

Lecture Notes in Computer Science 6093
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

George T. Heineman Jan Kofron
Frantisek Plasil (Eds.)

Research
into Practice –
Reality and Gaps

6th International Conference
on the Quality of Software Architectures, QoSA 2010
Prague, Czech Republic, June 23 - 25, 2010
Proceedings

13

Volume Editors

George T. Heineman
Worcester Polytechnic Institute
Department of Computer Science
Worcester, MA 01609-2280, USA
E-mail: heineman@cs.wpi.edu

Jan Kofron
Charles University in Prague
Faculty of Mathematics and Physics
Malostranske namesti 25
118 00 Praha 1, Czech Republic
E-mail: jan.kofron@d3s.mff.cuni.cz

Frantisek Plasil
Charles University in Prague
Faculty of Mathematics and Physics
Malostranske namesti 25
11800 Prague 1, Czech Republic
E-mail: plasil@d3s.mff.cuni.cz

Library of Congress Control Number: 2010928915

CR Subject Classification (1998): D.2, C.2, F.3, H.4, D.3, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-13820-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13820-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The goal of QoSA is to address aspects of software architecture focusing broadly
on quality characteristics and how these relate to the design of software archi-
tectures. Specific issues of interest are defining quality measures, evaluating and
managing architecture quality, linking architecture to requirements and imple-
mentation, and preserving architecture quality throughout the lifetime of the
system. Past themes for QoSA include Architectures for Adaptive Software Sys-
tems (2009), Models and Architecture (2008), and Software Architecture, Com-
ponents, and Applications (2007).

In this, the sixth incarnation of QoSA, researchers and practitioners demon-
strated how specific sub-elements within an architecture lead to measurable
quality in the implemented system. While clear challenges remain, the theme
for QoSA 2010 was“Research into Practice – Reality and Gaps.”

There were 32 submissions to QoSA 2010 from which the Program Committee
selected 11 long papers, for an acceptance rate of 34%. To further foster
collaboration and exchange of ideas with the component-based software engineer-
ing community, QoSA was held as part of the conference series Federated Events
on Component-based Software Engineering and Software Architecture
(COMPARCH). These federated events were QoSA 2010, the 13th International
Symposium on Component-Based Software Engineering (CBSE 2010), the 15th
International Workshop on Component-Oriented Programming (WCOP 2010),
and the First International Symposium on Architecting Critical Systems
(ISARCS 2010), a symposium dedicated to dependability, safety, security and
testing/analysis for architecting systems. Because of the close relationship be-
tween the CBSE and QoSA communities, COMPARCH 2010 once again inte-
grated these technical programs to further promote discussion and collaboration.

We would like to thank the QoSA Steering Committee and the members of
the Program Committee for their dedicated and valuable work during the review
process. We thank Alfred Hofmann from Springer for his continuing support in
reviewing and publishing this proceedings volume.

April 2010 George T. Heineman
Jan Kofroň

Frantǐsek Plášil

Organization

QoSA 2010 was organized by the Department of Distributed and Dependable
Systems, Charles University in Prague, Czech Republic as a part of COMPARCH
2010.

General Chair

Frantǐsek Plášil Charles University in Prague, Czech Republic

Organization Committee Chair

Petr Hnětynka Charles University in Prague, Czech Republic

Program Committee Chairs

George T. Heineman WPI, USA
Jan Kofroň Charles University in Prague, Czech Republic

QoSA Steering Committee

Steffen Becker
Ivica Crnkovic
Ian Gorton
Raffaela Mirandola
Sven Overhage
Frantǐsek Plášil
Ralf Reussner
Judith Stafford
Clemens Szyperski

Program Committee

Danilo Ardagna Politecnico di Milano, Italy
Colin Atkinson University of Mannheim, Germany
Muhammad Ali Babar Lero, Ireland
Len Bass Software Engineering Institute, USA
Steffen Becker Forschungszentrum Informatik (FZI),

Germany
Jan Bosch Intuit, USA
Ivica Crnkovic Mälardalen University, Sweden

VIII Organization

Rogerio De Lemos University of Kent, UK
Antinisca Di Marco Università dell’Aquila, Italy
Carlo Ghezzi Politecnico di Milano, Italy
Anirüddhā Gokhālé Vanderbilt University, USA
Ian Gorton Pacific Northwest National Laboratory, USA
Vincenzo Grassi Università di Roma “Tor Vergata”, Italy
Jens Happe Forschungszentrum Informatik (FZI),

Germany
Darko Huljenic Ericsson Nikola Tesla, Croatia
Samuel Kounev University of Karlsruhe, Germany
Heiko Koziolek ABB, Germany
José Merseguer Universidad de Zaragoza, Spain
Raffaela Mirandola Politecnico di Milano, Italy
Robert Nord Software Engineering Institute, USA
Boyana, Norris MCS Division, USA
Sven Overhage University of Augsburg, Germany
Dorina Petriu Carleton University, Canada
Frantǐsek Plášil Charles University in Prague, Czech Republic
Marek Procházka ESA/ESTEC, Noordwijk, The Netherlands
Sasikumar Punnekkat Mälardalen University, Sweden
Ralf Reussner University of Karlsruhe, Germany
Roshanak Roshandel Seattle University, USA
Antonino Sabetta ISTI-CNR PISA, Italy
Raghu Sangwan Penn State, USA
Jean-Guy Schneider Swinburne University, Australia
Judith Stafford Tufts University, USA
Clemens Szyperski Microsoft, USA
Petr Tůma Charles University in Prague, Czech Republic
Hans van Vliet Vrije Universiteit, The Netherlands
Wolfgang Weck Independent Software Architect, Switzerland
Michel Wermelinger Open University, UK

Co-reviewers

Etienne Borde
Franz Brosch
Fabian Brosig
Senthil Kumar Chandran
Akshay Dabholkar
Aleksandar Dimov
Antonio Filieri
Matthias Huber
Nikolaus Huber

Pavel Jezek
Thomas Leveque
Josip Maras
Pierre Parrend
Diego Perez
Ricardo J. Rodriguez
Nilabja Roy
Viliam Simko
Sumant Tambe

Table of Contents

Abstracts of the Keynotes

Intrinsic Definition in Software Architecture Evolution 1
Jeffrey N. Magee

A Component-Based Approach to Adaptive User-Centric Pervasive
Applications . 2

Martin Wirsing

Model-Driven Analysis

Validating Model-Driven Performance Predictions on Random Software
Systems . 3

Vlastimil Babka, Petr T̊uma, and Lubomı́r Bulej

Statistical Inference of Software Performance Models for Parametric
Performance Completions . 20

Jens Happe, Dennis Westermann, Kai Sachs, and Lucia Kapová

Parameterized Reliability Prediction for Component-Based Software
Architectures . 36

Franz Brosch, Heiko Koziolek, Barbora Buhnova, and Ralf Reussner

Architecture-Driven Reliability and Energy Optimization for Complex
Embedded Systems . 52

Indika Meedeniya, Barbora Buhnova, Aldeida Aleti, and
Lars Grunske

Quality of Service Adaptation

QoS Driven Dynamic Binding in-the-many . 68
Carlo Ghezzi, Alfredo Motta, Valerio Panzica La Manna, and
Giordano Tamburrelli

A Hybrid Approach for Multi-attribute QoS Optimisation in
Component Based Software Systems . 84

Anne Martens, Danilo Ardagna, Heiko Koziolek,
Raffaela Mirandola, and Ralf Reussner

Using QoS-Contracts to Drive Architecture-Centric Self-adaptation 102
Franck Chauvel, Hui Song, Xiangping Chen, Gang Huang, and
Hong Mei

X Table of Contents

Case Studies and Experience Reports

Is BPMN Really First Choice in Joint Architecture Development?
An Empirical Study on the Usability of BPMN and UML Activity
Diagrams for Business Users . 119

Dominik Birkmeier and Sven Overhage

Barriers to Modularity - An Empirical Study to Assess the Potential
for Modularisation of Java Programs . 135

Jens Dietrich, Catherine McCartin, Ewan Tempero, and
Syed M. Ali Shah

Evaluating Maintainability with Code Metrics for Model-to-Model
Transformations . 151

Lucia Kapová, Thomas Goldschmidt, Steffen Becker, and Jörg Henss

Good Architecture = Good (ADL + Practices) . 167
Vincent Le Gloahec, Régis Fleurquin, and Salah Sadou

Author Index . 183

Intrinsic Definition in Software Architecture
Evolution

Jeffrey N. Magee

Imperial College London
Huxley Building

South Kensington Campus
London SW7 2AZ, U.K.
j.magee@imperial.ac.uk

Abstract. Incremental change is intrinsic to both the initial develop-
ment and subsequent evolution of large complex software systems. The
talk discusses both, the requirements for and the design of, an approach
that captures this incremental change in the definition of software ar-
chitecture. The predominate advantage in making the definition of evo-
lution intrinsic to architecture description is in permitting a principled
and manageable way of dealing with unplanned change and extension.

Intrinsic definition also facilitates decentralized evolution in which
software is extended and evolved by multiple independent developers.
The objective is an approach which permits unplanned extensions to
be deployed to end users with the same facility that plugin extensions
are currently added to systems with planned extension points. The talk
advocates a model-driven approach in which architecture definition is
used to directly construct both initial implementations and extensions /
modification to these implementations.

An implementation of intrinsic evolution definition in Backbone is pre-
sented – an architectural description language (ADL), which has both
a textual and a UML2, based graphical representation. The talk uses
Backbone to illustrate basic concepts through simple examples and re-
ports experience in applying it and its associated tool support to larger
examples.

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Component-Based Approach to Adaptive
User-Centric Pervasive Applications�

Martin Wirsing

Institute of Computer Science
Ludwig-Maximilians-University Munich

Oettingenstr. 67
D-80538 Munich

Germany
wirsing@informatik.uni-muenchen.de

Abstract. In the last years computing has become omnipresent and
even devices that do not look like computers have computing capabilities.
Seamless man-machine interfaces and ad-hoc communication allow for
pervasive adaptive control and computer support in everyday activities.
So-called pervasive-adaptive environments are becoming able to monitor,
diagnose and respond to the cognitive, emotional and physical states of
persons in real time.

In this talk we present a new approach for designing and realising
adaptive systems that provide assistance to humans in a discrete and
personalized manner. The approach is based on a strict component-based
framework for controlling pervasive adaptive systems including real-time
sensor and actuator control, user and context-awareness, affective com-
puting, self-organization and adaptation. A rule-based domain-specific
language simplifies the dynamic creation and modification of system ar-
chitectures; mechanisms for the transparent distribution of applications,
flexible on-line data processing, and early experimentation with data
analysis algorithms facilitate the construction of user-centric adaptive
systems while a modular assume/guarantee framework allows to com-
pute formal representation of such systems and to verify them against
given system requirements. We illustrate our approach by two case stud-
ies for detecting cognitive overload and influencing the mood of a user
in the way he desires.

� This work has been partially supported by the EC project REFLECT, IST-2007-
215893.

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, p. 2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Validating Model-Driven Performance
Predictions on Random Software Systems

Vlastimil Babka1, Petr Tůma1, and Lubomı́r Bulej1,2

1 Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics, Charles University
Malostranské náměst́ı 25, 118 00 Prague, Czech Republic

{vlastimil.babka,petr.tuma,lubomir.bulej}@d3s.mff.cuni.cz
2 Institute of Computer Science, Academy of Sciences of the Czech Republic

Pod Vodárenskou věž́ı 2, 182 07 Prague, Czech Republic

Abstract. Software performance prediction methods are typically vali-
dated by taking an appropriate software system, performing both perfor-
mance predictions and performance measurements for that system, and
comparing the results. The validation includes manual actions, which
makes it feasible only for a small number of systems.

To significantly increase the number of systems on which software
performance prediction methods can be validated, and thus improve the
validation, we propose an approach where the systems are generated
together with their models and the validation runs without manual in-
tervention. The approach is described in detail and initial results demon-
strating both its benefits and its issues are presented.

Keywords: performance modeling, performance validation, MDD.

1 Motivation

State of the art in model-driven software performance prediction builds on three
related factors: the availability of architectural and behavioral software models,
the ability to solve performance models, and the ability to transform the former
models into the latter. This is illustrated for example by the survey of model-
driven software performance prediction [3], which points out that the typical
approach is to use UML diagrams for specifying both the architecture and the
behavior of the software system, and to transform these diagrams into perfor-
mance models based on queueing networks.

Both the models and the methods involved in the prediction process neces-
sarily include simplifying assumptions that help abstract away from some of the
complexities of the modeled system, e.g., approximating real operation times
with probability distributions or assuming independence of operation times.
These simplifications are necessary to make the entire prediction process
tractable, but the complexity of the modeled system usually makes it impos-
sible to say how the simplifications influence the prediction precision.

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, pp. 3–19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

4 V. Babka, P. Tůma, and L. Bulej

Without sufficient insight into the modeled system, a straightforward ap-
proach to the question of prediction precision would be similar to common sta-
tistical validation: a sufficiently representative set of systems would be both
modeled and measured and the measurements would be compared with the pre-
dictions. Unfortunately, the fact that the software models still require manual
construction limits the ability to validate on a sufficiently representative set of
systems. For most prediction methods, the validation is therefore limited to a
small number of manually constructed case studies.

To improve the validation process, we propose to automatically generate soft-
ware systems together with their models and then use the systems for measure-
ment and the models for prediction. That way, we can validate the performance
predictions on a large number of systems, and, provided that the generated
systems are representative enough, achieve a relatively robust validation of the
prediction methods.

The goal of this paper is to explore the potential of the proposed validation
process by taking a specific generation mechanism and applying it on a specific
performance model. While neither the generation mechanism nor the perfor-
mance model are the focus of the paper, we describe them in detail so that the
reader can form an impression of what the benefits and the issues of applying the
approach are. We start by analyzing the requirements on the automatic software
system generation in Section 2 and detailing a particular generation mechanism
in Section 3. In Section 4, we describe how we transform the architecture model
of the generated software system into a performance model based on the Queue-
ing Petri Nets (QPN) formalism [4]. Section 5 presents the initial results of the
validation using the generation mechanism and the performance model outlined
in the previous two sections. In Section 6, we discuss the broader context of
the related work. We conclude by outlining future development directions in
Section 7.

2 Requirements on Software Generation

While an automated generation of a fully functional software system would gen-
erally be considered infeasible, it is done in limited contexts, for example when
generating domain specific editors [9], test cases [1,8], test beds [13], or bench-
marks [33]. When generating software systems to validate performance predic-
tions, the context is roughly as follows:

Executability. The system must be immediately executable, so that measure-
ments of its performance can be taken.

Functionality. The system does not have to deliver any particular functional-
ity, because the validation is concerned with other than functional properties.

Applicability. The performance effects observed on the generated system must
be applicable to real systems for which the validated performance prediction
method would be considered.

These requirements are commonplace when constructing benchmark applications
for performance evaluation [28,24]. While not expected to deliver real results, a

Validating Model-Driven Performance Predictions 5

benchmark is required to exercise the system in a manner that is as close to real
application as possible, so that the benchmark performance is directly related
to the performance of the corresponding production system.

When our goal is to see how the simplifying assumptions in the performance
models influence the prediction precision, we can extrapolate the requirements
easily: the generated system needs to be faithful to reality especially in those
places where the prediction makes the simplifications. We now list some of the
significant simplifications that are commonly performed:

Scheduling approximation. The operating system scheduler is usually a com-
plex module that schedules threads or processes based not only on priorities
or deadlines, but also on heuristics based on resource consumption or inter-
active behavior. Performance models usually simplify scheduling using one of
the well defined algorithmic models such as random, first-come first-served,
or ideal sharing [11].

Operation duration approximation. Although the individual operation du-
rations tend to be arbitrary, performance models frequently approximate
them with statistical distributions, especially the exponential distribution,
which maps very well to some of the underlying analytical models. Only
sometimes, arbitrary distributions are approximated [7].

Operation dependency approximation. The objects or functions of a soft-
ware system frequently operate on shared data. This gives rise to a multitude
of dependencies that influence performance. Perhaps most notable are depen-
dencies due to locking, which are usually captured by performance models,
for example as special tasks in LQN [30] or special places in QPN [4]. Less
frequently captured are dependencies due to argument passing, so far only
captured in performance models solved through simulation [19]. Otherwise,
operation durations are usually assumed statistically independent.

Resource isolation approximation. Sharing of processor execution units,
address translation caches, external processor buses and similar features
found in contemporary hardware architectures potentially impacts perfor-
mance. These are only rarely captured by performance models [10], and
usually only for evaluating hardware design rather than software system.
Typical performance models assume resources are mostly independent.

Although other approximations could likely be found, we focus on the ones listed
here. Where the individual approximations are not concerned, we strive to make
the generated software system random, to avoid introducing any systematic error
into the validation. To provide a practical anchor, we apply our approach in
the context of the Q-ImPrESS project [27], which deals with quality-of-service
predictions in service oriented systems.

3 Generating Tree Structured Servers

In our experiments, the overall architecture of the generated software system
has been influenced by the architectural model of the Q-ImPrESS project [5].

6 V. Babka, P. Tůma, and L. Bulej

This model is built around the notion of components, whose interfaces are inter-
connected in a hierarchical manner, and whose behavior is described using the
usual notions of operation invocations, sequences, branches and loops.

The generated software system consists of leaf modules, which approximate
the primitive components of the architectural model, and interconnecting mod-
ules, which approximate the hierarchical interconnections and the behavior de-
scription of the architectural model. The leaf modules perform useful work in the
sense of generating processing workload. The interconnecting modules arrange
other modules in sequences, branches and loops.

In the following, we need to make a distinction between multiple meanings of
some terms. We therefore use module when we mean a code unit implementing a
feature, component when we mean an architectural element, and instance when
we mean an actual state allocated at runtime. The same module can be used to
realize multiple components. Multiple instances of the same component can be
allocated.

We have opted to generate the system in top-to-bottom order. First, a module
realizing the topmost component is selected at random from the set of all ex-
isting modules. Then, for any component realized by an interconnecting module
with unassigned children, the same random selection is applied recursively to
assign the child components. The probability of selecting a particular module is
adjusted so that only interconnecting modules are selected at the topmost level
of the architecture. Leaf modules are gradually more likely to be selected on the
lower levels of the architecture.

The described algorithm generates a tree architecture. This would present an
unacceptable restriction since there are no shared components in a tree archi-
tecture, and sharing of a component typically influences performance, especially
when synchronization is involved. However, our design involves some synchro-
nization between threads, explained later on. In principle, this synchronization
resembles synchronization over a shared component, thus making the restrictions
of the tree architecture relatively less important.

3.1 Realistic Leaf Modules

In the architecture, the workload that exercises the system is only generated
by the leaf modules – the workload generated by the interconnecting modules
amounts to the usual invocation overhead and remains trivial by comparison.
Since we require the workload to exercise the system in a realistic manner, we
use benchmarks from the SPEC CPU2006 benchmarking suite [14], which has
been designed to reflect realistic workloads, as the leaf modules.

The use of benchmarks from the SPEC CPU2006 benchmarking suite brings
multiple technical challenges related to reuse of code that was not designed to be
strictly modular. To begin with, we have manually separated the initialization
and execution phases of the benchmarks as much as possible, and wrapped each
benchmark in a class with a unified module interface. The interface makes it
possible to initialize all benchmarks before commencing measurement, and to
execute each benchmark through a single method invocation.

Validating Model-Driven Performance Predictions 7

Wrapping the benchmarks in classes is further complicated by the fact that
the benchmarks are single threaded and use statically allocated data structures.
Creating multiple instances of a wrapper class or invoking methods of a wrap-
per instance from multiple threads could therefore lead to race conditions. A
straightforward solution, namely converting the statically allocated data into
dynamically allocated attributes of the corresponding wrapper class, would re-
quire further modifications of the benchmarks. Given the size of the benchmarks,
performing such modifications manually would not be a feasible approach – the
potential for introducing subtle errors into the benchmarks that would disrupt
the measurement is simply too high.

To tackle the problem, we have modified the linking process so that every
component realized by a module uses a separate copy of the statically allocated
data structures. In detail, for every component realized by a module, new copies
of the binary object files containing the module and the corresponding wrapper
class are created. In these copies, all external symbols are uniquely renamed. The
generated software system is then linked with the renamed copies. This ensures
that even when the generated software system contains multiple components
initially realized by the same module, the individual components will be served
by distinct module copies with distinct statically allocated data.

To cover the situation where methods of a wrapper class instance are invoked
from multiple threads, each wrapper class is protected by a static lock. Thanks
to symbol renaming, this lock synchronizes concurrent accesses to each single
component, but not concurrent accesses to multiple components realized by the
same module. As an exception, the lock is not used for modules whose correct
function without synchronization can be reasonably expected, such as modules
written by ourselves or modules explicitly documented as thread safe.

Since the standard execution time of the individual benchmarks can be in
the order of hours, and the generated software system can incorporate many
benchmarks arranged in sequences, branches and loops, the execution time of
the entire system could become rather long. We have therefore also reduced
the input data of the benchmarks to achieve reasonable execution times, and
excluded some benchmarks whose execution times would remain too long even
with reduced input data.

Besides the leaf modules that wrap the benchmarks from the SPEC CPU2006
suite, we have also included leaf modules that exercise the memory subsystem
in a well-known manner. These leaf modules, together with the workload that
they generate, are described in [2].

Whenever a module accepts arguments, the generated software system pro-
vides them as random values from a configurable statistical distribution or value
domain. This goes not only for the arguments of the leaf modules, which in-
clude for example allocated memory block sizes, but also for the arguments of
the interconnecting modules, which include for example loop iteration counts or
branch path probabilities.

8 V. Babka, P. Tůma, and L. Bulej

Fig. 1. Example of control flow and architecture of a generated system

3.2 Client Workload Generation

In the adopted architectural model of the Q-ImPrESS project [5], the topmost
components represent services used by external clients. In this sense, each gen-
erated software system therefore also approximates a service used by external
clients – and we need to provide the system with a mechanism for an appropriate
client workload generation.

Our tool uses a closed workload model, with client requests handled by a
thread pool. Each client request is handled by one thread – the thread invokes
the topmost component of the generated software system, which, depending
on the particular interconnecting module used, invokes some or all of its child
components, progressing recursively through the entire system. The number of
clients, the client think time, and the thread pool size are again random values
with configurable properties.

To avoid excessive synchronization, threads allocate private instances of com-
ponents. Coupled with the process of module wrapping and module linking, this
makes it possible to execute multiple threads in parallel even in a leaf module
that is single threaded by design, provided the module was selected to realize
multiple components.

To summarize, the generated software system is a random tree of components
that generate realistic workloads, executed in parallel by multiple threads with
some degree of synchronization. An example of such a system is depicted on
Fig. 1. This meets most of the requirements of Section 2, except for the require-
ment of faithful operation dependency approximation, which is still simplified
because the components do not pass arguments among themselves.

4 Constructing Performance Models

The tool outlined in the previous sections provides us with a way to quickly
generate a large number of executable systems together with their architectural

Validating Model-Driven Performance Predictions 9

models. The next step is transforming the generated architectural models into
performance models, and populating the performance models with input values
such as operation durations and loop iteration counts. We perform this step in
the context of performance models based on the QPN formalism [4].

4.1 Performance Model Structure

The process of constructing a performance model of a component system using
the QPN formalism is outlined in [17]. To summarize, queueing places are used
to model both client think time and server processing activity, immediate tran-
sitions describe the behavior of the component system, token colors are used to
distinguish executing operations. Since our approach (implemented as an auto-
mated model-to-model transformation) is based on the same principle, we limit
the description to significant aspects of the transformation.

The part of the network that is concerned with clients and threads uses a
clients queueing place to model the client think time and a threads ordinary place
to model the thread pool size. The tokens in the clients place represent thinking
clients. The place has an infinite server scheduling strategy with exponential
service time representing the client think time, the initial token population is
equal to the number of clients. The tokens in the threads place represent available
threads, with initial population equal to the size of the thread pool.

When a client finishes thinking and a thread for serving it is available, a
transition removes one token from the clients place and one token from the
threads place, and puts one token representing the thread serving the client into
an ordinary place called requests.

The component operations are either active, actually consuming processor
time, or passive, waiting without consuming processor time.

To model the execution of active operations, we use a queueing place called
processing, configured to use the first-come first-served strategy, with the number
of servers set to the number of processors available to the system. For each
component whose operation is active, a dedicated color is defined, and the service
time for that color in the processing place is set to reflect the operation duration.

In a similar manner, we use a queueing place called waiting to model the
execution of passive operations. For each component whose operation is passive,
a dedicated color is defined, and the service time for that color in the waiting
place is set to reflect the waiting duration.

To model components that serialize execution, we use an ordinary place called
mutex. We define a unique color for each serializing component operation and ini-
tially place one token of that color into the mutex place. The transition through
which the tokens representing synchronized component operation arrive at the
processing place additionaly removes the corresponding token from the mutex
place ; analogously for returning the token.

The transitions around the processing and waiting places capture the flow of
control through the individual components as defined by the architectural model.
The transformation traverses the architecture model in a depth-first order and
defines transitions that reflect the sequence of component operations that a

10 V. Babka, P. Tůma, and L. Bulej

thread serving a client request will perform. Following are the major rules for
defining the transitions:

– Each component operation connects to the previous operation by removing
the token from where the previous operation deposited it, the first such
transition removes the token from the request place.

– Each active operation is modeled by a transition that connects to the previ-
ous operation and deposits a token of the color corresponding to this oper-
ation into the processing place.

– Each passive operation is modeled by a transition that connects to the pre-
vious operation and deposits a token of the color corresponding to this op-
eration into the waiting place.

A component that realizes a branch needs two additional ordinary places, called
split and join. One transition connects the previous operation to the split place
with a unique color and mode for each child, all firing weights are set equally.
Additional transitions to the join place connect the child component operations.

A component that realizes a loop needs one additional ordinary place, called
loop, and two colors, called looping and exiting, used in the loop place to indicate
whether the loop will execute the next iteration. Two transitions deposit a token
in the loop place, one connects the previous operation, one returns the tokens
of the finished child component operations. Both transitions leading to the loop
place have two modes that deposit a token of either the looping or the exiting
color. The number of times a token of the looping color is deposited into the loop
place has a geometric distribution, the firing weights are calculated so that the
mean value of the distribution is equal to the loop iteration count.

4.2 Providing Operation Durations

The performance models need to be populated with input values. There are two
kinds of input values – values such as loop iteration counts or branch path prob-
abilities, which are available as the arguments of the interconnecting modules,
and are therefore obtained directly from the generated software system – and
values such as operation durations, which have to be measured.

To measure the generated software system, we employ the advantage of having
full control over code generation, and insert the necessary instrumentation di-
rectly into the wrapper classes of the individual modules. The executable system
therefore reports its own performance, providing us with both the input values
of the performance model and the overall performance figures to be compared
with the outputs of the performance model.

The instrumentation includes the necessary precautions to avoid systematic
measurement errors – the component initialization, buffer allocation, and warmup
execution take place before the measurements are collected, reporting takes place
after the measurements terminate. Operation durations are measured twice, once
for each component executing in isolation and once for each component executing
together with the rest of the generated software system. Both the wall clock times
and the thread local times are recorded.

Validating Model-Driven Performance Predictions 11

5 Validation Results

With both the generated executable systems and the corresponding performance
models at hand, we carry out the validation by comparing the outputs of the
performance models with the measurements of the executable systems. Before
the results of the validation are presented, however, we point out that our goal
is not to evaluate the prediction precision of a specific performance model, but
rather to explore the potential of the proposed validation process. The result
presentation is structured accordingly.

Our measurements were taken on a Dell PowerEdge 1955 system.1 The exe-
cutable systems used a thread pool of eight threads. The performance models
were solved using the SimQPN solver [18].

Unless specified otherwise, we report and compare client service time, mea-
sured from the moment the client request is assigned a thread to the moment
the client request is finished.

5.1 Precise Single Client Predictions

As an example of a context where precise performance predictions are expected,
we have first generated 228 software systems and configured them for a single
client workload, thus minimizing resource contention due to parallel execution.
The results are shown on Fig. 2 as a ratio of predicted to measured service times
plotted against the predicted processor utilization.

0.0 0.2 0.4 0.6 0.8 1.0

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Predicted mean CPU utilization [cores]

R
at

io
 o

f m
ea

su
re

d/
pr

ed
ic

te
d

se
rv

ic
e

tim
es

Fig. 2. Prediction precision with one client

We can see that the prediction error is relatively small, except for the errors at
very low processor utilization, where the service time is very small compared to
the client think time, and the error can therefore be attributed to the overhead
of the execution infrastructure. In the following, we avoid this error by selecting
1 Dual Quad-Core Intel Xeon processors (Type E5345, Family 6, Model 15, Stepping

11, Clock 2.33 GHz), 8 GB Hynix FBD DDR2-667 memory, Intel 5000P memory
controller, Fedora Linux 8, gcc-4.1.2-33.x86 64, glibc-2.7-2.x86 64.

12 V. Babka, P. Tůma, and L. Bulej

1 2 3 4 5 6 7 8

1.
0

1.
5

2.
0

Predicted mean CPU utilization [cores]

R
at

io
 o

f m
ea

su
re

d/
pr

ed
ic

te
d

se
rv

ic
e

tim
es

Fig. 3. Prediction precision with multiple clients

only those results with predicted processor utilization for a single client workload
above 2 %. On Fig. 2, this would leave 204 remaining architectures, of which 8 %
exhibits prediction error over 10%.

5.2 Multiple Clients Prediction

We move on to a context with multiple clients to assess the prediction error
when multiple concurrent threads are involved. For this experiment, we have
used the same architectures as in Section 5.1, with the number of clients set to
50. To increase the coverage, additional 600 architectures were generated, with
the number of clients drawn from a uniform distribution between 5 and 30, and
then restricted to cases where the intensity of requests generated by the clients
was predicted to result in mean thread utilization of at least four of the eight
available threads. After the filtering described in Section 5.1, 645 architectures
remained.

The results are shown on Fig. 3, where the ratio of predicted to measured
service times is again plotted against the predicted processor utilization. We can
see that the prediction accuracy is lower than in the single client scenario, and
that the error tends to increase with growing processor utilization.

5.3 Operation Duration Distribution

Using the same architectures as in Section 5.2, we examine how the approxima-
tion of the individual operation durations with statistical distributions impacts
the prediction precision. The SimQPN solver uses discrete event simulation and
therefore easily supports multiple statistical distributions – for illustration, we
compare the results from models that use normal distribution with the results
from models that use exponential distribution. For normal distribution, the pa-
rameters were set to match the sample mean and variance of the isolated op-
eration durations. For exponential distribution, the mean was set to match the
sample mean of the isolated operation durations.

Validating Model-Driven Performance Predictions 13

1 2 3 4 5 6 7 8

1.
0

1.
5

2.
0

Predicted mean CPU utilization [cores]

R
at

io
 o

f m
ea

su
re

d/
pr

ed
ic

te
d

se
rv

ic
e

tim
es

Fig. 4. Prediction precision with multiple clients, using exponential approximation of
isolated durations for the service time prediction

The results that use exponential distribution are shown on Fig. 4. By compar-
ing them with the results that use normal distribution on Fig. 3, we can observe
that in many cases, the ratio of predicted to measured service times is lower
for the exponential distribution than the normal distribution. This can occur
both for the optimistic predictions, where the error is thus decreased, and for
the accurate predictions, where the error turns them into pessimistic ones.

To explain this effect, we turn to Fig. 5, which shows the ratio between the
results for the two distributions, plotted against the mean number of threads
that are blocked due to the serializing modules. We can see that in the extreme
cases (when there is no blocking, or when a serializing component dominates the
execution so much that seven out of eight threads are blocked), both distribu-
tions yield the same prediction. When a mix between serialized and concurrent
execution is present, using the exponential distribution can yield a significantly
more pessimistic prediction than using the normal distribution.

0 1 2 3 4 5 6 7

1.
0

1.
1

1.
2

1.
3

1.
4

Predicted (normal distr.) mean number of blocked threads

R
at

io
 o

f p
re

di
ct

ed
 s

vc
. t

im
es

us
in

g
ex

p.
/n

or
m

. d
is

tr
ib

ut
io

n

Fig. 5. Difference in prediction with exponential and normal approximation of isolated
durations, depending on the mean number of threads blocked due to synchronization

14 V. Babka, P. Tůma, and L. Bulej

A mix between serialized and concurrent execution is present when a serial-
izing component is close to dominating the execution and threads are starting
to block. Due to variations in operation durations, invocations can arrive at the
serializing component either sooner or later than usual – but while the invoca-
tions that arrive sooner are more likely to be queued, the invocations that arrive
later can more likely be processed immediately. In effect, this amplifies vari-
ations that lead to pessimistic predictions, because the performance gain due
to invocations arriving sooner is masked by queueing, while the performance
loss due to invocations arriving later is not. In our experiment, we have chosen
distribution parameters that match the isolated operation durations, which re-
sulted in the exponential distribution having higher variance than the normal
distribution. The amplifying effect is thus more pronounced with the exponential
distribution.

5.4 Resource Contention Impact

Many performance prediction methods involve performance model calibration,
where the operation durations are adjusted to fit the model output onto the
measurement results. When the operation durations are influenced by resource
contention that is not captured in the performance model, such as contention
for various memory caches, the calibration incorporates the resource contention
effects into the adjusted operation durations. We isolate this effect by populating
the performance models with the operation durations measured when the compo-
nents were executing together, as opposed to the operation durations measured
when each component was executing in isolation, used so far. Thread local times
are used to obtain the new durations, thus excluding waiting on serialization
locks, which is already modeled explicitly in the performance model.

The results where performance model is populated by isolated measurements
were shown on Fig. 3, the results of model populated with measurements from
combined execution are shown on Fig. 6. We observe that using measurements
from the combined execution eliminates most of the cases where the predicted

1 2 3 4 5 6 7 8

0.
7

0.
8

0.
9

1.
0

1.
1

Predicted mean CPU utilization [cores]

R
at

io
 o

f m
ea

su
re

d/
pr

ed
ic

te
d

se
rv

ic
e

tim
es

Fig. 6. Prediction precision with multiple clients, using measurements from combined
execution to parameterize the performance model

Validating Model-Driven Performance Predictions 15

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
4

1.
8

2.
2

CPU utilization by fft

M
ea

su
re

d/
pr

ed
ic

te
d

se
rv

ic
e

tim
es

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

CPU utilization by mcf

M
ea

su
re

d/
pr

ed
ic

te
d

se
rv

ic
e

tim
es

Fig. 7. Prediction error depending on the relative CPU utilization of a module

service times were lower than the actual measured times. Since resource con-
tention depends on the particular choice of components, we also determine how
the individual components contribute to this effect. To do this, we plot the
prediction error with the operation durations measured in isolation against the
relative processor utilization due to a particular component. To conserve space,
we only show plots for the fft and mcf modules, on Fig. 7.

The fft module does not serialize execution and is known to be sensitive to
cache sharing effects – as expected, the prediction error increases as the fft
workload dominates the execution time. The mcf module serializes execution –
when the mcf workload usurps the execution time, the serialization limits the
competition for resources and the prediction precision is good. In contrast, when
the mcf workload consumes around half of the execution time, the prediction
error is significant for some systems, most likely when the components consuming
the other half of the execution time compete with mcf for resources.

5.5 Workload Scalability Behavior

Often, the goal of performance prediction is not to predict throughput or re-
sponse time with a fixed number of clients, but to determine scalability of the
system depending on the number of clients. Our approach can be used to vali-
date such performance prediction in a straightforward way, by running both the
generated executable and prediction with varied number of clients.

Figure 8 shows an example of such validation for one of the systems which
yielded imprecise prediction in Section 5.2. We can observe that the throughput
predicted using normal distribution of operation durations is accurate up to
six clients, then the error starts to increase. The prediction using exponential
distribution of operation durations has a similar trend, but with relatively lower
values, pessimistic up to nine clients and optimistic afterwards.

Finally, note that the validation results might be somewhat deceptive because
the frequency of occurence of particular system properties might be different
between generated and real systems.

16 V. Babka, P. Tůma, and L. Bulej

2 4 6 8 10 12 14

0.
4

0.
6

0.
8

1.
0

Number of clients

T
hr

ou
gh

pu
t [

1/
s]

Result type

Simulated (exp)
Simulated (nor)
Measured

Fig. 8. Predicted and measured throughput depending on the number of clients

6 Related Work

Most works that focus on a particular performance prediction methodology strive
to validate it on a case study that is reasonably large and undisputedly realistic.
Recent examples of such validation include using the SPEC jAppServer 2004
workload running on WebSphere and Oracle [17], using an online stock trating
simulation with two different architectures and two different platforms [21,20],
using a generic performance model of an EJB server in various scenarios [32],
or using a model of an air traffic control system [12]. While the cited validation
examples are without doubt more realistic than our approach, they are also a case
in point we are making: the expenses of manually constructing the performance
models prevent validation on a large number of case studies.

The situation is somewhat alleviated by the existence of case studies designed
to provide a playground for validation activities – besides application bench-
marks such as SPEC jAppServer [25], Sun Pet Store [26], or RUBiS [22], we can
list the CoCoME competition [23], which provides both the architecture model
and the prototype implementation. Even those case studies, however, do not
amount to the hundreds of systems which we have used here.

Besides validating a particular methodology, the question of prediction pre-
cision is tackled from many other angles, including workload characterization
[29,16], or generation of either the executable system [31,13,33,6] or the perfor-
mance model [15,19]. What these approaches have in common is that they still
require manual intervention, either in creating models of application architec-
ture, performance, and workload, or in test execution. We eliminate the need for
manual intervention by automatically generating both the executable software
system and the corresponding performance model, rather than constructing one
from the other.

A pivotal issue of our approach is the degree of realism achieved in the gener-
ated software systems. One of the ideas we have investigated to guarantee some
degree of realism was to use common software metrics to assess the generated
software systems and to exclude those with unusual values.

Validating Model-Driven Performance Predictions 17

Interestingly, the common software metrics have turned out to be unsuitable.
Some, such as the development effort or the function points, are not suitable
for generated software systems with no specific functionality. Others, such as
McCabe’s cyclomatic number or Halstead’s program measures, are focused on
human perception of complexity, and thus tell little about whether the gener-
ated software system is realistic from the performance modeling perspective.
Finally, measures such as lines-of-code count have usual values ranging across
several orders of magnitude and therefore do not allow to reasonably exclude
the generated software systems.

7 Conclusion

We have presented an approach that makes it possible to validate performance
predictions on a large number of executable systems and performance models
without excessive manual intervention. We believe the approach has the poten-
tial to bring a new type of answers to the important questions of performance
modeling, such as ”what is the range of prediction precision ?” or ”what design
patterns or design artifacts make performance difficult to predict ?” ... As a
proof of concept, we illustrate the process of providing answers to some of these
questions for performance models based on the QPN formalism (here, however,
we focus more on the potential of the approach than the specific answers for this
particular class of performance models).

Our approach has been implemented in a prototype tool that solves a number
of technical issues, especially issues related to safe reuse of code that was not
designed to be strictly modular. The prototype tool is available for download at
http://d3s.mff.cuni.cz/benchmark.

The presented approach hinges on our ability to generate reasonably realistic
systems. Although there might be some alleviating circumstances – for example,
when the validation fails on a model that subsequent manual inspection finds
unrealistic, we simply exclude the model – the question of realism remains too
important to be ignored. In this work, the elements contributing to the overall
realism are for example the usage of a real server model and a real workload,
but other elements, for example the data dependencies, remain to be tackled.

In the absence of a clearly objective measure or criteria of realism, it might
turn out that only more extensive usage of the approach will provide enough
practical knowledge to answer the issue of realism to satisfaction.

Acknowledgments

The authors gratefully acknowledge Samuel Kounev for his help with SimQPN
and Jakub Melka and Michal Bečka for their work on the random software gen-
erator. This paper was partially supported by the Q-ImPrESS research project
by the European Union under the ICT priority of the 7th Research Framework
Programme, by the Czech Science Foundation grant 201/09/H057, and by the
grant SVV-2010-261312.

18 V. Babka, P. Tůma, and L. Bulej

References

1. Avritzer, A., Weyuker, E.J.: The Automatic Generation of Load Test Suites and
the Assessment of the Resulting Software. IEEE Trans. Software Eng. 21(9) (1995)

2. Babka, V., Bulej, L., Decky, M., Kraft, J., Libic, P., Marek, L., Seceleanu, C.,
Tuma, P.: Resource Usage Modeling, Q-ImPrESS Project Deliverable D3.3 (2008),
http://www.q-impress.eu/

3. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance
Prediction in Software Development: A Survey. IEEE Trans. Software Eng. 30(5)
(2004)

4. Bause, F.: Queueing Petri Nets - A Formalism for the Combined Qualitative and
Quantitative Analysis of Systems. In: Proc. 5th Intl. W. on Petri Nets and Perfor-
mance Models. IEEE CS, Los Alamitos (1993)

5. Becker, S., Bulej, L., Bures, T., Hnetynka, P., Kapova, L., Kofron, J., Koziolek,
H., Kraft, J., Mirandola, R., Stammel, J., Tamburrelli, G., Trifu, M.: Service Ar-
chitecture Meta Model, Q-ImPrESS Deliverable D2.1 (2008),
http://www.q-impress.eu/

6. Becker, S., Dencker, T., Happe, J.: Model-driven generation of performance proto-
types. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW 2008. LNCS, vol. 5119,
pp. 79–98. Springer, Heidelberg (2008)

7. Becker, S., Koziolek, H., Reussner, R.: The Palladio Component Model for Model-
driven Performance Prediction. J. Syst. Softw. 82(1) (2009)

8. Bertolino, A.: Software Testing Research: Achievements, Challenges, Dreams. In:
Proc. Intl. Conf. on Software Engineering, ICSE 2007, W. on the Future of Software
Engineering, FOSE 2007. IEEE CS, Los Alamitos (2007)

9. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson
Education, London (2003)

10. Cascaval, C., DeRose, L., Padua, D.A., Reed, D.A.: Compile-Time Based Perfor-
mance Prediction. In: Carter, L., Ferrante, J. (eds.) LCPC 1999. LNCS, vol. 1863,
p. 365. Springer, Heidelberg (2000)

11. Franks, G., Maly, P., Woodside, M., Petriu, D.C., Hubbard, A.: Layered Queueing
Network Solver and Simulator User Manual (2005),
http://www.sce.carleton.ca/rads/lqns/

12. Franks, G., Al-Omari, T., Woodside, M., Das, O., Derisavi, S.: Enhanced Modeling
and Solution of Layered Queueing Networks. IEEE Trans. Software Eng. 35(2)
(2009)

13. Grundy, J.C., Cai, Y., Liu, A.: Generation of Distributed System Test-Beds from
High-Level Software Architecture Descriptions. In: Proc. 16th IEEE Intl. Conf. on
Automated Software Engineering, ASE 2001. IEEE CS, Los Alamitos (2001)

14. Henning, J.L.: SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput. Ar-
chit. News 34(4) (2006)

15. Hrischuk, C.E., Rolia, J.A., Woodside, C.M.: Automatic Generation of a Software
Performance Model Using an Object-Oriented Prototype. In: Proc. 3rd Intl. W.
on Modeling, Analysis, and Simulation On Computer and Telecommunication Sys-
tems, MASCOTS 1995. IEEE CS, Los Alamitos (1995)

16. Joshi, A., Eeckhout, L., Bell Jr., R.H., John, L.K.: Distilling the Essence of Pro-
prietary Workloads Into Miniature Benchmarks. ACM Trans. Archit. Code Op-
tim. 5(2) (2008)

17. Kounev, S.: Performance Modeling and Evaluation of Distributed Component-
Based Systems Using Queueing Petri Nets. IEEE Trans. Software Eng. 32(7) (2006)

http://www.q-impress.eu/
http://www.q-impress.eu/
http://www.sce.carleton.ca/rads/lqns/

Validating Model-Driven Performance Predictions 19

18. Kounev, S., Buchmann, A.: SimQPN: A Tool and Methodology for Analyzing
Queueing Petri Net Models by Means of Simulation. Perform. Eval. 63(4) (2006)

19. Koziolek, H., Happe, J., Becker, S.: Parameter dependent performance specifica-
tions of software components. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.)
QoSA 2006. LNCS, vol. 4214, pp. 163–179. Springer, Heidelberg (2006)

20. Liu, Y., Fekete, A., Gorton, I.: Design-Level Performance Prediction of Component-
Based Applications. IEEE Trans. Software Eng. 31(11) (2005)

21. Liu, Y., Gorton, I.: Accuracy of Performance Prediction for EJB Applications:
A Statistical Analysis. In: Gschwind, T., Mascolo, C. (eds.) SEM 2004. LNCS,
vol. 3437, pp. 185–198. Springer, Heidelberg (2005)

22. OW2 Consortium: RUBiS: Rice University Bidding System,
http://rubis.ow2.org/

23. Rausch, A., Reussner, R., Mirandola, R., Plasil, F. (eds.): The Common Compo-
nent Modeling Example: Comparing Software Component Models. Springer, Hei-
delberg (2008)

24. Standard Performance Evaluation Corporation: SPEC CPU2006 Benchmark,
http://www.spec.org/cpu2006/

25. Standard Performance Evaluation Corporation: SPECjAppServer2004 Benchmark,
http://www.spec.org/jAppServer2004/

26. Sun Microsystems, Inc.: Java Pet Store Demo,
http://blueprints.dev.java.net/petstore/index.html

27. The Q-ImPrESS Project Consortium: Quality Impact Prediction for Evolving
Service-oriented Software, http://www.q-impress.eu/

28. Transaction Processing Performance Council: TPC Benchmarks,
http://www.tpc.org/information/benchmarks.asp

29. Weyuker, E.J., Vokolos, F.I.: Experience with Performance Testing of Software
Systems: Issues, an Approach, and Case Study. IEEE Trans. Software Eng. 26(12)
(2000)

30. Woodside, C.M., Neron, E., Ho, E.D.S., Mondoux, B.: An “Active Server” Model
for the Performance of Parallel Programs Written Using Rendezvous. J. Syst.
Softw. 6(1-2) (1986)

31. Woodside, C.M., Schramm, C.: Scalability and Performance Experiments Using
Synthetic Distributed Server Systems. Distributed Systems Engineering 3(1) (1996)

32. Xu, J., Oufimtsev, A., Woodside, M., Murphy, L.: Performance Modeling and
Prediction of Enterprise JavaBeans with Layered Queuing Network Templates.
SIGSOFT Softw. Eng. Notes 31(2) (2006)

33. Zhu, L., Gorton, I., Liu, Y., Bui, N.B.: Model Driven Benchmark Generation for
Web Services. In: Proc. 2006 Intl. W. on Service-oriented Software Engineering,
SOSE 2006. ACM, New York (2006)

http://rubis.ow2.org/
http://www.spec.org/cpu2006/
http://www.spec.org/jAppServer2004/
http://blueprints.dev.java.net/petstore/index.html
http://www.q-impress.eu/
http://www.tpc.org/information/benchmarks.asp

Statistical Inference of Software Performance Models
for Parametric Performance Completions

Jens Happe1,�, Dennis Westermann1, Kai Sachs2, Lucia Kapová3

1 SAP Research, CEC Karlsruhe, Germany
{jens.happe,dennis.westermann}@sap.com

2 TU Darmstadt, Germany
sachs@dvs.tu-darmstadt.de

3 Karlsruhe Institute of Technology (KIT), Germany
kapova@ipd.uka.de

Abstract. Software performance engineering (SPE) enables software architects
to ensure high performance standards for their applications. However, apply-
ing SPE in practice is still challenging. Most enterprise applications include a
large software basis, such as middleware and legacy systems. In many cases, the
software basis is the determining factor of the system’s overall timing behavior,
throughput, and resource utilization. To capture these influences on the overall
system’s performance, established performance prediction methods (model-based
and analytical) rely on models that describe the performance-relevant aspects of
the system under study. Creating such models requires detailed knowledge on the
system’s structure and behavior that, in most cases, is not available. In this pa-
per, we abstract from the internal structure of the system under study. We focus
on message-oriented middleware (MOM) and analyze the dependency between
the MOM’s usage and its performance. We use statistical inference to conclude
these dependencies from observations. For ActiveMQ 5.3, the resulting functions
predict the performance with a relative mean square error 0.1.

1 Introduction

With the rising complexity of today’s software systems, methods and tools to achieve
and maintain high performance standards become more and more important. Software
performance engineering [27] and model-based performance prediction (surveyed in [3]
and [18]) provide software architects and developers with tools and methods to system-
atically estimate the expected performance of a software system based on its architec-
tural specification. Performance engineering of today’s enterprise applications entails a
high degree of complexity. Enterprise application systems are very large and are rarely
developed from scratch. In most cases, a sound base of software exists on which devel-
opers build their new applications. Such software bases include middleware platforms,
third party components (or services), and legacy software. Up to date performance mod-
els for these systems are not available in most cases. Moreover, knowledge about the
structure and performance of these systems is limited. However, the software basis of

� This work is supported by the European Community’s Seventh Framework Programme
(FP7/2001-2013) under grant agreement no.216556.

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, pp. 20–35, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Statistical Inference of Software Performance Models 21

an application can have a major influence on its overall performance and thus has to be
considered in performance predictions. Most existing approaches use established pre-
diction models [3,18] to estimate the performance of already existing complex software
systems. Their main focus lies on the questions: i) ”How can we automatically derive
or extract the models we need?” and ii) ”How can we estimate the resource demands /
quantitative data needed for our models?” Approaches addressing the first question ana-
lyze call traces [7] or use static code analyses [20] to derive models of software systems.
Approaches addressing the second question (e.g. [23,19]) use benchmarking and mon-
itoring of the system to extract model parameters. In order to apply these approaches,
software architects have to instrument large parts of the system and conduct precise
measurements. Furthermore, they are bound to the assumptions of the prediction model
used. For example, if a network connection is modeled with FCFS scheduling, it won’t
capture the effect of collisions on the network. Another drawback of these approaches
is that they do not scale with respect to the increasing size and complexity of today’s
software systems. Size and complexity can become inhibiting factors for quality analy-
ses. The process of creating performance prediction models for those systems requires
heavy effort and can become too costly and error-prone. For the same reason, many
developers do not trust or understand performance models, even if such models are
available. In case of legacy systems and third party software, the required knowledge to
model the systems may even not be available at all. In such scenarios, re-engineering
approaches (e.g. [20]) can help. However, re-engineering often fails due to the large and
heterogeneous technology stack in complex application systems.

In our approach, we handle the complexity of large scale enterprise application sys-
tems by creating goal-oriented abstractions of those parts that cannot be modeled or
only with high effort. For this purpose, we apply automated systematic measurements to
capture the dependencies between the system’s usage (workload and input parameters)
and performance (timing behavior, throughput, and resource utilization). To analyze the
measured data we use statistical inference, such as Bayesian networks or multivariate
adaptive regression splines (MARS) [10]. The analysis yields an abstract performance
model of the system under study. The abstractions are similar to flow equivalent servers
used in queueing theory where a network of servers is replaced by a single server with
workload-dependent service rate. The resulting models can be integrated in the Palla-
dio Component Model (PCM) [6], a model-driven performance prediction approach.
For this purpose, we combine the statistical models with parametric performance com-
pletions introduced in our previous work [11]. The combination of statistical models
and model-based prediction approaches allows to predict the effect of complex middle-
ware components, 3rd party software, and legacy systems on response time, throughput,
and resource utilization of the whole software system.

In this paper, we focus on message-oriented middleware platforms which are increas-
ingly used in enterprise and commercial domains. We evaluated our approach using the
SPECjms2007 Benchmark for message-oriented systems. The benchmark resembles a
supply chain management system for supermarket stores. In our case study, we used
MARS and genetic optimization to estimate the influence of arrival rates and message
sizes on the performance of a message-oriented middleware (MOM). The comparison
of measurements and predictions yielded a relative mean square error of less than 0.1.

22 J. Happe et al.

The contributions of this paper are i) statistical inference of software performance
models, ii) their usage in combination with model-driven performance prediction meth-
ods, and iii) the application of our approach to a supply chain management scenario
including a validation of predictions and measurements.

The paper is structured as follows. Section 2 gives an overview on our approach.
Work related with performance prediction of message-oriented middleware and perfor-
mance analysis using statistical inferencing is summarized in Section 3. In Section 4,
we demonstrate how the performance of message-oriented middleware can be captured
using a combination of systematic benchmarking and statistical inference. We discuss
our results in Section 5. Finally, Section 6 concludes the paper.

2 Overview

In this section we describe our approach focusing on performance analyses of message-
oriented middleware (MOM) platforms. The influence of general configurations and
patterns on a MOM’s performance (delivery time, throughput, and resource utilization)
are well understood [11,25]. However, the exact quantification of these influences is
still cumbersome and has to be done for each implementation and each execution en-
vironment. In the case of MOM, the implementation is known to have a large impact
on the overall performance [25]. Some implementations scale better with a larger num-
ber of processors or make better use of the operating system’s I/O features. Capturing
such low-level details in a generic performance model is impossible. Even if accurate
performance models of a MOM are available, they have to be kept up to date and ad-
justed for new execution environments. Slight changes in the configuration can already
affect the overall performance [11,25,16]. To consider such effects in a priori predic-
tions, software architects need an approach to create accurate performance models for
their middleware platform, even if the actual implementation is unknown. The perfor-
mance models have to be parameterized and thus reflect the influence of the system’s
usage (input parameters, system state, arrival rate) on timing behavior, throughput, and
resource utilization.

In our approach, we use systematic measurements and statistical inference to cap-
ture the performance of a MOM platform. We abstract from internals of the MOM
implementation and identify functional dependencies between input parameters (mes-
sage size, style of communication) and the observed performance. The resulting mod-
els are woven into the software architectural model. The combination of model-driven
approaches and measurement-based model inference allows software architects to eval-
uate the effect of different middleware platforms on the performance of the overall
system. Figure 1 illustrates the overall process of combining parametric performance
completions with statistical model inference.

The process in Figure 1 is a specialization of the performance completion instantia-
tion by the software architect [11, Figure 6]. We assume that the completion has already
been designed and performance-relevant parameters are known. In the following, we
describe the steps of the process in more detail.

