies a discontinuous type intercalated by these subconfig-
urations. Thus A{Δ1 : . . . : Δn} interpreted syntactically is formed by strings
α0+β1+ · · ·+βn+αn where α0+1+ · · ·+1+αn ∈ A and β1 ∈ Δ1, . . . , βn ∈ Δn.
We call these types hyperleaves since in multimodal calculus they would be
leaves. We call these new configurations hyperconfigurations. The sort of a (hy-
per)configuration is the number of separators it contains. A hypersequent Γ ⇒ A
comprises an antecedent hyperconfiguration Γ of sort i and a succedent type A
of sort i. The vector −→A of a type A is defined by:

178 G. Morrill and O. Valent́ın

(6) −→A =

⎧⎪⎨⎪⎩
A if sA = 0
A{[] : . . . : []︸ ︷︷ ︸

sA []′s

} if sA > 0

Where Δ is a configuration of sort at least k and Γ is a configuration, the
k-ary wrap Δ|kΓ signifies the configuration which is the result of replacing by
Γ the kth separator in Δ. Where Δ is a configuration of sort i and Γ1, . . . , Γi

are configurations, the generalized wrap Δ ⊗ 〈Γ1, . . . , Γi〉 is the result of simul-
taneously replacing the successive separators in Δ by Γ1, . . . , Γi respectively.
In the hypersequent calculus we use a discontinuous distinguished hyperoccur-
rence notation Δ〈Γ 〉 to refer to a configuration Δ and continuous subconfigu-
rations Δ1, . . . , Δi and a discontinuous subconfiguration Γ of sort i such that
Γ ⊗ 〈Δ1, . . . , Δi〉 is a continuous subconfiguration of Δ. That is, where Γ is of
sort i, Δ〈Γ 〉 abbreviates Δ(Γ ⊗ 〈Δ1, . . . , Δi〉) where Δ(. . .) is the usual distin-
guished occurrence notation. Technically, whereas the usual distinguished oc-
currence notation Δ(Γ) refers to a context containing a hole which is a leaf, in
hypersequent calculus the distinguished hyperoccurrence notation Δ〈Γ 〉 refers
to a context containing a hole which may be a hyperleaf, a hyperhole.

The hypersequent calculus for the calculus of displacement is given in Figure 1.
Observe that the rules for both the concatenating connectives \, ·, / and the
wrapping connectives ↓k,.k, ↑k are just like the rules for Lambek calculus except
for the vectorial notation and hyperoccurrence notation; the former are specified
in relation to the primitive concatenation represented by the sequent comma and
the latter are specified in relation to the defined operations of k-ary wrap.

Abbreviating here and throughout ↑1 and ↓1 as ↑ and ↓ respectively, an ex-
tensional lexicon for examples of this paper is as follows:

(7) a : ((S↑n(110))↓S)/cn(110) : λAλB∃C[(A C) ∧ (B C)]
about : PP/n(98) : λAA
before : (S/S)/S : before
buys : (n(101)\S)/(n(106)•n(108)) : λA((buys π1A) π2A)
coffee : n(n) : coffee
every : ((S↑n(110))↓S)/cn(110) : λAλB∀C[(A C) → (B C)]
he : n(m)|n(m) : λAA
he : (((S↑n(m))↑n(m))&¬(J•((n(m)\S)↑n(m))))↓(S↑n(m)) :

λAλB((π1A B) B)
himself : ((n(m)\S)↑n(m))↓(n(m)\S) : λAλB((A B) B)
himself : (((n(118)\S)↑n(m))↑n(m))↓2((n(133)\S)↑n(m)) :

λAλB((A B) B)
john : n(m) : j
loves : (n(101)\S)/n(103) : loves
man : cn(m) : man
mary : n(f) : m
says : (n(101)\S)/S : says
smiles : n(98)\S : smiles
talks : ((n(104)\S)/PP)/PP : talks

On Anaphora and the Binding Principles in Categorial Grammar 179

id−→
A ⇒ A

Γ ⇒ A Δ〈−→A〉 ⇒ B
Cut

Δ〈Γ 〉 ⇒ B

Γ ⇒ A Δ〈−→C 〉 ⇒ D
\L

Δ〈Γ,
−−→
A\C〉 ⇒ D

−→
A, Γ ⇒ C

\R
Γ ⇒ A\C

Γ ⇒ B Δ〈−→C 〉 ⇒ D
/L

Δ〈−−→C/B, Γ 〉 ⇒ D

Γ,
−→
B ⇒ C

/R
Γ ⇒ C/B

Δ〈−→A,
−→
B 〉 ⇒ D

·L
Δ〈−−→A·B〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
·R

Γ1, Γ2 ⇒ A·B

Δ〈Λ〉 ⇒ A
IL

Δ〈−→I 〉 ⇒ A
IR

Λ ⇒ I

Γ ⇒ A Δ〈−→C 〉 ⇒ D
↓kL

Δ〈Γ |k−−−→A↓kC〉 ⇒ D

−→
A |kΓ ⇒ C

↓kR
Γ ⇒ A↓kC

Γ ⇒ B Δ〈−→C 〉 ⇒ D
↑kL

Δ〈−−−→C↑kB|kΓ 〉 ⇒ D

Γ |k−→B ⇒ C
↑kR

Γ ⇒ C↑kB

Δ〈−→A |k−→B 〉 ⇒ D
�kL

Δ〈−−−−→A�kB〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
�kR

Γ1|kΓ2 ⇒ A�kB

Δ〈[]〉 ⇒ A
JL

Δ〈−→J 〉 ⇒ A

JR
[] ⇒ J

Fig. 1. Calculus of displacement D

180 G. Morrill and O. Valent́ın

to : PP/n(98) : λAA
walks : n(98)\S : walks
woman : cn(f) : woman

The first digit in the identifier names of feature variables appear as subscripts,
which is the way LATEX interprets the intial underscore of the variable names
of the Prolog implementation used for the derivations in this paper. Atomic
types which are unstructured appear in upper case; atomic types with arguments
appear all in lower case.

By way of illustration of the displacement calculus consider the example:

(8) every+man+loves+a+woman : S

Lexical lookup yields the following semantically labelled sequent:

(9) ((S↑n(305))↓S)/cn(305) : λAλB∀C[(A C) → (B C)], cn(m) : man ,
(n(369)\S)/n(371) : loves , ((S↑n(396))↓S)/cn(396) : λAλB∃C[(A C) ∧
(B C)], cn(f) : woman ⇒ S

This has the following derivations and readings:

(10)

cn(m) ⇒ cn(m)

cn(f) ⇒ cn(f)

n(f) ⇒ n(f)

n(m) ⇒ n(m) S ⇒ S

\L

n(m), n(m)\S ⇒ S

/L

n(m), (n(m)\S)/n(f), n(f) ⇒ S

↑R

[], (n(m)\S)/n(f), n(f) ⇒ S↑n(m) S ⇒ S

↓L

(S↑n(m))↓S, (n(m)\S)/n(f), n(f) ⇒ S

↑R

(S↑n(m))↓S, (n(m)\S)/n(f), [] ⇒ S↑n(f) S ⇒ S

↓L

(S↑n(m))↓S, (n(m)\S)/n(f), (S↑n(f))↓S ⇒ S

/L

(S↑n(m))↓S, (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S

/L

((S↑n(m))↓S)/cn(m), cn(m), (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S

(11) ∃C[(woman C) ∧ ∀G[(man G) → ((loves C) G)]]

(12)

cn(m) ⇒ cn(m)

cn(f) ⇒ cn(f)

n(f) ⇒ n(f)

n(m) ⇒ n(m) S ⇒ S

\L

n(m), n(m)\S ⇒ S

/L

n(m), (n(m)\S)/n(f), n(f) ⇒ S

↑R

n(m), (n(m)\S)/n(f), [] ⇒ S↑n(f) S ⇒ S

↓L

n(m), (n(m)\S)/n(f), (S↑n(f))↓S ⇒ S

/L

n(m), (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S

↑R

[], (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S↑n(m) S ⇒ S

↓L

(S↑n(m))↓S, (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S

/L

((S↑n(m))↓S)/cn(m), cn(m), (n(m)\S)/n(f), ((S↑n(f))↓S)/cn(f), cn(f) ⇒ S

On Anaphora and the Binding Principles in Categorial Grammar 181

(13) ∀C[(man C) → ∃G[(woman G) ∧ ((loves G) C)]]

3 Reflexives and Principle A

A subject-oriented reflexive may be assigned type ((N\S)↑N)↓(N\S) with se-
mantics λxλy((x y) y). This generates example (1a) Johni likes himselfi as fol-
lows:

(14)

N ⇒ N N\S ⇒ N\S
/L

(N\S)/N,N ⇒ N\S
↑R

(N\S)/N, [] ⇒ (N\S)↑N
N ⇒ N S ⇒ S

\L
N,N\S ⇒ S

↓L
N, (N\S)/N, ((N\S)↑N)↓(N\S) ⇒ S

Thanks to the accommodation of discontinuity in D, the assignment also gener-
ates non-peripheral subject-oriented reflexivization as in the following example
(something not possible in the Lambek calculus):

(15) john+buys+himself+coffee : S

Lexical lookup yields the semantically labelled sequent:

(16) n(m) : j , (n(197)\S)/(n(202)•n(204)) : λA((buys π1A) π2A),
((n(m)\S)↑n(m))↓(n(m)\S) : λAλB((A B) B), n(n) : coffee ⇒ S

This has the following derivation:

(17)

n(m) ⇒ n(m) n(n) ⇒ n(n)

•R

n(m), n(n) ⇒ n(m)•n(n)

n(m) ⇒ n(m) S ⇒ S

\L

n(m), n(m)\S ⇒ S

/L

n(m), (n(m)\S)/(n(m)•n(n)), n(m), n(n) ⇒ S

\R

(n(m)\S)/(n(m)•n(n)), n(m), n(n) ⇒ n(m)\S

↑R

(n(m)\S)/(n(m)•n(n)), [], n(n) ⇒ (n(m)\S)↑n(m)

n(m) ⇒ n(m) S ⇒ S

\L

n(m), n(m)\S ⇒ S

↓L

n(m), (n(m)\S)/(n(m)•n(n)), ((n(m)\S)↑n(m))↓(n(m)\S), n(n) ⇒ S

This derivation delivers the lexical semantics:

(18) (((buys j) coffee) j)

Consider further object-oriented reflexivization:

(19) mary+talks+to+john+about+himself : S

Lexical lookup for our secondary wrap object-oriented reflexivization type as-
signment yields the semantically labelled sequent:

(20) n(f) : m, ((n(256)\S)/PP)/PP : talks ,PP/n(269) : λAA, n(m) : j ,
PP/n(298) : λAA, (((n(337)\S)↑n(m))↑n(m))↓2((n(352)\S)↑n(m)) :
λAλB((A B) B) ⇒ S

182 G. Morrill and O. Valent́ın

n
(m

)
⇒

n
(m

)
P
P

⇒
P
P

/
L

P
P
/
n
(m

),
n
(m

)
⇒

P
P

n
(m

)
⇒

n
(m

)
P
P

⇒
P
P

/
L

P
P
/
n
(m

),
n
(m

)
⇒

P
P

n
(2

5
7
6
)

⇒
n
(2

5
7
6
)

S
⇒

S
\L

n
(2

5
7
6
),
n
(2

5
7
6
)\

S
⇒

S
/
L

n
(2

5
7
6
),
(n

(2
5
7
6
)\

S
)/

P
P
,
P
P
/
n
(m

),
n
(m

)
⇒

S
/
L

n
(2

5
7
6
),
((
n
(2

5
7
6
)\

S
)/

P
P
)/

P
P
,
P
P
/
n
(m

),
n
(m

),
P
P
/
n
(m

),
n
(m

)
⇒

S
\R

((
n
(2

5
7
6
)\

S
)/

P
P
)/

P
P
,
P
P
/
n
(m

),
n
(m

),
P
P
/
n
(m

),
n
(m

)
⇒

n
(2

5
7
6
)\

S
↑R

((
n
(2

5
7
6
)\

S
)/

P
P
)/

P
P
,
P
P
/
n
(m

),
n
(m

),
P
P
/
n
(m

),
[
]

⇒
(n

(2
5
7
6
)\

S
)↑

n
(m

)
↑R

((
n
(2

5
7
6
)\

S
)/

P
P
)/

P
P
,
P
P
/
n
(m

),
[
],
P
P
/
n
(m

),
[
]

⇒
((
n
(2

5
7
6
)\

S
)↑

n
(m

))
↑n

(m
)

n
(m

)
⇒

n
(m

)

n
(f

)
⇒

n
(f

)
S

⇒
S

\L
n
(f

),
n
(f

)\
S

⇒
S

↑L
n
(f

),
(n

(f
)\

S
)↑

n
(m

){
n
(m

)}
⇒

S
↓ 2

L
n
(f

),
((
n
(2

5
7
6
)\

S
)/

P
P
)/

P
P
,
P
P
/
n
(m

),
n
(m

),
P
P
/
n
(m

),
((
(n

(2
5
7
6
)\

S
)↑

n
(m

))
↑n

(m
))
↓ 2

((
n
(f

)\
S
)↑

n
(m

))
⇒

S

F
ig

.
2
.
O

b
je

ct
-o

ri
en

te
d

re
fl
ex

iv
iz

a
ti
o
n

On Anaphora and the Binding Principles in Categorial Grammar 183

This has the proof given in Figure 2. This delivers semantics:

(21) (((talks j) j) m)

However, such extensional types will also allow Principle A violation such as
(1b). Modal categorial calculus can be employed to rectify this.

Whatever the details of temporal semantics may turn out to be, it seems clear
that the semantics of each lexical item is evaluated at a temporal index bound
in the minimal tensed S within which it occurs. Morrill (1990)[7] proposed to
characterize such intensionality by adding a modality to Lambek calculus. Let
us extend the set of types as follows:

(22) Fi := �Fi

The semantic type map τ will be such that τ(�A) = T → τ(A) where T is the
set of time indices, i.e. expressions of type �A are to have as semantics the func-
tional abstraction of the corresponding extensional semantics of the expression of
type A. Thus, we assume the following semantically annotated rules of S4 modal-
ity where ˆ and ˇ represent temporal intensionalisation and extensionalisation
respectively:

(23)
�Γ ⇒ A : φ

�R
�Γ ⇒ �A : ˆφ

Γ 〈−→A : x〉 ⇒ B : φ(x)

Γ 〈−→�A : y〉 ⇒ B : φ(ˇy)

Then assuming the lexical type assignments indicated, John thinks Mary left is
derived as shown in (24) with semantics (25).

(24)

N ⇒ N
�L

�N ⇒ N S ⇒ S
\L

�N,N\S ⇒ S
�L

�N,�(N\S) ⇒ S
�R

�N,�(N\S) ⇒ �S

N ⇒ N
�L

�N ⇒ N S ⇒ S
\L

�N,N\S ⇒ S
/L

�N, (N\S)/�S,�N,�(N\S) ⇒ S
�L

John
�N ,

thinks
�((N\S)/�S),

Mary
�N ,

left
�(N\S) ⇒ S

(25) ((ˇthinks′ ˆ(ˇleft′ ˇMary′)) ˇJohn′)

Such modality, independently motivated for categorial intensional semantics,
provides a handle on Principle A.

The requirement on �R that every antecedent type be �-ed automatically
sensitizes higher order functors to temporal domains according to whether ot
not a hypothetical subtype is modalized. A modal reflexive type in which the hy-
pothetical subtype is modalized, �(((N\S)↑�N)↓(N\S)), would generate both
of (1a) and (1b); the type �(((N\S)↑N)↓(N\S)) succeeds in generating (1a),
as shown in (26), but not (1b), as shown in (27). Here and henceforth we may
abbreviate N\S as VP.

184 G. Morrill and O. Valent́ın

(26)

N ⇒ N VP ⇒ VP
/L

VP/N,N ⇒ VP
�L

�(VP/N), N ⇒ VP
↑R

�(VP/N), [] ⇒ VP↑N

N ⇒ N S ⇒ S
\L

N,VP ⇒ S
�L

�N,VP ⇒ S
↓L

�N,�(VP/N), (VP↑N)↓VP ⇒ S
�L

John
�N ,

likes
�(VP/N),

himself
�((VP↑N)↓VP) ⇒ S

(27)

∗�R
�N,�(VP/N), N ⇒ �S VP ⇒ VP

/L
VP/�S,�N,�(VP/N), N ⇒ VP

�L
�(VP/�S),�N,�(VP/N), N ⇒ VP

↑R
�(VP/�S),�N,�(VP/N), [] ⇒ VP↑N

···
�N,VP ⇒ S

↓L
�N,�(VP/�S),�N,�(VP/N), (VP↑N)↓VP ⇒ S

�L
John
�N ,

thinks
�(VP/�S),

Mary
�N ,

likes
�(VP/N),

himself
�((VP↑N)↓VP) ⇒ S

An intensional lexicon for examples of this paper is as follows:

(28) after : �((S/�S)/�S) : ˆλAλB((ˇafter A) B)
arrives : �(n(100)\S) : arrives
debbie : �n(f) : ˆd
everyone : �((S↑n(109))↓S) : ˆλA∀B[(ˇperson B)→ (A B)]
herself : �(((n(f)\S)↑n(f))↓(n(f)\S)) : ˆλAλB((A B) B)
herself : �((((n(122)\S)↑n(f))↑2n(f))↓2((n(137)\S)↑n(f))) :

ˆλAλB((A B) B)
likes : �((n(103)\S)/n(105)) : likes
she : �n(f)|n(f) : λAˆA
she : �(((S↑�n(f))↑�n(f))↓(S↑�n(f))) : ˆλAλB((A B) B)
sings : �(n(100)\S) : sings
someone : �((S↑�n(111))↓S) : ˆλA∃B[(ˇperson B) ∧ (A ˆB)]
suzy : �n(f) : ˆs
thinks : �((n(103)\S)/�S) : thinks

4 Personal Pronouns and Principle B

Jaeger (2005)[5] presents a syntactic type logical categorial grammar treatment
of anaphora inspired by the combinatory categorial grammar treatment of Ja-
cobson (1999)[4]. This uses a type constructor B|A for an expression of type B
requiring an antecedent of type A. This was in turn inspired by the syntactic
treatment of Hepple (1990)[3] which assigns pronouns the identity function as
lexical semantics. Jaeger gives the following left rule for |:

On Anaphora and the Binding Principles in Categorial Grammar 185

(29)
Γ ⇒ A : φ Δ1, A : x,Δ2, B : y,Δ3 ⇒ D : ω(x, y)

|L
Δ1, Γ,Δ2, B|A : z,Δ3 ⇒ D : ω(φ, (z φ))

Thus in an extensional grammar there is the analysis:

(30) john+says+he+walks : S

(31) n(m) : j , (n(197)\S)/S : says, n(m)|n(m) : λAA, n(231)\S : walks ⇒ S

(32)
n(m) ⇒ n(m)

n(m) ⇒ n(m) S ⇒ S
\L

n(m), n(m)\S ⇒ S

n(m) ⇒ n(m) S ⇒ S
\L

n(m), n(m)\S ⇒ S
/L

n(m), (n(m)\S)/S, n(m), n(m)\S ⇒ S
|L

n(m), (n(m)\S)/S, n(m)|n(m), n(m)\S ⇒ S

(33) ((says (walks j)) j)

Intensionally, and with a quantified antecedent:

(34) everyone+thinks+she+sings : S

(35) �((S↑n(195))↓S) : ˆλA∀B[(ˇperson B) → (A B)],�((n(251)\S)/�S) :
thinks ,�n(f)|n(f) : λAˆA,�(n(295)\S) : sings ⇒ S

(36)
n(f) ⇒ n(f)

n(f) ⇒ n(f) S ⇒ S
\L

n(f), n(f)\S ⇒ S
�L

n(f), �(n(f)\S) ⇒ S
�L

�n(f), �(n(f)\S) ⇒ S
�R

�n(f), �(n(f)\S) ⇒ �S

n(f) ⇒ n(f) S ⇒ S
\L

n(f), n(f)\S ⇒ S
/L

n(f), (n(f)\S)/�S, �n(f), �(n(f)\S) ⇒ S
|L

n(f), (n(f)\S)/�S, �n(f)|n(f), �(n(f)\S) ⇒ S
↑R

[], (n(f)\S)/�S, �n(f)|n(f), �(n(f)\S) ⇒ S↑n(f) S ⇒ S
↓L

(S↑n(f))↓S, (n(f)\S)/�S, �n(f)|n(f), �(n(f)\S) ⇒ S
�L

(S↑n(f))↓S, �((n(f)\S)/�S), �n(f)|n(f), �(n(f)\S) ⇒ S
�L

�((S↑n(f))↓S), �((n(f)\S)/�S), �n(f)|n(f), �(n(f)\S) ⇒ S

(37) ∀B[(ˇperson B)→ ((ˇthinks ˆ(ˇsings B)) B)]

This account has the benefit of great simplicity; it is difficult to see how an
account of anaphora could be more simple. But it does not respect Principle B
and we do not see any way to sensitize it to principle B or antilocality. Per-
haps the following could be said. As reflected in Principles A (locality) and B

186 G. Morrill and O. Valent́ın

(antilocality), the distributions of reflexives and personal pronouns are largely
complementary, and when a reflexive is used the resolution of the anaphora is
less nondeterministic since only local antecedents are allowed. Therefore, per-
haps Principle B violation readings are unavailable because our use of language
conforms to the facilitative principle that if the local interpretation had been in-
tended, the less ambiguous, or unambiguous, reflexive pronoun form would have
been used. Perhaps, therefore, Principle B is not a grammatical principle but a
pragmatic principle (cf. Grodzinsky and Reinhart 1993)[2]. In that case, it could
be argued, we need not expect our grammar to be able to express antilocality
since it is a ‘transgenerational’ pragmatic effect.

This view may well be the right one, and would allow us to preserve the
minimality of the Jaeger account. However, we consider as another possibility
the lexical contraction treatment of personal pronouns in displacement calculus,
which will provide us with a grammatical handle on antilocality in terms of
negation as failure.

Let us extend the calculus with linear additives as follows (cf. Kanazawa
1992[6]):

(38) Fi := Fi&Fi | Fi+Fi

(39)
Γ 〈−→A 〉 ⇒ C

&L1
Γ 〈−−−→A&B〉 ⇒ C

Γ 〈−→B 〉 ⇒ C
&L2

Γ 〈−−−→A&B〉 ⇒ C

Γ ⇒ A Γ ⇒ B
&R

Γ ⇒ A&B

Γ 〈−→A 〉 ⇒ C Γ 〈−→B 〉 ⇒ C
+L

Γ 〈−−−→A+B〉 ⇒ C

Γ ⇒ A
+L1

Γ ⇒ A+B

Γ ⇒ B
+L2

Γ ⇒ A+B

We propose to introduce into type logical categorial grammar a negation,
interpreted in the succedent as non-provability (strong negation, as for example
in autoepistemic logic, and Prolog):

(40) Fi := ¬Fi

(41)
�� Γ ⇒ A

¬R
Γ ⇒ ¬A

Thus, to express that walk is a non-third person present tense form we might
assign it type (∃aN(a)&¬N(3(sg)))\S.

Treating pronouns by secondary wrap in modal displacement calculus, gener-
ating an example like (2b) requires a pronoun type �(((S↑N)↑2�N)↓2(S↑N))
in which the pronoun hypothetical subtype is modalized to allow the pronoun

On Anaphora and the Binding Principles in Categorial Grammar 187

in a subordinate clause. But this would also overgenerate (2a). Our proposal is
to enforce Principle B by employing the negation:

(42) him : �((((S↑N)↑2�N)&¬((J ·(N\S))↑2N))↓2(S↑N)) = �α
Then (2a) is filtered because the negative goal in Figure 3 succeeds; here and
henceforth we may abbreviate (N\S)/N as TV. succeeds. Example (2b) is al-
lowed however because the negative goal in Figure 4 fails as required.

·
·
·

[], �TV, [] ⇒ (S↑N)↑2�N

JR
[] ⇒ J

N ⇒ N

N ⇒ N S ⇒ S
\L

N,VP ⇒ S
\R

VP ⇒ VP
/L

TV, N ⇒ VP
�L

�TV, N ⇒ VP
·R

[], �TV, N ⇒ J·VP
↑2R

[], �TV, [] ⇒ (J·VP)↑2N
¬R

�� [], �TV, [] ⇒ ¬((J·VP)↑2N)
&R

[], �TV, [] ⇒ ((S↑N)↑2�N)&¬((J·VP)↑2N)

·
·
·

S↑N{�N} ⇒ S
↓2L

�N, �TV, α ⇒ S
�L

�N, �TV, �α ⇒ S

Fig. 3. Blocking of Johni likes himi in accordance with Principle B because of the
provability of the subgoal which is required to be not provable

5 Principle C

We can adopt a similar strategy in order to block Principle C violations in
cataphora. The analysis of the following, where the pronoun does not c-command
its antecedent, goes through since the negative subgoal fails as required.

(43) before+he+walks+every+man+smiles : S

Lexical lookup yields the semantically labelled sequent:

(44) (S/S)/S : before, (((S↑n(m))↑n(m))&¬(J•((n(m)\S)↑n(m))))↓(S↑n(m)) :
λAλB((π1A B) B), n(341)\S : walks , ((S↑n(366))↓S)/cn(366) :
λAλB∀C[(A C) → (B C)], cn(m) : man , n(427)\S : smiles ⇒ S

The derivation delivers semantics:

(45) ∀C[(man C) → ((before (walks C)) (smiles C))]

But as required, Principle C violations such as the following will be blocked.

(46) a.*Hei likes Johni.
b.*Hei thinks Mary likes Johni.

188 G. Morrill and O. Valent́ın

· · ·
�
N
,�

T
V
,�

N
⇒

S
�
R

�
N
,�

T
V
,�

N
⇒

�
S

N
⇒

N
S

⇒
S
\L

N
,N

\S
⇒

S
\L

[]
,N

\S
⇒

S
↑N

/
L

[]
,V

P
/
�
S
,�

N
,�

T
V
,�

N
⇒

S
↑N

�
L

[]
,�

(V
P
/
�
S
),

�
N
,�

T
V
,�

N
⇒

S
↑N

↑ 2
R

[]
,�

(V
P
/
�
S
),

�
N
,�

T
V
,[
]
⇒

(S
↑N

)↑
2
�
N

J
R

[]
⇒

J

∗�
R

�
N
,�

T
V
,N

⇒
�
S

V
P

⇒
V
P

/
L

V
P
/
�
S
,�

N
,�

T
V
,N

⇒
V
P

�
L

�
(V

P
/
�
S
),

�
N
,�

T
V
,N

⇒
V
P

�
L

[]
,�

(V
P
/
�
S
),

�
N
,�

T
V
,N

⇒
J
·V

P
↑ 2
R

��
[]
,�

(V
P
/
�
S
),

�
N
,�

T
V
,[
]
⇒

(J
·V

P
)↑

2
N

¬R
[]
,�

(V
P
/
�
S
),

�
N
,�

T
V
,[
]
⇒

¬(
(J

·V
P
)↑

2
N
)
&
R

[]
,�

(V
P
/
�
S
),

�
N
,�

T
V
,[
]
⇒

((
S
↑N

)↑
2
�
N
)&

¬(
(J

·V
P
)↑

2
N
)

· · ·
S
↑N

{�
N
}⇒

S
↓ 2
L

�
N
,�

(V
P
/
�
S
),

�
N
,�

T
V
,α

⇒
S

�
L

�
N
,�

(V
P
/
�
S
),

�
N
,�

T
V
,�

α
⇒

S

F
ig

.
4
.

