

Lecture Notes in Computer Science 6156
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

M. Ali Babar Matias Vierimaa
Markku Oivo (Eds.)

Product-Focused
Software Process
Improvement

11th International Conference, PROFES 2010
Limerick, Ireland, June 21-23, 2010
Proceedings

13

Volume Editors

M. Ali Babar
IT University of Copenhagen, Software Development Group
Rued Langgaards Vej 7, 2300 Copenhagen, Denmark
E-mail: maba@itu.dk

Matias Vierimaa
VTT Technical Research Centre of Finland
Kaitoväylä 1, 90571 Oulu, Finland
E-mail: matias.vierimaa@vtt.fi

Markku Oivo
University of Oulu, Department of Information Processing Science
P.O. Box 3000, 90014 Oulu, Finland
E-mail: markku.oivo@oulu.fi

Library of Congress Control Number: 2010928476

CR Subject Classification (1998): D.2, K.6, J.1, H.3, H.4, C.2.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-13791-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13791-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

On behalf of the PROFES Organizing Committee we are proud to present the proceed-
ings of the 11th International Conference on Product-Focused Software Process
Improvement (PROFES 2010), held in Limerick, Ireland. Since the first conference in
1999 the conference has established its place in the software engineering community as a
respected conference that brings together participants from academia and industry.

The roots of PROFES are in professional software process improvement motivated
by product and service quality needs. The conference addresses both the solutions
found in practice as well as relevant research results from academia. To ensure that
PROFES retains its high quality and focus on the most relevant research issues, the
conference has actively maintained close collaboration with industry and subsequently
widened its scope to the research areas of collaborative and agile software develop-
ment. The main themes of this year’s conference were “Agile and Lean Processes”
and “Engineering Service-Oriented Systems.”

These two main themes enabled us to cover the contemporary software develop-
ment demands and trends in a comprehensive manner and to tackle the most important
current challenges identified by the software industry and software research commu-
nity––namely, the shift of focus from "products" to "services.”

The technical program featured invited talks, research papers, and experience reports
on the most relevant topics related to processes for developing software-intensive
services and products. In addition, a number of workshops and tutorials were hosted.

PROFES conferences have continuously attracted attendees from industry,
research, and academia. This confirms that the conference covers topics which are
up-to-date, important, and interesting. PROFES 2010 offered a unique forum for
industry and academic professionals to discuss their needs and ideas, especially
from the perspective of software as a business.

The conference included two top keynote speakers: (1) Bashar Nuseibeh, Chief
Scientist at Lero––The Irish Software Engineering Research Centre and (2) Christof
Ebert, Managing Director at Vector Consulting Services.

PROFES 2010 also featured three workshops, four tutorials, a Doctoral Sympo-
sium, and panel discussions.

We wish to thank the University of Limerick, the IT University of Copenhagen, VTT
Technical Research Center of Finland, the University of Oulu, and Fraunhofer IESE for
supporting the conference. We are also grateful to the authors for their high-quality pa-
pers, the Program Committee for their hard work in reviewing the papers, the Organizing
Committee for making the event possible, and we would especially like to thank Irja
Kontio and Kaarina Karppinen from VTT for their valuable help in the proceedings
finalization.

April 2010

M. Ali Babar
Matias Vierimaa

Organization

Profes 2010 was organized by the University of Limerick, VTT Technical Research
Centre of Finland, University of Oulu, Fraunhofer IESE, and IT University of
Copenhagen.

Organizing Committee

General Chair

Program Chairs

Organizing Chair

Publicity Chair

Publicity Co-chairs

Short Papers and Poster

Chairs

Tutorial Chairs

Doctoral Symposium

Chairs

Panel Chair

Markku Oivo

M. Ali Babar

Matias Vierimaa

Lorraine Morgan

Andreas Jedlitschka

Raimund Feldmann

Guilherme H. Travassos
Katsuro Inoue
Jacky Keung
Timo Koivumaki
Xiaofeng Wang

Tracy Hall
Jason Zhang

Ken Power
Rory O'Connor

Martin Höst

Mahmood Niazi

Silvia Abrahão

University of Oulu,
Finland

IT University of

Copenhagen, Denmark
VTT, Finland

Lero, University of

Limerick, Ireland

Fraunhofer IESE,

Germany

Fraunhofer Center

Maryland, USA
COPPE/UFRJ, Brazil
Osaka University, Japan
NICTA, Australia
VTT, Finland
Lero, Ireland

Brunel University, UK
NICTA, Australia

Cisco, Ireland
DCU, Ireland

Lund University,

Sweden
Keele University, UK

Technical University of

Valencia, Spain

 Organization VIII

Workshop Chairs

Webmaster

Davide Falessi

Alok Mishra

Klaas-Jan Stol

University of Rome
"TorVergata", Italy

Atilim University, Turkey

Lero, University of

Limerick, Ireland

Program Committee

Zeiad Abdelnai Garyounis University, IT College, Libya
Pekka Abrahamsson University of Helsinki, Finland
Silvia Abrahão Universidad Politécnica de Valencia, Spain
Teresa Baldassarre University of Bari, Italy
Stefan Biffl Technical University of Vienna, Austria
Andreas Birk SWPM - Software.Process.Management,

Germany
Luigi Buglione ETS / Nexen Engineering Group, Italy
Danilo Caivano University of Bari, Italy
Gerardo Canfora University of Sannio, Italy
Jeff Carver Alabama University, USA
Marcus Ciolkowski Fraunhofer Institute for Experimental Software

Engineering, Germany
Reidar Conradi Norwegian University of Science and Technology,

Norway
Beniamino Di Martino Second University of Naples, Italy
Torgeir Dingsøyr SINTEF, Norway
Marlon Dumas University of Tartu, Estonia
Tore Dybå SINTEF, Norway
Raimund Feldmann Fraunhofer Center Maryland, USA
Paul Grunbacher Johannes Kepler University Linz, Austria
Jens Heidrich Fraunhofer Institute for Experimental Software

Engineering, Germany
Frank Houdek Daimler AG, Germany
Hajimu Iida NAIST, Japan
Katsuro Inoue Osaka University, Japan
Letizia Jaccheri Norwegian University of Science and Technology,

Norway
Michel Jaring Fluxica, Finland
Erik Johansson Ericsson Mobile Platforms, Sweden
Natalia Juristo Universidad Politécnica de Madrid, Spain
Janne Järvinen F-Secure, Finland
Pasi Kuvaja University of Oulu, Finland
Kari Känsälä Nokia, Finland
Casper Lassenius Alto University, Finland
Marek Leszak Alcatel-Lucent, Germany
Jingyue Li Norwegian University of Science and Technology,

Norway

 Organization IX

Lech Madeyski Wroclaw University of Technology, Poland
Kenichi Matsumoto Nara Institute of Science and Technology, Japan
Makoto Matsushita Osaka University, Japan
Maurizio Morisio Politecnico di Torino, Italy
Mark Müller Robert Bosch GmbH, Germany
Jürgen Münch Fraunhofer IESE, Germany
Haruka Nakao Japan Manned Space Systems Corporation, Japan
Makoto Nonaka Toyo University, Tokyo, Japan
Paolo Panaroni INTECS, Italy
Dietmar Pfahl University of Oslo, Norway
Minna Pikkarainen VTT, Finland
Teade Punter Embedded Systems Institute (ESI),

The Netherlands
Austen Rainer University of Hertfordshire, UK
Ita Richardson Lero, University of Limerick, Ireland
Daniel Rodriguez University of Alcalá, Spain
Barbara Russo Free University of Bolzano-Bozen, Italy
Outi Salo Nokia, Finland
Klaus Schmid University of Hildesheim, Germany
Kurt Schneider Leibniz Universität Hannover, Germany
Michael Stupperich Daimler AG, Germany
Guilherme Travassos COPPE/UFRJ, Brazil
Markku Tukiainen University of Joensuu, Finland
Mark van den Brand Eindhoven University of Technology,

The Netherlands
Rini van Solingen Delft University of Technology, The Netherlands
Sira Vegas Universidad de Politecnica de Madrid, Spain
Hironori Washizaki National Institute of Informatics, Japan
Claes Wohlin Blekinge Institute of Technology, Sweden

Table of Contents

Keynote Addresses

Mobile Privacy Requirements on Demand . 1
Bashar Nuseibeh

Lean Development - Potentials, Principles and Practices 2
Christof Ebert

Software Quality Assurance I

A Qualitative Survey of Regression Testing Practices 3
Emelie Engström and Per Runeson

Investigating the Temporal Behavior of Defect Detection in Software
Inspection and Inspection-Based Testing . 17

Dietmar Winkler, Stefan Biffl, and Kevin Faderl

Analysis of Bug Fixing Processes Using Program Slicing Metrics 32
Raula Gaikovina Kula, Kyohei Fushida, Shinji Kawaguchi, and
Hajimu Iida

Agile Software Development

Systematic Piloting of Agile Methods in the Large: Two Cases in
Embedded Systems Development . 47

Jeanette Heidenberg, Mari Matinlassi, Minna Pikkarainen,
Piia Hirkman, and Jari Partanen

Optimized Feature Distribution in Distributed Agile Environments 62
Ákos Szőke

Approaches to Agile Adoption in Large Settings: A Comparison of the
Results from a Literature Analysis and an Industrial Inventory 77

Anna Rohunen, Pilar Rodriguez, Pasi Kuvaja, Lech Krzanik, and
Jouni Markkula

Software Quality Assurance II

Applying DPPI: A Defect Causal Analysis Approach Using Bayesian
Networks . 92

Marcos Kalinowski, Emilia Mendes, David N. Card, and
Guilherme H. Travassos

XII Table of Contents

Evaluating Three Approaches to Extracting Fault Data from Software
Change Repositories . 107

Tracy Hall, David Bowes, Gernot Liebchen, and Paul Wernick

Regularities in Learning Defect Predictors . 116
Burak Turhan, Ayse Bener, and Tim Menzies

Software Business

Business Value Is Not Only Dollars - Results from Case Study Research
on Agile Software Projects . 131

Zornitza Racheva, Maya Daneva, Klaas Sikkel, and Luigi Buglione

Critical Success Factors for Offshore Software Development Outsourcing
Vendors: An Empirical Study . 146

Siffat Ullah Khan, Mahmood Niazi, and Rashid Ahmad

Impact of Corporate and Organic Growth on Software Development 161
Natalja Nikitina and Mira Kajko-Mattsson

Software Systems

Prioritizing Countermeasures through the Countermeasure Method for
Software Security (CM-Sec) . 176

Dejan Baca and Kai Petersen

Feedback in Context: Supporting the Evolution of IT-Ecosystems 191
Kurt Schneider, Sebastian Meyer, Maximilian Peters,
Felix Schliephacke, Jonas Mörschbach, and Lukas Aguirre

Comparing Agile Processes for Agent Oriented Software Engineering . . . 206
Alma M. Gómez-Rodŕıguez and Juan C. González-Moreno

Standardizing the Software Tag in Japan for Transparency
of Development . 220

Masateru Tsunoda, Tomoko Matsumura, Hajimu Iida, Kozo Kubo,
Shinji Kusumoto, Katsuro Inoue, and Ken-ichi Matsumoto

Process Quality I

Discovering Software Process and Product Quality Criteria in Software
as a Service . 234

Maiara Heil Cancian, Jean Carlo Rossa Hauck,
Christiane Gresse von Wangenheim, and
Ricardo José Rabelo

A Maturity Model for IT Dependability in Emergency Management 248
Kim Weyns, Martin Höst, and Yeni Li Helgesson

Table of Contents XIII

Dependency Analysis between CMMI Process Areas 263
Paula Monteiro, Ricardo J. Machado, Rick Kazman, and
Cristina Henriques

Software Measurement

Productivity Reanalysis for Unbalanced Datasets with Mixed-Effects
Models . 276

Sousuke Amasaki

SAS: A Tool for the GQM+Strategies Grid Derivation Process 291
Vladimir Mandić and Markku Oivo

Understanding the Influential Factors to Development Effort in Chinese
Software Industry . 306

Mei He, He Zhang, Ye Yang, Qing Wang, and Mingshu Li

Process Quality II

Lean Management of Software Processes and Factories Using Business
Process Modeling Techniques . 321

Javier Berrocal, José Garćıa-Alonso, and Juan Manuel Murillo

Improving Efficiency of Change Impact Assessment Using Graphical
Requirement Specifications: An Experiment . 336

Niklas Melleg̊ard and Miroslaw Staron

Vague Project Start Makes Project Success of Outsourced Software
Development Projects Uncertain . 351

Paula Savolainen

Software Process Improvement

The Rosetta Stone Methodology – A Benefits Driven Approach to
Software Process Improvement . 366

Fionbarr McLoughlin and Ita Richardson

Defining and Monitoring Strategically Aligned Software Improvement
Goals . 380

Andrea Oliveira Soares Barreto and Ana Regina Rocha

A Strategy for Painless Harmonization of Quality Standards: A Real
Case . 395

Maria Teresa Baldassarre, Danilo Caivano, Francisco J. Pino,
Mario Piattini, and Giuseppe Visaggio

Author Index . 409

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, p. 1, 2010.

Mobile Privacy Requirements on Demand

Bashar Nuseibeh

Lero - The Irish Software Engineering Research Centre

Process and product improvements are noble goals. Structured, document-driven
processes have played an important part in the development of some mission critical
systems. Likewise, agile and lean development processes are showing increasing
promise in competitive, changing environments. The 'software as a service' paradigm
is adding a further challenging dimension to the mix, and is redefining the notion of a
software product.

However, in this talk, I argue that an increasingly important kind of development
needs our attention - one that focuses on the quality of the software (product) experi-
ence. As mobile and ubiquitous computing technology becomes a reality in everyday
life, such technology is able to offer individual users a very personal and personalised
set of services and experiences, with their own set of concerns and requirements. In
our quest to ensure that the required service functionality is delivered, we risk ne-
glecting how best to achieve the desired quality of service and user experience. This is
an area that raises many difficult research questions and challenges. In my talk I will
focus on some issues drawn from my own experience in requirements engineering
and ubiquitous computing. In particular, I examine the socially and technically chal-
lenging topic of privacy in a mobile computing, and suggest that we need new devel-
opment processes and methods to enable the elicitation and development of privacy
requirements. I will present a number of qualitative empirical studies that explore how
"requirements engineering in the wild" may be better suited to eliciting mobile pri-
vacy requirements than traditional requirements elicitation processes - agile, lean or
otherwise...

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, p. 2, 2010.

Lean Development - Potentials, Principles and Practices

Christof Ebert

Vector Consulting Services

To survive in a fast changing environment, we need to continuously improve produc-
tivity, reduce rework, and optimize product strategies. Lean development and lean
management offers the right ingredients: Eliminating waste, empowering teams,
delivering as fast as possible, seeing the whole. But there is a dark side, as recent
industry experiences show. Too lean is mean. Lean often fails due to lack of vision,
misalignment and insufficient execution. It is thus crucial for companies to success-
fully manage change towards lean development. This keynote will introduce to lean
principles and practices. It will draw upon experiences from a variety of industries
with topics such as lean transition, introducing new tools, improving engineering
processes, and setting up a global software organization. A change check is provided
so that participantscan address their specific challenges.

A Qualitative Survey of Regression Testing
Practices

Emelie Engström and Per Runeson

Department of Computer Science, Lund University, SE-221 00 LUND, Sweden
{Emelie.Engstrom,Per.Runeson}@cs.lth.se

Abstract. Aim: Regression testing practices in industry have to be bet-
ter understood, both for the industry itself and for the research commu-
nity. Method : We conducted a qualitative industry survey by i) running
a focus group meeting with 15 industry participants and ii) validating
the outcome in an on line questionnaire with 32 respondents. Results:
Regression testing needs and practices vary greatly between and within
organizations and at different stages of a project. The importance and
challenges of automation is clear from the survey. Conclusions: Most of
the findings are general testing issues and are not specific to regression
testing. Challenges and good practices relate to test automation and
testability issues.

Keywords: Regression testing, Survey, Industry practice.

1 Introduction

Regression testing is retesting of previously working software after a change to
ensure that unchanged software is still functioning as before the change. Accord-
ing to IEEE, regression testing is Selective retesting of a system or component
to verify that modifications have not caused unintended effects and that the sys-
tem or components still complies with its specified requirements [1]. The need
for effective strategies for regression testing increases with the increasing use of
iterative development strategies and systematic reuse in software projects. Stud-
ies indicate that 80% of testing cost is regression testing and more than 50% of
software maintenance cost is related to testing [2].

There is a gap between research and practices of regression testing. Research
on regression testing mainly focuses on selection and prioritization of test cases.
Several techniques for regression test selection are proposed and evaluated. En-
gström et al. reviewed the literature in the field recently [3] and highlights the
importance of the test context to the outcome of regression testing techniques.
Only few empirical evaluations of regression test selection techniques are carried
out in a real industrial context [4], [5], [6].

However industry practice on regression testing is mostly based on experience
alone, and not on systematic approaches. There is a need for researchers to better
understand the needs and practices in industry. Rooksby et al. [7] argue for the
need for investigation and characterization of real world work. They conclude

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 3–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

4 E. Engström and P. Runeson

that improvements of current testing practices are meaningful in its specific
local context and ”cannot be brought about purely through technically driven
innovation”. In their paper they highlight, based on experiences from testing in
four real projects, that improvements in industry are not always sophisticated
and accurate as is often pursued in research.

In order to retrieve a better understanding of real world needs and practices,
a qualitative survey [8, p. 61-78] of industry practice of regression testing is con-
ducted, by means of focus group discussions in a software process improvement
network (SPIN) and a questionnaire to validate the results. Issues discussed in
the focus group were definitions and practices of regression testing in industry as
well as challenges and improvement suggestions. A total of 46 software engineers
from 38 different organizations participated in the focus group and questionnaire
survey. Results are qualitative and of great value in that they highlight relevant
and possible directions for future research.

To the extent of our knowledge no industrial surveys on regression testing
practices have been reported on. However experience reports on regression test-
ing in industrial software development projects can be found [9]. Onoma et al.
conclude that regression testing is used extensively and that several companies
develop in-house regression testing tools to automate the process. Re-test all is
a common approach and the selection of test cases is not a critical issue.

When it comes to testing practices in general a couple of industrial surveys have
been undertaken [10], [11], [12], [13], concluding that test automation is a key im-
provement issue [13] and that test case selection for continuous regression testing
is a hard task. No systematic approach for test case selection was used by the com-
panies but instead they relied on the developers expertise and judgment [12].

This paper is organized as follows: Section 2 describes how the survey is
conducted and discusses validity issues. In section 3 results are presented and
analyzed. Finally conclusions are provided in section 4.

2 Method Description

The study’s overall goal is to characterize current regression testing practices in
industry for the sake of research. It also aims at identifying good practices for
spreading across different companies as well as areas in need for improvement
within the companies and possibly identification of future research topics. Hence,
a qualitative survey is found appropriate [8, p. 61-78]. The research questions
for the survey are:

RQ1 What is meant by regression testing in industry?
RQ2 Which problems or challenges related to regression testing exist?
RQ3 Which good practices on regression testing exist?

The survey is conducted using two different research methods, one focus group
discussion [14, p. 284-289] in a SPIN group, and one questionnaire in a testing
interest network. The focus group was used to identify concepts and issues related
to regression testing, while the questionnaire was used to validate the findings

A Qualitative Survey of Regression Testing Practices 5

in a different setting. A similar approach was used for a unit testing survey in
2006 [12].

2.1 Focus Group

The focus group meeting was arranged at one of the monthly meetings of SPIN-
syd, a software process improvement network in Southern Sweden [15]. The
members of the network were invited to a 2.5 hour session on regression testing
in May 2009. 15 industry participants accepted the invitation, which is about
the normal size for a SPIN-syd monthly meeting, and the same as for our pre-
vious unit testing survey [12]. The focus group meeting was moderated by two
academics and one industry participant, and observed by a third academic. An
overview of the focus group participants is shown in Table 1.

Table 1. Participants in focus group meeting. Number of developers in the surveyed
company: extra small is 1, small is 2 − 19, medium is 20 − 99, and large 100 − 999.

Company Domain Size Role
A Automation Medium Participant
A Automation Medium Participant
A Automation Medium Participant
G Medical devices Medium Participant
G Medical devices Medium Participant
I Information systems Large Moderator
I Information systems Large Participant
S Telecom Large Participant
S Telecom Large Participant
E Telecom Large Participant
X Consultant Extra small Participant
C Consultant Extra small Participant
Q Consultant Medium Participant
K Consultant Medium Participant
O Consultant Large Participant
L Academics N/A Researcher
L Academics N/A Researcher
L Academics N/A Observer

The industry participants represented automation, medical devices, informa-
tion systems (IS), and telecom domains. Consultants also participated which
were working with testing for their clients. The product companies all produce
embedded software and were both of medium and large size, while consultancy
firms of all sizes were represented.

The session was organized around five questions:

– What is regression testing?
– When do the participants regression test?
– How do the participants regression test?

6 E. Engström and P. Runeson

– What are the participants’ problems regarding regression testing?
– What are the participants’ strengths regarding regression testing?

For each of the questions, the moderator asked the participants to write their
answers on post-it charts. Then each participant presented his or her view of the
question and the responses were documented on white boards.

After the session, key findings were identified using qualitative analysis
methods. Statements were grouped into themes, primarily structured by the five
questions, and secondary according to keywords in the statements. Further, the
results were restructured and turned into questions for use in the questionnaire.

2.2 Questionnaire

The resulting questionnaire consists of 45 questions on what regression testing
is, with five-level Likert-scale response alternatives: Strongly disagree, Disagree,
Neutral, Agree, Strongly Agree and an additional Not Applicable option (see
Fig 1). One question on automation vs manual used five scale alternatives from
Automated to Manual (see Fig 2). Further, 29 questions on satisfaction with
regression testing practices in the respondents’ organizations had the response
alternatives Very Satisfied, Satisfied, Neutral, Dissatisfied, Very Dissatisfied and
Not Applicable (see Fig 3). The questionnaire was defined in the SurveyGizmo
questionnaire tool for on line data collection [16].

Respondents were invited through the SAST network (Swedish Association
for Software Testing) through their quarterly newsletter, which is distributed
to some 2.000 testers in Sweden, representing a wide range of company sizes
and application domains. Respondents were promised an individual benchmark-
ing report if more than three participants from one company responded, and a
chance for everybody to win a half-day seminar on testing given by the second
author. Thirty-two respondents answered the complete questionnaire, which are
presented in Table 2.

The respondents cover the range of company sizes and domains. Out of the 32
respondents, 9 were developing embedded systems in particular within the tele-
com domain, 12 developed information systems in particular within the domains
of business intelligence and finance, and 11 were consultants. Out of 21 product
companies, 3 represent small development organizations, 9 represent medium
sized organizations and 8 represent large organizations. The size of the consul-
tancy organizations are not specifically relevant, but is reported to indicate the
variation.

2.3 Threats to Validity

The study does not aim at providing a statistically valid view of a certain popu-
lation of companies, as intended with general surveys [8]. The research questions
are focused on existence and not on frequencies of responses. Hence, we consider
the survey having more character of multiple case studies on a certain aspect of
several cases and consequently we discuss threats to validity from a case study
perspective [17].

A Qualitative Survey of Regression Testing Practices 7

Fig. 1. Number of responses for each questionnaire alternative on regression test
practices

Construct validity concerns the underlying constructs of the research, i.e. terms
and concepts under study. We mitigated construct validity threats by having the
first question of the focus group related to terminology and concepts. Thereby,
we ensured a common understanding for the rest of the group meeting. In the

8 E. Engström and P. Runeson

Fig. 2. Number of responses for each questionnaire alternative on automated vs. man-
ual regression testing

Fig. 3. Number of responses for each questionnaire alternative on satisfaction with
regression test practices

survey, however, the terms may be interpreted differently and this is out of
control of the researchers.

Internal validity relates to identification of casual relationships. We do not study
any casual relationships in the study, and we just briefly touch upon correlations
between factors. Patterns in the data that might indicate correlations are inter-
preted conservatively in order not to over interpret the data.

A Qualitative Survey of Regression Testing Practices 9

Table 2. Respondents to the questionnaire. Number of developers in the surveyed
company: extra small is 1, small is 2 − 19, medium is 20 − 99, and large 100 − 999.

Company Size Domain
Me Small Automation
Te Medium Automation
V Large Automotive
Tc Small Business intelligence
Ql Medium Business intelligence
Ti Medium Business intelligence
C Large Consultant
Ha Large Consultant
H Large Consultant
H Large Consultant
Q Medium Consultant
R Small Consultant
K Medium Consultant
Si Large Consultant
So Large Consultant
T Small Consultant
Tp Medium Consultant
Eu Medium Finance
Sk Large Finance
A Medium Finance
U Medium Information systems
Sm Medium Information systems
W Small Information systems
B Large Information systems
L Large Insurance
Mu Large Insurance
Ma Large Medical devices
E Large Telecom
Hi Medium Telecom
M Medium Telecom
S Large Telecom
S Large Telecom

External validity relates to generalization from the findings. We do not attempt
to generalize in a statistical sense; any generalization possible is analytical gen-
eralization [17]. In order to help such generalization, we report characteristics of
the focus group members and questionnaire respondents in Tables 1 and 2.

3 Analysis of the Results

The focus group and survey results were analyzed using the Zachman framework,
which originally was presented for analysis of information systems architectures
[18]. The framework has six categories, what, how, where, who, when and why,

10 E. Engström and P. Runeson

although these terms were not originally used. For each category, questions are
defined and tailored to the domain under investigation. Originally intended for
IS development, Zachman proposed that it might be used for developing new
approaches to system development [18]. We use it similar to Runeson [12], i.e. to
structure the outcome of the focus group meetings and to define the validation
questionnaire, although we primarily focus on what, how and when.

An overview of the questionnaire results is shown in Figures 1, 2 and 3. Ques-
tions are referred to in the text as [Qx] for question x. The analysis is then
presented according to the framework questions and identified strengths and
weaknesses in subsections 3.1 to 3.4.

3.1 What?

There is good agreement in the focus group and among the survey respondents
regarding what regression testing is. Regression testing involves repetitive tests
and aims to verify that previously working software still works after changes to
other parts. Focus can be either re-execution of test cases or retest of functional-
ity. As for testing in general the goal of the regression testing may differ between
different organizations or parts of an organization. The goal may be either to find
defects or to obtain a measure of its quality. Regression testing shall ensure that
nothing has been affected or destroyed, and give an answer to whether the soft-
ware has achieved the desired functionality, quality and stability etc. In the focus
group discussion, an additional goal of regression testing was mentioned as well;
to obtain a guide for further priorities in the project. Regression testing offers a
menu of what can be prioritized in the project, such as bug fixes. This additional
goal was only confirmed to some extent by 35% of the respondents [Q8].

Different kinds of changes to the system generate regression testing. Men-
tioned in the focus group discussion and confirmed by the majority of the re-
spondents were: new versions, new configurations, fixes, changed solutions, new
hardware, new platforms, new designs and new interfaces [Q9-16]. One third of
the respondents, mostly small and medium sized organizations, indicated that
regression testing is applied regardless of changes, while in larger organizations,
regression testing was tighter connected to changes [Q17]. The amount and fre-
quency of regression testing is determined by the assessed risk, the amount of
new functionality, the amount of fixes and the amount of available resources.
The first three factors are confirmed by the majority of the respondents [Q29-
31] while the agreement on the dependency on resources availability varies to a
greater extent among the respondents [Q32].

3.2 When?

Regression testing is carried out at different levels (e.g. module level, compo-
nent level and system level [Q18-20]) and at different stages of the development
process. From focus group discussions it was found that that some organizations
regression test as early as possible while other regression test as late as possible
in the process, and some claimed that regression testing is continuously carried

A Qualitative Survey of Regression Testing Practices 11

out throughout the whole development process. The purpose may be slightly
different for the three options; early regression test to enable early detection of
defects, and late regression testing for certification or type approval purposes.

How often regression testing is carried out differed as well; some organizations
regression test daily while others regression test at each software integration, at
each milestone, or before releases [Q24-26]. In some cases the availability of
resources is determinant. Among the questionnaire responses, there were large
variations on how often regression testing is applied. The most common approach
is to regression test before releases (indicated by 95% of the respondents) [Q27].
Only 10% of the respondents regression test daily [Q24].

3.3 How?

From the focus group discussions it was identified that tests used for regression
testing may be a selection of developer’s tests, a selection of tester’s tests, a
selection of tests from a specific regression test suite, or new test cases are
designed. According to questionnaire responses, the most common is to reuse
test cases designed by testers. Strategies for regression test selection mentioned
in the focus group were: complete retest, combine static and dynamic selection,
complete retest of safety critical parts, select test cases concentrating on changes
and possible side effects, ad-hoc selection, smoke test, prioritize and run as many
as possible, and focus on functional test cases. Questionnaire results confirm that
it is common to run a set of specified regression test cases every time, together
with a set of situation dependent test cases. Ad-hoc selection seems not to be a
common approach; only 10% of the respondents indicate that approach [Q42].
70% of the respondents confirm the focus on functional test cases [Q44] and 50%
confirm the usage of smoke tests [Q45].

A project may include several different regression testing activities. Both man-
ual and automatic regression testing are applied. 50% of the respondents indicate
an equal amount of manual and automatic regression testing while 30% perform
regression testing exclusively manually [Q46].

3.4 Weaknesses and Strengths

The focus group had an open discussion about both weaknesses and strengths in
their regression testing practices, and it showed that in several cases representa-
tives from one organization had solution proposals where others had problems.
Some problems were common to most of the participants (e.g. lack of time and
resources to regression test and insufficient tool support) while others were more
specific. The outcome of the discussion was a list of 29 possible problem areas
which were validated in the questionnaire.

Test case selection. Several problems related to test case selection were discussed
in the focus group. It was mentioned that it is hard to assess the impact of
changes on existing code and to make a good selection. It is hard to prioritize
test cases with respect to product risks and fault detection ability, and to be

12 E. Engström and P. Runeson

confident in not missing safety critical faults. Determining the required amount
of tests was also considered a problem, and it is hard to assess the test coverage.

Participants wished for a regression test suite with standard test cases and
for regression testing guidelines at different stages of a project with respect to
quality aspects. Some participants were satisfied with their impact analysis and
with their test management systems. As a response to the test selection problem,
exploratory testing was recommended and also to have a static test set used for
each release. No specific test selection technique was referred to, such as the ones
reviewed by Engström et al. [3].

The results from the questionnaire responses are in this respect not conclusive.
The responses are divided evenly across the whole spectrum, with a slight shift
towards satisfaction. However, in terms of processes for impact analysis and
assessment of test coverage the challenges identified in the focus group where
confirmed by a third of the respondents even though as many were satisfied.
[Q47-51].

Test case design. Lack of time and resources for regression testing was a recur-
ring complaint in the discussions. So also in the case for test case design. Among
respondents to the survey were as many satisfied as dissatisfied in this matter
[Q52]. One proposal mentioned in the focus group was to focus on test driven de-
velopment and thus make developers take test responsibility, hence building test
automation into the development process, which may be reused for regression
testing purposes as well.

Automated and manual regression testing. Automating regression testing causes
problems and manual testing is time and resource consuming. Both problems
and proposals were discussed in the focus group. Within the focus group, par-
ticipants were satisfied and dissatisfied with automation as well as with their
manual testing. Most participants wanted a better balance between automated
and manual testing and support in determining cost benefit of automating re-
gression testing.

It is not only costs for implementing the automated tests that need to be
considered, but also costs for maintaining the test suites and in many cases
manual analysis of results. It was proposed to define interfaces for automation
below the user interface level in order to avoid frequent changes of the test
scripts, due to user interface changes. Use of manual testing was recommended
for testing of user experience and for exploratory testing.

The problems of automation was confirmed by questionnaire responses. 60%
of the respondents were dissatisfied with the balance between manual and au-
tomated regression testing [Q56], the assessment of cost/benefit, execution of
automated regression tests as well as the environment for automated regression
testing. In contrast, as many were satisfied with their manual testing, 60% [Q59].

Regression testing problem areas. Specific problem areas for regression testing,
mentioned in the discussion forum were: regression tests in real target envi-
ronment and in simulated target environment, regression testing of third party

A Qualitative Survey of Regression Testing Practices 13

products and of GUI’s. For each problem mentioned, were among the partic-
ipants both those who had problems and those who were satisfied with their
solutions. None of the problem areas was confirmed by a majority of negative
answers in the questionnaire even though between 10-25% were dissatisfied in
each case [Q60-64]. As testing of databases is subject to regression testing re-
search, this area was added to the questionnaire, although not mentioned in the
focus group.

Test results. Several of the participants in the focus group were unsatisfied with
how test results were presented and analyzed. In many cases verdict reporting
is inconsistent and often there is no time to do a thorough analysis. Some par-
ticipants said that their reporting of results and analysis works well and gave
examples of good factors, such as having an independent quality department and
having software quality attributes connected to each test case, which is good not
only for for reporting results but also for prioritization and selection of test cases.

The questionnaire responses were generally neutral regarding consistency of
verdict reporting and processes and practices for analyzing results, but agreed
that practices for presentation of results from automated tests were not good
enough [Q68].

Test suite maintenance. The focus group named maintenance of test suites and
test cases as a problem. Participants stated that much of the regression testing
is redundant with respect to test coverage and that there is a lack of traceability
from tests to requirements. Some of the participants were satisfied with their
tools and processes for traceability and claimed that they are good at mainte-
nance of test cases in case of changes in the product. A recommendation was to
have independent review teams reviewing the test protocols.

Questionnaire responses confirmed the lack of good tools for documenting
traceability between test cases and requirements but otherwise the variation in
the responses to the questions regarding maintenance was great [Q69-71].

Testability. An issue brought up in the focus group were the amount of depen-
dencies in the software and its relation to testability. Participants expressed a
wish for a test friendly design where the structure enables a simple delimitation
of relevant tests. There is a need for design guidelines considering testability,
modularization of the software and clearer dependencies in order to make it
easier to set test scopes.

Questionnaire responses indicate satisfaction with coordina-
tion/communication between designers and testers [Q72] and neutrality
to modularization of the system [Q74]. Further they confirmed the need for
minimization of dependencies in the system [Q73] as well as for testability issues
in design guidelines [Q75].

Test planning. Finally some needs and recommendations regarding the test plan-
ning was given. Again a cost model was asked for: It would be nice to have a
cost model for environments and technical infrastructure covering; automated

14 E. Engström and P. Runeson

testing, test data, test rigs, unit tests, functional tests, performance tests, tar-
get/simulator and test coverage.

Everyone in the focus group agreed that it is better to test continuously than
in large batches. A rule of thumb is to plan for as much test time as develop-
ment time even when the project is delayed. It is also good to have a process
with a flexible scope for weekly regression tests, e.g. core automated scope, user
scenarios, main regression scope, dynamic scope, dynamic exploratory scope etc.
In order to broaden the coverage, it was proposed to vary the test focus between
different test rounds.

4 Conclusions

Regression testing increases in software projects as software becomes more and
more complex with increasing emphasis on systematic reuse and shorter develop-
ment cycles. Many of the challenges, highlighted in the study, are not specific to
regression testing but are general to all testing. However, they have a significant
impact on how effective the regression testing becomes. Questions involving au-
tomated testing is of course particularly important for regression testing, as the
same tests are repeated many times. Similarly, a test-friendly design is of great
importance when one wants to do a selective retesting. Literature on regression
testing tends to focus on the selection of test cases based on changes in the code,
but for practitioners it does not seem to be the most important issue.

Regression testing definitions (RQ1) are very much the same across all sur-
veyed companies and in line with formal definitions [1] although the regression
testing practices differ. Regression testing is applied differently in different or-
ganizations, at different stages of a project, at different levels and with varying
frequency. Regression testing is not an isolated one-off activity, but rather an
activity of varying scope and preconditions, strongly dependent on the context
in which it is applied. In most development organizations, regression testing is
applied continuously and at several levels with varying goals. This further un-
derlines the need for industrial evaluations of regression testing strategies, where
context information is clearly reported, as was previously noted [3].

Regression testing challenges (RQ2) relate to test case selection, trade-offs be-
tween automated and manual testing and design for testability. Issues related to
test automation are:

– Assessment of cost/benefit of test automation
– Environment for automated testing and the presentation of test results.

Design issues affect regression testing since there is a strong relation between the
effort needed for regression testing and the software design. Design for testabil-
ity, including modularization with well defined and observable interfaces, helps
verifying modules and their impact on the system. This could be addressed by
including testability in design guidelines. Except for the design issues, coordina-
tion and communication between designers and testers work well.

A Qualitative Survey of Regression Testing Practices 15

Good practices (RQ3) were also reported on:

– Run automated daily tests on module level.
– Focus automation below user interface.
– Visualize progress monitoring.

These practices are not specific to regression testing. The latter item is not
specific testing at all, but is a management practice that becomes critical to
regression testing as it constitutes a key part of the development project progress.
This indicates that regression testing should not be addressed nor researched in
isolation; rather it should be an important aspect of software testing practice
and research to take into account.

Acknowledgment

The authors would like to thank Per Beremark for moderating the focus group
meeting and to all participants in the focus group and questionnaire. The work
is partly funded by The Swedish Governmental Agency for Innovation Systems
(VINNOVA) in the UPPREPA project under grant 2005-02483, and partly by
the Swedish Research Council under grant 622-2004-552 for a senior researcher
position in software engineering.

References

1. IEEE: IEEE standard for software test documentation. IEEE Std(829-1983, Revi-
sion) (1998)

2. Chittimalli, P.K., Harrold, M.J.: Recomputing coverage information to assist re-
gression testing. IEEE Transactions on Software Engineering 35(4), 452–469 (2009)

3. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test
selection techniques. Information and Software Technology 52(1), 14–30 (2010)

4. Engström, E., Runeson, P., Wikstrand, G.: An empirical evaluation of regression
testing based on fix-cache recommendations. In: Proceedings of the 3rd Interna-
tional Conference on Software Testing Verification and Validation, pp. 75–78 (2010)

5. Skoglund, M., Runeson, P.: A case study of the class firewall regression test se-
lection technique on a large scale distributed software system. In: International
Symposium on Empirical Software Engineering., pp. 72–81 (2005)

6. White, L., Robinson, B.: Industrial real-time regression testing and analysis using
firewalls. In: Proceedings 20th IEEE International Conference on Software Main-
tenance, pp. 18–27 (2004)

7. Rooksby, J., Rouncefield, M., Sommerville, I.: Testing in the wild: The social and
organisational dimensions of real world practice. Computer Supported Cooperative
Work (CSCW) 18(5), 559–580 (2009)

8. Flink, A.: The survey handbook, 2nd edn. SAGE Publications, Thousand Oaks
(2003)

9. Onoma, A.K., Tsai, W.T., Poonawala, M.H., Suganuma, H.: Regression testing in
an industrial environment: Progress is attained by looking backward. Association
for Computing Machinery. Communications of the ACM 41(5), 81–86 (1998)

16 E. Engström and P. Runeson

10. Causevic, A., Sundmark, D., Punnekkat, S.: An industrial survey on contemporary
aspects of software testing. In: Proceedings of the 3rd International Conference on
Software Testing Verification and Validation, pp. 393–401 (2010)

11. Grindal, M., Offutt, J., Mellin, J.: On the testing maturity of software producing or-
ganizations. In: Testing: Academia & Industry Conference-Practice And Research
Techniques, TAIC/PART (2006)

12. Runeson, P.: A survey of unit testing practices. IEEE Software 23(4), 22 (2006)
13. Runeson, P., Andersson, C., Höst, M.: Test processes in software product evolution

- a qualitative survey on the state of practice. Journal of Software Maintenance
and Evolution: Research and Practice 15, 41–59 (2003)

14. Robson, C.: Real World Research, 2nd edn. Blackwell Publishing, Malden (2002)
15. Runeson, P., Beremark, P., Larsson, B., Lundh, E.: SPIN-syd - a non-profit ex-

change network. In: 1st International Workshop on Software Engineering Network-
ing Experiences, Joensuu, Finland (2006)

16. Surveygizmo (December 2009) a web tool for questionnaires and polls,
http://www.surveygizmo.com

17. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

18. Zachman, J.A.: A framework for information systems architecture. IBM Systems
Journal 26(3), 276–293 (1987)

http://www.surveygizmo.com

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 17–31, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Investigating the Temporal Behavior of Defect Detection
in Software Inspection and Inspection-Based Testing

Dietmar Winkler, Stefan Biffl, and Kevin Faderl

Vienna University of Technology, Institute of Software Technology
Favoritenstrasse 9-11/188, A-1040 Vienna, Austria

{Dietmar.Winkler,Stefan.Biffl,Kevin.Faderl}@qse.ifs.tuwien.ac.at

Abstract. A major goal of analytical quality assurance (QA) activities, e.g., in-
spection and testing, is detecting defects in software artifacts to increase prod-
uct quality and decrease rework effort and cost. Inspection aims at identifying
defects early and traditional testing focuses on test case generation and execu-
tion late in the development process. Combining inspection and test-case gen-
eration to inspection-based testing (UBT-i) can help identifying defects early,
increasing testability by systematically capturing requirements and quality at-
tributes, and generating most valuable test cases based on inspection results.
This paper reports on a controlled experiment to investigate the temporal behav-
ior of UBR inspection and inspection-based testing regarding defect detection
performance, i.e., effectiveness, efficiency, and false positives. Main findings of
the study are that there are no significant advantages of UBR and UBT-i regard-
ing defect detection performance and the temporal behavior of defect detection
delivered contradictory results in two sessions of the study.

Keywords: Software Inspection, Inspection-based Testing, Temporal Behavior
of Defect Detection, Controlled Experiment.

1 Introduction

Defects can have a high negative impact on the software quality of deliverables and
can result in high rework effort and costs, even if defects are detected late in the de-
velopment process [16]. Modern software engineering approaches include (a) soft-
ware processes (e.g., V-Modell XT, Rational Unified Process, and agile development
practices) to plan, monitor and control the sequences of steps within a software devel-
opment project, (b) constructive approaches to efficiently construct artifacts (e.g.,
specification documents, test cases, and software components), and (c) analytical
approaches to verify and validate deliverables with respect to given specification
documents and customer requirements. In general, a common goal of analytical qual-
ity assurance approaches is to identify defects early.

Software inspection (SI) is a well-investigated and established approach for defect
detection in all phases of software development [6], [13]. SI is applicable to all soft-
ware engineering artifacts because no executable software code is required for inspec-
tion application. Reading techniques [12], e.g., checklists, perspectives, and use cases
support reviewers and inspectors in systematically reading the artifact under inspec-
tion by providing the defect detection process actively [23]. Software testing requires

18 D. Winkler, S. Biffl, and K. Faderl

textual requirements, specifications, models, and executable software code to con-
struct and execute defined test cases. Thus, test case execution is located even late in
the development process. Traditional testing approaches include test case definition
and test execution [10]. The concept of test-driven (test-first) development (TDD) [4],
an established approach in agile software development practice, leads to closing the
temporal gap between test case generation and execution because test cases are gener-
ated prior or at least in parallel to code construction [4]. Nevertheless, we believe that
software inspection, embedded within a testing approach, can support test-case gen-
eration for TDD by systematically identifying defects and generating test cases in
parallel. Thus, bundling the benefits from SI and software testing [5] can lead to syn-
ergy effects regarding defect detection performance and test case generation.

Nevertheless, project and quality managers have to identify best-practice ap-
proaches for a most valuable application of selected verification and validation
(V&V) approaches [7] because these activities require additional effort. Thus, an
important question is whether or not, an inspection-based testing approach can pro-
vide additional benefits with respect to defect detection and test case generation.
Another question includes the required effort to achieve best cost/benefit defect
detection performance and the temporal behavior of defect detection. In this paper
we apply two V&V approaches, best-practice software inspection with usage-based
reading (UBR) and inspection-based testing (UBT-i), to investigate the temporal
behavior of defect detection effectiveness, efficiency, and false positives in a
controlled experiment. Temporal behavior refers to measuring defect detection per-
formance in defined time intervals (30 minutes intervals for effectiveness and false
positives and efficiency as defects found per hour) as a reasonable granularity of
observing the temporal behavior.

The remainder of this paper is structured as follows: Section 2 describes related
work on best-practice software inspection with UBR and UBT-i. Section 3 summa-
rizes the research issues and hypothesis. We present the study design and arrange-
ments in section 4, show the results of the study in section 6, and discuss the findings
in section 6. Finally, section 7 concludes and identifies further work.

2 Related Work

Software inspection (SI) and software testing are well-investigated techniques in
academia and industry settings. Several empirical studies have investigated defect
detection techniques, inspections, and testing in isolation. Aurum et al. [2] summarize
25 years of empirical research on software inspections, including more than 30
individual studies on software inspection. Juristo et al. [9] summarize 25 years of
empirical research on software testing based on more than 20 studies. This section
summarizes related work regarding important aspects of software inspection with
focus on usage-based reading (UBR) and inspection-based testing (UBT-i).

2.1 Inspection with UBR Reading Technique

Software inspection is a systematic and static verification and validation approach
with respect to identifying defects and conducting quality assessment in software

 Investigating the Temporal Behavior of Defect Detection in SI and UBT-i 19

engineering projects. The individual application area of software inspections has
enlarged its focus from only comprehension, initially proposed by Fagan [8] to com-
prehensive defect finding processes [12]. Reading techniques, e.g., checklist-based,
perspective-based, and usage-based reading techniques guide inspectors through the
reading process systematically [11]. Various studies were conducted to investigate the
performance of individual reading technique approaches, e.g., in [2], [6], and [18],
and identified UBR inspection as the most promising reading technique approach for
business IT software projects [14], [23]. The basic idea of usage-based reading (UBR)
is to focus on detecting most critical defects in software artifacts under inspection [6],
[19] based on prioritized use cases and scenarios. In business IT software develop-
ment use cases and scenarios support engineers to model system behavior from user
perspective. Additionally, use cases prioritization enables focusing on most critical
and important use cases from the perspective of involved stakeholders. Note that
prioritized use cases help to focus on most valuable requirements [7]. Thus, UBR
utilizes a set of use cases as a vehicle for focusing the inspection effort. Figure 1
shows the input and the result of UBR inspection.

Fig. 1. Input and results of UBR

Prioritizing use cases is a central task in UBR inspection processes, as use case
priorities are ranked by the perceived importance of customers (value-based) [7] or on
risks (risk-based). Depending on the scope of prioritization (e.g., value and/or risk),
use cases drive the inspection process. Note, that use cases can be utilized for various
inspection variants (e.g., requirements, design, and code) in a specific project. The
reviewers apply prioritized use cases and actively read the document under inspection
by manually executing the use cases [14]. Note that guidelines support engineers in
defect detection tasks.

2.2 Inspection-Based Testing

Software testing is an analytical and dynamic quality assurance activity requiring
executable software code [10]. Common techniques of software testing focus on risks
(risk-based testing), requirements (requirements-based testing) and components (unit
tests). Usage-based testing (UBT) takes the use cases from user perspective applying
black-box testing approaches. Note that black-box testing is typically based on cus-
tomer requirements and specification documents. The focus is not to test how the
software is implemented, but how it fulfills its intended purpose from the users’ per-
spective [15]. The main goal of UBT seems to be similar to UBR with focus on priori-
tized use cases. Figure 2 shows the relationship of UBR inspection and usage-based

20 D. Winkler, S. Biffl, and K. Faderl

Fig. 2. UBR Inspection vs. Usage-based Testing

testing. Note that UBR inspection can be applied in the analytical phase of software
development (e.g., defect detection of requirements specification documents) and
UBT focuses on executable software code (defect detection of code related to priori-
tized use cases and test cases).

Several testing techniques have been empirically evaluated and compared to vari-
ous inspection techniques [3], [17]. Andersson et al. [1] reported on an empirical
study comparing usage-based testing and inspection approaches and introduced expert
prioritized use cases and test cases to drive the testing process in code documents.
Nevertheless, additional effort is necessary to identify and prioritize use cases and test
cases prior to test execution. This paper applies a modified approach of UBT includ-
ing a best-practice inspection approach to identify and prioritize use cases according
to risk and business value [22]. Bundling benefits of UBT and UBR inspection leads
to inspection-based testing (UBT-i) and includes two major benefits: (a) Defect detec-
tion approaches are applicable to design specification and code documents (UBR
inspection contribution); (b) Test case generation based on use cases, architecture,
design and identified defects as foundation for test execution in later phases of soft-
ware development. Note that the test case generation is an added value of software
inspection (which typically refers to a defect detection approach). Applying UBT-i
can support defect detection and test case generation in parallel. Reports on a previous
study [22] showed benefits of the UBT-i approach with respect to defect detection
performance using an isolated inspection approach. Nevertheless, the temporal behav-
ior of defect detection and test case generation remains open.

3 Research Issues and Hypotheses

Previous studies showed that UBR inspection and UBT-i perform similarly regarding
defect detection performance, i.e., effectiveness and efficiency [22]. Note that the
investigations of theses studies focus on the overall study duration. A consideration of
performance measures within shorter time intervals seems to be worthwhile to inves-
tigate the temporal behavior of defect detection. We decided to select 30 minutes time
intervals of observation because of a reasonable and manageable granularity of defect
detection activities, i.e., best-practice UBR inspection and UBT-i. To investigate the

 Investigating the Temporal Behavior of Defect Detection in SI and UBT-i 21

temporal behavior of defect detection, we conducted a controlled experiment in aca-
demic environment to measure performance values (effectiveness and false positives)
in 30 minutes time intervals and efficiency (defects per hour) intervals up to 300 min-
utes (5h) overall defect detection duration. To focus on the most risky defects, we
applied three different severity classes (crucial, high important and less important
defects) according to defect severity and the impact of the defect, if the defect will not
be identified during inspection and testing. This paper focuses on the investigation of
important (crucial and high important) defects. Main goals of this study were to inves-
tigate effectiveness, efficiency, and false positives of UBR inspection and UBT-i and
with respect to analyzing the temporal behavior of defect detection performance in
defined time intervals.

3.1 Variables

Following a standard practice of empirical software engineering [24], we define de-
pendent and independent variables:

Dependent variables are performance measures (effectiveness, efficiency, and false
positives) and time variables (timestamp of defect detection). Effectiveness is the
number of found defects related to the number of seeded defects (i.e., crucial and high
important defects); efficiency is the number of real defects found per time unit; false
positives refer to the number of defects wrongly reported by participants. Temporal
behavior refers to performance measures within defined time intervals.

The independent variables are defect location, defect classification, and the defect
detection approach applied by the participants.

3.2 Hypothesis

The main goal of this paper is to report on the results of a controlled experiment to
investigate the temporal behavior of performance measures regarding UBR inspection
and UBT-i for design specifications. Note that suggestions regarding software reviews
and inspections define the duration to some 120 minutes as optimum timeframe for
inspection processes [6], [12]. Thus, our hypotheses focus on this time interval as
foundation for investigating the temporal behavior of defect detection performance.

H1.0. UBR is significantly more effective than UBT-i during the first 120 minutes

because participants, applying UBT-i have to (a) identify defects and (b) derive
test cases. Thus, additional effort for test case generation will result in higher de-
fect detection effectiveness for UBR. The alternative hypothesis (H1.1) is that
UBR is not significantly more effective than UBT-i within the first 120 minutes.

H2.0. UBR is significantly more efficient than UBT-i regarding defect detection effi-

ciency in the first 120 minutes because of additional effort regarding test-case
generation (similar to H1.0). The alternative Hypothesis (H2.1) is that UBR is
not significantly more efficient than UBT-i within the first 120 minutes.

H3.0: UBR inspectors report significantly more false positives than UBT-i applicants

within the first 120 minutes. Assuming benefits from test case generation proc-
esses (requirements and quality attributes must be testable) false positives will

22 D. Winkler, S. Biffl, and K. Faderl

be excluded from candidate defect lists by participants applying UBT-i ap-
proaches. The alternative Hypothesis (H3.1) is that UBR inspectors do not report
significantly more false positives than UBT-I applicants.

4 Study Description

This section summarizes the study process, applied artifacts, study participants and
identifies a set of threats to validity.

4.1 Study Process

The study includes three main phases in a sequential order, (a) study preparation
phase, (b) study execution, and (c) evaluation phase:

The study preparation phase includes the preparation of the study material, i.e., re-
quirements specifications, design documents, use cases, and source code fragments.
Additionally, experts prepared questionnaires (experience and feedback question-
naires), guidelines and data capturing material.

The study execution phase consists of three major steps: (a) short tutorial to pro-
vide a brief overview on the study setting and a short sample application to explain
the individual tasks, (b) individual defect detection and test case generation task in a
first session for one part of the system (taxi-part) and (c) similar tasks in a second
session for a more complex second part of the system (central-part). The participants
reported candidate defects (including the timestamp of defect detection) in a paper-
based way and submitted the collected data in a separated defect submission session.

During the study evaluation phase the experiment team (guided by the authors)
scanned the reported defects (noted defects) and assigned them to seeded defects
(matched defects) for further analysis. Note that matched defects were assigned at the
first time of reporting (including the time of detection). Multiple reported candidate
defects were excluded from analysis and remain noted defects. We applied a set of
tests regarding consistency and correctness of submitted data. Note that we provided
feedback on the results of the study to the participants after the initial analysis of the
data. For statistical evaluation we used descriptive statistics and conducted the Mann-
Whitney Test at a significance level of 95% for hypothesis testing of two groups
and the Kruskal-Wallis Test for testing more than two groups to identify significant
differences.

4.2 Study Artifacts

The main artifacts of this study include a well-known application domain – a taxi
management system – consisting of two parts, a taxi part representing the driver role
in session 1 and a central part for dispatching and distributing calls in session 2. The
material was based on two previous studies described in [20] and [21] and an im-
proved study reported in [22]. Figure 3 shows the two basic components of the taxi
management system. The systems design was described in a textual requirements
document including 8 pages and 2 component diagrams, a design document (8 pages),
and 24 prioritized use cases. Note that the requirements document and the use cases
were considered to be correct. Additionally, we provided source code fragments

 Investigating the Temporal Behavior of Defect Detection in SI and UBT-i 23

Communication
Link

TaximoduleDriver Central Operator

Taxi Central

Fig. 3. Taxi Management System

(comparable to a snapshot from an agile development project) including some 1400
LOCs and a 9 pages method description (JavaDoc).

To measure defect detection performance the experiment team (supervised by the
authors) introduced an overall number of 60 pre-defined defects (seeded defects) in
two document locations (design documents and source code documents) including
common defect types (e.g., missing and wrong information). 29 defects (48.3%) were
seeded in the taxi part and 31 defects (51.7%) in the central part of the system. To
enable value-based and risk-based consideration we assigned the seeded defects to
three severity classes according to their importance. Class A defects (crucial defects)
can have a strong impact on the fundamental functionality of the product. Class B
(high important) defects are only rarely occurring but important defects or less impor-
tant frequent defects of medium risk. Class C defects are rarely occurring and only
have a minor impact on the functionality and quality of the software product.

Table 1. Allocation of seeded defects

Crucial Defects
(class A)

High Important Defects
(class B)

Less important
(class C) System Part

Taxi Cent. Total Taxi Cent. Total Taxi Cent. Total
Design Docs (DD) 7 3 10 6 6 12 2 3 5
Source Code (SC) 8 11 19 5 7 12 1 1 2
Total 15 14 29 11 13 24 3 4 7

Table 1 presents the nominal number of seeded defects according to defect severity
classes and document location. Note that we focus on the important defects (i.e., cru-
cial and high important defects) and design documents to investigate the temporal
behavior of defect detection performance.

Additional material includes guidelines providing step-by-step instructions for the
participants and questionnaires to capture individual prior knowledge of inspectors
(experience questionnaire) and feedback questionnaires to capture information on
method application after every session.

4.3 Subjects

The subjects in the study were 41 master students at TU Vienna with software engi-
neering and quality assurance background. Additionally, most of the students work at
least part time in a professional environment in industry. The study was fully inte-
grated in the practical part of two advanced courses for software engineering and
software quality assurance with focus on early software product improvement aspects

24 D. Winkler, S. Biffl, and K. Faderl

and testing. The participants were assigned randomly to one of the two techniques,
(UBR and UBT-i). We changed the technique assignment in the second session.

4.4 Threats to Validity

In order to increase internal and external validity we consider a set of threats to valid-
ity and implemented appropriate countermeasures.

To address internal validity we avoided communication of individuals during the
study execution phases. In order to increase inspector performance individual breaks
were allowed. Note that the break duration was reported to identify the real working
effort. The duration of the study was limited to an overall duration of 300 minutes
(5h). Prior knowledge of the participants was collected at the beginning of the study
by applying an experience questionnaire. We used a feedback questionnaire to get
knowledge of the individual course of action and to see if the participants followed
the study process properly. We performed intensive reviews of the study package to
verify the correctness of the document package. Note that a similar package was used
in previous studies e.g., in [22].

To improve external validity we used a well-known application domain to avoid
domain-specific interpretation problems and to focus on the improvement of method
application regarding individual inspector skills. Additionally, the specification de-
scribes a real world application to enable comparability to industrial settings. The
participants passed an intensive training session in previous lectures and a short tuto-
rial prior to the study. We applied a class-room setting for study execution.

5 Experiment Results

This section summarizes the results of the empirical study with respect to perform-
ance measures and the temporal behavior of defect detection.

5.1 Effort

Inspection effort summarizes the overall working effort (mean and standard devia-
tion) of two the experiment sessions (see Table 2). Note that we did not observe any
significant difference regarding study effort (p-value 0,497(-)) between UBR and
UBT-i. Comparable effort strengthens our expectations that UBT-i can deliver com-
parable results including the additional benefit of additionally generated test cases as
a by-product of defect detection. We observed similar durations session 2.

Table 2. Effort for UBR and UBT-i in Session 1 and Session 2

Duration Session 1 (Taxi) Session 2 (Central)
[min] UBR UBT-i UBR UBT-i
No of Subjects 20 21 21 20
Mean 272.5 268.8 281.3 276.2
Std.Dev. 38.01 29.13 35.32 30.11

 Investigating the Temporal Behavior of Defect Detection in SI and UBT-i 25

5.2 Effectiveness

Effectiveness is the number of matched defects (real defects) related to the number of
defects per defect severity class (we focus on crucial and high important defects in
this evaluation, i.e., class A and class B). The first analysis showed comparable mean
values defect detection effectiveness: 18.9 defects for UBR and 16.9 defects for
UBT-i. Applying the Mann-Whitney-Test we did not observe any significant differ-
ences (p-value: 0.317(-)). These results confirm previous studies [22] that there is no
significant difference regarding defect detection effectiveness for the overall experi-
ment duration.

UBR

UBT-i

Technique

0 - 30
30 - 60

60 - 90
90 - 120

120 - 150
150 - 180

180 - 210
210 - 240

Time Intervals [min]

10

20

30

40

E
ff

ec
tiv

en
es

s,
 S

es
si

o
n

 1
, R

is
k

A
+B

 [
%

]

UBR

UBT-i

Technique

0 - 30
30 - 60

60 - 90
90 - 120

120 - 150
150 - 180

180 - 210
210 - 240

Time Intervals [min]

10

20

30

40

E
ff

ec
ti

ve
n

es
s,

 S
es

si
o

n
 2

, R
is

k
A

+B
, [

%
]

Fig. 4. Effectiveness of Session 1 Fig. 5. Effectiveness of Session 2

A more detailed analysis of defect detection performance in defined 30 min time in-
tervals enable the investigation of the temporal behavior of defect detection effective-
ness. Note that already identified defects in the first time frame were excluded from the
investigation of following time intervals (identified defects will decrease the number of
remaining seeded defects). This step enables the comparison of different time intervals.
Note that we present the findings up to 240 minutes because no additional defect was
reported during the last hour of UBR and UBT-i application; the overall study duration
was limited to 300 minutes (5h). Figure 4 presents the results of this evaluation for the
first session (taxi part). Applying the Kruskal-Wallis test we observed significant differ-
ences between both groups in the first session regarding all time intervals > 30 minutes.
No significant differences within the first 30 minutes of defect detection. Defect detec-
tion performance increases for UBR inspectors up to 150 minutes durations. Regarding
UBT-i we observed comparable results during the first 30 minutes, lower effectiveness
up to 150 minutes, and a higher effectiveness for all time intervals >150 minutes. As-
suming an additional effort for test case generation, a lower effectiveness during the first
120 minutes is an explanation for these results.

Analyzing the results in the second session (see Figure 5) we observed completely
different findings. We observed benefits for UBR at the beginning and at the end of
the overall inspection process. Regarding UBT-i all defects were identified within the

26 D. Winkler, S. Biffl, and K. Faderl

timeframe up to 150 minutes. This finding might indicate a modified defect detection
approach in the second session, i.e., the UBT-i inspectors identified defects first and
construct test cases afterwards. Ongoing effectiveness values for UBR inspectors
might indicate an increased complexity of the second systems part (i.e., the central
part of the system). Table 3 summarizes the results for both sessions.

Table 3. Effectiveness for Session 1 and 2, Risk A+B

Session 1 (Taxi), Risk A+B Session 2 (Central), Risk A+B
UBR UBT-i UBR UBT-i

Time Interval
[min]

Mean SD Mean SD Mean SD Mean SD
0 – 30 18.2 3.71 15.9 11.36 9.1 7.87 13.6 0
30 – 60 28.1 8.77 6.9 2.16 21.4 12.44 29.1 2.75
60 – 90 26.2 12.43 5.0 0 6.6 0.75 7.1 0
90 – 120 33.3 0 27.5 9.33 16.1 1.07 40.0 0
120 – 150 33.3 0 11.1 5.56 11.5 6.71 24.5 19.95
150 – 180 0 0 11.3 6.32 11.1 0 0 0
180 – 210 0 0 13.4 8.08 25.0 0 0 0
210 – 240 0 0 10.0 0 33.3 0 0 0

5.3 Efficiency

Efficiency refers to the number of real defects found per hour. Again, we focus on
important defects, i.e., crucial and high important defects for evaluation purposes.
Note that we apply a defined time interval in steps of 60 minutes as we measured
efficiency in defects per hour. Figure 6, Figure 7, and Table 4 present the results of
efficiency evaluation results for UBR and UBT-i participants in both sessions.

Our observation in session 1 showed that UBR inspectors are most efficient in the
first time interval (0-60 min) and decreases in time interval 2 and 3. No additional
defect was identified after 180 minutes of inspection. As assumed after investigating
effectiveness for UBT-i, the efficiency value is highest in the second time interval
(i.e., 60-120 min). Note that defects were identified up to 240 minutes.

We observed similar and surprising results in session 2, because UBT-i outper-
forms efficiency in the first 2 time intervals, i.e., 0-60 minutes and 60-120 minutes,
respectively. Again we assume a separation of defect detection and test case genera-
tion. Regarding UBR inspectors we observed the highest efficiency in the time inter-
val 180-240 minutes.

Table 4. Efficiency for Session 1 and 2, Risk A+B

Session 1 (Taxi), Risk A+B Session 2 (Central), Risk A+B
UBR UBT-i UBR UBT-i

Time Interval
[min]

Mean SD Mean SD Mean SD Mean SD
0 – 60 15.6 3.42 5.0 2.36 8.3 4.59 13.3 1.67
60 – 120 8.6 4.64 14.5 7.87 6.8 2.26 10.3 8.60
120 – 180 6.3 0 7.1 3.63 1.9 0.19 0 0
180 – 240 0.0 0 3.2 1.22 10.6 0 0 0

 Investigating the Temporal Behavior of Defect Detection in SI and UBT-i 27

Further investigations, e.g., based on the feedback questionnaire to investigate the
applied sequence of defect detection and test case generation, are necessary to identify
reasons for these results. Applying the Kruskal-Wallis Test, we observed significant
differences regarding all groups.

S1 UBR
S1 UBT-i

Technique

0 - 60 60 - 120 120 - 180 180 - 240

Time Intervals [min]

5

10

15

20

E
ff

ic
ie

n
cy

, S
es

si
o

n
 1

, R
is

k
A

+B
, [

%
]

S2 UBR

S2 UBT-i

Technique

0 - 60 60 - 120 120 - 180 180 - 240

Time Intervals [min]

4

8

12

16

E
ff

ic
ie

nc
y,

 S
es

si
on

 2
, R

is
k

A
+B

 [%
]

Fig. 6. Efficiency of Session 1 Fig. 7. Efficiency of Session 2

Because of these partly surprising findings, the time for the first reported defect
can deliver an insight in the defect detection and test case generation process. Table 5
illustrates the time interval until the first matched (real) defect reported by the partici-
pants in every group.

Table 5. First Matched Defect Detected

Session 1 (Taxi) Session 2 (Central)
UBR UBT-i UBR UBT-i

Mean 12.2 17.6 15.4 17.4
Std.Dev. 10.59 10.39 10.93 10.42

We observed that UBR reported the first matched defect significantly earlier than
UBT-i participants both sessions; Mann-Whitney Test: p-value< 0.001(s)). Addition-
ally, UBT-i inspectors reported the first defect between 17-18 minutes after starting
their tasks. Note that UBR inspectors require some 3 additional minutes in the more
complex second session, i.e., the central part.

5.4 False Positives

False positives (FP) are important issues regarding defect detection techniques, be-
cause they focus on the number of "wrong" candidate defects which are no real
seeded defects. Note that we scanned all candidate defects for correctness to add them
to reference defect list, if candidate defects are considered to be real defects. This task
was conducted by the experiment team prior to the analysis. Assuming that candidate
defects are the foundation for test case generation by UBT-i participants, we assumed

28 D. Winkler, S. Biffl, and K. Faderl

S1_UBR
S1_UBT-i

Technique

0 - 30
30 - 60

60 - 90
90 - 120

120 - 150
150 - 180

180 - 210
210 - 240

Time Intervals [min]

1

2

3

4

5

6

F
al

se
 P

o
si

ti
ve

s,
 S

es
si

o
n

 1

S2_UBR
S2_UBT-i

Technique

0 - 30
30 - 60

60 - 90
90 - 120

120 - 150
150 - 180

180 - 210
210 - 240

Time Intervals [min]

0

2

4

6

8

F
al

se
 P

o
si

ti
ve

s,
 S

es
si

o
n

 2

Fig. 8. False Positives of Session 1 Fig. 9. False Positives of Session 2

that the number of false positives is lower for UBT-i participants. Figure 8 presents
the results of the first session, Figure 9 illustrates the findings of the second session.

Regarding UBR in session 1 (see Figure 8), we observed a higher number of FP in
the first time interval (0-30min) and in the time interval from 90-120 min. We ob-
served similar trends for UBT-i participants, i.e., higher amount of FP at the begin-
ning and at the end of the study. Concerning the second session (see Figure 9), we
observed a high number of FP for UBT-i and a decreasing number of FP in the course
of the study. In contrast, UBR starts with a low number of FB and an increasing num-
ber of FP up to 150 minutes. This finding (especially in the second session) is quite
interesting as there seems to be strong advantages for UBT-i participants who also
focus on test case generation, i.e., testability considerations. Table 6 depicts the mean
value and the standard deviation of the False Positives (FP) of session 1 and session 2.
We observed significant differences within these sessions after applying the Kruskal-
Wallis Test.

Table 6. False Positives for Session 1 and 2, Risk A+B

Session 1, Risk A+B Session 2, Risk A+B
UBR UBT-i UBR UBT-i

Time Interval
[min]

Mean SD Mean SD Mean SD Mean SD
0 – 30 2.5 0.5 2.33 1.89 1.7 0.94 6.0 0.00
30 – 60 1.7 0.5 2.67 0.47 1.8 0.83 2.0 0.00
60 – 90 1.0 0.0 1.00 0.0 2.5 0.50 1.0 0.00
90 – 120 3.5 2.5 1.00 0.0 2.5 1.50 0.0 0.00
120 – 150 1.0 0.0 1.00 0.0 3.7 3.09 0.0 0.00
150 – 180 0.0 0.0 3.00 0.0 0.0 0.00 0.0 0.00
180 – 210 0.0 0.0 5.00 1.00 1.0 0.00 0.0 0.00
210 – 240 0.0 0.0 2.00 1.00 0.0 0.00 0.0 0.00

 Investigating the Temporal Behavior of Defect Detection in SI and UBT-i 29

6 Discussion

Previous controlled experiments, reported in [22], showed that an inspection-based
testing, i.e., UBT-i, performed similarly with respect to best-practice software inspec-
tion processes using UBR reading techniques. In this paper we reported on a repli-
cated study to (a) confirm the findings in previous studies and extend the results with
respect to the temporal behavior. We used effectiveness, efficiency, and false posi-
tives to measure defect detection performance for design documents in defined time
intervals.

The study results showed a comparable overall effort for both techniques in both
sessions without identifying significant differences regarding technique application
effort. Thus, seems to be UBT-i a reasonable approach for defect detection (contribu-
tion of software inspection) and early test case generation.

H1. Effectiveness. Assuming an additional effort for test case generation (UBT-i), we
expected a higher effectiveness for UBR inspectors, who focus on defect detec-
tion. In the first time interval of session 1 we did not observe any significant dif-
ferences between both groups from 0-30 minutes. Additionally, we observed
significant differences for all time intervals from 30 minutes to 150 minutes.
These results confirm our expectations that UBT-i participants require additional
time for test case generation. The analysis of the second session shows different
findings. We observed that most of defects were identified by UBT-i inspectors
in the timeframes up to 150 minutes. This finding might indicate a modified de-
fect detection process in the second session, i.e., the UBT-i inspectors identified
defects first and construct test cases afterwards. Ongoing effectiveness values for
UBR inspectors might indicate an increased complexity of the second systems
part (i.e. the central part). The hypothesis H1.0 can be confirmed for the first
session but must be rejected for the second session.

H2: Efficiency. Consequently, we expected a higher efficiency, i.e., number of identi-
fied defects per hour for UBR inspectors. Similar to H1.0 the hypothesis can be
confirmed for the first session, but cannot be confirmed for the second session.
Especially, the results of the second hour differ significantly.

H3: False Positives. False positives refer to candidate defects reported by the partici-
pants which are no real defects. Assuming benefits from test case generation
process (requirements and quality attributes must be testable) we expect signifi-
cantly less false positives for participants applying UBT-i approaches. The re-
sults did not confirm our assumption, as the number of false positives increase at
the end of tasks for UBR and UBT-i. Nevertheless, our assumptions (H3.0) were
confirmed in the second session.

7 Conclusion and Further Work

Software inspection and testing are appropriate approaches for defect detection in
various phases of software development. Software inspection focuses on early defect

30 D. Winkler, S. Biffl, and K. Faderl

detection and software testing is applicable to executable code documents late in the
development process. Bundling benefits from best-practice software inspection
(UBR) and inspection-based test case generation can lead to synergy effects regarding
defect detection performance and test-case generation based on inspection results.
This integration approach trends towards the concept of test-driven development.
Various studies report on defect detection performance of isolated techniques regard-
ing software inspection variants and testing approaches. This paper focuses on the
investigation of the temporal behavior of the software defect detection techniques
UBR and UBT-i.

UBR performed very effective and efficient in a time interval up to 120 minutes.
UBT-i in contrary requires more time for test case generation to achieve comparable
defect detection results. The findings can provide an important indicator for planning
analytical quality assurances in consideration of the scheduled inspection time for
UBR as well as UBT-i. The outcome of this paper can help project and quality man-
agers in more precisely define the inspection and testing duration efforts to support
quality assurance activities and drive process and product improvement. Nevertheless,
we observed differences in two sessions of the controlled experiment. The differences
between the sessions were partially remarkable in the context of the investigated
measures. Additional investigations are required to deepen the knowledge on the
temporal behavior of defect detection performance. Another aspect for further inves-
tigation covers possible learning effects and/or modified defect detection processes,
conducted by the UBT-i participants in the second session.

Further work also includes a more detailed investigation of the findings of this
study and a replication of the controlled experiment to broaden the understanding of
time effects in defect detection techniques.

References

1. Andersson, C., Thelin, T., Runeson, P., Dzamashvili, N.: An experimental evaluation of
inspection and testing for detecting of design faults. In: ACM-IEEE International Sympo-
sium on Empirical Software Engineering (ISESE), pp. 174–184 (2003)

2. Aurum, A., Petersson, H., Wohlin, C.: State-of-the-Art: Software Inspections after 25
years. J. Software Testing Verification, and Reliability 12(3), 133–154 (2002)

3. Basili, V.R., Selby, R.W.: Comparing the Effectiveness of Software Testing Strategies.
IEEE Transaction on Software Engineering 12(13) (1987)

4. Beck, K., Andres, C.: Extreme Programming Explained - Embrace Change. Addison-
Wesley, Reading (2004)

5. Biffl, S., Winkler, D., Thelin, T., Höst, M., Russo, B., Succi, G.: Investigating the Effect of
V&V and Modern Construction Techniques on Improving Software Quality. In: Interna-
tional Symposium on Empirical Software Engineering (ISESE), Poster Proceeding, Los
Angeles, USA (2004)

6. Biffl, S.: Software Inspection Techniques to support Project and Quality Management.
Shaker (2001)

7. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.): Value-Based Soft-
ware Engineering. Springer, Heidelberg (2005)

8. Fagan, M.E.: Design and Code Inspections to Reduce Errors in Program Development.
IBM System Journal 15(3), 182–211 (1976)

 Investigating the Temporal Behavior of Defect Detection in SI and UBT-i 31

9. Juristo, N., Moren, A.M., Vegas, S.: Reviewing 25 Years of Testing Technique Experi-
ments. J. Empirical Software Engineering 9(1-2), 7–44 (2004)

10. Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Software Testing: A Context-driven
Approach. Wiley, Chichester (2001)

11. Laitenberger, O., DeBaud, J.-M.: An Encompassing Life Cycle Centric Survey of Software
Inspection. J. of Systems and Software 50(1), 5–31 (2000)

12. Laitenberger, O.: A Survey of Software Inspection Technologies, Handbook on Software
Engineering and Knowledge Engineering. Technical Report, Fraunhofer IESE (2002)

13. Parnas, D.L., Lawford, M.: The role of Inspection in Software Quality Assurance. IEEE
Transactions on Software Engineering 29(8) (2003)

14. Porter, A., Votta, L.: Comparing Detection Methods for Software Requirements Inspec-
tion: A Replication Using Professional Subjects. J. Empirical Software Engineering 3(4),
355–380 (1998)

15. Runeson, P., Regnell, B.: Derivation of an Integrated Operational Profile and Use Case
Model. In: 9th International Symposium on Software Reliability Engineering, pp. 70–79
(1998)

16. Sommerville, I.: Software Engineering. Addison-Wesley, Reading (2007)
17. So, S.S.: An Empirical Evaluation of Six Methods to Detect Faults in Software. J. Soft-

ware Testing, Verification, and Reliability 12(3), 155–172 (2002)
18. Thelin, T., Runeson, P., Wohlin, C.: An Experimental Comparison of Usage-Based and

Checklist-Based Reading. In: International Workshop on Inspection in Software Engineer-
ing, WISE (2001)

19. Thelin, T.: Empirical Evaluations of Usage-Based Reading and Fault Content Estimation
for Software Inspections. Lund University (2002)

20. Thelin, T., Andersson, C., Runeson, P., Dzamashvili-Fogelström, N.: A Replicated Ex-
periment of Usage-Based and Checklist-Based Reading. In: Metrics (2004)

21. Thelin, T., Runeson, P., Regnell, B.: Usage-Based Reading – An Experiment to Guide Re-
viewers with Use Cases. J. Information and Software Technology 43(15) (2001)

22. Winkler, D., Biffl, S., Riedl, B.: Improvement of Design Specifications with Inspection
and Testing. In: 31st Euromicro SEAA Conference, pp. 222–231. IEEE, Los Alamitos
(2005)

23. Winkler, D., Biffl, S., Thurnher, B.: Investigating the Impact of Active Guidance on De-
sign Inspection. In: Profes, pp. 458–473 (2005)

24. Wohlin, C., Runeson, P., Höst, M., von Mayrhauser, A., Regnell, B., Anders, W., Ohlsson,
M.C.: Experimentation in Software Engineering: An Introduction. In: Kluver International
Series in Software Engineering, Springer, Heidelberg (1999)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 32–46, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Analysis of Bug Fixing Processes Using Program Slicing
Metrics

Raula Gaikovina Kula, Kyohei Fushida, Shinji Kawaguchi, and Hajimu Iida

Graduate School of Information Science, Nara Institute of Science and Technology
Takayamacho 8916-5, Ikoma, Nara 630-0101, Japan

{raula-k,kyohei-f,kawaguti}@is.naist.jp, iida@itc.naist.jp

Abstract. This paper is a report of a feasibility study into an alternative assess-
ment of software processes at the micro-level. Using the novel approach of ap-
plying program slicing metrics to identify bug characteristics, the research stud-
ied relationships between bug characteristics and their bug fixing processes.
The results suggested that specific characteristics such as cyclomatic complex-
ity may relate to how long it takes to fix a bug. Results serve as a proof of
concept and a starting point for this proposed assessment methodology. Future
refinement of the metrics and much larger sample data is needed. This research
is an initial step in the development of assessment tools to assist with Software
Process Improvement.

Keywords: Program Slicing, Software Bug, Bug Fixing Process, Software
Process Improvement.

1 Introduction

The quality and improvement of software processes are seen as vital to any software
development project. Traditionally, software processes usually refer to the main phases
in the software development life cycle. Improvement of these processes is a major
activity for larger software organizations as benefits are seen in the cost and business
value of improvement efforts, as well as the yearly improvement in productivity of
development, early defect detection and maintenance, and faster time to market [1].

Capability Maturity Model Integration (CMMI) [2] is the most common form of
rating software development organization’s quality of performance. Other models
such as International Standards (ISO 9000), [3] have been used for the quality of an
organization’s software development processes. There have been a number of studies
on the issues relating to the implementation of these CMMI and ISO 9000 [4], [5],
[6]. Much of the issues lie with the size of the organization as these models are expen-
sive to assess and implement from small software organization [7]. These studies
show that the processes assessments are sometimes tedious and usually not tailored
for specific companies. Also additional studies show that higher management support,
training, awareness, allocation of resources, staff involvement, experienced staff and
defined software improvement process implementation methodology is critical for
software process improvement [8].

 Analysis of Bug Fixing Processes Using Program Slicing Metrics 33

There has been several related work into trying to make the models easier and bet-
ter to use. Yoo el al [9] suggests a model that combines CMMI and ISO methods.
Armburst el al [10] takes a different approach by treating software as manufacturing
product lines, therefore making the processes systematic and generic.

In contrast to such frameworks macro-level process assessments and improvement,
an alternative measure of software processes can be done through the inspection of
process execution histories. This analysis however is performed at the developer’s
level, and measures the fine grained processes called ‘micro processes’. One such
research has been done by Morisaki el al [11]. This research analyzes the quality of
micro processes by studying the process execution histories such as change logs.
Quality of the process is measured by the execution sequence, occurrences of missing
or invalid sequences. This paper is based on this research and seeks improvement of
micro-level processes will contribute to Software Process Improvement.

Our motivation is to develop a quantitative assessment model of software process
at the micro level. It is aimed towards improving the efficiency of the software devel-
oper’s workload at the maintenance phase of bug fixing. Current models of process
assessment are focused on a higher software life cycle level and need complicated
assessment such as CMMI and ISO 9000, which, as mentioned earlier are expensive
as they require highly trained assessors. The author’s goal is to work towards the
development of models that assess the quality of micro processes.

More specifically, a proof of concept towards a prediction model based on estimat-
ing the bug processes execution time is the perceived contribution of this research.
Being able to estimate the bug fixing process will improve the development process
as more developers can manage resources and time based on how long it will take to
fix a bug.

It is envisioned this study may aid developers in the micro process of bug fixing.
The concept is that aiding the developer with tools to better manage bugs, leads to
better quality in software processes at this level, influencing the overall improvement
of the software development process.

The paper’s objective is to provide a proof of concept that how a bug fixing proc-
ess is executed may be related to a certain characteristic of a bug. For instance, per-
haps bugs that have a lengthy fixing process have certain similar characteristics as
compared to bugs that are easily fixed in just a couple of days. Bug characteristic is
defined as the properties of the fragments of code prone to the bug fix. Based on this
concept, the following hypotheses are presented for testing:

• Hypothesis 1: Bugs with similar bug characteristics share similar bug fixing proc-
ess executions

• Hypothesis 2: Bugs that do not follow the usual micro process occur due to some
bug characteristic.

In this paper, Section 2 presents the methodology, describing the terms and defini-
tions used in the research as well as the proposed approach. Section 3 then explains
the experiment using the approach and tools to carry out the experiments. The section
also presents the findings of the experiments. Section 4 is the discussion and analysis
of the results. Also the validation of the research is discussed as well as the applica-
tion of the research is included. Finally, Section 5 outlines the conclusion and the
future works.

34 R.G. Kula et al.

2 Methodology

As mentioned in the research objectives, the research aims to find a relationship be-
tween a bug characteristic and the processes used to fix the bug. The approach taken
was to first reconstruct a bug fixing process. Then using program slicing techniques
identify bug prone fragments as well as define certain characteristics of a bug. Finally
comparisons are performed to group and find relationship between bugs with similar
bug fixing processes and similar bug characteristics.

2.1 Bug Fixing Process Definitions and Analysis

This research focuses on the day to day processes performed in the development of
software. This paper assumes data repositories including following two locations in
which bug information is stored daily.

1)Bug Tracking System
Typically a software development team uses a system to manage bugs in a medium to
large scale project. The tracking system usually tracks progress of bug. This research
utilizes the bug tracking systems to gather various properties of the bug.

2)Source Code Repository
The source code repository refers the system manages changes to source code in a
software project. The two main system used is the Subversion (SVN) and Concurrent
Versioning System (CVS). For this research, both SVN and CVS repositories were
used to gather data on bug characteristics.

The generalized model of micro processes of bug tracking system used in the MPA
model by Morisaki was used. The research showed that bug fixing comprises of these
steps illustrated in Figure 1.

Step-1. Bug Reported: This is the start of the micro process. It signifies that there is a
request to check and fix source code. Usually this event is signified when a new
bug is created in the system.

Step-2. Bug Assigned: This is where the bug gets assigned to a developer. It is signi-
fied when the bug changes status indicating that the bug is being worked on. This
event is signified by a change in status of the bug to ‘assigned’.

Step-3. Bug Fixed: This stage is when code is being fixed. When code is being up-
dated means that the bug fix is being applied to the source code, therefore captures
the real time of when the bug is being fixed. This is signified by editing code in the
source code repository and a reference to the bug is made in the change log or
comments section of the changes.

Step-4. Bug Closed: This is the final stage of the bug fixing process. This is when the bug
is acknowledged as fixed. This is signified when the bug status is changed to ‘closed’.

These steps are generalized and is differs based on organization and project needs.
The quality of the micro process analysis is evaluated by how well the different

phases are executed. Bugs were evaluated on whether they followed this model.
Grouping of the bugs would be according to how well the model is followed. The
groupings are identified as either correct sequences or incorrect sequences.

 Analysis of Bug Fixing Processes Using Program Slicing Metrics 35

Bug
Reported

Bug
Assigned

Bug Fixed

Bug
Closed

Bug Fixing

Event 1. Bug created in Bug Tracking System

Event 2. Developer assigned
to bug

Event 3. Changes
made to code to
fix bug

Event 4. Bug Closed in Bug Tracking System

Bug Tracking System

class..
……
….

Source Code Repository

Fig. 1. Bug Fixing Process Model

2.2 Program Slicing Metrics for Bug Characteristics

To assess the bug characteristics, program slicing metrics is used in this approach to
describe bug characteristic metrics. Program slicing is a concept first described by
Weiser [12] as a method to study the behavior of source code through the flow de-
pendency and control dependency relationship among statements. This work however
has been used in the field of Software Evolution [13].

Previous work has been done on using program slicing metrics to classify bugs.
Pan el. al. [14] showed proved that program slicing metrics work as well as conven-
tional bug classification methodologies.

Since this is the initial research on applying program slicing metrics to micro proc-
ess analysis, two of the most basic code metrics, Lines of Code (LoC) and Cyclomatic
Complexity (CC) [15] were employed to express characteristics of the program slices.

2.3 Experiment Approach

The analysis of the bug fixing process includes three steps: 1) micro process extrac-
tion and analysis and 2) program slice extraction and analysis, and 3) comparison and
analysis of data.

1) Micro process extraction and analysis:
This step involves data mining and extraction of bug related attributes from both the
source code repository and the bug tracking system. Table 1 and 2 shows the data that
is extracted from the bug tracking system and the data extracted from source code
repository, respectively.

2) The program slices extraction and analysis:
This step involves analysis of the code using the program slicing metrics. The meth-
odology used was to first identify the file edited during the bug fix, then extract the

36 R.G. Kula et al.

Table 1. Data extracted from the bug tracking system

Attribute Description
Bug ID Used to identify the bug
Date Opened When the bug was reported
Date Closed When the bug was reported as fixed
Bug Priority Understand bug’s importance

Table 2. Data extracted from source code repository

Attribute Description
Revision ID Identification number used to track changes

made to source code
Bug ID References the changes made to a bug with

bugID
Commit Date Date when the bug fix was applied

associated files directly affected by bug fix using program slicing. Then the code
metrics for the affected files were calculated. The following explains in detail how
each metric was used to for bug classification.

• Bug LoC (Lines of Code): This metric is proposed to measure how much of the

code is potentially affected by the bug. This is measured using the program slicing
metric Lines of Code (LoC). The range of a bug is summarized in the equation
below:

∑=

filesffecteda f

)(fLoCBugCC

(1)

where affectedfiles refers to the source code files that were affected when the bug
was being fixed, and LoC(f) is lines of code of file f. The affected files include files
that are dependent code related to the files edited during the bug fix.

• Bug CC (Cyclomatic Complexity): This metric is proposed to calculate the poten-
tial complexity of the code affected by the bug. This will be measured using the
program slicing metric CC as explained in section 2.2. The severity of a bug is:

∑=

filesffecteda f

)(fCCBugCC

(2)

where affectedfiles refers to the source code files that were affected when the bug
was being fixed, and CC(f) is cyclomatic complexity of file f. Since CC is calcu-
lated per function, Bug CC is sum of all the cc for each function in the affected
files. The affected files include files that are dependent code related to the files ed-
ited during the bug fix.

 Analysis of Bug Fixing Processes Using Program Slicing Metrics 37

3) Comparison and Analysis of data
Using the MPA data extracted and the program slicing metrics extracted from the
software project, the bugs are grouped according to similar program slicing metrics
characteristics.

3 Experiment

We conducted an initial experiment using Open Source Software (OSS) repositories.
The main reason for choosing OSS was that it is easily accessible as well as does not
require special permission or software licenses to analyze datasets.

3.1 Experiment Tools

We used following tools selected for both the program slicing and the tool used to
extract the MPA data:

Program Slicing Tool
Based on previous surveys [16] on the available program slicing tools, three program
slicing tools [17], [18], [19] were tested and the most appropriate tool selected. In the
end CodeSurfer [19] was chosen because it met the needs of the research as well as
being used in Pan’s use of program slicing metrics for bug classification. The main
limitation of CodeSurfer is that only projects in the C/C++ programming languages
can be analyzed.

Bug Extraction Tool (Extract the MPA Data)
Using the micro process model we designed a bug extraction tool that would help
search and extract the needed data related to this research. Published tools such as
Kenyon [20] are available, however because data to be extracted are specific to this
study, it was justified to develop the tool in-house.

Our extraction tool which was developed in java, acted as a web spider searching
the online data repositories, and then parsing extracted data. In order to make the tool
more flexible and not become a constraint on the research, the tool was developed to
search both SVN and CVS repositories. The extracted data is mentioned in section
2.3. All bugs were verified to be bugs and not change requests.

3.2 Test Subjects

Due to the limitations of the CodeSurfer slicing tool only being able to analyze pro-
jects based on the C programming language, projects were selected based on program
slicing capability (C++ projects were selected.) and on quality of bug extraction (if
there was a reference between the bug tracking system and the source code reposi-
tory). Using Sourceforge.net as a source of the OSS projects, the following three
software projects met the selection criteria:

• Scintilla(Up to Ver. 2.01): Scintilla is an editing component for Win32 and GTK+.
It comes bundled with SciTE, which is a Scintilla based text editor. It is used when
editing and debugging source code.

38 R.G. Kula et al.

• WxWidgets(Up to Rev. 62931): WxWidgets is a C++ library that lets developers
create applications for Windows, OS X, Linux and UNIX on 32-bit and 64-bit ar-
chitectures, as well as several mobile phones platforms including Windows
Mobile, iPhone SDK and embedded GTK+. Like Filezilla, WxWidgets used sub-
version and houses its bug tracking system outside Sourceforge.net.

• Filezilla (Up to Rev. 3295): Filezilla is the open source File Transfer Protocol
solution. The client component of the project was used for analysis. Filezilla used
the subversion repository system and hosts its own bug tracking system.

The bugs used in the experiment were all that had complete data. This means all bugs
in the projects that had its bug fixing process reconstructed and bug characteristics
calculated were used. All bugs from project start date till the experiment date, De-
cember 2009 were analyzed. Figure 2 summarizes the collected data.

3.3 Findings

The general approach taken in analysis of the information was to do various compari-
sons of bug characteristics against their bug fixing process. Comparisons and group-
ings were: 1) Duration of bug fix and 2) Assessment of bug fixing process.

Scintilla WxWidgets Filezilla 3

LoC 56698 409148 210629

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

Li
n

e
s

o
f

C
o

d
e

Lines of Code per Project

Scintilla WxWidgets Filezilla 3

Functions 2551 11942 5294

0

2000

4000

6000

8000

10000

12000

14000

Fu
n

ct
io

n
s

Functions per Project

Scintilla WxWidgets Filezilla 3

Usable Bugs 39 118 126

0

20

40

60

80

100

120

140

B
u

gs

Extracted Bugs per Project

Fig. 2. General Comparisons between Projects

1

10

100

1000

10000

0 5 10 15 20 25 30

Bu
g

CC

Days Taken to fix Bug

Bug Distribution 30 days (Bug CC)

wxWidgets

Scintilla

Filezilla

1

10

100

1000

10000

100000

0 5 10 15 20 25 30

Bu
g

Lo
C

Days Taken to fix Bug

Bug Distribution 30 days (Bug LoC)

WxWidgets

Scintilla

Filezilla

Fig. 3. Bug Distribution for the first 30 days

 Analysis of Bug Fixing Processes Using Program Slicing Metrics 39

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Bu
g

CC

Days Taken to fix Bug

Total Bug Distribution (Bug CC)

wxWidgets Scintilla Filezilla

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Bu
g

Lo
C

Days taken to fix Bug

Total Bug Distribution (Bug LoC)

WxWidgets Scintilla Filezilla

Fig. 4. Total Bug Distribution on log-log graph

With these two groupings, bug characteristics were applied to the groups to compare
and attempt to find some similarities.

1) For the duration of the bug fix, the proposed analysis method used the number
of days it took to fix a bug. This was calculated as:

Days taken to fix a bug = Date of Bug Fix – Date of Bug Detected (3)

where bug fix is the date when the code changes are committed to the code and bug
detected being the date when the bug was first reported. Bug Fix was used instead of
‘Bug Close’ status as it is more accurate representation of when the bug was ad-
dressed.

As seen from Figure 3 the distribution of bugs seem to differ from 10 days on-
wards, thus identified as a cluster. Since the distribution covers a very large range of
data, logarithmic graphs were used to plot the rest of the data. Using visual identifica-
tion shown in Figure 4, it was seen that around bugs that are older than 64 days have a
wider distribution compared to the bugs fixed in less than 64 days. With this observa-
tion, the second group of bugs was proposed from 11 to 64 days and the remaining
third group from 64 days onwards.

2) Assessment of bug fixing process
The following groupings were applied based on the MPA model:
• Standard Sequence: Bugs that have all the processes sequenced in correct order.
• Incorrect Sequence: This group of bugs has incorrect sequences of the bug process

compared the proposed model. The term ‘incorrect’ refers to abnormal sequence
and behavior with the bug fixing process.

40 R.G. Kula et al.

Significantly, 71%-83% of each project bugs were being Fixed and Closed on the
same day. Therefore it was added as a separate group. It was noticed that Filezilla and
WxWidgets were missing the ‘assign’ step for the MPA model.

Figure 5 illustrates the comparison of bug fixing process groups against the dura-
tion of bug fix groups. For Scintilla, the incorrect sequences occur in Bugs fixed in 0-
10 days only. Also bugs that were fixed and closed the same day occur in all three
groups. Finally bugs that took more than 64 days were all closed on the same day as
being fixed. In the case of WxWidgets, there is an even distribution of the different
types of bug fixing process executions, however, bugs fixed and closed on the same
day always is greater than the other groups. Finally with Filezilla, Figure 5 indicates
that the incorrect sequence, although very small, occurs in bugs that took up to 10
days to fix and more than 64 days to fix. As with WxWidgets, the bugs that were
fixed and closed in the same day occur in all bug groups, however, most are found in
bugs that took up to 10 days to fix. As seen below, results do not to show a clear
trend.

0-10 D ays

11-64 Days

More than
64 Days

0-10 Days

11-64 Days

More than
64 Days

0-10 Days

11-64 Days

More than
64 Days

Fixed and Closed Same Day Standard Sequence Incorrect SequenceFixed and Closed Same Day

Fig. 5. Bug fixing process compared with bug classifications

Program Slicing Metrics
Using the assessment of bug fixing processes groupings, comparisons are made
against the bug characteristics.

• Bug CC Analysis: The graphs in Figure 6 illustrate the distribution of cyclomatic
complexity of the bugs. The results indicate that the 11 to 64 days group has the
largest distribution compared to the other groups. Also 11 to 64 days has higher
bug CC compared as well. This suggests that bugs that are fixed in 11 to 64 days
have a larger range of bug CC and are higher in complexity as compared to the
other groupings. It is also interesting to note that bugs that took than 64 days to
fix have low complexity and a lower distribution.

• Bug LoC Analysis: The box plots illustrated in Figure 7 show the Bug LoC for
bugs within the bug classifications. The graphs clearly show that bugs that took
11-64 days to fix have the highest lines of code in all projects. Apart from the
highest lines of code we cannot make other similar characteristics. It seems that
there is no clear trend from the three projects. Scintilla and WxWidgets seem to
indicate that the 11 to 64 days has a largest distribution of Bug CC, however
Filezilla suggest that maybe all groups have a similar distribution. These results
indicate that further analysis with a larger test group need to be done.

 Analysis of Bug Fixing Processes Using Program Slicing Metrics 41

Days taken to fix a bug

B
u

g
 C

C

0-10 Days
11- 64

Days

More
than 64

days

0-10 Days
11- 64
Days

More than 64
days

0-10 Days
11- 64
Days

More than 64
days

Fig. 6. Bug CC Distribution using Bug
Classification across Projects

B
u

g
 L

o
c

0-10 Days
11- 64
Days

More than 64
days

0-10 Days
11- 64
Days

More than 64
days

Days taken to fix a bug

0-10 Days 11- 64
Days

More
than 64

days

Fig. 7. Lines of Code Distribution using Bug
Classification across Projects

Bug Fixing Process Execution

B
ug

 C
C

Fixed and
Closed Same
Day

Standard
Sequence

Incorrect
Sequence

Fixed and
Closed Same
Day

Standard
Sequence

Incorrect
Sequence

Fixed and
Closed Same
Day

Standard
Sequence

Incorrect
Sequence

Fig. 8. Bug CC and Process Classifications

Total Data Analysis
Finally, we performed an analysis combining both the micro process execution and
program slicing metrics. Results are as follows:

• Bug CC: The graphs in Figure 8 are the distribution of Bug CC metric of bugs
grouped according to the bug fixing process per project. The graphs suggest that
in each project, bugs with incorrect sequences have the highest distribution and
maximum bug CC. The interpretation could be misleading as seen in the previ-
ous section, incorrect sequences account for only 2% to 15% of the sample size.
However shows that further analysis is needed and the direction is promising.

42 R.G. Kula et al.

• Bug LoC: Figure 9 show the results of when the groupings of bugs according to
execution process were measured using the Bug LoC metric. Similar to the re-
sults seen in Bug CC, Bug LoC also displays incorrect sequences as having the
widest range and highest lines of code as compared to the other groups. Similar
to Bug CC analysis with program slicing, this information could be misleading
as the sample sizes for the incorrect sequences are extremely low.

Bug Fixing Process Execution

Bu
g

Lo
C

Fixed and
Closed Same
Day

Standard
Sequence

Incorrect
Sequence

Fixed and
Closed Same
Day

Standard
Sequence

Incorrect
Sequence

Fixed and
Closed Same
Day

Standard
Sequence

Incorrect
Sequence

Fig. 9. Bug LoC and Process Classification

4 Discussion

4.1 Threats to Validity

This paper shows that the bug classification has some many challenges and validation
issues with getting the correct datasets for experiments. Firstly the extraction methods
are messy due to the many variations in the way the data repositories are managed, for
example CVS and SVN. Additionally many of the software projects have subtle dif-
ferences that make data extraction difficult. Other research have also encountered
these perils, making OSS analysis data validation questionable [21]. Also the analysis
only covered bugs that the bug fixing process could be re-constructed as well as have
generated bug characteristics. This constraint also contributed to the small data we
had to use for the analysis.

Another threat would be the accuracy of the metrics. Currently the slices are at file
level, which could be arguably too broad a scope. However we do plan to do calcula-
tions of Bug CC and Bug LoC at function level to get more accurate results.
It is stressed that what was more important was the results and feasibility of this new
approach.

Though all the difficulties, the research did find feasible projects and was able to
successful experiment and draw results. Since this is a proof on concept, emphasis
was placed more on the results and methodology rather than the validation of the
approach. The total final analysis in Figure 8 and 9 show very interesting results,

 Analysis of Bug Fixing Processes Using Program Slicing Metrics 43

however due to the small amount of data statistical analysis could not be performed. It
is envisioned that with more accurate metrics, statistical analysis will be applied.

4.2 Findings in Analysis

The approach taken proves that bugs could be grouped based on program slicing
based metrics. Using our proposed approach results firstly showed that using the pro-
gram slicing metrics, the bugs were grouped according to how long it takes to fix the
bug. With visual analysis of the distribution, it was found that the bug distribution
changed after 10 days and 64 days. One theory based on project management, 10
days is 2 man weeks therefore developers may be pushed by deadlines to fix the bugs
before 10 days.