Benchmarking (Data Collection). In the first step, we measure the influence of
performance-relevant parameters for the middleware platform in its target execution

Statistical Inference of Software Performance Models 23

Benchmarking

Statistical Model
Inference

Model Integration

Performance Analysis

Transformation

Software System + Workload

Measurements

Statistical Model

Performance
Completion

Prediction Model

Performance Predictions

Parametric
Performance

Completion

Software
Architecture

Legend

Workflow
Flow of Artefact
Change of Activity

Fig. 1. Statistical Inference of Software Performance Models for Parametric Performance
Completions

environment. A standard industry benchmark (cf. Section 4.3) quantifies the delivery
time of messages, the MOM’s throughput, and the utilization of resources. To capture
the influence of parameters, the benchmark is executed several times with different
configurations (cf. Section 4.1). In our experiments, we focus on the influence of arrival
rates, messages sizes, and persistence of messages (messages are stored on hard disk
until they are delivered).

Model Inference (Data Aggregation). The collected data is used to infer (parameters
of) a prediction model. In Section 4.3, we use statistical inference techniques [13],
more specifically Multivariate Adaptive Regression Splines (MARS) [10] and genetic
optimization, to derive the influence of a MOM’s usage on its performance.

Other inference techniques, such as [21,23,19], can be used to estimate parame-
ters of queueing networks if the (major) resources and the structure of the system under
study are known. However, these approaches are bound to the assumptions of the under-
lying queueing model, such as FCFS or PS scheduling, which may not hold in reality.
Furthermore, they cannot (directly) predict the effect of input parameters (such as mes-
sage size) on performance.

Statistical inference of performance metrics does not require specific knowledge on
the internal structure of the system under study. However, statistical inference can re-
quire assumptions on the kind of functional dependency of input (independent) and
output (dependent) variables. The inference approaches mainly differ in their degree
of model assumptions. For example, linear regression makes rather strong assumptions
on the model underlying the observations (they are linear) while the nearest neighbor

24 J. Happe et al.

estimator makes no assumptions at all. Most other statistical estimators lie between both
extremes. Methods with stronger assumptions, in general, need less data to provide reli-
able estimates, if the assumptions are correct. Methods with less assumptions are more
flexible, but require more data.

Model Integration. The models inferred in the previous step are integrated into soft-
ware performance models to predict their effect on the overall performance of the sys-
tem. We use the Palladio Component Model (PCM) [6] in combination with parametric
performance completions [11] to evaluate the performance of the system under study.
The PCM is well suited for our purposes since it captures the effect of input param-
eters on software performance. Stochastic expressions of the PCM can be used to di-
rectly include the functions resulting from the statistical analysis into the middleware
components of a parametric performance completion. Performance completions allow
software architects to annotate a software architectural model. The annotated elements
are refined by model-to-model transformations that inject low-level performance influ-
ences into the architecture [15]. Completions consist of an architecture-specific part
that is newly generated for each annotation (adapter components) and an architecture-
independent part that models the consumption of resources (middleware components).
Completions are parametric with respect to resource demands of the middleware. The
demands have to be determined for each middleware implementation and for each exe-
cution environment.

Transformation. Finally, model-to-model transformations integrate the completion
into architectural models [15]. The performance of the overall system can be deter-
mined using analytical models (such as queueing networks or stochastic Petri nets) or
simulations.

In this paper, we focus on the first two steps (Benchmarking and Statistical Model
Inference). A description of the remaining steps can be found in [11,15].

3 Related Work

Current software performance engineering approaches can be divided in (i) early-cycle
predictive model-based approaches (surveyed in [3] and [18]), (ii) late-cycle measure-
ment-based approaches (e.g. [1,2,4]), and (iii) combinations of measurement-based and
model-based approaches (e.g. [8,19]) [29]. Late-cycle measurement-based approaches
as well as the approaches that combine model-based and measurement-based perfor-
mance engineering mainly rely on statistical inferencing techniques to derive perfor-
mance predictions based on measurement data.

Zheng et al. [30] apply Kalman Filter estimators to track parameters that cannot
be measured directly. To estimate the hidden parameters, they use the difference be-
tween measured and predicted performance as well as knowledge about the dynamics
of the performance model. In [23] and [19], statistical inferencing is used for estimating
service demands of parameterized performance models. Pacifici et al. [23] analyze
multiple kinds of web traffic using CPU utilization and throughput measurements.
They formulate and solve the problem using linear regressions. In [19], Kraft et al.
apply a linear regression method and the maximum likelihood technique for esti-
mating the service demands of requests. The considered system is an ERP appli-
cation of SAP Business Suite with a workload of sales and distribution operations.

Statistical Inference of Software Performance Models 25

Kumar et al. [21] and Sharma et al. [26] additionally take workload characteristics
into account. In [21], the authors derive a mathematical function that represents ser-
vice times and CPU overheads as functions of the total arriving workload. Thereby,
the functional representation differs depending on the nature of the system under
test. The work focuses on transaction-based, distributed software systems. Sharma
et al. [26] use statistical inferencing to identify workload categories in internet services.
Using coarse grained measurements of system resources (e.g. total CPU usage, overall
request rate), their method can infer various characteristics of the workload (e.g. the num-
ber of different request categories and the resource demand of each category). They apply
a machine learning technique called independent component analysis (ICA) to solve the
underlying blind source separation problem. The feasibility of their approach is validated
using an e-commerce benchmark application.

Other researchers focus on measurement-based and/or analytical performance mod-
els for middleware platforms. Liu et al. [22] build a queuing network model whose
input values are computed based on measurements. The goal of the queuing network
model is to derive performance metrics (e.g. response time and throughput) for J2EE
applications. The approach applied by Denaro et al. [9] completely relies on measure-
ments. The authors estimate the performance of a software system by measurements
of application specific test cases. However, both approaches simplify the behavior of
an application, and thus, neglect its influence on performance. Recently, Kounev and
Sachs [17] surveyed techniques for benchmarking and performance modeling of event-
based systems. They reviewed several techniques for (i) modeling message-oriented
middleware systems and (ii) predicting their performance under load considering both
analytical and simulation-based approaches.

4 Capturing the Performance of Message-Oriented Middleware
with Statistical Inference

In the following, we demonstrate how the performance of Message-oriented Middle-
ware (MOM) can be captured using statistical inference. For this purpose, we first in-
troduce our method for gathering the required performance data (Section 4.1) as well as
the tools and techniques to derive statistical models from measurements (Section 4.2).
The application of these methods to message-oriented systems follows in Section 4.3.
The resulting models reflect the influence of message size, arrival rate, and configura-
tions on delivery times, resource utilization, and throughput. Finally, we compare our
predictions to measurements that are not part of the training set (Section 4.4).

4.1 Measurement Method

In order to apply statistical inferencing to the performance of MOM, we first need to
measure the influence of different parameters (e.g., message size and persistence) on its
performance. The strategy of sampling the effect of different parameter combinations on
performance is critical, since it has to be detailed enough to achieve accurate predictions
but must also be kept feasible at the same time (i.e., measurements must not last too
long).

26 J. Happe et al.

0 200 400 600 800

0
1

2
3

4
5

6

message size [kByte]

ar
riv

al
 r

at
e

[1
00

 m
sg

/s
]

Fig. 2. Measurement strategy

For this reason, we separate the measurements into three phases. First, we determine
the maximal throughput of the system for each message size m ∈ M . While a high
throughput can be achieved for small messages, the throughput decreases significantly
for larger messages. In Figure 2, the upper solid line illustrates the dependency of the
maximal throughput and the size of a message. In queuing theory, the throughput (X)
can be computed from the resource utilization (U) and the service demand (D) by
X = U/D. If we assume that the resource is fully utilized (U = 1), we can compute
the maximal throughput Xmax = 1/D. In a flow balanced system, the arrival rate (λ)
is equal to the throughput of the system. Thus, the maximal arrival rate which can be
handled by the system is λmax = Xmax. To determine the maximal arrival rate, we
increase the load of the system until U ≈ 1 and still λ ≈ X , i.e., the system can still
handle all incoming messages. We focus our measurements on arrival rates between 0
and λmax,i.e, 0 < λ ≤ λmax. The performance measurements for λmax represent the
worst case performance of the system if it is still able to process all messages.

In the second phase, we measure the influence of individual parameters without re-
source contention. For example, we measure the effect of different message sizes on
the delivery time when only one message is processed at a time. These measurements
provide the baseline of our curve. They represent the best achievable performance for
the system under study. In Figure 2, the solid line at the bottom depicts the baseline for
a MOM with persistent message delivery (i.e., messages are stored on hard disk until
they are delivered).

In the final phase, we sample the performance of the system under study between
the best case and the worst case performance. For this purpose, we separate the arrival
rate between the best and the worst case performance into N equidistant steps. For
each message size v ∈ V , we measure the performance of the MOM for arrival rates
of λi = λmax ∗ i/N for i ∈ {1, . . . , N − 1}. The dashed lines in Figure 2 show the
relative measurements for N = 4 steps.

Statistical Inference of Software Performance Models 27

4.2 Statistical Model Inference

Statistical inferencing is the process of drawing conclusions by applying statistics to
observations or hypotheses based on quantitative data. The goal is to determine the re-
lationship between input and output parameters observed at some system (sometimes
also called independent and dependent variables). In this paper, we use Multivariate
Adaptive Regression Splines (MARS) and genetic optimization to estimate the depen-
dency between different system characteristics (configuration and usage) and perfor-
mance metrics of interest.

Multivariate Adaptive Regression Splines (MARS). MARS [10] is a statistical
method for flexible regression modeling of multidimensional data which has already
been successfully employed in software performance prediction [8]. MARS is a non-
parametric regression technique which requires no prior assumption as to the form of
the data. The input data may be contaminated with noise or the system under study may
be responding to additional hidden inputs that are neither measured or controlled. The
goal is to obtain a useful approximation to each function using a set of training data.
Therefore, the method fits functions creating rectangular patches where each patch is a
product of linear functions (one in each dimension). MARS builds models of the form
f(x) =

∑k
i=1 ciBi(x), the model is a weighted sum of basis functions Bi(x), where

each ci is a constant coefficient [10]. MARS uses expansions in piecewise linear basis
functions of the form [x − t]+ and [t − x]+. The + means positive part, so that

[x − t]+ =
{

x − t , if x > t
0 , otherwise

and [t − x]+ =
{

t − x , if x < t
0 , otherwise

The model-building strategy is similar to stepwise linear regression, except that the ba-
sis functions are used instead of the original inputs. An independent variable translates
into a series of linear segments joint together at points called knots [8]. Each segment
uses a piecewise linear basis function which is constructed around a knot at the value t.
The strength of MARS is that it selects the knot locations dynamically in order to op-
timize the goodness of fit. The coefficients ci are estimated by minimizing the residual
sum-of-squares using standard linear regression. The residual sum of squares is given
by RSS =

∑N
i=1(ŷi − y)2, where y = 1

N

∑
ŷi, where N is the number of cases in the

data set and ŷi is the predicted value.

Genetic Optimization (GO). If the functional dependency between multiple param-
eters is known, i.e., a valid hypothesis exists, then either non-linear regression or GO
can be used to fit the function against measured data. Non-linear regressions allow var-
ious types of functional relationships (such as exponential, logarithmic, or Gaussian
functions). Non-linear regression problems are solved by a series of iterative approx-
imations. Based on an initial estimate of the value of each parameter, the non-linear
regression method adjusts these values iteratively to improve the fit of the curve to the
data. To determine the best-fitting parameters numerical optimization algorithms (such
as Gauss-Newton or Levenberg-Marquardt) can be applied.

Another way of identifying a good-fitting curve for a non-linear problem is the use of
GOs. In [14] the author describes the basic principals of GOs. GOs simulate processes

28 J. Happe et al.

of biological organisms that are essential to evolution. They combine two techniques
at the same time in an optimal way: (i) exploration which is used to investigate new
areas in the search space, and (ii) exploitation which uses knowledge found at points
previously visited to help finding better points [5]. Compared to the non-linear regres-
sion techniques GO is more robust, but requires more time. In our case, the basis of
the GO is an error function which has to be minimized. Errors represent the difference
between the observations and the model’s predictions. It must be taken into account that
the definition of the error metric can influence the accuracy of fitting. For example, if er-
ror is expressed as absolute measure, the approximation is inaccurate for small values at
large scattering. If error is expressed as relative measure, small values are approximated
better while large values can show stronger deviations.

We use mean squared error (MSE) and relative mean squared error (RMSE) to
measure the difference between predicted and observed value. The MSE is given by
MSE = 1

N

∑N
i=1(ŷi − yi)2 and the RMSE is given by RMSE = 1

N

∑N
i=1(

ŷi−yi

yi
)2.

In both cases N is the number of cases in the data set, y is defined as observed value,
ŷi as the predicted value.

In the following section, we apply the methods for statistical model inference pre-
sented here to derive a performance model for message-oriented systems.

4.3 Analyzing Message-Oriented Systems

In message-oriented systems, components communicate by exchanging messages us-
ing a message-oriented middleware. Such a loose coupling of communicating parties
has several important advantages: i) message producers and consumers do not need to
be aware of each other, ii) they do not need to be active at the same time to exchange
information, iii) they are not blocked when sending or receiving messages. Most MOM
platforms offer two types of communication patterns: (a) Point-to-Point (P2P), where
each message is consumed by exactly one message receiver and (b) Publish/Subscribe,
where each message can be received by multiple receivers [28]. A discussion of mes-
saging patterns influencing the software performance is provided in [11].

MOM Benchmarks: SPECjms2007 and jms2009-PS. SPECjms2007 is the first in-
dustry standard benchmark for Java Message Services (JMS). It was developed by
the Standard Performance Evaluation Corporation (SPEC) under the leadership of TU
Darmstadt. The underlying application scenario models a supermarket’s supply chain
where RFID technology is used to track the flow of goods between different parties.
Seven interactions such as order management are modeled in detail to stress different
aspects of MOM performance.

jms2009-PS [24] is built on top of the SPECjms2007 framework and SPECjms2007
workload [25] using pub/sub communication for most interactions. Both benchmarks
are focused on the influence of the MOM’s implementation and configuration. The
benchmarks minimize the impact of other components and services that are typically
used in the chosen application scenario. For example, the database used to store busi-
ness data and manage the application state could easily become the limiting factor and
thus is not represented in the benchmark. This design allows us to focus our evaluation
on the influences of MOM without disturbances.

Statistical Inference of Software Performance Models 29

Benchmark Application. For our experiments, we selected Interaction 4: Supermar-
ket (SM) Inventory Management. This interaction exercises P2P messaging inside the
SMs. The interaction is triggered when goods leave the warehouse of a SM (e.g., to re-
fill a shelf). Goods are registered by RFID readers and the local warehouse application
is notified so that inventory can be updated. The size of such messages varies from very
small (a single good) to very large (pallets). Therefore they can be used to test JMS
performance for all message sizes.

Experimental Environment. We statistically inferred a performance model for Active
MQ 5.3 running on a IBM x3850 Server with a 2-Core Intel Xeon 3.5 GHz, a RAID
10 with 6 SAS hard drives and 16 GByte of RAM running under Debian Linux 2.6.26.
During the measurements, all satellites where hosted on a Windows Server 2003 System
with 16 GByte of RAM and two 4-Core Intel Xeon 2.33 GHz. The utilization of the host
for the satellites never exceeded 20%. The benchmark was executed 288 times. Each run
lasted about 6 minutes leading to a total measurement time of approximately 31 hours.
During each run, the inventory management send between 1800 and 216000 messages
to the supermarket server. The actual number depends on the configured arrival rate of
messages. For each run, we measured the utilization of CPUs and hard disk, network
traffic and throughput as well as the delivery time of messages. In the following, we
analyze the measurements collected by the jms2009-PS benchmark using the statistical
inferencing techniques presented in Section 4.2.

Analysis. We determine the functional dependency of performance metrics on the
MOM’s usage applying MARS and genetic optimization. For the analyses, the actual
arrival rate and message size can be computed based on the benchmark’s configura-
tion. In case of interaction 4 ”‘Supermarket Inventory Management”’, the size of a
message v (in kilobyte) is given by the linear equation v = m1 ∗ x + b [25], where
m1 = 0.0970 and b = 0.5137. Furthermore, the total arrival rate of messages ξ4 per
second is a multiple of the arrival rate for each supermarket (λ4): ξ4 = λ4 ∗ |ΨSM |,
where ΨSM = {SM1, SM2, . . . , SM|ΨSM |} is the set of all supermarkets. Since we
only consider flow-balanced scenarios, the number of messages sent and received are
equal. Furthermore, no other messages are sent through the channels of interaction 4.

In the first measurement phase, we determine the maximal throughput for persistent
and non-persistent message delivery.The performance metrics collected in this setting
represent the worst case performance of the MOM. The message size lies between 1 and
850 kBytes while the maximal throughput ranges from 6 to 900 messages per second.
The maximal throughput decreases exponentially with an increasing message size for
persistent and non-persistent delivery.

In the second phase, we analyze the influence of the message size without contention.
The total arrival rate is set to 0.5 messages per second for this purpose. The results
represent the best achievable performance for each message size. The mean delivery
time of the messages ranges from less than a millisecond to approx. 85 ms. Here, we
observed an almost linear growth of delivery time for increasing message sizes.

In the final phase, we analyze the intermediate performance between the best case
and worst case observed. Figure 3 shows the utilization of the MOM’s host machine as a
function of message size and arrival rate. Figure 3(a) suggests that, for a fixed message
size, the dependency is almost linear. However, the gradient increases significantly for

30 J. Happe et al.

●

●

●
●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

20
30

40

arrival rate [100 msg/s]

C
P

U
 u

til
is

at
io

n
[%

]

● Observation
MARS Estimator

(a) Message size of 100kByte

arriv
al ra

te [100 msg/s]

0

2

4

6

m
essage size [100 kB

yte]
0

2

4

6

8

C
P

U
 utilisation [%

]

0
10

20
30

40

50

60

(b) Combined influence

Fig. 3. CPU utilization as a function of message size and arrival rate

larger messages (cf. Figure 3(b)). In our measurements, the CPU utilization never ex-
ceeded 50%. This observation is unexpected, especially for large messages. However,
the physical resources were not the limiting factor in our experiments, but in the im-
plementation of the MOM. Active MQ 5.3 uses only a single thread to process its I/O.
This thread can become the bottleneck in multiprocessing environments. Statistically
inferred models can cover this effect without knowledge about the internal cause.

So far, MARS provided good approximations of the measurements. However, it fails
to accurately reflect the effect of arrival rates and messages sizes on delivery times.
Figure 4(a) shows the averages of the measured delivery time (circles) compared to
predictions of MARS (dashed line). In this case, regression splines do not capture the

(a) Messages size of 850 kByte

arrival rate [100 req/s]

0

2

4

6

 m
essage size [kB]

2

4

6

8

delivery tim
e [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) Combined influence

Fig. 4. Functional dependency of delivery times on arrival rate and message size

Statistical Inference of Software Performance Models 31

steep increase in delivery times for an arrival rate of 35 msg/s (with messages of 850
kByte). Exponential distributions, which are fitted to the measurements using genetic
optimization (cf. Section 4.2), provide much better results. In Figure 4(a), the solid line
depicts an exponential function fitted to the delivery time of messages with a size of
850 kByte. For an arrival λ of messages with 850 kByte, the exponential function

fdt
850(λ) = exp(24.692 ∗ (λ − 0.412)) + 0.079

accurately reflects the changes of the delivery time in dependence of the arrival rate of
messages. The relative mean squared error (RMSE) of measurements and predictions
is 0.061 compared to 3.47 for MARS. Figure 4(b) illustrates the result of the genetic
optimization for different message sizes and different arrival rates. For each message
size the exponential function is determined separately. The resulting terms are combined
by linear interpolation. Let v be the size of the message whose delivery time is to be
determined and m and n message sizes with n ≤ v < m that are close to v and for
which fdt

n (λ) and fdt
m (λ) are known, then:

fdt(v, λ) = fdt
n (λ) +

fdt
m (λ) − fdt

n (λ)
m − n

(v − n).

This function reduces the sum of the relative mean squared error (RMSE) from 341.4
(MARS) to 10.7. The additional knowledge about the type of the function significantly
decreases the error of our statistical estimator. However, at this point, it is still unclear
whether linear interpolation is appropriate to estimate the delivery time for message
sizes whose exponential functions have not been approximated explicitly. In the fol-
lowing section, we address this question by comparing measurements for message sizes
and arrival rates that are not part of the training set to the predictions of the statistical
models.

4.4 Evaluation of the Statistical Models

In order to validate the prediction model for MOM developed in Section 4.3, we com-
pare the predicted delivery times and resource utilization to observations that are not
part of the training set. The results indicate whether the approach introduced in the pa-
per yields performance models with the desired prediction accuracy. More specifically,
we address the following questions: i) ”Is the training set appropriate for statistical in-
ferencing?” and ii) ”Are the chosen statistical methods for model inference sufficient
to accurately reflect the systems performance?”. To answer both questions, we set up
a series of experiments where the arrival rate λ is 200 messages per second and the
message size is varied between 0.6 kByte and 165.4 kByte in steps of 9.7 kByte. The
experiments have been repeated three times.

Figure 5 illustrates the results of the experiments as well as the corresponding pre-
dictions for delivery time (Figure 5(a)) and resource utilizations (Figure 5(b)–5(d)). In
general, predictions and observations largely overlap. The interpolation used to estimate
the delivery time captures the influence of messages sizes accurately. The relative mean
squared error (RMSE) for predicted delivery times is 0.10. The partly unsteady shape
of the prediction curve is a consequence of the interpolation. As a variant of the nearest

32 J. Happe et al.

●

●

●

● ● ● ●

● ●

●

●

●
●

●

●

●

●

●

● ●
●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

● ● ●

●

●

● ●

●

●

●

●

0 50 100 150

0.
00

0.
05

0.
10

0.
15

0.
20

message size [kByte]

de
liv

er
y

tim
e

[s
]

● measured
predicted

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

0 50 100 150

10
20

30
40

message size [kByte]
cp

u
ut

ili
sa

to
in

 [%
]

● measured
predicted

(b)

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

0 50 100 150

10
20

30
40

message size [kByte]

di
sk

 u
til

is
at

io
n

[%
]

● measured
predicted

(c)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150

0
5

10
15

20
25

30

message size [kByte]

da
ta

 s
en

d
[M

B
/s

]

● measured
predicted

(d)

Fig. 5. Evaluation results

neighbor estimator, it is quite sensitive to deviations in the training set and passes them
down to the predictions. Furthermore, the almost linear growth of the utilization of all
resources is accurately reflected in the corresponding MARS functions. The measured
utilization of the hard disk shows a much larger variance than the utilization of other
resources. This effect occurs because after each run the files used by Active MQ to store
the messages are deleted. The deletion and recreation affects the fragmentation of the
files which in turn can influence the disk utilization by a factor of three.

To answer the questions posed in the beginning, the training set is appropriate to
capture the performance of the system under study. Furthermore, the chosen statisti-
cal inferencing techniques were able to extract accurate performance models from the
training data. However, the interpolation for different message sizes might become in-
stable if the training data has a high variance. In the following, we discuss the benefits
and drawbacks of the approach for statistical model inferencing presented in this paper.

Statistical Inference of Software Performance Models 33

5 Discussion

The evaluation in the previous section demonstrates the prediction accuracy of perfor-
mance models inferred using the approach proposed in this paper. For such models, no
knowledge about the internals of the system under study is needed. In the case of Active
MQ 5.3, its internal I/O thread became the limiting factor in our experiments while no
physical resource was fully utilized. Modeling such behavior with queueing networks
is challenging and requires extended queueing networks such as Queueing Petri Nets.
The method for statistical inferencing proposed in this paper is based on functional de-
pendencies only and thus allows to capture such effects without drilling down into the
details of the middleware’s implementation. However, observations like for Active MQ
5.3 provide valuable feedback for middleware developers, but are of minor interest for
the application developers. They are mainly interested in how such internal bottlenecks
will influence the performance of the overall system.

●
●

●

●

●
● ●

●

●
●

10 20 30 40 50 60 70

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

arrival rate [msg/s]

se
rv

ic
e

de
m

an
d

[m
s

or
 m

B
yt

e]

● CPU demand per message [ms]
Network traffic per message [mByte]

Fig. 6. Load dependent resource demand

Load dependent resource demands are typically problematic in software perfor-
mance prediction. Figure 6 shows the resource demand of a single message delivery
for the network (in megabyte) and the CPU (in milliseconds). The data send over the
network per message stays constant, independent of the arrival rate. By contrast, the re-
source demand for the CPU increases by 44% from 0.45 ms to 0.65 ms. The additional
demand for processing time is caused by increasing I/O waits for a larger number of
messages. Reflecting such a behaviour in queueing networks requires advanced infer-
encing techniques. By contrast, it plays a minor role for statistically inferred models
proposed in this paper.

The drawback of such measurement-based models is the large amount of measure-
ments necessary for their derivation. To derive the performance model for Active MQ
5.3, we conducted 288 benchmark runs that lasted approximately 31 hours. In this sce-
nario, the measurements where fully automated and thus still feasible. However, as soon
as the number of parameters that can be varied increases, the number of measurements
needed increases rapidly. One approach to reduce the number of measurements is to add
mare assumptions about the data dependencies to the inferencing technique. For exam-
ple, given the exponential relationship of arrival rate and delivery time, only a very few

34 J. Happe et al.

measurements may be sufficient to characterize the function. An extensive discussion
on the challenges of statistical inference for software performance models can be found
in [12].

6 Conclusions

In this paper, we proposed statistical inferencing of performance models based on mea-
surements only. Our approach focuses on the observable data and does not consider the
structure of the system. We applied our approach to model the performance of Active
MQ 5.3. The performance metrics considered include the delivery time of messages,
throughput, and utilization of different resources. We used MARS as well as genetic
optimization to infer their dependency on message size and arrival rates. The com-
parison of predictions and measurements demonstrated that the model can accurately
predict the performance outside the original training set.

The method allows software architects to create performance models for middle-
ware platforms without knowing or understanding all performance relevant internals.
The models remain on high level of abstraction but still provide enough information for
accurate performance analyses. Software architects can include a wide range of differ-
ent implementations for the same middleware standard in their performance prediction
without additional modeling effort. Having a simple means to include the performance
influence of complex software systems into prediction models is a further, important
step towards the application of software performance engineering in practice.

Based on the results presented in this paper, we plan the following steps. First, we
need to reduce the number of measurements necessary to create performance models.
This might be achieved by adding assumptions about the functional dependencies be-
tween input and output variables to the model. Furthermore, the results for one execu-
tion environment might be transferable to other environments with a significantly lower
number of measurements. Second, we plan to apply our approach to other middleware
platforms including common application servers. Finally, we will fully integrate the re-
sulting models into software performance engineering approaches (namely the Palladio
Component Model) to allow a direct usage of the models for the performance analysis
of enterprise applications.

References

1. Arlitt, M., Krishnamurthy, D., Rolia, J.: Characterizing the scalability of a large web-based
shopping system. ACM Trans. on Internet Technology (TOIT), 44–69 (2001)

2. Avritzer, A., Kondek, J., Liu, D., Weyuker, E.J.: Software performance testing based on work-
load characterization. In: WOSP, pp. 17–24 (2002)

3. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction
in Software Development: A Survey. IEEE Trans. on Software Engineering, 295–310 (2004)

4. Barber, S.: Creating effective load models for performance testing with incomplete empirical
data. In: WSE, pp. 51–59 (2004)

5. Beasley, D., Bull, D.R., Martin, R.R.: An overview of genetic algorithms: Part 1, fundamen-
tals (1993)

6. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-driven
performance prediction. Journal of Systems and Software, 3–22 (2009)

Statistical Inference of Software Performance Models 35

7. Brosig, F., Kounev, S., Krogmann, K.: Automated Extraction of Palladio Component Models
from Running Enterprise Java Applications. In: ROSSA (2009)

8. Courtois, M., Woodside, M.: Using regression splines for software performance analysis and
software characterization. In: WOSP, pp. 105–114 (2000)

9. Denaro, G., Polini, A., Emmerich, W.: Early performance testing of distributed software
applications. SIGSOFT Software Engineering Notes, 94–103 (2004)

10. Friedman, J.H.: Multivariate adaptive regression splines. Annals of Statistics, 1–141 (1991)
11. Happe, J., Becker, S., Rathfelder, C., Friedrich, H., Reussner, R.H.: Parametric Performance

Completions for Model-Driven Performance Prediction. Performance Evaluation (2009)
12. Happe, J., Li, H., Theilmann, W.: Black-box Performance Models: Prediction based on Ob-

servation. In: QUASOSS, pp. 19–24 (2009)
13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data mining,

Inference and Prediction. Springer Series in Statistics (2009)
14. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor (1975)
15. Kapova, L., Goldschmidt, T.: Automated feature model-based generation of refinement trans-

formations. In: SEAA-EUROMICRO, pp. 141–148 (2009)
16. Kapova, L., Zimmerova, B., Martens, A., Happe, J., Reussner, R.H.: State dependence in

performance evaluation of component-based software systems. In: WOSP/SIPEW (2010)
17. Kounev, S., Sachs, K.: Benchmarking and performance modeling of event-based systems. IT

- Information Technology, 262–269 (2009)
18. Koziolek, H.: Performance evaluation of component-based software systems: A survey. Per-

formance Evaluation (2009)
19. Kraft, S., Pacheco-Sanchez, S., Casale, G., Dawson, S.: Estimating service resource con-

sumption from response time measurements. In: Valuetools (2006)
20. Krogmann, K., Kuperberg, M., Reussner, R.: Using Genetic Search for Reverse Engineer-

ing of Parametric Behaviour Models for Performance Prediction. IEEE Trans. on Software
Engineering (2010)

21. Kumar, D., Zhang, L., Tantawi, A.: Enhanced inferencing: Estimation of a workload depen-
dent performance model. In: Valuetools (2009)

22. Liu, Y., Fekete, A., Gorton, I.: Design-level performance prediction of component-based
applications. IEEE Trans. Software Eng. 31(11), 928–941 (2005)

23. Pacifici, G., Segmuller, W., Spreitzer, M., Tantawi, A.: Dynamic estimation of cpu demand
of web traffic. In: Valuetools, p. 26 (2006)

24. Sachs, K., Appel, S., Kounev, S., Buchmann, A.: Benchmarking publish/subscribe-based
messaging systems. In: DASFAA Workshops: Benchmar’X10 (2010)

25. Sachs, K., Kounev, S., Bacon, J., Buchmann, A.: Performance evaluation of message-
oriented middleware using the SPECjms 2007 benchmark. Performance Evaluation (2009)

26. Sharma, A., Bhagwan, R., Choudhury, M., Golubchik, L., Govindan, R., Voelker, G.M.: Au-
tomatic request categorization in internet services (2008)

27. Smith, C.U.: Performance Engineering of Software Systems. Addison-Wesley, USA (1990)
28. Sun Microsystems, Inc. Java Message Service (JMS) Specification - Version 1.1 (2002)
29. Woodside, M., Franks, G., Petriu, D.C.: The Future of Software Performance Engineering.

In: ICSE, pp. 171–187 (2007)
30. Zheng, T., Woodside, C.M., Litoiu, M.: Performance model estimation and tracking using

optimal filters. IEEE Trans. Software Engineering, 391–406 (2008)

Parameterized Reliability Prediction
for Component-Based Software Architectures

Franz Brosch1, Heiko Koziolek2, Barbora Buhnova3, and Ralf Reussner1

1 FZI Karlsruhe, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany
2 ABB Corporate Research, Wallstadter Str. 59, 68526 Ladenburg, Germany

3 Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic
{brosch,reussner}@fzi.de, heiko.koziolek@de.abb.com, buhnova@fi.muni.cz

Abstract. Critical properties of software systems, such as reliability,
should be considered early in the development, when they can govern cru-
cial architectural design decisions. A number of design-time reliability-
analysis methods has been developed to support this task. However, the
methods are often based on very low-level formalisms, and the connection
to different architectural aspects (e.g., the system usage profile) is either
hidden in the constructs of a formal model (e.g., transition probabilities
of a Markov chain), or even neglected (e.g., resource availability). This
strongly limits the applicability of the methods to effectively support
architectural design. Our approach, based on the Palladio Component
Model (PCM), integrates the reliability-relevant architectural aspects in
a highly parameterized UML-like model, which allows for transparent
evaluation of architectural design options. It covers the propagation of
the system usage profile throughout the architecture, and the impact of
the execution environment, which are neglected in most of the existing
approaches. Before analysis, the model is automatically transformed into
a formal Markov model in order to support effective analytical techniques
to be employed. The approach has been validated against a reliability
simulation of a distributed Business Reporting System.

1 Introduction

Software reliability is defined as the probability of failure-free operation of a
software system for a specified period of time in a specified environment [1].
In practice, developers often ensure high software reliability only through soft-
ware testing during late development stages. Opposed to this, architecture-based
software reliability analysis ([2,3,4]) aims at improving reliability of component-
based software architectures already during early development stages. This helps
software architects to determine the software components mostly affecting sys-
tem reliability, to study the sensitivity of the system reliability to component
reliabilities, and to support decisions between different design alternatives.

To enable architecture-based software reliability analyses, reliability specifi-
cations of individual software components are required. Ideally, they are cre-
ated by the component vendors. However, it is hard for a component vendor to
specify a software component’s reliability, because it depends not only on the

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, pp. 36–51, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parameterized Reliability Prediction 37

component implementation, but also on factors outside the vendor’s control.
Besides its implementation, a software component’s reliability depends on (i)
its usage profile [5] (e.g., how often the component is called, which parame-
ters are used), (ii) the reliability of external services [6] (e.g., how reliable the
component’s required services are), and (iii) the reliability of the execution en-
vironment [1] (e.g., how reliable the underlying middleware/hardware is). Exist-
ing reliability prediction methods, typically Markov-chain based, either do not
cover all these aspects (mainly neglecting the execution environment reliability),
or hard-code their influence into the model (transition probabilities), which re-
duces the reusability of the model in assessing architectural design alternatives.

We introduce a novel approach that takes all the above mentioned factors into
account. We extend the work presented in [6] with the propagation of the usage
profile throughout a component-based software architecture, as well as the avail-
ability of the underlying hardware resources. We use the Palladio Component
Model (PCM) [7] as a design-oriented modelling language for component-based
software architectures, and extend the PCM with capabilities for reliability pre-
diction. Besides the inclusion of multiple influence factors to component reliabil-
ity, our approach bears the advantage of providing a modelling language closely
aligned with software architecture concepts (instead of Markov chains, which are
then generated automatically).

Using the PCM, multiple developer roles (e.g., component developer, domain
expert, etc.) can independently contribute their parts to the architectural model
thus reducing the complexity of the overall task. Through parameterisation,
software component reliability specifications are reusable with respect to vary-
ing system usage profiles, external services, and hardware resource allocations.
Software architects can conduct reliability predictions using automatic methods.

The contributions of this paper are (i) a highly parameterized reliability model
including all architectural aspects explicitly, (ii) a novel method of propagating
hardware-level availability to the system-level reliability based on the real usage
of the hardware, and (iii) a developer-friendly support of model creation in a UML-
like notation with automatic transformation to Markov chains. The approach is
validated on a case study of a distributed business reporting system. The whole
approach is implemented as an Eclipse-based tool [8], supporting not only the
modelling process and reliability analysis, but also the reliability simulation and
sensitivity analysis, which aim to further facilitate the architecture design.

This paper is organised as follows: Section 2 surveys related work. Section 3
describes the models used in our approach and focuses on the PCM reliability
extensions. Section 4 explains how to predict the reliability of a PCM instance,
which includes solving parameter dependencies, generating a Markov model, and
solving the Markov model. Section 5 documents the case study before Section 6
concludes the paper.

2 Related Work

Seminal work in the area of software reliability engineering [1] focussed on sys-
tem tests and reliability growth models treating systems as black boxes. Recently,

38 F. Brosch et al.

several architecture-based reliability analysis approaches have been proposed
[2,3,4] treating systems as a composition of software components. In the following,
we examine these approaches regarding their modelling of the influence factors on
component reliability, namely usage profile, and execution environment.

To model the influence of the usage profile on system reliability, the propaga-
tion of inputs from the user to the components and from components to other
components (i.e., external calls) have to be modelled. Goseva et al. [2] state that
most approaches rely on estimations of transition probabilities between software
components. Cheung [5] states that the transition probabilities could be ob-
tained by assembling and deploying the components and executing the expected
usage profile against them. However, this requires software architects to set up
the whole system during architecture design, which is often neither desired nor
possible.

Recent approaches by Wang et al. [9] and Sharma et al. [10] extend Cheung’s
work to support different architectural styles and combined performance and
reliability analysis. However, they rely on testing data or the software archi-
tecture’s intuition to determine the transition probabilities. Reussner et al. [6]
assume fixed transition probabilities between components, therefore their mod-
els cannot be reused if the system-level usage profile changes. Cheung et al. [11]
focus on the reliability of individual components and do not include calls to other
components.

Several approaches have been proposed including properties of the execu-
tion environment into software reliability models. Sharma et al. [12] provide a
software performability model incorporating hardware availability and different
states of hardware resources, but disregard the usage profile propagation and
component dependencies. Furthermore, the approach calculates the throughput
of successful requests in presence of hardware failures, but not the system reli-
ability. The same holds for the approaches of Trivedi et al. [13] and Vilkomir et
al. [14], who design complex availability models of the execution environment,
but do not link it to the software level to quantify the overall system reliability.

Popic et al. [15] take failure probabilities of network connections into ac-
count, but not the failure probabilities of other hardware resources. Sato and
Trivedi [16] combine a system model (of interacting system services) with a re-
source availability model. However, they do not include pure software failures
(not triggered by execution environment), assume fixed transition probabilities
among services, and do not model usage profile dependencies of services. Yacoub
et al. [17] include communication link reliabilities in their approach but neglect
hardware availability.

We described a preliminary work to the approach in this paper, which was
not related to the PCM and did not consider hardware availability, in [18].

3 Modelling Reliability with the PCM

To provide the reader with a quick introduction to the modelling capabilities of
the PCM we first discuss a simple example (Section 3.1), then describe the mod-
elling capabilities more in detail structured according to the involved developer

Parameterized Reliability Prediction 39

roles (Section 3.2), and finally introduce our extension to the PCM to allow for
reliability analysis (Section 3.3).

3.1 Example

Figure 1 shows a condensed example of a PCM instance. It is composed out of
four kinds of models delivered independently by four different developer roles.

Component 1 Component 2

CPU HDCPU

Resource Container 1 Resource Container 2

MTTF = 100h
MTTR = 6h

MTTF = 200h
MTTR = 8h

Failure Probability
= 0.00002

MTTF = 150h
MTTR = 8h

5 calls to Service 1
P(X=1) = 1.0
P(Y=0) = 0.1
P(Y=3)= 0.7
P(Y=5) = 0.2

Call
Service 2

Call
Service 3

Y > 3Y <= 3

CPU HD

Failure
Probability
=0.0001

Failure
Prob.
=0.0002

Input:
Z = X + 5

Input:
X, Y

Input:
Z = 27*X+3

Count =
Z + 2

Input:
Z

Input:
Z

Behaviour
Service 2

Behaviour
Service 3

<<allocated>> <<allocated>>

CPU

Failure
Probability
=0.001

Behaviour
Service 1

Component Developer 1 Component Developer 2System Deployer

Software Architect

Domain Expert

<<uses>>

Service 1

Service 2

Service 3

Service 2

Service 3

<<allocated>>

<<implements>> <<implements>>

Fig. 1. PCM Example

Component developers provide abstract behavioural specifications of compo-
nent services. They can annotate internal computations of a service with failure
probabilities. Additionally, they can annotate external calls as well as control
flow constructs with parameter dependencies. The latter allow the model to
be adjusted for different system-level usage profiles. Software architects com-
pose the component specifications into an architectural model. System deployers
model the resource environment (e.g., CPUs, network links) annotated with fail-
ure properties and allocate the components in the architectural model to the
resources. Finally, domain experts specify the system-level usage model in terms
of stochastic call frequencies and input parameter values, which then can be
automatically propagated through the whole model. Once the whole model is
specified, it can be transformed into a Markov model to conduct reliability pre-
dictions (cf. Section 4).

3.2 Modelling Software and Hardware with the PCM

In this section, we informally describe the features of the PCM meta-model
and then focus on our extensions for reliability prediction. The division of work
targeted by component-based software engineering (CBSE) is enforced by the
PCM, which structures the modelling task to different languages reflecting the
responsibilities of the discussed developer roles.

Using the PCM, component developers are responsible for the specification
of components, interfaces, and data types. Components can be assembled into

40 F. Brosch et al.

composite components making the PCM a hierarchical component model. For
each provided service of a component, component developers can supply a so-
called service effect specification (SEFF), which abstractly models the usage of
required services by the provided service (i.e., external calls), and the consump-
tion of resources during component-internal processing (i.e., internal actions).
SEFFs may include probabilistic or value-guarded branches, loops, and forks to
model the control flow of the component service. To specify parameter depen-
dencies on control flow constructs, we have developed a so-called stochastic ex-
pression language [19], which enables modelling arithmetic or boolean operations
on input parameter values. At design time developers model SEFFs manually.
After implementation developers can apply static code analysis [20] or execute
the component against different test cases to derive SEFFs.

Software architects retrieve the component specifications of the component
developers from a repository and connect them to form an architectural model
that realises a specific application. They create assembly connectors, which con-
nect required interfaces of components to compatible provided interfaces of other
components. They ideally do not deal with component internals, but instead fully
rely on the SEFFs supplied by the component developers. Furthermore, software
architects define the system boundaries and expose some of the provided inter-
faces to be accessible by users.

System deployers are responsible for modelling the resource environment,
which is a set of resource containers (i.e., computing nodes) connected via net-
work links. Each resource container may include a number of modelled hardware
resources (e.g., CPU, hard disk, memory, etc.). Resources have attributes, such
as processing rates or scheduling policies. System deployers specify concrete re-
sources, while component SEFFs only refer to abstract resource types. When
specifying the allocation of components to resource containers, the resource de-
mands can be directed to concrete resources. This method allows to easily ex-
change the resource environment in the model without the need to adapt the
component specifications.

Domain experts specify the usage model, which involves the number and or-
der of calls to component services at the system boundaries. The model can
contain control flow constructs (e.g., branches, loops). For each called service,
the domain experts also characterise its input parameter values. They can use the
stochastic expression language to model a parameter taking different values with
specific probabilities. Once the usage model is connected to the system model
by the software architect, tools can propagate the parameter values through the
parameterised expressions specified by component developers. Because of the pa-
rameterisation, the usage model can easily be changed at the system boundaries
and the effect on the component specifications can be recalculated.

3.3 PCM Extensions for Modelling Reliability

In this paper, we incorporate the notion of software failures, communication link
failures, and unavailable hardware into the PCM and extend its meta model

Parameterized Reliability Prediction 41

accordingly. The following paragraphs briefly describe the rationale behind our
approach.

Software failures occur during service execution due to faults in the implemen-
tation. A PCM internal action from a SEFF abstracts component-internal pro-
cessing and can be annotated with a failure probability, describing the probability
that the internal action fails while being executed. We assume that any failure of
an internal action leads to a system failure. To estimate the failure probabilities
component developers can use software reliability growth models [1], statistical
testing [2], or code coverage metrics on their components. Our approach relies on
these proven approaches to determine the failure probabilities. We will show in
Section 5 on how to deal with uncertain failure probabilities using a sensitivity
analysis.

Communication link failures include loss or damage of messages during trans-
port, which results in service failure. Though transport protocols like TCP in-
clude mechanisms for fault tolerance (e.g., acknowledgement of message trans-
port and repeated message sending), failures can still occur due to overload,
physical damage of the transmission link, or other reasons. As such failures are
generally unpredictable from the point of view of the system deployer, we treat
them like software failures and annotate communication links with a failure prob-
ability in the PCM model. System deployers can define these failure probabilities
either from experience with similar systems or by running tests on the target
network.

Unavailable hardware causes a service execution to fail. Hardware resource
breakdowns mainly result from wear out effects. Typically, a broken-down re-
source (e.g., a CPU, memory, or storage device) is eventually repaired or replaced
by a functionally equivalent new resource. In the PCM, we annotate hardware
resources with their Mean Time To Failure (MTTF) and Mean Time To Re-
pair (MTTR). System deployers have to specify these values. Hardware vendors
often provide MTTF values in specification documents. System deployers can
refine these values on experience [21]. MTTR values can depend on hardware
support contracts. For example, IT administration could warrant replacing failed
hardware resources within one working day.

While we are aware that there are other reasons for failure (e.g., incompat-
ibilities between components), we focus on the three failure classes described
above, which in many cases have significant impact on overall system reliability.
We will target further failure classes as future work.

4 Predicting Reliability with the PCM

Once a full PCM instance is specified by combining the different models de-
scribed in the former section, we can predict its reliability in terms of the prob-
ability of failure on demand (POFOD) for a given usage model. The predic-
tion process requires solving parameter dependencies (Section 4.1), determining
probabilities of physical system states (Section 4.2), and generating and solving
Markov chains (Section 4.3).

42 F. Brosch et al.

4.1 Solving Parameter Dependencies

Once the domain expert has specified input parameters in the usage model and
the software architect has assembled an architectural model, a tool can propagate
the parameter values of the usage model through the architectural model to solve
the parameter dependencies on branch probabilities and loop counts.

The algorithm behind the tool [18] requires to separate the input domain
of a component service into a finite number of equivalence classes and to pro-
vide a probability for each class. The equivalence classes can be derived using
techniques from partition testing [22]. The probabilities for input classes of com-
ponents directly accessed by users (i.e., the system-level usage profile) have to
be estimated by domain experts. After running the algorithm, all parameter
dependencies are resolved and all SEFFs contain calculated branch probabili-
ties and loop iteration counts, which can later be used for the construction of
Markov chains. We have documented the model traversal algorithm for resolving
the parameter dependencies formally in [19].

Consider the example in Fig. 1. The domain expert (lower left) has specified
that the parameter X for calling Service 1 will always have the value 1, while
the parameter Y will take the value 0 with a probability of 10 percent, 3 with a
probability of 70 percent, and 5 with a probability of 20 percent. Our tool uses
the values for Y to derive the branch probabilities in the SEFFs of Component
Developer 1 from the parameter dependencies Y ≤ 3 and Y > 30 to 0.8 and 0.2
respectively. Furthermore, it uses the value for X (= 1) to resolve the value for
Z in the SEFF to 6 = 1 + 5 for the call to Service 2 and to 30 = 27 ∗ 1 + 3 for
the call to Service 3. In the SEFF for Service 2 (Component Developer 2), the
current value for Z (= 6) can be used to resolve the parameter dependency on
the loop count, which is determined to be 8 according to the calculated input
parameter values.

4.2 Determining Probabilities of Physical System States

After solving the parameter dependencies, our approach generates Markov chains
for all possible cases of hardware resource availability. We call each of these
cases a physical system state and calculate their occurrence probabilities from
the MTTF/MTTR values specified in a PCM instance. Let R = {r1, r2, .., rn}
be the set of resources in the system. Each resource ri is characterized by its
MTTFi and MTTRi and has two possible states OK and NA (not available).
Let s(ri) be the current state of resource ri. Then, we have:

P (s(ri) = OK) =
MTTFi

MTTFi + MTTRi

P (s(ri) = NA) =
MTTRi

MTTFi + MTTRi

This calculation of the resource availabilities can be refined using continuous
time Markov chains (CTMC), also see [12]. Let S be the set of possible physical

Parameterized Reliability Prediction 43

system states, that is, S = {s1, s2, .., sm}, where each sj ∈ S is a combination of
states of all n resources:

sj = (sj(r1), sj(r2), .., sj(rn)) ∈ {OK, NA}n

As each resource has 2 possible states, there are 2n possible physical system
states, that is, m = 2n. At an arbitrary point in time during system execution,
let P (sj) be the probability that the system is in state sj . Assuming independent
resource failures, the probability of each state is the product of the individual
resource-state probabilities:

∀j ∈ {1, .., m} : P (sj) =
n∏

i=1

P (s(ri) = sj(ri))

Considering the example from Figure 1, there are three hardware resources in-
cluded in the model (two CPUs and one HD), leading to 23 = 8 possible physical
system states, whose probabilities are listed in Table 1. The state probabilities
are used for calculation of overall system reliability (see Section 4.3).

Table 1. Physical System State Probabilities for the Example PCM Instance

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8
CPU1 NA NA NA NA OK OK OK OK
CPU2 NA NA OK OK NA NA OK OK
HD NA OK NA OK NA OK NA OK

0,000110 0,002756 0,002067 0,051671 0,001837 0,045930 0,034447 0,861182

Resource
Status

Probability

4.3 Generating and Solving Markov Chains

For each physical system state determined above, our tool generates a separate
absorbing discrete-time Markov chain (DTMC). The chain represents all possi-
ble service execution paths, together with their probabilities, under the specific
physical system state. Thus, the state (availability of hardware resources) is fixed
along a system service execution, which better reflects the fact that resource fail-
ure and repair times are orders of magnitude longer than the duration of a single
service. Note that this means that resources are not expected to fail or be re-
paired during service execution. However, this inaccuracy is negligible, which is
confirmed also by the validation (see Section 5).

The DTMC is based on a combination of all SEFFs in a PCM instance trig-
gered by the usage model. It contains a state for each action of each SEFF. Three
additional states represent execution start, success, and failure. The DTMC tran-
sitions denote all possible execution paths and their probabilities.

Figure 2 illustrates the DTMC generated for the example from Figure 1,
assuming that the system is in a state where both CPUs are ok, but the HD is
unavailable. The execution starts with a call to Service 1, followed by an internal
action requiring the first CPU. Afterwards, either Service 2 or 3 are called over
the network, which then use the second CPU and the HD respectively.

44 F. Brosch et al.

Service 1
START

Int. Act.
CPU

Network
CALL

Network
CALL

Service 2
START

Service 3
START

Int. Act.
CPU

Int. Act.
HD

Service 2
STOP

Service 3
STOP

Service 1
STOP

1.0

1.0

1.0

1.0

1.0

0.1998

0.7992

0.001

0.998 1.0 0.999

0.01.00.998

0.002 0.001

0.002 1.0
FAILURE

SUCCESS

START

Fig. 2. Discrete-time Markov Chain

Markov states originating from internal actions and network calls have a tran-
sition to the failure state. For internal actions the transition can be triggered
by either software failure (with given failure probability) or by unavailability of
required hardware. Depending on the physical system state represented by the
Markov chain, the failure probability of the internal action is either equal to the
specified failure probability or equal to 1.0 if the required resource is unavail-
able. In the example, the internal action of Service 3 requires the unavailable HD
and thus fails with probability 1.0. For network calls, the transition probability
to the failure state is the failure probability of the communication link. In the
example, each of the calls to Services 2 and 3 involves the communication link
between Resource Container 1 and 2.

For each physical system state sj, we denote P (SUCCESS|sj) as the prob-
ability of success on condition that the system is in state sj . We calculate
P (SUCCESS|sj) as the probability to reach the success state (from the start
state) in the corresponding DTMC. In the example, we have P (SUCCESS|sj) =
0.1992. Having determined the state-specific success probabilities, the overall
probability of success can be calculated as a weighted sum over all individual
results:

P (SUCCESS) =
m∑

j=1

(P (SUCCESS|sj) × P (sj))

In our example, we have P (SUCCESS) = 0.8881.

5 Case Study Evaluation

The goal of the case study evaluation described in this section is (i) to assess
the validity of our prediction results, (ii) to demonstrate the new prediction
capabilities with sensitivity analyses, and (iii) to assess the scalability of our
approach.

We have applied our modelling and prediction approach on the PCM instance
of a distributed, component-based system (Section 5.1). To reach (i), we have
predicted its reliability and compared the results to data monitored during a
reliability simulation (Section 5.2). To reach (ii), we ran several prediction series,
where we analysed the impact of usage profile and hardware changes on system
reliability (Section 5.3). To reach (iii), we investigated the execution time for
predictions based on different model sizes (Section 5.4).

Parameterized Reliability Prediction 45

5.1 Model of a Business Reporting System

Fig. 3 illustrates some parts of the so-called Business Reporting System (BRS),
which is the basis for our case study evaluation (the PCM instance for the BRS
can be downloaded at [8]). The model is based on an industrial system [23], which
generates management reports from business data collected in a database.

WebServer Scheduler
Reporting

Engine
Cache Database

WebServer

CPU

SchedulerServer

CPU

ApplicationServer

CPU HD

DatabaseServer

CPU

<<allocated>><<allocated>> <<allocated>> <<allocated>> <<allocated>>

CPU
fp=0,000012

CPU
fp=0,000050

Call
report

Call
view

CPU
fp=0,000034

CPU
fp=0,000050

Call
getSmallReport

Call
getBigReport

CPU
fp=0,000098

CPU
fp=0,0037

Call
getCachedData

CPU
fp=0,000050

CPU
fp=0,000055

CPU
fp=0,000021

P(type
=report)

P(type
=view)

reportprocessRequest

P(isDetailled
=false)

P(isDetailled
=true)

loopCount
=numberOf
Entries

loopCount
=numberOf
Entries

loopCount
=2

numberOfEntries = 7
P(type=report)=0.3
P(isDetailed=true)=0.1 MTTF=292000h

MTTR=6h
MTTF=438000h
MTTR=3h

MTTF=175200h
MTTR=6h

MTTF=219000h
MTTR=8h

fp=0.00001 fp=0.00001

getSmallReport

getBigReport getCachedData

<<implements>> <<implements>> <<implements>>

Input:
numberOfEntries,
P(isDetailed=true)

Fig. 3. PCM Instance of the Business Reporting System (Overview)

Users can query the system via web browsers. They can simply view the
currently collected data or generate different kinds of reports (coarse or detailed)
for a configurable number of database entries. The usage model provided by the
domain expert (left hand side of Fig. 3) shows that a user requests a report in
30 percent of the cases, from which 10 percent are detailed reports. An average
user requests reports for 7 database entries.

On a high abstraction level, the system consists of five independent software
components running on four servers. The web server propagates user requests to
a scheduler component, which dispatches them to possibly multiple application
servers. The application servers host a reporting engine component, which either
directly accesses the database or queries a cache component.

As failure data was not available for the system, we estimated the failure
rates of the software components and hardware devices. Determining failure
probabilities for software components is beyond the scope of this paper (cf. [1]).
However, to make our model as realistic as possible, we used empirical data

46 F. Brosch et al.

as a basis for failure rates estimation. Goseva et al. [24] reported on failure
probabilities for software components in a large-scale software system, which
were derived from a bug tracking system. We aligned the failure probabilities
of the internal actions in the BRS with these failure probabilities. Schroeder
et al. [21] analysed the actual failure rates of hardware components of several
large systems over the course of several years. Their data provided a basis for
estimating the MTTF and MTTR numbers of our case study model, which are
considerably lower than the ones provided by hardware vendors in specification
documents.