D
er

iv
a
ti
o
n

o
f
J
o
h
n

i
th

in
ks

M
a
ry

li
ke

s
h
im

i
in

a
cc

o
rd

a
n
ce

w
it
h

P
ri
n
ci

p
le

B
b
ec

a
u
se

o
f
th

e
n
o
n
p
ro

v
ea

b
il
it
y

o
f

th
e

su
b
g
o
a
l
w

h
ic

h
is

re
q
u
ir
ed

to
b
e

n
o
t

p
ro

v
ea

b
le

On Anaphora and the Binding Principles in Categorial Grammar 189

6 Conclusion

This paper offers two innovations in relation to anaphora and the binding princi-
ples: we consider the possible application of the generalized discontinuity of the
displacement calculus to various forms of anaphora, and we make the technical
innovation of introducing negation as failure into categorial logic, and apply this
to the capture of binding principles.

As regards the Cut rule and negation as failure, note that by using them both
together we would get undesirable derivations such as the following:

(47) N ⇒ S/(N\S)

�� S/(N\S) ⇒ N
¬R

S/(N\S) ⇒ ¬N
Cut

N ⇒ ¬N

Adding the negation as failure (right) rule brings our categorial logic to the
realms of non-monotonic reasoning where the transitivity of the consequence
relation must be dropped. The other connectives used in this paper, the dis-
placement connectives, S4 modality, and additives, enjoy Cut-elimination. But
in the presence of negation as failure, the Cut rule must be considered not
just eliminable, but inadmissable. However, the subformula property holds of all
the connectives used here: the sequent presentation is such that for every rule,
the formula occurrences in the premises are always subformulas of those in the
conclusion. Given this state of affairs, the Cut-free backward chaining sequent
search space turns out to be finite and hence the categorial logic used in this pa-
per is decidable. Thus the system considered here is implementable; indeed some
derivation examples used in this document have been generated automatically
from a Prolog implementation.

Concerning the negation connective, let us remark the following aspects. On
the one hand, as far as we are aware, no left sequent rule for negation as failure
is known. This seems to be an open problem. On the other hand, as the reader
may have noticed, the polarity of the negated subtypes in our applications is
always positive, consistent with the absence of a left rule.

Much remains to be said and done on anaphora and the binding principles
in English and other languages and we have only been able to touch on a few
points here. The account of Principle A in terms of modal categorial logic was
introduced twenty years ago but it appears that no other categorial account
of locality has been developed in detail. Here we have suggested that parts of
Principles B (antilocality) and C may be treated in the grammar by means of
negation, in particular negation as failure. We hope this may be a first indication
of how categorial approaches may be sensitized to these negative conditions
directly in the grammar while preserving as much as possible the good theoretical
properties of the logic.

190 G. Morrill and O. Valent́ın

References

1. Chomsky, N.: Lectures on Government and Binding: The Pisa Lectures. Foris Pub-
lications, Dordrecht (1981)

2. Grodzinsky, Y., Reinhart, T.: The Innateness of Binding and Coreference. Linguistic
Inquiry 24(1), 69–101 (1993)

3. Hepple, M.: The Grammar and Processing of Order and Dependency. PhD thesis,
University of Edinburgh (1990)

4. Jacobson, P.: Towards a variable-free semantics. Linguistics and Philosophy 22(2),
117–184 (1999)

5. Jäger, G.: Anaphora and Type Logical Grammar. Trends in Logic – Studia Logica
Library, vol. 24. Springer, Heidelberg (2005)

6. Kanazawa, M.: The Lambek calculus enriched with additional connectives. Journal
of Logic, Language and Information 1, 141–171 (1992)

7. Morrill, G.: Intensionality and Boundedness. Linguistics and Philosophy 13(6), 699–
726 (1990)

8. Morrill, G., Valent́ın, O.: Displacement Calculus. To appear in the Lambek
Festschrift, special issue of Linguistic Analysis (2010),
http://arxiv.org/abs/1004.4181

Feasible Functions over Co-inductive Data

Ramyaa Ramyaa and Daniel Leivant

Indiana University
{ramyaa,leivant}@cs.indiana.edu

Abstract. Proof theoretic characterizations of complexity classes are of
considerable interest because they link levels of conceptual abstraction
to computational complexity. We consider here the provability of func-
tions over co-inductive data in a highly expressive, yet proof-theoretically
weak, variant of second order logic L+

∗ , which we believe captures the
notion of feasibility more broadly than previously considered pure-logic
formalisms.

Our main technical result is that every basic feasible functional (i.e.
functional in the class BFF, believed to be the most adequate definition
of feasibility for second-order functions) is provable in L+

∗ .

1 Introduction

Relations between the complexity of program-termination proofs and the compu-
tational complexity of the programs considered go back at least to Parson’s [28]
characterization of primitive recursion in terms of existential induction. Frame-
works for characterizing computational complexity classes without any reference
to resources have been developed over the last dozen odd years, jointly referred
to as Implicit Computational Complexity. Included are, among others, ramified
functional programs, ramified first order proof systems, higher order logics with
restricted set-existence, structural restrictions on applicative terms and proofs,
and modal and linear type systems and proof systems. Such formalisms are par-
ticularly attractive for delineating notions of feasibility in higher type: they are
based on concepts that do not refer directly to functions and computations, and
consequently they lift seamlessly to higher type computing. The proof-theoretic
strand of implicit computational complexity is of particular interest, since it un-
ravels underlying concepts in particularly stark terms, and often relates those di-
rectly to complexity of type systems for applicative programs via Curry-Howard
morphisms. Within the proof-theoretic approach, second-order logic offers a use-
ful combination of a powerful descriptive machinery, and of allowing very weak
proof formalisms by drastically restricting the Comprehension Principle (i.e. ad-
mitting only restricted forms of set-definitions as legitimate). For example, in
[21] we gave a characterization of PTime by limiting set-existence to positive-
existential first-order formulas.

In this paper we consider the proof-theoretic characterization of feasible com-
puting over the set S(N) of streams over natural numbers, and the set T(W) of
infinite binary trees over W = {0, 1}∗. We adopt a restricted second-order logic,

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 191–203, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

192 R. Ramyaa and D. Leivant

L+
∗ , and prove that every functional in the class BFF (basic feasible functionals)

[12, 19, 30], when expressed as a function over T(W), is provably productive (i.e.
fair) in L+

∗ . We strongly conjecture that the converse holds as well.
Since the elements of T(W) are complex objects, obtained by nesting induc-

tive data within co-inductive data, our logic L+
∗ must support fairly complex

arguments, considerably more than for N and W for example. At the same time
the logic must remain computationally feasible (PTime in an appropriate sense).
The restrictions that define L+

∗ are all natural, germane to computational com-
plexity, and known from related works. To start, we take ramified second-order
logic, in which relational variables are assigned levels, and comprehension is re-
quired to respect those levels.1 We further restrict the comprehension formulas
with two requirements. First, they have to be “positive”, in the sense of having
no object ∃ or relational ∀ in negative positions, and dually for object ∀ and
relational ∃. (Even slight relaxation of this restriction yields the provability of
all PSpace functions.) Further, we require comprehension formulas to be sepa-
rated, in the sense that a quantifier of a relational variable R cannot have other
variables free in its scope.2

2 Background

2.1 Equational and Relational Programs

A constructor-vocabulary is a finite set C of function identifiers, referred to as con-
structors, each assigned an arity � 0. (Constant constructors have arity 0.) We
posit an infinite set X of variables, and an infinite set F of function-identifiers,
dubbed program-functions, and assigned arities � 0 as well. The sets C, X and
F are, of course, disjoint.

If E is a set consisting of function-identifiers and (possibly) variables, we write
Ē for the terms generated from E by application: if g ∈ E is a function-identifier
of arity r, and t1 . . . tr are terms, then so is g t1 · · · tr. We use informally the
parenthesized notation g(t1, . . . , tr) when convenient. We refer to C̄, C ∪ X and
C ∪ X ∪ F as the data-terms, base-terms and program-terms, respectively.

As in [22, 23], we use an equational computation model, in the style of
Herbrand-Gödel, familiar from the extensive literature on algebraic semantics
of programs. There are easy translations between equational programs and the
program-terms of Moschovakis’s FLR0 [27]; however, equational programs inte-
grate easily into logical calculi, because they be construed as equational theories;
codifying them as terms is a redundancy, since the computational behavior of
such terms is itself spelled out using equations or rewrite-rules.

A program-equation is an equation of the form ft1 . . . tk = q, where f is a
program-function of arity k, t1 . . . tk are base-terms, and q is a program-term.

1 Compare e.g. [20], or even Charles Parson’s 1961’s PhD Dissertation.
2 This restriction alone reduces the complexity of full second-order logic to (at most)

the theory of iterated inductive definitions, as shown in [1], and the complexity of
Gödel’s system T to the Kalmar-elementary functions [2].

Feasible Functions over Co-inductive Data 193

The identifier f is dubbed the lead-function of the equation, and the tuple
〈t1 . . . tk〉 its case. Two program-equations are compatible if they have distinct
lead functions, or else have cases that cannot be unified. A program-body is a
finite set of pairwise-compatible program-equations. A program (P, f) consists of
a program-body P and a program-function f, dubbed the program’s principal-
function. We identify a program with its program-body when in no danger of
confusion. We write VP for the vocabulary of P , i.e. C augmented with the
program-functions used in P .

It is easy to define the denotational semantics of an equational program for
(the algebraic interpretation of) inductive data, since such data is finite. For
example, if (P, f) is a program for a unary function over N, then it computes the
partial function f : N � N where f(p) = q just in case the equation f(p̄) = q̄ is
derivable from P in equational logic, where n̄ is the n’th numeral, i.e. ss · · · s0
with n occurrences of the identifier s (the successor).

Since co-inductive data is (in general) infinite, defining the semantic of equa-
tional programs must refer to finite information about the output. It must also
refer to the data-objects not as syntactic terms that can be present in equations,
but as values bound to variables. The underlying idea is obvious, and to simplify
its articulation, we will formulate our semantics using fresh auxiliary variables,
one variable va for each a ∈ [[S]]. (In fact only countably many variables will be
needed, and only finitely many will be present at any given step.)

The diagram of S is the theory

Diag(S) = {va = cvb1 · · · vbr | a = cSb1 · · · br}

That is, the diagram describes, for each constructor c, its interpretation cS in
S. We say that a program (P, f) computes, over [[S]], the k-ary partial function
f iff for every a1, . . . , ak, b ∈ [[S]], we have f(a) = b just in case the equation
f(va1 , . . . , vak

) = vb is derivable in equational logic from P ∪Diag(S).
Note that this is a global semantic, referring to arbitrary semantic interpre-

tations of the underlying vocabulary (i.e the constructors). It is not a canonical
structure obtained from categorical considerations. Moreover, in this seman-
tics bi-simulation between co-inductive data does not guarantee true equality
(though it does imply observational equality in an appropriate sense). For ex-
ample, in a non-standard model of arithmetic, the non-standard elements are all
starting points for an infinite chain of predecessors; they all represent then the
stream s(s(s(s(· · · · · · , and have identical computational behavior, and yet they
are distinct elements of the model.

2.2 A Logical Characterization of Correct Computability

In our present semantic approach, the correct typing of a function f computed by
a program (P, f) is not attached to the object consider (ontological, i.e. Church-
style typing), but is obtained as a semantic property of the objects (semantic,
i.e. Curry-style, typing). Namely, typing is expressed using data-preservation
formulas.

194 R. Ramyaa and D. Leivant

For example, the following second-order formula N [x] defines, uniformly in all
structures, the denotations of the numerals:

N [x] ≡ ∀R Cl[R] → R(x)
where

ClN [R] ≡ R(0) ∧ ∀z R(z)→ R(sz)

Then, to state that a function f , computed by the program above, is total over
the natural numbers, we would write ∀x N [x] → N [fx]. This formula expresses,
in terms of validity in all structures, the convergence of the program P for all
input in N: if the program terminates, then its execution can be emulated in
any structure in which program P , understood as a set of equations, is true.
And if the program does not terminate for input n, then there is a model of P
in which the value of the term f(n̄) is not equal to the value of any numeral.
In fact, the construction in [23] uses a single canonical model for that purpose,
namely the quotient of the term model over the provable-equality of terms using
the program. The latter is necessary to guarantee that the structure constructed
is a model of the program.

It is of interest to consider the analog of that construction for co-inductive
data. For streams we posit a ground object ε, the binary constructor : (the
cons function), and the corresponding destructor functions hd and tl, with the
equations

hd(x : y) = x
tl(x : y) = y

hd(ε) = ε
tl(ε) = ε

(the status of correct typing will be clarified momentarily).
The formula defining the streams of natural numbers is then

S[x] ≡ ∃R PlS [R] ∧ R(x) ∧ ¬R(ε)
where

PlS [R] ≡ ∀z(R(z)→ N [hd(z)] ∧R(tl(z))

The formula ∀x S[x] → S[fx] expresses that the process of computation of the
successive entries of the output of f for an input stream a will be a stream, i.e.
the production of the output will be fair.

The binary trees of words are defined using a ternary constructor t intended
to be a double cons, with the first entry containing a string in W = {0, 1}∗), and
latter two the immediate subtrees. The corresponding destructors are nd, tl0 and
tl1, with the obvious defining equations. Thus, the formula defining the binary
trees of 01-words is

T [x] ≡ ∃R PlT [R] ∧ R(x) ∧ ¬R(ε)
where

PlT [R] ≡ ∀z(R(z)→W [hd(z)] ∧R(tl0(z)) ∧R(tl1(z))

Feasible Functions over Co-inductive Data 195

In analogy to [25, Theorem 2], we have

Theorem 1. Let (P, f) be a program over N and S(N), say f binary. A program
(P, f) computes a partial-function that maps inputs n ∈ N and α ∈ S(N) to an
output in S(N), iff the formula

|= ∀x, y N [x] ∧ S[y]→ S[f(x, y)] (1)

i.e. the formula is true in all structures.
And similarly for functions of other types, as well as for functions over W and

T(W).

In considering the particular data-types S(N) and T(W) we are motivated by
their computational nature. The set N provides addresses in streams, whereas
W provides addresses in T. While S(N) is simpler, and better understood, it
corresponds to computing over unary functions, thus falling short of capturing
the computational machinery underlying BFF. The latter is better captured by
T(W).

3 Formal Reasoning about Inductive and Coinductive
Data

3.1 Coinduction

A common reasoning tool for coinductive data is the coinduction rule (e.g. [3, 29]).
For streams over N, using relational identifiers S and N for streams and for nat-
ural numbers respectively, the coinduction rule for eigen-predicate λz.ϕ[z] (ϕ a
formula) can be given as3

ϕ[t]

{ϕ[x]}
· · ·

N(hd(x))

{ϕ[x]}
· · ·

ϕ[tl(x)]
S(t)

In [25] we defined a generic first-order framework for reasoning about equa-
tional programs over “data-systems” with data-types built up inductively as
well as co-inductively. The rule of Coinduction plays there a central role, and we
showed that the functions over streams of booleans defined by corecursion are
precisely those that are provable using coinduction over “data-positive” formulas
(in analogy to a similar result in [24] for primitive-recursion).

Here we tackle the subtler issue of an implicit characterization of feasible
computing over streams. Cook and kapron have shown [13] that a higher-order
computation model may have only PTime as first-order fragment and yet be
inadequate for capturing feasibility for infinite-objects such as functions and
streams4.
3 The generic rule for a coinductive type C needs an additional premise, which is dis-

pensable for streams; see [25, §2.2].
4 This point is ignored in some recent works on feasibility in higher type, such as [4].

196 R. Ramyaa and D. Leivant

Theorem 1 provides the justification for our concept of provable correctness of
programs: (P, f) is provable correct in a second-order logic L if the formula (1)
above is not merely valid, but is provable. The logic we consider here is a ramified
second-order logic, with restricted comprehension. We refer to Prawitz’s natural
deduction formalism for second-order logic [31] (or see [21]). Second-order quanti-
fiers bind relational-variables, each of a fixed arity, and the Comprehension Rule
is conveyed via the relational (second-order) ∀-elimination and ∃-introduction
rules.

In our ramified formalism each relational variable R is assigned a level,
level(R) ∈ N. The level of formulas ϕ without program-functions is defined
then by structural recurrence. That is, the level of atomic formulas without
relational variables is 0; the level of formulas R(t) is level(R); level(¬ϕ) =
level(ϕ); level(ϕ ! ψ) = max(level(ϕ), level(ψ) for each binary connective !;
level(Qx)ϕ) = level(ϕ) for first order quantifiers Qx; and for relational quanti-
fiers, level(QRϕ) = max(1+ level(R), level(ϕ)). The levels are designed to break
the impredicativity inherent in second-order logic: the relational ∀-elimination
and ∃-introduction rules are restricted by requiring that their eigen-formula
be of level not exceeding the level of the quantified variable. In particular,
one cannot infer from ∀Rϕ[R] (R unary say) the formula ϕ[λz.∀R.ϕ], because
level(∀R,ϕ) > level(R).

In the presence of program functions the use of levels should also account
for the fact that the interpretation in a structure of the program-functions is
itself less determined than the interpretation of the constructors. We therefore
distinguish between two sorts: definite, and virtual, with the definite sort a subset
of the virtual sort. Our intent is that data-terms are definite, and terms with
program-functions are virtual. We thus start by distinguishing between variables
ranging over the two sorts, writing x, y, z for definite variables and v, u, w for
virtual variables. The sorts of definite and virtual terms are then generated
inductively: the definite variables are definite terms, and all variables are virtual
terms; both sorts are closed under the constructors, but only the virtual terms
are closed under program-functions. An equation t≈q is then considered well-
formed only if both terms t and q are of the same sort. The first-order quantifier
rules are sorted accordingly: eigen-terms must be of the same sort as the variable
they replace.

We now extend our definition above of the level of formulas, to allow for
the presence of program-functions (and virtual terms). The level of an atomic
formula R(t) is level(R) if no program-function is present in t, but is 1+ level(R)
otherwise.

Our logic L+
∗ is ramified second-order logic, as defined above, with the addi-

tional restriction that comprehension formulas (i.e. the eigen-formulas of the ∀E
and ∃I rules for relations) satisfy the following two additional requirements.

1. Positive: No object ∃ or relational ∀ in negative positions, and no object ∀
and relational ∃ in negative position.

2. Separated: A relational-quantifierQR does not have relational variables other
than R free in its scope.

Feasible Functions over Co-inductive Data 197

3.2 Functional Representation in L+
∗

When computational feasibility is of interest we must distinguish between unary
and binary representations of natural numbers. Modulo unary representation a
function f : N→N is represented by a stream of natural numbers, σf ∈ S(N),
which at position n has the number f(n); i.e. hd(tl[n](σf)) = f(n). However,
modulo binary representation we actually consider the function f ′ : W→W

given by f ′([n]2) = [f(n)]2, whose coinductive representation is a tree of words
τ ∈ T(W), which for each binary address w = [n]2 has the entry τw = [f(n)]2 ∈
W. Here τw is val(τ , w), i.e. the entry of τ at address w. This is defined recursively
by val(τ , ε) = hd(τ), val(t(τ , dw) = val(tld(τ), w) (d = 0, 1).

Since BFF is formulated in terms of computing over W, our proof-theoretic
analysis of BFF will refer to T(W). The second-order definition (global and
uniform for all structures S) of the set T(W) of binary trees over binary words
is analogous to the second-order definition above of S(N). That is,

T [x] ≡ ∃R PlT [R] ∧ R(x) ∧ ¬R(ε)
where

PlS [R] ≡ ∀z(R(z)→W [hd(z)] ∧R(tl(z))

Here W is itself a universal second-order formula, defining the free word-
algebra isomorphic to {0, 1}∗; that is, using 0 and 1 as unary functions:

W [x] ≡ ∀Q ClW [Q] → Q(x)
where

ClW [Q] ≡ Q(ε) ∧ ∀zQ(z)→ Q(0z) ∧Q(1z)

This is in fact a template for a family of formulas T i,j, one for each choice of
levels i and j for R and Q, respectively:

T i,j[x] ≡ ∃Ri PljT [R] ∧ R(x) ∧ ¬R(ε)
where

PljS [R] ≡ ∀z(R(z)→W j [hdz] ∧R(tlz)
and

W j[x] ≡ ∀Qj ClW [Q] → Q(x)

We focus on admissible definitions, which we define to be those where i > j.
This is quite natural, since one must assume that the basic objects used are
understood before building infinite object out of them.

We say that a program (P, f) (with f binary) is provable in L+
∗ to be of type

(W→W)×W → W if for some � and m the formula

T �[x] ∧W �[y] → Wm[f(x, y)]

is provable in L+
∗ from the (universal closure of) the equations in P , where T �[x]

is the conjunction of formulas of the form T i,j with i > j.

198 R. Ramyaa and D. Leivant

3.3 Examples

In each of the following examples, we give an equational program, and discuss
its provability in L+

∗ .

1. (Addition) sum : N ×N → N is computed by the program consisting of the
two equations sum(0, x) = y; sum(sx, y) = s(sum(x, y)),
We have N1[x] ∧N0[y]→ N0[sum(x, y)], as in [21].

2. (Polynomials) Consider the functions over Ntpk(x1 . . . xk, y) =df

x1x2 · · ·xk + y (k � 1) defined by

tp0(y) = sy;
tpk+1(0, x2 . . . xk, y) = y,

tpk+1(sx, x2 . . . xk, y) = tpk(x2 . . . xk, tpk+1(x, x2 . . . xk, y))

We prove in L+
∗ that

∧i=1..kN
1[xi] ∧N0[y] → N0[tpk(x1 . . . xk, y)] (2)

The proof is by (discourse level) induction on k. For k = 0 (2) is trivial.
Assume (2) for k, and towards proving it for k+1 assume ∧i=1..k+1N

1[xi]∧
N0[y]. Let R be a unary relational variable of level 0, and assume ClN [R],
and consider the formula ϕ[z] ≡df R(tpk+1(z, x2, . . . , xk+1, y)), which is of
level 1. From N1[x1] we conclude ClN [ϕ]→ ϕ[x1].

But we have ClN [ϕ]: ϕ[0] since tpk+1(0, x2, . . . , xk+1, y) = y,
whereas N0[y] and ClN [R] imply R(y), and ϕ[z] implies ϕ[sz], i.e.
R(tpk+1(z, x2, . . . , xk+1, y)) implies R(tpk+1(sz, x2, . . . , xk+1, y)), by IH for
k and the definition of tpk+1. This yields ϕ[x1], concluding the proof.

We can similarly define functions on W that on inputs x, y return an
output of length (

∏
i |xi|) + |y|.

3. (Exponentiation) We showed above that multiplication is provably of type
N1 × N1 → N0. More generally, we could show that it is of type N i ×
N j → Nk provided i, j > k. The latter constraint prevents the provability
of programs for exponentiation.

4. (Subtree) Consider the function sbtree : W,T → T that on input x, y
return the subtree of y rooted at address x. This is computed by the program
consisting of the equations

sbtree(ε, y) = y; sbtree(dx, y) = tld(sbtree(x, y)) (d = 0, 1)

We prove in L+
∗ that

W 2[x] ∧ T 1,0[y] → T 1,0[sbtree(x, y)] (3)

Assume W 2[x], as well as T 1,0[y], i.e. Pl0T [P] ∧ P (sbtree(y)) where P is a
relational variable of level 1.

Consider the formula ϕ[z] ≡df P (sbtree(z, y)), which is of level 2. From
W [x] we obtain ClW [ϕ] → ϕ[x]. But ClW [ϕ] is straightforward from the

Feasible Functions over Co-inductive Data 199

definition of sbtree using PlT [P], so we obtain ϕ[x], that is P (sbtree(x, y)).
Now consider the formula ψ[z] ≡df P (sbtree(x, z)). From PlT [P] and the
definition of sbtree we have PlT [ψ], whence PlT [ψ]∧ψ[y], which is of level 1;
so ∃R PlT [R] ∧R(y) (with R of level 1), i.e. T 1,0[sbtree(x, y)].

Defining the function entry : W,T →W by entry(x, y) = hd(sbtree(x, y)),
i.e. the node of tree y at address x, we conclude that entry is provable in L+

∗
to be of type W 2 × T 1,0 →W 0.

5. (Tree composition) Consider the function compose : T × T → T that
on input x, y returns the tree whose entry at an address w is y’s en-
try at address z, where z is x’s entry at address w. That is, compose
is computed by the single equation program compose(t(w, x0, x1), y) =
t(entry(w, y), compose(x0, y), compose(x1, y)). Or equivalently, using a core-
cursive style, by the program consisting of the three equations

nd(compose(x, y)) = entry(ndx, y))
tl0(compose(x, y)) = compose(tl0x, y))
tl1(compose(x, y)) = compose(tl1x, y))

We prove in L+
∗ that T 3,2[x] ∧ T 1,0[y] implies T 3,0[compose(x, y)]. Assume

T 3,2[x] ∧ T 1,0[y], that is Pl2T [Q]&Q(x) for a relational variable Q of level 2,
and Pl0T [P]&P (y) for P of level 1. Consider the level 3 formula

ϕ[u] ≡df ∃x, y Q(x) ∧ Py ∧ u = compose(x, y)

We prove Pl0[ϕ] ∧ ϕ[compose(x, y)] as in the proof above, using Pl0T [P] and
Pl2T [Q].

4 The Basic Feasible Functionals Are Provable in
Ramified Second Order Logic

4.1 Basic Feasible Functionals

Computable higher type functionals have been studied for about a century, for
several intertwined reasons. One of the first to explicitly consider feasibility of
functionals was Robert Constable, who in [9] introduced a machine model for
functionals, and considered the definability of the functionals computable therein
in a certain function algebra.5 Melhorn [26] refined Constable’s algebraic ap-
proach by lifting to second order types the characterization given by Cobham
[8] of the class FP of functions computable in polynomial time. A correspond-
ing machine model was defined by Kapron and Cook in [17], and shown to be
equivalent to Mehlhorn’s class.

Another thread in the evolution of the subject was concerned with functional
interpretation of proofs in Buss’s Bounded Arithmetic. In [5] Buss introduced
a system IS1

2 of arithmetic and showed that its definable functions form pre-
cisely FP. In [6] Buss considered the intuitionistic variant of IS1

2 , and defined
5 See [7] for a correction.

200 R. Ramyaa and D. Leivant

a functional interpretation which yields a poly-time instantiation theorem for
the system. This approach was substantially refined and simplified by Cook and
Urquhart in [14, 15], where they defined a system BFF (for Basic Feasible Func-
tionals), based on the typed lambda calculus, and which supports a functional
interpretation of IS2

1 , analogous to Gödel’s functional interpretation of first order
arithmetic [16].6 In [18] Cook and Kapron showed that the second order fragment
BFF2 of BFF contains precisely the functionals defined in Mehlhorn’s system,
viz. the same as the functionals computable by the machine model of [17].

It is not immediately clear that BFF2 should be admitted as a canonical de-
lineation of the feasible second order functionals. Indeed, Cook exhibited in [10]
a functional L that might be considered feasible, and yet falls outside BFF2.
Cook stated three conditions that any proposed definition of type 2 feasibility
must satisfy, and those are in fact satisfied by BFF2 appropriately augmented
with L. However, Seth showed [32] that when two additional and quite natural
conditions are imposed, then BFF2 emerges as the only admissible notion of fea-
sibility for second order functionals. Nonetheless, it is useful to lift doubts about
the robustness of BFF2, and more generally of the class BFF, by providing
additional natural characterizations.