To better understand the bug classification, the distributions of program slicing met-
rics were analyzed according to the bug groupings. Findings in Figure 6 and 7 suggest
that bugs fixed within 10 days show lower complexity. Bugs between 11 and 64 days
show a wider range of complexity and bugs that took more than 64 days had a much
lower complexity. Since most bugs lie in the 0-10 day group, it can be concluded that
bugs with lower complexity are fixed in less days. However another conclusion could
be related to project management, 10 days is 2 weeks so maybe a project manager may
require a set of bugs to be completed by that deadline. In relation of lines of code per
bug, there seem some trends but nothing concrete enough to propose, therefore further
analysis and review of the lines of code metric need to be performed.

The second part of the research aimed at analyzing the micro process execution,
and grouped using the bug classifications. Results firstly show not all projects follow
the proposed model for bug fixing. Both Filezilla and WxWidgets omitted the ‘assign
to developer’ activity in the bug fixing process. Possible reasons would be the limita-
tions of the bug tracking tool or the assignment process is not part of that projects bug
fixing process related to two of the three projects. Also this shows the real time-frame
in which the bug was fixed.

Another interesting finding was the appearance of bugs that were closed on the
same day that it was fixed. In all test subjects, results indicated that the majority of
bugs had bug closed the same day they were fixed. It was found that bugs closed in 0-
10 days were most prone to errors in the bug fixing process. All projects indicated
more bugs with incorrect sequences occur in bugs fixed in ten days. Bugs older than
10 days have a lesser chance of having incorrect sequences.

Finally, the main part of the analysis was done combining both the micro process
execution and program slicing metrics. Bugs were grouped according to their bug
fixing process execution against both Bug CC and Bug LoC. These results suggest
that bugs with incorrect sequence in their bug fixing processes show a wide distribu-
tion with very high cyclomatic complexity and lines of code as compared to bugs that
follow the general bug fixing model and bugs that are closed in the same day as being
fixed. This data however may not be reliable as the sample set for incorrect sequence
is too small to have any statistical significance.

4.3 Testing Hypothesis

Putting together the bug classifications and the analysis of the micro process as a proof
of concept, there is enough evidence to suggest that there is indeed a relationship

44 R.G. Kula et al.

between bug characteristics and its processes executed. For example for bugs taking up
to 10 days to fixing generally have low complexity and lines of code show a tendency
to be closed in the same day and have a higher likelihood to have errors in its process
execution.

In response to the hypotheses, the findings support Hypothesis 1 as our research
shows groupings of similar bugs having similar bug characteristics. For example,
bugs with incorrect micro process execution show much higher Bug CC metric than
the correct standard and fixed and closed in same day bugs. Hypothesis 2 is also sup-
ported by the evidence that higher Bug CC is more prone to incorrect sequences. The
experiments therefore suggest a relationship between bug characteristics and how
they were fixed. However, further research it needed to have more confidence in these
hypotheses.

5 Conclusion and Future Works

As mentioned throughout the paper, this work is seen as proof of concept with the
final aim of developing a prediction model for bug fixing process based on the bug’s
characteristics. Future work will be to refine the tools and metrics used. For this re-
search, only two program slicing metrics were introduced. As indicated by the results,
extensive analysis is needed to make more concrete judgments.

Current results of the research act as a proof of concept for the use of program slic-
ing in the inspection of the bug fixing processes in a software development project. It
is envisioned that the research will help contribute to a better understanding and clas-
sification of bugs based on the nature of code. Currently the program slicing is per-
formed according to file level code metrics. Future work will attempt to program slice
at function level, giving precise metrics. A larger sample data that can give statistical
analysis will be experimented to further validate the results.

If successful, the research can used to help create ‘prediction models’ for bugs. For
example, based on a history of previous bugs and the trends of a specific project, a
bug’s fixing process could be estimated from its bug characteristics , thus assist de-
velopers handle the bug faster. This would then contribute to software improvement at
this micro level.

The implementation could be a tool that is used during the bug detection and as-
signment stage of the bug fixing process. It would be able to analyze what part of the
code are affected, and based on the classification, predict how long the bug would
normally take to fix as well code based metrics such as the complexity of code.

In the bigger picture, this work contributes towards a predictive process model
based on the program slicing metrics. As this is a novel approach, this study contrib-
utes as a starting point towards this goal.

Acknowledgements

This work is being conducted as a part of the StagE project, The Development of
Next-Generation IT Infrastructure, supported by the Ministry of Education, Culture,
Sports, Science and Technology.

 Analysis of Bug Fixing Processes Using Program Slicing Metrics 45

References

1. Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., Zubrow, D.: Benefits of CMM-Based
Software Process Improvement: Initial Results, CMU/SEI-94-TR-13, Software Engineer-
ing Institute. Carnegie Mellon University, Pittsburgh, Pa (1994)

2. Margaret, K.K., Kent, J.A.: Interpreting the CMMI: A Process Improvement Approach,
Auerbach Publications. CSUE Body of Knowledge area: Software Quality Management
(2003)

3. Schmauch, C.H.: ISO 9000 for Software Developers, 2nd edn. ASQ Quality Press (1995)
4. Beecham, S., Hall, T., Rainer, A.: Software process problems in twelve software compa-

nies: an empirical analysis. Empirical Software Engineering 8, 7–42 (2003)
5. Baddoo, N., Hall, T.: De-Motivators of software process improvement: an analysis of prac-

titioner’s views. Journal of Systems and Software 66(1), 23–33 (2003)
6. Niazi, M., Babar, M.A.: De-motivators for software process improvement: an analysis of

Vietnamese practitioners’ views. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007.
LNCS, vol. 4589, pp. 118–131. Springer, Heidelberg (2007)

7. Brodman, J.G., Johnson, D.L.: What small businesses and small organizations say about
the CMMI. In: Proceedings of the 16th International Conference on Software Engineering.
IEEE Computer Society, Los Alamitos (1994)

8. Rainer, A., Hall, T.: Key success factors for implementing software process improvement:
a maturity-based analysis. Journal of Systems and Software 62(2), 71–84 (2002)

9. Yoo, C., Yoon, J., Lee, B., Lee, C., Lee, J., Hyun, S., Wu, C.: A unified model for the im-
plementation of both ISO 9001:2000 and CMMI by ISO-certified organizations. The Jour-
nal of Systems and Software 79(7), 954–961 (2006)

10. Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H., Campo, A.O.: Scoping
software process lines. Software Process Improvement and Practice 14(3), 181–197 (2009)

11. Morisaki, S., Iida, H.: Fine-Grained Software Process Analysis to Ongoing Distributed
Software Development. In: 1st Workshop on Measurement-based Cockpits for Distributed
Software and Systems Engineering Projects (SOFTPIT 2007), Munich, Germany,
pp. 26–30 (August 2007)

12. Weiser, M.: Program slicing. In: Proceedings of the 5th international Conference on Soft-
ware Engineering, San Diego, California, United States, March 09 - 12, pp. 439–449. IEEE
Press, Piscataway (1981)

13. Hall, T., Wernick, P.: Program Slicing Metrics and Evolvability: an Initial Study. In: IEEE
International Workshop Software Evolvability, pp. 35–40 (2005)

14. Pan, K., Kim, S., Whitehead Jr., E.J.: Bug Classification Using Program Slicing Metrics.
In: IEEE International Workshop Source Code Analysis and Manipulation, pp. 31–42
(2006)

15. Watson, A., McCabe, T.: Structured testing: A testing methodology using the cyclomatic
complexity metric. In: National Institute of Standards and Technology, Gaithersburg, MD,
pp. 235–500 (NIST) Special Publication (1996)

16. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing. SIGSOFT
Softw. Eng. Notes 30(2), 1–36 (2005)

17. Ranganath, V.P., Hatcliff, J.: Slicing concurrent Java programs using Indus and Kaveri. In-
ternational Journal on Software Tools for Technology Transfer (STTT) 9(5), 489–504
(2007)

18. Wang, T., Roychoudhury, A.: Dynamic slicing on Java bytecode traces. ACM Trans. Pro-
gram. Lang. Syst. 30(2), 1–49 (2008)

46 R.G. Kula et al.

19. Anderson, P., Zarins, M.: The CodeSurfer Software Understanding Platform. In:
Proceedings of the 13th International Workshop on Program Comprehension, May 15-16,
pp. 147–148 (2005)

20. Bevan, J., Whitehead, E.J., Kim, S., Godfrey, M.: Facilitating software evolution research
with Kenyon. In: Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, ESEC/FSE-13, Lisbon, Portugal, September 05-09, pp. 177–186. ACM,
New York (2005)

21. Howison, J., Crowston, K.: The perils and pitfalls of mining SourceForge. Presented at
Mining Software Repositories Workshop, International Conference on Software Engineer-
ing, Edinburgh, Scotland, May 25 (2004)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 47–61, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Systematic Piloting of Agile Methods in the Large: Two
Cases in Embedded Systems Development

Jeanette Heidenberg1,2, Mari Matinlassi1, Minna Pikkarainen3, Piia Hirkman2,
and Jari Partanen1

1 EB, Elektrobit Corporation, Finland
{mari.matinlassi,jari.partanen}@elektrobit.com

2 Åbo Akademi University/Turku Centre for Computer Science, Finland
{jeanette.heidenberg,piia.hirkman}@abo.fi

3 VTT Technical Research Centre of Finland
minna.pikkarainen@vtt.fi

Abstract. Deploying agile methods in a large, diverse, geographically distrib-
uted setting is a challenging task. In this paper, we propose that systematic pi-
loting is to be used in order to build experience and to overcome the most
common challenges of agile deployment, such as resistance to change. We ap-
proach this by developing a method for piloting agile. This method is developed
based on multiple-case study in a large embedded systems company. Based on
two cases, we describe a method that transcends the encountered challenges and
can help meld an agile method with a plan-driven organization.

Keywords: Software process improvement, agile deployment, pilot.

1 Introduction

Industry surveys indicate that the acceptance and knowledge of agile methods are still
limited in industrial settings, especially in organizations that have used a traditional
software development approach for years. Typically, the deployment of agile methods
is resisted and wanted in these companies at the same time [1]; deployment is chal-
lenging [1] particularly for large and globally distributed software enterprises [2].
Some efforts have been made to tackle the deployment problem (see, e.g., [3] and
[4]), but current research reports are scarce in providing clear methods and advice
with regard to deploying agile methods and principles. Furthermore, the reports do
not concentrate on what so often lies at the very beginning of software process im-
provement undertakings going agile: a pilot project. A pilot applies agile methods on
a small scale in order to verify and adapt the methods before general deployment.

This paper presents a multiple-case study with research data from two pilot cases
allowing cross-case analysis and, thus, more general research results compared to a
single-case study [5]. The case study method [6] is a suitable research approach for
studies in which the goal is to investigate contemporary phenomena in real-life con-
texts; in our case agile deployment in a large embedded systems company. This goal
can be formulated as a research question: How to deploy agile methods in large, di-
verse organizations? At the beginning of the study we inferred that piloting is a means

48 J. Heidenberg et al.

of deployment that can help in overcoming resistance to change, a proposition that
was directly related to the challenges present at the case company (see Sections 2-3).
This proposition gave further rise to a second research question: How to systemati-
cally implement agile pilots as part of the overall deployment process in a plan-driven
environment? The defined research questions were addressed in the two cases in
which an agile piloting method was developed. The research was based on rich data
that was collected with workshops, semi-structured interviews and pilot follow-ups
(as described in Section 5), reflected in the method that resulted from analytically
generalizing the cases (Section 4).

2 Piloting in Context

According to the Oxford English dictionary [7], piloting refers (among other things)
to “the testing of a scheme, project, etc., on a small scale before its wider introduc-
tion”. The concept is used in very different contexts, such as research methods and
software engineering. For example, it is used as a transition strategy in product family
engineering [8] and as a deployment method for software process improvement (SPI)
undertakings. This article approaches piloting mostly from the SPI point of view: here
piloting means first applying a method in a small amount of real product projects or
customer projects in order to identify risks and test the method, then adapting the
methods based on learning and finally deploying the piloted method to other projects.
The pilot project has to be a fairly good representative of a typical project in the or-
ganization. After a pilot, it is easier to decide whether to launch wide scale adoption
of piloted practices to the whole organization – or not.

Piloting has been recommended for SPI-deployment in more traditional as well as
in agile initiatives. Traditionally, piloting is regarded to be a part of SPI [9] or rec-
ommended by deployment methods such as QIP [10] and IDEAL [11] that are typi-
cally used in model- or standard-based improvement efforts (e.g., CMMI [12] and
ISO 15504 [13]). With regard to agile methods, deployment has proven to include a
number of difficulties both specific to an agile method [14],[15] and more general in
nature [3],[16],[17],[18],[19]. Due to its testing nature, piloting can be recommended
also for an agile context; piloting responds to some common needs in deploying agile
methods (method tailoring - common especially in large projects [2],[20], evaluation
of needs and identifying risks, and doing assessments [21],[22],[23]). As Reifer [24]
mentions, pilots were used by early adopters of agile methods to see whether the
methods work in the context in question and to make agile processes work with exist-
ing ones (or the other way around). Indeed, piloting has been increasingly reported by
the software intensive organizations and research communities describing experiences
of agile methods [25]. Piloting has also been included as a distinct step in a process
for iterative improvement within agile software development projects suggested by
Salo and Abrahamsson [26].

Moitra [27] suggests that while there are benefits in piloting, unsuccessful pilots
may lead to resistance and skepticism for SPI; the need for piloting should depend on
several factors, such as the level of support for SPI, how well the effects of SPI are
understood, and the complexity of change [27]. That is, piloting is not a playground
but an important phase where assistance is needed. Some recommendations do exist

 Systematic Piloting of Agile Methods in the Large 49

(Kulpa and Johnson present five life-cycle phases similar to those of process im-
provement [9]; Moitra [28] lists nine analogous steps that relate to piloting in the
implementation phase of an SPI-shaped change initiative) but these recommendations
are generic and do not account for details in implementations in practice.

3 Background and Motivation

EB, Elektrobit Corporation, is a large, geographically distributed company specialized
in demanding embedded software and hardware solutions for the wireless and auto-
motive industries. The net sales for the year 2008 were MEUR 172.3 in total. As is
the situation for many companies in the software industry, the case company has to
meet an ever increasing demand for high-quality products while at the same time
hitting tighter marketing windows. The right functionality has to be delivered at the
right time, and the company has to be able to react to changing circumstances and
requirements quickly. In order to meet these needs, the top management of the com-
pany decided to move in a more agile direction.

The products developed within the business areas of the case company are typi-
cally quite complex, including hardware/software codesign and real-time require-
ments. The company has very diverse project settings, ranging from small co-located
projects to large, geographically distributed ones. The staff of the larger projects will
typically consist of people with diverse competence areas. In this case, the project is
often divided into dedicated specialist teams, responsible for, e.g., systemization,
hardware development, software development, and testing. Furthermore, the opera-
tional mode of the projects will vary depending on their respective customer and part-
ner interfaces.

Due to the large scale of the company and the many different types of projects run
within the company, the need for a piloting method arose. The need to pilot was obvi-
ous, since general deployment of a new method is such a large company would be
risky and difficult without testing it on a smaller scale first. Furthermore, the resis-
tance to change among the stakeholders needed to be bridged. But due to the diversity
of the project settings, just one pilot was not enough. A successful pilot would only be
seen as a success story for that type of project. We needed to create enough success
stories to prove the concept on a general level. For this we needed a method for set-
ting up and running pilots.

In EB, piloting was not merely seen as testing something on a smaller scale; the pi-
loting was also regarded as a means for introducing change into the organization.
Organizational change in general and in the context of SPI share similar traits as also
noted with early adopters of agile methods [24]. Studies of organizational change in
SPI (for example, see [28],[29],[30]) prescribe elements of success related to an over-
all vision, clear goals, and both planning and managing change. Another issue con-
cerns understanding: the environment and starting point as well as the method to be
used should be fully understood. Further issues include creating and sustaining a
(positive) need for change by management sponsorship, change agents, and allowing
for those touched by the change to participate actively (involvement).

Due to this involvement (“organizations change one person at a time” [29]), the
people perspective should be present from the start. (Naturally, this is nicely in har-
mony with the agile principles [31].) The people aspect is explicitly considered in a

50 J. Heidenberg et al.

general model for individual and organizational change called ADKAR [32], the
name of which stands for the five steps on the people side of change: building aware-
ness, having a desire to support and to participate in change, creating and providing
knowledge of how to change, fostering ability to implement new skills and behaviors,
and reinforcement to sustain the change. Somewhat similar core ideas are reflected in
phases for supporting organizational change in SPI [27] and for adopting new culture
in software engineering organizations [33].

Based on the existing methods and recommendations above, and drawing from the
guidelines for piloting mentioned in Section 2, we extracted the main level steps for
the method, i.e., Marketing the pilot, Preparing the pilot and Executing the pilot (see
Section 4). Empirical data and experiences collected from two real pilot cases (see
Section 5) provided the more detailed definitions for each step.

4 A Method for Agile Piloting

Fig.1 shows the big picture of the piloting method developed for the case company.
The method is composed of three main stages: marketing the pilot, preparing the pilot
and executing the pilot. Marketing the pilot is about achieving company internal ac-
ceptance – both formal and informal acceptance – before starting the pilot. In the pilot
preparation stage a decision to start the pilot is already there. However, some prepara-
tion and setting up needs to be done before pilot kick-off. After the kick-off the actual
pilot execution stage starts. This is an iterative process of doing and learning. Each
stage is composed of two steps, which are described in detail below.

Fig. 1. Overview of the piloting method

4.1 Marketing the Pilot

Start with agile spark. Agile spark is the initiation point for agile piloting. If conven-
tional engineering and communication problems within the projects drive the initia-
tion of the agile drive, the agile spark is said to be bottom-up. On the other hand, the
agile spark may be introduced top-down when, e.g., top management wants signifi-
cant improvements in productivity of the organization.

Determine stakeholders. Committed stakeholders are interest groups that need to
accept the pilot before it starts. Acceptance does not only mean formal acceptance,
but also mental acceptance of the pilot and the ideas it represents. Mental acceptance
is crucial for the success of the pilot. Related interest groups need to be aware of what
is going on. However, we need neither their commitment nor permission to start the
pilot. Both interest groups – committed and related – need to be recognized and their
interests need to be determined.

 Systematic Piloting of Agile Methods in the Large 51

Create business cases. A business case motivates a stakeholder to mentally accept
the pilot. The interests of each stakeholder are different and business cases need to be
created to address the needs of the stakeholders.

4.2 Preparing the Pilot

Once the pilot has been formally accepted pilot preparation can start.

Define current state. The importance of defining the current state cannot be empha-
sized enough. The following methods can be used for defining the current state: inter-
views (structured or open); workshops (with different interest groups, especially with
committed stakeholders), and external help for analyzing the results.

Both the positive and negative issues in the current state are summarized and
documented in order to monitor the progress of the pilot later.

Define desired state. Desired state definition is as important as defining the current
state. Without the desired state definition, it is difficult to select or adapt agile
methods for piloting. The best way to perform desired state definition is through
workshops. The desired state definition may include both (1) minimum require-
ments/expectations on the pilot and (2) longer term deployment desires.

4.3 Executing the Pilot

The kick-off marks the official start of the implementation stage and serves as a
means to build a sense of involvement.

Implement the pilot. The practical steps of how to implement the pilot depend heav-
ily on the current and desired states and further, on the properties of the pilot project.
That is, general steps for doing pilot implementation cannot be defined explicitly.
However, our piloting method lists the most important points to be considered in pilot
implementation.

Select the agile methods/practices to apply. Start with a method that fits the needs of
the pilot. Ensure that the selected method is clearly understood before it is adapted or
before more methods are included. Often it is necessary to apply the method for some
time before it is clearly understood.

Adapt the selected method. Like software development methods in general, also agile
methods usually need adaptation [2],[17],[34] and also here, the special requirements
of the target environment need to be taken into account.

Adapt the company processes to integrate with the agile methods to be piloted. An
agile method in a plan-driven context is a difficult combination. Therefore, at least the
interfaces to the related company processes/practices need to be adapted to fit agile.
Otherwise there is a risk that the new agile method will be adapted to a plan-driven
approach – and not the other way around – which may fail the pilot in the end.

Prepare the infrastructure to meet the pilot needs. Infrastructure may mean anything
from team rooms and software tools to pens and paper and digital cameras.

52 J. Heidenberg et al.

Organize training. It is important to ensure that the project staff and stakeholders
have the correct skill set to use the selected methods efficiently. For this, different
forms of training may be needed. One should consider both general purpose method
training and training in the specific methods adapted for the pilot. General purpose
training may include, e.g., courses for Scrum Masters or tutorials in test-driven devel-
opment. Specific training may include presentations or workshops with the purpose of
explaining the methods to be used in the pilot and how they are integrated with the
surrounding processes.

Learn by doing. Even if the major part of the effort is done already before the actual
pilot project is started, it is important that the pilot is not abandoned later. Experience
gathered during the pilot should be used to adapt the way of working in the pilot as
the understanding of the piloted methods improves. In our method, we provide the
following advice in order to ensure that the pilot is learning by doing.

Organize pilot follow-up practices. A (more or less formal) steering group regularly
follows up on the status and risks of the pilot. One important aspect of this is the col-
lection of metrics in order to know whether the pilot is headed in the right direction.
These metrics should measure the progress from the current state towards the desired
state. The metrics collected can be both quantitative and qualitative. Examples of
quantitative metrics are software quality and cycle time, while examples of qualitative
metrics are work satisfaction and customer satisfaction. The steering group follows up
on the progress of the pilot, identifying risks and organizing extra support and training
if needed.

Adapt the methods if needed. The methods chosen at the beginning of the pilot may
need further adaption to suit the specific setting of the pilot project. The metrics col-
lected will tell the project whether it is headed in the right direction. But this informa-
tion alone is not enough to know how to adapt the methods further. During the pilot, it
is important to ensure that feedback is collected regularly from the pilot participants.
They have the first-hand experience of using the piloted methods, and their growing
understanding needs to be captured. One method for this is retrospectives, as defined
in Scrum [35]. The feedback should be used to improve and further adapt the way of
working during the pilot, keeping the desired state in mind.

5 Pilot Implementation in EB

In this paper, we present two pilots run at the company. Both pilots were started in
2008 and were set up according to the proposed methodology. However, due to the
overall financial situation, both pilots were put on hold towards the end of the year. At
the time of writing this paper, the first pilot is still on hold, while the second was
continued in mid 2009.

The first pilot, which we will refer to as TeleAgile below, was a typical example of
a telecommunications project at EB with respect to size and context. The planned size
of the project was 60 people. Of these, 20 were included in the pilot team, in which
the roles of project manager, system designer, software developer, software integra-
tor, software tester, product owner and technical coordinator were all represented. The
pilot team held full responsibility for their part of the system, and if they were to fail,

 Systematic Piloting of Agile Methods in the Large 53

the project would fail. Another 10 people were involved in other interest groups (pro-
gram management, resource management, etc.). The project itself was a software
centric project, part of a larger program. Within the program, the project had inter-
faces towards other software projects, hardware projects, FPGA (field programmable
gate array) projects and mechanics projects. Of these, some were company internal
projects and some were run by subcontractors. The project was geographically dis-
tributed over a total of five sites: three in Finland, one in China and one in India.

The second pilot (MultiTechScrum) was prepared at the same time as TeleAgile.
MultiTechScrum is a smaller and local project with 15 people in development and 15
people in other interest groups (marketing, customer support, product planning etc.).
MultiTechScrum seemed to be an easy case for piloting agile due to its size and local
nature. However, it still presented some challenges. MultiTechScrum develops a
multi-technological product involving engineers on several technology domains: (1)
software, (2) hardware, (3) RF (radio frequency), (4) FPGA and (5) mechanics. Fur-
ther, the pilot project product development applies a product family engineering ap-
proach where reuse is maximized, i.e., the major part of the development effort is
spent on reusable assets and domain engineering.

In the next sections we go through the steps defined in the method presented in
Section 4. For each of the steps we explain how that step was implemented in practice
in our two cases.

5.1 Marketing the Pilot

Start with agile spark. In TeleAgile, the “agile spark” was initiated in several levels
of the organization. Program and project management were the driving force, but with
strong support from business unit management. On the team level, there was also a
strong will to improve the work methods. The reasons for the willingness to change
were mainly issues of communication as well as challenges in balancing changing
requirements with a tight delivery schedule. Scrum [35] was not the explicit wish of
the pilot – they were rather looking for a bespoke solution for their specific setting.

In MultiTechScrum, the “agile spark” was initiated in project management. The
challenge was that the project team and other interest groups had become isolated in
silos – even though they were co-located – and the interest groups suffered from mu-
tual mistrust and communication problems. Project management wanted to overcome
these problems and when they were introduced to Scrum, they wanted to try it out.

Determine stakeholders. The main stakeholders for both pilots were (1) program and
project management, whose concerns are the scope, quality, budget and timeliness of
the product; (2) business line management, who act as the customer interface and
maintain the product roadmaps based on the customers’ needs; (3) line management,
who are responsible for the human resources aspect of the projects and manage the
overall budget; (4) project staff, who needs to have the right information at the right
time in order to design the required software, hardware, gate arrays, radio frequency
circuits and mechanics. There also are related stakeholders such as customer support,
marketing and production; however, the work of these interest groups is not directly
affected by the agile pilot.

54 J. Heidenberg et al.

Create business cases. The business cases that were used to motivate the committed
stakeholders to mentally accept the pilot were many. Here, we provide some exam-
ples. (1) Project and program management: “the projects will be smaller and therefore
easier to manage” and “you will have better visibility into what the real status of the
project is”. (2) Product planning: “the projects will not be delayed” and “you will
have new features to sell every 6 month”. (3) Line management: “project costs will be
reduced through improved communication” and “the well-being of the project staff
and the quality of the product will increase”. (4) Project staff: “you will be allowed to
concentrate on the goals of the ongoing sprint and have more control over your own
tasks”.

5.2 Preparing the Pilot

Once we had common acceptance for the pilot projects as well as a formal decision to
go ahead, we started preparing for the pilots themselves.

Define current state. In TeleAgile, the current state was established by workshops
and semi-structured interviews. In order to ensure transparency into the pilot, a steer-
ing group was set up to which all levels of management were invited. At the very
beginning of the pilot preparation step, this steering group gave its view on the current
state. This was further refined by performing semi-structured individual interviews
with the pilot team. For the interviews, external consultants were used. A total of nine
interviews were held for the development team. Each interview took approximately
1-2 hours and they were all tape recorded and transcribed. The interview questions
were based on the general question framework of the CMMI project and requirements
management process areas as well as on agile practices. However, the framework was
specifically tailored based on the needs of the pilot project.

Based on the outcome of the interviews, the current state was summarized and a
proposal for the new way of working was defined. The results were discussed in the
steering group as well as in a workshop with the interviewees, where they gave feed-
back to the current state collected as well as on the new working methods.

In MultiTechScrum, the current state was defined by first conducting one-on-one
interviews with software design engineers. The interviews were semi-structured and
included questions such as what is working well at the moment (regarding tools,
processes, communication, co-operation) and what are the typical problems you face
daily. The interviews were followed by workshops to define the current process and
its strengths and challenges. The workshops were conducted in two phases and the
attendants were project managers, line managers and an external agile consultant. In
the first workshop, the participants collected challenges with the current way of work-
ing as well as good practices they would not change. They drew the current product
development process and mapped the challenges and good practices to the current
process. Between the two workshops, the external consultant created a proposal of
how to adapt the Scrum method to meet the pilot project requirements.

Define desired state. In TeleAgile, the desired state was established in the same way
as the current state. The steering group expressed their view of the desired state in the
early phases of pilot preparation and this was refined through the interviews and
workshops with the pilot team. The risks of the pilot were also defined by both the

 Systematic Piloting of Agile Methods in the Large 55

pilot team and the steering group, and included in the risk list that was monitored by
the steering group.

In MultiTechScrum, the desired state was defined in the second workshop. The
proposal for the new way of working was presented by the consultant and the atten-
dants worked out the potential desired state they would like to see after successful
deployment of the proposed process. Also potential risks related to the pilot were
identified.

The desired states for the two pilots had many similarities. For example, the pro-
jects expected improvement in visibility and predictability. They expected, e.g., that
the new product features would be more visible not only to the product managers but
also to the development teams. From the viewpoint of the whole organization, the
visibility for the near future (1-3 months) would be clearer and the transparency of the
current development status would be better for the sales and marketing department.
The design engineers would also see the big picture more easily and the project team
would be able to control the focus of their own work and schedule the work tasks
more effectively. Considering predictability, the desire would be to provide a more
predictable product release schedule and more exact schedules (even if the content
varies). From the viewpoint of project planning, the project cost and schedule predict-
ability was expected to improve and the planning of tasks would be easier (when
planning is done more often). The better predictability would provide more reliable
deliveries – which is extremely important from the business point of view. As the
goals of the project were qualitative in nature, we used qualitative methods for col-
lecting the metrics. Interviews before and after the pilot serve to recognize whether
the stakeholders had perceived an improvement in visibility and predictability. The
project also collected standard metrics, such as defect rates and delivery times in
order to mitigate risks.

5.3 Executing the Pilot

Implement the pilot. After defining the current state and the desired state, it was
clear that major changes were needed in order to reach the desired state. We proceed
by describing the steps taken in implementing the pilot according to the method de-
scribed in Section 4.

Select the methods to apply. In both pilots, the agile method used as a starting point
was Scrum. In TeleAgile the word “Scrum” was never used, even though the practices
suggested as solutions for the challenges were taken from Scrum. In MultiTechScrum
Scrum was selected by the team as the agile method thought to meet most of the
needs of the pilot project. The main practices used in the pilots were: timeboxed de-
liveries, increased face-to-face communication through meetings (planning meeting,
daily meeting, sprint demos), product and sprint backlogs, nightly build and early
testing.

Adapt the selected method. It was not possible to use Scrum off the shelf in either of
the pilots, so the method was tailored to meet the needs of the specific pilot. However,
the main goal was to really change the way of working in both pilots. Therefore,
Scrum was only slightly tailored without violating the agile principles. The refine-
ments of Scrum are described below.

56 J. Heidenberg et al.

In TeleAgile, the purpose of the tailoring was to fit the methods to a large-scale,
geographically distributed project. In MultiTechScrum, the purpose was to meet the
specific needs introduced by product line engineering and a multi-technology envi-
ronment. The tailoring was the most challenging part of the pilot implementation
since there was little existing guidance in the literature.

In order to deliver in a timeboxed fashion, TeleAgile had to ensure that the con-
tents of the timeboxes were synchronized throughout the entire program. MultiTech-
Scrum had to ensure synchronization between the different technology teams. This
requires short-term up-front planning, especially with regards to systemization. For
this, we agreed to secure a system team that would also work in a timeboxed fashion,
slightly ahead of the development teams. The system team would perform continuous
requirement analysis, to ensure that the relevant system input is available at the start
of every sprint. This approach was inspired by just-in-time approaches common in the
agile world [36].

The meeting practices were the easiest to set up. In both pilots, the daily team
meeting was extended to include members of other teams as well, in order to facilitate
communication across team borders. The meeting structure was slightly more com-
plex in the TeleAgile project, since the scale and distribution of the project implied a
larger number of teams on different levels.

The product and sprint backlogs proved to not be sufficient for the needs of the pi-
lots. TeleAgile needed an innovation backlog, where new features would be added
before analysis and possible inclusion in the product backlog. MultiTechScrum
needed a reuse backlog in order to manage product line requirements.

Adapt the company processes to integrate with the agile methods to be piloted. At the
time of the pilot, the company desired to keep the plan-driven, traditional end product
process and project milestone thinking through the pilot. Still, we were able to modify
the end product process slightly in order to keep the pilot agile.

The main changes done were in the communication between the different stake-
holders. For both pilots, we changed the meeting culture by replacing large, lengthy
project meetings with shorter, timeboxed meetings that were clearly defined with
respect to time, place, who should be present and what should be discussed.

Prepare the infrastructure to meet the pilot needs. The need arose for some infrastruc-
tural changes to support the pilots. Team rooms needed to be set up. We needed to
organize support for light-weight documentation methods. This support would include
devices such as digital cameras, white boards and flip charts. Since TeleAgile was a
geographically distributed project, some computer based tools needed to be set up,
such as a wiki-based support system for clarifying design decisions and a dedicated
tool for error handling.

Organize training. Three types of training were used. We trained Certified Scrum
Masters and Product Owners, using an international training provider. This proved to
be a very powerful way to change the people’s mindsets from plan-driven to agile
thinking. Due to financial challenges, we also had to make use of more cost-effective
training methods. In MultiTechScrum, we trained the engineers, product planning,
management and related stakeholders in lectures given by in-house personnel sup-
ported by visiting agile gurus. Finally, we also had an existing in-house training set
for software processes. We modified this to include the agile methods to be used and

 Systematic Piloting of Agile Methods in the Large 57

trained the project staff of the TeleAgile project using this training set. This was
highly appreciated, though not as efficient in changing people’s mindsets.

Learn by doing. During the writing of this paper, the TeleAgile pilot is no longer
running, because the entire TeleAgile project was put on hold, its operational mode
was changed and eventually it continued as an outsourced project. The MultiTech-
Scrum pilot has been running for 6 months, i.e., is in the learn by doing stage. The
TeleAgile pilot had a formal steering group with the responsibility to follow up on the
progress and risks of the pilot. They were also responsible for collecting metrics in
order to better understand the impacts of the changes. The MultiTechScrum pilot’s
steering group is less formal, but still performs the same tasks. The most important
means of learning by doing, however, are the retrospectives. The pilot teams are
asked to perform regular retrospectives where they evaluate their way of working
and suggest improvements. These improvements can either be implemented immedi-
ately by the team itself or be escalated for the steering group to promote to other
teams as well.

6 Discussion

The piloting mode used at EB derives from piloting and change management guide-
lines (see Section 3). The approach has some similarities to existing SPI deployment
models such as QIP. However, in addition to the existing approaches, our method
emphasizes the marketing and learning aspects. We now proceed to discuss the main
challenges we encountered, how these are addressed in the literature and how we
addressed them. We also discuss the implications of our work.

Resistance to change. The main challenge to overcome when introducing any
changes is the inherent resistance to change. The main stakeholders that needed help
with their resistance to change in our pilots were the engineers and the project manag-
ers. The engineers may feel threatened by the new way of working and the project
managers may feel they lose power and status. Training has been recognized as an
important success factor for agile practice adoption [1],[3]. We found our agile
awareness trainings to be crucial for overcoming this resistance. In addition to train-
ing, Misra et al. [3] point out the importance of continuous learning. Agile methods
support the ability to innovate and use the opportunity provided by change, that is,
learning denoted as "generative" as opposed to "adaptive" [37]. The frequent retro-
spective approach was used for this purpose in our pilots.

We also suggest that one pays attention to the motivation level in the project at the
time of the pilot. If there are motivational issues in the project that cannot be ad-
dressed by the pilot itself, it may be better to wait until the motivation levels are more
normal. Marketing has been recommended for increasing motivation for SPI in an
organization [38]. Although contrary evidence has recently been presented [39], the
support of top management is an important incentive that encourages developers to
use agile methods and engage in the knowledge transferring [1]. In our case, a good
practice for EB was found to be collecting experiences of the agile pilot cases for
information sharing purposes. However, the risk of an unsuccessful pilot that in-
creases resistance should be taken into account as suggested by Moitra [27].

58 J. Heidenberg et al.

Preconceptions about agile. Even though agile methods are quite established in the
industry today, some may still interpret agile as an approach that promotes “no de-
sign, no documentation”. If this is the case, it may be beneficial to use a different
vocabulary when discussing the pilot. We sometimes avoided using the words
“Scrum” and “agile” and talked about terms like time-driven or timeboxed develop-
ment instead.

Challenges in setting up a team room. Team environment is an important factor
affecting the quality of agile development [38]. The open office space and the impor-
tance of the room environment have often been emphasized [40]. This is because
agile teams should rely on continuous face to face interaction [41]. Any organization
adopting agile needs to consider how the agile team could efficiently use both the
advantages of the physical form and its translation to the digital medium [41]. Design-
ing the team room proved to be a challenging task in our pilots. A team room requires
more office space than a regular open office layout, so the same space will fit less
people. Inform line management of the team room plans well ahead of time and be
prepared that this may need negotiations. It is also important to take the current com-
pany culture and expectations on privacy into account when designing the team room,
in order to reduce the resistance to this change.

Cultural differences. Cultural aspects is a significant factor affecting the agile adop-
tion success: the project adopting agile should be able to be dynamic and make rapid
decisions [3]. Cultural differences may occur in unexpected places, e.g., between two
sites in the same country with different background in company culture, as was the
case in our pilots. Situations in which the project members were accustomed to differ-
ent types of traditional process-based development approaches and documentation
structures were one such instance. It is important to be empathic and try to understand
the needs and way of thinking of the stakeholders. We found that our decision to use
external help for the interviews helped in understanding and bridging cultural differ-
ences. Our external consultants were perceived as more objective and brought in a
fresh viewpoint.

Measuring pilot implications. Measuring the pilot implications quantitatively proved
to be difficult. We investigated quantitative metrics, such as lead time, person-hours,
productivity (e.g., lines of code), quality (e.g., defect rate), but none of these really
objectively capture the improvements that we were aiming for. We believe that more
qualitative metrics, like the ones proposed by the lean community [42] serve our pur-
pose better. We especially want to capture the experience of the project staff. For this
purpose, we suggest that interviews are used to determine the current state before and
after the change has been implemented. Interviews also serve the additional purpose
of creating commitment and a feeling of being heard.

Implications. As a result of applying the pilot method defined for the case company,
a clear change in attitude was perceived. Before the pilots, the teams were not very
keen on participating or eager to change. After the initiative and the pilots had been
promoted, several teams were more than willing to participate. As the pilots pro-
gressed, there was overall a more positive attitude towards the agile methods used.

 Systematic Piloting of Agile Methods in the Large 59

One could even say that resistance to change was overcome and thus one important
goal with the pilots had been reached.

Another result of applying the pilot method is the experience gathered from tailor-
ing both the agile methods used and the end product process in order to fit each other
better. This enables an agile project to run in a non-agile context. The experience is
accumulated as more pilots are implemented and will undoubtedly prove invaluable
when deploying agile methods on a larger scale.

Although both of our cases used the same piloting approach, they had different cul-
ture, scope and context. However, neither of the cases did end up using a pure agile
approach, but rather an adapted approach with traditional and agile elements as sug-
gested by Boehm and Turner [43]. As the contents of different pilots may turn out to
vary when running pilots in multiple environments within the same organization, one
should consider what needs to be investigated with the pilots. If there is a need for
truly investigating exactly the same thing in all of the pilots, the piloting steps should
be consolidated to apply them all. On the other hand, if the need is to assess practices
and determine risks, for example, the variations can prove to be useful.

The ultimate goal of the piloting effort is general deployment of agile methods in
the company. As we can see such a clear change in the attitude towards agile methods
already, we are fairly confident that systematic piloting is an efficient means of pav-
ing the way for general deployment in a large, diverse, geographically distributed
organization.

7 Conclusion and Future Work

Introducing agile in a large, geographically distributed company is a challenging
undertaking. Piloting is a well-known approach to SPI, both in agile and more tradi-
tional settings, and can be used to reduce risk and bridge resistance to change. How-
ever, in a diverse setting, such as the one in the case company, one pilot is often not
enough to build global trust in the new method. Multiple pilots, preferably one in each
type of project, may be needed.

In the case company, we realized that we needed support for the task of setting up
pilots. As presented in this paper, a method for piloting agile in a large corporation
was defined based on a multiple-case study. The method was proven successful in the
goals of (1) overcoming resistance to change and (2) ensuring that a pilot project can
run agile even if the rest of the organization is non-agile. However, it is too early to
evaluate the long-term implications of the method for company-wide deployment.

Future work concerns mostly the current limitations of the study and includes fur-
ther validation and refinement of the method as we further apply it in pilots in the
case company. We are also interested in validating the applicability of the method in
other companies struggling with the challenge of agile piloting in the large. Further-
more, the long-term impacts of piloting on the general deployment of agile methods
still need to be evaluated.

Acknowledgements. Part of the work was done in connection to the ITEA2 project
called Flexi funded by TEKES and coordinated by VTT.

60 J. Heidenberg et al.

References

1. Chan, F.K.Y., Thong, J.Y.L.: Acceptance of Agile Methodologies: A Critical Review and
Conceptual Framework. Decis. Support Syst. 46(4), 803–814 (2009)

2. Lindvall, M., Muthig, D., Dagnino, A., et al.: Agile Software Development in Large Or-
ganizations. Computer 37(12), 26–34 (2004)

3. Misra, S.C., Kumar, V., Kumar, U.: Identifying some Important Success Factors in Adopt-
ing Agile Software Development Practices. J. Syst. Software 82(11), 1869–1890 (2009)

4. Pikkarainen, M., Salo, O., Still, J.: Deploying Agile Practices in Organizations: A Case
Study. In: Richardson, I., Abrahamsson, P., Messnarz, R. (eds.) EuroSPI 2005. LNCS,
vol. 3792, pp. 16–27. Springer, Heidelberg (2005)

5. Benbasat, I., Goldstein, D.K., Mead, M.: The Case Research Strategy in Studies of Infor-
mation Systems. MIS Quarterly 11(3), 369–386 (1987)

6. Yin, R.K.: Case Study Research Design and Methods. Sage Publications, Thousand Oaks
(2003)

7. Piloting, N.: OED online. Oxford University Press, Oxford (2009)
8. Pohl, K.: Software product line engineering. In: Foundations, principles, and techniques.

Springer, Berlin (2005)
9. Kulpa, M.K.: Interpreting the CMMI: A process improvement approach. Auerbach, Boca

Raton (2003)
10. Basili, V.R.: Software Development: A Paradigm for the Future. P. In: 13th Annual Inter-

national Computer Software and Applications Conference (COMPSAC 1989), pp. 471–
485. IEEE CS Press, Los Alamitos (1989)

11. McFeeley, R.: IDEAL: A User’s Guide for Software Process Improvement CMU/SEI-96-
HB-001 (1996)

12. CMMI: Capability Maturity Model® Integration for Development, Version 1.2. Technical
Report CMU/SEI-2006-TR-008 (2006)

13. ISO: (SPICE) ISO TR 15504. Part 5. Information Technology. Software Process Assess-
ment. Part 5: An Exemplar Process Assessment Model, JTC 1/SC 7. ISO TR 15504 (2006)

14. Derbier, G.: Agile Development in the Old Economy. In: Proceedings of the Agile Develop-
ment Conference (ADC 2003), pp. 125–131. IEEE Computer Society, Washington (2003)

15. Rising, L., Janoff, N.S.: The Scrum Software Development Process for Small Teams.
IEEE Software 17(4), 26–32 (2000)

16. Cohn, M., Ford, D.: Introducing an Agile Process to an Organization. Computer 36(6),
74–78 (2003)

17. Drobka, J.: Piloting XP on Four Mission-Critical Projects. IEEE Software 21(6), 70–75
(2004)

18. Grenning, J.: Launching Extreme Programming at a Process-Intensive Company. IEEE
Software 18(6), 27–33 (2001)

19. Rasmusson, J.: Introducing XP into Greenfield Projects: Lessons Learned. IEEE Soft-
ware 20(3), 21 (2003)

20. Fitzgerald, B., Hartnett, G., Conboy, K.: Customising Agile Methods to Software Practices
at Intel Shannon. European Journal of Information Systems 15(2), 200–213 (2006)

21. McCaffery, F., Pikkarainen, M., Richardson, I.: Ahaa – Agile, Hybrid Assessment Method
for Automotive, Safety Critical Smes. In: International Conference on Software Engineer-
ing (ICSE 2008), pp. 551–560. ACM, New York (2008)

22. Pikkarainen, M., Wang, X., Conboy, K.: Agile Practices in use from an Innovation Assimi-
lation Perspective: A Multiple Case Study. In: International Conference of Information
Systems (ICIS 2007), pp. 1–17 (2007)

 Systematic Piloting of Agile Methods in the Large 61

23. Svensson, H., Host, M.: Introducing an Agile Process in a Software Maintenance and Evo-
lution Organization. In: Proceedings of the Ninth European Conference on Software,
Maintenance and Reengineering (CSMR), pp. 256–264. IEEE Computer Society, Wash-
ington (2005)

24. Reifer, D.J.: How Good are Agile Methods? IEEE Software 19(4), 16–18 (2002)
25. Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic

Review. Inform. Software Tech. 50(9-10), 833–859 (2008)
26. Salo, O., Abrahamsson, P.: An Iterative Improvement Process for Agile Software Devel-

opment. Software Process Improvement and Practice 12(1), 81–100 (2007)
27. Moitra, D.: Managing organizational change for software process improvement. In: Acuña,

S.T., Juristo, N. (eds.) International Series in Software Engineering, vol. 10, pp. 163–185.
Springer, New York (2005)

28. Moitra, D.: Managing Change for Software Process Improvement Initiatives: A Practical Ex-
perience-Based Approach. Software Process: Improvement and Practice 4(4), 199–207 (1998)

29. Mathiassen, L., Ngwenyama, O.K., Aaen, I.: Managing Change in Software Process Im-
provement. IEEE Software 22(6), 84–91 (2005)

30. Stelzer, D., Mellis, W.: Success Factors of Organizational Change in Software Process Im-
provement. Software Process: Improvement and Practice 4(4), 227–250 (1998)

31. Beck, K., Beedle, M., Van Bennekum, A., et al.: Manifesto for Agile Software Develop-
ment (2001)

32. Hiatt, J.M.: ADKAR – a model for change in business, government and our community.
Prosci Research, Loveland, CO (2006)

33. Böckle, G., Muñoz, J., Knauber, P., et al.: Adopting and Institutionalizing a Product Line Cul-
ture. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, p. 49. Springer, Heidelberg (2002)

34. Fitzgerald, B.: The use of Systems Development Methodologies in Practice: A Field
Study. Inform. Syst. J. 7(3), 201–212 (1997)

35. Schwaber, K., Beedle, M.: Agile software development with scrum. Prentice-Hall, Upper
Saddle River (2002)

36. Griswold, W.G.: Just-in-Time Architecture: Planning Software in an Uncertain World. In:
SIGSOFT 1996 Workshops Isaw-2 and Viewpoints 1996, pp. 8–11. ACM Press,
New York (1996)

37. Nerur, S., Balijepally, V.: Theoretical Reflections on Agile Development Methodologies.
Comm. ACM 50(3), 79–83 (2007)

38. Baddoo, N., Hall, T.: Motivators of Software Process Improvement: An Analysis of Practi-
tioners’ Views. J. Syst. Software 62(2), 85–96 (2002)

39. Chow, T., Cao, D.: A Survey Study of Critical Success Factors in Agile Software Projects.
J. Syst. Software 81(6), 961–971 (2008)

40. Beck, K., Andres, C.: Extreme programming explained: Embrace change. Addison-
Wesley, Boston (2005)

41. Sharp, H., Robinson, H.: Collaboration and Co-Ordination in Mature eXtreme Program-
ming Teams. Int. J. Hum-Comput. St. 66(7), 506–518 (2008)

42. Poppendieck, M., Poppendieck, T.: Implementing lean software development: From con-
cept to cash. Addison-Wesley Professional, Upper Saddle River (2006)

43. Boehm, B., Turner, R.: Using Risk to Balance Agile and Plan-Driven Methods. Com-
puter 36(6), 57–66 (2003)

Optimized Feature Distribution in Distributed
Agile Environments

Ákos Szőke

Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary

aszoke@mit.bme.hu

http://home.mit.bme.hu/~aszoke/

Abstract. In recent years, agile software development methods have
gained increasing popularity. Distributed software development have
been becoming a common business reality also. Software development or-
ganizations are striving to blend agile development methods like Scrum
and distributed development to reap the benefits of both. However, ag-
ile and distributed development approaches differ significantly in their
key tenets. While agile methods mainly rely on informal processes to fa-
cilitate coordination, distributed development typically relies on formal
mechanisms. This paper aims at implementing modular design of soft-
ware products to identify feature clusters that can be implemented co-
located to minimize the communication needs between distributed teams.
Presented method is evaluated with simulations that demonstrate how
this method can produce 1) lower-risk feasible plans, 2) balanced work-
load on teams, and 3) provide higher quality feature distributions. Fi-
nally, the paper analyzes benefits and issues from the use of this method.

Keywords: distributed software development, agile release planning.

1 Introduction

Agile methods have gained acceptance in the mainstream software development
community. A recent survey [1] showed that 84% of the respondents used ag-
ile development practices to some degree. The popularity of agile development
ideas [2] can be explained by other surveys, which pointed out that agile teams
are often more successful than traditional ones [3], [4]. Several studies demon-
strated 60% increase in productivity, quality and improved stakeholder satisfac-
tion [4], [5], 40% faster time-to-market and 60% and 40% reduction in pre-, and
post-release defect rates [5] comparing to the industry average. The most popu-
lar agile methods are Scrum [6](50%), Extreme Programming (XP) [7](6%), and
Scrum/XP Hybrid (24%) [1].

At the same time, distributed software development (DSD) is another trend,
which have been becoming a common practice in today’s industry [8]. The pre-
viously cited survey [1] pointed out that 58% of the respondents worked in dis-
tributed development teams – where the members of the teams are not physically

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 62–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Optimized Feature Distribution in Distributed Agile Environments 63

co-located. Team member dispersion ranges from being over adjacent buildings to
being over different continents. The key advantages that DSD aspires to achieve
are 1) lower cost of labor, 2) increase or decrease work forces without employing
or laying-off, and 3) obtain locally not available expertise [9].

Global software development (GSD) is the special case of DSD in which team
distribution extends national boundaries [10]. GSD allows organizations to over-
come geographical distances, to benefit from accessing a larger resource pool and
to reduce development costs [8].

In distributed agile software development, additional challenges may be ob-
served comparing to the co-located situations [10], [11], [12]. These challenges
can be categorized into the following areas [12]:

– Communication: Agile development relies more on frequent informal in-
teractions. However in DSD the teams cannot see or speak in person that
result from geographical separation. Additional communication impedance
raises from time zone differences that also hinders the communication be-
tween distributed teams. As a solution, DSD mandates that the development
relies on formal documentation (such as specifications, designs) to mitigate
impediments of communications between the teams.

– Trust: Agile development relies on shared view of goals that are difficult
to observe in dispersed locations. To improve team cohesion in distributed
software development, frequent personal communication is often required.

– Control: In agile development people-oriented control is applied, which
based on informal commitments. The development is usually based on
ongoing negotiation on the requirements between the developers and the
customers. Due to the lack of communication, DSD often relies on process-
oriented development and upfront commitments to meet the customer ex-
pectations on every location of the development.

In previous research [13] it was shown that, distributed projects take about
two and one-half times longer to complete as similar projects where the project
team is co-located. The delays can be explained by the communication and
coordination issues rather than the size or complexity of the cross-site work [13].
As a consequence, distributed agile development requires significant effort from
the team in order to be truly successful [14].

1.1 Related Work

In [15] a method is offered to calculate the degree of relatedness of the work items
at different sites using code change history. The calculated relatedness is used to
distribute work in a way that minimizes the need for coordination across sites.
In [16] experiences of a rapid production process are described using software
components suited for distributed development in a large, geographically dis-
tributed situation. In this approach, each component can be owned by a partic-
ular site to promote independent work and to minimize the need of coordination
and communication.

64 Á. Szőke

Software outsourcing is an increasingly attractive business model for many
large organizations. In [8] three outsourcing strategies are presented to maximize
business value. In [17] good practices are presented that were observed in a very
large (5.000 engineers) globally distributed development situation at Alcatel.

It compared to the extensive research on distributes software development in
general, only few research dealt with DSD in the agile environment in specifi-
cally [11]. Lately Scrum [6], an agile management practice, has gained consider-
ably popularity (see Sec.1). Experiences and practices of the adoption of Scrum
by large companies such as Yahoo! or Microsoft is presented in [18], and in [19]
respectively. In [14] experiences and proven practices to address challenges faced
by geographically distributed agile teams are presented by the Microsoft’s Pat-
terns & Practices group. It pointed out that the decision makers must understand
risk/reward tradeoff needs before deciding to distribute software development,
because it decreases the project’s likelihood of success, increases the delivery time
and quality, and reduces the team’s performance. Besides cross-locations, differ-
ences in culture and language also results in low progress in globally distributed
environments. To cope with these issues, in the literature, some strategies are
proposed including the use of straddlers (technical or managerial liaisons) [8],
bridgehead teams [20], or rotation of management [17].

1.2 Problem Statement and Analysis

DSD has brought about its own unique set of challenges additional to the agile
software development in itself. The majority of these challenges (see them in
Sec. 1) can be rooted from the obstacles of communication – particularly in-
formal communication i.e. when personal physical interactions occur [12], [13].
Team members at the different development sites often suffer from inhibited
communication because they are geographically separated from each other. This
plays the critical role in the success of a distributed agile team [15].

The obstacles of informal communication seem a contradiction to the ideas of
agile methods [2],[21],[3],[13],[12] and seems to preclude the use of agile method-
ologies. Communication and coordination problems result in reduced productivity
of the team (P1), increased production interval (P2), increased communication
cost (P3), and difficult process control across distributed teams (P4).

If a team is distributed, one solution is to minimize the effects of the informal
communication deficiency. It can be accomplished by increasing the formality
(ceremony) of the interactions. In this case, with detailed documentation (i.e.
specifications, design plans, project plans) and conventions (i.e. coding stan-
dards, templates) the lack of communication can be (theoretically) replaced.
Although, this rule reacts and contradicts to the ideas of agility, but it is a
well-tried approach to deal with geographical distances. Another solution can be
realized by decreasing the need of interactions between the distributed teams.
With this approach, the communication needs are minimized, which is also a
good solution to the communication problem.

Optimized Feature Distribution in Distributed Agile Environments 65

1.3 Objectives

Our proposed method intends, on the one hand, to minimize communication
needs to minimize their negative effects of P1-P4, and on the other hand, to
provide optimized distribution of software development work items across sites
considering team capacity constraints. Our contribution is inspired by David
Parna’s work that recommends division of labor along with software modular-
ity [22]. As a part of our proposed solution we defined: 1) a method to determine
features (deliverable functional and non-functional requirements) that could be
developed roughly independently (S1), 2) an optimization model to distribute
features on different development sites (S2), and 3) a feature distribution method
– which utilizes S1 and S2 – to support agile release planning in the distributed
environment (S3).

Structure of the Paper. The rest of the paper arranged as follows: Sec. 2
presents background information; Sec. 3 outlines the proposed feature distribu-
tion method; Sec. 4 shows experiments with our prototypic tool; Sec. 5 discusses
our solution and findings; and finally Sec. 6 concludes the paper.

2 Background

In this section, first, we introduce the agile development process, then different
strategies of DSD, and finally the concept of architecture modularity – to provide
the necessary background information for the proposed method.

2.1 Agile Software Development Process

From the project management point of view, agile software development pro-
cess is made up of the following phases: 1) conceptualization to define a vision,
high-level ranked deliverables and project roadmap, 2) release planning to esti-
mate deliverables and assign them into releases, 3) iteration planning to break
down selected deliverables into technical tasks, 4) iteration to discuss the daily
progress concerning writing tests, codes and fixing defects, 5) iteration review
to demonstrate product increments to stakeholders and conduct iteration ret-
rospective for the next iteration, and finally 6) release to package and deploy
software to customers [23], [24], [25] (see Fig. 1).

Our proposed feature distribution method (S3) intends to complement the
Release planning step up front in the distributed environment with the determi-
nation of roughly independently implementable features (S1) and their optimal
distribution on different sites (S2).

2.2 Agile Distribution Strategies

Two important parameters are observed in practice relating to agile DSD [11], [9]:
team cross-functionality (cross-functional or not cross functional) and team dis-
tribution (co-located or across sites). We define the cross-functional agile team

66 Á. Szőke

Conceptu-
alization

Release
planning

Iteration
planning

Iteration
Iteration
review

Release

Daily loop

Iteration loop

Release loop

Product increment Product release

Fig. 1. Agile Development Cycles

as a group of people working toward the common goal on every site. Whereas,
non-cross functional team is working toward a sub-goal on each site. We can
derive the following three distribution strategies from these parameters:

- Co-located: the single agile team is co-located and cross-functional.
- Isolated: agile teams are isolated across sites and not cross-functional.
- Distributed: agile teams are isolated across sites and cross-functional.

In agile, face-to-face communication is far the most important since it requires
the most intensive communication [6]. Both Isolated and Distributed strategies
require communication across sites to remove dependencies between work units,
but the communication intensities are very different. The latter strategy pro-
vides better load balance of resources since all team members form the common
pool of resources. However, in Isolated case, each team removes most dependen-
cies locally (within the given site), while in Distributed case dependencies must
be resolved across sites. As a consequence Distributed case is more difficult to
implement due to delays in all parties. Consequently, the former model is more
often observed in practice [11], [9], and suggested by the Scrum Alliance [26].

Our proposed feature distribution method (S3) follows the Isolated strategy
as its goal is to specify independently implementable features on different sites.

2.3 Modular Design

The concept of architecture and modularity are central in product development.
Product architecture can be defined as the way in which functional elements
of a product are arranged into modules in that way these units interacts with
each other [22]. Modularity deals with the mapping from functional elements
to modules, so it decomposes the system into units. Modular design emphasizes
the minimization of interaction between modules, which enables modules to be
developed independently. The independently developed modules are integrated
using interfaces between the modules to form the whole product. It points out the
two important activity of product development: decomposition and integration.

The two important characteristics of modularity are the cohesiveness of mod-
ules and the coupling between modules, which describe the interaction inten-
sity between functional elements. Modules are identified in such a way that

Optimized Feature Distribution in Distributed Agile Environments 67

inter-module (between modules) interactions are relatively minimal (i.e. they
are loosely coupled) while intra-module (within each module) interactions rela-
tively high (i.e. they jointly serve a functionality, so they are cohesive) [27].

This underlines the importance of decomposition in distributed software devel-
opment. Modularity enables development of different functional element groups
(modules) at different sites independently, and integration ensures that the whole
functionality can be delivered to the customer’s site.

3 Feature Distribution Method for Agile DSD

In this section, we detail our previously outlined feature distribution method,
namely Assembly Model Design, which aims to support agile release planning
in the distributed environment (S3). As a part of this solution, we introduce
the Feature Cluster Analysis step (Sec. 3.2) to determine features that could
be developed roughly independently (S1), and the Feature Package Distribution
step (Sec. 3.2) to provide optimized distribution of features across sites (S2).

3.1 Assembly Model Design Method

To determine a cohesive feature that can be developed in parallel in different sites
a three-step method, namely Assembly Model Design method (AMD) (S3), is
introduced. The next steps constitute the method 1) Usage analysis, 2) Feature
analysis, and 3) Feature assembly analysis (including S1-2). The AMD method
is visualized in Fig. 2, and detailed in the following.

Usage Analysis. Usage analysis defines stakeholders’ needs in the form of
scenario-based Usage model to describe possible ways to use a system to ac-
complish some desired functions or implicit purposes (see Fig. 2). Scenarios are
operational examples of system usage, they can help to describe (what) and un-
derstand (how) emergent behavior of complex and dynamic systems [28]. Cap-
tured Usage model helps to determine client-valued functions, drive the whole
development process and provide traceability of realization [29], [30]. During
Usage analysis, the main goal is to devise what are the needs of the customer.
Features, which identify customers’ needs, can be collected with User stories and
prioritized according to their importance [6]. Details on agile Usage analysis can
be found in [24], [6].

Needs Usage Model Functional Model Assembly Model

1) Usage Analysis
2) Feature Analysis

3) Feature Assembly Analysis
3a) Feature Cluster Analysis (S1)
3b) Feature Package Distribution (S2)

Fig. 2. Assembly Model Design Method for Determining Feature Packages

68 Á. Szőke

Feature Analysis. The Usage model can be used to identify features. Feature
analysis converts the Usage model into a Functional model (see Fig. 2) by prepar-
ing a list of features (new and changed (non-)functional requirements) needed to
meet the customer’s primary needs. Functional requirements are abstractions of
product function required to satisfy customer needs, provide information about
what the product under investigation is supposed to do. They may be calcula-
tions, data manipulation and processing that define what a system is supposed
to accomplish in terms of particular results of a system. Functional require-
ments are usually completed with non-functional requirements (a.k.a. quality
requirements), which impose constraints on the design or implementation (such
as performance, security, or reliability) [29]. From now on, functional and non-
functional requirements are commonly called as features and denoted as FR.
Realizing a feature usually requires cooperation of developers, which consists in
accomplishing several technical tasks in some modules [31]. Details on Feature
analysis can be found in [24], [6], [31].

3.2 Feature Assembly Analysis

The aim of Feature assembly analysis is to identify parts that can be treated log-
ically independently. It deals with arranging features into feature packages in the
manner by which the resulting Assembly model (see Fig. 2) can be used to struc-
ture the development teams needed. Features with high degree of cohesiveness
should be grouped together into packages. Feature assembly analysis consists
of two steps 3a) Feature cluster analysis, and 3b) Feature package distribution,
which are detailed in the following.

Feature Cluster Analysis. Our aim is to minimize communication between
teams. Therefore objects of feature implementations should be identified in or-
der to help in separation of independent objects. Consequently, we introduce
a binary relation between features (FRs) and system modules (SMs), called
ImplementedIn, to express the fact that a given FR is implemented in some
SMs (i.e. directed, one-to-many relation). We also developed a so-called Feature-
Module Dependency matrix (FMD) to draw this relation, where on the vertical
dimension FRs, and on the horizontal dimension SMs are listed. This approach
is very similar to the widely known design structure (DSM) matrix [32], apart
from the fact that DSMs have limited direct utility for inter-domain analysis
(i.e. squared matrix form). For example, the Fig. 3 shows three different situa-
tions between FRs and SMs (in the cells ’×’ and ’©’ notations denote relation
and lack of relation between elements – respectively). It can be read across an
element’s row to see its targeted module.

The examples (Fig. 3) show the two possible connection types between FRs:

- Coupled: the FR1 and FR2 implementations relate to (ImplementedIn)
both SM1 and SM2 (left) or the SM1 only (middle).

- Uncoupled: the FR1 and FR2 implementations are unrelated, therefore
FR1 and FR2 are uncoupled.

Optimized Feature Distribution in Distributed Agile Environments 69

SM1 SM2

FR1

FR2 ×

×

×

×

SM1 SM2

FR1

FR2 ×

×

×

©

SM1 SM2

FR1

FR2 ©

×

×

©

Fig. 3. Coupled (left, middle) and Uncoupled (right) relations

As a consequence, we introduce a binary (CoupledWith – non-directed, many-
to-many) relation between FRs to express that two given FRs are coupled –
therefore, they should be implemented jointly. Uncoupled connection type means
that the two FRs can be implemented independently.

The ImplementedIn relation sheds light on, at higher level, communication
issues that the team must resolve emanating from the fact that they must be
working on the same set of modules. Therefore, communication demand and
coordination complexity can be reduced if the elements are clustered such a
way that communications predominately occur within clustered FRs rather than
between clustered FRs. In this regard, the elements of the FMD have to be
transformed into coupled and uncoupled sub-matrices to express interdependent
and independent FR sets. To identify independently implementable FR sets, we
apply cluster analysis, which is a common technique for data analysis used in
many fields, including machine learning, and data mining [33].

Cluster analysis is the assignment of a set of elements into subsets so that
elements in the same cluster are similar, in some sense. In our case, similarity
is expressed such a way that FRs are connected across SMs (i.e. they are in
ImplementedIn relation), in other words, FRs are in CoupledWith relation. With
this approach, arranging development work (FRs) according to the identified
clusters, it can significantly decrease the communication needs and coordination
complexity of the distributed team.

If we consider an initial FMD matrix as shown on the left in Fig. 4, the result
of clustering is shown on the right – which is obtained by rearranging rows and
columns based on ImplementedIn relations. In these figures, the targeted mod-
ules and FR implementation are represented on y-axis and x-axis respectively,
and darken cells denote ImplementedIn relation between FRs and SMs. Com-
paring to the left figure, the right one sheds the light on the FR packages (the
four blocks) that can be implemented independently.

Feature Package Distribution. After FR packages are identified, the next
step is to distribute them on different teams. Now we discuss the application of
binary integer programming (BIP) to realize optimal distribution [34].

To model this problem as an BIP, we use n ∗ m variables denoted by xij ,
where the variable xij (1 ≤ i ≤ n and 1 ≤ j ≤ m) indicates that the FR j is
implemented by team i. For example, we would interpret an BIP solution with
x1j = 1 and x2j = 0 as assigning FR j to team 1 and not assigning to team 2.
Assignment does not include sequencing of work just allocating teams to FRs.

70 Á. Szőke

Fig. 4. Initial FMD matrix (left) and Transformed FMD matrix (right)

The amount of effort (e.g. Story point [24]) that FR j require and developed
entirely by team i is represented wij . Sum of assigned work for team i can be
calculated as

∑n
j=1 wijxij . Our objective is to maximize the work assignment

to the distributed teams while all constraints are satisfied. Therefore, we can
determine the objective as: Maximize

∑m
i=1

∑n
j=1 wijxij .

Now, we have to consider what sort of linear constraints on the xij are neces-
sary to ensure that they describe a valid solution. Firstly, FR j must be assigned
to only one team

∑n
j=1 xij = 1, which produces n constraints. Secondly, for

each team we must ensure that the aggregated effort of assigned work cannot be
greater than the capacity of team i (ci – i.e. available resources during a release).
Finally, all FRs’ assignments must be xij ∈ 0, 1 (binary variables) to express the
fact that an FR j is developed or not developed by a team i during the release,
which results in n ∗ m constraints. As a summary, the FR package distribution
binary integer optimization model (FRPD) is formulated as the following:

Maximize
∑m

i=1

∑n

j
wijxij (1a)

∑m

i=1
xij = 1 : for j = 1..n (1b)

∑n

j=1
wijxij ≤ ci : for i = 1..m (1c)

xij ∈ 0, 1 (1d)

where i = 1..m and j = 1..n. If j is assigned to team i then xij = 1, otherwise
xij = 0. The equations denote: 1a) maximization of deliverables, 1b) FR j must
be assigned to only one team, 1c) assigned work cannot be greater then the team
capacity of site i, and finally 1d) an FR is developed or not developed.

We will suppose, as is usual, that the efforts wij are positive integers. Without
loss of generality, we will also assume that ci is a positive integer, and wij ≤ ci

for ∀i, j. If the former assumption is violated, ci is replaced by �ci�. If an item
violates the latter assumption, then the instance is treated as trivially infeasible.

3.3 Tool Support

To obtain a proof-of-concept of Feature assembly analysis method (see Sec. 3.2)
we implemented a prototype in Matlab [35]. This prototype realizes the rank

Optimized Feature Distribution in Distributed Agile Environments 71

order clustering (ROC) [36] algorithm and formulates the FRPD optimization
problem (see Sec. 3.2) which is solved by the Matlab’s built-in BINTPROG func-
tion for binary integer programming problems. The previously presented partial
example in Fig. 4 was produced with the prototype.

4 Experiments

To evaluate our proposed Feature assembly analysis method (see Sec. 3.2) sim-
ulations were carried out. Applying the historical release planning data, as an
input for the method, made it possible to compare them [37]. The five past
data sets were extracted from the backlog of IRIS application that is developed
by Multilogic Ltd [38]. In this section, first we set research questions, then we
present necessary background information, and finally we interpret our findings.

4.1 Research Questions

Our initial intends (see Sec. 1.2 P1-3) was to minimize the effects of the infor-
mal communication deficiency. To validate our method the next questions were
addressed: How does Feature assembly analysis-based feature distribution can be
compared with the historical one in terms of Q1) resource workload, Q2) quality
and Q3) feasibility.

4.2 Context and Methodology

IRIS is a client risk management system (approx. 2 million SLOC) for credit
institutions for analyzing the non-payment risk of clients. It has been a continual
evolution since its first release in the middle of 90s. The system was written in
Visual Basic and C# the applied methodology was a custom agile process.

The planning process was made up of the following steps. During release plan-
ning, the features were selected (expressed in User stories [24]) from the backlog
– considering stakeholders’ demands. Then every User story was estimated by
two teams and assigned to these teams taking teams’ resource capacities into
account intuitively. The two teams worked in different locations in Budapest,
so they could not see or speak often in person that resulted from geographical
separation. Communication was mostly based on video conferences, phone calls
and emails; since all developers were Hungarians, there was no language, cultural
or time zone barriers.

4.3 Data Collection

Five data sets (five releases: R1−5) were selected to make a comparison between
the algorithmic and the intuitive method. All releases had the same iteration
length (80 working hours i.e. 2 weeks), domain, customer, and development
methodology, but they were characterized by different number of User stories
(US – deliverable features), team capacities (TC – the amount of deliverable
Story points [24] by the team in the release – see Sec. 3.2), effective developer

72 Á. Szőke

Table 1. Historical Requirements Dispersion

US TCP ED RUSP
(TCT1, TCT2) (RUST1, RUST2)

R1 34 115 (65,50) 6 (3.5,2.5) 117.0 (70.0,47.0)

R2 25 115 (65,50) 6 (3.5,2.5) 85.5 (51.0,34.5)

R3 27 115 (65,50) 6 (3.5,2.5) 137.5 (74.5,63.0)

R4 44 115 (65,50) 6 (3.5,2.5) 116.5 (60.5,56.0)

R5 26 115 (65,50) 6 (3.5,2.5) 120.0 (73.0,47.0)

Table 2. Feature Packages

FR Packages

R1 34.0; 55.0; 11.0; 15.0; 2.0

R2 85.5

R3 46.5; 5.0; 73.0; 13.0

R4 52.5; 29.0; 25.0; 10.0

R5 29.0; 2.0; 7.0; 64.0; 5.0; 13.0

workforce (ED – available developers), and delivered User stories at the end of
the release (RUS – in Story point). Table 1 summarizes the state variables that
were used to capture facts that were likely affecting the findings, where values
between round brackets pointing out how these variables were divided between
the sites of team 1 and team 2 – respectively. These variables were collected from
the IRIS’s backlog.

We constructed three response variables to test Q1 – namely ΔP, ΔT1, ΔT2 to
express the deviation of the planned team capacities from the planned deliverable
features at project (ΔP � TCP − RUSP), at team 1 (ΔT1 � TCT1 − RUST1)
and team 2 level (ΔT2 � TCT2 − RUST2). Explanations of Q2,and Q3 were
answered with the analysis of the solution’s inherent properties.

4.4 Results and Analysis

To answer to the questions Q1-3, two kinds of simulations were performed on
the input data (Table 1) to compare with the characteristics of our proposed
approach. In Table 2, the result of our Feature Cluster Analysis step (Sec. 3.2)
is presented using User stories as an input collected from the backlog. Using these
FR packages as an input to our Feature Package Distribution step (Sec. 3.2), the
simulations’ output is summarized in Table 3. One of them was carried out such
a way that teams capacities were the same as in the historical case (Sim=TC),
while the other one (Sim∼TC) was realized with alternation of TCT1 and TCT2
– with the utilization of what-if-analysis – to avoid resource over/under-loading.

In Table 3, values between round brackets show how the variables were divided
between the two sites; and values between square brackets shows which feature
packages were assigned in the given site (i.e. team 1/2). The Δ=TC and Δ∼TC

Table 3. Results of Feature Package Distribution

Hist. ΔHist. Sim=TC Δ
P(T1,T2)
=TC Sim∼TC Δ

P(T1,T2)
∼TC

R1 (70,47) -2.0 ([55.0,2.0],[34.0,15.0]) 9.0(8.0,1.0) ([55.0,11.0],[34.0,15.0,2.0]) 0(0,0)

R2 (51,34.5) 29.5 (Unsat,Unsat) -(-,-) ([85.5],0) 0(0,0)

R3 (74.5,63) -22.5 ([46.5,5.0,13.0],0) 50.5(0,50.0) ([73.0],[46.5,5.0,13.0]) 0(0,0)

R4 (60.5,56) -1.5 ([52.5],[29.0,10.0]) 23.5(12.5,11) ([29.0,25.0,10.0],[52.5]) 0(0,0)

R5 (73,47) -5 ([64],[29.0,2.0,5.0,13.0]) 2.0(1.0,1.0) ([7.0,64.0],[29.0,2.0,5.0,13.0]) 0(0,0)

Optimized Feature Distribution in Distributed Agile Environments 73

columns show the differences between the allocated team capacities and the
assigned deliverable features in case of Sim=TC and Sim∼TC simulations.

Interestingly, in R2, one can see a possible extreme situation where all features
are grouped into one cluster so without changing the team capacity (Sim=TC) the
optimization problem is unsatisfiable (Unsat). Contrary, with some alternation
of team capacities (Sim∼TC) the single cluster is assigned to one team.

Comparing the different cases, one can realize that 1) the historical one usu-
ally significantly under-load (R2: 29.5/115 ∗ 100% = 25.7%) or overload (R3:
−22.5/115 ∗ 100% = −19.6%) the available resources, 2) the Sim=TC case – due
to the team capacity constraint – produced resource under-load (all Δ=TC values
are positive), and finally 3) the Sim∼TC case realized neither resources overload
nor under-load (all Δ∼TC values are zeros due to resource adjustment).

To compare the historical and the algorithmic cases statistical analysis was
performed on the response variables. The result is presented in Table 4. From
these, we conclude that – although the Sim=TC case did not exceed the resource
limit, which means lower level scheduling risk – it includes too many contin-
gencies at project (Std.dev. = 21.46) and team levels (Std.dev. = (3.85, 23.31)).
Although, if we compare the historical and the Sim∼TC cases, we can recog-
nize that the optimized case 1) did not exceed the resource capacity due to
resource adjustment (ΔP(T1,T2)

∼TC = 0), which means lower-risk feasible plans (c.f.
Q3); 2) produces balanced workload on teams (c.f. Q1); and 3) can easily re-
solve complex decision situations with the utilization of semi-automatic feature
distribution generations, which support more informed and more established de-
cisions. As a consequence, it ensures higher quality feature distribution plans
compared to the historical case (c.f. Q2).

Table 4. Comparison of Team Assignments

ΔP ΔT1 ΔT2

Hist. = TC ∼ TC Hist. = TC ∼ TC Hist. = TC ∼ TC
Mean 12.10 21.25 0.00 8.20 5.50 0.00 8.10 15.75 0.00

Min 1.50 2.00 0.00 0.00 4.50 0.00 3.00 1.00 0.00

Max 29.50 50.50 0.00 9.50 14.00 0.00 15.50 50.00 0.00

Std.dev. 13.00 21.46 0.00 3.31 3.85 0.00 5.81 23.31 0.00

5 Discussion and Future Work

The obstacles of informal communication seem to preclude the use of agile
methodologies in distributed environments [21], [3], [13], [12]. Communication
and coordination problems result in 1) reduced productivity of the team, 2) in-
creased production interval, 3) increased communication cost, and 4) difficult
process control across distributed teams (c.f. Sec. 1.2 – P1-4). Although, there
can be found some strategies and practices to deal with DSD in agile environ-
ment (Sec. 1.1), any planning method – specifically to release planning – for
work distribution was not found.

74 Á. Szőke

To take advantages of both agile and DSD, we proposed a method, namely
Assembly Model Design (AMD) method, to determine module-induced assem-
bly model in software systems that can be developed independently in different
development sites (Sec. 3.1). The main contribution of this method lays in the
Feature assembly analysis phase which made up of two steps: Feature cluster
analysis (S1), and Feature package distribution (S2).

In Feature cluster analysis (Sec. 3.2), we introduced a ImplementedIn relation
between requirements (FRs) and system modules (SMs), and constructed the
Feature-Module Dependency matrix (FMD) to draw this relation. This helped
us to identify intensive communication needs between FRs in order to structure
the development teams. Next, we applied cluster analysis and implemented the
rank order clustering (ROC) [36] algorithm to form FR packages such a way
that FRs are connected across SMs. With this approach, arranging development
work (FRs) according to the identified clusters, it can significantly decrease
the communication needs and coordination complexity of the distributed team.
Although, there are many matrix clustering algorithms in the literature which
use certain functions to sort the matrix – for example, the bond energy algorithm
(BEA) and modified rank order clustering (MODROC) [39] – we selected the
rank order clustering (ROC) [36] due to its relatively easy implementation and
fast computation on not too large problems. After the FR packages identified,
in Feature package distribution step (Sec. 3.2), we constructed an FRPD binary
integer programming model to distribute FR packages among sites considering
team capacities. This interpretation made it possible to adapt existing algorithms
to realize optimal distribution easily.

This approach not only gives the communication needs increased visibility
with the FMD matrix, but the algorithmic approach to clustering and opti-
mized distribution steps help decision makers to accommodate quick what-if
scenarios and re-planning on-the-fly during agile release planning. However, as
our simulation carried out post mortem analysis, in-depth investigation (e.g.
performing multiple case studies) of the method is recommended in industrial
environments.

6 Conclusions

In recent years, software development organizations have been striving to blend
agile software development methods and distributed development to reap the
benefits of both. The obstacles of informal communication seem to preclude the
use of agile methodologies in distributed environments. To address this situation,
we have presented a method including a novel approach to feature clustering and
optimized feature distribution for wide-ranging distributed agile release planning
problems. To evaluate our method five simulations were carried out that demon-
strated how the method could produce 1) lower-risk feasible plans, 2) balanced
workload on teams, 3) higher quality feature distribution plans, and 4) provide
more informed and established decisions. We believe the results are even more
impressive in more complex (more of teams, features, etc.) situations.

Optimized Feature Distribution in Distributed Agile Environments 75

We think that our proposed method is a plain combination of the present
theories and methods thus it leads us to generalize our findings beyond the
result of the simulations.

Acknowledgements. The development is supported in part by the GVOP
grant (GVOP-3.3.3-05/1.-2005-05-0046/3.0).

References

1. VersionOne: 4rd annual survey: 2009, the state of agile development (2009),
http://www.versionone.com

2. Manifesto for agile software development, http://www.agilemanifesto.org
3. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-

tematic review. Inf. & Softw. Techn. 50, 833–859 (2008)
4. Ambler, S.W.: Survey says: Agile works in practice. Dr. Dobb’s Journal (2006),

http://www.ddj.com

5. Layman, L., Williams, L., Cunningham, L.: Motivations and measurements in an
agile case study. J. of Sys. Arch. 52, 654–667 (2006)

6. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall
PTR, Englewood Cliffs (2001)

7. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Professional, Reading (2004)

8. Heeks, R., Krishna, S., Nicholsen, B., Sahay, S.: Synching or sinking: global software
outsourcing relationships. IEEE Software 18, 54–60 (2001)

9. Sutherland, J., Schwaber, K.: The scrum papers: Nuts, bolts, and origins of an
agile process. PatientKeeper (2007)

10. Layman, L., et al.: Essential communication practices for extreme programming in
a global software development team. Inf. & Softw. Techn. 48, 781–794 (2006)

11. Marchenko, A., Abrahamsson, P.: Scrum in a multiproject environment: An
ethnographically-inspired case study on the adoption challenges. In: Proc. of the
AGILE 2008, pp. 15–26. IEEE Press, Los Alamitos (2008)

12. Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be
agile? ACM Comm. 49, 41–46 (2006)

13. Herbsleb, J., Mockus, A.: An empirical study of speed and communication in glob-
ally distributed software development. IEEE Trans. on Soft. Eng. 29, 481–494
(2003)

14. Miller, A.: Distributed agile development at microsoft patterns & practices (2008),
http://www.microsoft.com

15. Mockus, A., Weiss, D.M.: Globalization by chunking: A quantitative approach.
IEEE Software 18, 30–37 (2001)

16. Repenning, A., Ioannidou, A., Payton, M., Ye, W., Roschelle, J.: Using components
for rapid distributed software development. IEEE Software 18, 38–45 (2001)

17. Ebert, C., Neve, P.D.: Surviving global software development. IEEE Software 18,
62–69 (2001)

18. Cloke, G.: Get your agile freak on! agile adoption at yahoo! music. In: Proc. of the
AGILE 2007, pp. 240–248. IEEE Press, Los Alamitos (2007)

19. Begel, A., Nagappan, N.: Usage and perceptions of agile software development in an
industrial context: An exploratory study. In: Proc. of the Int. Symp. on Empirical
Soft. Eng. and Measurement, pp. 255–264. IEEE Press, Los Alamitos (2007)

http://www.versionone.com
http://www.agilemanifesto.org
http://www.ddj.com
http://www.microsoft.com

76 Á. Szőke

20. Krishna, S., Sahay, S., Walsham, G.: Managing cross-cultural issues in global soft-
ware outsourcing. ACM Comm. 47, 62–66 (2004)

21. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development
methods - review and analysis. Technical Report 478, VTT Publications (2002)

22. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
ACM Commun. 15, 1053–1058 (1972)

23. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software
projects. J. of Sys. and Softw. 81, 961–971 (2008)

24. Cohn, M.: Agile Estimating and Planning. Prentice Hall PTR, Upper Saddle River
(2005)

25. Szőke, A.: Agile release planning through optimization. In: Proc. of Int. Conf. on
Evaluation of Novel Approaches to Software Engineering, INSTICC, pp. 149–160
(2009)

26. Scrum Alliance homepage, http://www.scrumalliance.org
27. Ulrich, K.T., Eppinger, S.D.: Product Design and Development, 3rd edn. McGraw-

Hill, New York (2003)
28. Liu, L., Yu, E.: Designing information systems in social context: a goal and scenario

modelling approach. Inf. Sys. 29, 187–203 (2004)
29. Aurum, A., Wohlin, C.: Engineering and Managing Software Requirements.

Springer, New York (2005)
30. Szőke, A.: A Proposed Method for Release Planning from Use Case-based Require-

ments. In: Proc. of the Euromicro Conf. on Software Engineering and Advanced
Applications, pp. 449–456. IEEE Press, Los Alamitos (2008)

31. Szőke, A.: Decision support for iteration scheduling in agile environments. In:
Proc. of the Int. Conf. on Product Focused Software Process Improvement. LNBIP,
vol. 32, pp. 156–170. Springer, Heidelberg (2009)

32. Eppinger, S., Salminen, V.: Patterns of product development interactions. In: Proc.
of the Int. Conf. On Eng. Design, pp. 610–619. Pergamon Press, Oxford (2001)

33. Romesburg, C.: Cluster Analysis for Researchers. Lulu Press (2004)
34. Schrijver, A.: Theory of linear and integer programming. Wiley & Sons, USA (1986)
35. Mathworks homepage, http://www.mathworks.com/
36. King, J.R.: Machine-component grouping in production flow analysis: An approach

using a ROC algorithm. Int. Journal of Prod. Research 18, 213–232 (1980)
37. Kellner, M., Madachy, R., Raffo, D.: Software process simulation modeling: Why?

what? how? J. of Sys. & Softw. 46, 91–105 (1999)
38. Multilogic homepage, http://www.multilogic.hu
39. Chandrasekharan, M.P., Rajagopalan, R.: Modroc: An extension of rank order

clustering for group technology. Int. J. of Prod. Research 24, 1224–1233 (1986)

http://www.scrumalliance.org
http://www.mathworks.com/
http://www.multilogic.hu

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 77–91, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Approaches to Agile Adoption in Large Settings:
A Comparison of the Results from a Literature Analysis

and an Industrial Inventory

Anna Rohunen1, Pilar Rodriguez1,2, Pasi Kuvaja1, Lech Krzanik1,
and Jouni Markkula1

1 University of Oulu, Department of Information Processing Sciences,
P.O. Box 3000, 90014 University of Oulu, Finland

2 Technical University of Madrid (UPM), E.U. Informatica,
Ctra. Valencia Km. 7, E-28031 Madrid, Spain

{Anna.Rohunen,Pilar.Rodriguez,Pasi.Kuvaja,Lech.Krzanik,
Jouni.Markkula}@oulu.fi

Abstract. – Nowadays the software industry is applying agile methods widely.
However, there appears to be a lack of comprehensive guidelines and strategies
addressing agile adoption. In addition, agile methods and practices often have to
be tailored to be integrated into existing processes. In this study, agile adoption
frameworks and strategies discussed in the literature, especially in the context
of agile in the large, are analysed. The findings from the literature are validated
by and compared to an industrial inventory. Based on the validation and the
comparison, new approaches for agile adoption in large settings have been iden-
tified: incremental agile adoption approaches combining both bottom-up and
top-down strategies; the important role of identified key practices that enable
quick feedback and adaptation in the early adoption stages; and approaches de-
rived from the multidimensional nature of agility. These approaches make pos-
sible to overcome the restrictions of conventional agile methods.

Keywords: Adoption of agile methods, strategies in agile adoption, agile adop-
tion frameworks, agile in the large.

1 Introduction

Software industry today knows well agile values, principles and practices that are
applied in agile methods and approaches. However, the problem appears when all the
elements have to be combined and implemented in practice. The reason behind this
appears to be a lack of complete strategies and associated guidelines addressing agile
adoption, at least in the public domain. Since agile adoption process is dependent on
organizational environment, agile methods and practices have to be often tailored to
be integrated into existing processes.

In the field of agile software development, several literature reviews have been con-
ducted [1], [2], [3], [4], [5]. However, none of the reviews have been focused merely
on agile adoption. The study by Racheva, Daneva and Sikkel [1] discusses value crea-
tion concepts and is intended to discover ways in which agile projects and practices

78 A. Rohunen et al.

create business value. Dybå and Dingsøyr [2] have reviewed empirical studies and
classified them into four categories, including a category “Introduction and adoption of
agile development methods”. Agile adoption was not the focus of their study, and only
seven studies out of 36 were included in this category. The rest three studies mentioned
above contain overviews of agile software development [3], [4], [5].

In order to amass current knowledge of diverse agile adoption topics and to iden-
tify essential future research issues for empirical studies, for agile in the large settings,
a comprehensive study has been carried out in FLEXI project (see acknowledge-
ments). The study consists of two main elements: an extensive literature analysis
about agile adoption topics, and an industrial inventory on agile adoption experiences.
The inventory was carried among the industrial companies of the project consortium
in the large settings. Industrial companies in FLEXI project are all leading edge com-
panies of their business areas and the first-ones to apply agile in large and very large
projects in global setting. In this way, the study provides extensive knowledge on
what the academic (research) is proposing and what the current status of agile adop-
tion in industry is. The results have a special relevance if it is considered that, differ-
ently from other software engineering topics conceived in academia and then adapted
and transferred to industry, agile mainly grows up in industry directly.

One of the main objectives of the literature analysis was to discover theoretical ag-
ile adoption frameworks and strategies in software industry, especially in the context
of agile in the large. The findings of the literature analysis were evaluated, synthe-
sized and presented by a systematic way [6]. In the literature analysis, the main find-
ings show that there is still a need for investigating agile adoption frameworks and
strategies, especially in the context of agile in the large. In the industrial inventory,
the agile adoption experiences of the companies were analysed in order to validate the
findings of the literature analysis and to discover new issues present in the industry
but not reported in the literature. The results from both the literature analysis and the
industrial inventory were compared and synthesized. The synthesis contained new
approaches to agile adoption in the large settings. These approaches concern strategy
types in agile adoption, stages of agile adoption, key practices and management of
dependencies between different agile practices during their adoption.

This paper has been organized as follows. In Section 2 the research setting is de-
scribed. Section 3 presents the outcomes of the literature analysis. Section 4 summa-
rizes the results of the industrial inventory. In Section 5, the synthesis of the results
from the literature analysis and industrial inventory is presented. Finally, in Section 6,
the results of this study as well as its limitations are discussed.

2 Research Setting

The research setting of this study consists of three elements: the literature analysis,
the industrial inventory, and agile in the large aspect. Challenges that are specific to
agile adoption in large settings are identified through agile in the large aspect.

2.1 Performing Literature Analysis

The literature analysis study presented here is focused on diverse agile adoption prob-
lems. The research question addressed by this study is “What are currently the strategies

 Approaches to Agile Adoption in Large Settings 79

to adopt agile methods that are used in the software market?”. This study aims to amass
current knowledge about agile adoption and to identify essential future research issues
for empirical studies, especially on agile in the large settings.

To guarantee the topicality and validity of the results, the search was conducted on
the studies published during years 2000-2009. The search was carried out using six
electronic multidisciplinary databases and databases specialized in the field of com-
puter sciences and business administration (ABI/Inform (ProQuest), Academic Search
Premier (EBSCO), Emerald Journals (Emerald), Science Direct (Elsevier), ACM and
IEEE Xplore – IEEE/IEE Electronic Library). Non research studies such as prefaces,
article summaries, overhead presentations, interviews, short-papers, introductions to
special issues, tutorials or mini-tracks were excluded from the analysis. In the search
stage of the literature analysis, 120 research studies discussing adoption of agile soft-
ware development methods were identified. The findings of the literature analysis were
evaluated, synthesized and presented in a systematic way based on the guidelines for
systematic literature reviews by Kitchenham [6]. Hence a data extraction form was
designed to collect information from individual studies. Also selection criteria and
quality assessment were designed to ensure proper quality of the studies that were
finally included in the research material. The selection criteria concerned e.g. the focus
of the study, publication date, and clarity and contents of the outcomes. The quality
assessment included the following items: objective and context description, research
design, data collection and analysis, justified findings and conclusions, applicability of
the results, minimized threats, and use of references. The quality assessment forms
were modified for different study types included in the analysis: quantitative empirical
studies, qualitative empirical studies, non-empirical studies and experience reports.
The analysis process was conducted by a team of three members.

Thus far 48 studies have been evaluated. From these 48 studies, 38 studies were
accepted and included into the research material. The rest of the material was ex-
cluded from the research material due to not passing the minimum quality threshold
(at least half of the maximum score in the quality assessment). In the study 13 journal
articles and conference papers were found relevant as they focused on agile adoption
strategies.

2.2 Industrial Inventory

Industrial inventory on agile experiences aimed to summarize adoption of agile meth-
ods, practices and tools among FLEXI project consortium. The project consortium
included 8 large scale industry partners, 14 SMEs and 11 research or university part-
ners in 8 European countries. In the consortium, there were partners from different
industry sectors who are developing products for global markets. The consortium rep-
resented leadership in many industry sectors and excellent performance in both eco-
nomical and technical sense. The main characteristics of the consortium partners and
projects were the following: many locations, many stakeholders, distributed organiza-
tions and projects, global projects, large scale projects, and short time to market.

The research process was based on the guidelines of systematic literature reviews
by Kitchenham [6] to appropriate extent. Again, a similar research question, tailored
for the new context, was considered: “What are currently the strategies to adopt agile
methods that are used in FLEXI project?”. Documentation from both industrial and

80 A. Rohunen et al.

academic partners was reviewed, provided that the material discussed specifically
industrial experiences. Research material included all type of material that could in-
clude knowledge about the adoption of any agile method: conference and journal
publications from the project consortium, industrial trials providing an experimental
basis for the theoretical considerations, PhD thesis, master thesis, deliverables, inter-
nal documents, etc. The search for the research material was conducted manually
using project’s internal publication database, and contacting partners. In the search
process 31 studies were identified. Like in the literature analysis, a data extraction
form was designed to collect information from individual studies. Also selection crite-
ria and quality assessment were designed to ensure the quality of the studies. Again,
the inventory process was conducted by a team of three members. All the material
included in the industrial inventory was considered credible, relevant, and having
rigor in the study design and data collection.

2.3 Agile in the Large

Agile in the large settings encompass distributed, large and global software develop-
ment projects and organizations with many locations and stakeholders. Agile in the
large organizations often have a long history in waterfall development with top-down
deployment. In these settings selecting or tailoring agile practices and combining
them with traditional practices may be required. In this study, aspects of agile in the
large were identified and amassed in both the literature analysis and the industrial
inventory. They were recorded in data extraction forms described above.

3 Literature Analysis Results

In this section, examples of different theoretical, structured agile adoption frame-
works found in the literature analysis are presented. After that, the main findings in
this area are summarized.

3.1 Agile Adoption Framework Analysis

Five frameworks that are general approaches to agile adoption are presented [7], [8],
[9], [10], [11]. From the 13 journal articles and conference papers focused specifically
on agile adoption strategies found in the literature analysis, only five can be consid-
ered as structured agile adoption frameworks since the rest of the studies provided
recommendations and lessons learned following not clearly structured strategies. One
of these frameworks describes a pilot project in a large environment [9]. Also a
framework for mission and life-critical systems is presented [8]. Besides, a model for
agile adoption in distributed environments is included in the analysis [11]. In most of
these studies, the agile methods to be adopted were not specified, and the frameworks
were independent of any specific agile methods. However, also XP, Scrum and hybrid
methods were discussed in these studies.

Sidky et al. [7] present in their study a structured and repeatable approach to agile
adoption. This agile adoption framework consists of two components: an agile meas-
urement index and a four-stage process, that together guide and assist agile adoption
efforts in organizations. The four-stage process helps to determine whether or not

 Approaches to Agile Adoption in Large Settings 81

organizations are ready for agile adoption, and guided by their potential, what set of
agile practices can and should be introduced. The four-stage process takes into ac-
count both project level and organizational level. The agile adoption framework by
Sidky et al. is independent of any one particular agile method or style.

Mission and life-critical systems are typically large and complex, and have long
development periods [8]. Another study by Sidky and Arthur [8] presents an agile
adoption framework tailored for mission and life-critical systems. It presents a three-
stage process that provides guidance to organizations on how to identify the agile
practices they can benefit from without causing any negative impact to the mission
and life-critical system being developed. Three fundamental actions are related to this
challenge: identification of the ability of the organization to adopt agile practices,
determination of the suitability of agile practices in the development of mission and
life-critical systems, and determination of the suitability of agile practices for the
organization developing mission and life-critical systems. Agile practices such as
minimal documentation, evolutionary requirements and refactoring are found as un-
suitable for mission and life-critical systems. It is also emphasized that some practices
are dependent on the presence of other practices during their adoption, e.g. test driven
development is dependent on the use of unit testing, continuous integration is depend-
ent on automated unit tests, and having self organizing teams is dependent on having
motivated and empowered individuals.

Qumer and Henderson-Sellers present in their study [9] an Agile Adoption and Im-
provement Model (AAIM) for adoption, assessment and improvement of an agile
software development process. AAIM is based on both the results from existing re-
search studies and the findings from the software industry, and tested on a pilot pro-
ject in a large software development organization. AAIM consists of three agile
blocks, six agile stages and an embedded agility measurement model. Each block and
stage specifies the agile practices to be followed in order to achieve a particular
AAIM level. For example, in AAIM level 1, three basic agile properties are intro-
duced and established: speed, flexibility and responsiveness. These properties estab-
lish a foundation to achieve the rest of the agile levels, and they include e.g. test first
approach. AAIM is a method-independent model and it aims to continuous improve-
ment and incremental success.

Qumer and Henderson-Sellers also point out [10] that only few organizations are
psychologically and technically able to adopt agile approach rapidly and effectively.
They claim that a full transition to an agile process takes years. In [10], they propose
Agile Software Solution Framework (ASSF). ASSF provides an overall context for
the exploration of agile methods, knowledge and governance. ASSF contains Agile
Toolkit, and together these two elements link business aspect to software develop-
ment so that business value and the agile process are well aligned. ASSF assists man-
agers in assessing the degree of agility they require and how to identify appropriate
ways to introduce this agility to their organizations.

Finally, Sureshchandra and Shrinivasavadhani present in [11] a model to transfer
from a traditional agile method to an agile method in a distributed environment. The
aim of the model is to get information flow unobstructed, and flexibility and agility
preserved. The model establishes a gradual transition with four stage process: evalua-
tion, inception, transition and steady state. In the evaluation stage it is decided if the
project can work in a distributed mode. Inception and transition are the intermediate

82 A. Rohunen et al.

stages where ownership, self-organization of the distributed teams and direct cus-
tomer interaction of all teams takes place progressively. Finally, during steady state
the distributed teams take complete ownership of their stories and become self-
organized, and a direct communication between distributed satellite teams and the
customer/business users is completely established.

3.2 Outcomes of the Literature Analysis

The first finding of the literature analysis based on the analysis of agile adoption
frameworks was the identification of two agile adoption strategy types. These strategy
types were wholesale strategies and incremental strategies. In wholesale strategies the
entire agile process is adopted at once [12]. In incremental strategies new practices
are gradually taken into use [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [18],
[19]. Intention to continuous improvement was specifically emphasized in a few stud-
ies as regards incremental agile adoption [7], [9], [12]. Although adoption of any
technology, product or method can take place wholesale or incrementally, it was dis-
covered that the most of analyzed strategies bet on an incremental adoption in the
case of agile methods. Except for one of the studies, the studies discussed only incre-
mental agile adoption strategies. Incremental adoption strategies were used in both
general agile adoption approaches and approaches for large settings. Hodgetts de-
scribes two case studies about wholesale adoption [12]. Both of these cases had not
been successful because of a lack of consensus of the team, and a lack of substantial
preparation for agile adoption. Hodgetts also considers wholesale agile adoption proc-
ess as a risky approach, compared to incremental approaches.

The second finding of the literature analysis was three characteristic features of ag-
ile adoption frameworks that are: agile adoption frameworks are usually composed of
stages, an agility measurement model that guides and assists the agile adoption is gen-
erally used, and there is intention to manage the dependencies between different agile
practices during their adoption. This study focuses only on agile adoption stages and
managing dependencies between practices because of the fundamental role of these
matters. When it comes to agile adoption stages, it was observed that in the research
material commonly considered stages were evaluation stage and introduction stage [7],
[8], [9], [10], [11]. In evaluation stage the ability of the organization to adopt agile
methods is assessed, and the suitable agile practices to be implemented are selected.
Evaluation stage is followed by incremental introduction of agile practices. In most of
the studies, specific agile practices were not indicated but each concrete agile team, in
evaluation stages, has to tailor the method and discover the suitable agile practices.
Dependencies between agile practices were discussed in [8], [10], [17].

The findings of the literature analysis were summarized into three categories as
follows:

• Strategy types in adoption of agile methods
• Stages of agile adoption
• Managing dependencies between different agile practices during their

adoption

 Approaches to Agile Adoption in Large Settings 83

This classification is used further in this study when presenting both the main findings
from the industrial inventory and the synthesis of the literature analysis and industrial
inventory. In conclusion, it was found that with very few exceptions, agile adoption
studies consider very high-level strategies and certainly lack the technical substance.
Also, the analysed frameworks were found as initial contributions, and studies that
clearly indicate how to exactly answer the complex question of how to adopt agile
practices were not found.

4 Industrial Inventory Results

Like in the literature analysis, the agile methods to be adopted were not specified in
the majority of the industrial inventory research material, but in many cases Scrum,
XP and lean development were discussed. The findings of the industrial inventory are
presented as generalized results, independent of any specific agile methods.