Having the model of the system, we can use our analysis tool to predict system
reliability under the given settings (see Section 5.2), or start evaluating alterna-
tive design decisions. These may include changing the usage profile, topology of
software components, their deployment to hardware resources, or even replacing
the components (changing their implementation) or hardware nodes (changing
their parameters). Any of these local and transparent changes may significantly
influence the generated Markov-chain model and hence also the predicted relia-
bility, which is then reported to the architect to evaluate the alternatives.

5.2 Validity of the Predictions

To validate the accuracy of our prediction approach, we first executed our ana-
lytical Markov chain solver described in Section 4 and then compared the pre-
dicted system reliability to the results of a reliability simulation performed over
the PCM instance of the BRS. Notice that the goal of our validation is not to
justify the annotations used for reliability, like software failure probabilities or
hardware MTTF / MTTR values, which are commonly used and described in
literature [2,12]. Instead, we validate that if all inputs (architectural model in-
cluding reliability annotations) are accurately provided, our method produces
an accurate result (system reliability prediction).

For simulation purposes, we have implemented a tool based on the SSJ frame-
work [25]. The tool uses model transformations implemented with the OAW
framework to generate Java code from the PCM instance under study. During a
simulation run, a generated SSJ load driver creates requests to the code accord-
ing to the usage model specified as a part of the PCM model. Software failures,
communication link failures, and the effects of unavailable hardware are included
into the simulation to assess system reliability.

To simulate a software failure, an exception may be raised during execution of
an internal action. A random number is generated according to the given failure
probability, and decides about success or failure of the internal action. Commu-
nication link failures are handled in the same way. Furthermore, the simulation
includes the notion of hardware resources and their failure behaviour. It uses
the given MTTF/MTTR values as mean values of an exponential distribution
and draws samples from the distribution to determine actual resource failure
and repair times. Whenever an internal action requires a currently unavailable
hardware resource, it fails with an exception. Taking all possible sources of

Parameterized Reliability Prediction 47

failure into account, the simulation determines system reliability as the ratio
of successful service executions to the overall execution count.

Compared to our analysis tools, simulation takes longer, but is more realistic
and therefore can be used for validation. Values of variables in the control flow
are preserved within their scope, as opposed to analysis, where each access to
a variable requires drawing a sample from its probability distribution (cf. [19]).
Resources may fail and be repaired anytime, not only between service executions.
Resource states are observed over (simulated) time, leading to more realistic
failure behaviour of subsequent service executions.

Regarding the case study, our analysis tools predicted the probability of suc-
cessful service execution as 0.9960837 for the usage model of the BRS sketched
in Fig. 3. Because the model involves 5 resources, 32 (= 25) different Markov
chains were generated to include all possible physical system states. Each gener-
ated Markov chain consisted out of 6 372 states and 6 870 transitions, because our
approach involves unrolling the loops of the service effect specifications according
to the specified usage profile and incorporating hardware resources. Solving the
parameter dependencies, generating the different chains, and computing their
absorption probabilities took less than 1 second on an Intel Core 2 Duo with 2.6
GHz and 2 GB of RAM.

To validate this result, we applied the simulation tool on the BRS PCM
instance and simulated its execution for 1 year (i.e., 31 536 000 seconds of sim-
ulation time). The usage model described above was executed 168 526 times
during the simulation run taking roughly 190 simulated seconds per execution.
We recorded 562 internal action failures, 75 communication link resource failures
and 26 resource failures during the simulation run. The simulation ran for 657
seconds (real time) and produced more than 800 MB of measured data. The suc-
cess probability predicted by the simulation tool was 0.9960658, which deviates
from the analytical result by approximately 0.00179 percent.

The high number of resource failures during simulation stems from the fact
that we divided all given MTTF/MTTR values in the model by a constant
factor. This measure allowed us to observe a statistical relevant number of over
20 resource failures during simulation, while leaving probabilities of physical
system states (see Section 4.2) and the calculated system reliability unchanged.

Considering validation results, we deem the analytical method and tool im-
plementation sufficiently accurate for the model described in this paper.

5.3 Sensitivity Analyses

To further analyse the system reliability of the BRS, we conducted several sen-
sitivity analyses involving changing failure probabilities and usage probabilities

Fig. 4 shows the impact of different failure probabilities of component inter-
nal actions to the system reliability. The failure probabilities of the actions ’ac-
ceptView’, ’prepareSmallReport’, and ’getBigReport’ have been varied around
fp = 0.00005. The slopes of the curves indicate that the system reliability of the
BRS under the given usage model is most sensitive to the action ’acceptView’
of the web server component. This information is valuable for the software

48 F. Brosch et al.

y = 7E 06x + 0,9961
R² = 10,996110

0,996120

System Reliability vs. Component Reliability

y = 7E 06x + 0,9961
R² = 1

y = 3E 06x + 0,9961
R² = 1

y = 2E 06x + 0,9961
R² = 1

0,996080

0,996090

0,996100

0,996110

0,996120

m
Re

lia
bi
lit
y

System Reliability vs. Component Reliability

y = 7E 06x + 0,9961
R² = 1

y = 3E 06x + 0,9961
R² = 1

y = 2E 06x + 0,9961
R² = 1

0,996050

0,996060

0,996070

0,996080

0,996090

0,996100

0,996110

0,996120

Sy
st
em

Re
lia
bi
lit
y

System Reliability vs. Component Reliability

Webserver.acceptView
ApplicationServer.prepareSmallReport
Database.getBigReport

y = 7E 06x + 0,9961
R² = 1

y = 3E 06x + 0,9961
R² = 1

y = 2E 06x + 0,9961
R² = 1

0,996040

0,996050

0,996060

0,996070

0,996080

0,996090

0,996100

0,996110

0,996120

Sy
st
em

Re
lia
bi
lit
y

System Reliability vs. Component Reliability

Webserver.acceptView
ApplicationServer.prepareSmallReport
Database.getBigReport

y = 7E 06x + 0,9961
R² = 1

y = 3E 06x + 0,9961
R² = 1

y = 2E 06x + 0,9961
R² = 1

0,996040

0,996050

0,996060

0,996070

0,996080

0,996090

0,996100

0,996110

0,996120

Sy
st
em

Re
lia
bi
lit
y

Failure Probability of Internal Action

System Reliability vs. Component Reliability

Webserver.acceptView
ApplicationServer.prepareSmallReport
Database.getBigReport

Fig. 4. Sensitivity to Failure Probabilities

architect, who can decide to put more testing effort into the web server compo-
nent, to exchange the component with another component from a third party
vendor, or to run the web server component redundantly.

Our parameterised behavioural descriptions allow to easily change the system-
level usage model and investigate the impact on the system reliability. The pa-
rameter values are propagated through the architecture and can influence branch
probabilities and loop iteration numbers. Former approaches require to change
these inner component annotations manually, which is laborious and may be
even hard to determine due to complex control and data flow in a large system.
Fig. 5 shows the impact of different usage probabilities on system reliability. The
figure suggests that the model is more sensitive to the portion of detailed reports
required by the user. The impact of having more users requesting view queries
is less pronounced as indicated by the lower slope of the curve.

5.4 Scalability

The scalability of our approach requires special attention. The method for in-
corporating hardware reliability described in Section 4 increases the number of
Markov chains to be solved exponentially in relation to the number of resources
in the model. To examine the impact of this relation to the practicability of
our approach, we analysed a number of simple PCM instances with a growing
number of resources and recorded the execution time for our prediction tool.

We found that we can analyse models with up to approximately 20 resources
within one hour. This involves generating and solving more than 1 000000 Markov
chains. We believe that the number of 20 different resources is sufficient for a

Parameterized Reliability Prediction 49

0,998000

1,000000

y
System Reliability vs. Usage Probabilities

y = 0,008x + 0,9985
R² = 1

y = 0,0112x + 0,9972
R² = 1

0,984000

0,986000

0,988000

0,990000

0,992000

0,994000

0,996000

0,998000

1,000000

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Sy
st
em

Re
lia
bi
lit
y

Probability

System Reliability vs. Usage Probabilities

p(type=report)
p(isDetailed=true)

Fig. 5. Usage Profile Change 1: Usage Probabilities

large number of realistic systems. Larger models need to be analysed partially
or resources have to be grouped. It is also possible to assume some resources in a
large model as always available, which then decreases the effort for the predictions.
Other techniques, like the possibilities for distributed analysis and multi-core pro-
cessors, or employment of more efficient Markov model solution techniques,are
meant for future research.

6 Conclusions

We presented an approach for reliability analysis of component-based software
architectures. The approach allows for calculation of the probability of success-
ful service execution. Compared to other architecture-based software reliability
methods, our approach takes into account more influence factors, such as the
hardware and usage profile. The usage profile on the system level is automati-
cally propagated to determine the individual usage profiles of all involved soft-
ware components. We have used an absorbing discrete-time Markov chain as
analysis model. It represents all possible execution paths through the architec-
ture, together with their probabilities.

The extensive parameterization of our model allows for sensitivity analysis in
a straightforward way. In our case study, we examined the sensitivity of system
reliability to individual failure probabilities, variations in the system-level usage
profile, and changing hardware availability due to wear out effects. Furthermore,
we implemented a reliability simulation to validate our results. In the case study,
simulation results differed less than 0.002 percent from the analytical solution.

We will extend and further validate our approach in future work. We plan to
include fault tolerance mechanisms, error propagation, concurrency modelling,

50 F. Brosch et al.

and probabilistic dependencies between individual software and hardware fail-
ures. Furthermore, we want to include the reliability of middleware, virtual ma-
chines, and operating systems into our approach. With these extensions, we aim
to further increase the accurateness of our approach and support analysis for a
larger class of systems.

Acknowledgments. This work was supported by the European Commission
as part of the EU-projects SLA@SOI (grant No. FP7-216556) and Q-ImPrESS
(grant No. FP7-215013), as well as the German Federal Ministry of Education
and Research (grant No. 01BS0822).

References

1. Musa, J.D., Iannino, A., Okumoto, K.: Software reliability: measurement, predic-
tion, application. McGraw-Hill, Inc., New York (1987)

2. Goseva-Popstojanova, K., Trivedi, K.S.: Architecture-based approach to reliability
assessment of software systems. Performance Evaluation 45(2-3), 179–204 (2001)

3. Gokhale, S.S.: Architecture-based software reliability analysis: Overview and limi-
tations. IEEE Trans. on Dependable and Secure Computing 4(1), 32–40 (2007)

4. Immonen, A., Niemelä, E.: Survey of reliability and availability prediction methods
from the viewpoint of software architecture. Journal on Softw. Syst. Model. 7(1),
49–65 (2008)

5. Cheung, R.C.: A user-oriented software reliability model. IEEE Trans. Softw.
Eng. 6(2), 118–125 (1980)

6. Reussner, R.H., Schmidt, H.W., Poernomo, I.H.: Reliability prediction for
component-based software architectures. Journal of Systems and Software 66(3),
241–252 (2003)

7. Becker, S., Koziolek, H., Reussner, R.: The Palladio Component Model for Model-
Driven Performance Prediction. Journal of Systems and Software 82(1), 3–22 (2009)

8. PCM: Palladio Component Model (January 2010), www.palladio-approach.net
(Last retrieved 2010-15-01)

9. Wang, W.L., Pan, D., Chen, M.H.: Architecture-based software reliability model-
ing. Journal of Systems and Software 79(1), 132–146 (2006)

10. Sharma, V., Trivedi, K.: Quantifying software performance, reliability and security:
An architecture-based approach. Journal of Systems and Software 80, 493–509
(2007)

11. Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L.: Early prediction of
software component reliability. In: Proc. 30th Int. Conf. on Software Engineering
(ICSE 2008), pp. 111–120. ACM, New York (2008)

12. Sharma, V.S., Trivedi, K.S.: Reliability and performance of component based soft-
ware systems with restarts, retries, reboots and repairs. In: Proc. 17th Int. Symp.
on Software Reliability Engineering (ISSRE 2006), pp. 299–310. IEEE Computer
Society Press, Los Alamitos (2006)

13. Trivedi, K., Wang, D., Hunt, D.J., Rindos, A., Smith, W.E., Vashaw, B.: Availabil-
ity modeling of SIP protocol on IBM WebSphere. In: Proc. 14th IEEE Int. Symp.
on Dependable Computing (PRDC 2008), pp. 323–330. IEEE Computer Society
Press, Los Alamitos (2008)

www.palladio-approach.net

Parameterized Reliability Prediction 51

14. Vilkomir, S.A., Parnas, D.L., Mendiratta, V.B., Murphy, E.: Availability evaluation
of hardware/software systems with several recovery procedures. In: Proc. 29th Int.
Computer Software and Applications Conference (COMPSAC 2005), pp. 473–478.
IEEE Computer Society Press, Los Alamitos (2005)

15. Popic, P., Desovski, D., Abdelmoez, W., Cukic, B.: Error propagation in the reli-
ability analysis of component based systems. In: Proc. 16th IEEE Int. Symp. on
Software Reliability Engineering (ISSRE 2005), pp. 53–62. IEEE Computer Soci-
ety, Washington (2005)

16. Sato, N., Trivedi, K.S.: Accurate and efficient stochastic reliability analysis of com-
posite services using their compact markov reward model representations. In: Proc.
IEEE Int. Conf. on Services Computing (SCC 2007), pp. 114–121. IEEE Computer
Society, Los Alamitos (2007)

17. Yacoub, S.M., Cukic, B., Ammar, H.H.: A scenario-based reliability analysis
approach for component-based software. IEEE Transactions on Reliability 53(4),
465–480 (2004)

18. Koziolek, H., Brosch, F.: Parameter dependencies for component reliability speci-
fications. In: Proc. 6th Int. Workshop on Formal Engineering Approaches to Soft-
ware Components and Architecture (FESCA 2009). ENTCS. Elsevier, Amsterdam
(2009) (to appear)

19. Koziolek, H.: Parameter Dependencies for Reusable Performance Specifications of
Software Components. PhD thesis, Department of Computing Science, University
of Oldenburg, Germany (March 2008)

20. Kappler, T., Koziolek, H., Krogmann, K., Reussner, R.: Towards Automatic Con-
struction of Reusable Prediction Models for Component-Based Performance Engi-
neering. In: Proc. Software Engineering 2008 (SE 2008). LNI, vol. 121, February
2008. pp. 140–154. GI (2008)

21. Schroeder, B., Gibson, G.A.: Disk failures in the real word: What does an mttf
of 1,000,000 hours mean to you? In: Proc. 5th USENIX Conference on File and
Storage Technologies, FAST 2007 (2007)

22. Hamlet, D.: Tools and experiments supporting a testing-based theory of component
composition. ACM Transaction on Software Engineering Methodology 18(3), 1–41
(2009)

23. Wu, X., Woodside, M.: Performance modeling from software components. In: Proc.
4th International Workshop on Software and Performance (WOSP 2004), vol. 29,
pp. 290–301 (2004)

24. Goseva-Popstojanova, K., Hamill, M., Perugupalli, R.: Large empirical case study
of architecture–based software reliability. In: Proc. 16th IEEE Int. Symp. on Soft-
ware Reliability Engineering, ISSRE 2005 (2005)

25. SSJ: Stochastic Simulation in Java (January 2010),
http://www.iro.umontreal.ca/~simardr/ssj/indexe.html (Last retrieved 2010-
01-15)

http://www.iro.umontreal.ca/~simardr/ssj/indexe.html

Architecture-Driven Reliability and Energy
Optimization for Complex Embedded Systems

Indika Meedeniya1, Barbora Buhnova2, Aldeida Aleti1, and Lars Grunske1

1 Faculty of ICT, Swinburne University of Technology
Hawthorn, VIC 3122, Australia

{imeedeniya,aaleti,lgrunske}@swin.edu.au
2 Faculty of Informatics, Masaryk University

60200 Brno, Czech Republic
buhnova@fi.muni.cz

Abstract. The use of redundant computational nodes is a widely used
design tactic to improve the reliability of complex embedded systems.
However, this redundancy allocation has also an effect on other qual-
ity attributes, including energy consumption, as each of the redundant
computational nodes requires additional energy. As a result, the two
quality objectives are conflicting. The approach presented in this paper
applies a multi-objective optimization strategy to find optimal redun-
dancy levels for different architectural elements. It is implemented in
the ArcheOpterix tool and illustrated on a realistic case study from the
automotive domain.

1 Introduction

Motivation. Reliability is one of the key quality attributes of complex embedded
systems [1]. To increase reliability, replication of computational nodes (so-called
redundancy allocation) is used, which however introduces additional life-cycle
costs for manufacturing and usage of the system. One more drawback of in-
troducing redundancy is that the system requires more energy to support the
additional computational nodes. In most embedded systems, reducing energy
consumption is an important design objective, because these systems must sup-
port their operation from a limited battery that is hard to recharge (e.g., in
deep-sea or outer-space missions) or at least uncomfortable to be recharged very
often (e.g., in mobile phones or electric cars). This is further stressed in systems
requiring the minimal size of the battery (e.g., in nano-devices).

State of the art. Research in both reliability and energy consumption for embed-
ded systems is already well established. These two quality attributes are however
rarely used in trade-off studies. Energy consumption is typically put in connec-
tion with performance [2,3]. Reliability (when resolved using redundancy alloca-
tion) is typically put in connection with production costs [4,5,6]. The approaches
balancing both reliability and energy consumption do not deal with architecture-
level optimization, and are often strongly driven by energy consumption rather

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, pp. 52–67, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Reliability and Energy Optimization for Embedded Systems 53

then reliability. Such approaches typically examine low-level decision such as
voltage reduction [7,8] or channel coding techniques [9] to improve energy con-
sumption without threatening reliability. Such techniques can be however hardly
employed to maximize reliability and minimize energy consumption at the same
time, since they have only a minor impact on reliability.

Aim of the paper. In this paper we aim to apply a trade-off analysis between
reliability and energy consumption at an architectural level, and employ the
technique of redundancy allocation, which has a significant effect on both the
discussed quality attributes – reliability and energy consumption. To achieve
this aim, we identify the main reliability- and energy-relevant attributes of dis-
tributed embedded systems with respect to the redundancy allocation problem.
We formalize the system model in terms of an annotated Markov Reward Model,
formulate the optimization problem, and design an algorithm to resolve it. The
whole approach is implemented within the ArcheOpterix framework [10], and
illustrated on a realistic case study from the automotive domain.

Contribution of the paper. There are three main contributions of the paper: (i)
architecture-level technique to optimize reliability and energy consumption, (ii)a
novel formalization of the problem and its solution, based on the expected num-
ber of visits of individual subsystems and links in between, and (iii) employment
of a meta-heuristic optimization algorithm, which reduces the likelihood to get
stuck in local optima as the greedy algorithms used by related approaches.

Outline of the paper. The paper is structured as follows. After discussion of re-
lated work in Section 2, we summarize the essential definitions in Section 3 and
present system model and its formalization in Section 4. Based on the model,
Section 5 describes our technique of quantifying the quality of a single archi-
tectural alternative, from both a reliability and an energy-consumption point
of view, and Section 6 designs an optimization algorithm to find the set of
near-optimal candidates. Finally, Section 7 discusses our tool support, Section 8
illustrates the approach on a case study, and Section 9 concludes the paper.

2 Related Work

Estimation and optimization of the energy consumption of embedded systems
has been the focus of many research groups. The application of energy optimiza-
tion is evident in design, implementation and runtime [11]. Energy-aware com-
pilation [12] and software design [13,14,15] has been addressed to achieve energy
advantage independent from the hardware-level optimization. Apart from the lim-
ited optimizations in different parts of systems, a system-level energy consump-
tion optimization has been proposed by Benini et al. [11]. Energy-efficient runtime
adaptation of embedded systems has also been a primary approach, which can be
broadly categorized as predictive, adaptive and stochastic control [2]. A key com-
monality of the approaches is that they use greedy heuristics for the optimization
and focus on the balance of energy consumption and performance.

54 I. Meedeniya et al.

A number of formal models have been adopted in the context of embedded-
systems energy consumption estimation. Continuous Time Markov Chains
(CTMC) have been widely used including the work of Qiu et al. [16]. Vijayakrish-
nan et al. [17] proposed to use the more powerful model of Generalized Stochastic
Petri Nets (GSPN). The use of Markov Reward Models (MRM) has gained vis-
ibility [18,19] due to their power of modeling and expressiveness in the domain
of energy consumption. Cloth et al. [20] presented the efficient use of MRMs in
energy-consumption modeling for embedded systems.

On the reliability side, there is a considerable amount of approaches that
address the Redundancy Allocation Problem (RAP) [4] at the system architecture
design level. Coit et al. [4] introduced an approach solving RAP defined as the
use of functionally similar (but not necessarily identical) components in a way
that if one component fails, the redundant part performs required functionality
without a system failure. They have visualized the problem as the minimization
of cost incurred for the redundancy allocation while satisfying a user defined
system reliability level. In [4], Genetic Algorithms (GA) have been proposed
for the optimization of component redundancy allocation, and Neural networks
(NN) techniques have also been integrated in [21]. Kulturel-Konak et al. [5] has
presented Tabu Search as the design space exploration strategy. The RAP has
been adapted to Ant Colony Optimization (ACO) by Liang et al. [22]. Significant
similarity of all the approaches is the view on RAP as cost minimization problem
while satisfying the predefined reliability constraints. Grunske [23] addressed
RAP by integrating multi-objective optimization of the reliability and weight.

Finally, the trade-off with respect to energy consumption and reliability has
been the focus of a few research contributions. Negative implications on the reli-
ability has been investigated due to energy optimization methods such as voltage
reduction [7,8] and channel coding techniques in the communication [9], which
are however not connected to RAP. The work of Zhang et al. [24] on finding
trade-offs of energy, reliability, and performance in redundant cache line allo-
cation can be viewed as conceptually close to RAP context. Similarly, Perillo
et al. [25] have presented an approach of finding the optimal energy manage-
ment with redundant sensors. However, both these contributions observe only
the static (hardware) architecture of the system, without taking the system ex-
ecution and its control flow (software layer) into account. This allows them to
disregard from the execution transfer among system components (which is cru-
cial in software architectures), and to employ simple additive models.

In contrast to the above mentioned approaches, this paper describes a novel
architecture-level approach of finding the optimal redundancy levels of system
components (integrating both software and hardware) with respect to system
reliability and energy consumption.

3 Preliminaries

This section outlines the definitions and preliminary formalizations used in the
rest of the paper.

Reliability and Energy Optimization for Embedded Systems 55

Definition 1. A Discrete Time Markov Chain (DTMC) is a tuple (S, P) where
S is a finite set of states, and P : S×S → [0, 1] is a transition probability matrix.

A DTMC is called absorbing when at least one of its states has no outgoing
transition [18]. Such states are called absorbing states.

Definition 2. A labeled discrete time Markov Reward Model (MRM) is a triple
M = ((S, P), ρ, τ) where (S, P) is an underlying DTMC, ρ : S → R≥0 is a state
reward structure and τ : S × S → R≥0 is an impulse reward structure satisfying
∀s ∈ S : τ(s, s) = 0.

A path of an absorbing DTMC is a finite sequence σ = s0s1s2...sn of states,
where sn is an absorbing state. Let Xσ(s) denote the number of visits of state
s in path σ. Similarly, let XTσ(s, s′) represent the number of occurrences of
transition (s, s′) in σ. Then we can calculate the accumulated reward of σ as:

Rσ =
∑
s∈S

(Xσ(s) · ρ(s)) +
∑

(s,s′)∈(S×S)

(XTσ(s, s′) · τ(s, s′)) (1)

Having the expected number of visits of each state(E[X(s)]) and transition
(E[XT (s, s′)), the expected value of the accumulated reward in all paths can
be computed as:

E[R] =
∑
s∈S

(E[X(s)] · ρ(s)) +
∑

(s,s′)∈(S×S)

(E[XT (s, s′)] · τ(s, s′)) (2)

In this paper, we use the method introduced by Kubat [26] to compute the
expected number of visits of a state/transition and the above relationship in
estimating the energy consumption, as described in Section 5.1.

4 System Model

In our approach, we target event-triggered embedded systems that are struc-
tured into interacting components (system elements), called special purpose mi-
croprocessors (MPs). The MPs are self-contained micro-computers along with
the software, dedicated to fulfill a specific functionality. They have only one en-
try and exit point, and behave the same for each execution (visit of the MP by
system control flow). For example, in an autonomous weather data gathering
robot, these MPs are responsible for activities such as reading inputs from sen-
sors and calculating the relative humidity of the environment. As the MPs need
to communicate with each other during the operation, they are connected via
communication channels forming a distributed architecture.

Inter-component communication is modeled as an execution transfer from
one component to another. In the redundancy allocation domain, systems are
modelled as Series-Parallel (S-P) systems [4,5,22,23], with logical constructs for
both serial and parallel execution. In the embedded systems domain, the models
can be viewed as overlapped sets of S-P models (for individual system-level

56 I. Meedeniya et al.

services1), because the execution can start in different components (triggering
the services). The execution finishes in the components with no continuation
of the execution transfer. The existence of such components is implied by the
nature of services, which represent finite scenarios of system execution.

For the redundancy allocation, we use the hot spare design topology with N-
Modular Redundancy (NMR) extension [27]. In hot sparing, each component in
the system has a number of replicas (possibly zero), all of which are active at the
same time, mimicking the execution of the original component. With the NMR
extension the system employs a decision mechanism in the form of majority
voting, applied on entry to a component (if multiple replicas deliver their results
to the entry gate). See Figure 1 that illustrates the concept. By merging the
hot spare and NMR, the system can be configured to tolerate fail-stop, crash,
commission and value failures. In this configuration, each component with its
parallel replicas is considered as a single unit called subsystem.

C1,2

C1,1

S0

S1

C0,1

C0,2

C0,3

S2

V

V

V

V

V

V
C2,1

C2,2

C 1

C 2C 0

Fig. 1. Component-interaction model, without and with redundancies

4.1 Formalization of the Model

Let C = {c1, c2, ..., cn}, n ∈ N, denote the set of all components (before replica-
tion), and I = {1, 2, ..., n} the index set for components in C. The assignment of
the redundancy level for all components is denoted a, and the set of all possible
a is denoted A = {a | a : C → N}, where N = {n | 0 ≤ n ≤ max, n ∈ N0}
delimits the redundancy level of a component2. Note that, since C and N are
finite, A is also finite. A component ci together with its redundancies form a
subsystem Si, which can be uniquely determined by ci (what we do along the
formalization).

Underlying DTMC model. The interaction among components without replica-
tion (Figure 1 on the left) can be formalized in terms of an absorbing DTMC,
where nodes represent system components ci ∈ C, and transitions the transfer of
1 In embedded systems, a service is understood as a system-level functionality em-

ploying possibly many components.
2 The original component is not counted as redundant, hence at least the one is always

present in a subsystem.

Reliability and Energy Optimization for Embedded Systems 57

execution from one component to another (together with the probability of the
transfer). Equivalently, the system with replication (Figure 1 on the right) can be
formalized as an absorbing DTMC where nodes represent the whole subsystems
Si, and the transitions represent the transfer of execution in between with all
the replicated communication links joined into a single transition (see Figure 2,
ignoring the annotation for now). Note that since the replicated links are joined
in the DTMC, the transfer probabilities remain unchanged with respect to re-
dundancy allocation. In both cases, the DTMC represents a single execution of
the system (its reaction to an external event), with possibly many execution sce-
narios (initiated in different nodes of the DTMC, based on the trigerring event).
In summary, the underlying DTMC is determined by the following parameters:

– Execution initiation probability, q0 : C → [0, 1], is the probability of initial-
izing the execution in the component (or subsystem);

∑
c∈C q0(c) = 1.

– Transfer probability, p : C ×C → [0, 1], is the probability that the execution
continues to component (or subsystem) cj after component ci.

Energy and reliability annotation. The energy and reliability-relevant informa-
tion is added to the DTMC model via model annotation. In case of energy
consumption, the annotation is encoded in terms of rewards, and the DTMC
extended to a discrete time Markov Reward Model (MRM) [28], as discussed
below. In case of reliability, the annotation is directly connected to the parame-
ters derived from the DTMC, and used for reliability evaluation, as discussed in
Section 5.3. In both cases, the annotation is based on the following parameters
of system architecture and execution flow:

– Failure rate λc : C → R≥0, is the failure intensity of the exponential distri-
bution of failure behavior of a component [29]. Component failures in the
model are assumed independent and given per time unit.

– Failure rate λl : C × C → R≥0, is the failure intensity of the exponential
distribution of failure behavior of a communication link between two com-
ponents, assumed independent for different links and given per time unit.

– Processing time inside a component per visit, tc : C → R≥0, measured in a
model with no redundancy, given in time units (ms).

– Transfer time for a link per visit, tl : C × C → R≥0, measured in a model
with no redundancy, given in time units (ms).

– Energy consumption of component processing per visit, ec : C → R≥0, is
the estimated energy dissipation by the component during the execution per
single visit of the component, given in Joules (J).

– Energy consumption of an idle component, ei : C → R≥0, is the estimated
energy dissipation by the component when being in the idle state, given in
Joules (J) per time unit.

– Energy consumption of a link transfer per visit, el : C × C → R≥0, is the
estimated energy dissipation in communication between two components per
single interaction. given in Joules (J).

– Trigger rate, r ∈ R, is the expected number of system executions (occurrence
of events trigerring system services) per time unit.

58 I. Meedeniya et al.

Energy annotated MRM. An example of a MRM (for the system in Figure 1)
is given in Figure 2. In the example, the nodes are annotated with state re-
wards ρ(ci), and transitions annotated with p(ci, cj)/τ(ci, cj) where p denotes
the transition probabilities and τ the impulse rewards.

Fig. 2. Markov Reward Model

Based on the above, the energy anno-
tated MRM derives state rewards from
the energy consumed in component pro-
cessing ec, and impulse rewards from the
energy consumed in communication el.
In both cases, the rewards are affected
by the redundancy level of the relevant
subsystem.

As the total number of identical com-
ponents in subsystem Si is given by (a(ci) + 1), the energy consumed in com-
ponent processing for the subsystem Si (node of the MRM) per visit is given
by ec(ci) · (a(ci) + 1). The energy consumed in communication from a sender
subsystem Si to a recipient Sj (transition in the MRM) is proportional to the
number of senders (replicas in Si), and hence given as el(ci, cj) · (a(ci) + 1). In
summary, if ci, cj ∈ C are system components (subsystems), and a ∈ A is a
redundancy allocation, then:

– State reward of ci is defined as ec(ci) · (a(ci) + 1)
– Impulse reward of (ci, cj) is defined as el(ci, cj) · (a(ci) + 1)

5 Evaluation of an Architectural Alternative

Each architectural alternative is determined by a single redundancy allocation
a ∈ A (defined in Section 4.1). To quantify the quality of a, we define a quality
function Q : A → R

2, where Q(a) = (Ea, Ra) s.t. Ea is the quantification of the
energy consumption of a (defined in Section 5.2), and Ra denotes the reliability
(probability of failure-free operation) of a (defined in Section 5.3). Both Ea and
Ra are quantified per a single time unit, which is possible thanks to the trigger
rate r, and allows us to reflect also the energy consumed in the idle state. The
computation of both Ea and Ra employs the information about the expected
number of visits of system components and communication links during the
execution (see Section 3 for explanation), which we compute first, in Section 5.1.

5.1 Expected Number of Visits

Expected number of visits of a component, vc : C → R≥0, quantifies the expected
number of visits of a component (or subsystem) during system execution. Note
that vc(c) corresponds to the expected number of visits of state ci in the under-
lying DTMC (as defined in Section 3), i.e. E[X(ci)]. This can be computed by
solving the following set of simultaneous equations [26]:

vc(ci) = q0(ci) +
∑
j∈I

(vc(cj) · p(cj , ci)) (3)

Reliability and Energy Optimization for Embedded Systems 59

The formula (3) can be expanded to:

vc(c0) = q0(c0) + vc(c0) · p(c0, c0) + vc(c1) · p(c1, c0) + vc(c2) · p(c2, c0) + ... + vc(cn) · p(cn, c0)
vc(c1) = q0(c1) + vc(c0) · p(c0, c1) + vc(c1) · p(c1, c1) + vc(c2) · p(c2, c1) + ... + vc(cn) · p(cn, c1)
vc(c2) = q0(c2) + vc(c0) · p(c0, c2) + vc(c1) · p(c1, c2) + vc(c2) · p(c2, c2) + ... + vc(cn) · p(cn, c2)

...
vc(cn) = q0(cn) + vc(c0) · p(c0, c1) + vc(c1) · p(c1, cn) + vc(c2) · p(c2, cn) + ... + vc(cn) · p(cn, cn)

In a matrix form, the transfer probabilities p(ci, cj) can be written as Pn×n, and
execution initiation probabilities q0(ci) as Qn×1. The matrix of expected number
of visits Vn×1 can be expressed as:

V = Q + P T · V

With the usual matrix operations, the above can be transformed into the solu-
tion format:

I × V − P T × V = Q

(I − P T) × V = Q

V = (I − P T)−1 × Q

For absorbing DTMCs which is also the case for the model used in this paper,
it has been proved that the inverse matrix (I − PT)−1 exists [18].

Expected number of visits of a communication link, vl : C×C → R≥0, quantifies
for each link lij = (ci, cj) the expected number of occurrences of the transi-
tion (ci, cj) in the underlying DTMC (as defined in Section 3), i.e E[XT (ci, cj)].
To compute this value, we extend the work of Kubat et al. [26] for computing
the expected number of visits of system components to communication links. In
the extension, we understand communication links as first-class elements of the

model, and view each probabilistic transition ci
p(ci,cj)−−−−−→cj in the model as a tuple

of transitions ci
p(ci,cj)−−−−−→ lij

1−→ cj , the first adopting the original probability and
the second having probability =1. Then we can apply the above, and compute
the expected number of visits of a communication link as:

vl(lij) = 0 +
∑

x∈{i}
(vc(cx) · p(cx, lij)) (4)

= vc(ci) · p(ci, cj) (5)

since the execution is never initiated in lij and the only predecessor of link lij is
component ci.

5.2 Energy Consumption

The energy consumption of architectural alternative a is computed with respect
to two contributing elements: (i) the energy consumed in system execution, and
(ii) energy consumed in the idle state.

60 I. Meedeniya et al.

The energy consumed in system execution is represented by the accumulated
reward defined in Section 3, whose computation employs the state and impulse
rewards of the energy annotated MRM (defined in Section 4.1) and expected
number of visits of both components/subsystems and communication links (de-
fined in Section 5.1). In summary, the energy consumed in system execution is
given as:

Ea
exec =

∑
ci∈C

ec(ci)·(a(ci)+1)·vc(ci)+
∑
ci∈C

∑
cj∈C

el(ci, cj) · (a(ci) + 1) · vl(lij) (6)

Since the MPs together with their redundancies consume certain amount of en-
ergy during their idle state as well, the total energy consumption takes into
account also the energy consumed in the idle state, expressed for a single sub-
system Sj and one time unit as ei(cj) · (a(cj) + 1).

Consequently, the total energy consumption of the system for a given redun-
dancy allocation a and a single time unit can be expressed as:

Ea = Ea
exec · r +

∑
cj∈C

ei(cj) · (a(cj) + 1) (7)

5.3 Reliability

Having the failure rate λc and processing time tc defined in Section 4.1, the
reliability of a single component ci per visit can be computed as [29]:

Rc(ci) = e−λc·tc(ci) (8)

When the redundancy levels are employed, the reliability of a subsystem Si (with
identical replicas connected in parallel) for the architectural alternative a can be
computed as:

Ra
c (ci) = 1 − (1 − Rc(ci))a(i)+1 (9)

Similarly, the reliability of a communication link per visit is characterized by λl

and tl as:
Rl(ci, cj) = e−λl·tl(ci,cj) (10)

In consideration of a redundancy allocation a, the presence of multiple senders
increases the reliability (thanks to the tolerance against commission and value
failures) as follows:

Ra
l (ci, cj) = 1 − (1 − Rl(ci, cj))a(i)+1 (11)

Having the reliabilities of individual system elements (subsystems and links) per
a single visit, the reliability of the system execution can be computed analogically
to the accumulated reward above, based on the expected number of visits, with
the difference that we employ multiplication instead of summation [1,26]:

Ra
exec ≈

∏
i∈I

(Ra
c (ci))vc(ci) ·

∏
i,j∈I

(Ra
l (ci, cj))vl(lij) (12)

Finally, the system reliability for a given redundancy allocation a and a single
time unit (with respect to trigger rate r) can be expressed as:

Ra = (Ra
exec)

r (13)

Reliability and Energy Optimization for Embedded Systems 61

6 Architecture Optimization with Non-dominated
Sorting Genetic Algorithm (NSGA)

The goal of our multi-objective optimization problem is to find the approxi-
mate set of solutions A∗ ⊆ A that represent a trade-off between the conflicting
objectives in Q : A → R

2, i.e. the reliability of the system and the energy con-
sumption, and satisfy the set of constraints Ω. In our case, Ω consists of only
the constraints on the maximal redundancy levels of system MPs. Different al-
gorithms can be used for solving the optimization problem. In our approach, we
employ the Non-dominated Sorting Genetic Algorithm (NSGA) [30], which has
shown to be robust and have a good performance in the settings related to ours.

For the optimization process, NSGA uses an initial population of randomly
generated chromosomes (solutions). Each chromosome encodes a single redun-
dancy allocation alternative a ∈ A. Each allele in a chromosome represents a
redundancy level for a component ci ∈ C.

The three genetic operators of the evolution process are selection, cross-over
and mutation. NSGA varies from simple genetic algorithm only in the way the
selection operator works. The three operators are adapted to the redundancy
allocation problem as follows.

6.1 Selection

Before the selection operator is applied, the population is ranked on the basis of
an individual’s non-domination. In a maximization problem a solution a∗ is non-
dominated if there exists no other a such that Qi(a) ≥ Qi(a∗) for all objectives,
and Qi(a) > Qi(a∗) for at least one objective. In other words, if there exists no
other feasible variable a which would be superior in at least one objective while
being no worse in all other objectives of a∗, then a∗ is said to be non-dominated.
The set of all non-dominated solutions is known as the non-dominated set.

First, the non-dominated solutions present in the population are identified
and assigned a rank value of 0. These solutions will constitute the first non-
dominated front in the population, which will be ignored temporarily to process
the rest of the population in the same way, finding the solutions which belong to
the second non-dominated front. These solution are assigned a higher rank, i.e.
the next integer. This process is continued until the entire population is classified
into separate fronts.

A mating pool is then created with solutions selected from the population
according to the rank that has been assigned to them during the ranking process.
The solutions with a lower rank value have a higher chance of being selected to
be part of the mating pool than the ones with a higher rank value. This helps the
quick convergence of the algorithm towards the optimal solutions. The mating
pool will then serve for the random selection of the individuals to reproduce
using crossover and mutation.

62 I. Meedeniya et al.

6.2 Crossover

Crossover is the creation of new solutions a′
i, a

′
j ∈ A from two parents ai =

[ui1 , ui2 , ..., uin] and aj = [uj1 , uj2 , ..., ujn] coming from existing population by
recombining the redundancy levels of components, i.e. for a random k: a′

i =
[ui1 , ..., uik−1 , ujk

, ..., ujn] and a′
j = [uj1 , ..., ujk−1 , uik

, ..., uin]. After every
crossover operation, the solutions are checked for constraints satisfaction in Ω.

6.3 Mutation

Mutation produces a new solution a′
i from existing ai by switching the allocation

of two components, i.e. for randomly selected k, l: a′
i =[ui1 , ..., uil

, ..., uik
, ..., uin]

while the original is ai =[ui1 , ..., uik
, ..., uil

, ..., uin]. Each newly created chromo-
some is first checked for constraint satisfaction (for constraints in Ω) before it is
allowed to become part of the population. This prevents us from the construction
of infeasible solutions.

7 Tool Support

The presented approach, including the NSGA optimization algorithm, has been
implemented within the ArcheOpterix framework [10], which has been developed
with Java/Eclipse and provides a generic platform for specification, evaluation
and optimization of embedded system architectures.

ArcheOpterix has a modular structure, with an entry module responsible for
interpreting and extracting a system description from a specification, recognizing
standard elements like components, services, processors, buses, etc., specified in
AADL or XML. It also provides extensions to other elements and domain-specific
parameters. The remaining modules allow for plug-in of different quality function
evaluators, constraint validators, and optimization algorithms, which makes it a
well fitting tool for multi-criteria quality optimization of embedded systems.

8 Illustration of the Approach with a Case Study

8.1 Automotive Control System

An embedded system from the automotive domain is used as a case study for the
demonstration of the approach. In the automotive domain reliability is an impor-
tant quality characteristic, because specific functions (e.g. brake assistance) are
safety critical. On the other hand energy consumption is relevant for customer
satisfaction, because high energy usage of the electronic systems directly trans-
late to an increased fuel usage for traditional cars or reduced mission times for
battery-powered electrical cars. The case study we use in this section has been
designed based on already published models [31,32] and models a subsystem
which implements an Anti-lock Brake System (ABS) and Adaptive Cruise Con-
trol (ACC) functionality. System parameters required for the model are chosen
to closely resemble the reality, including the component failure rates [33], and
estimated execution time per visit [34].

Reliability and Energy Optimization for Embedded Systems 63

Anti-lock Brake System (ABS): ABS is currently used in most of modern cars
to minimize hazards associated with skidding and loss of control due to locked
wheels during braking. Proper rotation during brake operations allows better
maneuverability and enhances the performance of braking.

Adaptive Cruise Control (ACC): Apart from usual automatic cruise control func-
tionality, the main aim of the ACC is to avoid crashes by reducing speed once a
slower vehicle in front is detected.

The main components used by the composite system and their interaction
diagram are presented in Figure 3. The ABS Main Unit is the major decision-
making unit regarding the braking levels for individual wheels, while the Load
Compensator unit assists with computing adjustment factors from the wheel load
sensor inputs. Components 4 and 5 represent the components that communicate
with wheel sensors while components 7 and 8 represent the electronic control
units that control the brake actuators. Brake Paddle is the component that reads
from the paddle sensor and sends the data to the Emergency Stop Detection unit.
Execution initialization is possible at the components that communicate with the
sensors and user inputs. In this case study the Wheel Sensors, Speed Limitter,
Object Recognition, Mode Switch and Brake Paddle components contribute to the
triggering of the service. The captured data from the sensors, are processed by
different components in the system and triggers are generated for the actuators
like Brake Actuators and Human Machine Interface.

Fig. 3. Automotive composite system

Parameters of the elements of the considered system, and probabilities of
transferring execution from one component to another are illustrated in Table 1.
The trigger rate r of the composite system is assumed to be 1 trigger per second.

8.2 Results

Even though the presented case study is a comparatively small segment of an
actual automotive system, the possible number of architectural alternatives is
415 ≈ 1.07 · 109 (assuming maximum redundancy level of 3), which is too large

64 I. Meedeniya et al.

Table 1. Parameters of components and communication links

Comp q0 λc ec tc ei

ID (mJ) (ms) (mW)
0 0 4 · 10−6 20 33 2
1 0 6 · 10−6 10 30 1
2 0.01 5 · 10−6 20 10 2
3 0 8 · 10−6 25 33 2.5
4 0.17 8 · 10−6 30 10 3
5 0.17 8 · 10−6 30 10 3
6 0.17 8 · 10−6 40 10 4
7 0.17 8 · 10−6 40 10 4
8 0.01 5 · 10−6 10 20 1
9 0 5 · 10−6 10 20 1
10 0 5 · 10−6 20 33 2
11 0 4 · 10−6 30 28 3
12 0 7 · 10−6 40 28 4
13 0.15 3 · 10−6 50 33 5
14 0.15 3 · 10−6 40 33 4

Trans Prob. λl el tl

ci → cj p(ci, cj) (mJ) (ms)
0 → 7 0.5 4 · 10−5 40 40
0 → 6 0.5 5 · 10−5 40 40
1 → 3 1 6 · 10−5 60 10
2 → 1 0.75 5 · 10−5 60 30
3 → 0 1 4 · 10−5 35 30
4 → 0 0.7 4 · 10−5 60 30
4 → 3 0.3 5 · 10−5 60 30
5 → 0 0.7 3 · 10−5 40 30
5 → 3 0.3 5 · 10−5 50 40
2 → 9 0.25 6 · 10−5 30 40
8 → 9 0.6 8 · 10−5 50 30
8 → 10 0.4 12 · 10−5 40 30
9 → 0 0.2 4 · 10−5 20 10
9 → 11 0.4 5 · 10−5 20 10
9 → 12 0.6 5 · 10−5 30 10
10 → 9 1 6 · 10−5 50 20
11 → 12 1 8 · 10−5 50 20
13 → 10 0.5 10 · 10−5 20 40
13 → 11 0.5 12 · 10−5 20 40
14 → 10 0.5 4 · 10−5 30 40
14 → 11 0.5 5 · 10−5 45 40

to be traversed with an exact algorithm. Therefore we employed the NSGA (see
Section 6) as a meta-heuristic to obtain a near-optimal solutions in practically
affordable time frame.

The execution of the algorithm was set to 25 000 function evaluations, and
performed under a settings on a dual-core 2.26 GHz processor computer. The
algorithm took 7 seconds for the 25 000 function evaluations and generated
193 non-dominated solution architectures. The distribution of the near-optimal
solutions is graphically represented in Figure 4. The prevalence of the solutions in
the objective domain, together with their non-dominated trade-offs are depicted
in the graph. The designers are provided this set to choose the desired solution
based on their utility (trade-off preference of reliability/energy consumption).

Table 2 illustrates two closely related non-dominated solutions generated
by the optimization process. The arrays in the second column represent the

0.999965

0.999970

0.999975

0.999980

0.999985

0.999990

0.999995

1.000000

 500 600 700 800 900 1000 1100 1200

R
el

ia
bi

lit
y

(p
er

 h
ou

r)

Energy Consumption (J per hour)

Fig. 4. Distribution of non-dominated solutions

Reliability and Energy Optimization for Embedded Systems 65

Table 2. Example of two non-dominated solutions

Solution Redundancy Allocation Reliability Energy
(h−1) Consumption(J/h)

A [1,0,0,1,1,1,0,0,0,1,1,1,0,1,1] 0.99999828 973.79
B [1,0,0,1,1,1,0,1,1,1,1,1,1,1,1] 0.99999948 1072.66

redundancy levels for the components (subsystems) ordered by their ID. Note
that the reliabilities of the two solutions are very similar while the energy con-
sumption of B is approximately 100 J/h lower than of A. It should be highlighted
that the non-obvious change from solution A to solution B has significantly re-
duced the energy consumption for a very small trade-off of reliability, which
would definitely be an interesting information for the system designer.

9 Conclusions and Future Work

In this paper, we have formulated the models for estimating reliability and en-
ergy consumption at an architectural level, and combined the two quality at-
tributes in optimizing the redundancy levels of system components. The energy
consumption model, formulated in terms of a Markov Reward Model, builds on
the expected number of visits in obtaining a point estimate for the accumulated
state and impulse reward. The accumulated reward together with the energy
consumed in components’ idle states then characterizes system energy consump-
tion. The reliability evaluation model extends the Kubat’s model [26], applying
the concept of subsystems and expected number of visits of system elements.
The model is extended to consider also the impact of communication elements
of the system. As a result, both estimation techniques enable quantification of
the impact of critical design decision on reliability and energy consumption.
We have employed this for automatically identifying architecture specification
with optimal redundancy level to satisfy both quality attributes. For this iden-
tification, the redundancy allocation problem is solved with a multi-objective
optimization strategy. We have implemented the architecture evaluation models
and used NSGA to find near-optimal architecture solutions. An automotive case
study of a composite system of Anti-lock Brake System (ABS) and Adaptive
Cruise Control (ACC) has been used for the validation of our approach.

In future work, we would like to extend the set of investigated design decisions.
In addition to the allocation of redundancy levels, also deployment decisions
for software components and selection of appropriate architectural elements is
interesting. Furthermore, we aim to investigate different optimization strategies
such as Ant Colony Strategies, Tabu Search, etc., to compare which of them
works better for which problem formulation.

Acknowledgment

This original research was proudly supported by the Commonwealth of Australia,
through the Cooperative Research Center for Advanced Automotive Technology

66 I. Meedeniya et al.

(projects C4-501: Safe and Reliable Integration and Deployment Architectures
for Automotive Software Systems and C4-509: Dependability optimization on
architectural level of system design).

References

1. Goševa-Popstojanova, K., Trivedi, K.S.: Architecture-based approach to reliability
assessment of software systems. Performance Evaluation 45(2-3), 179–204 (2001)

2. Benini, L., Bogliolo, A., Micheli, G.D.: A survey of design techniques for system-
level dynamic power management. IEEE Trans. VLSI Syst. 8(3), 299–316 (2000)

3. Aydin, H., Melhem, R., Mossé, D., Mej́ıa-Alvarez, P.: Dynamic and aggressive
scheduling techniques for power-aware real-time systems. In: Real-Time Systems
Symposium, pp. 95–105. IEEE Computer Society, Los Alamitos (2001)

4. Coit, D.W., Smith, A.E.: Reliability optimization of series-parallel systems using
a genetic algorithm. IEEE Transactions on Reliability 45(2), 225–266 (1996)

5. Kulturel-Konak, S., Smith, A.E., Coit, D.W.: Efficiently solving the redundancy
allocation problem using tabu search. IIE Transactions 35(6), 515–526 (2003)

6. Grunske, L., Lindsay, P.A., Bondarev, E., Papadopoulos, Y., Parker, D.: An out-
line of an architecture-based method for optimizing dependability attributes of
software-intensive systems. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.)
Architecting Dependable Systems IV. LNCS, vol. 4615, pp. 188–209. Springer,
Heidelberg (2007)

7. Zhu, D., Melhem, R.G., Mossé, D.: The effects of energy management on reliability
in real-time embedded systems. In: International Conference on Computer-Aided
Design, pp. 35–40. IEEE Computer Society/ACM (2004)

8. Pop, P., Poulsen, K.H., Izosimov, V., Eles, P.: Scheduling and voltage scaling for
energy/reliability trade-offs in fault-tolerant time-triggered embedded systems. In:
International Conference on Hardware/Software Codesign and System Synthesis,
pp. 233–238. ACM, New York (2007)

9. Bertozzi, D., Benini, L., Micheli, G.D.: Energy-reliability trade-off for NoCs. In:
Networks on Chip, pp. 107–129. Springer, US (2003)

10. Aleti, A., Björnander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: An extendable
tool for architecture optimization of AADL models. In: Model-based Methodologies
for Pervasive and Embedded Software, pp. 61–71. IEEE Computer Society Press,
Los Alamitos (2009)

11. Benini, L., Micheli, G.D.: Powering networks on chips. In: International Symposium
on Systems Synthesis, pp. 33–38 (2001)

12. Simunic, T., Benini, L., Micheli, G.D.: Energy-efficient design of battery-powered
embedded systems. IEEE Trans. VLSI Syst. 9(1), 15–28 (2001)

13. Hong, I., Kirovski, D., Qu, G., Potkonjak, M., Srivastava, M.B.: Power optimization
of variable-voltage core-based systems. IEEE Trans. on CAD of Integrated Circuits
and Systems 18(12), 1702–1714 (1999)

14. Lu, Y.H., Simunic, T., Micheli, G.D.: Software controlled power management. In:
International Workshop on Hardware/Software Codesign, pp. 157–161 (1999)

15. Seo, C., Edwards, G., Malek, S., Medvidovic, N.: A framework for estimating the
impact of a distributed software system’s architectural style on its energy consump-
tion. In: Working IEEE/IFIP Conference on Software Architecture, pp. 277–280.
IEEE Computer Society, Los Alamitos (2008)

Reliability and Energy Optimization for Embedded Systems 67

16. Qiu, Q., Pedram, M.: Dynamic power management based on continuous-time
markov decision processes. In: Design Automation Conference, pp. 555–561. ACM,
New York (1999)

17. Vijaykrishnan, N., Kandemir, M.T., Irwin, M.J., Kim, H.S., Ye, W.: Energy-driven
integrated hardware-software optimizations using simplepower. In: International
Symposium on Computer Architecture, pp. 95–106 (2000)

18. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. Prentice-Hall, Englewood Cliffs (1982)

19. Cloth, L., Katoen, J.P., Khattri, M., Pulungan, R.: Model checking markov reward
models with impulse rewards. In: Dependable Systems and Networks, pp. 722–731.
IEEE Comp. Society, Los Alamitos (2005)

20. Cloth, L., Jongerden, M.R., Haverkort, B.R.: Computing battery lifetime distribu-
tions. In: Dependable Systems and Networks, pp. 780–789. IEEE Comp. Society,
Los Alamitos (2007)

21. Coit, D.W., Smith, A.E.: Reliability optimization of series-parallel systems using
a genetic algorithm. IEEE Transactions on Reliability 45(2), 254–260 (1996)

22. Liang, Y.C., Smith, A.E.: An ant system approach to redundancy allocation. In:
Congress on Evolutionary Computation, pp. 1478–1484. IEEE, Los Alamitos (1999)

23. Grunske, L.: Identifying “good” architectural design alternatives with multi-
objective optimization strategies. In: International Conference on Software En-
gineering, ICSE, pp. 849–852. ACM, New York (2006)

24. Zhang, W., Kandemir, M., Sivasubramaniam, A., Irwin, M.J.: Performance, en-
ergy, and reliability tradeoffs in replicating hot cache lines. In: Proceedings of the
International Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES 2003), pp. 309–317. ACM Press, New York (2003)

25. Perillo, M.A., Heinzelman, W.B.: Optimal sensor management under energy and
reliability constraints. IEEE Wireless Communications, 1621–1626 (2003)

26. Kubat, P.: Assessing reliability of modular software. Operations Research Let-
ters 8(1), 35–41 (1989)

27. Nelson, V.P., Carroll, B.: Fault-Tolerant Computing. IEEE Computer Society
Press, Los Alamitos (1987)

28. Katoen, J.P., Khattri, M., Zapreev, S.I.: A markov reward model checker. In: In-
ternational Conference on the Quantitative Evaluation of Systems(QEST), pp.
243–244. IEEE Computer Society Press, Los Alamitos (2005)

29. Shatz, S.M., Wang, J.P., Goto, M.: Task allocation for maximizing reliability of
distributed computer systems. IEEE Trans. on Comp. 41(9), 1156–1168 (1992)

30. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation 2(3), 221–248 (1995)

31. Fredriksson, J., Nolte, T., Nolin, M., Schmidt, H.: Contract-based reusable worst-
case execution time estimate. In: The International Conference on Embedded and
Real-Time Computing Systems and Applications, pp. 39–46 (2007)

32. Grunske, L.: Towards an Integration of Standard Component-Based Safety Eval-
uation Techniques with SaveCCM. In: Hofmeister, C., Crnković, I., Reussner, R.
(eds.) QoSA 2006. LNCS, vol. 4214, pp. 199–213. Springer, Heidelberg (2006)

33. Assayad, I., Girault, A., Kalla, H.: A bi-criteria scheduling heuristic for distributed
embedded systems under reliability and real-time constraints. In: Dependable Sys-
tems and Networks, pp. 347–356. IEEE Computer Society, Los Alamitos (2004)

34. Florentz, B., Huhn, M.: Embedded systems architecture: Evaluation and analysis.
In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214,
pp. 145–162. Springer, Heidelberg (2006)

QoS Driven Dynamic Binding in-the-many

Carlo Ghezzi, Alfredo Motta, Valerio Panzica La Manna,
and Giordano Tamburrelli

Politecnico di Milano
Dipartimento di Elettronica e Informazione, Deep-SE Group

Via Golgi 42 – 20133 Milano, Italy
{ghezzi,motta,panzica,tamburrelli}@elet.polimi.it

Abstract. Modern software systems are increasingly built out of ser-
vices that are developed, deployed, and operated by independent organi-
zations, which expose them for the use by potential clients. Services may
be directly invoked by clients. They may also be composed by service in-
tegrators, who in turn expose the composite artifact as a new service. We
envision a world in which multiple providers publish software artifacts
which compete with each other by implementing the same ”abstract”
service (i.e. they export the same API and provide the same functional-
ity), but offering different quality of service. Clients may therefore select
the most appropriate services targeting their requirements, among all the
competing alternatives, and they may do so dynamically. This situation
may be called dynamic binding in-the-many. Service selection may be
performed by clients by following different strategies, which may in turn
affect the overall quality of service invocations.