Functional feasibility is best understood via oracle Turing machines (OTMs)
that use input functions as function-oracles. These machines are Turing trans-
ducers (using input, work and output tapes) augmented with a query tape, and
with two distinguished states query and answer. When in state query, the ma-
chine overwrites the entire contents w of the query tape by the string f(w), and
switches to the answer state. This operation is counted as a single computation-
step in counting the time complexity of the computation.

To define the time complexity of an OTM M we need to refer to the
size of the input, which now includes a function. One plausible definition,
dubbed the PTime oracle Turing machines (POTM), admits OTMs M for
which there is a polynomial p such that the runtime of M on inputs (w, f)
is bounded by by p(n), where n is the larger of |w| and max {f(y) |
y is one of the computation’s queries }. The class of functionals computed by
POTM’s is denoted by OPT.

OPT gives an upper bound on reasonable notions of functional feasibility
[11], but OPT has non-feasible properties [32, 33]. Indeed, large query answers
may boost dramatically the allowable run time, and such boosts may occur an
unbounded number of times during computation, depending on the string and
the function inputs. Such a boost is dubbed change of space by Pelozzi [30]. Given
a polynomial p(x), an OTM M makes a change of space during its computation
for inputs w, f when M enters a query for some string u, and f(u) is longer than
p(|w|) as well as p(|f(v)|) for all preceding queries v. Pezzoli proved that BFF
consists exactly of the functionals computed by POTMs, with polynomial p, for
which there is a k � 0 that bounds the number of M ’s changes of space for all
input.

6 Initially the system was denoted PVω.

Feasible Functions over Co-inductive Data 201

4.2 BFF Is Provable in Ramified Second Order Logic

As noted above, functions of typeW →W can be represented by trees of strings,
T(W). Thus functionals of type (W→W) ×W → W can be construed as first-
order functions of type T(W)×W → W.

Theorem 2. Every functional in BFF2 is computed by an equational program
which is provable in L+

∗ to be of type T(W)×W → W.

Proof. Given an OTM M , and an oracle f , represented by a tree τ ∈ T(W),
consider the configuration-update functions

Gi : T(W)× (W)9 → W i = 0..8

for M . That is, for configuration c = (q, u0, v0, u1, v1, u2, v2, u3, v3), with state
q and the cursor-split contents of the input, work, output and query tapes,
the functions Gi’s (i = 0..8) output the corresponding components of the next
configuration. The definition of the Gi’s by simultaneous recurrence is routine
for non-query transitions of M . For a query, G8 outputs entry(v3, τ).7

Note that all Gi’s can be easily proved in L+
∗ to be of type T j+1,j×W j →W j ,

for all j.
We show that if M is a POTM, and reaches configuration c′ from a config-

uration c as above, with at most k changes of space, then L+
∗ proves, for all j:

(∧i�kT
j+2i+1,j+2i(τ)) ∧ ∧m=0..8W

j+2k+2(cm) → ∧m=0..8W
j(c′m) (4)

where cm is the m’th component of configuration c.
The proof is by induction on k. For the base case k = 0, i.e. where the oracle

is not invoked, we have the assumption W j+3(c), from which we obtain, that
W j+1(p(|c|) for any polynomial p, as in example (ii) above (compare [21] for
detail).

For the induction step we invoke Example (iv) above, showing that entry is
provable in L+

∗ for type W 2 × T 1,0 →W 0, and more generally for type W j+2 ×
T j+1,j →W j for any j.

This conclude the proof of (4), from which the Theorem follows outright. ��

References

[1] Aehlig, K.: Parameter-free polymorphic types. Ann. Pure Appl. Logic 156(1), 3–12
(2008)

[2] Beckmann, A., Weiermann, A.: Characterizing the elementary recursive functions
by a fragment of gödel’s t. Arch. Math. Log. 39(7), 475–491 (2000)

[3] Bertot, Y., Komendantskaya, E.: Inductive and coinductive components of core-
cursive functions in coq. Electron. Notes Theor. Comput. Sci. 203(5), 25–47 (2008)

7 We stipulate here that the cursor is at leftmost position at the time of a query. Also,
G7 reinitializes to the empty string.

202 R. Ramyaa and D. Leivant

[4] Burrell, M.J., Cockett, R., Redmond, B.F.: Pola: a language for PTIME program-
ming. Logic Computational Complexity, Logic in Computer Science (2009)

[5] Buss, S.: Bounded Arithmetic. Bibliopolis, Naples (1986)
[6] Buss, S.: The polynomial hierarchy and intuitionistic bounded arithmetic. In:

Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp.
77–103. Springer, Heidelberg (1986)

[7] Clote, P.: A note on the relation between polynomial time functionals and consta-
ble’s class k. In: Kleine-Büning, H. (ed.) CSL 1995. LNCS, vol. 1092, pp. 145–160.
Springer, Heidelberg (1996)

[8] Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel,
Y. (ed.) Proceedings of the International Conference on Logic, Methodology, and
Philosophy of Science, pp. 24–30. North-Holland, Amsterdam (1962)

[9] Constable, R.: Type 2 computational complexity. In: Fifth Annual ACM Sympo-
sium on Theory of Computing, pp. 108–121. ACM, New York (1973)

[10] Cook, S.: Computability and complexity of higher type functions. In: Moschovakis,
Y. (ed.) Logic from Computer Science, pp. 51–72. Springer, New York (1991)

[11] Cook, S.A.: Computability and complexity of higher type functions. In: Chern,
Singer, Kaplansky, Mooreand, Moschovakis (eds.) Logic from Computer Science,
Springer, New York (1989)

[12] Cook, S.A., Kapron, B.M.: Characterizations of the basic feasible functionals of
finite type. In: FOCS, pp. 154–159. IEEE, Los Alamitos (1989)

[13] Cook, S.A., Kapron, B.M.: Characterizations of the Basic Feasible Functionals of
Finite Type. In: Feasible Mathematics: A Mathematical Sciences Institute Work-
shop, pp. 71–95 (1990)

[14] Cook, S.A., Urquhart, A.: Functional interpretations of feasible constructive
arithemtic (extended abstract). In: Proceedings of the 21st ACM Symposium on
Theory of Computing, pp. 107–112 (1989)

[15] Cook, S.A., Urquhart, A.: Functional interpretations of feasible constructive
arithemtic. Annals of Pure and Applied Logic 63, 103–200 (1993)

[16] Gödel, K.: Über eine bisher noch nicht benutzte erweiterung des finiten stand-
punktes. Dialectica 12, 280–287 (1958)

[17] Kapron, B.M., Cook, S.A.: A new characerization of type-2 feasibility. SIAM
Journal of Computing 25, 117–132 (1996)

[18] Kapron, B., Cook, S.: Characterizations of the basic feasible functionals of finite
type. In: Buss, S., Scott, P. (eds.) Feasible Mathematics, pp. 71–95. Birkhauser,
Boston (1990)

[19] Kapron, B., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J. on
Computing 25(1), 117–132 (1996)

[20] Leivant, D.: Finitely stratified polymorphism. Inf. Comput. 93(1), 93–113 (1991)
[21] Leivant, D.: A foundational delineation of poly-time. Information and Computa-

tion 110, 391–420 (1994); (Special issue of selected papers from LICS’91, edited
by Kahn, G.). Preminary report: A foundational delineation of computational
feasibility, In: Proceedings of the Sixth IEEE Conference on Logic in Computer
Science. IEEE Computer Society Press, Los Alamitos (1991)

[22] Leivant, D.: Intrinsic theories and computational complexity. In: Leivant, D. (ed.)
LCC 1994. LNCS, vol. 960, pp. 177–194. Springer, Heidelberg (1995)

[23] Leivant, D.: Intrinsic reasoning about functional programs I: First order theories.
Annals of Pure and Applied Logic 114, 117–153 (2002)

[24] Leivant, D.: Intrinsic reasoning about functional programs ii: unipolar induction
and primitive-recursion. Theor. Comput. Sci. 318(1-2), 181–196 (2004)

Feasible Functions over Co-inductive Data 203

[25] Leivant, D., Ramyaa, R.: Implicit complexity for coinductive data: a proof-
theoretic characterization of primitive corecursion. In: Conference submission
(2010), see current draft as
http://www.cs.indiana.edu/~leivant/corecursion.pdf

[26] Mehlhorn, K.: Polynomial and abstract subrecursive classes. J. Comput. Syst.
Sci. 12(2), 147–178 (1976)

[27] Moschovakis, Y.N.: The formal language of recursion. J. Symb. Log. 54(4), 1216–
1252 (1989)

[28] Parsons, C.: On a number-theoretic choice schema and its relation to induction.
In: Kino, A., Myhill, J., Vesley, R. (eds.) Intuitionism and Proof Theory, pp.
459–473. North-Holland, Amsterdam (1970)

[29] Paulson, L.C.: Mechanizing coinduction and corecursion in higher-order logic.
Journal of Logic and Computation 7 (1997)

[30] Pezzoli, E.: On the computational complexity of type 2 functionals. In: Nielsen,
M., Thomas, W. (eds.) CSL 1997. LNCS, vol. 1414, pp. 373–388. Springer, Hei-
delberg (1998)

[31] Prawitz, D.: Natural Deduction. Almqvist and Wiksell, Uppsala (1965)
[32] Seth, A.: Some desirable conditions for feasible functionals of type∼2. In: LICS,

pp. 320–331 (1993)
[33] Seth, A.: Complexity theory of higher type functionals. PhD thesis, University of

Bombay, PhD Thesis (1994)

http://www.cs.indiana.edu/~leivant/corecursion.pdf

Interval Valued Fuzzy Coimplication

Renata H.S. Reiser1, Benjamin C. Bedregal2, and Gesner A.A. dos Reis1

1 Programa de Pós-Graduação em Informática,
Universidade Católica de Pelotas

Rua Felix da Cunha 412, 96010-000 Pelotas, Brazil
reiser@ucpel.tche.br, gesner@ucpel.tche.br

2 Depto de Informática e Matemática Aplicada,
Universidade Federal do Rio Grande do Norte

Campus Universitário s/n, 59072-970 Natal, Brazil
bedregal@dimap.ufrn.br

Abstract. The aim of this paper is to introduce the dual notion of interval im-
plications, the interval coimplications, as interval representations of fuzzy coim-
plications. Using the canonical representation, this paper considers both the cor-
rectness and the optimality criteria, in order to provide interpretation for fuzzy
coimplications as the non-truth degree of conditional rule in expert systems. It is
proved that N-dual interval coimplications satisfy the main properties of interval
implications discussed in the literature. Lastly, border and model interval fuzzy
coimplications are also considered.

1 Introduction

Fuzzy logic provides the theoretical foundation for reasoning about imprecise propo-
sitions, such reasoning has been referred to as approximate reasoning, using the funda-
mental idea of fuzzy set membership function to deal with partial truths. The membership
function of ordinary fuzzy sets are often precise, requiring each element of the univer-
sal set be assigned to a real number. However, in some concepts and context the value of
membership degree might include uncertainty. It may be able to define membership func-
tion only approximately, identifying meaningful lower and upper bounds of membership
grades of an element in the universal set. In such approach, a membership function is as-
signed to a closed interval of real numbers between the identified lower and upper bounds.
Fuzzy sets identified by such membership functions are called interval-valued fuzzy sets.
It was first proposed by Sambuc [38] under the name φ-fuzzy sets. Interval-valued fuzzy
sets appear in the literature in many ways [42,40,41,9,43,27,28].

Interval-valued fuzzy sets are a particular case of type-2 fuzzy sets, which have been
studied by Zadeh [47] and others authors (e.g., [22,23]) since the 70’s, allowing to
deal not only with vagueness (lack of sharp class boundaries), but also with uncer-
tainty (lack of information) [18,30]. Since then, the integration of fuzzy theory with
interval mathematics considers different viewpoints, as properly pointed out by Lod-
wick [30] (see, e.g., in [18,30,12,16,17,20,26,31,33,32,45,46]) generating several dif-
ferent approaches. This paper follows the approach first introduced in Bedregal and
Takahashi’s works [3,4], applied in other papers, where interval extensions for some

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 204–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Interval Valued Fuzzy Coimplication 205

fuzzy connectives were provided (see, e.g., [2,7,5,15,36]), considering both correctness
(accuracy) and optimality aspects [39].

Let U = {[a, b]|0 ≤ a ≤ b ≤ 1}. In this work we will consider the following two
partial orders on U:

Product order:X ≤ Y ⇔ X ≤ Y ∧X ≤ Y ;
Inclusion order:X ⊆ Y ⇔ Y ≤ X ∧X ≤ Y .

Let X be a crisp set. An interval fuzzy set A on X is given by A = {〈x, μA(x)〉 |x ∈
X}, where μA:X→U.

Let A and B be interval fuzzy sets on X and Y, respectively. The intervals μA(x) and
μB(y) denote, respectively, the interval membership degree of the element x in A and
of the element y in B.

Let x and y be variables taking values in X and Y, respectively. A conditional rule in
expert systems has the following form

if x is A then y is B (1)

and it is interpreted as an interval fuzzy relation using an interval implication function
I : X × Y → U, associating to each (x, y) ∈ X × Y , I(μA(x), μB(y)), which is
always interpreted as the interval truth degree of the conditional rule (1). In order to
analyse the non-truth degree of such conditional rule, the definition of valued interval
fuzzy coimplication has been considered [8,1]. Thus, in a fuzzy dual-based approach,
when J : X × Y → U is an interval implication function, J(μA(x), μB(y)) provides
an interpretation to the interval non-truth degree of such antecedent-consequent form
of conditional rule[21,19]. While a fuzzy implication is an extension of the Boolean
implication (p ⇒ q), meaning that p is sufficient for q, a coimplication is an extension
of the Boolean coimplication (p �⇐ q), meaning that p is not necessary for q.

Although the fuzzy coimplications can be used in a dual approach of fuzzy impli-
cations, they have been less discussed in the literature. However, the coimplications
also play an important role in classical logic, fuzzy logic and intuitionistic fuzzy logic.
See [8,1,11,14,37,44,13,34,35]. The concept of fuzzy coimplication was introduced as
a new approach to approximate reasoning of expert systems using the equivalence re-
lation for Modus Ponens in the inference in fuzzy expert systems instead of fuzzy im-
plication. Thus, it seems natural to extend this notion of fuzzy coimplication to interval
valued fuzzy theory.

The paper is organized as follows. Firstly, compressing preliminaries, Section 2.1
presents the main concepts of interval representations of real functions. The canonical
representation of fuzzy negations and triangular norms and conorms are discussed in
Sect. 2.2 and Sect. 2.3, respectively. The definition and related properties of interval
fuzzy coimplications are presented in Sect. 3. Section 5 considers the duality between
interval valued implications and coimplications, which is preserved by canonical rep-
resentation and the main related results. Some properties preserved by duality relation-
ships are studied in Section 4. Model (border) interval coimplications are introduced in
Sect. 6. Section 7 is the Conclusion, with some final remarks on related work.

206 R.H.S. Reiser, B.C. Bedregal, and G.A.A. dos Reis

2 Preliminary Studies

In this section, we recall some basic concepts and results of the canonical representation
of real function applied to negation functions and triangular norms and conorms.

2.1 Best Interval Representation

Let U be the unit interval, i.e. U = [0, 1]. The set of intervals U has the projection
functions π1, π2 : U → U , defined by π1([x1, x2]) = x1 and π2([x1, x2]) = x2,
respectively, for any [x1, x2] ∈ U. For each X ∈ U, the projections π1(X) and π2(X)
are also denoted by X and X , respectively.

Let X and Y be interval representations of a real number α, that is, α ∈ X and
α ∈ Y . Thus,X is said to be a better representation of α than Y wheneverX ⊆ Y .

Definition 1. [2, Definition 2] A function F : Un−→U is an interval representation of
a real function f : Un−→U if, for each X∈Un and x∈X , f(x) ∈ F (X). 1

Let F,G :Un−→U be interval representations of f :Un−→U . F is a better interval
representation of f than G (G%F) if, for each X∈Un, F (X)⊆G(X).

Definition 2. [2, Definition 3] f̂ : Un −→ U is the best interval representation
(canonical representation) of a real function f : Un −→ U , defined by:

f̂(X) = [inf{f(x) | x ∈X}, sup{f(x) | x ∈X}]. (2)

2.2 Interval Fuzzy Negations

N : U −→ U is an interval fuzzy negation if, for all X , Y in U, the properties hold:

N1 : N([0, 0]) = [1, 1] and N([1, 1]) = [0, 0];
N2a : If X ≤ Y then N(Y) ≤ N(X);
N2b : If X ⊆ Y then N(X) ⊆ N(Y).

If N also satisfies N3, then N is an interval strong fuzzy negation:

N3 : N(N(X)) = X (involutive property).

A typical example of a strong interval fuzzy negation is NS : U → U, defined by
NS(X) = [1, 1]−X , i.e. NS(X) = [1 −X, 1 −X]. NS is the interval version of the
Zadeh fuzzy negation (NS(x) = 1− x).

The interval function N̂ : U → U of a negationN : U −→ U can be expressed as:

N̂(X) = [N(X), N(X)]. (3)

Definition 3. Let N : U → U be a strong interval fuzzy negation and F : Un −→ U be
an interval function. The N-dual interval function of F is the interval function

FN(X1, X2, . . .Xn) = N(F(N(X1),N(X2), . . . ,N(Xn))). (4)

1 Other authors, e.g., [25,10,24], also consider this definition but with other name and purpose.

Interval Valued Fuzzy Coimplication 207

When N = NS then Eq. 4 is given by:

FNS(X1, X2, . . . , Xn) = [1, 1]− (F([1, 1]−X1, [1, 1]−X2, . . . , [1, 1]−Xn)). (5)

Thus, F and FNS are called interval functions mutually dual of each other.

2.3 Interval Fuzzy t-Norms and t-Conorms

A triangular norm (conorm), t-norm (t-conorm) for short, is a function T (S) : U2 → U
that is commutative, associative, monotonic and has 1 (0) as the neutral element. Its
generalization introduced in [4], fits the idea: interval membership degrees as approx-
imations of exact degrees. Applying the principles discussed in previous sections, the
so-called interval t-norm (interval t-conorm) is defined as an interval representation of
a t-norm (t-conorm), including its N-dual interval function.

Definition 4. [4] A function T(S) : U2 → U is an interval t-norm (interval t-conorm),
whenever it is commutative, associative, monotonic with respect to the product and
inclusion orders, and [1, 1] ([0, 0]) is the identity element.

The following proposition shows the main result about interval t-norms and t-conorm.

Proposition 1. [4, Theorem 5.1 and 5.2] If T (S) is a t-norm (t-conorm), the canonical
representation T̂ (Ŝ) : U2 → U is an interval t-norm (t-conorm) expressed by equations
(Eq.6) and (7):

T̂ (X,Y) = [T (X,Y), T (X,Y)], (6)

Ŝ(X,Y) = [S(X,Y), S(X,Y)]. (7)

Proposition 2. A function T(S) : U2 → U is an interval t-norm (t-conorm) if and only
if SN,T(TN,S) : U2 → U defined in Eq.(8) (Eq.(9)) is an interval t-conorm (t-norm) for
any strong interval fuzzy negation N.

SN,T(X,Y) = N(T(N(X),N(Y)); (8)

TN,S(X,Y) = N(S(N(X),N(Y)). (9)

3 Interval Fuzzy Coimplications

Since real numbers may be identified with degenerate intervals in the context of inter-
val mathematics, the boundary conditions that must be satisfied by the classical fuzzy
implications can be naturally extended to interval fuzzy degrees, whenever degenerate
intervals are considered.

Definition 5. The binary function J(I) : U2 → U is called an interval fuzzy coimplica-
tion (implication) if it satisfies the boundary conditions given by J1 (I1):

J1 : J([1, 1], [1, 1])=J([1, 1], [0, 0])=J([0, 0], [0, 0])=[0, 0] and J([0, 0], [1, 1])=[1, 1];
I1 : I([1, 1], [1, 1])=I([0, 0], [1, 1])=I([0, 0], [0, 0])=[1, 1] and I([1, 1], [0, 0])=[0, 0].

208 R.H.S. Reiser, B.C. Bedregal, and G.A.A. dos Reis

In [29, Proposition 3.1], a function IN : U2 → U is a fuzzy coimplication2 if and
only if I : U2 → U defined as in Eq.(10) is a fuzzy implication for any strong fuzzy
negation N . Dually, a function JN : U2 → U is a fuzzy implication if and only if
J : U2 → U defined as in Eq.(11) is a fuzzy coimplication for any strong fuzzy
negationN .

I(x, y) = N(IN (N(x), N(y)); (10)

J(x, y) = N(JN (N(x), N(y)). (11)

Thus, fuzzy implications and fuzzy coimplications are dual notions. According
to [28], (I, IN , N) ((JN , J,N)) identifies a De Morgan triple, and the functions I and
IN (JN and J) are dual to each other with respect to the strong fuzzy negationN . This
duality can be extended to the interval approach. In Proposition 3, IN (JN) denotes the
N-dual interval coimplication (implication) of an interval fuzzy implication I (coimpli-
cation J).

Proposition 3. A function IN(JN) : U2 → U is an interval fuzzy coimplication (im-
plication) if and only if there exists an interval fuzzy implication (coimplication) I(J) :
U2 → U and a strong interval fuzzy negation N : U → U such that, ∀X,Y ∈ U, the
next equality, described in Eq.(13) (Eq.(12)), holds:

JN(X,Y) = N(J(N(X),N(Y)); (12)

IN(X,Y) = N(I(N(X),N(Y)). (13)

Proof. We will present the proof of an interval coimplication IN. The proof of JN can
be obtained in an analogous way.

(⇒) Let I and N be an interval implication and an interval negation, respectively.
Thus, IN satisfies Definition 5:

IN([0, 0], [0, 0]) = N(I(N([0, 0]),N([0, 0]))) = N(I([1, 1], [1, 1]) = N([1, 1]) = [0, 0].
IN([1, 1], [0, 0]) = N(I(N([1, 1]),N([0, 0]))) = N(I([0, 0], [1, 1]) = N([1, 1]) = [0, 0].
IN([1, 1], [1, 1]) = N(I(N([1, 1]),N([1, 1]))) = N(I([0, 0], [0, 0]) = N([1, 1]) = [0, 0].
IN([0, 0], [1, 1]) = N(I(N([0, 0]),N([1, 1]))) = N(I([1, 1], [0, 0]) = N([0, 0]) = [1, 1].

(⇐)The converse follows from the canonical representation in Definition1.

4 Properties of Interval Coimplications and Duality Relationships

Some properties usually demanded from a fuzzy coimplication J (implication I) can
then also be naturally extended to an interval-based approach. For all X,Y, Z ∈ U, the
properties considered in this work are listed below:

2 Notice that in [29] the notion of a fuzzy coimplication (implication) requires some extra prop-
erties.

Interval Valued Fuzzy Coimplication 209

[J2] If X ≤ Z then J(X, Y) ≥ J(Z, Y) [I2] If X ≤ Z then I(X, Y) ≥ I(Z, Y)

[J3] If Y ≤ T then J(X, Y) ≤ J(X, T) [I3] If Y ≤ T then I(X, Y) ≤ I(X, T)

[J4] J([1, 1], Y) = [0, 0] [I4] I([0, 0], Y) = [1, 1]

[J5] J(X, [0, 0]) = [0, 0] [I5] I(X, [1, 1]) = [1, 1]

[J6] J([0, 0], Y) = Y [I6] I([1, 1], Y) = Y

[J7] J(X, J(Y, Z)) = J(Y, J(X, Z)) [I7] I(X, I(Y, Z)) = I(Y, I(X, Z))

[J8] J(X, Y) = [0, 0] if and only if X ≥ Y [I8] I(X, Y) = [1, 1] if and only if X ≤ Y

[J9] NJ(X) = J(X, [1, 1]) is a strong negation [I9] NI(X) = I(X, [0, 0]) is a strong negation
[J10] J(X, Y) ≤ Y [I10] I(X, Y) ≥ Y

[J11] [0, 0] ∈ J(X, X) [I11] [1, 1] ∈ I(X, X)

[J12] J(X, Y) = J(N(Y), N(X)) [I12] I(X, Y) = I(N(Y), N(X))

[J13] If X < [1, 1] then J(X, [1, 1]) > [0, 0] [I13] If X < [0, 0] then I(X, [0, 0]) < [1, 1]

If Y > [0, 0] then J([0, 0], Y) > [0, 0] If Y < [1, 1] then I([1, 1], Y) < [1, 1]

Theorem 1. These properties are not independent.

(i) If J12 holds, then J2 (first place antitonicity) and J3 (second place isotonicity) are
equivalent.

(ii) J10 can be inferred from J2, J5 and J6.
(iii) J5 can be inferred from J10 and J12.
(iv) Sufficient condition of J8 can be inferred from J2 and J11.

Proof. Let J be an interval fuzzy coimplication and N a strong interval fuzzy negation.
(i) Suppose that J satisfies J12 and J2. Since, for all Y, Z ∈ U, when Y ≤ Z then
N(Y) ≥ N(Z), it follows that J satisfies J3:

J(X,Y) = J(N(Y),N(X) by J12
≤ J(N(Z),N(X)) = J(X,Z) by J2 and J12.

Analogously, suppose that J satisfies J12 and J3. Since for all X,Z ∈ U, if X ≤ Z
then N(X) ≥ N(Z), it follows that

J(X,Y) = J(N(Y),N(X) by J12
≥ J(N(Y),N(Z)) = J(Z, Y) by J3 and J12.

and so, J also satisfies J2. Therefore, when J12 holds, then J2 and J3 are equivalent.
(ii) Suppose that J satisfies J2 and J6. Then, for all X,Y ∈ U it follows that

J(X,Y) ≤ J([0, 0], Y) by J2. In addition, J([0, 0], Y) = Y by J6. Thus, J(X,Y) ≤ Y .
(iii) For all Y ∈ [0, 1] it follows that J([1, 1], Y) = J(N(Y), [0, 0]) by J12. In addi-

tion, J(N(Y), [0, 0]) = [0, 0] by J10. Therefore, J(X,Y) = [0, 0].
(iv) For all X,Y ∈ U such that X ≤ Y , it follows that J(X,Y) ≤ J(Y, Y) by J2

and J(Y, Y) = [0, 0] by J11. Therefore, J(X,Y) = [0, 0].

Proposition 4. If an interval fuzzy coimplication J satisfies the Properties J2 and J3
then J also satisfies the Properties J4 and J5.

Proof. Let J be an interval fuzzy coimplication and X,Y ∈ U.

210 R.H.S. Reiser, B.C. Bedregal, and G.A.A. dos Reis

(i) Since Y ≤ [1, 1], it follows that J([1, 1], Y) ≤ J([0, 0], [1, 1]) by J3. In addition,
J([1, 1], [1, 1]) = [0, 0] by the boundary conditions in J1. So, J([1, 1], Y) ≤ [0, 0]. On
the other hand, J([1, 1], Y) ≥ J(Y, Y) by J2 and J(Y, Y) = [0, 0] by J11, that means,
J([1, 1], Y) ≥ [0, 0]. Therefore, J([1, 1], Y) = [0, 0].

(ii) Since X ≥ [0, 0], it follows that J(X, [0, 0]) ≤ J([0, 0], [0, 0]) by J2. In ad-
dition, J([0, 0], [0, 0]) = [0, 0] by J1. So, J(X, [0, 0]) ≤ [0, 0]. On the other hand,
J(X, [0, 0]) ≥ J(X,X) by J3 and J(X,X) = [0, 0] J11, that means J(X, [0, 0]) ≥
[0, 0]. Therefore, J(X, [0, 0]) = [0, 0].