4.1 Strategy Types in Adoption of Agile Methods

In the research material gained in the industrial inventory, only incremental agile
adoption strategies were discussed. In some cases of the industrial inventory also
continuity of the adoption process was emphasized, so on the basis of these cases
incremental agile adoption process could also be defined “taking gradually and
continuously new practices into use” [20], [21]. It was observed that incremental
strategies suit well to the context of agile in the large [20], [21], [22], [23]. In big
organizations “Start next Monday” -thinking is important in order to get the adoption
started and the learning process going on [24].

Besides, in the industrial inventory also bottom-up and top-down strategies were
discussed as well the importance of using both of them in parallel during the adoption,
especially in the context of agile in the large. Potential application areas for bottom-
up strategies could be team level choosing and adoption of agile practices, self-
organization and empowerment. Top-down strategies cover defining and/or operating
lean development, business objectives, transformation process and transformation
backlog, organizational values, and changing the management culture and behavior.
This has been done by the management level of the organization. [24], [25]

In the industrial inventory material also key practices that should be implemented
in the beginning of the agile adoption were observed [20], [21]. How to manage de-
pendencies between agile practices and how to define the key practices are discussed
more detailed in section “4.3 Managing dependencies between different agile prac-
tices during their adoption”.

In addition, tailoring agile practices and combining them with existing processes
and past experiences was mentioned as an important aspect in several studies in the
industrial inventory [22], [23], [25], [26], [27], [28], [29], [30], [31], [32], [33].

As a whole, agile adoption can be seen as an iterative process with short feedback
cycles and continuous learning and development. In the industrial inventory observing
the response to changes and adjusting the adoption process accordingly were discovered

84 A. Rohunen et al.

as prerequisites of a successful change process. This is crucial especially in the context
of agile in the large where incremental agile adoption strategies suit well. [20], [21]

4.2 Stages of Agile Adoption

Evaluation stage was missing or not reported almost in all industrial inventory cases.
However, in one case [31] three stages for agile adoption had been defined. This case
took into account also multidimensional nature of agility meaning: selecting agility
goals, selecting means of agility, and making sure that enabling conditions had been
fulfilled in order to implement the goals. In this model the kind of agility the company
needs (project and software development/product/enterprise agility) was defined by
agility goals. When it comes to the means of agility, agile software methods can be
seen only as one subset of such means. Enabling conditions can be e.g. human factors.
Based on this description of the multidimensionality of agility, it can be concluded
that multidimensional nature of agility could be studied in the context of agile in the
large in order to manage the restrictions of conventional agile methods.

In some industrial inventory studies also retrospectives can be seen as a kind of ini-
tial evaluating activity used in the beginning of an incremental adoption process for
inspection and adaption purposes [20], [21].

4.3 Managing Dependencies between Different Agile Practices during Their
Adoption

Based on the industrial inventory, two key practices were identified as starting points
of the adoption process. These are short iterations to enable quick feedback, and retro-
spectives for inspection and adaptation purposes. Incremental agile adoption strate-
gies and observing the response in the change process suit well to agile in the large, as
the key practices enable quick feedback and adaptation. The key practices are seen as
enablers for a successful agile adoption in this context. [20], [21]

Possible synergies between practices being adopted were also discussed in the in-
dustrial inventory. For example, Pikkarainen et al. [32] suggest that in order to im-
prove communication or coordination in teams or organizations, it might be best at
first to adopt only a set of agile practices that are evaluated as most beneficial to team
coordination and from a communication perspective. After that the adoption process
could continue to incorporate other practices if they have some other added value for
the teams or companies.

5 Synthesis of the Results

In this section, comparison tables and a synthesis for the main findings in the agile
adoption literature analysis and the industrial inventory are presented. The synthesis
contains also a summary of agile in the large aspects that were identified during both
the literature analysis and the industrial inventory.

 Approaches to Agile Adoption in Large Settings 85

5.1 Strategy Types in Adoption of Agile Methodologies

On the one hand, there are incremental and wholesale strategies and, on the other hand,
strategy types “bottom-up” and “top-down” were identified. In both the literature
analysis and the industrial inventory, it was discovered that agile adoption strategies
are often incremental. In the industrial inventory the importance of using bottom-up
and top-down adoption strategies in parallel was discovered. Both of these strategies
are needed at the same time when adopting agile in big organizations. In the industrial
inventory also observing the response to changes and adjusting the adoption process
accordingly was discovered as a prerequisite for a successful change process. Further,
tailoring agile practices and combining them with existing processes and past experi-
ences still seem to be important topics in large environments.

The results concerning agile adoption strategy types have been summarized in
Table 1.

Table 1. Comparison of the agile adoption strategy types

 Literature analysis Industrial inventory Agile in the large

Incremental
strategies

Incremental process
adoption, taking
gradually new
practices into use [7],
[8], [9], [10], [11],
[12], [13], [14], [15],
[16].

Incremental strategies were
promoted among the case
companies:

Agile adoption can be seen
as an iterative process with
short feedback cycles and
continuous learning and
development [20], [21],
[22], [23], [24].

Wholesale
strategies

1 wholesale process
adoption case study
including 2 cases
[12]. Unsuccessful
results.

Incremental strategies
suit well to the
context of agile in the
large.

“Start next Monday”
-thinking is important
to get started with
something and get the
learning process
going on in big
organizations.

Bottom-up
strategies

 Agile practices are chosen
and adopted by teams, self-
organization and
empowerment [24], [25].

Top-down
strategies

 Lean development,
business objectives,
transformation process and
backlog, organizational
values, the management
culture and behavior
change are defined and/or
operated by the
management level [24],
[25].

Both bottom-up and
top-down approaches
have their roles in
agile adoption.

Especially, in the
context of agile in the
large, they exist in
parallel.

86 A. Rohunen et al.

5.2 Stages of Agile Adoption

According to the information from both the agile adoption literature analysis and the
industrial inventory, two rough stages of agile adoption were defined: 1) Preliminary
activities assessing the ability of the organization to adopt agile methods, defining
agility goals, considering the means of agility, selecting the suitable agile practices to
be implemented, and fulfilling enabling factors and conditions, and 2) Implementation
activities including actual agile practices introduction and implementation.

The results concerning agile adoption stages types have been summarized in Table 2.

Table 2. Comparison of the agile adoption stages

 Literature analysis Industrial inventory
Agile in the

large

Preliminary
activities

Evaluation stage [7],
[8], [9], [10], [11].
Assessment of the
ability of the
organization to adopt
agile methods and
selection of the
suitable agile practices
to be implemented.

Multidimensional nature of
agility in large-scale settings
can be taken into account via
the following steps:
1) Defining agility goals
2) Considering the means

of agility
3) Enabling factors and

conditions must be ful-
filled

In some industrial studies
also retrospectives used in
the beginning of an
incremental adoption process
for inspection and adaption
purposes can be seen as a
kind of evaluating activity.
[20], [21], [31]

Considering
multidimensional
nature of
agility in large-
scale environment
should be
included in the
preliminary
activities.

Implementation
activities

Agile practices
introduction stage
(often incremental)
[7], [8], [9], [10], [11].

5.3 Managing Dependencies between Different Agile Practices during Their
Adoption

In an incremental agile adoption process possible dependencies and synergies
between practices affect the order in which the practices will be adopted. In the indus-
trial inventory the role of certain key practices that enable quick feedback and adapta-
tion (e.g. short iterations and retrospectives) was highlighted.

The results concerning intention to manage dependencies between agile practices
during agile adoption have been summarized in Table 3.

 Approaches to Agile Adoption in Large Settings 87

Table 3. Comparison of the intention to manage dependencies between agile practices during
their adoption

 Literature analysis Industrial inventory Agile in the large

Key practices Some agile practices
are dependent on the
presence of other
practices during their
adoption [8], [10],
[17].

Key practices acting as
starting points of the
adoption process to
provide quick feedback
and enable adaptation
(e.g. short iterations and
retrospectives) [20], [21].

Using key practices
that enable quick
feedback and
adaptation could be
seen as an enabler
for a successful
agile adoption

Synergy effects Synergies between
practices [8], [10],
[17].

Synergies between
practices, e.g. when
sprint planning, open
office space and daily
meeting are used
together, informal
communication works as
a factor which decreases
the need for
documentation [32].

6 Conclusions and Limitations of the Study

The aim of this study was to analyze current understanding about agile adoption, and
to identify fruitful starting points for future empirical studies especially for agile in
the large settings. Due to a lack of complete strategies and associated guidelines ad-
dressing agile adoption, this study started with a literature analysis on existing agile
adoption frameworks and strategies. The findings from the literature were comple-
mented and validated with the results of an industrial inventory on agile adoption
experiences. Finally, new approaches to agile adoption were discovered via synthesis
of the results of the literature analysis and the industrial inventory. Throughout the
study, a special emphasis was put on the aspects of agile in the large.

As a general answer to the research question addressing the study: “What are cur-
rently the strategies to adopt agile methods that are used in the software market?” it
was concluded that we could find no study which clearly and deeply indicates how to
adopt agile methods. It was found that with very few exceptions, most of the analysed
studies view the adoption process from somewhat high-level perspective. Although
some studies provide initial contributions such as frameworks shedding light on the
area of agile adoption, a key implication for the research is that there is still need for
investigating agile adoption frameworks and strategies, especially in the context of
agile in the large.

The main findings of this study were classified into three categories as follows: 1)
strategy types in adoption of agile methods, 2) stages of agile adoption, and 3) manag-
ing dependencies between different agile practices during their adoption.

88 A. Rohunen et al.

1) In both the literature analysis and the industrial inventory, it was discovered that
agile adoption strategies are often incremental. In the industrial inventory re-
search material, also continuity was seen as an important feature of the incre-
mental adoption process. In other words, the importance of taking continually
new agile practices into use was emphasized. Incremental strategy to adopt agile
methods step by step seems to be suitable especially in the context of agile in the
large. Further, when it comes to the aspect of agile in the large, the industrial in-
ventory also convinced of the importance of using bottom-up and top-down
adoption strategies in parallel when adopting agile in big organizations. Com-
pared to the literature analysis, this is a new aspect. In the future studies it could
be combined to incremental approaches that also suit well in the context of agile
in the large. In the industrial inventory, also observing the response to changes
was discovered as a prerequisite of a successful change process. Accordingly,
adoption process should be adjusted based on the response. As a whole, when
used all together, these strategies can be seen as a starting point to make agile
adoption an agile process itself.

2) According to the literature, incremental agile adoption strategies include an
evaluation stage assessing the ability of the organization to adopt agile methods
and selecting the suitable agile practices to be implemented. This stage is fol-
lowed by an incremental introduction of agile practices. In the industrial inven-
tory instead, any classification of stages usually did not exist. Hence one fruitful
area for future research could be discovering evaluation stage in the context of
agile in the large. This could also be combined to the considerations of multidi-
mensional nature of agility that discusses e.g. product and enterprise agility.
Discussion of multidimensional nature of agility should be included in the pre-
liminary activities in the context of agile in the large in order to manage the re-
strictions of conventional agile methods.

3) In an incremental adoption process it also has to be taken into account that there
can be dependencies and synergies between practices. This affects the order in
which the practices will be adopted. In the industrial inventory the role of certain
key practices that enable quick feedback and adaptation (e.g. short iterations and
retrospectives) was highlighted. These practices should be implemented already
in the beginning of the agile adoption process. How to define, select, adopt and
use the key practices in a proper way, especially in the context of agile in the
large, could be investigated more detailed. In addition, in this context tailoring
agile practices and combining them with existing processes and past experiences
still seem to be important topics that are waiting for organization level solutions.

On the other hand, both the literature analysis and industrial inventory convinced us
that agile methods are not applicable just for small scale projects. Agile methods can
be effectively deployed in large settings if agile in the large aspect is properly taken
into account. However, the applicability of agile methods in different domains should
be managed carefully. For example, when developing safety critical systems risks
related to the adoption and use of agile practices have to be discussed systematically
before formulating the adoption strategy. Certain agile practices are clearly not suit-
able for safety critical systems (minimal documentation, evolutionary requirements or
refactoring).

 Approaches to Agile Adoption in Large Settings 89

Although the industrial inventory was conducted among a diverse set of companies
with large settings, its external validity has to be discussed when interpreting the
findings of the study. A few companies were actively reporting their experiences,
whereas material from the rest of the consortium was scarcer. Those companies that
extensively provided this study with the industrial inventory material are big compa-
nies with large settings, and they represent expert knowledge in their industries.
However, the findings could be still validated and specified using a bigger sample of
companies. Also the literature analysis should be more precise. Despite this, we have
been able to discover agile in the large strategies and find evidence of its applications
in large environments.

In this study, several future research issues for empirical studies were found: com-
bining different agile adoption strategies, discovering evaluation stage in large envi-
ronments, and the use of key practices when adopting agile. Agility measurement
model (discussed in section 3.2) can also be added to the discussion on agile adoption
as the work on this issue progresses. In the future, we will enhance our analysis of
industrial experiences. For example surveys can be conducted to obtain more exten-
sive and detailed information from the industry. Aggregate level results of this type
could also be used for a basis of comparison and benchmarking among practitioners.

Acknowledgments. This study has been carried out in ITEA2 project E06022 FLEXI,
“Flexible global product development and integration: From idea to product in 6
months.”

References

1. Racheva, Z., Daneva, M., Sikkel, K.: Value Creation by Agile Projects: Methodology or
Mystery? In: Bomarius, F., Oivo, M., Jaring, P., Abrahamsson, P. (eds.) Product-Focused
Software Process Improvement. LNCS, vol. 32, pp. 141–155. Springer, Heidelberg (2009)

2. Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology 50, 833–859 (2008)

3. Erickson, J., Lyytinen, K., Siau, K.: Agile modeling, agile software development, and ex-
treme programming: the state of research. Journal of Database Management 16, 88–100
(2005)

4. Cohen, D., Lindvall, M., Costa, P.: An introduction to agile methods. Advances in Com-
puters 62, 2–67 (2004)

5. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development Meth-
ods: Review and Analysis. VTT Technical Report (2002)

6. Kitchenham, B.A.: Guidelines for Performing Systematic Literature Reviews in Software
Engineering Version 2.3. Technical Report, Keele University and University of Durham
(2007)

7. Sidky, A., Arthur, J.: A Disciplined Approach to Adopting Agile Practices: The Agile
Adoption Framework. Innovations in Systems and Software Engineering 3, 203–216
(2007)

8. Sidky, A., Arthur, J., Bohner, S.: Determining the Applicability of Agile Practices to Mis-
sion and Life-critical Systems. In: Proceedings of the 31st Annual IEEE Software Engi-
neering Workshop, pp. 3–12. IEEE Computer Society, Washington (2007)

90 A. Rohunen et al.

9. Qumer, A., Henderson-Sellers, B., McBride, T.: Agile Adoption and Improvement Model.
In: Rodenes, M. (ed.) Proceedings of European and Mediterranean Conference on Informa-
tion Systems 2007, EMCIS (2007)

10. Qumer, A., Henderson-Sellers, B.: A Framework to Support the Evaluation, Adoption and
Improvement of Agile Methods in Practice. Journal of Systems and Software 81,
1899–1919 (2008)

11. Sureshchandra, K., Shrinivasavadhani, J.: Adopting Agile in Distributed Development. In:
Proceedings of the 2008 IEEE International Conference on Global Software Engineering,
pp. 217–221. IEEE Computer Society, Washington (2008)

12. Hodgetts, P.: Refactoring the Development Process: Experiences with the Incremental
Adoption of Agile Practices. In: Proceedings of the Agile Development Conference,
pp. 106–113. IEEE Computer Society, Washington (2004)

13. Mahanti, A.: Challenges in Enterprise Adoption of Agile Methods – A Survey. Journal of
Computing and Information technology 14, 197–206 (2006)

14. Bahli, B.: The Role of Knowledge Creation in Adopting Extreme Programming Model: an
Empirical Study. In: Proceedings of ITI 3rd International Conference on Information &
Communication Technology, pp. 75–87 (2005)

15. McDowell, S., Dourambeis, N.: British Telecom Experience Report: Agile Intervention –
BT’s Joining the Dots Events for Organizational Change. In: Concas, G., Damiani, E.,
Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 17–23. Springer, Heidelberg
(2007)

16. Rayhan, S.H., Haque, N.: Incremental Adoption of Scrum for Successful Delivery of an IT
Project in a Remote Setup. In: Proceedings of the Agile 2008, pp. 351–355. IEEE Com-
puter Society, Washington (2008)

17. Griffiths, M.: Crossing the Agile Chasm: DSDM as an Enterprise Friendly Wrapper for
Agile Development. Quadrus Development Inc. (2003)

18. Striebeck, M.: Ssh! We Are Adding a process.... In: Proceedings of the Conference on AG-
ILE 2006, pp. 185–193. IEEE Computer Society, Washington (2006)

19. Long, K., Starr, D.: Agile Supports Improved Culture and Quality for Healthwise. In:
Proceedings of the AGILE 2008, pp. 160–165. IEEE Computer Society, Washington
(2008)

20. Vilkki, K.: Juggling with the Paradoxes of Agile Transformation. In: Agile Processes in
Software Engineering and Extreme Programming (2008) (Keynote Speech)

21. Project internal unreported, unpublished material
22. Project internal unreported, unpublished material (2008)
23. Project internal unreported, unpublished material (2007)
24. Vilkki, K.: Juggling with the Paradoxes of Agile Transformation or How to survive in a

large scale agile transformation. FLEXI Newsletter 2(2008), 3–5 (2008)
25. Aalto, J.-M.: Large-scale Agile Development of Nokia S60 Software. OO Days, Tampere

(2008)
26. Lindvall, M., et al.: Agile Software Development in Large Organizations. Computer 37,

26–34 (2004)
27. Karlström, D., Runeson, P.: Combining Agile Methods with Stage-Gate Project Manage-

ment. IEEE Software 22, 43–49 (2005)
28. Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic

Review. Information and Software Technology 50, 833–859 (2008)
29. Salo, O.: Enabling Software Process Improvement in Agile Software Development Teams

and Organisations. VTT Technical Report (2006)

 Approaches to Agile Adoption in Large Settings 91

30. Srinivasan, J., Dobrin, R., Lundqvist, K.: ‘State of the Art’ in Using Agile Methods for
Embedded Systems Development. In: Proceedings of the 2009 33rd Annual IEEE Interna-
tional Computer Software and Applications Conference, pp. 522–527. IEEE Computer So-
ciety, Washington (2009)

31. Kettunen, P., Laanti, M.: Combining Agile Software Projects and Large-scale Organiza-
tional Agility. Software Process Improvement and Practice 13, 183–193 (2008)

32. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of agile prac-
tices on communication in software development. Empirical Software Engineering 13,
303–337 (2008)

33. Järvilehto, M.: AGILE NOKIA – Large, fast and commited. FLEXI Newsletter 1(2008), 3
(2008)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 92–106, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Applying DPPI: A Defect Causal Analysis Approach
Using Bayesian Networks

Marcos Kalinowski1, Emilia Mendes2, David N. Card3, and Guilherme H. Travassos1

1 COPPE/UFRJ – Federal University of Rio de Janeiro,
68511 Rio de Janeiro, Brazil

2 Computer Science Department – The University of Auckland,
92019 Auckland, New Zealand

3 Det Norske Veritas, 32937 Florida, USA
mkali@cos.ufrj.br, emilia@cs.auckland.ac.nz, card@computer.org,

ght@cos.ufrj.br

Abstract. Defect causal analysis (DCA) provides a means for product-focused
software process improvement. A DCA approach, called DPPI (Defect Preven-
tion-based Process Improvement), was assembled based on DCA guidance ob-
tained from systematic reviews and on feedback gathered from experts in the
field. According to the systematic reviews, and to our knowledge, DPPI repre-
sents the only approach that integrates cause-effect learning mechanisms (by
using Bayesian networks) into DCA meetings. In this paper we extend the
knowledge regarding the feasibility of using DPPI by the software industry, by
describing the experience of applying it end-to-end to a real Web-based soft-
ware project and providing additional industrial usage considerations. Building
and using Bayesian networks in the context of DCA showed promising prelimi-
nary results and revealed interesting possibilities.

Keywords: Bayesian Networks, Defect Causal Analysis, Defect Prevention,
Defect Prevention-based Process Improvement, DPPI, Product Focused Soft-
ware Process Improvement.

1 Introduction

Causal analysis and resolution encompasses the identification of causes of defects and
other problems, and ways to prevent them from occurring in the future. It is part of
many software process improvement models and approaches, such as CMMI [1],
ISO/IEC 12207 [2], and Six Sigma [3]. Defect causal analysis (DCA) [4] represents
the application of causal analysis and resolution to a specific type of problem: defects
introduced in software artifacts throughout a software lifecycle.

Thus, DCA can be seen as a process to discover and analyze causes associated with
the occurrence of specific defect types, allowing the identification of improvement
opportunities for the organization’s process assets and the implementation of actions
to prevent the recurrence of those defect types in future projects. Effective DCA has
helped to reduce defect rates by over 50%, in organizations such as IBM [5], Com-
puter Science Corporation [6], HP [7], and InfoSys [8]. Once used, DCA reduces the

 Applying DPPI: A Defect Causal Analysis Approach Using Bayesian Networks 93

rework effort [8] and increases the probability of achieving other process-based qual-
ity and performance goals [1].

However, despite its benefits and broad industry adoption, there are still numerous
unanswered questions concerning DCA implementation in software organizations and
a small number of related publications [9]. Therefore, in order to provide guidance on
how to efficiently implement DCA in software organizations, a systematic review was
conducted in 2006 and replicated in 2007 [10]. The results of both systematic review
trials, besides allowing producing DCA guidance, revealed opportunities for further
investigation [11]. For instance, “the DCA state of the art did not seem to include any
approach integrating learning mechanisms regarding cause-effect relations into DCA
meetings”. This means that, in all of the approaches found, the knowledge about
cause-effect relationships gathered during each DCA session was only used to initiate
actions to improve the development process, and afterwards discarded.

To our knowledge, the first effort to bridge this gap is reported in the initial con-
cept of a DCA approach described in [12]. In this initial concept the integration of
knowledge gathered in successive causal analysis events as means to assemble a
deeper understanding of the defects` cause-effect relations is suggested by using
Bayesian networks. Such integration aims to facilitate the creation and maintenance
of common causal models to be used to support the identification of causes of defects,
allowing efficient process improvement in each DCA event. For instance, such causal
models can help to answer the following questions during DCA meetings: “Given the
past projects within my organizational context, which causes led to which types of
defects?”, or “Given the past projects within my organizational context, with which
probability did a certain cause lead to a specific defect type?”. Further this initial
concept was evolved and tailored into the DPPI (defect prevention based process
improvement) approach, based on an additional systematic review trial (conducted in
2009) and feedback gathered from experts in the field. DPPI, besides using and feed-
ing Bayesian networks to support DCA, addresses all the specific practices of the
CMMI CAR (Causal Analysis and Resolution) process area.

In this paper we extend the knowledge regarding the feasibility of using DPPI by
the software industry, by (i) describing the experience of applying DPPI to a large
scale Web-based software project detailing how its activities and tasks could be per-
formed in the context of a real software project, and (ii) providing industrial consid-
erations for DPPI with additional insights from a practitioner’s point of view into its
underlying usage assumptions, the need for tools, and other usage possibilities.

The remainder of this paper is organized as follows. In Section 2 a theoretical
background on DCA is described. In Section 3, an overview of DPPI and its activities
is provided. Section 4 describes the experience of applying DPPI to a Web-based
software project. Section 5 contains the industrial considerations. Finally, conclusions
and comments on future work are given in Section 6.

2 Defect Causal Analysis

To have a clear understanding of what defect causal analysis represents in the scope
of this paper it is important to first understand what the term defect means. The IEEE
standard terminology for software engineering [13] states that when a defect is found

94 M. Kalinowski et al.

through peer reviews it is related to a fault in the artifact being reviewed. When a
defect is found through testing activities, on the other hand, it is related to a failure in
the software product being tested. In this paper the term defect is used to represent
faults revealed by software inspections.

Card [9] summarizes the DCA process in six steps: (i) to select a sample of the de-
fects; (ii) to classify selected defects; (iii) to identify systematic errors; (iv) to deter-
mine the main cause; (v) to develop action proposals; and (vi) to document meeting
results. In this context, a systematic error is an error that results in the same or similar
defects being repeated in different occasions. Finding systematic errors indicates the
existence of significant improvement opportunities for the project or organizational
process assets. Besides listing these six steps, the importance of managing the imple-
mentation of the action proposals until their conclusion and communicating the im-
plemented changes to the development team is highlighted [9].

A representation of the traditional software defect prevention process [14], consistent
with the DCA process described above, is shown in Fig. 1. DCA can be considered part
of defect prevention, which also addresses implementing improvement actions to pre-
vent the causes (action team activity) and communicating changes to the development
team (stage kickoff activity). The depicted experience base indicates defect prevention
as a means for communicating lessons learned among projects.

Fig. 1. Defect Prevention Process [14]

In order to provide an unbiased and fair review regarding DCA’s the state of the
art, a systematic review was planned and executed in three different years (2006,
2007, and 2009). We chose to use a systematic review (SR) for the initial research
step, as it tends to be unbiased and more reliable than an ad-hoc review [15]. More
details on the SR can be found in [10], where the review protocol and the 2006 and
2007 trials are described in detail. At all, considering the three trials, the SR analyzed
198 research papers, and 55 were filtered using the protocol’s inclusion criteria (44 in
2006 + 6 in 2007 + 5 in 2009). The protocol was applied against the following digital
libraries: ACM Digital Library, EI Compendex, IEEE, Inspec, and Web of Science.

Based on the first two SR trial results, some guidance on how to efficiently imple-
ment DCA in software organizations could be elaborated [11]. Afterwards, the guid-
ance was updated, based on the 2009 trial. This updated guidance helps to answer the
following questions commonly faced by practitioners when implementing DCA in
software organizations: “Is my organization ready for DCA?”, “What approach
should be followed?”, “Which techniques should be used?”, “What metrics should be

 Applying DPPI: A Defect Causal Analysis Approach Using Bayesian Networks 95

collected?”, “How should DCA be integrated with Statistical Process Control?”,
“How should defects be categorized?”, “How should causes be categorized?”, and
“What are the expected costs and results of implementing DCA?”. More details on
this guidance can be found in [11].

Using the initial guidance, a proposal towards a defect prevention based software
process improvement approach could be outlined [12], addressing an identified oppor-
tunity for further investigation by suggesting the use of Bayesian networks to inte-
grate cause-effect learning mechanisms into DCA meetings. Afterwards this approach
was evolved and tailored into DPPI based on the updated guidance, feedback gathered
from experts in the field, and the experience of instantiating some of its concepts
based on real project data. DPPI, besides using and feeding Bayesian networks to
support DCA, addresses all the specific practices of the CMMI CAR process area.
The next section provides a brief DPPI overview.

3 DPPI Overview

DPPI represents a practical approach for defect prevention that follows the framework
of the traditional defect prevention process, described by Jones [14]. Thus, although
slightly rearranged, the DCA meeting, action team, and stage kickoff activities, shown
in Fig. 1, are also considered.

When comparing DPPI to the traditional defect prevention process, the main inno-
vation is the integration of knowledge gathered in successive causal analysis events in
order to provide a deeper understanding of the organization’s defect cause-effect
relations; this addresses an opportunity for further investigation identified in our SRs
and highlighted in [11]. To our knowledge this opportunity was first addressed in the
initial concept that led to DPPI, described in [12], and so far no other approach con-
siders this integration. Such integration allows establishing and maintaining common
causal models to support the identification of causes for efficient process improve-
ment in each causal analysis event. Those causal models could support diagnostic
reasoning, helping to understand, for instance, given similar projects of the organiza-
tion, which causes usually lead to which defect types.

Additionally, DPPI follows the guidance for implementing DCA efficiently in
software organizations [11] in order to tailor the defect prevention activities into more
specific tasks, providing further details on the techniques to be used to accomplish
these tasks efficiently. Moreover, it integrates defect prevention into the measurement
and control strategy of the development activity for which defect prevention is being
applied, allowing one to observe whether the implemented improvements to the de-
velopment activity brought real benefits. The tailored approach addresses all CMMI
CAR specific practices. Thus, following the DPPI approach results in CMMI com-
patibility regarding the analysis of causes of software defects.

Given that DPPI aims at continuous improvement by enhancing the development
activity’s sub-process performance and capability, as suggested by the guidance, it
was designed to take place right after the inspection of the artifacts of each main
software lifecycle development activity.

DPPI includes four activities: (i) Development Activity Result Analysis; (ii) DCA
Preparation; (iii) DCA Meeting; and (iv) Development Activity Improvement.

96 M. Kalinowski et al.

Fig. 2. DPPI Approach Overview

The main tasks for each of these activities, as well as the roles involved in their exe-
cution, are depicted in Fig. 2. Note that the software development activity itself and
its inspection are out of DPPI’s scope.

This figure also highlights the proposal to maintain information regarding the or-
ganization’s defect cause-effect relations (causal model) for each development activ-
ity. DPPI considers those causal models to be dynamically established and maintained
by feeding and using Bayesian networks. Pearl [16] suggests that probabilistic causal
models can be built using Bayesian networks, if concrete examples of cause-effect
relations can be gathered in order to feed the network. In the case of DPPI the exam-
ples to feed the Bayesian network can be taken from each DCA meeting results. A
brief description of the four DPPI activities and their tasks is provided in the follow-
ing subsections.

3.1 Development Activity Result Analysis

This activity, which is not mandatory (unless CMMI compatibility is desired), aims at
the quantitative measurement and control of the development activity, but is sug-
gested by the guidance as essential to understand the DCA’s efficiency, as highlighted
in [17]. It comprises two tasks to be performed by the DPPI moderator (could be the
same moderator of the inspection in which the defects where revealed). Further details
on these tasks follow.

Analyze Development Activity Results. In this task the development activity’s de-
fect related results should be analyzed, comparing it against the same development
activity historical defect related results. For DPPI this analysis focuses on changes in

 Applying DPPI: A Defect Causal Analysis Approach Using Bayesian Networks 97

defect rates, and changes in the activities’ input and output quality. Thus, as suggested
by the guidance, the following metrics should be analyzed against historical data by
using a statistical process control chart: (i) number of defects per unit of size, (ii)
number of defects found per inspection hour, (iii) Phase Input Quality (PIQ, which
indicates the percentage of defects found in the analyzed development activity that
were actually introduced in prior activities), and (iv) Phase Output Quality (POQ,
which indicates the percentage of defects of the analyzed development activity that
leaked into other development activities). The PIQ and POQ metrics allow to com-
prehend an activity’s input and output quality, and are described in further details in
[18], however, sometimes data to calculate them might not be available.

Moreover, as suggested by [19] and indicated by the guidance, the type of the sta-
tistical process control chart for the first two of those metrics should be a U-chart,
given that defects follow a Poisson distribution. For the PIQ and POQ metrics (which
represent a relative percentage) a standard individuals (xMR) chart can be plotted.
Those charts can easily indicate if the defect metrics of the development activity sub-
process are under control by applying some basic statistical tests (more details on
those tests can be obtained in [20]).

Establish Quantitative Improvement Goals. This task concerns establishing im-
provement goals for the development activity sub-process. A typical example of
quantitative improvement goal is: “reducing the defect rate by X percent”. If the sub-
process related to the development activity is out of control the focus of the causal
analysis meeting becomes revealing assignable causes and the improvement goal
should be related to stabilizing the sub-process. If it is under control the focus is on
finding the common causes and the improvement goal should be improving the proc-
ess performance and capability.

3.2 DCA Preparation

This activity comprises the preparation for defect causal analysis by selecting the
samples of defects to be analyzed and identifying the systematic errors that have been
committed leading to several of those defects.

Apply Pareto Chart and Select Samples. This task refers to finding the clusters
(samples) of defects where systematic errors are more likely present. Since systematic
errors lead to defects of the same type, as indicated by the guidance [11], the Pareto
chart can be used to find those clusters, by using the defect categories as the
discriminating parameter.

Find Systematic Errors. This task comprises analyzing the defect sample (reading
the description of the sampled defects) in order to find its systematic errors. Examples
of systematic errors can be found in [21]. Only the defects related to those systematic
errors should be considered in the DCA meeting. At this point the moderator could
receive support from representatives of the document authors and the inspectors
involved in finding the defects.

98 M. Kalinowski et al.

3.3 DCA Meeting

In this activity the moderator should be supported by representatives of the authors
(which know the project context) and the software process engineering group (SEPG).
A description of the two tasks involved in this activity follows.

Identify Main Causes. This task comprises analyzing the descriptions of the defects
related to the systematic errors in order to find the main causes for each systematic
error. It receives great support from having a causal model represented as a Bayesian
network and can be stated as the core of our approach. Given the causal model elabo-
rated based on prior DCA meetings for the same development activity, the probabili-
ties for causes to lead to the defect type related to the systematic error being analyzed
can be calculated by using the Bayesian network inference. Afterwards those prob-
abilities can be used to support the DCA meeting team in identifying the main causes.
Therefore it can be represented as a probabilistic cause-effect diagram [12] for the
type of defect related to the systematic error being analyzed.

This diagram was designed based on the cause-effect diagram [24], suggested by
the guidance for identifying causes. The probabilistic cause-effect diagram extends
the cause-effect diagram by (i) showing the probabilities for each possible cause to
lead to the analyzed defect type and (ii) representing the causes using grey tones,
where the darker tones are used for the causes with higher probability. This represen-
tation can be easily interpreted and highlights the causes with greater probabilities of
causing the analyzed defect type. A concrete example of how such diagram can be
built based on the Bayesian network is shown in Section 4.

At the end of the meeting the Bayesian network should be fed with the resulting
causes for the defect type, so that the probabilities of the causes can be updated for the
next DCA event.

Propose Actions to Prevent Causes. In this task, actions should be brainstormed to
improve the process assets in order to prevent the identified causes. The overall meet-
ing results (current defect rates, improvement goals, main defect categories, system-
atic errors, causes, and action proposals) should be documented.

3.4 Development Activity Improvement

Finally, in this activity, the action proposals should be implemented by a dedicated
team and managed until their conclusion. After implementation, the changes to the
process should be communicated to the development team.

Given this brief overview of DPPI, the next section describes the proof of concept
experience of applying DPPI to a real large scale Web-based software project.

4 DPPI Proof of Concept

As a proof of concept, DPPI was applied retroactively to perform defect causal analy-
sis on the functional specification activity of a real Web-based software project. The
scope of this project, called SIGIC, was to develop a new information system to man-
age the activities of the COPPETEC Foundation. Thus the project involved several

 Applying DPPI: A Defect Causal Analysis Approach Using Bayesian Networks 99

departments from the Foundation, such as: human resources, financial, protocol,
among others. The system to be implemented was modularized and developed in an
iterative and incremental lifecycle. Based on this lifecycle, a development process
was defined, in which software inspections were performed on each of the modules’
functional specifications, using the ISPIS framework [22].

In total, more than 10 iterations were performed and more than 200 use cases were
specified, implemented and delivered to the client over a three years development
period. By the end of the project, all inspection data was available, including details
on over 1000 defects found and removed from the functional specifications before the
actual implementation. In this context, DPPI was applied retroactively to the func-
tional specification activity of the fourth developed module regarding protocol of
bound solicitations, called MPTV. The details of how each DPPI activity (except the
improvement activity, which could not be performed since the application was retro-
active) could be performed are described hereafter.

4.1 Applying Development Activity Result Analysis

To understand the current scenario and changes in defect rates comparing the SIGIC
MPTV module to the prior ones (MSL, MGU, and MPT), as suggested by DPPI, a U-
chart was plotted for defects per inspection hour and defects per unit of size (use case
point). This chart is shown in Fig. 3.

Fig. 3. U-charts for defects per inspection hour and defects per use case point

Note that the number of defects revealed per inspection hour in the MPTV module
was higher than the average, whereas the number of defects per use case point was
average. The U-chart shows a scenario of stability (none of its control limits were
exceeded). Since the functional specification is the first development activity, its PIQ
is 0, and unfortunately its POQ could not be calculated since defect data from other
activities was not available.

Given this scenario, the improvement goal was reducing defect rate per use case
point from 0.39 to 0.31, which was the best defect rate obtained so far.

100 M. Kalinowski et al.

4.2 Applying DCA Preparation

This activity comprises applying a Pareto chart to select samples and finding system-
atic errors in those samples. The Pareto chart built to analyze the defects of the MPTV
module is shown in Fig. 4. It considers the defect categories described in [23] and
shows that most of the defects are of type incorrect fact, and that the sum of incorrect
facts and omissions represents about 60% of all defects found. Incorrect facts were
chosen as the sample to identify systematic errors.

The following two systematic errors could be identified by reading incorrect fact
defects: writing invalid business rules; and linking use case descriptions incorrectly.

Fig. 4. MPTV defect category Pareto chart

4.3 Applying DCA Meeting

Before describing how the DPPI DCA meeting activity was accomplished, some
details are provided on how the defect causal model could be built retroactively.

Building the Bayesian Network. Since no prior DCA events had been performed in
the SIGIC project, the Bayesian causal model had to be built retroactively based on
the existing defect data in order to be used for the MPTV DCA event. First a meeting
with the SIGIC project team was conducted to brainstorm possible causes for func-
tional specification defects based on the cause categories (method, people, tools, input
and organization) suggested in the guidance. The brainstorm result is shown in Fig. 5.

Afterwards, descriptions of the 163 functional specification defects revealed prior
to the MPTV module were analyzed with the support of the document authors, SEPG
members and inspectors responsible in finding those defects in order to associate each
defect to one of the brainstormed causes. During this attempt other causes could have
been added, but in the case of the SIGIC project this was not needed.

As a result, each defect had information on the module, the size of the module, the
total inspection effort, the defect category, defect severity, cause, and cause category.
Those were also the nodes of the Bayesian network. The causal relations of our inter-
est could be easily modeled by having the cause and the cause category nodes both
affecting the defect category node. The values and the ranges for those nodes were
obtained by using the defect data as learning cases.

 Applying DPPI: A Defect Causal Analysis Approach Using Bayesian Networks 101

Fig. 5. Defect causes brainstorm result

Note that, in this case, the Bayesian network was built retroactively, since no prior
DCA sessions were conducted in the project. Otherwise the learning cases could have
been the other DCA session results and thus the Bayesian network could have been
built dynamically, without the need to classify all defect data. In this case, the Bayes-
ian network should be fed also with the results of DCA sessions of other similar pro-
jects in the organization, so that more Bayesian learning cases are available. More
details on the needed similarity between projects will be provided in Section 5.

Conducting the DCA Meeting. At the start of the DCA meeting activity a probabilistic
cause-effect diagram should be available for the defect category being analyzed. This
diagram can be built by simply reading the Bayesian inference for that defect category.
The Bayesian inference shows the probabilities with which each cause led to this defect
category in past modules (or similar projects) of the same organizational context.

The Bayesian diagnostic inference and the corresponding probabilistic cause-effect
diagram for incorrect facts in functional specifications of the SIGIC project are shown
in Fig. 6. This figure shows that in this project typically the causes for incorrect facts
were “Lack of Domain Knowledge” (25%), “Size and Complexity of the Problem
Domain” (18,7%), “Oversight” (15,6%), and “Limited tool used for Traceability”
(12.5%). We believe that such probabilistic cause-effect diagram could help to effec-
tively use the defect related cause-effect knowledge stored in the causal model.

In fact, during the SIGIC MPTV DCA meeting the identified causes for the sys-
tematic error of writing invalid business rules were “Lack of Domain Knowledge”
and “Size and Complexity of the Problem Domain”. For the systematic error of link-
ing use case descriptions incorrectly it was “Oversight”. Those causes correspond to
the three causes of the probabilistic cause-effect diagram with highest probabilities
and were identified by reading the defect descriptions and involving the author, in-
spectors, and SEPG members. Thus, the probabilistic cause-effect diagram might be
helpful, although further investigation into this issue is required.

102 M. Kalinowski et al.

Fig. 6. Bayesian network inference for incorrect facts in functional specifications and the corre-
sponding DPPI probabilistic cause-effect diagram

The proposed actions addressing the causes “Lack of Domain Knowledge” and
“Size and Complexity of the Problem Domain” were: (i) studying the domain and the
pre-existing system; and (ii) modifying the functional specification template, creating
a separate session for the business rules, listing them all together and separate from
the use case description. For the cause “Oversight” the action was publishing relevant
examples of incorrect fact oversight related defects and presenting them to the func-
tional specification team.

However, as mentioned before, the development activity improvement was not per-
formed, since the proof of concept was performed retroactively and the next module
was already specified. Therefore, quantitative results of applying DPPI (which would
be shown in the U-charts of the upcoming module after implementing proposed im-
provement actions) could not be obtained.

In the next section we present some industrial considerations for DPPI with addi-
tional insights into what it would take to make the approach a regular industry prac-
tice. Therefore, its underlying usage assumptions, the need for tools, and other usage
possibilities are discussed from a practitioner’s point of view.

5 Industrial Considerations

As mentioned before, feedback on DPPI was gathered from three software engineering
experts, with large academic and professional experiences (having participated in sev-
eral software process consulting projects and holding PhDs in software engineering), by

 Applying DPPI: A Defect Causal Analysis Approach Using Bayesian Networks 103

presenting them the approach. During this feedback session one of the main discussions
was concerning DPPI’s underlying usage assumptions, which are presented hereafter.

5.1 Underlying Usage Assumptions

The underlying assumptions for using DPPI include the existence of a defined process
for the project, as suggested by [9], and the execution of software inspections during
which information regarding the detected defects is stored. The information regarding
defects should include the activity in which the defect was introduced, the activity in
which the defect was found and the defect type. More details on defect categorization
can be found in the guidance described in [11].

Moreover, DPPI has to be used to improve the same activity for different modules
of the same or similar projects. In case of using it between different projects, they
should share the same defect categorization scheme, follow similar processes, be
related to domains of similar complexity, use teams of similar experience, and use the
same type of technology. Basically, in this case, the assumptions are the same as for
grouping different projects for statistical process control, described in [20]. Otherwise
the U-charts and even the causal model would not be meaningful. Regarding the U-
charts, in particular, in order for them to be useful to control the sub-process of the
development activity being analyzed, inspections need to be performed following a
defined and stable inspection process (so that defect data can be related to the per-
formance of the development activity sub-process).

Regarding the causal model, causes identified in prior DCA events for the same
development activity concerning similar projects/modules need to registered with
their category (considerations on this categorization can be found in [11]) and the
related defect type, so that the Bayesian network for the development activity can be
built dynamically using that data as learning cases. Otherwise the causal model would
have to be built retroactively (as done in Section 4 of this paper), which requires
much more effort, resulting in a difficulty to scale in order to consider defect cause-
effect knowledge reflecting several projects of the organization during the DCA ses-
sions. Other considerations regarding effort, more specifically related to tool support
follow in the next subsection.

5.2 Considerations on Tool Support

Some tool support can be used in order to facilitate the application of DPPI. For in-
stance, plotting the U-charts and the Pareto diagram manually would require much
effort. Several statistical tools can be used for this purpose, during the experience
described in this paper, the U-charts and the Pareto diagram were plotted using the
MiniTab software.

Another aspect for which tool support is required is building the Bayesian network
from the learning cases and performing the Bayesian inference. Again several tools
can be used for this purpose; during the experience described in this paper the Bayes-
ian network was built using Netica software, which was also used for the Bayesian
inference.

Besides these tools, the application described in this paper used ISPIS [22], which
facilitated conducting a well defined and stable inspection process and registering

104 M. Kalinowski et al.

defect data. However, inspections are out of the DPPI scope and could have been
performed manually as well.

5.3 Other Usage Possibilities

Practitioners might want to use DPPI to support CMMI implementation. Table 1 con-
tains a mapping of the specific practices of the CMMI CAR process area to the DPPI
activities.

Table 1. Mapping of CMMI CAR process area specific practices to DPPI activities

CMMI CAR Specific Goal/Practice Related DPPI Activities
SG 1 Determine Causes of Defects DCA Preparation and DCA Meeting
SP 1.1 Select Defect Data for Analysis DCA Preparation
SP 1.2 Analyze Causes DCA Meeting
SG 2 Address Causes of Defects Development Activity Result Analysis and

Development Activity Improvement
SP 2.1 Implement the Action Proposals Development Activity Improvement
SP 2.2 Evaluate the Effect of Changes Development Activity Result Analysis
SP 2.3 Record Data Throughout DPPI, by using its templates

Another usage possibility is for defect prediction. Since the causal model with de-
fect related knowledge obtained by applying DPPI is stored as a Bayesian Network it
can be used for two reasons, diagnosis and prediction [16]. In this paper we only ex-
plored the diagnosis perspective. However, the Bayesian network can be traversed in
the opposite direction, in order to support the definition of risk mitigation strategies
by performing “what-if” scenario simulation on the causes. For instance, “What hap-
pens to the defect profile if the wrong stakeholder was interviewed?”.

6 Conclusions

The DPPI approach was assembled based on DCA guidance obtained from SRs and
on feedback gathered from experts in the field. DPPI provides a framework for con-
ducting, measuring and controlling DCA in order to use it efficiently for process im-
provement. It represents the only approach that integrates cause-effect learning
mechanisms into DCA meetings. Those learning mechanisms consider a concrete
characteristic of the product, the defects introduced in its artifacts, to enable the con-
struction of a causal model for the organization, represented through a Bayesian net-
work. In order to allow using such Bayesian network to support DCA meetings a
graphical representation, called probabilistic cause-effect diagram, was designed.

In this paper we extended the knowledge regarding the feasibility of using DPPI by
the software industry, by: (i) describing the experience of applying DPPI to a large
scale Web-based software project detailing how its activities and tasks could be per-
formed in that context, and (ii) providing industrial considerations for DPPI with
additional insights from a practitioner’s point of view into its underlying usage as-
sumptions, the need for tools, and other usage possibilities.

 Applying DPPI: A Defect Causal Analysis Approach Using Bayesian Networks 105

In general, the experience of applying DPPI end-to-end to a real software project
provides preliminary feasibility indication of using it as a means for product-focused
process improvement. In particular, its main innovation, the causal model represented
through a Bayesian network which represents knowledge regarding a concrete charac-
teristic of the product (its defects), could be built successfully. Moreover, in the
context of the project in which the network was applied, the Bayesian diagnostic
inference, represented in the probabilistic cause-effect diagram, predicted the main
causes efficiently. However, the benefits of using the network to support DCA meet-
ings have not been evaluated objectively so far.

Regarding the industrial considerations, the application of DPPI allowed providing
additional insights into its underlying usage assumptions and the needs for tool
support. Additionally, the possibility of using DPPI as a step by step for analyzing
software defect causes in compliance with the CMMI CAR process area was dis-
cussed. Moreover, the possibility of using the resulting Bayesian network for defect
prediction in order to support the definition of risk mitigation strategies by performing
“what-if” scenario simulation was mentioned.

In our point of view, building and using Bayesian networks in the context of DCA
showed promising preliminary results and interesting possibilities. Hence, we invite
academy and industry for further investigation on this topic.

Acknowledgments. We would like to thank the SIGIC project team, without their
support the experience described in this paper would not have been possible. Thanks
also to the experts which provided us feedback on DPPI.

References

1. SEI: CMMI for Development (CMMI-DEV), Version 1.2. CMU/SEI-2006-TR008. Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2006)

2. ISO/IEC: ISO/IEC 12207:2008 Systems and software engineering – Software life cycle
processes (2008)

3. Eckes, G.: The Six Sigma Revolution: How General Electric and Others Turned Process
Into Profits. John Wiley and Sons, Chichester (2000)

4. Card, D.: Defect Causal Analysis Drives Down Error Rates. IEEE Software 10(4), 98–99
(July 1993)

5. Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.P.: Experiences with Defect Preven-
tion. IBM Systems Journal 29(1), 4–32 (1990)

6. Dangerfield, O., Ambardekar, P., Paluzzi, P., Card, D., Giblin, D.: Defect Causal Analysis:
A Report from the Field. In: Proceedings of International Conference of Software Quality,
American Society for Quality Control (1992)

7. Grady, R.B.: Software Failure Analysis for High-Return Process Improvement Decisions.
Hewlett-Packard Journal 47(4), 15–24 (1996)

8. Jalote, P., Agrawal, N.: Using Defect Analysis Feedback for Improving Quality and Pro-
ductivity in Iterative Software Development. In: 3rd ICICT, Cairo, pp. 701–713 (2005)

9. Card, D.: Defect Analysis: Basic Techniques for Management and Learning. Advances in
Computers ch. 7, 65, 259–295 (2005)

10. Kalinowski, M., Travassos, G.H.: A Systematic Review Regarding Software Defect Causal
Analysis. Technical report (in portuguese), 158 p, COPPE/UFRJ (2008)

106 M. Kalinowski et al.

11. Kalinowski, M., Travassos, G.H., Card, D.N.: Guidance for Efficiently Implementing De-
fect Causal Analysis. In: VII Br. Sym. Soft. Qual (SBQS), Florianópolis, Brazil (2008)

12. Kalinowski, M., Travassos, G.H., Card, D.N.: Towards a Defect Prevention Based Process
Improvement Approach. In: 34th Euromicro SEAA, Parma, Italy, pp. 199–206 (2008)

13. IEEE: IEEE Standard Glossary of Software Engineering Terminology. Standard 610. IEEE
Press, Los Alamitos (1990)

14. Jones, C.L.: A process-integrated approach to defect prevention. IBM Systems Jour-
nal 24(2), 150–167 (1985)

15. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from apply-
ing the systematic literature review process within the software engineering domain. Jour-
nal of Systems and Software 80(4), 571–583 (2007)

16. Pearl, J.: Causality Reasoning, Models and Inference. Cambridge University Press, Cam-
bridge (2000)

17. Jantti, M., Toroi, T., Eerola, A.: Difficulties in establishing a defect management process:
A case study. In: Münch, J., Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034,
pp. 142–150. Springer, Heidelberg (2006)

18. Damm, L., Lundberg, L.: Company-wide Implementation of Metrics for Early Software
Fault Detection. In: International Conference on Soft. Eng. (ICSE 2007), Minneapolis
(2007)

19. Hong, G., Xie, M., Shanmugan, P.: A Statistical Method for Controlling Software Defect
Detection Process. Computers and Industrial Engineering 37(1-2), 137–140 (1999)

20. Florac, A.W., Carleton, A.D.: Measuring the Software Process: Statistical Process Control
for Software Process Improvement. Pearson Education, London (1999)

21. Leszak, M., Perry, D.E., Stoll, D.: Classification and evaluation of defects in a project ret-
rospective. Journal of Systems and Software 61(3), 173–187 (2002)

22. Kalinowski, M., Travassos, G.H.: A Computational Framework for Supporting Software
Inspections. In: Int. Conf. on Automated Soft. Eng. (ASE 2004), Linz, Austria, pp. 46–55
(2004)

23. Shull, F.: Developing Techniques for Using Software Documents: A Series of Empirical
Studies. Ph.D. thesis, University of Maryland, College Park (1998)

24. Ishikawa, K.: Guide to Quality Control. Asian Productivity Organization, Tokyo (1976)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 107–115, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Evaluating Three Approaches to Extracting Fault Data
from Software Change Repositories

Tracy Hall1, David Bowes2, Gernot Liebchen1, and Paul Wernick2

1 Brunel University, Department of Information Systems & Computing, Uxbridge,
Middlesex, UK

{tracy.hall,gernot.liebchen}@brunel.ac.uk
2 University of Hertfordshire, School of Computer Science, Hatfield, Hertfordshire, UK

{d.h.bowes,p.d.wernick}@herts.ac.uk

Abstract. Software products can only be improved if we have a good under-
standing of the faults they typically contain. Code faults are a significant source
of software product problems which we currently do not understand suffi-
ciently. Open source change repositories are potentially a rich and valuable
source of fault data for both researchers and practitioners. Such fault data can
be used to better understand current product problems so that we can predict
and address future product problems. However extracting fault data from
change repositories is difficult. In this paper we compare the performance of
three approaches to extracting fault data from the change repository of the Bar-
code Open Source System. Our main findings are that we have most confidence
in our manual evaluation of diffs to identify fault fixing changes. We had less
confidence in the ability of the two automatic approaches to separate fault
fixing from non-fault fixing changes. We conclude that it is very difficult to re-
liably extract fault fixing data from change repositories, especially using auto-
matic tools and that we need to be cautious when reporting or using such data.

Key words: Software, fault, data, prediction.

1 Introduction

Identifying and fixing faults in software is a major software development cost. Pre-
venting and removing faults is reported to cost the US between $50 and $78 billion
per year [1,2]. Code faults remain a significant source of problems in software with a
great deal of resources dedicated to software testing and debugging [3]. Identifying
where faults are before testing could lead to higher quality software and better use of
resources [4,5,6].

It is important that we understand more about the nature and cause of faults in code
so that we can target our search for faults more effectively both before and during
testing. Research indicates that about 60-80% of software faults are found in about
20% of the code modules (eg. [7]), with around half of code modules usually fault
free [8]. Clearly there are potential resource savings if fault handling efforts are fo-
cussed on the code that actually contains faults.

108 T. Hall et al.

Many previous researchers have explored how faults in code can be targeted and
identified, with a variety of code fault prediction models reported in the literature.
Building reliable fault prediction models depends on the availability and dependabil-
ity of historical fault data. Most models are built on the assumption that the causes of
faults in the past are similar to the causes of faults in the future. This means that mod-
els built on historical fault data should enable unfound future faults to be located.

However identifying historical fault data is not straightforward in either commer-
cial or open source projects. The first difficulty is that it is impossible to identify all
faults. Residual faults always remain in the system. Consequently previous work pre-
dominately uses fault fixing data as a proxy for faults and clearly this represents only
a sub-set of faults in the system. This is a problem we do not address in this study.
The second difficulty is that recording and documenting fault data is an overhead that
many developers avoid. Consequently fault data is rarely maintained and very few
projects use bug reporting tools like Bugzilla. Where fault data is maintained it has
been reported to not be terribly reliable. As a result most researchers extract fault data
from change data (eg from CVS records). Although change data accurately represents
changes implemented to the system, these changes include not only fault fixes but all
enhancements, improvements and refactorings made to the system. Consequently it is
important to identify only those changes that represent fault fixes.

The aim of the paper is to identify the most reliable approach to identifying fault
fixing changes from a change repository. We compare the effectiveness of three ap-
proaches to identifying fault fixing data using the change repository of the Barcode
open source system. In the first approach we manually analyse change diffs (textual
changes in code between revisions) and classify each as either a fault fixing diff or
not. The other two approaches we investigate automatically analyse CVS records. The
first searches the change repository for fault related key words, and the second
searches for small sized changes.

In the next section we outline related previous work extracting fault data from
change repositories. In Section Three we explain our methodology and describe the
open source system used in this study. Section Four presents the results of collecting
fault fixing data using each of the three approaches compared in this study. In Section
Five we conclude and summarise our findings.

2 Background

The most common automatic method for extracting fault fixing change data from pro-
ject repositories is based on searching for fault related key words in comment fields.
This approach has been extensively evaluated by Zimmermann et al (eg [9,10,11]).
Their work is mainly in the context of open source projects and is based on the use of
CVS records and Bugzilla records. Although they report promising results they also
acknowledge that natural language ambiguities reduce the success rate of the approach.

Weyuker and Ostrand [12] compare the performance of two approaches to using
keywords to identify fault fixes within an industrial context. First, a system’s change
comments are searched through automatically for keywords indicating if a change
was the result of a fault fix or if it was the result of a change of functionality. Second
a change is categorised as a fault fix if an additional fault identifying field was set by

 Evaluating Three Approaches to Extracting Fault Data 109

developers during testing or once deployed. Their study showed that the technique
using the additional field performed better than the keyword approach. Again, natural
language ambiguities limited the performance of the keyword search technique.

A less common approach to identifying fault fixing changes has been proposed by
Ostrand et al [13]. Following a suggestion made by developers they introduced the
idea that fault fixing changes are only likely to affect one or two files. They tested this
approach on a sample of 50 change submissions by reading manually through change
messages [13]. Their results are promising and Ostrand et al report that they perform
better than the key word search. However they applied and tested this approach only
within a graphical systems development environment.

Unfortunately implementing Ostrand et al’s [13] number of files involved in a
change approach is hard if CVS is the only tool used to manage changes. This is be-
cause CVS does not clearly identify the set of individual changes making up one
change. Other change control systems such as Subversion automatically maintain re-
cords of change sets, whereas with CVS these change sets must be reconstructed.
Consequently methods for recognising the constituent changes in change sets have
been developed. Zimmermann et al [14] identify a change set by either adopting a
fixed window or a sliding window approach. Both techniques rely on the assumption
that file submissions in a change set are carried out by the same author and within a
certain time frame. The fixed window approach uses a 200 second time frame in
which related submissions must occur to be part of a given change set. The sliding
window approach moves the frame along after each file to see if the next file should
be included. This results in a variable time frame in which submissions in a change
set can be made.

3 Methodology

3.1 The Barcode Open Source System

In this study we use the change repository for the Barcode open source system
(http://ar.linux.it/software/#barcode). We chose this system because initially we
wanted to replicate Meyers and Binkley’s program slicing metrics work [15], as our
overall aim was to investigate the relationship between program slicing data and fault
data. To do this we needed to extract fault data from the Barcode system and compare
it to our program slicing metrics data.

Barcode is a small open source system (approx 9 KLOC) written in the C lan-
guage. The program slicing tool that we use (CodeSurfer) only analyses C and C++
code, so language is a key consideration for us. Barcode is a tool for the conversion of
text strings to printed bars. The Barcode project started in 1999 and a change history
is available as CVS data. Although several developers participate in the project, all
entries into the CVS system are carried out by one person. The Barcode project does
not employ an automated fault reporting system, such as Bugzilla, but a file contain-
ing additional information about CVS submits, including pointers to issues in source
code (the changelog), is maintained.

110 T. Hall et al.

3.2 Procedures for Implementing the Three Approaches

Manual classification of change diffs. We use a manual analysis of Barcode’s diffs
to classify changes made to the system as either fault fixing or non fault fixing
changes. Our aim is to use this classification as a baseline with which to compare the
two automatic approaches. Our assumption is that manual classification of changes
for a small project like Barcode is likely to be more accurate than automatic methods.
However this manual classification approach is highly resource intensive and is only
practical for small studies.

For manual classification we first extracted 199 module level diffs from the CVS
repository for Barcode. Each diff contains the code and comments logged with the
checked-in change. This data was then given to 3 researchers to independently clas-
sify each of these diffs as either: a fault fix; not a fault fix; don’t know.

After this independent classification of the diffs, an inter-rater reliability analysis
and a Cohen’s Kappa score was calculated to measure classification agreement
between the three researchers (described in Section 3.3). Disagreements in the classi-
fication of diffs were then discussed by all three researchers, the basis of these dis-
agreements were resolved and the diffs classified for a second time.

Key word searching. We identified fault fixing changes from Barcode’s change re-
pository using a key word search based on previous studies (eg [14]) We searched the
change comments logged in CVS for keywords: “bug”, “fix(ed)” and “update(d)”.
The resulting classification of fault fixing and non fault fixing changes was compared
to the manual classification of diffs using an inter rater reliability measure (described
in Section 3.3).

Identifying changes involving only 1 or 2 files. We applied Ostrand et al’s [13] ap-
proach to identifying fault fixing changes as those involving only one or two files. To
identify how many files are involved in a given change all changes in a change set
must be first identified. Identifying change sets is not straightforward for Barcode
which maintains its change records only under CVS control.

In addition to implementing a fixed window approach to identifying change sets
we also introduce an enhanced sliding window approach. Our sliding window ap-
proach estimates the bandwidth of an upload (bytes per second) to determine the size
of the sliding window rather than use the conventional constant sized sliding window.
This then allows us to calculate a more accurate variable timeframe for a particular
author downloading a particular change set.

The resulting classification of fault fixing and non fault fixing changes is compared
to the manual classification of diffs using an inter rater reliability measure (described
in Section 3.3).

3.3 Inter Rater Reliability Measurement

We compare the performance of all 3 fault fix finding approaches using inter rater
reliability scores using the Cohen’s Kappa statistic. We report both the value of
this statistic together with its categorical scale, as proposed by Landis and Koch:

 Evaluating Three Approaches to Extracting Fault Data 111

 < 0 No agreement
0.00 — 0.20 Slight agreement
0.21 — 0.40 Fair agreement
0.41 — 0.60 Moderate agreement
0.61 — 0.80 Substantial agreement
0.81 — 1.00 Almost perfect agreement

3.4 Limitations of the Study

The limitations of this study are mainly related to the quality of data on which it is
based. As in many change repositories CVS comment fields are not always completed
and when they are not always accurately or comprehensively. However this is no dif-
ferent to any metrics data, as in the real world most metrics data is noisy and has
missing values and our methods must be able to cope with this. In addition because
each of the methods that we are evaluating tries to indirectly identify fault fixing
changes, the classification will never be 100% accurate. For example there will be
misclassifications in our manual diff method; ambiguity and idiosyncrasy in natural
language will mean we miss keywords in our key work search; check-in variations
will also mean that we will misclassify some changes involving one or two files as a
fault fix when they were not. Furthermore Ostrand et al’s approach may not work as
well with program that do not have a graphical user interface.

4 Results

4.1 Manual Classification of Change Diffs

Table 1 shows how each researcher manually classified each of the 199 Barcode diffs.

Table 1. Overall diff classifications

FF==FFaauulltt ffiixx;; DDKK==DDoonn’’tt kknnooww;; NNFF==nnoott ffaauulltt ffiixx

Table 1 shows the different classification levels of each researcher and Table 2
shows the spread of those disagreements across the categories.

112 T. Hall et al.

Table 2. Comparison of diff classifications between researchers

FF==FFaauulltt ffiixx;; DDKK==DDoonn’’tt kknnooww;; NNFF==nnoott ffaauulltt ffiixx
111144//119999 aaggrreeeemmeennttss KKaappppaa ..2288 ((ffaaiirr)) 7744//119999 aaggrreeeemmeennttss KKaappppaa ..002277 ((sslliigghhtt)) 110022//119999
aaggrreeeemmeennttss kkaappppaa ..1177 ((sslliigghhtt))

Table 2 shows substantial classification disagreement between the 3 researchers.
This is likely to be the result of several factors. The first factor is the decision that
Researcher 1 made to allow no Don’t Know classifications and instead to assign diffs
to the most likely class. The second factor is varying programming experience. Al-
though all 3 researchers are familiar with C programming, two of them have extended
experience of C programming due to working on projects in industry and academia.
The other researcher’s knowledge was based on being taught C during his first degree.
The third factor may also be related to the difficulty of interpreting the intentions of a
programmer based only on diffs.

As a result of this high level of disagreement all three researchers got together and
discussed the classification of each of the 199 diffs. They decided not to allow any
Don’t Knows as the other two approaches did not include such classifications. During
this process 68 of the 199 diffs were excluded from future analysis as, on closer in-
spection they were based on inappropriate data (for example changes only to header
files). This means that the other 2 approaches were applied to a ‘cleaned’ data set of
131 diffs. The following diff classification consensus was achieved: 47 fault fixing
changes; 84 non fault fixing changes.

4.2 Keyword Search

We searched comments in the CVS logged changes as described in Section 3. As a
result the 131 changes were classified as: 27 fault fixing changes and 104 non fault
fixing changes. Table 3 compares the classification of this approach to the manual
classification of diffs.

Table 3 shows that there is significant disagreement between the two approaches in
the classification of fault fixing and non fault fixing changes. In particular the key-
words classify far fewer changes as fault fixes than the manual diff classifications (27
as opposed to 47). This may be the result of missing comment data on which to
search, as well as unexpected comments used to describe a fault fixing change. Our
key words do not include for example ‘patched’ or ‘mended’ (though clearly our key
word list could be extended).

 Evaluating Three Approaches to Extracting Fault Data 113

Table 3. Key word compared to diff classification

FF==FFaauulltt ffiixx;; NNFF==nnoott ffaauulltt ffiixx

9999//113311 aaggrreeeemmeennttss kkaappppaa 00..44 ((ffaaiirr))

4.3 Size of Change Search

We applied both the fixed and sliding window timeframe approaches to identify those
changes that involved only one or two files. Such changes are classified as fault fixing
changes. Using the fixed window approach changes were classified as: 44 fault fixes;
87 non fault fixes. Using the sliding window approach changes were classified as: 50
fault fixes; 81 non fault fixes. Table 4 compares the classification of both of these
timeframe approaches to our manual diff classifications.

Table 4. Size of change compared to diff classification

 FF==FFaauulltt ffiixx;; NNFF==nnoott ffaauulltt ffiixx FF==FFaauulltt ffiixx;; NNFF==nnoott ffaauulltt ffiixx

9900//113311 aaggrreeeemmeennttss kkaappppaa 00..33 ((ffaaiirr)) 9922//113311 aaggrreeeemmeennttss kkaappppaa ..33 ((ffaaiirr))

Table 4 shows that the approach used to calculate the timeframe in which
downloaded files are assumed to be related make little difference to the classification
of changes. The sliding window timeframe classifies 6 more changes as fault fixing
than the fixed window timeframe. Table 4 also shows that both approaches have sig-
nificant disagreement with the manual diff classification of fault fixing and non fault
fixing changes.

5 Conclusions

Our results suggest that extracting fault fixing data from CVS change repositories can
be unreliable. There are many factors that contribute to this. A significant factor is the
completeness and quality of the data stored. Missing and unclear checked-in CVS

114 T. Hall et al.

comments make it difficult for the key word search technique to be accurate. This,
together with the readability of code, also makes it difficult to manually identify fault
fixing diffs. As a result it is difficult to have confidence in the precision of techniques
for separating fault fixing changes from other changes. Added to which fault fixing
changes represent only a sub-set of faults in the system as they are only faults that
have been found, latent faults certainly remain in the system. Although our study is
based on an open source system these problems are just as likely in the commercial
domain where data is reported to be incomplete and have quality issues.

Our results could have important implications for researchers and practitioners. It
is difficult for practitioners to have confidence in some fault prediction models as the
historical fault data on which they are based could lack quality. This is likely to re-
duce the accuracy of predicting real faults or fault proneness. It is also difficult for
researchers to build reliable fault prediction models without access to high quality
data. Such data is not widely available, especially in projects which do not use fault
management tools such as Bugzilla. Some projects do appear to adopt a more system-
atic approach to managing faults and it is these projects that are likely to generate
more reliable data for analysis.

Our overall conclusions are that the quality of data used to build fault prediction
models is critical to the reliability of those models and is an aspect of those models
that needs to be addressed by researchers. And finally, the collection of reliable data
on faults by projects is critical to improving our understanding of product quality.

Acknowledgements. This work was funded by the UK’s Engineering and Physical
Sciences Research Council under grant number: EP/E063039/1, Investigating code
fault proneness using program slicing. We would also like to thank Sarah Beecham,
Sue Black and Steve Counsell for their support during the work reported here.

References

1. Levinson, M.: Let’s stop wasting $78 billion a year. CIO Magazine (2001)
2. Runeson, P., Andrews, A.: Detection or Isolation of Defects? An Experimental Compari-

son of Unit Testing and Code Inspection. In: ISSRE 2003, pp. 3–13 (2003)
3. Di Fatta, G., Leue, S., Stegantova, E.: Dis-criminative Pattern Mining in Software Fault

Detection. In: SOQUA Workshop (2006)
4. Turhan, B., Kocak, G., Bener, A.: Data mining source code for locating software bugs: A

case study in telecommunication industry. Expert Syst. Appl. 36, 6 (2009)
5. Bezerra, M.E.R., Oliveira, A.L.I., Adeodato, P.J.L., Meira, S.R.L.: Enhancing RBF-DDA

Algorithm’s Robustness: Neural Networks Applied to Prediction of Fault-Prone Software
Modules. In: Artificial Intelligence in Theory and Practice II (2007)

6. Oral, A.D., Bener, A.: Defect prediction for embedded software. In: Proceedings of the
22nd International Symposium on Computer and Information Sciences, pp. 1–6 (2007)

7. Pai, G.J., Dugan, J.B.: Empirical Analysis of Software Fault Content and Fault Proneness
Using Bayesian Methods. IEEE Trans. Software Eng. 33(10), 675–686 (2007)

8. Tomaszewski, P., Håkansson, J., Grahn, H., Lundberg, L.: Statistical models vs. expert es-
timation for fault prediction in modified code – An industrial case study. Journal of Sys-
tems and Software 80(8), 1227–1238 (2007)

 Evaluating Three Approaches to Extracting Fault Data 115

9. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: Proceedings of
the Third International Workshop on Predictor Models in Software Engineering (2007)

10. Sliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: Proceedings
of the Second International Workshop on Mining Software Repositories, pp. 24–28 (2005)

11. Schröter, A., Zimmermann, T., Premraj, R., Zeller, A.: Where do bugs come from?
SIGSOFT Softw. Eng. Notes 31(6), 1–2 (2006)

12. Weyuker, E.J., Ostrand, T.J.: Comparing methods to identify defect reports in a change
management database. In: DEFECTS 2008: Proceedings of the 2008 workshop on Defects
in large software systems, pp. 27–31 (2008)

13. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the location and number of faults in
large software systems. IEEE Trans. Software Eng. 31(4), 340–355 (2005)

14. Zimmermann, T., Weissgerber, P.: Preprocessing cvs data for fine-grained analysis. In:
Proceedings of the First International Workshop on Mining Software Repositories, pp. 2–6
(2004)

15. Meyers, T.M., Binkley, D.: An empirical study of slice-based cohesion and coupling met-
rics. ACM Trans. Softw. Eng. Methodol. 17(1), 1–27 (2007)

Regularities in Learning Defect Predictors

Burak Turhan1, Ayse Bener2, and Tim Menzies3

1 Department of Information Processing Science, University of Oulu, Oulu 90014, Finland
burak.turhan@oulu.fi

2 Department of Computer Engineering, Boğaziçi University, Istanbul 34342, Turkey
bener@boun.edu.tr

3 Lane Dept. of CS&EE, West Virginia University, Morgantown, WV, USA
tim@menzies.us

Abstract. Collecting large consistent data sets of real world software projects
from a single source is problematic. In this study, we show that bug reports need
not necessarily come from the local projects in order to learn defect prediction
models. We demonstrate that using imported data from different sites can make
it suitable for predicting defects at the local site. In addition to our previous work
in commercial software, we now explore open source domain with two versions
of an open source anti-virus software (Clam AV) and a subset of bugs in two
versions of GNU gcc compiler, to mark the regularities in learning predictors for
a different domain. Our conclusion is that there are surprisingly uniform assets
of software that can be discovered with simple and repeated patterns in local or
imported data using just a handful of examples.

Keywords: Defect prediction, Code metrics, Software quality, Cross-company.

1 Introduction

It is surprisingly difficult to find relevant data within a single organization to fully spec-
ify the internal parameters inside a complete software process model. For example, after
26 years of trying, Barry Boehm’s team of researchers from the University of Southern
California collected less than 200 sample projects for their COCOMO effort estimation
database [1].

There are many reasons for this, not the least being the business sensitivity associ-
ated with the data. Software projects are notoriously difficult to control: recall the 1995
report of the Standish group that described a $250 billion dollar American software
industry where 31% of projects were canceled and 53% of projects incurred costs ex-
ceeding 189% of the original estimate [2]. Understandably, corporations are reluctant
to expose their poor performance to public scrutiny.

Despite this data shortage, remarkably effective predictors for software products
have been generated. In previous work we have built:

– Software effort estimators using only very high-level knowledge of the code being
developed [3] (typically, just some software process details). Yet these estimators
offer predictions that are remarkably close to actual development times [4].

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 116–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Regularities in Learning Defect Predictors 117

– Software defect predictors using only static code features. Fenton (amongst oth-
ers) argues persauively that such features are very poor charactizations of the inner
complexities of software modules [5]. Yet these seeingly naive defect predictors
out-perform current industrial best-practices [6], [7].

The success of such simple models seems highly unlikely. Organizations can work in
different domains, have different process, and define/measure defects and other aspects
of their product and process in different ways. Worse, all to often, organizations do not
precisely define their processes, products, measurements, etc. Nevertheless, it is true
that very simple models suffice for generating approximately correct predictions for
(say) software development time [4], the location of software defects [6].

One candidate explanation for the strange predictability in software development
is that: Despite all the seemingly random factors influencing software construction,
the net result follows very tight statistical patterns. Other researchers have argued for
similar results [8], [9], [10], [11], [12] but here we offer new evidence. The perfor-
mance of a data miner improves as the size of the training set grows. At some point,
the performance plateaus and further training data does not improve that performance.
Previously, we showed in commercial domain (NASA aerospace software and white-
goods controller software) that for defect prediction, plateaus occur remarkably early
(after just 30 examples) [7]. Furthermore, we showed that with certain limitations, de-
fect predictors can be learned across projects, i.e. training on project A and testing on
project B.

In this paper, we investigate the same effects in open source domain with two differ-
ent products. Observing an effect in different entities of commercial domain (NASA,
white-goods) might be a coincidence. However, observing the same effect in a relatively
unrelated domain, we will no longer be able to dismiss the effect as quirks in one do-
main. Therefore, the goal of this paper is to further investigate the issue of regularities
in learning defect predictors by replicating our previous experiments (i.e. [6], [13], [7])
on an additional domain (open-source) in order to strengthen the evidence base for the
following assertions:

– The regularities we observe in software are very regular indeed;
– We can depend on those regularities to generate effective defect predictors using

minimal information from projects1.

The rest of this paper is structured as follows. We give examples of statistical pat-
terns from general software research and briefly discuss the role of defect predictors in
Section 2. Then we focus on defect predictors in detail and introduce observed regu-
larities in defect prediction research (for commercial domain) in Section 3. Section 4
extends the analyses of these regularities to open source domain. Discussions of our
observations are given in Section 5 and we conclude our research in Section 6. Please
note that the results of Section 3 have appeared previously [6], [13], [7]. The rest of this
paper is new work.

1 This second point is a strong endorsement for our approach since, as discussed above, it
can be very difficult to access details and extensive project data from real world software
development.

118 B. Turhan, A. Bener, and T. Menzies

2 Background

2.1 Examples of Regularities in General SE Research

Previous research reports much evidence that software products confirm tightly to sim-
ple and regular statistical models, For example, Veldhuizen shows that library reuse
characteristics in three unix based systems (i.e. Linux, SunOS and MacOS X), can be
explained by Zipf’s Law, that is most frequently used library routines [14] are inversely
proportional to their frequency ranks. As shown in Figure 1, the distribution is highly
regular.

Figure 2 shows a summary of our prior work on effort estimation [4] using the CO-
COMO features. These features lack detailed knowledge of the system under devel-
opment. Rather, they are just two dozen ultra-high-level descriptors of (e.g.) develeper

Fig. 1. Distribution of reuse frequencies in three unix based systems [14]

100 ∗ (pred − actual)/actual
50% 65% 75%

percentile percentile percentile
mode=embedded -9 26 60

project=X -6 16 46
all -4 12 31

year=1975 -3 19 39
mode=semi-detached -3 10 22

ground.systems -3 11 29
center=5 -3 20 50

mission.planning -1 25 50
project=gro -1 9 19

center=2 0 11 21
year=1980 4 29 58

avionics.monitoring 6 32 56
median -3 19 39

Fig. 2. 158 effort estimation methods applied to 12 subsets of the COCO81 data

Regularities in Learning Defect Predictors 119

experience, platform violatily, software process maturity, etc. In Figure 2, different ef-
fort estimation methods are applied to the COC81 data2 used by Boehm to develop the
original COCOMO effort estimation model [15]. Twenty times, ten test instances were
selected at random and effort models were built from the remaining models using 158
different estimation methods3. The resulting predictions were compared to the actual
estimation times using relative error. COC81’s data can be divided into the 12 (over-
lapping) subsets shown left-hand-side of Figure 2. The right-hand-columns of Figure 2
show MRE at the median, 65%, and 75% percentiles. The median predictions are within
within 3% of the actual. Such a close result would be impossible if software did not con-
form to very tight statistical regularities.

Figure 3 shows Koru and Liu’s analysis of two large-scale open source projects
(K-office and Mozilla). As shown in those figures, these different systems confirm to
nearly an identical Pareto distribution of change-prone classes: 80% of changes occur
in 20% of classes [12]. The same 80:20 changes:fault distribution has been observed
by Ostrand, Weyuker and Bell in very large scale telecommunication projects from
AT&T [8], [9], [10], [11]. Furthermore, the defect trends in Eclipse also follows similar
patterns, where they are explained better by a Weibull distribution [17] .

2.2 On Learning Defect Predictors

Figures 1, 2, 3 and 4 show that statistical regularities simplifies predictions of certain
kinds of properties. Previously [6], we have exploited those regularities with data miners
that learn defect predictors from static code attribtues. Those predictors were learned ei-
ther from projects previously developed in the same environment or from a continually
expanding base of current project’s artifacts.

To do so, tables of examples are formed where one column has a boolean value
for “defects detected” and the other columns describe software features such as lines
of code; number of unique symbols [18]; or max. number of possible execution path-
ways [19]. Each row in the table holds data from one “module”, the smallest unit of
functionality. Depending on the language, these may be called “functions”, “methods”,
or “procedures”. The data mining task is to find combinations of features that predict
for the value in the defects column.

The value of static code features as defect predictors has been widely debated. Some
researchers vehemently oppose them [20], [21], while many more endorse their use [22],
[23], [6], [24], [25], [26], [27], [28]. Standard verification and validation (V&V) text-
books [29] advise using static code complexity attributes to decide which modules are
worthy of manual inspections. The authors are aware of several large government soft-
ware contractors that won’t review software modules unless tools like the McCabe static
source code analyzer predicts that they exhibit high code complexity measures.

Nevertheless, static code attributes can never be a full characterization of a program
module. Fenton offers an insightful example where the same functionality is achieved
using different programming language constructs resulting in different static measure-
ments for that module [5]. Fenton uses this example to argue the uselessness of static
code attributes for fault prediction.

2 Available from http://promisedata.org
3 For a description of those methods, see [16].

http://promisedata.org

120 B. Turhan, A. Bener, and T. Menzies

Fig. 3. Distribution of change prone class percentages in two open source projects [12]

Fig. 4. Distribution of faulty modules in Eclipse [17]

Regularities in Learning Defect Predictors 121

Using NASA data, our fault prediction models find defect predictors [6] with a
probability of detection (pd) and probability of false alarm (pf) of mean(pd, pf) =
(71%, 25%). These values should be compared to baselines in data mining and in-
dustrial practice. Raffo (personnel communication) found that industrial reviews find
pd = TR(35, 50, 65)%4 of a systems errors’ (for full Fagan inspections [30]) to
pd = TR(13, 21, 30)% for less-structured inspections. Similar values were reported
at a IEEE Metrics 2002 panel. That panel declined to endorse claims by Fagan [31] and
Schull [32] regarding the efficacy of their inspection or directed inspection methods.
Rather, it concluded that manual software reviews can find ≈60% of defects [33];

That is, contrary to the pessimism of Fenton, our (pd, pf) = (71, 25)% results are
better than currently used industrial methods such as the pd≈60% reported at the 2002
IEEE Metrics panel or the median(pd) = 21..50 reported by Raffo. Better yet, au-
tomated defect predictors can be generated with a fraction of the effort of alternative
methods, even for very large systems [24]. Other methods such as formal methods or
manual code reviews may be more labor-intensive. Depending on the review method,
8 to 20 lines of code (LOC) per minute can be inspected. This effort repeats for all
members of the review team (typically, four or six [34]).

3 Regularities in Defect Predictors in Commercial Domain

In prior work [13], [7], we have used the NASA and SOFTLAB data of Figure 5 to
explore learning defect predictors using data miners. To learn defect predictors we use
a Naive Bayes data miner since prior work [6] could not find a better data miner for
learning defect predictors. In all our experiments, the data was pre-processed as fol-
lows:

– Since the number of features in each data table is not consistent, we restricted our
data to only the features shared by all data sets.

– Previously [6], we have observed that all the numeric distributions in the Figure 5
data are exponential in nature. It is therefore useful to apply a “log-filter” to all
numerics N with log(N). This spreads out exponential curves more evenly across
the space from the minimum to maximum values (to avoid numerical errors with
ln(0), all numbers under 0.000001 are replaced with ln(0.000001)).

Inspired by the recent systematic review of within vs cross company effort estimation
studies by Kitchenham et al. [35], we have done extensive experiments on Promise
data tables to analyze predictor behavior using a) local data (within the same company)
b) imported data (cross company). For each NASA and SOFTLAB table of Figure 5,
we built test sets from 10% of the rows, selected at random. Then we learned defect
predictors from:

– the other 90% rows of the corresponding table (i.e. local data).
– 90% rows of the other tables combined (i.e. imported data).

We repeated this procedure 100 times, each time randomizing the order of the rows in
each table, in order to control order effects (where the learned theory is unduly affected

4 TR(a, b, c) is a triangular distribution with min/mode/max of a, b, c.

122 B. Turhan, A. Bener, and T. Menzies

(# modules) .
source data examples features %defective
NASA pc1 1,109 22 6.94
NASA kc1 845 22 15.45
NASA kc2 522 22 20.49
NASA cm1 498 22 9.83
NASA kc3 458 22 9.38
NASA mw1 403 22 7.69
NASA mc2 61 22 32.29
SOFTLAB ar3 63 29 12.70
SOFTLAB ar4 107 29 18.69
SOFTLAB ar5 36 29 22.22
OPEN SOURCE cav90 1184 26 0.40
OPEN SOURCE cav91 1169 26 0.20
OPEN SOURCE gcc 116 26 100.0

Fig. 5. Datasets used in this study

by the order of the examples). We measured the performance of predictor using pd, pf
and balance. If {A, B, C, D} are the true negatives, false negatives, false positives, and
true positives (respectively) found by a defect predictor, then:

pd = recall = D/(B + D) (1)

pf = C/(A + C) (2)

bal = balance = 1 −
√

(0 − pf)2 + (1 − pd)2
√

2
(3)

All these values range zero to one. Better and larger balances fall closer to the desired
zone of no false alarms (pf = 0) and 100% detection (pd = 1). We then used the
Mann-Whitney U test [36] in order to test for statistical difference.

Our results are visualized in Figure 6 as quartile chaorts. Quartile charts are gener-
ated from sorted sets of results, divided into four subsets of (approx) same cardinality.
For example these numbers have four quartiles:

{
q1︷ ︸︸ ︷

4, 7, 15, 20, 31,

median︷︸︸︷
40 , 52, 64,

q4︷ ︸︸ ︷
70, 81, 90}

These quartiles can be drawn as follows: the upper and lower quartiles are marked with
black lines; the median is marked with a black dot; and vertical bars are added to mark
the 50% percentile value. For example, the above numbers can be drawn as:

0% � 100%

In a finding consistent with our general thesis (that software artifacts conform to very
regular statistical patterns), Figure 6 shows the same stable and useful regularity occur-
ing in both seven NASA data sets and three SOFTLAB data sets [7].:

– Using imported data dramatically increased the probability of detecting defective
modules (for NASA: 74% to 94% median pd; for SOFTLAB: 88% to 95% median
pd);

Regularities in Learning Defect Predictors 123

Nasa on local Nasa data.
treatment min Q1 median Q3 max

pd Local 0 60 75 82 100
�

pf Local 0 24 29 35 73
�

Nasa on imported Nasa data.
treatment min Q1 median Q3 max

pd Imp. 81 84 94 98 99
�

pf Imp. 26 60 68 90 94
�

Softlab on local Softlab data.
treatment min Q1 median Q3 max

pd Local 35 40 88 100 100
�

pf Local 3 5 29 40 42
�

Softlab on imported Nasa data.
treatment min Q1 median Q3 max

pd Imp. 88 88 95 100 100
�

pf Imp. 52 59 65 68 68
�

Fig. 6. Quartile charts for NASA and SOFTLAB data [7]. Numeric results on left; quartile charts
on right. “Q1” and “Q3” denote the 25% and 75% percentile points respectively.

– But imported data also dramatically increased the false alarm rate (for NASA: 29%
to 68% median pf ; for SOFTLAB: 29% to 65% pd) . Our suspicion is that the
reason for the high false alarm rates was the irrelevancies introduced by imported
data.

We have then designed a set of experiments for NASA data tables to see the effects of
sampling strategies on the performance and to determine the lower-limit on the number
of samples for learning defect predictors, i.e. the point where a plateau is observed in the
performance measure. In those experiments we applied over/under and micro-sampling
(see [13]) to the data tables and observed that:

– the performance of predictors does not improve with over sampling.
– under-sampling improves the performance of certain predictors, i.e. decision trees,

but not of Naive Bayes [13].
– with micro-sampling, the performance of predictors stabilize after a mere number

of defective and defect-free examples, i.e. 50 to 100 samples.

The last observation suggests that the number of cases that must be reviewed in order
to arrive at the performance ceiling of a defect predictor is very small: as low as 50
randomly selected modules (25 defective and 25 non-defective). In Figure 7 for Nasa
tables, we visualize number of training examples (increments of 25) vs. balance perfor-
mance of Naive Bayes predictor. It is clear that the performance does not improve with
more training examples, indeed it may deteriorate with more examples.

We now report the results of the same experiment for SOFTLAB data. Note that
SOFTLAB tables ar3, ar4 and ar5 have {36,63,107}modules respectively, with a total

124 B. Turhan, A. Bener, and T. Menzies

 0

 50

 100

 0 10 20 30 40 50 60 70 80

ba
la

nc
e

CM1

 0

 50

 100

 0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

ba
la

nc
e

KC1

 0

 50

 100

 0 5
0

10
0

15
0

20
0

ba
la

nc
e

KC2

 0

 50

 100

 0 10 20 30 40 50 60 70 80

ba
la

nc
e

KC3

 0

 50

 100

 0 2
0

 4
0

 6
0

 8
0

10
0

ba
la

nc
e

MC2

 0

 50

 100

 0 10 20 30 40 50

ba
la

nc
e

MW1

 0

 50

 100

 0 2
0

 4
0

 6
0

 8
0

10
0

12
0

14
0

16
0

ba
la

nc
e

PC1

Fig. 7. Micro-sampling results for NASA data [7]

0 5 10 15
0

0.5

1
AR3

ba
la

nc
e

0 5 10 15 20 25 30 35
0

0.5

1
AR4

ba
la

nc
e

0 5 10 15
0

0.5

1
AR5

ba
la

nc
e

Fig. 8. Micro-sampling results for SOFTLAB data

of 206 modules of which only 36 are defective. Thus, local results in Figure 6 are
achieved using a minimum of (36 + 63) ∗ 0.90 = 90 and a maximum of (107 +
63) ∗ 0.90 = 153 examples. Nevertheless we repeat the micro-sampling experiment
for SOFTLAB data tables, with increments of 5 due to relatively lower number of de-
fects. In Figure 8, we plot the results for SOFTLAB data tables. We observe the same
pattern as in Figure 6: performance tends to stabilize after a small number of training
examples.

Results for NASA and SOFTLAB data tables suggest that practical defect predictors
can be learned using only a handful of examples. In order to allow for generalization, it
is appropriate to question the external validity of the above two results: The data used
for those results come from very different sources:

– The SOFTLAB data were collected from a Turkish white-goods manufacturer (see
the the datasets ({ar3, ar4, ar5}) from Figure 5) building controller software for a
washing machine, a dishwasher and a refrigerator.

– On the other hand, NASA software are ground and flight control projects for
aerospace applications, each developed by different teams at different locations .

Regularities in Learning Defect Predictors 125

The development practices from these two organizations are very different:

– The SOFTLAB software were built in a profit- and revenue-driven commercial
organization, whereas NASA is a cost-driven government entity.

– The SOFTLAB software were are developed by very small teams (2-3 people)
working in the same physical location while the NASA software was built by much
larger team spread around the United States.

– The SOFTLAB development was carried out in an ad-hoc, informal way rather than
formal, process oriented approach used at NASA.

The fact that the same defect detection patterns hold for such radically different kinds
of organization is a strong argument for the external validity of our results. However, an
even stronger argument would be that the patterns we first saw at NASA/ SOFTLAB are
also found in software developed at other sites. The rest of this paper collects evidence
for that stronger argument.

4 Validity in Open Source Domain

This section checks for the above patterns in two open source projects:

– two versions of an anti-virus project: Clam AV v0.90 and v0.91;
– a subset of defective modules of the GNU gcc compiler.

In Figure 5, these are denoted as cav90, cav91 and gcc, respectively. Note that these
are very different projects, build by different developers with very different purposes.
Also note that the development processes for the open source projects are very different
to the NASA and SOFTLAB projects studied above. Whereas NASA and SOFTLAB
were developed by centrally-controlled top-down management teams, cav90, cav91 and
gcc were build in a highly distributed manner. Further, unlike our other software, gcc
has been under extensive usage and maintenance for over a decade.

Local/ imported data experiments are once more applied on cav90, cav91 and gcc
data tables and the results are visualized in Figure 9. We again used Nasa tables as
imported data, since they provide a large basis with 5000+ samples. Note that partial
gcc data includes only a sample of defects, thus we are not able to make a ’local data’
analysis for gcc. Rather, we report the detection rates of predictors built on imported
data from Nasa and cav91. These predictors can correctly detect up to median 60% of
the subset of bugs that we were able to manually match to functional modules.

Recall that cav91 has a defect rate of 0.20%. The probability of detection rates for
cav91 are median 67% and 77% for local and imported data respectively, which is
another evidence on the usefulness of statistical predictors.

At the first glance, the patterns in Figure 9 seem a bit different than those in Figure 6.
There are still increases in probability of detection and false alarms rates, though not
dramatically. However, this is not a counter example of our claim. We explain this
behavior with the following assertions:

For our experiments:

– in commercial software analysis, local data corresponds to single projects devel-
oped by a relatively small team of people in the same company and with certain
business knowledge.

126 B. Turhan, A. Bener, and T. Menzies

cav90 on local cav90 data.
treatment min Q1 median Q3 max

pd Local 0 40 40 60 100
�

pf Local 22 32 35 37 44
�

cav90 on imported Nasa data.
treatment min Q1 median Q3 max

pd Imp. 49 49 51 51 53
�

pf Imp. 35 36 37 37 38
�

cav91 on local cav91 data.
treatment min Q1 median Q3 max

pd Local 0 67 67 100 100
�

pf Local 17 25 28 30 39
�

cav91 on imported Nasa data.
treatment min Q1 median Q3 max

pd Imp. 77 77 77 77 77
�

pf Imp. 36 38 38 39 40
�

gcc defects on imported cav91 data.
treatment min Q1 median Q3 max

pd Imp. 53 53 53 53 53
�

gcc defects on imported Nasa data.
treatment min Q1 median Q3 max

pd Imp. 60 60 60 60 60
�

Fig. 9. Quartile charts for OPENSOURCE data

– in commercial software analysis, imported data corresponds to a variety of projects
developed by various people in different companies and spans a larger business
knowledge.

– in open source software analysis, local data corresponds to single projects devel-
oped by a larger team of people at different geographical locations with various
backgrounds.

We argue that, the above assertions differentiate the meaning of local data for open
source projects from commercial projects. The nature of open source development al-
lows the definition of local data to be closer to commercial imported data, since both are
developed by people at different sites with different background. That’s the reason why
adding commercial imported data does not add as much detection capability as it does
for commercial local data. Furthermore, the false alarms are not that high since there
are less irrelevancies in local open source data than commercial imported data, which
is the cause of high false alarms. That’s because open source local data consist of a sin-
gle project and commercial imported data consist of several projects, which introduce
irrelevancies.

Regularities in Learning Defect Predictors 127

0 20 40 60 80
0

0.5

1
CAV90

ba
la

nc
e

0 5 10 15 20 25
0

0.5

1
CAV91

ba
la

nc
e

Fig. 10. Micro-sampling results for OPEN-SOURCE data

We also repeat the 10*10 way cross-validation micro-sampling experiment for cav90
and cav91 data tables, this time with increments of 5 due to limited defect data (Figure 7
used increments of 25). In Figure 10 we see a similar pattern:

– Balance values tend to converge using only 20-30 samples of defective and non-
defective modules.

– Using less examples produce unstable results, since there are not enough samples
to learn a theory.

– For cav90, using more than 60 training examples affects the stability of the results.

The importance of Figure 10 results is that our results in two commercial domains, con-
sidering the minimum number of examples to train a predictor, are once more validated
in a third, open-source domain.

5 Summary of Results and Limitations

We can summarize our results on commercial and open-source data as follows:

– Using imported data increases the detection capability of predictors.
– Predictors can be learned using only a handful of data samples. In both commer-

cial and open-source domain the performance of predictors converge after a small
number of training examples.

– These results are generalizable through different cultural and organizational enti-
ties, since same patterns are observed in NASA, SOFTLAB and OPEN-SOURCE
data tables.

Yet, these results have associated limitations. For instance imported data increase false
alarm rates as well. We tried to avoid this by applying a relevancy filtering. This effect
is less visible in open source domain for the reasons discussed above. We also observed
that using larger training instances may cause variations in predictor performances. This
should be controlled through incremental experiments on the training set size. Finally,
though the data analyzed in this paper spans a large space of software products and
provide strong evidence in favor of regularity, it is not possible to claim a formal gen-
eralization of our results due to their empirical nature. Nevertheless, please note that

128 B. Turhan, A. Bener, and T. Menzies

these result are observed: in a variety of projects (i.e. 7 NASA, 3 SOFTLAB, 2 OPEN-
SOURCE) from different domains (i.e. commercial and open-source) spanning a wide
range time interval (i.e. from 1980’s to 2007). Therefore, we assert that:

There exists repeated patterns in software that can be discovered and explained by
simple models with minimal information no matter what the underlying seemingly ran-
dom and complex processes or phenomena are.

This assertion should be processed carefully. We do not mean that everything about
software can be controlled through patterns. Rather, we argue that these patterns exist
and are easy to discover. It is practical and cost effective to use them as guidelines
in order to understand the behavior of software and to take corrective actions. In this
context we will propose two directions for further research in our conclusions.

6 Conclusions

Building defect predictor models is easy, fast and effective in guiding manual test effort
to correct locations. What is more important is that these automated analysis methods
are applicable in different domains. We have previously shown their validity in two
commercial domains and in this paper we observe similar patterns in two projects of
the open source domain. We have also shown that although these models are sensitive
to the information level in the training data (i.e. local/ imported), they are not affected
by the organizational differences that generate them.

Based on our results, we argue that no matter how complicated the underlying pro-
cesses may seem, software has a statistically predictable nature. Going one step further,
we claim that the patterns in software are not limited to individual projects or domains,
rather they are generalizable through different projects and domains. Therefore, we sug-
gest two directions for further research:

– One direction should explore software analysis using rigorous formalisms that offer
ironclad gaureentees of the corrections of a code (e.g. interactive theorem proving,
model checking, or the correctness preserving transoftations discussed by Doug
Smith5). This approach is required for the analysis of mission-critical software that
must always function correctly.

– Another direction should explore automatic methods with a stronger focus on max-
imizing the effectiveness of the analysis while minimizing the associated cost.

There has been some exploration of the second approach using lightweight formal meth-
ods (e.g. [37]) or formal methods that emphasis the usability and ease of use of the tool
(e.g. [38], [39]). However, our results also show that there exists an under-explored
space of extrememly cost-effective automated analysis methods.

Acknowledgements

This research is partially supported: by Tubitak under grant number EEEAG 108E014 at
Bogazici University, by Tekes under Cloud Software Program at University of Oulu, and

5 Keynote address, ASE’07.

Regularities in Learning Defect Predictors 129

at West Virginia University under grants with NASA’s Software Assurance Research
Program. Reference herein to any specific commercial product, process, or service by
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by
the United States Government.