In this paper we address the problem of analyzing and comparing
different service selection strategies and we define a framework to model
the different scenarios. Furthermore, we report on quantitative analyses
through simulations of the modeled scenarios, highlighting advantages
and limitations of each solution.

1 Introduction

Software is rapidly changing in the way it is developed, deployed, operated, and
maintained. Applications are often built by integrating components that are pro-
duced by independent organizations, or by personalizing and adapting general-
ized frameworks, rather than developing new solutions in-house and from scratch.
Increasingly, applications are built by integrating and composing services that
are developed, deployed, operated, and maintained by separate organizations,
which offer them as services on the market. Services may be invoked directly by
clients through some standardized protocols. They may also be composed and
integrated by brokers to provide added-value services that are–in turn–exposed
for use by potential clients. The long-term vision of service-oriented comput-
ing (SOC) is that Software as a Service is publicized in an open marketplace
through registries, which contain the service descriptions that may be of interest
for potential clients, and then invoked directly as needed [9].

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, pp. 68–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

QoS Driven Dynamic Binding in-the-many 69

Another key aspect of modern software is its continuous change. Traditionally,
change is primarily due to changing requirements, which–in turn–occur because
of changes in the business world. Increasingly, however, software is becoming
pervasive, and ubiquitous application settings are becoming more and more com-
mon. In this context, dynamic environmental change is a dominant factor. It is
therefore necessary to develop solutions that may adapt to continuous changes
that may arise dynamically, as an application is running and providing service.
In conclusion, software increasingly lives in a dynamic and open world, and this
poses new challenges to the way it is developed, operated, and evolved [1].

This paper deals with the SOC setting. Although in the current stage most
existing approaches are still rather static, continuous evolution is intrinsic in
SOC and will play a stronger role in the future. In our work, we envision a
world that is fully populated by services that are offered in an open service
marketplace. Multiple providers publish software artifacts which compete with
each other, possibly implementing the same ”abstract” service (i.e. they export
the same API, which is advertised in registries) but offering different quality of
service. Quality may refer to several factors, such as performance, reliability, or
cost-per-use. Clients may therefore select the most appropriate services target-
ing their requirements, among all the competing alternatives, and they may do
so dynamically. To support this dynamism, we assume that application compo-
nents that use external services do not bind to them statically, but rather refer to
the required external services through a required interface. External services are
therefore viewed as abstract resources, and the binding to a specific, concrete
service may occur dynamically. Since many possible concrete services may be
selected for each abstract service, this may be called binding in-the-many. The
main advantage of a late binding regime is its flexibility. A client may at any time
refer to the best possible server, where best is defined by some appropriate strat-
egy that may take into account the current state of the world and may maximize
the ability of the resulting solution to satisfy the evolving requirements.

This paper focuses on how to support clients in performing dynamic binding
to services. In particular, it deals with the service selection problem where clients
try to bind to the external services that can ensure the best results in terms of
performance. In principle, performance attributes might be publicly available
as part of the published description of quality of service (QoS) that is stored in
registries [11]. Clients might use this information to drive their binding policy. In
practice, publication of QoS data is unlikely to happen, and even if it does, the
published figures might not correspond to the real values. Clients may thus base
their binding strategies on the real performance data observed in practice. In
this work we describe a first step towards the development of a framework that
supports a quantitative analysis of the different strategies that may be followed
by clients to perform dynamic binding.

The paper is organized as follows: Section 2 illustrates the service selection
problem and the assumptions under which we analyze possible solutions. Sec-
tion 3 describes different service selection strategies. Section 4 illustrates the
simulations we performed to evaluate the different strategies. Section 5 discusses

70 C. Ghezzi et al.

related work. Section 6 concludes the paper summarizing the current limitations
of our approach and how they can be tackled by future work.

2 Problem Statement: Assumptions and Formalization

In this section we formalize the service selection problem using an appropriate
stochastic framework. For simplicity, we assume that services can be grouped
in equivalence classes (called concrete target sets CTSs), where all services in a
CTS provide the same interface and implement the same functionality. In reality,
equivalent services may actually differ in details of their interface, but we can
assume that suitable adaptation mechanisms allow clients to abstract away from
these technical differences. Adaptation techniques are beyond the scope of this
paper but many existing techniques, such as [3,8], tackle this research problem.
By relying on these assumptions, any two elements in a CTS are substitutable to
one another, since they implement the same abstract service. Any of them can
be bound to an abstract service invocation performed by a client, thus reifying
a specific dynamic binding. They may differ, however, in the quality of service
they provide.

Given a CTS, which groups all substitutable implementations of a certain
abstract service, we analyze the behavior of competing clients, which need to
bind to a concrete service offered by a specific provider to submit their requests.
We assume services to be stateless and interactions between clients and services
to be of type request-response. For simplicity, we measure the execution time
of a service invocation as the overall time observed by the client, without fur-
ther decomposing it into transmission time and service processing time. This
simplifying assumption will be removed in future research.

The problem may be formalized as a multi-client multi-provider stochastic
framework, which is a 6-tuple:

< C, P, F1, F2, F3, SS >

where:

– C =< c1, ..., cn > is a set of clients, all of which use the same abstract
service,

– P =< p1, ..., pm > is a concrete target set of substitutable services,
– F1 : C × N → [0, 1] is a probabilistic request submission function,
– F2 : C × N → R is a probabilistic request payload function,
– F3 : P × N → R is a service processing rate function,
– SS is a service provider selection strategy.

We assume time to be modeled discretely by Natural numbers in functions F1,
F2, and F3. The intuitive interpretation of the above functions is provided
below. Providers are characterized by their time-varying processing rate F3, a
real number, which defines the speed at which providers process requests coming
from clients. Each client, at each time instant, is either idle or busy. Clients that

QoS Driven Dynamic Binding in-the-many 71

are busy wait for the completion of their last request. Clients that are idle may
submit a new request with probability given by F1. Whenever a new request is
generated, the client selects one of the available service providers according to
the strategy SS. Function F2 describes the payload of a service request, issued by
a certain client at a certain time. The payload is a real number that expresses
the complexity of the submitted request. It is used to normalize the service’s
response time to the complexity of the requests issued by the client. If a client
c submits a request with payload F2(c, tstart) at time tstart and the response is
received at time tstop, we can compute the service’s timeliness as:

T = (tstop − tstart)/F2(c, tstart)

Any conceivable strategies used by clients, including the ones we will describe and
analyze in this paper, use historical information collected by the client during
its past interactions with external services. Such historical information reifies
the client’s experience and its view of the external world. Each client c traces
its history into a vector, the efficiency estimator eec. The length of this vector
corresponds to the cardinality of CTS, and the ith entry in the vector eec(i) is a
positive real value that represents the client’s estimate of the current efficiency
of service provider i. In addition to eec , client c has a vector jdc, which stores
the number of completed requests it submitted to each of the service providers,
since the beginning of time. When the request is completed in normalized time
T , vector eec associated with client c is updated as follows:

eec(p) := W · T + (1 − W)eec(p)

where W is a real value in the interval [0, 1], whose actual value depends on
jdc(p) using the following formula:

W = w + (1 − w)/jdc(p)

In the above formula w is a real-valued constant in the interval [0, 1]. The term
(1−w)/jdc(p) is a correcting factor, whose effect becomes negligible when jdc(p)
is sufficiently high. Other functions may be used to update eec and could be
explored in a future work.

As we assumed, any request generated by clients may be bound to any service
provider of a CTS. We may further assume that service providers handle the
clients’ requests sequentially, for example following a FIFO policy (this assump-
tion can be easily relaxed if necessary). The response time of a certain provider
p at a given time t, as observed by clients, obviously deteriorates as the queue
of clients’ requests waiting to be served grows.

3 Binding Strategies

In this section we illustrate six possible selection strategies through the concepts
introduced in the previous section. Each of these strategies defines the binding

72 C. Ghezzi et al.

between the services and clients which issue requests. In particular, two of them
(the Minimum and the Probabilistic strategy) are based on autonomous decisions
made by each client, which selects the target service only on the basis of its
own locally available information. Conversely, the Collaborative strategy allows
a simple form of coordination among clients. In the Proxy-based approaches the
service binding is delegated to a proxy, which assigns providers to clients based
on its global knowledge of the current situation. Two strategies are analyzed in
this case: Proxy Minimum and Proxy Probabilistic. Finally, we also analyze an
Ideal strategy, which assumes an ideal case where all the clients have a perfect
instantaneous knowledge on the real services’ performance. This strategy, even
if not applicable in a real implementation, has been studied in our experiments
to show how far can we go if each client tries to maximize its own performance
goals in isolation. As introduced in Section 1 we focus on performance expressed
in terms of response time. In the following, we describe the selection strategies
and we anticipate some remarks on their practical effectiveness. An empirical
assessment is reported later in section 4.

3.1 Minimum Strategy

The Minimum Strategy (MS) is the simplest selection strategy in which each
client selects the service provider with the minimum locally estimated expected
response time. This information is derived by the efficiency estimator eec:

selected provider = p ∈ P |(minp∈P {eec(p)})
This strategy suffers from a number of drawbacks, since eec (1) is different for
each client (it depends on its own history) and (2) contains information that
may be outdated, because each value eec(p) is re-computed only when provider
p is used.

This strategy has limitations also from the provider’s perspective. In fact, the
provider offering best performance figure is likely to be selected by the majority
of clients, and hence its performance may deteriorate because of the increased
number of issued requests.

3.2 Ideal Strategy

The Ideal Strategy (IS) is a benchmarking strategy used only for the comparison
with other strategies. It is based on the following assumptions:

Each time a client needs to select a service, it knows:

– The number of pending requests for each provider p, pr(p).
– The processing rate of each service provider p, R(p).

IS selects the concrete service p which exhibits the maximum value of the current
processing capacity cr, defined as:

cr(p) =
R(p)
pr(p)

This strategy is ideal because it assumes complete and accurate knowledge of
the available concrete services. It can be seen as an extreme optimal case of MS.

QoS Driven Dynamic Binding in-the-many 73

3.3 Probabilistic Strategy

The Probabilistic Strategy (PS) performs service selection with a certain prob-
ability. PS uses a probabilistic function based on the efficiency estimator eec.

We first define the following function:

pd′c(p) :=

{
eec(p)−n if jdc(p) > 0,
E[eec]−n if jdc(p) = 0

where n is a positive real-valued parameter and E[eec] represents the average of
the values of eec(p) over all the providers that were used in the past. To turn
this value into a probability function we define the pdc as the normalized version
of pd′c:

pdc(p) :=
pd′c(p)

σ

where σ =
∑

p∈P pd′c(p)
The function pdc depends on n: the larger n is, the higher the probability to

select providers with smaller estimated response time. In extreme cases, where
the value of n is very high (e.g., 20), the client behaves like in the Minimum
Strategy, always choosing the provider with the best record in eec. Using the
terminology of reinforcement learning, parameter n defines how much a client is
explorative in its search. The intuitive advantages of using PS over MS, confirmed
by the experiments described later in section 4 are:

1. It guarantees a better load balancing of clients among available providers. In
fact, by construction, the probability defines a distribution of client requests
with respect to providers. This reduces the size of their associated queues
and improves the average response time.

2. It improves the efficiency of the choice with respect to the MS. According to
MS, a client performs the same binding to the provider p until the estimated
response time of the selected provider (stored in eec(p)) exceeds the value of
the estimate of another provider q. PS is less conservative, and may select a
new provider q earlier, avoiding to experience performance deterioration of
provider p.

3.4 Collaborative Strategy

According to both MS and PS, the pth entry in the efficiency estimator is up-
dated only if p is used. Thus both strategies are based on information (kept in
eec), which may not reflect the current situation of available concrete services.
Because the ideal strategy cannot be implemented, we try to achieve a better
view of the current performance offered by concrete services through the intro-
duction of a simple form of communication among clients in PS. This yields a
new algorithm, called Collaborative Strategy (CS). In CS, the set of clients C
is partitioned in classes (NCs) according to a near-to relation. We assume that

74 C. Ghezzi et al.

each client can communicate only with the clients belonging to the same NC.
The communication consists of sharing all the efficiency estimators of clients in
a NC in order to derive a new vector called near-to estimator ne, computed as
the average of all the ees. On the basis of ne, the client performs its choice in
the same way as in MS or in PS. Each client c keeps its own eec and commu-
nicates with other clients whenever a new binding occurs, by recomputing ne.
By grouping together a set of clients which perform their decision on the basis
of a common vector we can mitigate the problem arising in PS due to outdated
records in eec. Two possible collaborative strategies are thus possible: minimum
value based and probabilistic. We later show an assessment of the latter, which
outperforms the former. In fact, the Collaborative Strategy, as an extended ver-
sion of PS, inherits all the advantages of PS over MS in terms of efficiency and
fair load balancing.

3.5 Proxy-Based Approach

We can try to achieve a global view of the world by introducing a decoupling
layer between the clients and the concrete services, i.e. a proxy. In proxy-based
strategies a proxy is responsible for: (1) selecting the best concrete service within
CTS and (2) linking the selected service with the client that issued the request.
The proxy can be considered as a binding establishing service. In a configuration
without a proxy, the client invokes the selected concrete service directly. To do
so, the client has to take into consideration all the different interfaces offered
by the various providers to invoke the service, and must implement a particu-
lar mapping from the abstract interface into the concrete interfaces offered by
concrete services, if needed. The proxy-based solution simplifies the way clients
interact with concrete services by letting the proxy handle the nitty-gritty details
of the interaction and select the concrete service on their behalf. Furthermore,
the proxy can be seen as a load balancer, which tries to distribute load to get
the best response time on behalf of clients.

Beside keeping trace of tstart and tstop for each requests submitted by clients,
the proxy is also in charge of computing two vectors:

– The efficiency estimator ee which records the history of interaction with
all concrete services. Unlike the previous strategies, ee records information
about response time for all clients.

– The pending requests vector pr, which collects all the pending requests sent
to each provider.

The main advantage of proxy based solutions is that a single efficiency estimator,
which is shared by all clients, is updated more frequently than in the other
approaches. For this reason a more accurate performance estimate is obtained
for the concrete services. We investigate two possible service selection strategies,
Proxy Minimum Strategy (PMS) and Proxy Probabilistic Strategy (PPS) which
represent a modified version of the strategies described previously.

The reader might suspect that proxy-based strategies require a centralized
component acting as a proxy, thus generating a bottleneck and a single point

QoS Driven Dynamic Binding in-the-many 75

of failure. This, however, is only a logical view of the architecture. The proxy
layer may in fact be physically distributed over a number of nodes for example
connected in a token ring structure. Each node of the ring contains:

– the centralized efficiency estimator ee computed as the average of all the eei

locally stored in each proxy.
– the pr as the sum of all the pri maintained by each proxy.

However this is just one possible architecture that has not yet been validated
by concrete experiments. The appropriate token speed and the impact of com-
munication delays are beyond the scope of this paper and must be investigated.
Future work will focus on these issues.

4 Validation

In this section we illustrate the results obtained by simulating in Matlab the
selection strategies introduced in Section 3, to draw some conclusions about
their effectiveness.

Given the probabilistic nature of our framework every simulation has been
performed 100 times and then the average of results has been considered. We
used the following parameters for our simulations:

– #C = 100, number of clients.
– #P = 5, number of service providers.
– time interval= 3 hours.

Each provider has a certain processing rate F3 that may assume one of the
values in the set [40, 20, 10]. The value of the payloads of service invocation F2
has a uniform distribution between 50 and 150. Finally for CS we also define the
number (5) and the size (20 clients) of the NC classes for all the simulations.
In order to compare the different service selection strategies, we focus on service
timeliness T . That is, we evaluate the different selection strategies by comparing
the resulting values of T , averaged over all requests.

For space reasons, we cannot provide an extensive report on the experimental
results we obtained through simulation. In particular, we will only summarize
some basic findings regarding parameter tuning in Section 4.1 while section 4.2
will give some detail insights through charts on the different selection strategies.

4.1 Parameters Tuning

The selection strategies presented in Section 3 are characterized by two internal
parameters which may affect the selection behavior and the resulting efficiency:
(1) w, which defines how to update ee, and affects all the strategies; (2) n,
which defines the probability distribution of selection, which affects probabilistic
strategies. On the basis of preliminary experiments, concrete values of these
parameters are derived and commented in this subsection.

76 C. Ghezzi et al.

A related study on the importance of such parameters in the context of multi-
agent load balancing is described in [10].

Parameter w determines the importance of the last normalized response time
with respect to the previous one. The greater w is, the more weight is given to
the current record. Given these premises it is interesting to understand how the
efficiency of the strategies is influenced by this parameter in different settings of
the load of the system.

If the load of the system is fixed and equally distributed among all clients,
the setting is completely static and at any invocation the current response time
record is the same as the previous. In this case, both pure client-based (MS, PS,
IS) and proxy-based strategies (PMS, PPS) are independent of w. Instead, if the
load generated by clients changes dynamically, client-based strategies perform
better with higher values of w (w = 0.9), because in such cases the recently
experienced timeliness values weigh more than the previous in the update of
ee. Proxy-based strategies are instead less dependent on w, since ee intrinsically
keeps a more current view of services’ performance.

It is also interesting to understand how n influences the choices of PS and
PPS. This may be used to find a good balance between an explorative and a
conservative behavior. In a situation of fixed load, PS achieves a better result
with large values of n. This is due to the fact that, whenever there are no changes
in the dynamics of the system, it is obviously better to always choose the best
provider, hence to reduce PS to MS. On the other hand, if the load is variable
when n is too high the results are worse. The same results were obtained for
PPS. Good values of n are in the middle of the interval [1 10]. If n is too high,
PPS tends not to change the already selected provider p, so if the processing
capacity of p decreases, performance may deteriorate. On the other hand, if n
is too small PPS does not correctly exploit the knowledge given by ee and pr
performing a random selection.

In conclusion, w = 0.9 and n = 6 are the values used in the simulations
described in 4.2.

4.2 Empirical Results

We performed experiments to evaluate the six binding strategies discussed in
Section 3. Experiments focus on the following cases:

1. Fixed provider processing rates
2. Variable provider processing rates
3. Heterogeneous client populations

Fixed provider processing rates. In our first experiment (Figure 1) we compare
the performance of the six strategies focusing on the case where all the clients
have the same request submission function F1 and the providers have a constant
processing rate F3. We fixed F1 for the set of clients to one of the values in the
set [0.001, 0.003, 0.010], and this value is kept constant over time. Function F3
for each of the available concrete services, [p1, p2, p3, p4, p5] assumes the values
[40, 20, 20, 10, 10], respectively.

QoS Driven Dynamic Binding in-the-many 77

Fig. 1. Performance of selection strategies: fixed provider processing rate and fixed
client load

We show the timeliness results provided by the simulation over all the requests
made by the clients to the service providers using a certain strategy. Thus, the
lowest the bar, the better is the performance of the strategy. From Figure 1 we
can draw some conclusions:

– PS performs better than MS, especially as the load of client submissions
increases. This is fairly intuitive because all the clients tend to select the
same provider that is performing well in that specific instant of time, with
the side effect that some clients will wait in a long queue. PS, thanks to its
exploration characteristics does not have the same problems and performs
reasonably well.

– PS outperforms also CS. NC classes tend to reproduce the same conservative
behavior that characterize MS.

– With high load, PPS outperforms IS. Thus, despite its name, IS does not
yield the ideal result. Indeed, although IS has a global view of the cur-
rent providers’ performance, it misses a crucial piece of global information,
namely the current requests issued by the other clients. Proxy-based strate-
gies, on the other hand, are aware of the current load exerted by clients.

Similar conclusions can be derived by examining Figure 2, which illustrates a
situation where clients change their behavior. Specifically, the load is variable
among the values [0.001, 0.003, 0.01]: during a 3 hour simulation, the request
submission function F1(c, t) of each client randomly changes every 20 minutes

78 C. Ghezzi et al.

Fig. 2. Performance of selection strategies: fixed provider processing rate and variable
client load

and assumes one of the previously specified values. The 3-hour simulation shows
slightly different results (but a similar pattern) depending on the initial load cho-
sen for the simulation. A larger simulation period would smooth the differences
due to the initial load.
Variable provider processing rates. In Figures 1 and 2 we have seen how the
different selection strategies behave depending on changes in the load generated
by clients. We now show what happens when concrete services change their
behaviors; e.g., a provider decreases or increases its performances. This is exactly
the case of Figure 3 where every 20 minutes we change the processing rate of
the service providers, which randomly takes a value in the set [40; 20; 10], and
this value is kept constant until the next random selection. The results show
that the on-client selection strategies (MS, PS and CS) suffer most the changing
environment because they do not have enough information for timely reaction.
IS turns out to deliver the best results thanks to its complete knowledge of the
instantaneous changes in the world. However, PPS still remains very close to IS
and it gives evidence of its adaptive capability.

Figure 4 shows the results of a scenario with variable client load in addition to
the changing processing rate of the providers. This change increases the unpre-
dictability of the system, but the different strategies behave like in the previous
case, although here PPS performs better than IS.

Heterogeneous client populations. In the next examples we are going to relax
the hypothesis that all the clients use the same request submission function F1.

QoS Driven Dynamic Binding in-the-many 79

Fig. 3. Performance of selection strategies: variable provider processing rate and fixed
client load

Fig. 4. Performance of selection strategies: variable provider processing rate and vari-
able client load

80 C. Ghezzi et al.

Specifically, we consider the set of clients C to be partitioned in two popula-
tions: the first, called C1, which submits a low number of requests (F1(c, t) =
0, 001 ∀c ∈ C1, t ∈ N) and the second, called C2, which submits a higher number
of requests (F1(c, t) = 0, 01 ∀c ∈ C2, t ∈ N).

Figure 5 shows the performance of C1 and C2 using the different strategies
in a setting where the processing rate of the providers is fixed.

As shown in Figure 5, the two different classes perform equally in any of the ser-
vice selection strategies. This is fairly intuitive because the processing capacities
of the providers and the load of the system are fixed. As a consequence, the perfor-
mance estimation, represented by the efficiency estimator ee, is always updated.

The last results we report (Fig. 6) illustrate the case where we modify the envi-
ronment at run-time by changing the processing rate F3 of the service providers
in order to see if the class C1 of clients that submit requests with less frequency
still performs like the class of clients C2. Figure 6 shows that the clients of class
C2 (high load) that are using MS, CS and PS perform better than the clients
belonging to class C1 (low load). This shows that the more one issues requests
to the service providers, the more local efficiency estimators are updated, hence
the closer one gets to selecting the best service provider. However this is an
undesirable behavior, because in principle a fair strategy should not distinguish
clients with different submission rates. Proxy-based approaches (both PMS and
PPS) solve this problem. In fact the ee vector is the same for all the clients
and it is stored in the proxy, and obviously the two classes of clients will have
the same performance. Notice also that IS, thanks to its complete knowledge,
is always up-to-date, thus even if clients of class C1 submit less requests than
clients of class C2, it always chooses the best service provider.

5 Related Work

The problem of supporting automatic service composition has become a hot re-
search theme in the recent years. Many recent papers deal with service selection,
focusing on particular aspects that differ from this study.

Most of them concentrate on the Web Service scenario where delivering QoS
is a critical and significant challenge because of its dynamic and unpredictable
nature. Service composition here is done using the performances declared by the
external service provider assuming that those values do not change at run-time.
This is also the main difference with our research work, which does not rely on
declared performance data, but rather on values measured at run-time. In other
words we cannot assume that the declared level of performance is guaranteed. For
this reason, the strategies we propose automatically select the services at run-
time based on response time measurements which reflect the current situation.

In this context both Liu et al. [5] and Yu et al. [12] reason on how to satisfy
end-to-end QoS constraints by modeling service composition as a graph. The for-
mer solves the problem using a genetic algorithm which produces a set of paths
defining the optimal composition among services that satisfy the global QoS

QoS Driven Dynamic Binding in-the-many 81

Fig. 5. Service Selection strategies performances of two populations of clients: C1 (low
value of F1) and C2 (high value of F1). Providers have fixed processing rate.

Fig. 6. Service Selection strategies performances with two heterogeneous population
of clients: C1 (low value of F1) and C2 (high value of F1). Providers have variable
processing capacities.

82 C. Ghezzi et al.

constraints on the basis of declared parameters. The latter proposes a broker-
based architecture that can solve a multi-dimension multi-choice knapsack prob-
lem (MMKP) or a multi-constrained optimal path (MCOP) problem. We do not
analyse end-to-end QoS because we concentrate on the substitution of a single
service trying to optimize the expected performance of the new one.

Single service substitution is studied in [7], [4] and [6]. In [7] link analysis
is applied to rank the QoS of the available services. In [4] a centralized service
selector is proposed that collects user’s feedback in order to rank the services.
Finally, [6] relies on a centralized entity that ranks the available services using
a recommendation system which exploits the item based collaborative filtering
approach (see also [2]). None of these papers uses performance data to select
external services, as instead we discussed here.

Finally, an important aspect of service substitution is to identify possible
interaction mismatching [8] and to produce the correct mapping of the interfaces
[3]. These, however, are out of the scope of the work we described here.

6 Conclusions

In this paper we addressed the issue of dynamically reconfiguring a composite
service-based application in order to optimize its performance through dynamic
binding. We focused on a number of binding strategies and we evaluated them
via simulation. This is an initial but encouraging step towards understanding
dynamically adaptable software applications.

We plan to extend this work in a number of interesting directions. First, we
wish to refine our model and enrich its experimental assessment. For example, we
would like to improve its accuracy by decomposing the response time observed by
clients into network latency and service response time. Next, we wish to explore
a distributed architecture for the proxy-based strategies, to eliminate a possible
single point of failure that would arise in a centralized solution. Last, we wish to ex-
plore other reconfiguration strategies through which one can react to performance
violations, other than dynamic binding, which may restructure the internals of the
application or dynamically discover and add new service providers.

Acknowledgments

This research has been partially funded by the European Commission,
Programme IDEAS-ERC, Project 227977-SMScom and by Project Q-ImPrESS
(FP7-215013) funded under the European Union’s Seventh Framework Pro-
gramme (FP7).

References

1. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and chal-
lenges. Computer 39(10), 36–43 (2006)

2. Bianculli, D., Binder, W., Drago, L., Ghezzi, C.: Transparent reputation manage-
ment for composite web services. In: ICWS 2008, pp. 621–628. IEEE Computer
Society, Washington (2008)

QoS Driven Dynamic Binding in-the-many 83

3. Cavallaro, L., Di Nitto, E., Pradella, M.: An automatic approach to enable replace-
ment of conversational services. In: ICSOC/ServiceWave, pp. 159–174 (2009)

4. Huebscher, M.C., McCann, J.A.: Using real-time dependability in adaptive service
selection. In: Proceedings of the Joint International Conference ICAS-ICNS 2005.
76 p. IEEE Computer Society Press, Washington (2005)

5. Liu, S., Liu, Y., Jing, N., Tang, G., Tang, Y.: A dynamic web service selection
strategy with QoS global optimization based on multi-objective genetic algorithm.
In: Zhuge, H., Fox, G.C. (eds.) GCC 2005. LNCS, vol. 3795, pp. 84–89. Springer,
Heidelberg (2005)

6. Manikrao, U.S., Prabhakar, T.V.: Dynamic selection of web services with recom-
mendation system. In: NWESP 2005: Proceedings of the International Confer-
ence on Next Generation Web Services Practices, 117 p. IEEE Computer Society,
Washington (2005)

7. Mei, L., Chan, W.K., Tse, T.H.: An adaptive service selection approach to service
composition. In: ICWS 2008: Proceedings of the 2008 IEEE International Confer-
ence on Web Services, pp. 70–77. IEEE Computer Society, Washington (2008)

8. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: WWW, pp. 993–1002 (2007)

9. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly
dynamic, self-adaptive service-based applications. Automated Software Eng. 15(3-
4), 313–341 (2008)

10. Schaerf, A., Shoham, Y., Tennenholtz, M.: Adaptive load balancing: a study in
multi-agent learning. J. Artif. Int. Res. 2(1), 475–500 (1994)

11. Skene, J., Davide Lamanna, D., Emmerich, W.: Precise service level agreements.
In: ICSE 2004, pp. 179–188 (2004)

12. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Trans. Web 1(1), 6 (2007)

A Hybrid Approach for Multi-attribute QoS
Optimisation in Component Based

Software Systems

Anne Martens1, Danilo Ardagna2, Heiko Koziolek3,
Raffaela Mirandola2, and Ralf Reussner1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{martens,reussner}@kit.edu

2 Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano, Italy
{ardagna,mirandola}@elet.polimi.it
3 ABB Corporate Research, Ladenburg, Germany

heiko.koziolek@de.abb.com

Abstract. Design decisions for complex, component-based systems impact mul-
tiple quality of service (QoS) properties. Often, means to improve one quality
property deteriorate another one. In this scenario, selecting a good solution with
respect to a single quality attribute can lead to unacceptable results with respect
to the other quality attributes. A promising way to deal with this problem is to ex-
ploit multi-objective optimization where the objectives represent different qual-
ity attributes. The aim of these techniques is to devise a set of solutions, each of
which assures a trade-off between the conflicting qualities. To automate this task,
this paper proposes a combined use of analytical optimization techniques and
evolutionary algorithms to efficiently identify a significant set of design alterna-
tives, from which an architecture that best fits the different quality objectives can
be selected. The proposed approach can lead both to a reduction of development
costs and to an improvement of the quality of the final system. We demonstrate
the use of this approach on a simple case study.

1 Introduction

One of the today issues in software engineering is to find new effective ways to deal
intelligently with the increasing complexity of software-intensive computing system.
In this context a crucial role is played by the achievement of quality requirements, such
as performance and availability.

In recent decades, software architecture (SA) has emerged as an appropriate level
for dealing with software qualities [10,31] and several efforts have been devoted to the
definition of methods and tools able to evaluate quality at SA level (see, for example,
[3,25,15,31]). However, each method usually addresses a single quality attribute (e.g.,
performance or availability), while a major challenge in system development is find-
ing the best balance between different, possibly conflicting quality requirements that a
system has to meet and cost constraints (e.g., maximize performance and availability,
while minimizing cost).

For these multi-attribute problems, there is usually no single global solution, and
a promising way to deal with them is to exploit multi-objective optimisation [16,6]

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, pp. 84–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Hybrid Approach for Multi-attribute QoS Optimisation 85

where the objectives represent different quality attributes. The aim of these techniques
is to devise a set of solutions, called Pareto optimal solutions or Pareto front [16], each
of which assures a trade-off between the conflicting qualities. In other words, while
moving from one Pareto solution to another, there is a certain amount of sacrifice in
one objective(s) to achieve a certain amount of gain in the other(s). This activity is
time consuming, thus the software architect needs an automated method that efficiently
explores the architectural design space with respect to the multiple quality attributes.
Previous approaches in this direction use evolutionary algorithms [27], however, the
derived optimisation process is time-consuming.

To overcome these drawbacks, this paper proposes a method where different design
alternatives are automatically generated and evaluated for different quality attributes,
providing the software architect with a powerful decision making tool enabling the se-
lection of the SA that best fits multiple quality objectives. The proposed approach is
centered around a hybrid approach, where an initial SA of the system (fulfilling its
functional requirements) is taken as input. Based on this initial solution, a search prob-
lem is formulated by defining “degrees of freedom”. The identification of a significant
set of design alternatives is then based on a combined use of analytical optimisation
techniques and evolutionary algorithms [6]. This hybrid approach extends the work
presented in [27], introducing a step based on analytical optimisation whose goal is to
derive very efficiently an approximated Pareto front with respect to a simplified search
space. The obtained results are used as input candidates for an evolutionary optimisa-
tion of the original search problem. In this way, more accurate estimates for availability
and performance metrics and a larger Pareto optimal solution set can be obtained. The
advantages of this hybrid approach are shown in a case study.

The proposed method can lead both to a reduction of development costs and to an
improvement of the quality of the final system, because an automated and efficient
search is able to identify more and better design alternatives.

The remainder of the paper is organized as follows. Section 2 introduces the adopted
architectural model and quality prediction techniques. Section 3 describes the optimi-
sation process. Experimental results are presented in Section 4. Section 5 reviews other
literature proposals. Conclusions are finally drawn in Section 6.

2 Background: Architecture Modelling and Analyses

In this section, we present the architectural model and the existing quality analyses
methods our approach is based on. To quickly convey our contributed concepts to the
reader, we introduce an example system.

Our approach requires a component-based architecture model with performance,
availability, and costs annotations as input. Balsamo et al. [3] and Koziolek [25] have
surveyed many different methods for specifying performance models, and Smith and
Williams [31] have provided a set of guidelines on how to obtain performance models
during early development stages and on how to refine such models as the implementa-
tion progresses. For reliability, Gokhale [17] provides a survey.

In our approach, we adopt the Palladio Component Model (PCM) [5], but our ap-
proach could be extended to consider other architectural performance and availability

86 A. Martens et al.

models and analysis methods. The PCM is beneficial for our purposes as it is specifi-
cally designed for component-based systems. Thus, the PCM naturally supports many
architectural degrees of freedom (e.g., substituting components, changing component
allocation, etc.). Additionally, the model-driven capabilities of the PCM allow an easy
automated generation of alternative architecture candidates.

The example system in this paper is the so-called business reporting system (BRS),
which lets users retrieve reports and statistical data about running business processes
from a data base. It is loosely based on a real system [33]. Fig. 1 shows some parts
of the PCM model of the BRS visualised using annotated UML diagrams. It is a 4-tier
system consisting of several software components. In an open workload usage scenario,
requests arrive according to a Poisson process with a rate equal to 0.2 req/sec. Users
issue three types of requests, that lead to varying execution paths in the system.

Components are annotated with software cost (Cost) in Ke. The initial system is
deployed to four servers annotated by costs (HCost) in Ke, availability (HA) and pro-
cessing rate (PR) in GHz. Fig. 1 also shows an excerpt of the behaviour in the lower
half of the figure. The behaviour contains the CPU resource demands (demand in sec
on a 2.6GHz CPU, log normally distributed with coefficient of variation equal to 2)
and failure probabilities (FP) for actions. ExternalCallActions model calls to
other components. The components are allocated on four different servers. The com-
plete model can be found at [36].

In order to provide SAs with a priori performance and availability guarantees, if the
application include any loops, they are annotated with a discrete probability distribution
and an upper bound for their number of execution exists. In the following, we briefly
explain the analysis methods for the considered quality criteria performance, availabil-
ity, and costs:

WebServer

Reporting
Engine

Cache

Scheduler
Database

<<InternalAction>>
demand = 2
FP = 1.3E-2

<<InternalAction>>
demand = 4
FP = 2.6E-2

<<ExternalCallAction>>
IReporting.report

<<ExternalCallAction>>
IReporting.view

P(type ==
„view“)

P(type ==
„report“)

<<InternalAction>>
demand = 1.0
FP = 3.4E-5

<<InternalAction>>
demand = 0.3
FP = 9.8E-5

<<InternalAction>>
demand = 0.05
FP = 5.0E-5

P(detailedReport == true)P(detailedReport == false)

<<ExternalCallAction>>
IDB.getSimpleReport

<<ExternalCallAction>>
IDB.getDetailedReport

<<InternalAction>>
demand = 0.25
FP = 3.7E-3

<<ExternalCallAction>>
ICache.doCacheAccess

<<behaviour>><<behaviour>>
processRequests report

IReporting

IReporting

ICache

IDB

<<InternalAction>>
demand = 0.2
FP = 2.1E-5

<<behaviour>> getCachedData

<<InternalAction>>
demand = 0.3
FP = 5.0E-5

<<behaviour>> getDetailedReport

<<InternalAction>>
demand = 0.03
FP = 5.5E-5

<<behaviour>> getSimpleReport

view

detailed report

simple
report

Cost 3
Cost 2

Cost 5

Cost 2

Cost 3

HCost 3
HA 0.987
PR 2.6

HCost 3
HA 0.987
PR 2.6

HCost 3
HA 0.987
PR 2.6

HCost 3
HA 0.987
PR 2.6

S1 S2

S3
S4

1

Fig. 1. Business Reporting System: PCM instance of the case study system

A Hybrid Approach for Multi-attribute QoS Optimisation 87

– Performance: For the analytic optimisation, we model the software system by in-
troducing an M/G/1 queue for each physical server. For the evolutionary optimi-
sation, we use an automated transformation of PCM models into a discrete-event
simulation (SimuCom [5]) to derive response times. The performance model is in
the class of extended queueing networks, so that we can analyse models contain-
ing resource demands specified as arbitrary distribution functions. However, the
simulation can be time-consuming to derive stable results.

– Availability: For the analytic optimisation, we consider the well known serial/paral-
lel formula [2] applied to the PCM model. In particular, the availability is evaluated
by considering the set of components involved, the physical servers supporting the
execution, and the probability of invocations. For the evolutionary optimisation,
we use an automated transformation of PCM models into absorbing discrete time
Markov chains (DTMC) and solve them with the PCM Markov solver [8].

– Costs: We annotate constant costs to each component and each server configura-
tion. The software architect can choose whether costs values represent procurement
costs, total costs of ownership, or other. If a server specified in the model is not
used, i.e., no components are allocated to it, its costs do not add to the overall costs.
The goal of this simplistic model is to allow costs to be considered, not to provide
a sophisticated costs estimation technique. For the latter, existing costs estimation
techniques such as COCOMO II [7] could be integrated here to obtain more accu-
rate values.

Although the example in Fig. 1 is not particularly complicated, it is not obvious how to
change the architectural model efficiently to improve the quality properties. For exam-
ple, the software architect could increase the processing rate of server S1, which would
result in better performance but higher costs. The software architect could also change
the component allocation (45 = 1024 possibilities) or incorporate other component
specifications with different QoS attributes.

The design space for this example is huge. Manually checking the possible design al-
ternatives in a trial-and-error approach is laborious and error-prone. The software archi-
tect cannot easily create design alternatives that are even locally optimal for all quality
criteria. Finding global optima is practically impossible because it requires modelling
each alternative. In practice this situation is often mitigated by overprovisioning (i.e.,
incorporating fast and expensive hardware resources), leading to unnecessarily high
costs.

3 Optimisation Process

To present our hybrid optimisation approach, we first give an overview in Section 3.1. In
Section 3.2, we describe the search problem. Then, we describe in detail the analytical
optimisation (Section 3.3) and the evolutionary optimisation (Section 3.4).

3.1 Overview

Our approach starts considering as input an initial architectural model of the system,
named initial candidate in Fig. 2. In our case, this is a complete PCM model instance as

88 A. Martens et al.

shown in Fig. 1. The optimisation process starts with the search problem formulation.
In this work, we consider three degree of freedom types: (1) allocation of components,
(2) server configuration, and (3) component selection. The result of this step is a set of
system-specific degrees of freedom that describe the search problem.

In the second step, a simplified version of the search problem is optimised using
analytic techniques. The impact of a degree of freedom (or a combination of them) is
evaluated by analytic models, and the Pareto optimal candidates are derived very ef-
ficiently by solving a mixed integer linear programming problem. The result of this
step is a set of candidates that are globally Pareto-optimal with respect to the simplified
search space. In the third step, the results of the analytic optimisation are used as input
candidates for an evolutionary optimisation of the original search problem. Evolution-
ary optimisation is more time consuming, but it can consider the whole search space
and obtain more accurate estimates for availability and performance metrics.

Pareto
candidates

4. Present
results

Sec. 2

Prelim. Pareto
candidates

System-specific
degrees of freedom

1. Search
problem
formulation

Sec. 3.2Initial
candidate

System-specific
degrees of freedom

2. Analytic
Optimisation

Sec. 3.3

3. Evolutionary
Optimisation

Sec. 3.4

Data Activity

Fig. 2. Hybrid Optimisation Process Overview

The results of the evolutionary optimisation phase is a set of Pareto-optimal candi-
dates. The Pareto-optimal candidates are presented to the software architect, who can
study the remaining optimal trade-offs between possibly conflicting objectives.

3.2 Search Problem Formulation

Candidate solutions can be evaluated for optimal trade-offs, i.e. for Pareto-optimality
[16]. A candidate architecture is Pareto-optimal, if it is superior to all other candidate
in at least one quality criterion. More formally: Let a be a candidate solution, let DS be
the set of all possible candidates, and let q be a quality criterion with a value set Dq, an
evaluation function fq : DS → Dq so that fq(c) denotes the quality property of a c ∈
DS for the quality criterion q, and an order ≤q on Dq so that c1 ≤q c2 means that c1 is
better than or equal to c2 with respect to quality criterion q. Then, a candidate solution a
is Pareto-optimal iff ∀b ∈ DS ∃q : fq(a) ≤q fq(b). If a candidate solution is not Pareto-
optimal, then it is Pareto-dominated by at least one other candidate solution in DS that
is better or equal in all quality criteria. The optimisation problem can be formulated as
follows for a set of quality criteria Q = {q1, ..., qm}: minc∈DS [fq1(c), ..., fqm(c)] . In
this work, we consider three quality criteria: q1 = T = mean response time, q2 = A =
availability measured as the probability of success of each request, and q3 = C = cost.

In our approach, the following degrees of freedom can be considered:

Allocation of components to available servers: The mapping of components to servers
can be changed. This is an integral part of most performance-prediction models and

A Hybrid Approach for Multi-attribute QoS Optimisation 89

has large effects on the performance of a system. When reallocating components,
the number of servers can change as well. In our example, the Scheduler com-
ponent could be allocated to S1, so that S2 could be removed and its cost can be
saved. The software architect can specify the maximum number of servers to be
considered.

Server configuration: The available hardware resources (CPU, HDD, ...) can be chan-
ged in a certain range. In this work, we model a discrete set of servers with different
CPU processing rates and costs. Thus, components can be allocated to servers with
different processing rates.

Component selection: If functionally-equivalent components with different non-func-
tional properties are available, they can be exchanged. Currently, we deem that
a component B can replace a component A if B provides (i.e., implements) all
interfaces provided by A and if B requires at most the interfaces required by A.

More degrees of freedom that could be considered in an automated approach are de-
scribed in [27]. In the search problem formulation step, the initial candidate model is
automatically analysed for instantiations of these degrees of freedom, called system-
specific degrees of freedom. The found set of system-specific degrees of freedom de-
fines the search space. If desired, the software architect can also manually remove some
of them.

3.3 Analytical Optimisation

The analytical optimization step starts by evaluating the quality metrics of each com-
ponent i included in the initial candidate by means of M/G/1 and availability formula.
Then, a binary decision variable xj is introduced for each “atomic” design alternative
which can be obtained from the degrees of freedom. xj is equal to 1 if the correspond-
ing design alternative is implemented in the system, and 0 otherwise. The optimiza-
tion problem which can be introduced in this way is combinatoric in nature, since a
Pareto optimal solution can be obtained by selecting a combination of atomic design
alternatives.

For example, S1 alternative configurations for the reference system in Fig. 1 can be
modelled introducing the binary variables x1 (CPU downgrade to 2.4 GHz), x2 (CPU
upgrade to 2.8 GHz), x3 (CPU upgrade to 3 GHz). Down/upgrades of servers S2, S3,
and S4 can be modelled analogously with variables x4 to x12. Likewise, the alterna-
tive components selection can be modelled by introducing two binary variables x13
and x14 equal to 1 iff the WebServer is replaced by alternative WebServer2 or
WebServer3 implementation.

The limit of the analytical optimisation with respect to the evolutionary search is in
the evaluation of the allocation of components to servers degree of freedom. The ana-
lytical problem formulation cannot remove a server from the system if no components
are allocated to it. The aim of the analytical optimisation is to derive quickly an approx-
imated Pareto front which will be further refined by the evolutionary search. As it will
be discussed in Section 4, providing approximated Pareto solutions to the evolutionary
search allows to improve the whole analysis process. For the sake of simplicity in the
following we assume that the application under study includes a single initial compo-
nent and a single end component. Furthermore, loops are peeled and transformed into

90 A. Martens et al.

a number of branches with varying number of repetitions according to the annotated
probability distribution [1]. In this way the application PCM model is transformed into
a Directed Acyclic Graph (DAG).

Let us denote with I the set of indexes of the system components and with J the
set of indexes for the atomic design alternatives arising from the degrees of freedom
definition. Let us denote by C̃ the cost of the initial candidate and let δc

j be the cost
variation of the initial candidate for implementing the design alternative j.

In the following optimization problem formulation we will consider only the av-
erage response time performance metric, availability optimization can be formalized
similarly. Let us denote with t̃i, the average response time for component i invocation
in the initial candidate and let δt

j,i be the variation of the response time (evaluated by
means of M/G/1 formula) for component i if the design alternative j is implemented.
For example, if S1 CPU frequency is raised to 2.8 GHz (x2 design alternative), then the
WebServer service demands for the two invocations and S1 utilization are initially
equal to 4 sec, 2 sec and 0.52 respectively, are reduced by a factor 2.8/2.6 = 1.08.
Thus, the initial response times equal to 8.33 sec, and 4.16 sec become 7.18 sec and
3.59 sec and hence the deltas are equal to −1.15 sec, and −0.57 sec.

Some of the atomic design alternatives could be in conflict. For example, since only
one server CPU can be changed at one instance, the following constraint has to be
introduced for S1:

x1 + x2 + x3 ≤ 1

Formally, we introduce an exclusive set esk for each combination of atomic design
alternatives which are in conflict among each other, because they concern the same
software component and/or the same physical server where components are deployed.
A parameter esk,j = 1 is introduced indicating that the atomic design alternative j is in
the exclusive set k, while esk,j = 0 otherwise.

Note that the size of exclusive sets could grow exponentially, since taking into ac-
count all of the atomic choices is also combinatorial in nature. However, since the num-
ber of possibly conflicting atomic design alternatives is usually significantly lower than
the number of degrees of freedom, the analytic problem can be formulated and solved
efficiently, as it will be shown in Section 4.2.

If we denote by ti the execution time of component i according to the selection of
atomic design choices, we have:

ti = t̃i +
∑
j∈J

δt
j,ixj ,∀i;

∑
j∈J

esk,jxj ≤ 1, ∀k

Let us denote with πi the probability of execution of component i which can be derived
from the sum of the transition probabilities of the paths in the DAG from the initial
component to i. The execution time T of the whole application can then be computed
as T =

∑
i∈I

πi · ti, while the cost C corresponding to a given combination of atomic

choices is given by C = C̃ +
∑
i∈I

∑
j∈J

δc
j · xj .

If T and C denote a bound for the application execution and system cost respectively,
than the Pareto-optimal solutions can be obtained by solving iteratively the problems
shown in Fig. 3 according to Algorithm 1.

A Hybrid Approach for Multi-attribute QoS Optimisation 91

(P1) min C
subject to:

C = C̃ +
∑
i∈I

∑
j∈J

δc
j · xj

ti = t̃i +
∑
j∈J

δt
j,ixj , ∀i

∑
j∈J

esk,jxj ≤ 1, ∀k

∑
i∈I

πi · ti ≤ T

(P2) min T
subject to:

ti = t̃i +
∑
j∈J

δt
j,ixj , ∀i

T =
∑
i∈I

πi · ti

∑
j∈J

esk,jxj ≤ 1, ∀k

C̃ +
∑
i∈I

∑
j∈J

δc
j · xj ≤ C

Fig. 3. The Analytic Optimisation Problems for Performance and Cost

Algorithm 1 requires as input the upper T
upper

and lower bound T
lower

response
time for the application under study, which can be computed easily by considering the
maximum and minimum δt

j,i for each component i. Then, the Algorithm starts mini-

mizing the system cost with the goal to provide a response time lower than T
upper

(i.e.,
solving problem (P1), see step 4). Let x∗ be the corresponding optimum solution (i.e.,
the set of atomic design alternatives to be implemented) and C∗ be the corresponding
cost. Then, the first Pareto solution is obtained by solving (P2) setting C = C∗ (see
step 6). Let T ∗ be optimum response time obtained. Indeed, no other atomic design
alternative combination can lead to a better response time with a lower cost, hence x∗

computed at step 6 is a Pareto global optimum solution. The process is then iterated by
solving (P1) again and setting as constraint T = T ∗− ε, where ε > 0 is any sufficiently
small constant. IC +x∗ at step 7 denotes the solution obtained by applying to the initial
candidate IC the set of atomic design alternatives x∗.

input : T
upper

, T
lower

output: Paretos
T ← T

upper
;1

Paretos ← ∅;2

while T
lower ≤ T do3

Solve (P1). Let be x∗ the optimum solution found and C∗ its cost ;4

C ← C∗;5

Solve (P2). Let be x∗ the optimum solution found and T ∗ the application6

execution time ;
Paretos ← Paretos

⋃{IC + x∗};7

T ← T ∗ − ε8

end9

return Paretos;10

Algorithm 1. Analytical Pareto-optimality Algorithm

92 A. Martens et al.

For the availability analysis the analytical problem formulation can be derived sim-
ilarly. The main difference is that the delta values have to be derived for independent
application execution paths (i.e., each path from the source to the sink) and the op-
timization has to be iterated for each execution path. The set of initial candidates pro-
vided to the evolutionary optimization is obtained as union of the analytical solutions of
individual execution paths. It can be shown that (P1) and (P2) are NP-hard, since they
are equivalent to a knapsack problem. The solution complexity grows exponentially
with the number of binary variables. However, current solvers are very efficient and
(P1) and (P2) solutions can be computed very quickly for realistic design problems of
reasonable size.

3.4 Evolutionary Optimisation

If all degrees of freedoms presented in Section 3.2 have to be considered, then the ana-
lytical optimization model becomes a mixed integer non-linear problem and we cannot
rely on efficient solvers as for the linear case to determine software architectures quality
trade-offs. For this type of problems, metaheuristic optimisation techniques have been
successfully applied in software engineering [19]. In this work, we use evolutionary
optimisation (see, e.g. [6, p. 284]), as it has been considered useful for multi-objective
problems [12]. Other metaheuristics could be used as well. More details on this choice
can be found in [27].

After i iterations:
Set of Pareto-

optimal candidates

Set of candidates with
QoS metricsSet of candidates

Prelim.
Pareto
candidates

NSGA-II selection
strategy

Selection: Choose
candidates for
next generation

Set of n best candidates

System-specifc
degrees of
freedom

3. Evolutionary Optimisation

Performance
Availability
Cost

Evaluation of
each candidate

Mutation Crossover

Reproduction:
Generate new candidates

Random

a b c

Fig. 4. Evolutionary optimisation process

Fig. 4 shows the main steps of our evolutionary search. The method is described here
exemplary for our current realisation in the PEROPTeryx tool [36] with the NSGA-
II evolutionary algorithm [14] as implemented in the Opt4J framework [26] with an
extended reproduction step.

The process starts with an input population derived from the analytical optimisa-
tion step. Individuals are then modified along system-specific degrees of freedom (see
Section 3.1). As the software model contains all required annotations, all steps of the
search can be completely automated. The population size n and the number of iterations
i can be configured. If the input population size |Paretos| is less than n, additional

A Hybrid Approach for Multi-attribute QoS Optimisation 93

n − |Paretos| random candidates are generated. The evolutionary search then iterates
the following steps:

a© Reproduction: Based on the currently available candidates in the population,
new candidate solutions are derived by “mutation” or “cross-over” or they are
randomly created. With mutation, one or several design options are varied. With
cross-over, two good candidate solutions are merged into one, by taking some of
each candidates design option values for the cross-over. In addition to the original
NSGA-II, in order to diversify the search, duplicate candidates are removed from
the population and are replaced by candidates randomly generated based on the
available design options.

b© Evaluation: Each yet unevaluated candidate is evaluated for each quality attribute
of interest. In our case, performance, availability and/or costs metrics are pre-
dicted as described in Section 2. As a result, each candidate is annotated with the
determined quality properties (i.e. mean response time, availability, and/or cost).

c© Selection: After the reproduction phase, the population has grown. In the selec-
tion phase, the population is again reduced by just keeping the n most promising
candidates based on the NSGA-II selection strategy. After i iterations, the search
ends here and returns the Pareto-optimal candidates found so far.

More details on the evolutionary optimisation (such as the genetic encoding) can be
found in [27]. Over several iterations, the combination of reproduction and selection
lets the population converge towards the real front of globally Pareto-optimal solutions.
The result of the optimisation is a set of Pareto-optimal candidates with respect to all
candidates evaluated before. If the search also keeps a good diversity of candidates, the
result set can be near to the global optima. However, in general, evolutionary optimisa-
tion cannot guarantee globally Pareto-optimal solutions [27].