In the following, based on Theorem 2, interval fuzzy coimplications hold the corre-
sponding properties to their dual interval fuzzy implications.

Theorem 2. Let N be a strong interval fuzzy negation and I be an interval implication.
Then I satisfies the property Ii, for some i = 1, . . . , 13 if and only if IN satisfies Ji.

Proof. (⇒) Let N be a strong interval fuzzy negation, I be an interval implication and
X,Y, Z ∈ U.

(1) Straightforward.
(2) By I2, if X ≤ Z , N(X) ≥ N(Z) then I(N(X),N(Y))) ≤ I(N(Z),N(Y))).

Therefore, IN(X,Y) = N(I(N(X),N(Y))) ≥ N(I(N(Z),N(Y)) = IN(Z, Y).
(3) Suppose I satisfies I3: if Y ≤ Z then I(X,Y) ≤ I(X,Z), that means, if N(Y) ≥

N(Z) then N(I(X,Y)) ≥ N(I(X,Z)). And so, IN (X,Y)=N(I(N(X),N(Y))) ≤
N(I(N(X),N(Z)) = (IN(X,Z).

(4) When I satisfies I4, IN([1, 1], Y)=N(I([0, 0],N(Y)))=N([1, 1])=[0, 0].
(5) If I satisfies I5 then IN(X, [0, 0]) = N(I(N(X), [1, 1])) = N([1, 1]) = [0, 0].
(6) When I satisfies I6, IN([0, 0], Y) = N(I([1, 1],N(Y))) = N(N(Y)) = Y .
(7) Suppose I satisfies I7. Thus,

IN(X, IN(Y,X)) = N(I(N(X), I(N(Y), N(Z)))) = N(I(I(N(X), N(Y)),N(Z)))
= N(IN(N(IN(X,Y)),N(Z))) = IN(IN(X,Y), Z).

(8) Suppose I satisfies I8. Thus, when X ≥ Y , N(X) ≤ N(Y), the next equality
holds: IN(X,Y) = N(I(N(X),N(Y))). Therefore IN(X,Y) = N([1, 1]) = [0, 0].

(9) Suppose I satisfies I9. Thus,

(N1)NIN
([0, 0]) = IN([0, 0], [1, 1]) = N(I(N([0, 0]),N([1, 1]))) = N([0, 0]) = [1, 1].

(N2)NIN
([1, 1]) = IN([1, 1], [1, 1]) = N(I(N([1, 1]),N([1, 1]))) = N([1, 1]) = [0, 0].

(N3) In addition, when X > Y , N(X) < N(Y) and, by I9, I(N(X), [0, 0]) <
I(N(Y), [0, 0]), that means N(I(N(X),N[1, 1])) > N(I(N(Y),N[1, 1])). There-
fore, if X > Y then NIN

(X) = IN(X, [0, 0]) > IN(Y, [0, 0]) = NIN
(Y).

(N4) Since N and NI are both involutive fuzzy negations, it holds that

NIN
(NIN

(X)) = NIN
(N(I(N(X), [1, 1]))) = N(I(I(N(X), [1, 1]), [1, 1])) by I9

= N(NI(NI(N(X)))) = N(N(X)) = X.

Interval Valued Fuzzy Coimplication 211

(10) Suppose that I satisfies I10, thus I(N(X),N(Y))≥N(Y). Therefore, IN(X,Y)=
N(I(N(X),N(Y))) ≤ Y and IN satisfies J10.

(11) Since I satisfies I11, thus IN(X,X) = N(I(N(X),N(X))) = N([1, 1]) = [0, 0].
(12) By I12, IN(N(X),N(Y)) = N(I(X,Y)) = N(I(N(X),N(Y))) = I(X,Y).
(13) Firstly, if X < [1, 1], N(X) > [0, 0]. By I13, I(N(X), [0, 0]) < [1, 1]. Therefore,

IN(X, [1, 1]) = N(I(N(X), [0, 0])) > [0, 0]. Now, when Y > [0, 0], N(Y) < [1, 1].
By I13, I([1, 1],N(Y)) < [1, 1]. So, IN([0, 0], Y) = N(I([1, 1],N(X))) > [0, 0].

(⇐) It is obtained in an analogous way.

5 Duality Relationships Preserved by Canonical Representation

Based on Definition 2, while an interval fuzzy implication Î can be viewed as a gener-
alization of a fuzzy implication I , an interval fuzzy coimplication Ĵ generalizes a fuzzy
coimplication J . In the following, it is shown that an interval fuzzy coimplication Ĵ
(implication Î) can be obtained from any fuzzy coimplication J (implication I), pre-
serving the optimality principle and the same properties satisfied by the corresponding
fuzzy coimplication.

Proposition 5. Let J (I) be a fuzzy coimplication (implication). Then, Ĵ (Î) is an in-
terval fuzzy coimplication (implication).

Proof. It is straightforward from Definition 5, analogously to [2, Proposition 16].

Proposition 6. Let J(I) : U2 −→ U be a fuzzy coimplication (implication). J(I) sat-
isfies both properties, J2 (I2) and J3 (I3), if and only if the interval fuzzy coimplication
(implication) Ĵ(Î) can be expressed as in Eq.(14) (Eq.(15)):

Ĵ(X,Y) = [J(X,Y), J(X,Y)]; (14)

Î(X,Y) = [I(X,Y), I(X,Y)]. (15)

Proof. We present the proof of Eq. (14), see [2, Proposition 21] to prove Eq.(15).
(⇒)By Definition 1, J(X,Y) and J(X,Y) are both in J={J(x, y)|x∈X, y∈Y }

⊆ Ĵ(X,Y). If X ≤ x ≤ X , Y ≤ y ≤ Y , then, based on the first place antitonicity
and the second place isotonicity of J , it follows that J(X,Y) ≤ J(x, y) ≤ J(X,Y),
and then J(X,Y) and J(X,Y) are the infimum and the supremum of J, respectively.
Therefore, the Eq. (14) follows.

(⇐) Let x, z, y ∈ U be such that x ≤ z. By Eq. (14), one has that Ĵ([x, z], [y, y]) =
[J(z, y), J(x, y)], and so J(z, y) ≤ J(x, y), which means J satisfies the first place
antitonicity property. Analogously, when y ≤ z, Ĵ([x, x], [y, z]) = [J(x, y), J(x, z)]
and J(x, y) ≤ J(x, z). So, J satisfies the second place isotonicity property.

Proposition 7. Let N be a strong fuzzy negation, J (I) be a coimplication (impli-
cation) and JN (IN) be N -dual implication of J (coimplication of I) satisfying both

212 R.H.S. Reiser, B.C. Bedregal, and G.A.A. dos Reis

properties, the first place antitonicity and the second place isotonicity. Then ĴN (ÎN) is
an interval fuzzy implication (coimplication) expressed as in Eq.(16) (Eq.(17)):

ĴN (X,Y) = [JN (X,Y), JN (X,Y)]; (16)

ÎN (X,Y) = [IN (X,Y), IN (X,Y)]. (17)

Proof. It follows from Proposition 6.

Theorem 3. Let N be a strong fuzzy negation, J (I) be a coimplication (implication)
and JN (IN) be N -dual function of J (I) given by Eq.(18) (Eq.(19)):

Ĵ N̂ (X,Y) = N̂(Ĵ(N̂(X), N̂(Y))); (18)

Î N̂ (X,Y) = N̂(Î(N̂(X), N̂(Y))). (19)

If JN (IN) is a first place antitonicity and second place isotonicity function, then the
duality is preserved by the canonical representation, that means, Eq(20) (Eq(21)) holds:

ĴN̂ (X,Y) = ĴN (X,Y); (20)

ÎN̂ (X,Y) = ÎN (X,Y). (21)

Proof. We will present the proof for ĴN̂ , as the proof of ÎN̂ is analogous.

ĴN̂ (X,Y) = N̂(Ĵ(N̂(X), N̂(Y))) Eq.(18)

= N̂(Ĵ([N(X), N(X)], [N(Y), N(Y)])) Eq.(3)

= N̂(J(N(X), N(Y)), J(N(X), N(Y))) Eq.(15)

= [N(J(N(X), N(Y))), N(J(N(X), N(Y)))] Eq.(3)

= [JN (X,Y), JN (X,Y)] = ĴN (X,Y) Eq.(16)

Denote by C(I), C(J), C(N), C(IN), C(JN) the classes of implications, coimplications,
negations, N -dual coimplications and N -dual implications, respectively. The interval
extensions are indicated by C(I), C(J), C(N), C(IN) and C(JN), respectively. The results
presented above, together with Theorem 3, state the commutativity of the diagram in
Fig. 1. Analogously, the commutative of dual classes: (C(IN), C(I)) and (C(IN), C(I))
could be also considered.

C(J) × C(N)
Eq.(11)� C(JN) ⊆ C(I)

C(J) × C(N)

Eq.(14), Eq.(3)

	 Eq.(12)� C(JN) ⊆ C(I)

Eq.(16)

	

Fig. 1. Commutative of dual classes: (C(JN), C(J)) and (C(JN), C(J))

Interval Valued Fuzzy Coimplication 213

The concept of interval-valued S-implication as presented in [2], is based on the
notions of interval t-conorm and interval fuzzy negation. It shows that interval fuzzy
S-implication is representable, satisfying the correctness property and also preserving
some properties that are analogous to the ones satisfied by fuzzy S-implications. Propo-
sition 8 considers its interval dual approach, so-called interval fuzzy SN-coimplication.

Proposition 8. Let N be a strong interval fuzzy negation and SN be the N-dual interval
t-norm of the interval t-conorm S. Then, when I is an interval S-implication given by

I(X,Y) = S(N(X), Y), (22)

the N-dual interval coimplication of the interval S-implication I is given by

IN(X,Y) = TN,S(N(X), Y) (23)

Proof. Firstly, based on Eq.(3), Eq.(7) and Eq.16, I(X,Y) is well defined and the
boundary conditions of Definition 5, related to the Property J1, are also satisfied. Now,

IN(X,Y) = N(I(N(X),N(Y)) by Eq.(13)

= N(S(N(N(X)),N(Y)) by Eq.(22)

= TN,S(N(X), Y) by N3 and Eq.(9).

Denote by C(S) and C((I)S) the classes of interval t-conorms, interval S-implications,
including their corresponding N-dual interval functions C(SN), C((IN)SN

), respectively.
The results presented in Proposition 8 and Theorem 3, state the commutativity of the
diagram in Fig. 2.

C(S) × C(N)
Eq.(22)� C((I)S) ⊆ C(I)

C(SN) × C(N)

Eq.(8)

	 Eq.(23)� C((IN)SN
) ⊆ C(J)

Eq.(19)

	

Fig. 2. Commutative of dual classes: C((I)S) and C((IN)SN
)

6 Border and Model Interval Fuzzy Coimplications

Extending [1, Definition 6] and [1, Definition 7], an interval fuzzy coimplication (im-
plication) satisfying the left neutrality principle, contraposition property and exchange
principle is called a model interval fuzzy coimplication (implication).

Definition 6. If an interval coimplication J (implication I) satisfies J6 then it is said
to be a border interval coimplication (implication).

Definition 7. If a border interval coimplication J (implication I) also satisfies J12 and
J7 then it is said to be a model interval coimplication (implication).

214 R.H.S. Reiser, B.C. Bedregal, and G.A.A. dos Reis

In the following, border interval coimplications are contrapositive only in respect to
their induced interval fuzzy negation NJ

Proposition 9. Let NJ be a negation induced by a border interval coimplication J. If
J satisfies J12 then NJ = N. In addition, when N is an interval strong negation, NJ is
also an interval strong negation.

Proof. Since J is an interval coimplication satisfying J12, ∀X ∈ U, it holds that, by
Definition 7, NJ(X) = J(X, [1, 1]). So, by J12 and J6, it holds that J([0, 0],N(X)) =
N(X). And, if N is strong, NJ(NJ(X)) = N(N(X)) = X , that means NJ is also strong.

Corollary 1. Let N be a strong interval fuzzy negation. If I is a (model) border interval
implication then IN is a (model) border interval coimplication.

Proof. It follows from Theorem 2 and Proposition 9.

Proposition 10. Let N be a strong interval fuzzy negation and SN,T be the N-dual inter-
val t-conorm of the model (border) interval t-norm T. When I(X,Y) = S(N(X), Y) is
a model (border) interval S-implication then the corresponding N-dual interval coim-
plication IN(X,Y) = SN,T(N(X), Y) is also a model (border) interval coimplication.

Proof. It follows from Proposition 8 and Theorem 2.

7 Conclusion and Final Remarks

The main contribution of this paper is the introduction of the canonical representation of
fuzzy coimplication functions as an interval extension of N-dual structure of implication
functions, and vice-versa.

Additionally, the study of duality relationships preserved by canonical represen-
tation remains the idea of representation of interval coimplications as the one that
can be obtained from punctual coimplications. It is also able to analyse both the cor-
rectness and the optimality criteria, besides considering an approach that was already
mentioned in previous work, providing interval extensions for fuzzy connectives (See,
e.g. [15,36,3,4,2,6]).

We also show that interval coimplications satisfy the main properties of interval im-
plications discussed in the literature, and, therefore, they may contribute to practical
applications, by providing more flexibility in the selection of conditional rule in expert
systems. The classes of model (border) coimplications are preserved by the duality re-
lationships and we pointed out the relationships between interval S-implications and
related N-dual interval coimplications.

The class of N-dual interval coimplications which is closed under the action of the
interval-valued automorphisms is an ongoing study. In addition, we continue inves-
tigations into N-dual interval classes of S-implications, extending to R-implications,
QL-implications and D-implications, and also including the action of interval auto-
morphisms which preserve main properties of such classes of corresponding punctual
functions.

Acknowledgments. This work has been partially supported by CNPq.

Interval Valued Fuzzy Coimplication 215

References
1. De Baets, B.: Coimplicators, the forgotten connectives. Tatra Mountains Mathematical Pub-

lications 12, 229–240 (1997)
2. Bedregal, B.C., Dimuro, G.D., Santiago, R.H.N., Reiser, R.H.S.: On interval fuzzy S-

implications. Information Sciences 180, 1373–1389 (2010)
3. Bedregal, B.C., Takahashi, A.: The best interval representation of t-norms and automor-

phisms. Fuzzy Sets and Systems 157(24), 3220–3230 (2006)
4. Bedregal, B.C., Takahashi, A.: Interval valued versions of t-conorms, fuzzy negations and

fuzzy implications. In: Proceedings of the IEEE International Conference on Fuzzy Systems,
Vancouver, pp. 1981–1987. IEEE, Los Alamitos (2006)

5. Bedregal, B.R.C., Dimuro, G.P., Reiser, R.H.S.: An approach to interval-valued R-
implications and automorphisms. In: Proceedings of International Fuzzy Systems Asso-
ciation World Congress/European Society for Fuzzy Logic and Technology Conference,
IFSA/EUSFLAT, Lisboa, pp. 1–6 (2009)

6. Bedregal, B.C.: On interval fuzzy negations. Fuzzy Sets and Systems (2010), doi:
10.1016/j.fss.2010.04.018

7. Bedregal, B.C., Santiago, R.H.N., Reiser, R.H.S., Dimuro, G.P.: Analyzing properties of
fuzzy implications obtained via the interval constructor. In: 12th GAMM - IMACS Inter-
national Symposium on Scientific Computing, Computer Arithmetic and Validated Numer-
ics SCAN 2006 Conference Post-Proceedings, September 26-29, Duisburg IEEE Computer
Society, Los Alamitos (2007)

8. Bustince, H., Barrenechea, E., Mohedano, V.: Intuitionistic fuzzy implication operators
– an expression and main properties. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems (IJUFKS) 12(3), 387–406 (2004)

9. Bustince, H., Burillo, P.: Vague sets are intuicionistic sets. Fuzzy Sets and Systems 79, 403–
405 (1996)

10. Caprani, O., Madsen, K., Stauning, O.: Existence test for asynchronous interval iteration.
Reliable Computing 3(3), 269–275 (1997)

11. Cornelis, C., Deschrijver, G., Kerre, E.E.: Implication in intuitionistic fuzzy and interval-
valued fuzzy set theory: Construction, classification, application. International Journal of
Approximate Reasoning 35(1), 55–95 (2004)

12. Cornelis, C., Deschrijver, G., Kerre, E.E.: Advances and challenges in interval-valued fuzzy
logic. Fuzzy Sets and Systems 157(5), 622–627 (2006)

13. Cross, V.: Compatibility measures using fuzzy truth and co-implication. In: First Interna-
tional Joint Conference of North American Fuzzy Information Processing Society Biannual
Conference, Industrial Fuzzy Control and Intelligent Systems Conference and the NASA
Joint Technology Workshop on Neural Networks and Fuzzy Logic, San Antonio, TX, De-
cember 1994, pp. 455–458 (1994)

14. Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy t-
norms and t-conorms. IEEE Transactions on Fuzzy Systems 12(1), 45–61 (2004)

15. Dimuro, G.P., Bedregal, B.R.C., Reiser, R.H.S., Santiago, R.H.N.: Interval additive genera-
tors of interval t-norms. In: Hodges, W., de Queiroz, R. (eds.) Logic, Language, Information
and Computation. LNCS (LNAI), vol. 5110, pp. 123–135. Springer, Heidelberg (2008)

16. Dubois, D., Prade, H.: Random sets and fuzzy interval analysis. Fuzzy Sets and Sys-
tems 42(1), 87–101 (1991)

17. Dubois, D., Prade, H.: Fuzzy Sets and Systems. Academic Press, New York (1996)
18. Dubois, D., Prade, H.: Interval-valued fuzzy sets, possibility theory and imprecise probabil-

ity. In: Montseny, E., Sobrevilla, P. (eds.) Proceedings of the Joint 4th Conference of the Eu-
ropean Society for Fuzzy Logic and Technology and the 11th Rencontres Francophones sur
la Logique Floue et ses Applications, pp. 314–319. Universidad Polytecnica de Catalunya,
Barcelona (2005)

216 R.H.S. Reiser, B.C. Bedregal, and G.A.A. dos Reis

19. Fei, Y., Yanbin, F., Hongxing, L.: Fuzzy implication operators and their construction (i):
fuzzy implication operators and their properties. Journal of Beijing Normal University (Nat-
ural Science) 39, 606–611 (2003)

20. Gehrke, M., Walker, C., Walker, E.: Some comments on interval valued fuzzy sets. Interna-
tional Journal of Intelligent Systems 11, 751–759 (1996)

21. Gera, Z., Dombi, J.: Type 2 implications on non-interative fuzzy truth values. Fuzzy Sets and
Systems 159, 3014–3032 (2008)

22. Grattan-Guiness, I.: Fuzzy membership mapped onto interval and many-valued quantities. Z.
Math. Logik. Grundladen Math. 22, 149–160 (1975)

23. Jahn, K.U.: Intervall-wertige mengen. Math. Nach. 68, 115–132 (1975)
24. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analisys: with examples in

parameter and state estimation, robust control and robotic. Springer, Heidelberg (2001)
25. Kearfott, R.B.: Rigorous Global Search: Continuous problems. Kluwer, Dordrecht (1996)
26. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logics: Theory and Applications. Prentice-Hall,

Upper Saddle River (1995)
27. Li, P., Fang, S.C.: A note on solution sets of interval-valued fuzzy relational equations. Fuzzy

Optimization and Decision Making 8(1), 115–121 (2008)
28. Li, P., Fang, S.C.: A survey on fuzzy relational equations, part i: classification and solvability.

Fuzzy Optimization and Decision Making 8, 179–229 (2009)
29. Lin, L., Xia, Z.Q.: Intuicionistic fuzzy implication operators: expressions and properties.

Journal of Applied Mathematic and Computing 22(3), 325–338 (2006)
30. Lodwick, W.A.: Preface. Reliable Computing 10(4), 247–248 (2004)
31. Moore, R.E., Lodwick, W.: Interval analysis and fuzzy set theory. Fuzzy Sets and Sys-

tems 135(1), 5–9 (2003)
32. Nguyen, H.T., Kreinovich, V., Zuo, Q.: Interval-valued degrees of belief: applications of

interval computations to expert systems and intelligent control. International Journal of Un-
certainty, Fuzziness, and Knowledge-Based Systems 5(3), 317–358 (1997)

33. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall/CRC, Boca
Raton (1999)

34. Oh, K.W., Kandel, A.: Coimplication and its application to fuzzy expert systems. Information
Sciences 56, 59–73 (1991)

35. Oh, K.W., Kandel, A.: A general purpose fuzzy inference mechanism based on coimplication.
Fuzzy Sets and Systems 39, 247–260 (1991)

36. Reiser, R.H.S., Dimuro, G.P., Bedregal, B.C., Santiago, R.H.N.: Interval valued QL-
implications. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp.
307–321. Springer, Heidelberg (2007)

37. Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms.
Kybernetika 40(1), 21–38 (2004)

38. Sambuc, R.: Fonctions φ-floues. Application l’aide au diagnostic en pathologie thyroidienne.
PhD thesis, Univ. Marseille, Marseille (1975)

39. Santiago, R.H.N., Bedregal, B.C., Acióly, B.M.: Formal aspects of correctness and optimality
in interval computations. Formal Aspects of Computing 18(2), 231–243 (2006)

40. Turksen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Sys-
tems 20(2), 191–210 (1986)

41. Turksen, I.B.: Fuzzy normal forms. Fuzzy Sets and Systems 69, 319–346 (1995)
42. Turksen, I.B., Yao, D.W.: Representation of connectives in fuzzy reasoning: The view

through normal forms. IEEE Trans. and Systems, Man and yibernetics 14, 146–151 (1984)
43. WagenKnecht, M., Hartmann, K.: Fuzzy modelling with tolerances. Fuzzy Sets and Sys-

tems 20, 325–332 (1996)

Interval Valued Fuzzy Coimplication 217

44. Wolter, F.: On logics with coimplication. Journal of Philosophical Logic 27(4) (1998)
45. Wu, D., Mendel, J.M.: Uncertainty measures for interval type-2 fuzzy sets. Information Sci-

ences 177(23), 5378–5393 (2007)
46. Yager, R.R.: Level sets and the extension principle for interval valued fuzzy sets and its

application to uncertainty measures. Information Sciences 178(18), 3565–3576 (2008)
47. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning

- I. Information Sciences 8(3), 199–249 (1975)

Reduction of the Intruder Deduction Problem

into Equational Elementary Deduction for
Electronic Purse Protocols with Blind

Signatures�

Daniele Nantes Sobrinho1,�� and Mauricio Ayala-Rincón1,2,���

Grupo de Teoria da Computação
Departamentos de 1Matemática e 2Ciência da Computação

Universidade de Braśılia
daniele.nantes@gmail.com, ayala@unb.br

Abstract. The intruder deduction problem for an electronic purse pro-
tocol with blind signatures is considered. The algebraic properties of the
protocol are modeled by an equational theory implemented as a con-
vergent rewriting system which involves rules for addition, multiplica-
tion and exponentiation. The whole deductive power of the intruder is
modeled as a sequent calculus that, modulo this rewriting system, deals
with blind signatures. It is proved that the associative-commutative (AC)
equality of the algebraic theory can be decided in polynomial time, pro-
vided a strategy to avoid distributivity law between the AC operators is
adopted. Moreover, it is also shown that the intruder deduction problem
can be reduced in polynomial time to the elementary deduction problem
for this equational theory.

1 Introduction

Cryptographic protocols are programs designed to ensure secure communication
over computer networks. A cryptographic protocol involves some cryptographic
algorithm, but generally the goal of the protocol is something beyond a simple
secrecy. The parties participating of the protocol might want share parts of their
secrets to compute a value, jointly generate a random sequence, convince one an-
other of their identity, our simultaneously sign a contract. The objective of using
cryptography in a protocol is to prevent or detect eavesdropping and cheating.

By formalizing protocols, one can examine ways in which dishonest parties
can subvert them and then develop protocols that are immune to that subver-
sion. These protocols use cryptographic primitives such as public and symmetric
encryption, functions that are based on mathematical notions, such as modular

� Work supported by the District Federal Research Foundation - FAP-DF 8-
004/2007.

�� Author supported by the Brazilian Research Council CNPq.
��� Corresponding author partially supported by the Brazilian Research Council CNPq.

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 218–231, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Reduction of the Intruder Deduction Problem 219

exponentiation and multiplication, and algorithmically hard problems such as
the difficulty of calculating discrete logarithms in a finite field.

One of the main challenges in cryptography is to formally verify the secu-
rity of the cryptographic models taking into account the algebraic properties
of the cryptographic primitives. Cryptographic protocols may themselves make
use of algebraic properties, which makes it impossible to describe protocols in
models that do not handle algebraic properties. A list of algebraic properties
used in cryptographic protocols is surveyed in [7]; for instance, the associativ-
ity is necessary in Needham-Schoreder-Lowe Modified Protocol, exclusive-or is
used in Bull’s protocol [5]. Another interesting equational theory, which is the
focus of this work is the theory composed by the properties of Abelian groups
and modular exponentiation, this is the case of Schnorr’s, the Multi-Authority
Secret Ballot Election and the Electronic Purse Protocols (EPP) [6, 8].

For studying the EPP, the representation of an execution of the protocol
requires the addition of several algebraic properties, which makes its modeling
a very complex problem. In order to build the equational theory, one has to
consider the Abelian group properties of multiplication and addition and also
the properties of modular exponentiation. Unfortunately, a theory having both
multiplication and exponentiation properties, together with the distributivity
laws, yields undecidability of unification, as was shown by Kapur et alii in [9].
In order to obtain decidability of the unification problem, it was necessary to
restrict the axioms used in the execution of the protocol. Therefore, to avoid
the distributivity axiom, exponentials are not multiplied to each other and an
additional homomorphism axiom is included into the equational theory. These
changes allows the study of the intruder deduction problem for this protocol,
which is known to be polynomially decidable [6].

In this work, the EPP is improved allowing blind signatures. Blind signatures
are useful to authenticate documents and authorize transactions without know-
ing their contents as is done, for example, by the election authorities in electronic
voting protocols.

In [12] deductive techniques for dealing with a protocol with blind signatures
in which mutually disjoint equational theories containing a unique AC operator
each are considered. In that paper the intruder capability of deduction is modeled
inside a sequent calculus modulo a rewriting system that models the algebraic
deductive power following the approach in [3]. The intruder deduction problem
can be reduced in polynomial time to the elementary deduction problem (EDP).
The restriction on the AC operators to belong to mutually disjoint theories is
essential to guarantee polynomiality.

In this work the techniques in [12] are combined with the ones in [6] in order
to model an EPP with blind signatures and it is proved, adapting the techniques
in these works, that the intruder deduction problem can be also polynomially
reduced to the EDP. Instead combining several disjoint equational theories as
in [12], the algebraic power is modeled by a unique equational theory, which
has more than one AC operator. This is achieved presenting a polynomial al-
gorithm that decides AC equality of the operators used to model the protocol.

220 D.N. Sobrinho and M. Ayala-Rincón

Detailed proofs are included in an extended version of this paper available at
http://ayala.mat.unb.br/publications.html.

Section 2 presents the necessary notions about the considered protocol as well
as how it is modeled: firstly, the protocol is described in detail; afterwards, the
equational theory and the associated convergent rewriting system are presented;
finally, the cut-free sequent calculus that models the intruder deduction is intro-
duced. Before concluding, Section 3 introduces the notion of normal derivations
that is useful to present a linear inference system for the intruder. This system
is necessary to prove polynomial reduction to the EDP.