References

1. Menzies, T., Elrawas, O., Barry, B., Madachy, R., Hihn, J., Baker, D., Lum, K.: Accurate
estimates without calibration. In: International Conference on Software Process (2008)

2. The Standish Group Report: Chaos (1995)
3. Menzies, T., Port, D., Chen, Z., Hihn, J., Stukes, S.: Specialization and extrapolation of

induced domain models: Case studies in software effort estimation. In: IEEE ASE 2005
(2005)

4. Menzies, T., Chen, Z., Hihn, J., Lum, K.: Selecting best practices for effort estimation. IEEE
Transactions on Software Engineering (2006)

5. Fenton, N.E., Pfleeger, S.: Software Metrics: A Rigorous & Practical Approach. International
Thompson Press (1997)

6. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect
predictors. IEEE Transactions on Software Engineering (2007)

7. Turhan, B., Menzies, T., Bener, A.B., Di Stefano, J.: On the relative value of cross-company
and within-company data for defect prediction. Empirical Softw. Engg. 14(5), 540–578
(2009)

8. Bell, R., Ostrand, T., Weyuker, E.: Looking for bugs in all the right places. In: ISSTA 2006:
Proceedings of the 2006 international symposium on Software testing and analysis (2006)

9. Ostrand, T., Weyuker, E., Bell, R.: Where the bugs are. ACM SIGSOFT Software Engineer-
ing Notes 29(4) (2004)

10. Ostrand, T., Weyuker, E.: The distribution of faults in a large industrial software system. In:
ISSTA 2002: Proceedings of the 2002 ACM SIGSOFT international symposium on Software
testing and analysis (2002)

11. Ostrand, T., Weyuker, E., Bell, R.: Automating algorithms for the identification of fault-prone
files. In: ISSTA 2007: Proceedings of the 2007 international symposium on Software testing
and analysis (2007)

12. Koru, A.G., Liu, H.: Identifying and characterizing change-prone classes in two large-scale
open-source products. JSS (2007)

13. Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., Jiang, Y.: Implications of ceiling
effects in defect predictors. In: Proceedings of PROMISE 2008 Workshop, ICSE (2008)

14. Veldhuizen, T.L.: Software libraries and their reuse: Entropy, kolmogorov complexity, and
zipf’s law. arXiv cs.SE (2005)

15. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
16. Jalali, O.: Evaluation bias in effort estimation. Master’s thesis, Lane Department of Computer

Science and Electrical Engineering, West Virginia University (2007)
17. Zhang, H.: On the distribution of software faults. IEEE Transactions on Software Engineer-

ing 34(2), 301–302 (2008)
18. Halstead, M.: Elements of Software Science. Elsevier, Amsterdam (1977)
19. McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering 2(4),

308–320 (1976)
20. Fenton, N., Ohlsson, N.: Quantitative analysis of faults and failures in a complex software

system. IEEE Transactions on Software Engineering, 797–814 (2000)

130 B. Turhan, A. Bener, and T. Menzies

21. Shepperd, M., Ince, D.: A critique of three metrics. The Journal of Systems and Soft-
ware 26(3), 197–210 (1994)

22. Khoshgoftaar, T.M., Seliya, N.: Fault prediction modeling for software quality estimation:
Comparing commonly used techniques. Empirical Software Engineering 8(3), 255–283
(2003)

23. Tang, W., Khoshgoftaar, T.M.: Noise identification with the k-means algorithm. In: ICTAI,
pp. 373–378 (2004)

24. Nagappan, N., Ball, T.: Static analysis tools as early indicators of pre-release defect density.
In: ICSE 2005, St. Louis (2005)

25. Nikora, A., Munson, J.: Developing fault predictors for evolving software systems. In: Ninth
International Software Metrics Symposium, METRICS 2003 (2003)

26. Porter, A., Selby, R.: Empirically guided software development using metric-based classifi-
cation trees. IEEE Software, 46–54 (1990)

27. Srinivasan, K., Fisher, D.: Machine learning approaches to estimating software development
effort. IEEE Trans. Soft. Eng., 126–137 (1995)

28. Tian, J., Zelkowitz, M.: Complexity measure evaluation and selection. IEEE Transaction on
Software Engineering 21(8), 641–649 (1995)

29. Rakitin, S.: Software Verification and Validation for Practitioners and Managers, 2nd edn.
Artech House (2001)

30. Fagan, M.: Design and code inspections to reduce errors in program development. IBM Sys-
tems Journal 15(3) (1976)

31. Fagan, M.: Advances in software inspections. IEEE Trans. on Software Engineering,
744–751 (1986)

32. Shull, F., Rus, I., Basili, V.: How perspective-based reading can improve requirements in-
spections. IEEE Computer 33(7), 73–79 (2000)

33. Shull, F., Basili, V., Boehm, B., Brown, A., Costa, P., Lindvall, M., Port, D., Rus, I., Tesoriero,
R., Zelkowitz, M.: What we have learned about fighting defects. In: Proceedings of 8th In-
ternational Software Metrics Symposium, Ottawa, Canada, pp. 249–258 (2002)

34. Menzies, T., Raffo, D., Setamanit, S., Hu, Y., Tootoonian, S.: Model-based tests of truisms.
In: Proceedings of IEEE ASE 2002 (2002)

35. Kitchenham, B.A., Mendes, E., Travassos, G.H.: Cross- vs. within-company cost estimation
studies: A systematic review. IEEE Transactions on Software Engineering, 316–329 (2007)

36. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochasti-
cally larger than the other. Ann. Math. Statist. 18(1), 50–60 (1947)

37. Easterbrook, S., Lutz, R.R., Covington, R., Kelly, J., Ampo, Y., Hamilton, D.: Experiences
using lightweight formal methods for requirements modeling. IEEE Transactions on Soft-
ware Engineering, 4–14 (1998)

38. Heimdahl, M., Leveson, N.: Completeness and consistency analysis of state-based require-
ments. IEEE Transactions on Software Engineering (1996)

39. Heitmeyer, C., Jeffords, R., Labaw, B.: Automated consistency checking of requirements
specifications. ACM Transactions on Software Engineering and Methodology 5(3), 231–261
(1996)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 131–145, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Business Value Is Not Only Dollars – Results from Case
Study Research on Agile Software Projects

Zornitza Racheva1, Maya Daneva1, Klaas Sikkel1, and Luigi Buglione2

1 University of Twente, Computer Science Department, PO Box 217, 7500 AE, Enschede,
The Netherlands

2 Engineering.it, Via Ricardo Morandi, Rome – 06 4453278, Italy
{z.racheva,m.daneva,k.sikkel}@utwente.nl

Luigi.Buglione@eng.it

Abstract. Business value is a key concept in agile software development. This
paper presents results of a case study on how business value and its creation is
perceived in the context of agile projects. Our overall conclusion is that the pro-
ject participants almost never use an explicit and structured approach to guide
the value creation throughout the project. Still, the application of agile methods
in the studied cases leads to satisfied clients. An interesting result of the study
represents the fact that the agile process of many projects differs significantly
from what is described in the agile practitioners’ books as best practices. The
key implication for research and practice is that we have an incentive to pursue
the study of value creation in agile projects and to complement it by providing
guidelines for better client’s involvement, as well as by developing structured
methods that will enhance the value-creation in a project.

Keywords: Business value, agile software development, value-based approach,
multiple case study.

1 Introduction

Demonstrating the linkages between investments in IT solutions and business benefits
is becoming mandatory for an increasingly large number of organizations. This is
particularly necessary in the context of agile software development, as new agile
methodologies are being adopted and need to prove their merits. A key characteristic
of any agile approach is its explicit focus on business value [1]. Essentially, in an
agile software project, the development process is a value creation process. Indeed,
the agile community established a common understanding [2] that (i) the main pur-
pose of an agile project is to deliver maximum business value for the client and that
(ii) agile approaches deliver business value fast and early in the project.

This paper builds on our previous work [17] that investigated the understanding of
business value in agile projects from publications in the agile software engineering
(SE) and requirements engineering literature. This systematic review [17] of literature
showed that, with very few exceptions, most published studies take the concept of
business value for granted and do not state what it means in general as well as in the
specific study context. We could find no study which clearly indicates how exactly

132 Z. Racheva et al.

individual agile practices or groups of those create value and keep accumulating it
over time. This finding motivated us to pursue further studies of value creation in
agile projects by deploying empirical research methods, for example case study re-
search [22]. In this paper, we present the results of a case study that investigated
(i) the ways in which agile practitioners perceive the notion of business value, and
(ii) those agile development practices that create value, in the practitioners’ opinion.

We have set out to answer the following research questions (RQs):

RQ1: What concepts of business value do practitioners in the context of agile pro-
jects perceive?

RQ2: In which way do agile projects create business value (process of value crea-
tion)? In which way do specific or individual practices influence the creation of busi-
ness value?

RQ3: Do practitioners perform value-driven decisions during agile development?
RQ4: How do developers combine value creation for their own organization with

value creation for the client’s organization?

To answer our research questions, we have performed a multiple case study [22] in
eight software developing organizations. In the next section, we provide background
on our motivation for this study and related work. Section 3 describes the details of
our case study process and Section 4 presents the results. Section 5 assesses our an-
swers to the research questions and discusses implications for researchers and practi-
tioners. Section 6 analyses the possible validity threats, and Section 7 concludes the
paper.

2 Background

2.1 Motivation

The literature of agile SE [12] has emphasized the value creation attributable to the
nature of agile projects. Agile software practices are credited with saving failing pro-
jects and increasing the success chance of many others. In the understanding of the
agile SE community, the value delivered to the client lies not only in what the final
software product represents, but also in the development process as such, which sig-
nificantly contributes to the amount of value delivered. For example, a recent study at
Intel Shannon [12] reports on the application of agile practices which lead to reduc-
tions in code defect density by a factor of 7. Moreover, Favaro [11] points out that
agile approaches generate two kinds of economic benefits: operational and strategic.
This means that the value creation process is not limited to the development of a
product. The operational benefits of agile practices include lower costs for the clients,
better quality product, shorter time-to-market. The strategic benefits include flexibil-
ity to respond to changes and ability to take advantage of new information, which
ensure longer-term additional benefits for the client. Our research attempts to capture
the state of the practice in this respect, as practitioners in agile software organizations
witness it. As already stated in the Introduction, our current case study research is
strongly motivated by the fact that we could not find any published study which indi-
cated how exactly the value creation happens in real-life projects. (We refer interested

 Business Value Is Not Only Dollars – Results from Case Study Research 133

readers to [17] for more details on our earlier work which resulted in this finding.) We
also felt motivated by a recent call by Petersen and Wohlin [16] who suggest that
more qualitative studies are needed to make agile studies comparable and also to
uncover issues that have not been explicitly identified in the agile literature. More-
over, Barney at al. [4], [5] point out that: “there is little research into the criteria used
in the decision-making process around requirement selection for value creation”.

2.2 Related Work

At the time of writing this paper, the topic of value creation receives increasing attention
in the research community [3]. In SE, the sub-field of Value-based Software Engineering
(VBSE) which focuses on the value analysis and value creation process in a software
projects, has been gaining in importance [6]. Drawing on the value-based SE theories,
Aurum and Wohlin [3] advocate a value-based approach in requirements engineering. In
essence, this is about aligning clients’ requirements, business requirements and techno-
logical opportunities when making requirements prioritization decisions. For example,
recent studies by Barney et al. [4], [5] investigated the release-planning process to create
software product value through requirements selection. These authors identified the fac-
tors that determine the decisions about inclusion of certain requirements for implementa-
tion. Next, Rönkkö et al. [18] present three aspects of software – as a technology, as a
design, and as an artifact. They use these aspects to divide the value concept into three
components that are relevant for software developing companies and their clients: intrin-
sic value, externalities and option value. The authors propose a value-decomposition
matrix as a vehicle to reason about the various aspects of value. We make the note how-
ever, that they take a broader look at the development of software products, without
discussing a specific development method. As these authors stress, the vagueness of the
concept of value seems to be a central problem in the VBSE.

Furthermore, publications in agile SE converge on that agile methods get “more
done with less” [10], [15], [20]. More specifically, in our earlier systematic review
[17], we found that agile literature sources agree that business value is considered the
key requirements prioritization criterion in most agile projects. For example, the study
of Cao et al. [8] reached the conclusion that “…agile RE practitioners uniformly re-
ported that their prioritization is based predominantly on one factor – business value
as the customer defines it.”

We make the note that unlike our study, the literature sources that form the related
work in this section have not discussed the question of value definition and value
creation trough the agile process. In fact, the focus of the studies of Barney et al [4],
[5], is not the agile process itself, as most of the projects included in the studies fol-
lowed incremental development. The authors do not discuss the process on itself and
how the process affects the value creation. Although iterative development is in the
focus of the study, the development approach does not play a role beyond the fact that
the product is developed in multiple releases.

3 The Research Method

We conducted a multiple-case study [22] to explicate the decision-making process
during an agile project in the context of changing requirements. The case study

134 Z. Racheva et al.

consisted of semi-structured open-end in depth interviews with practitioners that work
in organizations that develop software by using agile approaches. The case study is a
first step in discovering the way in which the agile requirements mid-course decision
process contributes to the client’s value creation.

The companies, included in the study, characterized themselves as following agile
methodologies. Some of them did strictly follow Scrum principles such as daily
stand–up meetings and release retrospective. More detailed discussion about the study
participants can be found in section ‘limitations’.

3.1 The Case Study Process and Participants

We executed a rigorous case study by performing the following steps: (1) Compose a
questionnaire; (2) Validate the questionnaire through an experienced researcher; (3)
Implement changes in the questionnaire based on the feedback; (4) Do a pilot inter-
view to check the applicability of the questionnaire to real-life context. (5) Carry out
open-end in-depth interviews with practitioners; (6) Sample (follow-up with those
participants that possess deeper knowledge or a more specific perspective).

Each in-depth interview included a section with questions related to the business
value perception and value creation. Those questions were:

• What does business value of a requirement mean for you?
• At your meetings with your clients/product owners, do they explicitly dis-

cuss the business value of the requirements, so that all meeting attendees un-
derstand why some requirements are of higher priority than others?

• Is ‘value’ connected to the business goals which the clients want to achieve
by deploying the software system? If so, in which way does ‘value’ connect
to clients’ business goals?

• When judging the value of the requirements, do clients also consider any
other factors (e.g. cost, size, risk)?

• Has the desired value been quantified? If yes, how?
• In which way, in your experience, does the agile process add value to the cli-

ent? Can you give a specific example from your practice?
• For yourself, as part of the developing side – do you consider the value for

your own organization, or is it more important what the client wants?
• Do you share knowledge about business value creation within the organiza-

tion?

We make the note that no substantial changes in our interview protocol took place
after the pilot interview, so that the pilot interview could be considered part of the
case study. The study included 11 practitioners who were working for eight different
companies/public organizations:

• 1 middle size company in the Netherlands (3 cases, 3 participants)
• 2 small companies in the Netherlands (3 cases, 3 participants)
• 1 small company in Bulgaria (1 participant)
• 1 middle size company in Bulgaria (1 participant)
• 1 university in Germany (1 student project)

 Business Value Is Not Only Dollars – Results from Case Study Research 135

• 1 country-specific business unit of a large international company, Italy (1
participant)

• 1 department in a large governmental organization, Turkey, (1 participant).

The participants described a total of 11 projects. The application domains for which
software solutions were developed represent a rich mix of fields and include banking,
ERP for small businesses, health care management, automotive, content management
system, online municipality services system. In each organization we interviewed one
or more representatives that were directly involved in the decision-making and the
development process. Many of the participants performed multiple roles in the team
and thus had a wide overview of the end-to-end process.

3.2 The Data Collection

We collected data from our case study participants by carrying out in-depth inter-
views. According to research methodologists [9], [22], in-depth interviews are inten-
sive conversations with a small number of respondents to explore their perspectives
on a particular project, practice or idea. We used this data collection technique be-
cause it is deemed useful when a researcher needs detailed and context-specific in-
formation so that he/she explores an issue in depth.

The interviews took place between July 15 and Nov 10, 2009. Nine interviews
were done in face-to-face meetings. Two interviews took place over the phone. Each
interview lasted between 60 and 90 minutes. Each interviewee was provided before-
hand with information on the research purpose, the research process and the rights
and responsibilities of the participating case study companies. At the meeting, the
researcher and the interviewee walked through the questionnaire which served to
guide the interviews.

We make the note that in each interview, the interviewer (that is the first author of
this paper) used her judgment and tact to decide how closely to stick to the interview
guide and how much to follow up the practitioners’ answers and the new directions
they might open up. Throughout the data collection, the interviewer attempted to
verify her interpretation of participant’s answers. She also summarized the key data
immediately following the interview. The data was then transcribed and analyzed,
which is described in the next section.

3.3 The Data Processing

The data analysis in this study was guided by the grounded theory method according
to Charmaz [9] that is a qualitative method applied broadly in social sciences. This
approach is explorative and well suited for situations where the researcher does not
have pre-conceived ideas, and instead is driven by the desire to capture all facets of
the collected data. On the next step the data can be used to build a theory. The data
analysis followed the following steps (1) Coding, which was focused on attaching a
‘code’ to a portion of the text; (2) Clustering all portions of text with the same code;
(3) Creating lists with codes and clustering them into families; (4) Identifying pat-
terns, i.e. multiple occurrences of the same mechanisms or concepts. These steps were
executed by the first two authors of the paper who worked independently at two dif-
ferent locations. Each researcher read through the practitioners’ responses and

136 Z. Racheva et al.

searched for themes and patterns that appear to be common among the practitioners.
The third author of this paper acted as a checker in the process of identifying patterns
(step 4 of the list above). We got a variety of themes which we grouped in two ways
that we found meaningful: by perspective (clients’ versus developers’ perspectives)
and by company size (small, medium, large). For example, our analysis found that
small agile software development companies who have small organizations as their
clients set up their prioritization process differently compared to larger companies.

4 Results

This section presents the results in an order corresponding to our research questions
formulated in Section 2.

1. What concepts of business value do practitioners in the context of agile projects
perceive? Table 1 summarizes what the participants in the study perceive as a busi-
ness value.

Table 1. Understandings of business value from the interviews

The business value…
“…is in the context of the main functionality: does the feature support our main scenario?”
“…what the organization will gain when we implement the requirement”.
“…usually it is what they like to see, what is used most (from workflow perspective).”
”…what will it means if we implement this requirement – will the client become more
efficient, more competitive, will it gain something”
“…is defined based on: how much the client uses certain feature; whether it works good,
and to help them do their work (in this case – the work flow)

Table 1 indicates that in our observations, many of the business value definitions
are context-dependent, that is, a definition could be traced back to a specific context
characteristic of a project. For example, one of the participants, who worked on a
project in the context of a software suppliers’ network, defined the term business
value as: “Business value is to allow the client develop the functionality for which
he/she is dependent on us”. This perception clearly demonstrated the linkage between
the perceived business value by this interviewee and the role he plays with respect to
his clients in the suppliers’ network. Another interviewee shared that ”perceptions of
business value vary from project to project, even if you have the same client on site in
both projects”. Examples as these brought us to think that we can not expect one
universal definition of BV. Moreover, practitioners also indicated that the definition
of the same client would probably change from project to project, depending on (i) the
different project-specific settings, (ii) the specific needs of the client (for example, the
need to have highly reusable or highly scalable software), and (iii) the market position
of the client’s organization. To us, this all indicated that multiple layers of business
value are clearly observable in agile project organizations and that it might make good
sense to look into these layers in order to understand the underlying mechanisms
responsible for the variation of perceived business value across agile projects within
an organization. We consider it intuitive to think that agile projects may well vary in
terms of how much of an agile approach they adopt in the project delivery cycle, and

 Business Value Is Not Only Dollars – Results from Case Study Research 137

this, in turn, leads to variations in the perceived business value of both the system
being delivered (that is, the product) and of the way it is delivered (the process). This
reasoning motivates us to carry out a follow-up case study in which we plan to collect
more observations on how business value is created and to understand the relationship
which could possibly exist between the extent to which a project is agile and the per-
ceived business value.

2. In which way do agile projects create business value or influence the creation of
business value? All study participants agree on that agile development better suits the
project objective to satisfy customer needs and, hence, it leads to increased customer
satisfaction, regardless of other project context characteristics as level of customer
involvement, organizational culture, type of product, level of risk and requirements
volatility. More in detail, the answers by practitioners and the agile practices they
addressed are presented in Table 2.

As suggested in Table 2, our observations from the interviews bring us to the con-
clusion that business value is created by a combination of agile practices and mecha-
nisms at play in a project-specific context. For example, in short projects with limited
resources and a short list with requirements, the client profits from the agile process
through (1) the efficiency of the process, (2) the ‘savings’ made by the light-weight
method, and (3) the ability to figure out early what they’ll get and whether it is what
they need. This profit-making mechanism is deemed by our participants important to
obtain the best possible system for the money spent.

Another example is in a context of volatile or unclearly defined requirements. In
this case, the value is ensured by the change management mechanisms and by incor-
porating learning loops in the process [19]. An interesting finding in our study was
that the views by all participants agreed on that the agile paradigm has an effect on
the social aspects of project delivery, such as work moral and atmosphere, as well as
on the relationship between client and developing organizations.

3. Do practitioners perform value-driven decisions during agile development?
While the concept of business value was deemed important to all participants, when it
comes down to making requirements prioritization decisions at inter-iteration time,
we found a surprising result: nine out of eleven participants stressed the importance
of, what they called, a ‘negative value’. This is a prioritization criterion that the prac-
titioners used in requirements prioritization and it means ‘how big the damage for the
client/product will be if a requirement is not implemented’.

The practitioners explained that in their requirements prioritization experiences the
important point of reasoning was not the estimation of the value being present in a
certain feature, but instead – the question of how much this feature would detract
from the product’s value, if the developers do not implement it. The ‘negative’ value
thus is equivalent to loss of value or damage to the business. In the experience of one
practitioner, this reasoning reflects a professional pragmatic behavior especially in
projects that have very limited resources and clients preoccupied with whether or not
they derive maximum benefit from the project. Unlikely to contexts in which scarcity
of project resources is an important concern, in projects which enjoy ‘more generous’
budgets, practitioners agreed on that their decisions were driven mainly by value
consideration, namely supporting the main functionality of the software system being
delivered and keeping in mind the ‘negative value’. We note that making decisions by
considering ‘negative value’ sounds intuitive, as the scarcer the resources, the more

138 Z. Racheva et al.

T
ab

le
 2

. A
gi

le
 p

ra
ct

ic
es

 a
nd

 b
us

in
es

s
va

lu
e

cr
ea

ti
on

A
ns

w
er

s
to

 t
he

 q
ue

st
io

n
of

 h
ow

 a
gi

le
 s

of
tw

ar
e

pr
oc

es
se

s
cr

ea
te

 b
us

in
es

s
va

lu
e

P

ra
ct

ic
es

 a
dd

re
ss

ed
:

R
es

ul
ts

 in
:

“…
T

he
cl

ie
nt

s
ar

e
in

cl
ud

ed
in

th
e

de
ve

lo
pm

en
tp

ro
ce

ss
w

hi
ch

en
ha

nc
es

th
e

un
de

rs
ta

nd
in

g
be

tw
ee

n
th

e
pa

rt
ie

s.
”

C
lie

nt
’s

in
vo

lv
em

en
t

S
at

is
fi

ed
cl

ie
nt

,b
et

te
r

re
la

tio
ns

hi
p

“T
he

pr
oc

es
s

w
as

ad
di

ng
va

lu
e.

T
he

pr
oj

ec
t

in
cl

ud
ed

m
an

y
re

la
tiv

el
y

sm
al

l
re

qu
ir

em
en

ts
;

th
er

e
w

as
a

hi
gh

th
ro

ug
h

fl
ow

in
th

e
P
B

(p
ro

du
ct

ba
ck

lo
g)

th
at

yo
u

ca
n

no
th

an
dl

e
in

a
w

at
er

fa
ll

w
ay

.”
H

an
dl

in
g

ch
an

gi
ng

re
qu

ir
em

en
ts

C
re

at
in

g
a

pr
od

uc
t

th
at

th
e

cl
ie

nt
de

si
re

s
an

d
th

at
an

sw
er

s
to

ch
an

ge
s

“T
he

cl
ie

nt
s

pr
ef

er
to

ge
t

so
m

et
hi

ng
m

or
e

of
te

n
in

st
ea

d
of

on
e

bi
g

th
in

g
on

ce
pe

r
ye

ar
th

at
m

ig
ht

no
t

be
w

ha
t

th
ey

w
an

t.”
F
re

qu
en

tr
el

ea
se

s
S
at

is
fi

ed
cl

ie
nt

“…
by

th
e

ef
fi

ci
en

cy
of

th
e

pr
oc

es
s,

th
e

‘s
av

in
gs

’
m

ad
e

by
th

e
lig

ht
-w

ei
gh

t
m

et
ho

d,
an

d
by

fi
gu

ri
ng

ea
rl

y
w

ha
t

th
ey

’l
l

ge
t

an
d

w
he

th
er

it’
s

w
ha

t
th

ey
ne

ed
.

G
iv

es
th

e
cl

ie
nt

pe
ac

e
of

m
in

d!
G

iv
es

th
em

th
e

id
ea

ab
ou

t
w

ha
t

th
ey

’l
lg

et
,a

tt
he

sa
m

e
ti

m
e

th
ey

do
n’

tp
ay

up
fr

on
ta

nd
do

n’
th

av
e

to
si

gn
a

pe
ac

e
of

pa
pe

r;
al

so
th

ey
kn

ow
th

at
th

ey
ca

n
ad

d
so

m
et

hi
ng

if
th

ey
fo

rg
et

.”

C
lo

se
co

op
er

at
io

n
w

it
h

th
e

cl
ie

nt
R

eq
ui

re
m

en
ts

’
ch

an
ge

s
ar

e
al

lo
w

ed

S
at

is
fi

ed
cl

ie
nt

s;
H

ar
m

on
io

us
tr

us
tf

ul
re

la
ti

on
sh

ip
;

pe
ac

e
of

m
in

d;
le

ss
pr

ob
ab

il
ity

fo
r

re
qu

ir
em

en
ts

cr
ee

p
“i

f
it

w
as

no
t

ag
ile

,w
e

co
ul

d
ha

ve
m

ad
e

a
co

m
pl

et
el

y
di

ff
er

en
t

sy
st

em
fr

om
w

ha
t

th
ey

w
an

t.
E

sp
ec

ia
ll
y

in
th

is
ca

se
w

he
re

th
e

re
qu

ir
em

en
ts

w
er

e
no

tS
M

A
R

T
.W

e
di

sc
ov

er
ed

ve
ry

ea
rl

y
w

ha
tt

he
y

re
al

ly
w

an
t.

O
th

er
w

is
e

yo
u

ne
ed

m
uc

h
m

or
e

sp
ec

if
ic

re
qu

ir
em

en
ts

.
A

ls
o,

fo
r

th
e

de
ve

lo
pe

rs
–

th
ey

ha
ve

m
or

e
vo

ic
e,

th
er

e
is

m
or

e
in

te
ra

ct
io

n,
th

ey
ar

e
ha

pp
y.

W
e

ha
ve

al
m

os
tn

o
ca

se
s

of
pe

op
le

th
at

le
av

e
th

e
co

m
pa

ny
.”

S
m

al
l

re
le

as
es

an
d

fr
eq

ue
nt

de
m

os
T

he
de

ve
lo

pe
rs

ar
e

ha
pp

y!
A

nd
w

or
k

be
tt
er

;
cr

ea
ti
ng

th
e

ri
gh

t
pr

od
uc

t,
ha

pp
y

cl
ie

nt
,

no
w

as
te

of
ti
m

e
an

d
re

so
ur

ce
s

“Y
ou

ca
n

sh
ow

ve
ry

ea
rl

y
w

ha
tt

he
y

ca
n

ge
t;

an
d

yo
u

ca
n

m
an

ag
e

ex
pe

ct
at

io
ns

–
w

ha
tt

o
ex

pe
ct

an
d

w
he

n.
”

E
ar

ly
re

le
as

e
H

ap
py

cl
ie

nt
,r

ea
lis

ti
c

ex
pe

ct
at

io
ns

“I
do

n’
t

be
li

ev
e

in
re

qu
ir

em
en

t
do

cu
m

en
ts

;
I

th
in

k
th

ey
ar

e
ex

ac
tly

as
go

od
as

a
ca

rd
,

an
d

al
l

th
e

re
st

ef
fo

rt
(s

pe
ci

fi
ca

ti
on

,e
tc

.)
is

a
w

as
te

.A
no

th
er

go
od

th
in

k
is

th
at

yo
u

do
n’

ts
ig

n
so

m
et

hi
ng

up
fr

on
t.

It
is

go
od

fo
r

bo
th

si
de

s,
an

d
fo

r
us

to
m

ak
e

ex
pe

ct
at

io
n

m
an

ag
em

en
t;

A
gi

le
m

ak
es

pr
od

uc
ts

fa
st

er
to

m
ar

ke
t;

yo
u

ha
ve

de
fa

ct
o

de
m

o
ev

er
y

2
w

ee
ks

,
w

hi
ch

is
ex

tr
em

el
y

he
lp

fu
l,

as
no

bo
dy

ca
n

do
ev

er
yt

hi
ng

ri
gh

t
fr

om
th

e
fi

rs
t

ti
m

e.
It

al
lo

w
s

th
e

cl
ie

nt
to

co
lle

ct
fe

ed
ba

ck
,

ob
se

rv
at

io
ns

an
d

ex
pe

ri
en

ce
fr

om
th

e
be

ta
-v

er
si

on
s,

an
d

so
th

e
fi

rs
tv

er
si

on
in

pr
od

uc
tio

n
is

m
uc

h
be

tte
r.

”

Sl
im

R
E

pr
oc

es
s,

le
ss

do
cu

m
en

ta
ti

on
,

fr
eq

ue
nt

re
le

as
es

,
in

co
rp

or
at

e
le

ar
ni

ng

G
oo

d
us

e
of

re
so

ur
ce

s,
no

w
as

te
,

lo
w

er
ri

sk
(d

o
no

t
si

gn
so

m
et

hi
ng

fi
xe

d
up

fr
on

t)
,

fa
st

er
to

m
ar

ke
t,

cr
ea

tin
g

th
e

ri
gh

t
pr

od
uc

t,
hi

gh
er

qu
al

it
y

“Y
ou

ca
n

m
ak

e
ch

an
ge

s
du

ri
ng

th
e

pr
oj

ec
t;

no
bo

dy
kn

ow
s

in
ad

va
nc

e
w

ha
tt

he
y

re
al

ly
w

an
t.

T
hi

s
pr

oc
es

s
he

lp
s

th
em

to
se

e
w

ha
th

ap
pe

ns
,a

ta
n

ea
rl

y
st

ag
e.

”
C

ha
ng

e
m

an
ag

em
en

t,
ea

rl
y

re
le

as
es

,
in

co
rp

or
at

e
le

ar
ni

ng
an

d
ex

pe
ri

en
ce

B
et

te
r

pr
od

uc
t

an
d

ri
gh

t
pr

od
uc

t
vi

a
le

ar
ni

ng

“…
to

re
du

ce
th

e
ti
m

e
fo

r
de

ve
lo

pm
en

t…
T

he
pr

oj
ec

tt
ea

m
is

m
or

e
co

he
si

ve
,t

he
ex

pe
ri

en
ce

is
sh

ar
ed

,a
ls

o
to

th
e

w
ho

le
co

m
pa

ny
.”

In
fo

rm
at

io
n

sh
ar

in
g

te
ch

ni
qu

es
F
as

te
r

ti
m

e
to

m
ar

ke
t,

be
tte

r
te

am
w

or
k,

in
fo

rm
at

io
n

sh
ar

in
g

“T
he

sp
ec

ia
lb

en
ef

it
of

ag
ile

is
th

at
th

e
cl

ie
nt

ca
n

be
tte

r
in

fl
ue

nc
e/

re
-d

ef
in

e
w

ha
th

e
ge

ts
fo

r
hi

s
m

on
ey

.”
C

lie
nt

pa
rt

ic
ip

at
io

n
H

ap
py

cl
ie

nt
s,

m
or

e
‘v

al
ue

fo
r

m
on

ey
’

 Business Value Is Not Only Dollars – Results from Case Study Research 139

conscious the project teams are on how to spend them. However, we also make the note
that, to the best of our knowledge, the agile literature sources do not mention the con-
cept of ‘negative value’. Reflecting on the discrepancy between the business value con-
cepts discussed in agile literature and our experience that the concept of ‘negative value’
surfaced during the interviews with the majority of the participants, regardless of their
locations, company sizes, and cultures, we think that it is an under-researched topic
which warrants further research. First, the concept of ‘negative value’ suggests that we
may need to redefine the concept of business value in agile all together. Second, this
concept clarifies the type of value that feeds into the decision-making processes in agile
projects. Understanding the mechanisms that condition the use of ‘negative value’ in
agile can bring us to restate the decision-making conceptual frameworks which we, the
researchers, have been using to explain agile phenomena until now. We consider this a
research problem for our immediate future. More specifically, we plan to get back to the
case study sites and do follow-up in-depth interviews to explicate the meaning of ‘nega-
tive value’ and its use in agile decision-making.

4. How do developers combine value creation for their own organization with value
creation for the client’s organization? The practitioners shared the views that in the
software project organizations, the developers regularly perform their own estimations
and revise their understandings of how the business value from the client’s standpoint
relates to the bottom line of the developers’ companies. They explained that this devel-
opers’ value-conscious estimation happens, because of the pressure on the developers to
maximize the value creation for the client, only while ensuring a descent level of profit
for their own companies. This means that not all wants of the clients get implemented at
inter-iteration time, and certainly, not all requirements that the client specified at project
inception time are implemented. Overall, the practitioners agreed that the developers are
active participants in the requirements decision-making processes. Their participation is
deemed even stronger in cases of small projects, where the client is a small organization
or company that does not possess knowledge in the IT domain and cannot afford paying
extra for IT consulting services. Such a client may even find it very expensive to allo-
cate a resource to the role of ‘on-site client’. Often, it is economically unfeasible for the
client organization to pool away a full-time employee from their every-day business and
task him/her to serve ‘on-site’ in an agile project. In such a context, it happens that the
client delegates the decisions influencing the value creation, to the developing team. Our
case study participants indicated with certainty that a high level of trust is a prerequisite
for such cooperation. Some participants described situations where they even had to
‘save the clients from themselves’, meaning to prevent unwise decisions or suboptimal
choices that will be harmful in long term. The practitioners motivated this course of
action with their experience from previous projects at the client’s site as well as their
profound knowledge of the client’s business domain. The developers also justified this
behavior by their desire to create maximal value for the client and, thus, to contribute to
a successful project. In the experience of our interviewees “this leads to high client
satisfaction and good relationship with the client, which will, eventually, lead to future
mutual projects”. This observation represents an interesting point for further discussions
and research, as it does not converge with the common understanding in the agile litera-
ture that the customer is responsible for making the (prioritization) decisions. We think,
therefore, that knowing more about the variation in project contexts is key to understand

140 Z. Racheva et al.

how relevant project context characteristics possibly affect the choice of decision-
making approach in a project.

That the developers strongly participate in the prioritization and decision-making
gives us the hint that agile and traditional requirements engineering processes may not
be that different, compared to what originally was thought, regarding who prioritizes
the requirements. Our study suggests that in agile (as well in traditional) contexts, we
can find examples of clients who essentially rely on developers to prioritize their
project requirements; we, therefore, think that the difference between agile and tradi-
tional processes is not with respect to who prioritizes the requirements, but: (1) with
respect to what competencies and (tacit) knowledge those, who prioritize, have of
their client’s business, (2) with respect to whether the client is able to participate in
the process. Our interviewees suggested that the developers, who ‘saved the clients
from themselves’ are experienced professionals (e.g. in the words of one interviewee,
with 10 to 15 years of experience in IT systems delivery in a specific business sector)
and this might indicate that for agile prioritization to be led by developers, it should
include highly-competent and experience people. At the time of writing this paper, we
consider this a hypothesis for future research and we feel motivated to carry out fur-
ther case studies in company sites to confirm or disconfirm it.

Last, the observation that clients feel their knowledge of requirements priorities
limited when it comes to inter-iteration decision-making opens up a question to those
researchers that develop and evaluate requirements prioritization methods. The exist-
ing prioritization techniques rest on the assumption that clients are aware of the me-
chanics behind the application of requirements prioritization techniques and, as a
minimum, they are conscious about their role of providers of the input that feeds into
these techniques. It appears that our case study findings question the extent to which
this assumption is realistic. Indeed, requirements prioritization methods take for
granted that there are objective values to provide inputs into the methods. Now, look-
ing at our case study findings, the suspicion grows that these objective values may not
always exist and are difficult to make. Our findings are indicative for a limitation
being present in the current requirements prioritization methods, and therefore, we
think that future research is warranted to understand those cases in which the assump-
tion is not realistic.

5 Discussion on the Results

We were surprised that our study yielded a few findings regarding essential aspects of
business value creation in agile projects, which were misaligned with what agile lit-
erature says on these aspects. Reflecting on these findings, we formulated a number of
interesting research questions for the future. Below, we present the research questions
according to those findings which indicated a gap between agile project realities and
the agile literature:

(1) Business value is more than just numbers. It comes out of a human judgment that
is based on competencies and deep knowledge of the client’s domain. An interest-
ing question then is how a judgment about business value is formed and what tacit
knowledge should be made explicit, so that knowledge about business value gets
shared among developers and clients.

 Business Value Is Not Only Dollars – Results from Case Study Research 141

(2) Perceived business value varies from project to project, as projects vary in terms
of amount of agile practices they use. Does any relationship exist between the ex-
tent to which a project is agile (i.e. the amount and the combination of agile prac-
tices) and the perceived business value? If so, what kind of relationship is it?

(3) The value-creation process plays an important role for the developers’ organiza-
tion. The agile practitioners’ literature [2] seems to share the opinion that the only
value-creating considerations that drive the development decisions are those of
creating value for the client. During this study we made the consistent observation
that, more often then not, the value creation for the developers has been consid-
ered as well. Clearly, developers and clients have some goals that ensure mutual
benefits to incur e.g. “we want to make the client happy, so that he/she comes
back”, while other goals on the developers’ side may not be related to one particu-
lar project or one particular client, and instead are related to issues like reuse,
other concurrently running projects and distribution of resources for maximizing
value for the organization. We need to consider more carefully in which ways de-
velopment teams balance the client’s business value with their own organizational
bottom-line. We think this is an important topic for future research on its own
right. We think, if we collect and analyze examples of good and not-so-good ways
to balance client’s and developers’ value-creation perspectives, then we will be
able to deduce patterns, principles, do’s and don’ts, and other general understand-
ings that help practicing requirements engineers build up a body of knowledge
that can assist them in value-creation.

(4) As already noted in the previous section, the developers rely on their own estima-
tions and understandings, even on common sense, in order to maximize the value
creation for the client. The situations in which the developers had to ‘save the cli-
ents from themselves’ opens up perspectives for future research. For example, it
would be interesting to see what level of trust is necessary in those situations
when clients ‘delegate’ the value creation process to the developing team who de-
livers the system.

(5) The evidence from the study shows that, in contrast to the documented agile best
practices in the literature [10], in most of the cases the developers are those who
made inter-iteration decision making. Our interviewees agreed that more often
than not the involvement of the clients consisted mainly of approving the
plan/giving comments. Only in few cases practitioners were able to provide evi-
dence that the client is really capable/interested/aware of the agile way of defining
priorities, and thus able to navigate the functionality by the mid-course decision-
making process. In Section 4 we already expressed the suspicion that this may
question the fundamental assumption behind the contemporary agile requirements
prioritization methods, namely that some objective values exist to feed as inputs
into the methods. We think, this alone is worthwhile researching so that we under-
stand the extent to which this assumption is realistic. In our case study, the inter-
viewees went further to explain why developers are that strongly participating in
the decision-making. In their view, the developers’ company is the one to make
sure that the project delivery process runs in a way that is profitable for the com-
pany. If developers accommodate all wishes which clients might come up with at
inter-iteration time, the company may find it not sustainable in the long run. As
said in the previous paragraph, while an agile software company lets its clients

142 Z. Racheva et al.

prioritize the requirements, this decision-making process can take place only when
the client’s sense of flexibility is balanced against the company’s sense of profit-
ability. However, it remains to uncover the mechanisms that are at play in con-
texts where this balance is feasible.

(6) Throughout the interviews, it became explicit that there is a link between the pro-
ject’s settings and the way the decisions are made, i.e. how the value creation
process is organized. In all projects where the client’s company was a small com-
pany, the decision making was deliberately delegated to the developer. It could be
a product owner, a project manager or another representative of the developing
team that was responsible for the communication with the client.

6 Limitations

We explicitly addressed the possible threats to external and internal validity of the
observations and conclusions in a case study as per the recommendations of qualita-
tive case study research methodologists [21],[22]. First, the external validity addresses
the generalizability of our observations and conclusions beyond the studied sample of
companies, projects and participants. The following aspects of the study can be con-
sidered as possible threats to the validity: (i) the number of companies and projects
that have been studied; and (ii) the choice of study participants. The scale of the study
does not allow us to make statistically relevant observations. However, as discussed
earlier, this was not the purpose of our study. For a qualitative study, the question is
rather [21],[22]: to what extent the companies included in the study can be considered
as representative for a broader range of companies? We deliberately included in the
study representatives of companies of different sizes and business sectors. Some of
the findings apply generally across the cases, despite the heterogeneity of the set of
case studies. This gives confidence that the conclusions hold for other companies in
similar context as well. It is for this reason we have searched for aspects that the cases
have in common rather than aspects in which they might differ. Our findings corre-
spond to the intuitive thought that agile companies in similar contexts would share
similar approaches to business value in their projects, but, more importantly, it was
also confirmed by participants in a panel discussion where first results of the study
have been presented. Of course, the stress here is on the word ‘context’. We believe
that the most important aspects of the context, in this case, are: location of the com-
pany, company size and project size. As participants in the study indicated, the geo-
graphic zone, where a company is located implies the presence of a country-(or zone-)
specific culture, which defines to a large extent the relationships between the clients’
and developers’ organizations. In addition, there are specific legal aspects in each
country in respect to the contractual terms an agile project organization would adopt.
Furthermore, the geographical location of the company is linked to the way in which
the agile methodology is applied and the extent to which the agile way of thinking and
working as a philosophy penetrates in a specific part of the world. This means to us
that it is realistic to expect that the results of our study are generalizable to companies
in a similar context, especially in companies of similar size, located in Central and
South-European countries. We make the note that we are aware of the different level
of penetration of the agile paradigm in the different geographic zones. E.g. in North

 Business Value Is Not Only Dollars – Results from Case Study Research 143

America, the increased awareness and usage of agile approaches have lead to the
formation of professional communities and networks as well as to specialized profes-
sional certifications (e.g. scrum master). It will be very interesting to observe,
compare and contrast the agile development and project management practices at
companies working in different cultural settings. Furthermore, it would be interesting
to compare their processes of value creation and their understanding of value with the
observations in this paper.

It should be noted that our cases are limited to small and medium-sized companies.
Due to their different nature, the findings cannot be generalized to large companies,
which have a different, and often distributed, software delivery process. For example,
in [13], the authors describe a large-scale Scrum-of-scrums approach that ensures
multi-team coordination in large organizations (e.g. Nokia) and relies on a set of
mechanisms unique to agile contexts in large companies. In this case, study, we did
include one large organization, however, the project which we included in the case
study was small. This meant, it had a smaller project organization, consisting of a few
representatives of the country-specific business unit of the company (to which our
interviewee belonged) and a representative of the client.

Second, with respect to internal validity, our key concern refers to the choice of the
companies. As we are analyzing agile processes, we want to be sure that this is in fact
what we are investigating. The important question to discuss is how did we (the re-
searchers) know that the processes we studied were indeed agile ones. To minimize
the effect of this threat on the results of the case study, we took some extra actions:
We confirmed with all participants that they (or their team) apply an agile methodol-
ogy. The participants stated that their organizations were known as agile method
adopters and that they were committed to use agile in the projects that we collected
information about. Next, during the interviews, we consciously looked for confirma-
tion of whether the interviewees indeed referred to examples of their experiences in
agile projects (and not in projects that used other approaches). Certainly, this is a
philosophical question as well – where is the line between other iterative and incre-
mental approaches and which characteristics of the project should be observable in
order to claim a team or a project to be agile. This question is out of the scope of this
paper, though. To the best of our knowledge, the projects included in our study are
truly agile projects in the sense of the Agile manifesto [2]. Furthermore, our inter-
viewees agreed on that the agile process helped them create rapport with their clients
easier than it could have been possible in a project that uses a traditional delivery
approach. The interviewees also agreed that the agile process makes it “much easier
than ever before” to consistently maintain communication with the client organiza-
tion. They felt that this all was instrumental to “making the clients happy”. Clearly,
one could raise the concern that these observations are biased, as they are provided by
agile practitioners. More than 70% of the interviewees were seasoned practitioners
with more than 15 years of software project experience and that they accumulated a
large part of this experience while working for organizations with traditional software
development approaches. So, they had enough practice to compare the both worlds.
However, we admit that there is a possible threat to validity as we interviewed only
those people that are currently engaged in agile development. Theoretically, there
could have been people that came back to traditional approach. However, this was
not a feasible option within the resources we had.

144 Z. Racheva et al.

7 Conclusions

This paper presents the results of empirical investigation on the understanding of agile
software practitioners on the concept of business value and its creation during the
development process. All participants in our explorative study expressed the opinion
that agile projects make clients satisfied by the outcome of a project. This was a point
of convergence across case study sites regardless of the significant variety in project
characteristics (type of software project, organization size, culture) at these sites.

The study revealed an important gap between the realities of the practitioners in the
studied projects and the agile literature. In our view, acknowledging the presence of
this gap is a valuable input to agile project managers and practitioners when they
make decisions on how to implement the agile practices concerning the interactions
with their clients. Agile managers may choose to avoid certain practices if they deem
this brings them closer to their project realities in which business value is to be cre-
ated. Reflecting on the gap also brought us to research questions for the future.

We believe that value creation in agile projects is a lively, difficult and richly ar-
ticulated research field and, therefore we think that our explorative case study can be
just one step on the way to develop a deeper understanding of the agile phenomena
related to essential aspects of business value. We consider it a work-in-progress that
the community may want to adapt and expand.

Acknowledgments. This research is funded by the Netherland’s Research Foundation
(NWO) under the QUADREAD project. We thank all practitioners that took part in
the case study and the three referees for their constructive comments.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development Meth-
ods: Review and Analysis, VTT Technical Report (2002)

2. Agile Alliance, Manifesto for Agile Software Development, February 13 (2001),
http://www.agilemanifesto.org/

3. Aurum, A., Wohlin, C.: A Value-Based Approach in Requirements Engineering: Explain-
ing Some of the Fundamental Concepts. In: Sawyer, P., Paech, B., Heymans, P. (eds.)
REFSQ 2007. LNCS, vol. 4542, pp. 109–115. Springer, Heidelberg (2007)

4. Barney, S., Aurum, A., Wohlin, C.: A Product Management Challenge: Creating Software
Product Value through Requirements Selection. Journal of Software Architecture 54,
576–593 (2008)

5. Barney, S., Wohlin, C., Aurum, A.: Balancing software product investments. In: Proc. of
the Symposium on Empiricl Software Engineering (ESEM), pp. 257–268 (2009)

6. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.): Value-based Soft-
ware Engineering. Springer, Heidelberg (2006)

7. Boehm, B.: Software Engineering Economics. Prentice-Hall Inc., Englewood Cliffs (1981)
8. Cao, L., Ramesh, B.: Agile Requirements Engineering Practices: An Empirical Study.

IEEE Software 25(01), 60–67 (2008)
9. Charmaz, K.: Constructing Grounded Theory: a Practical Guide through Qualitative Re-

search. Sage, Thousand Oaks (2007)
10. Cohn, M.: Agile Planning and Estimating. Prentice Hall Inc., Englewood Cliffs (2005)

 Business Value Is Not Only Dollars – Results from Case Study Research 145

11. Favaro, J.M.: That Elusive Business Value: Some Lessons from the Top. In: Baumeister,
H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556, p. 199. Springer,
Heidelberg (2005)

12. Fitzgerald, B., Hartnett, G., Conboy, K.: Customising Agile methods to Software Practices
at the Intel Shannon. European J. of Info. Syst. 15(2), 200–213 (2009)

13. Larman, C., Vodde, B.: Practices for Scaling Lean and Agile Development: Large, Mul-
tisite and Offshore Projects with Large-Scale Scrum. Addison-Wesley, Reading (2008)

14. Little, T.: Schedule estimation and uncertainty surrounding the cone of uncertainty. IEEE
Software 23(3), 48–54 (2006)

15. Little, T.: Value Creation and Capture: a Model of the Software Development Process.
IEEE Software, 48–54 (2004)

16. Peterson, K., Wohlin, C.: A Comparison of issues and Advantages in Agile and Incre-
mental Development between State of the Art and an Industrial Case. Journal of Systems
and Software 82, 1479–1490 (2009)

17. Racheva, Z., Daneva, M., Sikkel, K.: Value Creation by Agile Projects: Methodology or
Mystery? In: 10th International Conference on Product-Focused Software Process Im-
provement, pp. 141–155. Springer, Heidelberg (2009)

18. Rönkkö, M., Frühwirth, C., Biffl, S.: Integrating Value and Utility Concepts into a Value
Decomposition Model for Value-Based Software Engineering. In: 10th International
Conference on Product-Focused Software Process Improvement, pp. 362–374. Springer,
Heidelberg (2009)

19. Schwaber, K.: Agile Project Management with SCRUM. Microsoft Press, Redmond,
Washington (2004)

20. Sutherland, J., Altman, I.: Take No Prisoners: How a Venture Capital Group Does Scrum.
In: Proceedings of AGILE 2009, Chicago, MI (USA), August 24-28, pp. 350–355.
Springer, Heidelberg (2009)

21. Wieringa, R.: Design Science and Software Engineering, In: ICSOFT (2009)
22. Yin, R.K.: Case Study Research: Design and Methods. Sage, Thousand Oaks (2004)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 146–160, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Critical Success Factors for Offshore Software
Development Outsourcing Vendors: An Empirical Study

Siffat Ullah Khan1, Mahmood Niazi1, and Rashid Ahmad2

1 School of Computing and Mathematics, Keele University, Keele, ST5 5BG, UK
s.khan@epsam.keele.ac.uk, mkniazi@cs.keele.ac.uk

2 College of EME, National University of Science & Technology, Rawalpindi, Pakistan
rashid@ceme.edu.pk

Abstract

CONTEXT – Offshore software development outsourcing is a contractual busi-
ness of high quality software production with significant cost-saving.

OBJECTIVE – The objective of this research paper is to analyse the factors that
influence software outsourcing clients in the selection of offshore software out-
sourcing vendors.

METHOD – We have performed questionnaire surveys with 53 experts. We asked
the participants to rank each success factor on a five-point scale to determine the
perceived importance of each success factor. Our survey included success factors
identified in the previous findings of systematic literature review study.

RESULTS – Our study reveal both cost-saving and appropriate infrastructure as
the most influential factors in the selection of outsourcing vendors. Our results
also indicate that appropriate infrastructure, cost-saving and efficient project
management are common success factors across different groups of practitioners.

CONCLUSIONS – Cost-saving and appropriate infrastructure should be con-
sidered as the prime factors in the selection process of software development
outsourcing vendors.

1 Introduction

Software development outsourcing is a contractual business between client and ven-
dor organisations in which a client(s) contracts out all or part of its software develop-
ment activities to a vendor(s), who provides agreed services for remuneration [1].
Offshore software outsourcing is dramatically changing the business economics in the
overall outsourcing industry due to the availability of skilled human resource and pro-
vision of high quality software at low cost [2].

This research focuses on the need to gain an in-depth understanding of the range
of criteria used by the software development outsourcing clients for the selection of
software development outsourcing vendors. Understanding the selection criteria will
help software development outsourcing vendors in addressing those criteria in order
to be fully ready for software development outsourcing initiatives. This may also help
to ensure the successful outcome of offshore outsourcing projects and long lasting
relationships between clients and vendors.

 Critical Success Factors for Offshore Software Development Outsourcing Vendors 147

There are many reasons for software development outsourcing [3]. Client organi-
sations benefit from offshore outsourcing because vendors in developing countries
(offshore vendors) usually cost one-third less than onshore vendors and even less
when compared with in-house operations [4]. Moreover, offshore vendors improve
their skills and service quality with the experience of offshore outsourcing projects,
learning new ways to satisfy the clients’ needs. However, in addition to the outsourc-
ing benefits there are many risks in an outsourcing process [5], [6].

Many challenges have been reported in the offshore software outsourcing process.
One of the key challenges is handling complex communication and coordination
problems due to language and cultural barriers as well as lack of face-to-face commu-
nication [7]. Other challenges include lack of client involvement, hidden costs, the
development of software development outsourcing practices and creating and main-
taining trust among the outsourcing companies [8], [9], [7]. However, despite the im-
portance of offshore software development outsourcing, little empirical research has
been carried out on offshore software development outsourcing practices in general
and the identification of factors that have a significant impact on client organisations
in particular. To do this we intend to address the following research questions:

RQ1. What factors do offshore software outsourcing vendors need to address in
order to have a positive impact on software outsourcing clients?
RQ2. Do the identified factors vary across the different level of experts?
This paper is organised as follows. Section 2 describes the background. Section 3

describes the research methodology. In Section 4 findings are presented and analysed
with some discussion. In Section 5 summary is provided. Section 6 describes the limi-
tations. Section 7 provides the conclusion and future work.

2 Background

Offshore software development outsourcing is a contractual business of high quality
software production at offshore destinations with significant cost-saving. This is
because organisations (clients) in the developed countries outsource their software
development activities to other organisations at low wages countries (offshore ven-
dors) who provide agreed services with significant cost-saving. Software development
outsourcing has been growing steadily and an 18-fold increase in the outsourcing of
IT-enabled business processes is projected [10]. A survey report reveals that the inter-
est in outsourcing has been increased by many companies (client organisations) in the
developed countries [2]. Similarly the new report by Gartner predicts that the current
economic downturn will accelerate offshore software outsourcing activities [2].
“Global economic uncertainty remains, but the outsourcing market could be the first
to benefit as companies in Europe and the US seek to reduce costs” [2]. Many firms in
the US have outsourced their software development projects to offshore countries for
gaining better quality IT services at comparatively cheaper rate and in a shorter time
period [11]. India was the first outsourcing destination and is still leading the out-
sourcing industry [2]. Many Indian vendor organisations are creating global reach
(overseas offices) in Northern Ireland in order to offer services to those European
clients who desire onshore or nearshore presence [2]. However, new outsourcing des-
tinations are emerging which may offer a better deal to clients [2]. India, Philippines,

148 S.U. Khan, M. Niazi, and R. Ahmad

China, Ireland and Brazil are ranked as the top 5 mature outsourcing destinations
where as the report predicts Canada, Russia, Mexico, Vietnam and Poland as the next
5 emerging offshore destinations [12].

Forrester Research 2002 predicted that 3.3 million US professional jobs and $136
billion in wage will be outsourced offshore by 2015 [13]. According to Forrester Re-
search 2007, 65% of American and European firms (with 1,000 or more employees)
currently benefit from offshore vendors for their software development; another 13%
firms intend to outsource next year. Whereas two years earlier only 45% of these firms
were the users of offshore outsourcing for the software applications development [13].

However significant outsourcing failure rates have also been reported [14]. Nam et
al. [15] in their investigation of 93 client companies found that 36 did not intend to
continue their relationships with vendors. King [16] reports that JP Morgan decided to
perform many software activities that it previously outsourced, and did not renew its
$5 billion contract with IBM. At the root of many failures is the increased complexity
that outsourcing brings to development projects. This complexity results in: high
coordination costs [17], information security problems [18], lack of direct communi-
cation [19], perceived loss of expertise in the outsourced activity [20], cultural misun-
derstandings [21] and infrastructure problems [22].

There are several tasks relating to software development, such as programming,
software architecture design and software testing, which are outsourced. There are
many reasons for software development outsourcing [3]. Small and medium sized
companies with limited resources and technical expertise are best served by outside
contractors. Large companies may use an outsourcing strategy in order to experiment
with new information technologies without making an upfront investment. Large
companies may also use software development outsourcing due to limited availability
of software development expertise at the host companies and to reduce processing
costs [23]. However the scope of software development outsourcing is expanding
from focusing only on reducing cost to improving organisations’ overall business per-
formance. This change has led to a realisation that the organisations readiness plays a
vital role in the success or failure of software outsourcing initiatives [24], [25].

Understanding factors relating to criteria used by the software development out-
sourcing clients for the selection of software development outsourcing vendors can
help ensure the successful outcome of projects and long lasting relationships between
clients and vendors in different geographical locations [8], [9], [26], [1].

3 Research Methodology

3.1 Measure Development

Considering the objectives of our research and available resources, we decided to use a
survey research method to understand software development outsourcing practitioners’
perception of the factors that influence software outsourcing clients in the selection of
offshore software outsourcing vendors. A survey research method is considered suitable
for gathering self-reported quantitative and qualitative data from a large number of re-
spondents [27]. A survey research can use one or a combination of several data gather-
ing techniques such as interviews, self-administered questionnaires and others [28]. We

 Critical Success Factors for Offshore Software Development Outsourcing Vendors 149

decided to use a questionnaire as a data collection instrument due to several factors such
as collecting data from diverse range of respondents and available resources.

A questionnaire was developed at Keele University based on existing literature
[29], [30]. We used a closed format questionnaire as an instrument to collect self-
reported data. The questionnaire was based on the success factors reported by Khan
et al. [31], [32]. In order to gain the tacit knowledge on success factors some open
ended questions were also included in the questionnaire to find any other factors apart
from the identified factors. The questionnaire was also designed to elicit the impor-
tance that each respondent placed on each factor identified. In order to describe the
importance of success factors, the respondents were asked to note each factor’s rela-
tive value (i.e., strongly agree, Agree, Strongly disagree, Disagree, or Not sure).

The piloting of the questionnaire was conducted through four software engineering
researchers at Keele and necessary changes were made to the questionnaire. Our ques-
tionnaire is divided into 4 sections: sections one is about demographics data, in sec-
tion two success factors to software development outsourcing are provided, in section
3 practices for each success factor are described and in section 4 instructions about
the questionnaire submission are provided.

3.2 Data Sources

Since the goal of this research was to gain an understanding of software development
outsourcing practitioners’ perceptions of factors that influence software outsourcing
clients in the selection of offshore software outsourcing vendors, we needed to collect
data from diverse range of outsourcing practitioners involved in outsourcing activities
across the world. The traditional way of approaching the target population was not
appropriate as we did not have the contact details of these experts and we also could
not find any database which has such information. Based on the discussions with dif-
ferent colleagues at Keele and also speaking to few outsourcing experts we have de-
cided to use some new ways in order to locate and approach the target population. In
this connection, we joined various relevant outsourcing online groups to find out-
sourcing experts for participation in the research survey. All these online groups are
hosted by LinkedIn website. A request was posted to these groups to invite experts for
participation. Our invitation letter included a brief description of the research project
and the nature of the commitment required. This request can be viewed at
http://groups.google.com/group/icgse/browse_thread/thread/d234dbae0fab31cb. We
believe that this request was received by 13268 members of the outsourcing groups
specified in Table 1. Amongst these a total of 106 experts showed their willingness
through email for participation in the research survey. Finally, 43 responses were re-
ceived, giving the response rate of 41%.

Apart from this online collection, a request was made at the poster session of
ICGSE09, Limerick, Ireland where 15 experts showed their willingness for participa-
tion. Finally 10 experts returned completed questionnaires. Thus raising the total no
of experts participated in the survey to 53 and the overall response rate is almost 44%.
These participants are from a total of 20 different countries with a majority from US,
UK and Canada.

150 S.U. Khan, M. Niazi, and R. Ahmad

Table 1. Summary of online outsourcing experts groups

3.3 Data Analysis Method

First way of organising qualitative or quantitative data is to group scores or values
into frequencies [33], because frequency analysis is helpful for the treatment of de-
scriptive information. The number of occurrences and percentages of each data vari-
able can then be reported using these frequency tables. Frequencies are helpful for
comparing and contrasting within groups of variables or across groups of variables
and can be used for both nominal/ordinal as well as numeric data. For most of the data
analysis, we used frequency analysis. In order to analyse each identified success fac-
tors, the occurrence of each factor in each questionnaire was counted. By comparing
the occurrences of one success factor against the occurrences of other success factors,
the relative importance of each success factor has been identified.

4 Analysis and Results

4.1 Success Factors Identified through Empirical Study

In order to answer RQ1, Table 2 shows the list of success factors identified through
empirical study. The results suggest that out of 22 success factors, 18 factors have
greater than 50% of occurrences where as the remaining 4 success factors have
greater than 30% occurrences in the positive list. ‘Skilled human resource’ is the most
common success factor in our positive list, i.e. 94%. Research suggests that half of the
companies that have tried outsourcing have failed to realise the anticipated results
[25]. One of the reasons for software development outsourcing failures is the difficul-
ties in creating good relationships among the outsourcing companies [1], [34]. We
argue that ‘skilled human resource’ can play a vital role in establishing a good rela-
tionship between client and vendor organisations as this will help vendor organisa-
tions to provide adequate services to client organisations. Different studies have also
described the importance of ‘skilled human resource’ factor:

Group Name

Group members (At
Request posting Time)

Request posted
Date

ICGSE (Google groups) 28 April, 2009
Poster session, ICGSE09 (Limerick, Ireland) Almost 100 15 Jul 2009
Global Sourcing Professionals (LinkedIn group) 1601 April, 2009
ICT Outsourcing Professionals (LinkedIn group) 426 April, 2009
IT/Software Development Outsourcing and

 Offshoring (LinkedIn group)
4015 April, 2009

Offshoring & Outsourcing Forum (LinkedIn group) 1452 April, 2009
Outsourcing 2 India (LinkedIn group) 297 April, 2009
Outsourcing & Offshoring (LinkedIn group) 2470 April, 2009
Outsourcing to Ukraine (LinkedIn group) 595 May, 2009
Outsourcing@UK (LinkedIn group) 2127 Jul, 2009
Outsourcing in the Central and Eastern Europe

 (LinkedIn group)
257 Jul, 2009

 Critical Success Factors for Offshore Software Development Outsourcing Vendors 151

• High-quality skilled staff are the backbone of the IT industry and vendors
should employ high skilled workers with professional degrees in Com-
puter Science, Engineering, Management and similar fields [35].

• Often a client organisation is eager to know the technical capability of
vendor organisation [8].

Our results also indicate that ‘cost-saving’ (92%) is the 2nd most significant factor for
the selection of vendor organisations. This suggests that low cost software production
or to charge a fair price has a positive impact on the outsourcing clients in the selec-
tion process of outsourcing vendors. Due to this factor the western countries are out-
sourcing projects to developing countries to take advantage from the reduced labour
costs. In order to be competitive, vendors organisations should provide better and
cheaper services to the clients [36].

We also found ‘timely delivery of the product’ and ‘vendor’s responsiveness’ as
the 3rd most significant factors in our positive list (i.e. 87%). Other frequently cited
positive factors are: Organisation’s track record of successful projects – 85%, Quality
of Products and Services – 83%, Appropriate Infrastructure- 79%, Efficient Out-
sourcing Relationships Management – 75% and SPI Certification (CMMI, ISO, etc) –
75%. These results validate the findings of our systematic literature review [31].

The results suggest that out of 22 success factors, 5 factors have greater than 30%
of occurrences in the negative list of Table 2. These factors are ‘industry-university
linkage’ (45%), ‘company size (large and medium) (43%), ‘overseas offices’ (43%),
‘knowledge exchange’ (36%) and risk sharing (32%). As these factors in the negative
list are not considered in the selection of outsourcing vendors we suggest that out-
sourcing vendors should not worry to implement these factors.

In the neutral list (not sure) of Table 2, 19 success factors have been cited where as
the remaining 3 success factors have zero occurrences in the neutral list. These 3 fac-
tors are ‘skilled human resource’, ‘quality of product and service’ and ‘timely deliv-
ery of the product’. This suggests that all practitioners in the sample were completely
sure about the role of these factors in vendor selection process.

4.2 Success Factors in the Opinions of Junior, Intermediate and Senior Level
Experts

In total 53 outsourcing experts have participated in this research. We have categorised
these experts into three categories based on their experiences. These three categories are
junior level experts having experience range of 1-5 years, intermediate level experts hav-
ing experience range of 6-10 years and senior level experts having 11 years and above
experience as shown in Appendix. Due to non-existence of a proven theory about catego-
risation of outsourcing experts, this categorisation was done based on the discussion with
different outsourcing experts and researchers at Keele. However, other researchers can
define their own criteria in order to decide different levels of outsourcing experts.

Our results indicate that out of 22 success factors, 21 success factors have been re-
ported as “strongly agree” in the sample of junior level experts. The remaining one
factor company size (large and medium) has zero frequency. Amongst these 21 suc-
cess factors, 4 factors have been cited in >=50% of the sample of “strongly agree” of
junior experts. These 4 factors are ‘appropriate infrastructure’ – 67%, ‘cost-saving’ –
61%, ‘quality of products and services’ – 50%, ‘efficient project management’ – 50%.

152 S.U. Khan, M. Niazi, and R. Ahmad

Table 2. Summary of success factors from experts’ perspective SA=Strongly Agree, A=Agree,
SD=Strongly Disagree, D= Disagree, NS=Not sure

Experts’ perception (n=53)
Positive Negative Neutral

Success Factors

SA A % of
Positive

SD D % of
Negative

NS %

Cost-saving 32 17 92 0 3 6 1 2
Skilled Human
Resource

19 31 94 0 3 6 0 0

Appropriate
Infrastructure

32 10 79 0 7 13 4 8

Quality of Products
and Services

23 21 83 1 8 17 0 0

Efficient
Outsourcing
Relationships
Management

22 18 75 2 4 11 7 13

Organisation’s track
record of successful
projects

20 25 85 0 6 11 2 4

Efficient Project
Management

18 12 57 0 8 15 5 9

Efficient Contract
Management

20 15 66 0 10 19 8 15

SPI Certification
(CMMI, ISO, etc.)

17 23 75 1 9 19 3 6

Knowledge of the
Client’s Language
and Culture

17 19 68 2 10 23 5 9

Timely Delivery of
the Product

15 31 87 4 3 13 0 0

Knowledge
Exchange

7 21 53 4 15 36 6 11

Data Protection
Laws

11 25 68 4 7 21 6 11

Financial Stability 9 28 70 2 8 19 6 11
Company Size
(Large and
Medium)

1 25 49 4 19 43 4 8

Risk Sharing 4 22 49 1 16 32 10 19
Pilot Project
Performance

10 27 70 3 9 23 4 8

Vendor’s
Responsiveness

14 32 87 2 2 8 3 6

Political Stability 6 29 66 4 7 21 7 13
Overseas Offices 7 16 43 3 20 43 7 13
Soft Deliverable 10 26 68 1 10 21 6 11
Industry-University
Linkage

7 14 40 7 17 45 8 15

It is worth noting that ‘appropriate infrastructure’ has the highest percentage (67%)

for junior level experts. By ‘appropriate infrastructure’ we mean:

 Critical Success Factors for Offshore Software Development Outsourcing Vendors 153

• IT infrastructure/Network infrastructure/ Telecommunication infrastructure.
• Physical infrastructure (related both with the country and the company)

which includes Telecom, power/electric supply, roads, transportation,
physical buildings, office layouts, Internet access and sewer and water
system etc.

• Sufficient resources including hardware and software to maintain large
development projects.

Our findings indicate that developing an appropriate infrastructure by vendor organi-
sations has a positive impact on client organisations. Hence, in order to succeed in
outsourcing projects vendor organisations should check the IT resources, including
the number of servers, the intranet structure and the performance of the systems re-
sources prior to undertake outsourcing activity [37].

Cost-saving got the 2nd rank and is strongly agreed by 61% of the junior experts.
Quality of products and services’ and ‘efficient project management’ receive the 3rd
rank and strongly agreed by 50% of junior experts.

We found 7 success factors as the least significant (strongly disagree) in the views
of junior level experts. The factors ‘company size (large and medium)’ and ‘industry-
university linkage’ have the highest percentage (17%) of occurrence in the strongly
disagree list. Similarly ‘overseas offices’ has 11% of occurrence whereas ‘efficient
outsourcing relationships management’, ‘knowledge exchange’, ‘political stability’
and ‘soft deliverable’ have 6% occurrences in the strongly disagree list.

For intermediate level experts we found all 22 success factors in the ‘strongly
agree’ list as shown in Appendix. Five success factors have been strongly agreed by
>=50% of intermediate level experts. The success factor ‘cost-saving’ has the highest
percentage (68%) of occurrence among intermediate level experts. Vendor organisa-
tions should concentrate on providing cheaper software production as per clients’
requirements. ‘Appropriate infrastructure’, ‘efficient outsourcing relationships man-
agement’, ‘efficient project management’ and ‘organisation’s track record of success-
ful projects’ are the 2nd most significant success factors having 53% of occurrences
by the intermediate level experts.

We found 12 success factors as the least significant (strongly disagree) in the views
of intermediate level experts. The factors ‘timely delivery of the product’, ‘knowledge
exchange’ and ‘industry-university linkage’ have the highest percentage (11%) of
occurrence in the strongly disagree list. Other factors have 5% of occurrence in the
strongly disagree list.

For senior experts a list of 21 success factors was found in the ‘strongly agree’ list.
Four success factors have been strongly agreed by >=50% of the senior experts. The
factor ‘appropriate infrastructure’ has the highest percentage (63%) of occurrence. Simi-
larly ‘efficient project management’ and ‘knowledge of the client’s language and cul-
ture’ are the 2nd most significant factor having 56% occurrence. ‘Cost-saving’ has 50%
occurrence and is the 3rd most significant factor in the view of senior level experts.

We found 12 success factors as the least significant (strongly disagree) in the views
of senior level experts. The factor ‘data protection laws’ has the highest percentage
(19%) of occurrence in the strongly disagree list. Similarly ‘timely delivery of the
product’, ‘pilot project performance’, ‘political stability’, and ‘industry-university
linkage’ got the 2nd rank having 13% occurrence in the strongly disagree list. The re-
maining seven factors have 6% of occurrence.

154 S.U. Khan, M. Niazi, and R. Ahmad

Due to the ordinal nature of data, we have used linear-by-linear Chi-square test to
find the significant difference amongst junior, intermediate and senior level experts
for the success factors. The linear by linear association test is preferred when testing
the significant difference between ordinal variables because it is more powerful than
Pearson Chi-square test [38]. However, no significant difference was found across the
variables. This shows that all outsourcing experts are well aware what is required in
selecting the appropriate outsourcing vendors.

5 Summary and Discussions

The success factors which can influence clients in the selection of offshore software
outsourcing vendors have been identified through the empirical study. Our research
goal is to provide software outsourcing practitioners with a body of knowledge that
can help them to design and implement successful outsourcing initiatives. Success
factors represent some of the key areas where management should focus their atten-
tion in order to better design software outsourcing initiatives. In order to decide the
importance of a success factor, we have used the following criterion:

• If a success factor is strongly agreed by >=50% of the practitioners then
we treat that success factor as a critical success factor.

We have used the similar criterion in our previous research [39], [40], [31], [41].
However, software outsourcing practitioners can define their own criteria in order to
decide the criticality of listed outsourcing success factors.

In order to address RQ1, using the above criterion we have identified the 2 critical
success factors that have a positive impact on outsourcing clients during the selection
of outsourcing vendors. These critical success factors are: cost-saving (60%) and ap-
propriate infrastructure (60%). However, other factors which have frequency percent-
age >=30 (strongly agree) may need to be addressed by the vendors in order to win
outsourcing projects. These factors are: quality of products and services (43%), effi-
cient outsourcing relationships management (42%), organisation’s track record of
successful projects (38%), efficient contract management (38%), skilled human re-
source (36%), efficient project management (34%), , SPI certification(CMMI, ISO
etc) (32%) and knowledge of the client’s language and culture (32%). These findings
complement and validate the findings of our systematic literature review [31].

For RQ2, using the criterion for critical success factors, we have identified:

• Three success factors common across three types of experts (i.e. junior,
intermediate and senior): Appropriate infrastructure, cost-saving and effi-
cient project management.

• Quality of products and services is critical in the opinion of junior level
experts.

• Efficient outsourcing relationships management and organisation’s track
record of successful projects are critical in the opinion of intermediate
level experts.

• Knowledge of the client’s language and culture is critical in the opinion
of senior level experts.

 Critical Success Factors for Offshore Software Development Outsourcing Vendors 155

Comparisons of the factors identified in three levels of experts confirm more similari-
ties than differences between the factors as no significant difference was identified.
Table 3 shows that 21 factors are strongly agreed by junior experts, 22 factors by in-
termediate and 21 factors by senior experts. The summary of our findings for RQ2 is
given in Table 3.

Table 3. Distribution of success factors across various experts

Experts’
experience level

Total number of success
factors cited as strongly

agree

No. of critical success factors
(cited in >=50% of the “strongly agree” list)

Junior (n=18) 21

The following 4 CSFs have been
identified.

• Appropriate infrastructure (67%)
• Cost-saving (61%)
• Quality of products and services

(50%)
• Efficient project management (50%)

Intermediate(n=19) 22

The following 5 CSFs have been
identified.

• Cost-saving (68%)
• Appropriate infrastructure (53%)
• Efficient outsourcing relationships
 management (53%)
• Efficient project management (53%)
• Organisation’s track record of

 successful projects (53%)

Senior (n=16) 21

The following 4 CSFs have been identified.
• Appropriate infrastructure (63%)
• Efficient project management
 (56%)
• Knowledge of the client’s
 language and culture (56%)
• Cost-saving (50%)

6 Limitations

Construct validity is concerned with whether or not the measurement scales represent
the attributes being measured. The attributes used in this research were taken from a
substantial body of previous research reported in [40], [42], [43] and conducting a
systematic literature review [31]. The responses from the participants show that all the
attributes considered were relevant to their work. Internal validity provides support
for an overall assessment of the results. The results of the pilot studies provide an
acceptable level of internal validity as the variables included in our study were taken
from extensive literature review and piloting of questions. External validity is con-
cerned with the generalisation of the results to environments other than the one in
which the initial study was conducted [44]. External validity is addressed as these
results represent opinions of 53 practitioners from 20 different countries; although we

156 S.U. Khan, M. Niazi, and R. Ahmad

cannot say that all respondents from these 20 countries would agree with them, we
believe that they provide a representative sample.

We have used questionnaires and one disadvantage of the questionnaire survey
method is that respondents are provided with a list of possible factors and asked to
identify the factors that have positive impact on clients during the selection of out-
sourcing vendors. This tends to pre-empt the factors investigated and to limit them to
those reported by the existing studies - respondents may only focus on the factors
provided in the list. We tried to address this issue by encouraging the respondents to
also mention if they could think of success factor other than those already mentioned
on the questionnaire. However, like the researchers of many studies based on experi-
ence data (e.g. [39,45,46]), we also have full confidence in our findings because we
have collected data from practitioners working in quite diverse roles and directly in-
volved in outsourcing activities within their organisations. In addition, practitioners'
experiences were explored independently and without any suggestions from the
researchers.

7 Conclusion and Future Work

We investigated through the empirical study factors that are generally considered
critical by clients in the selection of offshore software outsourcing vendors. We sug-
gest that focusing on these factors can help software development outsourcing ven-
dors in improving their readiness for software outsourcing activities.

Our findings indicate that ‘cost-saving’ and ‘appropriate infrastructure’ are critical
for software development outsourcing vendors as most of the practitioners in the
sample strongly agreed with these factors. In addition to these factors, other factors
are also important for outsourcing vendors such as ‘efficient project management’,
‘quality of products and services’, ‘efficient outsourcing relationships management’,
‘organisation’s track record of successful projects’ and ‘knowledge of the client’s
language and culture’.

We encourage independent studies on this topic. This will increase confidence in
our findings and also track changes in attitudes to offshore software outsourcing over
time. We believe that a good understanding of these factors is vital in developing the
vendor organisations’ readiness for offshore software development outsourcing activi-
ties. From the findings of this study, we have identified the following goals that we
plan to follow in future:

• To determine the reasons of why some factors are not significant in the
views of outsourcing experts.

• Perform more analysis of the identified critical success factors based on dif-
ferent variables like company’s size, company’s scope, job, county etc.

• Analyse the critical barriers in the selection process of offshore outsourcing
vendors.

• Conduct empirical studies to determine how to implement those factors
which have been frequently cited in our study.

Our ultimate aim is to develop a Software Outsourcing Vendors’ Readiness Model
(SOVRM). This paper contributes to only one component of the SOVRM, i.e. the

 Critical Success Factors for Offshore Software Development Outsourcing Vendors 157

identification of the success factors. The eventual outcome of the research is the de-
velopment of SOVRM to assist offshore software outsourcing vendors in assessing
their readiness for software development outsourcing activities. The SOVRM pro-
posed will bring together and advance the work that has been undertaken on frame-
works and models for offshore software outsourcing. Our contribution to improving
software development outsourcing processes will provide other researchers with a
firm basis on which to develop different outsourcing processes that are based on an
understanding of how and where they fit into the software development outsourcing
activities. New outsourcing practices could then be developed targeting software de-
velopment outsourcing projects.

Acknowledgements

We are thankful to University of Malakand, Pakistan and Higher Education Commis-
sion, Pakistan for sponsoring the PhD research studies under FDP scholarship. We are
also thankful to all participants of the research survey, organizers of the poster session
at ICGSE09, the reviewers of the questionnaire design and participants of the ques-
tionnaire piloting, especially Professor Pearl Brereton, Clive Jefferies, Ahmad Ryad
Soobhany, John Butcher and James Rooney for providing assistance in the empirical
study.

References

1. Ali-Babar, M., Verner, J., Nguyen, P.: Establishing and maintaining trust in software out-
sourcing relationships: An empirical investigation. The Journal of Systems and Soft-
ware 80(2007), 1438–1449 (2007)

2. Op2i.com: Outsourcing Survey Report, 2008 (2008), http://www.op2i.com
3. Bush, A.A., Tiwana, A., Tsuji, H.: An Empirical Investigation of the Drivers of Software

Outsourcing Decisions in Japanese Organizations. Information and Software Technology
Journal (2007) (in press for publication)

4. McLaughlin, L.: An eye on India: Outsourcing debate continues. IEEE Software 20(3),
114–117 (2003)

5. Holmstrom, H., Conchúir, E.Ó., Ågerfalk, P., Fitzgerald, B.: Global Software Develop-
ment Challenges: A Case Study on Temporal, Geographical and Socio-cultural Distance.
In: International Conference on Global Software Engineering, pp. 3–11 (2006)

6. Damian, D., Izquierdo, L., Singer, J., Kwan, I.: Awareness in the Wild: Why Communica-
tion Breakdowns Occur. In: International Conference on Global Software Engineering,
pp. 81–90 (2007)

7. Islam, S., Joarder, M.M.A., Houmb, S.H.: Goal and Risk Factors in Offshore Outsourced
Software Development From Vendor’s Viewpoint. In: IEEE International Conference on
Global Software Engineering, ICGSE 2009, Limerick, Ireland, pp. 347–352 (2009)

8. Nguyen, P., Ali-baber, M., Verner, J.: Trust in software outsourcing relationships: an
analysis of Vietnamese practitioners’ views. In: EASE, pp. 10–19 (2006)

9. Oza, N.V., Hall, T., Rainer, A., Grey, S.G.: Trust in software outsourcing relationships: An
empirical investigation of Indian software companies. Information & Software Technol-
ogy 48(5), 345–354 (2006)

158 S.U. Khan, M. Niazi, and R. Ahmad

10. United-Nations: World Investment Report. The shift towards services, New York and Ge-
neva (2004)

11. Palvia, S.C.J.: Global Outsourcing of IT and IT Enabled Services: Impact on US and Global
Economy. Journal of Information Technology Case and Applications 5(3), 1–8 (2003)

12. Global Services (2009),
 http://microsites.globalservicesmedia.com/research

13. McCarthy, J.: 3.3 Million U.S. Services Jobs to Go Offshore, Forrester Research (2002)
14. Foote, D.: Recipe for offshore outsourcing failure: Ignore organization, people issues.

ABA Banking Journal 96(9), 56–59 (2004)
15. Nam, K., Chaudhury, A., Rao, H.R., Rajagopalan, S.: A Two-Level Investigation of In-

formation Systems Outsourcing. Communications of ACM 39(7), 36–44 (1996)
16. King, W.: Outsourcing becomes more complex. IT Strategy and Innovation - ISM Journal,

89–90 (2005)
17. Aubert, B., Dussault, S., Patry, M., Rivard, S.: Managing the risks of IT outsourcing

(1998)
18. Blackley, J., Leach, J.: Security considerations in outsourcing IT services. Information Se-

curity Technical Report 1(3), 11–17 (1996)
19. Pyysiainen, J.: Building trust in global inter-organizational software development projects:

problems and practices. In: International Conference on Software Engineering: Global
Software Development Workshop (2001)

20. Gonzalez, R., Gasco, J., Llopis, J.: Information systems outsourcing risks: a study of large
firms. Industrial management and data systems 105(1), 45–62 (2005)

21. Kobitzsch, W., Rombach, D., Feldmann, R.L.: Outsourcing in India. IEEE Software,
78–86 (March-April 2001)

22. Barthelemy, J.: The hidden cost of IT outsourcing. Sloan Management Review 42(3),
60–69 (2001)

23. Beaumont, N., Khan, Z.: A taxonomy of refereed outsourcing literature. Business and
Economics. Monash University, Australia, working paper 22/05 (2005)

24. Oza, N.V.: An empirical evaluation of client - vendor relationships in Indian software out-
sourcing companies, PhD thesis, University of Hertfordshire, UK (2006)

25. Bradstreet, D.: Dun & Bradstreet’s Barometer of Global Outsourcing (September 2000),
http://findarticles.com/p/articles/mi_m0EIN/is_2000_Feb_24/
ai_59591405

26. Holmstrom, H., Conchuir, E., Agerfalk, P., Fitzgerald, B.: The Irish Bridge: A case study
of the dual role in offshore sourcing relationships. In: 27th International Conference on In-
formation Systems, Milwaukee (2006)

27. Kitchenham, B., Pfleeger, S.L.: Principles of Survey Research, Parts 1 to 6. Software En-
gineering Notes (2001-2002)

28. Lethbridge, T.C.: Studying Software Engineers: Data Collection Techniques for Software
Field Studies. Empirical Software Engineering 10, 311–341 (2005)

29. Lee, J.-N.: The impact of knowledge sharing, organizational capability and partnership
quality on IS outsourcing success. Information & Management 38, 323–335 (2001)

30. Niazi, M., Wilson, D., Zowghi, D.: A Maturity Model for the Implementation of Software
Process Improvement: An empirical study. Journal of Systems and Software 74(2), 155–172
(2005)

31. Khan, S.U., Niazi, M., Rashid, A.: Critical Success Factors for Offshore Software Devel-
opment Outsourcing Vendors: A Systematic Literature Review. In: Fourth IEEE Interna-
tional Conference on Global Software Engineering, ICGSE 2009, Lero, Limerick, Ireland,
pp. 207–216 (2009)

 Critical Success Factors for Offshore Software Development Outsourcing Vendors 159

32. Khan, S.U., Niazi, M., Rashid, A.: Factors influencing clients in the selection of offshore
software outsourcing vendors: an exploratory study using a systematic literature review.
Journal of Systems and Software (submitted to 2010)

33. Black, T.: Doing qualitative research in the social sciences: An integrated approach to re-
search design, measurement and statistics. Sage, London (1999)

34. Heeks, R., Krishna, S., Nicholson, B., Sahay, S.: Synching or Sinking: Global Software
Outsourcing Relationships. IEEE Software, 54–60 (March/ April 2001)

35. Nauman, A.B., Aziz, R., Ishaq, A.F.M., Mohsin, M.: An analysis of capabilities of Paki-
stan as an offshore IT services outsourcing destination. In: Proceedings of IEEE 8th Inter-
national INMIC, Multitopic Conference, December 2004, pp. 403–408 (2004)

36. Bhalla, A., Sodhi, M.S., Son, B.-G.: Is more IT offshoring better? An exploratory study of
western companies offshoring to South East Asia. Journal of Operations Management 26,
322–335 (2008)

37. Hongxun, J., Honglu, D., Xiang, Y., Jun, S.: Research on IT outsourcing based on IT sys-
tems management. In: ACM International Conference Proceeding Series, vol. 156,
pp. 533–537 (2006)

38. Martin, B.: An Introduction to Medical Statistics, 3rd edn. Oxford medical publications
(2000)

39. Niazi, M., Wilson, D., Zowghi, D.: Critical Success Factors for Software Process Im-
provement: An Empirical Study. Software Process Improvement and Practice Jour-
nal 11(2), 193–211 (2006)

40. Niazi, M., Ali-babar, M.: De-motivators for software process improvement: An empirical
investigation. Software Process Improvement and Practice Journal (Perspectives on Global
Software Development: special issue on PROFES 2007) 13(3), 249–264 (2008)

41. Khan, S.U., Niazi, M., Rashid, A.: Critical Barriers for Offshore Software Development
Outsourcing Vendors: A Systematic Literature Review. In: 16th IEEE Asia-Pacific Soft-
ware Engineering Conference, APSEC 2009, Penang, Malaysia (2009)

42. Niazi, M., Ali-Babar, M.: Identifying High Perceived Value Practices of CMMI Level 2:
An Empirical Study, in press for publications. Information and Software Technology
(2009)

43. Kitchenham, B., Charters, C.: Guidelines for performing Systematic Literature Reviews in
Software Engineering, Keele University and Durham University Joint Report. EBSE 2007-
001 (2007)

44. Regnell, B., Runeson, P., Thelin, T.: Are the Perspectives Really Different-Further Ex-
perimentation on Scenario-Based Reading of Requirements. Empirical Software Engineer-
ing 5(4), 331–356 (2000)

45. Baddoo, N., Hall, T.: Motivators of software process improvement: An analysis of practi-
tioner’s views. Journal of Systems and Software (62), 85–96 (2002)

46. Beecham, S., Hall, T., Rainer, A.: Software Process Problems in Twelve Software Compa-
nies: An Empirical Analysis. Empirical software engineering 8, 7–42 (2003)

160 S.U. Khan, M. Niazi, and R. Ahmad

Appendix: Distribution of success factors based on Experts’ experience

SA=Strongly Agree, A=Agree, SD=Strongly Disagree, D= Disagree, NS=Not sure

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 161–175, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Impact of Corporate and Organic Growth on Software
Development

Natalja Nikitina and Mira Kajko-Mattsson

School of Information and Communication Technology,
Royal Institute of Technology, Stockholm, Sweden

{nikitina,mkm2}@kth.se

Abstract. Many small software companies grow in an organic and corporate
manner. When growing, they have to make many organizational changes, ma-
ture their processes and adapt them to the rapidly growing customer base and
product demands. This may be a challenging task bearing in mind the fact that
software organizations lack guidelines for how to grow and mature their soft-
ware processes in the context of business growth. In this paper, we map out one
software company’s corporate and organic growth in the course of its historical
events and identify its impact on the company’s software production processes
and capabilities. We also list benefits, challenges, problems and lessons learned
as experienced by the company studied. The paper rounds up with the sugges-
tion for incorporating business growth elements into software process im-
provement models.

Keywords: business growth, process change, process improvement.

1 Introduction

Many of today’s software start-up companies grow and expand at fast rate. They do it
either in an organic and/or corporate manner where organic means growth in form of
increased output and/or sales and corporate means growth by being merged with,
acquired, or taken-over by some other company [3].

Companies encounter many challenges with respect to sustaining and furthering
their business growth rate [15]. They have to think in the long term about business
and its environment and quickly adapt to the changing or emerging markets. They
have to manage their increasing customer portfolio, and grow their products in quick
and strategic manner [15].

Organic business growth implies radical changes to the ways in which companies
develop and maintain their software products. Many times start-up companies do not
have any software processes in place. Or, if they have any, then the processes may not
always be mature and scalable enough to meet the business growth.

Corporate business growth, on the other hand, often forces the acquired companies
to adapt to their acquirers’ process portfolios. This may be a big challenge bearing in
mind the fact that many of these organizations may not be mature or willing enough
to change their process cultures overnight [6], [17].

162 N. Nikitina and M. Kajko-Mattsson

Even if the majority of the software organizations encounter strong organic and
corporate growth, little has been done about finding out their effects on software de-
velopment processes [3], [14], [15]. Hence, today, we do not have much insight into
how much software development processes are impacted by business growth. Neither
do we have any guidelines aiding organizations in maturing their processes while
growing their businesses. Current process maturity models and frameworks, such as
ISO 15504, CMM and CMMI, are not directly helpful [1], [4], [5], [10]. They are
focused on what to change to mature the process and not how to adapt it to business
growth.

In this paper, we report on the effects of a corporate and organic business growth
on the software development process over the course of its eleven-year history. Our
goal is to study the impact of organic and corporate growth on software development
and identify issues that might contribute to process improvement models. The organ-
izational body under study is a product development group that has started as a small
and independent start-up company. It has undergone two acquisitions and ended up as
part of a multinational software corporation.

Due to the sensitivity of the results presented herein, we do not disclose the names
of the companies involved. Hence, we are referring to the acquired company as Vir-
tual Software Group (VSG), its product development group as Virtual Computing
Product group (VCP group) and to its acquirers as Software Infrastructure Group
(SIG) and Enterprise Software Provider (ESP).

The remainder of this paper is organized as follows. In Section 2, we report on our
research method. In Section 3, we provide historical perspective of the changes within
the company. In Section 4, we describe the impact of corporate and organic growth on
software development. Finally, in Section 5, we present the conclusions of this study
and list the lessons learned as experienced by the acquired company.

2 Research Method

In this section, we report on our research method. First, Section 2.1 describes research
method steps and then Section 2.2 presents the questionnaire used in this study.

2.1 Method Steps

Our case study consisted of three following steps: (1) Choice of the company, (2)
Semi-structured Interviews, and (3) Data Analysis. Below, we briefly describe them.

We started our research by choosing a company. We first identified a company
which encountered business growth. We then contacted its employees and tried to
confirm whether the company fit the aim of our research and was willing to partici-
pate in it. This was done by a few unstructured interviews and the reviews of the
online information about the company, its business and business growth history.

As a second step, we chose five company employees. The choice was based on
their employment length, knowledge of the organization and the experiences of the
changes within the past eleven years. We interviewed two team leaders (software
developers), a release manager, a system architect and a product manager. All of them

 Impact of Corporate and Organic Growth on Software Development 163

have been working in the company for at least five and at most ten years. Hence, they
were appropriate candidates for our study. When interviewing them, we used a
semi-structured and open-ended questionnaire presented in Figure 1 and described in
Section 2.2. The interviews were aimed to follow the history of software process
evolution and identify challenges brought into it by the business growth.

V.1: What was/were the reason(s) of business growth(s)?
V.2: Was the development process scalable before business

growth? Is it scalable now?
V.3: Were the development teams prepared for business

growth when it happened? If yes, how?
V.4: Does the company have any business growth plan? If

yes, please briefly describe what such a plan covers?
V.5: Do you think business growth will happen again/

continue in this company?
V.6: How is the company prepared for future business

growth?
V.7: Does the company plan for business growth? In what

way?

V – The cause of business growth

VI.1: What lessons did you learn from business growth?
VI.2: What is your suggestion to avoid negative impact of

future business growth?
VI.3: What can be done to adapt the process for smooth

future business growth?
VI.4: How can we keep or even improve the maturity of the

process during the business growth? Is it possible?

VI – Lessons learned from business growth

I – Information about the company

III – People relation

II - Business growth

I.1: What is the name of the company?
I.2: What is your position within the company?
I.3: What is the size of the company (in terms of people)?

a. Whole company
b. Development department

I.4: What does the company work with?
I.5: Which software development method does the company

use?

II.1: Has the company had any business growth?
II.2: Does the company encounter the continuous growth or is

it coming in intervals?
In case of the continuous growth:
a. Since when has the company had a business growth?
In case of growth in intervals:
a. How many business growths has the company had?
b. How frequently does the company encounter

business growth?
c. What is a business growth in the context of your

company?
d. For how long do the intervals of business growth

last? (i) The last one, (ii) The former ones

III.1: Did the amount of employees change as a result of
business growth(s)? If yes, how?
a. Have the roles of the employees changed as a result of

business growth(s)? If yes, how and why?
b. Were new employees hired as a result of business

growth(s)? If yes, how many and to which positions?
c. Were the company employees fired as a result of

business growth(s)? If yes, how many and why?
III.2: How has the hiring of new employees affected the

software development process?
a. What training techniques were introduced for newly

employed?

IV.1: If the business growth was coming in intervals (Q. 2.2):
For each business growth under discussion:
a. What was the software development process like

before the business growth? Did you use any software
development method? Which one? Did you use it
fully?

b. What was the software development process like after
the business growth? Did you use any software
development method? Which one? Did you use it
fully?

IV – Influence of business growth on the software
development process

IV.2: Was the software development process affected by the
business growth?
a. If yes, how was the process changed and adapted to

the growing team? What was done? Please list the
changes to the process. For each change/adaptation:

i. Please name the change:
ii. Please describe the change: Was this change

for better or for worse? Please comment on
it.

iii. How did this change impact the development
process?

iv. Was the change intentional or accidental?
Was a change reactive or proactive?

v. Why did each change occur? What caused
the change?

vi. Who initiated the change? Who supported the
initiation?

vii. What other challenges were met in order to
implement the change?

b. If not, how come that it was not changed?
IV.3: What challenges has the business growth created?

Please list the challenges.
IV.4: Please list the problems you have met due to the

business growth. For each problem:
a. What was the problem?
b. How did you address each problem?

Fig. 1. Interview Questionnaire

164 N. Nikitina and M. Kajko-Mattsson

2002 2003 2004 2005 2006 2007 2008 20092001200019991998

(later VCP
group)

VCP group (15 employees)
VSG

SIG (>3 000 employees)

VCP group (75 employees)

ESP (>100 000 employees)

SIG (>4 000 employees)

Fig. 2. Historical perspective of corporate growth of VCP group

Finally, we transcribed the interviews, analyzed the data using a hermeneutics ap-
proach and later confirmed the results of our analysis with the interviewees. In this
step, we also identified and analyzed the changes made, benefits gained, problems
encountered, challenges met and lessons learned from the business growth.

2.2 Interview Questionnaire

We designed our questionnaire with the purpose of inquiring about the business
growth and its influence on the software development process. As can be seen in
Figure 1, the questionnaire consists of six sections where each section is dedicated to
a specific subject of interest. These are:

I. Information about the company: finding out information about the company, its
size and development method.

II. Business growth: aiming at identifying the scope of business growth and its im-
pact on the company.

III. People relation: inquiring about how the business growth has affected the em-
ployees of the company.

IV. Influence of business growth on the software development process: gathering
information about changes done to the process due to the business growth. It
also inquires about challenges and problems brought by the business growth.

V. The cause of business growth: asking about the reasons for the business growth
and the company’s state of readiness and preparation to meet future business
growth.

VI. Lessons learned from the business growth: eliciting the lessons the interviewees
have learned and their suggestions for process adaptation for achieving smooth
business growth in the future.

3 Corporate and Organic Business Growth

The Virtual Computing Product group (VCP group) has undergone three major peri-
ods. As illustrated in Figure 2, we call them VSG Period, SIG Period and ESP Period.
In the VSG Period occurring in the years 1998-2002, the VCP group was the only
development team of a small company called Virtual Software Group (VSG). By then,
it developed a Virtual Platform Product (VPP). In the SIG Period taking place in the

 Impact of Corporate and Organic Growth on Software Development 165

years 2002-2008, VSG was acquired by Software Infrastructure Group (SIG), an ap-
plication infrastructure software company. Hence, VSG’s development team, the VCP
group, became one of SIG’s development teams and continued to develop the VPP
products. Finally, in the ESP Period, starting in 2008, SIG was acquired by Enterprise
Software Provider (ESP), a world leading multinational software corporation. As a
result, the VCP group became a development group within ESP where it is still work-
ing on the same product line.

The acquisitions by SIG and ESP have led to substantial corporate growth of the
VCP group. Besides this, the VCP group has undergone a continuous organic growth.
This has strongly impacted its organization and processes. Below, we report on these
two growths and their impact. The description is based on Figures 2 and 3.

3.1 Historical Perspective of the VSG Period

In the VSG Period, VSG was a small start up company. It developed initial versions of
the VPP product for a few customers and users. At that time, the company had only a
few developers, who created a small development team called VCP group. The team
had no role specializations and no process in place. The developers were responsible
for all kinds of business and engineering tasks ranging from management, develop-
ment, to maintenance and support. All their processes were run in an ad hoc manner.

3.2 Historical Perspective of the SIG Period

In the SIG Period, VSG was acquired by SIG. Hence, the VCP group became a devel-
opment group within SIG and continued working on the same product. As a result of
corporate growth, right after the SIG acquisition, the VPP product’s user base ex-
panded and continued growing thereafter in an organic pace. The VCP group also
expanded its product portfolio from one to four products altogether. For the first two
years, it was managed by managers in the US to be then overtaken by local managers
in Sweden in 2004.

2002

Employees in the
VCP group
(in Sweden)

Development
process

No process model in place

Major
Events

2003 2004

20

2005 2006 2007 2008 2009

VSG was
founded

2001200019991998

SIG acquired
VSG

ESP acquired
SIG

QA processSupport process

75 754510

Changed release
management

Security process

Amount of users
of VCP product
line

10 1 1 000 10 000

Development
distribution

5

Managers in US Documentation team in US

Performance teams in US
Sweden only

Customer support
offices worldwide

Release management

Fig. 3. Historical changes of corporate and organic growth of VCP group

166 N. Nikitina and M. Kajko-Mattsson

In 2002, the VCP group had no processes in place whereas SIG had many struc-
tured and rigid processes in place. Despite this, SIG did not force the VCP group to
change their process cultures. All process introductions were optional. With time,
however, due to the fact that VCP’s customer base grew and consequently the number
of developers, the VCP group felt forced to introduce some processes. To address the
most urgent process problems, they started with the most critical processes such as
support, product and release management. Below, we briefly elaborate on this.

Due to fast organic growth, in terms of rapidly growing customer base and in-
creased number of customer demands, the company created a separate support team in
the year of 2002. By 2003-2004, they created a two-tier support where a customer
support team was placed on the front-end support level and developers on the back-
end support level [7]. A few years after, several new customer support teams were
created in other countries. Due to the fact that customer support teams are service
oriented and are not primary involved in development, those teams are not included in
the VCP group today.

By 2003, the VCP group in Stockholm had grown to 35 people. It was no longer
possible for one person to know and manage the whole system. For this reason, the
developers became organized into different vertical teams where one team specialized
in one or a few product areas.

In the same year, corporate changes were done and the VCP group introduced
product and release management processes and the role of a product manager. A few
years after, these were enriched by introduction of risk management. The group also
introduced a requirement management process and an engineering specification.
Based on the requirement document, the engineering specification became the main
product documentation to be created by developers.

By 2003-2004, the growing VCP group tried to introduce Waterfall process to de-
fine and structure development method. Development teams however were not satis-
fied with it. Hence, some tried to introduce Scrum in 2007. As a result, today, the
development teams use an unspecified pseudo-agile process evolved from an intersec-
tion between Waterfall-like method and some Scrum practices such as Scrum meet-
ings and iterations.

In 2003, the VCP group employed a writer whose role was to create and update
support and technical documentation for all the VPP products. A few years later, a
second writer joined the group, both situated in the US. During the last few years,
three additional writers were employed in India.

As part of the corporate growth in 2005-2006, the VCP group took over SIG’s QA
and testing process model which they then customized to their own needs. Initially,
the QA and testing process model were centralized within the whole organization.
They were not smoothly integrated with the VCP group’ processes. To remedy this,
the QA team got integrated with the development teams of VCP group.

By 2007, the VCP group had reached 75 employees including developers, QA en-
gineers, architects and development managers, all situated in Sweden, 20 additional
employees in the US, including QA engineers, managers and writers, and three
writers in India. Two QA teams, one in Sweden and one in the US, grew in size and
became too large to be managed easily. Since the most important competitive advan-
tage of VPP was performance and the QA teams dedicated majority of their time to it,
SIG split the QA unit into one QA and one performance testing team in Sweden, and
two performance testing teams in the US.

 Impact of Corporate and Organic Growth on Software Development 167

Fig. 4. Organizational structure of VCP group in Sweden

By that time, the product had also grown in size and complexity, and it was diffi-
cult to get an understanding of its overall system architecture. This led to a creation of
an architectural council, which was responsible for creating an overall system archi-
tecture and for bringing consistency into the system structure by providing common
standards and guidelines. It consisted of senior developers, who originally were part
of VSG and who had deep knowledge of the product.

3.3 Historical Perspective of ESP Period

In 2008, ESP bought SIG. This, in turn, implied substantial changes to the VCP
group. From the beginning, ESP decided that large part of its products should use
VPP (the VCP group’s product) as a base. Therefore, the amount of customers in-
creased ten times comparing to the amount in 2005. The VCP group was not prepared
for managing such a large customer base so abruptly.