4 Experimental Results

This section reports the results of the quality optimisations performed for the BRS
system to demonstrate the applicability and usefulness of our approach and is organ-
ised as follows. Section 4.1 describes the degrees of freedom adopted. Sections 4.2
and 4.3 summarize the analytical optimisation and evolutionary optimisation. Finally,
Section 4.4 presents and discusses the results of the hybrid approach.

Notice that we do not compare our prediction results from the models with actual
measurements from the system implementation. For our validation, we assume that the
underlying modelling and prediction methods are sound and deliver accurate prediction
results as discussed in other papers [5,8].

4.1 Search Problem Formulation

We defined two separate search problems: (1) optimise performance and cost, (2) opti-
mise availability and cost. The following degrees of freedom are considered:

Component allocation: For the evolutionary optimisation of (1), all components can
be freely allocated to up to five servers. For the analytic optimisation of (1) the prob-
lem can be defined considering only one allocation degree of freedom: The Cache

94 A. Martens et al.

component can be allocated to server S3 or S4. For (2), we do not consider component
allocation as a degree of freedom. With free component allocation, the optimal solution
would be to deploy all components on one server, so that only this server’s availabil-
ity affects the system. However, the inevitable performance degradation would not be
taken into account.

Component selection: The Webserver can be realised using third party compo-
nents. The software architect can choose among three functional equivalent implemen-
tations: Webserver2 with cost 4 and Webserver3 with cost 6. Both have less
resource demand than the initial Webserver. Webserver2 has better availability
for the requests of type “view”, while Webserver3 has better availability for the re-
quests of type “report”.

Server configuration: Four different server configurations C1 to C4 with varying
processor speed (PR in GHz), hardware availability (probability HA), and cost HCost
available.

The exact values considered in the case study can be found at [36]. A performance
and availability optimisation has been omitted for space reasons, but works analogously.
In principle, it is also possible to optimise all three quality criteria at once to determine
a three-dimensional Pareto candidate set.

4.2 Analytic Optimisation

The degrees of freedom are mapped into an optimization problem including 24 binary
variables: x1-x3, x4-x6, x7-x9, and x10-x12 specify physical servers up/downgrades.
x13 and x14 are introduced to model the two WebServer component alternative imple-
mentations. x15 is associated with the allocation of the Cache component to S4. x16-
x18 model S1 down/upgrades joint with the WebServer2 implementation. Similarly
x19-x21 model S1 down/upgrades joint with the WebServer3 implementation. Finally
x22-x24 model the Cache component allocation on S4 with the joint down/upgrades
of servers S3 and S4. Four exclusive sets have to be introduced which are defined as
follows:

– es1: prevents conflicting design alternatives for server S1 down/upgrades and the
different implementation of the WebServer component (i.e., includes variables
x1-x3, x13-x14, and x16-x21).

– es2: avoids conflicting design alternatives associated with server S2 down/upgrades
(i.e., includes variables x4-x6).

– es3: enumerates conflicting design alternatives for server S3 down/upgrades and
the different allocations of the Cache component (i.e., includes x7-x9, x15, and
x22-x24).

– es4: prevents conflicting design alternatives associated with server S4 down/up-
grades and the different allocations of the Cache component (i.e., includes vari-
ables x10-x12, x15, and x22-x24).

The analytical optimization step is performed by running CPLEX [20], a state of the art
integer linear programming solver based on the branch and cut technique [32]. At each
iteration of Algorithm 1, the solver identifies the global optimum solution of problems

A Hybrid Approach for Multi-attribute QoS Optimisation 95

(P1) and (P2). The initial Pareto front can be determined very efficiently in 0.14 sec for
the performance vs. cost analysis and 0.54 sec for the availability vs. cost analysis on a
single core of an Intel Nehalem @2.6 GHz.

4.3 Evolutionary Optimisation

For performance prediction, we use the SimuCom simulation [5]. A stop criterion based
on the confidence of the mean response time T was used in all but one evaluation. The
simulation of candidate stopped when the 90% confidence interval Conf , determined
with the batching algorithm of [9], was within +/-10% of the mean value: Conf ⊂
[0.9T, 1.1T]. Before calculating the confidence interval, the samples had to pass an
independence test (“run test algorithm” [24]). For availability and cost prediction, we
use the PCM Markov solver [8] and the PCM costs solver, respectively.

For the evolutionary optimisation, our prototype PEROPTeryx tool follows the pro-
cess described in Section 3.4. The number or candidates per iteration was set 25%
higher than of optimal candidates found by the previous, analytical step to leave room
for more optimal solutions. Table 1 shows the statistics of the optimisation runs (cand.
= candidate(s), it. = iteration) which have been performed single threaded on on a sin-
gle core of an Intel Core 2 T7200 CPU @ 2GHz. The stop criterion of the search was
a manually chosen maximum number of iterations. The results had to be inspected to
determine whether the search had converged up to then.

Table 1. Statistics of the Evolutionary Optimisation with Analytic Input

input cand. cand. optimal iter- dura- mean d
Search problem cand. per it. total cand. ations ation d per cand.
Performance and Cost 19 25 151 16 10 46 min 18.3 sec
Availability and Cost 12 15 130 10 15 5 min 2.3 sec

4.4 Results

The results of the performance and cost optimisation for the BRS system are presented
to the software architect as shown in Fig. 5. Based on this set of Pareto-optimal candi-
dates, software architects can make well-informed trade-off decisions and choose one
candidate based on their quality requirements. One resulting solution with a good trade-
off is shown in Fig. 6. It is superior to the initial candidate both in average response time
(T = 4.9sec) and cost (C = 22). Thus, the hybrid optimisation could successfully im-
prove the BRS system’s architecture.

More detailed results for the optimisation of performance and cost are shown in
Fig. 7. The series � marks the 19 candidates of the analytic optimisation as evaluated
with the analytic approach. The series � marks the same 19 candidates as evaluated with
SimuCom (thus, every candidate has the same cost, but updated mean response time).
We observe that all analytic result values deviate from the simulation results by 40% on
average (25% to 97% percent) but are always conservative. The deviation is larger for
lower costs. Still, the form of the Pareto-curve is preserved and can serve as a valuable
input for the evolutionary search. The series � marks the 9 new optimal candidates

96 A. Martens et al.

0

2

4

6

8

10

12

17 19 21 23 25 27 29 31 33 35 37

M
ea

n
Re

sp
on

se
 T

im
e

T
in

 se
c

Cost C

analytic results evolutionary results initial candidate

example candidate:
C = 22, T = 4.9 sec

Fig. 5. Performance and cost optimisation: Results and comparison to initial candidate

S4S1 S2

S3

Reporting
Engine

Cache

Scheduler DatabaseWebserver3

Cost 6 Cost 3 Cost 3

Cost 3

Cost 3

HCost 1
PR 2.4

HCost 1
PR 2.4

HCost 1
PR 2.4

HCost 1
PR 2.4

Fig. 6. Performance and cost optimisation: Example PCM Model for one Pareto-optimal candi-
date. Circles mark the changes compared to the initial candidate.

found by the evolutionary optimisation. They dominate 12 of the analytic candidates.
The 143 further candidates evaluated by the evolutionary optimisation are not shown.

Hence, the hybrid approach is superior to the analytic optimisation alone, because
the Pareto-front can be refined and additional Pareto solutions can be found. To assess
the benefit of the hybrid approach to an evolutionary optimisation, we compared the
results to a evolutionary optimisation with the same number of iterations from random
candidates. The hybrid approach finds a superior Pareto-front (see Fig. 8), because 1)
more optimal candidates are found and 2) all Pareto-optimal candidates found by the
evolutionary optimisation from random candidates are dominated by the results of our
hybrid approach. Thus, the evolutionary optimisation from random candidates would
require more iterations to find a Pareto-front of similar quality, which is more time-
consuming.

The results for the optimisation of availability and cost are shown in Fig. 9. The se-
ries � marks the 12 optimal solutions found by the analytical optimisation (some overlap
each other), as evaluated with the PCM Markov solver. The series × marks the addi-
tional 118 candidates evaluated by the evolutionary optimisation. Three new optimal
candidates have been found. All analytical optimal solutions stay undominated. Again,
the hybrid results is superior to the analytic results alone. The results of a comparison
with an evolutionary optimisation from random candidates can be found at [36]. The
evolutionary optimisation from random candidates only finds an inferior Pareto-front in
the same number of iterations.

A Hybrid Approach for Multi-attribute QoS Optimisation 97

0

5

10

15

20

25

15 20 25 30 35 40

M
ea

n
re

sp
on

se
 ti

m
e

T
in

 se
c

Cost C

analytic results for input re-evaluated input additional evolutionary optimal candidates

3.5

4

4.5

5

20 25 30 35 40

Fig. 7. Performance and cost optimisation: Analytic and simulation performance results

2

4

6

8

10

12

15 20 25 30 35 40

M
ea

n
re

sp
on

se
 ti

m
e

in
 se

c

Cost

results hybrid approach results evolutionary from random candidates

Fig. 8. Performance and cost optimisation: Hybrid vs. evolutionary search comparison

15

20

25

30

35

40

45

0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Co
st

Availability

other evolutionary candidates evolutionary optimal candidates analytic results initial candidate

Fig. 9. Availability and cost optimisation: Results and comparison to initial candidate

98 A. Martens et al.

5 Related Work

Our approach is based on software performance prediction [31,3,25], architecture-based
software availability analysis [17], and search-based software engineering [19]. We cat-
egorize closely related approaches into: (i) Scenario based SA analysis, (ii) rule-based
approaches, and (iii) metaheuristic-based approaches.

Scenario based SA analysis approaches: The definition of a SA model can embody
not only the software qualities of the resulting system, but also the trade-offs decisions
taken by designers [4,11,35]. The efforts to explore such trade-offs have produced the so-
called scenario-based architecture analysis methods, such as SAAM and ATAM [22,23]
and others reviewed in [15]. These methods analyze the SA with respect to multiple qual-
ity attributes exploring also trade-offs concerning software qualities in the design. The
outputs of such analysis include potential risks of the architecture and the verification re-
sult of the satisfaction of quality requirements. These methods provide qualitative results
and are mainly based on the experience and the skill of designers and on the collaboration
with different stakeholders. With respect to these works, our goal is to provide the soft-
ware architect with a tool able to analyze the multiple objective problem in a quantitative
way by allowing the automatic generation of several design architectures.

Rule-based approaches: Xu et al. [34] present a semi-automated approach to find con-
figuration and design improvement on the model level. Based on a LQN model, perfor-
mance problems (e.g., bottlenecks, long paths) are identified in a first step. Then, rules
containing performance knowledge are applied to the detected problems.

McGregor et al. [28] have developed the ArchE framework. ArchE assists the soft-
ware architect during the design to create architectures that meet quality requirements.
It helps to create architectural models, collects requirements (in form of scenarios),
collects the information needed to analyse the quality criteria for the requirements,
provides the evaluation tools for modifiability or performance analysis, and suggests
improvements.

Cortellessa et al. [13] propose an approach for automated feedback generation for
software performance analysis, which aims at systematically evaluating performance
prediction results using step-wise refinement and the detection of performance problem
patterns. However, at this point, the approach is not automated.

Parsons et al. [30] present a framework for detecting performance anti-patterns in
Java EE architectures. The method requires an implementation of a component-based
system, which can be monitored for performance properties. Then, it searches for EJB-
specific performance antipatterns in this model.

Kavimandan et al.[21] present an approach to optimise component allocation in the
context of distributed real-time embedded component-based systems. They use heuris-
tic rules to deploy components together that have a compatible configuration. In total,
only allocation is considered as a degree of freedom, but the authors also mention that
their approach could be combined with other approaches.

All rule-based approaches share a common limitation. The model can only be changed
as defined by the improvement rules. However, especially performance is a complex and
cross-cutting quality criterion. Thus, optimal solutions could lie on search paths not ac-
cessible by rules.

A Hybrid Approach for Multi-attribute QoS Optimisation 99

Metaheuristic-based approaches: Grunske [18] studies the improvement of two qual-
ity criteria, namely availability and costs, to allow well-informed trade-off decisions.
Evolutionary computing is applied to search for good design solutions. However, only
redundancy of components is studied as a degree of freedom to improve availability.

Menascé et al. [29] have developed the SASSY framework for generating service-
oriented architectures based on quality requirements. Based on an initial model of the
required service types and their communication, SASSY generates an optimal architec-
ture by selecting the best services and potentially adding patterns such as replication or
load balancing. As the allocation of components is irrelevant in SASSY’s service ar-
chitecture, the quality evaluations are simpler and allocation degrees of freedom cannot
be considered. Thus, the approach is not suitable for component-based architectures in
general.

6 Conclusions

In this paper, a hybrid approach for multi-attribute QoS optimisation of component
based software systems has been proposed. The approach is promising. Both for perfor-
mance vs. cost and availability vs. cost analyses, the hybrid approach is able to exploit
the approximated analytical Pareto front providing a larger number of solutions with a
more accurate estimate of performance and availability metrics. At the same time, the
hybrid approach is less time-consuming than a evolutionary optimisation starting from
random candidates. Hence, the integration of the analytical and evolutionary approaches
is effective.

The proposed approach can lead both to a reduction of development costs and to
an improvement of the quality of the final system, because an automated and efficient
search is able to identify more and better design alternatives, and allows the software
architect to make optimal trade-off decisions.

Future work will extend the analytical problem formulation in order to consider ap-
plications with parallel components execution and/or which can be modelled by means
of closed queueing networks. Furthermore, the evolutionary search will be implemented
as a parallel algorithm and an automated stop criterion will be developed. Ongoing work
focuses on the integration of the analytic technique in the PCM software suite and on
the QoS analyses of real industrial case studies.

Acknowledgments. This work reported in this paper has been partially supported by
the EU FP7 Q-ImPrESS project.

References

1. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans. on
Soft. Eng. 33(6), 369–384 (2007)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Trans. on Dependable and Secure Computing 1(1),
11–33 (2004)

100 A. Martens et al.

3. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction
in Software Development: A Survey. IEEE Trans. on Software Engineering 30(5), 295–310
(2004)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

5. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-driven
performance prediction. Journal of Systems and Software 82, 3–22 (2009)

6. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys 35(3), 268–308 (2003)

7. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R.,
Reifer, D.J., Steece, B.: Software Cost Estimation with Cocomo II. Prentice-Hall PTR, Upper
Saddle River (2000)

8. Brosch, F., Zimmerova, B.: Design-Time Reliability Prediction for Software Systems. In:
International Workshop on Software Quality and Maintainability, pp. 70–74 (2009)

9. Chen, E.J., Kelton, W.D.: Batching methods for simulation output analysis: a stopping proce-
dure based on phi-mixing conditions. In: Winter Simulation Conference, pp. 617–626 (2000)

10. Clements, P.C., Kazman, R., Klein, M.: Evaluating Software Architectures. SEI Series in
Software Engineering. Addison-Wesley, Reading (2001)

11. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. SEI Series in
Software Engineering. Addison-Wesley, Reading (August 2001)

12. Coello Coello, C.A.: A comprehensive survey of evolutionary-based multiobjective opti-
mization techniques. Knowledge and Information Systems 1, 269–308 (1999)

13. Cortellessa, V., Di Marco, A., Eramo, R., Pierantonio, A., Trubiani, C.: Approaching the
model-driven generation of feedback to remove software performance flaws. In: EUROMI-
CRO Conf. on Softw. Engineering and Advanced Applications, pp. 162–169. IEEE Computer
Society, Los Alamitos (2009)

14. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E.,
Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917,
pp. 849–858. Springer, Heidelberg (2000)

15. Dobrica, L., Niemela, E.: A survey on software architecture analysis methods. IEEE Trans.
on Software Engineering 28(7), 638–653 (2002)

16. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)
17. Gokhale, S.S.: Architecture-based software reliability analysis: Overview and limitations.

IEEE Trans. on Dependable and Secure Computing 4(1), 32–40 (2007)
18. Grunske, L.: Identifying “good” architectural design alternatives with multi-objective opti-

mization strategies. In: Intl. Conf. on Softw. Engineering, pp. 849–852. ACM, New York
(2006)

19. Harman, M.: The current state and future of search based software engineering. In: Briand,
L.C., Wolf, A.L. (eds.) Workshop on the Future of Softw. Engin., pp. 342–357. IEEE, Los
Alamitos (2007)

20. IBM ILOG. IBM ILOG CPLEX (2010),
http://www-01.ibm.com/software/integration/optimization/
cplex/about/

21. Kavimandan, A., Gokhale, A.S.: Applying model transformations to optimizing real-time
QoS configurations in DRE systems. In: Quality of Softw. Architectures, pp. 18–35. Springer,
Heidelberg (2009)

22. Kazman, R., Bass, L., Abowd, G., Webb, M.: SAAM: A method for analyzing the prop-
erties of software architectures. In: Intl. Conf. on Softw. Engineering, pp. 81–90. IEEE,
Los Alamitos (May 1994)

http://www-01.ibm.com/software/integration/optimization/cplex/about/
http://www-01.ibm.com/software/integration/optimization/cplex/about/

A Hybrid Approach for Multi-attribute QoS Optimisation 101

23. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carrière, S.: The architecture
tradeoff analysis method. In: Intl. Conf. on Engineering of Complex Computer Systems,
pp. 68–78. IEEE, Los Alamitos (1998)

24. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2.
Addison-Wesley, Reading (1969)

25. Koziolek, H.: Performance evaluation of component-based software systems: A survey. Per-
formance Evaluation (in Press) (Corrected Proof) (2009)

26. Lukasiewycz, M.: Opt4j - the optimization framework for java (2009),
http://www.opt4j.org

27. Martens, A., Koziolek, H., Becker, S., Reussner, R.H.: Automatically improve software mod-
els for performance, reliability and cost using genetic algorithms. In: WOSP/SIPEW Inter-
national Conference on Performance Engineering. ACM, New York (2010)

28. McGregor, J.D., Bachmann, F., Bass, L., Bianco, P., Klein, M.: Using arche in the classroom:
One experience. Technical Report CMU/SEI-2007-TN-001, Software Engineering Institute,
Carnegie Mellon University (2007)

29. Menascé, D.A., Ewing, J.M., Gomaa, H., Malex, S., Sousa, J.P.: A framework for utility-
based service oriented design in SASSY. In: WOSP/SIPEW International Conference on
Performance Engineering, pp. 27–36. ACM, New York (2010)

30. Parsons, T., Murphy, J.: Detecting performance antipatterns in component based enterprise
systems. Journal of Object Technology 7(3), 55–90 (2008)

31. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating Respon-
sive, Scalable Software. Addison-Wesley, Reading (2002)

32. Wolsey, L.: Integer Programming. John Wiley and Sons, Chichester (1998)
33. Wu, X., Woodside, M.: Performance Modeling from Software Components. SIGSOFT

Softw. Eng. Notes 29(1), 290–301 (2004)
34. Xu, J.: Rule-based automatic software performance diagnosis and improvement. In: Interna-

tional Workshop on Software and Performance, pp. 1–12. ACM, New York (2008)
35. Yang, J., Huang, G., Zhu, W., Cui, X., Mei, H.: Quality attribute tradeoff through adaptive

architectures at runtime. Journal of Systems and Software 82(2), 319–332 (2009)
36. Details on case study for the hybrid optimisation approach (2010),

https://sdqweb.ipd.kit.edu/wiki/PerOpteryx/Hybrid
Optimisation Case Study

http://www.opt4j.org
https://sdqweb.ipd.kit.edu/wiki/PerOpteryx/Hybrid_Optimisation_Case_Study
https://sdqweb.ipd.kit.edu/wiki/PerOpteryx/Hybrid_Optimisation_Case_Study

Using QoS-Contracts to Drive
Architecture-Centric Self-adaptation�

Franck Chauvel, Hui Song, Xiang Ping Chen, Gang Huang, and Hong Mei

Key Laboratory of High Confidence Software Technologies, Ministry of Education
School of Electronics Engineering and Computer Science

Peking University, Beijing, 100871, PRC
{franck.chauvel,songhui06,chenxp04,huanggang,meih}@sei.pku.edu.cn

Abstract. Self-adaptation is now a promising approach to maximize
the satisfaction of requirements under changing environmental condi-
tions. One of the key challenges for such self-adaptive systems is to auto-
matically find a relevant architectural configuration. Existing approaches
requires a set of adaptation strategies and the rough estimation of their
side-effects. However, due to the lack of validation methods for such
strategies and side-effects, existing approaches may lead to erroneous
adaptations. Instead of side-effects, our solution leverages quality con-
tracts whose accuracy can be separately established and which can be
dynamically composed to get a quality prediction of any possible archi-
tectural configurations. To support self-adaptation, we propose a reactive
planning algorithm which exploits quality contracts to dynamically dis-
cover unforeseen architectural configurations. We illustrate our approach
using a running HTTP server adapting its architecture with respect to
the number and the similarity of incoming requests.

1 Introduction

The growing complexity of software systems and the need of continuously-
running systems have resulted in the emergence of self-adaptive systems (SAS).
Such systems adjust their internal architecture with respect to their execution
environment in order to meet their functional or non-functional requirements.
SAS are mainly built as a control-loop [6] which includes monitoring the running
system, analyzing the collected data, planning the needed reconfigurations, and
executing those reconfigurations.

Correctly planning the needed changes of the running system according to the
environmental conditions is critical to get an effective self-adaptation. Existing
approaches search among a finite set of predefined architectural changes named

� This work is partially sponsored by the National Key Basic Research and Devel-
opment Program of China under Grant No. 2009CB320703; the National Natural
Science Foundation of China under Grant No. 60821003, 60873060; the High-Tech
Research and Development Program of China under Grant No. 2009AA01Z16; and
the EU FP7 under Grant No. 231167.

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, pp. 102–118, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Using QoS-Contracts to Drive Architecture-Centric Self-adaptation 103

adaptation rules in Plastic [1] and [14], strategies/tactics in Rainbow [11,7], ar-
chitectural aspects by Morin et al. [15] or actions in [20,13]. In the presence
of multiple and conflicting requirements, the selection takes into account the
expected quality side-effects of each change in order to ensure a good trade-off
between the desired quality properties (side-effects are modeled as help/hurt val-
ues and utility functions in Rainbow [11,7], MADAM [10], DiVA [9] and [20,13]).

The two key challenges in planning design are thus the definition of a set of
possible architectural changes and the estimation of their side-effects on the de-
sired quality properties with respect to the environmental conditions. However,
although both of these activities are critical for SAS, they remain hand-crafted
and highly error-prone: Ensuring that no architectural changes have been over-
looked and that their side-effects are realistic remains extremely difficult [6].

Our contribution is to avoid the enumeration of architectural modifications
and consequently the estimation of their side-effects. Instead, our solution lever-
ages quality contracts whose accuracy can be independently established and
which can be dynamically composed to get quality predictions for any meaning-
ful architectural configuration.

Our solution combines a reactive planning algorithm with the parametric con-
tracts proposed by Firus et al. [8]. The planning algorithm dynamically searches
for an architectural change that better fits the environment and the quality ob-
jectives, whereas the parametric contracts predict the quality of each resulting
architectural configuration. For the sake of interoperability, our prototype lever-
ages standard model-driven techniques and can thus be connected to various
execution platforms. We illustrate our approach on an HTTP server deployed
on the Fractal platform [4], which adapts its architecture to the number and the
density of incoming requests.

The remainder of the paper is organized as follows. Section 2 illustrates
the limitations of existing techniques using the HTTP server. Section 3 gives
an overview of our approach. Section 4 presents how we model contracts and
component-based architectures whereas our self-adaptation algorithm is formal-
ized in Section 5. Section 6 presents our prototype implementation and the re-
lated experimental results. Finally Section 7 discusses additional related works
before Section 8 concludes and outlines some future works.

2 Motivating Example

This section illustrates on an running scenario the limitations of existing ap-
proaches while designing SAS.

Let us consider an HTTP server made of two main components: a listener
component (L) reads HTTP requests on a socket and transmits them to a data
server component (DS) that returns the corresponding HTTP responses. In ad-
dition, three optional components may be inserted: A cache component (C)
reduces the response time by caching solved requests ; a filter component (F)
detects harmful requests (e.g. containing SQL code) and a dispatcher component
(D) enables the combination of several data servers. Figure 1a illustrates several
possible architectural configurations of the HTTP server.

104 F. Chauvel et al.

The number of possible architectural configurations is potentially infinite since
multiple instances of each component definition can be combined. From the
functional point of view, a first constraint enforces that filter components (if
deployed) protect cache components to avoid caching harmful requests. Another
constraint establishes that both filtering and caching must happen only once for
each data server. From the non-functional point of view, three main requirements
must be met, namely the ”minimization of the overall response time” (R.T.),
the ”maximization of the security level” (S.L.), and the ”minimization of the
memory consumption” (M.).

A first solution to the design of such a SAS is described in C2 [17], Plastic [1]
or Genie [2]. It requires to statically identify a small set of frozen architectural
configurations (also known as architectural modes) ; each one resulting from a
trade-off between quality objectives and environmental conditions. In Figure 1a,
four modes are selected: Idle, Normal, Effort and Best Effort. The Idle mode
only includes one listener and one data server to handle the smallest workload
(w < low). When the workload increases (low ≤ w < medium), the system
switches to the Normal mode to add a cache and a filter. If the workload keeps
increasing, the system uses the Effort mode (medium ≤ w < high) where
two additional data servers are both cached and filtered. For heavier workloads
(w ≥ high), the system uses the Best Effort where a group of 5 servers is cached
and filtered. The resulting behavior of the HTTP server is a meshed automaton
where each state is a frozen architectural mode and each transition is triggered
by a given state of the environment.

A better solution initially proposed in Rainbow [11,7] but also used in DiVA [9]
and by Sykes et al. [20,13], is to identify adaptations strategies, their triggering
conditions, and their respective costs or benefits with respect to the quality
objectives. Table 1b outlines the adaptation strategies needed to deploy (rep.
undeploy) each optional component (cache, filter, dispatcher and extra data
servers) and their possible side effects on the quality objectives (memory in kB,
reponse-time in ms, and security level).

DSL

DSL CFL

DS

D

DS DSDS

C

F

DS

L

DS

D

DS

C

F F

C
w<L

L<w<M

L<w<M

w>H

M<w<H

w>H

w<L

w<L

M<w<H

L<w<M

w>H

w>H

Best
Effort

Effort

Normal

Idle

w : workload ; L: Low ; M : Medium ; H : High

(a) Using Predefined Configurations

Strategy
Side-Effects
R.T. M. S.L.

AddCache -50 +200 0
RemoveCache +100 -200 0
AddFilter +50 +200 +1
RemoveFilter -50 -200 -1
AddDispatcher +10 +25 0
RemoveDispatcher -10 -25 0
AddServer -200 +500 0
RemoveServer +200 -500 0

(b) Using Adaptation Strategies

Fig. 1. Existing approaches for self-adaptation applied on the HTTP server

Using QoS-Contracts to Drive Architecture-Centric Self-adaptation 105

Predefined configurations (Figure 1a) enable a straightforward planning that
consists in triggering the relevant transition in the automaton with respect to the
current environment. In addition, it ensures that the functional constraints (e.g.
the filter components protect the cache components) are respected. However,
establishing that the predefined set of configurations is complete remains very
difficult and configurations may easily be overlooked [6].

Adaptation strategies (Figure 1b) require the designer to roughly evaluate
their quality side-effects (using absolute deviation or utility functions). However,
estimating such side-effects at design time is difficult and error prone. Quality
side-effects do not only depend on the selected strategy but also on the architec-
tural configuration on which this strategy is applied, and on the environmental
conditions. In the HTTP server for instance, the benefits of deploying a cache
(row 1 of Tab. 1b) depends on the similarity of incoming requests and on its po-
sition with respect to the dispatcher (if deployed). In addition, using strategies
that are only applicable on one environmental condition would roll back to the
first solution.

Our solution is an alternative to these two solutions and avoids both the enumer-
ation of predefined configurations and the rough estimations of quality side-effects.

3 Approach Overview

By contrast with existing approaches, which either predefine configurations or
estimate quality side-effects, our approach leverages ”composable” quality con-
tracts whose accuracy can be separately established. Our solution gradually
explores the possible architectural configurations by composing additional com-
ponents, and concurrently builds the related quality model by composing their
quality models (quality contracts).

As shown in Figure 2, we modify (on a model of the running system) the
current configuration (L−DS in Figure 2) by adding (resp. removing) one com-
ponent instance and by rebuilding all the possible connection schemes between
the remaining components. The use of quality contracts consequently enables the
evaluation of the quality of each resulting configuration. Further details about
the exploration of the configuration space are given in Section 5.

The key point of our approach is that the quality evaluation is based on com-
plete architectural configurations and not on the expected side effects of the
modification which led to new configurations. Such evaluation is made using
quality contracts [8], that specify the quality of each individual component defi-
nition (L, F, C, D, and DS) as do classical performance models (c.f. Section 4.1
for further details on contracts). Contracts bring us the four following benefits:

1. They allow designers to specify compositional quality model for each com-
ponent definition which accuracy can be established during unit testing [8].

2. They ensure (theoretically [3]) that all possible connections between com-
ponents makes sense form the syntactic, behavioral, quality and semantic
perspective. They thus ensure that the algorithm only explores meaningful
configurations.

106 F. Chauvel et al.

L D DS

L CF DS

L FC DS

L

DS

-D+D

L

F

DS

-F

+F

L

C

DS

+C

-C

L D
DS

DS

+DS
-DS

+F-F+C -C

L CD DS

L DC DS

L DF DS

L FD DS

+D

-D

-C

+C

+D

-D

-F

+F

L DF DS

L FD DS

DS

DS

+DS -DS

+

C S
earch

 D
ep

th

Fig. 2. Approach Overview: Gradual Exploration of the Configurations Space

3. They allow designers to express complex architectural constraints (such as
Cache/Filter order) by propagating data on components interfaces.

4. They reduce the number of possible connection schemes, by providing a
restrictive interface matching mechanism.

4 Modeling Self-adaptive Systems

This section presents the two main inputs required by our algorithm, namely: (i)
the software architecture model specifying the available component definitions
(such as Listener, Cache, etc.) and including the contracts specifying the possible
connections and, (ii) the adaptation policy specifying the quality objectives that
the system must try to satisfy and their relationship with the contracts.

4.1 Modeling Software Architecture

UML 2.x [16] is now the de facto standard commonly used by both academics and
industrials to described software architectures. However, since UML goes beyond
the scope of component-based software architecture, we extracted a minimal
subset of concepts needed to perform architecture centric self-adaptation.

Using QoS-Contracts to Drive Architecture-Centric Self-adaptation 107

ENVIRONMENT

ARCHITECTURAL ASSETS PARAMETRIC CONTRACT

name : String
Architecture

name : String

Component
Definition

component

1..* name : String
multiple : Boolean

Port
Definitionport

1..*

name : String
Port Type

definition 1

portType

1..* name : String

Contract
Declaration

0..1 provide

require

0..*

0..*

Contract
Definition

declaration1

name : String
Configuration

name : String

Component
Instance

name : String

Port
Instance

Connector

partner0..*

endPoint 0..2

definition definition
definition

1 1
1

component

1..*

port

1..*

name : String

Environment
Property

name : String

Environment
Value

definition1

env

env

1..*

1..*

OBJECTIVES

name : String
min : Double
max Double
objective : Double
weight : Integer
sensor : Statement

Objective

objectives

1..*

Fig. 3. Modeling Architectural Assets, Contracts, Objectives, and Environmental
Properties

Figure 3 formalizes this subset of concepts. In the central frame, an Architec-
ture contains a set of Component Definitions defining the potential connection
points (so called ”port”) of component. For the sake of conciseness, Figure 3
does not include the definition of functional interfaces but they are needed and
encapsulated into the contract definitions.

As explained by Beugnard et al. [3] the notion of contract is a suitable ab-
straction to describe and specify various properties on component interfaces, in-
cluding syntax, behavior, synchronization, performances/quality and potentially
semantics. Contracts formalize the relationship between provided and required
interfaces (in an ”assume/guarantee” manner).

Modeling Performances and Quality using Contracts. Non-functional
properties such as performance or quality of service (QoS) are commonly mod-
eled as crisp values added on components interfaces (CQML, QoSCL or SLA).
By contrast, parametric contracts [8] advocate the use of numerical functions,
which capture dependencies between provided and required interfaces. Then,
once components interfaces are bound (to build a configuration), these func-
tions can be evaluated to get a end-to-end quality prediction. Parametric con-
tracts enable the encapsulation of different mathematical models for different
QoS properties (ad-hoc, probabilistic, markovian, etc.) and their combination
using function composition. Our contribution is not the definition of a new for-
malism to model QoS, but rather focuses on the use of parametric contract to
enable self-adaptation.

The top part of Figure 4 provides several illustrative examples of parametric
contracts applicable on the HTTP server. The response time (RT) of the data
server is defined as the average time to process a given workload (as a number
of requests per sec). It is worth to note that the parametric contracts presented

108 F. Chauvel et al.

Listener
output

Dispatcher
out[*]

in
Data
Server

in

: Listener : Dispatcher

: Cache

ds2 : Data
Server

in.RT = max(out.RT)
out.L = in.L / size(out)

Probes
(Monitoring)

1. L=300/s
2.

L2=300r/s 3
L3=150r/s

Cache
out

in

in.RT = out.RT * 1.2
out.L = in.L / 3

ds1 : Data
Server

4. RT4 = 1.5s

L = $monitored

5.
L3=150r/s

6.
L4= 50r/s

7.
RT7= 0.5s

9.
RT9= 1.5s

8. RT8 = 0.6s

in.RT = in.L / 100r/s

ARCHITECTURE
(Component Definitions)

INSTANCES
(model of the

running system)

CONTRACTS
(QoS Dependencies)

RUNTIME
(running system)

Fig. 4. End-to-End Quality Evaluation using Parametric Contracts

here are over-simplified, realistic and accurate models are proposed in [8]. In
Figure 3, each Contract Definition encapsulates the imperative description of a
function (the related abstract syntax is not detailed here).

Figure 4 illustrates such end-to-end QoS evaluation on a simplified example. At
first, the running system is monitored to get initial data (e.g. the load delivered
by the listener). Thanks to the parametric contracts, this initial load can be prop-
agated to the other component instances (messages 2, 3, 5 and 6 at the instance
level). For example, the dispatcher equally balances the load between its two out-
puts. Contracts then enable to compute the response time of the data servers and
to back propagate it to the listener instance (messages 4, 7, 8 and 9).

Modeling Architectural Constraints using Contracts. Contracts can also
be used to enforce architectural constraints. For the record, the HTTP server in-
cludes two functional constraints: ”filtering requests must happen before caching
to avoid caching harmful requests” and ”filtering and caching must happen only
once for each data server”. To enforce such constraints, component interfaces in
the HTTP must specify if the HTTP requests have already been filtered and/or
cached. For instance, the cache component assumes that its incoming HTTP
requests have not yet been cached and guarantees that the requests which are
transmitted to its backbone have been cached. Listing 1 illustrates the realization
of such constraints using contracts.

Listing 1. Excerpt of the contracts needed to order cache and filter instances

1 cache.input
provides processRequest(r1 : Request)

3 assume !cached(r1)

5 cache.output
requires processRequest(r2 : Request)

7 guarantee cached(r2) and (isFiltered(r1) <=> isFiltered(r2))

Using QoS-Contracts to Drive Architecture-Centric Self-adaptation 109

4.2 Modeling Environment and Objectives

The quality objectives (class Objective in Figure 3) are modeled as numeric
properties. They include a validity interval (defined by the min and max at-
tributes) as well as an objective value. Although any value within the range may
be used as an objective, only the bounds are used in practice since they reflect
the ”minimize” and ”maximize” requirements respectively.

Listing 2. Minimization of the response time

1 issue response_time : Real
is

3 range is [0, 20]
objective is 0

5 priority is 5
sensor

7 do
value := component.select{ c | c.isKindOf (" Listener") }.first ()

.output.rt
9 end

end

Listing 2 shows an excerpt of the textual syntax used in our prototype to
model objectives. It describes the response time of the HTTP server as a real
value over [0, 20] which optimal value is 0 and which priority is 5 (in [0, 10]). The
last element defines the contract used to evaluate the response time on a given
configuration. The response time of the HTTP Server is measured as the ”rt”
contract required by the port output of the listener component (See section 4.1).

Additional information such as deployment parameters (CPU speed, band-
width, etc.) can be stored in our model as environmental properties and then
used to further parameterize the quality contracts.

5 Self-adaptation Algorithm

The section formalizes the algorithm which exploits the quality contracts at
runtime to enable self-adaptation.

5.1 Problem Formalization

In order to formalize the SAS problem and our self-adaptation algorithm, let us
formalize the concepts introduced by Figure 3:

– E is the execution environment.
– D is the set of possible component definitions.
– C is the set of possible component instances.
– new : D → C is a function which creates a new instance of a given component

definition.
– P is the set of port instances.

• match(p1, p2) : P ×P → B is a predicate which checks if two connection
points are compatible i.e. if they can be bound together. This represent
the enforcement of constraints using contracts.

110 F. Chauvel et al.

• pending(p) : P → B is a predicate which checks if a connection point is
pending, i.e. if it is not connected to any other connection points.

• connectable(p) : P → B is a predicate which checks if a (multiple) con-
nection point is still connectable i.e. if it can still accept new bindings.

Then, let K be the set of architectural configurations where each element is a
structure k = 〈Ck, Pk, βk〉 such as:

– Ck ⊂ C is the set of component instances involved in the configuration k.
– Pk ⊂ P is the set of ports available in the configuration k.
– βk ⊂ Pk ×Pk is a reflexive relation which maps each connection point to his

partners.

Finally, let O be the set of quality objectives where each objective is a structure
o = 〈wo, vo〉 such as wo is the priority (weight) associated to the objective, and vo

is the optimal value. O forms an n-dimensions space where the overall distance
to the objectives (Δ) of a configuration k under a given environment E is defined
as:

Δ(E ,O, k) =

√∑
o∈O

(
wo × |vo − eval(o, k)|

)2

where eval(o, k) stands for the evaluation of a dimension o on a given configu-
ration k using the parametric contracts.

As shown by Equation 1 below, the decision problem of SAS is to find the
configuration k which minimizes the distance to the objectives.

Δ(E ,O, k) = min
k′∈K

(Δ(E ,O, k′)) (1)

5.2 Planning Algorithm

We use a a reactive planning algorithm to explore gradually the space of config-
urations. By contrast with traditional planning which searches for a sequence of
actions satisfying predefined objectives, reactive planning searches for a single
action which contributes to better satisfy the objectives.

We only consider two kinds of possible actions: adding and removing a com-
ponent instance from a given configuration. To ensure the exploration of all
possible connection schemes, our algorithm recomputes all of them after each
addition or removal. More formally, we define two sets of actions:

– A⊕ is the set of possible additions of a new instance. Each addition action
is a structure s = 〈⊕, k, d〉 where k is the target configuration and d the
component definition to instantiate. The action execution is provided by the
function χ : A⊕ → K such as χ(〈⊕, k, d〉) = 〈Ck + {new(d)}, Pk, βk〉.

– A	 is the set of possible removals of a component instance. Each removal
action is a structure s = 〈�, k, c〉 where k is the target configuration and
c the component instance to remove. The removal execution is provided by
the function χ : A	 → K such as χ(〈�, k, d〉) = 〈Ck −{any(d, Ck)}, Pk, βk〉.

Using QoS-Contracts to Drive Architecture-Centric Self-adaptation 111

Here any(d, Ck) is a random choice of a component instance in Ck such as
its definition is d. Since we recompute all the possible connection schemes
after each removal, it is not necessary to try to remove each instance of the
same definition.

For a given configuration k ∈ K and a set of component definitions D we define
the set possible actions A(k,D) as:

A(k,D) =
⋃

d∈D
({〈⊕, k, d〉} ∪ {〈�, k, d〉})

According to the previous definitions, the planning problem addressed by our
algorithm is to find the sequence of n actions (a1, . . . , an) which execution best
fits the quality objectives, as formalized by Equation 2 below:

Δ(E ,O, k) = min
a∈A(k,D)n

(Δ(E ,O, χ(a))) (2)

Algorithm 1 formalizes our solution for the problem above. Given the current
configuration k, the set of actions that can be undergone on it (A), and number
n of actions to perform, it explores (recursively w.r.t. the length n) all the pos-
sible sequences of actions and their resulting configurations. For each resulting
configuration, it evaluates the distance to the objectives (Δ) of each possible
connection scheme (see line 6) and keeps the best one.

The enumeration of possible connection schemes is performed by algorithm 2.
On line 1, it first filters the set of possible connections to remove the ones which
cannot be instantiated on the current configuration (only multiple ports support
multiple connection). Then, it recursively selects one of the possible connection
and instantiates it until no more connections are possible (See line 9). At each
step, we keep only the valid configurations (see line 5) i.e. the configurations
which form a connected graph of components.

5.3 Worst Case Complexity

In terms of the number of analyzed configurations, the worst situation occurs
when all the ports are multiple (i.e. potentially bounded to several other ports)
and when all the ports share the same type (i.e. they provide and require the
same interfaces with similar contracts). In such a situation, exploring all the
possible bindings between a given set of components is boiled down to exploring
all the possible connected graphs between their ports [12]. The overall worse case
complexity, with respect to the number of objectives, the number of definitions,
and the search depth is given by the following formula:

O [search (A, n, k)] =
n∑

i=1

(
|O|×C2·|D|+i−1

i ×O [allConnectionSchemes (ki, βi)]
)

∈ O
(
n × |O| × (2 · |D|)! × 2(n·|Pk|)2

)

112 F. Chauvel et al.

Algorithm 1. search(A, n, k) → k⊥
Input: A a set of possible actions
Input: n ∈ N

+ the maximal depth of the search
Input: k ∈ K the current configuration
Output: k⊥ ∈ K the best derived configuration

k⊥ ← k
while A �= ∅ do

a ← any(A)
k′ ← χ (a)
β ← {(p1, p2) ∈ Pk′ × Pk′ | p1 �= p2 ∧ match (p1, p2)}

6 foreach k′′ ∈ allConnectionSchemes (k′, β) do
if Δ (E ,O, k′′) < Δ (E ,O, k⊥) then

k⊥ ← k′′

end

end
if n > 1 then

k′′ ← search
(A− {

� (a)
}

, n − 1, k′)
if Δ (E ,O, k′′) < Δ (E ,O, k⊥) then

k⊥ ← k′′

end

end
A ← A− {a}

end
return k⊥

Algorithm 2. allConnectionSchemes(k, β) → R

Input: k ∈ K a configuration without any connector
Input: β ∈ (Pk)2 the set of possible connectors to create
Output: R ∈ ℘(K) the resulting set of complete configurations

1 β′ ← {{p1, p2} ∈ β | connectable(p1) ∧ connectable(p2)}
while β �= ∅ do

b ← choice(β′)
βk ← βk ∪ {b}

5 if valid(k) then
R ← R ∪ {k}

end
if ∃ {p1, p2} ∈ β′, connectable(p1) ∧ connectable(p2) then

9 R ← R ∪ allConnectionSchemes(k, β′)
end
βk ← βk − {b}
β′ ← β′ − {b}

end

Using QoS-Contracts to Drive Architecture-Centric Self-adaptation 113

Although the complexity is exponential when the number of possible connectors
explodes, our algorithm remains applicable since the depth search is not sup-
posed to be larger than 2 (generally 1), as we illustrate using the HTTP server
where all components definition share the same port types.

6 Experimental Evaluation

6.1 Prototype Implementation

We provide a first prototype of our algorithm as a Java library named ”Brain” 1.
It is built upon the ECore framework: the architectural definitions, the contracts
and the objectives (See Figure 3) are initially defined as a standard ECore model
which can thus be reused for other purposes. Brain also provides a textual syntax
for contracts and the related interpreter which enables the end-to-end evaluation
of quality contracts.

Execution Platform
(Fractal/Java)

S
M

@
R

T: M
o

d
el-B

ased

M
an

ag
em

en
t

A
d

ap
tatio

n
 E

n
g

in
e

(B
rain Library)

L
S

F
S

D

HTTP Server Current
Configuration (model)

Needed
Configuration (model)

Parameters
(frequency,

search depth)

Fig. 5. Deployment and Configuration of the Adaptation Framework on the Fractal
Platform

Figure 5 depicts the deployment and the configuration of the Brain library
on the Fractal platform. The monitoring and modification of the real running
system are done using the SM@RT tool2 [19] which enables the generation of
a synchronization engines between a running system and its model based view.
During the runtime, this synchronization engine monitors the running system
and instantiates the relevant instance model (the gray part of Figure 3). In
addition, the synchronization engine also deploys automatically the new config-
uration calculated by the Brain library by computing the difference between the
current and the new configuration. The HTTP server is implemented on the Frac-
tal platform [4] as a composite component extended with a specific controller.
This ”Brain” controller combines the Brain library and the synchronization en-
gines generated by SM@RT to monitor and adjust the running system at a given
frequency.
1 Available at http://code.google.com/p/pku-brain/
2 Available at http://code.google.com/p/smatrt

http://code.google.com/p/pku-brain/
http://code.google.com/p/smatrt

114 F. Chauvel et al.

6.2 Experimental Setups

We carried out two experiments aiming at ensuring the feasibility and the effec-
tiveness of our approach respectively.

In the first experiment, we defined two adaptation policies (A and B) which
differ only from the weight related to each quality dimension (our approach does
not require the definition of architectural modifications). As shown by Figure 6,
the first adaptation policy focuses on the response time of the server and thus
balances the quality dimensions as follows: R.T . = 9, M. = 1 and S.L. = 1.
In contrast, the policy B targets a consensus between those three dimensions
and therefore defines equal weights (R.T . = 5, M. = 5 and S.L. = 5). Finally
we monitor the architectural configurations which are produced by these two
policies with respect to a load increasing and decreasing.

The second experiment compares our approach with a set of predefined archi-
tectural configurations. We implement the fixed set of configurations presented
in Figure 1a (c.f. Section 2) and a selection engine selecting the best of these
configurations. For the sake of the comparison, both our planning algorithm
and the static selection engine evaluate the configurations using the same set
of contracts. In Figure 7, our adaptive planning algorithm found different but
better fitting configurations, by accepting to spend more memory in order to
save response time.

6.3 Discussion

Feasibility. Figure 6 illustrates the feasibility of our approach. On the top
part, using Policy A, the adaptation algorithm first increases the number of

L

DS

L

DS

D

DS

L

DS

D

DS

DS

DS

C

F

L

DS

D

DS DSDS

C

F

DS

L

DS

D

DS

DS

DS

C

F

L

DS

D

DS DS

C

F L

DS

D

DS

C

F L

DS

D

F

L

DS

L

DS

F

L

DS

F

C

Step 3 Step 4

L

DS

F

C

L

DS

D

DS

C

F

Step 8

L

DS

F

C

Step 2Step 1

L

DS

F

C

Step 5, 6 & 7 Step 9

L

DS

F

Step 10

L

DS

Step 11

L

DS

D

C

DS

Load
(req/s) Simulation

Steps

A. Objective Weights
Speed = 9
Memory = 1
Security =1

B. Objective Weights
Speed = 5
Memory = 5
Security = 5

Fig. 6. Driving Self-Adaptation Using Weighted Quality Objectives

Using QoS-Contracts to Drive Architecture-Centric Self-adaptation 115

0 20 40 60 80 100

4
8

.0
4

8
.5

4
9

.0
4

9
.5

5
0

.0

Simulation Steps

D
is

ta
n

c
e

 t
o

 O
b

je
c
ti
v
e

s

●

●

●

●

●

●

●

●

●

●

●

Overall Distance to the Objectives

●

Static Selection
Reactive Planning

0 20 40 60 80 100

1
.0

2
.0

Experimentation Duration (min)

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

k
B

)

●

●

●

●

● ● ●

●

●

●

●

Memory

●

Static Selection
Reactive Planning

0 20 40 60 80 100

0
.0

1
.0

2
.0

Experimentation Duration (min)

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

●

● ●

● ●

●

● ●
●

●

●

Response Time

●

Static Selection
Reactive Planning

0 20 40 60 80 100

0
2

4
6

8

Experimentation Duration (min)
S

e
c
u

ri
ty

 L
e

v
e

l
(r

e
q

)

●

●

●

●

●

●

●

●

●

●

●

Security Level

●

Static Selection
Reactive Planning

Fig. 7. Adaptation relevance: Predefined Configurations vs. Reactive Planning

data servers connected to the dispatcher component in order to balance the load
increase (step 2, 4 and 5). In contrast, using Policy B, the adaptation algorithm
first deploys a filter and a cache (step 2 and 3) and finally increases the number
of data servers (5). The use of such objective-based policies boils down the
management of adaptation to weight modifications.

Effectiveness. By avoiding the static specification of architectural modifica-
tions, our approach simplifies the specification of the desired self-adaptive be-
havior. In addition it also increases the effectiveness of self-adaptation. As shown
in Figure 7, our planning algorithm discovers new architectural configurations
which result in a better trade-off with respect to the quality objectives. By
contrast with side-effects, the specification of parametric contracts must be the
responsibility of a QoS expert and since their accuracy can be independently
established, they therefore enforce both the separation of concerns and the ac-
curacy of the adaptation.

Performance. The theoretical complexity of the planning algorithm limits its
applicability due to the combinatorial explosion of the number of possible con-
figurations in the most complex cases. Possible applications of this algorithm
exclude large scale architectures where the number of similar component (simi-
lar port/interface type) is maximal. The HTTP server example illustrates such
a situation, since each possible configuration is potentially valid. Above all, the
benefits of building self-adaptation upon parametric contracts is not related to
a specific exploration algorithm such as our reactive planning algorithm.

116 F. Chauvel et al.

7 Related Works

As explained in Section 2, existing approaches can be divided in two categories.
Solutions from the first category advocate the definition, at design time, of a set
of architectural configurations which freezes the adaptation space. For instance,
C2 [17], Genie [2] and Plastic [1] address architecture-centric self-adaptation in
that way. Our approach avoids such static enumeration of predefined architecture
configurations and can explore dynamically unforeseen configurations.

Solutions in the second category (Rainbow [11,7], MADAM [10], Sykes et al.
[20,13], DiVA [9]) proposed to combine, at runtime, predefined architectural ac-
tions. Although this results in a potentially infinite set of architectural configura-
tions, it requires the designers to roughly evaluate at design time the side-effects
of such architectural actions. Our approach to self-adaptation leverage quality
contracts as third-party quality-models. By contrast with side-effects evaluation,
the accuracy of such quality contracts can be separately assessed as shown in [8].

Caporuscio et al. proposes PMF [5] a framework to manage the performance
of software systems at run time using model-based performance evaluation. PMF
goes further than C2 and Rainbow and MADAM since it generates new config-
uration using performances models. However, the objectives are fixed at design
time while our approach supports their dynamic evolution as shown in Figure 6.

Finally, Ramirez et al. propose Plato [18] a framework which generates new
configurations fitting the environmental conditions using genetic algorithms.
Plato shares some similarities with our approach but requires the designer to
provide a global fitness function to evaluate architectural configurations. By
contrast, our approach relies on local quality contracts which can be obtained
from components provider.

8 Conclusion

One of the key challenges of the development of SAS is to correctly plan how to
adjust the current architectural configuration to better fit the environmental con-
ditions and maximize the satisfaction of the requirements. Current approaches
either require the enumeration, at design time, of a fix set of predefined configu-
rations or of a set architectural modifications and their expected side-effects.
Both remains difficult and error-prone activities and may lead to erroneous
adaptation.

This paper addresses these two limitations by exploring at runtime the possi-
ble changes which can be undergone on the current architectural configuration
of the system. Our algorithm dynamically searches for modifications of the cur-
rent configuration and concurrently modifies the related quality model needed
to evaluate the resulting configurations. This is achieved by combining a reactive
planning algorithm with quality contracts.

Although the complexity of our algorithm prohibits its use for large scale
systems (such as Multi Agent systems), we illustrated its use to dynamically
adapts an HTTP server. Compared to the traditional design-time selection of

Using QoS-Contracts to Drive Architecture-Centric Self-adaptation 117

configurations, it provides a better adaptation effectiveness with regard to the
quality objectives and avoids the rough estimation of architectural modifications
at design time.

As future works we plan to address the automated discovery of quality mod-
els to easy the integration of third-party components and improve adaptation
capabilities of legacy systems.