2 Modeling Intruder Deduction for the Electronic Purse
Protocol with Blind Signatures

It is assumed basic knowledge on cryptography and rewriting (e.g, [2, 4, 11]). In
the following, an important security problem in presence of a passive eavesdrop-
per will be considered, the so-called intruder deduction problem: given a finite
set of messages Γ and a message M , is it possible for the intruder to retrieve M
from Γ by using his deduction capabilities?

2.1 Syntax

The signature adopted consists of a set of function symbols, composed by the
union of the set

ΣC = {pub(), sign(,), blind(,), { } , < , >}

representing the constructors, whose interpretations are:

– pub(M) gives the public key generated from a private key M ;
– blind(M,N) gives M encrypted with N using blinding encryption;
– sign(M,N) gives M signed with a private key N ;
– {M}N gives M encrypted with the key N using Dolev-Yao symmetric en-

cryption and;
– 〈M,N〉 constructs a pair of terms from M and N .

In addition, the signature includes the set of symbols ΣEP associated with the
equational theory EP. It is also required that ΣEP ∩ΣC = ∅.

The equational theory EP contains three different AC symbols, which will be
denoted by {+, •, !}, obeying the standard Abelian group laws and also some
axioms for exponentiation. The signature of EP contains three constant symbols
for the neutral elements, e◦, three for the inverse functions, J◦(), associated with
each of the AC symbols: ◦ ∈ {+, •, !}. In addition, EP contains two symbols for
exponentiation h() and exp(,) whose rules will be presented in the Subsection
2.2. Messages are built over countably infinite sets of names N and variables V.
As notational convention names will range over the first and variables over the
last letters of the Roman alphabet.

Reduction of the Intruder Deduction Problem 221

Then the grammar of the set of terms or messages is given as

M,N := a | x | pub(M) | sign(M,N) | blind(M,N) | {M}N | 〈M,N〉 |
M +N |M •N |M !N | e+ | e• | e� | J+(M) | J•(M) | J�(M) |
exp(M,N) | h(M)

As in [12], some definitions related to terms are necessary, for instance, a term
M is said to be an EP-alien term if M is headed by a symbol f /∈ ΣEP. It is a
pure EP-term if it contains only symbols from ΣEP, names and variables.

A context is a term with holes. Ck[] denotes a context with k-hole(s). An
EP-context is a context formed using only function symbols in ΣEP.

2.2 The Electronic Purse Protocol: The Equational Theory EP

This protocol, as presented in [6], allows the transaction between an electronic
purse and a server. It aims to guarantee a good level of security, using asymmetric
cryptography and with a small cost. It involves three agents: the electronic purse
EP, a server S and a trusted autority A, which is involved in case of claims of
either party only and consequently is not considered here.

Let b and r denote two public positive integers. The public key of EP is
bs mod r, where s is its private key. Initially, there is a phase during which the
server authenticates itself, that is not considered here, since it does not make use
of algebraic properties. After this phase, the electronic purse EP authenticates
itself with the server S and performs the transaction:

Step 1. EP computes the message M = {S,NS , NP ,Mt}KA(P) (which is used
in case of conflict only);

Step 2. EP sends to the server S: hash(bN mod r, S,Ns,M,Mt), where Mt is the
amount payed;

Step 3. The server S challenges EP sending a nonce Nc;

Step 4. EP sends back N − s×Nc,M,Mt and subtract Mt from his account;

Step 5. S checks that the the message received at the first step is consistent with
the message received at the third step and then increases its account
in the amount Mt. S also stores the messages M,NS , NP and Mt.

The most important and difficult step is Step 5, since S should be able
to verifify consistence of the previous steps. For doing it, S shold perform the
following operations:

hash((bs)Nc × bN−s×Ncmodr, S,NS , NP ,M,Mt) =

hash(bs×Nc × bN−s×Ncmodr, S,NS , NP ,M,Mt) =

hash(bs×Nc+N−s×Ncmod r, S,NS , NP ,M,Mt) =

hash(bNmod r, S,NS , NP ,M,Mt)

222 D.N. Sobrinho and M. Ayala-Rincón

In addition to Abelian group properties for both × and +, the following
equational properties are used:

exp(exp(b, y), z) = exp(b, y × z) and exp(b, x)× exp(b, y) = exp(b, y + z)

This introduces a problem because the properties

(1) exp(exp(x, y), z) = exp(x, y × z)
(2) exp(x, y)× exp(x, z) = exp(x, y + z)

derive distributivity of exponentiation over the multiplication operator. In fact:

exp(exp(x, y1)× exp(x, y2), z) =2 exp(exp(x, y1 + y2), z)

=1 exp(x, (y1 + y2)× z)
= exp(x, y1 × z + y2 ×z)
=2 exp(x, y1×z)× exp(x, y2 × z)
=1 exp(exp(x, y1), z)× exp(exp(x, y2),z)

Consequently, the unification and hence security becomes undecidable (e.g. [9]).
Since exponential needs to be applied to constant bases only, to solve this prob-
lem an additional unary function symbol h is adopted, whose meaning is h(x) =
exp(b, x). This adaptation will provide an equational theory EP with decidable
unification problem [6].

Actually, the distributivity rule does not need to be considered. The following
restriction to a homomorphism axiom is sufficient: h(x) • h(y) = h(x+ y).

Thus, the equational theory EP used to model the protocol is composed by
the following equational axioms:

AG(+, J+, e+) h(x) • h(y) = h(x+ y)

AG(!, J�, e�) exp(h(x), y) = h(x ! y)

AG(•, J•, e•) exp(exp(x, y), z) = exp(x, y ! z)

where AG(◦, J◦, e◦) are the axioms of Abelian groups for ◦ ∈ {•,+, !}.
These equational axioms are sufficient for modeling the protocol. The follow-

ing equalities express the main test executed by the server (during Step 5):

exp(h(s), Nc) • h(N + J+(s ! Nc)) = h(s ! Nc) • h(N + J+(s ! Nc))

= h(s ! Nc +N + J+(s ! Nc))

= h(N)

The role of the two multiplication used is to differentiate between the multi-
plication in the basis of exponentials and the multiplication of exponents.

Reduction of the Intruder Deduction Problem 223

2.3 The Convergent Rewriting System R Equivalent to the
Equational Theory EP

Standard rewriting notation and notions are used (e.g. [2,4]). A rewriting system
is a set R of oriented equations over terms in a given signature. For terms s and
t, s→R t denotes that s rewrites into t using one application of a rewriting rule
in R. The inverse of →R is denoted by R←. The transitive, reflexive-transitive
and equivalence closures of →R are denoted by +→R,

∗→R and ∗↔R, respectively.
Analogously, the transitive and reflexive-transitive closures of R← are denoted
by R

+← and R
∗←, respectively. The equivalence clousure of the rewriting relation,

∗↔R, is also denoted by ≈R. Composition of relations is denoted by ◦.
A term s is in R-normal form if there is no term t such that s →R t; s ↓R

denotes a normal form of s (i.e., a term t such that s→R t and t is in R-normal
form).
R is said to be convergent whenever it is terminant and confluent, i.e., re-

spectively:

there is no infinite chain s0 →R s1 →R s2 · · · and

(R← ◦ →R) ⊆ (∗→R ◦ R
∗←)

Given an equational theory E, it is said that E is equivalent to R whenever
≈R = ≈E . Subscripts are omitted when they are clear from the context.

The rewriting system R associated with the equational theory EP, introduced
in [6], has as signature

ΣEP = {+, e+, J+, !, e�, J�, •, e•, J•, h, exp}

and consists of the union of the rewriting systems below.
RAG(◦), for ◦ ∈ {+, !, •}, denotes the rewriting system modulo AC for ◦, given

by the set of rules:

RAG(◦) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x ◦ e◦ → x

J◦(x) ◦ J◦(y) → J◦(x ◦ y)
J◦(J◦(x)) → x

J◦(x) ◦ J◦(y) ◦ z → J◦(x ◦ y) ◦ z
J◦(x ◦ y) ◦ x ◦ z → J◦(y) ◦ z

x ◦ J◦(x) → e◦

J◦(e◦)→ e◦

J◦(x) ◦ x ◦ y → y

J◦(x ◦ y) ◦ x→ J◦(y)

J◦(J◦(x) ◦ y)→ x ◦ J◦(y)

R0 is given by the rules.

R0 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp(h(x), y) → h(x ! y)

exp(exp(x, y), z) → exp(x, y ! z)

h(x) • h(y) → h(x+ y)

h(x) • h(y) • z → h(x+ y) • z

J•(h(x)) → h(J+(x))

h(e+)→ e•

J•(h(x) • y)→ h(J+(x)) • J•(y)
exp(e•, x) → h(e+ ! x)

224 D.N. Sobrinho and M. Ayala-Rincón

The rewriting system R := RAG(�)∪RAG(•)∪RAG(+)∪R0 was proved conver-
gent modulo AC in [6]. This implies that any equational theorem in EP, namely,
s =EP t, can be effectively proved using R, by normalizing s: s ∗→R s ↓, and t:
t

∗→R t↓, and checking whether s↓=AC t↓.

2.4 Sequent Calculus for the Intruder

The set of inference rules S for the intruder deduction, presented in Table 1 is
essentially the same as in [12], except that the (id) rule considers the equational
theory EP and the symbol =AC will be interpreted as equality modulo AC for
the operators {+, !, •}.

Table 1. System S : Sequent Calculus for the Intruder

M≈EPC[M1,...,Mk]

C[] an EP-context, and M1, . . . , Mk ∈ Γ
(id)

Γ � M

Γ � M Γ, M � T
(cut)

Γ � T

Γ, 〈M, N〉 , M, N � T
(pL)

Γ, 〈M, N〉 � T

Γ � M Γ � N (pR)
Γ � 〈M, N〉

Γ, {M}k � K Γ, {M}k , M, K � N
(eL)

Γ, {M}k � N

Γ � M Γ � K (eR)
Γ � {M}k

Γ ,sign(M, K), pub(L),M � N
(signL)K =AC L

Γ ,sign(M, K), pub(L) � N

Γ � M Γ � K (blindR)
Γ � blind(M, K)

Γ � M Γ � K (signR)
Γ � sign(M, K)

Γ ,blind(M,K) � K Γ ,blind(M,K), M, K � N
(blindL1)

Γ ,blind(M,K) � N

Γ, sign(blind(M, R), K) � R Γ, sign(blind(M, R), K), sign(M, K), R � N
(blindL2)

Γ ,blind(M, K) � N

Γ � A Γ, A � M
(gs), A is a guarded subterm of Γ ∪ {M}

Γ � M

As in [12], the rule (gs), called analytic cut, is necessary to introduce the
function symbols in ΣEP. This rule is necessary to “abstract” EP-alien subterms
in a sequent in order to prove cut rule admissibility.

Reduction of the Intruder Deduction Problem 225

A sequent Γ �M is in normal form if M and all the terms in Γ are in normal
form. Unless stated otherwise, it is assumed that sequents are in normal form.
Moreover, Γ �S M denotes that the sequent Γ �M is derivable in S.

Definition 1 (Admissible rules). An inference rule R in a proof system D is
admissible for D if for every sequent Γ �M derivable in D, there is a derivation
of the same sequent in D without instances of R.

Admissibility of the cut rule holds. The proof is based on induction on the height
of the left premise derivation immediately above the cut rule as in [12].

Theorem 1 (Admissibility of the cut rule). The cut rule is admissible
for S.

Proof (Sketch). The cut reduction is driven by the left premise derivation of
the cut. The proof is divided in several cases, based on the last rule of the left
premise derivation.

For instance, suppose the left premise of the cut ends with the (id)-rule :

(id)
Γ �M

Π1

Γ,M � R
(cut)

Γ � R
where M = C[M1, . . . ,Mk] ↓, C[. . .] is an EP-context and M1, . . . ,Mk ∈ Γ . By
induction hypothesis Γ,M � R is cut-free derivable, hence applying a lemma
of preservation of S-derivability on the decomposition of EP-contexts to Π1 one
can obtain a cut-free derivation Π ′ of Γ � R. ��

3 Elementary Intruder Deduction under the EP Theory

The decidability of the intruder deduction problem for the EPP without blind
signatures is already known to be polynomial [6]. This result was obtained fol-
lowing McAllester’s approach which states that there is a polynomial algorithm
provided a locality property for the inference rules is guaranteed [10]. Here, the
techniques in [12] are followed to prove that the decidability result for the EPP
with blind signatures can be reduced to the EDP.

For doing this, it is necessary an improvement on the boundary created to
guarantee the locality property for the intruder’s rules for the EPP in [6], in
which all intermediate formulas contained in every derivation were bounded by
a notion of subterms involving only terms in the signature ΣEP. Here, since one
deals with the system S and terms headed by constructors are allowed inside the
(id) rule, a new bound will be necessary to preserve the subformula property.
This bound is built as a combination of the previous notion of subterms and the
saturated set of Γ (intruder’s knowledge).

Definition 2 (Elementary deduction problem). The elementary deduction
problem for EP, written Γ �EP M , is the problem of deciding whether the (id)
rule is applicable to the sequent Γ � M , by checking whether there exists an
EP-context C[. . .] and terms M1, . . . ,Mk ∈ Γ such that C[M1, . . . ,Mk] ≈EP M .

226 D.N. Sobrinho and M. Ayala-Rincón

For ◦ ∈ {!, •,+} define inv◦(u) as the term J◦(u) ↓. The following definitions
are essential for the next results.

Definition 3. Denote by top(t) the root symbol of the term t. TOP(u) is defined
recursively as

TOP(t) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

◦, if t = J◦(u ◦ v), for ◦ ∈ {!, •,+}
•, if t = h(v + w)

•, if t = h(J+(v + w))

top(t), otherwise.

Definition 4 (EP-decomposition subterms). Let ◦ ∈ {!, •,+}, the set of
EP-decomposition subterms, denoted by DS◦(u), is defined as

1. DS◦(u ◦ v) = DS◦(u) ∪DS◦(v),

2. DS◦(J◦(u)) = {J◦(v)|v ∈ DS◦(u)},
3. DS•(h(u)) = {h(v)|v ∈ DS+(u)}, and

4. DS◦(u) = {u} if TOP(u) �= ◦.
Definition 5 (EP-subterms). Let t be a term in EP-normal form, Sub(t) is
the smallest set of terms such that t ∈ Sub(t) and if u ∈ Sub(t) then

1. either ◦ = TOP(u) ∈ {!, •,+} and DS◦(u) ⊆ Sub(t)
2. or else u = f(u1, . . . un) and u1, . . . , un ∈ Sub(t).

If T is a set of terms, Sub(T) is defined as: Sub(T) :=
⋃

u∈T

Sub(u).

Although the modifications made in the (id) rule, it is possible to see that this
rule still preserves the subformula property: in any sequent Γ � M derivable
using the new (id) rule only subformulas of Γ and M occur. In order to obtain
this property it is necessary a suitable notion of subterms F , which is a function
that associates a term to the set of its subterms.

The function above is basically the same introduced by Bursuc et alii in [6] ex-
cept by a slight alteration in the subset {inv◦(t) | t ∈ Sub(T),TOP(t) ∈ {!,+, •}}
used in the composition of F .

F (T) = Sub(T)

∪{h(t) | t ∈ Sub(T),TOP(t) = +}
∪ {h(inv+(t) | t ∈ Sub(T),TOP(t) = +}
∪ {inv◦(t) | t ∈ Sub(T),TOP(t) ∈ {!,+, •}}
∪ {h(t) | ∃ t ∈ Sub(T) s.t. TOP(u) = ◦ ∈ {!,+} , t ∈ DS◦(u)}
∪ {inv◦(t) | ∃u ∈ Sub(T) s.t. TOP(u) = ◦ ∈ {!,+, •} , t ∈ DS◦(u)}
∪ {h(inv◦(t)) | ∃u ∈ Sub(T) s.t. TOP(u) = ◦ ∈ {!,+} , t ∈ DS◦(u)}

Notice that the size of F (T) is linear in the size of T .

Reduction of the Intruder Deduction Problem 227

Nevertheless the cut-free system S does not enjoy the subformula property,
since in (blindL2) the premisse has a term which is not a subterm of any term in
the conclusion. Notice that reading the rules bottom up, the terms introduced
are smaller than the terms in the conclusion. Thus a proof search strategy will
eventually terminate.

Normal derivations in a deduction system satisfy the following conditions: left
rules appear neither above a right rule nor immediately above the left-premise
of a branching left rule.
Γ �R M denotes the fact that the sequent Γ � M is provable using only

right rules and (id). The system L given in Table 2 is a linear deduction system
for the intruder. The difference with the system in [12] is essentially the new
interpretation of the (id) rule and the equality modulo AC used in the rule
(sign).

Table 2. System L: a linear proof system for intruder deduction

Γ �R M
(r)

Γ � M

Γ, {M}K , M, K � N
(le), where Γ, {M}K �R K

Γ, {M}K � N

Γ, 〈M, N〉 , M, N � T
(lp)

Γ, 〈M, N〉 � T

Γ ,sign(M, K), pub(L),M � N
(sign), K =AC L

Γ ,sign(M, K), pub(L) � N

Γ , blind(M,K), M , K � N
(blind1), Γ , blind (M, K) �R K

Γ , blind (M, K) � N

Γ , sign(blind(M, R), K), sign(M, K), R � N
(blind2), Γ , sign(blind(M, R),K) �R R

Γ , sign(blind(M, R),K) � N

Γ, A � M
(ls), where A is a guarded subterm of Γ ∪ {M} and Γ �R A

Γ � M

Standard DAG representation of Γ with maximum sharing of subterms is
assumed (see, e.g. [1]). As in [12], st(Γ) denotes the set of subterms of the terms
in Γ . A term M is a proper subterm of N if M is a subterm of N and M �= N .
Denote with pst(Γ) the set of proper subterms of Γ , and define

sst(Γ) = {sign(M,N) |M,N ∈ pst(Γ)}.

The saturated set of Γ with respect to EP, written St(Γ), is the set

St(Γ) = Γ ∪ pst(Γ) ∪ sst(Γ) ∪ F (Γ)

As in [12], the next complexity results are stated with relation to the size of
St(Γ ∪ {M}) combined with the notion of EP-subterms.

228 D.N. Sobrinho and M. Ayala-Rincón

Definition 6 (Polynomial reducibility to elementary deduction). Let
Γ �L M be a deduction problem and let n be the size of St(Γ ∪ {M}). Suppose
that the EDP in EP has complexity O(f(m)), where m is the size of the input.
The problem Γ �L M is said to be polynomially reducible to the EDP �EP if it
has complexity O(nk × f(n)) for some constant k.

In order to adapt the proof of the following lemma from [12] it is only necessary
to interpret the (id) rule inside the equational theory EP.

Lemma 1 (�R reducible polynomially to �EP). The decidability of the re-
lation �R is polynomially reducible to the decidability of elementary deduction
�EP.

Proof. It is enough to assume a simple proof search procedure for Γ �M using
only right-rules:

1. If Γ �M is elementary deducible, then the lemma holds.

2. Otherwise, apply a right-introduction rule (backwards) to Γ �M and repeat
step 1 for each obtained premise. If no such rules are applicable, then Γ �M
is not derivable.

Notice that the number of iterations is bound by the number n of distinct sub-
terms of M and that elementary deducibility is checked on problems of size less
or equal to n. ��

In order to prove the main result, one has to consider the notion of a principal
term in a left-rule in the proof system L which was defined in [12]. Given a
sequent Γ �M and a pair of principal-term and left-rule (N, ρ), the pair (N, ρ)
is applicable to the sequent if

– ρ is (ls), N is a guarded subterm of Γ ∪ {M}, and there is an instance of ρ
with Γ,N �M as its premise;

– ρ is not (ls), N ∈ Γ , and there is an instance of ρ with Γ � M as its
conclusion.

Assume that the complexity of �E is O(f(n)) and let n be the size of St(Γ ∪
{M}) . Given a sequent Γ �M and a pair (N, ρ), observe the following facts:

F1. the complexity of checking whether (N, ρ) is applicable to Γ � M is equal
to O(nlf(n)) for some constant l;

F2. if (N, ρ) is applicable to Γ � M , then there is a unique sequent Γ ′ � M
such that the sequent below is a valid instance of ρ:

Γ ′ �M ρ
Γ �M

For F1 it is necessary to assume DAG representation of sequents with maximal
sharing of subterms. The complexity of checking if a rule is applicable or not then
consists of: pointer comparisons; pattern match a subgraph with a rule; checking

Reduction of the Intruder Deduction Problem 229

equality modulo AC (for the rule sign); checking �R. Pointer comparisons and
pattern matching can be done in polynomial time and checking �R is polynomi-
ally reducible to �EP (Lemma 1). The following result shows the polynomiality
of the third operation.

Lemma 2 (=AC is polynomially decidable). Let M,N terms in normal
form. The problem whether M =AC N is decidable in polynomial time.

Proof. By induction on the structure of M . Suppose that M = f(M1, . . . ,Mn).

1. If f /∈ {+, !, •} it is enough to apply induction hypothesis to the subterms
M1, . . . ,Mn of M .

2. Suppose f ∈ {+, !}. To make the computation easier, write: M = M1 ◦M2 ◦
. . . ◦Mn. Since M is in normal form and according to the rewrite rules,

M = M ′
1 ◦M ′

2 ◦ . . . ◦M ′
k ◦ J◦(M”1 ◦M”2 ◦ . . . ◦M”s)

It is possible to count the occurrences of each subterm in M . Hence,

M = α1M
′
1 ◦ α2M

′
2 ◦ . . . αp ◦M ′

p ◦ J◦(β1M
′′
1 ◦ β2M

′′
2 ◦ . . . ◦ βqM

′′
q)

where α1, . . . , αp, β1, . . . , βq are integers (at least one of them non null) and
p ≤ k, q ≤ s. Hence, M =AC N iff |M |M ′

i
= |N |M ′

i
and |M |M ′′

j
= |N |M ′′

j
,

1 ≤ i ≤ p and 1 ≤ j ≤ q. And a simple enumeration gives a polynomial
algorithm.

The problematic case happens when

N = γ1N
′
1 ◦ γ2N

′
2 ◦ . . . ◦ γpN

′
p ◦ J◦(ϕ1N

′′
1 ◦ ϕ2N

′′
2 ◦ . . . ◦ ϕqN

′′
q),

and for each 1 ≤ i ≤ p (resp. 1 ≤ j ≤ q) there exists a 1 ≤ l ≤ p (resp.
1 ≤ r ≤ q) such that M ′

i =AC N ′
l (resp. M ′′

j =AC N ′′
r). Applying the

induction hypothesis, the result follows.

3. Suppose f = •. Then,M = M1•. . .•Mp•J•(M ′
1•. . .•M ′

q)•h(M ′′
1 +. . .+M ′′

r).
Reordering the subterms which appear repeteadly,

M = χ1M1 • . . . • χuMp • J•(μ1M
′
1 • . . . • μqM

′
q) • h(ρ1M

′′
1 + . . .+ ρwM

′′
w).

Analogously to the previous case, a simple enumeration gives a polynomial
algorithm.

This completes the proof. ��

The polynomial reducibility of �L to �EP can be proved by a deterministic proof
search strategy which systematically tries all applicable rules following the same
proof methodology as in [12].

Theorem 2 (�L reducible polynomially to �EP). The decidability of the
relation �L is polynomially reducible to the decidability of elementary deduction
�EP.

230 D.N. Sobrinho and M. Ayala-Rincón

Proof (Sketch). Three auxiliary results are used:

– Weakening: if Π is an L-derivation of Γ �M and Γ ⊆ Γ ′, then there exists
an L-derivation Π ′ of Γ ′ �M such that |Π ′| = |Π |.

– Let Π be an L-derivation of Γ � M . Then for every sequent Γ ′ � M ′

occurring in Π , Γ ′ ∪ {M ′} ⊆ St(Γ ∪ {M}).
– If there is an L-derivation of Γ � M then there is an L-derivation of the

same sequent whose length is at most quadratic with respect to the size of
Γ ∪ {M}.

Suppose Γ �M is provable in L. LetM1, . . . ,Mn be an enumeration of the set
St(Γ ∪ {M}). There is a shortest proof of Γ � M where each sequent appears
exactly once in each branch of the proof. This also means that there exists a
sequence of principal-term and rule pairs

(Mi1 , ρ1), . . . , (Miq , ρq)

that is applicable, successively, to Γ � M . Since no repetitions of sequents are
possible, q ≤ n. Also, it should be noticed that the rules of L are inversible:
one does not lose provability at any point of the proof search. Suppose, both
principal-term and rule pairs (N, ρ) and (N ′, ρ′) are applicable to Γ � M ; then
if Γ ′ � M is the unique premise determined by either (N, ρ) or (N ′, ρ′), then,
respectively, either (N ′, ρ′) or (N, ρ) applies to Γ ′ �M .

A proof search strategy for Γ � M is based on repeatedly try all possible
applicable pairs (M ′, ρ′) for each possible M ′ ∈ St(Γ ∪ {M}) and each left-
rule ρ′ (that is bounded by 6n) and for all generated sequents taking in care
elimination of redundancies based on the previous observations and weakening.
For all generated sequent Δ � M , before trying possible applicable pairs, one
should check whether Δ �R M . By Lemma 1, checking �R takes O(naf(n))
for some constant a. By (F1), checking applicability takes O(nlf(n)) for some
constant l. Therefore the whole procedure takes O(nc+lf(n)). ��

4 Conclusion

It was shown that the decidability of the intruder deduction problem of an elec-
tronic purse protocol with the theory of blind signatures can be polynomially
reduced to the elementary intruder deduction problem. For doing this, the tech-
niques used by Bursuc et alii in [6] to model the algebraic power of the protocol
via a convergent rewriting system were applied together with the techniques in-
troduced by Tiu and Goré in [12] in order to represent the intruder’s deduction
capacity via a sequent calculus taking into account blind signatures. In the latter
work, the equational part is composed by a disjoint combination of equational
theories, each one containing at most one AC operator. In this sense, the present
paper slightly extends these results since the equational theory considered, which
is essential for the execution of the protocol, is composed by three different AC
operators and the equational theory cannot be split into disjoint theories. Al-
though the proof techniques were proved to be straightforwardly adaptable, this

Reduction of the Intruder Deduction Problem 231

study is of practical interest since the analysis was extended to EPP in which
authority parties can blindly authorize electronic transactions.

As future work, one can consider more complex algebraic equational theories
in security analysis of cryptographic protocols (e.g. [7]), using the approach of
proof search in sequent calculus and, even more, try to establish similar results
for deduction problems in which the constructors interact with the equational
theories. Another interesting challenge is to obtain deducibility results with re-
spect to active attacks.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theoretical Computer Science 367(1-2), 2–32 (2006)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Bernat, V., Comon-Lundh, H.: Normal proofs in intruder theories. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 151–166. Springer, Heidelberg
(2008)

4. Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems by TeReSe.
Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University
Press, Cambridge (2003)

5. Bull, J., Otwary, D.J.: The authetication protocol. Technical Report
CIS3/PROJ/CORBA/SC/1/CSM/436-04/03, Defense Research Agency (1997)

6. Bursuc, B., Comon-Lundh, H., Delaune, S.: In: Comon-Lundh, H., Kirchner, C.,
Kirchner, H. (eds.) Jouannaud Festschrift. LNCS, vol. 4600, pp. 196–212. Springer,
Heidelberg (2007)

7. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)

8. Delaune, S.: Vérification des protocoles cryptographiques et propriétés algébriques.
PhD thesis, École Normale Supérieure de Cachan (2006)

9. Kapur, D., Narendran, P., Wang, L.: An E-unification algorithm for analyzing
protocols that use modular exponentiation. In: Nieuwenhuis, R. (ed.) RTA 2003.
LNCS, vol. 2706, pp. 165–179. Springer, Heidelberg (2003)

10. McAllester, D.: Automatic recognition of tractability in inference relations. Journal
of the ACM 40, 284–303 (1990)

11. Schneier, B.: Applied Cryptography. John Wiley & Sons, Inc., Chichester (1996)
12. Tiu, A., Rajeev, G.: A proof theoretic analysis of intruder theories. In: Treinen, R.