Since ESP is a big company and has many processes in place, they enforced all
their newly acquired organizations to follow their processes. All the processes were
mandatory. Those who could not introduce them at once had to provide a roadmap on
how and when they were going to implement them. The processes that were affected
or introduced by this enforcement within the VCP group were support process, release
management, problem management, risk management and security management.

After being bought by ESP, the VCP group continued organic growth; however the
amount of developers in the group has not changed. Because of the recession and
economical crisis, the company only hired the replacements of few VCP group mem-
bers, who quit just after the acquisition. Therefore, the VCP group still consists of 75
engineers in Stockholm with a somewhat changed role portfolio including three prod-
uct managers, a release manager, developers, architects, QA, performance, sustaining
and security engineers (see Fig. 4). The group represents a standard research and
development department and it is situated in Stockholm. Another 23 engineers in-
volved in developing the products’ line are situated in the US and India. Those are
performance testing teams and a documentation team.

168 N. Nikitina and M. Kajko-Mattsson

3.4 Changes

The above presented course of events shows that the VCP group has experienced
many changes due to the organic and corporate growth. These changes affect organ-
izational concepts such as roles, market, organization and processes in the following
ways:

• Roles: The role portfolio of the VCP group has been substantially changed for the
last eleven years. In 1998-1999, during the VSG Period, the VCP group did not
have any clearly defined roles apart from developers and managers. Since 2002,
the VCP group has been continuously introducing new roles covering various
management and development responsibilities.

• Market changes: The corporate growth has helped the VCP group to find and
assure the niche of its product on the market. Today, the VPP products are widely
used worldwide.

• Organization: The acquisitions and organic growth have stimulated substantial
changes to the VCP group’s organizational infrastructure. The group has evolved
from one team to nine teams. As shown in Fig. 4, these are four development
teams, and one QA, one performance, one architecture, one security and one sus-
taining engineering team.

• Processes: Until 2002, the VCP group did not have any process in place. Sub-
stantial expansion and acquisitions of the VCP group by SIG and ESP stimulated
it to introduce nine processes supporting their development and operation. These
are customer support, QA, testing, problem management, requirement manage-
ment, release management, sustaining engineering, risk management and security
management processes.

4 The Impact of Corporate and Organic Growth

The business growth has brought many changes to the process resulting in many
benefits, problems and challenges. Organic growth stimulated the VCP group to add
changes to their organizational structure and to mature their development processes.
The corporate growth, on the other hand, enforced some process steps and provided
support for the VCP group for scaling up their processes. Due to the interdependen-
cies and relation between organic and corporate growths, it is difficult to separate
impacts of each growth. Later on, however, we will make an attempt to address bene-
fits, problems and challenges of the two growth types. Before proceeding with their
presentation, we would like to clarify our understanding of the terms problems and
challenges.

In this paper, we define a problem as an issue or difficulty that needs to be re-
solved and a challenge as a difficulty of acting upon and dealing with some prob-
lem. The problems and challenges described in this paper are interrelated. Some
problems are input to some challenges and vice versa. Hence, it is difficult to draw
any clear lines of relationship. However, we try to identify the most obvious ones
when it is relevant.

 Impact of Corporate and Organic Growth on Software Development 169

4.1 Benefits of Corporate and Organic Growth

Corporate and organic growth at the VCP group has lead to five benefits. These con-
cern better utilization of development skills and resources, better control of corrective
maintenance and risks, and improved product quality and its quality management.
Below, we report on them.

Benefit 1: Better utilization of development skills and resources: In the VSG Period,
the VCP group consisted of a few developers. The roles of these developers corre-
sponded to some form of a “skilled generalist”, a role developing a system from top
to bottom. This approach was effective as long as the system, the development team
and the customer base were small and easy to manage. With time, however, the de-
velopers experienced that they were too much burdened with increasing customer
demands and many strongly diversified and time consuming engineering tasks. For
this reason, the VCP group gradually introduced different roles, thus freeing develop-
ers from a broad range of strongly diversified responsibilities and allowing them to
become more focused on the clearly specialized ones. In their opinion, specialization
of roles has led to more effective utilization of human resources.

Benefit 2: Better control of the corrective maintenance process: During the VSG Pe-
riod, software problems were reported and solved in an ad hoc manner. They were not
recorded in a structured way, their severity and priority were not analyzed and some
critical problems could be left unattended. This has lead to many difficulties. For this
reason, SIG and ESP continuously improved the corrective maintenance process by
mainly introducing a two-tier support infrastructure. This has relieved developers
from support tasks and from solving minor problems. Instead, they could spend all
their time on system development, enhancements and resolution of critical problems.
In addition, the VCP group introduced problem management process, testing and QA
process, and supporting tools. All this has led to better control over the corrective
maintenance process and more predictable release plans.

Benefit 3: Improved quality of the product: During the VSG period, the VCP group
had a simple testing process, performed by the developers. The company focused on
feature development rather than on product stability and system quality. Therefore,
the first versions of the product were unstable and customers reported many problems
on them. Later on, SIG introduced QA and testing infrastructure and new testing roles
to the VCP group. This has resulted in more quality checks, tests and code reviews.
As a result, the VPP products today are stable enough to be used as a base for large
part of ESP products.

Benefit 4: Better control over the risks: At the beginning of the SIG Period, the VCP
group did not have risk management process in place. With time, however, due to
high product complexity and its wide customer and usage profiles, the VCP group
realized that they needed to have the process to track and mitigate the risks. They felt
that it was important because a delay of major releases could cause bigger problems
for the VPP products and other products that depended on it. As a result, today, pro-
ject risks are not only identified at the beginning of each release, but also continu-
ously analyzed, tracked and monitored throughout the whole release cycle.

170 N. Nikitina and M. Kajko-Mattsson

Benefit 5: Automated testing and QA environment: During the VSG Period and at the
beginning of the SIG Period, testing process suffered due to lack of automated testing
environment. To support developers, the QA group was created and testing and QA
infrastructure were introduced and automated. This saved substantial testing effort
and made the code base more robust against faults introduced by new code.

4.2 Problems of Corporate and Organic Growth

Business growth has also brought some problems to the development. These concern
lack of a unified development process, loss of productive time, extensions of proc-
esses with unnecessary steps and various communication problems. Below, we report
on them.

Problem 1: Lack of a unified development process in the VCP group: The VCP group
has not defined and does not follow any unified development process. This, however,
was not considered to be a problem when having very few software development teams.
Growing in the amount of developers and teams, the VCP group has still not achieved
any consensus on what process to use and in what context. As a base, the group uses an
unspecified pseudo-agile process based on Waterfall-like method and some Scrum
practices. The method is supplemented with Scrum and XP techniques in different man-
ner by different teams. As a result, different development teams use different techniques
and methods. Also, the involvement of product owners varies among the teams. Some
teams have short iterations, frequent demonstrations and meetings with the product
owner, whereas other teams work on one specification for half a year and only demon-
strate the end product. This contributes to inefficient communication between the teams,
and adds to some of the problems described below.

Problem 2: Loss of productive time due to corporately mandated environmental
changes: Due to the corporate growth and acquirer’s company policies, the VCP
group was forced to change its technical and tool environment concerning customer
relationship management tool and hypervisors. All these changes required substantial
adaptation effort thus leading to strongly decreased productivity. For instance, it took
nearly a year for the group to change to a new hypervisor.

Problem 3: Misunderstandings and insufficient communication between developers
and QA engineers: When initially created, due to the corporate change, QA was a
central organ within the organization. The developers’ responsibilities were to de-
velop system code and QA engineers’ responsibilities, on the other hand, were to
assure that the system code was of high quality. In order to maintain system quality,
QA engineers added many checks and processes, which developers had to follow. The
centralization of QA and traditional software development resulted in a communica-
tion and collaboration problem. Both groups had difficulties in working towards
common goals.

The communication problem was solved by adapting an agile technique and by de-
centralizing QA (one QA engineer became part of a development team, see Fig. 4).
Today, QA engineers are integrated with development teams in an agile manner. They
perform QA and testing activities already during the implementation process and they

 Impact of Corporate and Organic Growth on Software Development 171

guide development decisions to assure that the final product is testable. Thanks to this
change, many of the testing problems are solved earlier in the process.

Problem 4: Unnecessary or redundant process steps: Development processes at VCP
group have continuously evolved and matured. At the same time, more and more
unnecessary or redundant process steps were added to the development process. This
was because the new processes and standards have been continuously enforced; how-
ever, they have been seldom reviewed or analyzed. During the last few years, this
problem was partially addressed and some process steps were removed from the de-
velopment process. Still, however, many unnecessary and redundant steps remain.

4.3 Challenges of Corporate and Organic Growth

Corporate and organic growth has brought many challenges to the development proc-
ess. These concern tackling growing product complexity and quality, managing main-
tenance, communication, scalability, and delivery, management of inertia to process
changes and upkeep of developer creativity. Below, we report on them.

Challenge 1: Challenge to manage growing complexity: During the last ten years, due
to the substantially increased customer demands, the product has grown in size and
complexity. The number of developers and development teams has grown and the
tacit knowledge of the product has become distributed among many developers. All
this has led to difficulties to manage and maintain consistency and the growing sys-
tem complexity. In order to address this difficulty, an architectural council has been
created whose role is to bring structure and consistency into the architecture and code.

Challenge 2: Evolution and maintenance challenge: Today, developers have to be
very careful when making new changes to the system. Because it is already used by
many customers and products, the developers have to make sure that the changes do
not introduce new problems. Such problems may have substantial ripple effect on the
products reliant on the VPP products. For this reason, developers put extra effort into
studying all complex dependencies both within the product and its environment.

Challenge 3: Challenge to improve system quality: The complex system is hard to
test. Its testing is challenged mostly by the fact that the product is used both as an
independent product and as a base for a large number of other products. Furthermore,
customers often use the product in the ways that have not been initially intended for
and specified. This has led to an increase of many different problems generating many
different testing scenarios and tests. Since the QA resources have not increased, it has
become very challenging to maintain satisfactory product quality.

Challenge 4: Communication challenge: The bigger the system, the more developers
are developing it and the more communication is required [2], [13], [18], [19]. Since
the VCP group does not have any unified development process (Problem 1) or any
inter-team communication pattern, the communication has become a challenging task.
Especially challenging is the communication between employees in Sweden and the
US, due to the physical distance and time difference.

172 N. Nikitina and M. Kajko-Mattsson

Fig. 5. Impact of corporate and organic growths on the VCP group’s development processes

Challenge 5: Challenge to scale up the process: The process was not scalable during
the VSG Period. There was no sufficient organizational structure or distribution of
responsibilities, which contributed to the communication challenge (Challenge 4).
The introduction of processes in the SIG Period somewhat improved the scalability
problem. The scalability, however, was hampered by solutions such as, for instance,
centralized QA and testing at those times. Even, if they have become decentralized,
the process at the VCP group is still not fully scalable, due to the reasons such as lack
of a uniform development process in the group.

Challenge 6: Challenge to deliver new releases on time: After ESP acquisition, other
ESP products have become dependent on VPP. As a result, ESP imposed corporate
release schedules. The release scope and time cannot be changed once it is communi-
cated to other development units. This makes the developers of VCP group feel chal-
lenged to deliver all the desired features within the specified deadline.

Challenge 7: Inertia to change to new processes and tools: During the corporate
growth, many changes were forced on the VCP group. Even if everyone agreed on
process or tool related problems, not everyone agreed on their proposed solutions.
The VCP group was not involved in deciding whether and which processes or tools to
implement. Instead, the tools and processes were imposed on them. This has led to a
strong resistance to most of the process changes and tools.

Challenge 8: Development creativity is narrowed down: By adding more and more
corporately mandated processes to the software development, the VCP group started
to narrow down and loose its development creativity. The processes were added as a
solution to every process problem. However, they did not always improve the process
but often made it more rigid thus making the development teams less flexible and
creative. Because of the limited opportunity to utilize their creativity and other rea-
sons, several employees quit the VCP group right after it got acquired by ESP.

 Impact of Corporate and Organic Growth on Software Development 173

5 Conclusions and Lessons Learned

In this paper, we have presented a historical perspective of organic and corporate
business growth and identified its impact on the software organization and its devel-
opment process. As summarized in Figure 5, both organic and corporate growths have
made the company experience benefits, problems and challenges, which have led to
the following lessons learned:

• Lesson 1: Create a support team early in the process if you wish to improve your
productivity. Otherwise developers will be overloaded with support related tasks
instead of developing new features.

• Lesson 2: Implement a communication pattern on an intra and inter organiza-
tional level. Otherwise, you will arrive at spending time on ineffective communi-
cation instead of business value creation. The importance of communication pat-
tern in a growing business has been reported in [15]. Its significance has also
been recognized in distributed development environments in [2], [12], [13], [18]
and [19].

• Lesson 3: Focus on quality from the very beginning. It is only in this way you
will be able to grow your customer base and product portfolio in a controlled
manner. This lesson has been learned in all types of development contexts [9]. It
is however very important for the organizations which grow fast. Not having a
stable customer base and product portfolio and trying to put a foot in the very
competitive market, the start-up companies may quickly be out of business due to
product quality problems.

• Lesson 4: Implement a uniform development process within a development group
or unit, however allow some team-adapted process variants and flexibility. This
lesson has been learned in all types of distributed and non-distributed develop-
ment contexts. From the perspective of growing organizations, it is important to
have a control over the whole process without compromising on the developers’
needs and well-being and without restraining their creativity. In this way, one
may avoid personnel turnover, which may otherwise have a strong impact on
companies’ future business success.

• Lesson 5: Reflect on and improve the processes on a continuous basis. Only then,
you will be able to adapt to the changing business environment and be capable of
evaluating the existing and new process steps. This lesson has also been learned
in [2], [6] and [17]. It has proven to minimize the pain of process change and to
raise awareness of and spread the best practices along the organization.

• Lesson 6: Plan for process changes and introduce them one by one. Otherwise,
you will not meet satisfactory process acceptance and your productivity rate may
suffer. This lesson learned has also been reported in [6] and [16] where the bene-
fit of introducing new processes in a careful stepwise manner was recognized.

• Lesson 7: Educate on newly introduced processes or process steps. This will help
developers understand the reasons behind process changes and be more capable
of providing feedback to process improvement. All this will further contribute to
the prevention of process inertia.

• Lesson 8: Involve developers in process changes. It is only in this way they will
get convinced to adapt to the new processes.

174 N. Nikitina and M. Kajko-Mattsson

Lessons 7 and 8 have been recognized in many different contexts throughout recent
decades both in agile and non-agile contexts [8], [11]. They are also important in the
business growth context, where business growth is strongly dependent on how proc-
ess improvement steps are accepted by the roles involved in them [15].

The VCP group has an intention to continue to grow their business and improve
their processes. They would strongly benefit from guidelines on how to change soft-
ware processes and organization when growing their business. Those guidelines
should clarify the following:

• How to coordinate organizational changes with process changes in the context of
organic and corporate growth?

• How to evolve inter and intra organizational communication while growing in an
organic and corporate manner?

• How to introduce/enforce new or acquirer’s processes with minimum resistance
and disruption, in the context of corporate growth?

• How to adapt and tailor processes enforced by the acquirer to the needs of the
team or organization in the context of corporate growth?

• How to keep processes slim but effective enough during organic and corporate
business growth? How to evaluate and reflect on them in a continuous manner?

• How to communicate to and involve developers in newly introduced process
changes?

• In what way should start-up companies grow in quality of their products while
growing their businesses?

• How to smoothly implement a unified development process and still allow some
team-adapted process variants and flexibility both in the context of organic and
business growth?

The above-listed guidelines constitute a number of research questions that might be
useful for the software community to explore. Putting the research questions into
guidelines however, is not enough. In our opinion, organic and corporate business
growth should be put as constituents in today’s process improvement models. It is
only in this way we may make sure that business growth will be considered in all
types of process improvement contexts.

Acknowledgement

We would like to thank Mr. Marcus Lagergren, Mrs. Tuva Palm and Mr. Mathias
Axelsson for their contribution into this paper, as well as Mr. Bengt Rutisson and Mr.
Staffan Larsen for sharing their knowledge and experience.

References

1. CMMI Product Team: Capability Maturity Model Integration: CMMISM for Systems En-
gineering, Software Engineering, Integrated Product and Process Development, and Sup-
plier Sourcing. Technical report, Software Engineering Institute (2002)

 Impact of Corporate and Organic Growth on Software Development 175

2. Drummond, B., Francis, J.: Yahoo! Distributed Agile: Notes from the World Over. In: Ag-
ile 2008 Conference, pp. 315–321. IEEE, Los Alamitos (2008)

3. Dalton, D., Dalton, C.: Corporate growth: Our advice for directors to buy “organic”. J.
Business Strategy 27(2), 5–7 (2006)

4. Glazer, H., Dalton, J., Anderson, D., Konrad, M., Shrum, S.: CMMI or Agile: Why Not
Embrace Both. Technical note, Software Engineering Institute (2008)

5. International Organization for Standardization and International Electrotechnical Commis-
sion: ISO/IEC 15504: Information Technology-Software Process Assessment: Part 1- Part
9. Technical Report, ISO (1998)

6. Jochems, R., Rodgers, S.: The rollercoaster of required agile transition. In: 2007 Agile
Conference, pp. 229–233. IEEE, Los Alamitos (2007)

7. Kajko-Mattsson, M.: Maturity Status within Front-End Support Organisations. In: 29th In-
ternational Conference on Software Engineering, pp. 652–663. IEEE, Los Alamitos (2007)

8. Kajko-Mattsson, M., Nikitina, N.: From Knowing Nothing to Knowing a Little: Experi-
ences Gained from Process Improvement in a Start-Up Company. In: 2008 International
Conference on Computer Science and Software Engineering, pp. 617–621. IEEE, Los
Alamitos (2008)

9. Khan, S.-A., Kajko-Mattsson, M., Tyrberg, T.: Comparing EM3: Predelivery Maintenance
Model with its Industrial Correspondence. In: International Conference on Principles of In-
formation Technology and Applications, pp. 573–582. IEEE, Los Alamitos (2009)

10. Masters, S., Bothwell, C.: CMM Appraisal Framework. Technical report, Software Engi-
neering Institute (1995)

11. Nikitina, N., Kajko-Mattsson, M.: Historical perspective of two process transitions. In: The
Fourth International Conference on Software Engineering Advances, pp. 289–298. IEEE,
Los Alamitos (2009)

12. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Distributed agile development: Using
Scrum in a large project. In: The Third IEEE International Conference on Global Software
Engineering, pp. 87–95. IEEE, Los Alamitos (2008)

13. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Using Scrum in the Distributed Agile De-
velopment: A multiply case study. In: The Fourth IEEE International Conference on
Global Software Engineering, pp. 195–204. IEEE, Los Alamitos (2009)

14. Page, A.S., Jones, R.C.: Business Growth Part 1: Fast Growth. J. Management Deci-
sion 28(1), 40–47 (1990)

15. Page, A.S., Jones, R.C.: Business Growth Part 2: Growth Management. J. Management
Decision 28(3), 55–63 (1990)

16. Pinheiro, C., Maurer, F., Sillito, J.: Improving quality, one process change at a time. In: In-
ternational Conference on Software Engineering, pp. 81–90. IEEE, Los Alamitos (2009)

17. Roche, G., Vaquesz-McCall, B.: The amazing team race – a team based on the agile adop-
tion. In: 2009 Agile Conference, pp. 141–146. IEEE, Los Alamitos (2009)

18. Sutherland, J., Schoonheim, G., Kumar, N., Pandey, V., Vishal, S.: Fully distributed
Scrum: Linear Scalability of Production between San Francisco and India. In: 2009 Agile
Conference, pp. 339–344. IEEE, Los Alamitos (2008)

19. Turk, D., France, R., Rumpe, B.: Limitations of Agile Software Process. In: The Third In-
ternational Conference on eXtreme Programming and Agile Processes in Software Engi-
neering, pp. 43–46. IEEE, Los Alamitos (2002)

Prioritizing Countermeasures through the
Countermeasure Method for Software Security

(CM-Sec)

Dejan Baca1,2 and Kai Petersen1,2

1 Blekinge Institute of Technology Box 520,
SE-37225 Ronneby, Sweden

2 Ericsson AB,
Sweden

Abstract. Software security is an important quality aspect of a soft-
ware system. Therefore, it is important to integrate software security
touch points throughout the development life-cycle. So far, the focus of
touch points in the early phases has been on the identification of threats
and attacks. In this paper we propose a novel method focusing on the
end product by prioritizing countermeasures. The method provides an
extension to attack trees and a process for identification and prioriti-
zation of countermeasures. The approach has been applied on an open-
source application and showed that countermeasures could be identified.
Furthermore, an analysis of the effectiveness and cost-efficiency of the
countermeasures could be provided.

1 Introduction

Software security has recently become an important business case for companies
to protect information availability [1]. Therefore, it is important to make security
an integral part throughout the software development process which has been
done through security touch-points introduced by Gary McGraw [2].During the
development of software, bugs and vulnerabilities are unintentionally introduced
into the end product. The cost of removing these vulnerabilities increases the fur-
ther the product has reached in its development cycle. It is therefore preferable to
detect them as early as possible in the development process. Vulnerabilities are
introduced into two different phases of development, namely architecture/design
and implementation. Implementation vulnerabilities such as buffer overflows are
added to the source while the developer writes it. For these types of vulnera-
bilities, static code analysis tools can be used for early detection [3,4]. Design
vulnerabilities on the other hand can be introduced into the product before there
is any source code to examine. Early vulnerability prevention therefore has to
focus in the architect of the product instead of the implementation, and hence
security touch points have to be introduced early.

Different approaches have been introduced to detect threats/attacks on the
system, namely risk analysis, and attack trees. Many if these methods are not

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 176–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Prioritizing Countermeasures through the Countermeasure Method 177

specific for software development and some require UML diagrams or other in-
formation of the end product that might not be available (see e.g. [5]). This if
often done with risk analysis and other threat modeling techniques. Attack tree
are specifically proposed in the software development context and only require
an understanding of the intended end product. Hence, they can be used as a se-
curity touch point early, even before implementation has been started. However,
there are a few challenges related to the use of attack trees:

– From our experience of working with software security in industry we know
that it can be difficult for non-security professionals to create an attack tree.

– The focus of attack trees and risk analysis is on identifying and prioritizing
attacks, but not on the protection on the end-product (cf. [6,7,8]).

– The way of prioritizing the attacks is done by assigning estimated risks,
which are dependent on many factors not known to the software developer
(cf. [6]).

In response to these challenges we present a novel method to prioritize counter-
measures to prevent security vulnerabilities, and by that focus the prioritization
on the protection of the end-product. The Countermeasure Method for Software
Security (CM-Sec) is an extension to attack trees. The method has the following
features:

– It aids non security developers in identifying and prioritizing attacks and
countermeasures by providing a process that guides them to the solution
step by step. The introduction of why the system could be attacked and
who could attack the system is used as a trigger to identify attacks and
countermeasures.

– Instead of evaluating the risk of an attack for each individual attack ACM-
Sec focuses on the prioritization of attacks through cumulative voting, i.e.
a fixed number of points is distributed, attacks having a higher threat level
receiving more points.

The method has been applied on an open-source system by the authors to demon-
strate its applicability. The first author has good knowledge of the system as he
is participating in the open source project developing it. The application showed
that a broad range of countermeasures could be identified and linked to attacks,
and that the distance of the criticality of the countermeasures can be consistently
determined.

The remainder of the paper is structured as follows: Section 2 presents the
background and related work. Thereafter, Section 3 presents the CM-Sec
method. The application of the method on an open source system is illustrated
in Section 4. Section 5 discusses the application of the method and Section 6
concludes the paper.

2 Background and Related Work

The related work focuses on approaches to identify and prioritize attacks on
software systems early in development, i.e. before coding starts. The motivation

178 D. Baca and K. Petersen

for doing so is that the earlier problems in software development are discovered,
the easier and less costly they are to fix [9].

A traditional way of identifying threats to a system would be a quantitative
risk analysis like that described in Peltier [10]. The first step in the risk analysis
would be to enumerate all assets and include their values for the system and
then determine the threats that might exist for these values. The second step
is to estimate the probability that a threat will occur and the damage it could
cause. By combining these two values you get a priorities list of the top risks
for the system. Determining what an asset is for a software product can be
problematic, also immediately identifying threats to that assets often requires
security expertise.

Attack trees were introduced by Bruce Schneier [11] and are structured by
stating (1) the goal of the attack (e.g. obtaining a key); (2) what type of attack
to be used (e.g. obtaining a private key from a user); and (3) how to implement
the attack (e.g. break into the users machine and read the key from the disc)
[12]. The implementations of the attack can be connected to conditions, e.g.
one could choose either one of two or more implementation (OR) or several
implementations are to be done together [12]. Attack trees have been applied on
examples of software systems (cf. [13]). After identifying the attacks should be
evaluated based on their risk, i.e. the likelihood of their occurrence multiplied
with the damage done [6,7,8]. However, Buldas et al. [6] point out that the
damage could be determined, but the risk of the occurrence is hard to estimate.
Therefore, they propose to model the probability of the attack as a game for the
attacker taking the following parameters into account: gains for the attacker,
costs of the attack for the attacker, success probability, probability of getting
caught, and penalty of getting caught. A potential drawback of the proposal by
Buldas et al. is that the software developers need to have a good understanding
of the motivations of the attacker. Furthermore, attackers are different based on
each individual’s attitude towards risk (see [14] for the distinction between risk
averse vs. risk loving).

A process for managing risk is the Riskit method [15], which is used to contin-
uously prioritize and control risks. The method prioritizes risk based on probabil-
ity and utility loss. In the prioritization of risks and actions the process depends
on the estimation of the probability for ranking purpose.

The related work shows that the solutions for addressing security issues prior
to implementation have been focusing on the identication and prioritization of
attacks and threats, and use this as input for the prioritization of actions (see
e.g. [15]). However, few methods focus on the prioritization of actions. However,
from a software development perspective it is of interest to know which actions
should be taken to avoid the occurrence of attacks. In addition, all approaches
focused on prioritizing risks based on the estimations of probability and damage.
As pointed out by Buldas the estimation of probability and damage are hard, and
as two parameters have to be estimated the likelyhood of unaccurate estimations
is high. Hence, our method proposes to prioritize the countermeasures/actions
using hierarchical cumulative voting.

Prioritizing Countermeasures through the Countermeasure Method 179

3 Countermeasure Method for Software Security
(CM-Sec)

The method consists of two parts, the first part is an extension of attack trees.
The second is a process for conducting the analysis to arrive at the prioritized
list of countermeasures. For the second part a tool has been implemented which
supports practitioners in conducting the prioritization.

3.1 Countermeasure Graphs: An Extension to Attack Trees

Three extensions are made to attack trees, which only focus on attacks and
describe conditions under which the attacks can occur. The extensions are made
explicit in the meta model shown in Figure 1. The model consists of goals (why
to attack), actors (who attacks), attacks (how to attack), and countermeasures
(how to avoid attack), each described as a comment in the Figure.

The first extension is the relationship between goals, actors, and attacks. In
attack trees there exists a 1..∗ relationship between the classes as they are trees,
i.e. one goal is related to several attacks while one attack is only related to one
goal. However, in practice an attack could be executed by several actors, or an
actor could pursue more than one goal. Hence, these relationships were extended
to ∗..∗.

The second extension is the inclusion of priorities assigned to goals, actors,
attacks, and countermeasures. The priorities are an integer number assigned by
the person conducting the prioritization. The prioritization method is further
explained when presenting the process of creating the countermeasure graph
(see Section 3.2).

-Name : String
-Priority : int

Goal

-Name : String
-Priority : int

Actor

-Name : String
-Priority : int

Attack

-Name : String
-Priority : int

Counter-Measure

1..*
1..*

1..*
1..*

1..*
1..*

Goals describe
the motivation for
an attack

Actors are roles that
interact with the
system

An attack makes use of
software vulnerabilities
to achieve the goals of the
actor

A countermeasure is an
action to prevent
the introduction of
vulnerabilities

Fig. 1. Metamodel of the Extension to Attack Trees

180 D. Baca and K. Petersen

Fig. 2. Example of a Countermeasure Graph

The third extension is the inclusion of countermeasures which are actions by
the developers to avoid vulnerabilities to be introduced into the software prod-
uct in the first place. Hence, from an implementation perspective it is important
to prioritize the countermeasures which is done by considering the priority of
attacks, as well effort to realize the countermeasure. With the inclusion of coun-
termeasures the protection of the end-product is supported.

An example of the countermeasure graph is shown in Figure 2. The nodes
of the graph show the goals, actors, attacks, and countermeasures. The edges
connect:

– Goals to agents if the agent pursues the goal.
– Agents to attacks if the agent is likely to be able to execute the attack.
– Attacks to countermeasures if the countermeasure is able to prevent the

attack.

Furthermore, the priorities are assigned to each of the nodes. As can be seen agent
two is higher prioritized than agent one, meaning that the agent is more likely to
execute the attack and hence is a higher threat to the system. The agent has two
attackswhere attack one is prioritizedhigher as it doesmore damage to the system.
The figure also shows the prioritization of the countermeasures, countermeasure
two being the most efficient in preventing the attack. It is important to observe

Prioritizing Countermeasures through the Countermeasure Method 181

that the prioritization does not only allow to prioritize the order of attacks and
countermeasures, but also shows the distance between them.

3.2 Process

Identify Goals, Actors, Attacks and Countermeasures. The purpose of
the countermeasure graph is to determine what security countermeasures would
be useful to include in the product and at the same time identify what counter-
measures already exist. At the same time we determine what the greatest threat
to the product is and how well we prevent them. To achieve this we need to
discover what attacks can be made and how they are stopped, with traditional
threat analysis or attack trees this process is direct and tries to immediately
identify attacks. We instead divide the work in four distinct steps and then use
hierarchical cumulative voting [16] to calculate the impact of every step.

Goals: The first step is to understand why anyone would attack the product and
what their gain would be. This is often the same as the intended usage of the
product and is used as a guideline to see the big picture.

Agents: Thereafter the Agents are identified. Agents are users, roles and software
that interact with the products. Preferably the entire range of possible users
should be presented in this step, form end users to administrators and outside
software that interact with the product.

Attacks: Combining the Agents with a Goal we then look for Attacks. This step
of the threat analysis is made easier because we have a more clear idea who and
why the attack would accrue. We do not focus on if the attack would work, only
if it is a possible route for the Agent to take to achieve his desired Goal.

Countermeasures: The final step is identifying what Countermeasures could be
used to prevent an attack. A countermeasures can prevent one or more attacks.

Having identified the goals, agents, attacks, and countermeasures we are in-
terested in which countermeasures are most effective.

Prioritization of Countermeasures. The attack graph consists of sets of
goals, agents, attacks, and countermeasures. In the following we present the
prioritization questions asked to the developers, and also provide further expla-
nation of the voting on each hierarchy.

– Goals: To what degree would the achievement of the goal damage the system
from either a cost or stability perspective? These are at first general goals
that the different Agents might be interested in achieving. While the first
iteration of the attack tree has general goals further iteration will focus the
goals on specific requirement and features and are abuse cases based on
them. The Goals are also connected to what Agents would be interested
in them. Voting on the Goals is focused on the damage that specific goal
would sustain on the product. Depending on the goal the damage could be
economical or system stability.

182 D. Baca and K. Petersen

– Agent: How large is the threat of the agent for the system? With the Agents
we determine how threatening the different roles are to the product. Votes
are based on how ”scared” the product should be from that Agent. As an
example a server product would consider end user more threatening then
system administrators while privacy software might be the opposite.

– Attack: How likely is the success of the attack for the agent it belongs to?
The attack voting is per Agent and determines how likely it is for that Agent
to successed with the attack.

– Countermeasures: How efficient is the countermeasure in preventing an at-
tack? When voting on Countermeasurs the focus is on their ability to pre-
vent the attack compared to each other. In some cases two Countermeasurs
might be equally effective, but one of them might aid in preventing other
attacks as well. The attack graphs would then put higher priority on that
Countermeasur.

Each of the sets is prioritized according to the rules of hierarchical cumulative vot-
ing (HCV) [16]. Cumulative voting in itself has the benefit of (1) that it is simple
to do, and (2) the distance of importance between two items is visible. The voting
is done by providing a number of points (e.g. 100 dollars) and then distributing
them between a set of items. In HCV the prioritization is done on each level of the
hierarchy (in this case goals, agents, attacks, and countermeasures).

Figure 3 shows the principle of HCV. The prioritization is done on all level, in
this case on level 0 (L0) no prioritization is necessary as there is only one node on
that level. On level H1 three nodes compete against each other for the points, i.e.
nodes two, three, and four. On the lowest level H2 nodes within a group (H2.1,
H2.2, and H2.3) compete. When the votes are completed the value of a node is
calculated by multiplying the path of its parent nodes. For example, to know the
value of node 11 we calculate the product of points assigned to node 11, 4, and
1. As there are different number of nodes within the groups the votes have to be
adjusted by the number by the number of nodes in each group (cf. [16]).

In the case of our analysis an n to n relationship exist between nodes on
different levels of the hierarchy. If an attack is related to several agents then this
should raise the prioritized value of the attack. As an example we calculate the
value of countermeasure two in Figure 2, which prevents two attacks that can be

1

42 3

5 6 8 97 10 11

Voting H1

Voting H0

Voting H2.1 Voting H2.2 Voting H2.3

*

*

*

*
*

* **** Voting H2

Fig. 3. Cumulative Hierarchical Voting

Prioritizing Countermeasures through the Countermeasure Method 183

Fig. 4. Countermeasure 2 values from Attack 2

exploited by two different agents. First, we calculate the value for counter two
(C22) related to attack 2 as shown in figure 4 (remaining zeros removed):

C22 = 250 ∗ 320 ∗ 300 ∗ 300 = 7200 (1)

Thereafter, counter two is calculated for attack 1 (C21). Because Attack 1 only
has two countermeasuers its values need to be normalized to the countermea-
suers from Attack 2 that has the highest number of coutnermeauers. As such,
Countermeasure 2 with a value of 700 is normalized worth 280 points. Observe
also that for Attack 1 two agents can perform the same attack, as seen in Figure
5. However, they do not provide the same risk, neither do they have the same
likelihood of succeeding with the attack. They are therefore prioritised individ-
ually and then added to the equation individually. By doing so countermeasures
that prevent several attacks especially attacks that are possible from multiple
Agents are rated higher, and hence the threat level increases:

C21 = (250∗150∗1000∗280(norm))+(250∗320∗700∗280(norm)) = 26100 (2)

Overall, the value of the attack is the sum of C21 + C22 = 33380. The two
are added because the countermeasure prevents two attacks and hence is more
effective. Knowing the prioritization of the countermeasures with regard to ef-
fectiveness allows to combine them with costs in a matrix. The cost can either
determined by HCV just as the prioritizations of if it possible use real man-
hour estimations. The matrix, as seen in figure 8, shows different areas for the
interaction of effectiveness and cost that can be used as a support in deciding
which ountermeasures to focus on. The bottom-right area contains countermea-
sures that are effective and have low costs. Hence, these should be implemented
first. The top-left area contains countermeasures that are ineffective and at the
same time costly, hence they should be avoided. In the middle of the two areas

184 D. Baca and K. Petersen

Fig. 5. Countermeasure 2 values from Attack 1, including two Agents

the borderline-cases are shown, which could be implemented if there are enough
resources available.

4 Application

To demonstrate the method we applied it on an open source system, called
Code 43.

4.1 System Description and Development Environment

We examined an open source product, which is an online first person shooter
game. An overview of the architecture of the system is provided in Figure 6. In
the center of the system is the master server providing server lists to clients,
storing clients authentication information (e.g. authorization data), and client
statistical data showing the performance of the players. Connected to the master
server are the servers hosting the games. The clients are the ones logging into the
servers that they receive through the server list provided by the master server.
Because servers are setup by users they can not be trusted and information from
them can be corrupt. Only the master server is in the trusted zone, all other
actors in the system are outside this zone (servers are untrusted and clients are
considered unsecured).

The game is a complex product consisting of 400,000 lines of code not includ-
ing blanks or comments. This project has matured from other products, i.e. it
is reusing source code. In total there has been 26 major active developers.

4.2 Result of Applying ACM-Sec

In this example we have identified four Agents that interact with the system.
They have five distinct goals that can be archived via six attacks. From these six

Prioritizing Countermeasures through the Countermeasure Method 185

Fig. 6. Application Network Overview

attacks we devised eleven countermeasures that would in different effectiveness
prevent one or several attacks. An overview of the countermeasure graph is
shown in Figure 7. Inside the nodes the value assigned during the prioritization
is shown. All values have been normalized according to the approach illustrated
in Section 3.2. If there is more than one number in a node then this is for the
different ages (see, for example, nodes ask for password and fake statistics).

In the following we provide the details for the goals, agents, attacks and
countermeasures. This includes a detailed description of each of them.

Fig. 7. Countermeasure Graph for Open Source Game

186 D. Baca and K. Petersen

Table 1 provides an overview of the goals attackers might have. The majority
of the goals are focused on cheating, like alter statistics and cheat on server.
The motivation is either to steal an edge (steal an account), to gain an edge
(client-site cheating), or to edit and modify ones edge (alter statistics). Thus, its
primarily about the gaming experience.

Table 1. Goals and Their Damage

Goal Description
G1: Steal user accounts All clients have a private account that stores their statistics and aliases.

Other users and server operative could steal their clients’ identities.
G2: Compromise master The master server is the only trusted source in the network architect.

It is therefore a lucrative target for malicious users.
G3: Alter statistics Clients compete with each other. All users are therefore interested in

faking their success and cheat at their rankings.
G4: Cheat on server Clients compete with each other. Client might try to alter the game

rules to their benefit to gain an edge against other clients.
G5: Create fake server Clients receive server lists from the trusted master. Servers that want

more clients might create fake servers that all point to the same servers.
Therefore showing up several times in the server list and creating a
larger exposure to clients. This is unfair to other servers.

As can be seen in Figure 7 the players are the agent with the highest threat,
the reason being that the goals are all related to the gaming experience. Server
operators also can have an interest as sometimes they are players themselves or
can be influenced by gamers (e.g. due to ties to other gamers).

Table 2. Agents and Their Threat

Agents Description
A1: Players These are clients and the end users of the system. They are also the

least trusted source and present the greatest threat.
A2: Server Operators Any client can create and add servers to the system. As such the servers

can not be trusted and server operative can have the same motives as
players.

A3: Servers Being open source software the server can be altered to behave differ-
ently than the master server expects. It is therefore also a threat to the
system.

A4: Master Server Operators The operator of the master server has total command over the system.
While he/she is an agent he/she does not provide any threats as the
master server operator already can do whatever he/she wants.

An overview of the attacks is provided in Table 3. The attacks focus on either
stealing other users accounts or cheating to improve ones own statistics. In both
cases the threat does not only come from client but also from servers that are
run by other clients. The administrators of these servers might have the same
interest in other clients’ account and statistics, just as other clients might.

The countermeasures which are the main outcome of this analysis are shown
in Table 4. As can be seen in Figure 7 one countermeasure is able to prevent
several attacks, which raises its value in the prioritization (see, for example, C2).

Prioritizing Countermeasures through the Countermeasure Method 187

Table 3. Attacks

Attack Description
At1: Ask for the password Social engineering attack where either other clients, server operators or

servers send fake login request to other users in an attempt to get the
clients password.

At2: Eavesdrop the password Servers can intercept the clients’ login information as it passes thought
the server to the master server. Servers also need to know that the
client as passed the login procedure.

At3: Fake statistics Clients and server can send any statistics to the master server and thus
increasing their own ranking.

At4: AutoAim / Wallhacks There exists several client side cheats where players use unauthorized
software to gain an edge against their competitors.

At5: Malicious statistical data A large source of user input to the master servers comes from statistical
data. As such it is a big threat and way in for attackers. The attacks
can vary from buffer overflows to injection attacks on the master servers
database or webpage that presents the statistical data.

At6: Authenticate fake server Any server can authenticate to the master server. They therefore can
create multiple entries of their server in the master server list.

Table 4. Countermeasures

Agents Description
C1: Single logon Have a single point of login for the user during game start. With a

specific login window that can not be replicated or requested by servers
or other users.

C2: Public/ private User public/ private keys signings for client identification.
C3: Avoid servers Use direct client and master server communication for client authen-

tication. However, servers still need verification from master that the
client has authenticated.

C4: Encrypt Encrypt the password with a master server public key before sending
it. Would require a sequence number or timestamp to prevent replay
attacks.

C5: Several sources Verify statistical data by comparing it from several sources. From both
client in the game and the server hosting the game.

C6: Master spies User random samples and make the master join servers to verify that
the servers are not duplicates and that the statistical information is
correct.

C7: Limit info. Limit the information sent to the client so automated processes can not
aid the player unfairly. For example do not send other players location
unless they are within the clients’ field of view.

C8: Detection algorithm Nonhuman actions can be detected by the server by analyzing the
clients behavior and comparing it with normal dataset.

C9: Input sanitization Cleaning all input strings and removing any harmful characters.
C10: Input policy Having a strict input protocol that drops any incorrect input before it

is processed for storage.
C11: IP and Port Verify unique servers by examining both IP address and the destination

Port. The same server can however run several games on different ports.

After having prioritized the effectiveness of the countermeasures using our
prioritization approach introduced in Section 3.2 the countermeasures are com-
bined with cost. Cost is the estimated effort required to implement them. The
result is shown in Figure 8.

From this the following interpretations can be made: Countermeasures C2,
C5, and C6 should be implemented as they are in the zone of countermeasures
that are effective and have low cost. As can be seen in Figure 7 C2 affects the

188 D. Baca and K. Petersen

Fig. 8. Combination of Effectiveness with Cost

same attack as C3 and C4. Hence, the implementation of C2 would reduce the
effectiveness of these two countermeasures. Countermeasure C8 is very costly
to implemented, but is highly effective. As often project resources are limited
this countermeasure should be taken into consideration for future releases, i.e. it
should be handled as a requirement instead of a quick fix. Countermeasure C11
should not be implemented as it has very low effectiveness, i.e. its implemen-
tation does not make a difference. The Figure also shows that C9 and C10 are
equally effective, but have different costs. Hence, the analysis also allows prior-
itization on cost whenever countermeasures are close to each other with regard
to effectiveness. In this example we did not find any countermeasures with high
cost and low effectiveness. However, in a different context such countermeasures
might very well be identified.

5 Discussion

5.1 Practical Implications

Focus on End-product: We would like to stress that it is important to prioritize
countermeasures as those are directly related to the end-product. That means
they result in actions that could be taken early in the development process to
avoid the introduction of vulnerabilities in the first place. Furthermore, it is
important to mention that our method can be applied throughout the whole
development life-cycle, independently of whether a new product is implemented,
or an existing product is analyzed. When an existing product is analyzed it is
important to take into account the countermeasures already implemented, this
needs to be taken into account when doing the re-prioritization.

Problems of objectivity: Risk analysis and attack trees assume that develop-
ers have a good understanding of how an attacker would think as probabilities
have to be estimated for many different factors (cf. [6]). Furthermore, it is hard

Prioritizing Countermeasures through the Countermeasure Method 189

for developers without security experience to identify attacks without guidance.
Hence, the proposed methods addressed this problem in two different ways: First,
the attack trees were extended by agents as this allows the developers to put
themselves in the shoes of the attacker, knowing who the attacker might be.
Secondly, a process is proposed that the developers can follow. Furthermore, the
process focuses on comparing different attacks and countermeasures with each
other. Having the comparison makes it easier to value the attacks and counter-
measures.

Implementation of Triangulation: When conducting the prioritization we recom-
mend that it should be done by several developers. The averages and variances
of the points assigned provide an understanding of to what degree the developers
agree on voting. If there is a large discrepancy the data will show the need for
discussions and further investigations.

Tool support: To support the developers in the prioritization process we are de-
veloping a tool. The main feature of the tool is to (1) work in groups during the
identification of the goals, agents, attacks, and countermeasures (shared canvas),
(2) support in the prioritization. The support should be handled thorough sliders
which allow easy re-priortization and show the impact of the change of one prior-
itization in real-time. This makes the method particularly suited for agile devel-
opment as changes in the system can be very easily prioritized for each iteration.

5.2 Research Implications

The presented method focuses on countermeasures instead of only attacks and is
novel with this regard. Hence, research needs to focus on testing the approach in
an industrial application. We plan to conduct case studies in industry to evaluate
the method with empirical data.

6 Conclusion

This paper presented a novel method to identify and prioritize countermeasures
to increase the security of software systems. The method provides an extension
to attack trees, as well as a process for the identification and prioritization of the
countermeasures. We applied the method on an open source system, the appli-
cation showing that several countermeasures could be identified. Furthermore,
an analysis of the quantitative results is presented, showing that the proposed
method has a potential in guiding managers in choosing the most effective and
cost-efficient countermeasures. In future work empirical evaluations of the pro-
posed method in industry are needed.

References

1. Frühwirth, C.: On business-driven it security management and mismatches between
security requirements in firms, industry standards and research work. In: Proceed-
ings of the 10th International Conference on Product-Focused Software Process
Improvement (PROFES 2009), pp. 375–385 (2009)

190 D. Baca and K. Petersen

2. McGraw, G.: Software security: building security in. Addison-Wesley, Upper Saddle
River (2006)

3. Baca, D., Carlsson, B., Lundberg, L.: Evaluating the cost reduction of static code
analysis for software security. In: Proceedings of the International Workshop on
Programming Languages and Analysis for Security (PLAS 2008), pp. 79–88 (2008)

4. Baca, D., Petersen, K., Carlsson, B., Lundberg, L.: Static code analysis to de-
tect software security vulnerabilities - does experience matter? In: Proceedings
of the The 4th International Conference on Availability, Reliability and Security
(ARES 2009), pp. 804–810 (2009)

5. Howard, M., LeBlanc, D.: Writing Secure Code. Microsoft Press, Redmond, Wash-
ington (2003)

6. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational
choice of security measures via multi-parameter attack trees. In: López, J. (ed.)
CRITIS 2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006)

7. Moore, A.P., Ellison, R.J., Linger, R.C.: Attack modeling for information secu-
rity and survivability. Technical Report Technical Report CMU/SEI-2001-TN-001,
Software Engineering Institute (2001)

8. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

9. Damm, L.O., Lundberg, L., Wohlin, C.: Faults-slip-through - a concept for mea-
suring the efficiency of the test process. Software Process: Improvement and Prac-
tice 11(1), 47–59 (2006)

10. Peltier, T.R.: Information security risk analysis. Auerbach, Boca Raton (2001)
11. Schneier, B.: Attack trees. Dr. Dobb’s Journal 24(12), 21–29 (1999)
12. Viega, J., McGraw, G.: Building secure software: how to avoid security problems

the right way. Addison-Wesley, Reading (2002)
13. Saini, V., Duan, Q., Paruchuri, V.: Threat modeling using attack trees. J. Comput.

Small Coll. 23(4), 124–131 (2008)
14. Hederstierna, A.: Decisions Under Uncertainty - The Usefulness of an Indifference

Method for Analysis of Dominance. EFI The Economic Research Institute, Stock-
holm School of Economics (1981)

15. Kontio, J.: Risk management in software development: A technology overview and
the riskit method. In: Proceedings of the IEEE International Conference on Soft-
ware Engineering (ICSE 1999), pp. 679–680 (1999)

16. Berander, P., Svahnberg, M.: Evaluating two ways of calculating priorities in re-
quirements hierarchies - an experiment on hierarchical cumulative voting. Journal
of Systems and Software 82(5), 836–850 (2009)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 191–205, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Feedback in Context:
Supporting the Evolution of IT-Ecosystems

Kurt Schneider, Sebastian Meyer, Maximilian Peters, Felix Schliephacke,
Jonas Mörschbach, and Lukas Aguirre

Software Engineering Group, Leibniz Universität Hannover
Welfengarten 1, 30167 Hannover, Germany

{Kurt.Schneider,Sebastian.Meyer}@inf.uni-hannover.de
{maximilian.peters,felix.schliephacke,
jonas.moerschbach}@stud.uni-hannover.de,

lukasaguirre@gmail.com

Abstract. IT ecosystems consist of dynamically interacting subsystems, com-
ponents, and services containing software. Companies provide parts of IT eco-
systems, e.g. for airports, train stations, and shopping malls. Due to the complex
interaction of subsystems, overall behaviour cannot be completely anticipated
or engineered. IT ecosystems constantly evolve by adapting to new user re-
quirements and to changes in their environment. On-going improvement re-
quires feedback from users. However, feedback is not easy to get. This paper
presents an approach facilitating feedback in context. It is gathered by mobile
devices like Smartphones. Effective support for evolution needs to cover (1)
identifying the component or subsystem a user wants to address, (2) the ability
to send feedback at very low effort and cost, and (3) support for interpreting in-
coming feedback. We present an architecture, a framework, and an application
example to put stakeholder feedback into context. Contextualized feedback
supports providers in driving the IT ecosystem evolution.

Keywords: IT ecosystem, feedback, context, architecture, improvement cycle.

1 Introduction: Evolution in IT Ecosystems

Today, many technical systems and devices interact with each other. In public places
like airports, train stations, or universities, citizens become stakeholders of tightly in-
terwoven systems. Their mobile phones can be used to make reservations, pay tickets,
and receive confirmations from banks, ticket counters, and train information systems.
Software controls subsystems and services, all of which are developed independently.
They often depend on each other to provide higher level services. Subsystems interact
with other subsystems, and with users. We call a system an “IT ecosystem“, if those
parts act and react autonomously or semi-autonomously [1]. This term is used as a
metaphor. Bosch presents a taxonomy of ecosystems [2]. He starts from biological eco-
systems and distinguishes human, social, and economic ecosystems. In particular, he is
interested in software ecosystems: "A software ecosystem consists of the set of software
solutions that enable, support and automate the activities and transactions by the actors

192 K. Schneider et al.

in the associated social or business ecosystem and the organizations that provide these
solutions." Our notion of IT ecosystems emphasizes emergent behaviour similar to an
ecosystem in nature, where different species and animals interact autonomously.

Stakeholders perceive resulting system behaviour as a complex “smart environ-
ment“. IT ecosystems are not designed as a whole; they rather evolve. Components
and requirements change often, and new parts are added. Lentz and Bleizeffer state:
"Modern IT ecosystems have evolved organically into complex systems of hardware,
software, middleware components, applications, organizations, practices, application
lifecycles, and job specializations." [3]. Changes in requirements are not easily recog-
nized in IT ecosystems. Nevertheless, getting feedback on acceptance of their prod-
ucts or services is vital for providers to tune and improve their software. Traditional
requirements engineering is not appropriate for software in an IT ecosystem for sev-
eral reasons, as a comparison shows:

• In traditional, individual software projects, requirements engineering has
been a distinguishable project activity. Requirements could be elicited, ana-
lyzed, and validated before implementation started. Iterations and prototypes
may be advisable, but requirements are still elicited before they are imple-
mented. Usually, there is a defined user community. Interviews and workshops
are the recommended approach for eliciting and validating requirements.
There is a good chance to reproduce observations and problems. When a small
system does not behave as expected or desired, users have a good chance to
recognize the deviation. They will be able to identify the responsible software
system and to contact the developers.

• In "IT ecosystems", new requirements and suggestions need to be identified
while the system is already running. They result from on-going changes in en-
vironment, interaction, and user expectations. Stakeholder will recognize un-
foreseen or undesired system behaviour, but will often not be able to identify
the responsible subsystem. Even if they could, it would take time to find pro-
vider contact information. In most cases, stakeholders may be angry or an-
noyed, but not provide feedback. From the provider perspective, opportunities
for improvement are missed.

Eliciting requirements proactively (instead of a reaction to a problem) is
also difficult: Requirements of different user groups may diverge and will de-
pend on context. Representative samples of users need to cover all groups and
many contexts or conditions. It is expensive and ineffective to conduct inter-
views or workshops with such a large sample of users: Instead, companies use
questionnaires, marketing studies and other tools to reach many (potential)
customers [4], which is again a suboptimal solution:

o Stakeholders are interrupted in their original tasks.
o They will often not remember or report a problem - unless they en-

counter it just before they were asked.
o Emergent effects may occur in an IT ecosystem with all its interact-

ing subsystems. Some phenomena might not be reproducible in a
laboratory setting or user test if the context and conditions differ.

 Feedback in Context: Supporting the Evolution of IT-Ecosystems 193

• Our approach to “IT ecosystems”: Focused feedback channels are made
available to stakeholders when and where they encounter a situation or prob-
lem they consider worth reporting. Feedback can be given via Smartphone. By
integrating this feedback into an improvement cycle, stakeholders engage in a
community effort for improving their own environment – and for their own
benefit.

The tools that are required to support this approach need to facilitate and guide the
identification of appropriate addressee subsystems in the IT ecosystem. Whatever is
"close" might be the responsible part. Therefore, we suggest using heuristics on geo-
graphical and logical proximity to identify addressees for feedback: Context can be
captured implicitly and at minimal effort by locating users automatically. In addition,
tailor-made mechanisms for pre-sorting feedback are proposed to facilitate analysis of
feedback and fast improvement reaction.

Accordingly, this paper makes a three-fold contribution:

1. We present a technical concept that enables feedback in context. It contains an
architecture and a framework to be used in different applications.

2. We argue how providers of subsystems can benefit from feedback in context.
Empirical evaluation of this aspect (acceptance, benefit) is not covered in this
paper.

3. We show the technical feasibility of our concept by implementing it using
technology that is currently available and in wide use.

Section 2 presents the main assumptions and concepts that underlie our approach.
Related work is described in Section 3. In Section 4, we explain the architecture of
our distributed support framework. An implementation of our concepts is presented in
Section 5. We illustrate our approach and framework by applying it to an example
(Section 6). With these mechanisms at hand, user evaluation and optimization of
heuristics can now be the next step. We discuss the current status and conclude.

2 Assumptions, Opportunities, and Concepts

A number of trends in modern technology and society have created a new situation.
So far, the only way for unsatisfied customers of software and systems to complain
was by calling or writing to providers. However, spending extra time and effort for
identifying and contacting the responsible provider prevented most people from giv-
ing feedback. Why would someone spend time and money to report requirements?
And why would providers care to collect complaints after they already sold a product?

Assumption: Competitiveness in IT ecosystems depends on available feedback
Providers of systems, software, or services compete with others in an IT ecosystem.
For example, traffic providers like Deutsche Bahn (German railways) or airports will
depend on embedded software that interacts with mobile phones, proprietary business
systems, and the internet. Dissatisfied users may turn away from services and look for
a similar service from a competitor. In order to keep customers, and to keep custom-
ers satisfied, providers will need to improve their processes and their software-based
products while they are running. The ability to recognize problems and implement

194 K. Schneider et al.

suggestions for improvement quickly will be a key to success in IT ecosystems [4].
Stakeholders (i.e., subscribed and potential customers) could be encouraged to indi-
cate their feedback and desires. Thus, an important new communication channel could
be opened. Providers could play an active role in shaping their portion of the evolving
IT ecosystem.

Opportunity: Stakeholders are familiar with new and ubiquitous technology
Our work tries to support the upcoming generation of stakeholders who are familiar
with video-equipped mobile phones and multimedia handhelds. Two new develop-
ments encouraged us to explore ad-hoc video and light-weight feedback in context (as
explained in more detail in [5]):

(1) The advent of inexpensive ubiquitous recording and sending devices. For ex-
ample, digital cameras, Smartphones and flatrates are in wide use today.

(2) A generation of stakeholders who have grown up using Smartphones and
PDAs voluntarily in their private life. Today's high school and university
students represent that generation. They are current and future customers.

Many people recognize faults and weaknesses in public systems (e.g., airport dis-
plays, navigation or information services). We assume that many citizens will be able
to use their familiar mobile devices for giving feedback. We further assume that many
technology-affine citizens are willing to provide feedback if that causes no or mar-
ginal cost and effort. According to Davenport [6], incentives do not need to be finan-
cial. Stakeholders may be happy to provide short feedback to enhance the systems
they use themselves. When stakeholders wait for a service or a system reaction (e.g. at
an ATM), this is an opportunity to get feedback. There is a two-fold benefit: waiting
time appears shorter, and stakeholders can express frustration.

Concept: Context from object perspective
Context is an important issue for feedback. Many context-aware systems consider the
context of users and adapt system behaviour to the context observed. In Fig. 1, they
would consider objects A and B to be in the context of stakeholder S (dashed line).
Our perspective in this paper is slightly different: The geographical and logical posi-
tion of a user in an IT ecosystem is identified along several dimensions (GPS,
WLAN, Bluetooth etc.). When a user indicates the intention to give feedback, the
multi-dimensional position of his or her Smartphone is used to identify those compo-
nents of the IT ecosystem that are most likely to be the intended addressee of that
feedback. Administrators can define under which circumstances a stakeholder is con-
sidered "close". There can be individual definitions for each object. Instead of asking:
“What objects are in the context of S?” (dashed line in Fig. 1), we ask: “What objects
would consider S to be close enough for giving useful feedback to them?”

In Fig. 1, S is in the context of B. Object A has defined a narrow context and
would not consider S close enough. If S triggers feedback, the Smartphone of S dis-
plays only B as a potential addressee, since only B considers S close enough. Please
note that Fig. 1 maps the multiple context dimensions to a geographical model of
“closeness” for visual presentation.

 Feedback in Context: Supporting the Evolution of IT-Ecosystems 195

Fig. 1. Context depends on perspective: S is close enough to B, but not to A

Concept: Context as a key to low-threshold feedback
The main contribution of this paper is the use of multi-dimensional context of feed-
back for lowering effort and threshold to participate. As outlined in the introduction,
we assume that proximity or closeness indicate appropriate addressees. Context is
established by physical proximity to a real-world object (display, ticket machine, tree,
car), by logical proximity to a Web site (as identified by the URL currently con-
nected), or by being in the range of a bluetooth or Wi-Fi sender. We assume that
“participating objects and systems” will be registered as potential feedback receivers.
When a stakeholder wants to submit feedback, “close” objects are identified, and the
stakeholder selects the best addressee for his or her feedback.

In [7] and [5], we suggest using ad-hoc video-clips for eliciting feedback and sup-
porting requirements validation. In this paper, we will not discuss videos as a feed-
back medium, but focus on the framework and infrastructure for feedback.

3 Related Work

Non-traditional requirements engineering. In most traditional development en-
vironments, requirements are elicited early from stakeholders. Validating those requi-
rements is an important prerequisite for good quality. Interviews and workshops are
often used for bridging the gap between customers and software developers. Ethno-
graphic approaches were recommended for observing and analyzing complex situation
that are difficult to explore by asking stakeholders [8]. When a system is developed for
an entire market rather than an individual customer, product management and market-
driven requirements engineering [4] are more relevant than individual up-front interro-
gation. In that case, phases of building and phases of analysis and validation must take
turns. Karlsson et al. [4] point to the drastically growing importance of feedback when
an operational version of a system is supposed to be improved.

Fickas and Feather [9] state that requirements change over time. Requirements
monitoring helps to automatically detect mismatches between the system functions
and desired goals. Goals that have not been made explicit cannot be observed auto-
matically. Our approach utilizes the users of the system directly to detect mismatches.
User feedback can uncover mismatches between the system and their own personal
goals - which may contribute to making tacit goals explicit.

Video clips are a straight-forward extension to the concepts presented in this pa-
per. As discussed in [5], some researchers have investigated high-effort approaches in
using videos [10]. For getting contextualized feedback from everyday situations, we
advocate ad-hoc videos recorded on mobile devices by normal citizens. A video

196 K. Schneider et al.

shows a concrete situation in context, which is an advantage over textual feedback.
Audio explanations can provide the intention of recording this situation. In text, how-
ever, context must be described explicitly, or it will be ignored.

Zachos and Maiden [11], [12] used their ART SCENE system on mobile devices to
guide stakeholders through scenarios. By following those scenarios in concrete and
contextualized situations, misunderstandings and invalid assumptions can be detected.
Again, this approach is directed towards requirements engineers and stakeholders who
are willing to spend a considerable amount of time on requirements validation. Our
approach is complementary in nature. It enables ordinary citizens to send a short, but
contextualized feedback within a minute. If many people participate, even small
pieces may help to get a picture.

Sitou and Spanfelner [13] propose a set of possible models to capture the usage
context and users expectations. They argue for the multi-dimensionality of the con-
text in order to be helpful for requirements engineering. Sitou and Spanfelner observe
users while they interact with the system in order to elicit new or changed require-
ments. We do not observe users, but enable them to provide feedback in context.

Dey et.al. suggest a software infrastructure for smart environments [14]. They
gather context data from sensors and use it as a substitute for user input to trigger
defined processes. Again, we do not substitute users and their activity but enable them
to give feedback actively. Context is used to identify possible addressees. Sutcliffe,
Fickas and Sohlberg propose a method for requirements engineering that takes into
account the context of a person as parameter for requirements [15]. Rather than elicit-
ing requirements from feedback directly, we encourage and gather light-weight feed-
back. It indicates where more in-depth requirements engineering is needed.

The concept of derivating implicit feedback is a common task in information re-
trieval to obtain better results by adapting to the user’s needs. Fox et al. described
how implicit ratings like the number of returned result sets or the duration of a session
can be used to get an indication of user satisfaction [16]. Another class of sources for
implicit feedback is analyzing clicktrough data from web logs as described by Dupret
and Liao [17]. These approaches rely on observing the user during the interaction
with a system. Contrary to this, our approach is dedicated to an environment where
observing the user is not an option, although recognizing the surroundings of the user
is possible.

4 Architecture and Process of Feedback in IT Ecosystems

An IT ecosystem consists of several subsystems, components, and services. Not all
parts of such a system will participate in soliciting feedback. For example, only the
passenger-related parts of an airport may be in focus, while baggage handling, human
resources, or runway services may not be taking feedback. Therefore, elements must
register in order to qualify for feedback. We call registered elements “SmartObjects”.

There will be many registered elements. Their representatives, SmartObjects, are
managed by a central feedback management unit. Although that unit can be distrib-
uted for increased efficiency or robustness, we consider it one central unit from a
logical perspective. It contains software to represent and manage all SmartObjects.
Management includes features for defining new SmartObjects and for specifying the

 Feedback in Context: Supporting the Evolution of IT-Ecosystems 197

circumstances under which a given stakeholder will be considered “in the current
context” of that SmartObject.

We postulate stakeholders to use a mobile device with several sensors for different
dimensions of context, such as Bluetooth, Wi-Fi, GPS, or the URL of a website.
When stakeholders want to provide feedback, they connect to the central unit. Context
information provided by the mobile device is evaluated in the central unit. According
to a matchmaking algorithm (as exemplified in Section 5), a list of SmartObjects is
presented. They are potential addressees since the stakeholder is in their context. The
final selection of the addressee SmartObject is made by the stakeholder. Depending
on the definition of that SmartObject, a few questions may be displayed on the mobile
device. Answers are sent back to the SmartObject as part of the feedback interaction.

Perceive
Record
Video

Identify
addressee

Interact and
Send

Evaluate
React and
Improve

PCs

Digital
cameras

Smart
Phones

Internet

Smart
Objects

Improvement

IT Ecosystem

Central
Administration

Unit

Feedback

Fig. 2. Architecture of a framework and process for feedback in context

See Fig. 2 for an overview of the distributed architecture and the improvement
process for feedback in context. Dark process steps are at the core of this paper, while
video recording is mentioned only briefly. White process steps are required to close
the improvement cycle, but they are beyond the scope of this paper: A stakeholder
must perceive a trigger for giving feedback; and a service or software provider com-
pany must react to feedback. We do not discuss these steps here.

The architecture as sketched in Fig. 2 is characterized by several aspects:

- Feedback in context is achieved by a distributed framework of interacting
parts: (1) The Central Administration Unit, (2) SmartObjects, and (3) software
embedded in participating mobile device or digital cameras. This architecture
reflects the distribution and flexibility of the IT ecosystem.

- Each of the three parts can be integrated with provider or mobile device sys-
tems. All parts together make up the feedback in context framework.

- There is a difference between a real-world object (subsystem, software, service)
and the SmartObject representing it in the framework: Note that even software-
free objects like restaurants or escalators can be represented by SmartObjects.

198 K. Schneider et al.

For example, a stakeholder can be specified to be in the context of a house
whenever their GPS coordinates are within 100 m of each other.

- Feedback for all SmartObjects is first received by the central unit. Once the
addressee SmartObject is identified, the feedback call is handled by the Smar-
tObject software. It also collects data for evaluation.

Fig. 3 shows an overview sequence chart of the feedback interaction. While Fig. 2 is a
static view of the architecture, Fig. 3 highlights dynamic aspects.

CentralUnitSmartphone SmartObject2SmartObject1

initiate

feedbackCategory
getContextData

getContextData

sortByHeuristic

store

List potent.addr.

SelectedSmartObject

repeat

category

Selection or response

Options or question

Complete successfully

Feedback
interaction

Fig. 3. Sequence chart of general interaction during feedback in context

Submitting feedback in context can vary in detail, but it always takes the steps
sketched in Fig. 3:

1. Something triggers a stakeholder to send feedback, e.g. a problem concern-
ing the behavior of a ticket machine or a software service.

2. The mobile device has software which connects it to the Central Unit.
3. According to the multi-dimensional context specifications, several Smar-

tObjects may qualify as addressees (“within range of our service Wi-Fi” or
“in 20m range of GPS…”). Their context definition is evaluated heuristi-
cally by the Central Unit.

4. The Central Unit determines a list of SmartObject “in context” and submits
it to the user’s Smartphone. This is the list of potential addressees.

5. The Smartphone displays the list, and the stakeholder selects the objects he
or she wants to provide feedback to, e.g. SmartObject1 in Fig. 3.

6. The selected SmartObject may establish a short feedback interaction by
presenting options for selection, or by asking simple questions.

 Feedback in Context: Supporting the Evolution of IT-Ecosystems 199

5 Implementation of the ConTexter Framework

ConTexter is an implementation of the architecture and technical concepts described
above. The ConTexter framework was implemented in four parts which can run on
independent computer systems. They can be mapped to the architecture.

1. The GUI is used by the administrator to create, define, and edit SmartObjects.
It is a Java Swing Application and works as a client that connects to the Cen-
tral ConTexter Unit as well as to the SmartObjectAdministration (part of the
Central Unit) via Java Remote Method Invocation (RMI).

2. The mobile part is used by the Smartphone user to submit feedback by mobile
phone. We used a G1 Smartphone running the Android operating system.

3. The Central Unit identifies relevant SmartObjects by the context data provided
by the G1. It returns information on how to connect to different SmartObjects.

4. The SmartObjectAdministration in the Central Unit provides an interface be-
tween the G1 Smartphone and selected SmartObjects.

Mobile ConTexter components use standard Android APIs. The accuracy of differ-
ent modules of the G1 was a problem in general. In particular, the calculated GPS
positions differ and depend on the current environment. To handle this problem, the
administrator can define and adjust the range of tolerance with each SmartObject that
has a GPS context. The actual context (via GPS, URL, WLAN, Bluetooth) is identi-
fied by a separate program thread to let the stakeholder use the GUI meanwhile.

URL context is retrieved by searching the browser's cache for the last visited web-
site. URL context is only classified as relevant if the visit of this website was within
the last three minutes.

The SmartObjectAdministration is necessary because the Android API does not
provide any remote method invocation (RMI) functionality. We had to run the com-
munication based on standard sockets communicating with our own protocol. In real
applications, it is infeasible to assign each SmartObject a separate port. To avoid the
need for one port per SmartObject the SmartObjectAdministration uses only one port
and listens for incoming requests from the G1. It forwards its socket to the currently
chosen SmartObject. Along the same lines, the SmartObjectAdministration is imple-
mented as one process only, which dynamically instantiates SmartObjects on demand
- instead of running one process per SmartObject permanently. This also opens the
opportunity to run several SmartObjectAdministrations in parallel on different ma-
chines. This may be useful in a commercial setting where more than one software
provider uses ConTexter feedback independently.

Heuristic for sorting potential addressee SmartObjects. When a call reaches the
server, it calculates a preference value for each potential addressee (SmartObject). To
determine the relevance of a SmartObject as potential addressee, a "context relevance
index" is calculated. More relevant objects are displayed higher on the mobile phone
SmartObject list. For each SmartObject: The administrator can adjust priorities of
different context type via adjustment factors. A SmartObject's relevance is not only
determined by its context alone, but also by the number of calls in which it was finally
selected to be the intended addressee by the stakeholder. This heuristic is based on the

200 K. Schneider et al.

assumption that an existing problem will trigger several feedbacks. Counting calls and
finally selected SmartObjects is an element of learning and adaptation.

Many other heuristics can be formalized and compared: Time and environment
conditions, even weather and history could be included. We decided to start simple
and investigate refinements later, during usage evaluation.

In our implementation, we decided to implement the management of actual context
data in a central database located in the Central Unit: The request for context data is
implemented by database queries in the Central Unit instead of involving SmartOb-
jects. Fig. 3 is a good representation of the logical interaction, while our implementa-
tion uses one of many performance optimizations one could imagine.

6 Example Case Study: UniImprove

Our concept of multi-dimensional context of feedback and the framework architecture
are independent of any particular implementation. In the previous section, core as-
pects of our implementation in the ConTexter framework were presented. In this sec-
tion, we illustrate the concepts introduced above.

In this example, Leibniz Universität Hannover is considered an IT ecosystem. Our
scenario pretends the university board decided to start the UniImprove initiative. It
uses ConTexter to guide improvement of university services, software, and other
objects under university control. Enrolled students are invited to register (as stake-
holders) at the Central ConTexter Unit. Registration is carried out over the internet.
Fig. 4 illustrates some contexts and SmartObjects on a Google Earth map: The main
gate in front of our university building (a) is specified by its GPS coordinates and by a
Bluetooth sender (b). When students follow path (c), they reach the information dis-
play in the entrance hall, which is a registered SmartObject. Its context is defined by a
Wi-Fi network (d). There is also the University Restaurant (e: GPS context and URL
for menu) and the pathway to the next building (f: GPS). The pathway is included and
represented by a SmartObject since there were many complaints about dirt and poor
lighting in the past. Finally, there is a Bluetooth antenna of our department (g).

Fig. 4. Example of registered objects and context areas along a path at Universität Hannover

 Feedback in Context: Supporting the Evolution of IT-Ecosystems 201

Fig. 4 is for illustration only. Real ranges and areas may differ, and there are far
more registered objects in a real IT ecosystem. When a new object is registered at the
Central ConTexter Unit, multi-dimensional context conditions are specified. A regis-
tered real object (e.g. tree, pathway, display, software, service) can be relevant when
the stakeholder is “close” in any of the available dimensions. Fig. 5 shows a situation
in which the online syllabus (list of offered classes) is being registered as “Syllabus”
SmartObject. For demonstration purposes, URL, GPS, and Wi-Fi dimensions have
already been specified. A specific Bluetooth connection is just being added. When-
ever a stakeholder is in range of any of those context dimensions, the Syllabus will be
considered a potential addressee of feedback.

Fig. 5. Central ConTexter Unit during specification of multi-dimensional context

As soon as some SmartObjects have been registered, UniImprove can be used.
When ConTexter is activated on a Smartphone, it asks for the category of feedback:
complaint, compliment, or neutral remark. In Fig. 6 (left) a complaint is about to be
made. In the next step (centre) all SmartObjects in the current context are displayed.
In this example, the stakeholder selects Syllabus as the addressee. Since the Smart-
Object list was sorted by a heuristic, stakeholders make the final selection. Depending
on the SmartObject definition, a few feedback options may be offered (right).

Fig. 6. Choosing category of feedback, final addressee, and submitting feedback

202 K. Schneider et al.

Stakeholders can check boxes and type free text if they wish. In an extended ver-
sion of ConTexter, even previously recorded video clips can be attached to the feed-
back message. This short example covers most concepts introduced above. However,
it illustrates only one possible implementation. We implemented other variants of the
fine-grained interaction and heuristics. For example, the initial choice of a feedback
category can be dropped. There is room for more optimizing heuristics. The goal is to
present a reasonable list of possible addressees that most likely contains the object
intended by the stakeholder.

7 Semi-automatic Feedback Evaluation

Soliciting feedback is an important yet difficult task. Submitted feedback must be
used to the benefit of providers and stakeholders in order to justify the effort invested.
In the introduction (Section 1), semi-automatic evaluation of submitted feedback was
identified as one of the core opportunities. If many stakeholders participate, a large
number of feedbacks will be received. By that time, a strategy for evaluation must be
implemented and ready.

We present an example solution that supports simple pre-evaluation in many cases.
As Fig. 7 shows in the realm of the UniImprove example, feedback options are defined
in the Central ConTexter Unit when a SmartObject is registered and defined. So far,
two compliments, a neutral type of feedback, and two types of complaints have been
introduced. A third type of complaint (“confusing presentation”) is just about being
added. In all cases, stakeholders may include free text with their selections. During
operation of the ConTexter framework, administrators and providers can use a similar
interface to review the current status of feedbacks received. At this point, pre-defined
options help classifying and visualizing the distribution of feedbacks.

Fig. 7. Feedback options are defined during SmartObject registration

 Feedback in Context: Supporting the Evolution of IT-Ecosystems 203

In Fig. 8, there is an overview of feedback types on the left, and a detailed view on
all pre-defined options on the right. Free text annotations are shown in the lower left
corner. In a more detailed view, original feedbacks (selected options with free text)
can be seen for fine-grained analysis. In Fig. 8, two complaints refer to the title of a
missing course.

Fig. 8. Automatic classification of incoming feedback based on selected options

Obviously, the simple counters and visualizations can be refined and combined by
marketing or requirements experts in a provider organization. Providers who registe-
red more than one SmartObject can compare and use their respective feedback for
advanced analysis. ConTexter is an implementation of a framework for contextualized
feedback. Thus, providers can integrate the SmartObject statistics API into their inter-
nal evaluation systems by using the ConTexter framework. As presented in this paper,
all aspects are integrated and facilitate installation and operation of that framework in
a new application domain or software environment. After several feedbacks have
been received, the above statistics screen Fig. 8 is created from specified feedback
options and received feedbacks.

The components of the ConTexter framework offer the infrastructure for seamless
interaction around feedback. When a new application is set up, administrators (i.e.,
providers) must register and specify SmartObjects with feedback types etc. Immedi-
ately afterwards, feedback can be sent and received. Writing or compiling code is not
required.

8 Summary and Conclusions

Technical systems and software-controlled subsystems continue to interact more and
more. Once this interaction exceeds central control, IT ecosystems start to emerge and
evolve. The interaction of their subsystems is difficult to understand and may be im-
possible to anticipate.

204 K. Schneider et al.

Commercial software and service providers need to update and improve their sub-
systems if they want to stay competitive. Feedback from users and stakeholders is an
essential input to continuous improvement. Stakeholders perceive an IT ecosystem as
a smart environment and may not be able to distinguish all its parts. For the first time,
the new generation of customers and stakeholders have the technical prerequisites and
personal ability to recognize sub-optimal system behaviour – and to report it through
contextualized feedback. This is a new opportunity, and we present an approach of
seizing that opportunity.

Our approach consists of a technical framework, infrastructure, and concepts for
applying them in an improvement processes. We first describe the architecture and
framework in general. Then, we present the ConTexter implementation of that
framework. ConTexter framework and UniImprove application example demonstrate
that our concepts can be implemented with current technology. They establish a feed-
back and learning cycle for continuous improvement of IT ecosystem. We will con-
tinue exploring applications and extensions, such as the potential of ad-hoc video
clips attached to contextualized feedback.

There are numerous open research questions in this field. Many interesting ques-
tions were actually stimulated by the work presented in this paper: How many stake-
holders will provide feedback? Is it sufficient to lower effort, or do providers need to
grant incentives for good feedback? What is the optimal proximity heuristic for Smar-
tObjects? How should related SmartObjects be organized? Empowering semi-
automatic interpretation is another research area that we have only touched upon in
Section 7. We expect answers to vary significantly over different application areas
and implementation alternatives. For example, acceptance might depend on perceived
reaction and improvement time as much as on feedback mechanisms. The impact of
our approach will be influenced by the personality of users such as their affinitiy to
technology. Even the brand of supported Smartphones could have an influence. We
are currently developing an iPhone interface to be used in addition to Android Smart-
phones to study that effect.

By applying our approach, subsystems of IT ecosystems can be explored and con-
tinuously evaluated by affected stakeholders. For example, an airport or an entire city
could open that new feedback channel. Frameworks like ConTexter can support the
evolution of IT ecosystems. Both service providers and their users can benefit from
seamless feedback in context.

Acknowledgments. This work was inspired by our work in the NTH School for IT
Ecosystems. NTH (Niedersächsische Technische Hochschule) is supported by Leibniz
Universität Hannover, TU Braunschweig, and TU Clausthal.

References

1. Singer, L., Brill, O., Meyer, S., Schneider, K.: Leveraging Rule Deviations in IT Ecosys-
tems for Implicit Requirements Elicitation. In: Second International Workshop on Manag-
ing Requirements Knowledge (MaRK 2009) at RE 2009 (September 2009)

 Feedback in Context: Supporting the Evolution of IT-Ecosystems 205

2. Bosch, J.: Software Product Lines to Software Ecosystems. In: 13th International Software
Product Line Conference (SPLC 2009), San Francisco, CA, August 24-28 (2009)

3. Lentz, J.L., Bleizeffer, T.M.: IT Ecosystems: Evolved Complexity and Unintelligent De-
sign. In: CHIMIT 2007, Cambridge, MA, USA, March 30-31 (2007)

4. Karlsson, L., Dahlstedt, Å.G., Natt och Dag, J., Regnell, B., Persson, A.: Challenges in
Market-Driven Requirements Engineerng - an Industrial Interview Study. In: Proceedings
of Eighth International Workshop on Requirements Engineering: Foundation for Software
Quality, Essen, Germany (2002)

5. Schneider, K.: Anforderungsklärung mit Videoclips. In: Proceedings of Software Engi-
neering 2010, Paderborn, Germany (2010)

6. Davenport, T.G.P.: Knowledge Management Case Book - Best Practises. Publicis MCD,
John Wiley & Sons (2000)

7. Brill, O., Schneider, K., Knauss, E.: Videos vs. Use Cases: Can Videos Capture More Re-
quirements Under Time Pressure? In: Proceedings of REFSQ 2010, Essen, Germany
(2010)

8. Hughes, J., O’Brien, J., Rodden, T., Rouncefield, M., Sommerville, I.: Presenting ethnog-
raphy in the requirements process. In: Second IEEE International Symposium on Require-
ments Engineering, March 27-29, IEEE Computer Society, York (1995)

9. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: Proc.
Second IEEE International Symposium on Requirements Engineering, March 27-29,
pp. 140–147 (1995)

10. Creighton, O., Ott, M., Brügge, B.: Software Cinema: Video-based Requirements Engi-
neering. In: 14th IEEE Internat. Requirements Engineering Conference (2006)

11. Zachos, K., Maiden, N.: ART-SCENE: Enhancing Scenario Walkthroughs With Multi-
Media Scenarios. In: Proceedings of Requirements Engineering Conference (2004)

12. Zachos, K., Maiden, N., Tosar, A.: Rich-Media Scenarios for Discovering Requirements.
IEEE Software 22, 89–97 (2005)

13. Sitou, W., Spanfelner, B.: Towards Requirements Engineering for Context Adaptive Sys-
tems. In: COMPSAC 2007: Proceedings of the 31st Annual International Computer Soft-
ware and Applications Conference, Washington, DC, USA, pp. 593–600. IEEE Computer
Society, Los Alamitos (2007)

14. Dey, A., Abowd, G., Salber, D.: A Context-based Infrastructure for Smart Environments.
In: Proceedings of the 1st International Workshop on Managing Interactions in Smart En-
vironments (MANSE 1999), pp. 114–128 (1999)

15. Sutcliffe, A., Fickas, S., Sohlberg, M.M.: PC-RE: a method for personal and contextual re-
quirements engineering with some experience. Requirements Engineering 11(3), 157–173
(2006)

16. Fox, S., Karnawat, K., Mydland, M., Dumais, S., White, T.: Evaluating implicit measures
to improve web search. ACM Trans. Inf. Syst. 23(2), 147–168 (2005)

17. Dupret, G., Liao, C.: A model to estimate intrinsic document relevance from the click-
through logs of a web search engine. In: WSDM 2010: Proceedings of the third ACM in-
ternational conference on Web search and data mining, pp. 181–190. ACM, New York
(2010)

Comparing Agile Processes for Agent Oriented
Software Engineering

Alma M. Gómez-Rodŕıguez and Juan C. González-Moreno

D. de Informática (University of Vigo)
Ed. Politécnico, Campus As Lagoas,

Ourense E-32004, Spain,
{alma,jcmoreno}@uvigo.es
http://gwai.ei.uvigo.es/

Abstract. Multi-agent Systems are at the moment an important new
paradigm in software development. Several methodologies have been pro-
posed for developing systems within this approach. Besides new agile
process have been proposed to be used combined with the meta-models
of such methodologies. This paper studies how the use of one of those
Agent Oriented methodologies following an agile process such as Scrum
produces improvements in the time consumed in the development that
could shorten the learning time. This may have as outcome the possibility
of using smaller groups in development.

1 Introduction

Agents represent a powerful abstraction tool in software development. The in-
herent characteristics of agents: autonomy, reactivity, proactivity, etc. provide a
very good approach in the solution of distributed complex problems [1]. There-
fore, Agent-Oriented Computing has become in the last decade a new Software
Engineering paradigm [2]. The interest in software development with agents is
focused in multi-agent systems (MAS) [3], [4], [5] that is, a set of autonomous
agents which work cooperatively using high level communication languages and
protocols.

There are many applications implemented using agents, nevertheless agent
tools, methodologies and process have not yet a sufficient level of maturity for
being used under warranty in commercial software development [2]. Two issues
are essential if the agents are to be used in software industry: the availability
of tools or frameworks which simplify multi-agent systems implementation and
the use of suitable methodologies and development processes which guide the
engineer during the system construction. At the moment much work is being
carried out in all these fields. Many agent oriented methodologies have been
proposed and applied to MAS development with good results [6], [7], [8], [9],
[10], [11], [12], [13]. Some of these methodologies introduce a tool supporting the
development, such as IDK [14], Metameth [15], etc.

This work focusses on the importance of processes in software development.
So, we consider a software development process as a simple dependency graph

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 206–219, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Comparing Agile Processes for Agent Oriented Software Engineering 207

with three basic components: the process participants (roles or workers), the
consumed and generated products (work products) and the activities and tasks
achieved during the process, which constitute particular instances (work defi-
nitions) of the works that must be done. Methodology, in contrast, defines the
models to construct and the concepts and notation used in these models.

Among all the methodologies for Agent Oriented development, we have chosen
INGENIAS for the case study proposed. INGENIAS methodology covers analysis
and design of MAS, and it is intended for general use, with no restrictions on
application domain [16], [6], [17]. It has two supporting tools: the INGENIAS
Development Kit (IDK) and the INGENIAS Agent Framework (IAF) [17], [18].
The intended process of INGENIAS is Unified Development Process (UDP),
but some previous works [19], [20] have shown that methodology and process
can be considered independently. A previous work [19] has adapted INGENIAS
to follow agile processes, in particular Scrum. The adaptation has been done by
identifying common tasks in the different development processes and reordering
them to construct a new process.

New processes for INGENIAS have been defined theoretically in previous
works [19], [20]. So it is an important issue to When defining a process, it is
very important to prove the applicability in practice of these definitions. We
consider that a first step when approaching this verification is to apply the
process to a particular development and consider its suitability. Following this
idea, this paper focuses on the results obtained in the application of two different
development processes to a MAS. The aim of this paper is to compare this two
processes mainly in productivity. In this way, we try in this way to confirm the
suitability of both of them.

The structure of the remaining of the paper follows. Section 2 introduces the
methodology used in the development: INGENIAS while 3 details the process
defined for the development: Scrum for INGENIAS. Section 4 explains the ex-
periment done and show the results. Finally, Section 5 addresses the conclusions
and future work.

2 INGENIAS Methodology

The original purpose of INGENIAS was the definition of a specific methodology
for the development of Multi-agent Systems (MAS), by integrating results from
research in the area of agent technology and from traditional Software Engi-
neering Methodologies. Initially, the definition of the INGENIAS Methodology
was based on the well-established Rational Unified Process (RUP) in order to
define its lifecycle, and on the definition of a set of meta-models that describe
the elements needed to specify and develop a MAS. These meta-models describe
the system from five viewpoints: agent, interactions, organization, environment
and goals/tasks.

The integration of the INGENIAS MAS specification language with software
engineering practices is achieved by defining a set of activities that guide the
analysis and design phases, with the statement of the results that have to be

208 A.M. Gómez-Rodŕıguez and J.C. González-Moreno

produced by each activity. As in the rest of modern methodologies, the key
point in INGENIAS is its meta-model language. As stated before, INGENIAS
introduces five kinds of meta-models in order to define a MAS. The entities of
the meta-models could appear in different diagrams, but are unique regarding
the global system specification.

– Organization meta-model. It defines the global organization of the sys-
tem, where organization is the equivalent to MAS architecture. An organi-
zation has a structure and a functionality. The structure is similar to the
one stated in AALAADIN framework [21], and is defined attending to how
agents should be grouped. Functionality is determined by defining the goals
of the organization and the workflows it should execute.

– Environment meta-model. The environment model is composed of envi-
ronment diagrams. The environment is what surrounds the MAS and what
originates mainly agent perception and action. As a developer, one of the
first tasks is to identify system resources, applications, and agents. System
resources are represented using TAEMS [22] notation. Applications are wrap-
pers of whatever is not an agent or a resource, and could be understood in
INGENIAS as equivalent to objects in Object Orientation. Using these ele-
ments, a developer should be able to define how the MAS interact with the
systems surrounding.

– Tasks/Goals meta-model. It describes how the mental state of agents
change over the time, what is the result of executing a task over the agent
the mental state, how to achieve goals, and what happens when a goal cannot
be achieved.

– Agent meta-model. It defines the primitives to describe a single agent. It
can be used to define the capabilities of an agent or its mental state. The
mental state is an aggregate of mental entities that satisfy certain conditions.
The initial or intermediate mental state is expressed in terms of mental
entities such as those of AOP [23] and BDI [24].

– Interaction meta-model. These kind of diagrams show how two or more
agents interact. The interaction behavior is described using different lan-
guages, such as UML collaboration diagrams, GRASIA interaction diagrams,
or AUML protocol diagrams. An interaction has a purpose that has to be
shared or partially pursued by interaction participants. Usually, this purpose
is related with some organizational goal.

Recently in [25] the FAML meta-model has been proposed. Potentially, FAML
is a an interesting candidate for future standardization of engineering agent
modeling languages. FAML is composed by two layers: design-time and runtime,
and each layer has two scopes: an agent-external and an agent-internal. In [25],
INGENIAS meta-model (see Fig. 1) was considered by authors as one of the five
more extant current agent-oriented approaches.

Originally the development process proposed for INGENIAS was an adap-
tation of the Rational Unified Process according to the modification showed
in Table 1. Afterwards, in [26], [27] an agile version of INGENIAS based on

Comparing Agile Processes for Agent Oriented Software Engineering 209

Fig. 1. INGENIAS Metamodel

OpenUp was presented. From the evidence that an agile process could be used
with the INGENIAS metamodel language, a framework for deploying MAS over
the JADE platform [28] appears in a natural way, this was the IAF [18], [29].
Besides, based on the use of this framework a modification of the Scrum process
for INGENIAS was proposed in [19].

Section 3 introduces a more detailed explanation of how to use Scrum Process
for INGENIAS.

3 The Scrum Process for INGENIAS

A Scrum is a mechanism in the sport of rugby for getting an out-of-play ball
back into play. The term was adopted in 1987 to describe hyper-productive de-
velopment. Ken Schwaber formalized the process in the first published paper
on Scrum at OOPSLA 1995 [30]. As pointed in [31], Scrum is an empirical Ag-
ile project management framework which is used to iteratively deliver to the
customer software increments of high value. Scrum relies on self organizing, em-
powered teams to deliver the product increments. It also relies on a customer, the
Product Owner, to provide the development team with a list of desired features
using business value as the mechanism for prioritization. Scrum is a model for
management of the process of software development. It is not a methodology,
because it does not propose models or concepts to address, but a framework

210 A.M. Gómez-Rodŕıguez and J.C. González-Moreno

Table 1. Results to be obtained in each phase of the INGENIAS Process

PHASES

INCEPTION ELABORATION CONSTRUCTION

ANALYSIS To generate use cases
and identify actions
of these use cases
with the corresponding
Interaction Model

To outline the system
architecture with an
Organization Model

To generate Environ-
ment Models which re-
flects Requirement elic-
itation

To refine use cases

To generate Agent
Models that detail the
elements of the system
architecture

To continue with the
Organization Models,
identifying workflows
and tasks

To obtain Task and
Goal Models to high-
light control con-
straints (main goals,
goal decomposition)

To refine the Environ-
ment Model including
new elements

To study the remaining
use cases

DESIGN To generate a proto-
type using RAD tools
such as ZEUS or Agent-
Tool

To focus the Organiza-
tion Model on workflow

To refine Tasks and
Goal Models reflecting
the dependencies and
needs identified in
workflows and the rela-
tionships with system’s
goals

To show how tasks
are executed using
Interaction Models

To generate Agent
Models which show
required mental state
patterns

To generate new Agent
models or refining
existing ones

To study social rela-
tionships in order to re-
fine the organization

Comparing Agile Processes for Agent Oriented Software Engineering 211

Fig. 2. Scrum lifecycle

where different methodologies can fit. The Scrum process is particularly suit-
able for Knowledge Engineering Developments based on the use of Multi-Agent
Systems, because of the agile development and the user implication.

An initial view of Scrum process, as proposed by its authors in [31], can be
seen in Fig. 2.

Previous works [27] have determined that when trying to map a well estab-
lished methodology/process into a new process, it is necessary to define the steps
to be done. In [27] several steps that must be followed in the definition of a new
development process models for AOSE are defined, adopting SPEM [32] as model
specification. These steps are:

1. Identify the process model with an existent process model if possible, if not
define from zero the new one taking as basis the next steps.

2. Define the lifecycle view. Identify the phases, iterations and sequence of ap-
plication. This step is essentially a temporal step in which other resources
different from time are not considered.

3. Define the disciplines. Disciplines in SPEM determine process packages
which take part in the process activities, related with a common subject.
That is, disciplines represent a specialization of selected sub-activities, where
these new sub-activities can not appear in other packages or disciplines. In
this step, resources are the subject of the activities defined.

4. Define the guidance and suggestion view. The Guidances provide information
about certain model elements. Each Guidance is associated to a Guidance
Kind. This step is focused in exemplifying and documenting the activities
previously defined.

212 A.M. Gómez-Rodŕıguez and J.C. González-Moreno

The results of applying the previous steps to INGENIAS are shown in the next
subsections.

3.1 Identify the Process Model

The methodology provides several pre-defined examples of development. These
means that Multi-Agents Systems could be quickly constructed with INGENIAS
by reusing previous developments. Recently, the INGENIAS Agent Framework
(IAF) for JADE has been proposed and documented as a successful approach in
this context [18].

3.2 Defining Lifecycle View

In Scrum, each release is produced within a number of iterations from 2 to 4
weeks called Sprints (see Fig. 2). Sprint goal is defined by the product owner,
taking both priorities and team capabilities into consideration. At the end of each
Sprint, the team produces a product increment which is potentially releasable.
The evaluation of the product release drives to a backlog update before the next
sprint starts. All the work is done in two basic phases: the Preparation Phase
(before the first sprint) and the Sprint Phases (successive sprints leading to the
release).

Although, Scrum does not describe engineering activities required for product
development, INGENIAS-Scrum process must do it in order to adjust to IAF
recommendations. IAF allows combining the classic approach of coding applica-
tions with modern techniques of automatic code generation.

IAF requires the use of the INGENIAS Development Kit (IDK), that con-
tains a graphical editor for working with the specification model. Accordingly
to IDK, the Scrum definition for the Preparation Phase comprises the tasks:
Initiate Product Backlog, Plan Release and Preparation Tasks. The INGENIAS
Product Backlog contains the product requirements established using the IDK.
This process can be done by adapting a known model from a previous project
(i.e. IDK-IAF distribution comes with a complete cinema project which can be
used for other distributed e-commerce developments) or defining a completely
new product backlog with the editor. After this initial model is completed, in
the Preparation Tasks, the Scrum Master and the Product Owner establish the
Plan Release in which the needed Sprints are defined.

From the Scrum perspective and taking into account that IAF bases on the
automatic generation of code approach, the project team must be completely
involved in getting the release within the planned sprints. So, the INGENIAS
specification must be established with the IDK as the core of the development.
From this core, the different scripts and sources will be automatically produced.
Nevertheless, at the first stage, the generated code for the tasks may be incom-
plete and the programmer should add, if necessary, code in the tasks.

3.3 Define the Disciplines View

As previously pointed, in the INGENIAS-Scrum approach the disciplines are the
tasks required in each sprint, so the intended meaning of each task, according

Comparing Agile Processes for Agent Oriented Software Engineering 213

to IAF, must be explained. But first, the roles and products involved in the
development must be introduced [27]. The roles, in this case, are:Product Owner,
this role must be play by an active customer as in eXtreme Programming (XP);
Scrum Master, the coach and main of the development team; Scrum Team, this
is a collective role that must be played by any of the team members; Stakeholder,
anyone that does not directly participate on the project but can influence the
product being developed, that is, an interested party.

The products or artifacts involved in a Scrum development process are: Prod-
uct backlog, Sprint backlog and Product increment. The product backlog contains
the product requirements and has the purpose of listing all the functionalities to
implement from a customer perspective. The sprint backlog is the list of things
to do from the development team point of view. It could be understood as a fine-
grained planning on detailed tasks. At last, the product increment is a partial
product obtained at the end of each sprint, which can be deployed in the produc-
tion environment or simply made available to users. From the INGENIAS-Scrum
perspective those artifacts are referred to the INGENIAS model and JADE code
produced in each release. An INGENIAS model documented with the IDK can
accomplish a low o high level of detail. Also, in the description of each model
the Scrum Master can fix the work to be done in the next release, where release
can be identified with the package entity of the INGENIAS model.

3.4 Define Guidances View

Developing a system with code generation facilities requires some guidance. In
IAF documentation [18] several guidelines for development are proposed. In
multi-agent systems, we recommend specially the use of two kinds of guidance:
Technique and Guideline. The technique provides an algorithm to create a work
product. The guideline is a set of rules and recommendations about a work
product organization.

4 Case Study and Results

This section addresses the comparison of INGENIAS following the Scrum Pro-
cess using the IAF on the IDK and the RUP for INGENIAS using the full version
of the IDK tool. This comparison is based on the development of the same MAS
by different groups of students and in measuring during the development some
variables that can determine the productivity and performance of the processes
selected. As authors teach Software Engineering Courses at Computer Science
Faculty on the Vigo University, it was decided to use the students for this study.
The students were divided into groups of 4-6 people and were asked to develop
a complete agent oriented system. The groups were homogeneous in the number
of members, but defer among them in the knowledge of development processes,
in particular RUP. Three of the groups have a good knowledge of RUP, another
three have a superficial knowledge and the rest do not know anything of RUP.
None of the groups have notions about what was Scrum process of development.

214 A.M. Gómez-Rodŕıguez and J.C. González-Moreno

Moreover, people that conforms the teams do not know the INGENIAS method-
ology, neither its meta-modeling language. So the challenge for the teams was
twofold: to learn INGENIAS methodology and meta-model and to understand
Scrum process.

With this set of students, we plan an experiment, which tries to constitute a
first approach in the study of the influence of the development process selected
over productivity. Data of the experiment were collected along the Software
Engineering Course, while the students develop the system that was mandatory.
The requirements of the system to obtain are explained next.

4.1 Case Study Description

As stated before, all the groups were asked to develop the same agent-oriented
system. In particular, every team must develop a web site for managing software
development projects based on the Scrum Development Process. This selection
was made to increase the level of knowledge about Scrum in the groups in the
first steps and phases of the development. The portal must allow:

1. The Creation, Modification, Project Monitoring and Closure of a Software
Project that is being constructed using Scrum Process.

2. The Establishment of the teams and the assignation of the roles that each
member team will assume along the project. The system must also allow
changes in team composition or roles assignation. These changes may be
done dynamically during development.

3. The Management of each Project Sprint.
4. The Creation, Identification, Modification and Monitoring of every meeting

held during the Sprints.
5. The Storage, Retrieval and Collaborative modification of any work product

obtained along the development.

The different teams were asked to provide some intermediate deliverables along
the development, in order to have some control on their evolution with indepen-
dency of the process selected. The first deliverable demanded was a simulation
of the proposed solution to the portal modeled using Alice [33]. This first deliv-
erable had a double utility. In the one hand, it served as a control point in the
degree of knowledge of Scrum achieved by the teams. On the other, it was used as
the way of establishing the system functional requirements for each group. Obvi-
ously, if the prototype was wrong, the students had to modify it until considered
correct.

Besides, three more deliverables were established one of them each two
months. Excluding the first one described that must be finished one month after
the beginning.

These deliverables were used to measure the degree of functionality accom-
plished, according to the functionality proposed by each team in the prototype
provided.

Comparing Agile Processes for Agent Oriented Software Engineering 215

4.2 Experiment and Results

Several variables were taken into account in the study, as we considered that
they may influence the final productivity of the teams developing the system.

Each team is identified by a number (it appears in first column of Table 2).
This is just a way of having the possibility of referring to a particular team, if
needed.

The experience column expresses the background of each team regarding the
knowledge of RUP or any other development process. We consider that previous
knowledge of processes can influence in learning new ones. Nevertheless, as said
before, none of the groups have previous knowledge of Scrum.

The process column shows what kind of process was used by the team during
the development. The process that they have to follow was assigned randomly
by the teachers and independently from previous background of the teams.

The prototype column indicate the kind of solution chosen by each team.
Three are the possibilities in this column:

– Server-oriented solution. A server-oriented solution is a classic client-server
solution in which features are provided by a single central server to different
kind of users. Each user has its own privileges to operate in the web site.

– Service-oriented solution. A service-oriented solution describes the site as a
set of distributed services that may be requested concurrently by the user. It
is also possible in this kind of solution that certain services are automatically
offered to selected users that satisfy some condition.

– User-oriented solution. An user-oriented solution prioritizes a centralized and
sequential management of the development process. In this kind of solution
users interact with the system and decide when and which data should be
entered.