References

1. Batista, T., Joolia, A., Coulson, G.: Managing Dynamic Reconfiguration in
Component-Based Systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005.
LNCS, vol. 3527, pp. 1–17. Springer, Heidelberg (2005)

2. Bencomo, N., Grace, P., Flores, C., Hughes, D., Blair, G.: Genie: Supporting the
Model Driven Development of Reflective, Component-based Adaptive Systems. In:
ICSE: Proceedings of the 30th international conference on Software engineering,
pp. 811–814. ACM Press, New York (2008)

3. Beugnard, A., Jezequel, J., Plouzeau, N., Watkins, D.: Making components con-
tract aware. Computer 32(7), 38–45 (1999)

4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.: The Fractal Com-
ponent Model and its Support in Java. Software Practice and Experience, special
issue on Experiences with Auto-adaptive and Reconfigurable Systems 36(11-12),
1257–1284 (2006)

5. Caporuscio, M., Di Marco, A., Inverardi, P.: Model-based System Reconfiguration
for Dynamic Performance Management. Journal of Systems and Software 80(4),
455–473 (2007); Software Performance, 5th International Workshop on Software
and Performance

6. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.: Software En-
gineering for Self-Adaptive Systems: A Research Roadmap. In: Cheng, B.H., de
Lemos, R. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525,
pp. 1–26. Springer, Heidelberg (2009)

7. Cheng, S., Garlan, D., Schmerl, B.: Architecture-based Self-Adaptation in the
Presence of Multiple Objectives. In: Proceedings of the Intl. Workshop on Self-
Adaptation and Self-Managing Systems, pp. 2–8. ACM Press, New York (2006)

8. Firus, V., Becker, S., Happe, J.: Parametric Performance Contracts for QML-
specified Software Components. In: Proceedings of the 2nd Int. Workshop on For-
mal Foundations of Embedded Software and Component-based Software Architec-
tures (FESCA 2005), vol. 141, pp. 73–90 (2005)

9. Fleurey, F., Solberg, A.: A Domain Specific Modeling Language Supporting Spec-
ification, Simulation and Execution of Dynamic Adaptive Systems. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 606–621. Springer, Heidelberg
(2009)

10. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using
Architecture Models for Runtime Adaptability. IEEE Software 23(2), 62–70 (2006)

11. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rain-
bow: Architecture-based Self-Adaptation with Reusable Infrastructure. Com-
puter 37(10), 46–54 (2004)

12. Harary, F., Palmer, E.: Graphical Enumeration. Academic Press, London (1973)

118 F. Chauvel et al.

13. Heaven, W., Sykes, D., Magee, J., Kramer, J.: A Case Study in Goal-Driven Ar-
chitectural Adaptation. In: Goos, G., Hartmanis, J., Leeuwen, J.V. (eds.) Software
Engineering for Self-Adaptive Systems. LNCS, vol. 5525, p. 127. Springer, Heidel-
berg (2009)

14. Mei, H., Huang, G., Lan, L., Li, J.G.: A Software Architecture Centric Self-
Adaptation Approach for Internetware. Science in China, Series F: Information
Sciences 51(6), 722–742 (2008)

15. Morin, B., Barais, O., Nain, G., Jézéquel, J.M.: Taming Dynamically Adaptive
Systems using Models and Aspects. In: ICSE: 31st Intl. Conference on Software
Engineering, pp. 122–132. IEEE, Los Alamitos (May 2009)

16. OMG: OMG Unified Modeling Language (OMG UML), Superstructure,
V2.1.2. OMG Available Specification (ptc/03-08-02), Object Management Group
(November 2007)

17. Oreizy, P., Gorlick, M., Taylor, R., Heimhigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D., Wolf, A.: An Architecture-Based Approach to Self-
Adaptive Software. IEEE Intelligent Systems and Their Applications 14(3), 54–62
(1999)

18. Ramirez, A.J., Knoester, D.B., Cheng, B.H., McKinley, P.K.: Applying Genetic
Algorithms to Decision Making in Autonomic Computing Systems. In: Proceedings
of the 6th intl. conference on Autonomic Computing (ICAC 2009), pp. 97–106.
ACM, New York (2009)

19. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H.: Generating Synchro-
nization Engines between Running Systems and Their Model-Based Views. In:
Bencomo, N., Blair, G., France, R. (eds.) MRT 2009: Proceedings of the Workshop
on Models at Runtime 2009. Springer, Heidelberg (2009) (to be published)

20. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to components: a com-
bined approach to self-management. In: SEAMS 2008: Proceedings of the 2008
international workshop on Software engineering for adaptive and self-managing
systems, pp. 1–8. ACM, New York (2008)

Is BPMN Really First Choice in Joint Architecture
Development? An Empirical Study on the Usability of

BPMN and UML Activity Diagrams for Business Users

Dominik Birkmeier and Sven Overhage

Component and Service Engineering Group,
Business Informatics and Systems Engineering Chair,

University of Augsburg,
Universitaetsstrasse 16, 86159 Augsburg, Germany

{dominik.birkmeier,sven.overhage}@wiwi.uni-augsburg.de

Abstract. Joint architecture development plays a key role in service-oriented
computing as it facilitates the coordination of business processes with the soft-
ware architectures of applications. To better support business users in the commu-
nication of business process semantics, the Object Management Group advises to
adopt the newly standardized Business Process Modeling Notation (BPMN) in-
stead of the UML Activity Diagram. A main reason for this advice is that BPMN
is presumed to be more usable for business users than the technically-oriented
Activity Diagram. Adopting a new process modeling language, however, is a sig-
nificant expense factor for businesses and consolidated findings on whether such
presumptions hold true in practice are missing. In this paper, we present results
from an empirical study, in which we examined the application of BPMN and
the UML Activity Diagram by business users during a model creation task. Re-
sults indicate that the UML Activity Diagram is at least as usable as BPMN since
neither user effectiveness, efficiency, nor satisfaction differ significantly.

1 Motivation

The success of service-oriented computing (SOC) strategies considerably depends on
the joint development approach that brings diverse stakeholders together to shape a
company’s service-oriented architectures [1]. To support the communication of rele-
vant business process semantics and so ensure a tight coordination with the software
architecture of applications, stakeholders should use a process modeling language that
can straightforwardly be understood and applied both by IT and business parties. The
growing demand for such an integral process modeling language, amongst others, led
to the development of the Business Process Modeling Notation (BPMN), which is said
to bridge the communication gap between IT and business departments [2,3].

Not only is BPMN directly applicable for the design of service-oriented software
architectures as it supports an automated conversion of modeled processes into the
machine-readable Business Process Execution Language (BPEL). BPMN advocates
such as the Object Management Group (OMG) furthermore claim that, at the same
time, it is understandable and readily usable for all business users, even for ”the busi-
ness people who will manage [...] those processes” [2]. The well-established UML Ac-
tivity Diagram (UML AD) in contrast is deemed as too technically oriented and hence

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, pp. 119–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

120 D. Birkmeier and S. Overhage

useful for designers only [4]. With the adoption of BPMN as core standard to develop
a business modeling framework around, the OMG deliberately decided not to use the
UML AD as its recommended language to model business processes anymore.

While the BPMN success story is likely to continue in light of this development, tran-
sitioning to a new business process modeling language comes with significant efforts
and costs for companies. The promised advantages of BPMN therefore have to be thor-
oughly confirmed. While BPMN’s integration into the SOC technology is unquestioned,
it has to be proven if it is also more usable for business users and better allows them
to communicate process semantics in joint architecture development scenarios than the
UML AD. To date, however, a superior usability of BPMN has neither been backed
with sound theoretical arguments nor consolidated empirical findings. As authors who
conducted analytical comparisons have in fact highlighted considerable similarities be-
tween the concepts of both languages [4,5], the presumed superiority merely stands as
an unproven claim.

In this paper, we analyze the usability of BPMN 1.1 and UML AD 2.x for
business users using results of a comparative empirical study. In order to efficiently
participate in a joint architecture development scenario, business users not only need
easy-to-understand models, but a basic knowledge of the underlying modeling tech-
niques as well. Building upon a standardized usability definition, we therefore test the
conservative hypothesis that UML AD is at least as usable as BPMN in a model creation
task. To confirm that BPMN indeed is more usable, we then try to falsify this propo-
sition. During the empirical study, we therefore conducted a controlled experiment, in
which each participant had to model the same process. The process was predetermined
as part of the experiment design and documented in natural language. We measured to
what extent participants were able to express relevant process semantics with the two
modeling languages.

Building upon such a confirmatory, quantitative research method [6], the remainder
of this paper is organized as follows: next, we describe related work to further motivate
the research gap. In section 3, we introduce the theories and definitions relevant for our
study in order to derive and refine our proposition. We then describe the experiment
setting (section 4) and analyze the obtained data in detail (section 5). We conclude by
summarizing central findings and discussing implications for practice and academia.

2 Related Work

How to evaluate and compare conceptual modeling languages (and process modeling
languages in particular) has already been addressed in literature. General recommenda-
tions thereby advise to combine analytical with empirical approaches to get a complete
picture [7]. With respect to its usability for business users, BPMN so far has only been
analyzed from an analytical perspective, however. Analyses of BPMN against a semi-
otic quality framework with several linguistic evaluation categories revealed that it is
easily applicable for simple modeling scenarios, but especially its advanced modeling
concepts are likely to complicate a successful usage by business users [8,9]. Compared
to the UML AD, BPMN was judged to be somewhat superior with respect to its learn-
ability and precision. Overall, however, the UML AD was found to be equally suited to
improve the communication between IT and business departments [8].

Is BPMN Really First Choice in Joint Architecture Development? 121

Analytical evaluations of BPMN, which use the workflow patterns as introduced by
van der Aalst et al. [10] as a benchmark, found the expressive power to be compara-
ble to those of established process modeling languages [5,4]. Especially, they attested
a notable similarity between the constructs of BPMN and UML AD regarding their ex-
pressive power. The authors of one study nevertheless considered BPMN to be more
usable for business users since ”although the UML 2.0 development included a more
focused effort to upgrade the Activity Diagram in terms of its use for business people, it
is still more technically oriented” [4]. They did not elaborate on why this might be the
case, except for stating that this is due to the design of the language constructs, though.

In contrast to analytical evaluations, empirical studies on the usability of BPMN
for business users are rarely found. One study was devoted to comparatively evaluate
BPMN against Event-Driven Process Chains (EPC). It measured the comprehension
and problem-solving capacities of students as surrogates for business users [11]. While
no significant differences were identified, the study admittedly had a differing focus: it
aimed at examining teaching effects and therefore compared the performance of trained
participants in the EPC group versus untrained participants in the BPMN group. To the
best of our knowledge, there currently is no empirical study that focuses on confirming
that the usability of BPMN for business users is (a) higher than that of other process
modeling notations in general or (b) higher than that of UML AD in particular.

3 Theory and Propositions

Before analyzing if BPMN is indeed more usable for business users than other process
modeling languages, we first have to clarify what the term ”usability” means and how
it is to be measured in a controlled experiment. For our study, we adopted the usability
definition from the International Organization for Standardization (ISO), which defines
usability as the ”extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context”.
In our study, we focus on a joint architecture development scenario (as the specified
context) and examine the ability of business users (as the specified users) to express the
semantics of business processes in a model (as the specified goal).

Effectiveness generally is determined by the accuracy and completeness with which
the participants were able to reach the defined goal [12]. Thereby, accuracy is to be
measured as the extent to which the quality of the users’ output conforms to speci-
fied criteria, while completeness is to be measured as the degree of target achievement
[12,13]. In the context of a business process modeling task, effectiveness can be inter-
preted as the quality of the resulting model [14]. To measure the quality of the models
obtained during our study, we took several types of modeling faults from literature
and aggregated them into a framework which covers accuracy and completeness (see
section 5.1). Thereby, we focused on capturing modeling faults which complicate the
communication of process semantics to other parties in a joint architecture development
scenario.

Efficiency generally is to be determined as the level of effectiveness in relation to
the expenditure of resources like physical effort, time, materials, or financial cost [12].
We measured it as effectiveness in relation to the time necessary to produce the process

122 D. Birkmeier and S. Overhage

model. Satisfaction generally is to be measured by means of the users’ attitude towards
the usage of the product, e.g. as the extent to which users are free from discomfort [12].
It was measured by questioning users during a post-test survey.

As part of the study design, we also had to account for any intervening variables
as they could influence the model quality in addition to the used modeling language
and so bias the results. Generally, the quality of conceptual models is influenced by
a variety of factors [15,16,17], which are summarized in Figure 1. The human factor
has an influence on the quality of the resulting process model, as different perceptions
and interpretations of reality, diverging professional experiences, or varying perceptions
of model quality may affect the selection of the modeling language and the modeling
process. As such effects cause variations in the resulting process models, differences
between individual users have to be controlled, e.g. by increasing the sample size.

Human

Modeling Language

Modeling Process

Model

Fig. 1. Factors that affect the quality of a conceptual model [17]

Apart from the human factor, the quality of a business process model is mainly influ-
enced by the chosen modeling language, especially by its expressive power and com-
plexity [18]. The expressive power of a modeling language thereby is determined by
its ontological completeness and its ontological clarity. A modeling language is onto-
logical complete, if it is possible to represent all relevant aspects of a domain with its
language constructs. A modeling language is ontologically clear if there are no redun-
dant or superfluous constructs and constructs are not overloaded (i.e. cannot be used to
model different domain aspects). The complexity of a language is determined by the
number of constructs and the number of ways to combine them [18].

Regarding complexity and completeness, many similarities between BPMN and
UML AD become obvious [4]. Both, e.g., use the same construct to model process
steps and model control flow branches in a similar way (see Figures 4 and 5 for ex-
amples). There are, however, also differences, like the modeling of events or the data
flow, which in BPMN has to be separated from the control flow [2]. Moreover, BPMN
only offers a reduced set of core constructs and uses variations of these to depict similar
process patterns. E.g., it comprises similar elements to model different kinds of events
or to depict branches of the control flow. Both the reduced set of core constructs as
well as the separation of control and data flow, have been used as a rationale to claim a
superior usability of BPMN for business users [3,4]. Introducing variants of constructs,
however, reduces the ontological clarity of a language as apparently similar constructs
exhibit differing semantics. Therefore, it remains to be validated whether the presumed
superior usability of BPMN actually holds in practice.

With its properties, the modeling language also influences the modeling process, in
which the perceived reality is transcribed and communicated as a written model. This

Is BPMN Really First Choice in Joint Architecture Development? 123

process largely depends on the successful mapping of domain aspects onto modeling
constructs, which has to be achieved with limited human cognitive capacity [19]. If
the semantics of modeling constructs is imprecise or the mapping is complicated due
to the language complexity, however, the quality of the resulting model is likely to be
compromised. Here, BPMN might have a negative influence as, e.g., the semantics of
the UML AD in version 2.x has been more clearly defined than in BPMN [20] and the
separation of control and data flow introduces additional complexity.

While it is not possible to conduct a more detailed analysis of BPMN versus UML
AD in light of the above-mentioned theory due to space limitations, we already raised
reasonable doubts whether BPMN might indeed be better usable for business users as
claimed by BPMN advocates. In order to substantiate their claim, an empirical inter-
language comparison [14] would have to result in a falsification of the proposition P:
For business users, UML AD is at least as usable as BPMN during model creation.
Based on the discussed definition of usability, P can be further refined into:

P1. Business users model at least as effectively with UML AD as with BPMN,
P2. Business users model at least as efficiently with UML AD as with BPMN,
P3. Business users will be at least as satisfied with UML AD as with BPMN.

If at least one of these propositions can be falsified, the claim that BPMN is more usable
than UML AD can be corroborated.

4 Experiment Setting

The experiment conducted to examine the stated propositions followed the design used
by Batra et al. [21]. In a related research topic they evaluated representations with differ-
ent data modeling techniques in an empirical examination. The main variable examined
in the experiment is the notation used for model creation by the participants. Besides
the modeling language, we additionally introduced three different training levels to sim-
ulate an environment of different experiences as it is usually found in practice [22].
The analysis, however, concentrates on one source of variation, namely the modeling
method, within a completely randomized design [23,24].

Experiment Design. Figure 2 depicts the design of the experiment. It started with a
pre-test survey on prior domain and modeling knowledge, whose results were used
to identify and exclude possible outliers afterwards. Two equally large groups were

Pre-test
(Prior Knowledge)

Training
Assignment
(Random)

UML AD
xor

BPMN

Tutorial Tutorial

Modeling
(Test Case)

Experienced

Modeling
(Real Case)

Untrained

Discussion
(Test Case)

Discussion
(Modeling
Language)

Post-test
(Satisfaction)

Modeling Method
Assignment
(Random)

Fig. 2. The experiment design

124 D. Birkmeier and S. Overhage

selected at random and allocated to different modeling techniques. Next, the participants
in each group were randomly assigned to undergo different trainings. Depending on
the assignments, short tutorials in BPMN or UML AD were provided for one third of
the participants. Each of them took 45 minutes and included one small test case. Both
were held by the same instructor and were congruent with regard to their content and
explanations. To simulate a second level of training, another third of the participants
had to create a model of a complex test case without a detailed tutorial and was urged to
discuss individual experiences afterwards. Finally, the remaining participants were left
completely untrained. The actual case was modeled by all participants at the same time.
There was no time restriction; however, time was recorded for the following analysis.
A survey on user satisfaction completed the experiment. Parts of the experiment were
repeated with the same participants on a control case, which has marginal differences
from the main case in its representational complexity [25].

Participants. Participants in the experiment were 30 graduate students in business ad-
ministration. As surrogates for business users, they were randomly chosen out of over
40 volunteers for the study and split into two groups with 15 subjects each. The pre-test
survey revealed that all of them had slightly different backgrounds in process modeling,
but none was an approved expert or freshman. Following Gemino and Wand [19], we
agree that the use of students is appropriate for such a type of study and in fact bene-
ficial, as ”prior knowledge on the problem solving (domain understanding) [...] might
have confounded the results”. For that reason, such a substitution, moreover, is common
standard in related studies [21,26,19].

Materials. Several materials were provided for the participants of the study. A pre-test
survey aimed at identifying prior knowledge. During the model creation task students
were supplied with several large empty pages to create the models, a page with instruc-
tions, and four sheets of information on the application of the modeling language. The
information sheets described the available modeling primitives and common patterns,
as well as an end-to-end example. They have been independently compared and vali-
dated by several faculty members with experience in both modeling languages.

Prior knowledge on the utilized business domain by some participants ”might cre-
ate substantial difficulties in an experimental study” [14]. Thus, we decided to choose
an equally well-known example from everyday life, which, nevertheless, was complex
and non-straightforward (see Figures 4 and 5). In doing so, we accounted for prior

Table 1. Complexity characteristics of the process to be modeled

Count

Primitive Flow element 18

Data element 12

Basic control flow
pattern

Sequence (regular / conditional) 4 (3/1)

Parallel split 1

Synchronization 4

Exclusive choice 3

Simple merge 3

Structural pattern Arbitrary Cycle 1

Is BPMN Really First Choice in Joint Architecture Development? 125

domain knowledge as an intervening variable while testing a process with represen-
tative complexity [14]. As shown in Table 1, the case contains all basic control flow
patterns from van der Aalst et al. [10], as well as one structural pattern. Its complexity,
thus, is comparable to most of the reference business processes found in the German
standard reference on business information systems for e-commerce [27].

Figure 3 depicts four questions from the post-test survey, which were created to
gather information on the users’ satisfaction with their respective modeling language.
On the first question, a high value indicates a highly satisfied user, whereas on the last
three questions small values are favorable.

Q1 Do you think you have understood the modeling language thoroughly? (not at all) 1 … 2 … 3 … 4 … 5 … 6 (completely)
Q2 Do you think the modeling language is challenging for you? (not at all) 1 … 2 … 3 … 4 … 5 … 6 (completely)
Q3 Do you think the concept of the modeling language is difficult? (not at all) 1 … 2 … 3 … 4 … 5 … 6 (completely)
Q4 Do you think the application of the modeling language is difficult? (not at all) 1 … 2 … 3 … 4 … 5 … 6 (highly)

Fig. 3. An excerpt of the post-test survey on user satisfaction

Statistical tools and methods. For the analysis of the obtained data, we mainly applied
the programming language and software environment R for statistical computing and
graphics. In addition, we utilized SPSS for various calculations and GGobi for interac-
tive graphics. Hypothesis testing was primarily performed via Student’s t-tests. Where
necessary, a Kolmogorow-Smirnow test or Bartlett’s test helped to check for normality
or equal variance conditions respectively.

5 Results

5.1 Scoring

Three raters graded the quality of the created models by comparing them with an ade-
quate solution [21]. Therefore, sample solutions were independently prepared by four
experienced modelers and consolidated (see Figures 4 and 5). As every model is created
from a subjective view and generally there is no one solution [17], tolerated variations
from the sample solutions were defined for the grading process. Only differentiations
exceeding these tolerances were marked as deficient.

For the grading process, we defined types of modeling faults that compromise the
quality of a business process model. We thereby concentrated on identifying fault types
that complicate the communication of process semantics to other parties as this is a main
goal in joint architecture development scenarios. Building upon a survey of the litera-
ture on conceptual and business process modeling [28,14], we identified various fault
types and aggregated them into a framework (see Figure 6). Broadly, this framework
distinguishes between violations of the language grammar (formal mistakes) and faults
made during the application of the language in the modeling process (content-related
mistakes). The fault categories correspond to the modeling language and the modeling
process which were identified as influence factors earlier on (see Figure 1).

126 D. Birkmeier and S. Overhage

a
c
ti

v
it

y
ba

ke
 b

an
an

a-
le

m
on

-c
ak

e

W
as

h
le

m
on

s
Le

m
on

s

B
ak

in
g

so
da

F
lo

ur

E
gg

s

B
ro

w
n

su
ga

r

B
ut

te
r

V
eg

et
ab

le

oi
l

R
um

G
ra

te
 p

ee
l o

f l
em

on
s

H
ea

t o
ve

n

G
re

as
e

ba
ki

ng
 tr

ay
G

re
as

e
ba

ki
ng

 tr
ay

[U
se

 b
ut

te
r

]
[U

se
 v

eg
et

ab
le

 o
il

]

S
qu

ee
ze

 le
m

on
s

M
as

h
ba

na
na

s
P

ur
ee

 b
an

an
as

[U
se

 fo
rk

]
[U

se
 h

an
d

bl
en

de
r

]

M
ix

 a
nd

 s
tir

 in
gr

ed
ie

nt
s

[L
ig

ht
en

s
]

C
ra

ck
 e

gg
 a

nd
 s

tir

[N
o

eg
gs

 le
ft

]

[E
gg

s
le

ft
]

A
dd

 fr
ui

ts

M
ix

 in
gr

ed
ie

nt
s

M
ix

 a
nd

 s
tir

 in
gr

ed
ie

nt
s

A
dd

 r
um

D
is

pe
ns

e
do

ug
h

on
 b

ak
in

g
tr

ay

[G
ol

de
n

br
ow

n
]

C
ak

e

[R
um

 d
es

ire
d

]

Le
m

on
s

[c
le

an
]

Le
m

on
s

[p
ee

le
d]

Le
m

on
 p

ee
l

Le
m

on
 ju

ic
e

B
an

an
a

pu
re

e

E
gg

 m
ix

B
ut

te
r

m
ix

F
lo

ur
 m

ix

B
ak

in
g

tr
ay

[g
re

as
ed

]

B
ak

in
g

tr
ay

[fi
lle

d]

D
ou

gh

D
ou

gh

F
ru

it
m

ix

B
ak

in
g

tr
ay

B
ut

te
r

B
an

an
as

B
ak

e
ca

ke
S

lic
e

ca
ke

T
ak

e
ca

ke
 o

ut
 a

nd
 le

t i
t c

oo
l d

ow
n

F
ig

.4
.S

am
pl

e
so

lu
ti

on
us

in
g

U
M

L
A

D

Is BPMN Really First Choice in Joint Architecture Development? 127

Bakery

Baker

W
as

h
le

m
on

s

G
ra

te
 p

ee
l o

f
le

m
on

s

S
qu

ee
ze

le

m
on

s

M
as

h
ba

na
na

s
P

ur
ee

ba
na

na
s

A
dd

 fr
ui

ts

M
ix

 a
nd

 s
tir

in

gr
ed

ie
nt

s

A
dd

 r
um

D
is

pe
ns

e
do

ug
h

on

ba
ki

ng
 tr

ay

T
ak

e
ca

ke

ou
t a

nd
 le

t i
t

co
ol

 d
ow

n
S

lic
e

ca
ke

C
ra

ck
 e

gg

an
d

st
ir

M
ix

in

gr
ed

ie
nt

s

G
re

as
e

ba
ki

ng
 tr

ay
G

re
as

e
ba

ki
ng

 tr
ay

H
ea

t o
ve

n

[N
o

eg
gs

 le
ft

[U
se

 fo
rk

[L
ig

ht
en

s
[U

se
 b

ut
te

r
[U

se
 v

eg
et

ab
le

 o
il

[R
um

 d
es

ire
d

Le
m

on
s

Le
m

on
s

[c
le

an
]

Le
m

on
 p

ee
l

Le
m

on
s

[p
ee

le
d]

Le
m

on
 ju

ic
e

B
an

an
as

B
an

an
a

pu
re

e

F
ru

it
m

ix

B
ut

te
r

B
ut

te
r

m
ix

E
gg

 m
ix

F
lo

ur

F
lo

ur
 m

ix

B
ut

te
r

V
eg

et
ab

le
oi

l
B

ak
in

g
tr

ay

B
ak

in
g

tr
ay

[g
re

as
ed

]

D
ou

gh
[p

la
in

]

D
ou

gh
[r

um
]

B
ak

in
g

tr
ay

[fi
lle

d]

C
ak

e
[h

ot
]

C
ak

e
[w

ar
m

]
C

ak
e

[s
lic

ed
]

[G
ol

de
n

br
ow

n
B

ak
e

ca
ke

M
ix

 a
nd

 s
tir

in

gr
ed

ie
nt

s

E
gg

s

R
um

[U
se

 h
an

d
bl

en
de

r

[E
gg

s
le

ft

B
ak

in
g

so
da

B
ro

w
n

su
ga

r

F
ig

.5
.S

am
pl

e
so

lu
ti

on
us

in
g

B
P

M
N

128 D. Birkmeier and S. Overhage

In accordance with linguistic theory, we distinguished violations of the language
grammar into syntax, semantic, or pragmatic faults [29]. Consecutive syntax and se-
mantic faults of the same type were recorded as repetitive fault if they occurred more
than three times. Pragmatic faults were counted wherever participants incorrectly mod-
eled flow patterns (e.g. loops) due to an allowed but inadequate combination of language
elements. Formal mistakes stemming from an incorrect understanding of the modeling
language in general make the communication of process semantics difficult. For this
reason, they were included into the grading process.

Overall Application

Pragmatic

Semantic

Syntax

50% 50%

33.3%

33.3%

33.3%

20%
80%

20%

80%

100%

Adequacy

Consis-

tency

Strict-

ness
Granularity

Data

Handling

20%

20%20%

20%
20%

33.3%

33.3%

33.3%

50%

50%

50%

50%

75%

25%

80%

20%

Language

Repetetive

Error Single Error

Limited

Flexibility

Redundancy

Differing

Denomination

Contradiction

Missing

Workflow Wrong

Workflow

Constraint

Unnecessary

Flow Element

Missing Flow

Element

Data Flow

Omitted

Unnecessary

Data

Element

Missing

Data

Element

Wrong Pattern

Repetetive

Error

Single Error

Fig. 6. Fault types for the grading of processes and aggregation scheme

Regarding the application of a process modeling language, we considered the criteria
adequacy, consistency, strictness, granularity, and data handling during the grading pro-
cess. The adequacy of a process model is compromised if it contains redundant process
elements or the flexibility is unnecessarily limited by modeling independent workflows
in sequence. Especially the latter fault has significant consequences for the quality of
a software architecture, as flows that could run in parallel are specified to run in se-
quence. The consistency is affected if participants include contradictions or differing
denominations into their models. Such faults make the design of an adequate software
architecture difficult as they cause a need for further inquiry of stakeholders.

The strictness criterion is violated if wrong workflow constraints are introduced into
the model or workflows are omitted completely. Leaving out individual process steps
or unnecessarily splitting them up violates the granularity criterion, which demands a
complete and minimalistic mapping of process steps from reality to the model. Having
such a tight mapping is important to ensure compliance of the resulting software archi-
tecture with the underlying reality. Similarly, the data handling criterion ensures infor-
mational equivalency [14]. It is compromised if superfluous data objects are included
into the model, relevant data objects are left out, or relevant data flows are omitted.

Before applying the framework for grading the quality of created business process
models, it was evaluated by faculty members who were experienced in teaching busi-
ness process modeling. Any necessary adjustments were discussed and implemented.

Is BPMN Really First Choice in Joint Architecture Development? 129

During the grading process, faults in the elementary categories were identified and
counted for each of the process models created during the study.

5.2 Measuring

We determined the effectiveness of BPMN and UML AD by building upon the results
of the grading process. To evaluate the model quality not only in regard to elementary
but also in regard to compound categories of the framework (see Figure 6), aggregated
scores had to be built. This was done in four steps. First, the counted occurrences of
faults were scaled to each form a score between 0 (worst) and 100 (best). In doing so,
a score of 100 in one of the elementary categories is equal to zero faults. A score of 0
is assigned for the highest amount of faults in one category over all models. For each
model, a score was calculated in all of the elementary fault categories. The approach
uses a linear transformation and, thus, no information is changed or lost. The standard
transformation is performed using the following formula where EFC is an abbreviation
for elementary fault category and #E denotes the number of faults counted in one
EFC:

ScoreEFCX = 100 ·
⎡
⎣1 −

⎛
⎝ #EEFCX − min

∀EFC
(#E)

max
∀EFC

(#E) − min
∀EFC

(#E)

⎞
⎠

⎤
⎦

In step two, the scores of the elementary categories were aggregated to obtain scores for
the compound categories as introduced above. In step three, they were further combined
to form language and application scores. The consolidation of the latter ones to an
overall score completes the aggregation. In all aggregation steps, the weights depicted
in Figure 6 were used. Most of the weights are balanced, except where equal weights
would be unreasonable. While the overall score is an interesting nice-to-have, it was
not used for the analysis as the level of aggregation turned out to be highly abstract.
Instead, we decided to evaluate the effectiveness of each modeling language on varying
levels of aggregation to get a complete picture.

Since the time needed to complete the model creation task was recorded (in minutes),
the efficiency could be calculated for every criterion by dividing the effectiveness scores
through time. The corresponding unit is points per minute. Satisfaction was straightfor-
wardly measured as each question of the post-test survey was recorded on a scale from
1 to 6 and hence was directly usable.

5.3 Analysis

The three propositions concerning effectiveness, efficiency, and satisfaction were tested
on the obtained data. As described above, mainly t-tests were used since they are rather
robust towards violations of its preconditions [30]. Nevertheless, whenever an assump-
tion is violated, test results have to be interpreted more carefully. In accordance with
the state of the art, we interpreted test results with p-values smaller than 5% to be sta-
tistically significant.

Effect of intervening variables. The effect of intervening variables was examined us-
ing an analysis of covariance (ANCOVA) technique [31]. Two possible covariate factors

130 D. Birkmeier and S. Overhage

might have an influence on the analysis: prior domain knowledge and the assigned train-
ing. Domain knowledge information was recorded in the surveys. The analysis showed
that domain knowledge was comparable between subjects and had no significant influ-
ence on the results. Therefore, it is disregarded in the further analysis.

The different experience levels, which were intentionally introduced and monitored
through the assigned trainings, constitute the second possible covariate factor. The
analysis revealed neither an influence on the scores investigated to examine the ef-
fectiveness, nor on the satisfaction measures. On the other hand, the experience has
a significant influence on the time needed for the model creation task. This complies
with our expectations. Consequently, the training has an impact on the efficiency scores
(points per minute) as well. Nevertheless, as the analysis showed, the influence of the
language used for model creation stays the same regardless whether the experience level
is considered or not. Therefore, it is safe to be removed from the further analysis as well.

Table 2. Tests and summary statistics for effectiveness and efficiency measures

t p-value Min Max Mean Med
(4)

SD
(5) t p-value Min Max Mean Med

(3)
SD

(4)

AD 95 99 97,3 97 1,29 0,97 2,14 1,39 1,25 0,373

BPMN 94 98 96,7 97 1,45 0,84 1,92 1,28 1,27 0,305

AD 94 100 98,1 99 2,09 0,97 2,16 1,40 1,26 0,377

BPMN 92 100 97,6 99 2,61 0,82 1,94 1,29 1,27 0,309

AD 94 99 96,8 97 1,52 0,98 2,12 1,38 1,25 0,371

BPMN 93 99 96,1 96 1,71 0,87 1,89 1,27 1,27 0,299

AD 94 100 98,5 99 1,60 0,99 2,16 1,40 1,26 0,373

BPMN 94 100 98,7 99 1,84 0,83 1,96 1,31 1,30 0,318

AD 94 100 98,8 100 2,11 0,97 2,16 1,40 1,28 0,373

BPMN 97 100 99,3 100 1,22 0,86 1,96 1,32 1,30 0,309

AD 86 100 96,8 100 5,03 0,93 2,17 1,38 1,27 0,386

BPMN 83 100 94,9 97 5,85 0,76 1,89 1,25 1,21 0,306

AD 91 100 97,4 98 2,44 0,99 2,07 1,38 1,26 0,364

BPMN 94 100 95,7 95 1,99 0,88 1,85 1,27 1,27 0,285

AD 91 100 97,9 100 3,08 0,97 2,17 1,39 1,27 0,378

BPMN 94 100 99,0 100 2,00 0,88 1,96 1,31 1,27 0,311

AD 97 100 99,1 100 1,39 1,00 2,10 1,41 1,27 0,379

BPMN 93 100 97,8 98 2,04 0,87 1,96 1,30 1,30 0,318

AD 81 100 94,0 95 4,47 0,90 2,10 1,34 1,19 0,378

BPMN 88 98 94,9 95 3,31 0,81 1,86 1,26 1,23 0,300

AD 90 99 96,1 98 3,44 0,98 2,15 1,36 1,27 0,365

BPMN 82 99 93,1 93 4,56 0,86 1,83 1,23 1,23 0,290

(1)
 Normally Distributed,

(2)
 Equal Variances,

(3)
 One-tailed,

(4)
 Median,

(5)
 Standard Deviation,

(6)
 Unit: points (0-100),

(7)
 Unit: points per minute

Overall -1,331 0,903

Variable ND
 (1)

EV
(2) t test

(3)
Summary Statistics

 (6)

Language -0,541 0,703

Application -1,241 0,888

Syntax n/a 0,318 0,376

Semantics n/a 0,741 0,233

Pragmatics -0,970 0,830

Adequacy -2,131 0,979

Consistency n/a 1,125 0,136

Strictness n/a -1,987 0,971

Granularity 0,603 0,276

Data Handling -2,033 0,974

ND
 (1)

EV
(2) t test

(3)
Summary Statistics

 (7)

-0,825 0,792

0,756

-0,806 0,786

-0,856 0,800

-1,119 0,864

-0,654 0,741

-0,877 0,806

Effectiveness Efficiency

-0,658 0,742

-0,985 0,833

-0,973 0,830

-0,712 0,759

-0,704

Proposition 1. Table 2 contains an overview of descriptive statistics and testing results.
Considering the p-values for the one-tailed t-test, it becomes obvious that the results
are rather unambiguous, as for none of the criteria the difference is close to being sig-
nificant. Thus, the stated proposition cannot be falsified and the claimed superiority of
BPMN over UML AD remains unsupported with regard to its effectiveness. A closer
look at the results reveals that the UML AD group has higher means in language and
application scores, as well as in four of the lower aggregated criteria. Wherever differ-
ences in medians are present, UML AD scores are higher as well.

While the language scores are rather equal, Figure 7 reveals that especially the ap-
plication of UML AD seems to be more successful. An examination of the contrary
hypothesis, of BPMN being at least as effective for business users as UML AD, leads
to deeper insights. Such a hypothesis will be significantly rejected for the criteria ade-
quacy, strictness, and data handling.

Is BPMN Really First Choice in Joint Architecture Development? 131

B
P

M
N

U
M

L
A

D

90 92 94 96 98 100

Language score

B
P

M
N

U
M

L
A

D

90 92 94 96 98 100

Application score

Fig. 7. Boxplots showing the effectiveness of participants

Proposition 2. As discussed, the basis of all efficiency indicators is the time needed to
finish the model creation task. The mean modeling time needed by subjects to perform
the task is between 74 and 80 minutes. A t-test showed no significant difference in
model creation time between BPMN and UML AD (p-value: 0.492).

The statistical results on efficiency shown in Table 2 are even more distinct than
those for effectiveness. All reported p-values are larger than 74% and thus, they are far
from rejecting the claimed proposition. For every single criterion the means in the UML
AD group are higher than those in the BPMN group. However, this is quite opposite for
the medians, which are higher for the BPMN group except for pragmatic faults and data
handling. Overall, business users modeling with UML AD are at least equally efficient
as with BPMN.

Proposition 3. Finally, the examination of the post-test survey gives information about
the average satisfaction of business users with the different modeling notations. As
discussed, a high value on question 1 and low values on the other three are favorable.
For all questions the means and medians of BPMN and UML AD are relatively close to
each other and thus no clear tendency can be seen. This observation is validated by the
p-values of the respective tests, which range between 0.39 and 0.79 and, hence, are far
from indicating significant differences. Consequently there is no reason to discard the
stated proposition and, hence, also no evidence to conclude that business users are less
satisfied with UML AD as with BPMN.

As we failed to reject any of the refined propositions (P1, P2 and P3), the main
proposition P (UML AD is at least as usable as BPMN) cannot be falsified as well. A
subsequent examination of the control process supported these results.

5.4 Limitations

The study can be easily replicated and hence an independent confirmation of the results
is possible. However, as for any empirical study there are some limitations as to what
extent the results can be generalized. On the one hand, the number of samples is still
limited. We plan to increase the sample size and validate our results in further exper-
iment settings in order to increase the external validity of our findings. Additionally,
our examination is based on a model creation task. Results for an analysis of usability
in model interpretation tasks, in the sense of recall, comprehension, and problem solv-
ing, might be different. As business users are the primary source of information about
a company’s business processes and will hence likely play a major role during the cre-
ation of models in joint architecture development scenarios, however, we decided to
concentrate on model creation as the more demanding task first.

132 D. Birkmeier and S. Overhage

6 Conclusions

In this paper, we evaluated the usability of BPMN and UML AD for business users
based on an empirical comparison, in which we examined their ability to express and
communicate business process semantics in a joint architecture development scenario.
The goal of this examination was to judge if BPMN is indeed more usable for busi-
ness users than UML AD, as it is commonly claimed by BPMN advocates. Starting
from a brief comparative discussion of both languages, we raised doubts whether this
claim actually can be substantiated. With the analysis of the data obtained during our
model creation task, these doubts became justified as the usage of BPMN did neither
led to significantly different results in user effectiveness, efficiency, nor satisfaction. In
contrast, examinations revealed that it was the usage of UML AD which in fact led to
significantly better results in some of the quality criteria.

Above all, UML AD turned out to be superior in expressing flexible processes, in
which independent activities are allowed to run in parallel. The usage of BPMN instead
promoted a rather sequential modeling style in which unrelated activities run one after
the other. Taken over into the software architecture, however, such a sequential mod-
eling unnecessarily degrades the performance of the resulting application. One of the
reasons for the observed differences is that the UML AD has adopted the semantics of
Petri Nets and, e.g., supports an independent start of unrelated activities [20]. In BPMN,
the use of a single start event is preferred to initiate the process flow [2]. A second reason
is that the branching and synchronization of parallel workflows is done with a graph-
ically significant construct in UML AD, while in BPMN an apparently insignificant
gateway symbol is used. A second remarkable observation concerns the separation of
control and data flow in BPMN, which introduces additional complexity and apparently
mislead participants to leave out parts of the data flow. Originally being introduced as
a means to separate concerns [3], this concept turned out to be inferior to a combined
modeling of data and control flow as present in UML AD. To design service-oriented
architectures, however, a close knowledge of the data flow is important.

The presented results have implications for both practice and academia. For practice,
they signal that BPMN should not all too easily be judged to be more usable than UML
AD. Although this currently is often done in literature [8,3,4] and even standardiza-
tion organizations such as the OMG seem to have jumped to that conclusion, there are
indications that BPMN still has shortcomings, which are likely to hinder its efficient
adoption by business users in practice. Where business users are unable to use a mod-
eling language adequately, however, the goal of achieving an efficient communication
between business users and developers is compromised. Taking into account that our re-
sults especially revealed that the use of BPMN implied a decrease of process flexibility,
it may be doubted that it really is first choice in joint architecture development.

While the presented study revealed several insights to better discuss the usability
of BPMN and UML AD, it also left a need for further research. Amongst others, we
were unable to confirm our theoretically motivated doubt that reducing the number of
modeling constructs and instead introducing variants generally leads to a higher rate of
faults due to a reduction of grammar clarity. Future research should hence concentrate
on further examining the empirical indications identified in this paper. In order to better
judge the usability of BPMN and UML AD for business users, a deeper understanding

Is BPMN Really First Choice in Joint Architecture Development? 133

of their individual strengths and weaknesses has to be gained. Therefore, extended em-
pirical studies of model creation products and processes as well as model interpretation
products and processes should be conducted [14]. Consolidated findings of such stud-
ies could provide a basis for merging BPMN and UML AD, which is eventually being
planned in the future to form a truly unified process modeling notation that combines
the strengths of both languages [4].

References

1. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture Best Prac-
tices. Prentice-Hall, Upper Saddle River (2005)

2. OMG: Business Process Modeling Notation Specification. Final Adopted Specification
dtc/06-02-01, Object Management Group (2006)

3. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer,
Heidelberg (2007)

4. White, S.A.: Process Modeling Notations and Workflow Patterns. In: Fischer, L. (ed.) The
Workflow Handbook 2004, pp. 265–294. Future Strategies Inc., Lighthouse Point (2004)

5. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell, N.: On the
Suitability of BPMN for Business Process Modelling. In: Dustdar, S., Fiadeiro, J.L., Sheth,
A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176. Springer, Heidelberg (2006)

6. Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Methods Approaches,
3rd edn. Sage Publications, Thousand Oaks (2008)

7. Gemino, A., Wand, Y.: Evaluating Modeling Techniques based on Models of Learning. Com-
munications of the ACM 46, 79–84 (2003)

8. Nysetvold, A.G., Krogstie, J.: Assessing Business Processing Modeling Languages Using
a Generic Quality Framework. In: Castro, J., Teniente, E. (eds.) Proceedings of the CAiSE
2005 Workshops. Faculdade de Engenharia da Universade do Porto, vol. 1, pp. 545–556
(2005)

9. Wahl, T., Sindre, G.: An Analytical Evaluation of BPMN Using a Semiotic Quality Frame-
work. In: Castro, J., Teniente, E. (eds.) Proceedings of the CAiSE 2005 Workshops. Facul-
dade de Engenharia da Universade do Porto, vol. 1, pp. 533–544 (2005)

10. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Pat-
terns. Distributed and Parallel Databases 14, 5–51 (2003)

11. Recker, J., Dreiling, A.: Does It Matter Which Process Modelling Language We Teach or
Use? An Experimental Study on Understanding Process Modelling Languages without For-
mal Education. In: Proceedings of the Australasian Conference on Information Systems,
Toowoomba, Australia (2007)

12. ISO: Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs) -
Part 11 : Guidance on Usability. ISO Standard ISO 9241-11:1998(E), International Standard
Organization (1998)

13. Frøkjær, E., Hertzum, M., Hornbæk, K.: Measuring Usability: Are Effectiveness, Efficiency,
and Satisfaction Correlated? In: Proceedings of the CHI 2000 Conference on Human Factors
in Computing Systems, pp. 345–352. ACM Press, New York (2000)

14. Gemino, A., Wand, Y.: A Framework for Empirical Evaluation of Conceptual Modeling
Techniques. Requirements Engineering 9, 248–260 (2004)

15. Topi, H., Ramesh, V.: Human Factors Research on Data Modeling: A Review of Prior
Research, an Extended Framework and Future Research Directions. Advanced Topics in
Database Research 3, 188–217 (2002)

134 D. Birkmeier and S. Overhage

16. Soffer, P., Hadar, I.: Reusability of Conceptual Models: The Problem of Model Variations.
In: EMMSAD, Proceedings of the Eighth CAiSE/IFIP8, 1. International Workshop on Eval-
uation of Modeling Methods in Systems Analysis and Design (on CD), Austria (2003)

17. Hadar, I., Soffer, P.: Variations in Conceptual Modeling: Classification and Ontological Anal-
ysis. Journal of the Association for Information Systems 7, 569–593 (2006)

18. Wand, Y., Weber, R.: On the Ontological Expressiveness of Information Systems Analysis
and Design Grammars. Journal of Information Systems 3, 217–237 (1993)

19. Gemino, A., Wand, Y.: Complexity and Clarity in Conceptual Modeling: Comparison of
Mandatory and Optional Properties. Data & Knowledge Engineering 55, 301–326 (2005)

20. OMG: Unified modeling language specification: Version 2. Revised Final Adopted Specifi-
cation ptc/05-07-04, Object Management Group (2005)

21. Batra, D., Hoffler, J.A., Bostrom, R.P.: Comparing Representations with Relational and EER
Models. Communications of the ACM 33, 126–139 (1990)

22. Recker, J.: BPMN Modeling - Who, Where, How and Why. BPTrends 5, 1–8 (2008)
23. Cobb, G.W.: Introduction to Design and Analysis of Experiments. Springer, New York (1998)
24. Dean, A., Voss, D.: Design and Analysis of Experiments. Springer, New York (1999)
25. Bodart, F., Patel, A., Sim, M., Weber, R.: Should Optional Properties Be Used in Conceptual

Modelling: A Theory and Three Empirical Tests. Information Systems Research 12, 384–405
(2001)

26. Kim, Y.G., March, S.T.: Comparing Data Modeling Formalisms. Communications of the
ACM 38, 103–115 (1995)

27. Becker, J., Schuette, R.: Handelsinformationssysteme, 2nd edn. Verlag Moderne Industrie,
Frankfurt (2004)

28. Schuette, R., Rotthowe, T.: The Guidelines of Modeling - An Approach to Enhance the Qual-
ity in Information Models. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS,
vol. 1507, pp. 240–254. Springer, Heidelberg (1998)

29. Silverstein, M.: Linguistic Theory: Syntax, Semantics, Pragmatics. Annual Review of An-
thropology 1, 349–382 (1972)

30. Boneau, C.A.: The Effects of Violations of Assumptions Underlying the t Test. Psychological
Bulletin 57, 49–64 (1960)

31. Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W.: Applied Linear Statistical Models, 5th edn.
McGraw-Hill/Irwin, Boston (2005)

Barriers to Modularity - An Empirical Study to
Assess the Potential for Modularisation of Java

Programs

Jens Dietrich1, Catherine McCartin1, Ewan Tempero2, and Syed M. Ali Shah1

1 Massey University, School of Engineering and Advanced Technology,
Palmerston North, New Zealand

{j.b.dietrich,c.m.mccartin,m.a.shah}@massey.ac.nz
2 Department of Computer Science,

University of Auckland, Auckland, New Zealand
e.tempero@cs.auckland.ac.nz

Abstract. To deal with the challenges when building large and complex
systems modularisation techniques such as component-based software en-
gineering and aspect-oriented programming have been developed. In the
Java space these include dependency injection frameworks and dynamic
component models such as OSGi. The question arises as to how easy
it will be to transform existing systems to take advantage of these new
techniques. Anecdotal evidence from industry suggests that the presence
of certain patterns presents barriers to refactoring of monolithic systems
into a modular architecture. In this paper, we present such a set of pat-
terns and analyse a large set of open-source systems for occurrences of
these patterns. We use a novel, scalable static analyser that we have
developed for this purpose.

The key findings of this paper are that almost all programs investi-
gated have a significant number of these patterns, implying that modu-
larising will be therefore difficult and expensive.

1 Introduction

Object-oriented software engineering has been used successfully in large scale
projects for almost three decades. However, there have been challenges arising
in large and complex software systems. The use of core object-oriented concepts
such as classes, interfaces and name spaces is not sufficient to address many
of the problems encountered when trying to achieve quality attributes such as
maintainability, openness and scalability. To address these issues, several new
technologies have been introduced in recent years to facilitate modularisation.
This includes frameworks such as OSGi [4] and its derivatives such as Declar-
ative Services [4], Eclipse [1] and Spring Dynamic Modules [6], and the several
Java Specification requests [2] aiming to add modularity support to Java such
as JSR277, JSR291 and JSR294. Similar trends exist in other programming lan-
guages and platforms. Given that there is a very successful “killer application”
(Eclipse) and emerging standardisation (OSGi and the JSRs), many vendors will

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, pp. 135–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

136 J. Dietrich et al.

consider refactoring existing, monolithic systems into a new modular architec-
ture. Recently, this has been done by several vendors offering application servers,
including Oracle/BEA (WebLogic) and IBM (WebSphere) [21]. The question
that arises is how difficult it is to refactor existing systems to take advantage of
these new component models.

OSGi and related dynamic component frameworks define modules (“bundles”)
by combining several existing Java language features, namely name spaces (pack-
ages), containers (libraries, aka jars), and class loaders. These modules declare
their capabilities and requirements using meta data. This meta data can then
be used to dynamically link (“wire”) modules together. This has numerous ad-
vantages. In particular, it supports evolving applications through rewiring, and
prevents DLL-hell style problems, as version constraints can be expressed as part
of the meta data.

In OSGi and similar frameworks, modules can control the visibility of pack-
ages through Export-Package and Import-Package declarations. This implies
that packages should not be scattered across different modules, and should be
used to combine related functionality. This differs from the semantics associated
with packages in the original Java language specification where packages were
merely used as unique name spaces. Also, this adds another layer of encapsula-
tion enforced by the component framework using the class loader (and not the
compiler). It is therefore desirable to have loose coupling between name spaces
so that they can easily be separated into different modules that own them. For
instance, if there are name spaces NS1 and NS2 with a single dependency from
(a type within) NS1 to (a type within) NS2, then the program can be easily
refactored into two bundles B1 and B2 such that B1 contains NS1 and B2 con-
tains NS2. The refactoring does not even have to change source code, it only has
to change build scripts (creating bundles from class files) and has to create the
respective bundle meta data to ensure that NS2 is visible for the bundle contain-
ing NS1. A common reason for doing this is to separate the life cycle of the two
name spaces - being in separate bundles means that they can evolve separately.
To achieve this, it is desirable to have good name space separability. We use
this term to quantify how easy is it to separate name spaces through simple
refactorings that can be (semi-) automated.

Many dynamic component models also use the separation of abstract types
and implementation types. This separation facilitates service-oriented program-
ming where service implementation providers are dynamically associated with
service consumers through dependency injection [14] techniques. In particular,
this enables the dynamic swapping of service providers with minimal impact
on the service consumers. This approach is common in OSGi based applica-
tions like Eclipse, where applications that consume services define these services
through interfaces associated with extension points. Other components provid-
ing these services then provide implementation classes through extensions. Other
OSGi extensions such as Declarative Services and Spring Dynamic Modules use
similar mechanisms. To take advantage of these platforms, interfaces and imple-
mentations need to be separated, and the dependencies between them must be

Barriers to Modularity - An Empirical Study to Assess the Potential 137

minimised. We use the term interface separability to measure how easily this
can be done. Examples for refactoring that can be used to separate interface
and implementation are the use of design patterns such as factory and dynamic
proxy [15], and dependency injection.

We propose to use pattern analysis to quantify name space and interface sep-
arability of systems. For this purpose, we define a set of patterns which compro-
mise separability. These patterns can be seen as antipatterns or smells in that
they may represent design flaws. The detection of these patterns also reveals
refactoring opportunities that can be used as starting points for architectural
refactorings of systems from monolithic to modular architectures.

The rest of this paper is organised as follows. We discuss related work in sec-
tion 2. In section 3, we discuss the methodology we have adopted. In particular,
we present a scalable static analysis tool we have developed to analyse large sets
of complex programs. In section 4, we discuss the individual patterns used to
analyse systems for name space and interface separability. We then describe the
experiment setup, the data set and the analysis results in section 5. We finish
our contribution with some conclusions.

2 Related Work

The term code smell appears to have been coined by Kent Beck and has been
made popular by Fowler’s book [13]. Code smells illustrate symptoms that might
indicate deeper problems. Often, code smells are used as starting points for
code refactorings. Closely related to code smells are antipatterns [23]. While
early work on smells and patterns has focused on the analysis of source code,
many of these concepts can also be applied to software architecture [24]. One
driver for this development is the integration of architectural practises into agile
development life cycle models [28]. Research into code-level antipatterns and
smell detection has resulted in a set of robust tools that are widely used in
the software engineering community, including PMD [11] based on source code
analysis, and FindBugs [20] based on byte code analysis. PMD is particularly
interesting, since it supports the declarative specification of antipatterns using
XPath expressions that are evaluated against the abstract syntax tree (AST) of
programs.

A closely related area is the detection of design patterns [15]. Several solu-
tions have been proposed to formalise design patterns in a platform-independent
manner, a good overview is given in [35].

In [16], the authors describe a set of architectural smells using a format similar
to the original gang of four pattern language [15]. These smells are different from
ours, and the definitions given by the authors do not seem to be precise enough
for tool-supported detection.

Our analysis is based on the dependency graph extracted from programs.
This approach has been investigated by several authors. JDepend [3] is a tool
that extracts dependencies between classes and packages from Java byte code
and calculates metrics that can be used to quantify the quality of the system

138 J. Dietrich et al.

design. It also detects circular dependencies. Lattix [32] is another tool used
to analyse the dependency graph of a program, represented as a dependency
structure matrix (DSM). A variety of functions are available to help organise
the matrix in a form that reflects the architecture and highlights patterns and
problematic dependencies.

We have investigated in our previous work [12] the potential of the Girvan-
Newman clustering algorithm [18] to detect refactoring opportunities in depen-
dency graphs. Other work based on cluster analysis includes [33] and [26].

A number of graph query languages have been proposed in the literature, for
both general and specific contexts. GraphQL [19] is a general query language
for graphs that supports arbitrary attributes on vertices, edges, and graphs. It
is based on graph structures that are composable, using the notion of a formal
language for graphs. A graph motif can be either a simple graph or composed
of other graph motifs by means of concatenation, disjunction, and repetition
operators, defined in the context of graphs as opposed to strings. A graph pattern
is a graph motif plus a predicate on attributes of the motif. GraphQL has a
similar algebraic system to SQL, but the algebraic operators are defined directly
on graphs. SPARQL [30] is a query language and data access protocol for the
Semantic Web. SPARQL is defined in terms of the W3C’s RDF data model and
will work for any data source that can be mapped into RDF. SPARQL is an SQL-
like language whose features include basic conjunctive patterns, value filters,
optional patterns, and pattern disjunction. It works primarily via constraints on
single vertices, it does not support path constraints. TAX [22] (Tree Algebra for
XML) is used for manipulating XML data, modelled as forests of labelled ordered
trees. TAX is an extension of relational algebra and is complete for relational
algebra extended with aggregation. It uses a pattern tree to match interesting
nodes. The pattern tree consists of a tree structure and a predicate on the nodes
of the tree.

The existing tool most closely aligned to the purposes of our analysis is Cro-
coPat [9]. CrocoPat is an effective system to query and manipulate relations that
can be extracted from programs. All queries but CNS used in our analysis can
be expressed in CrocoPat. In particular, [9] contains definitions of two of the
queries we are interested in, DEGINH and STK. CrocoPat is based on Binary
Decision Diagrams (BDDs), and known for its excellent performance. CrocoPat’s
language (RML) is a full programming language with syntax elements such as
conditionals and loops, based on first order logic. CrocoPat queries return facts
for a certain predicate symbol. Paths cannot be directly represented in Cro-
coPat. However, reasoning about paths in CrocoPat is supported through the
higher-order transitive closure predicate TC. In our analysis, we require the abil-
ity to arbitrarily constrain the lengths of paths when matching instances of our
queries. For instance, this feature is needed when querying for circular depen-
dencies between packages, and when we are interested in the actual dependency
paths, not just in the packages that are the start and end points of these paths.