(ed.) RTA 2009. LNCS, vol. 5595, pp. 103–117. Springer, Heidelberg (2009)

Intersection Type Systems and Explicit

Substitutions Calculi

Daniel Lima Ventura1,�,
Mauricio Ayala-Rincón1,��, and Fairouz Kamareddine2

1 Grupo de Teoria da Computação, Dep. de Matemática Universidade de Braśılia,
Braśılia D.F., Brasil

{ventura,ayala}@mat.unb.br
2 School of Mathematical and Computer Sciences Heriot-Watt University,

Edinburgh, Scotland UK
fairouz@macs.hw.ac.uk

Abstract. The λ-calculus with de Bruijn indices, called λdB, assem-
bles each α-class of λ-terms into a unique term, using indices instead of
variable names. Intersection types provide finitary type polymorphism
satisfying important properties like principal typing, which allows the
type system to include features such as data abstraction (modularity)
and separate compilation. To be closer to computation and to simplify
the formalisation of the atomic operations involved in β-contractions,
several explicit substitution calculi were developed most of which are
written with de Bruijn indices. Although untyped and simply types ver-
sions of explicit substitution calculi are well investigated, versions with
more elaborate type systems (e.g., with intersection types) are not. In
previous work, we presented a version for λdB of an intersection type sys-
tem originally introduced to characterise principal typings for β-normal
forms and provided the characterisation for this version. In this work we
introduce intersection type systems for two explicit substitution calculi:
the λσ and the λse. These type system are based on a type system for
λdB and satisfy the basic property of subject reduction, which guarantees
the preservation of types during computations.

1 Introduction

The λ-calculus à la de Bruijn [deBruijn72], λdB for short, was introduced by the
Dutch mathematician N.G. de Bruijn in the context of the project Automath
[NGdV94] and has been adopted for several calculi of explicit substitutions ever
since, e.g. [deBruijn78, ACCL91, KR97]). Term variables are represented by
indices instead of names in λdB , assembling each α-class of terms in the λ-
calculus [Barendregt84] into a unique term with de Bruijn indices, thus making
it more “machine-friendly” than its counterparts. The λσ- [ACCL91] and the
λse- [KR97] calculi have applications in higher order unification, HOU for short

� Corresponding author supported by the Brazilian Research Council CNPq.
�� Author partially supported by the Brazilian Research Council CNPq and supported

by the District Federal Research Foundation - FAP-DF 8-004/2007.

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 232–246, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Intersection Type Systems and Explicit Substitutions Calculi 233

[DHK2000, AK01]. These explicit substitution calculi with de Bruijn indices
have been investigated for both type free and simply typed versions but to the
best of our knowledge there is no work on more elaborate type systems such as
intersection types.

Intersection types, IT for short, were introduced as an extension to simple
types, in order to provide a characterisation of strongly normalising λ-terms
[CDC78, CDC80, Pottinger80]. In programming, the IT discipline is of interest
because λ-terms corresponding to correct programs not typable in the standard
Curry type assignment system [CF58], or in some polymorphic extensions as the
one present in ML [Milner78], are typable with IT. Moreover, some IT systems
satisfy the principal typing property, PT for short, which means that for any
typable term M there is a type judgement Γ � M : τ representing all possible
typings 〈Γ ′ � τ ′〉 of M in the corresponding type system. Principal typings has
been studied for some IT systems [CDV80, RV84, Rocca88, Bakel95, KW04] and
in [CDV80, RV84] it was shown that for a term M , the principal typing of M ’s
β-normal form, β-nf for short, is principal for M itself.

In [VAK09] we introduced an IT system for the λdB, based on the type sys-
tem given in [KN07], and proved it to satisfy the subject reduction property,
SR for short, which states that types under β-reduction are preserved: whenever
Γ � M : σ and M β-reduces into N , then Γ � N : σ. Due to the interac-
tion between sequential type contexts and the subtyping relation, the system in
[VAK09] is not relevant in the sense of [DG94], whereas the system of [KN07] is.
Hence, in [VAK10] we introduce a relevant IT system for λdB. This system is a
de Bruijn version of the system originally introduced in [SM96a], for which we
established a characterisation of the syntactic structure of PT for β-nfs.

In this paper we concentrate on the SR property, with a discussion originally
presented in [VAK10], and we prove for the first time the property for the β-
contraction in λdB with some considerations. We then propose a variant for the
type system, which is a de Bruijn version of the system in [SM97]. We also give
the first IT systems for λσ and λse, which we base on this variant, and we
establish that they both have SR for the full rewriting system. As a preliminary
step to obtain the system for λse, we introduce an IT system for λs [KR95],
based on the system of [VAK10], with similar properties such as relevance and
SR for the simulation of β-contraction.

Below, we present the untyped versions of the λdB, λs, λse and λσ calculi.
Section 2 consists of two parts. In Subsection 2.1 we present the IT systems λSM

dB

and λSMr

dB , followed by the relevance property and a discussion of the SR property.
In Subsection 2.2 we present the new work on the system λSM

dB , introducing some
properties related to the proof of SR for β-contraction in the type system, which
is discussed at the end of the second part. In Section 3 we introduce the IT system
λsSM for λs and the system λse

∧ for λse, with their respective properties. In
Section 4, the IT system for λσ is introduced followed by its properties.

1.1 λ-Calculus with de Bruijn Indices

Definition 1 (Set ΛdB). The set of λdB-term, denoted by ΛdB, is inductively
defined for n ∈ N∗= N�{0} by: M,N ∈ ΛdB ::= n | (M N) |λ.M .

234 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

The index i is bound if it is inside i λ’s and otherwise it is free. We introduce
the following subsets in order to present a formal definition of the set of free
indices for some term.

Definition 2. Let N ⊂ N∗ and k ≥ 0. We define:
1.N\k = {n− k |n ∈ N} 3.N + k = {n+ k |n ∈ N}
2.N>k = {n ∈ N |n > k} 4.N≤k = {n ∈ N |n ≤ k}, N<k = {n ∈ N |n < k}

Definition 3. FI(M), the set of free indices of M ∈ ΛdB, is defined by:
FI(n) = {n } FI(M1 M2) = FI(M1) ∪ FI(M2) FI(λ.M) = FI(M)\1

The free indices correspond to the notion of free variables in the λ-calculus
with names, hence M is called closed when FI(M) ≡ ∅. The greatest value of
FI(M) is denoted by sup(M). In [VAK09] we give the formal definitions of those
concepts. Terms like ((. . . ((M1 M2) M3) . . .) Mn) are written (M1M2 · · · Mn),
as usual. The β-contraction definition in this notation needs a mechanism which
detects and updates free indices of terms. Intuitively, the lift of M , denoted by
M+, corresponds to an increment by 1 of all free indices occurring in M . Thus,
we are able to present the definition of the substitution used by β-contractions,
similarly to the one presented in [AK01].

Definition 4. Let m,n ∈ N∗. The β-substitution for free occurrences of n in
M ∈ ΛdB by term N , denoted as {n/N}M , is defined inductively by

1 . {n /N}(M1 M2) = ({n /N}M1 {n /N}M2) 3 . {n /N}m =

⎧⎨⎩
m − 1 , if m > n
N, if m = n
m , if m < n2 . {n /N}(λ.M1) = λ.{n + 1 /N+}M1

Observe that in item 2 of Definition 4, the lift operator is used to avoid the
capture of free indices in N . We define β-contraction as usual (e.g. see [AK01]).

Definition 5. β-contraction in λdB is defined by (λ.M N)→β {1 /N}M .

Notice that item 3 in Definition 4 is the mechanism which does the substitution
and updating of the free indices in M as a consequence of the elimination of
the lead abstractor. β-reduction is defined to be the λ-compatible closure of β-
contraction defined above. A term is in β-normal form, β-nf for short, if there
is no β-reduction to be done.When i /∈ FI(M), then we have that { i /N}M =
M−i, where M−i is the term M in which indices greater than i are decreased
by one. We call this an empty substitution because no index is replaced by
an instance of term N . The β-contraction (λ.M N) → { 1 /N}M is thus called
an empty application.

1.2 The λse-Calculus

The λs-calculus is a proper extension of the λdB-calculus. Two operators σ
and ϕ are introduced for substitution and updating, respectively, to control the
atomisation of the substitution operation by arithmetic constraints.

Definition 6 (Set Λs). The set of λs-terms, denoted by Λs, is inductively defined
for n, i, j ∈ N∗ and k ∈ N by: M,N ∈Λs ::= n | (M N) |λ.M |MσiN |ϕj

kM .

Intersection Type Systems and Explicit Substitutions Calculi 235

The term MσiN represents the procedure to obtain the term {i /N+(i−1)}M ;
i.e., the substitution of the free occurrences of i in M by N with its free indices
incremented by (i−1), updating the free indices on both terms. The term ϕj

kM

represents j−1 applications of the k-lift to the term M ; i.e., M+k(j−1)
. Table 1

contains the rewriting rules of the λse-calculus as given in [KR97]. The bottom
six rules of Table 1 are those which extend the λs-calculus [KR95] to λse [KR97].
They ensure the confluence of the λse-calculus on open terms and its application
to the HOU problem [AK01]. In this paper we work with the same set Λs of terms
for both calculi.

Table 1. The rewriting system of the λse-calculus

(λ.M N) −→ M σ1N (σ-generation)
(λ.M)σiN −→ λ.(Mσi+1N) (σ-λ-transition)
(M1 M2)σ

iN −→ ((M1σ
iN) (M2σ

iN)) (σ-app-trans.)

n σiN −→
⎧⎨⎩

n − 1 if n > i
ϕi

0N if n = i
n if n < i

(σ-destruction)

ϕi
k(λ.M) −→ λ.(ϕi

k+1M) (ϕ-λ-trans.)
ϕi

k(M1 M2) −→ ((ϕi
kM1) (ϕi

kM2)) (ϕ-app-trans.)

ϕi
k n −→

{
n + i − 1 if n > k
n if n ≤ k

(ϕ-destruction)

(M1σ
iM2)σ

jN −→ (M1σ
j+1N)σi(M2σ

j−i+1N) if i ≤ j (σ-σ-trans.)
(ϕi

kM)σjN −→ ϕi−1
k M if k < j < k + i (σ-ϕ-trans. 1)

(ϕi
kM)σjN −→ ϕi

k(Mσj−i+1N) if k + i ≤ j (σ-ϕ-trans. 2)
ϕi

k(MσjN) −→ (ϕi
k+1M)σj(ϕi

k+1−jN) if j ≤ k + 1 (ϕ-σ-trans.)

ϕi
k(ϕj

l M) −→ ϕj
l (ϕ

i
k+1−jM) if l + j ≤ k (ϕ-ϕ-trans. 1)

ϕi
k(ϕj

l M) −→ ϕj+i−1
l M if l ≤ k < l + j (ϕ-ϕ-trans. 2)

=se denotes the equality for the associate substitution calculus, denoted as se,
induced by all the rules except (σ-generation). The rewriting system obtained
by removing from se the bottom six rules presented in Table 1 is called the s-
calculus, which is the substitution calculus associated with λs. In order to have
a syntactic characterisation related to empty applications and substitutions, as
the free indices for λdB, we present the available indices, a notion analogous to
that of available variables introduced in [LLDDvB04].

Definition 7. AI(M), the set of available indices of M ∈ Λs is defined by:
AI(n) = {n } AI(λ.M) = AI(M)\1 AI(M1 M2) = AI(M1) ∪AI(M2) and
AI(ϕi

kM) = AI(M)≤k ∪ (AI(M)>k + (i− 1))

AI(MσiN) =

{
AI(M−i) ∪AI(ϕi

0N), if i ∈ AI(M)
AI(M−i), if i /∈ AI(M)

where AI(M−i) denotes AI(M)<i ∪ (AI(M)>i)\1.
The greatest value of AI(M) is denoted by sav(M).

236 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

1.3 The λσ-Calculus

The λσ-calculus is given by a first-order rewriting system, which makes substi-
tutions explicit by extending the language with two sorts of objects: terms and
substitutions which are called λσ-expressions.

Definition 8 (Set Λσ). The set of λσ-expressions, denoted by Λσ, is formed
by the set Λσt of terms and the set Λσs of substitutions, inductively defined by:
M,N ∈ Λσt ::= 1 | (M N) |λ.M |M [S] S ∈ Λσs ::= id | ↑ |M.S |S ◦ S.

Substitutions can intuitively be thought of as lists of the form N/ i indicating
that the index i ought to be replaced by the term N . The expression id rep-
resents a substitution of the form {1 /1 , 2 /2 , . . . } whereas ↑ is the substitution
{ i+1/ i | i∈N∗}. The expression S◦S represents the composition of substitutions.
Moreover, 1 [↑n], where n ∈ N∗, codifies the de Bruijn index n+1 and i [S] rep-
resents the value of i through the substitution S, which can be seen as a function
S(i). The substitution M.S has the form {M/1 , S(i)/i+ 1 } and is called the
cons of M in S. M [N.id] starts the simulation of the β-reduction of (λ.M N)
in λσ. Thus, in addition to the substitution of the free occurrences of the index
1 by the corresponding term, free occurrences of indices should be decremented
because of the elimination of the abstractor. Table 2 lists the rewriting system
of the λσ-calculus, as presented in [DHK2000], without the (Eta) rule.

Table 2. The rewriting system for the λσ-calculus

(λ.M N) −→ M [N.id] (Beta) (λ.M)[S] −→ λ.(M [1.(S◦↑)]) (Abs)
(M N)[S] −→ (M [S] N [S]) (App) ↑◦ (M.S) −→ S (ShiftCons)
M [id] −→ M (Id) (S1 ◦ S2) ◦ S3 −→ S1 ◦ (S2 ◦ S3) (AssEnv)
1[S].(↑◦S) −→ S (Scons) (M.S) ◦ T −→ M [T].(S ◦ T) (MapEnv)
(M [S])[T] −→ M [S ◦ T] (Clos) 1.↑ −→ id (V arShift)
id ◦ S −→ S (IdL) 1[M.S] −→ M (V arCons)
S ◦ id −→ S (IdR)

This system is equivalent to that of [ACCL91]. The associated substitution
calculus, denoted by σ, is the one induced by all the rules except (Beta), and its
equality is denoted as =σ.

2 Intersection Type Systems for the λdB-Calculus

The intersection type systems presented in this paper have the same set of types
T , of the so called restricted intersection types. The intersection types in T do
not occur immediately on the right of an →. Besides that, the intersection is
linear thus non idempotent. The type contexts in type systems with de Bruijn
indices are sequences of types. Below, we present the definitions of these concepts.

Intersection Type Systems and Explicit Substitutions Calculi 237

1:〈τ.nil � τ 〉 var
n :〈Γ � τ 〉

n+1:〈ω.Γ � τ 〉 varn
M :〈u.Γ � τ 〉

λ.M :〈Γ � u→τ〉 →i

M1 :〈Γ � ω→τ〉 M2 :〈Δ � σ〉
(M1 M2) :〈Γ ∧ Δ � τ 〉 →′

e
M :〈nil � τ 〉

λ.M :〈nil � ω→τ〉 →′
i

M1 :〈Γ � ∧n
i=1σi→τ〉 M2 :〈Δ1 � σ1〉 . . . M2 :〈Δn � σn〉
(M1 M2) :〈Γ ∧ Δ1 ∧ · · · ∧ Δn � τ 〉 →e

Fig. 1. Typing rules of system λSM
dB

Definition 9. 1. Let A be a denumerably infinite set of type variables and
let α, β range over A.

2. The set T of restricted intersection types is defined by:
τ, σ ∈ T ::= A |U→T u ∈ U ::= ω | U ∧ U | T

Types are quotiented by taking ∧ to be commutative, associative and to
have ω as the neutral element.

3. Contexts are ordered lists of u ∈ U , defined by: Γ ::= nil |u.Γ . Γi denotes
the i-th element of Γ and |Γ | denotes the length of Γ . We let ω n denote the
sequence ω.ω. · · · .ω of length n, called omega context, and let ω 0 .Γ = Γ .
The extension of ∧ to contexts is done by taking nil as the neutral element
and (u1.Γ) ∧ (u2.Δ) = (u1 ∧ u2).(Γ ∧ Δ). Hence, ∧ is commutative and
associative on contexts.

4. Let u′ % u if there exists v such that u= u′ ∧ v and u′ � u if v �= ω. Let
Γ ′ % Γ if there exists Δ such that Γ = Γ ′ ∧Δ, where neither Γ ′ nor Δ are
omega contexts and Γ ′ � Γ if Δ �= nil.

The set T defined here is equivalent to the one defined in [SM96a]. Type judge-
ments will be of the form M :〈Γ �S τ〉, meaning that in system S, term M has
type τ in context Γ (where FI(M) are handled). Briefly, M has type τ with Γ
in S or 〈Γ � τ〉 is a typing of M in S. The S is omitted whenever its is clear
which system is being referred to.

2.1 The System λSM

dB

We present in this section the systems λSM

dB and λSMr

dB , introduced in [VAK10].
The system λSMr

dB is the de Bruijn version of the system presented in [SM96a],
used to characterise principal typings (PT) for β-nfs.

Definition 10. 1. The typing rules for system λSM

dB are given in Figure 1.
2. System λSMr

dB is obtained from system λSM

dB , by replacing the rule var by rule

varr: 1:〈σ1 → · · · → σn→α.nil � σ1 → · · · → σn→α〉
(n ≥ 0).

Proposition 1. λSM

dB is a proper extension of λSMr

dB .

Hence, the properties stated for the system λSM

dB are also true for the system
λSMr

dB . The following lemma states that λSM

dB is relevant in the sense of [DG94].

238 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

Lemma 1 (Relevance for λSM

dB [VAK10]). If M : 〈Γ �λSM
dB

τ〉, then |Γ | =
sup(M) and ∀1≤ i≤|Γ |, Γi �= ω iff i∈FI(M).

Note that, by Lemma 1 above, system λSM

dB is not only relevant but there is a
strict relation between the free indices of terms and the length of contexts in
their typings. In [VAK10] we give a characterisation of PT for β-nfs in λSMr

dB .
Despite the fact that all β-nfs are typable in λSMr

dB , the subject reduction prop-
erty fails for both λSMr

dB and λSM

dB . In the following, we will give counterexamples
to show that neither subject expansion nor reduction holds.

Example 1. In order to have the subject expansion property, we need to prove
the statement: If { 1 /N}M : 〈Γ � τ〉 then (λ.M N) : 〈Γ � τ〉. Let M ≡ λ. 1 and
N ≡ 3, hence { 1 / 3 }λ. 1 = λ. 1. We have that λ. 1 : 〈nil � α→α〉. Thus, λ.λ. 1 :
〈nil � ω→α→α〉 and 3:〈ω.ω.β.nil � β〉, then (λ.λ. 1 3):〈ω.ω.β.nil � α→α〉.

For subject reduction, we need the statement: If (λ.M N) : 〈Γ � τ〉 then
{ 1 /N}M : 〈Γ � τ〉. Note that if we take M and N as in the example above,
we get the same problem as before but the other way round. In other words, we
have a restriction on the original context after the β-reduction, since we loose
the typing information regarding N ≡ 3. �

One possible solution is to replace rule →′
e by:

M :〈Γ � ω→τ 〉
(M N) :〈Γ � τ〉

.

This approach was originally presented in [SM96b]. However, the type system
obtained there does not have the property described in Lemma 1 since we would
not have the typing information for all the free indices occurring in a term. We
present a lemma at the end of the present section, stating the property related
to relevance for this variant.

The other way to try to achieve the desired properties is to think about
the meaning of the properties themselves. Since, by Lemma 1, the system is
related to relevant logic (cf. [DG94]), the notion of expansion and restriction of
contexts is an interesting way to talk about subject expansion and reduction.
These concepts were presented in [KN07] for environments. We introduce the
notion of restriction for sequential contexts in Subsection 2.2. This approach of
restriction/expansion for contexts is not sufficient to have the subject expansion
property because the rule →′

e has the typability of the argument as a premiss.
Hence, for any non typable term N , { 1 /N} 2 is typable while (λ.2 N) is not
typable in system λSM

dB . Below, we define the system which is the basis for the
IT systems we propose for λse and λσ.

Definition 11 (The system λ∧dB). The system λ∧dB is obtained from system

λSM

dB , replacing the rule →′
e by the following rule:

M :〈Γ � ω→τ 〉
(M N) :〈Γ � τ〉

→ω
e .

The following property is related to relevance in this system.

Lemma 2. If M : 〈Γ �λ∧
dB

τ〉 and |Γ |=m> 0 then Γm �= ω and ∀1≤ i≤ |Γ |,
Γi �=ω implies i∈FI(M).

Proof. By induction on the derivation M :〈Γ �λ∧
dB
τ〉.

Intersection Type Systems and Explicit Substitutions Calculi 239

2.2 Subject Reduction for System λSM

dB

We present here the properties of system λSM

dB used in the proof of SR, presented
at the end of this part. The generation lemmas for λSM

dB were presented in [VAK10]
and we omit them here due to lack of space. Below, we give a lemma which relates
typings and the updating operator.

Lemma 3 (Updating). Let M : 〈Γ �λSM
dB

τ〉. If i≥|Γ | then M+i : 〈Γ �λSM
dB

τ〉.
Otherwise, if 0≤ i< |Γ | then M+i :〈Γ≤i.ω.Γ>i �λSM

dB
τ〉.

Observe that when i≥ |Γ | then by the relevance of system λSM

dB we have that
i ≥ sup(M) thus M+i = M (cf. [VAK09]). Otherwise, the free indices of M
greater then i are incremented by one, then we need to add the ω at the (i+1)-
th position on the sequential context to guarantee the typability for term M+i.
We now can introduce the substitutions lemmas.

Lemma 4 (Substitution). Let M :〈Γ �λSM
dB

τ〉.
1. If i > |Γ | then, for any N ∈ΛdB, { i /N}M :〈Γ �λSM

dB
τ〉.

2. If Γi = ω where 0<i< |Γ |, then { i /N}M :〈Γ<i.Γ>i �λSM
dB

τ〉.
3. Let Γi = ∧m

j=1σj , where 0 < i ≤ |Γ |, and ∀1 ≤ j ≤ m, N : 〈nil �λSM
dB

σj〉.
If sup(M) = i then { i /N}M : 〈Γ<k.nil �λSM

dB
τ〉 for k = sup({ i /N}M).

Otherwise, { i /N}M :〈Γ<i.Γ>i �λSM
dB

τ〉.
4. Let Γi =∧m

j=1σj , where 0<i≤|Γ |, and N ∈ΛdB s.t. sup(N)≥ i. If ∀1≤j≤m,
N :〈Δj �λSM

dB
σj〉 then { i /N}M :〈(Γ<i.Γ>i) ∧Δ1 ∧ · · · ∧Δm �λSM

dB
τ〉.

Hence, we have the relation between M and N typings and the typing for term
{ i /N}M . Note that, whenever N is typable, items 1 and 2 represent the loss of
its type information. Therefore, we need the restriction property for sequential
contexts, introduced below, to establish the SR property.

Definition 12 (FI restriction). Let Γ�M be a Γ ′ % Γ such that |Γ ′| = sup(M)
and that ∀1≤ i≤|Γ ′|, Γ ′

i �= ω iff i∈FI(M).

Now we state the subject reduction property for β-contraction, using the concept
introduced above.

Theorem 1 (SR for β-contraction in λSM

dB). If (λ.M N) : 〈Γ �λSM
dB

τ〉 then
{ 1 /N}M :〈Γ�{ 1 /N}M �λSM

dB
τ〉.

Proof. By case analysis of (λ.M N) : 〈Γ �λSM
dB

τ〉. Note that there are only
two possibilities for the last inference step, the rules →′

e and →e. We present
here the case when →′

e is the last rule applied. Hence, λ.M : 〈Γ � ω→τ 〉 and
N : 〈Δ � σ〉 for some context Δ and type σ. If Γ = nil then M : 〈nil � τ〉.
Hence, by a substitution lemma one has that { 1 /N}M : 〈nil � τ〉. Note that
FI({ 1 /N}M) = FI(M) = ∅ thus (nil ∧ Δ) �{ 1 /N}M= nil. The proof when
Γ �=nil is similar.

Since the type information lost during β-contraction can affect the type as well,
we would need a subtyping relation, and an associated inference rule, in order
to obtain the SR property for β-reduction.

240 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

(ω-ϕ)
M :〈Γ � τ 〉

ϕi
kM :〈Γ≤k.ω i−1.Γ>k � τ 〉 , |Γ | > k (ω-σ)

N :〈Δ � ρ〉 M :〈Γ � τ 〉
MσiN :〈Γ<i.Γ>i � τ 〉 , Γi = ω

(nil-ϕ)
M :〈Γ � τ 〉

ϕi
kM :〈Γ � τ 〉 , |Γ | ≤ k (nil-σ)

N :〈Δ � ρ〉 M :〈Γ � τ 〉
MσiN :〈Γ � τ 〉 , |Γ | < i

(∧-nil-σ)
N :〈nil � σ1〉 . . . N :〈nil � σm〉 M :〈ω i−1. ∧m

j=1 σj .nil � τ 〉
MσiN :〈nil � τ 〉

(∧-ω-σ)
N :〈nil � σ1〉 . . . N :〈nil � σm〉 M :〈Γ � τ 〉

MσiN :〈Γ<(i−k).nil � τ 〉 , Γi = ∧m
j=1σj (*)

(∧-σ)
N :〈Δ1 � σ1〉 . . . N :〈Δm � σm〉 M :〈Γ � τ 〉
MσiN :〈(Γ<i.Γ>i) ∧ ω i−1.(Δ1 ∧ · · · ∧ Δm) � τ 〉 , Γi = ∧m

j=1σj (**)

(*) Γ = Γ<(i−k).ω
k. ∧m

j=1 σj .nil and Γ(i−k−1) �=ω (**) Δk �= nil, for some 1≤k≤m,
or Γ>i �= nil

Fig. 2. Typing rules of the system λsSM

3 An Intersection Type System for λse

In order to have an intersection type system for the λse-calculus, we introduce
a system for λs as a first step. While the type system for λs is based on the
system λSM

dB , the system proposed for λse is based on the system λ∧dB.

3.1 The System λsSM

Definition 13 (The system λsSM). The system λsSM is the extension of sys-
tem λSM

dB , introduced in Definition 10, by the rules presented in Figure 2.

Observe that, compared with the simple type system for λs and λse, which intro-
duces one type inference rule for each operator (cf. [AK01]), there are multiple
rules introduced in Figure 2 for the σ and ϕ operators. This multiplicity repro-
duces the cases for the updating and substitution lemmas for λSM

dB . For instance,
the rule (nil-ϕ) maintains the same context, since the updating operator will
not affect any of the available indices of the corresponding term. Hence, we have
a relevance property related to AI(M) instead of FI(M), as stated below.