From a theoretical perspective, the more suitable solution from MAS point of
view is the second one, because a distributed net could be easier established
over an agent platform. Each service could be offered by a particular agent or
by a group of agents. Each agent could have their own goals, that have to be
satisfied by a set of tasks and that require some interaction with other agents.
So that, this drives to a collaboration or coordination on the tasks to satisfy
agent’s goals. The rest of solutions present some drawbacks in the deployment,
because the methodology is not so suitable for them. Nevertheless, all solutions
are still feasible to be adopted in a MAS approach, although some of them will
imply an extra cost of time.

The four latest columns measure the rate of functionality achieved for each
of the deliverables provided. As stated before, this rate is calculated referring to
those proposed by each team in their prototype and are ordered by their final
achievement.

Table 2 presents the results obtained from the case study.

216 A.M. Gómez-Rodŕıguez and J.C. González-Moreno

Table 2. Teams’ performing results

Team Experience Process Prototype 1st Del. 2nd Del. 3rd Del. Final

6 High Scrum Service Oriented 15% 30% 55% 85%
2 High Scrum Server Oriented 15% 25% 50% 80%
1 High RUP Service Oriented 20% 35% 50% 75%
5 Medium Scrum User Oriented 15% 25% 45% 75%
8 Low Scrum Service Oriented 15% 22% 45% 75%
3 Medium RUP Server Oriented 15% 30% 40% 70%
7 Low Scrum Server Oriented 15% 30% 50% 70%
4 Medium RUP Server Oriented 15% 25% 45% 65%
9 Low RUP User Oriented 10% 20% 40% 60%

4.3 Discussion

An initial analysis of the results tries to address productivity of the teams. We
consider that teams are more productive when they achieve a higher rate of
functionality for the same increment. This consideration could make sense as
far as all the teams have the same time available for delivering the increment.
The results show that the productivity on the teams using Scrum as process
was higher in average, even when taking into consideration the kind of solution
adopted. The study shows also that the learning time is shorter for members of
the development group that follow an Scrum processes, because the increments
in the rate of functionality are higher. This could allow the use of smaller groups
of development, due to the higher productivity.

A second issue to consider in results shows that the ratio of evolution in the
productivity is higher in the last deliverables for Scrum teams. This suggests, in
our opinion, that Scrum process is a better solution to manage the lifecycle for
INGENIAS methodology than the RUP originally proposed.

Other factor that can influence the results, is the previous knowledge or back-
ground of the teams. We do not have a quantitative measure of the background,
instead we consider a rough measure of it, idenfying three possible values: High,
Medium or Low. Nevertheless, in order to improve the study in the future a
quantitative measure will be incorporated. Moreover, although experience must
have an impact on productivity, we thought that the process has a more impor-
tant influence. This is justified by the fact that less experienced groups have a
better productivity using Scrum than more experienced groups using RUP.

The kind of solution chosen (column Prototype of Table 2) can also influence
productivity of teams. Nevertheless we consider that it is not so important,
because teams using ServerOriented Prototype have good productivity results.

As said in previous subsection, the selection of what process must follow
each group was assigned randomly by the teachers of Software Engineering.
Productivity may be affected if the choice were free. Other studies in the future
may address the changes in productivity when groups can choose the process to
follow. At present, this objective was not in the scope of the experiment.

Comparing Agile Processes for Agent Oriented Software Engineering 217

The results obtained have exceeded expectations. For instance, a medium ex-
perienced and a novice team got the same productivity results using Scrum than
one of the expert teams using the RUP. Moreover, the worst results were ob-
tained by a novice team and a medium experience team using the RUP approach.
These results could be interpreted as an evidence that the RUP approach needs
much more time to be learned and used with solvency.

However, some results not expected were found. First, one of the worst results
was gotten using RUP with a server oriented solution. Secondly, a good rate of
productivity was obtained by team with an user oriented solution using the
Scrum development Process.

Results obtained by team number five seem to be a surprise because the kind
of solution chosen is not the most suitable for the problem. This can be explained
by the fact that the team has dynamically chosen to apply a shorter cycle of
deliverables and to associate an agent to each kind of user. This has increased
the interaction between agents, and in fact, the architecture proposed by the
group represents each of the Scrum roles by an agent. This change has increased
the productivity of the final two deliverables.

5 Conclusions and Future Work

In previous sections the MAS methodology INGENIAS was presented jointly
with two different approaches for their process development. In order to compare
productivity and suitability of both a case study has been also presented. The
case study was solved by nine teams that have no knowledge about the Scrum
process, that was the object of the study. Teams have a different preparation on
Process Development: three are experts, three are novices, and the rest have an
average training. This selection was chosen in order to get a complete information
about the real productivity of the Scrum approach when compared with the
OpenUp approach.

Summarizing results, the conclusion is that the ratio of evolution in the pro-
ductivity is higher in the last deliverables for all the Scrum teams. At first glance,
at attending these results, Scrum process seems a better solution to manage the
lifecycle of the INGENIAS approach that the OpenUp one. Of course these re-
sults constitute an initial approach in the comparison of the processes (OpenUp
and SCRUM) for INGENIAS methodology.

This first approach suggest that SCRUM is better suited but more studies
have to be done. In particular, we consider that more data are needed, so that
we will go on with the experiment next years. Other studies will be also valuable,
such as fixing as object of the study the OpenUp approach to compare the results,
or doing the comparative with teams with the same level of capacitation on the
two development processes. Other possibility, considered as a future work, is to
have a new structure for teams (for instance, 4 or 6 people working by pairs as
suggested by XP). Besides, it is worth considering in the future other variables
that may influence the results such as the kind of system to construct, the size
of groups, etc.

218 A.M. Gómez-Rodŕıguez and J.C. González-Moreno

In any case the results obtained are very promising in order to experiment
with new agile process for AOSE development with INGENIAS.

Acknowledgement. This work has been supported by the project Novos en-
tornos colaborativos para o ensino supported by Xunta de Galicia with grant
08SIN009305PR.

References

1. Jennings, N.R., Wooldridge, M.: Agent-Oriented Software Engineering. In: Brad-
shaw, J. (ed.) Handbook of Agent Technology. AAAI/MIT Press (to appear, 2001)

2. Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: The State
of the Art. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 1–28. Springer, Heidelberg (2001)

3. DeLoach, S., Wood, M., Sparkman, C.: Multiagent Systems Engineering. Interna-
tional Journal of Software Engineering and Knowledge Engineering 11(3), 231–258
(2001)

4. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. Idea Group
Inc., USA (2005)

5. Ricordel, P.M.: Programmation Orientée Multi-Agents: Développement et
Déploiement de Systemes Multi-Agents Voyelles. PhD thesis, Institut National
Polytechnique De Grenoble (2001)

6. Pavón, J., Gómez-Sanz, J.: Agent Oriented Software Engineering with INGE-
NIAS. In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS
(LNAI), vol. 2691, pp. 394–403. Springer, Heidelberg (2003)

7. O’Malley, S.A., DeLoach, S.A.: Determining when to use an agent-oriented soft-
ware engineering pradigm. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.)
AOSE 2001. LNCS, vol. 2222, p. 188. Springer, Heidelberg (2002)

8. Cuesta, P., Gómez, A., González, J., Rodŕıguez, F.J.: The MESMA methodol-
ogy for agent-oriented software engineering. In: Proceedings of First Interna-
tional Workshop on Practical Applications of Agents and Multiagent Systems
(IWPAAMS 2002), pp. 87–98 (2002)

9. Bernon, C., Cossentino, M., Pavón, J.: Agent-oriented software engineering.
Knowl. Eng. Rev. 20(2), 99–116 (2005)

10. Mas, A.: Agentes Software y Sistemas Multi-Agentes. Pearson Prentice Hall, Lon-
don (2004)

11. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intel-
ligent Agents. In: Proceedings of the Third International Workshop on Agent
Oriented Software Engineering, at AAMAS (2002)

12. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: Agile PASSI: An Agile
Process for Designing Agents. International Journal of Computer Systems Science
& Engineering. Special issue on Software Engineering for Multi-Agent Systems
(May 2006)

13. Cossentino, M., Sabatucci, L.: Agent System Implementation. In: Agent-Based
Manufacturing and Control Systems: New Agile Manufacturing Solutions for
Achieving Peak Performance. CRC Press, Boca Raton (2004)

14. INGENIAS Development Kit, http://ingenias.sourceforge.net/
15. Cossentino, M., Sabatucci, L., Seidita, V., Gaglio, S.: An Agent Oriented Tool

for New Design Processes. In: Proceedings of the Fourth European Workshop on
Multi-Agent Systems (2006)

http://ingenias.sourceforge.net/

Comparing Agile Processes for Agent Oriented Software Engineering 219

16. Pavón, J., Gómez-Sanz, J.: Agent Oriented Software Engineering with INGE-
NIAS. In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS
(LNAI), vol. 2691, pp. 394–403. Springer, Heidelberg (2003)

17. Pavón, J., Gómez-Sanz, J.J., Fuentes-Fernández, R.: IX. In: The INGENIAS
Methodology and Tools, pp. 236–276. Idea Group Publishing, USA (2005)

18. Gómez-Sanz, J.: Ingenias Agent Framework. Development Guide V. 1.0. Technical
report, Universidad Complutense de Madrid (2008)

19. Garćıa-Magariño, I., Gómez-Rodŕıguez, A., Gómez-Sanz, J., González-Moreno,
J.C.: INGENIAS-SCRUM Development Process for Multi-Agent Development.
In: International Symposium on Distributed Computing and Artificial Intelligence
(DCAI 2008), Advances in Software Computing (2008)

20. Fuentes-Fernández, R., Garćıa-Magariño, I., Gómez-Rodŕıguez, A.M., González-
Moreno, J.C.: A technique fordefining agent-oriented engineering processes with
tool support. Engineering Applications of Artificial Intelligence 23(3), 432–444
(2010)

21. Ferber, J.: Multi-Agent Systems. Addison-Wesley, Reading (1999)
22. Wagner, T., Horling, B.: The struggle for reuse and domain independence: Re-

search with taems, dtc and jaf. In: Proceedings of the 2nd Workshop on Infras-
trucutre for Agents, MAS and Scalable MAS (2001)

23. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60, 51–92 (1993)
24. Kinny, D., Georgeff, M.: Modelling and design of multi-agent systems. In: Jen-

nings, N.R., Wooldridge, M.J., Müller, J.P. (eds.) ECAI-WS 1996. LNCS (LNAI),
vol. 1193, pp. 1–20. Springer, Heidelberg (1997)

25. Beydoun, G., Low, G.C., Henderson-Sellers, B., Mouratidis, H., Gómez-Sanz, J.J.,
Pavón, J., Gonzalez-Perez, C.: Faml: A generic metamodel for mas development.
IEEE Trans. Software Eng. 35(6), 841–863 (2009)

26. Garćıa-Magariño, I., Gómez-Rodŕıguez, A., González, J.C.: Modeling INGENIAS
development process using EMF. In: 6th International Workshop on Practical
Applications on Agents and Multi-agent Systems, IWPAAMS 2007, Salamanca
Spain, November 12-13, pp. 369–378 (2007) (in Spanish)

27. Garćıa-Magariño, I., Gómez-Rodŕıguez, A., González-Moreno, J.C.: Definition
of process models for agent-based development. In: Luck, M., Gomez-Sanz, J.J.
(eds.) AOSE 2009. LNCS, vol. 5386, pp. 60–73. Springer, Heidelberg (2009)

28. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - A Java Agent De-
velopment Framework. Multiagent Systems, Artificial Societies, and Simulated
Organizations 15(2), 125–147 (2005)

29. Garćıa-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model transfor-
mations for improving multi-agent systems development in ingenias. In: The 10th
International Workshop on Agent-Oriented Software Engineering, AOSE 2009,
Budapest, Hungary (with the annex), May 11 (2009)

30. Sutherland, J.: Business object design and implementation workshop. In: OOP-
SLA 1995: Addendum to the proceedings of the 10th annual conference on Object-
oriented programming systems, languages, and applications, pp. 170–175. ACM,
New York (1995)

31. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall
PTR, Upper Saddle River (2001)

32. OMG.: Software Process Engineering Metamodel Specification. Version 2.0,
formal/2008-04-01 (2008), http://www.omg.org/

33. Dann, W.P., Cooper, S., Pausch, R.: Learning To Program with Alice, 2/E. Pren-
tice Hall, Englewood Cliffs (2009)

http://www.omg.org/

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 220–233, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Standardizing the Software Tag in Japan for
Transparency of Development

Masateru Tsunoda1, Tomoko Matsumura1, Hajimu Iida1, Kozo Kubo2,
Shinji Kusumoto3, Katsuro Inoue3, and Ken-ichi Matsumoto1

1 Graduate School of Information Science, Nara Institute of Science and Technology,
8916-5 Takayama, Ikoma, Nara, Japan

{masate-t@is,tomoko-m@is,iida@itc,matumoto@is}naist.jp
2 Research Center for Advanced Science and Technology,

Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
kubo@rsc.naist.jp

3 Graduate School of Information Science, Osaka University,
1-5 Yamada-Oka, Suita-shi, Osaka, 565-0871 Japan
{kusumoto,inoue}@ist.osaka-u.ac.jp

Abstract. In this paper, we describe the Software Tag which makes software
development visible to software purchasers (users). A software tag is a partial
set of empirical data about a software development project shared between the
purchaser and developer. The purchaser uses the software tag to evaluate the
software project, allowing them to recognize the quality level of the processes
and products involved. With Japanese government support, we have success-
fully standardized the software tag named Software Tag Standard 1.0, and have
developed various associated tools for tag data collection and visualization. For
its initial evaluation, the software tag has been applied to several projects. This
paper also presents various activities aimed at promoting the use of the software
tag in Japan and the world.

Keywords: Information sharing, empirical data, project management, offshore
development.

1 Introduction

Software systems are becoming huge and complex, with our everyday life heavily de-
pendent on such software systems. One of the major concerns of software purchasers
(users) in Japan is the quality of the software systems. Japanese society generally de-
mands high-quality software systems with low fault rates and high operability levels.

On the other hand, many software purchasers in Japan are not knowledgeable
about the nature of software. It is reported that only 40% of Japanese major compa-
nies employ a full-time Chief Information Officer (CIO) and that only 20% of all
CIOs are confident of their knowledge about information technologies [10].

Without a sufficient understanding of software quality and software projects,
many companies try to purchase software systems from software developers (ven-
dors). This produces a very risky situation. For example, purchasers cannot specify

 Standardizing the Software Tag in Japan for Transparency of Development 221

system requirements very well, and they do not oversee the project properly. Such
situations often lead to project failures. It is reported that only 31.1% of software
projects are recognized as ‘successful projects’ in Japan [11]. To confront these
issues, there is strong demand to provide transparency of software projects to the
software purchaser and improve communications between purchaser and developer.

The Software Tag is a new scheme to provide information feedback about the project
from the developer to the purchaser. It establishes transparency of the software devel-
opment project by allowing purchasers to view and analyze the elements of the tag. It
also provides support for quantitative and qualitative communications between stake-
holders. The Software Traceability and Accountability for Global Software Engineering
(StagE) project [1] is a government-supported project that pursues standardization and
promotion of the software tag scheme. In this project, we have defined the detailed
structure of the software tag and developed various support tools. The software tag has
been applied to real projects of major Japanese organizations. Along with technical
development, we have also started various promotion activities, such as formal stan-
dardization of the software tag in both domestic and international standards, and explo-
ration of new trade laws for software using the software tag scheme.

An early concept of how software tags could be used for software maintenance was
shown in [5]. In this paper, we mainly explain use of the software tag for software
development, together with activities and outcomes from the StagE project. In
section 2, we describe an overview of the software tag scheme, and in section 3 ex-
plain the details of the software tag structure. In section 4, we describe activities of
the project. In section 5 we provide some discussion, while in section 6 we outline
conclusions and future research topics.

2 Overview of the Software Tag Scheme

A software tag is a packaged data set about a software project. It is currently com-
posed of 41 characteristic elements of project data and progress data, as defined in
section 3.1. Fig. 1 shows an overview of the software tag scheme.

1. A software purchaser orders development of a software system. The purchaser
includes both the final products and the software tag in their requirements.

2. During software development, various kinds of empirical data are created and
generated. For example, requirements documents, software design documents,
source code, test cases, issue tracking logs, manual documents, review logs, and
quality analysis records may be produced. These are collected and archived. Note
that we collect not only the final data at the end, but also interim snapshot data dur-
ing development.

3. The collected data is analyzed for process improvement of the development or-
ganization, as is the usual process improvement scheme for software development
organizations.

4. The collected data is used to construct the software tag. Parts of the empirical data
are selected and abstracted into the software tag format.

5. The software tag is delivered to the software purchaser periodically during the
development and/or finally at the end of the development together with the final

222 M. Tsunoda et al.

software product. The software purchaser evaluates the software development by
viewing and analyzing the tag, and accepts the delivered software product.

If a controversy such as a question about the quality of the product occurs between the
software purchaser and the developer, the delivered software tag and (if necessary)
the empirical data are analyzed, providing a basis for exploring a resolution to the
controversy.

The software tag is a key to improving transparency of software projects. By ex-
amining the software tag, the software purchaser can identify and understand the
development process, which has been mostly hidden from the purchaser. The pur-
chaser can evaluate the quality of the processes and products of the project.

For the software developer, the software tag is useful to prove that they have con-
ducted the proper activities in the software project. Also, it can be used to trace the
quality of the activities of sub-contractors and sub-sub-contractors... (such contracting
chains are very popular in Japan).

This scheme can be very useful for offshore and global development, because
transparency and traceability of software development can be established with a fairly
low overhead for the developers.

Standardizing the software tag will help to establish a minimum baseline for pro-
ject quality, and to improve negotiations over software development contracts.
Evaluation of software products and projects based on the objective empirical data
contained in the software tag will lead to more healthy use of software in society.

Fig. 1. Overview of Software Tag Scheme

3 Development of Software Tag Technologies

3.1 Software Tag Standard 1.0

We have defined the elements of the software tag as shown in Table 1, named Soft-
ware Tag Standard 1.0. It is composed of 41 tag elements, which are categorized into
project information and progress information. The project information depicts the

Software Purchaser

1. Purchase Order

5. Delivery

Software Developer

Software
Products

Empirical
data

2. Data
Collection

4. Tag
CompositionSoftware Tag

3. Process
Improvement

 Standardizing the Software Tag in Japan for Transparency of Development 223

overall sketch of the project with various basic pieces of information. The progress
information provides qualitative and quantitative indices of project achievement with
various measures of the development phases. The tag standard provides more precise
explanations and example metrics for each tag element which are not presented here.

We divided project information into five categories described below, and settled
tag elements for each category (see Table 1).

− basic information of the software project (Basic Information)
− information of the system developed by the project (System Information)
− information of development framework applied to the project (Development

Information)
− information of relationships between target project and other projects

(Project Organization)
− other information (Others)

To settle progress information, we referred to ISO/IEC 12207 Software Life Cycle
Processes and activities [7], and included process, quality and effort information de-
scribed below into it.

− information of requirements, design, programming and test for the software
(Requirements, Design, Programming, and Test)

− information of quality assurance activities on the project (Quality)
− information of development effort on the project (Development Cost)
− information of project plan and management on the project (Schedule and

Management)
− other information for the products attached to the software (Other Products)

It is not mandatory to use all 41 elements in the software tag in all cases. The pur-
chaser and the developer can negotiate and select elements to use. Also, they can
discuss and determine the details of the metrics. For example, #19, Scale of
Programming, might be agreed to be measured by lines of code without comments.
Based on the software tag standard, the purchaser and the developer should decide
followings before using the software tag.

− tag elements to be used
− metrics used for tag elements
− measurement targets of metrics (e.g. whole system, sub systems, or files)
− frequency of measurement
− timing of offering the software tag to the purchaser (e.g. every week, every month,

or the end of respective process)

In this standard, we have included various kinds of information that are considered
important to the purchasers. The overall structure should be simple for the purchaser
to understand, so we have tried to keep it as simple as possible. Also, we have tried to
keep in mind the balance of the tag elements. This standard does not include tag ele-
ments that are computable from other tag elements. There are a number of standards
and reports such as SWEBOK, CMMI, ISO/IEC 15939, and reports by the Software
Engineering Center in Japan (SEC) which can help interpret the tag elements.

224 M. Tsunoda et al.

Table 1. Software Tag Standard 1.0

Classification Category No. Tag Element Explanation
1 Project Name Unique name of project

2 Organization
Information of development
organization

3 Project Information
Information needed to identify
the project characteristics

Basic
Information

4 Customer
Information

Information identifying the
purchaser or owner

5 System Configuration
Information identifying system
configuration to label the type of
system

System
Information

6 System Scale Development system scale

7 Development
Approach

Development process type or
techniques

8 Organizational
Structure

Structure of development
organization

Development
Information

9 Project Duration
Information of development
length

10 Super-Project
Information

Name of super project which
creates this project Project

Organization
11 Sub-Project

Information
Name of sub projects which is
created by this project

Project
Information

Other 12 Special Notes
Other necessary or useful data
for interpreting or analyzing tag
data

13 User Hearing
Information

Information of user-requirements
hearing

14 Scale Amount of requirements
Requirements

15 Revisions Amount of changed requirement
16 Scale Amount of design products
17 Revisions Amount of changed design Design
18 Design Coverage by

Requirements
Implementation ratio of design
for requirements

19 Scale
Amount of programming
products

20 Revisions Amount of changed programs
Programming

21 Complexity Complexity of programs
22 Scale Amount of testing
23 Revisions Amount of changed test
24 Density Ratio of test to system size

Test

25 Progress Status Test progress to plan
26 Review Status Quantity information of review

Progress
Information

Quality
27 Review Density Ratio of review to system size

 Standardizing the Software Tag in Japan for Transparency of Development 225

The definition process was based on discussions with industry and academic col-
laborators such as:

Purchasers: Tokyo Stock Exchange, Japan Aerospace Exploration Agency, DENSO.
Developers: Fujitsu Lab, Hitachi, NEC, SHARP, SRA Key-Tech Lab, Toshiba, NTT
Data.
Others: Information Technology Promotion Agency, Ministry of Economy, Trade and
Industry, Japan (IPA), Nara Institute of Science and Technology, Osaka University.

Thorough the discussion, we recognized that appropriate metrics (tag elements) set
and calculation methods of them are different for organizations or projects. Therefore,
we made tag elements selective, and on the tag standard, calculation methods of cor-
responding metrics of tag elements were not included but examples of the metrics are
included.

To store, exchange and reuse the software tag, a standard data format is needed. So
we settled the draft of the standard software tag format which is based on XML for-
mat, and are making the tool which converts existing tools’ data into standard soft-
ware tag format data. Software tag support tools explained in the next section treats
software tag format data.

Table 1 (Continued)

Classification Category No. Tag Element Explanation

28 Review Effectiveness
Ration of found defects to
amount of review

29 Defect Count Number of defects found by test
30 Fixed Defect Count Number of fixed defects
31 Defect Density Ratio of defects to system size

32 Defect Detection Rate
Ratio of detected defects to
consumed test

Quality

33 Static Check Results Report of static checker

34 Overall Cost
Development and maintenance
cost Development

Cost
35 Productivity

Ratio of amount of products to
overall cost

36 Process Management
Information on management of
development process

37 Purchaser-Developer
Meeting Status

Amount of user-vendor
communication

38 Total Risk Item
Count

Number of risk items in the
development

Schedule and
Management

39 Risk Item Existence
Period

Time length between a risk item
creation and deletion

40 Scale
Amount of product metrics not
listed above

Progress
Information

Other Products
41 Revisions

Amount of change in products
not listed above

226 M. Tsunoda et al.

3.2 Support Tools

We are developing various support tools to promote the software tags scheme. In this
paper, we introduce three essential tool prototypes that have been created for plan-
ning, collection, and visualization of the software tag.

Software Tag Planning Tool (TagPlanner)
TagPlanner supports planning software tag data collection. With TagPlanner, users
such as project managers can fix tag data definition and its structure easily before
starting a software project. Each tag element is connected to a project’s task, and
users can browse structure of the tasks and details of tag elements by TagPlanner.
With TagPlanner, users can see how to collect tag elements. TagPlanner has a typical
example of project’s tasks and tag metrics, and which can be edited by uses.

Fig. 2 is a screenshot of TagPlanner. Details of functions of each pane are de-
scribed below.

Process pane: Using some process model, this pane exhibits standard process of an
organization. In the figure, the process is shown by WBS (work breakdown structure).
Task pane: This pane presents tasks selected at the process pane and metrics related
to the tasks. When a metric is clicked, measurement method and other information are
shown in the detail information pane.
Detail information pane: This pane shows how to measure and analysis a metric,
person in charge of measurement, and other information. Information on the pane is
updated by operating on the task pane or the tag element pane. Frequency of meas-
urement and metrics included in the software tag is settled on the pane.
Tag element pane: Tag elements are listed on the pane. Metrics used to compute tag
elements are also listed.

Fig. 2. TagPlanner Screenshot

Process pane

Tag element pane

Detail information

pane

Task pane

 Standardizing the Software Tag in Japan for Transparency of Development 227

The software tag data plan made by TagPlanner is saved as the standard software tag
format explained in section 3.1. Software tag plan made by TagPlanner is useful when
the purchaser and the developer agree to which tag elements are used. TagPlanner is
also useful as the guideline of tag data collection and tag elements selection by refer-
ring the typical example of project’s tasks and metrics for tag elements.

Software Tag Data Collection Tool (CollectTag)
CollectTag supports collection of empirical data from software projects and creation
of a software tag. CollectTag uses a wizard as a user interface, allowing the user (de-
veloper) to easily input the necessary data for the software tag. For each project, the
purchasers and developers determine the metrics for the tag elements. To provide
generality, we implemented CollectTag as a translator that converts a set of empirical
data provided by the developer into the standard software tag format. That is,
the developer periodically inputs values for each tag element, and then CollectTag
outputs a software tag.

First, a user selects a tag element, and settles a metric for the element. For exam-
ple, when [Programming]-[Scale] (#19) is selected, the user can select [Lines of code]
or [Function point] (Fig. 3).

Next, the user selects data input method (Fig. 4). To reduce the effort of data input,
CollectTag provides automatic data collection mechanisms for 11 of the tag elements
in the progress information, if the target project uses common software development
tools for configuration management and bug tracking. For example, LOC (#19: Scale)
and CK (#21: Complexity) metrics [3] can be automatically collected and calculated
from configuration management tools such as CVS or Subversion. When data is input
manually, empirical data should be related to the data.

Finally, CollectTag generates the software tag elements in standard software tag
format. This makes it easy to provide the output to other visualization and analysis
tools for further processing.

Fig. 3. Selecting a Metric (CollectTag)

Software Tag Visualization Tool (TagReplayer)
TagReplayer provides fundamental features for integrated visualization of various
historical data included in standard software tag format data. TagReplayer employs
the metaphor of video player manipulation for its user interface so that users can
replay the progress of the project just like watching video on TV. Users can also in-
stantly recall the details of any points along the timeline based on the software tag.
TagReplayer aligns progress information from the software tag as a series of events.

228 M. Tsunoda et al.

Fig. 4. Selecting an Input Method (CollectTag)

Fig. 5 is a screenshot of TagReplayer. Details of TagReplayer are explained below.

Time bar: The time bar indicates a point of time which TagReplayer replays a pro-
ject. By moving slider, replay goes to a certain point of time. Replay interval can be
changed, and stopping, fast forward or fast rewind of replay are also available.
Event list view: On the event list view, tag data is listed by time series. A user knows
events happened on a certain day from the view.

Fig. 5. TagReplayer Screenshot

Time bar

Event list view

Graph view

Member view

File view

Mail view

 Standardizing the Software Tag in Japan for Transparency of Development 229

Graph view: The graph view shows transition of lines of code (LOC) during a pro-
ject using line graph. Moreover, topics made from natural text mining and clustering
of mail archive are overlaid on the chart, and it helps understanding what was hap-
pened on the project.
Member view: The member view displays assigned tasks and completed task history
of each project member. A user also sees workload of each member from the view.
File view: The file view indicates completion rate of each file at time point of replay-
ing. The completion rate is computed using cumulative changed LOC at the end of the
project. Using the view, a user recognizes dilatory files.
Mail view: The mail view shows detail of topics shown in the graph view. The view
includes topics list, mail subject list, and a mail body.

Also, TagReplayer has the breakpoint function which stops replay if a certain condi-
tion is true, and the function which shows source code at time point of replaying.

To confirm effectiveness of TagReplayer, software development process in which
some students engaged was replayed to subjects who did not engaged in the project,
using TagReplayer. As a result, subjects recognized stagnant period and the reason
of stagnant. This experience shows that TagReplayer is very useful for postmortem
project reviews.

3.3 Applications of the Software Tag

We present here three example cases of application of the software tags scheme to
real software projects.

− A course registration system for a university with 26K LOC in Java was developed
for five months by a medium-sized software company in Japan. 32 elements of tag
data were collected, and we analyzed data to know the project status. Comparing
test density (#24) and defect density (#31) with the publicly available benchmark
values from the Software Engineering Center in Japan (SEC), they are lower than
the benchmark value. It means that using the software tag, the purchasers and de-
velopers see the probability of insufficient testing density. Also, we analyzed tran-
sition of total amount of source code (#19; programming scale), modified amount
of source code (#20; programming revisions), and static check results (#33). They
varied at a certain day during test phase, and from a commit comment on a SCM,
refactoring was done on the day. So, such tag elements are useful to know charac-
teristic event in the project.

− A medium-sized stock exchange system for a stock market was enhanced by a
Japanese major software development company for more than two years. Projects
data is offered from the company to us, and we made the software tags from it. We
speculated project status based on the analysis of them, and interviewed the com-
pany to confirm actual status of the projects. According to the results, we
concluded that comparing tag elements related to the requirements phase such as
requirements revisions (#15), number of defects about design (#29; defect count),
and number of review (#26; review status) between functions, the purchaser and
developer were able to identify problems with the requirements completeness
caused by frequent changes.

230 M. Tsunoda et al.

− A Japanese software development company ordered several small-sized projects
such as development of a project management support system from various off-
shore companies in China and Korea. Three finished projects data is offered from
the company to us. We analyzed it and interviewed the company to confirmed
actual status of the projects. As a result, we concluded that although remotely lo-
cated from each other, the purchasers and developers could understand the progress
of the specifications comparing tag elements such as the number of review (#26;
review status), the number of user hearing (#13; user hearing information), and
number of defects about design (#29; defect count) between functions.

4 Activities for Promotion and Diffusion

The StagE project is also actively promoting and diffusing the software tags scheme
in industry as follows.

International/Domestic Standardization
Interviews with several Japanese software purchasers and developers, along with
offshore software developers for Japanese companies in some countries, convinced us
that most software purchasers and developers would strongly demand that the soft-
ware tag and tools should be international and/or domestic technical standards in
software engineering. To support this, we are now serving ISO as a committee mem-
ber of the working group on process assessment, ISO/ITC JTC1/SC7/WG10. We are
also working with some software tool developers to construct a de facto standard
software project management system that includes the tag support tools mentioned in
Sec. 3.2.

International Collaboration
Offshore software development is one of the most useful application areas of the
software tag scheme. To encourage and accelerate international collaboration to
have various kinds of case studies and experiments of the software tag in offshore
software development, we established Asia-Pacific Software Engineering Research
Network (APSERN) in 2008 with software engineering researchers in NICTA
(National ICT Australia), ISCAS (The Institute of Software, Chinese Academy of
Sciences), and so on.

Professional Discussion of Legal Issues
In the case of a legal dispute between software purchasers and developers, the soft-
ware tag can clarify their liabilities and has the potential to help resolve such legal
issues in software development. The StagE project has a committee examining the
legal issues of software development. Members of this committee include lawyers,
patent attorneys, and software engineers. The committee has interviewed many soft-
ware developers in Japan and China to compile data about troubles between software
purchasers and developers. It also distributed questionnaires to more than a hundred
software developers in Japan to analyze the trends of such troubles. The software tag
provides an opportunity for collaboration between software engineering and software
trade law.

 Standardizing the Software Tag in Japan for Transparency of Development 231

5 Discussion

Discussions about the software tag scheme are described below.

− There are metrics repositories aimed at improving and benchmarking development
organizations [6], along with some software measurement paradigms [2], [4], [8],
[9]. Also, there are projects which involve some companies and are now coping
with establishment of software quality [12] [13]. However, the software tag pro-
vides a unique approach to involve software purchasers in the quality improvement
framework by providing development transparency. As far as we know, there is no
similar approach presented in the technical literature.

− We believe that the benefits of the software tag scheme for software purchasers
will be substantial because the development processes and the developed products
become more visible and understandable. However, purchasers will need to col-
laborate more closely with developers, providing effort and enthusiasm to create
successful projects.

− We have presented the first standard of the software tag with 41 elements. In some
sense, these are very basic data for indicating development quality, and they may
be insufficient to perform detailed analysis. However, as a standard used for vari-
ous software development projects, the set should be minimal and low cost. As
presented in Sec. 3.1 and 3.2, our tag standard 1.0 is a lightweight set with low col-
lection and assembly cost. It is important to continue practical applications of the
software tag, and to get feedback for further improvement of the standard.

− Some developers disclose information whose role is similar to the software tag
with the progress report meeting. The progress report meeting and software tag
bring similar effects. Metrics used in the activity may be similar to tag elements, so
tag elements are considered to be not uncommon. Still the software tag is effective
to propagate such a good practice involved the purchaser.

− The role of the software tag is similar to the medical checkup and financial state-
ments. On the medical checkup, many bodily data are collected and evaluated, and
the results are shown to the person to see his/her health condition. Financial state-
ments which are used for settlement of accounts indicate amount and flow of
capital by various money amounts. They are disclosed investors and business part-
ners to exhibit soundness of the company. In the similar way, the software tag dis-
closes various project and product metrics to the purchaser to signify soundness of
process and products.

− Although there may be the risk of tampering software tag data, it is difficult to
tamper several tag elements with keeping consistency through some versions of
software tags. On the other hand, it is not difficult to rebuild the software tag from
stored source data. Hence, tampering software tag data would not get along. It may
be a good way that a third party stores source data of the software tag, and verify
correctness of the software tag when conflict occurs. Also, the third party may ana-
lyze data to guarantee independence of the evaluation and reliability of the results.

− Software tag standard 1.0 does not include concrete metrics. However, it would be
not easy to settle metrics for many tag elements from scratch. A catalog of typical
metrics set for software tag elements should be made to support planning software
tag in the future. The catalog will be organized by the purpose, and explain how to

232 M. Tsunoda et al.

collect and analyze tag elements. The catalog will be browsed on TagPlanner
(see Sec. 3.2). With analyze methods and benchmarks on the catalogue, purchasers
csn confirm validity of evaluation of software tags to some extent.

6 Conclusions

We have introduced our activities for standardization of the software tag in Japan.
The software tag contains software development data, and it brings purchasers trans-
parency of software development. We identified 41 items for seeing software process
and products, and defined them as the standard tag element set. To support software
tag scheme, we made tools for planning, collecting, and analyzing tag data. From
three example cases of application of the software tags scheme, it is expected that the
software tag scheme is useful to find problems of requirement analysis or to grasp
progress of offshore software development.

Through these activities, the concept of the software tag is becoming well under-
stood in Japan. From discussion with purchasers and developers, we think that their
interest toward development data sharing gets higher than before, and they seem to be
realizing how to use the software tag in detail. It appears that for purchasers and de-
velopers who have software development management skill, the software tag scheme
has small disadvantage but has possibility of big advantage.

Our future work will focus on making international/domestic standards of the soft-
ware tag. With such standardization, the software tag is expected to be used in various
software industries, where we think it will strongly promote participation and under-
standing of software development by purchasers. Also, to reduce adaptation cost of
the software tag, we will delivery software tag support tools and the software tag
guidebook which explains how to use the software tag. That would accelerate
incorporating the software tag scheme in the industrial practices. Moreover, we will
make a template of the contract document, considering software tag and legal issues
of software development.

Acknowledgments

This work is being conducted as a part of the StagE project, The Development of
Next-Generation IT Infrastructure, supported by the Ministry of Education, Culture,
Sports, Science and Technology. We are grateful to the members of the StagE project,
especially to Michael Barker, Akito Monden, Makoto Matsushita, and Shuji Morisaki.

References

1. Barker, M., Matsumoto, M., Inoue, K.: Putting a TAG on Software: Purchaser-Centered
Software Engineering. In: Ramachandran, M., Carvalho, R.A. (eds.) Handbook of Re-
search on Software Engineering and Productivity Technologies: Implications of Globaliza-
tion, pp. 38–48. Information Science Reference, Hershey (2009)

2. Basili, V.R., Rombach, H.D.: The TAME Project: Towards Improvement-Oriented Soft-
ware Environments. IEEE Trans. Software Eng. 14(6), 758–773 (1988)

 Standardizing the Software Tag in Japan for Transparency of Development 233

3. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE Trans.
Software Eng. 20(6), 476–493 (1994)

4. Chirinos, L., Losavio, F., Bøegh, J.: Characterizing a data model for software measure-
ment. Journal of Systems and Software 74(2), 207–226 (2005)

5. Inoue, K.: Software Tag for Traceability and Transparency of Maintenance. In: Proceed-
ings of 24th IEEE International Conference on Software Maintenance, ICSM 2008,
pp. 476–477 (2008)

6. International Software Benchmarking Standards Group (ISBSG): ISBSG Estimating:
Benchmarking and research suite (2004)

7. ISO/IEC 12207: Systems and software engineering - Software life cycle processes. Inter-
national Organization for Standardization (2008)

8. ISO/IEC 15939: Software engineering - Software measurement process framework. Inter-
national Organization for Standardization (2002)

9. Kitchenham, B.A., Hughes, R.T., Linkman, S.G.: Modeling Software Measurement Data.
IEEE Trans. Software Eng. 27(9), 788–804 (2001)

10. Nikkei Business Publications, Inc.: Survey Report on IT Investment and CTO in Japan.
Nikkei Information Strategy (March 2008) (in Japanese)

11. Nikkei Business Publications, Inc.: Second Survey of Japanese Software Projects. Nikkei
Computer, December 1, pp. 36–53 (2008) (in Japanese)

12. The Consortium for IT Software Quality: CISQ – The Global Standard for IT Software
Quality, http://www.it-cisq.org/

13. The Quamoco Consortium: Quamoco – The Benchmark for Software Quality,
 https://quamoco.in.tum.de/wordpress/?lang=en

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 234–247, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Discovering Software Process and Product Quality
Criteria in Software as a Service

Maiara Heil Cancian1, Jean Carlo Rossa Hauck2,
Christiane Gresse von Wangenheim3, and Ricardo José Rabelo1

1 Department of Automation and Systems - Federal University of Santa Catarina - Brazil
2 Graduate Program in Knowledge Engineering and Management,

Federal University of Santa Catarina - Brazil
3 Graduate Program in Computer Science (PPGCC),

Federal University of Santa Catarina - Brazil
maiara@das.ufsc.br, {jeanhauck,gresse}@gmail.com,

rabelo@das.ufsc.br

Abstract. SaaS (Software as a Service) has become one of the fastest-growing in-
novative fields of the IT sector. Yet, as any other software intensive organizations,
SaaS providers also need to deliver the service quality they offer. And, although,
today exist a multitude of software quality models, so far, a specific adaptation
does not exist to the SaaS context. Therefore, we present the results of our re-
search on discovering software process and product quality criteria in the SaaS
scenario. We adopted a research methodology, including, domain analysis, stake-
holders interviews and literature review to elicit quality criteria and a survey to
validate and prioritize the identified criteria. Such a set of identified quality crite-
ria may help service clients to select providers as well as serve as a basis for a
mapping relevant software process areas and best practices in order to adapt exist-
ing capability/maturity models and standards to this specific domain.

Keywords: Software process quality, software product quality, SaaS - Software
as a Service.

1 Introduction

The Service Oriented Architecture (SOA) paradigm has introduced a new outlook on
system design and integration, where all system features are treated as independent
and self-contained software services. There are many technologies to implement SOA
solutions and web services are currently the most used [1], [2]. Following this trend,
business models that employ this paradigm have been widely adopted, like in the case
of Software as a Service (SaaS). SaaS is an availability model for software services
offered to clients through the Internet that are accessed on demand and paid per use
[3]. Among the advantages we can highlight that software solutions can be more rap-
idly composed, avoiding high investments on infrastructure and IT administration. So,
the provider (organization that delivers a service) offers the service through the Inter-
net and creates a Service License Agreements (SLA) [4]. In this model, clients seek

 Discovering Software Process and Product Quality Criteria in Software as a Service 235

and select services that, when invoked, will be used by their local applications, no
matter, if it is isolated or integrated into a Business Process Management (BPM) envi-
ronment. As such, clients need to assure that the quality of the evocable services is
reliable [5]. On the other hand, in order to be competitive within the market and to
provide quality services that meet the SLA established with the clients, SaaS provid-
ers must deliver the service quality they offer. And, as any other kind of software in-
tensive organization today, organizations that provide SaaS solutions also need to
improve the maturity of their software process as a whole.

Yet, the remaining question is: what are exactly software process and product qual-
ity criteria to be considered in the SaaS scenario. In general, quality is defined as the
satisfaction of a product or a service to specific customer needs [6]; perception and
satisfaction of the market needs, use adequacy and/or process results homogeneity
[7]; and/or alignment to the product requirements [8]. Considering software develop-
ment, in general, there is a large number of models and standards related to software
quality, such as, ISO 9126 [9], as well as software process maturity/capability models
and standards, including, CMMI [10] or ISO/IEC 15504 [11] and ISO/IEC 12207
[12]. Yet, considering that those models and standards are intended to provide a ge-
neric support for a large range of software organizations, they typically need to be
customized to a specific domain or sector to adequately support the specific needs of
this environment [13]. In fact, we can observe a current trend to the customization of
process capability/maturity models and standards for various domains, such as,
OOSPICE [14] for component-based development, S4S [15] for space applications
and CMCM [16] for the medical device industry. And, although, there are a great va-
riety of such customizations is being performed, so far, there is not one directed spe-
cifically on the SaaS scenario. The existing models focus on traditional acquisition
business models. Recently new models have attempted to cope with SOA require-
ments or services, but not with SaaS in particular. Quality and trustworthiness in
loosely coupled computational systems – which is the case of SaaS – have received
great attention in the last recent years [17]. Actually, there is neither a largely adopted
definition for it nor for the best way to manage it [18].

In this regard, we can observe that also the SaaS scenario, which combines clients’
needs and providers’ support, a number of specific requirements meed to be consid-
ered in order to assure the necessary global reliability and trustworthiness. But, so far,
there does not yet is a customized model indicating important software process and
product quality criteria for SaaS [19]. The existence of such a customized process
reference model indicating a set of best practices specifically relevant within the SaaS
scenario could optimize software process improvement investments and improve the
quality of the provided services.

In this context, we describe in this paper a first step regarding the customization of
existing quality and process capability/maturity models by systematically discovering
relevant software product and process quality criteria in the SaaS scenario. In the sec-
ond section of this paper, we describe related work, followed by section 3, where our
research methodology is presented. Results of this work are stepwise described in
section 4 to 7 and the conclusions are presented in section 8.

236 M.H. Cancian et al.

2 Related Work

Today there is a large variety of software quality and process maturity/capability
models [13], [20]. Among then, there is the standard ISO/IEC 25000 (SQuaRE -
Software Product Quality Requirements and Evaluation) [21], which establishes a
view of software product quality criteria by the definition of quality requirements
and evaluation. On the other hand, there is a multitude of process capabil-
ity/maturity models, including, the CMMI framework, ISO/IEC 15504, ISO/IEC
12207, which define a set of best practices for software process improvement and
assessment. And, although those models provide a generic set of best practices ap-
plicable on a large scope of software processes, they are not specifically adapted to
the SaaS scenario.

Recently, reference models focused on services have received increased attention,
such as, the constellation CMMI for Services (CMMI-SVC) [22] or ITIL [23]. Yet,
these models refer to services in a broader sense than considered in the SaaS scenario.
For example, the CMMI for services constellation covers the activities required to
establish, deliver, and manage services, which are defined as intangible, non-storable
products. And early users of CMMI-SVC have used the model for services as varied
as training, logistics, lawn care, etc. In contrast, within the SaaS context, the concept
of a service is defined as a component of SOA. Therefore, those models also are not
specifically adapted to the SaaS business model.

On the other hand, we can observe a general trend to develop domain-specific ref-
erence models, adapting and customizing those generic reference models. Based on
the results of a systematic literature review [24], we can observe that there exist more
than 50 domain-specific reference models today, covering a large range of domains,
such as, automotive software [25], space software [26], component based software
development [14], among others. Yet, so far there is not a specific reference model for
the SaaS scenario.

3 Research Methodology

In this context, our long term research goal is the development of a customized soft-
ware process capability/maturity model for the SaaS scenario. In this context, we ob-
serve that currently there is not a systematic methodology on how to perform such an
adaptation for a specific domain [24] and most of the current customizations have
been done in an ad hoc manner. Exceptions are the works done by [27], [28], which
describe the adaptation process in detail.

Thus, based on the approach presented by [27], we firstly identify software process
and product quality criteria, which will then in a future research step be used as a ba-
sis to identify relevant process areas and best practices required to satisfy those qual-
ity criteria.

In this paper, we describe the first step of our research, the identification of soft-
ware process and product quality criteria.

 Discovering Software Process and Product Quality Criteria in Software as a Service 237

Fig. 1. Research Methodology

In order to identify the software process and product quality criteria we performed
the following steps (Figure 1):

Domain Analysis: in order to characterize the specific context of the SaaS scenario
and to identify relevant characteristics as well as to identify relevant stakeholders.
This step has been done based on literature review. Within this step, we also identi-
fied a set of quality criteria for the SaaS scenario described in literature.

Elicitation of Quality Criteria: in order to elicit relevant software process and prod-
uct quality criteria for services and processes to be considered or demanded from
SaaS service providers. Therefore, we conducted interviews with a small group of
experienced professionals involved in the use, development and provision of software
services. The interviews were planned, executed and analyzed resulting in a list of
relevant quality criteria. As result, a set of quality criteria was identified.

Validation and Prioritization of Quality Criteria: in order to review the quality
criteria obtained in the previous step and to prioritize them by their importance in the
SaaS scenario. Therefore, we mapped and completed the quality criteria obtained in
the previous step to quality criteria identified in literature. In a second step, we per-
formed a survey by consulting a greater number of stakeholder representatives and
experts, who reviewed (and, if necessary, included new criteria) as well as prioritized
the criteria according to their relevance within the SaaS business model.

Based on the results obtained in these steps, we are planning as a future research
step the mapping of the identified quality criteria to relevant software process areas
and practices by adapting software process capability/maturity models (CMMI and

238 M.H. Cancian et al.

ISO/IEC 15504) following the methodology presented in [27] in order to specify rele-
vant process profiles within the SaaS scenario.

4 Domain Analysis

SaaS is a software solution offered as a service, which is developed using SOA [29].
The solution is accessed through the internet, saving the implementation and mainte-
nance of a TI infra-structure by the client as the complete structure demanded to de-
velop, process and maintain remains stored at the provider [30]. The client keeps the
rights on their data and the software usage. At no point, s/he needs to authorize or buy
the software as if it was a product [31]. Those aspects are well known in the Cloud
Computing world [32].

Using SaaS, the client assembles their software service portfolio in accordance
with their necessity. It can be easily altered, featuring new service or excluding some
service hired previously. This is possible, because the release is detached and on-line.

This scenario comes with many benefits. From the client’s perspective, they pay
only for real usage. Additionally, there is the possibility to use the service for some
time, and in case s/he finds the service unsatisfactory, terminate the contract, consid-
ering the fact that, in the SaaS scenario, the clients do not own a software license. On
the provider’s perspective, they can assist the needs of the client more precisely. Fig-
ure 2 shows a hypothetical example of a client provider relation in the SaaS model. In
this example, the provider provides five services and the client assembles her portfo-
lio with three services.

Fig. 2. Overview on the SaaS scenario

What rules a bureaucratic negotiation (referring to usage, execution and service
access) between the client and the provider is an Service Level Agreement
(SLA) [33].

 Discovering Software Process and Product Quality Criteria in Software as a Service 239

5 Elicitation of Quality Criteria

Based on the domain analysis, we conducted a series of interviews in order to elicit
relevant software process and product quality criteria in the SaaS scenario. As a result
of the domain analysis, we identified various relevant stakeholders (Figure 3).

Fig. 3. Stakeholder categories in the SaaS scenario

Based on the domain analysis, structured interviews were planned, including
mainly open-ended questions. The goal of these interviews was to identify software
product and process quality criteria in the SaaS scenario. To achieve this goal, the
following questions were posed:

• General information about the interviewee (experience, work place, etc.);
• Differences between the traditional scenario and SaaS, problems the inter-

viewees observed and their expectations;
• Quality needs when selecting/ providing services in the SaaS scenario.

In total, we performed 6 individual interviews during August/September 2008 with
representatives of each of the stakeholder categories. The interviewee’s categories
are:

• Interviewee 1: service researcher;
• Interviewee 2: independent service developer;
• Interviewee 3: service client;
• Interviewee 4: service developer;
• Interviewee 5 and 6: SaaS provider.

In average, the interviews lasted about 90 minutes.
As a result of the interviews, we analyzed and synthesized the collected informa-

tion by attributing a formal description to each of the elicited criteria and by unifying
items with the same meaning into a unified list of relevant software process and prod-
uct quality criteria (Table 1).

240 M.H. Cancian et al.

Table 1. Quality criteria elicited through the interviews

This set of quality criteria represents just the first step for the elicitation of SaaS

quality criteria, and is being validated and prioritized in the next step.

 Discovering Software Process and Product Quality Criteria in Software as a Service 241

6 Validation and Prioritization of Quality Criteria

The objective of this step was to validate and prioritize the quality criteria obtained in
the previous step. Therefore, we first compared and completed the obtained quality
criteria based on quality criteria identified in literature.

Due to the fact, that, currently there do not yet exist quality models specifically for
the SaaS scenario, we amplified the scope of related literature, analyzing quality crite-
ria related to the context of web services, which are strongly related to the SaaS sce-
nario. In this regard, a main contribution is the work by Sabata [34] and Mani et al
[35]. As a result, the following quality criteria (Table 2) have been identified based on
a literature analysis and considered adequate also within the SaaS scenario.

Table 2. Quality criteria based on literature analysis

CRITERIA DESCRIPTION SOURCE

Accessibility Refers to the extent in which a service really provides a service,
because a service can be available, but not accessible.

[35], [36], [37]

Integrity Refers to the behavior of a service executing a transaction.
After finishing a transaction, the state of information must be
free of inconsistencies.

[36], [38], [39]

Performance Refers to the throughput (number of requisitions per time unit)
and latency (time between sending the requisition and receiv-
ing the answer).

[35], [39], [40]

Reliability Refers to the availability and reliability of IT resources. [35], [38], [41]

Robustness Refers to the extent to which a service keeps working even in
the presence of inconsistent or incomplete data.

[36], [37]

Scalability Refers to the capability of processing more requisitions in a
time interval without compromising the service.

[36], [41]

Based on this completed set of quality criteria, we performed a survey in order to

validate and prioritize the criteria. In order to do so, we prepared a questionnaire listing
and describing the elicited quality criteria and requesting the respondents to prioritize
each one on a 4-point ordinal scale ranging from essential to unnecessary. Respondents
also could include new criteria or make comments. In addition, we also collected demo-
graphic information on the background of the respondents. The survey has been made
available online using the tool LimeSurvey (http://www.limesurvey.org).

With the objective to involve a larger sample in the survey, we selected stakeholder
representatives from various countries by inviting:

• Research groups and individuals, who have been working on software
services and are known by the authors through international research pro-
jects, mailing lists and special interested groups;

• Authors of related scientific papers of conferences and journals concern-
ing software services;

• A search for relevant professionals based on their resumes posted in the
Internet.

242 M.H. Cancian et al.

We run the survey in 2008 inviting a group of 280 professionals. The survey was
available for 60 days and in total we received 84 responses, representing a response
rate of 30%. For the analysis of the collected information, we excluded 2 completed
questionnaires, as they had been completed by people without sufficient experience
regarding the SaaS scenario. The obtained information has been analyzed considering
the following objectives:

1. Completeness: in general the respondents confirmed the identified quality cri-
teria. Only two new criteria were indicated (Governance and Reputation) and
incorporated into the set of qualities criteria (yet, as these criteria were in-
cluded only during the survey they were not considered for the prioritization).

Fig. 4. Priorization results

 Discovering Software Process and Product Quality Criteria in Software as a Service 243

2. Prioritization: in order to visualize an order of importance based on the classifi-
cation of each of the criteria by the respondents, we calculated the rating by at-
tributing weights to the classification (4-essential to 1- unnecessary) and then
added up the weighted responses of all respondents per criteria. Figure 4 illus-
trates the results of the prioritization by indicating in the column Total the total
weighted sum of each of the criteria.

In general, we can observe that basically all criteria identified in the previous steps
were considered relevant within the SaaS context. An exception is the criteria “proc-
ess quality certification” of the provider, which has been excluded from the set of
relevant criteria due to its low prioritization, indicating the unimportance of the item.
The requirements which are marked as “Complementation” were suggested by the
survey participants and were considered relevant for this scenario.

7 Results: Quality Criteria for SaaS

Summarizing the results from our research, we obtained a set of relevant quality crite-
ria in the SaaS scenario. The resulting criteria have been classified in:

• Product-related quality criteria: criteria related to the provided product and/or service.
• Process-related quality criteria: criteria related to the software process adopted for

the development, operation and maintenance of the provided software prod-
uct/service.

• Organization-related quality criteria: criteria related to the organization providing
software products/services within the SaaS business model.

Table 3, 4 and 5 list the identified quality criteria.

Table 3. Product related quality criteria

Criteria Description
Accessibility Refers to the extent in which a service really provides a service, as a service can

be available, but not accessible.
Reliability Refers to the extent of the availability and reliability of IT services or resources
Performance Refers to the throughput (number of requisitions per time unit) and latency

(time between sending the requisition and receiving the answer).
Availability Refers to the availability of the service for immediate use.
Scalability Refers to the capability of processing more requisitions in a time interval

without compromising the service.
Security Refers to the protection of a dataset, in the sense of preserving their value for a

person or organization as an attribute of confidentiality, integrity and
availability, security of computational systems, electronic information and data.

Integrity Refers to the behavior of a service executing a transaction. After finishing a
transaction, the state of information must be free of inconsistencies

Interoperability Refers to the capability of communicating as transparently as possible to other
systems.

Robustness Refers to the extent to which a service keeps working even in the presence of
inconsistent or incomplete data.

244 M.H. Cancian et al.

Table 4. Process related quality criteria

Criteria Description

Acquisition Refers to the acquisition process from the point of view of the customer.
Change control Refers to the change control process in order to minimize the impact of

changes.
Quality control Refers to the quality control process in order to ensure that the process of

the provided service meets the specified requirements.
Version control Refers to the version control process to establish and keep the integrity of

versions.
Requirements dev.
and management

Refers to the requirements development and management process to ensure
that the service meets specifications.

Maintenance Refers to the maintenance process in order to perform changes in software
according to requests.

Process Improve-
ment

Refers to the process improvement process focusing on the improvement of
software process capability.

Help desk Refers to the support process focusing on the way customers will be assisted
when using the service.

Testing Refers to the test process in order to verify and validate that the service
corresponds to the defined requirements.

Table 5. Organization related quality criteria

Criteria Description
Infrastructure capability Refers to the extent to which the available infrastructure is adequate

and sufficient.
Technically competent
employees

Refers to the extent to which employees have sufficient and adequate
technical competencies.

Prevision of continuity of
service

Refers to extent to which an organization is able to provide the
continuation of technical resources and IT systems / services

Technically competent in
business

Refers to the extent to which employees have sufficient and adequate
business competencies.

Utilization of standards Refers to the extent to which services can be accessed and visualized
by any person or technology, independently of hardware/software
platforms.

Governance Refers to factors that show how a company is directed, administered
or controlled.

Reputation Refers to the conceptualization of the provider in the
community/market (image).

7.1 Discussion

With this research, we made a first step into the direction of identifying a set of soft-
ware process and product quality criteria relevant within the SaaS business model.
Yet, it is important to consider some limitations of the validity of the results of the
research. A question in this context is the representativeness of the obtained results.
Within the first step, the elicitation of the quality criteria, we performed only a small
number of interviews (6) with representatives of different viewpoints on the SaaS
scenario. As a result, this may limit the generaly of the results. Yet, in order to in-
crease the validity, we performed in a second step a validation and prioritization of

 Discovering Software Process and Product Quality Criteria in Software as a Service 245

the obtained results in form of a survey involving a total of 84 participants. Regarding
the survey, on the other hand, the response rate of about 30% of the 280 invited par-
ticipants may be a limitation. Although, this represents an acceptable response rate,
the derived results may not comprehensively represent the knowledge of experts in
this domain and therefore may restrict the external validity of the results.

Another question, may be the level of expertise of the participants, as the SaaS sce-
nario is still very recent and the participants experiences may vary largely, affecting the
validity of their responses. This is further complicated by the fact, that as SaaS is an
emergent area, there is not a solid theoretical foundation yet. This may also have af-
fected the construct validity of the results due to a lack of well-understood terminology
in this domain and thus causing misunderstandings by the participants. As much as pos-
sible, descriptions and explanations were provided to sustain the questions.

8 Conclusions

In this paper, we identify a set of software process and product quality criteria rele-
vant within the SaaS business model. Within this context, this may contribute to in-
crease its acceptance in a larger scale by helping service clients to evaluate and select
service providers. Such a set of quality criteria may be a useful instrument to help
services companies to create new sustainable models as well as help to a larger adop-
tion of SaaS models. Especially, when considering the current paradigm shift from
local computing systems to several pervasive-based systems running under SaaS
model, the demand on service quality tends to become even greater.

In addition, such a set of software process and product quality criteria also creates
a basis for the customization of a software process capability/maturity model pointing
out relevant best practices specifically within the SaaS domain, guiding software
process assessment and improvement. Therefore, one of our next steps is to map the
identified quality criteria to software process areas and best practices adapting and
evolving existing software process capability/maturity models and standards (such as,
ISO/IEC 15504-5/ISO/IEC 12207 and CMMI).

Acknowledgements

This work was supported by the CNPq (Conselho Nacional de Desenvolvimento
Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior), both entities of the Brazilian government focused on scientific and
technological development.

References

1. Singh, M.P., Huhns, M.N.: Service-Oriented Computing Semantics, Processes, Agents.
John Wiley & Sons, Ltd., Chichester (2004)

2. Tsai, W.T.: Service-oriented system engineering: a new paradigm. In: IEEE International
Workshop on Service-Oriented System Engineering, SOSE 2005, Beijing, China, pp. 3–6
(2005)

246 M.H. Cancian et al.

3. Eliadis, H., Rand, A.: Setting Expectations In Saas: The Importance of the Service Level
Agreement to Saas Providers and Consumers. In: SIIA Software as a Service Working
Group Software & Information Industry Association (2007)

4. Arenas, A., Wilson, M.: Contracts as Trust Substitutes in Collaborative Business. Com-
puter 41(7), 80–83 (2008)

5. Kourtesis, D., et al.: Discovery and Selection of Certified Web Services Through Registry-
Based Testing and Verification. In: Pervasive Collaborative Networks, pp. 473–482 (2008)

6. Juran, J.M.: Juran Planejamento para a qualidade, Pioneira, São Paulo, p. 394 (1990)
7. Ishikawa, K.: TQC, Total Quality Control: Estratégia e Administração da qualidade. IMC

Internacional sistemas educativos São Paulo (1986)
8. Crosby, P.B.: Qualidade falada a sério. Mc Graw - Hill do Brasil São Paulo (1990)
9. ISO/IEC, International Organization for Standardization (ISO) / International Electrotech-

nical Commission (IEC). Standart 9126: Software engineering - Product quality (2004)
10. Team, C.P.: CMMI for Development (CMMI-DEV), in Technical Report CMU/SEI-2006-

TR-008, V. 1.2, Editor Carnegie Mellon University / Software Engineering Institute: Pitts-
burgh (2006)

11. ISO/IEC, International Organization for Standardization and International Electrotechnical
Commission, ISO/IEC 15504-5: Information Technology - Process Assessment, in Part 5:
An exemplar Process Assessment Model, Genebra (2006)

12. ISO/IEC, International Organization for Standardization and International Electrotechnical
Commission, ISO/IEC 12207: Standart for Information Technology. IEEE, New York (1998)

13. Paulk, M.C.: Surviving the Quagmire of Process Models, Integrated Models, and Stan-
dards. In: Annual Quality Congress Proceedings, Toronto, Ontario, Canada, pp. 429–438.
Carnegie Mellon University, Pittsburgh (2004)

14. Henderson-Sellers, B.B., Rout, J., Patrick, T.: Creating the OOSPICE model architecture,
A case of reuse. In: SPICE 2002: the thired international confernce on software process
improvement and capability determination (2002)

15. Automation, S.E.a. OOSPICE (2008), http://www.oospice.com/ (10/06/2008)
16. Caffery, F.M., Coleman, G.: Developing a configuration management capability model for

the medical device industry. International Journal of Information Systems and Change
Management 2(2), 139–154 (2007)

17. Terzis, S.: Trust Management. Guest Editor’s Intoduction - The many faces of trust (2009),
http://www.computer.org/portal/web/computingnow/archive/
april2009

18. Bhargava, B., et al.: The pudding of trust intelligent systems. IEEE Intelligent Systems,
74–88 (2004)

19. Wangenheim, C.G.v., et al.: Systematic Literature Review of Software Process Capabil-
ity/Maturity Models. In: SPICE 2010 Conference, Pisa/Italy (2010)

20. Sarah, A.S.: Evolution of the Framework’s Quagmire. Computer Management, 96–98 (2001)
21. ISO/IEC, International Organization for Standardization and International Electrotechnical

Commission, ISO/IEC 25000: Software Engineering - Software Product Quality Require-
ments and Evaluation (SQuaRE) (2004)

22. Team, C.P.: CMMI for Services (CMMI-SVC) in Technical Report CMU/SEI- PA 15213-
3890. Carnegie Mellon University / Software Engineering Institute, Pittsburgh (2008)

23. Taylor, S.: ITIL Service Management Practices - V3 Qualification scheme. Editor, p. 31
(2007),

 http://www.itil-officialsite.com/Qualifications/Examiners/
 SharonTaylor.asp

 Discovering Software Process and Product Quality Criteria in Software as a Service 247

24. Wangenheim, C.G.v.: How domain-specific process reference models and standarts are
developed. In: Working Paper, LAPIX/INE/CTC/UFSC, Editor Florianópolis, Brazil
(2010)

25. SIG, A.: Automotive SPICE - Process Assessment Model. In: The procurement Forum
(2007)

26. Cass, A., et al.: SPICE for SPACE trials, risk analysis, and process improvement. In:
Software Process: Improvement and Practice (2004)

27. Richardson, I.: SPI Models: What Characteristics are Required for Small Software Devel-
opment Companies. Software Quality Journal, 101–114 (2002)

28. Beecham, S., Hall, T., Rainer, A.: Defining a Requirements Process Improvement Model.
Software Quality Journal 13(3), 247–279 (2005)

29. Ma, D.: The Business Model of Software-As-A-Service. In: IEEE International Confer-
ence on Services Computing, SCC 2007, Salt Lake City, Utah, USA, pp. 701–702 (2007)

30. Lin, G., Dasmalchi, G., Zhu, J.: Cloud Computing and IT as a Service: Opportunities and
Challenges. In: IEEE International Conference on Web Services, ICWS 2008, Beijing,
China, p. 5 (2008)

31. Kaufman, L.M.: Data Security in the World of Cloud Computing. IEEE Security & Pri-
vacy 7(4), 61–64 (2009)

32. Menasce, D.A.: QoS issues in Web services. IEEE Internet Computing 6, 72–75 (2002)
33. Cancian, M.H., Rabelo, R.J., Wangenheim, C.G.v.: Uma proposta para elaboração de Con-

trato de Nível de Serviço para Software-as-a-Service (SaaS). In: Proceedings of the 8th In-
ternational Information and Telecommunication Technologies Symposium, I2TS 2009
(2009)

34. Sabata, B., et al.: Taxonomy for QoS Specifications. In: Proceedings of the Third Interna-
tional Workshop on Object-Oriented Real-Time Dependable Systems, Washington. EUA
(1997)

35. Mani, A., Nagarajan, A.: Understanding Quality of Service for Web Services (2002),
 http://www.ibm.com/developerworks/library/wsquality.html
(10/07/2008)

36. Hosamani, M., Narayanappa, H., Rajan, H.: How to Trust a Web Service Monitor De-
ployed in an Untrusted Environment? In: Third International Conference on Next Genera-
tion Web Services Practices, NWeSP 2007, pp. 79–84 (2007)

37. Hongqi, L., Zhuang, W.: Research on Distributed Architecture Based on SOA. In: Interna-
tional Conference on Communication Software and Networks, ICCSN 2009, pp. 670–674
(2009)

38. Azuma, M.: Applying ISO/IEC 9126-1 Quality Model to Quality Requirements Engineer-
ing on Critical Software. In: Security Standards (2004)

39. Juric, M.B., et al.: Web Services and Java Middleware Functional and Performance Analy-
sis for SOA. In: Digital EcoSystems and Technologies Conference, DEST 2007, Inaugural
IEEE-IES, pp. 217–222 (2007)

40. Momm, C., Gebhart, M., Abeck, S.: A Model-Driven Approach for Monitoring Business
Performance in Web Service Compositions. In: Fourth International Conference on Inter-
net and Web Applications and Services, ICIW 2009, pp. 343–350 (2009)

41. Lee, K., et al.: QoS for Web Services: Requirements and Possible Approaches. W3C
Working Group Note 25 (November 2003)

A Maturity Model for IT Dependability in
Emergency Management

Kim Weyns, Martin Höst, and Yeni Li Helgesson

Department of Computer Science, Lund University
P.O. Box 118, SE-211 00 Lund, Sweden

{kim.weyns,martin.host,yeni.li_helgesson}@cs.lth.se

Abstract. In many organisations a gap exists between IT management
and emergency managemement. This paper illustrates how process im-
provement based on a maturity model can be used to help organisations
to evaluate and improve the way they include IT dependability informa-
tion in their emergency management. This paper presents the IDEM3
(IT Dependability in Emergency Management Maturity Model) process
improvement framework which focuses especially on the cooperation be-
tween IT personnel, emergency managers, and users, to proactively pre-
vent IT dependability problems when the IT systems are most critical in
emergency situations. This paper describes the details of the framework,
how the framework was developed and its relation to other maturity
models in related fields.

Keywords: Dependability, Emergency Management, Maturity Model,
IT Management.

1 Introduction

In recent years governmental actors have come to depend more on IT systems
for all their everyday tasks. For communication, they depend on landline tele-
phone networks, mobile phone networks, web servers, email servers, etc. Other
important systems are used for patient administration in health care and social
care, school administration or city planning.

Just as for their everyday tasks, governmental actors now depend on all kinds
of IT systems for their responsibilities in crisis situations [1]. These systems
include not only specially built systems for emergency situations but also the
everyday systems described above. The latter category of systems is of special
interest, because under normal conditions an occasional unavailability of these IT
systems is fully acceptable, but in emergency situations, when time is a critical
factor, any unexpected unavailability can have disastrous consequences [2], [3].

Therefore it is important that these IT systems are an integral part of all
major risk and vulnerability analyses conducted. This way information about
the dependability of the different IT systems can be combined with information
about how critical the systems are in different situations [4]. IT dependability
management for organisations with a critical role in emergency situations is a

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 248–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Maturity Model for IT Dependability in Emergency Management 249

complex process of managing software in terms of IT systems. The occurrence of
a number of critical IT incidents in the recent past shows that there is room for
improvement. Earlier research [5] has shown that there is a particular need for
improvements with respect to the communication between emergency managers
and IT-management. This is a complex problem for which no quick solutions
exist that fit all organisations. Instead, organisational improvements in this area
must be based on the organisation’s current situation and its goals for the future,
that is through a process improvement approach.

This paper presents a maturity model for the coordination of emergency man-
agement and IT dependability management. The main focus of the framework is
on the cooperation between emergency managers and IT personnel. The purpose
of this maturity model is to help organisations to identify, evaluate and improve
their IT dependability processes.

2 Background

The maturity model presented in this paper is based on the result of a series of
case studies on how governmental organisations deal with IT dependability issues
in emergency management [3], [5]. The main conclusion from these studies was
that many organisations today experience problems and frustrations concerning
IT dependability in emergency management. The main cause of many of these
problems could be traced back to communication and cooperation problems be-
tween the personnel in different roles involved. Further these studies also pointed
out a lack of useful tools that support IT dependability improvements across a
whole organisation. This maturity model is meant to offer a process improvement
model that is simple and general enough to be applicable to many organisations
and at the same time effective enough to make a substantial difference in an
organisation’s IT dependability practices.

3 Related Work

In the field of IT management a number of international standards and best
practice frameworks have been published, among those ITIL [6], COBIT [7] and
ISO/IEC 27002 [8]. These frameworks are more suited to be used by large corpo-
rations with very large IT resources and are less suited for smaller organisations
and often do not take into account the special requirements for organisations
with an operative role in crisis relief. Of these frameworks, COBIT is struc-
tured as a maturity model. Frühwirth [9] has discussed the mismatch of software
dependability management and industry standards today.

The maturity model presented in this paper is based on a number of matu-
rity models from related fields. The first successful maturity models were de-
veloped by the Carnegie Mellon Software Engineering Institute [10]. Since the
development of the Capability Maturity Model, maturity models have been ap-
plied in many other fields. The problems between emergency management and
IT management are related to some of the problems in software requirements

250 K. Weyns, M. Höst, and Y. Li Helgesson

management and therefore the process improvement methods that have been
successfully applied in software engineering can also benefit IT management.

In 2008, SEI published a preliminary version of the CERT Resiliency Engi-
neering Framework [11] for the use in the field of business continuity management
with a special focus on IT systems. In the field of IT management, Luftman [12]
presents a simplified maturity model with a strong focus on the business value
of IT systems. In the field of safety management, maturity models have also
been proposed as a way of assessing an organisation’s safety culture [2], or prod-
uct design safety [13]. Section 8 focuses especially on how each of these maturity
models relate to the maturity model presented in this paper. The maturity model
presented in this paper does not try to replace any of these maturity models or
to cover any of these related fields completely. From each related field, this ma-
turity model contains only those attributes that are specifically important for
the dependability of IT systems in emergency management.

Recently, Santos et al. [1] have published a maturity model for the use of infor-
mation technologies in emergency response organisations. Their model does not
cover the dependability of the IT systems in emergency situations, but instead
focuses on information management practices. The IDEM3 maturity model de-
scribed in this paper is most suited for an organisation where the IT services are
provided by an IT department that is part of the organisation. For evaluating
the resiliency of IT services provided by external suppliers, Bhamidipaty et al.
have developed the Resiliency Maturity Index [14], a framework for character-
izing and evaluating the resiliency of an IT services organization. However this
model does not evaluate the relationship between the resiliency of the service
supplier and the dependability requirements of the organisation.

4 Methodology

To support organisations that want to evaluate and improve their IT depend-
ability practice, this paper presents the IDEM3 (IT Dependability in Emergency
Management Maturity Model) process improvement framework.

The research that resulted in the IDEM3 maturity model was conducted in
a number of steps: the identification of the attributes, followed by mapping the
different levels of each of the attributes to the five levels of the maturity model,
then an off-line validation and currently the maturity model is being evaluated
in a practical setting. This process is presented in Figure 1.

First, the case studies [5] that describe the need for this kind of maturity
model also resulted in a list of factors that are important for the coordination of
IT dependability management and emergency management. These key factors
formed the first basis for the attributes of the maturity model.

Secondly, the factors were mapped to the general architecture of a maturity
model with five levels as found in other maturity models such as CMMI [15]. For
the model to be applicable by small organisations, it was necessary to simplify
the structure by replacing the concept of ’key process areas’ by the more modest
’attributes’ found in the model.

A Maturity Model for IT Dependability in Emergency Management 251

Fig. 1. Development process of the maturity model. Dotted lines indicate ongoing
activities.

In this mapping the attributes were also compared and complemented with
similar attributes found in maturity models from related fields, as described in
more detail in Section 8. Before the model was applied in a practical setting,
the model was validated with the help of experts and practitioners in the field.
Finally, the model is currently being evaluated through the application of the
model in a series of large case studies. The validation and the first results from
the evaluation are further discussed in Section 9.

5 Process Improvement with IDEM3

This section shortly explains how IDEM3 can be used as part of an organised
process improvement effort. First, the model can be used to assess the current
maturity of the organisation in dealing with IT dependability in emergency man-
agement. For this assessment the current practices in the organisation should be
matched with the attributes described in Section 6. The recommended way to
do this is to select some of the most critical systems, preferably systems that
are quite different in nature and together are representative for the critical IT
systems in the organisation. For each of these systems, personnel with different
roles should be interviewed individually based on a detailed questionnaire, where
they are each asked to describe how they are currently experiencing each of the
attributes of the maturity model. The involvement of personnel from different
parts of the organisation is an essential part of this maturity model to make sure
that IT dependability is not only evaluated from a technical point of view. The
interviews should at least include users of each of the systems, system managers,
safety managers in the domain where the systems are used and of course IT
personnel.

The responses from all these interviews should be analysed in detail by the
process manager overseeing the assessment with special attention for differences
between the answers of different respondents and between the different systems.
The analysis of the interviews should then be the basis for a focus group meet-
ing where the organisation can be assessed on the maturity scale for each of the

252 K. Weyns, M. Höst, and Y. Li Helgesson

different attributes presented in the maturity grid shown in Table 1. The 22 at-
tributes are ordered in such a way that attributes are most strongly correlated to
those attributes just above and below. Therefore the maturity of an organisation
in these 22 attributes can be presented in a spider web diagram, offering a clear
representation of the organisation’s strengths and weaknesses.

Finally, after this assessment, the organisation can decide whether the mea-
sured level of maturity is sufficient for the organisation. Not all organisations
need to aim for the highest maturity level, mostly depending on how critical the
role of the organisation is. The process improvement needed to reach a higher
level of maturity is a long term project and should be organised as such. This
means that a realistic time plan with explicit long and short term goals should
be agreed upon. For the long term planning, it is important to realise that after
each step from one maturity level to the next, some time is needed to make
sure all procedures are well incorporated in the organisation and to make sure
improvements are not too easily lost again. An improvement of more than one
maturity level per year is probably unrealistic. Organisations should not try to
skip certain levels or to implement a new level too quickly after the previous one
since each level builds on the achievements of the previous level being well un-
derstood. For the short term planning, the organisation can focus most of all on
those attribute for which they received the lowest maturity score. The organisa-
tion as a whole should focus on achieving a stable IT dependability management
at this new maturity level. The actual improvements can be implemented with
the help of those project management mechanisms that are most suited for the
organisation in question. While implementing these planned improvements, it
is important that regular critical self-assessments are held to evaluate the or-
ganisation’s progress and to make sure the selected improvements are correctly
implemented and are not easily lost again. A single assessment based on the
IDEM3 maturity model can also be done separately from any planned process
improvement based on the 5 maturity levels. An organisation can conduct a one-
time assessment of its IT dependability based on this maturity model to identify
its current strengths and weaknesses in this field. The results of this assessment
will then form an excellent basis for a discussion on how to involve all stakehold-
ers to improve the organisation’s IT dependability in emergency management.
Unlike with some other maturity models, IDEM3 assessment is not meant to
be used as a basis for certification or for direct, objective comparison between
different organisations.

6 Maturity Levels

Just like most other maturity models discussed in Section 3, the IDEM3 model
has five maturity levels. The levels have similar names as in these other maturity
models, and the basic idea behind each of the levels are also comparable. The
Initial level is the most basic level, representing an organisation where some
critical IT systems have not been analysed from a dependability point of view
and nobody takes responsibility for initiating a more strategic discussion about

A Maturity Model for IT Dependability in Emergency Management 253

IT dependability. The second, Managed, level is characterised by an organisation
where the dependability of all critical IT systems is managed on a system-by-
system basis leaving the organisation very dependent on the competence of the
system managers for every system.

The third level is referred to as the Established level. This means that the
organisation has established a centrally coordinated approach for dealing with
IT dependability. This will usually be established by appointing one central IT
dependability manager who distributes standard procedures for dependability
analysis to all system managers. A standardised approach is a prerequisite for
being able to implement future improvements across the whole organisation.
A level 3 organisation also has clearly defined roles and responsibilities con-
cerning IT dependability. The fourth level, called Quantitatively Managed, is
similar to level 3, but also requires that the centrally coordinated approach is
supported by extensive quantitative data collection. Regular measurements and
testing with special usage scenarios in mind can make IT dependability statisti-
cally predictable and allow for strategic improvements in IT dependability. The
Continually Improving level, which is the fifth and final level of the maturity
model, is reached by an organisation that can use the feedback obtained from
the practices from level 4 to continually improve not only their IT systems, but
also their own IT management procedures. IT systems will then be naturally in-
cluded in risk and vulnerability analyses and their dependability will be regularly
re-evaluated.

To define the levels in more detail the levels can be compared on 22 attributes.
Of course all these attributes are in some way related and none of them can be
changed completely independent of the others. Nevertheless they each add their
own focus to the maturity model and stress a special aspect of an organisation’s
maturity.

The 22 attributes can be divided in 4 categories: Outcomes, IT management,
Cooperation and Organisational Issues. A detailed summary of these attributes
can be found in Table 1 and the attributes in each category are also described
in the following subsections. The attributes are ordered in such a way that those
attributes that are most strongly related are placed next to each other.

6.1 Outcomes

The first category of attributes is different from the three other categories in
that it contains those attributes that can not directly be influenced by an or-
ganisation, but only indirectly. These attributes should mainly be considered as
the consequence of an organisation’s maturity, while the other categories are the
causes of the maturity level. At the same time the outcome attributes are also the
most important because the main goal of this maturity model is improving the
outcomes of the IT dependability. This category also contains those attributes
that are the most visible to stakeholders outside of the organisation.

254 K. Weyns, M. Höst, and Y. Li Helgesson

T
a
b
le

1
.
O

ve
rv

ie
w

of
th

e
22

at
tr

ib
ut

es
of

th
e

m
at

ur
it
y

m
od

el
ac

ro
ss

th
e

5
m

at
ur

it
y

le
ve

ls

A Maturity Model for IT Dependability in Emergency Management 255

The outcomes category contains 9 attributes: Actions taken, Problems that
can be identified, Basis for improvements, Nature of improvements, Successes,
Success factor, Role of IT in emergency situations, Attitude towards dependabil-
ity problems and IT dependability.

These 9 attributes together describe the dependability experienced by an or-
ganisation at each maturity level, and how the organisation deals with these
results.

A level 1 organisation will typically experience many problems with IT de-
pendability and will focus most of its effort on trying to fix the problems as they
appear. Because of the lack of an organized approach, some problems will not
get solved and implemented changes can cause problems for other parts of the
organisation. This will lead to a lot of frustrations, and although many of the
minor problems will not come as a surprise, a serious failure in a critical system
during an emergency situation can still do a lot of damage.

An organisation at level 2 will employ a system-by-system approach towards
IT dependability allowing it to respond effectively to most of the problems and
even to prevent some problems that only affect one system. Lessons learned from
problems they experience will often lead to improvements in the affected system
only as there is no centralised approach to IT dependability. This method of
working leads to a higher dependability than in level 1, but places a large amount
of responsibility on each system manager and much will depend on his skill and
experience in dealing with the risks of IT dependability problems.

An organisation at level 3, on the other hand, uses a basic centralised approach
towards IT dependability. The same basic techniques for risk and vulnerability
analysis are applied to all systems and many dependability problems can sys-
tematically be prevented. Because of the coordination between different systems,
also problems with interdependencies can be detected and dealt with. The main
success factor from level 3 on will be the quality of the centrally coordinated
dependability measures being used across the whole organisation. This will also
make it easier for the organisation to efficiently share important resources such
as backup facilities and emergency power supplies between all critical systems.

A level 4 organisation will supplement the basic centralised approach from
level 3 with a large-scale systematic data collection and analysis concerning
IT dependability. This will make IT dependability more predictable. The data
collection will make it possible to measure improvements and their effects and
to prioritise the usage of IT dependability resources. A level 4 organisation will
also have an improved cooperation between all involved stakeholders which is an
important factor for the IT dependability.

Finally a level 5 organisation will continuously work on evaluating and im-
proving its IT dependability. The safety culture in an organisation at level 5 will
even make it possible to regularly identify possibilities for improvement in their
risk analysis procedures. At level 5, IT dependability is generally working very
well and the level of success that can be achieved depends mostly on whether
a continuous improvement effort can be sustained throughout the organisation.
This makes that IT systems will not only be a source of risks or problems in
emergency situations but also a valuable asset that can be depended upon.

256 K. Weyns, M. Höst, and Y. Li Helgesson

6.2 IT Management

The second category of attributes collects those attributes that are directly re-
lated to IT management. Unlike some other maturity models, this maturity
model does not seek to cover the complete field of IT management, but focuses
exclusively on those aspects that are most important for IT dependability in
emergency management. This category contains the following 4 attributes: Re-
sults of IT incident management, IT incident management, IT dependability
management and Dependability requirements. A level 1 organisation lacks or-
ganised IT incident management, and the dependability requirements of most
systems will typically never have been analysed. At level 2 incident management
is handled for each system separately and for many systems there will be no
explicit link to risk analysis or emergency management. A level 3 organisation
is expected to have a centralised IT incident management system allowing infor-
mation sharing between different parts of the organisation. Further centralised
guidelines for IT dependability management will require the main dependabil-
ity requirements for each system to be explicitly documented and available to
all stakeholders. From level 4, IT incidents can be analysed in detail and can
lead not only to direct improvement in all systems but also to improvements of
the procedures used for IT dependability and even lead to improvement in the
safety culture of the organisation at level 5. At the two highest levels of maturity
dependability requirements for all systems should contain detailed measurable
values and these requirements should be updated in the case of changes in the
systems’ functionality or usage.

6.3 Cooperation

A third set of attributes concerns the cooperation between the different parties
involved in IT dependability. This is in the first place IT personnel, system man-
agers, the system’s users and also the personnel responsible for conducting risk
and vulnerability analyses, for example emergency managers. The 4 attributes in
the category are: Service level agreements, IT dependability analysis and emer-
gency planning, Presence of IT dependability in emergency plans and Relation-
ship IT personnel - emergency managers. A level 1 organisation will typically lack
service level agreements or any other documents clearly linking IT dependabil-
ity and emergency management. The frustrations and conflicts between different
parts of the organisation will hinder a necessary cooperation on these important
issues. In a level 2 organisation some of these issues will be taken care of for
some systems, while there will be many problems with other systems, mostly
depending on whether there are good contacts between the system manager of
each system and the IT department. A level 3 organisation is expected to have
basic, standardised service level agreements in place for all systems. Further,
dependability estimates for all systems will be used as input for emergency man-
agement and the requirements discovered while making emergency plans will be
used as input in the prioritising the IT dependability activities. From level 4 an
organisation’s SLA’s should contain clear, quantitative dependability goals and

A Maturity Model for IT Dependability in Emergency Management 257

measurements. The link between dependability requirements and risk and vul-
nerability analyses for all systems should be explicitly documented. By clearly
defining the responsibilities of all parties in detail, all successes will be shared
success and when problems should arise the blame cannot just be shifted around
as is often the case on the lower levels of maturity. Finally, in a level 5 organisa-
tions there is a real partnership between the different departments cooperating
on IT dependability and continuously striving to improve their cooperation.

6.4 Organisational Issues

A last category of attributes collects those issues that concern the whole organisa-
tion and how it is managed. There are 5 attributes in this category: Involvement,
Responsibility, Management Mechanisms, Organisational learning and Resource
allocation.

In a level 1 organisation, in the worst case, nobody is actively involved with
IT dependabilities and most stakeholders will feel the responsibility lies with
someone else. After an incident, often the blame is shifted around and no learn-
ing takes place. In a level 2 organisation, the responsibility for IT dependability
lies explicitly with the individual system managers who deal with the issue as
they see fit. Therefore learning about IT dependability will mostly happen on
an individual basis and improvements will depend on whether the system man-
ager can find the resources to invest in IT dependability for each system. In a
level 3 organisation, all the responsibility lies in the first place with central IT
safety manager who is responsible for the coordination of IT dependability pro-
cedures. The IT safety manager distributes detailed dependability instructions
and directions that are meant to be followed strictly by all stakeholders. This
coordination allows the organisation to learn as a whole from past failures and
successes. In a level 4 organisation, the detailed service level agreements for each
system will make it possible for the responsibility to be shared by all actors in
the IT dependability process. Through the detailed feedback from the collected
data in a organisation at level 4, the organisation can achieve organisational
learning by adapting its centralised procedures and guidelines based on mea-
sured outcomes. System managers are expected to be experienced enough to be
able to apply the centralised guidelines and tools to manage IT dependability
without detailed instructions. In level 5 organisations, not only the dependability
guidelines are regularly updated, but also the way the organisation learns is con-
tinuously re-evaluated. This is called double-loop learning. In a well functioning
level 5 organisation everyone will be aware of their own part of the responsibility
for IT dependability and resources for improvements in IT dependability can be
distributed in a prioritised way.

7 Transition from One Level to the Next

To further clarify the different levels of the maturity model, this section explains
the main elements of the transition process from one level to the next. Although

258 K. Weyns, M. Höst, and Y. Li Helgesson

not every organisation will be at level 1 initially, and not every organisation will
aim for level 5, the levels are meant to be taken successively without skipping
over any level. A transition from level 2 to level 4 can only be achieved by first
implementing level 3.

7.1 From Level 1 to Level 2

There are no requirements for the first level of maturity, and at this level it is
common that there are some critical IT systems for which there is no control
over the dependability. For an organisation to rise to level 2 the responsibilities
for each system need to be well defined. Usually this will mean that the coordi-
nation for all dependability issues is done by the system manager for each system
who organises the work with dependability in the way that suits each particular
situation best. The main advantage with this approach is the clear definition
of responsibilities which makes that the main problems can be discovered and
solved. The main disadvantage is that it is nearly impossible for the organisa-
tion to evaluate the quality of the dependability analyses done by the system
managers since they each use their own methods.

7.2 From Level 2 to Level 3

To go from level 2 to 3, an organisation needs to standardize the way all system
managers deal with IT dependability. First an organisational standard needs to
be defined and then all system managers need to be instructed in this standard.
The standard can be compiled based on national or international standards or
on some of the procedures that were already previously used for some IT systems
with good results.

7.3 From Level 3 to Level 4

While level 3 is mostly concerned with qualitative data about the dependability
of IT systems, level 4 also requires the use of substantial amounts of quantitative
dependability goals and measurements. A level 3 organisation might for example
classify the availability requirements of a system according to a simple scale,
Low-Medium-High, but a level 4 organisation is expected to use more detailed,
numeric values. Setting up a central system to collect all service level agreements
and to facilitate the analysis of all this data is a requirement for the transition
from level 3 to 4.

7.4 From Level 4 to Level 5

Level 5 is characterised by a continuous effort to improve the processes in the
organisation. This is only possible if the processes are well understood through-
out the whole organisation and even across the borders of the organisations
to include suppliers and network operators. To go from level 4 to 5 all proce-
dures from level 4 need to become completely institutionalised throughout the

A Maturity Model for IT Dependability in Emergency Management 259

organisation and all stakeholders need to be working together in a natural way.
This way the data collected can form the basis for deeper, double-loop learning
for the organisation. This means the lessons learned are not only used to improve
the organisation’s dependability practices but also to optimise the improvement
process itself.

7.5 Commitment Required

It should be clear that there is a large difference between the commitment and
resources required of an organisation to reach each level of dependability. Level
1 represents the lowest commitment to IT dependability. Becoming a level 2
organisation only requires a serious commitment from the individual system
managers who needs to drive IT dependability forward and need to collect input
from all other personnel involved. Reaching level 3 maturity requires a regular
commitment from all personnel involved with IT dependability to maintain a
basic level of IT dependability across the whole organisation. Level 4 is very
similar, but requires a larger effort for data collection and analysis. Reaching and
sustaining level 5 maturity definitely requires the largest overall commitment to
IT dependability, although in practice all efforts for IT dependability should feel
more as a natural part of the daily workings of the organisation than as a special
effort for IT dependability.

8 Relation to Other Maturity Models

As mentioned before, the maturity model presented in this paper is based on
a number of maturity models from related fields. Table 2 illustrates how the
attributes in the IDEM3 model correspond to similar concepts in these maturity
models. For most attributes, similar maturity levels as in IDEM3 can also be
found in one or more of these maturity models. The compatibility of the IDEM3
model with each of these models not only makes it easier to combine the usage
of this model with the other models, it also increases the validity of each of the
attributes and therefore of the whole model. IDEM3 does not in any way try
to be an alternative for any of the models presented below, but has a different,
very specific focus that is not explicitly present in any of the other models.

Of course, not all attributes can be matched with corresponding areas in all
other maturity models. This can be for a number of different reasons. First of
all, each of the maturity models referred to here has its own scope, which only
partly overlaps with the scope of this maturity model. Therefore there are, for
example, no attributes concerning IT management in maturity models from the
area of design safety. When an attribute is clearly outside the scope of a certain
maturity model, this is marked in Table 2 as n.a., not applicable. Secondly,
there are some attributes that are not explicitly mentioned in certain maturity
models, for example, organisational learning in all but one of the models. Such
attributes are nevertheless generally compatible with these models, they were
just not selected as process areas or explicitly used in the description of the
different maturity levels. This is marked in Table 2 with a minus sign (-).

260 K. Weyns, M. Höst, and Y. Li Helgesson
T
a
b
le

2
.
T
ra

ce
ab

ili
ty

of
th

e
at

tr
ib

ut
es

of
th

e
m

at
ur

it
y

m
od

el
to

ot
he

r
m

at
ur

it
y

m
od

el
s

[1
2]

,
[7

],
[1

1]
,
[1

3]
,
[2

]

A Maturity Model for IT Dependability in Emergency Management 261

9 Evaluation of the Maturity Model

IDEM3 is the result of a long development process during which many of the
details of the model have regularly been updated. The model has been evaluated
and validated in a number of ways. First of all, the case studies [5] provide an
empirical grounding [16] and the relationships with in well-established maturity
models are a strong external theoretical grounding [16] of the maturity model.

For a further external validation, IDEM3 has, at a number of different oc-
casions, been presented in detail to researchers and practitioners with long ex-
perience in the field, such as representatives of the Swedish Civil Contingencies
Agency. At each of these presentations the model has received a positive re-
ception, and many practitioners, both from the field of IT dependability and
emergency management have expressed an interest in putting the ideas of this
model into practice. Their comments and recommendations, both on the form
and the details of this model, have all been taken into account in the version
presented in this paper.

Further, the model is currently being used to assess certain aspects of IT
dependability at two Swedish hospitals and to formulate improvement sugges-
tions. First results of this assessment and the improvements suggested by the
model were very positively evaluated by the participating organisations. These
four rounds of evaluations give us confidence that the model in its current form
can be an effective tool in improving an organisation’s IT dependability in emer-
gency management. The final validation of this model, in the form of a large-scale
implementation of this model at a number of organisations, is currently taking
place. The practical evaluation of a complete maturity model is in no way an
easy task, and proving that the model leads to an efficient improvement in an
organisation’s IT dependability requires a huge research effort.

10 Conclusions

This paper has shown that process improvement based on a maturity model can
help organisations close the critical gap between IT dependability management
and emergency management. The IDEM3 maturity model contains 22 attributes
in four categories: Outcomes, IT Management, Cooperation and Organisational
Issues. The model is based upon a number of established maturity models from
related fields and upon a number of problems identified in an earlier case study.

The maturity model is not a quick fix that will solve all of an organisation’s IT
dependability problems. The main value of the maturity model is that it offers
a way for an organisation to quickly capture its strengths and weaknesses in
how it combines IT management and emergency management. IDEM3 can help
an organisation to involve all stakeholders in this process improvement effort
and to visualise it progress. The model has been evaluated and improved based
on feedback from experts and professionals in the field, and is currently being
evaluated by case studies in the field of application.

262 K. Weyns, M. Höst, and Y. Li Helgesson

References

1. Santos, R.S., Borges, M.R.S., Gomes, J.O., Canós, J.H.: Maturity levels of informa-
tion technologies in emergency response organizations. In: Briggs, R.O., Antunes,
P., de Vreede, G.-J., Read, A.S. (eds.) CRIWG 2008. LNCS, vol. 5411, pp. 135–150.
Springer, Heidelberg (2008)

2. Fleming, M.: Safety culture maturity model. Offshore Technology Report,
2000/049, HSE Books, Norwich, UK (2001)

3. Zimmerman, R., Restrepo, C.: Information technology (IT) and critical infrastruc-
ture interdependencies for emergency response. In: Proceedings of the 3rd Inter-
national Information Systems for Crisis Response and Management (ISCRAM)
Conference (2006)

4. SEMA: Basic Level for IT Security. SEMA recommends 2003:2. Swedish Emergency
Management Agency (2003)

5. Weyns, K., Höst, M.: Dependability of IT systems in municipal emergency man-
agement. In: Proceedings of the 2009 Information Systems for Crisis Response and
Management (ISCRAM) Conference (2009)

6. Office of Government Commerce: Information Technology Infrastructure Library,
Version 3 (2007)

7. ISACA: Control objectives for information and related technologies (COBIT) (3rd
edn.) (2000)

8. International Organization for Standardization: ISO-IEC 27002: Information tech-
nology - Security techniques - Code of practice for information security manage-
ment (2005)

9. Frühwirth, C.: On business-driven IT security management and mismatches be-
tween security requirements in firms, industry standards and research work. In: Bo-
marius, F., Oivo, M., Jaring, P., Abrahamsson, P. (eds.) PROFES. Lecture Notes in
Business Information Processing, vol. 32, pp. 375–385. Springer, Heidelberg (2009)

10. Konrad, M., Chrissis, M.B., Ferguson, J., Garcia, S., Hefley, B., Kitson, D., Paulk,
M.: Capability maturity modeling at the SEI. Software Process: Improvement and
Practice 2, 21–34 (1996)

11. Caralli, R.A.: Introducing the CERT resiliency engineering framework improving
the security and sustainability processes. Carnegie Mellon University, Software En-
gineering Institute, Pittsburgh, PA (2007)

12. Luftman, J.: Managing the Information Technology Resource: Leadership in the
Information Age. Prentice-Hall, Englewood Cliffs (2003)

13. Strutt, J., Sharp, J., Terry, E., Miles, R.: Capability maturity models for offshore
organisational management. Environment International 32, 1094–1105 (2006)

14. Bhamidipaty, A., Lotlikar, R., Banavar, G.: RMI: a framework for modeling and
evaluating the resiliency maturity of IT service organizations. In: IEEE Interna-
tional Conference on Services Computing (SCC 2007), pp. 300–307 (2007)

15. SEI: Capability Maturity Model Integration, Version 1.2. Volume CMU/SEI-2006-
TR-008(2008). Carnegie Mellon Software Engineering Institute (2008)

16. Ågerfalk, P.J.: Grounding through operationalization - constructing tangible theory
in IS research. In: Proceedings European Conference on Information Systems (ECIS
2004) (2004)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 263–275, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Dependency Analysis between CMMI Process Areas

Paula Monteiro1, Ricardo J. Machado1, Rick Kazman2, and Cristina Henriques3

1 Universidade do Minho
{pmonteiro,rmac}@dsi.uminho.pt

2 Software Engineering Institute
kazman@sei.cmu.edu

3 I2S, Informática Sistemas e Serviços, SA
cristina.henriques@i2s.pt

Abstract. SPI and in particular CMMI is being widely use by several organiza-
tions to improve their product quality. However, the SMEs are reluctant in
adopting it and in particular maturity level 2 of CMMI, because they think that
achieving this level is too expensive and do not see a clear benefit on it. Our so-
lution to captivate the interest of SMEs in CMMI is the anticipation of some
process areas of maturity level 3 considered as a benefit by the organization and
implement those process areas at the same time of maturity level 2 of CMMI. In
this paper, we identify the dependencies among all the process areas of CMMI
and between all the process areas of each maturity level. Our study was con-
ducted to identify the impact on the dependencies of maturity level 2 when we
introduce some process areas of maturity level 3 in the implementation effort.

Keywords: dependency analysis, CMMI, process areas, maturity levels.

1 Introduction

CMMI-DEV (Capability Maturity Model Integration for Development) [1], [2] is a
well-known Software Process Improvement (SPI) model developed by the Software
Engineering Institute (SEI). It is concerned in helping organizations to improve their
processes. This SPI model has been implemented by several organizations [3], [4] that
report a great improvement in reducing costs, improving the productivity, and the
performance. According to [5] the most frequent reasons given by organizations for
adopting a CMM1-based SPI model, like CMMI, were the improvement of their soft-
ware quality, development time, development costs and productivity. However, cus-
tomer satisfaction and staff motivation were referred in some SMEs [5].

Coleman and Connor performed a study [6] of how SPI models are applied in the
software industry and they concluded that the software managers reject the implemen-
tation of SPI models because of the implementation costs. In what concerns why

1 The Capability Maturity Model (CMM), originally developed as a tool for objectively assess-

ing the ability of government contractors' processes to perform a contracted software project,
has been superseded by CMMI, though the CMM continues to be a general theoretical proc-
ess capability model used in the public domain.

264 P. Monteiro et al.

organizations do not adopt the maturity level 2 of CMMI, according to [7] the most
frequent reasons given were: small organization, too costly, no time, using other SPI
and no clear benefit in this CMMI level. Wilkie et al. [8] have concluded that small
organizations are mainly focused on the product quality assurance instead of the proc-
ess quality assurance and medium organizations consider process quality important
but not so important as CMMI suggests. Organizations do not consider the maturity
level 2 a high-value improvement since the process areas of this maturity level are
mainly concerned on the process quality and the organizations are concerned with the
product quality. To make CMMI widely used in small organizations, Wilkie et al. [8]
suggest that CMMI should be recasted to cover the needs of this type of organiza-
tions. Other studies [9], [10], [11], [12] have become aware that to persuade SMEs in
the adoption of an SPI model it is important to show to the organizations the benefits
of its adoption, lower their costs and make the benefits perceptible in a short time.
The SEI has had several research projects dedicated to this issue; SEI called them
“Improving Processes in Small Settings”. The original URL is no longer available,
but the results of those projects could be found in [13]. However, no solution for the
dependency analysis and cross-ML|CL improvement roadmaps in SMEs have been
tackled.