The static analysis tool that we have developed, GQL4JUNG, and its method
of deployment, is described in detail in the next section. Our experiment suggests

Barriers to Modularity - An Empirical Study to Assess the Potential 139

that GQL4JUNG is faster than Crocopat for computing instances of queries, and
requires significantly less memory. The reasons for this are the use of an observer-
based API in GQL4JUNG and the fact that CrocoPat is a purely relational
language. In particular, complex terms (such as the package of a class node)
can only be computed by looking up association tables (predicate extensions).
The details of the benchmarking experiment can be found on the GQL4JUNG
project site1.

None of the existing analysis tools fulfilled all of our requirements. In particu-
lar, we required a tool that made available a solid implementation open enough
to allow integration of domain-specific heuristics, supported scriptability to anal-
yse large sets of programs in batch mode, and had support for path constraints
and aggregation conditions.

In recent years corpora-based empirical studies have become more prevalent,
largely due to the fairly widespread availability of open-source software. These
studies have had a variety of goals. For example, open-source systems have been
used for metric validation (e.g. [10]), for studying the appearance of powerlaw
distributions [8], and how features of a language are used in practise, such as use
of multiple dispatch [27], inheritance [37] and unused design decisions [36].

There have also been a number of studies attempting to characterise common
idioms in software, such as micro-patterns [17] and more recently nano-patterns
[34]. Our study differs in that we target idioms that have a negative impact
on software quality. Other studies with similar goals include characterising the
cyclic structures in dependence graphs [25].

3 Methodology

In order to analyse programs for occurrences of patterns, we have developed the
tool GQL4JUNG (“graph query language for Jung ”)2. This tool can be used
to execute graph queries for graphs represented in JUNG [29]. These queries
describe motifs representing patterns in the dependency graph. The dependency
graphs are relatively simple. For a given program, each type (class, interface,
enum etc.) is represented as a vertex. Properties such as the container (in Java,
this is usually a jar file or a folder), the name space (package), abstractness
and the kind of the type (class, interface, annotation etc.) are represented as
vertex annotations. The edges represent relationships between types, annotated
with relationship types. Only three types of relationships are used: uses, extends
and implements. Extends and implements relationships are used to represent
inheritance, all other references such as type references in methods or variables
are represented as uses relationships.

The graphs can be extracted from different sources such as byte code and
source code of programs written in different programming languages. For our
analysis, we have extracted graphs from Java byte code using the dependency
finder library [38]. Graphs built from byte code are slightly different from graphs
1 http://code.google.com/p/gql4jung/wiki/GQL4JUNGvsCrocoPat
2 http://code.google.com/p/gql4jung/

http://code.google.com/p/gql4jung/wiki/GQL4JUNGvsCrocoPat
http://code.google.com/p/gql4jung/

140 J. Dietrich et al.

built from source code. In particular, relationships defined by the use of generic
types are missing due to erasure by the Java compiler. References to static final
numeric fields (constants) are also not visible as the Java compiler replaces these
references by the respective values.

The dependency graphs investigated represent the runtime characteristics of
systems, and the results of this investigation describe the runtime modularity of
systems as opposed to their design time modularity. However, we believe that
these graphs are very similar to graphs extracted from source code and that
therefore most of the results presented here also apply to design time modularity.

GQL4JUNG graph queries are written using a combination of XML and the
MVEL2 [7] expression language. This has several advantages. Queries are easy
to parse and very expressive due to the expressiveness of MVEL. In particular,
complex expressions and terms can easily be written in a syntax similar to Java.
MVEL expressions are used to define constraints on paths and vertices. These
expressions can then be directly compiled into Java byte code.

An example query definition is shown in listing 1. A query consists of ver-
tex - (<select>) and path roles (<connectedBy>), constraints (<constraint>)
and aggregations (<groupBy>). Constraints are boolean expressions referenc-
ing either vertex or path roles. Path role definitions have optional minLength
and maxLength attributes restricting the length of the paths. Given a query
Q = 〈V R, PR〉 with vertex roles V R and path roles PR and a graph G(V, E) con-
sisting of vertices V and edges E, a binding is a pair of functions 〈instV , instP 〉,
where instV : V R → V and instP : PR → SEQ(E). That is, a binding asso-
ciates vertex roles with vertices and path roles with sequences of edges. Moreover,
the vertices and edge sequences associated with roles by a binding must satisfy
all the constraints defined in the query, including the minLength and maxLength
constraints for paths.

Aggregation elements (<groupBy>) are expressions defining an equivalence re-
lationship between bindings. Bindings are considered as equivalent if and only if
the evaluation of the <groupBy> expressions for the bindings of the roles refer-
enced in the expressions yields the same results. Aggregation allows the distinc-
tion between instances and variants. Instances are classes of bindings modulo
equality defined by the aggregation clauses. Usually, instances are represented
by one selected binding. All other bindings in this class represent variants of this
instance. By defining appropriate aggregation clauses, potentially large result
sets can be pruned to a manageable size by removing pattern occurrences that
are non-essential variations of other occurrences. Empirical results show that this
is quite effective, see table 1 for details. The query shown in listing 1 describes a
pattern where a supertype depends on a subtype. The aggregation clause (line
11) defines that two bindings are variants of the same instance if the super type
is the same.

Finally, annotation elements (<annotate>) can be used to define instructions
to be executed before queries are evaluated. These instructions are names of
Java classes that can be instantiated using reflection. The purpose of annota-
tions is to add annotations to vertices and edges before the query is executed.

Barriers to Modularity - An Empirical Study to Assess the Potential 141

Queries can then refer to those annotations. This is used in the CNS query (see
below). Here, an annotation is used to run a script that annotates vertices with
cluster information. The script uses the Girvan-Newman algorithm [18]. Using
annotations in queries has the advantage of performing computationally rela-
tively expensive pre-processing on demand, only for queries that actually use
the respective annotations.

1 <moti f name=”subtype knowledge”>
2 < s e l e c t r o l e=”sub”/>
3 < s e l e c t r o l e=” super ”/>
4 <connectedBy r o l e=” i n h e r i t s ” from=”sub” to=” super ”>
5 <con s t r a i n t> i n h e r i t s . type==’ extends ’ | |
6 i n h e r i t s . type==’ implements ’</ con s t r a i n t>
7 </connectedBy>
8 <connectedBy r o l e=”uses ” from=” super ” to=”sub”>
9 <con s t r a i n t>uses . type==’ uses ’</ con s t r a i n t>

10 </connectedBy>
11 <groupBy><element>super</ element></groupBy>
12 </mot i f>

Listing 1. Subtype knowledge (STK)

Complex, real-world programs generally give rise to large dependency graphs,
often with 10000 or more vertices, whereas the number of roles in our smell-
based queries remains uniformly very small. The worst-case time complexity for
query execution is O(nk), where n and k are the number of vertices in the depen-
dency graph and the number of roles in the query, respectively. This worst-case
time complexity is a consequence of the NP-hardness of the subgraph isomor-
phism problem, which is essentially the problem that we must solve each time
we successfully find an instance of a query motif in a dependency graph.

In practice, the running time for query execution depends on the actual size
of the search space required to successfully map the roles of the query to vertices
in the dependency graph. The challenge is to reduce this search space as far as
possible and to explore it in the best order.

The following techniques are used in GQL4JUNG to address these issues:

1. Before the query is executed, a scheduler orders the constraints so that se-
lective constraints are resolved first. This keeps the derivation tree narrow.

2. When the query engine computes paths to connected vertices, a straight for-
ward breadth first search is used. However, the path constraints are enforced
immediately to prune the search tree.

3. Queries can be executed with an instances-only flag. If this flag is set, only
one member of each aggregation class will be computed. In many application
scenarios, this is sufficient. In this case, the constraint resolver can use back
jumping instead of back tracking and large parts of the search tree can be
pruned. This leads to significant improvements in query performance.

142 J. Dietrich et al.

4. The query has an observer [15] API. This means that observers are notified
when results are found and can process results while the engine is still search-
ing. If results are only counted, an observer that only increases a counter can
be used, resulting in very modest demand for memory.

4 Patterns

4.1 Overview

As discussed in the introduction, there are two properties that facilitate the mod-
ularisation of systems: interface and name space separability. We have identified
the following patterns that compromise these properties:

1. Abstraction Without Decoupling (AWD) - affects interface separability
2. Subtype knowledge (STK) - affects interface separability
3. Degenerated inheritance (DEGINH) - affects interface separability
4. Clusters in name spaces (CNS) - affects name space separability
5. Cycles between name spaces (CDNS) - affects name space separability
6. Cycles between containers (CDC) - flaw in existing modularisation

These patterns can easily be formalised in GQL4JUNG. We discuss each of these
queries in the following subsection. We will not provide a formal definition for
each query for space reasons. The interested reader can find the query definition
in the open GQL4JUNG repository 3. Instead, we will use a simple visual syntax
to represent patterns. Vertex roles are represented as boxes. Path roles are rep-
resented by arrows connecting boxes. These connections are labelled with either
uses (uses relationships) or inherits (extends or implements relationships). They
are also labelled with a number range describing the minimum and maximum
length of paths. If type roles have property constraints, these constraints are
written within the box in guillemets.

4.2 Abstraction without Decoupling (AWD)

An Abstraction Without Decoupling (AWD) pattern exists when a client has a
uses dependency on an abstract service and also on an implementation of that
service. This means that in order to change the service implementation that is
used, the client’s code must be changed. Had the client depended only on the ser-
vice and not the implementation, the implementation could have been changed
without any impact on the client. This is a example where interface separability
has been violated — there is no separation between the implementation and the
client. The pattern is shown in figure 1.

This pattern can often be removed by using dependency injection — instead of
hard-coding the dependency to the service implementation, it is stored externally
and injected at runtime. In particular, this is desirable if there are alternative

3 http://gql4jung.googlecode.com/svn/tags/r0.4.2/queries/

http://gql4jung.googlecode.com/svn/tags/r0.4.2/queries/

Barriers to Modularity - An Empirical Study to Assess the Potential 143

Fig. 1. AWD Fig. 2. STK

service implementations available or if service implementations evolve and have
to be upgraded at runtime.

This pattern often occurs when fields are declared using abstract types (such
as java.util.List) and default values (such as java.util.Vector) are used.
Sometimes, the low complexity of services does not warrant the full separation
of service and implementation references. In Java, inner classes are often used
to provide service implementations. This can be captured in a refined version of
AWD, Abstraction Without Decoupling With Inner Class Exception (AWDI).
AWDI has an additional constraint indicating the the service implementation
must not be a member of the client.

For both AWD and AWDI, aggregation is defined modulo the client and the
service role. This means that different occurrences are considered as variations
of the same instance if client and service are the same but the service implemen-
tation or some of the reference paths are different.

4.3 Subtype Knowledge (STK)

In this pattern [9], types use their subtypes. The formal definition of this query
is given in listing 1, a visual representation is given in figure 2. The presence
of STK makes it difficult to separate interfaces and implementations into dif-
ferent modules. In particular, this would imply circular dependencies between
modules containing super- and subtype. Moreover, instability in the (generally
less abstract) subtype will cause instability in the supertype, and the supertype
cannot be used and understood without its subtype. Aggregation is defined with
respect to the supertype.

There are uses of design patterns that result in STK. Examples are single-
tons [15] where the singleton class itself is abstract, and the default instance is
an instance of a subclass. This is sometimes used in conjunction with the Ab-
stractFactory [15] pattern in order to install a global default factory for a certain
service.

4.4 Degenerated Inheritance (DEGINH)

Degenerated inheritance [9] (figure 3) means that there are multiple inheritance
paths connecting subtypes with supertypes. For languages with single inheri-
tance between classes like Java, this is caused by (multiple) interface inheritance.
The presence of DEGINH makes it difficult to separate sub- and superclasses.

144 J. Dietrich et al.

Fig. 3. DEGINH Fig. 4. CNS

In particular, this may cause versioning problems if a class inherits from an in-
terface via several separate intermediate classes or interfaces that are stored in
different modules. If these modules are units of versioning, the interface version
depends on the resolution algorithm used by the component model, and is dif-
ficult to predict by the author of the class. Aggregation is defined with respect
to the super type.

4.5 Clusters in Name Spaces (CNS)

Clusters in name spaces (figure 4) are evidence that name spaces can be split
to facilitate modularisation. Our clustering script is set to detect only existing,
independent clusters, that is, each cluster here is simply a connected component
of the dependency graph.

Having multiple clusters in packages is problematic as it might be desirable to
move some types to a certain module, and other types to a different module. If
modules own name spaces, this creates a conflict. However, if these types were in
different clusters a name space could easily be split. Therefore, clusters in name
spaces obfuscate obvious modularisation opportunities. Aggregation is defined
with respect to the name space where the clustering occurs.

This pattern occurs often when miscellaneous packages are used to combine
code that does not fit into other packages. An example is the Java java.util
package. It contains unrelated functionality such as the collection library, support
for internationalisation and localisation (i18n), time and date, and the observer
pattern.

4.6 Cycles between Name Spaces (CDNS)

Cycles between name spaces glue name spaces together. This means that these
name spaces can not be deployed and maintained separately. This is a classical,
well-understood antipattern, and good tool support is available to find instances
of this pattern. The definition used here (figure 5) is stronger than the usual
definition of circularity. A cycle consists of a path connecting type vertices. The
path itself is not necessarily circular, and the first and the last vertex are not
necessarily the same. However, start and end vertices have to be in the same
name space NS1, while there is at least one vertex in the path in a different
name space NS2. This definition is stronger than just having (possibly discon-
nected) dependencies between NS1 and NS2, and NS2 and NS1. In CDNS, both

Barriers to Modularity - An Empirical Study to Assess the Potential 145

Fig. 5. CDNS

dependencies are linked together. This means that the circular dependency can
not be broken by splitting NS2. The aggregation used in CDNS is defined with
respect to the name space where the path starts and ends. The path connecting
the two outside nodes has a minimum length of 0. This means that the two
outside nodes can be identical, creating a triangular pattern.

4.7 Cycles between Containers (CDC)

Finally, we are interested in circular dependencies between containers (usually
jar files). This is defined similarly to CNS by a path consisting of connected types
linking a container with another container and then returning to the container
where the path started. This means that the dependency can not be broken by
splitting the container. To deploy containers separately, some of the the types
within the path must be changed to break the cycle. Bindings are considered
variants if the container where the path starts and ends is the same.

The visual representation of this pattern is the same as for CDNS, except
that the inside nodes are in the same container, not in the same package. In
our opinion, CDC is a strong antipattern. The very reason to build containers
is to deploy them separately and in different combinations in different contexts.
However, this is not possible if containers have circular dependencies.

5 Results

5.1 Programs Analysed

The experiment presented here is based on the qualitas corpus version 20080312
[31]. The corpus contains 206 programs. This includes multiple versions of some
programs. In this case, we selected only the latest version of each program in
order to avoid over-representation of particular patterns prevalent in certain pro-
grams. This resulted in a set of 87 programs analysed. The corpus contains a
wide range of widely used systems, including end-user applications like azureus
and ArgoUML, libraries like antlr, jung, Xerces and Xalan, and tools such
as ANT.

146 J. Dietrich et al.

5.2 Overview

The average number of vertices in the dependency graphs is 2781.93, the average
number of edges is 13509.74. In average, programs have 161.95 packages and
15.69 jars. The largest programs analysed is the spring-framework 1.2.7. The
program has 1013 packages and 91 jars, the respective dependency graph has
16313 vertices and 73400 edges.

Table 1 shows some metrics extracted from the result sets. It is remarkable
that for each query there is only a small percentage of programs without any
results. CDC seems to be the only exception. However, many programs (24)
consist of only a single jar file, and can therefore not contain CDC instances
by definition. The still relatively large number of programs with CDC instances
was a result we did not expect. It is hard to think of any reasonable justification
for this.

Table 1. Result summary

metric AWD AWDI STK DEGINH CDNS CDC CNS
graphs with no in-
stances

1 1 2 12 4 60 4

max number of in-
stances found

11691 11516 870 187 358 7 257

average number of in-
stances found

2068.06 2032.09 126.05 27.54 56.91 0.87 30.15

max number of vari-
ants found

147715 147184 3924 3945 2174436 8841 5214942

average number of
variants found

24157.40 23990.17 684.89 451.64 178366.93 277.31 80766.18

average variants/in-
stances ratio

9.35 9.42 5.67 14.19 3328.14 360.94 2647.32

max instances/vertex 1.56 1.55 0.19 0.05 0.06 0.003 0.03
avg instances/vertex 0.69 0.67 0.04 0.01 0.02 0.0002 0.01
max instances/edge 0.27 0.27 0.04 0.01 0.02 0.002 0.02
avg instances/edge 0.14 0.14 0.01 0.002 0.005 0.00007 0.003
average time to com-
pute instances (ms)

19302 19414 1163 234 5909 2625 21269

AWDI was introduced to deal with false positives for AWD. However, the
results indicate that there is no big difference between the result sets for these
two patterns. There are significantly more instances for AWD/AWDI than for
any other pattern. This itself is not surprising since it is rather common to declare
variables using an abstract type, but to initialise them by using the constructor
of a default type.

The table also contains performance data in the last row. These values have
been obtained using system with an Intel Core2 CPU T5600 @ 1.83GHz, 2GB of
memory, Ubuntu 9.04 with a 2.6.28-13-generic kernel and the OpenJDK 6b14-
1.4.1-0ubuntu7.

Barriers to Modularity - An Empirical Study to Assess the Potential 147

5.3 Life Cycle, Program Size and Pattern Density

The results summarised in table 1 are based on the analysis of the latest version
of each program represented in the corpus. However, for many programs the
corpus contains several versions. The analysis of version ranges shows that the
number of pattern generally increases. Table 2 shows the number of pattern
instances in the first and the last version for the programs that are represented
with more than 5 different versions in the corpus. In most cases, the increase is
monotonic. There are a few cases where the instances decrease “locally” between
two versions. For instance, the number of AWD instances drops from 177 to 142
from antrl-2.7.2 to antrl-2.7.3. The size of the programs measured by graph
size continuously increases for these programs. The increase was significant with
one exception (jgraph).

We also looked into the correlation between the number of patterns and the
size of the graphs. For most patterns, there is an almost linear relationship. The
exception is CDC where the number of pattern instances is too small to detect a
trend. Figure 6 shows the number of STK, DEGINH, CDNS and CNS instances
by program size. Here, each dot represents the number of pattern instances found
for a program of the respective size. The trends for AWD and AWDI, not shown
in this graph, are similar, the respective curves are significantly steeper.

The almost linear relationship is surprising. Firstly, we expected smaller pro-
grams to have lower numbers of pattern instances relative to their size as hav-
ing fewer developers should mean that each would have a good understanding
of the entire program and would therefore be in a position to avoid obvious
problems such as circular dependencies. Secondly, we also expected lower rel-
ative numbers in very large programs as we expected that other methodolo-
gies and tools (such as simple architectural testing with tools like JDepend)
would have been introduced to deal with the complexity of large programs and a
larger number of developers in teams. However, surprisingly, neither seems to be
the case.

Table 2. Pattern instances at the boundaries of version ranges

program versions version range Vertex count AWD STK DEGINH CDNS
in corpus analysed first last first last first last first last first last

antlr 10 2.4.0-2.7.6 51 224 1 154 1 13 1 3 1 3
ant 7 1.5.2-1.7.0 1618 2343 1368 1715 60 115 19 26 27 38
azureus 11 2.0.8.2-3.0.3.4 1145 5378 745 7918 16 232 3 25 60 309
jmeter 8 1.8.1-2.1.1 1959 4223 2347 3248 137 193 26 51 60 117
jgraph 27 5.4.4-5.9.2.1 92 94 110 114 16 18 1 1 5 5
jung 16 1.0.0-1.7.1 132 663 169 842 3 6 8 22 4 13
junit 13 2-4.4 38 154 6 58 1 8 0 0 0 8

148 J. Dietrich et al.

Fig. 6. Pattern instances by program size

5.4 Patterns in Java’s Core Libraries

We have also analysed the Java runtime environment (JRE). The graph was
built from the rt.jar library taken from SUN’s Java SE Runtime Environment
(build 1.6.0 05-b13) for Linux. The graph is large, consisting of 16877 vertices
and 170140 edges. There are 26555 AWD instances, 26239 AWDI instances, 393
CDNS instances, 1437 STK instances and 184 DEGINH instances. There are
however no CNS instances. The last result is mainly due to the presence of the
java.lang.Object class connecting the graph. The number of circular depen-
dencies between packages is surprising. It appears that many of these patterns
occur in packages starting with sun or com.sun. The unexpectedly high number
of patterns in the Java core libraries is particularly interesting as the modulari-
sation of Java itself is currently being investigated (project “jigsaw” [5]).

The reason that this library does not contain instances of CDC is simple - it is
only one library. However, there are instances of CDC when other libraries that
are part of the JRE are added to the graph. In particular, rt.jar has a circular
dependency with jce.jar and jsse.jar. The critical edges are uses relation-
ships from java.net.SecureCacheResponse (in rt.jar) to javax.net.ssl.-
SSLPeerUnverifiedException (in jsse.jar) and from java.security.Sig-
nature (in rt.jar) to javax.crypto.Cipher (in jce.jar).

6 Conclusion

In this paper we have investigated patterns that compromise the separability
of name spaces and interfaces, and therefore hinder refactoring of programs to
take advantage of emerging platforms providing support for modular system
architectures. We have assessed the scope of the problem by analysing a large set
of programs from an open source repository. The results show that the problem
is widespread. However, the fact that detection of these patterns can easily be

Barriers to Modularity - An Empirical Study to Assess the Potential 149

automated, as we have shown, indicates that there is an opportunity to semi-
automate the removal of many of these patterns. The necessary refactorings are
not restricted to code-level refactorings such as moving classes between name
spaces, but would also include refactorings to create or modify build scripts,
deployment descriptors and other component meta data.

Creating and cataloguing these refactorings is an interesting challenge for fur-
ther research. An open question is whether our results can be directly applied
to commercial, close source systems. There are some points supporting this con-
jecture, in particular the fact that software engineers use the same tools and
methodologies used in open source software projects. Unfortunately, commer-
cial systems are not readily available for analysis. The main problem is that the
licenses of commercial systems usually do not allow byte code analysis.

Acknowledgements

This project has been supported by funding from the New Zealand Foundation
for Research, Science and Technology (FRST) for the Software Process and
Product Improvement (SPPI) project. The authors would like to thank Gareth
Cronin from Kiwiplan Ltd for his input.

References

[1] The eclipse project, http://www.eclipse.org/
[2] Java specification requests, http://jcp.org/en/jsr/overview
[3] JDepend dependency analyser, http://clarkware.com/software/JDepend.html
[4] OSGiTM- the dynamic module system for java, http://www.osgi.org/
[5] Project jigsaw, http://openjdk.java.net/projects/jigsaw/
[6] Spring dynamic modules for OSGiTMservice platforms,

http://www.springsource.org/osgi

[7] Mvel expression language (2009), http://mvel.codehaus.org/
[8] Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton, H.,

Tempero, E.: Understanding the shape of Java software. In: Proceedings OOPSLA
2006, pp. 397–412 (October 2006)

[9] Beyer, D., Noack, A., Lewerentz, C.: Efficient relational calculation for software
analysis. IEEE Transactions on Software Engineering (TSE) 31(2), 137–149 (2005)

[10] Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

[11] Copeland, T.: PMD Applied. Centennial Books (2005)
[12] Dietrich, J., Yakovlev, V., McCartin, C., Jenson, G., Duchrow, M.: Cluster anal-

ysis of java dependency graphs. In: SoftVis 2008, pp. 91–94 (2008)
[13] Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,

Boston (1999)
[14] Fowler, M.: Inversion of control containers and the dependency injection pattern

(2004), http://martinfowler.com/articles/injection.html
[15] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of

reusable object-oriented software. Addison-Wesley, Boston (1995)

http://www.eclipse.org/
http://jcp.org/en/jsr/overview
http://clarkware.com/software/JDepend.html
http://www.osgi.org/
http://openjdk.java.net/projects/jigsaw/
http://www.springsource.org/osgi
http://mvel.codehaus.org/
http://martinfowler.com/articles/injection.html

150 J. Dietrich et al.

[16] Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural
bad smells, pp. 255–258. IEEE Computer Society, Los Alamitos (2009)

[17] Gil, J.Y., Maman, I.: Micro patterns in Java code. In: Proceedings OOPSLA 2005,
pp. 97–116. ACM Press, New York (2005)

[18] Girvan, M., Newman, M.E.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

[19] He, H., Singh, A.K.: Graphs-at-a-time: Query language and access methods for
graph databases. In: Proceedings SIGMOD 2008, pp. 405–418 (2008)

[20] Hovemeyer, D., Pugh, W.: Finding bugs is easy. In: Proceedings OOPSLA 2004,
pp. 132–136. ACM, New York (2004)

[21] Humble, C.: IBM, BEA and JBoss adopting OSGi,
http://www.infoq.com/news/2008/02/osgi_jee

[22] Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D., Thompson, K.: Tax: A tree
algebra for xml. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397,
pp. 149–164. Springer, Heidelberg (2002)

[23] Koenig, A.: Patterns and antipatterns. JOOP 8(1), 46–48 (1995)
[24] Lippert, M., Roock, S.: Refactoring in Large Software Projects: Performing Com-

plex Restructurings Successfully. Wiley, Chichester (2006)
[25] Melton, H., Tempero, E.: An empirical study of cycles among classes in Java.

Empirical Software Engineering 12(4), 389–415 (2007)
[26] Müller, H., Orgun, M., Tilley, S., Uhl, J.: A reverse-engineering approach to sub-

system structure identification. Journal of Software Maintenance: Research and
Practice 5, 181–204 (1993)

[27] Muschevici, R., Potanin, A., Tempero, E., Noble, J.: Multiple dispatch in practice.
In: Proceedings OOPSLA 2008, October 2008, pp. 563–582 (2008)

[28] Nord, R.L., Tomayko, J.E.: Software architecture-centric methods and agile de-
velopment. IEEE Software 23(2), 47–53 (2006)

[29] O’Madadhain, J., Fisher, D., White, S., Boey, Y.-B.: The jung (java universal
network/graph) framework. Technical Report UCI-ICS 03-17, University of Cali-
fornia, Irvine (2003)

[30] Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical
report, W3C (2006)

[31] Qualitas Research Group. Qualitas corpus version 20080312. The University of
Auckland (March 2008), http://www.cs.auckland.ac.nz/~ewan/corpus

[32] Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to man-
age software architecture. In: Proceedings OOPSLA 2005, pp. 164–165. ACM,
New York (2005)

[33] Schwanke, R.W.: An intelligent tool for re-engineering software modularity. In:
Proceedings ICSE 1991, pp. 83–92 (1991)

[34] Singer, J., Brown, G., Lujan, M., Pocock, A., Yiapanis, P.: Fundamental nano-
patterns to characterize and classify java methods. In: Proceedings LDTA 2009
(2009)

[35] Taibi, T. (ed.): Design Patterns Formalization Techniques. Idea Group Inc., Her-
shey (2007)

[36] Tempero, E.: An empirical study of unused design decisions in open-source Java
software. In: Proceedings APSEC 2008, December 2008, pp. 33–40 (2008)

[37] Tempero, E., Noble, J., Melton, H.: How do java programs use inheritance? an
empirical study of inheritance in java software. In: Vitek, J. (ed.) ECOOP 2008.
LNCS, vol. 5142, pp. 667–691. Springer, Heidelberg (2008)

[38] Tessier, J.: Dependency finder, http://depfind.sourceforge.net/

http://www.infoq.com/news/2008/02/osgi_jee
http://www.cs.auckland.ac.nz/~ewan/corpus
http://depfind.sourceforge.net/

Evaluating Maintainability with
Code Metrics for Model-to-Model Transformations

Lucia Kapová, Thomas Goldschmidt, Steffen Becker, and Jörg Henss

Chair for Software Design and Quality, Universität Karlsruhe (TH), 76131 Karlsruhe, Germany
{kapova,henss}@ipd.uka.de

FZI Forschungszentrum Informatik, 76131 Karlsruhe, Germany
{goldschmidt,sbecker}@fzi.de

Abstract. Using model-to-model transformations to generate analysis models
or code from architecture models is sought to promote compliance and reuse
of components. The maintainability of transformations is influenced by various
characteristics - as with every programming language artifact. Code metrics are
often used to estimate code maintainability. However, most of the established
metrics do not apply to declarative transformation languages (such as QVT Re-
lations) since they focus on imperative (e.g. object-oriented) coding styles. One
way to characterize the maintainability of programs are code metrics. However,
the vast majority of these metrics focus on imperative (e.g., object-oriented) cod-
ing styles and thus cannot be reused as-is for transformations written in declara-
tive languages. In this paper we propose an initial set of quality metrics to evaluate
transformations written in the declarative QVT Relations language. We apply the
presented set of metrics to several reference transformations to demonstrate how
to judge transformation maintainability based on our metrics.

1 Introduction

Model transformations are often used to transform software architectures into code or
analysis models. Ideally, these transformations are written in special transformation lan-
guages like QVT [17]. With an observable increase in the application of Model-Driven
Software Development (MDSD) in industry and research, more and more transforma-
tions are written by transformation engineers. Thus an increasing set of transformation
scripts have to be maintained in the near future, i.e., they demand to be understood by
other developers, bugs need to be tracked down and removed, and enhancements need
to be implemented because of evolving source or target meta-models.

Today there are two main streams of model-to-model transformation languages: im-
perative (or operational) and functional (or relational) languages. For imperative lan-
guages like QVT Operational we can reuse existing literature about software code
metrics for imperative, e.g. object oriented, languages. However, for relational model-
transformation languages like QVT Relations there is not even a comparable amount of
literature. In this paper we report on early experiences gained in our group on applying
QVT Relations. They show that understanding relational transformations turns out to be
quickly a difficult task. The difficulties increase more than linearly when transformation
sizes increase and single relations become more complex.

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, pp. 151–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

152 L. Kapová et al.

In traditional object-oriented software development software metrics are used as a
means to estimate the maintainability of code [2]. The estimated maintainability then
indicates when the code base becomes too hard to maintain. Software developers take
corrective actions like refactorings [7] or code reviews to keep the code in a maintain-
able state. However, these metrics do not yet exist for relational model transformation
languages. Nevertheless, some initial research targets metrics for functional program-
ming languages in general like Lisp or Haskell. Being part of the same language family,
some metrics for functional programming languages can serve as a starting point for the
definition of metrics for declarative model-transformation languages. In this paper we
try to draw upon their ideas in defining our own set of metrics for model-transformation
languages.

As an initial step towards estimating the maintainability of functional model trans-
formation languages, we present a set of metrics usable to get insight into the main-
tainability of QVT Relations transformations. For this, we analysed existing metrics
for functional programming languages and combined them with general code metrics
(like Lines of Code (LOC)) and complemented them with our own experiences from
applying QVT Relations. This set of developed metrics shall finally serve as a basis to
judge internal transformation quality and to guide the development of transformation
refactorings or review checklists (i.e., a list of bad smells to look for). We evaluated our
metrics on the standard model-transformation example given by the QVT standard: the
transformation from UML models to entity-relationship models to show that the metrics
(a) are computable and (b) give insight into the transformation’s internal quality.

The contribution of this paper are metrics to evaluate aspects of the maintainability of
QVT Relational transformation scripts. These metrics are described in detail and their
ranges of “bad” values are characterized including a rationale explaining which type
of maintainability problem the metric detects. An early case study shows the metrics’
applicability and initial evaluation results.

The paper is structured as follows. After discussing the properties of transformation
languages in Section 2, we give an overview of related work to our approach in Section
3. Section 4 introduces identified quality metrics for transformations and Section 5 il-
lustrates how to systematically compute the values for quality metrics. To demonstrate
the applicability of our approach we introduce a case study in Section 6. We discuss the
limitations and validity of the approach in Section 7. Finally, Section 8 concludes the
paper and highlights future research directions.

2 The Group of Relational Transformation Languages

The goal of our work is to quantify the maintainability of model transformations. There-
fore, we start by defining suitable metrics in this context. We identified a lack of quality
metric definitions for relational transformation languages in the literature. Hence, in
this paper, we focus on model transformations created using QVT Relational (QVT-R),
but we assume that our metrics can be applied to model transformations created using
other relational transformation languages as well. The main observed difference be-
tween relational and operational (i.e., imperative) languages is the fact, that operational
transformation languages describe a sequence of statements to create certain output.

Evaluating Maintainability with Code Metrics for Model-to-Model Transformations 153

In contrast, relational transformation languages only describe the relations between
input and output of a transformation in a declarative manner, not the way how it is
computed (non-determinism). This results in special characteristics of relational trans-
formation languages which have to be reflected by the metrics to be defined.

2.1 QVT Relational

QVT Relational is part of the QVT standard [17] and used for describing model trans-
formations in a declarative manner. This means the transformation itself is written as a
set of relations that shall be satisfied during the transformation process. As QVT Re-
lational is multidirectional, there is no single source and target model but a list of so
called candidate models. Each of these candidate models can be chosen as a target of
the transformation, identifying the execution direction. When the transformation is in-
voked in a selected execution direction only the target model is modified such that all
relations hold.

1 top relation ClassToTable {
2 cn : Str ing ;
3 pref ix : Str ing ;
4 checkonly domain uml c : SimpleUML : : UmlClass {
5 umlNamespace = p : SimpleUML : : UmlPackage {} ,
6 umlKind = ’ P er s i s t en t ’ ,
7 umlName = cn
8 };
9 enforce domain rdbms t : SimpleRDBMS : : RdbmsTable {

10 rdbmsSchema = s : SimpleRDBMS : : RdbmsSchema { } ,
11 rdbmsName = cn ,
12 rdbmsColumn = cl : SimpleRDBMS : :RdbmsColumn {
13 rdbmsName = cn + ’ t i d ’ ,
14 rdbmsType = ’NUMBER’ } ,
15 rdbmsKey = k : SimpleRDBMS : :RdbmsKey {
16 rdbmsColumn = cl : SimpleRDBMS : : RdbmsColumn{}}
17 };
18 when {
19 PackageToSchema(p , s) ;
20 }
21 where {
22 ClassToPkey(c , k) ;
23 pref ix = cn ;
24 AttributeToColumn(c , t , pref ix) ;
25 }
26 }

Listing 1. Example of QVT Relational

An example QVT-R transformation is given in Listing 1. A relation has two or more
domains, that are given as patterns on the candidate models. The pattern usually in-
cludes an object graph pattern, properties and associations between objects and defines

154 L. Kapová et al.

a variable binding for each pattern match. By using the same variables in different do-
main patterns we can define the relation between candidate models. In consequence the
target model is modified for each found pattern binding not being fulfilled to the ex-
tent that the relation holds. Beyond that, a relation can have when and where clauses
that specify pre- and post-conditions. A relation only has to be satisfied when all pre-
condition relations contained in the when clause are satisfied. In a similar manner each
relation contained in the where clause has to be fulfilled when the relation containing
the clause is fulfilled. Furthermore a target domain can be marked as checkonly, i.e. the
target domain model is only checked for consistency and not modified. Besides this,
relations are marked as enforce by default, thus insisting on the application of model
changes for relations that do not hold. A relation can be marked as top-level. This means
that the relation has to hold in any case for a successful transformation, while any non-
top-level relation only has to be satisfied when directly or transitively referenced from
a where clause.

2.2 General Observations on Maintainabilty of QVT-R Transformations

QVT-R can be applied for example in transformations between languages, code gen-
eration and incremental or refinement transformations. One main advantage of QVT-R
is its brevity and conciseness. In the QVT-R language the structure of transformations
is mainly characterised by the interdependencies of its relations. On the other hand
relations can be defined in a way that they match overlapping sets of elements. Con-
sequently, this increases complexity in cases when a new relation is introduced and it
is influenced by other relations. For example, let transformation T be defined as a set
of relations R, R = {a, b, c, d}. Suppose we want to extend T with a relation e, but e
depends on a result of a and a depends on a result of both b and c, while c depends on d.
Thus, we first need to understand how relations a, b, c and d are related in order to cor-
rectly include e into the transformation. In the case of more complex transformations it
is very hard to have all dependencies in mind. Because of this net of dependencies it is
hard to say if a new introduced relation conflicts with other relations or influences them
in an undesired way. One possible design of relational transformation could be cluster-
ing of relations that match or create the same element (clustering of top-level relations).
Furthermore, the identification of possible execution paths, how long they usually are
and what they dependend on, is a very complex task.

3 Related Work

Quality metrics have been studied already to measure quality (software quality was de-
fined by [3]) of object-oriented software [6,12,19], software architectures [1,21] and
design [15]. Metrics to estimate the maintainability of software are mostly based on
measuring the size and complexity of code. Depending on the employed programming
languages (functional, imperative, etc.) different metrics need to be employed for this
task. The most relevant group of metrics for our approach is derived from related work
in the area of functional languages, such as the metrics defined by Harrison et al. in
[11]. The group of relational transformation languages is related to functional program-
ming languages, therefore we can reuse the existing functional metrics, similar to [22],

Evaluating Maintainability with Code Metrics for Model-to-Model Transformations 155

in combination with some metrics used for object-oriented languages. However, Amstel
et al. [22] focuses on model transformations created using the ASF+SDF transforma-
tion language. Most of these metrics are, however, quite generic and could be applied to
nearly arbitrary functional programming languages. Nevertheless they do not take into
account the special character of relational transformations, such as their strong align-
ment to the source and target metamodels. Still, some of these metrics can be used to
measure certain aspects of model transformations written in QVT-R. We adapted some
of the metrics to the special requirements of the QVT-R transformation language and
extended them by the addition of more specific metrics (especially the group of man-
ual metrics). Furthermore, we automated the gathering of the majority of the metrics
presented in this paper.

In [8] initial considerations for transformation metrics based on a classification of
transformation features [4] and a goal question metric plan were presented. However,
these ideas were still in a very early stage and were not elaborated down to the special
needs of different groups of transformation, such as relational transformations. Reynoso
et al. [18] analysed how the complexity of OCL expressions impacts the analysability
and understandability of UML models. As OCL is also part of QVT-R these findings
are relevant for our approach. However, the remaining part of relational transformations,
apart from OCL expressions, cannot be analysed using this approach. A special way of
gathering a maintainability metric based on the occurrence of frequent patterns within
a model or transformation was presented in [14]. The presented metric is based on
a pattern mining approach that detects the most frequently occurring constructs. The
assumption made in that paper is based on cognitive psychology, which says that the
human brain works like a giant pattern matching machine and therefore can process
things that re-occur often, more easily. Thus we incorporated this metric into our suite.
Using OCL for the definition of metrics was introduced by Abreu in [5]. However, the
approach presented there did not cope with metrics concerning the maintainability of
transformations at all.

4 Metrics Definition

This section introduces metrics for measuring the quality of model transformations cre-
ated using relational transformation language, such as QVT-R. For each metric we give
a description, including a brief motivation. We also include the rationale behind the
metric giving insights in why we believe the metric indicates the maintainability of a
transformation. Additionally, we include a way for the computation (if possible using
QVT-R and OCL) of the introduced metrics.

4.1 Automated Metrics

In this section we will discuss the metrics derived for QVT-R that can be automatically
computed. We identified four categories: Transformation Size metrics, Relational met-
rics, Consistency metrics and Inheritance metrics. In the following sections we will give
the names, descriptions and rationales of the automated metrics. Table 1 then gives the
computation directions using OCL for the presented automated metrics.

156 L. Kapová et al.

Transformation Size metrics. The size of the transformation has an impact on the un-
derstandability of a transformation. The size of a whole transformation can be measured
in several ways. The number of lines of code, for instance, is a simple metric measuring
the pure code size of a transformation. This is comparable to measuring lines of code
in programming languages. Comments and blank lines are also included in this metric.
The number of code, comment and blank lines can also be viewed separately. Used in
conjunction with other metrics we can derive valuable measures of a transformation,
e.g. when compared to the number of top level relations.

The number of relations is a metric that can be used to derive the degree of frag-
mentation and modularisation of a transformation. Higher number of relations can be
considered better, as it is an indicator for a high degree of modularisation. A high de-
gree of modularisation can support the maintainability of a transformation and also the
reuse of a transformation or parts of it. The number of top level relations gives a picture
about the independent parts of a transformation. A top level relation is a starting point
for a transformation and can trigger the execution of other relations. An execution of
a transformation requires all top level relations to hold. The ratio of top level relations
to non-top level relations shows the rate between independent and dependent parts of
a transformation. An interesting metric is number of starts defined by the number of
top relations without when-clause. A higher number of starts increases the number of
possible execution paths and therefore makes the transformation less maintainable. The
metric number of domains expresses the complexity of a transformation dependent on
the number of match patterns. The number of domains predicates additionally gives in-
formation about the complexity of these patterns. The number of when-predicates and
the number of where-predicates defines how complex the dependency graph between
relations is.

The number of metamodels in a transformation has an impact on the complexity of
the transformation itself and its match patterns. The size of the metamodel (defined by
a number of classes) on which the relations match elements might also have a great
impact on the structure and therefore on the understandability and modifiability of the
transformation. The larger the metamodel the larger the set of possible instances of
this metamodel. Therefore, more combinations may have to be considered in the match
patterns of the relations.

Relational metrics. The size of a transformation relation can be measured in different
ways. The OMG specification of QVT states that a relation has one or more domains
and that every domain has a domain pattern that consists of a tree of template expres-
sions. The size of a relation can be expressed in terms of its number of domains or the
depth of the domain patterns. Additionally, relations can define when and where predi-
cates giving pre- and postconditions. This leads to three different metrics for measuring
the size of a relation: Number of domains , Number of when/where predicates, Size of
domain pattern per domain. Another derived metric, the ratio between the size of the
relations and the number of relations might also give hints about the maintainability of
the transformation itself. However, the direction of the metric (e.g., for better maintain-
ability) remains to be evaluated. For example, having many but small relations helps
to understand the transformation punctually, for specific relations. However, grasping
the interconnections of many small relations is also a tedious and error-prone task, thus

Evaluating Maintainability with Code Metrics for Model-to-Model Transformations 157

leading to the conclusion that having larger but fewer relations may be also good for
maintainability. Still, defining a functional dependency between size and number of re-
lations in a transformation might give hints on the maintainability of the transformation.

The metric average number of local variables per relation additionally gives indica-
tions on the dependencies within a relation that a developer needs to grasp when trying
to understand and modify the relation. A measurement for the complexity of the inter-
connections between relations is the average number of arguments in the form of its
domains and the number of variables that are bound by calls to other relations in when-
or where- predicates. These metrics are denoted val-in and val-out. Note that in QVT-R
val-in is always the same as number of domains. A high number of val-out means that
a relation is strongly dependent on the context, which might decrease the reusability of
a relation.

Relations generally depend on other relations to perform their task. The dependency
of a relation R on other relations can be measured by counting the number of times
relation R uses other relations or queries. These dependency metrics are denoted fan-in
and fan-out, where fan-in is the number of calls to R and fan-out is the number of re-
lations that are called by R. A high value of fan-in indicates that the relation is reused
quite often and therefore is highly reused or somehow more central to the overall trans-
formation. A high value of fan-out means that a relation uses a lot of other relations
or functions (maybe delegates functionality to library queries), again making the rela-
tion more “central”. The metric number of enforce/checkonly domains expresses a rate
of change between the domains of the relation (e.g., source and target domain). The
metric expresses the number of possible match patterns by the number of checkonly
domains and the level of change provided by a relation (a number of diverse change
patterns) by the number of enforce domains. The complexity of a transformation may
furthermore be affected by the number of OCL helpers and number of lines/restricted
elements per OCL query, which encapsulate more complex behaviour.

Consistency metrics. A high degree of inconsistency in the transformation is a rea-
son for confusion during development and may lead to reusability and transformation
completeness problems. To detect an inconsistency in a transformation we introduce a
number of consistency metrics. An example of inconsistency could be a relation that
was not completed during development. Such a relation could be identified as a relation
without domains, with only one domain or with domains without predicates. There-
fore, we defined the metrics number of relations without domains, number of relations
with singular domains and number of domains without predicates. An additional met-
ric for the detection of incomplete relations is the number of unused variables. Unused
variables pollute the code and complicate navigation within the transformation.

The already introduced consistency metrics are easy to automate. Another quite
generic but still interesting metric is number of clones. However, the automation of
this metric is a research field by itself. This metric identifies code duplicates, which are,
as in other fields of code maintainability, candidates that impact maintainability of the
code.

Inheritance metrics. QVT-R transformations can extend each other and override
relations from parents. Inheritance metrics measure the level of inheritance of the

158 L. Kapová et al.

transformation and its complexity. The balance metric shows size and distribution of
transformation functionality between children. This metric is calculated as a ration be-
tween a number of relations, domains and equations per child transformation in com-
parison to the average.

In a similar way as in object-oriented programming the dependency of children on
their parents can be measured by counting the number of transitive parents per child
and number of direct/transitive children per parent. Based on these metrics and the fan-
in and fan-out metrics we can get a view of the dependencies between relations in the
different transformations (create a dependency graph). The metric number of overrides
gives information on how many relations from a parent transformation were overridden
by a child relations. The larger this value gets, the more effort has to be invested into un-
derstanding which parts of the transformation hierarchy are actually used (combination
of non-overridden (inherited), overridden and additional non-inherited parts).

4.2 Manually Gathered Metrics

In the following, we describe metrics that are not gathered fully automated but require
manual or semi-automated analysis to determine the actual value of a metric.

Similarity of relations (frequent patterns). The Similarity of relations (frequent pat-
terns) indicates how many similar patterns can be found in a transformation. A large part
of the complexity of a transformation and on an model abstract model of the transfor-
mation comes through the need to understand patterns that occur within these models.
The more complex a transformation is the harder it is to maintain it. Thus, to be able
to grasp the complexity of transformations, we propose to emulate human information
processing through pattern mining on models. Human analysis of software products is
conducted either top-down or bottom-up according to [16]. Using a top-down approach
the analyst tries to apply his/her knowledge about design and domain to classify the
software product under analysis. In order to do this he/she tries to gain an overview of
the whole application. He/She will then successively pick selected software segments
and determine their relevance for his current mental model of the software. Using a
bottom-up approach the analyst will start reading comments of source code or other
software artifacts. The control flow of certain sections will then be inspected sequen-
tially and arbitrary selected variables will be traced throughout the flow. Especially in
declarative transformation languages this is a difficult task as there is no explicit con-
trol flow. The information gained will be integrated to a mental software model which
is the opposite to the top-down approach. Masak [16] notes that top-down analysis is
being conducted more often by experts whereas bottom-up analysis is being used more
often by novice analysts. These findings give strong indication that experts may have
abstract mental patterns at hand which are being used for analysing the software prod-
uct whereas novices must resort to documentation. If analysability is measured in terms
of time to analyse parts of a software product the required time will be low if the anal-
ysed parts dominantly adhere to the expert’s patterns. On the other hand the time will
be very high, if the expert can apply only a few of his/her patterns or the software
heavily differs from patterns known to him/her. These general observations were also
stated for visual patterns in [20] which is why we propose to incorporate them into an
analysability metric.

Evaluating Maintainability with Code Metrics for Model-to-Model Transformations 159

This metric can be computed by using the frequent pattern mining algorithm pre-
sented in [14] to identify possible frequent patterns. From these candidates the relevant
patterns can be selected and their similarity can be estimated. However, the result of
these pattern mining is mostly a superset of frequent patterns as they would be found
by a human. Thus, manual selection needs to be performed to see whether each of the
most frequent patterns is really a pattern that occurs as repeating structure in the trans-
formation or if it is just the result of constraints on e.g., the transformation metamodel.
For example, in QVT Relations a frequent pattern that is the result of the language con-
cept would be that each relation domain has a root variable which refers to a meta-class
that is contained in the package referred to by the domains typed model (see [17] for the
QVT Relations metamodel). However, this construct in inherent to QVT relations and
is not a frequent pattern that would be relevant for the analysability of a transformation.
Thus, this metric cannot be computed fully automatically but needs an additional man-
ual filter action. For example, a result of this metric could be that 30% of all relations
of a transformation employ a pattern involving the matching or creation of a certain
tree structure consisting of specific types of model elements within the source or target
model. As humans are pretty good in pattern matching, a developer would then be able
to recognise this combination over and over again thus helping him/her to more easily
understand these 30% of relations.

Number of relations that follow a design pattern. The Number of relations that fol-
low a design pattern may be another important indicator for transformation maintain-
ability. However, the determination of this metric is a tedious manual task as a design
pattern is an abstract concept. It may occur in a form that can only vaguely be identi-
fied. The number of design patterns employed in the transformation may be a strong
indicator on how good a transformation can be understood by external readers. How-
ever, as the area of transformation development is still quite immature only few design
patterns have been identified yet. To determine this metric we need to count the number
of design patterns and their occurrences within the transformation. For example, if a
transformation uses the Marker-Relation Pattern[9] throughout its whole implementa-
tion and a developer knows what that pattern is used for he or she can grasp the meaning
of the transformation more easily.

Type Cut Through Source/Target Metamodel. The metric Type Cut Through Source/-
Target Metamodel represents the rate of overlapping rules with respect to the transfor-
mation’s metamodels. The type cut concerning a metamodel is the set of patterns that
match instances of the same parts of a metamodel. In the UML to RDBMS example from
the QVT standard (from which an excerpt in shown in Listing 1) the type cut concerning
the meta-class UmlClass would be all those relations that contain a pattern that matches
any UMLClass. The greater this overlap is, the more attention has to be paid when pat-
terns of relations are modified in order to not lose coverage of possible instances of the
metamodel.

To compute this metric we need to count the number of relations that overlap over the
same part of a metamodel. For example, Relations a, b and c can all match instances of
the same meta-class m. Thus the overlap rate concerning class m would be 3. Finding
type cuts that only refer to a certain element of the metamodel, such as one meta-class m

160 L. Kapová et al.

can be done straight-forward. However, it might be more interesting more fine-grained
patterns that are matched using several different relattions. How such a detailed type
cut can be identified remains target to future research.

5 Computation of Metrics

The automated metrics described in section 4.1 can mostly be expressed as OCL ex-
pressions on the QVT-R meta-model. These OCL expressions can be used to count the
number of elements of a specific type, for instance the number of relations a trans-
formation has. The expressions have to be evaluated in the context of a transforma-
tion or a relation depending on wether a transformation local or relation-local metric
is calculated. Table 1 shows the OCL expressions used for calculating the metrics. To
bring these metrics together, relation local metrics can be aggregated by calculating an
average.

1 query countSubExps(templ:QVTRelation: :TemplateExp) : Integer
2 {
3 i f (templ.oclIsTypeOf (QVTTemplate: :ObjectTemplateExp))
4 then templ.oclAsType(QVTTemplate: :ObjectTemplateExp) . part−>iterate (p:QVTRelation

: :PropertyTemplateItem; acc: Integer = 1| acc + countSubExps(p.value .
oclAsType(QVTRelation: :TemplateExp)))

5 else
6 i f (templ.oclIsTypeOf (QVTTemplate: :CollectionTemplateExp))
7 then countSubExps(templ.oclIsTypeOf (QVTTemplate: :CollectionTemplateExp) .member

.oclAsType(QVTRelation: :TemplateExp)))
8 else
9 1

10 endif
11 endif
12 }

Listing 2. Query function for calculating the domain predicate count

For more complex metrics like the domain pattern tree depth it was necessary to
write more complex OCL query functions. Listing 2 shows an OCL query function for
recursively counting the nodes of a domain pattern tree. To easily apply all metric ex-
pressions and query functions, we developed a QVT-R transformation that transforms a
QVT transformation to a special metrics model. The metrics metamodel allows for com-
pact storage of metrics for every relation in a transformation and for the transformation
itself. Moreover, it is possible to store the aggregated values that are also calculated by
our metrics transformation. Furthermore, for measuring the lines of code we utilised
common methods used for programming languages. We distinguished whitespace, pure
comment and code lines. Figure 1 shows the workflow for retrieving the metrics.

Evaluating Maintainability with Code Metrics for Model-to-Model Transformations 161

Fig. 1. Computation of metrics workflow

6 Case Study

In this section, we demonstrate how the introduced metrics give insight into the quality
of transformations. We illustrate the applicability of our metrics generation approach
and discuss the results. For this purpose, we present a case study based on an evaluation
of three different transformations.

MOM (Message-oriented-Middleware) Completion Transformation. This refinement
transformation integrates performance-relevant details into software architectural mod-
els. These details are woven as additional subsystems into the model of architecture.
The MOM completion transformation is dependent on the input from a mark model [4]
that configures how the actual architecture model should be refined. The configuration,
defined by the mark model, provides the variability to the transformation. For example,
if a connector is to be refined by message-passing the mark model can provide informa-
tion about the type of messaging channel, e.g., using guaranteed delivery. For further
details on this transformation we refer to [13,10]. Because this transformation is par-
tially generated (includes copy relations for all metamodel elements, these relations are
generated by the Ecore2Copy Transformation) we analyse this transformation twice:
once with generated part and once without. The source and target model of this trans-
formation are based on an underlying component-based metamodel with the size of 110
classes. This transformation is used as a representative of the group of quite complex
transformations.

Ecore2Copy Transformation. This transformation is a so called Higher-Order Trans-
formation (HOT), as it generates another transformation. This specific HOT is used to
generate a default copy transformation for a given metamodel by producing a copy rela-
tion for each class and each property of the given metamodel. This is required because
there is no copy operator in QVT Relational. For further details on this transforma-
tion we refer to [9]. The source model of this transformation is the Ecore metamodel
having 31 classes and target metamodel is the QVT Relations metamodel itself with
the size of 110 classes. This transformation is used as a representative of the group of
medium-complex transformations.

UML2RDBMS Transformation. This transformation is presented in the QVT specifi-
cation as an example relational transformation [17]. The UML2RDBMS transformation

162 L. Kapová et al.

Ta
bl

e
1.