Lemma 5 (Relevance for λsSM). If M : 〈Γ �λsSM τ〉, then |Γ |=sav(M) and
∀1≤ i≤|Γ |, Γi �= ω iff i∈AI(M).

Proof. By induction on the derivation of M : 〈Γ �λsSM τ〉. We present the case
for the application of the rule (nil-ϕ). Hence, ϕi

kM : 〈Γ � τ〉 where M : 〈Γ � τ〉
and |Γ | ≤ k. By the induction hypothesis (IH) one has that |Γ | = sav(M) and
∀1 ≤ j ≤ |Γ |, Γj �= ω iff j ∈ AI(M). Observe that AI(ϕi

kM) = AI(M)≤k ∪
(AI(M)>k + (i− 1)) = AI(M) thus sav(ϕi

kM) = sav(M).

Intersection Type Systems and Explicit Substitutions Calculi 241

Despite the fact that the type system is relevant, we have SR for the full s-
calculus.

Theorem 2 (SR for s in λsSM). Let M : 〈Γ �λsSM τ〉. If M →s M
′, then

M ′ :〈Γ �λsSM τ〉.

Proof. By the verification of SR for each rewriting rule of the s-calculus.

Observe that the type information associated to the empty application disap-
pears when it becomes an empty substitution, since the rules (nil-σ) and (ω-σ)
discard the corresponding contexts. Therefore, we need a restriction notion sim-
ilar to the one introduced in Definition 12, which is related to the available
indices, to have an SR statement for the simulation of β-contraction.

Definition 14 (AI restriction). Let Γ �M be a Γ ′ % Γ such that |Γ ′| =
sav(M) and that ∀1≤ i≤|Γ ′|, Γ ′

i �= ω iff i∈AI(M).

Theorem 3 (SR for simulation of β-contraction in λsSM). If (λ.M M ′) :
〈Γ �λsSM τ〉, then { 1/M ′}M :〈Γ�{ 1/M ′}M �λsSM τ〉, for any (λ.M M ′) ∈ ΛdB.

Proof. The proof consists in the verification of SR with context restriction for
(λ.M M ′) : 〈Γ �λsSM τ〉 when the rule (σ-generation) is applied and then of SR
for the s-calculus.

3.2 The System λse
∧

While the λs-calculus has the preservation of strong normalisation property
[KR95], PSN for short, the rules allowing the composition of substitution in
the λse-calculus invalidate this property for the calculus. B. Guillaume presents
in [Guillaume2000] a counter example of some simply typed term in λse which
has an infinite reduction strategy. We present an example below, to give an
intuition on how to change the system λsSM to have an intersection type system
for λse with the subject reduction property.

Example 2. Let A ≡ (1 1), M ≡ (3σ1A)σ1λ.A, M ′ ≡ (3σ2λ.A)σ1(Aσ1λ.A).
We have that M →λse M

′, where M is typable in λsSM and M ′ is not typable.
Observe that one cannot obtain M ′ from M in λs and that M is obtained from
the term M0 ≡ (λ.(λ.3 A) λ.A) in both calculi. �

The non typability of the term M0 above in the system λsSM is due to the
inclusion of type information from the context of an argument to an empty
application. Note that the typability of both M0 and Aσ1λ.A reduces to the
typability of Ω ≡ (λ.A λ.A) which has no type in systems like the Barendregt
et al. [BCD83] other then the universal ω type. Hence, we drop the typability
requirement on rules →′

e, (nil-σ) and (ω-σ) , obtaining the system λse
∧ below.

242 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

1:〈τ.nil � τ 〉 var
n :〈Γ � τ 〉

n+1:〈ω.Γ � τ 〉 varn
M :〈u.Γ � τ 〉

λ.M :〈Γ � u→τ〉 →i

M1 :〈Γ � ω→τ〉
(M1 M2) :〈Γ � τ 〉 →ω

e

M :〈nil � τ 〉
λ.M :〈nil � ω→τ〉 →′

i

M1 :〈Γ � ∧n
i=1σi→τ〉 M2 :〈Δ1 � σ1〉 . . . M2 :〈Δn � σn〉
(M1 M2) :〈Γ ∧ Δ1 ∧ · · · ∧ Δn � τ 〉 →e

(nil-σ)
M :〈Γ � τ 〉

MσiN :〈Γ � τ 〉 , |Γ | < i (ω-σ)
M :〈Γ � τ 〉

MσiN :〈Γ<i.Γ>i � τ 〉 , Γi = ω

(∧-nil-σ)
N :〈nil � σ1〉 . . . N :〈nil � σm〉 M :〈ω i−1. ∧m

j=1 σj .nil � τ 〉
MσiN :〈nil � τ 〉

(∧-ω-σ)
N :〈nil � σ1〉 . . . N :〈nil � σm〉 M :〈Γ � τ 〉

MσiN :〈Γ<(i−k).nil � τ 〉 , Γi = ∧m
j=1σj (*)

(∧-σ)
N :〈Δ1 � σ1〉 . . . N :〈Δm � σm〉 M :〈Γ � τ 〉
MσiN :〈(Γ<i.Γ>i) ∧ ω i−1.(Δ1 ∧ · · · ∧ Δm) � τ 〉 , Γi = ∧m

j=1σj (**)

(ω-ϕ)
M :〈Γ � τ 〉

ϕi
kM :〈Γ≤k.ω i−1.Γ>k � τ 〉 , |Γ | > k (nil-ϕ)

M :〈Γ � τ 〉
ϕi

kM :〈Γ � τ 〉 , |Γ | ≤ k

(*) Γ = Γ<(i−k).ω
k. ∧m

j=1 σj .nil and Γ(i−k−1) �=ω (**) Δk �= nil, for some 1≤k≤m,
or Γ>i �= nil

Fig. 3. Typing rules of the system λse
∧

Definition 15 (The system λse
∧). The inference rules for λse

∧ are given by
the rules of the system λSM

dB in Figure 1 and the system λsSM in Figure 2, where
the inference rule →′

e, (nil-σ) and (ω-σ) are replaced by the rules below:

M :〈Γ � ω→τ〉
(M N) :〈Γ � τ 〉 →ω

e (nil-σ)
M :〈Γ � τ 〉

MσiN :〈Γ � τ 〉 , |Γ | ≤ i

(ω-σ)
M :〈Γ � τ 〉

MσiN :〈Γ<i.Γ>i � τ 〉 , Γi = ω

The system λse
∧ is presented in Figure 3.

The system λse
∧ does not have a defined correspondence relating some syntactic

characterisation and relevance. However, the system has a property related to
relevance, stated below.

Lemma 6. If M : 〈Γ �λse
∧ τ〉 for |Γ | = m > 0, then Γm �= ω and ∀1 ≤ i ≤ m,

Γi �= ω implies i ∈ AI(M).

Proof. By induction on the derivation of M :〈Γ �λse
∧ τ〉 when Γ �= nil.

Intersection Type Systems and Explicit Substitutions Calculi 243

1:〈τ.nil � τ 〉 (var)
M :〈u.Γ � τ 〉

λ.M :〈Γ � u→τ〉 →i

M1 :〈Γ � ω→τ〉
(M1 M2) :〈Γ � τ 〉 →ω

e

M :〈nil � τ 〉
λ.M :〈nil � ω→τ〉 →′

i

M1 :〈Γ � ∧m
i=1σi→τ〉 M2 :〈Δ1 � σ1〉 . . . M2 :〈Δm � σm〉
(M1 M2) :〈Γ ∧ Δ1 ∧ · · · ∧ Δm � τ 〉 →e

(clos)
S :〈Γ � Γ ′〉 M :〈Γ ′ � τ 〉

M [S] :〈Γ � τ 〉

(∧-cons)
M :〈Δ1 � σ1〉 . . . M :〈Δm � σm〉 S :〈Δ � Δ′〉

M.S :〈Δ ∧ Δ1 ∧ · · · ∧ Δm
� (∧m

i=1σi).Δ
′〉

(id)
Γ �= Δ.ω m

id :〈Γ � Γ 〉 (comp)
S :〈Γ � Γ ′′〉 S′ :〈Γ ′′

� Γ ′〉
S′ ◦ S :〈Γ � Γ ′〉

(nil-shift) ↑ :〈nil � nil〉 (nil-cons)
S :〈Δ � nil〉

M.S :〈Δ � nil〉

(ω-shift)
Γ �= Δ.ω n

↑ :〈ω.Γ � Γ 〉 (ω-cons)
S :〈Δ � Δ′〉

M.S :〈Δ � ω.Δ′〉 , Δ
′ �= ω n

Fig. 4. The inference rules for the system λσ∧

We can prove the subject reduction property for the λse-calculus in a standard
way, proving some generation lemmas first, where only the Γm �= ω piece of the
statement above is needed. Below, we present the subject reduction theorem.

Theorem 4 (SR for λse
∧). If M : 〈Γ �λse

∧ τ〉 and M →λse M
′, then M ′ :

〈Γ �λse
∧ τ〉.

Proof. By the verification of SR for each λse rewriting rule.

4 An Intersection Type System for λσ

Similar to the intersection type system proposed for λse, the type system for
λσ discards any type information from contexts of terms which are related to
empty applications.

Definition 16 (The system λσ∧). The typing rules for the system λσ∧ are
presented in Figure 4, where m > 0 and n ≥ 0.

The next lemma states the property of the system λσ∧ related to relevance.

Lemma 7. If M : 〈Γ �λσ∧ τ〉 and |Γ |=m> 0, then Γm �= ω. In particular, if
S :〈Γ �λσ∧ Γ ′〉 and |Γ |=m>0 then Γm �=ω and if |Γ ′|=m′>0 then Γ ′

m′ �=ω.

244 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

Proof. By induction on the derivation of M : 〈Γ �λσ∧ τ〉 when Γ �= nil, with
subinduction on the derivation of S :〈Γ �λσ∧ Γ ′〉 when Γ �= nil or Γ ′ �= nil.

Now we establish the SR property for the λσ-calculus in this system.

Theorem 5 (SR for λσ∧). If M : 〈Γ �λσ∧ τ〉 and M →λσ M ′ then M ′ :
〈Γ �λσ∧ τ〉. In particular, if S :〈Γ �λσ∧ Γ ′〉 and S →λσ S

′ then S′ :〈Γ �λσ∧ Γ ′〉.

Proof. By the verification of SR for each λσ rewriting rule.

5 Conclusion

In this paper, we proved the subject reduction property for β-contraction in
the system λSM

dB [VAK10], using an adaptation for sequential contexts of the
restricted environments, introduced in [KN07] to prove SR in a relevant in-
tersection type system. Then, we introduced intersection type systems for two
explicit substitution calculi, the λσ and the λse, and established that our two
new systems satisfy the SR property. The simply typed version of these calculi
have applications on the HOU problem [DHK2000, AK01] and, to the best of
our knowledge, the IT systems presented here are the first polymorphic type
systems proposed for them.

We intend to use the systems presented here as the basic system for studying
the PT property in IT systems for both calculi. The PT property allows one to
include features in a type system which include separate compilation, data ab-
straction and smartest recompilation [Jim96]. The system λ∧dB, briefly mentioned
at the end of Subsection 2.1, is a de Bruijn version of the system in [SM97], were
the PT property for β-nfs described in [SM96a] is extended for any normalis-
able term. Hence, as a first step towards the PT for explicit substitutions, we
need to extend the results presented in [VAK10] to normalisable terms in λdB.
Besides that, we believe that the systems λSM

dB and λsSM are able to provide a
characterisation for strongly normalising terms in λdB and λs, respectively. On
the other hand, it seems that λ∧dB, λse

∧ and λσ∧ can provide a characterisation
of weak normalisation for λdB, λse and λσ, respectively.

References

[ACCL91] Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit Substitu-
tions. J. func. program. 1(4), 375–416 (1991)

[AK01] Ayala-Rincón, M., Kamareddine, F.: Unification via the λse-Style
of Explicit Substitution. Logical Journal of the IGPL 9(4), 489–523
(2001)

[Bakel95] van Bakel, S.: Intersection Type Assignment Systems. Theoret. com-
put. sci. 151, 385–435 (1995)

[BCD83] Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda
model and the completeness of type assignment. J. symbolic logic 48,
931–940 (1983)

Intersection Type Systems and Explicit Substitutions Calculi 245

[Barendregt84] Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics.
North-Holland, Amsterdam (1984)

[deBruijn72] de Bruijn, N.G.: Lambda-Calculus Notation with Nameless Dummies,
a Tool for Automatic Formula Manipulation, with Application to the
Church-Rosser Theorem. Indag. Mat. 34(5), 381–392 (1972)

[deBruijn78] de Bruijn, N.G.: A namefree lambda calculus with facilities for inter-
nal definition of expressions and segments. T.H.-Report 78-WSK-03,
Technische Hogeschool Eindhoven, Nederland (1978)

[CDC78] Coppo, M., Dezani-Ciancaglini, M.: A new type assignment for
lambda-terms. Archiv für mathematische logik 19, 139–156 (1978)

[CDC80] Coppo, M., Dezani-Ciancaglini, M.: An Extension of the Basic Func-
tionality Theory for the λ-Calculus. Notre dame j. formal logic 21(4),
685–693 (1980)

[CDV80] Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Principal Type
Schemes and λ-calculus Semantics. In: Seldin, J.P., Hindley, J.R.
(eds.) To H.B. Curry: Essays on combinatory logic, lambda calcu-
lus and formalism, pp. 536–560. Academic Press, London (1980)

[CF58] Curry, H.B., Feys, R.: Combinatory Logic, vol. 1. North-Holland, Am-
sterdam (1958)

[DG94] Damiani, F., Giannini, P.: A Decidable Intersection Type System
based on Relevance. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994.
LNCS, vol. 789, pp. 707–725. Springer, Heidelberg (1994)

[DHK2000] Dowek, G., Hardin, T., Kirchner, C.: Higher-order Unification via
Explicit Substitutions. Information and Computation 157(1/2), 183–
235 (2000)

[Guillaume2000] Guillaume, B.: The λse-calculus does not preserve strong normalisa-
tion. J. of func. program. 10(4), 321–325 (2000)

[Jim96] Jim, T.: What are principal typings and what are they good for? In:
Proc. of POPL 1995: Symp. on Principles of Programming Languages,
pp. 42–53. ACM, New York (1996)

[KN07] Kamareddine, F., Nour, K.: A completeness result for a realisability
semantics for an intersection type system. Annals pure and appl.
logic 146, 180–198 (2007)

[KR95] Kamareddine, F., Ŕıos, A.: A λ-calculus à la de Bruijn with Explicit
Substitutions. In: Swierstra, S.D. (ed.) PLILP 1995. LNCS, vol. 982,
pp. 45–62. Springer, Heidelberg (1995)

[KR97] Kamareddine, F., Ŕıos, A.: Extending a λ-calculus with Explicit Sub-
stitution which Preserves Strong Normalisation into a Confluent Cal-
culus on Open Terms. J. of Func. Programming 7, 395–420 (1997)

[KW04] Kfoury, A.J., Wells, J.B.: Principality and type inference for intersec-
tion types using expansion variables. Theoret. comput. sci. 311(1-3),
1–70 (2004)

[LLDDvB04] Lengrand, S., Lescanne, P., Dougherty, D., Dezani-Ciancaglini, M.,
van Bakel, S.: Intersection types for explicit substitutions. Inform.
and comput. 189(1), 17–42 (2004)

[Milner78] Milner, R.: A theory of type polymorphism in programming. J. com-
put. and system sci. 17(3), 348–375 (1978)

[NGdV94] Nederpelt, R.P., Geuvers, J.H., de Vrijer, R.C.: Selected papers on
Automath. North-Holland, Amsterdam (1994)

246 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

[Pottinger80] Pottinger, G.: A type assignment for the strongly normalizable λ-
terms. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays
on combinatory logic, lambda calculus and formalism, pp. 561–578.
Academic Press, London (1980)

[RV84] Ronchi Della Rocca, S., Venneri, B.: Principal Type Scheme for an
Extended Type Theory. Theoret. comput. sci. 28, 151–169 (1984)

[Rocca88] Ronchi Della Rocca, S.: Principal Type Scheme and Unification for In-
tersection Type Discipline. Theoret. comput. sci. 59, 181–209 (1988)

[SM96a] Sayag, E., Mauny, M.: Characterization of principal type of normal
forms in intersection type system. In: Chandru, V., Vinay, V. (eds.)
FSTTCS 1996. LNCS, vol. 1180, pp. 335–346. Springer, Heidelberg
(1996)

[SM96b] Sayag, E., Mauny, M.: A new presentation of the intersection type
discipline through principal typings of normal forms. Tech. rep. RR-
2998, INRIA (1996)

[SM97] Sayag, E., Mauny, M.: Structural properties of intersection types. In:
Proc. of LIRA 1997, pp. 167–175, Novi Sad, Yugoslavia (1997)

[VAK09] Ventura, D., Ayala-Rincón, M., Kamareddine, F.: Intersection Type
System with de Bruijn Indices. In: The many sides of logic. Studies
in logic, vol. 21, pp. 557–576. College publications, London (2009)

[VAK10] Ventura, D., Ayala-Rincón, M., Kamareddine, F.: Principal Typings
in a Restricted Intersection Type System for Beta Normal Forms with
de Bruijn Indices. In: Proc. of WRS 2009. EPTCS, vol. 15, pp. 69–82
(2010)

[Ventura10] Ventura, D.: Cálculos de Substituições Expĺıcitas à la de Bruijn com
Sistemas de Tipos com Interseção. PhD Thesis Departamento de
Matemática, Universidade de Braśılia (2010), Online version (in Por-
tuguese), http://ventura.mat.unb.br(March 5, 2010)

http://ventura.mat.unb.br

Generalising Conservativity

Richard Zuber

Rayé des cadres du CNRS
Richard.Zuber@linguist.jussieu.fr

Abstract. A constraint on functions from sets and relations to sets
is studied. This constraint is a generalisation of the constraint of con-
servativity known from the study of generalised quantifiers in natural
languages. It is suggested that this generalised constraint constitutes a
semantic universal.

1 Introduction

Progress in the study of the logical properties of natural languages (NLs) is
closely related to the study of various constraints that must be satisfied by func-
tions interpreting functional expressions in NLs. We know that such expressions
do not denote arbitrarily and thus that functions interpreting them obey various
specific logic constraints. The most prominent results obtained in this context
are obtained in generalised quantifier theory and concern functions correspond-
ing to various types of quantifiers. The constraint on quantifiers which has been
extensively studied from theoretical and empirical points of view is the constraint
of conservativity, which concerns the denotations of various determiners found in
NLs. Conservativity is generally considered as a language universal. Even though
some non-conservative determiners are known, it appears that they are rare and
not arbitrary since they are systematically related to conservative determiners
(cf. Zuber 2004).

In this paper I generalise the notion of conservativity so that it can apply not
only to quantifiers but also to some functions having sets as results. Furthermore,
I suggest that the constraint of conservativity thus generalised also constitutes
a language universal.

Let me make first some notational and definitional preliminaries which will
allow us to define the properties and functions which we are going to discuss.
We will be interested in sets and relations over a given universe E. If R is a
k + n-ary relation and a1, ..., ak ∈ E then a1...akR is the n-ary relation defined
as follows:

a1...akR = {〈ak+1, ..., an〉 ∈ En : 〈a1...ak+n〉 ∈ R}

The functions in which we will be interested are functions which have as
inputs (arguments) sets and relations. If the output of such a function is a truth-
value then this function is a (generalised) quantifier. A type 〈1〉 quantifier is a
function from sets to truth-values. It is a denotation of a noun phrase (used in
subject position in a sentence). Type 〈1, 1〉 quantifiers are functions from binary

A. Dawar and R. de Queiroz (Eds.): WoLLIC 2010, LNAI 6188, pp. 247–258, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

248 R. Zuber

relations between sets to truth values or just binary relations between sets. Type
〈1, 2〉 quantifiers are binary relations between sets and binary relations (that is
relations whose domains are sets and co-domains - binary relations between sets).
Finally type 〈1, 1, 2〉 (or type 〈12, 2〉) quantifiers are ternary relations whose first
two ”arguments” are sets and the third argument is a binary relation between
sets.

We will discuss basically functions which are not quantifiers though they can
be seen as related to quantifiers. They are not quantifiers because their co-
domains are not truth-values but sets (or relations in a more general case). The
type of function which takes n sets and one k-ary relation and gives a i-ary
relation (for i < k) as result will be noted 〈1n, k : i〉, for n ≥ 1. The type of
function taking a n-ary relation and giving as result an i-ary relation (for i < k)
will be noted 〈n : i〉. These functions will be called arity reducers.

A special class of arity reducers is obtained from quantifiers. Since type 〈m〉
quantifiers are functions from m-ary relations to truth-values, in order to con-
sider them more generally as arity reducers we need to define their extensions,
that is to extend theirs domains so that they can apply to relations of any arity
(higher than m). This can be done in two steps in the following way (cf. Keenan
and Westerst̊ahl 1997):

D1: Let Rn be the set of n-ary relations (over E). Then F is a reducer of arity
by k, noted F ∈ [

⋃
nRn+k →

⋃
Rn] is in AR(−k), if ∀R ∈ Rn+k, F (R) ∈ Rn,

(n ≥ 0).

Every type 〈k〉 quantifier extends to a function in AR(−k) in the following way:

D2: A type 〈k〉 quantifier Q extends to a function in AR(−k), also noted Q, by
letting, for R ∈ Rn+k, Q(R) = {〈a1, ..., an〉 ∈ En : Q(a1...anR) = 1}.

Thus by D2 any type 〈k〉 quantifier can be considered as a type 〈n + k : n〉
function, that is a function which applies to relations of arity n + k and which
gives as a result a relation of arity n.

Of course there are functions which are arity reducers but which are not ex-
tensions of quantifiers. Extended type 〈1〉 quantifiers are characterised by the
following property (Keenan and Westerst̊ahl 1997):

Proposition 1. Let F ∈ AR(−1). F is extended type 〈1〉 quantifier iff ∀n,m ≥ 0,
∀R ∈ Rn+1∀S ∈ Rm+1∀a1, ..., an, b1, ..., bm ∈ E, we have

a1...anR = b1...bmS ⇒ (〈a1, ..., an〉 ∈ F (R)⇔ 〈b1, ..., bm〉 ∈ F (S))

From now on we will be interested in the particular case when k = 2, n ≤ 2 and
i = 1 and thus we will study basically functions of type 〈2 : 1〉, of type 〈1, 2 : 1〉
and to a lesser extend functions of type 〈12, 2 : 1〉.

Generalising Conservativity 249

Let me illustrate some of the above notions. We are interested in the inter-
pretation of simple sentences of the form NP1 TV P NP2. In such sentences
the noun phrase NP1 is interpreted by a type 〈1〉 quantifier, which is a set of
sets, and the transitive verb phrase TV P is interpreted by a binary relation.
Concerning NP2 there are two possibilities: it can be interpreted either by a
function which is an extension of a type 〈1〉 quantifier or by a function (from
binary relations to sets) which is not an extension of a type 〈1〉 quantifier. When
such a function is an extension of a quantifier we will call it accusative extension
(since it occurs in the direct object position of a sentence) and note it Qacc. It
is an instance of D2 and is specified in D3:

D3: If Q is a type 〈1〉 quantifier, then Qacc(R) = {a : Q(aR) = 1}.

Obviously accusative case extensions satisfy the invariant condition given in
Proposition 1 and which for the case we consider (k=2) will be called the ac-
cusative extension condition (AEC):

AEC: A function F from binary relations to sets satisfies the AEC iff for R and
S binary relations, and a, b ∈ E, if aR = bS then a ∈ F (R) iff b ∈ F (S).

Thus type 〈1〉 quantifiers become type 〈2 : 1〉 functions by accusative extension.
It is also true, however, that any type 〈2 : 1〉 function which satisfies the AEC
condition uniquely determines a type 〈1〉 quantifier. Indeed the following propo-
sition holds:

Proposition 2. If a type 〈2 : 1〉 function F satisfies the AEC and the type 〈1〉
quantifier Q is defined as Q(X) = 1 iff a ∈ F ({a} ×X) then Qacc(R) = F (R).

Proof: Type 〈1〉 quantifiers and type 〈2 : 1〉 functions satisfying AEC form
complete atomic Boolean algebras. For any set A ⊆ E, the function FA such
FA(X) = 1 iff X = A is an atom of the algebra of type 〈1〉 quantifiers. Similarly,
the function FA such that FA(R) = {x : xR = A} is an atom of the second
algebra. These two algebras are isomorphic (the mapping given in D3 establishes
the isomorphism). Given that FA({a} × A) = A if a ∈ A and FA({a} × A) = ∅
if a /∈ A, we get the needed result.

The following example illustrates Proposition 2. Consider a type 〈2 : 1〉 function
FA defined as follows: FA(R) = {x : |xR∩A| > |xR′∩A|} (for a fixed A ⊆ E and
E finite). Since aR = bS iff aR′ = bS′ the function FA satisfies AEC. It is easy to
see that FA = (MOST (A))acc (where MOST (A)(Y) = 1 iff |A∩Y | > |A∩Y ′|).

The following two simple conditions can be used to decide whether functions
from binary relations to sets satisfy or not the AEC condition:

Fact 1: A type 〈2 : 1〉 function F does not satisfy the AEC if there exists a set
B and a, b ∈ B such that a ∈ F (E ×B) ∧ b /∈ F (E ×B).

Fact 2: If a type 〈2 : 1〉 function F satisfies AEC then for any A ⊆ E one has
F (E ×A) = ∅ or F (E ×A) = E.

250 R. Zuber

In the next section we consider two classes of functions which need not satisfy
the AEC condition.

2 Some Arity Reducers

Not every function from binary relations to sets used in NLs semantics satisfies
AEC. The best known example is the function SELF defined as SELF (R) =
{x : 〈x, x〉 ∈ R}; SELF can be used to interpret the reflexive pronoun
him/herself.

Among functions not satisfying AEC one can distinguish two sub-classes (cf.
Keenan and Westerst̊ahl 1997), according to whether they satisfy one of the
two conditions which are strictly weaker than AEC. Because such functions
are most frequently found in the semantics because they are necessary for the
interpretation of various expressions in NLs, I briefly introduce them.

The function SELF satisfies the the so-called anaphor condition AC:

AC: A function F from binary relations to sets satisfies the anaphor condition
iff for R and S binary relations, and a ∈ E, if aR = aS then a ∈ F (R) iff
a ∈ F (S).

Obviously, functions which satisfy AEC also satisfy AC. Functions which sat-
isfy AC but do not satisfy AEC will be called anaphoric functions.

One can check (Keenan 2007) that SELF is an anaphoric function of type
〈2 : 1〉 as is the function NOBODY -EXCEPT -SELF needed to interpret sen-
tence (1):

(1) Leo hates everybody except himself.

The AC applies to functions of type 〈2 : 1〉. We need a similar condition for
type 〈1, 2 : 1〉 functions (which in NLs are basically denotations of anaphoric
determiners):

ACD1: A function F of type 〈1, 2 : 1〉 satisfies anaphor condition (ACD1) iff for
any a ∈ E, X ⊆ E and R,S binary relations, if a(E ×X ∩ R) = a(E ×X ∩ S)
then a ∈ F (X,R) iff a ∈ F (X,S).

To illustrate ACD1 consider the following example:

(2) Leo trusts no philosopher except himself.

In this example the function NO-EXCEPT -SELF of type 〈1, 2 : 1〉 defined in
(3) is involved:

(3) F (X,R)=NO(X)-EXCEPT -SELF (R) = {y : yR ∩X = {y}}

One can check that this function satisfies ACD1.