Taking into account that the problem of software is a management problem and not
a technical one [14], we can state that organizations do not see that when they imple-
ment maturity level 2 they are solving the historical problems of software projects
like: understand and break the project scope, frequent requirements changes, deadline
and cost issues. All these issues are addressed in this CMMI maturity level.

Our solution to make CMMI widely used in SMEs does not consist in recasting the
CMMI, but to propose to the organizations the implementation of the process areas of
the maturity level 2 and, at same time, to implement some process areas of the matur-
ity level 3. These process areas could be chosen by the organization according to their
needs of improvement or chosen according the higher benefit to the organization.

To analyze the impact of this approach, we decided to study the dependencies be-
tween the process areas, to better understand which other process areas than those
chosen for implementation must be at least taken into account because of the depend-
encies between them.

SPI models and, in particular, CMM model have a long history of evolution [15].
The CMM model was initially published in 1987 and has evolved into the currently
CMMI-DEV v1.2. We should not consider that the CMMI-DEV v1.2 is a silver bul-
let; CMMI will keep its evolution. This means that need to conducted studies about
this framework. Namely, the study of dependencies between the process areas re-
mains relevant to build assessment schemes tailored to the organizations’ needs.

There are some studies focusing on the analysis of the dependencies between the
process areas and the specific practices of maturity level 2 [16], [17] in order to dis-
cover an implementation sequence of the process areas. They do not conceive a global
view of the dependencies, unlike the ISO 9001:2000 [18] (or the newer 9001:2008
[19]) already do. One of the mandatory requirements from ISO 9001 is the clause
4.1b): "the organization shall [...] determine the sequence and interaction of these
processes".

 Dependency Analysis between CMMI Process Areas 265

This paper is organized as follows. Section 2 presents a brief description of CMMI,
section 3 describes the dependencies between the maturity levels 2 and 3 of CMMI,
section 4 describes the dependencies between the maturity levels 2 and the validation
and verification process areas, and, finally, in section 5, some conclusion are presented.

2 CMMI for Development Model

CMMI-DEV is composed by a set of 22 process areas divided by categories and by
maturity levels. In Table 1, we present the list of the 22 process areas grouped by
maturity levels. To help the discussion, we add {PAn} to the CMMI acronym defined
in [1], [2]. PA stands for process area, and n corresponds to the number of the process
area.

Table 1. Table of all CMMI process areas

All the CMMI process areas have established specific goals (SG). These specific
goals are unique characteristics that must be performed in order to satisfy each proc-
ess area. In Table 2, we have an example of the specific goals of two process areas:
the validation (VAL) and the verification (VER) process areas. We do not present all
the specific goals, since they are listed in the official CMMI documentation. In our
study, we are not considering the integrated product and process development (IPPD)
“addition”. Table 2 shows that each specific goal can be divided into specific prac-
tices (SP). The specific practices describe all the activities that must be performed to
accomplish the specific goals.

Beside the specific goals and specific practices, CMMI model defines a set of ge-
neric goals (GG) and generic practices (GP). The generic goals, as the name says, are
generic to all process areas. They are characteristics that must be performed to institu-
tionalize the processes of each process area. The generic practices describe all the
activities that must be performed to accomplish the generic goals. Table 3 lists all the
generic goals and generic practices of CMMI.

266 P. Monteiro et al.

Table 2. CMMI specific goals example

Table 3. CMMI generic goals for the continuous and staged representations

2.1 Staged vs. Continuous Representations

CMMI has two representations that can be followed by an organization to become a
CMMI assessed company. These representations are: the staged and the continuous
representation. In the continuous representation, the organization can choose the order
of the improvements to meet the organization objectives by choosing one or more
process areas. This kind of representation uses the term Capability Level (CL) to
characterize the improvement. Capability levels are a means for incrementally im-
proving the processes corresponding to a given process areas. In the staged represen-
tation, the organization uses a set of pre-defined process areas, imposed by the CMMI
model. In this case, the term used to characterize the improvement is Maturity Level
(ML).

Levels are used in CMMI to describe an evolutionary path recommended for an
organization that wants to improve the processes it uses to develop and maintain its
products and services. To achieve a capability level the organization must satisfy all
the specific goals and generic goals for the process areas selected to be improved.

 Dependency Analysis between CMMI Process Areas 267

To achieve a maturity level the organization must satisfy all the specific and generic
goals for the pre-defined set of process areas imposed by the maturity level under
implementation. It is important to notice that in the continuous representation GG1
to GG5 are applied, but in the staged representation only the GG2 and GG3 are
applied.

To illustrate the concepts of continuous and staged representation we will explain
how to achieve CL1 to CL3 for the {PA11} and how to achieve ML2 and ML3.
To support our approach, these capability and maturity levels are analyzed in
this manuscript to establish cross-ML|CL improvement roadmaps, as stated by the
formula (6).

2.2 Introduction to Notation

Achieving CL1.{PA11} implies to execute all the specific goals for {PA11} and the
GG1.

CL1.{PA11} = GG1.{PA11} = = SG1.{PA11}
SG2.{PA11} = .

(1)

The previous equation expresses this effort. Executing all the specific goals for
{PA11} is the same of executing the entire specific practices for {PA11}.

To achieve CL2 to {PA11} we have to perform all the specific goals for {PA11}
and the GG2. In the next equation we see that to achieve CL2.{PA11} we have to
achieve CL1.{PA11} and, at the same time, to execute all the specific goals for GG2.

CL2.{PA11} = CL1.{PA11} GG2.{PA11} =
CL1.{PA11} .

(2)

The equation

CL3.{PA11} = CL2.{PA11} GG3. {PA11} =
CL1.{PA11}

(3)

represents the effort to achieve CL3 for {PA11}. This effort includes all the work to
achieve CL2 for {PA11} and, at the same time, the effort to accomplish the GG3.

In what concerns to the maturity levels, we represent the improvement from ML1
to ML2 by ML1→ML2. This improvement corresponds to the execution of the activi-
ties illustrated by the following equation:

ML1 ML2 = =
(

 .

(4)

This equation says that attaining ML2 implies to perform all the specific goals
from {PA1} to {PA7} and, at the same time, to perform the GG2 once again from
{PA1} to {PA7}.

268 P. Monteiro et al.

To achieve the ML3 we have to perform the following:

ML2 ML3 =
ML1 ML2

(5)

which means that we have to achieve ML2 and perform, at the same time, the specific
goals from {PA8} to {PA18}, the GG3 from {PA1} to {PA18} and the GG2 from
{PA8} to {PA18}.

3 Discovering the Process Areas Dependencies

By looking into the official CMMI documentation [1], [2] we cannot have a global
view of the dependencies between the all the process areas. By reading the “related
process areas” section of each process area, we can only understand what are the
dependencies of each process area independently.

To obtain the complete list and a graph representation of all the dependencies be-
tween all the process areas we started to analyze the “related process areas” section
for all the process areas. Then, we decided to create a matrix (that contains the infor-
mation of all the dependencies) and a set of graphs (that graphically represents the
information stored in the matrix). The matrix rows represent the source process areas
and the columns represent the destination process areas, in the dependency analysis
perspective.

3.1 Elementary Dependency Analysis

Next, we describe our efforts to characterize the elementary dependency analysis of a
particular process area; we also call this analysis the PAn-centric dependency analysis
(n is the number of the process area; see Table 1). PPQA process area is next illus-
trated as an example.

In the “related process areas” section of the PPQA, we can read “refer to the Pro-
ject Planning process area for more information about identifying processes and
associated work products that will be objectively evaluated” and “refer to the Verifi-
cation process area for more information about satisfying specified requirements”.
This means that the PPQA is related to the PP and VER process areas. This informa-
tion is represented in the matrix by marking with an X the cell that corresponds to the
PPQA row and to the PP column and also the cell that corresponds to the PPQA row
and to the VER column (see Table 4). The matrix is capable of representing the de-
pendency information about all the process areas. We also represent this information
in graphs, for better understanding. The graph for this elementary dependency analy-
sis example is presented in Fig. 1.

Fig. 1. Elementary Dependency Analysis Graph

 Dependency Analysis between CMMI Process Areas 269

Table 4. PPQA matrix line

3.2 Dependencies of CMMI Process Areas

To create the complete matrix and graphs of the CMMI process areas we executed the
elementary dependency analysis for all the process areas. The resulting matrix is pre-
sented in Table 5. To easily understand the impact of the dependencies between all
the process areas, we organized the matrix by maturity level.

It is also possible to obtain a graph representation of the global matrix of Table 5.
To ease the visualization of the dependencies of each CMMI maturity level, we de-
cided to create 4 graphs, one for each maturity level. The explanation about how to
create those graphs appears in the next section.

Each of those 4 graphs is denominated as ML-n Centric Dependency Analysis
Graph (where n is the maturity level under study). In Fig. 2 and 3, we can see the
ML-2 and the ML-3 centric dependency analysis graphs. The main idea behind the
creation of these ML-n centric graphs is to allow us to see only the dependencies that

Table 5. Dependencies between all the CMMI process areas

270 P. Monteiro et al.

are concerned to the maturity level under study, by eliminating from the graph a huge
number of dependencies that we do not want to take into account when we are study-
ing a particular maturity level. However, we have also constructed the global graph
with all the CMMI dependencies (also called CMMI Dependency Analysis Graph) to
show the global view of the dependencies between the CMMI process areas and to
verify what are the bi-directional dependencies between the process areas of different
maturity levels (Fig. 4).

Fig. 2. ML-2 centric dependency analysis graph

3.3 ML-2 Centric Dependency Analysis

To study, discover and analyze the dependencies of the process areas of maturity level
2, we have to perform the ML-2 centric dependency analysis. Since we already have
the matrix with all the dependencies between CMMI process areas (Table 5), we can
use this information to analyze the dependencies of maturity level 2. We start by cre-
ating the ML-2 centric dependency analysis graph. To create this graph we select the
rows from the matrix that corresponds to the maturity level 2 (the first 7 rows).

To better explain the creation of this graph, we will comment {PA3} Project Plan-
ning as an example. To represent in the graph the dependencies that {PA3} possesses
from the others CMMI process areas, we parse the matrix row that corresponds to
{PA3} as shown in Table 6. We can see that {PA3} has 4 dependencies from other
process areas: {PA1} REQM, {PA9} RD, {PA10} TS and {PA17} RSKM.

In Table 6 we replaced the X from the original matrix with the symbol ►, in order
to express that this connection starts in {PA3} and ends in {PA1}, for instance. We
have also made some changes in the column {PA3}. In this column, we replaced the
X by the symbol ◄, in order to express that this connection ends in {PA3} and starts
in {PA2}, for instance. To construct the graph we only need to parse the rows.

 Dependency Analysis between CMMI Process Areas 271

ML2 ML3 ML4 ML5

{PA 1}
REQM

{PA 2}
PMC

{PA 3}
PP

{PA 4}
SAM

{PA 5}
MA

{PA 6}
CM

{PA 10}
TS

{PA 17}
RSKM

{PA 13}
OPD

{PA 11}
VAL

{PA 9}
RD

{PA 21}
OID

{PA 8}
PI

{PA 12}
VER

{PA 14}
OPF

{PA 15}
OT

{PA 16}
IPM

{PA 18}
DAR

Fig. 3. Dependencies of process areas of the CMMI maturity level 3

Table 6. ML-2 centric dependency analysis for {PA3}PP

In Fig. 2 we can observe the existence of a bi-directional dependency between
{PA3} and {PA1}. To express this bi-directional dependency, in Table 7 we replaced
the X by the symbol ◄►. Since the process areas are ordered in the same way both
in rows and in columns, to easily identify the bi-directional dependencies we just need
to check if the row n and column n are marked with an X.

Table 7. {PA3}PP bi-directional dependencies of ML-2 Centric Dependency Analysis

272 P. Monteiro et al.

ML2 ML3 ML4 ML5

{PA 10}
TS

{PA 17}
RSKM

{PA 13}
OPD

{PA 11}
VAL

{PA 9}
RD

{PA 8}
PI

{PA 12}
VER

{PA 14}
OPF

{PA 15}
OT

{PA 16}
IPM

{PA 18}
DAR

{PA 1}
REQM

{PA 2}
PMC

{PA 3}
PP

{PA 4}
SAM

{PA 5}
MA

{PA 6}
CM

{PA 7}
PPQA

{PA 20}
QPM

{PA 19}
OPP

{PA 21}
OID

{PA 22}
CAR

Fig. 4. Global dependencies between CMMI process areas

4 ML-2 Centric Dependency Analysis with Elementary
Dependency Analysis for Validation and Verification
Process Areas

As a motivation to convince SMEs that CMMI maturity level 2 brings real benefits,
we decided study what are the theoretical dependencies we should expect when per-
forming ML1→ML2 and, at the same time, prepare for one CL3 assessment for some
process areas, namely CL3.{PA11} and CL3.{PA12}. The choice of {PA11} and
{PA12} is based on the particular needs of I2S (the company where we will perform
the complete dependency analysis with real data). The type of assessment we are
considering is a combination of staged and continuous representations. The combina-
tion of maturity level 2 assessment and CL3.{PA11} and CL3.{PA12} is given by the
following expression:

 . . (6)

To analyze the dependencies we must expect from this case, we need to study the
{PA11} centric dependency analysis and the {PA12} centric dependency analysis. To
generate the {PA11} centric dependency analysis graph (Fig. 5a) we need to parse the
row of {PA11} in the matrix of Table 5. Analogous exercise must be performed to
generate the {PA12} centric dependency graph (Fig. 5b).

 Dependency Analysis between CMMI Process Areas 273

The global view of the dependencies when performing ML1→ML2 with the simul-
taneous assessment of CL3 for both {PA11} and {PA12} is depicted Fig.6. The in-
formation that represents the ML-2 centric dependency analysis graph is depicted in
black. The information relative to the {PA11} centric dependency analysis graph and
to the {PA12} centric dependency analysis graph is represented in red.

The graph represented in Fig.6 permits to conclude that the effort to perform
ML1→ML2 and to achieve, simultaneously, CL3 for {PA11} and {PA12} should not
be an obstacle to assume the maturity level 2 as the main organizational goal, in this
considered case. All the existing dependencies are relative to process areas already
imposed by the maturity level 2. The only extra effort that must be considered con-
sists in implementing {PA11} and {PA12}.

Fig. 5. a) Elementary Dependency Analysis for {PA11} and b) Elementary Dependency
Analysis for {PA12}

Fig. 6. Dependencies between CMMI ML2 and V&V ({PA11} and {PA12}) Process Areas

5 Conclusions

CMMI official documentation does not explicitly describe the existing dependencies
among the process areas. To find out the global theoretical dependencies, we need to
complement the reading of the documentation with special care and analysis capabilities,

274 P. Monteiro et al.

but, even after that, it is hard to obtain the global view of the dependencies. Our final goal
is not to reach the global theoretical dependencies, but rather to use this view as a charac-
terization of the framework limitations to be next confronted with the dependencies we
can observe in the implementation of real SPI projects (by adopting SCAMPI appraisals
whether for ML or CL assessments). This means that this paper will be considered as a
baseline for future comparisons with empirical results.

In this paper we describe a set of techniques to identify the dependencies between
all the process areas and to create a global view of those dependencies by means of
some matrix and a set of graphs. We have also developed a notation that translates the
meaning of achieving a particular capability and maturity level. This notation allows
to understand which specific practices and specific goals have to be implemented to
achieve a given capability and maturity level.

Our motivation to explicit the global dependencies between CMMI process areas
arose when we tried to understand the impact of implementing the maturity level 2
simultaneously with some process areas from maturity level 3 as a way to make
CMMI more widely used in Portuguese SMEs. As an example, we analyzed the de-
pendencies between the process areas of maturity level 2 and two particular process
areas of maturity level 3.

As future work, we will also complement our current dependency analysis study
with the interactions between the process areas of each category in order to analyze if
those interactions are already identified as a dependency between the process areas.
For this study we will use the information described with the bird’s-eye view pre-
sented in [1]. Another source of information that will be used to complement this
dependency study is the SG descriptions of each PA. For instance, PP should be de-
pendent also from OPD (SP1.4 for the Measurement Repository), having cross links
in PP SP1.4 sub-practice 1.

This complementary study may lead us to a new set of dependencies that, again,
are not well described in the CMMI official documentation.

References

1. CMMI Product Team: Capability Maturity Model Integration, version 1.2, CMMI for De-
velopment, CMU/SEI-2006-TR-008, ESC-TR-2006-008 (2006),

 http://www.sei.cmu.edu/publications/documents/06.reports/
 06tr008.html

2. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI(R): Guidelines for Process Integration and
Product Improvement. The SEI Series in Software Engineering, 2nd edn. Addison-Wesley
Professional, Reading (2006)

3. Gibson, D.L., Goldenson, D.R., Kost, K.: Performance Results of CMMI®-Based Process
Improvement. Software Engineering Institute, CMU (2006),

 http://www.sei.cmu.edu/library/abstracts/reports/06tr004.cfm
4. Goldenson, D.R., Gibson, D.L.: Demonstrating the Impact and Benefits of CMMI®: An

Update and Preliminary Results. Software Engineering Institute, CMU (2003),
http://www.sei.cmu.edu/library/abstracts/reports/03sr009.cfm

5. Staples, M., Niazi, M.: Systematic review of organizational motivations for adopting
CMM-based SPI. Information and Software Technology 50, 605–620 (2008)

 Dependency Analysis between CMMI Process Areas 275

6. Coleman, G., O’Connor, R.: Investigating software process in practice: A grounded theory
perspective. Journal of Systems and Software 81, 772–784 (2008)

7. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An exploratory
study of why organizations do not adopt CMMI. Journal of Systems and Software 80,
883–895 (2007)

8. Wilkie, F.G., McFall, D., McCaffery, F.: An evaluation of CMMI process areas for small-
To medium-sized software development organisations. Software Process Improvement and
Practice 10, 189–201 (2005)

9. Cater-Steel, A., Toleman, M., Rout, T.: Process improvement for small firms: An evalua-
tion of the RAPID assessment-based method. Information and Software Technology 48,
323–334 (2006)

10. Wangenheim, C.G.v., Varkoi, T., Salviano, C.F.: Standard based software process assess-
ments in small companies. Software Process: Improvement and Practice 11, 329–335
(2006)

11. Quality Management for Small Enterprises Project,
 http://www8.cs.umu.se/~jubo/Projects/QMSE/

12. Software Process Improvement in Regions of Europe Project,
 http://www.cse.dcu.ie/spire/spire.html

13. Improving Processes in Small Settings,
 http://www.sei.cmu.edu/iprc/ipss.html

14. Humphrey, W.S.: Introduction to the team software process. Addison-Wesley, Reading
(2000), ISBN 0-201-47719-X

15. Paulk, M.C.: A History of the Capability Maturity Model for Software. ASQ Software
Quality Professional 12, 5–19 (2009)

16. Villalón, J.A.C.-M., Agustín, G.C., Mejía, J., Gilabert, T.S.F., Sánchez, A.: CMMI-ACQ:
A Formal Implementation Sequences of the Processes Areas at Maturity Level 2. In: Ro-
botics and Automotive Mechanics Conference on Electronics, pp. 212–217 (2008)

17. Chen, X., Staples, M., Bannerman, P.L.: Analysis of Dependencies between Specific Prac-
tices in CMMI Maturity Level 2. In: O’Connor, R., Baddoo, N., Smolander, K., Messnarz,
R. (eds.) EuroSPI, vol. 16, pp. 94–105. Springer, Heidelberg (2008)

18. International Organization for Standardization: ISO 9001:2000 - Quality management sys-
tems - Requirements. Geneva (2000)

19. International Organization for Standardization: ISO 9001:2008 - Quality management sys-
tems - Requirements. Geneva (2008)

Productivity Reanalysis for Unbalanced
Datasets with Mixed-Effects Models

Sousuke Amasaki

Department of Systems Engineering
Okayama Prefectural University

111 Kuboki, Soja, Okayama, 719–1197, Japan
amasaki@cse.oka-pu.ac.jp

Abstract. Data analysis is a major and important activity in software
engineering research. For example, productivity analysis and evaluation
of new technologies almost always conduct statistical analysis on col-
lected data. Software data are usually unbalanced because they are col-
lected from actual projects, not from formal experiments, and therefore
their population is biased. Fixed-effects models have often been used
for data analysis though they are for balanced datasets. This misuse
causes analysis to be insufficient and conclusion to be wrong. The past
study[1] proposed an iterative procedure to treat unbalanced datasets
for productivity analysis. However, this procedure was sometimes failed
to identify partially-confounded factors and its estimated effects were
not easy to interpret. This study examined mixed-effects models for pro-
ductivity analysis. Mixed-effects models can work the same for unbal-
anced datasets as for balanced datasets. Furthermore its application is
straightforward and estimated effects are easy to interpret. Experiments
with four datasets showed advantages of the mixed-effects models clearly.

Keywords: productivity analysis, mixed-effects models, unbalanced
datasets, estimation, data analysis.

1 Introduction

Software engineering research often collected software data for statistical analy-
sis. Software data recorded characteristics of software development process, soft-
ware product, or sometimes people in a project or an formal experiment. It has
been used for productivity analysis, performance evaluation of new technology,
demographic survey, etc.

Software data is often nested, heterogeneous, and unbalanced. When an orga-
nization collects software data from projects in several departments, this software
data forms hierarchical structure. A project is nested in a department. If it is col-
lected from multiple organizations in multiple countries, an organization is also
nested in a country. These characteristics were recorded in software data because
they can explain heterogeneity among, for instance, organizations. Software data
is also heterogeneous even in the case that it is not nested. Each software project

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 276–290, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Productivity Reanalysis for Unbalanced Datasets with Mixed-Effects Models 277

consists of different team members, project management practices, application
domains, and so on. These characteristics are also recorded in software data.

Characteristics are not populated equally in software data. Projects with se-
vere execution time constraint are less found in software data, for instance.
Because software data is usually collected from actual projects, not from exper-
iments. Furthermore, size of software data is relatively small. For these reasons,
a certain combination of characteristics are lacked in a software data while other
combinations are common. The word unbalanced means this characteristic of
software data.

Software data consists of numeric and nominal values. Statistical analysis
treats numeric values with continuous variables and nominal values with discrete
variables. Analysis of variance (ANOVA) and analysis of covariance (ANCOVA)
are common methods for analyzing software data including discrete variables
as predictors. They are used for identifying variables effective on a response
variable. They can also quantify effects of factor levels of discrete variables.
With these estimated effects, an explanation model can be built.

Kitchenham pointed out, however, that ANOVA involved two problems in the
case that software data is unbalanced: concealed impacts and spurious impacts[1].
Concealed impacts prevent a significant predictor from being identified. Spurious
impacts make an insignificant predictor to be significant by mistake. These im-
pacts lead wrong conclusion. For managing concealed and spurious impacts, she
proposed an analysis procedure iteratively applying ANOVA to residuals obtained
from the previous ANOVA application. She demonstrated usefulness of the pro-
posed procedure for productivity analysis. However, this procedure was sometimes
failed to identify an important factor and its estimated effects were not easy to in-
terpret.

In this paper, we showed usefulness of mixed-effects models for analyzing
unbalanced datasets. Mixed-effects models can produce correct results in case
of unbalanced datasets. They can also consider group-level predictors which are
valuable when analyzing dataset from multiple groups. This study compared
mixed-effects models with the procedure proposed by Kitchenham. Experiments
with several datasets showed advantages of the mixed-effects models clearly.

The rest of this paper organized as follows. First, related work and mixed-
effects models are introduced in Sect. 2 and 3. Then, we asked three research
questions and described experiment procedure in Sect. 4. Section 5 showed how
mixed-effects models worked. We finally concluded this paper in Sect. 6.

2 Related Work

In the past research, fixed-effects models have been widely used for analyzing
software data even if they were unbalanced. Commonly used fixed-effects mod-
els in software engineering research are: (generalized) linear regression models,
non-linear regression models, analysis of variance(ANOVA), and analysis of co-
variance(ANCOVA).

278 S. Amasaki

Linear and non-linear regression models have often been used for cost estima-
tion models and variable selection procedures. In addition, fault-prone module
prediction models often used logistic regression models which are classified into
generalized linear regression models.

For productivity analysis and evaluation of technologies, ANOVA and AN-
COVA have been widely used. The difference between them is whether continu-
ous and discrete variables are mixed into a model.

We could find only one work by Kitchenham[1] managing unbalanced datasets.
She proposed a procedure based on residual analysis for productivity analysis. To
select important discrete factors, this procedure first applies one-way ANOVA
on a response variable and obtains the most significant factor. Then, it repeats
one-way ANOVA on residuals from the previous ANOVA. Continuous variables
are also selected with the similar way.

Some studies applied mixed-effects models for software data analysis[2,3,4,5].
Mixed-effects models were used for treating repeated measures in most of them.
As mentioned in [1], repeated measures are cause of spurious impacts. These
studies grouped instances corresponding to the same subject into a factor level
of a group indicator. On the other hand, mixed-effects models were rarely used
for identifying and quantifying important ones from many discrete factors. Fur-
thermore, group-level predictors, which can treat group-level variables as pre-
dictors, have been less mentioned in software data analysis. Thus, this study
demonstrated usefulness of mixed-effects models with software datasets.

3 Mixed-Effects Models

3.1 Overview

Mixed-effects models(MEM) are mixture of fixed-effects models (FEM) and
random-effects models. FEM has often been used in software engineering re-
search. The following formula corresponds to a simple linear FEM with one
continuous predictor X :

yi = α + βxi + εi, and
εi ∼ N(0, σ2). (1)

Here, suffix i specifies an instance of dataset. α and β are a intercept and a
slope, respectively. εi is an error term following normal distribution with mean
0 and variance σ2. In this case, coefficients α and β are constant(fixed) for all
instances.

In random-effects models, in contrast to FEM, coefficients α and β vary among
groups specified by j. The following formula is a simple linear random-effects
model with one continuous predictor X :

yi = αj[i] + βj[i]xi + εi, (2)
αj[i] = a0 + b0uj[i] + η1j[i], (3)
βj[i] = a1 + b1uj[i] + η2j[i], (4)

Productivity Reanalysis for Unbalanced Datasets with Mixed-Effects Models 279

η1j ∼ N(0, σ2
α), (5)

η2j ∼ N(0, σ2
β), and (6)

εi ∼ N(0, σ2). (7)

j[i] indicates a group in which an instance i participates. αj[i] and βj[i] are
indexed by group j. Hence each group has specific intercept and slope. In software
engineering research, a group may correspond to an organization, a software
development team, etc. A group indicator is represented using a discrete variable.
αj[i] and βj[i] can be explained by a group-level predictor uj as shown by (3)
and (4). Here, η1j and η2j are group-level errors.

MEM include FEM and random-effects models as follows:

yi = αj[i] + βxi + εi. (8)

This model means that mean of Y is different for each of groups but an effect of
unit of X on Y is constant for all groups. Because only an intercept varies, this
model is called random intercept model.

3.2 ANOVA and ANCOVA Using MEM

Analysis of variance (ANOVA) and analysis of covariance (ANCOVA) are com-
mon methods for identifying significant predictors and quantifying factor levels of
each of these predictors in software data. In the past study, FEM-based ANOVA
and ANCOVA were used.

In case of FEM-based ANOVA and ANCOVA, a discrete predictor of J levels
are coded into J − 1 binary predictors b1j as follows:

yi = α + α11b11 + α12b12 + . . . + α1(J−1)b1(J−1) + βxi + εi. (9)

This coding rule sets a certain level as a baseline and its effect is absorbed in a
intercept α. Other levels are represented using binary predictors. For example, if
an instance has a level 1 for that discrete predictor, b11 = 1; otherwise b11 = 0.
Therefore, effects of other levels are estimated at α1j . These effects are relative
to their baseline.

In the case that software data includes many discrete factors, that coding rule
is inappropriate. It is recommended that degrees-of-freedom of error term should
be more than 4 and preferably more than 10[1]. The degrees-of-freedom is defined
as: (the number of instances - 1) - (the number of parameters to be estimated.)
The degrees-of-freedom deceases by 1 in the case that a continuous predictor is
included in a model. By contrast, it decreases by J−1 in the case that a discrete
predictor of J levels is included. That is, the degrees-of-freedom decreases more
rapidly if many discrete predictors of more than 2 levels are included.

In case of mixed-effects models, the degrees-of-freedom does not decrease so
rapidly at the time that a discrete factor is added. Mixed-effects models use (8)
for ANOVA and ANCOVA. This random intercept model considers a discrete
predictor of J levels as a group indicator.

280 S. Amasaki

Equation (3) explains effects of factor levels of this discrete predictor. a0 is
considered as a baseline. b0uj[i] + η1j[i] corresponds to an effect of factor level
j[i]. In case of no group-level predictor, the following equation is obtained from
(3) and (8):

yi = α + η1j[i] + βxi + εi. (10)

Here, α is used instead of a0. This is the same formula as (9) except for repre-
sentation of effects of factor levels. η1j[i] is a sample from normal distribution of
mean 0 and variance σ2

α, does not a coefficient to be estimated. Hence, degrees-
of-freedom decreases by 1 for one discrete predictor regardless of the number
of its factor levels. Furthermore, ANOVA and ANCOVA using MEM work the
same for unbalanced as for balanced datasets[6].

Importance of a group indicator is evaluated by its standard deviation. In
case of (10), σα in (5) is evaluated. Roughly speaking, a group indicator is
considered as insignificant if σα � σ or can be considered as 0. σα � σ means
that uncertainty within a group is far larger than that between groups and
therefore it is a trivial predictor.

For precise evaluation, the likelihood-ratio test is used. the likelihood-ratio test
compares the one model including a predictor with the another model excluding
it. If null hypothesis cannot be rejected, this predictor is removed because of
favor of parsimony.

4 Experiment

4.1 Research Questions

This study examined three research questions:

RQ1: MEM can estimate effects of factor levels correctly from unbalanced
datasets?

RQ2: MEM can produce a model better than the iterative procedure based on
residual analysis proposed in [1] (IPR)?

RQ:3 MEM can improve a productivity model using group-level predictors?

RQ1 is related to accuracy of estimated effects. IPR was examined with artificial
unbalanced datasets in [1]. As a result, it could identify significant factors the
same from unbalanced datasets as from a balanced dataset. However, estimates
of factor levels were not completely accurate.

RQ2 is related to quality of a productivity model obtained from IPR. IPR
can identify significant factors but we think it has three problems.

First, IPR involves a risk that a partially-confounded factor might be removed
unnecessarily. Confounded factors are factors which have the same effect on
a response variable. Thus, it is sufficient to include one of them in a model.
Partially-confounded factors are confounded factors each of which has some of
its own effect. Thus, it is desired to include all of them in a model.

Second problem is that estimates of factor levels are not easy to interpret
because it uses residual analysis. Each factor is identified by applying one-way

Productivity Reanalysis for Unbalanced Datasets with Mixed-Effects Models 281

Table 1. Balanced dataset (DS1)[1]

F1
F2 F3 L1 L2 L3

L1 5 8 13
L1 L2 5 8 13

L3 5 8 13
L1 7 10 15

L2 L2 7 10 15
L3 7 10 15
L1 11 14 19

L3 L2 11 14 19
L3 11 14 19

ANOVA on residuals obtained from previous ANOVA results, except at most
significant factor. Because effects of factor levels are estimated from residuals,
each factors is not included in a productivity model as is. It prevents a model
from a straightforward interpretation. This problem maybe critical for under-
standability which is an important factor for practical use.

Third, IPR is slightly complicated than ANOVA. Simple procedure is prefer-
able for efficient analysis.

If MEM can identify and include partially-confounded factors with simple
procedure, a better productivity model can be obtained.

Finally, RQ3 is related to MEM itself. As mentioned in Sect. 3, MEM can
include group-level predictors and grouping factors simultaneously. This feature
may be useful, for example, to explain the difference of productivity among
teams by team factors such as average experience years.

4.2 Dataset

This study compared MEM-based ANOVA and ANCOVA with IPR proposed in
[1]. Thus, we used the same four datasets used in [1]. Three of the four datasets
were made artificially in order to show concealed and spurious impacts. They
were named DS1, DS2, and DS3. Table 1, 2, and 3 show DS1, DS2, and DS3,
respectively.

These three datasets have three factors F1, F2, and F3, each of which has
three levels L1, L2, and L3. Numeric values are of a response variable. F1 and
F2 are significant factors. F3 is an insignificant factor.

DS1 is a perfectly balanced dataset. For each combination of factor levels,
exactly one instance is collected. Hence, its size is 33 = 27. DS2 is a subset of
DS1 which missed instances for twelve combinations of factor levels. The size of
DS2 is 15. This dataset shows concealing impacts if FEM-based ANOVA is used.
DS3 is also a subset of DS1 which missed instances for twelve combinations of

282 S. Amasaki

Table 2. Unbalanced dataset concealing effect of F2 (DS2)[1]

F1

F2 F3 L1 L2 L3

L1 8 13
L1 L2 8 13

L3 5 13
L1 7 10

L2 L2 7 10 15
L3 10 15
L1 11

L3 L2 11
L3

Table 3. Unbalanced dataset giving spurious for F3 (DS3)[1]

F1

F2 F3 L1 L2 L3

L1 5, 5
L1 L2 5 8

L3 8 13
L1 7, 7

L2 L2 7 10
L3 10 15
L1 11

L3 L2 11 14
L3 14 19

factor levels and duplicated instances for two combinations. The size of DS3 is
17. This dataset shows spurious impacts if FEM-based ANOVA is used.

One of the four datasets is the COCOMO dataset published in [7]. This dataset
consists of 21 factors of different scale types and its size is relatively small (n =
63). In this dataset, productivity was defined as follows:

productivity =
Adjusted KDSI(Kilo of Delivered Source Instructions)

Man-Months
(11)

Details of adjustment were shown in [7]. Table 4 shows factors and its types. It
is hard to use FEM-based ANOVA as is because the number of discrete factors
are large and they all have more than 2 levels.

The COCOMO dataset recorded numerical adjustments for each factor in-
stead of factor levels. We replaced numerical adjustments by their corresponding

Productivity Reanalysis for Unbalanced Datasets with Mixed-Effects Models 283

Table 4. Factors in COCOMO dataset

Name Type Description
(Discrete/Continuous)

Type D (6 lv.) Type of project
RELY D (6 lv.) Required software reliability
DATA D (5 lv.) Data base size
CPLX D (7 lv.) Product complexity
TIME D (5 lv.) Execution time constraint
STOR D (5 lv.) Main storage constraint
VIRT D (4 lv.) Virtual machine volatility
TURN D (5 lv.) Computer turnaround time
Platform D (4 lv.) Type of platform
ACAP D (7 lv.) Analyst capability
AEXP D (5 lv.) Applications experience
PCAP D (7 lv.) Programmer capability
VEXP D (4 lv.) Virtual machine experience
LEXP D (4 lv.) Programming language experience
MODP D (6 lv.) Modern programming practices
TOOL D (6 lv.) Use of software tools
SCED D (5 lv.) Required development schedule
RVOL D (6 lv.) Requirement Volatility
Mode D (3 lv.) Software development mode
Year C Year completed
ln(Duration) C Logarithm of duration

factor levels as same as [1]. For example, 1.0 of PCAP is to “Nominal”. In [1],
TIME was converted from 11 to 5 levels because it had many factor levels. This
study also followed this prepossessing procedure.

4.3 Experiment Procedure

We applied MEM-based ANOVA and ANCOVA for the four datasets. All dis-
crete factors were assumed to be group indicators. MEM-based ANOVA and
ANCOVA first try to include all indicators and all predictors in a model be-
cause the degrees-of-freedom remains more than 10 for all datasets. Then, one of
them having no significant effects on productivity is removed from a model. The
likelihood-ratio test was used for this decision with a significance level α = 0.01.
This backward elimination procedure is repeated until all insignificant factors
are removed.

To answer RQ1, we compared estimated effects from DS2 and DS3 by MEM-
based ANOVA with those from DS1 by FEM-based ANOVA. DS1 is perfectly
balanced datasets and we can assume estimates from DS1 to be true values.

To answer RQ2, a productivity model obtained from the COCOMO dataset by
MEM-based ANCOVA is compared with that by IPR. Here, understandability
and applicability in practice are evaluated.

284 S. Amasaki

Table 5. Standard deviations of MEM-based ANOVA on DS2 and DS3

Factors DS2 DS3

F1 1.92 1.87
F2 1.91 1.67
F3 0.00 0.00
Residual 0.00 0.00

Table 6. Estimated effects(coefficients) of factor levels tfrom DS1, DS2, and DS3

Factor/ DS1 DS2 DS3
Level FEM FEM MEM FEM MEM

F1L1 −3.66 −2.2 −3.66 −2.69 −3.66
F1L2 0.66 −1.2 0.66 −0.71 0.66
F1L3 4.33 3.4 4.33 5.71 4.33
F2L1 −2.66 −0.4 −2.66 −2.61 −2.66
F2L2 −0.66 0.2 −0.66 −0.61 −0.66
F2L3 3.33 0.6 3.33 3.23 3.33
F3L1 0 −0.6 0 −2.94 0
F3L2 0 0.3 0 −0.77 0
F3L3 0 0.3 0 3.23 0

To answer RQ3, we included a group-level predictor in a model obtained
from the COCOMO dataset. Although the COCOMO dataset does not include
group-level predictors, we tried to include typical group predictors gained from
this dataset. This trial is to examine whether model extension by group-level
predictor is valuable for improvement of a model.

5 Results

5.1 Comparison of Estimates between FEM-Based and MEM-Based
ANOVA

Table 5 shows standard deviations of factors estimated from DS2 and DS3 by
MEM-based ANOVA. A factor with standard deviation near to 0 is insignificant
and a factor with large standard deviation is significant. MEM-based ANOVA
clearly identified significant factors F1 and F2 and an insignificant factor F3.
Thus, concealed and spurious impacts did not matter in case of straightforward
application of MEM-based ANOVA.

Table 6 shows estimated effects of factor levels. Results of ANOVA using fixed-
effects models were borrowed from [1]. ANOVA using fixed-effects models could
not estimate effects correctly for some factor levels because of concealed and

Productivity Reanalysis for Unbalanced Datasets with Mixed-Effects Models 285

spurious impacts. By contrast, MEM-based ANOVA could estimate all effects
exactly from DS2 and DS3 as same as fixed-effects ANOVA only did from DS1.

From these results, we concluded that MEM can tell importance of factors,
and can estimate effects of factor levels correctly from unbalanced datasets.

5.2 Comparison of MEM-Based ANCOVA and IPR

Table 7 shows estimated effects of remained factors by backward elimination
with MEM-based ANCOVA. Estimated effects of TIME, STOR, and SCED were
consistent with order of factor levels. Estimated effects of PCAP and RVOL were
not decreased or increased consistently with corresponding factor levels though
the trend of each factor from positive to negative was roughly consistent. IPR
also estimated inconsistent effects for PCAP and RVOL.

In case of PCAP and RVOL the difference among estimated effects was smaller
than their standard errors. Thus, this inconsistency did not matter statistically.
In the case that an consistent productivity model is required, IPR concatenated
some factor levels such that linear relationship is satisfied among estimated ef-
fects.

Table 8 shows results of MEM-based ANCOVA with concatenation approach.
Each factor was still significant after concatenation. In addition to PCAP and
RVOL, SCED also had fewer factor levels by concatenating Lax and Nominal.
As a result, each factor had consistent effects of its factor levels.

The study [1] used MMRE and PRED(20) as goodness of fit statistics.
Table 9 shows these statistics for MEM-based ANCOVA and IPR. MEM-based
ANCOVA clearly improved both statistics. Therefore, we concluded that MEM-
based ANCOVA could make a better productivity model regarding goodness
of fit.

MEM-based ANCOVA made a productivity model as follows:

ln(productivity) = ηTIME + ηPCAP + ηRV OL

+ηSTOR + ηSCED + α + β ln(Duration). (12)

Here, ηX corresponds to an effect of a factor level of X . All group-level intercepts
were united in α as shown by (10).

IPR made the following productivity model:

ln(productivity) = αTIME + αPCAP/TIME + αRV OL/TIMEandPCAP

+α + β ln(Duration). (13)

Here, for example, αPCAP/TIME indicates an effect of a factor level of PCAP
which was estimated after that for TIME.

Equation (12) included all factors in (13). It also included STOR and SCED.
SCED, STOR, and TIME were considered as confounded factors in [1]. It is
sufficient to include one of them in a model if they were confounded factors
because this means that they had the same effect on a response variable.

These contrast results, however, implicated that those factors were partially-
confounded. Partially-confounded factors are confounded factors each of which

286 S. Amasaki

Table 7. Estimated effects of remained factors by MEM-based ANCOVA

Factor Levels Effects(coefficients)

Nominal 0.424
High 0.176

TIME Very High 0.088
Extra High -0.115
Super High -0.573
Super High 0.399
Very High 0.140
High 0.051

PCAP Nominal 0.095
Low 0.033
Very Low -0.438
Super Low -0.280
Low 0.431
Nominal 0.231

RVOL High 0.439
Very High -0.257
Extra High -0.607
Super High -0.237
Nominal 0.423
High 0.079

STOR Very High 0.026
Extra High -0.146
Super High -0.383
Lax 0.284

SCED Nominal 0.251
Compressed 0.034
Very Compressed -0.569

ln(Duration) -0.022
(Intercept) 5.130

has some of its own contribution to a response variable. Kitchenham said that
IPR involves a risk that a partially-confounded factor might be removed unnec-
essarily. SCED and STOR were still significant factors and improved goodness
of fit statistics even if TIME was included. We therefore concluded that they
were partially confounded factors.

The difference between MEM-based ANCOVA and IPR was also found in
interpretation of factor level effects. In case of IPR, we say that logarithm of
productivity increases 0.681 when PCAP is Super High and after allowing for
the effect of TIME. In case of MEM-based ANCOVA, we say that logarithm of
productivity increases 0.333 when PCAP is Super High regardless of levels of
other factors. Because IPR estimated factor level effects from residuals, inter-
pretation of these effects was not straightforward and not intuitive.

Productivity Reanalysis for Unbalanced Datasets with Mixed-Effects Models 287

Table 8. Estimated effects of remained factors by MEM-based ANCOVA(with con-
catenation approach)

Factor Levels Effects(coefficients)

Nominal 0.476
High 0.209

TIME Very High 0.098
Extra High -0.137
Super High -0.647
Super High 0.333
Very High and High 0.104

PCAP Nominal 0.00
Low and Very Low and Super Low -0.441
Low and Nominal and High 0.465

RVOL Very High -0.061
Extra High and Super High -0.404
Nominal 0.413
High 0.074

STOR Very High -0.026
Extra High -0.122
Super High -0.340
Lax and Nominal 0.309

SCED Compressed 0.163
Very Compressed -0.472

ln(Duration) -0.019
(Intercept) 4.864

From these results, we concluded that MEM-based ANCOVA can produce a
model better than IPR. It is easy to apply, easy to interpret, and can include
partially-confounded factors.

5.3 Examination of Usefulness of Group-Level Predictors

In the past research using FEM-based ANOVA, discrete factors of ordinal scale
have often converted to continuous factors. Here, factor levels are converted to
numeric values in consistent with their order.

This conversion is useful in two situations. First, a dataset includes many
discrete factors and they make a model complicated, though it did not matter

Table 9. Goodness of fit statistics

Statistic IPR MEM-based ANCOVA (concat.)

MMRE 0.36 0.20(0.21)
PRED(20) 0.49 0.60(0.57)

288 S. Amasaki

Table 10. Effects of factor levels(with linear group-level predictor)

Factor Levels Effects(coefficients)

Nominal 0.000
High -0.240

TIME Very High -0.479
Extra High -0.719
Super High -0.958
Super High 0.508
Very High 0.290
High 0.162

PCAP Nominal 0.044
Low -0.157
Very Low -0.354
Super Low -0.494
Low 0.224
Nominal 0.000

RVOL High -0.224
Very High -0.448
Extra High -0.673
Super High -0.897
Nominal 0.039
High -0.281

STOR Very High -0.396
Extra High -0.484
Super High -0.841
Lax 0.171

SCED Nominal 0.084
Compressed -0.114
Very Compressed -0.708

ln(Duration) -0.018
(Intercept) 6.221

in case of IPR and MEM-based ANOVA. Second, effects of factor levels are
assumed to have linear relationship.

This conversion may be harmful in the case that effects of factor levels do not
have linear relationship. Linear assumption produces an inappropriate model. In
this case, it is preferable to use a discrete factor as is.

MEM can manage both possibilities using group-level predictors[6]. In the
case that a group-level predictor is included, Equation (10) is as follows:

yi = a0 + b0uj[i] + η1j[i] + βxi + εi. (14)

uj[i] is a group-level predictor and b0 is a coefficient of uj. Here, b0uj[i] + η1j[i]
corresponds to an effect of factor level j[i]. To assume linear relationship among
these effects, a continuous factor converted from a discrete factor is used to uj .

Productivity Reanalysis for Unbalanced Datasets with Mixed-Effects Models 289

Table 11. The difference of power between MEM-based ANCOVA and IPR and its
influence on productivity

Models min(Duration)p max(Duration)p

MEM-based ANCOVA(−0.018) 0.95 0.92
IPR(−0.177) 0.88 0.46

For example, PCAP has seven factor levels and therefore uj may take -3, -2, -1,
0, 1, 2, or 3 in accordance with its factor levels.

If estimated effects would have complete linear relationship, standard devia-
tion of η1j , σα, decreases to be 0. If not, uj is to be a insignificant factor. When
estimated effects would not have linear relationship but they would keep order
of factor levels, η1j and uj will contribute to effects.

Table 10 shows results of MEM-based ANCOVA with linear group-level pre-
dictors. Here, Nominal Level for each factor was converted to 0. In comparison
with Table 7, each factor had consistently ordered effects while the difference
between adjacent effects of each factor was not always equal. This modeling
keeps goodness of fit statistics MMRE = 0.21 and PRED(20) = 0.57. For
PRED(10), simple, concatenated, and linear MEM-based ANCOVA showed
0.35, 0.30, and 0.41, respectively. Thus, linear group-level predictors worked well.

This model also improved its understandability. Because Nominal Level of all
factors were near 0, it was easy to understand how logarithm of productivity
changes from Nominal level to other levels. Furthermore, we can easily obtain a
standard productivity model which assumes all factors are Nominal by adding
effects at Nominal Level and intercept. Here, standard productivity models from
MEM-based ANCOVA and IPR are as follows:

(productivity from MEM-based ANCOVA) = 594.1 · (Duration)−0.018 (15)

(productivity from IPR) = 625.2 · (Duration)−0.177 (16)

Baselines of these models were different by approximately 5% (625.2/594.1 �
1.05) and it did not matter here. The difference of their powers was critical.
Table 11 shows how the difference of powers influences on interpretations of
these productivity models. Here, a range of Duration in the COCOMO dataset
is from 2.0 to 72.0.

In case of MEM-based ANCOVA, productivity is assumed to be almost con-
stant between the shortest-term project and the longest-term project if they
are average projects regarding PCAP, RVOL, SCED, STOR, and TIME. By
contrast, a productivity model by IPR assumes that productivity of the longest-
term project is as half as that of the shortest-term project. This study preferred
MEM-based ANCOVA model to IPR model because of better goodness of fit.

From these results, we concluded that MEM can improve a productivity model
using group-level predictors.

290 S. Amasaki

6 Conclusion and Future Works

This study examined how mixed-effects models worked well for analyzing un-
balanced datasets. MEM-based ANOVA and ANCOVA could estimate all ef-
fects correctly from unbalanced datasets and they are easy to interpret. They
also could identify partially-confounded factors and could include them into a
productivity model simultaneously. As a result, MMRE and PRED(20) were
improved to 0.21 and 0.57. Furthermore, it was confirmed that group-level pre-
dictors were useful for improving understandability of a model.

Group-level predictors can be used for other purpose such as multilevel anal-
ysis. By using multilevel analysis, the difference among software development
organizations, teams, or countries may be explained by group-level characteris-
tics while considering individual-level characteristics. Examining mixed-effects
models for multilevel analysis is future work.

In terms of productivity analysis, other software data must be analyzed with
mixed-effects models. For example, public datasets on PROMISE repository[8]
such as cocomonasa datasets were easily obtained. We can expect new findings
from comparisons among results of these analyses.

References

1. Kitchenham, B.: A procedure for analyzing unbalanced datasets. IEEE Trans. on
Software Engineering 24(4), 278–301 (1998)

2. Kemerer, C.F., Paulk, M.C.: The impact of design and code reviews on software
quality: An empirical study based on psp data. IEEE Trans. on Software Engineer-
ing 35(4), 534–550 (2009)

3. Bazeghi, C., Mesa-Martinez, F.J., Renau, J.: µComplexity: Estimating processor
design effort. In: Proc. of 38th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 209–218 (2005)

4. Reinhartz-Berger, I., Dori, D.: OPM vs. UML – experimenting with comprehension
and construction of web application models. Empirical Software Engineering 10,
57–79 (2005)

5. Lawrie, D., Feild, H., Binkley, D.: Quantifying identifier quality: an analysis of
trends. Empirical Software Engineering 12, 359–388 (2007)

6. Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge University Press, Cambridge (2007)

7. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs
(1981)

8. Shirabad, J.S., Menzies, T.J.: The PROMISE repository of software engineering
databases. In: School of Information Technology and Engineering. University of
Ottawa, Canada (2005)

SAS: A Tool for the GQM+Strategies Grid Derivation
Process

Vladimir Mandić and Markku Oivo

Department of Information Processing Science, University of Oulu, Finland
{vladimir.mandic,markku.oivo}@oulu.fi

Abstract. GQM+Strategies is an approach designed to help the software indus-
try develop measurement programs that are aligned with business goals. The re-
sulting structure, which aligns metrics (GQM goals) and business goals, is called
a grid. Usefulness (quality) of the grids depends on how well the environment is
characterized by the grid elements. Our research objective was to construct a tool
which would support and improve the context/assumption definition and strat-
egy selection activities of the grid derivation process. The constructive research
work took place between two pilot applications of the GQM+Strategies approach.
The first one identified key requirements, while the second one was used to test
the tool. For the validation we used a questionnaire to assess practitioners’ feed-
back regarding usefulness of the tool. We augmented the GQM+Strategies tool-
box with the SAS tool. The principles used to design the tool complement the grid
derivation process and practices. Two industrial pilot applications of GQM+Strat-
egies demonstrated the usefulness of the SAS tool.

Keywords: GQM+Strategies, GQM, SAS, Strategies Abstraction Sheet.

1 Introduction

Software engineering (SE) researchers are confronted with the influence of the context
(environment) on empirical findings. The same influence is observable in the software
industry. A good solution for one company may not be so good for or can even be dis-
astrous for some other companies. Software metrics programs are especially vulnerable
to the influence of context [1]. Kautz [2] pointed out that decoding context is a key to
successful measurement programs; it is not a matter of following general principles and
guidelines, but of adjusting each to suit a specific company [2], [3]. Umarji and Seaman
[3] proposed contextual interviews to support metrics programs.

In the early 1990s, the GQM (Goal Question Metric) [4] approach was accompanied
by the Quality Improvement Paradigm (QIP) [5]. QIP is a set of heuristics that applies
iterative procedures to software quality improvement through systematic use of feed-
back information that is collected using goal-oriented measurements. The QIP cycle
includes the activity of characterizing the current project and its environment (con-
text). This provides a mechanism to deal with context when conducting GQM–based
measurement programs. In recent years, Basili et al. developed the GQM+Strategies1

1 GQM+S trategies R© is a registered mark of the Fraunhofer Institute for Experimental Software
Engineering, Germany and the Fraunhofer USA Center for Experimental Software Engineer-
ing, Maryland.

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 291–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

292 V. Mandić and M. Oivo

approach [6] with the explicit purpose of bridging the gap between business goals and
measurement programs at the operational level. The resulting structure, which aligns
metrics (GQM goals) and business goals is called a grid. The second novelty of the new
approach was that it was the first time a measurement approach was explicitly taking
business environment into account. Environment related information is documented as
a grid element, and is retrieved when interpreting metrics data.

Research work with GQM+Strategies is in the early phase; there are no published
practical experiences yet with the use of this method. The first version of the method
was published in 2007 as a white paper [6]. A series of publications was published to
illustrate the method’s usefulness on hypothetical examples [7], [8].

As a part of our previous research, two pilot applications of the GQM+Strategies
method were carried out with Finnish ICT companies. These pilots provided us with
valuable feedback about how to improve the derivation of the GQM+Strategies grid.
After the first pilot, we recognized the necessity of having appropriate tools that would
accompany the GQM+Strategies method. Under “tools” we consider not only soft-
ware applications, but also some additional procedures and methods. For example,
the toolbox should contain tools for structuring discussions, for visualization of the
GQM+Strategies grid, for analyzing relevant context, and so on.

In virtue of those needs we specified the objective of our constructive research as
the development of a tool with the purpose of improving grid derivation activities, such
as context/assumption definition and strategy selection. Based on feedback from the
first pilot, we selected two of the most important requirements that such a tool should
meet: ability to document relevant contextual information, and ability to guide/structure
group-discussion sessions.

We designed a strategies abstraction sheet (SAS) tool for the second pilot. The pilot
was used as early empirical validation of the tool. For the validation we used a ques-
tionnaire to assess participants’ feedback regarding the usefulness of the tool.

The rest of the paper is structured as follows. Section 2 gives a short overview of
the GQM abstraction sheet, and explains GQM+Strategies’ concepts and grid deriva-
tion process. The motivation for our constructive research is elaborated in Section 3
with discussion of the importance of context for the grid derivation. The strategies ab-
straction sheet tool is explained in Section 4. Early validation results are presented and
discussed in Section 5. Section 6 concludes the paper and states our final remarks.

2 Background and Related Work

The foundation of the GQM paradigm was laid out at the Software Engineering Lab-
oratory (SEL) in the beginning of the 1980s. Even though the method was originally
developed for research purposes, in a relatively short period it was recognized by the
software industry as a viable solution for establishing measurement programs. The
method quickly evolved beyond its initial purpose. Almost 30 years after inception of
GQM, the method’s evolution culminated with recent development of GQM+

Strategies.

SAS: A Tool for the GQM+Strategies Grid Derivation Process 293

2.1 GQM Paradigm and Abstraction Sheet

The main concepts of the GQM paradigm [4] are: goals, questions, and metrics. Goal
documents the objectives of measurements. Basili et al. [4] specified five dimensions of
a GQM goal as: object of study, purpose, quality focus, viewpoint, and context. Further
on, a set of questions operationally defines a GQM goal. Answers to the set of questions
should clearly indicate whether the goal is achieved or not. Finally, a set of measures is
associated with every question so as to answer it in a quantitative way.

The GQM paradigm advocates top-down metrics derivation, with the purpose of
ensuring a meaningful definition of metrics. The interpretation process goes bottom-up.
One of the benefits of the goal-driven measurement approach is the definition of what
data is really needed with the possibility to reuse metrics and questions for different
GQM goals.

The GQM approach package includes a GQM abstraction sheet [9], a tool for deriva-
tion of questions and metrics from GQM goals. The tool is used during interviewing
sessions or group discussions. One of the main advantages of the abstraction sheet tool
is its ability to expose implicit models and to formulate them into questions and met-
rics [10]. The structure of a GQM abstraction sheet is depicted by four quadrants and
a header. The header represents the GQM goal with five dimensions: object, purpose,
quality focus, viewpoint, and environment, while the quadrants [9] represent: (I) vari-
ation factors, (II) quality focus, (III) baseline hypothesis, and (IV) impact of variation
factors.

Interviewees are asked to propose relevant attributes to describe the goal’s quality
focus (second quadrant). Further on, the interviewees are expected to hypothesize val-
ues of the quality focus attributes (third quadrant). After that, a discussion of variation
factors and their impact on the baseline hypothesis takes place (first and fourth quad-
rants). If needed changes in quality focus and the baseline hypothesis can be made, the
entire process is iterative.

Because the interpretation process is seen as structured discussions and dialogs be-
tween the GQM measurement team and others (developers, managers, testers, analysts,
etc.), it is important to expose implicit models at the beginning when specifying the
data to be collected.

2.2 GQM+Strategies

GQM+Strategies [6], [8] is an extension of the GQM approach [4]. The GQM approach
provides a method for an organization or project to define goals, refine those goals down
to specifications of data to be collected, and then to analyze and interpret the resulting
data with respect to the original goals. However, it does not provide a mechanism for
linking high-level business goals to lower-level goals or supporting and integrating dif-
ferent goals at different levels of the organization, such mechanisms are provided by
GQM+Strategies.

GQM+Strategies introduced several new concepts: goals, strategies, context/assump-
tions, and interpretation model. Discernment is made between goal and GQM goal. The
goal is a business goal, and it can be very abstract and difficult to operationalize, while
GQM goals are also referred to as measurable goals. Business goals are further refined

294 V. Mandić and M. Oivo

“Elicit General Context &
Assumptions”

1. Gather the general context for
your organization
2. Identify general underlying
assumptions

“Define Top-Level Goals”

1. Identify an initial set of potential
high-level goals*
2. Prioritize goals and select most
important ones*
3. Formalize selected goals using
the goal template*

“Make Strategy Decisions”

1. Brainstorm potential strategies
for each selected high-level goal*
2. Decide on a strategy*

“Define Goals”

1. Elicit the implications of the
chosen strategy with respect to
the next level*
2. Identify potential goals (for the
chosen strategy)*
3. Select the most promising
goals considering feasibility, cost,
and benefit*
4. Formalize selected goals using
the goal template*

“Define GQM Graphs”

1. Define GQM goals for each
selected GQM+Strategies goal on
the appropriate level*
2. Specify the GQM graph for
evaluating the achievement of the
goal*
3. Identify relationships between
the interpretation models on this
level and ones for the level
above, if existing*

Can one or
more strategy be

refined (by another
goal level)?

Are there
GQM+Strategies

goals defined on the
next lower level

in the grid?

[Top-level
GQM+Strategies
goal is defined]

[No]

[Yes][Yes]

[No]

* In addition document context and assumptions

Fig. 1. GQM+Strategies grid derivation process. Source: [7].

by strategies. The end result of applying strategies is more concrete goals. Using this
mechanism, abstract business goals are brought to the level where operationalization is
possible. Business goals are formalized by using the business goal template (Table 1).
The template documents the basic activity that should be performed in order to accom-
plish the goal, the main (quality) focus of the goal, the object under consideration, the
quantification of the goal specified by a magnitude, the timeframe in which the magni-
tude has to be achieved, the scope, and basic constraints that may limit accomplishing
the goal. Furthermore, potential relationships with other goals are listed.

The Goal+Strategies element represents a single goal and derived strategies, includ-
ing all context information and assumptions that explain the linkage between the goal
and the corresponding strategies. The GQM graph is a single GQM goal that measures

Table 1. GQM+Strategies goal formalization template with “Splash” product example [7]

Goal template Example

Activity Increase
Focus Customer satisfaction

Object “Splash” product
Magnitude 10% reduction in number of customer complains
Timeframe 12 weeks after release, beginning in one year

Scope (Context) Web products development division, Splash product manager
Constraints Splash price and functionality ability to sustain CMMI levels

Relations Can conflict with development cost goals, schedule goals, etc.

SAS: A Tool for the GQM+Strategies Grid Derivation Process 295

the element. The GQM+Strategies grid is an integrated collection of all GQM+Strate-
gies elements, GQM graphs, and all links.

GQM+Strategies also introduces the concept of levels. Top-level business goals exist
on strategic levels. Furthermore, the goal derivation process addresses lower levels (e.g.,
the operational level). The concept of levels is convenient for grouping and organizing
GQM+Strategies elements.

The entire process of deriving business goals and measurable goals is consolidated
through the interpretation model. During the interpretation process, measured GQM
goals and the status of the context/assumption variables influence assessment of busi-
ness goal realization.

The GQM+Strategies grid deviation process [7] is flexible and allows different ap-
proaches, starting from top-level business goals down to addressing lower-level goals
or vice versa. During the derivation process, two parallel threads are running (Figure 1):
(1) one is related to defining business goals, context/assumption elements, and strate-
gies for addressing goals, and (2) the other is related to defining measurable goals and
actually deriving the GQM graph.

In the following we give an overview of the grid derivation process [7].

Elicit General Context and Assumptions. The organizational (business) environment
is modeled by specifying context factors and assumptions.For example, corporate vision
and mission statement represent general context elements for top-level business goals.

Define Top-Level Goals. First, an initial set of high-level goals is identified. Second,
the goals have to be prioritized and analyzed for potential conflicts. Third, the selected
goals are formalized using the GQM+Strategies goal template (Table 1).

Make Strategy Decisions. First, a list of potential strategies for achieving the business
goals is identified. Second, the most promising strategy has to be selected, considering
the cost and benefit analysis.

Define Goals. If it is possible to refine strategy by another goal level, first the impli-
cations of the chosen upper-level strategies with respect to lower level goals have to
be determined. Second, potential lower-level goals are identified based on the analysis.
Third, the most promising goal with respect to feasibility, cost, and benefit is selected.
Fourth, the most promising goals are selected and formalized using the GQM+Strate-
gies goal template.

Creating the measurement branch of the grid for each goal and strategy level is not an
isolated task; that is, the metrics derived across different levels of the GQM+Strategies
model will usually overlap. Moreover, an interpretation model for a higher-level goal
may only be defined completely if the lower-level pieces have already been modeled.

Define GQM Graphs. The GQM Graph derivation process is well documented in the
literature2.

2 For example, see: van Solingen, R., Berghout, E.: The Goal/Question/Metric Method. The
McGraw-Hill Company, Maidenhead; England (1999).

296 V. Mandić and M. Oivo

3 Importance of Context

In everyday life, the term context is often used, and its meaning is understandable.
According to Webster Dictionary3: context [noun] /Date: circa 1568/ (1): the parts of a
discourse that surround a word or passage and can throw light on its meaning (2): the
interrelated conditions in which something exists or occurs: environment, setting.

A more computer-science related formulation of the context is circumstances or sit-
uations in which a computing task takes place [11]. All these definitions refer to con-
text as surroundings or environment. GQM+Strategies specifies the concepts of context
and assumptions which differ slightly, but at same time are related to the general under-
standing of context as environment. Context/assumption elements are used to document
(model) environment. Facts about the environment are modeled with context variables,
while uncertainties are modeled as assumptions (predictions) [6].

We differentiate external from internal environment. The most natural way to define
external environment is as circumstances beyond corporate (organizational) boundaries
(e.g., the market, technology, etc.), while internal environment is a characterization of
the organization itself. This differentiation of environments is important, because often
internal environment is neglected and more attention is given to external environment.

Context (environment) has much deeper implications on a grid derivation process
than just documenting context/assumption elements. Any decision, especially a strate-
gic one, depends on numerous contextual conditions, and on an infinite number of com-
binations of those conditions. Therefore, decisions are based on a simplified view of the
context. Such simplification is possible because only the finite subset of context vari-
ables is relevant for a given situation and related decisions [12].

The decision about which business goals are selected/defined depends on the context.
The decision about which strategies will be defined/used to achieve those business goals
also depends on the context. Actually, the entire GQM+Strategies grid is shaped by
contextual information.

High-quality GQM+Strategies grids have an ability to guide an organization in
achieving their business goals and strategies. That ability depends on the methods ca-
pability to “capture” relevant context (internal and external environment). GQM+Strat-
egies adaptation can be successful only if it produces high-quality grids.

In the following section we will introduce the strategies abstraction sheet (SAS).
Our intention is to emphasize the importance of context when defining or selecting
strategies, and therefore we call it a strategies abstraction sheet.

4 Strategies Abstraction Sheet (SAS)

Our work extends the state of the art and practices by augmenting the GQM+Strate-
gies toolbox with the SAS tool. The tool is designed for use with the GQM+Strategies
approach, with the purpose of exposing relevant contextual information. The relevant
contextual information is of high significance for the context/assumption definition and
strategy selection activities of the grid derivation process. The principles used to design
the tool, such as variation factors analysis and context dynamics analysis, complement

3 Merriam-Webster Online Dictionary: http://www.merriam-webster.com

SAS: A Tool for the GQM+Strategies Grid Derivation Process 297

the grid derivation process and practices. To the best of our knowledge, this is the first
such tool.

4.1 SAS Research Requirements

SAS is designed as an effective tool4 for the grid derivation process. We define ef-
fectiveness as the capability of the grid derivation process to maximize the impact
of context on the resulting GQM+Strategies grid by documenting the relevant subset
of contextual variables and assumptions. This we will consider as our main research
requirement (R1).

Requirement R1: Construct a tool which is able to elicit implicit knowledge about
contextual variables and assumptions for GQM+Strategies business goals.

Usually business related decisions are made in closed groups of people. Therefore,
we recognize the need for the tool to be able to manage group sessions by guiding
(focusing) and structuring discussions. This is the second research requirement (R2).

Requirement R2: Construct a tool which is able to facilitate sessions of experts’ group-
discussion during the GQM+Strategies grid derivation process.

An implicit requirement for a tool that aims to guide experts’ group-discussion
sessions is to address threats to the session results. The threats are conformity, bias,
and personality. Conformity manifests the tendency of individuals to self-correct theirs
opinion according to the group’s opinion. Also, some individuals can be biased if their
opinion is under the influence of seniors or executives. Naturally, different people have
different personalities, some of them “speak loudly” and try to impose their opinion,
while others are more closed and quiet.

Alike the GQM abstraction sheet, the structure of SAS is organized around four quad-
rants. Navigation through an abstraction sheet adds new principles to existing ones, and
we refer to them as the logic of SAS.

In parallel with the description of the logic of SAS, a hypothetical example will fol-
low. The purpose of the example is to illustrate steps and not to present a real-world
case example. Even with a real-world example, it is impossible for an outside reader to
determine the relevance of contextual elements. The example illustrates the hypothet-
ical use of the SAS tool for the business goal given in Table 1 (the “Splash” product
example), and it is not related to the pilot project used for validating the tool.

In the following sections we will present the structure, and explain the logic of SAS.

4.2 The Structure of SAS

The structure of SAS resembles GQM abstraction sheets, with four quadrants and a
header, but with the addition of a footer (Figure 2). Some principles from the abstraction
sheet were kept here, such as one sheet representing one business goal. The abstraction
sheet is used for exposing implicit models; now in our case, those models are contextual
variables and assumptions.

4 At this point our definition of the tool is as a concept and a set of procedures for how to use it,
not a software application.

298 V. Mandić and M. Oivo

ACTIVITY FOCUS OBJECT SCOPE (CONTEXT)

CONSTRAINTS

MAGNITUDE

TIMEFRAME

STRATEGIES:

Context Focus

Variation Factors

Impact of Variation Factors

Baseline Hypotheses

Splash price and
functionality

Customer
Satisfaction

Product
“Splash”

Web products
development division,
Splash product manager

Increase

10% reduction in # of
customer complains

12 weeks after release, starting
in 1 year

H(2.) Non-
standardized
code testing
practices

1.) Process maturity of web products
development division

2.) Testing practices or software testing
process

H(1.) Ad-hoc
process (70%
projects on
CMMI level 1)

H(1.) All
project at
CMMI level 2

H(1.)
Transition to
CMMI level 2

H(2.) Proper
VAL and VER
practices
(CMMI)

V2.) Tool support for testing practices

V1.) Deviations from software process
improvement plan

I(V1):
* NOT having all projects at CMMI level 2
* decrease of customer satisfaction as effect
of implementing CMMI maturity level 2
practices

I(V2):
* in-house development of support tool
* development of product support library

S1. Build reliability in (e.g., implement fewer defects)
S2. Test reliability in (e.g., remove more defects)

NOW TIMEFRAME END

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.
Step 6.

Step 7.

Step 0.

Fig. 2. Strategies Abstraction Sheet (SAS). Illustrated on “Splash”example.

The four quadrants of the strategies abstraction sheet are: (I) variation factors, (II)
context focus, (III) baseline hypothesis, and (IV) impact of variation factors.

GQM+Strategies business goals are more complex than GQM goals. They are de-
fined by eight elements (goal formalization template Table 1); herein the SAS structure
is more complex. The header of a SAS presents four elements (dimensions) of a busi-
ness goal: activity, focus, object, and scope.

Constraints are presented as designated context focus elements in the second quad-
rant. They indeed represent the special context elements. They are special because we
take them for granted, usually because we do not have mechanisms to affect them or to
change them. It is possible that some context focus elements became constraints after
analyzing variation factors.

SAS: A Tool for the GQM+Strategies Grid Derivation Process 299

The magnitude and timeframe of a business goal are depicted in the form of the third
quadrant’s header. The magnitude quantitatively characterizes the degree of change.
The nature of the change is specified by activity and focus goal elements. Timeframe
can be specified in a qualitative and/or quantitative manner, but in such a way that allows
calculation of absolute time (calendar time).

The entire baseline hypothesis quadrant (third quadrant) is divided into three
columns which represent a simplified time-line. The first column represents the cur-
rent moment (NOW column, Figure 2), while the third column (TIMEFRAME END
column) is reserved for the future moment when the achievement of the business goal
is expected.

The first and fourth quadrants are used for analysis of variation factors. After doc-
umenting relevant contextual information for why a business goal is or is not realistic,
strategy proposals are written down in the footer section.

4.3 The Logic of SAS

The business goals and strategies definition/selection is usually done by a group of peo-
ple. Therefore, the SAS tool will rarely be used in one-on-one interviewing sessions.
After having defined a business goal according to the GQM+Strategies goal formal-
ization template (Table 1), the initial step is to collect context focus proposals. This is
achieved by SAS scoring.

Step 0 and Step 1: SAS Scoring and definition of context focus elements. A con-
venient way to nominate relevant context focus elements is to use a simple scoring
mechanism —SAS scoring. Before the scoring, the business goal is depicted in the ab-
straction sheet as described in Section 4.2 (Step 0). Scores are obtained by probing the
question: Is the goal realistic (feasible)?

The four-point scoring scale is defined as follows: (1) The goal is extremely unreal-
istic, (2) The goal’s feasibility is questionable (uncertain), (3) The goal is feasible with
acceptable level of uncertainties, and (4) The goal is realistic.

The purpose of scoring is to initiate discussion about relevant context focus elements.
Accordingly, the scoring scale is designed in such way as to force opinion from partic-
ipants, negative opinion (presented with lower points, 1 and 2), or positive opinion (3
and 4); there is no mid-point for neutral answer. Scoring is very useful in guiding group
sessions; the extreme negative or positive opinions should be discussed first.

The initial definition of context focus elements (Step 1 in Figure 2) is done after
analyzing (discussing) why participants believe that goal is or is not feasible.

EXAMPLE. For the business goal given in Table 1, the participants responded with
negative opinions regarding goal feasibility. Their concerns were that a software devel-
opment process has chaotic behavior and that testing practices were not uniform across
the entire development process. As a result of discussion, an agreement was reached
for two context focus elements (Figure 2): 1.) Process maturity of the web products
development division, and 2.) Testing practices or a software testing process.

Step 2: Hypotheses setting. After defining relevant context focus elements, the next step
is to determine the current status of context elements. It is possible to set hypotheses in

300 V. Mandić and M. Oivo

quantitative or in qualitative (descriptive) form. Quantification, if possible, is welcomed
because it can significantly increase understanding of context among participants.

The current status of context elements is documented in the first column of the base-
line hypotheses quadrant (Step 2 in Figure 2).

EXAMPLE. For the context focus elements defined in the previous step (Figure 2) the
baseline hypotheses were defined as: H(1.) Ad-hoc process with 70% (majority) projects
on CMMI level 1, and H(2.) Non-standardized code testing practices.

Regarding testing it was noted that testing efforts are more focused on code (unit
testing) than on other forms of testing.

Step 3: Analyzing the dynamics of context focus. Changes in environment are per-
ceived through the time component. The ability to define/make good strategy is depen-
dent on the ability to predict future changes or events in the environment (e.g., market
changes or a shift to the new paradigm or technology, etc.). Therefore, in this step
participants are asked to describe/predict how the baseline hypotheses will look in the
future when it is expected to reach a business goal (when the timeframe expires).

EXAMPLE. The timeframe for analyzing context dynamics was about 1.5 years, ac-
cording to the business goal timeframe: 12 weeks after release, starting after one year.
The important question was how the context elements would look in 1.5 years’ time.
The predicted future status of the context focus elements were: H(1.) All projects at
least at CMMI level 2, and H(2.) Proper VAL and VER practices (CMMI terminology)
implemented.

For the first context focus H(1.), it was known that it will be affected by software
process improvement plans and the transition to CMMI level 2, while for the testing
practices H(2.), there was an evident need to implement validation and verification prac-
tices in order to increase satisfaction of customer needs and requests. However, those
practices are CMMI level 3 practices, and participants were not specific as to when or
how the implementation could occur (mid-column was left blank in Figure 2).

Step 4: Defining variation factors. Variation factors analysis (Steps 4 and 5) is one of
the major benefits of using the SAS tool for grid derivation. Any strategic decision is
a consequence of environment (context); therefore it is important to document relevant
context information. However, we do not have the technology nor the capability to doc-
ument all of the numerous contextual facts and variables, but just a limited subset. The
objective is to ensure the presence of the most relevant contextual facts and variables
inside that limited subset. One important mechanism to achieve that is variation factors
analysis.

In Step 4 all related events that have or could have influence on context focus ele-
ments are discussed and the most significant ones are documented as variation factors.

EXAMPLE. The possible variation factors were specified as (Figure 2): V1.) Deviations
from the software process improvement plan, and V2.) Tool support for testing practices.

For the majority participants, the software process improvement plan was considered
ambitious. With a history of constant priority changes by managers, it is expected that

SAS: A Tool for the GQM+Strategies Grid Derivation Process 301

some process improvement initiatives will be postponed. Secondly, the level of adopting
new testing practices depends on adequate tool support. Particularly, it was pointed out
that some changes in product architecture and design could enable efficient defects
detection and reporting even before a customer reports them as issues.

Step 5: Specifying impact of variation factors. In this step, the possible implications
of the variation factors are specified and documented.

EXAMPLE. For the identified variation factors (Figure 2), the impacts of variation
factors were perceived as: I(V1.) Not having all projects at CMMI level 2, and decrease
of customer satisfaction as effect of implementing CMMI maturity level 2 practices,
and I(V2.) The need for in-house development of a support tool, and development of a
product support library.

Step 6: Analysis of variation factors impact and documenting context/assumption
elements. After having done the variation factors analysis (previous two steps), we
analyzed the impact of variation factors on the baseline hypotheses. We see this step as
the point when it is possible to determine if relevant information regarding environment
(context) will be considered as a context or an assumption element of the GQM+Strate-
gies grid. Also, it is possible that the impact of variation factors is so large that it reveals
serious problems with the goal’s dimensions, such as magnitude and timeframe. In that
case, it is necessary to iterate the goal definition step and to change it.

Analysis of the impact of variation factors is crucial for shared understanding of
context (environment) among participants, and only after a common understanding is
reached it is possible to document the most relevant context and assumption elements.

EXAMPLE. For the example in Figure 2, the following context elements were
documented:

[C1] Web products’ development process is immature, with the majority of projects
at CMMI level 1

[C2] Testing procedures are not standardized and are focused on code (unit) testing
[C3] A CMMI-based software process improvement initiative is ongoing

Assumptions:

[A1] In time for the first release after one year, all projects will be at least at CMMI
ML2

[A2] Stabilizing the development process on ML2 will not have impact on customer
satisfaction

[A3] Implementing VAL and VER practices will contribute to increasing customer
satisfaction

[A4] In-house development of needed testing tool support and product support li-
braries is possible within given timeframe (1.5 years)

For example, without analysis of variation factors’ impact, the assumption [A1] would
be documented as a context element. Participants were so certain of the hypothesis

302 V. Mandić and M. Oivo

H(1.): ”all projects at CMMI level 2” in Step 3 that they would took it as a context
element instead of an assumption.

To establish proper VAL and VER practices, an additional effort has to be invested
in establishing those practices and developing some custom-made in-house solutions.
The question of whether all that could be done in one and half years was answered by
assumption [A4], that such development is possible. The possible scenario might be
that, on the lower level (operational level), developers who were supposed to do the
actual work of development while at same time defining their goal, set an assumption
which would negate (contradict) assumption [A4]. Even if they have sufficient evidence,
they could set a context element which would negate assumption [A4]. Such a situation
has to be addressed during feedback sessions when the entire grid is presented and
discussed.

Step 7: Elicitation of strategy proposals. The result of the previous steps should be
a common understanding of the business goal’s context among participants and docu-
mented relevant context and assumption elements. The final step, Step 7, has an objec-
tive to elicit a set of strategy proposals. Those strategies are considered in the “Make
Strategy Decisions” activity of the grid derivation process (Figure 1).

EXAMPLE. Strategy proposals for the example case (Figure 2) were: S1. Build relia-
bility in (e.g., implement fewer defects), and S2. Test reliability in (e.g., remove more
defects)

In general, the strategy proposals are in the direction of avoiding (minimizing) ob-
stacles (problems) or in the direction of utilizing advantages, identified during context
analysis, or a combination of both.

The SAS tool provides useful mechanisms to address conformity, bias, and person-
ality threats. Those mechanisms are SAS scoring and variation factors analysis. Before
the scoring, there are no discussions which could affect individual opinions; the act of
scoring should be done simultaneously by all participants (we used printed cards with
numbers; scoring was done by raising cards). The act of scoring provides the starting
position, which is not affected by the threats. After collecting the initial context fo-
cus proposals, variation factors analysis is aimed at providing equal opportunity for all
participants to justify their evaluation (score) through an analytical process. The most
serious threat is personality; the moderator of the session should take care of different
existing personalities. The bias, especially between senior executives and lower levels,
can be significant. A good strategy to deal with it is to separate groups and to facilitate
multi-sessions during the grid derivation process.

5 Early Validation

In our previous research we did two pilot applications of the GQM+Strategies method
with two Finnish companies. The first pilot was done within an ICT company which
has been present in the market for more than 15 years. In that period it has grown from
a small company to a multinational organization, having operations in nine countries
worldwide. The main focus of the company is development of the tools for testing spe-
cific systems. The second pilot was carried out within a division of a large international

SAS: A Tool for the GQM+Strategies Grid Derivation Process 303

ICT company with 24 branches on three continents (North America, Europe, and Asia)
and over 4.000 employees. The primary products of the company are the embedded
systems used in telecommunications. The software development unit where the pilot
was carried out is located in Finland, has about 20 software engineers, and the entire
site employs over 100 people.

During our first pilot, we recognized the requirements for a tool. Therefore, in the
preparation phase for our second pilot, we designed the first version of the tool. The
second pilot project consisted of two group sessions. At the end of the second pilot,
during the feedback session, we used a questionnaire to assess practitioners’ opinions
regarding the usefulness of the GQM+Strategies approach and the SAS tool.

5.1 Design of Questionnaire

The questionnaire contained multiple-choice questions regarding the GQM+Strategies
method and the SAS tool. We decided to validate the tool requirements (R1 and R2, Sec-
tion 4) with one question each. Here we will focus only on the SAS relevant
questions.

Question A addresses requirement R1, How well did the resulting grid represent and
document your context (external and internal environment)? The answers were given
on a scale from 1—context is poorly represented and documented—to 5—all contextual
elements are well represented and documented, or 0—do not know.

Question B addresses requirement R2, How much did the SAS tool help in focusing
and structuring brainstorming discussions? The answers were given on a scale from
1—did not help at all—to 5—it helped significantly, or 0—do not know.

5.2 Results and Discussion

Results of the questionnaire are given in Table 2. Overall, 12 people participated in the
study. Three (25%) were representatives of top-management, four (33%) were from mid-
level management, and five (42%) were developers representing the operational level.

The practitioners agreed that the resulting GQM+Strategies grid documented their
context adequately (Mode=3,4). While in the second question we identified one outlier,
after further data examination we concluded that this one participant was not present
in the sessions when the tool was presented and used. Therefore, we excluded that data
point and recalculated the descriptive statistics (Question B*). According to the results,
there was a consensus among practitioners that the SAS tool helped in structuring dis-
cussions during the GQM+Strategies grid derivation process (Q1 = Median = 3 and
Q3 = 4).

Table 2. Descriptive statistics for the questionnaire results for the questions A and B. Outliers
were identified as observation X for which: X < Q1 − 1.5 · IQR or X > Q3 + 1.5 · IQR is true.

Requirement N Min. Mode Max. Range Q1 Median Q3 IQR Outliers

Question A R1 12 2 3, 4 4 2 3 3 4 1 0
Question B R2 12 0 3 4 4 2.5 3 4 1.5 1
Question B* R2 11 2 3 4 2 3 3 4 1 0

304 V. Mandić and M. Oivo

We refer to this study as an early validation because it is the very first application
of GQM+Strategies that used the SAS tool. In the case where participants have had no
prior experience with or knowledge about GQM and the GQM abstraction sheet, we see
these results as very encouraging.

To these results we will add our observations made during the pilot projects. Compar-
ing the first pilot, where we had no tool for guiding group discussions, with the second,
where we used the SAS tool, the result was documented, relevant contextual informa-
tion with much less effort. Top-management representatives, who had no prior expe-
rience with the GQM abstraction sheet, at first tried to compare SAS with the SWOT
(Strength, Weaknesses, Opportunities, Threats) tool. Therefore, a comparison of SAS
and SWOT tools should be included when presenting SAS to such an audience.

5.3 Validation Validity

The major threat to internal validity was the small subject-group, which was at the
same time one of the project constraints. For this type of project, it is very difficult to
obtain a larger group of participants with adequate representatives from all hierarchical
levels. One possibility to address small subject-groups is to ask more questions. We
decided to limit the length of the questionnaire as the only way to get commitment
from the top-level executives. Therefore, we find it important to replicate this study
and to increase the tool’s experience base. Further replications will also contribute to
addressing external validity. The subjective opinion of the participants is in favor of the
SAS tool helping them in their case, but still it is not a guarantee that it will be equally
successful in other cases.

In similar empirical studies, introducing a couple of new things at the same time
would be considered a threat to validity. In our case, introducing the concepts of the
GQM+Strategies method and the SAS tool had a positive-loop effect. The tool helped
in understanding the method’s concepts from a different angle, while the method helped
in explaining the structure of SAS. The only disadvantage is that the method evaluation
questions had priority over the tool evaluation questions when the limited space of the
questionnaire has been distributed.

6 Conclusions

Without a proper understanding of context information it is virtually impossible to de-
fine and especially interpret software metrics. Context information needs to be defined
in the early phases of measurement planning. GQM+Strategies enhances the GQM ap-
proach with explicit linking of metrics and measurement goals to strategy and busi-
ness goals. The definition of business context is required in GQM+Strategies planning
and interpretation activities. The main contribution of this paper is the introduction
and early validation of the SAS (Strategies Abstraction Sheet) tool which helps in the
GQM+Strategies grid derivation process. The logic of the tool is described and the de-
scription is supported with a practical example.

The SAS tool supports and improves the context definition and strategy selection
activities of the grid derivation process. The tool is based on a concept and set of

SAS: A Tool for the GQM+Strategies Grid Derivation Process 305

procedures for how to use it. The SAS tool is not a traditional software application.
The requirements for the tool have been elicited during an industrial pilot application
of GQM+Strategies. The design principles include variation factors analysis and con-
text dynamics analysis, complemented by the grid derivation process and practices.
The validation of the tool has been carried out during the second pilot application of
GQM+Strategies. The two pilot applications demonstrate the usefulness of the tool. The
use of the tool helped structure discussions during the GQM+Strategies grid derivation
process. The resulting GQM+Strategies grid documented their context adequately with
much less effort by the tool users.

We recognize that the final validation of the tool requires further empirical research.
Replication of this kind of study is challenging, but this early validation is already very
encouraging.

References

1. Woodall, W.: Controversies and contradictions in statistical process control. Journal of Qual-
ity Technology 32(4), 341–350 (2000)

2. Kautz, K.: Making sense of measurement for small organizations. IEEE Software 2(16), 14–
20 (1999)

3. Umarji, M., Seaman, C.: Why do programmers avoid metrics? In: 2nd ACM-IEEE inter-
national symposium on Empirical software engineering and measurement (ESEM 2008),
Kaiserslautern, Germany, pp. 129–138 (2008)

4. Basili, V., Caldiera, G., Rombach, D.: Goal question metric paradigm. In: Marciniak, J. (ed.)
Encyclopedia of Software Engineering, vol. 1, pp. 528–532. John Wiley & Sons, Inc., New
York (1994)

5. Basili, V.: The experience factory and its relationship to other improvement paradigms. In:
Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS, vol. 717, pp. 68–83. Springer, Heidel-
berg (1993)

6. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Rombach, D., et al.: Bridging
the gap between business strategy and software development. In: Twenty Eighth International
Conference on Information Systems, Montreal, Canada, pp. 1–16 (2007)

7. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Seaman, C., Regardie, M., et al.: Determin-
ing the impact of business strategies using principles from goal-oriented measurement. In:
Internationale Tagung Wirtschaftsinformatik, Wien, Austria, vol. 9, pp. 1–10 (2009)

8. Basili, V., Lindvall, M., Regardie, M., Seaman, C., Heidrich, J., Münch, J., et al.: Linking
software development and business strategy through measurement. IEEE Computer 43(4),
57–65 (2010)

9. van Latum, F., Oivo, M., Hoisl, B., Ruhe, G.: No improvement without feedback: Experi-
ences from goal-oriented measurement at schlumberger. In: Montangero, C. (ed.) EWSPT
1996. LNCS, vol. 1149, pp. 167–182. Springer, Heidelberg (1996)

10. Briand, L., Differding, C., Rombach, D.: Practical guidelines for measurement-based process
improvement. Technical report, TR-ISERN-96-05, University of Kaiserslautern, Germany
(1996)

11. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in perva-
sive computing systems. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002. LNCS,
vol. 2414, pp. 79–117. Springer, Heidelberg (2002)

12. DeRose, K.: Contextualism and knowledge attributions. Philosophy and Phenomenological
Research 52(4), 913–929 (1992)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 306–320, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Understanding the Influential Factors to
Development Effort in Chinese Software Industry

Mei He1, He Zhang2, Ye Yang1, Qing Wang1and Mingshu Li1

1 Laboratory for Internet Software Technologies
Institute of Software, Chinese Academy of Sciences

hemei@itechs.iscas.ac.cn
2 National ICT Australia

University of New South Wales, Australia
he.zhang@nicta.com.au

Abstract. A good understanding of the influential factors to software develop-
ment effort and further precise effort estimate are undoubtedly crucial to any
cost-effective and controllable software development projects. In most effort es-
timation researches, a large dataset is always a necessary basis of estimation
modeling, model calibration and method validation. Among them, different at-
tributes and characteristics of project data will to a large extent affect the appli-
cable scope of particular research result. This research aims to identify the
factors that significantly influence development effort, and to investigate how
the influence works in Chinese software industry. In this study, six factors and
their relationships to development effort are analyzed, prioritized and discussed
based upon the dataset recording 999 projects from 140 software organizations
in China. In terms of our analysis and findings, some suggestions for effort es-
timation and control are extracted to assist software practitioners in coping with
various types of software projects.

1 Introduction

Software development is considered to be a human-intensive process, and its main
cost is largely determined by the effort taken in it. Thereby, a good understanding of
the influential factors to software development effort and further precise effort esti-
mate are undoubtedly crucial to any cost-effective and controllable software devel-
opment projects. Moreover, as software process improvement has been widely
accepted and adopted in software industry, the organizations need more reliable and
effective methods in predicting and quantitatively controlling project cost in order to
improve their process management.

In the research of software development effort estimation, various techniques, like
expert judgment, algorithm-based models, analogy and machine learning, have been
proposed and applied. However, it is difficult to get consensus on which model or
method is better than the others [1], [2]. Furthermore, no matter what technique is
used to estimate software development effort, it is always one of the key concerns of
software practitioners: “What factors do influence software development effort and
how they influence?” [1], [3].

 Understanding the Influential Factors to Development Effort 307

In most effort estimation researches, a large dataset is always a necessary basis of
estimation modeling, model calibration and method validation. Among them, differ-
ent attributes and characteristics of project data will to a large extent affect the appli-
cable scope of particular research result. For example, the accuracy of some model
might be relatively high, but the difficulty in obtaining model inputs would be the
holdback to its wide application.

This paper aims to revisit the influence of the typical factors to software develop-
ment effort, but in the context of Chinese software industry. The large-scale dataset
used in this research stores the project data of 999 projects from 140 software organi-
zations throughout China. It can be used to investigate the status quo of software
development in China and to explore what factors affect development effort in these
projects. Especially in this study, we attempt to identify the factors that significantly
influence software development effort, and to investigate how they influence. Some
suggestions for effort/cost estimation and control can be extracted to assist software
practitioners in coping with different types of software project.

This paper is structured as follows. Section 2 briefly introduces the dataset used in
this study, enumerates the typical influential factors to effort and the associated re-
search questions. Next, modeling and analysis procedure and results are described in
Section 3. Section 4 discusses the significance of the results for answering the re-
search questions with comments. Our conclusions are drawn in Section 5.

2 Research Questions and Related Work

This section introduces the dataset used in this study, discusses the possible influential
factors with the related work, and proposes the corresponding research questions.

2.1 CSBSG Dataset

The dataset used in this paper is from China Software Benchmarking Standard Group
(CSBSG). The CSBSG was established in 2006, and it aims to encourage and estab-
lish domestic benchmarking standards for system and software process improvement
in Chinese software industry. The database was founded and is being maintained by a
number of Chinese organizations within China Software Process Improvement Net-
work (CSPIN). The dataset used in our study is the latest version of CSBSG database,
recording 999 software project data from 140 organizations located in 15 re-
gions/provinces across China.

Although each project has many metrics recorded, this study only introduces those
typical factors that possibly influence development effort and were relatively well
recorded in the dataset. In fact, many of those factors have been discussed by other
researchers, but there exist significantly different conclusions for each of them. For
example, no agreement has been reached yet on whether new development costs more
effort than enhancement. In this study, such influences with contradictious discussion
are examined based on the analysis of our dataset.

308 M. He et al.

2.2 Project Size

Obviously, Project Size (PS) is an essential parameter for effort estimation that the
majority of mainstream and classical effort estimation models all have used it as a key
estimator. Particularly during the development of algorithm-based effort estimation
models, a number of researchers have chosen the very similar formula in general like
Effort=A+B*(Size)C, which explicates the close relationship between size and effort.
For example, COCOMO, a well-known and widely adopted series of models for cost
estimation, has continued to use the same form (as shown in Equation 1) for years.

() ()B
PM A Size EM∑= × ×∑ ∏ (1)

Hereby, in terms of our dataset, the first research question emerges as:

RQ1: How does project size influence software development effort?

2.3 Team Size

Team Size (TS), in previous researches, has been identified as a variable influencing
software productivity or effort [4], [5], [3], [6], and most of them agreed that increas-
ing team size will reduce productivity or increase effort. In [3], [6], both the average
team size and peak team size had been observed and recorded. In this paper, TS is
referred to the maximum number of members involved in the entire project life-cycle,
as it is easier to measure than average team size over the project.

RQ2: Will a larger team size cause extra expense in effort?

2.4 Duration

Duration (DUR) is measured with calendar days in this study, i.e. the number of days
from the project commencement date to the end date (holidays inclusive). Some pre-
vious researches discussed the relation between productivity and duration. In [4], the
authors found a seeming good regression model while adding duration, lines of code
and team size together as independent variables, but they thought that is roughly the
definition of lines-of-code (LOC) productivity and thus added nothing to their knowl-
edge. In terms of our project data, the recorded DUR is much longer than the expected
schedule by experience; whereas, some projects even spent less than 3 man-hours a
day. One possible explanation is that project members took part in multiple projects
concurrently, and it could be another case that the schedule pressure was not much.
Then another practical question comes out:

RQ3: Will deadline extension cause additional waste of development effort?

2.5 Development Type

Development Type (DT) indicates whether a software project is new development, re-
development, or enhancement. Some researchers considered new development costs
more effort than enhancement [3], and explained that while new development starts
everything from scratch, software enhancement simply adds, changes, or deletes
software functionality of legacy systems to adapt to changes in business requirements

 Understanding the Influential Factors to Development Effort 309

[7]. On the other hand, some found no significant difference between them [8]. Some
new development projects in ISBSG database also show higher productivity [9].
There is no consensus so far, and here we intend to revisit the influence in our dataset.

RQ4: Does new development really cost more effort than enhancement?

2.6 Business Area

Business Area (BA) denotes the types of business within the organization or industry
that the project/product will support. CSBSG dataset covers 13 business areas, i.e.
Telecom, Transport, Finance, Retail & Inventory, Media, Energy, Generic, Health
Care, Public Administration, Manufacturing, Construction, Education and Society
Service. Nevertheless, the last three areas are not included in the later analysis due to
the relatively small number of projects recoded in the dataset (less than 10).

BA has been identified as one of the most significant factors influencing productiv-
ity for times [4], [10], [8], [9]. However, the most productive area is not consistent
among the results by different researchers. For example, banking and assurance,
which are classified as “finance” in CSBSG, are the most productive areas reported in
[10] but the least in [9]. In practice, many factors, such as personnel application ex-
perience, software complexity, requirement volatility etc., would affect the software
development for different areas [10], [9]. The state of software development for dif-
ferent business areas in China needs to be further studied.

RQ5: Which business area is relatively more cost-effective?

2.7 Programming Language

The primary Programming Languages (PLs) in software project considered into this
research are the ones with more than 10 observations in the dataset: ASP, C, C#, C++,
COBOL, Java and VB.

Some previous researches removed the language effect either by merely consider-
ing programs written in the same language or by converting all data into one language
using conversion factors. Nonetheless, a number of researchers have found that pro-
ductivity varies with the level of the language [4]. As the language level increases,
fewer lines of code are needed to deliver the same functionality. In [3], languages
were classified by ‘generation’, and the analysis was seldom on the basis of specific
language. In terms of CSBSG dataset, most frequently applied languages are the third
generation languages (3GLs), and accordingly the analysis of language influence on
productivity is based on the specific languages in this study.

RQ6: Does programming language really matter in predicting effort?

3 Analysis Procedure and Result

3.1 Data Validation and Preliminary Analysis

Project Size is recorded as “Size Total” in CSBSG dataset. For all the 999 projects,
998 ones have their size measured by LOC, and only one exception of Project 8671 is

1 Each project was assigned an exclusive ID number from 1 to 999.

310 M. He et al.

recorded in Function Points (FPs). Another 3 projects from the same organization (as
Project 867) use the same primary language - Java, and have their sizes recorded in
both FP and LOC. All ratios of LOCs per FP are 53, which is consistent with the
transformation ratio reported in SPR documentation [11]. In that case, transforming
the size of Project 867 into LOC metrics can be reasonable.

The maximum Team Size were not given in these four projects, 3 values are filled
up by comparing the phased team size records and selecting the maximum value,
while the remainder has no phased team size recorded and is therefore excluded.

In effort modeling, Actual Total Work Effort in man-hours is used as the depend-
ent variable, and the factors are intended to add as independent variables in the model.
The modeling procedure and final result may reveal the possible relationships be-
tween factors and effort based upon CSBSG dataset.

3.2 Model Development

First, Table 1 lists the modeling variables, scales and descriptions for reference.

Table 1. Summary of the variables considered in the modeling procedure

Variable Scale Descriptions
ln_effort Ratio Log-transformed Summary Work Effort
ln_size Ratio Log-transformed Total lines of code

ln_teamsize Ratio Log-transformed Maximum size of the development team
ln_dur Ratio Log-transformed Total working days from Start to End Date

DevType Nominal Development Type
BusiArea Nominal Business area within the organization/industry that the

project/application will be supporting
Language Nominal Primary programming language

Prior to model development, Effort, Project Size, Team Size and Duration are all
taken natural log transformation to redress the skewness for these variables. Fig. 1 is
the histograms of log transformed Effort, Project Size, Team Size and Duration,
which show normal distribution well.

Fig. 1. Distribution of log-transformed numerical variables

 Understanding the Influential Factors to Development Effort 311

After that, the potential relationships between Effort and the factors (Project Size,
Team Size and Duration) after log transformation are explored. The three graphs
below (see Fig. 2) indicate that linear model can be used to approximate their rela-
tionships with effort. A multiple linear regression can be applied to develop our
model. The linear model is supposed to be in form of:

0 1 1 2 2 ... k kY X X Xβ β β β μ= + + + + + (2)

-1

0

1

2

3

4

5

6

7

8

-1 1 3 5 7 9

log(Size)

lo
g(

E
ff

or
t)

-1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

log(MaxTeamsize)
lo

g(
E

ffo
rt)

 (a). log(Effort) against log(Size) (b). log(Effort) against log(TeamSize)

-1

0

1

2

3

4

5

6

7

8

0 2 4 6 8

log(Duration)

lo
g

(E
ffo

rt)

(c). log(Effort) against log(Duration)

Fig. 2. Scatter plots of effort against factors

Furthermore, the correlation analysis is employed to check whether the problem of
multi-colliearity (strong correlations between independent variables) exists in the
data. As recommended by Maxwell [12], Spearman’s correlation analysis is done to
check the numerical variables’ independence; ANOVA (analysis of variance) is run to
check the independence between the categorical variables and chi-square test for the
relationship between the categorical and numerical variables. The result confirms that
multi-colliearity within this data is not a problem.

In the modeling procedure, three numerical variables, Project Size, Team Size and
Duration, passed the check and can be added into one model; but there exist some
correlations between any two of the categorical variables, i.e. DevType, BusiArea and
Language.

In addition, to explore the problem of missing values, the metrics with missing data
are Duration (22), Development Type (13), and Team Size (1). According to the rule
of thumb, a minimum sample size of 50+8k for multiple regression analysis is sug-
gested [13]. The valid sample size here is acceptable.

Once the above issues are solved, the regression model can be developed by fol-
lowing the two steps recommended in [12]. At the same time, we also use the statisti-
cal tool (Stata [19]) to assist our analysis.

312 M. He et al.

• Step 1: Stepwise regression analysis with numerical variables

Performing stepwise regression procedure helps to determine the relative importance
of each numerical independent variable’s relationship to the dependent variable. It
only takes the variables available for nearly every project into consideration. In our
dataset, missing value for the numerical variables, i.e. ln(size) (abbreviated as lsize),
ln(duration) (as ldur), ln(TeamSize) (as lteam) in statistical analysis is very little as
discussed above, and no problem to apply this procedure.