A
ut

om
at

ed
m

et
ri

cs

N
am

e
O

C
L

ex
pr

es
si

on
T

ra
ns

fo
rm

at
io

n
t

N
um

be
r

of
re

la
ti

on
s

t
.
r
u
l
e
→

s
i
z
e
(
)

N
um

be
r

of
to

p
le

ve
lr

el
at

io
ns

t
.
r
u
l
e
→

s
e
l
e
c
t
(
o
c
l
A
s
T
y
p
e
(
Q
V
T
R
e
l
a
t
i
o
n
:
:
R
e
l
a
t
i
o
n
)
.
i
s
T
o
p
L
e
v
e
l
)
→

s
i
z
e
(
)

N
um

be
r

of
st

ar
ts

t
.
r
u
l
e
→

s
e
l
e
c
t
(
o
c
l
A
s
T
y
p
e
(
Q
V
T
R
e
l
a
t
i
o
n
:
:
R
e
l
a
t
i
o
n
)
.
i
s
T
o
p
L
e
v
e
l

a
n
d
o
c
l
A
s
T
y
p
e
(
q
v
t
r
e
l
a
t
i
o
n
:
:
R
e
l
a
t
i
o
n
)
.
w
h
e
n
→

i
s
E
m
p
t
y
(
)
)
→

s
i
z
e
(
)

N
um

be
r

of
w

he
n

t
.
r
u
l
e
→

i
t
e
r
a
t
e
(
r
:
q
v
t
b
a
s
e
:
:
R
u
l
e
;
s
u
m
:
I
n
t
e
g
e
r
=

0
|

s
u
m
+

r
.
o
c
l
A
s
T
y
p
e
(
q
v
t
r
e
l
a
t
i
o
n
:
:
R
e
l
a
t
i
o
n
)
.
w
h
e
n
→

s
i
z
e
(
)
)

N
um

be
r

of
w

he
re

t
.
r
u
l
e
→

i
t
e
r
a
t
e
(
r
:
q
v
t
b
a
s
e
:
:
R
u
l
e
;
s
u
m
:
I
n
t
e
g
e
r
=

0
|

s
u
m
+

r
.
o
c
l
A
s
T
y
p
e
(
q
v
t
r
e
l
a
t
i
o
n
:
:
R
e
l
a
t
i
o
n
)
.
w
h
e
r
e
→

s
i
z
e
(
)
)

N
um

be
r

of
m

et
am

od
el

s
t
.
m
o
d
e
l
P
a
r
a
m
e
t
e
r
→

s
i
z
e
(
)

N
um

be
r

of
O

C
L

qu
er

ie
s

t
.
o
w
n
e
d
O
p
e
r
a
t
i
o
n
→

s
i
z
e
(
)

R
el

at
io

n
r

N
um

be
r

of
do

m
ai

ns
r
.
d
o
m
a
i
n
→

s
i
z
e
(
)

N
um

be
r

of
en

fo
rc

ed
do

m
ai

ns
r
.
d
o
m
a
i
n
→

s
e
l
e
c
t
(
i
s
E
n
f
o
r
c
a
b
l
e
)
→

s
i
z
e
(
)

N
um

be
r

of
ch

ec
ko

nl
y

do
m

ai
ns

r
.
d
o
m
a
i
n
→

s
e
l
e
c
t
(
i
s
C
h
e
c
k
a
b
l
e
)
→

s
i
z
e
(
)

N
um

be
r

of
w

he
n-

pr
ed

ic
at

es
r
.
w
h
e
n
.
p
r
e
d
i
c
a
t
e
→

s
i
z
e
(
)

N
um

be
r

of
w

he
re

-p
re

di
ca

te
s

r
.
w
h
e
r
e
.
p
r
e
d
i
c
a
t
e
→

s
i
z
e
(
)

N
um

be
r

of
lo

ca
lv

ar
ia

bl
es

r
.
v
a
r
i
a
b
l
e
→

r
e
j
e
c
t
(
v
|

T
e
m
p
l
a
t
e
E
x
p
.
a
l
l
I
n
s
t
a
n
c
e
s
(
)
.
b
i
n
d
s
T
o
.
i
n
c
l
u
d
e
s
(
v
)
)
→

s
i
z
e
(
)

V
al

-I
n

s
e
e
n
u
m
b
e
r
o
f

d
o
m
a
i
n
s

V
al

-O
ut

S
e
t
{r
.
w
h
e
n
}→

i
n
c
l
u
d
i
n
g
(
r
.
w
h
e
r
e
)
.
p
r
e
d
i
c
a
t
e
→

c
o
l
l
e
c
t
(
p
|

c
o
l
l
e
c
t
V
a
r
i
a
b
l
e
A
r
g
u
m
e
n
t
s

O
f
R
e
l
a
t
i
o
n
C
a
l
l
E
x
p
s
(
p
)
)
.
v
a
r
i
a
b
l
e
→

a
s
S
e
t
(
)
→

s
i
z
e
(
)

Fa
n-

In
R
e
l
a
t
i
o
n
C
a
l
l
E
x
p
.
a
l
l
I
n
s
t
a
n
c
e
s
(
)
.
r
e
f
e
r
r
e
d
R
e
l
a
t
i
o
n
=

r
Fa

n-
O

ut
S
e
t
{r
.
w
h
e
n
}→

i
n
c
l
u
d
i
n
g
(
r
.
w
h
e
r
e
)
.
p
r
e
d
i
c
a
t
e
→

c
o
l
l
e
c
t
(
p
|

c
o
l
l
e
c
t
R
e
l
a
t
i
o
n
C
a
l
l
E
x
p
s
(
p
)
)

.
r
e
f
e
r
r
e
d
R
e
l
a
t
i
o
n
→

a
s
S
e
t
(
)
→

s
i
z
e
(
)

Evaluating Maintainability with Code Metrics for Model-to-Model Transformations 163

Table 2. Automatically calculated metrics

GenMOM- MOM- Ecore2- UML2
Completion Completion copy RDBMS

Lines of Code 7582 1304 473 239
Clean code 5789 1104 416 181
Comments 220 65 13 4
Number of relations 488 23 17 8
Number of top level relations 330 12 8 3
Number of starts 99 1 1 1
Number of OCL queries 20 21 1 1
Number of when-predicates 233 13 9 5
Number of where-predicates 221 5 12 13
Number of metamodels in transformation 3 3 3 2
Average number of domains per relation 2.11 4.652 2,76 2,5
Average number of domain pattern nodes per relation 2.63 14.78 11.529 2
Average number of when-predicates per relation 0.9 1.7826 1 0.63
Average number of where-predicates per relation 0.49 0.87 1.82 1.63
Average number of local variables per relation 0.001 0.478 1.05 2.375
Val-in per relation 2.63 14.78 11.529 2
Val-out per relation 2.3 4.45 3.66 3.12
Fan-in per relation 1.12 1.67 1.34 0.78
Fan-out per relation 1.02 1.34 1.2 0.7
Average number of checkonly domains per relation 1.04 2.09 0.714 1
Average number of enforce domains per relation 1.08 2.5652 2.47 1

transforms UML class models into RDBMS tables. The minimum UML source
metamodel contains 6 classes and the target RDBMS metamodel has a size of 18
classes. This transformation is used as a representative of the group of very simple
transformations.

The results of this case study have shown that the generated transformation (Gen-
MOMCompletion) in contrast to the transformation without the generated parts (MOM-
Completion) has a higher number of small relations. Additionally, the complexity of
match patterns is not high and the complexity of pattern matching is distributed on a
number of relations (Figure 2). Thus, we see how the rate of domain pattern nodes per
relation decreases significantly if the simple copy rules are added.

Transformation MOMCompletion, intuitively categorised as a complex transforma-
tion, shows a much higher values in average domain pattern tree depth as well as the
average number of domains and when-predicates per relation(Figure 3). Interestingly,
the number of where-predicates increases diametrically opposed. This may indicate
that different approaches for defining the overall transformation have been employed.
Moreover, where-predicates indicate a somehow “forward” (thus also more imperative)
executed transformation whereas more when- predicates indicates a more declarative
way of the whole transformation design. Which of these designs is more maintainable
remains to be evaluated. However, using these metrics a connection between these find-
ings could be underlined.

164 L. Kapová et al.

0

10

20

30

40

1 2 3 4 5 6 7 8

UML2RDBMS: Number of Domains and
Variables per Relation

Domain Predicate Count Number of Variables

0

5

10

15

20

GenMOM MOM Ecore2Copy UML2DBMS

Pattern Node Complexity

Average number of domains per relation

Average number of domain pattern nodes per relation

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

GenMOM MOM Ecore2Copy UML2DBMS

Top-level to Non-top-level Relations

Number of top level relations

Number of non-top-level
relations

Fig. 2. Results: Transformation Complexity

0%

20%

40%

60%

80%

100%

GenMOM MOM Ecore2Copy UML2DBMS

Preconditions and fan-in

when-predicates fan-in

GenMOM MOM Ecore2Copy UML2DBMS

when-predicates where-predicates
0%

20%

40%

60%

80%

100%

GenMOM MOM Ecore2Copy UML2DBMS

Postconditions and fan-out

where-predicates fan-out

0%

20%

40%

60%

80%

100%

GenMOM MOM Ecore2Copy UML2DBMS

When- to Where- Predicates

when-predicates where-predicates

Fig. 3. Results: Relations Dependencies

The ratio between the number of top level relations and non-top level relations is the
smallest in case of the generated transformation (1:1). This means a higher utilisation
of top level relations. The generated transformation takes an advantage from a higher
number of execution paths possible in the transformation and is not tuned to limit the
number of starts in order to support maintainability. This also makes sense as the parts
generated for the copy transformations are not intended to be maintained manually
anyway.

In general, our observation is that roughly half of the relations are top-level relations.
We can distinguish a pattern showing that a transformation was written manually by a
human based on the number of starts as it seems natural for a human mind to consider
only one execution path.

Evaluating Maintainability with Code Metrics for Model-to-Model Transformations 165

7 Limitations and Validity

The definition of metrics with the goal to estimate quality attributes, such as maintain-
ability, always comes with the wish to indicate whether a lower or a higher value of a
metric is better or worse. However, this decision cannot be made without a sound va-
lidation of the “meaning” of a metric. For example, having a low number of relations,
at first glance, seems to be good for maintainability whereas a high number seems to
be bad. On the other hand, if these few relations are very long they may be harder to
maintain that more but smaller relations. Thus, in this paper we only identified what
could be possible indicators that may resemble maintainability of transformations. We
intentionally did not decide, for most of our metrics, which “direction” of a metric is
good or bad concerning maintainability. We leave it to future work to determine and
evaluate this meaning. Thorough empirical evaluations need to be performed in order
identify how meaningful each metric is.

8 Conclusions and Future Work

In this paper we presented an initial set of code metrics to evaluate the maintainability
of QVT Relational transformations. However, such metrics could be applied to differ-
ent relational transformations, they play important role when considering architecture
refinement transformations. We demonstrated the use of these metrics on a set of ref-
erence transformations to show their application in real world settings. The presented
metrics help software architects to judge the maintainability of their model transforma-
tions. Based on these judgments, software architects can take corrective actions (like
refactorings or code-reviews) whenever they identify a decay in maintainability of their
transformations. This results in higher agility when changing metamodels of software
architectures or their platforms, which together with metamodel build basis for trans-
formation definition. Future work is twofold. First, the identified metrics need to be
incorporated into tools which indicate the code quality while developing the transfor-
mations in an IDE. Examples of such tools for object-oriented languages are Project
Usus or Checkstyle . Second, the metrics must be empirically validated to study the ex-
tent to which they indicate decay in maintainability of transformations written in QVT
Relational. Further some additional metrics could be identified as needed during this
process, e.g. such as metrics for recursive relations and transformation cycles.

References

1. Becker, S.: Quality of Service Modeling Language. In: Eusgeld, I., Freiling, F.C., Reussner,
R. (eds.) Dependability Metrics. LNCS, vol. 4909, pp. 43–47. Springer, Heidelberg (2008)

2. Becker, S., Hauck, M., Trifu, M., Krogmann, K., Kofroň, J.: Reverse Engineering Compo-
nent Models for Quality Predictions. In: Proceedings of the 14th European Conference on
Software Maintenance and Reengineering, European Projects Track (2010)

3. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative evaluation of software quality. In: ICSE
1976: Proceedings of the 2nd international conference on Software engineering, pp. 592–
605. IEEE Computer Society Press, Los Alamitos (1976)

166 L. Kapová et al.

4. Czarnecki, K., Eisenecker, U.W.: Generative Programming (2000)
5. Brito, F., Abreu.: Using ocl to formalize object oriented metrics definitions. Technical report,

FCT/UNL and INSC (2001)
6. Fenton, N.E.: Software Metrics: A Rigorous Approach. Chapman & Hall, Ltd., London

(1991)
7. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design

of Existing Code (1999)
8. Goldschmidt, T., Kuebler, J.: Towards Evaluating Maintainability Within Model-Driven En-

vironments. In: Software Engineering 2008, Workshop Modellgetriebene Softwarearchitek-
tur - Evolution, Integration und Migration (2008)

9. Goldschmidt, T., Wachsmuth, G.: Refinement transformation support for QVT Relational
transformations. In: 3rd Workshop on Model Driven Software Engineering, MDSE 2008
(2008)

10. Happe, J., Friedrich, H., Becker, S., Reussner, R.H.: A Pattern-Based Performance Comple-
tion for Message-Oriented Middleware. In: Proceedings of the 7th International Workshop
on Software and Performance (WOSP 2008), pp. 165–176. ACM, New York (2008)

11. Harrison, R., Samaraweera, L.G., Dobie, M.R., Lewis, P.H.: Estimating the quality of func-
tional programs: an empirical investigation. Information and Software Technology 37(12),
701–707 (1995)

12. Henderson-Sellers, B.: Object-oriented metrics: measures of complexity. Prentice-Hall, Inc.,
Upper Saddle River (1996)

13. Kapova, L., Becker, S.: Systematic refinement of performance models for concurrent
component-based systems. In: Proceedings of the Seventh International Workshop on For-
mal Engineering approches to Software Components and Architectures (FESCA 2010). Elec-
tronic Notes in Theoretical Computer Science (2010)

14. Kübler, J., Goldschmidt, T.: A Pattern Mining Approach Using QVT. In: Paige, R.F., Hart-
man, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 174–189. Springer,
Heidelberg (2009)

15. Lange, C.F.J.: Phd thesis: Assessing and improving the quality of modeling a series of em-
pirical studies (2007)

16. Masak, D.: Legacysoftware. Springer, Heidelberg (2005)
17. Object Management Group. MOF 2.0 Query/View/Transformation, version 1.0 (2008)
18. Reynoso, L., Genero, M., Piattini, M., Manso, E.: Assessing the impact of coupling on the

understandability and modifiability of ocl expressions within uml/ocl combined models. In:
11th IEEE International Symposium on Software Metrics, September 19-22 , p. 10 (2005)

19. Rubey, R.J., Hartwick, R.D.: Quantitative measurement of program quality. In: Proceedings
of the 1968, 23rd ACM national conference, pp. 671–677. ACM, New York (1968)

20. Solso, R.L.: Cognitive Psychology. Allyn and Bacon (2001)
21. Stammel, J., Reussner, R.: Kamp: Karlsruhe architectural maintainability prediction. In: Pro-

ceedings of the 1. Workshop des GI-Arbeitskreises Langlebige Softwaresysteme (L2S2): De-
sign for Future - Langlebige Softwaresysteme, pp. 87–98 (2009)

22. van Amstel, M.F., Lange, C.F.J., van den Brand, M.G.J.: Metrics for analyzing the quality
of model transformations. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 239–248.
Springer, Heidelberg (2009)

Good Architecture = Good (ADL + Practices)

Vincent Le Gloahec1,3, Régis Fleurquin2, and Salah Sadou3

1 Alkante SAS, Rennes, France
v.legloahec@alkante.com

2 IRISA/Triskell, Campus Universitaire de Beaulieu, Rennes, France
regis.fleurquin@irisa.fr

3 Valoria, Université de Bretagne-Sud, Vannes, France
salah.sadou@univ-ubs.fr

Abstract. In order to ensure the quality of their software development
process, companies incorporate best practices from recognized repos-
itories or from their own experiences. These best practices are often
described in software quality manuals that do not guarantee their imple-
mentation. In this paper, we propose a framework for the implementation
of best practices concerning the design of the software architecture. We
treat the case of architecture design activity because it’s the basis of the
software development process. Our framework enables on the one hand
to describe best practices and on the other hand to check their applica-
tion by designers. We present an implementation of our framework in the
Eclipse platform and for an ADL dedicated to Web applications. Finally,
we give an example of use from the context of our industrial partner.

Keywords: Best Practices, Design, Software Architecture Quality.

1 Introduction

The software architecture plays a fundamental role in modern development pro-
cesses. Throughout a project, it can serve as a baseline against which the various
stakeholders analyze, understand, build their decisions, and evaluate the soft-
ware [1]. The languages (Acme [2], xADL [3], ByADL [4], UML as an ADL [5])
used to elaborate architectures highlight concepts (such as connectors, compo-
nents, etc.) that meet two requirements: (i) be enough expressive to represent all
targeted systems, and (ii) allow the architect to focus his attention on key issues
such as information hiding, coupling, cohesion, precision, etc. Architecture Des-
cription Languages (ADL) direct and sometimes compel the architect to comply
with some relevant and universally recognized rules in the target area. Thus,
they restrict the form of representable architectures by excluding undesirable
ones. The aim is to produce architectures with good quality properties.

However, these languages are designed to allow the representation of architec-
tures that answer various type of needs. Thus, some architectural motifs can be
considered useful in some contexts and avoided in others. The quality of archi-
tecture is not absolute but is estimated according to each project’s requirements
(cost, schedule, quality of service, etc.) [6] that sometimes are conflicting. So, the

G.T. Heinemann, J. Kofron, and F. Plasil (Eds.): QoSA 2010, LNCS 6093, pp. 167–182, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

168 V. Le Gloahec, R. Fleurquin, and S. Sadou

quality of an architecture is the result of a compromise. The language must be
tolerant and not unduly restrict the range of possibilities to let free the creativity
of architects. Consequently, the use of an ADL alone, as elegant as it may be,
can not guarantee obtaining an architecture that meets the quality requirements
desired for a given project.

Best language Practices (BPs) found in the literature, such as modeling pro-
cesses [7] [8], styles [9], patterns [10] and metrics can then provide an essential
complementary tool. Based on the specific context of the project, they will help
to direct the architect toward the subset of relevant models among those al-
lowed by the language. In this sense, BPs help the architect to limit the area
of choice thanks to a language restriction adapted to the project. They help to
increase the effectiveness of development in terms of quality and productivity.
Additional BPs specific to an application domain, a technology or a managerial
and cultural context may also emerge from projects within companies. Properly
used in a project, these best language practices constitute the expertise and the
value-added of a company. This valuable capital of knowledge guarantees to a
company the quality of its architectural models and thus allows to satisfy its cus-
tomers, to stand out, and to solicit labels and certificates [11]. In other words,
to be competitive.

Unfortunately, we show in section 2 of this paper that due to a lack of an ad-
equate formalism to document this knowledge, companies that try to capitalize
on this knowledge use informal documents, often incomplete, poorly referenced,
and sometimes scattered. This leads to an inadequate and ineffective use and
sometimes loss of best language practices. This loss decrease the quality of the
designed architectures. We rely for that on a study conducted with an industrial
partner that uses a dedicated ADL for Web applications. We propose a language
(section 3) and a software platform (section 4) that allow respectively to doc-
ument and to enact these BPs for any graphical ADL. In this way, we ensure
the durability and reuse of knowledge, as well as a constant verification of the
application of best language practices. We then show, in section 5, how this lan-
guage can be used to document some BPs for web applications coming from our
industrial partner. In the same section, we show also how these practices can
be integrated in their ADL tool (AlCoWeb-Builder). Thus, this helps developers
to respect the best language practices defined in their own companies, without
changing their working habits. Finally, we describe related work in section 6
before concluding in section 7.

2 Problem Statement

In this section, we show the interest for a company to make productive its lan-
guage practices. We rely on a study undertaken in one of our industrial partners:
the Alkante company1. We begin by presenting the development environment
(language, tool, best practices) developed by this company for designing the ar-
chitecture of its applications. Then, we present the difficulties it faces in some
1 Alkante is a company that develops Web applications (www.alkante.com).

Good Architecture = Good (ADL + Practices) 169

of its developments. The analysis of the causes of these difficulties highlights the
interest to capitalize and automate best language practices.

2.1 Development Environment

In the context of rich Web application development, Alkante has defined an
ADL (referred to as AlCoWeb) to help design the architecture of its applica-
tions [12]. This ADL is an UML profile. The UML language has been chosen
mainly because the version 2.0 of the UML specification contains most of the
abstractions needed to design rich Web applications with hierarchical entities.
Alkante develops mainly Geographical Information Systems (GIS) with the help
of a component-oriented framework composed of PHP and Javascript code ar-
tifacts. Thus, when designers define the architecture of their applications, they
need to deal with entities such as modules, pages, forms, html controls and
raw PHP scripts. In order to manipulate those specific entities in the AlCoWeb
ADL, they have been defined as stereotypes dedicated to the specific Alkante’s
architecture. In this profile, we can found stereotypes such as <<AlkModule>>,
<<AlkHtmlForm>>, <<AlkHtmlButton>>, etc.

Based on the AlCoWeb ADL, Alkante has developed a complete model-driven
architecture platform called AlCoWeb-Builder. This tool allows the designers to
model and assemble Web components to create large applications. Components
are designed hierarchically and incrementally using component assemblies and
connectors. Once atomic and hierarchical components have been designed, they
are made available as components off-the-shelf and can be reused to build larger
artifacts, like an authentication form or a geographical Web service for example.
AlCoWeb-Builder is a graphical editor, build upon several frameworks of the
Eclipse platform. It also comes with a code generation facility. Based on a tem-
plate system, this tool allows to generate the code of designed Web applications,
as illustrated in Fig. 1.

Using this ADL in many projects, the company has identified over the years
some language practices. For instance, to ensure a complete code generation,
the architecture of Web applications should be very specific. Thus, the quality
assurance manager (QAM) of the company has defined a dedicated BP in the
form of a complete process, documented in a quality manual.

The core of this BP consists of the following steps:

1. Create one and only one module: a module represents the root container of
an architecture. At the implementation level, it corresponds to a physical
folder that will embeds the code artifacts of the designed Web application;

2. Create one and only one application container in the module: the module
component must contain a single application container. This component is
the central piece that represents the business logic of the Web application
and also provides services for inter-application communications;

3. Create pages in the application container: a page component directly maps
to a Web page. In the AlCoWeb ADL, pages are considered first class en-
tities for building the presentation tier of Web applications. Consequently,

170 V. Le Gloahec, R. Fleurquin, and S. Sadou

Fig. 1. Design example with AlCoWeb-Builder and the resulting Web interface

the application container must contain at least one page component for the
architecture to be valid. At runtime, pages are responsible for the general
layout of their sub-components;

4. Create forms in pages: each page must contain at least one HTML form com-
ponent. This component is always required to build a valid Web page. This
architectural decision has been made because dynamic web pages intensely
use forms to submit user’s data to a web server;

5. Create HTML controls associated with forms: basic and advanced HTML
controls (buttons, lists, calendars) must belong to a form component. For
the sake of simplicity in the design of Web applications, all HTML controls
without exception must be systematically placed in a form;

6. Create scripts: finally, script components represent code artifacts in charge
of the rendering of dynamic Web pages. Scripts can be connected directly
to page components, and also use the application container to call services
from external applications. Without those components, even if the rest of
the architecture is valid, the Web application could not be rendered in a
client browser.

The QAM in charge of the definition has added some other BPs in the quality
manual. Many of them take the form of modeling rules that need to be checked
to ensure the quality of a final architecture. These BPs ensure things such as
naming conventions or the way components can be put together.

2.2 Recurrent Problems

The MDA approach allows Alkante’s team to ease their development effort
through components reuse at the model level, and to automate, as possible,
code generation and deployment. Although this approach reduces development
costs, they observed on occasion that some architectures had not been properly
designed.

Good Architecture = Good (ADL + Practices) 171

Some architectures led to errors in the generated code. A major drawback of
code generation is that it is difficult to find, from the generated code, the origin of
the errors in an architecture. Consequently, developers take a long time to repair.
A causal analysis has shown that these errors result from faults made during the
component assembly stages when building large applications, while atomic and
small hierarchical components are mostly modeled correctly. As AlCoWeb is a
hierarchical language, the code generation engine expects the architecture to
be designed hierarchically, where HTML forms must be contained in a page,
pages must be contained in the root application component, and so on. If this
constraint is not respected, the generated application won’t be usable. The BP
cited above should have guarantee the respect of this constraint. Clearly, this
BP has not been correctly applied or not applied at all.

Another recurrent problem concerns the way components must be assembled.
All basic and some more advanced HTML controls – more than 30 components,
such as buttons, expanded lists, tabs, calendars, etc. – are available as components
off-the-shelf. By default, all those components are designed to provide a service
named getHtml(), which returns the HTML code of the component. At runtime,
stacked calls of this service on a hierarchical component allows to produce the com-
plete HTML code of a complex and rich Web page. However, structural compo-
nents that form the basis of the architecture – e.g. modules, application containers,
and scripts – must be designed from scratch by the developers. To design a valid
architecture, each getHtml() service of <<AlkHtmlPage>> components must be
delegated to the parent application container (using a delegate connector from a
page’s provided port to one provided port of the application component). Then,
those provided services must be connected to a required port of a script component
using an assembly connector. As for the composition of hierarchical components,
the non respect of this specific assembly leads to a poor quality of the architecture
that results in the generation of unusable Web applications. Again, this problem
results from the non-application or misapplication of a BP, yet documented in the
quality manual.

2.3 Discussion

The source of the two problems cited above is the non-compliance with some of
the BPs outlined in the quality manual. Further causal analysis shown that the
root cause has always been one of the followings:

1. Involvement of new designers who did not know when and how the docu-
mented practices should be applied. This problem occurs because most of
the documented practices do not describe precisely their application context
and some of them are ambiguous;

2. Some BPs become fastidious when the architecture complexity grows (for
instance, inducing the same manual verification but on numerous model
elements), thus developers have ignored or partially applied them;

3. Some BPs are complex and consequently manually error prone (for instance,
inducing many verifications on several model elements);

172 V. Le Gloahec, R. Fleurquin, and S. Sadou

4. When a project is subject to significant time constraints, developers have
chosen to ignore some BPs in order to respect the deadline.

To remedy this, we must make productive the BPs. They must be enforced in the
used tools (editor, transformations, and code generator). We can try to “hard-
code” the BP in the tools suite (if possible by the tool). But, we believe it would
not be a good solution. Firstly, tools change over time. We do not want to have
to re-code all the BPs each time a tool change. Secondly, BPs evolve too. Each
time a BP change, we have to do the corresponding changes in the tool’s code.
Thus, we must separate the BP definition from the tools.

We advocate that the BPs become first class entities when using an ADL
language. Thus, the language will be adapted to fit a particular context (devel-
oper, project, company, application domain, etc.). In this way, each company
can contextualize a general purpose language to its own needs.

Consequently, to produce quality products, a language should not be reduced
solely to its three components (abstract syntax, semantics, and concrete syntax).
Indeed, as we emphasized throughout this section, companies often define their
own best practices which enrich the language to fit a specific context. The re-
maining of the paper introduces our approach for the definition and application
of best language practices at the early stage of design of software architectures.

3 Best Practices Description Language

The language we introduce in this section, called GooMod, contains some pro-
perties needed for the description of best design practices. In this section we
show how we have done to identify these properties and then we describe the
abstract syntax and semantic of the GooMod language.

3.1 Identified Properties

Architectural design is a particular case of modeling activity. However, there is a
rich literature on best practices for modeling activity. Thus, we made a survey on
best practices in modeling activity in order to identify their characteristics and
forms. Through literature we observed three types of best modeling practices:
those that are concerned only with the form (style) of produced models, those
that describe the process of their design, and those that combine both. As the
third type is only a combination of the first two, we limited our study to examples
covering the former types. For the first type we found that the best practices
for Agile Modeling given in [9] are good examples. In [13], Ramsin and Paige
give a detailed review of object-oriented software development methods. From
this review we extracted properties concerning the process aspect of BPs. For
the sake of brevity, we can’t go further on this study in this paper. Interested
reader may found more detail on the dedicated Web page2.

2 http://www-valoria.univ-ubs.fr/SE/AMGP

http://www-valoria.univ-ubs.fr/SE/AMGP

Good Architecture = Good (ADL + Practices) 173

Thus, we have identified the following properties:

Identification of the context: to identify the context of a BP, the language
must be able to check the state of the model to determine whether it is a
valid candidate for the BP or not.

Goal checking: to check that a BP has been correctly applied on a model, we
must be able to check that the status of the latter conforms to the objective
targeted by the BP. At the BP description language level, this property
highlights the same need as the one before.

Description of collaborations: a CASE tool alone is able to achieve some
parts of a BP’s checking. However, some BP cannot be checked automatically
and the tool would need the designer’s opinion to make a decision. In case
of alternative paths, sometimes the tool is in a situation where it cannot
determine the right path automatically. Thus, a BP description language
should allow interactions with the designer.

Process definition: a process defines a sequence of steps with possible iter-
ations, optional steps, and alternative paths. A BP description language
should allow processes to be defined with such constructs.

Restriction of the modeling language: several good practices based on
modeling methodologies suggest a gradual increase in the number of ma-
nipulated concepts (e.g., each step concerns only a subset of the modeling
language’s concepts). Thus, the BP description language should allow the
definition of this subset for each step.

The documentation of a BP associated with a design language requires a des-
cription that is independent of any tool; indeed, a BP is specific only to the
language. It describes a particular use of its concepts. It should not assume
modes of interaction (buttons, menus, etc.) used by an editor in order to provide
access to these concepts. Therefore, a BP must be described in a way that can be
qualified as a Platform Independent Model (PIM) in Model-Driven Engineering
(MDE) terminology (see next section). Ignoring this rule would lead QAM to
re-document the BPs at each new version or tool change. The GooMod language
contains all properties described above and offers a way to document BPs in-
dependently of any editor. To introduce the GooMod language we present its
abstract syntax then its semantic.

3.2 Abstract Syntax of the GooMod Language

The abstract syntax of the GooMod language is given in Fig. 2. The process
part of a BP is described as a weakly-connected directed graph. In this graph,
each vertex represents a coherent modeling activity that we call a step. Arcs
(identified by Bind in our meta-model) connect pairs of vertices. Loops (arcs
whose head and tail coincide) are allowed, but not multi-arcs (arcs with the
same tail and same head).

174 V. Le Gloahec, R. Fleurquin, and S. Sadou

Fig. 2. GooMod Meta-model

A step is associated with four elements: its context, its associated design style,
the set of language concepts usable during its execution, and a set of actions. The
context is a first-order formula evaluated on the abstract syntax graph of the in-
put model before the beginning of the step. We call this formula a pre-condition.
The design style is a first-order formula that is evaluated on the abstract syntax
graph of the current model to allow designer to leave from the step. We call this
formula a post-condition. The set of the usable language concepts is a subset of
the non-abstract meta-class of the abstract syntax (described in a MOF Model)
of the targeted design language.

Because some BP require the establishment of a collaboration between the
system and the designer, we have included the ability to integrate some actions
at the beginning (entry) and/or at the end (exit) of a step. The possible actions
are: output a message, an input of a value and the assignment of a value to a
local variable. Indeed, at each step, it is sometimes necessary to have additional
information on the model that only the designer can provide (goal of Input
action). Conversely, it is sometimes useful to provide designers information that
they can not deduce easily from the visible aspect of the model but the system
can calculate (goal of Output action). This concerns introspection operations
that can be achieved with MOF operators at pre- and post-conditions level.
Hence, the usefulness of variables associated with steps to hold results. Thus,
actions allow interaction with the designer using messages composed of strings
and calculated values.

Steps are also defined by two boolean properties: isInitial and isFinal. At
least one step is marked as initial and one as final in a graph. Finally, an arc can
be marked as optional, meaning that its head step is optional.

Good Architecture = Good (ADL + Practices) 175

3.3 Semantic of the GooMod Language

Semantically, the graph of a BP is a behavior model composed of a finite num-
ber of states, transitions between those states, and some Entry/Exit actions.
Thus, a BP is described as a finite and deterministic state machine with states
corresponding to the steps of the BP’s process.

At each step, the elements that constitute it are used as follows:

1. Before entering the step, the pre-conditions are checked to ensure that the
current model is in a valid state compared with the given step. Failure implies
that the step is not yet allowed;

2. If the checking succeeds, then before starting model edits a list of actions
(Entry Action), possibly empty, is launched. These actions initialize the en-
vironment associated with the step. This may correspond to the initializing
of some local variables or simply interactions with the designer;

3. A given step can use only its associated language concepts. In fact, each
concept is associated with use type (create, delete, or update).

4. When the designer indicates that the work related to the step is completed,
a list of actions (Exit Action) will be launched to prepare the step’s environ-
ment to this end. With these actions the system interacts with the designer
to gain information that it can not extract from the model’s state;

5. Before leaving the step, the post-conditions are checked to ensure that the
current model is in a valid state according to the BP rules.

Leaving a step, several transitions are sometimes possible. These transitions are
defined by the Binds whose tail is this step. A transition is possible only if the
pre-condition of the head step of the concerned Bind is verified by the current
state of the model. If several next steps are possible, then the choice is left to
the designer. A Bind can also be defined as optional. In this case, its tail step
becomes optional through the transition it defines. Thus, the possible transitions
of the tail step are added to those of the optional step, and so on.

4 Implementation of GooMod

To implement the GooMod language, we developed a complete platform for the
management of BPs, starting from their definition at the platform independent
model (PIM) level up to their enactment at the platform specific model (PSM)
level. Figure 3 illustrates the platform and its PIM-PSM separation. This section
describes both levels and their associated tools.

4.1 PIM-Level: Modeling BPs

The PIM level of the GooMod language allows description of BP independently
of the used design tool. This level is implemented thanks to the BP Definition
Tool (see top of Fig. 3). This tool is designed for QAM in charge of the definition
of BP that should be observed in a company. Our graphical editor, designed using

176 V. Le Gloahec, R. Fleurquin, and S. Sadou

Fig. 3. GooMod platform general architecture

the Eclipse Graphical Modeling Framework3 (GMF), allows the representation of
BPs in the form of a process. Such a process is represented by a path in a graph.
Each node of the path is a step. The BP Definition tool uses the meta-model of
the target language as its input. At each step of the process, the BP Definition
tool allows for the selection of a subset of manipulated concepts from the target
language, as well as the definition of a set of OCL pre- and postconditions, and
actions before entering and exiting the step.

4.2 PSM-Level: BPs Enactment

The PSM level aims to attach the definition which is done at the PIM level with
a specific design tool. For that, our platform is composed of two parts:

BP Activation Tool: that aims to link a BP model defined with the BP De-
finition tool to a target design tool. It controls the enforcement of the BP
process.

Targeted Design Tool: which is the end-user design tool where the BP will
be performed. This tool is not intended to be modified or altered directly,
but will be controlled by an external plugin, which in our case is the BP
Activation Tool.

A targeted design tool can be, for instance, the AlCoWeb-Builder tool (see
bottom-left of Fig. 3), which allows Alkante’s designers to model the architec-
ture of their Web applications. However, our approach is not limited to this
3 See Eclipse Modeling Project (http://www.eclipse.org/modeling)

Good Architecture = Good (ADL + Practices) 177

design tool. Indeed, the BP Activation tool has been designed to interact with
any Eclipse GMF-generated editors. If the first feature of BP Activation is to
enact a process and check the elaboration of models, the second feature consists
of controlling some parts of the targeted design tool. At each step of modeling,
only the editable concepts of the current step are active. Based on the extension
capabilities of the GMF framework, the BP Activation tool dynamically acti-
vate/deactivate GMF creation tools of the targeted design tool according to the
editable concepts allowed for this step. With this approach, we are able to con-
trol any GMF editor within the Eclipse platform. To tackle the problem of how
to interact with other design tools, we plan to elaborate a mapping meta-model
so that QAM could map editable concepts with the creation features (buttons,
actions, items) of the design tool.

5 Case Study: Alkante’s BP

In the following we present how to define the BP presented in section 2 and how
to apply it during a design process.

5.1 Formal Description of BP

The GooMod language allows to represent the different steps of this BP in the
form of a process. The steps are described with the help of the BP Definition
tool as depicted in Fig 4.

The process defines an iteration that allows to create multiple pages and
their content. Indeed, once a script has been added, the designer will either be
able to continue through the process or to iterate by adding new pages. The
dashed arrow between “Add Form” and “Add HTML Controls” represents an
optional transition, thus making the latter step optional. This indicates that
adding HTML controls to forms is not necessary to produce a valid Web appli-
cation in this specific context.

The QAM in charge of the definition of this BP is able to detail each step
of the process by adding some rules that need to be checked to ensure the
quality of the final architecture. For each step, the QAM can define both pre-
and post-conditions that will ensure that models will be well-constructed. Those
constraints are given using the OCL language. Besides defining constraints, the

Fig. 4. Process part of Alkante’s BP for building Web applications architectural models

178 V. Le Gloahec, R. Fleurquin, and S. Sadou

QAM adds entry and exit actions that allow the designer to collaborate with the
system by means of inputs and/or outputs. Those actions are described using
a script-like syntax, where it is possible to declare variables and input/output
operations. In addition, each step comes with a list of editable concepts that are
used to follow the defined process. In the Alkante’s BP, each step is associated
with a list of meta-classes of the AlCoWeb language: Component and Port for
each step except the last one, and the meta-class Connector for the last step
(Connect Components), thus allowing to connect components with each other.

For example, here is a complete description of the step “Add Form”:

Pre description: at least one page must be present
context: Component
inv: Component.allInstances()->select(c:Component |

c.stereotype=’AlkHtmlPage ’)->notEmpty ()

Entry output("You have to create at least one form per page.")
output("Make sure to respect the graphical guidelines.")

Concepts [{"Component","cud"}, {"Port","cud"}]

Exit input($response , boolean , "Did you respect the graphical guidelines?")

Post description: each form must be contained in a parent page
context: Component
inv: Component.allInstances()->select(c:Component |

c.stereotype=’AlkHtmlForm ’)->notEmpty ()
and
Component.allInstances()-> select(c:Component |

c.stereotype=’AlkHtmlForm ’). owner.stereotype=’AlkHtmlPage ’
and
Component.allInstances()-> select(c:Component |

c.stereotype=’AlkHtmlPage ’)->forAll(page |
page.ownedForms ->size() >= 1)

and OclQuery_graphicalCheck () = true

The pre-condition checks that before entering the step, the model contains at least
one page. The entry action is used to inform the designer about the constraint re-
lated to this step (at least one form per page) and recommendation about graph-
ical guidelines. The syntax used to describe editable concepts is given in the form
of two strings: the first is the name of the concept, the second is composed of the
first letters of the authorized behaviors. In our case, “cud” means “create, update
and delete”. In the above example, the exit action is used to ask the designer to
check whether the graphical guidelines are respected. The post-condition is used
to check that the model contains at least one form per page and that the graphi-
cal guidelines were respected. In the BP Definition tool, all the rules listed above
are editable using advanced editors and content assistants, so that designers don’t
have to manipulate the syntax given in this example.

5.2 BP in Action

When developers starts designing architecture models with AlCoWeb-Builder,
they first load the GooMod model defined by the QAM, and then launch the

Good Architecture = Good (ADL + Practices) 179

Fig. 5. Applying best practices in AlCoWeb-Builder

controlled editing process. The bottom of Fig. 5 shows the current state of the
BP Activation tool: the current design step is “Add Script” (on the left), allowed
editable concepts for this steps are Component and Port (in the middle), and
the right part shows the next available steps. As we can see, the BP indicates
that we have the choice to go back to the “Add Page” step, or to go ahead to
the last step of the process to finish the design of the Web application.

In the company, the GooMod platform is used differently depending on skills
and experience of developers. Novice developers systematically use the platform,
whereas experts prefer to make verifications at key steps of the design process.
Indeed, novices are not fully aware of all the practices that have to be respected
to produce a quality architecture, therefore they prefer to be guided through
the whole design process. This reinforces our idea that a tool must be flexible
enough to adapt to the most users. The GooMod platform has been designed
accordingly.

The reader may find other examples of use of the GooMod platform through
screencasts at http://www-valoria.univ-ubs.fr/SE/goomod.

6 Related Work

Best practices management is a particular case of Knowledge Management. This
domain aims to identify, gather and capitalize on all used knowledge (including

http://www-valoria.univ-ubs.fr/SE/goomod

180 V. Le Gloahec, R. Fleurquin, and S. Sadou

BP) to improve companies performance [14]. Thus, in the domain of BP for
software development, there are three types of works: those interested in BP
archiving, those interested in their modeling, and those who seek their imple-
mentation directly in the development tools.

Several works suggest introducing processes and tools that facilitate storage,
sharing, and dissemination of BP within companies (e.g. [15], [16]). They advo-
cate in particular the use of real repositories allowing various forms of consulta-
tion, thus facilitating research and discovery of BPs. However, the BP referred
to by these systems are documented and available only through textual and in-
formal. It is therefore impossible to make them productive in order to control
the use within CASE tools. To the best of our knowledge, there is no other work
on the definition of rigorous languages for documenting BPs. However this field
can benefit from works concerned with method engineering ([7], [8]) and soft-
ware development process [17]. Indeed, a BP is a particular form of development
method. It imposes a way to run an activity, a process, and also imposes a num-
ber of constraints on the proper use of language concepts. Language engineering
and its definition tools are therefore very useful.

With CASE tools, several works suggest encouraging, even requiring, the re-
spect of certain BP. The domain that had produced good results in recent years
is the one that focuses on the automation of BP concerning detection and cor-
rection of inconsistencies. These include, in particular, the work presented in
[18], [19], [20] and [21]. They propose adding extensions to modeling tools, such
as Eclipse or Rational, that are able to intercept the actions of designers and
inspect the information system of the tools in order to detect the occurrence
of certain types of inconsistency. The inconsistencies treated by these works are
various, but they remain on the analysis of syntactical consistency of models
expressed in one or more languages, which is already quite complex. Sometimes
they address the problem of what they call methodological inconsistencies, i.e.,
the detection of non-compliance with guidelines relating to how the language
should be used. However, these works involve BP with a much smaller granular-
ity than those we are dealing with.

In the domain of software architectural modeling, Acme has been proposed
as a generic ADL that provides an extensible infrastructure for describing, ge-
nerating and analysing software architectures descriptions [2]. This language is
supported by the AcmeStudio tool [22], a graphical editing environment for soft-
ware architecture design implemented as an Eclipse Plug-in. AcmeStudio offers
the possibility to define rules (invariants and heuristics) to check whether an
architectural model is well formed. However, rules have to be defined directly at
the design stage and are embedded in the architectural model. This limits the
portability of the solution to another tool and the expressiveness of BPs. In our
approach, we prefer the definition of such rules to be at the PIM level, so that
they can be reused and remain independent of any tool. The GooMod platform
can be easily adapted to work with AcmeStudio, since this tool is an Eclipse-
based graphical editor. In this way, it could propose features not available in
AcmeStudio: support for a process representation of the design activity, better

Good Architecture = Good (ADL + Practices) 181

understanding of the ADL through the manipulation of only valuable concepts
at each design steps, and ways to collaborate dynamically with designers.

7 Conclusion

To produce softwares with high quality, a company must first ensure that its
architecture is of high quality. To achieve a desired level of quality, the use of an
ADL alone, as elegant as it is, is not enough. It should be used with best practices
to get good solutions depending on the context of use. Through the use of best
practices, designers avoid reproducing well-known errors and follow a proven
process. But the quality has a cost related to two aspects: the capitalization of
these best practices and roll-backs in case of non compliance with them.

With our approach, quality assurance managers are able to define, in a for-
mal description, their own design practices based on books, standards and/or
their own gained experience. Since these descriptions are formal, they become
productive in tools. They can be automatically applied by designers to produce
high quality architectures. Thus, we provide not only a way to capitalize best
practices, but also a means to check their compliance throughout the design
process to avoid costly roll-backs.

Our approach provides to architects, directly in editing tools, a collection of
BPs. This automation relieves the architects of much of manual verifications.
Consequently, they do not hesitate to activate them when needed. They can also
choose the BPs to use, depending on the given context, their own skills and type
of the project.

As a continuation of this work, we plan to provide a best practice management
tool that allows the quality assurance manager to optimize BPs use. In addition
of defining BPs, this tool should help to involve designers in projects (process
+ human), with management of access rights and temporary permissions of
violation. Finally, it must allow the generalization of individual BPs to make
them usable by all designers. This last point will enable the company to go up
from the level of individual know-how to the level of collective know-how.

References

1. Erdogmus, H.: Architecture meets agility. IEEE Softw. 26(5), 2–4 (2009)
2. Garlan, D., Monroe, R.T., Wile, D.: Acme: architectural description of component-

based systems, pp. 47–67 (2000)
3. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A comprehensive approach for the

development of modular software architecture description languages. ACM Trans.
Softw. Eng. Methodol. 14(2), 199–245 (2005)

4. Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Develop-
ing next generation adls through mde techniques. In: 32nd International Conference
on Software Engineering, ICSE 2010 (to appear, 2010)

5. Medvidovic, N., Rosenblum, D.S., Redmiles, D.F., Robbins, J.E.: Modeling soft-
ware architectures in the unified modeling language. ACM Trans. Softw. Eng.
Methodol. 11(1), 2–57 (2002)

182 V. Le Gloahec, R. Fleurquin, and S. Sadou

6. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Longman Publishing Co., Inc., Boston (1998)

7. Henderson-Sellers, B.: Method engineering for OO systems development. Commun.
ACM 46(10), 73–78 (2003)

8. Gonzalez-Perez, C., Henderson-Sellers, B.: Modelling software development
methodologies: A conceptual foundation. Journal of Systems and Software 80(11),
1778–1796 (2007)

9. Ambler, S.W.: The Elements of UML(TM) 2.0 Style. Cambridge University Press,
New York (2005)

10. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented software architecture: a system of patterns. John Wiley & Sons, Inc.,
New York (1996)

11. Gratton, L., Ghoshal, S.: Beyond best practices. Sloan Management Review (3),
49–57 (2005)

12. Kadri, R., Tibermacine, C., Le Gloahec, V.: Building the Presentation-Tier of Rich
Web Applications with Hierarchical Components. In: Benatallah, B., Casati, F.,
Georgakopoulos, D., Bartolini, C., Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS,
vol. 4831, pp. 123–134. Springer, Heidelberg (2007)

13. Ramsin, R., Paige, R.F.: Process-centered review of object oriented software de-
velopment methodologies. ACM Comput. Surv. 40(1), 1–89 (2008)

14. Stewart, T.A.: The Wealth of Knowledge: Intellectual Capital and the Twenty-first
Century Organization. Doubleday, New York (2001)

15. Fragidis, G., Tarabanis, K.: From repositories of best practices to networks of best
practices. In: 2006 IEEE International Conference on Management of Innovation
and Technology, pp. 370–374 (2006)

16. Zhu, L., Staples, M., Gorton, I.: An infrastructure for indexing and organizing best
practices. In: REBSE 2007: Proceedings of the Second International Workshop
on Realising Evidence-Based Software Engineering. IEEE Computer Society, Los
Alamitos (2007)

17. OMG: Software Process Engineering Meta-Model, version 2.0 (SPEM2.0). Techni-
cal report, Object Management Group (2008)

18. Biehl, M., Löwe, W.: Automated architecture consistency checking for model driven
software development. In: Mirandola, R., Gorton, I., Hofmeister, C. (eds.) QoSA
2009. LNCS, vol. 5581, pp. 36–51. Springer, Heidelberg (2009)

19. Egyed, A.: Uml/analyzer: A tool for the instant consistency checking of uml models.
In: 29th International Conference on Software Engineering, ICSE 2007, pp. 793–796
(2007)

20. Hessellund, A., Czarnecki, K., Wasowski, A.: Guided development with multiple
domain-specific languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 46–60. Springer, Heidelberg (2007)

21. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsis-
tency through operation-based model construction. In: ICSE 2008: Proceedings
of the 30th international conference on Software engineering, pp. 511–520. ACM,
New York (2008)

22. Schmerl, B., Garlan, D.: Acmestudio: Supporting style-centered architecture de-
velopment. In: ICSE 2004: Proceedings of the 26th International Conference on
Software Engineering, pp. 704–705. IEEE Computer Society, Washington (2004)

Author Index

Aleti, Aldeida 52
Ardagna, Danilo 84

Babka, Vlastimil 3
Becker, Steffen 151
Birkmeier, Dominik 119
Brosch, Franz 36
Buhnova, Barbora 36, 52
Bulej, Lubomı́r 3

Chauvel, Franck 102
Chen, Xiangping 102

Dietrich, Jens 135

Fleurquin, Régis 167

Ghezzi, Carlo 68
Goldschmidt, Thomas 151
Grunske, Lars 52

Happe, Jens 20
Henss, Jörg 151
Huang, Gang 102

Kapová, Lucia 20, 151
Koziolek, Heiko 36, 84

Le Gloahec, Vincent 167

Magee, Jeffrey N. 1
Martens, Anne 84
McCartin, Catherine 135
Meedeniya, Indika 52
Mei, Hong 102
Mirandola, Raffaela 84
Motta, Alfredo 68

Overhage, Sven 119

Panzica La Manna, Valerio 68

Reussner, Ralf 36, 84

Sachs, Kai 20
Sadou, Salah 167
Shah, Syed M. Ali 135
Song, Hui 102

Tamburrelli, Giordano 68
Tempero, Ewan 135
Tůma, Petr 3

Westermann, Dennis 20
Wirsing, Martin 2

	Title Page
	Preface
	Organization
	Table of Contents
	Abstracts of the Keynotes
	Intrinsic Definition in Software Architecture Evolution
	A Component-Based Approach to Adaptive User-Centric Pervasive Applications

	Model-Driven Analysis
	Validating Model-Driven Performance Predictions on Random Software Systems
	Motivation
	Requirements on Software Generation
	Generating Tree Structured Servers
	Realistic Leaf Modules
	Realistic Leaf Modules
	Client Workload Generation

	Constructing Performance Models
	Performance Model Structure
	Providing Operation Durations

	Validation Results
	Precise Single Client Predictions
	Multiple Clients Prediction
	Operation Duration Distribution
	Resource Contention Impact
	Workload Scalability Behavior

	Related Work
	Conclusion
	References

	Statistical Inference of Software Performance Models for Parametric Performance Completions
	Introduction
	Overview
	Related Work
	Capturing the Performance of Message-Oriented Middleware with Statistical Inference
	Measurement Method
	StatisticalModel Inference
	AnalyzingMessage-Oriented Systems
	Evaluation of the Statistical Models

	Discussion
	Conclusions
	References

	Parameterized Reliability Prediction for Component-Based Software Architectures
	Introduction
	Related Work
	Modelling Reliability with the PCM
	Example
	Modelling Software and Hardware with the PCM
	PCM Extensions for Modelling Reliability

	Predicting Reliability with the PCM
	Solving Parameter Dependencies
	Determining Probabilities of Physical System States
	Generating and Solving Markov Chains

	Case Study Evaluation
	Model of a Business Reporting System
	Validity of the Predictions
	Sensitivity Analyses
	Scalability

	Conclusions
	References

	Architecture-Driven Reliability and Energy Optimization for Complex Embedded Systems
	Introduction
	Related Work
	Preliminaries
	SystemModel
	Formalization of the Model

	Evaluation of an Architectural Alternative
	Expected Number of Visits
	Energy Consumption
	Reliability

	Architecture Optimization with Non-dominated Sorting Genetic Algorithm (NSGA)
	Selection
	Crossover
	Mutation

	Tool Support
	Illustration of the Approach with a Case Study
	Automotive Control System
	Results

	Conclusions and Future Work
	References

	Quality of Service Adaptation
	QoS Driven Dynamic Binding in-the-many
	Introduction
	Problem Statement: Assumptions and Formalization
	Binding Strategies
	Minimum Strategy
	Ideal Strategy
	Probabilistic Strategy
	Collaborative Strategy
	Proxy-Based Approach

	Validation
	Parameters Tuning
	Empirical Results

	Related Work
	Conclusions
	References

	A Hybrid Approach for Multi-attribute QoS Optimisation in Component Based Software Systems
	Introduction
	Background: Architecture Modelling and Analyses
	Optimisation Process
	Overview
	Search Problem Formulation
	Analytical Optimisation
	Evolutionary Optimisation

	Experimental Results
	Search Problem Formulation
	Analytic Optimisation
	Evolutionary Optimisation
	Results

	Related Work
	Conclusions
	References

	Using QoS-Contracts to Drive Architecture-Centric Self-adaptation
	Introduction
	Motivating Example
	Approach Overview
	Modeling Self-adaptive Systems
	Modeling Software Architecture
	Modeling Environment and Objectives

	Self-adaptation Algorithm
	Problem Formalization
	Planning Algorithm
	Worst Case Complexity

	Experimental Evaluation
	Prototype Implementation
	Experimental Setups
	Discussion

	Related Works
	Conclusion
	References

	Case Studies and Experience Reports
	Is BPMN Really First Choice in Joint Architecture Development? An Empirical Study on the Usability of BPMN and UML Activity Diagrams for Business Users
	Motivation
	Related Work
	Theory and Propositions
	Experiment Setting
	Results
	Scoring
	Measuring
	Analysis
	Limitations

	Conclusions
	References

	Barriers to Modularity - An Empirical Study to Assess the Potential for Modularisation of Java Programs
	Introduction
	Related Work
	Methodology
	Patterns
	Overview
	Abstraction without Decoupling (AWD)
	Subtype Knowledge (STK)
	Degenerated Inheritance (DEGINH)
	Clusters in Name Spaces (CNS)
	Cycles between Name Spaces (CDNS)
	Cycles between Containers (CDC)

	Results
	Programs Analysed
	Overview
	Life Cycle, Program Size and Pattern Density
	Patterns in Java’s Core Libraries

	Conclusion
	References

	Evaluating Maintainability with Code Metrics for Model-to-Model Transformations
	Introduction
	The Group of Relational Transformation Languages
	QVT Relational
	General Observations on Maintainabilty of QVT-R Transformations

	Related Work
	Metrics Definition
	AutomatedMetrics
	Manually Gathered Metrics

	Computation of Metrics
	Case Study
	Limitations and Validity
	Conclusions and Future Work
	References

	Good Architecture = Good (ADL + Practices)
	Introduction
	Problem Statement
	Development Environment
	Recurrent Problems
	Discussion

	Best Practices Description Language
	Identified Properties
	Abstract Syntax of the GooMod Language
	Semantic of the GooMod Language

	Implementation of GooMod
	PIM-Level: Modeling BPs
	PSM-Level: BPs Enactment

	Case Study: Alkante’s BP
	Formal Description of BP
	BP in Action

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