Generalising Conservativity 251

The following property gives a justification of the condition ACD1:

Fact 3: If the function F of type 〈1, 2 : 1〉 satisfies ACD1 then the function GA

of type 〈2 : 1〉 defined as GA(R) = F (A,R) satisfies AC.

What fact 3 informally says is that functions satisfying ACD1 are those from
which we get functions satisfying AC when fixing their set argument.

We can use the same method of fixing ”nominal” arguments to define
anaphoric functions of type 〈1, 2 : 1〉. Thus we have:

D4: A function F of type 〈1, 2 : 1〉 is anaphoric iff it satisfies the condition ACD1
and the function GA of type 〈2 : 1〉 defined as GA(R) = F (A,R) is anaphoric
for any non-trivial A.

Using fact 1 one can show that the function defined in (3) is anaphoric.
In the above definitions, anaphoricity of type 〈1, 2 : 1〉 functions is reduced to

anaphoricity of type 〈2 : 1〉 functions. The condition of non-triviality for A and
B is necessary because obviously for values of A or B making F constant such
that we get functions which also satisfy AEC.

Let us consider now the second weakening of the AEC, the so-called argument
invariance (Keenan and Westerst̊ahl 1997):

D5: A type 〈2 : 1〉 function F is argument invariant iff whenever aR = bR then
a ∈ F (R) iff b ∈ F (R).

The above definition obviously generalises to type 〈1, 2 : 1〉 functions:

D6: A type 〈1, 2 : 1〉 function F is argument invariant iff whenever a(E×X∩R) =
b(E ×X ∩R) then a ∈ R(X,R) iff b ∈ F (X,R).

As an example consider the function involved in the interpretation of the nu-
merical superlative the greatest number of as it occurs in (4a) with the intended
meaning given in (4b). This superlative is interpreted by the function given in (5):

(4a) Leo knows the greatest number of languages.
(4b) Leo knows more languages than anybody else.
(5) NSUP (X,R) = {x : ∀y(y �= x→ |xR ∩X | > |yR ∩X |}

It is easy to check that NSUP is argument invariant and that it does not satisfy
the AEC1 condition.

3 Conservativity

Conservativity is a property of some classes of quantifiers. It has been basically
studied in connection with type 〈1, 1〉 quantifiers but a non-trivial notion of
conservativity applies to many classes of quantifiers which take at least two
arguments. In particular quantifiers denoted by unary and n-ary determiners

252 R. Zuber

can be said to be conservative. Moreover Westest̊ahl 2004 shows how to define
conservativity for type 〈1m, k〉 quantifiers. Conservativity of some other classes
of quantifiers is defined in Keenan and Westerst̊ahl (1997).

Conservativity of quantifiers denoted by unary or n-ary determiners (that is
determiners taking n common nouns to form a noun phrase) can be easily de-
fined, as we will see. We have seen that anaphoric functions (that we consider
here) are systematically related to quantifiers (of type 〈1, 1〉). Simularly, ”com-
parative” functions which are argument invariant (and which interpret compar-
ative constructions such as the one a in (5)), seem to be related to quantifiers.
So it is quite natural to ask whether and in what sense anaphoric functions are
conservative.

Let us recall first the notion of conservativity for type 〈1, 1〉 quantifiers. A
now well-known definition is given in D5:

D5: F ∈ CONS iff for any property X,Y one has F (X)(Y) = F (X)(X ∩ Y).

Given D5 it is easy to show that the type 〈1, 1〉 quantifier F defined as F (X)(Y) =
1 iff X = Y , is not conservative.

Conservativity of type 〈1, 1〉 quantifiers can additionally be formulated in two
different ways:

Fact 5 (cf. Keenan and Faltz 1986): F is conservative or F ∈ CONS iff for any
property X,Y and Z if X ∩ Y = X ∩ Z then F (X)(Y) = F (X)(Z).

Fact 6 (Zuber 2005): F ∈ CONS iff for any property X,Y one has F (X)(Y) =
F (X)(X ′ ∪ Y).

It is also possible to define conservativity for the whole class of type 〈1, 1, 2〉
quantifiers. In this case we have the following definition, an instance of the gen-
eral definition proposed in Westerst̊ahl 2004:

D6: A type 〈1, 1, 2〉 quantifier F is conservative iff for any sets A,B and any
binary relation R one has F (A,B,R) = F (A,B,A×B ∩R).

As in the case of ”simple” type 〈1, 1〉 quantifiers it is possible to give an
equivalent defining condition for conservativity of type 〈1, 1, 2〉 quantifiers to
hold. Thus we have:

Proposition 3. A type 〈1, 1, 2〉 quantifier is conservative iff F (A,B,R1) =
F (A,B,R2) whenever A×B ∩R1 = A×B ∩R2.

Clearly none of the above definitions of conservativity applies directly to an an-
phoric function. However, proposition 3 and fact 5 give us a hint as to what form
the definition of conservativity of type 〈1, 2 : 1〉 functions should take. Here is
the definition:

D7: Let F be a type 〈1, 2 : 1〉 function. Then F is conservative iff for all X ⊆ E
and R1, R2 binary relations, if E × X ∩ R1 = E × X ∩ R2 then F (X,R1) =
F (X,R2).

Generalising Conservativity 253

By analogy with fact 1 and definition D1 conservativity of type 〈1, 2 : 1〉 func-
tions can be defined equivalently as the following proposition shows:

Proposition 4. A function F of type 〈1, 2 : 1〉 is conservative iff F (X,R) =
F (X,E ×X ∩R).

It is easy to check that the anaphoric type 〈1, 2 : 1〉 function EV ERY -
EXCEPT -SELF defined above, is conservative.

The following property gives additional plausibility to the above definitions
of generalised conservativity:

Proposition 5. Let D be a type 〈1, 1〉 quantifier and F a type 〈1, 2 : 1〉 function
defined as: F (X,R) = D(X)acc(R). Then F is conservative iff D is conservative.

Proof: Suppose a contrario that F is conservative and D is not. Thus for some
X,Y ∈ E, D(X)(Y) �= D(X)(X ∩ Y). Let R = E × Y . Then:

F (X,R) = D(X)acc(R) = {a : D(X)(aR) = 1} = {a : D(X)(a(E × Y)) = 1}
F (X,E ×X ∩R) = D(X)acc(E × (X ∩ Y)) = {a : D(X)(a(E × (X ∩ Y))) = 1}
Since D(X)(a(E×Y)) = D(X)(Y) and D(X)(a(E×(X∩Y))) = D(X)(X∩Y),
this means that F (X,R) �= F (X,E ×X ∩R), which is impossible given that F
is conservative.

Suppose now that D is conservative. Then:

F (X,R) = D(X)acc(R) = {a : D(X)(aR) = 1}=
={a : D(X)(X ∩ aR) = 1}, since D is conservative
={a : D(X)(a(E ×X ∩R) = 1}, since X = a(E ×X) and a(R ∩ S) = aR ∩ aS)
=D(X)acc(E ×X ∩R) = F (X,E ×X ∩R)

Thus the generalised conservativity of functions induced by type 〈1, 1〉 quanti-
fiers, when they are used in the accusative extension of a type 〈1〉 quantifier, is
strictly related to the ”classical” conservativity of the inducing quantifier.

Given the example of non-conservative type 〈1, 1〉 quantifier given above
it follows from Proposition 5 that the type 〈1, 2 : 1〉 function F defined as
F (X,R) = {y : X = yR} is not conservative.

Let us recall now some properties of denotations of binary determiners, that
is quantifiers of type 〈〈1, 1〉1〉. We have the following definition of conservativity
(Keenan and Moss 1985, Zuber 2005):

D8: A type 〈〈1, 1〉1〉 quantifier is conservative iff for any X1, X2, Y1, Y2 ⊆ E, if
X1∩Y1 = X1∩Y2 and X2∩Y1 = X2∩Y2 then F (X1, X2)(Y1) = F (X1, X2)(Y2).

The following proposition shows the equivalent way to define conservativity
for type 〈〈1, 1〉1〉 quantifiers:

Proposition 6. A type 〈〈1, 1〉1〉 quantifier is conservative iff for anyX1, X2, Y ⊆
E one has F (X1, X2)(Y) = F (X1, X2)(Y ∩ (X1 ∪X2)).

Definition D8 and proposition 6 can be used as basis for generalising conserva-
tivity to type 〈12, 2 : 1〉 functions:

254 R. Zuber

D9: A type 〈12, 2 : 1〉 function F is conservative iff for any X1, X2 ⊆ E
and any binary relations R1 and R2, if E × X1 ∩ R1 = E × X1 ∩ R2 and
E ×X2 ∩R1 = E ×X2 ∩R2 then F (X1, X2, R1) = F (X1, X2, R2).

The corresponding equivalent property is indicated in the following proposition:

Proposition 7. A type 〈12, 2 : 1〉 function F is conservative iff for any X1, X2 ⊆
E and binary relation R one has F (X1, X2, R) = F (X1, X2, (E×(X1∪X2))∩R).

Let us see some examples. As we know the type 〈〈1, 1〉1〉 quantifier MORE(X1-
THAN(X2) is denoted by the binary determiner more...than.... This determiner
may form a noun phrase with two common names. This noun phrase can occur
in object position as in (6):

(6) Leo knows more logicians than philosophers.

One can consider that in this case the type 〈〈1, 1〉1〉 quantifier MORE(X1)-
THAN(X2) gives rise to a type 〈12, 2 : 1〉 function F defined in (7):

(7) F (X1, X2, R) =(MORE(X1)-THAN(X2))acc(R)={y : |yR ∩ X1| > |yR ∩
X2|}.

This function is conservative. This is not surprising since MORE(X1)-
THAN(X2) is conservative and we have:

Proposition 8. Let D be a type 〈〈1, 1〉1〉 quantifier. Then the type 〈12, 2 : 1〉
function F (X1, X2, R) = (D(X1, X2))acc(R) is conservative iff D is conservative.

Proof of Proposition 8 is similar to that of Proposition 5.
One can consider that Proposition 8 ”justifies” D9.
There are obviously type 〈12, 2 : 1〉 functions which are not obtained by the

accusative extension of type 〈〈1, 1〉1〉 quantifiers. Consider the example in (8)
which involves the type 〈12, 2 : 1〉 function given in (9):

(8) Leo knows more languages than Adam (knows) theorems.
(9) Fa(X1, X2, R) = {y : |yR ∩X1| > aR ∩X2|}

The function Fa is conservative (and comparative).

4 Other Constraints

Generalised conservativity as introduced in the previous section in D7 and D9
concerns type 〈1, 2 : 1〉 and type 〈12, 2 : 1〉 functions in general and not only
anaphoric or comparative functions. Moreover generalised consevativity is in-
dependent of anaphor conditions ACD1 and ACD2 for anaphoric functions.
It is also independent of argument invariance. What is interesting is the fact
that some anaphoric functions satisfy also other constraints, some of which are
stronger than generalised conservativity.

Observe that type 〈1, 2 : 1〉 anaphoric functions discussed above, for instance
the function given in (3), are used to interpret various constructions in which

Generalising Conservativity 255

the reflexive pronoun him/her-self occurs. such functions satisfy the constraint
given in (8):

(8) F (A,R) ⊆ A.

Interestingly, the anaphoric condition ACD1, (generalised) conservativity and
the condition given in (8) entail a specific version of conservativity, anaphoric
conservativity (or a-conservativity) , specific to self -type anaphoric determiners.
It is defined in D10:

D10: A type 〈1, 2 : 1〉 function F is a-conservative iff F (X,R)=F (X,X×X∩R).

Thus we have the following proposition:

Proposition 9. A type 〈1, 2 : 1〉 anaphoric and conservative function F such
that F (X,R) ⊆ X is a-conservative.

Proof: Suppose a contrario that for some X ⊆ E, F (X,R) �= F (X,X ×X ∩R)
and thus that (by conservativity) F (X,E ×X ∩ R) �= F (X,X ×X ∩ R). This
means that for some a ∈ X , a ∈ F (X,E×X ∩R) and a /∈ F (X,X ×X ∩R) (or
a /∈ F (X,E×X∩R) and a ∈ F (X,X×X∩R)). This is, however, impossible given
that F is anaphoric and the fact that in this case a(E×X ∩R) = a(X×X ∩R).

It follows from the observations made above that self -type anaphoric functions
described above are a-conservative. There are also anaphoric functions which are
not a-conservative (Zuber 2010).

It is well-known that various natural language quantifiers can satisfy stronger
constraints than conservativity (Keenan 1993) . In particular they can be inter-
sective or co-intersective. These sub-classes of quantifiers are theoretically im-
portant for various reasons. For instance Keenan 1993 shows that conservative
type 〈1, 1〉 quantifiers are Booleanly generated by intersective and co-intersective
quantifiers. They are also of empirical interest since they lead to various linguis-
tically relevant generalisations (cf. Peters and Westerst̊ahl 2006, Kuroda 2008).

The question thus arises whether one can generalise the notion of intersectivity
or co-intersectivity to some functions which are not quantifiers. In what follows
I show briefly how it can be done.

Recall that a type 〈1, 1〉 quantifier D is intersective (resp. co-intersective) iff
D(X1, Y1) = D(X2, Y2) whenever X1 ∩ Y1 = X2 ∩ Y2 (resp. X1 ∩ Y ′

1 = X2 ∩ Y ′
2).

This leads to the following definitions of intersective or co-intersective anaphoric
functions:

D11:Atype 〈1, 2 : 1〉 function is intersective (resp. co-intersective) iffF (X1, R1)=
F (X2, R2) wheneverE×X1∩R1 = E×X2∩R2 (resp.E×X1∩R′

1 = E×X2∩R′
2).

The following proposition, similar to Proposition 5, can be considered as jus-
tifying the above definition:

Proposition 10. LetD be a type 〈1, 1〉 quantifier and F a type 〈1, 2 : 1〉 function
defined as: F (X,R) = D(X)acc(R). Then F is intersective (resp. co-intersective)
iff D is intersective (resp. co-intersective).

256 R. Zuber

It is easy to see that the function NO(X)-BUT -SELF (R) as defined in (3)
above is intersective. Similarly, the function Fa, for a ∈ E, defined in (9) and
which is necessary to interpret (10), is an intersective function:

(9) Fa(X,R) = {y : |yR ∩X | ≥ |aR ∩X |}
(10) Leo knows at least as many languages as Adam.

Concerning co-intersective functions it is easy to show that the function
EV ERY (X)-BUT -SELF (R) defined in (11) is co-intersective:

(11) EV ERY (X)-BUT -SELF (R) = {x : X ∩ xR′ = {x}}

It is also possible to generalise other sub-properties of conservativity. Con-
sider so-called cardinal quantifiers. A type 〈1, 1〉 quantifier F is cardinal iff
F (X1)(Y1) = F (X2)(Y2) whenever |X1 ∩ Y1| = |X2 ∩ Y2|. For instance numerals
denote cardinal quantifiers.

In order to generalise the property of cardinality (of quantifiers) to type
〈1, 2 : 1〉 functions observe first the following equivalence:

(12) E ×X1 ∩R1 = E ×X2 ∩R2 iff ∀y(X1 ∩ yR1 = X2 ∩ yR2)

This means that the condition in D11 can be replaced by the right hand side
expression in (12). This leads to the following definition:

D12: A type 〈1, 2 : 1〉 function is cardinal iff F (X1, R1) = F (X2, R2) whenever
∀y(|X1 ∩ yR1| = |X2 ∩ yR2|).

For cardinal functions we have the following proposition, similar to proposi-
tion 5 and proposition 10:

Proposition 11. Let D be a type 〈1, 1〉 quantifier and F a type 〈1, 2 : 1〉 func-
tion defined as: F (X,R) = D(X)acc(R). Then F is cardinal iff D is cardinal.

The function given in (9) is a cardinal function which is not obtained by the
accusative case extension. Similarly, the comparative function Fa given in (13)
needed to interpret (14) is a cardinal function (not obtained by the accusative
case extension of a cardinal quantifier):

(13) Fa(X,R) = {y : |yR ∩X | > |aR ∩X |}
(14) Leo proved more theorems than Adam.

Obviously, cardinal functions are conservative. This means that the function
F (X,R) = {y : X = yR} is not cardinal.

5 Conclusion

After having recalled the various properties of anaphoric and comparative func-
tions which represent the biggest class of type 〈1, 2 : 1〉 functions found in NLs, I
have proposed a generalisation of the notion of conservativity classically used in
the context of quantifiers. Moreover, some notions stronger than conservativity,

Generalising Conservativity 257

that is intersectivity and cardinality (of quantifiers) are also generalised to spe-
cific functions. Conservativity is a very natural property. In simple cases it has
empirical and theoretical justification (Peters and Westerst̊ahl 2006). In the do-
main of determiners, that is expressions denoting, roughly speaking, quantifiers,
it is considered as a language universal. This means that one has enough em-
pirical data to consider that all determiners, defined syntactically, in all natural
languages denote only conservative quantifiers.

Even if in any serious (composional) semantics the (complex) expressions
discussed here will automatically get the generalised conservativity (if at least
the (simple) quantifiers that are used as building blocks are conservative), it
is very tempting to make a similar universalistic claim about the generalised
conservativity of specific functions from sets and relations to sets studied in this
article. In other words, one would like to suggest, roughly, that NLs expressions
denoting type 〈1, 2 : 1〉 or type 〈12, 2 : 1〉 functions always denote conservative
functions.

Any serious defence of such a claim should be preceded by additional research
along the following two lines. First, obviously, more empirical research should be
done. The notion of generalised conservativity proposed here applies to all type
〈1, 2 : 1〉 functions, not only anaphoric ones or comparative ones. It has been
supposed here that the functions which are not obtained by a case extension
and known to be needed in the semantics of NLs are either anaphoric (cf. Zu-
ber 2010) or comparative. This supposition should be empirically substantiated.
Second, a syntactic description of expressions denoting conservative functions
should be provided. The underlying idea in this article is that such functions are
denotations of anaphors or of comparatives and superlatives. Thus the precise
syntactic status of such constructions should be provided. This syntactic part of
the enterprise is considered as being outside the scope of this article.

References

1. Keenan, E.L.: Natural Language, Sortal Reducibility and Generalised Quantifiers.
Journal of Symbolic Logic 58(1), 314–325 (1993)

2. Keenan, E.L.: On the denotations of anaphors. Research on Language and Com-
putation 5(1), 5–17 (2007)

3. Keenan, E.L., Faltz, L.M.: Boolean Semantics for Natural Language. D. Reidel
Publishing Company, Dordrecht (1985)

4. Keenan, E.L., Moss, L.: Generalized quantifiers and the expressive power of natural
language. In: van Benthem, J., ter Meulen, A. (eds.) Generalized Quantifiers, Foris,
Dordrecht, pp. 73–124 (1985)

5. Keenan, E.L., Westerst̊ahl, D.: Generalized Quantifiers in Linguistics and Logic.
In: van Benthem, J., ter Meulen, A. (eds.) Handbook of logic and language, pp.
837–893. Elsevier, Amsterdam (1997)

6. Peters, S., Westerst̊ahl, D.: Quantifiers in Language and Logic. Clarendon Press,
Oxford (2006)

7. Kuroda, S.-Y.: Head Internal Relative Clauses, Quantifier Float, the Definiteness
Effect and the Mathematics of Determiners. San Diego Linguistics Papers 3, 126–
183 (2008)

258 R. Zuber

8. Westerst̊ahl, D.: Iterated Quantifiers. In: Kanazawa, M., Pinon, C. (eds.) Dynam-
ics, Polarity and Quantification, CSLI, Stanford University, pp. 173–209 (1994)

9. Zuber, R.: A class of non-conservative determiners in Polish. Linguisticae Investi-
gationes XXVII(1), 147–165 (2004)

10. Zuber, R.: More Algebras for Determiners. In: Blache, P., Stabler, E.P., Busquets,
J.V., Moot, R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 363–378. Springer,
Heidelberg (2005)

11. Zuber, R.: Semantics of Slavic anaphoric possessive determiners. In: Proceedings
of SALT, vol. 19 (2010)

Author Index

Abbasi, Naeem 84
Areces, Carlos 98
Avelar, Andréia B. 110
Ayala-Rincón, Mauricio 110, 218, 232

Barthwal, Aditi 125
Bedregal, Benjamin C. 204

de Moura, Flávio L.C. 110
Denis, Alexandre 98
dos Reis, Gesner A.A. 204

Ferrarotti, Flavio 136
Finger, Marcelo 1

Galdino, André Luiz 110
Goyet, Alexis 148

Hagiya, Masami 148
Hartmann, Sven 136, 161
Hasan, Osman 84
Hernandes, Mauricio S.C. 1
Hoffmann, Guillaume 98

Kamareddine, Fairouz 232

Lange, Martin 19
Latte, Markus 19
Leivant, Daniel 191
Link, Sebastian 136, 161

Makowsky, Johann A. 34
Morrill, Glyn 176

Norrish, Michael 125

Pratt-Hartmann, Ian 42

Ramyaa, Ramyaa 191
Reiser, Renata H.S. 204

Sobrinho, Daniele Nantes 218

Tahar, Sofiène 84
Tanabe, Yoshinori 148
Terwijn, Sebastiaan A. 55
Tinelli, Cesare 58
Trinh, Thu 161

Valent́ın, Oriol 176
van Lambalgen, Michiel 59
Ventura, Daniel Lima 232

Zuber, Richard 247

	Title
	Preface
	Organization
	Table of Contents
	Entailment Multipliers: An Algebraic Characterization of Validity for Classical and Modal Logics
	Introduction
	Comparisons with the Literature
	Organisation of the Paper

	Entailment Multipliers
	Multipliers and the NP = coNP Problem
	Strengthening Entailment Expressions

	Computing Entailment Multipliers
	Resolution
	Sequent Calculus

	Multipliers for Normal Modal Logics
	Conclusion
	References

	A CTL-Based Logic for Program Abstractions
	Introduction
	CTL with Path Relativisation
	Examples
	Results on CTLrel
	Expressivity
	Model Checking
	Satisfiability

	CTL with Path Relativisation in Abstraction
	A Suffix Heuristic
	A Local Heuristic

	Conclusion and Further Work
	References

	Application of Logic to Integer Sequences:A Survey
	Sequences of Integers and Their Combinatorial Interpretations
	Linear Recurrences
	Logical Interpretations and Linear Recurrences
	P-Recursive (Holonomic) Sequences
	References

	The Two-Variable Fragment with Counting Revisited
	Introduction
	Preliminaries
	A Result on Solutions to Integer Programming Problems
	The Main Result
	References

	Intuitionistic Logic and Computability Theory
	Tutorial 1: Intuitionistic Logic
	Tutorial 2: Computability Theory
	Computability Theoretic Interpretations of Intuitionistic Logic
	References

	Foundations of Satisfiability Modulo Theories
	Logical Form as a Determinant of Cognitive Processes
	Introduction
	Why Logic Has Come to Be Seen as Irrelevant for Cognitive Science

	Marr's Levels of Explanation and Logic
	A Common Failure in Psychiatric Disorders: Executive Function
	Logic and Executive Function
	Non-monotonicity in Autism: Rules and Exceptions
	Theory of Mind and Reasoning
	Reasoning in the False Belief Task
	Executive Dysfunction and the Box Task
	The Suppression Task as a Formal Analogue of the Box Task
	A Formal Analysis

	Autists and the Suppression Task
	An Apparent Counterexample: The `Tubes Task'
	Conclusion: The Role of Logic in Cognitive Processes
	References

	Formal Lifetime Reliability Analysis Using Continuous Random Variables
	Introduction
	Related Work
	Statistical Properties of Lifetime Distributions
	Verification of Statistical Properties
	Moments and Variance of Lifetime Distributions

	Reliability Theory Formalization
	Survival Function
	Hazard Function

	Reliability Analysis of a Capacitor
	Capacitor Lifetime Model
	Verification of Reliability Properties

	Conclusions
	References

	Modal Logics with Counting
	Counting, Modally
	Representing Plurals in Natural Language
	The Expressive Power of MLC
	Inference in MLC
	Conclusions
	References

	Verification of the Completeness of Unification Algorithms `a la Robinson
	Introduction
	Basic Notions on First-Order Unification
	Specification of Basic Notions
	Specification of Unification Algorithms
	Reusing the Proof Technology: Termination and Soundness
	Treatment of Exceptions: Proof of Completeness
	Related Work
	Conclusions and Future Work
	References

	Mechanisation of PDA and Grammar Equivalence for Context-Free Languages
	Introduction
	Context-Free Grammars
	Pushdown Automata
	Constructing a PDA for a CFG
	Constructing a CFG from a PDA
	Proof of the ``if'' portion of (2)
	Proof of the ``only if'' portion of (2)

	Related Work and Conclusions
	References

	On the Role of the Complementation Rule for Data Dependencies over Incomplete Relations
	Introduction
	Related Work
	Preliminaries
	Appropriate Reasoning
	Undetermined Universes
	Conclusion
	References

	Decidability and Undecidability Resultson the Modal μ-Calculus with a Natural Number-Valued Semantics
	Introduction
	Preliminaries
	Syntax and Semantics
	Application of the Semantics

	Undecidability
	Decidability
	Outline of the Decidability Proof
	Translation

	Conclusions
	References
	Appendix: Translation Examples

	Solving the Implication Problem for XML Functional Dependencies with Properties
	Introduction
	Related Work
	Preliminaries
	XML Functional Dependencies with Properties
	The Semantic Equivalence Theorem
	An Example for Applying the Semantic Equivalence
	Conclusion and Future Directions
	References
	Appendix

	On Anaphora and the Binding Principles in Categorial Grammar
	Introduction
	Displacement Calculus
	Reflexives and Principle A
	Personal Pronouns and Principle B
	Principle C
	Conclusion
	References

	Feasible Functions over Co-inductive Data
	Introduction
	Background
	Equational and Relational Programs
	A Logical Characterization of Correct Computability

	Formal Reasoning about Inductive and Coinductive Data
	Coinduction
	Functional Representation in L*+
	Examples

	The Basic Feasible Functionals Are Provable in Ramified Second Order Logic
	Basic Feasible Functionals
	BFF Is Provable in Ramified Second Order Logic

	References

	Interval Valued Fuzzy Coimplication
	Introduction
	Preliminary Studies
	Best Interval Representation
	Interval Fuzzy Negations
	Interval Fuzzy t-Norms and t-Conorms

	Interval Fuzzy Coimplications
	Properties of Interval Coimplications and Duality Relationships
	Duality Relationships Preserved by Canonical Representation
	Border and Model Interval Fuzzy Coimplications
	Conclusion and Final Remarks
	References

	Reduction of the Intruder Deduction Problem into Equational Elementary Deduction for Electronic Purse Protocols with Blind Signatures
	Introduction
	Modeling Intruder Deduction for the Electronic Purse Protocol with Blind Signatures
	Syntax
	The Electronic Purse Protocol: The Equational Theory EP
	The Convergent Rewriting System R Equivalent to the Equational Theory EP
	Sequent Calculus for the Intruder

	Elementary Intruder Deduction under the EP Theory
	Conclusion
	References

	Intersection Type Systems and Explicit Substitutions Calculi
	Introduction
	-Calculus with de Bruijn Indices
	The se-Calculus
	The -Calculus

	Intersection Type Systems for the dB-Calculus
	The System dBSM
	Subject Reduction for System dBSM

	An Intersection Type System for se
	The System sSM
	The System se

	An Intersection Type System for
	Conclusion
	References

	Generalising Conservativity
	Introduction
	Some Arity Reducers
	Conservativity
	Other Constraints
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