.sw regress In_effort In_size In_dur In_teamsize pr(.05)
 Begin with full model
P<0.0500 for all trems in model

Number of obs = 992 F(3, 988) = 797.17 Prob > F = 0.0000
R-squared = 0.7076 Adj R-suqared = 0.7068 Root MSE = .61355

In effort Coef. Std. Err. t p > t [95% conf. Interval]

In_size
In_dur
In_teamsize
 cons

.2986532 .0238871 12.50 0.000 .2517778 .3455286
 .535817 .0323085 16.58 0.000 .4724159 .5992181
.6862529 .0338465 20.28 0.000 .6198336 .7526723
 1.08979 .1897075 5.74 0.000 .7175139 1.462066

Srouce ss df MS

Model
Residual

900.266105
371.92449

3
988

300.088702
.376444787

Total 1272.19355 991 1.28374728

Fig. 3. Results for forward stepwise regression

The result of running a forward stepwise regression procedure is shown in Fig. 3 (a
screen shot from Stata’s running result). Given the criteria that if Prob>F is a number
less than or equal to 0.05, the model can be accepted. In this case, the value of Prod>F is
small enough, which means this model is significant. Thereafter, the result of running a
backward stepwise regression procedure is also validated as a significant linear model.

• Step 2: Building the multi-variable model with “stepwise ANOVA” [12]

From this step, the best one-variable model, best two-variable model, best three-
variable model and so on, are obtained one by one.

At first, to determine which variable (lsize, ldur, lteam, or devtype) explains the
most variation in leffort, regression procedures are run for numerical variables, and
ANOVA procedures for the categorical variables. As shown in Table 2, lsize explains
the most variation in leffort. The result confirms the findings from many previous
studies which make project size as the most important key variable for cost or effort
estimation [14], [2], [1].

Then, lsize is added to the model in order to find the best two-variable model. As
shown in Table 2, Devtype is then added to form the best two-variable model. Such
procedure is repeated until there is no possible further improvement in the obtained
model. All the outputs are recorded in Table 2.

 Understanding the Influential Factors to Development Effort 313

Table 2. Statistical Output Summary Sheet

Variables Num Obs Effect Adj R2
1-variable models
*ln_size 999 + 0.5180
ln_duration 993 + 0.3847
ln_teamsize 998 + 0.4454
DevType 0.0419
Language 0.0867
BusiArea 0.2415
2-variable models with lsize
ln_duration 993 + 0.5860
ln_teamsize 998 + 0.6256
*DevType 0.6267
Language 0.5779
BusiArea 0.6041

3-variable models with lsize, DevType
*ln_duration 0.6820
ln_teamsize 0.6772
Language 0.6725
BusiArea 0.6720
4-variable models with lsize, DevType, ldur
*ln_teamsize 0.7465
Language 0.7330
BusiArea 0.7429
5-variable models with lsize, DevType, ldur, lteam
Language 0.7778
*BusiArea 0.7854
6-variable models with lsize, DevType, ldur, lteam,

BusiArea
Language 0.8088

Finally, the best model is a six-variable model: leffort as a function of all the
variables listed in Table 3. To be noticed that the default Development Type is en-
hancement, default Programming Language is ‘Other’, and the default development
Business Area is manufacturing.

According to coefficients in Table 3, the model equation is extracted as:

ln() 0.38 ln() 0.5 ln()

0.55 ln() ()

() () 0.31
i i

j j k k

effort size teamsize

duration I DevType

I BusiArea I Language

α
β χ

= × + ×
+ × + ×
+ × + × +

(3)

where the function I is the indicator function with binary values of 1 or 0 (‘1’ means
the project belongs to such type or uses such language, otherwise ‘0’); and the coeffi-

cients iα , jβ and kχ are corresponding to the values in Table 3. The default coeffi-
cients for the default types (that is enhancement, ‘Other’ language, and manufacturing
business area) are all zero.

The explanatory power of the fitted model is high at R2 = 80.9%, which indicates
that 80.9% of the variance in the dependent variable can be explained by this model.

314 M. He et al.

As shown in Fig. 4, the predicted values and observed values conform well to each
other.

However, we have to emphasize again, the motive of this paper is not to obtain
another prediction model, but to revisit and validate the influencing relationship be-
tween development effort and these factors in the context of Chinese software indus-
try. In that case, further investigation on the prediction accuracy and comparison with
other effort estimation models are not taken into account in this paper.

Table 3. List of fitted coefficient in the final 6-variable model

Regression terms Coef. Std. Err. p-value
ln_size 0.38 0.03 0.000
ln_teamsize 0.50 0.04 0.000
ln_dur 0.55 0.03 0.000
Re-Dev -0.16 0.10 0.092
New Dev -0.46 0.05 0.000
Telecom 0.32 0.09 0.000
Transport -0.13 0.16 0.428
Finance 0.48 0.09 0.000
Retail 0.81 0.09 0.000
Media 0.87 0.18 0.000
Energy 0.120 0.09 0.183
Other 0.28 0.10 0.006
Generic 0.17 0.09 0.059
Health care 0.38 0.13 0.004
Public Admin. 0.123 0.08 0.113
Asp -0.29 0.17 0.086
C 0.23 0.12 0.058
C# -0.06 0.11 0.554
C++ 0.34 0.11 0.002
Cobol -0.24 0.15 0.115
Java 0.30 0.11 0.004
VB 0.65 0.14 0.000
_cons 0.31 0.26 0.228

Fitted Value

420-2-4

O
b
s
e
rv
e
d
 V
a
lu
e

12

10

8

6

4

p

Fig. 4. Scatter plot of observed values versus fitted values

 Understanding the Influential Factors to Development Effort 315

3.3 Model Validation

The model’s underlying assumptions need to be checked before the final model ob-
tained through the above steps.

• Assumption 1: In a well-fitted model, there should be no pattern to the errors (re-
siduals) plotted against the fitted values.

• Assumption 2: The errors in the model should be randomly and normally distrib-
uted with mean zero.

In our model, “Fitted Value” here refers to the leffort predicted, and Fig. 5, where the
residual versus fitted value graph is shown, indicates no obvious pattern. In addition,
Fig. 6 shows the distribution of residuals which is normality with mean zero. There-
fore, the assumption of normality of the residuals can be checked and confirmed.

-2
-1

0
1

2
R

es
id

ua
ls

4 6 8 10 12
Fitted values

Residuals

420-2-4-6

F
r
e
q
u
e
n
c
y

125

100

75

50

25

0

Fig. 5. Diagnostic plot of the residuals versus
the fitted values

Fig. 6. Histogram of the residuals to check
its normal assumption

4 Discussions

As shown in Table 3, on the basis of p-value < 5%, the final sets of factors that are
significant to software development effort can be identified: Project Size, Duration,
(maximum) Team Size, Development Type, (primary) Programming Language and
Business Area.

Project Size (RQ1): The regression coefficient of effort on Project Size after log trans-
formation is 0.38. It illustrates that Project Size is positively related to effort. While
productivity is defined as size over effort, it also shows that productivity will increase
with increasing Project Size. The result confirms the finding in [15], which compared
the median productivity of different project size groups. Interestingly, the phenomenon
of Economies of Scale for our dataset is consistent to some others’ research [3], [6], but
opposite to [14]. For the phenomenon of Economies of Scale, Agrawal et al. [6] ex-
plained that is due to the high maturity (CMM 5 level) for organizations in their study.
However, this might be not the case in terms of our data due to the lack of supporting
information. Another possible explanation is that small-sized projects came from low

316 M. He et al.

productivity organizations and the large ones from high productivity ones, but these all
need to be further investigated with more evidence in the future data collection and
analysis. In addition, while adding size alone, the explanatory power of the fitted model
is high at R2 = 51.8%, which indicates that project size is indeed an intrinsic driver of
software development effort. This result is also in agreement with many classic effort
estimation researches which identify software Project Size as a fundamental factor in
dealing with software development effort or cost [14], [2], [16].

Team Size (RQ2): The regression coefficient of effort on Team Size after log trans-
formation is 0.50, which indicates more effort need to be spent for larger team size
while other attributes’ values do not change. This result is consistent with the finding
in [15]. It is quite frequent that some managers are used to adding new personnel for a
challenging project. However, adding personnel is not always a wise decision since
organizations have to pay more attention and effort to maintain their process control,
personnel coordination and resource harmony for an increased team size.

Duration (RQ3): The regression coefficient of effort on project Duration after log
transformation is 0.55, the positive value implies that increasing project duration is
very likely to lead to a decrease in productivity. In other words, to implement the
same size of software, increasing project calendar time will increase total effort.
Sometimes, due to the pressure from concurrently developed multiple projects, devel-
opment teams have to decrease their effort on every single project and postpone their
schedule. The result here reminds managers to balance the additional effort caused by
schedule slack.

Development Type (RQ4): By modeling analysis, Development Type is confirmed to
be another significant factor to influence effort. Table 3 shows that the regression
coefficients of re-development and new development are -0.16 and -0.46 respectively,
and these values are relative to the coefficient 0 of enhancement as the default devel-
opment type. This means that given the other attributes with the unchanged values,
the enhancement projects may consume the most effort, while re-development may
need less effort than enhancement, and new development may consume even less than
re-development. In other words, new development projects in the CSBSG dataset
show the highest productivity than the other two types, which also confirms the find-
ing in [15]. In contrast with the findings in some other research [3], [7], the possible
reasons for the low productivity in enhancement are explored. If the manager often
changes the development team or key personnel, it might add the effort in assimila-
tion process. At the same time, in new development, rush to get high productivity
with the lack of disciplined documentation may also cause many problems for future
maintenance or enhancement work. All of these give project managers a noticeable
reminder.

Business Area (RQ5): The diversity of Business Area within the organization or
industry that the project/product will support is also confirmed to significantly influ-
ence software development effort. With reference to the default manufacturing area
(Coef. 0), all the business areas can be ranged in descending order of the number of
effort needed: Media (Coef. 0.87), Retail & Inventory (Coef. 0.81), Finance (Coef.
0.48), Health Care (Coef. 0.38), Telecom (Coef. 0.32), Generic (Coef. 0.17), Public

 Understanding the Influential Factors to Development Effort 317

Admin (Coef. 0.123), Energy (Coef. 0.120), Manufacturing (Coef. 0) and Transport
(Coef. -0.13). By fixing the other attributes’ values, projects in such business areas
like Media, Finance and Retail & Inventory may cost more effort, while other areas
like Public Admin, Energy and Manufacturing may cost less, in other words, they are
more productive. Compared to productivity ascending order shown in [15], the con-
sistency is that software development in Energy, Manufacturing and Public Admin
was more productive, and the Finance and Retail & Inventory areas were less produc-
tive. There is an inconsistency for Telecom area, based on the modeling analysis,
Telecom was not as inefficient as described in [15].

With interests in this inconsistency, 171 projects from Telecom area are further ex-
amined. From the aspect of Development Type, only 28% projects are new develop-
ment; from the Project Size, 87% of them are smaller than 64KLOC, and 57% are
even smaller than 16KLOC. In addition, as shown in Fig. 7, C++ and Java are two
languages dominated the Telecom projects, while they show relative low productivity
as discussed later, that could be a possible reason for the low productivity in this
Telecom subset from CSBSG.

22
14

74

61

0

10

20

30
40

50

60

70

80

C C# C++ Java

Fig. 7. Language application state for Telecom projects

Because of the diversity of Business Area, software development is affected by
multiple aspects. As to Finance area, there exists some other research reporting its low
productivity [17]. Since financial software requires real-time, excessive data ex-
change, vast data processing, high level security and other complex technologies, the
productivity is easier to decrease than other business sectors. Meanwhile, due to con-
siderations on confidential information, some banks or investment companies insist
implementing internal software development regardless the low productivity.

On the other hand, for the cost-effective areas, such as Public Admin, Energy and
Manufacturing, one possible explanation might be that most of the projects in these
areas have comparatively less complexity and relatively stable requirements. Also,
formal public bidding institutionalization in Chinese government contributes to guar-
antee for the quality and efficiency of the entrusted software development companies
in the recent years [18]. Generally speaking, the market competition, requirement of
functionality, evolution and complexity of techniques, integration extent of hardware,
and other issues influence the software development in each business area.

318 M. He et al.

Programming Language (RQ6): Programming Language is the last but not least
influencing factor to development effort. By comparing the coefficients of each type
of language, projects using ASP costed the least effort, and then followed by Cobol,
C#, C, Java, C++, and Visual Basic. In contrast to the comparison result in [15], there
exist inconsistencies for Cobol and VB. Among 24 projects using Cobol, 23 of them
are enhancement and from Finance or Retail & Inventory areas with relatively com-
plex requirements. This might result in Cobol’s low productivity level when com-
pared in the whole dataset. On the contrary, for the 48 projects using VB, 87.5% are
for Manufacturing area whose system functions were relatively stable, and they were
all new development. Hence, the relatively high productivity could be explained by
the factors other than language alone. In previous studies, specific language was sel-
dom used to discuss the influence of language on software development effort; in-
stead, language generations, called 2GL, 3GL, 4GL etc., have been considered by
some researchers [9], [3]. However, almost all the languages presented in CSBSG are
3GL, and it is difficult to compare our result with the others that classified languages
by their generations.

5 Conclusions and Future Work

A better understanding the factors influencing development effort/cost can enable
software project practitioners to achieve more reasonable and realistic resource
estimation and allocation solutions. As a matter of fact, many researchers tried to
contribute in this direction. However, due to the lack of support of relatively large
datasets, in-depth studies on the basis of real projects in software industry, particu-
larly in China, were limited. This study analyzes the data of 999 projects from 140
software organizations in China to revisit the factors that significantly influence soft-
ware development effort, and to figure out how they influence in this context.

As a result, the set of factors that are significant to Chinese software development
effort are prioritized: Project Size, Duration, (maximum) Team Size, Development
Type, (primary) Programming Language, and Business Area. In terms of the analysis
results, we can confirm some findings from the previous related researches, and also
conclude the answers to the research questions (Section 2), some of which seem to be
counter-intuitive somehow.

1) The effort increased while software (project) size increased, and this dataset re-
veals the phenomenon of Economies of Scale.

2) More effort were needed for larger team size while other factors maintained the
same.

3) Extending the deadline of projects might cause additional development effort.
4) Given the other attributes with the same values, enhancement projects consumed

the most effort, while re-development required less effort than enhancement,
and new development took even less than re-development.

5) Without changing the other attributes’ values, projects in the business areas like
Media, Finance and Retail & Inventory costed more effort than in the other sec-
tors like Public Admin, Energy and Manufacturing, where projects were ob-
served more productive.

 Understanding the Influential Factors to Development Effort 319

6) Projects using ASP costed the least effort, which was followed by Cobol, C#, C,
Java, C++, and Visual Basic in ascending order.

However, as the limitation of some missing or ignored information in the current
dataset results in a difficulty in further examining the exact reasons, we only present
some preliminary reason analysis at the current stage. These analyses can provide the
project managers some empirical suggestions in real word project management.

For the future work, we plan to add more factors while modeling cost estimation
for some type of projects, for example, focusing on one specific business area. More-
over, to construct a cost prediction model for some type of projects is also an impor-
tant subject in the future research.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under
Grant Nos. 90718042 and 60873072; the National Hi-Tech R&D Plan of China under
Grant No. 2007AA010303; the National Basic Research Program (973 program)
under Grant No. 2007CB310802.

NICTA is funded by the Australian Government as represented by the Department
of Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program. This work was also sup-
ported, in part, by Science Foundation Ireland grant 03/CE2/I303 1 to Lero - the Irish
Software Engineering Research Centre (www.lero.ie).

References

1. Boehm, B.W., Abts, C., Chulani, S.: Software Development Cost Estimation Approaches -
A Survey. Annals of Software Engineering 10(1-4), 177–205 (2000)

2. Li, M., He, M., Yang, D., Shu, F., Wang, Q.: Software Cost Estimation Method and Appli-
cation. Journal of Software 18(10), 775–795 (2007)

3. Jiang, Z., Naudé, P.: An examination of the factors influencing software development ef-
fort. International Journal of Computer, Information, and Systems Sciences, and Engineer-
ing 1(3), 182–191 (2007)

4. Maxwell, K.D., Wassenhove, L.V., Dutta, S.: Software Development Productivity of
European Space, Military, and Industrial Applications. IEEE Transactions on Software
Engineering 22(10), 706–718 (1996)

5. Jiang, Z., Naudé, P., Comstock, C.: An investigation on the variation of software develop-
ment productivity. International Journal of Computer, Information, and Systems Sciences,
and Engineering 1(2), 72–81 (2007)

6. Agrawal, M., Chari, K.: Software development effort, Quality and Cycle Time: A Study of
CMM Level 5 Projects. IEEE Transactions on Software Engineering 33(3), 145–156
(2007)

7. Kemerer, C.F., Slaughter, S.: Determinants of software maintenance profiles: an empirical
investigation. Journal of Software Maintenance 9, 235–251 (1997)

8. Premraj, R., Shepperd, M., Kitchenham, B.A., Forselius, P.: An Empirical Analysis of
Software Productivity over Time. In: IEEE METRICS 2005, p. 37 (2005)

9. ISBSG Benchmark Release 8, http://www.isbsg.org

320 M. He et al.

10. Premraj, R., Twala, B., Mair, C., Forselius, P.: Productivity of Software Projects by Busi-
ness Sector: An Empirical Analysis of Trends. In: 10th IEEE International Software Met-
rics Symposium (Late Break-in Papers) (September 2004)

11. SPR programming languages table (2003), http://www.spr.com/
12. Maxwell, K.D.: Applied statistics for software managers. Prentice Hall, New Jersey (2002)
13. Green, S.A.: How many subjects does it take to do a multiple regression analysis? Multi-

variate Behavioral Research 26, 499–510 (1991)
14. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
15. He, M., Li, M., Wang, Q., Yang, Y., Ye, K.: An Investigation of Software Development

Productivity in China. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS,
vol. 5007, pp. 381–394. Springer, Heidelberg (2008)

16. Pfleeger, S.L.: Software Cost Estimation and Sizing Methods: Issues, and Guidelines.
Rand Corp. (2005)

17. Maxwell, K.D., Forselius, P.: Benchmarking Software Development Productivity. IEEE
Software, 80–88 (January/February 2000)

18. He, M., Yang, Y., Wang, Q., Li, M.: Cost Estimation and Analysis for Government Con-
tract Pricing in China. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS,
vol. 4470, pp. 134–146. Springer, Heidelberg (2007)

19. http://www.stata.com

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 321–335, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Lean Management of Software Processes and Factories
Using Business Process Modeling Techniques

Javier Berrocal, José García-Alonso, and Juan Manuel Murillo

Escuela Politécnica, University of Extremadura,
Av. Universidad S/N, 10071, Cáceres, Spain

{jberolm,jgaralo,juanmamu}@unex.es

Abstract. The software industry is moving towards a software factory business
model, usually involving several centres collaborating on company contracts.
The expected benefits of using specialized teams at lower cost locations are in-
creased productivity and reduced costs. The tasks of project and process man-
agement have as a consequence become more complex. Managing such large
structures requires more collaboration in development processes to enable rapid
reaction to project needs, and support for the variety of technologies, methods,
and levels of quality required by the different projects. This situation demands
new practices and management support tools. This paper presents Zentipede, a
tool for software process management. Its focus is on lightening, or even auto-
mating, management tasks by using Business Process Management (BPM)
techniques. The tool does not force any particular practice on a company, but
encourages it to model the practices which will finally be automated. Also, it
supports process-to-product traceability.

Keywords: Software Process and Project Management, Distributed Software
Development, Software Process Quality, Process and Project KPI.

1 Introduction

In the last few years, software development companies have changed their busi-
ness strategies, objectives, and processes to adapt to new customer demands and
market trends.

One of the main changes has been the adoption of agile development processes.
The essence of these processes is increased communication and collaboration among
developers, fostering a self-organizing culture and encouraging development tailored
to customer needs [1], [9].

Another change has been the evolution of these companies towards the software
factory business model. They now site their development centres (factories) at lower
cost locations near their zone of action (nearshore) or even far away (offshore) [10],
[11]. These factories usually specialize in specific development activities or technolo-
gies, so that the implementation of a project is distributed among different factories
according to their specialities and workload. Thus, although the software factory
business model increases productivity and reduces development costs [12], it has a

322 J. Berrocal, J. García-Alonso, and J.M. Murillo

negative impact on communication and task completion [19], [20]. So, its full benefits
can only be obtained by deploying highly industrialized development processes and
tools that stimulate collaboration, and by closely monitoring the workload on re-
sources to ensure their rapid reallocation [17].

Finally, since quality certification has become one of the most important assets
contributing to software companies' competitiveness [30], they are adopting models to
manage the quality of their software processes [2] and even the entire life-cycle of the
services they provide [3], [4]. Customers of IT products and services no longer make
their project investment decisions solely on the basis of development costs and time.
Today, the final quality of the product or of the process followed to develop it is
equally or even more important. This trend is another key factor contributing to the
increasing effort companies are putting into the optimization of management tasks.

Hence it is clear that companies' management practices need both to be streamlined
and to increase in scope [8]. The use of software management tools can contribute to
resolving this dilemma. Examples are the so-called software cockpits, also known as
Software Project Control Centres (SPCC) [5] or Project Management Offices (PMO)
[6]. They are specially designed to provide support for project managers' most impor-
tant activities.

However, these tools usually do not cover all the areas and roles that are involved
in a company's process management, resulting in managers using separate tools for
different areas [14], [15]. This leads to duplication of effort and a loss of productivity
because the same or similar data must be provided to each tool while guaranteeing the
coherence of the overall system [13]. A further drawback is that these tools are not
usually designed to be adapted to an organization's changing needs [7], and thus end
up constituting a barrier to the evolution of its business strategies and the improve-
ment of its processes.

Companies therefore require integrated tools which cover all the tasks and roles of
the management of their software processes, projects, and factories [13], [14]. These
tools should be capable of dealing with different processes and life-cycles, providing
management with support for both software product development and IT services.
They should also be able to adapt to any new strategies or processes that the com-
pany wants to implant. This paper presents Zentipede1, a suite of integrated tools
developed with the objective of meeting the above needs – lightening or even auto-
mating the widest possible range of management activities. It does not force any
particular practice on management. Instead, it allows them to model their practices
using Business Process Management Notation (BPMN). These practices are then
automated by a Business Process Management System (BPMS) which delivers or-
ders to the management tools. These tools support process, product, and process-to-
product traceability.

The paper is organized as follows. Section 2 briefly describes some of the tools
used to manage and control software development. Section 3 presents Zentipede,
detailing its architecture and modules. Section 4 describes the results of using Zenti-
pede. Finally, Section 5 presents some conclusions and outlines future work.

1 Although the correct spelling is Centipede, a “Z” was substituted for the “C” when composing

the image of the product to associate it with a sinuous centipede in the form of a Z.

 Lean Management of Software Processes and Factories 323

2 Background and Related Work

Since management is one of the keys to the success of a software project, its optimi-
zation has long attracted the attention of companies and researchers. Some of these
efforts have been devoted to producing configuration management [21] or documen-
tation tools [16], provide support to developers and improving their collaboration and
coordination.

Another trend has focused on the development of tools (SPCC [5] or PMO [6]) to
provide greater control over software processes. Examples such as Rational Team
Concert [23] or Artemis 7 [27] include features that facilitate the implementation of
iterative and agile software processes. Other tools generate statistics about a project's
status. An example is Specula [7] which includes a method to help project managers
define metrics aligned with the project's objectives.

Since dealing with process improvement involves a major investment in quality as-
surance activities [29], many tools (such as SIMPLe [22] or MKS [28]) have been
developed to help reduce this effort. These tools facilitate the quality assurance man-
agers' tasks by implementing key good practices or generating the artefacts defined by
their models.

Table 1. Functionalities covered by some tools

 C
on

fi
gu

ra
tio

n
m

an
ag

em
en

t

D
oc

um
en

ta
ti

on

m
an

ag
em

en
t

T
ra

ce
ab

ili
ty

U
se

rs

m
an

ag
em

en
t

S
of

t.
P

ro
ce

ss

m
an

ag
em

en
t

S
of

t.
P

ro
ce

ss

m
on

it
or

in
g

A
da

pt
at

io
n

to

B
. S

tr
at

eg
y

M
an

ag
em

en
t

ta
sk

s
li

gh
te

ne
d

So
ft

w
ar

e

Q
ua

li
ty

Q
ua

li
ty

m

an
ag

em
en

t
SVN Yes No No No No No No No No No
TWiki No Yes NO No No No No No No No
Rational
Team C.

Yes Yes Process
Product

Yes Yes Yes No No No No

Artemis 7 No No No Yes Yes Yes No No Yes Yes
Specula No No No Yes Yes Yes Yes No Yes Yes
SIMPLe No No No Yes No No No No Yes NO
MKS No No Process Yes Yes Yes No No Yes Yes

Notwithstanding the utility of these tools in reducing the effort spent in each area,
they still function independently, as is shown in Table 1. In particular, specific infor-
mation has to be provided to each of them separately. In many cases, this information
is similar or even the same, so that the result is a duplication of effort and loss of
productivity [13] that could be avoided by using integrated tools. In addition, some
management activities such as task allocation, project monitoring, and resource man-
agement are highly repetitive. Tools to automate as many of these management activi-
ties as possible would therefore also be greatly welcomed.

Finally, software companies and software processes are continuously evolving to
cover new necessities, trends, and demands. Management tools should therefore also
be capable of adapting to new strategies or processes [24]. Zentipede was born with

324 J. Berrocal, J. García-Alonso, and J.M. Murillo

this motivation, as well as with the aim of providing centralized monitoring of process
and project status. Also, it is an open-source tool.

3 The Zentipede Approach

This section introduces Zentipede. The origin of the suite was the perceived need for
integrated management tools, capable of dealing with distributed factories and various
process models, and of collecting and producing statistics about project status,
factory workloads, resources productivity, the typical project Key Performance Indi-
cators (KPIs), etc. The suite was designed to adapt to any company, as well as to
support any need for evolution that the company might have. Figure 1 shows the
Zentipede architecture.

Fig. 1. Zentipede architecture

The Zentipede architecture is divided into three layers and four modules:

• Process Layer. The layer in charge of managing the processes and projects deployed
by the company. Two modules are responsible for covering all management activi-
ties, collecting data, monitoring projects, and lightening or automating management
tasks. They also implement features that allow the information stored to be browsed.
This information can be browsed starting from different points of view.

• Modeling and development layer. The layer in charge of providing support for
modeling and development tasks. The modules comprising this layer were specifi-
cally designed to provide support to distributed task groups. This layer also stores
and synchronizes the company's knowledge databases.

• Connection Layer. The layer in charge of connecting and integrating (by means of
an Enterprise Service Bus) the modules of the other two layers.

The main motivations and responsibilities of each module are the following:

• Software processes management and monitoring is ever more complex, requiring
more tasks and more experienced managers. Zentipede BPMS has been developed
with the objective of lightening or even automate some of these tasks. It supports

 Lean Management of Software Processes and Factories 325

the specification of the company's software processes using Software Process En-
gineering Metamodel (SPEM) and BPMN. These processes can differ depending
on the applicable quality level, the management workload allocated to the project,
the technology to be used, and the client's requirements. Once modeled, they are
executed by a BPMS whose results are delivered as orders to the Zentipede Man-
agement Centre.

• Project managers have to know the project status to make the right decisions. This
requires keeping track of the tasks being undertaken, their data and results. Zenti-
pede Management Centre has been developed to facilitate this activity. For all
practical purposes it behaves as a process management tool. However, tasks can be
inserted manually by users, or automatically by Zentipede BPMS as a result of the
execution of a software process. This module collects information on the tasks be-
ing undertaken in order to monitor the status of each project, and to link the data so
as to maintain process traceability. These data are used to extract different KPIs.
Also, since all the tools are integrated, they are capable of reusing this information,
thus avoiding the duplication of effort.

• Software development is more complex in distributed environments due to addi-
tional problems introduced by special communications and coordination needs.
Zentipede Development Toolkit has been developed to minimize some of these
problems. In addition to a BPMN Toolkit, to model business processes, and a UML
Toolkit, to model software products, some Eclipse plug-ins have been developed
for the support of distributed development. As does any configuration management
tool, these plug-ins facilitate synchronization among developers. But they also
store each change made to the source code, linking that change with the task caus-
ing it (which is registered in the Zentipede Management Centre). In this way, one
has process-to-product traceability.

• Create the projects and processes documentation is a highly collaborative activity.
It requires developers working together to continuously update their status. In dis-
tributed environments, this activity is even more complex because of the coordina-
tion problems, as those stated in [19]. Zentipede Documentation Centre has been
developed to facilitate this activity. It allows developers, regardless their location,
to work together to register all the company's knowledge used by Zentipede.
Examples are the processes Zentipede is following, the business processes of the
systems developed, and the different artefacts generated. This data allows the com-
pany to manage all of its knowledge, facilitating evolution.

In the following, each of Zentipede's modules will be described in detail, explaining
its objectives, its functionalities, and the plug-ins or tools that it contains. In addition,
an example will be presented of the integrated use of all these modules.

3.1 Zentipede’s Main Workflow

Figure 2 shows the usual workflow followed when these tools are used in an inte-
grated form. It needs to be borne in mind that, despite the simple way in which the
steps are presented, Zentipede is a complex tool covering a wide range of tasks. Imag-
ine a company that wants to start developing a project with Zentipede. The steps that
would normally be taken using Zentipede are the following:

326 J. Berrocal, J. García-Alonso, and J.M. Murillo

1. The software processes to follow in developing the project have to be defined. To
this end, the processes are modeled (if they have not already been modeled) with
SPEM Toolkit. The information generated is stored in the Process Model Library
to be reused in future projects.

2. Once the software processes have been modeled, they are translated internally to
BPMN using BPMN Toolkit.

3. The new project has to be added to the Zentipede Management Centre. As part of
this action, additional information is recorded, such as the project leader, the
technology, etc.

4. The project leader defines the development teams.
5. An instance of the software process followed is deployed in Zentipede BPMS. As a

result, the process begins scheduling the first tasks for the development teams to
do. Associated with these tasks is an estimate of the effort required. The tasks are
generated semi-automatically by Zentipede BPMS, but the effort estimate has to be
provided by those responsible for each task.

6. Each team leader reserves for each of his or her team's members the number of
hours to be dedicated to the project (during the next iteration, sprint, week, or
evaluable time period). Team leaders can divide the tasks into subtasks and allo-
cate them to resources through the Zentipede Management Centre.

7. The developers perform their assigned tasks using the tools provided in Zentipede
Development Centre, through which they can also report results to Zentipede Man-
agement Centre.

8. Once results are obtained, they are interpreted by Zentipede BPMS so as to update
the software process consistent with the project's status.

Fig. 2. Basic business processes of Zentipede

Throughout the project, Zentipede Management Centre generates metrics to evalu-
ate the status of the process, the project, and the company objectives.

3.2 Zentipede BPMS

Zentipede BPMS is the module that executes software processes, lightening or even
automating a wide range of management activities. The specific objectives which
guided its development were:

• To supervise and advise on the work to be done to complete the software process
being followed.

 Lean Management of Software Processes and Factories 327

• To monitor the status of each process and project.
• To automate as many management activities as possible.

In order to fulfil these objectives, an engine, termed a BPMS, was needed to execute
business processes. A BPMS is an engine that executes business processes, normally
modeled with BPMN or BPEL, to orchestrate the tasks and interactions that are de-
fined in them. In this case, this engine had to execute the software process followed in
each project.

To develop this engine, we evaluated existing BPMSs (Apache ODE [25] and In-
talio BPMS [26]). We decided to develop the Zentipede BPMS by adding features to
Apache ODE to support the characteristics of software process execution and soft-
ware development. Among these features, new attributes were added to the BPMN
specification to include specific information on the software process, such as:

• Artefacts or models that should be generated as a result of each task.
• Modules of Zentipede that should be used to complete each task.
• Automatic or manual activities. Automatic activities are those that can be com-

pleted by Zentipede without user intervention. Manual activities are those that at
least one user has to work on.

Fig. 3. BPMN elements and the attributes used in the BPMS

Figure 3 shows some of the attributes added to the BPMN elements. Most were
identified by observing the information already modeled with SPEM, and extracting
those attributes that were useful for the execution of the software process.

The following is a brief description of the main steps in the Zentipede BPMS
workflow:

• When a decision has to be made as to what software process to follow, the project
leader either models a new one or chooses one from among those stored in Zenti-
pede Documentation Centre.

• A new instance of the chosen process is deployed in the BPMS.
• Using that instance, the project is monitored and, as it advances, the tasks defined

in the process are scheduled.

328 J. Berrocal, J. García-Alonso, and J.M. Murillo

─ Automatic tasks are completed by the BPMS, reusing previously stored infor-
mation (for example to update some part of the documentation, it can reuse
the information already inserted in other tasks or in the artefacts that have
been generated).

─ Manual tasks are automatically added to Zentipede Management Centre, and
the roles responsible for each task are notified that they have to be assigned to
developers.

However, although some projects may initially follow the same software process, as
each project advances the processes will eventually evolve differently. Therefore,
software processes must be flexible enough to adapt to the status of each project.

To provide this flexibility, software processes can be modeled such that they com-
prise many sub-processes. Then Zentipede BPMS will execute each sub-process de-
pending on the artefacts generated and the status of the corresponding project. For
example, how some sub-processes are executed will depend on the elements and in-
teractions between the product's business processes, the number of use cases defined
in the use case diagram, or the packages and interactions between classes of the class
diagram. Figure 4 shows a sub-process for a use-case driven development modeled by
OpenUP, in which the number of instances created for this sub-process depends on
the number of use cases modeled in the use case diagram.

Fig. 4. A sub-process used for use-case driven development

Thus the activities defined in a software process are monitored by executing the
process, leading to automating, or at least lightening, many management activities
such as task assignment or progress logging. Also, the process can be modeled and
executed in a way that endows it with the flexibility needed for its continuing adapta-
tion to the progress of the project.

3.3 Zentipede Management Centre

Zentipede Management Centre is the most important module of Zentipede. It covers
the basic functionality for the management of projects and processes. Its main charac-
teristics are:

 Lean Management of Software Processes and Factories 329

• Supporting software development distributed among different software factories.
• Providing support for the management activities of all of a software company's

roles.
• Collecting data on processes, projects, and factories while they are being managed,

and enabling this information to be browsed from different points of view.
• Generating statistics for project, process, and factory monitoring.

To fulfil these objectives, Zentipede Management Centre was designed as a web ap-
plication with a three-tier architecture using the latest technologies. It can be deployed
in the context of any organization, and accessed by any of the personnel, regardless of
location.

Fig. 5. Zentipede Management Centre: (a) Snapshot; (b) KPIs

This module includes the definitions of the software company's principal roles,
with each role assigned a series of responsibilities and obligations. The main func-
tionalities implemented to cover these obligations are detailed in the following para-
graphs (see also Figure 5a), but it should be borne in mind that the roles and their
obligations are highly flexible, so that each company can define new roles, and assign
obligations that are in accordance with the company's organizational structure.

• Company managers. Their activities may include managing factories (adding new
factories and updating their information), projects (adding projects and assigning
project leaders), or the company overall (defining policies and rules).

• Factory managers. They can control information on personnel, tasks performed
within the factory, projects in which the factory is involved, etc.

• Project leaders. They can decide which software process is to be followed, divide
the project into iterations, and decide what requirement are to be addressed in each
iteration. In addition, they can constitute and supervise development teams.

• Team leaders. They control the developers comprising their team, detailing infor-
mation and reserving the number of hours that each developer is to dedicate to the

330 J. Berrocal, J. García-Alonso, and J.M. Murillo

project during the next iteration. Unreserved hours denote the developer's availabil-
ity to collaborate in other teams or projects. Zentipede supports the possibility that
a resource may have hours reserved that, for some reason or other, are eventually
not used. Team leaders can also divide requirements into more specific tasks, esti-
mate the effort required to complete them, and assign tasks to developers.

• Developers. They can see what tasks they have been assigned, and the details, esti-
mates, and documents to generate for each of those tasks. Additionally, they can re-
port the actual effort devoted to each task, and the documents that were generated.

• Quality managers. They can automate the generation of reports on the status of
each project or factory.

Zentipede Management Centre continuously gathers large quantities of data – the
phases or iterations of each project, the requirements covered in each iteration, the
tasks into which the requirements were divided, the developers who worked on each
task, the estimated effort for each task and the actual effort finally to it, the time re-
served for each resource and the actual time used, etc. The collection of this data is
transparent to the users. The information is stored in Zentipede Documentation Centre
for subsequent reuse by Zentipede Management Centre. This yields a twofold benefit
– first, it reduces the new information required by other tasks, and second, it enables
KPIs to be automatically generated to help users monitor and evaluate the areas they
are responsible for (Figure 3b).

• Company managers can see KPIs on costs, profits, company efficiency, and the
average level of occupation of each factory.

• Factory managers can evaluate the productivity of the factory overall or of each
employee in particular, and view the contribution of each project to the factory's
workload.

• Project leaders can view statistics about the progress of a project, the averages of
resources assigned and actually used, and gaps in the estimates.

• Team leaders can view metrics about the tasks undertaken or the work done by
each resource.

• Quality managers can set up controls to evaluate the quality of processes, the effi-
ciency of developers, or bugs in the products.

Each user can also adapt these indices to their own needs. To that end, the indices are
parametrized, allowing such changes as the level of detail, the form in which the in-
formation is displayed, and the source of the data. Additionally, new indices can be
inserted based on the data collected.

Finally, as the data is collected, it is immediately linked to the previously stored
data to provide process traceability, allowing users to browse through the information
from different points of view. For example, starting with a given project, they can
view its objectives and iterations, and inquire deeper into the requirements addressed
in each iteration, the tasks proposed to satisfy those requirements, the resources dedi-
cated to each task, and the effort and dates spent on carrying it out. Starting with a
given resource, they can view the projects on which they collaborated, the goals that
were attained, the tasks carried out and the time spent on each, etc. Or, starting with a
date, they can see the tasks and requirements carried out on or up to that date, the
resources involved in them and their workload, or the status of each project.

 Lean Management of Software Processes and Factories 331

3.4 Zentipede Development Toolkit

Zentipede Development Toolkit is a suite of tools that facilitates the creation of arte-
facts with information about the company or project results. The specific objectives
which guided its development were:

• To provide tools to mitigate the handicaps of distributed software development.
• To facilitate the creation of artefacts with information about the company or projects.
• To collect information about the work done by each developer.

Fig. 6. Zentipede Development Toolkit

To fulfil these objectives, this module contains four subsets of tools:

• SPEM Toolkit is an Eclipse plug-in that allows company managers or quality man-
agers to model the software processes that can be followed. Thus, the processes are
defined and made accessible so that any user can see what they are to do in each
task, why, and how to do it.

• BPMN Toolkit is an Eclipse plug-in that allows users to model business processes
with BPMN. This tool can be used to model the business processes of the products
that are being developed (with these models then forming part of the project's
documentation), or to translate the software processes defined with SPEM into
BPMN (these processes can then be executed by Zentipede BPMS).

• UML Toolkit. This subset includes Eclipse plug-in tools that facilitate the UML
modeling of the artefacts required over a project's life-cycle. Developers can then
access these plug-ins without having to change IDE.

• Distributed Software Development Toolkit. First, this subset provides tools to help
developers communicate with each other. These tools are Eclipse plug-ins that al-
low developers to describe the doubts or problems they encounter in their assigned
tasks. These doubts are automatically notified to all the personnel subscribed to the
task (project leader, team leaders, and other developers). For all practical purposes,
these plug-ins behave as communication tools, but they also store the communica-
tions and link them to the tasks that gave rise to them. And second, this subset in-
cludes another plug-in which facilitates developers' management activities
(Figure 6). This plug-in shows each developer the tasks assigned to them in their
working environment, and allows them to specify further information on each task.

332 J. Berrocal, J. García-Alonso, and J.M. Murillo

It also automatically collects such information as the time spent on each task and
each change made to the source code (such as which packages, classes, or lines
have been modified). As this information is captured, it is immediately linked to
the task that gave rise to it. With the information collected with this subset's plug-
ins, the process traceability already supported by Zentipede Management Centre is
enhanced with process-to-product traceability. This feature facilitates reverse engi-
neering, allowing users to browse the information by starting with a given project,
requirement, task, or resource in order to view the corresponding changes made to
the source code or the doubts and problems that were encountered, and vice versa.
It also reduces the impact of resource mobility and task reassignment by providing
information on the changes already implemented in completing each task.

Finally, all the information captured or defined with these tools is stored in the mod-
ule Zentipede Documentation Centre for reuse by other tools.

3.5 Zentipede Documentation Centre

Zentipede Documentation Centre is the module responsible for storing and maintain-
ing the consistency of all the project and process data and company information. The
specific objectives which guided its development were:

• To maintain libraries in which to store all the information collected.
• To manage all the software company's information and knowledge.

To fulfil these objectives, six integrated repositories were set up. They were assigned
the following responsibilities:

• Process Model Library. This library stores the software processes that can be fol-
lowed by project leaders. When a new project is started, the project leader selects
the process to follow according to the project's needs and objectives, and this is
executed in Zentipede BPMS to guide the management activities.

• System Business Process Library. This library stores the business processes of the
products under development. When a new project is started, the processes can be
modeled as part of the product's documentation, and as the first step to adapt the
software process to the characteristics of the project.

• Zentipede Business Process Specification. This repository stores business proc-
esses defining the interactions between the tools of Zentipede.

• Project Documentation. This repository stores all the artefacts generated as a result
of software process activities (use case diagram, class model, activity diagrams,
etc.).

• Process Documentation. This repository stores information on the instances of the
software processes being followed in each project. The information is stored as
phases or iterations of each process, the requirements covered, the developers who
worked on each requirement or task, the estimated effort needed by each task and
the actual effort devoted to it, etc.

• Company Information. This repository stores information about the company's
objectives and rules, such as business rules, objectives, or good practices.

 Lean Management of Software Processes and Factories 333

These repositories store and maintain all the information on the processes, projects,
and factories. Because all the modules are perfectly integrated, this information is
used by the other modules to monitor each project or process's status, to generate
indices, to lighten or automate certain tasks, and to maintain process and process-to-
product traceability.

4 Validation and Evaluation of Zentipede

This suite of tools has already been tested in use in some software companies. The
testing period lasted more than seven months, in which time more than ten projects
were managed. Most of them were distributed over various locations, including
Cáceres, Madrid, and Barcelona.

At the end of the testing period, members of those companies reported on its use-
fulness in managing their projects and factories. Some of the most interesting benefits
that they indicated were:

• The capacity to generate indices to evaluate compliance with the company's objec-
tives and rules.

• Constant evaluation of projects and processes, with rapid reaction to any deviations
detected.

• Improvement of work coordination, including better coordination among factories
and communication among distributed workers.

• Better use of manpower and increased productivity (some reports described a 25%
to 50% increase in the use of manpower) due to the facility of monitoring each de-
veloper's workload. In this sense, some of the managers pointed to the value of the
feature of reserving the developers' hours, and the statistics comparing the reserved
hours and the actual hours used, since they had detected that some team leaders
were reserving more hours than necessary to simulate that their project was ad-
vancing faster than was really the case.

• A reduction in the impact of incorporating new developers, of allocating tasks that
had already started to developers, or of solving bugs, due to the use of process and
process-to-product traceability.

Although, these tests were very promising, this tool is not yet in the production use be-
cause we are adding new functionalities. Once these functionalities are finished, a more
scientific evaluation of the tool will be done and, then, it will be used in production.

5 Conclusions

This paper has presented Zentipede, a tool designed to cover all areas of project,
process, and software factory management. For the coverage of each area, four mod-
ules were developed comprising many perfectly integrated and coordinated tools. One
of the benefits of this integration is that the information inserted in one module is
reused by the others. For example, the information captured during the process man-
agement can be used to create the documentation or to automatically generate quality
indices. This contrast with the tools listed in Table 1, in which the similar or even the

334 J. Berrocal, J. García-Alonso, and J.M. Murillo

same information has to be provided to different tools for different purposes. There-
fore, this integration increases the effectiveness of each module and the data consis-
tency. In addition to this benefit, together with the process and product traceability,
already provided by other tools, the modules integration allows information to be
captured to achieve process-to-product traceability.

As it has been seen throughout the paper, methods and tools facilitating the soft-
ware project management are required. Zentipede incorporates a module that executes
software processes using BPM techniques to lighten or even automate a wide range of
the management tasks. This feature has not yet been covered by the tools evaluated in
Table 1.

Finally, Zentipede was designed to be adaptable to the characteristics of any envi-
ronment or company, taking into account their present or planned future strategies and
processes.

Acknowledgments. This work has been funded by PDT08A034, TIN2008-02985,
GRU09137, PRE09156 and Fundación Valhondo Calaff.

References

1. Agile Manifesto, http://www.agilemanifesto.org/
2. CMMI, http://www.sei.cmu.edu/cmmi/
3. ITIL, http://www.itil-officialsite.com/home/home.asp
4. CMMI for Services, http://www.sei.cmu.edu/cmmi/tools/svc/
5. Münch, J., Heidrich, J.: Software Project Control Centers: Concepts and Approaches. J.

Syst. and Soft. 70(1), 3–19 (2003)
6. Project Management Institute: A Guide to the Project Management Body of Knowledge

(PMBOK Guide). Project Management Institute, Pennsylvania (2000)
7. Heidrich, J., Münch, J.: Goal-Oriented Setup and Usage of Custom-Tailored Software

Cockpits. In: Jedlitschka, A., Salo, O. (eds.) PROFES 2008. LNCS, vol. 5089, pp. 4–18.
Springer, Heidelberg (2008)

8. Jennings, T.: Planning for value. Technical report, Butler Direct Limited (2005)
9. Larman, C.: Agile & Iterative development: a manager’s Guide. Addison Wesley, Boston

(2005)
10. Johnson, J.R.: The Software Factory: Managing Software Development and Maintenance.

John Wiley & Sons, Portland (1991)
11. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications

with Patterns, Models, Frameworks, and Tools. Wiley, Indianapolis (2004)
12. Sengupta, B., Chandra, S., Sinha, V.: A research agenda for distributed software develop-

ment. In: 28th International Conference on Software Engineering, pp. 731–740. ACM,
New York (2006)

13. Sinha, V., Sengupta, B., Gosal, S.: An adaptive tool integration framework to enable coor-
dination in distributed software development. In: 2nd International Conference on Global
Software Engineering, pp. 151–155. IEEE Comp. Society, Washington (2007)

14. Krishnamurthy, V.: Benefits of Tool Integration In Distributed Agile Development.
AgileJournal 1 (2006)

15. Maurer, F., Dellen, B., Bendeck, F., Goldmann, S., Holz, H., Kötting, B., Schaaf, M.:
Merging Project planning and Web enabled dynamic workflow technologies. IEEE Inter-
net Computing 4, 65–74 (2000)

 Lean Management of Software Processes and Factories 335

16. TWiki, http://twiki.org/
17. Ambler, S.W., Nizami, K.: Agile Strategies for Geographically Distributed Quality Man-

agement. AgileJournal 2 (2007)
18. Prikladnicki, R., Audy, J.L.N., Damian, D., de Oliveira, T.C.: Distributed Software Devel-

opment: Practices and challenges in different business strategies of offshoring and onshor-
ing. In: 2nd International Conference on Global Software Engineering, pp. 262–274. IEEE
Computer Society, Washington (2007)

19. Nguyen, T., Wolf, T., Damian, D.: Global software development and delay: Does distance
still matter? In: 3rd International Conference on Global Software Engineering, pp. 45–58.
IEEE Computer Society, Washington (2008)

20. Grinter, R.E., Herbsleb, J.D., Perry, D.E.: The Geography of Coordination: Dealing with
Distance in R&D Work. In: ACM SIGGROUP conference on Supporting group work, pp.
306–315. ACM, New York (1999)

21. Subversion, http://subversion.tigris.org/
22. SIMPLe, http://alturasoluciones.com
23. Rational Team Concert, http://www-01.ibm.com/software/awdtools/rtc/
24. Selby, R.W.: Analytics-Driven Dashboards Enable Leading Indicators for Requirements

and Designs of Large-Scale Systems. IEEE Software 26, 41–49 (2009)
25. Apache ODE, http://ode.apache.org/
26. Intalio BPMS, http://community.intalio.com/
27. Artemis 7, http://us.aisc.com
28. MKS Integrity Suite, http://www.mks.com/
29. Kelly, G.: Barriers to adoption of the CMMI process model in small settings. In: 1st Work-

shop for Process Improvement in Small Settings, pp. 36–40. SEI, Pittsburgh (2006)
30. Barnes, F.: Good Business Sense Is the Key to Confronting ISO 9000. Review of Business

(2000)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 336–350, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Improving Efficiency of Change Impact Assessment
Using Graphical Requirement Specifications:

An Experiment

Niklas Mellegård and Miroslaw Staron

Department of Applied IT,
Chalmers Tekniska Högskola, Göteborgs Universitet

SE-412 96 Gothenburg, Sweden
{niklas.mellegard,miroslaw.staron}@ituniv.se

Abstract. Objective: Graphical requirements representation is often considered
needed to advance model-driven development. Dedicated modelling languages
include formalisms for graphically representing requirements, and together with
new methods for structuring requirements, graphical modelling promises im-
provements such as more efficient change management. This paper examines
whether the use of a graphical notation of a requirements affects the task of as-
sessing the impact of a proposed change to a requirements specification.
Method: The efficiency of using a graphical requirements representation was
examined through an experiment – using 18 student subjects. Time, perceived
confidence and accuracy were measured as dependent variables.
Result: The results showed that using a graphical representation decreased the
time required and increased the perceived confidence, but the accuracy de-
creased. However, the statistical analysis of the results showed that only the dif-
ference in time was significant. Furthermore, there was a large difference in
variance within the dependent variables between the groups.

Keywords: Requirements Engineering, Visualization, Efficiency, Experiment.

1 Introduction

Model Driven Engineering (MDE) [1] is an established software analysis and design
paradigm, bringing software engineering even closer to other engineering disciplines
[2, 3]. Despite the numerous advantages of the state-of-the-art modelling techniques
(e.g. UML [4], DSL1s [5], SysML [6]) engineers still struggle to efficiently link re-
quirements to design models for the purpose of documentation, traceability, or later
change impact assessment. The traditional ‘use case driven’ approach rooted in Ob-
jectory [7] is well suited for capturing the functional, scenario-like requirements,
whereas they are not suitable for other kinds of requirements (e.g. non-functional,
pure text based). One of the domains where text-based requirements are common-
place is the automotive domain in which the requirement specifications are often used

1 Domain-specific Language.

 Improving Efficiency of Change Impact Assessment 337

when handshaking development between the car manufacturers and their subcontrac-
tors [8-11]. The complexity and volume of the requirement specifications are usually
problematic for understanding of the specifications. The problems with understanding
and incompleteness of the specification [12] may lead to quality problems with the
final products or timeliness of development projects (when the quality has to be im-
proved before the release).

In this paper, we evaluate whether using a graphical way of structuring require-
ments leads to improved quality of the design models during development projects. In
particular, we address the following research question:

Does using a graphical representation of requirements result in more correct
and more efficient change impact assessments in model-driven design?

In order to address this question we conducted an experiment with students as sub-
jects. The objects of the experiment were inspired by the research project that we
conduct together with Volvo Car Corporation (VCC) [13]. In order to control the
environment we created a dedicated domain specific modelling language [14] that
was integrated with the existing requirement engineering practices and tools – e.g.
IBM/Rational RequisitePro. The dedicated modelling language was also chosen as we
in the future work intend to investigate whether adding more informal information
about requirements (as advocated by [15]) lead to improved requirement specifica-
tion, thus making the requirements model as the core requirements artefact in model-
driven projects. The proprietary model for structuring textural requirements at VCC
was replaced in the experiment with the Requirement Abstraction Model (RAM) [16]
and our implementation of RAM as a graphical Domain-Specific Language (DSL)
called gRAM [14], without the loss of generality of the results2.

The results show – with statistical significance – that using a graphical representa-
tion of the requirements hierarchy decreased the time required to assess the impact of
a proposed change – in our experiment it decreased with 37%. The results also indi-
cate, although without statistical significance, that the accuracy of the assessments
may deteriorate with the use of a graphical representation.

This paper is structured as follows; Section 2 presents work related to our research.
Section 3 briefly outlines the requirements specification formats. Section 4 details the
experiments we conducted as well as the results, section 5 contains discussions about
the result and section 6 concludes the paper.

2 Background and Related Work

The intended main contribution of the experiment reported in this paper was to evaluate
what effect a graphical representation of a model. In particular, the experiment focused
on the representation of requirements specification and its effect on the efficiency of
assessing the impact of a proposed change. Hence, the work related to this paper
concerned the evaluation of different model notations and their effect on the efficiency
of using the models. Additionally, as we chose to comply with the Requirements

2 The replacement was made in order to avoid biasing the generality of the study with the

proprietary model for requirements structuring. RAM was found to be good enough to ap-
proximate the proprietary model.

338 N. Mellegård and M. Staron

Abstraction Model (RAM), its effectiveness was also of interest. Moreover, in the ex-
periment we evaluated the requirements’ representation by having the subjects perform
tasks related to change impact assessment – as our industrial partner has expressed this
as a significant challenge – work related to assessing the impact of a proposed change
was also of interest.

The work presented in this paper was part of our ongoing research (outlined in
[17]) within the research project ASIS, done in cooperation with Volvo Car Corpora-
tion [13]. One part of the project aimed at improving the way requirements were
specified, and in particular, the extent to which requirement specification can be re-
used with a minimum of effort. As part of this research, a model for the requirements
specification process was developed (gRAM [14]) with the intention of finding areas
where Model-Driven Engineering (MDE) approaches may improve efficiency. This
paper contributes to that research by examining to what extent a graphical model of
the requirements affect the efficiency of assessing the impact of a change request to a
specified system.

Much of the empirical studies done on modelling – in both system modelling and
requirements engineering fields – have been with the focus on investigating and im-
proving aspects of specific approaches. Maiden et al.’s CREWS experiment [18] and
its replications [19] proposed and evaluated whether templates and style guidelines
improve the quality of use-case descriptions. Although the replications found some
contradictions, both studies provided evidence of that the use of guidelines improved
the quality of the use-case descriptions. Phalp et al. [20] extended the CREWS re-
search by comparing their approach with a leaner set of guidelines and found that it
performed at least as well as the original approach. Gravino et al. [21] examined,
through a controlled experiment, whether dynamic modelling and UML sequence
diagrams provided an accurate account of stakeholder requirements, with the focus on
evaluating whether a behavioural modelling approach improved the comprehension of
software requirements. In their study, they found no evidence of any significant dif-
ferences in the comprehension of system requirements by using dynamic modelling,
even though the subjects perceived the use of dynamic modelling as useful, thus
showing a difference between the perceived usefulness of a given method and effec-
tive advantage of using it. Our study examined the use of a graphical representation of
the RAM with the traditional text based one, isolating and exploring what effect a
visual representation had on the comprehension of requirements as well as traceability
to design and implementation. Thus, our study examined the effect of introducing a
graphical representation in an earlier phase of the development cycle.

In their paper [22] Lange and Chaudron performed a similar study to ours, in the
sense that they measured correctness and the effort required to comprehend a software
system. Lange and Chaudron compared four novel graphical views of a set of UML
diagrams to the representation used by traditional UML modelling tools. The study
found statistically significant improvements in both time and correctness (20% and
4.5% respectively) when using the alternative representation. Our study compared a
graphical and a textual representation of requirements – with linking to high-level
design – in order to evaluate specifically what influences the graphical representation
had on the comprehension of the specification in the context of assessing the impact
of a proposed change to the requirements or to some underlying software component.

 Improving Efficiency of Change Impact Assessment 339

There have been numerous comparisons of the efficiency of different modelling
approaches, e.g. De Lucia et.al [23] comparing the comprehension of a data model
represented in ER and UML diagrams, in which they found that the use of UML sig-
nificantly improves comprehension. Otero and Dolado [24] examined the effect of
different notation types with respect to comprehension of dynamic modelling, by
comparing the use of UML and OML in a design document, and found evidence that
the use of OML improved the semantic comprehension and required less time. In
contrast, our study was intended not to be dependent on any particular modelling
notation, but rather to evaluate the effect of graphical representation itself.

Studies to validate the effectiveness of the RAM approach have been done in e.g.
[16, 25, 26] and in our paper we intended to extend these studies by investigating
change impact assessment and using graphical representation. In that context, we
evaluated whether adding a graphical representation for a RAM-structured require-
ment specification can lead to further improvements. However, we also considered
time as one of the factors, thus we focused on efficiency, not only effectiveness.

In the light of the paper by Wong and Sun [27], where they examined how diagram
layout affected the comprehension of the programs they represent, we have chosen to
design the gRAM to as closely as possible resemble the original RAM, in order to
assure that our results can be generalized to the same contexts as the RAM itself.

Noppen et al. [12] showed that creating requirement specifications was an iterative
process and subject to frequent changes. Therefore, it was important that the time
required to identify what changes need to be made was short. Our experiment showed
that by using a graphical language the time required to assess the impact of a pro-
posed change can be substantially reduced, which means that using the graphical
language can lead to quite substantial improvements in iterative SRS development.

Lindvall [28] examined the accuracy of predicting the impact of introducing or
changing a requirement prior to design and implementation by examining real data in
best-of-practice projects, and found an under-prediction factor of 3.1 showing evi-
dence of the need to improve change impact predictions. The study by Lindvall was
done mainly to explore the accuracy of state-of-practice approaches to change impact
assessment, and did not take the perspective of requirements representation, nor did it
take traceability between requirements and high-level design into consideration, as
done in our study.

Arisholm et al. [29] examined the cost effectiveness of model-driven development
with UML by studying – in two consecutive controlled experiments – what impact the
presence of UML models in design and implementation documentation had on the
task of system maintenance, in terms of effort and correctness of performing
post-release changes. They concluded that when considering only the time required
making code changes, the UML documentation did help save effort but when also
considering the time required to change the UML documentation accordingly, no
savings were visible. They also concluded, however, that in terms of functional cor-
rectness, the use of UML documentation had a positive effect on the most complex
tasks. Our evaluation examined a similar research question, but from the perspective
of a graphical requirements model, and what influence the graphical representation
had on the correctness and effort required to assess the impact of a change.

In the context of our research (i.e. product line oriented, large, complex embedded
software systems), reuse was commonly achieved by modification of a requirements

340 N. Mellegård and M. Staron

specification of a similar existing system. Additionally, it was commonplace in many
business areas to manage requirements using structured text documents, thus, the
effect of the representation of requirements, and their linking to design artefacts, on
change impact assessment were of interest to examine.

3 Requirement Specification Format

In this section, we briefly describe the requirement specification format that was used
to create the domain specific graphical notation. The requirement specification format
is an established one with published evidence that this specification format is indeed
improving industrial requirements engineering practice [25].

3.1 Requirements Abstraction Model

The Requirement Abstraction Model (RAM) [16] has the goal of ensuring consistency
and traceability among requirements in order to increase the overall quality of re-
quirement specifications. The RAM defines a number of abstraction levels to which
each requirement is classified, and checklists to ensure that the requirements are as-
signed their proper level. In their original paper Gorschek and Wohlin [16] suggest,
but do not limit their model to, four different abstraction levels:

− Product: Product level requirements have a goal-like nature, very high-level de-
scriptions of the desired functionality of the product.

− Feature: Feature level requirements describe the features that fulfil the product
level goals.

− Function: Function level requirements define which functions should be provided
by the system in order to provide the features.

− Component: Component level requirements describe how something should be
solved, i.e. bordering to design information.

RAM ensures traceability between requirements through all levels of abstraction by
enforcing that, with the exception of the product level, no requirement may exist
without a link to a requirement one level of abstraction higher. The rationale for this
rule is that no requirement may exist unless there is a clear and unambiguous reason
for its existence motivated by higher-level requirements, and conversely, high-level
requirements should be traceable to the lower-level requirements that satisfy them.

3.2 gRAM – DSL for Modelling Requirements

gRAM is a Model-Driven Engineering (MDE) language with the purpose of creating
an easy to use requirements management environment for directly manipulating a
requirements structure, from which other documents can be automatically generated
through translational semantics. The gRAM is a formalized graphical Domain Spe-
cific Language3 (DSL) complying with the RAM, where validation rules (i.e. static
semantics) built into the gRAM ensures that the model and the resulting requirement
specification are syntactically correct and well formed according to the RAM.

3 “Domain specific” refers to the horizontal domain of requirements engineering.

 Improving Efficiency of Change Impact Assessment 341

In addition to the traceability link RAM defines between requirements at adjacent
abstraction level – which gRAM represents with an Owns/Satisfies link – gRAM also
adds the Depends-on traceability link, which indicates that there is a dependency
between two requirements within the same abstraction level.

In [14] we provide a more detailed description of gRAM, and the full set of ex-
periment material – including a textual and a gRAM requirements specification – is
available from [30].

4 Experiment Design

The experiment presented in this paper, was designed to compare the use of a require-
ments specification represented with the gRAM language, with a textual representation
written according to RAM. The objective of the experiment was to examine whether a
graphical representation of requirements (as advocated by MDE) increases the effi-
ciency and effectiveness of assessing the impact of a change to the requirements from
the perspective of system designers. This section presents the design of the experiment,
which was conducted as a standard two-group design – the control group (using the
textual specification) and the test group (using the gRAM specification).

4.1 Population and Sample

The subjects in this experiment were students – i.e. convenience sampling. A total of
18 subjects participated in the experiment, of which 14 were first and second year
master students (i.e. in their 4th and 5th year of university studies) attending Software
Engineering and Management programme, and 4 were 3rd year bachelor students
(i.e. their 3rd year of education) from the same programme.

Blocking – in order to assign subjects to experiment groups – was done based on
the subjects prior knowledge of UML, requirements engineering, industrial experi-
ence and experience with projects.

The population of this experiment is software designers working with implementa-
tion of software requirement specifications and systems analysts creating/maintaining
these specifications. Most of the participating master students had over one year
of industrial experience prior to their studies, which makes them representative for
junior designers in industry.

4.2 Instrumentation

Objects
The experiment objects shown to the subjects in both groups consisted of:

• Generic description of a toy software system
• Detailed design of the toy system (a class diagram)
• Requirement specification for the toy system complying with the RAM:

o For the control group: the textual requirements specification
o For the test group: the graphical representation (gRAM) of the

requirements

342 N. Mellegård and M. Staron

The toy system used in the experiment was a simulator of a power steering func-
tion in a car with customizable algorithm for automated power steering. The simulator
was implemented in Java prior to the experiment and the requirements were traced
(linked) to the software components of the simulator. The toy system was inspired
by the real-world systems our partners work with, which could not be used due to
confidentiality and the complexity of the systems.

The requirements specification consisted of 56 requirements, out of which 29 were
at the lowest level of abstraction. The high-level logical design view – represented by
a class diagram of the implemented power steering simulator – consisted of 10 classes
and 15 associations.

The full set of experiment material is available from [30].

Data Collection
Five tasks were prepared and used in the experiment, and were concerned with:

• listing requirements related to some functionality or having some, by the
 task, defined property

• listing components in the logical view that implement a given requirement
• listing components which may be affected by a given change request

The instruments of data collection were (i) a form with the tasks and (ii) a question-
naire surveying the background of the subjects. We used a separate answer sheet for
each task to collect the data, on which the subjects were asked to note the time when
they began the task, write their answer and finally note the time the task was finished.
We also asked the subject to note how confident they were in their answer; the 5-point
Likert scale was used for that purpose.

Additionally, we conducted informal, semi-structured interviews with subjects
from both groups in order to acquire qualitative data about how they perceived the
experiment. The interview questions were concerned with how the subject used the
material and what they found difficult.

Independent and Dependent Variables
There was only one independent variable in the experiment: the type of the require-
ment specification with the values – graphical (gRAM) and textual (TEXT).

The following direct dependent variables were used for each task and subject:

− Tx_SCORE The percentage of correctly identified requirements/ compo-
nents (%) for task x

− Tx_FP The absolute number of falsely identified requirements / com-
ponents for task x

− Tx_TIME The time in seconds spent on task x
− Tx_CONF The perceived confidence of the answer for task x (LIKERT

scale 1-5)

The following variables were derived from the collected variables for each subject:

− AVG_SCORE The subject’s average score over all tasks (percentage)
− TOT_FP The subject’s total number of false positives for all tasks
− TOT_TIME The total amount of time the subject spent on the tasks

 Improving Efficiency of Change Impact Assessment 343

− TOT_CONF The sum of the subject’s confidence level over all tasks
− EFF The efficiency of the change impact assessment process, calcu-

lated as AVG_SCORE / TOT_TIME

In the Analysis, We Used the Derived Variables. Hypotheses
The hypotheses posed in the study were tested at a 2-tailed confidence level of 95%
(p <= 0.05). For each task, we posed the following null hypotheses4:

− H-AS0: μAVG_SCORE_TEXT = μAVG_SCORE_gRAM
− H-TF0: μTOT_FP_TEXT = μTOT_FP_gRAM
− H-TT0: μTOT_TIME_TEXT = μTOT_TIME_gRAM
− H-TC0: μTOT_CONF_TEXT = μTOT_CONF_gRAM
− H-EF0: μEFF_TEXT = μEFF_gRAM

Each null hypothesis had a corresponding two-sided alternative hypothesis.

Analysis Methods
The collected data was analysed using both descriptive and inferential statistical
methods; box plots were used to identify outliers (complemented with Little’s MCAR
test [31] for analysis of missing values) and extreme values, mean values and standard
deviations were used to characterize the data set.

For the inferential statistics, we used Shapiro-Wilk test [32] to check whether the
variables fit the normally distribution, and Mann-Whitney U-test [33] for testing the
hypotheses stated in the previous section.

Validity Evaluation
The main threats to the validity of the study – as described by Wohlin et al. [34] – are
analysed below.

Internal Validity – As blocking was made by us based on our experience of the sub-
jects – all subjects were at some point students in courses taught by us – we assessed
the threat to internal validity by collecting background information using a survey.
After analysis we found no significant difference between the groups.

The introductory lecture was given to the two groups by different presenters, which
might have affected the internal validity of the study. This threat was minimized by (i)
having a common set of slides, which only differed in the presentation of the treat-
ment for each group, and (ii) supplying the same information presented at the lecture
in written format, which the subjects were allowed to study for 15 minutes before the
test started.

External Validity – The main threat to the external validity is the use of student sub-
jects, which may limit the ability to generalize the result to an industrial situation. The
study was mainly done to evaluate the format of the requirements specification, and
we do not make any conclusions about its applicability in an industrial situation
yet. Eventhough these subjects are not completely representative of this population
we could consider them the worst-case scenario sample, in the light of our previous
research [35, 36].

4 μ denotes the mean value for all subjects in the group.

344 N. Mellegård and M. Staron

An industrial evaluation of gRAM is planned for the future in the same way as an
industrial evaluation presented in [35].

Construct Validity – The following bullets state, in our opinion, the main threats to
construct validity according to Wohlin et.al. [34] and how we have avoided those
threats

- Inadequate preoperational explication of constructs. All variables, as well
as the correct answer to all experiment tasks, were clearly defined prior to the
experiment.

- Mono-method bias and Restricted generalizability across constructs. We col-
lected a number of different measurements; time, correctly given answers,
false positives and the subjects perceived confidence of the given answer. By
contrasting these to each other, we believe to have minimized this threat to the
validity of the experiment.

- Mono-operation bias. The experiment was conducted only once and with one
set of instruments, which poses a threat to construct validity. In order to con-
firm the findings in this evaluation, replication experiments, using different in-
strumentation is planned for the future, after an industrial case study on the
applicability of this method has been done.

Conclusion Validity – The statistical power of the conclusions is quite low due to the
small sample size. This threat to validity limits the strength of the conclusions drawn
from the study. Rather than stating firm conclusion, we limit ourselves to indications
and tendencies, and keep in mind that the results that showed no statistical signifi-
cance may be due to random variation in the sample (the ρ-value is also reported for
each hypothesis test). As the post-experiment interviews were, few they are not used
in the result analysis. Instead, they are only used in the discussion section as evidence
to support findings from the statistical analyses.

The original data set contained a number of missing data points (as reported in sec-
tion 4.3 below). Due to our low sample size, we chose to impute the missing data. The
imputation of the missing values was done using the Estimation-Maximization
method [31] that may inflate the correlation between variables, which however, does
not influence the statistical tests used in our study.

Testing of the collected data showed that several variables did not fit to the normal
distribution – reported in section 4.3 below. For this reason, non-parametric tests were
chosen for the inferential analyses, which further decrease the statistical power of the
results but avoids the risk of violating assumptions and introducing further threats to
the conclusion validity.

4.3 Analysis of Results

Normality Tests
The second column in Table 1 (Norm.(ρ)) shows the ρ-value for the Shapiro-Wilk
test – a value below 0.05 indicates that the variable fits the normal distribution. The
results show that none of the variables fit the normal distribution. Thus, the less pow-
erful non-parametric Mann-Whitney U-test was used to analyse the posed hypotheses.

 Improving Efficiency of Change Impact Assessment 345

Missing Data and Extreme Values
The following data points were missing in the collected data: (i) one subject omitted
to note the finish time on task 3; (ii) two subjects omitted to note the confidence on
task 4; (iii) one subject omitted to note the finish time on task 5; (iv) one subject
omitted to note the confidence on task 5; and (v) one subject did not submit the
background survey at all.

Little’s MCAR test could not reject that the values are missing completely at ran-
dom, indicating that methods for data imputation may be used. All missing values
were imputed using the Expectation-Maximization method [31].

Two outliers were found and removed from the EFFgRAM variable. The removed
values were excluded pair-wise in the subsequent analyses.

Descriptive Statistics
The descriptive statistics for the derived variables are shown in Table 1. The Diff-
column in Table 1 shows the difference between the text group and the gRAM group,
using the text group as baseline. The descriptive statistics indicate that the gRAM
group was 37% faster than the text group (TOT_TIME). On the other hand, the results
also show that the text group scores 23% better (AVG_SCORE) and produce 26% less
false positives (TOT_FP) than the gRAM group. There is also an indication of a 9%
higher perceived confidence level of the answers (TOT_CONF) in the gRAM group.

Table 1. Descriptive statistics

Variable Norm. (ρ) Mean Std. Dev. Diff Better
AVG_SCORETEXT 0.845 49.07 12.16

AVG_SCOREgRAM 0.131 40.00 17.53
-23% Text

(higher score)

TOT_FPTEXT 0.814 17.75 11.25

TOT_FPgRAM 0.344 22.40 11.29
26% Text

(less false positives)

TOT_TIMETEXT 0.335 3113.00 253.49

TOT_TIMEgRAM 0.192 1965.50 741.65
-37% gRAM

(faster)

TOT_CONFTEXT 0.369 14.13 1.64

TOT_CONFgRAM 0.498 15.4 4.67
9% gRAM

(more confident)

EFFTEXT 0.580 0.01572 0.0035

EFFgRAM 0.153 0.01629 0.0047
4% gRAM

(more efficient)

The results also show that the difference is time between the groups does not imply

a higher efficiency, as the gRAM group has a lower score; the difference in the effi-
ciency variable (EFF) is only 4%.

There is, furthermore, a large difference in the standard deviation between the
groups for all variables except TOT_FP variable – Fig 1 and Fig 2 show boxplots for
the TOT_TIME and EFF variables respectively. This variance within the
gRAM group may indicate that the difference between the groups is not statistically
significant.

346 N. Mellegård and M. Staron

Fig. 1. TOT_TIME variable

Fig. 2. EFF variable

Hypotheses Tests
The result of the hypotheses tests (Table 2) using the Mann-Whitney U-test shows
that only the hypothesis H-TT0 could be rejected. Fig 1 shows a box plot for the total
amount of time spent on the tasks (the unit on the y-axis is seconds). The descriptive
statistics show that the time required to perform a change impact assessment is in this
experiment 37% shorter when using gRAM (see Table 1).

Table 2. Hypotheses tests

Hypothesis ρ-value MWW U H0 rejected
H-AS0 0.264 27.50 No
H-TF0 0.351 29.50 No
H-TT0 0.002 5.00 Yes
H-TC0 0.501 32.50 No
H-EF0 0.834 30.00 No

 Improving Efficiency of Change Impact Assessment 347

Interviews
When asked how the requirement specification was used, subjects in the groups with
the textual specification stated that they constructed a hierarchical structure of re-
quirements similar to the gRAM, either mentally or on paper. Subjects from the text
group stated that the model they drew was revised many times during the experi-
ments, making them doubt whether they answered earlier tasks correctly.

Subjects in the gRAM group stated that they mainly used the graphical representa-
tion; in the interview one subject said: “When I read the task, I had an initial idea
about what the answer would be, and a quick look at the diagram confirmed it. I felt
no need to read the detailed description”.

The interviews suggest that the text group, while constructing a visualization of the
requirements themselves (either mentally or by drawing), read through the detailed
description of the requirements more thoroughly than the gRAM group. The gRAM
group seemed content with drawing their conclusions based on the graphical model,
turning to the details only when in doubt. The large standard deviation in required
time (TOT_TOME) and score (AVG_SCORE) within the gRAM group, however, might
indicate that some subjects did read the detailed requirements description more thor-
oughly than others did.

5 Discussion

The results of our experiment show with statistical significance that the use of a
graphical representation reduces the time required to perform the tasks. During the
post-experiment interviews, subjects from the text group stated that they tried to con-
struct visualizations of the textual document themselves, and some even stated that
the structure they created was similar to the representation used in the gRAM. This
suggests that there is a justification for creating such structure as part of making the
specification; if it is not done, it will result in redundant work each time the text speci-
fication is used. Moreover, statements from the text group suggest that they had
doubts whether the structure they created was correct, resulting in revising it during
the course of the experiment, which may contribute to the extra time spent by the
textual group.

On the other hand – although not statistically significant in our experiment – the
textual group had higher score and fewer false positives (variables AVG_SCORE and
TOT_FP in Table 1). This might be explained by interview statements from the group
presented with the gRAM representation, which show that they had an initial idea of
an answer and used the graphical structure to confirm it; they mainly used the detailed
description when in doubt. This indicates that they put a lot of trust in the material
provided, while the textual group – knowing that they created the graphical structure
themselves – were more inclined to double-check their answer. This suggests that a
graphical representation promotes quicker decisions, while the textual representation
forces the subject to study the material more closely.

Furthermore, the statements made by the gRAM group – saying that they mainly
turned to the detailed requirement description when in doubt – suggest the importance
of clearly defining what information is shown in the diagram. The graphical represen-
tation might end up being misleading if in fact the detailed description is needed in

348 N. Mellegård and M. Staron

order to fully understand the specification. This may explain the large variance in
time (TOT_TIME) and score (AVG_SCORE) within the gRAM group – the subjects
may have used the detailed requirement description to different degrees.

It should be noted that the experiment was done using student subjects, and that in
a real world situation the repercussions of making a mistake would be much more
severe than in our superficial case. Furthermore, only one of our five hypotheses
could be confirmed with statistical significance, possibly due to the large variation in
the gRAM group – which is not adequately explained by the experiment. For these
reasons, we plan to do a larger experiment and include subjects from the industry in
order to verify our conclusions.

6 Conclusions

Graphical modelling of requirements has been considered in several modelling lan-
guages like SysML (the notion of requirement) or UML (the notion of use case).
Nevertheless, not much empirical evidence is provided whether graphical modelling
of requirements improves typical requirements engineering activities like elicitation,
packaging, validation or change management. In this paper we present results from an
experiment performed at academia with the objective to verify whether a graphical
model of requirements is better than a textual one. As a basis for the experiment, a
state-of-the-art method was used – Requirements Abstraction Model – to specify the
requirements in a textual form, whereas a dedicated modelling language based on the
Requirements Abstraction Model was used for the graphical specification.

The results from the experiment show that the time required to assess impact of a
change was substantially shorter for the graphical notation. Aspects such as accuracy
of the assessment and the confidence in the result (as perceived by the subjects) were
found to be within the limit of statistical error (i.e. statistically insignificant).

In our future work, we plan to replicate the study in an industrial context and to
further experiment with such aspects as time required to create the requirement speci-
fication and its correctness.

Furthermore, we plan to examine the consistency among the different abstraction
levels of gRAM as well as the effectiveness of mapping the requirements specifica-
tion to design model – i.e. traceability correctness.

Acknowledgments

This research is partially sponsored by VINNOVA under the V-ICT program and the
ASIS (Algorithms and Software for Improved Safety) project. We would also like to
thank the students who participated in the experiment. Additionally, we like to thank
the anonymous reviewers for their valuable comments.

References

1. Kent, S.: Model Driven Engineering. Integrated Formal Methods, 286–298 (2002)
2. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Research

Roadmap. In: 2007 Future of Software Engineering, pp. 37–54. IEEE Computer Society,
Los Alamitos (2007)

 Improving Efficiency of Change Impact Assessment 349

3. Ludewig, J.: Models in software engineering – an introduction. Software and Systems
Modeling 2, 5–14 (2003)

4. Object Management Group, http://www.omg.org/
5. Greenfield, J., Short, K.: Software factories: assembling applications with patterns, mod-

els, frameworks and tools. In: Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pp. 16–27. ACM,
Anaheim (2003)

6. SysML - Open Source Specification Project, http://www.sysml.org/
7. Jacobson, I.: Object Oriented Software Engineering: A Use Case Driven Approach.

Addison-Wesley Professional, Reading (1992)
8. Hänninen, K., Mäki-Turja, J., Nolin, M.: Present and future requirements in developing

industrial embedded real-time systems - interviews with designers in the vehicle domain.
In: 13th Annual IEEE International Symposium and Workshop on Engineering of Com-
puter Based Systems, ECBS 2006, p. 9 (2006)

9. Kallenbach, R.G., Emig, R.: Automotive Electronics - What Makes It So Special? Pre-
sented at the October 1 (2004)

10. Salzmann, C., Stauner, T.: Automotive software engineering: an emerging application do-
main for software engineering. In: Languages for system specification: Selected contribu-
tions on UML, systemC, system Verilog, mixed-signal systems, and property specification
from FDL 2003, pp. 333–347. Kluwer Academic Publishers, Dordrecht (2004)

11. Broy, M., Kruger, I., Pretschner, A., Salzmann, C.: Engineering Automotive Software.
Proceedings of the IEEE 95, 356–373 (2007)

12. Noppen, J., van den Broek, P., Aksit, M.: Imperfect Requirements in Software Develop-
ment. In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542,
pp. 247–261. Springer, Heidelberg (2007)

13. ASIS - Algorithms and Software for Improved Safety,
 http://www.ait.gu.se/english/research_groups/se_management/
 research_projects/ASIS_Active_Safety_Systems/

14. Mellegård, N., Staron, M.: A Domain Specific Modelling Language for Specifying and
Visualizing Requirements. In: The First International Workshop on Domain Engineering,
DE@CAiSE, Amsterdam (2009)

15. Winkler, S.: Information Flow Between Requirement Artifacts. Results of an Empirical
Study. In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542,
pp. 232–246. Springer, Heidelberg (2007)

16. Gorschek, T., Wohlin, C.: Requirements abstraction model. Requir. Eng. 11, 79–101
(2006)

17. Mellegård, N., Staron, M.: Methodology for Requirements Engineering in Model-Based
Projects for Reactive Automotive Software. In: Vitek, J. (ed.) ECOOP 2008. LNCS,
vol. 5142. Springer, Heidelberg (2008)

18. Maiden, N., Minocha, S., Sutcliffe, A., Manuel, D., Ryan, M.: Co-operative scenario based
approach to acquisition and validation of system requirements: how exceptions can help!
Interacting with Computers 11, 645–664 (1999)

19. Cox, K., Phalp, K.: Replicating the CREWS use case authoring guidelines experiment.
Empirical Software Engineering 5, 245–267 (2000)

20. Phalp, K., Vincent, J., Cox, K.: Improving the quality of use case descriptions: Empirical
assessment of writing guidelines. Software Quality Journal 15, 383–399 (2007)

21. Gravino, C., Scanniello, G., Tortora, G.: An Empirical Investigation on Dynamic Modeling
in Requirements Engineering. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 615–629. Springer, Heidelberg (2008)

350 N. Mellegård and M. Staron

22. Lange, C., Chaudron, M.: Interactive views to improve the comprehension of UML models
- An experimental validation. In: Proceedings - ICPC 2007: 15th IEEE International Con-
ference on Program Comprehension, pp. 221–230 (2007)

23. De Lucia, A., Gravino, C., Oliveto, R., Tortora, G.: Data model comprehension an empiri-
cal comparison of ER and UML class diagrams. In: Proceedings of the 16th IEEE Interna-
tional Conference on Program Comprehension, ICPC, pp. 93–102 (2008)

24. Otero, M., Dolado, J.: An empirical comparison of the dynamic modeling in OML and
UML. Journal of Systems and Software 77, 91–102 (2005)

25. Gorschek, T., Garre, P., Larsson, S., Wohlin, C.: Industry evaluation of the Requirements
Abstraction Model. Requirements Engineering 12, 163–190 (2007)

26. Mohammad, N., Vandewoude, Y., Berbers, Y., Feldt, R.: Suitability of Requirements Ab-
straction Model (RAM) Requirements for High-Level System Testing. International Jour-
nal of Computer and Information Science and Engineering, 2

27. Wong, K., Sun, D.: On evaluating the layout of UML diagrams for program comprehen-
sion. Software Quality Journal 14, 233–259 (2006)

28. Lindvall, M.: Evaluating Impact Analysis - A Case Study. Empirical Software Engineer-
ing 2, 152–158 (1997)

29. Arisholm, E., Briand, L., Hove, S., Labiche, Y.: The impact of UML documentation on
software maintenance: An experimental evaluation. IEEE Transactions on Software Engi-
neering 32, 365–381 (2006)

30. gRAM Experiment Material, http://www.ituniv.se/~miroslaw/
ram-dsl_experiment/

31. Little, R., Rubin, D.: Statistical Analysis with Missing Data. Wiley, Chichester (2002)
32. Altman, D.: Practical Statistics for Medical Research. Chapman-Hall, Boca Raton (1991)
33. Bowerman, B., O’Connell, R., Murphree, E.: Business Statistics in Practice. McGraw-Hill,

New York (2008)
34. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslèn, A.: Experimenta-

tion in Software Engineering: An Introduction. Kluwer Academic Publisher, Boston
(2000)

35. Staron, M., Kuzniarz, L., Wohlin, C.: Empirical assessment of using stereotypes to im-
prove comprehension of UML models: A set of experiments. Journal of Systems and
Software 79, 727–742 (2006)

36. Staron, M.: Using Experiments in Software Engineering as an Auxiliary Tool for Teaching
– A Perspective of Students’ Learning Process. In: Borsler, J., Eriksson, J. (eds.) 6th Con-
ference on Software Engineering Research and Practice, Sweden, pp. 29–38. Umeå
University, Umeå (2006)

Vague Project Start Makes Project Success of
Outsourced Software Development Projects Uncertain

Paula Savolainen1,2

1 School of Computing
University of Eastern Finland

P.O. Box 1627
FI-70211 Kuopio, Finland

2 Lero — The Irish Software Engineering Research Centre
University of Limerick, Ireland

paula.m.savolainen@uef.fi

Abstract. A definition of a project success includes at least three criteria: 1)
meeting planning goals, 2) customer benefits, and 3) supplier benefits. This study
aims to point out the importance of the definition of the project start, the project
start date, and what work should be included in the project effort in order to ensure
the supplier’s benefits. The ambiguity of the project start risks the profitability of
the project and therefore makes project success at least from supplier’s point of
view uncertain. Moreover, vague project start makes it more difficult to compare
project management metrics, such as duration and effort, between projects. There
is no clear definition for the project start either in literature or practice. Based on
interviews, the definitions are provided for project start, project start date, and
project start-up effort included in the project.

1 Introduction

An ever increasing part of the software development activities are bought from external
suppliers. In those cases both the customer and the supplier plan to do viable busi-
ness together in a way in which the supplier develops the software in a project and the
customer will get the desired outcome of the project. In order to have a prosperous rela-
tionship between the customer and the supplier the projects should be as successful as
possible. The definition of success includes at least three criteria: 1) meeting planning
goals, 2) end-user benefits1, and 3) contractor benefits2 (including at least two criteria:
commercial success of the project and potential for future revenues) [1]. Without un-
derstanding all three criteria of project success and their implications it is less likely to
achieve a common project success.

The first project success criterion, the ability of the project to meet the planning
goals, is closely related to the traditional measures of project success, namely cost,
time and quality [2]. In the case of software projects it is more common to speak about
scope instead of quality. The reason to adhere to time, cost and scope is understandable

1 In this article the end-user benefits are considered to be customer benefits.
2 In this article the term contractor is replaced with the term supplier because in software engi-

neering standards the used term is supplier.

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 351–365, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

352 P. Savolainen

because for example ISO/IEC 12207 standard defines a project as an endeavor with
defined start and finish dates undertaken to create a product or service in accordance
with specified resources and requirements [3].

The second project success criterion, the customer benefits provided by the project,
can be defined by the project’s impact on general corporate strategy, business operations,
research and development, IS/IT development, and facilities provision and management
[4]. The impact on corporate strategy can lead directly to improvement competitiveness
and enhanced shareholder value. The impact of project success on IS/IT development
is improved financial benefits and reduced wastage on canceled projects. These bene-
fits cannot always be measured when the project ends because it may take some time
and sometimes it may take several years before the actual customer benefits can be
estimated.

The customer benefits are not the same as the project delivered in time, within the
budget and according to the scope [4]. There are several examples of projects that were
clearly over budget and over time, but which were clear successes. The final success of
the project is more likely to be influenced by the customer’s ability to select a project
that has potential to provide actual benefits to the customer than any other factor. Se-
lecting a fundamentally flawed project will ensure project failure even if the project has
been completed in time, scope and budget [5].

The third project success criterion, the supplier benefits, is necessary for good long-
time relationships between the supplier and the customer. It is necessary for the supplier
to run a profitable business, and therefore the overall project portfolio of the supplier
has to make profit. Without profitability the supplier will get out of the business and the
customer will lose the benefits of a mutually advantageous partnership. The potential for
the future revenues is also a very important aspect of project success from the supplier’s
point of view. This is emphasized by the study by Haried and Ranamurthy [6] in which
it is shown that one of the main aims of the supplier is to get additional business in the
future, and therefore one of the main criteria of the success of the current activities from
the supplier’s point of view is the outlook of future deals with the customer.

In order to gain benefits there should be a common understanding between the sup-
plier and the customer of the project, its scope, timetable, and costs. This understanding
should come into existence during negotiations between the supplier and the customer
before the project is allowed to start and this understanding is usually clarified in the
commercial and legally binding agreement and the project plan.

In order to gain its own benefits (commercial success of the project and potential for
future revenues) the supplier should fulfill contractual obligations with respect not only
to project scope but also anticipated effort and timetable. When the agreed outcome of
the project will be delivered to the customer in time and effort estimation is not overrun
the supplier may assume that the customer will not only gain its own benefits but also be
satisfied with supplier and its performance. Thereby the project has potential to become
profitable and the possibility for the future revenue will be ensured.

Especially for the supplier it is important not to overrun estimated effort and
timetable. The supplier has usually many projects going on at the same time. Con-
tinually supplying the pipeline with additional business in the form of project agree-
ments the supplier ensures its revenue stream [7]. However, the number of people, and

Project Success of Outsourced Software Development Projects 353

facilities available for a project are always limited. To be able to allocate resources from
one project to another the supplier should know how many and what kind of resources
are needed in one project and when these resources will be relieved and be free to be
moved on to other projects. If there are delays on schedule, the supplier will have chal-
lenges not only with current project but also with the other projects waiting for the
same resources. Moreover, if the effort estimation will be overrun, depending on the
commercial agreement, the supplier has a risk to have a non-profitable project which
will engender a shadow over the whole project and it is more difficult to achieve project
success and a prosperous relationship between the supplier and the customer.

When doing software projects as a business, the supplier has a need to estimate effort
as realistically as possible and the conceivable delivery date is estimated using effort
estimation as a basis. The eventual effort and thus costs of the project and its end date
are formed under negotiations between the customer and the supplier. The project start
and the eventual start date of the project are more problematic. The author’s industrial
background3 and current industrial cooperation have left the definition of the project
start a confusing and unclear concept.

A project start is quite important point in time for the project. The project work
should start at that moment. Moreover, the project start should form the baseline for the
estimation of project duration. But according to the personal experience of the author it
is not clear when the actual project work has started, what is the project start, and what
is the start date of the project.

For a supplier company project start-up activities are commenced when the com-
pany has got the order from the customer or the customer has indicated some other
way that it will order software development project with agreed deliverables form the
supplier company. During start-up phase the supplier company starts project planning
using initial project plans made for a tender as a basis, forms the project team, assign
responsibilities, establish procedures, install tools and controls, set up communications
and makes initial contact between the team and customer [8], and [9].

When analyzing project start-up Turner has divided different projects into four types
and emphasizes that start-up activities may be considerable especially in the case of
software development [10]. However, in supplier companies it is common that in some
projects those activities has been counted as effort to be included in the project but in
other projects that work has been neglected and has been left almost totally out from the
project work, although for a given project there is a certain minimum effort the project
requires in the start-up phase [11].

Because practices vary from one project to another it is not so obvious and well-
defined what work is included in the project work both beforehand while making effort
estimation at negotiation phase and when the actual project is about to start. Without
proper resources planned and reserved for project start-up activities, there is a risk that
the design and plan stages are not carried out thoroughly enough which is, according to
Atkinson, a common source of difficulty in projects [12].

3 Author has worked as a Developer, Systems Analyst, and Project Manager in Tieto devel-
oping software for customers mainly in telecom and logistics sector. She has worked also in
GE Healthcare R&D unit developing software product for intensive care units in European
hospitals.

354 P. Savolainen

While it is unclear, what activities should be and are included in the project work,
it is equally obscure how project start should be defined. Fangel gives two possibili-
ties: “The formal project start may be at the beginning of the start-up process, subject
to approval of the developed project plans. Alternatively, the start-up process may be
partly or fully carried out before the formal project start.” [13]. This means that project
start and therefore also project start date can be anchored to the beginning of the start-
up phase or somewhere during the start-up phase. However, an undefined project start
makes the timely and controlled execution the project start-up activities more challeng-
ing and may result in unnecessary risks.

In order to achieve all three criteria of project success, the supplier should be able to
provide accurate effort estimates. The creation of accurate estimates would require an
agreement on the types of work included into the project. Therefore the project start-up
work and the project start should be defined and agreed on by both the supplier and
the customer. Such clarification would benefit both parties by creating a more truthful
picture of the project and related activities and possible costs.

As long as both project start and what work is included in the project work are
unclear concepts it is difficult for the supplier to measure project profitability truthfully.
Moreover, basic project management metrics such effort, duration and timetable are
more unsteady than normally presumed. Therefore in this article the research question
is formulated as “What is ‘project start’ and how it is defined?”. The question stems
from the lack of clarity and the aim of this study is to help professionals to define
project start and related issues in a way that makes project success more likely.

A literature review is presented in Section 2. Since literature review was not able
contribute a definition to the project start the practitioners were interviewed to obtain a
practical definition for the project start. The performed interview is presented in Section
3. The results of the analysis of interviews are presented in Section 4. In Section 5 there
are a few definitions and the article is concluded in Section 6.

2 A Literature Review

Both the project start and the project start date as concepts may appear so obvious that
they do not seem to have a definition at all. An exact definition is, however, important on
order to achieve a common understanding. The literature review was split in three parts.
Those parts are a review of the standards, a brief search of definition from common
textbooks, and a search of relevant research from databases.

The first part, the analysis of standards, was restricted to the ISO and IEEE standards.
Later on the review of standards was backed up with an analysis of project management
standards. The first part of the search was by using the keywords “project”, and “start”,
and “date” in various combinations. No definition was found through database searches.

After the unsuccessful keyword search the standards ISO/IEC 12207, ISO/IEC
15288, ISO/IEC 15504, ISO/IEC 16085, and ISO/IEC 16326 [3], [14], [15], [16], and
[17] were analyzed. The analyzed standards do not provide a definition for project start
or project start date.

The analysis of standards was extended to the most common project management
standard, which is “A Guide to the Project Management Body of Knowledge” (PM-
BOK) and is often mentioned as “. . . the sum of knowledge within the profession of

Project Success of Outsourced Software Development Projects 355

project management.” [18]. PMBOK describes activities to be done at the project start-
up phase but doesn’t describe when the project actually starts and therefore doesn’t
define either the project start or the project start date. PMBOK defines, however, a start
date as “A point in time associated with schedule activity’s start, usually qualified by
one of the following: actual, planned, estimated, scheduled, early, late, target, baseline,
or current.” Schedule activity means “A discrete scheduled component of work per-
formed during the course of a project.” Start date is thereby associated with an activity,
which is scheduled and performed during the course of the project. Therefore the defi-
nition of the start date doesn’t give definition for the project start, which is the starting
point for the whole project and its activities.

The most common standards related to software projects do not provide a useful
definition. Therefore the literature review was extended to the common software engi-
neering books like [19], [20], and [21]. Such books cover wide range of concepts and
methods for software development as well as short description of project management.
As their main purpose is to describe software engineering as a whole without concern-
ing details of software projects, they don’t give definitions for project start or project
start date. Moreover, they do not pay any attention to the supplier’s problem of resource
allocation and management in a multi-project environment.

The last part of the literature review was searches performed in the scientific
databases. The first database used was IEEE database. The search strings used
were ((project <and> start date) <in> metadata), ((project <and>

start time) <in> metadata), and ((’project start’) <in> metadata).
All those searches produced only one page of results. The abstracts of the result ar-
ticles were read and the most promising article found was [9].

Egginton concentrates on two things: the handover from the sales organization to the
project organization and how to achieve a rapid launch of the project [9]. For the former
he presents a handover workshop as a way to ensure a smooth and complete transition
of responsibility from the sales management to the project management. For the latter,
the rapid launch of the project, he suggests a project kick-off meeting with participants
from all major project partners. With the help of both handover workshop and kick-off
meeting it is possible without dispute to contribute to the successful start of the project.
It is, however, unclear if the kick-off meeting is intended to be the actual project start.

From the ACM portal the search strings were project "start date" (328),
project "start time" (1 777), project "start-date" (328), project

"starttime" (1 777), and "project start" (156). The number in parenthesis after
the search string denote the number of hits. With those cases in which the number of hits
was larger than 200 only the first five pages of results were subjected for closer scrutiny.
With the string "project start" the whole list was looked at, although only those
articles with a promising title and abstract were considered more closely. No definitions
were found.

The Elsevier ScienceDirect database was used with the search term "project

start". The search was limited to the journals International Journal of Project Man-
agement, European Journal of Operational Research, Journal of Systems and Software,
Information and Software Technology, Research Policy , Technovation, Information &
Management, and European Management Journal. The search produced 229 hits. The

356 P. Savolainen

hits were looked at by the title and the abstract. Only those articles that seemed most
promising were looked at more closely.

Fangel discusses purpose of project start-up, planning of the project start-up, and
presents tools for the project start-up procedure [8], [13].He also describes differences
between project start and project start-up [13]:

. . . To me it is natural to distinguish between to start and to start-up. When
you are going to drive a car, you start by merely turning the key, releasing the
clutch, and simply drive away. You rarely give any thought to the matter of
performing the kick-off.

When you are going to run the diesel engine of a ship, you perform a start-
up which is a process involving several activities all needed before the marine
engineer can give the final ‘Go’. Examples of the activities are the manning of
the start-up, communication with the captain, fuel check, lubrication of bear-
ings, starting pumps, initiation of filters, and building up sufficient air pressure.

Such a professional start-up process is the basis for getting the engine go-
ing, but at the same time it gives an effective and economical operation of the
engine.

It seems to me that the difference between a project start and a project
start-up is just as obvious as the difference between starting a car and starting
up a ship’s diesel engine.

Using the example above he succeeds to clarify difference between project start and
project start-up, but, however, he gives incomplete definition for project start and project
start date, and these are already presented in Section 1.

In addition to Fangel, Turner and Cochrane [10] have analyzed the relationship be-
tween methods, goals, and start-ups. According to them, the start-up is important and
may require considerable amount of effort [10]. Two other studies concentrate on ef-
ficient project start-up [22] or evaluating effectiveness of project start-ups [23]. Both
studies emphasize the importance of the project start-up in order to ensure the success-
ful completion of a project. They do not, however, commit themselves on a definition
of the project start or the project start date.

In a fairly recent article it is noted that at present some projects may have unclear
boundaries, e.g. the start and end dates of the project are unclear [12]. The example of
a project type that has unclear boundaries is organizational change projects, which are
totally different from outsourced software projects, which are contract based and should
start and end sometime and provide a deliverable result. In that article the project start
was not defined at all, although it was mentioned to be sometimes a fuzzy concept.

Wiley InterScience database did not provide any interesting results. The search string
project NEAR/3 start for journals did produce 244 hits, but the results were not
promising. The titles of the articles and the names of the journals made it unlikely that
any of the articles would have provided the searched definition for the project start. Due
to the seeming inaccuracy of the Wiley’s search engine, Information Systems Journal,
Software Process Improvement, and Project Management Journal were looked at more
closely. No relevant articles were found.

SpringerLink database was searched with the string "project start". The search
produced 362 hits. The title of every hit was considered and the more interesting articles

Project Success of Outsourced Software Development Projects 357

were opened for further analysis. If the abstract of the article did not include relevant
terms, then the article was not considered any further. There were only two articles [24],
and [11] that somewhat covered the project start. Neither of those articles defined the
project start, but Barry et al. [11] considered the start-up important in the beginning of
the project and after interruptions. This is because an organization needs time to set up
the project team, train them, and allow them to become familiar with the project [11].

The literature review made it clear that there exists no common definition of the
project start. A clear definition of the project start is, however, important because con-
fusion and delays make project success less likely. The lack of definition in the liter-
ature does not mean that companies that supply projects to customers do not have a
clear definition. The interview was performed in order to get a definition formulated by
practitioners and the analysis of the interview is presented in the following section.

3 The Interview

The interview described in this section is a part of a larger study which consisted of
two different interviews performed in four software engineering companies. The larger
study aims to gain better understanding of those activities which are performed in a
supplier company before the actual project has been started and which will affect the
project during its life-cycle. One part of interviews concentrated on activities performed
in tendering process and another part concentrated on initiation activities performed in
the project start-up phase. This study concentrates on the interviews on the project start-
up phase.

The project start-up phase is the phase that succeeds the sales process and precedes
the actual project. Project start-up phase starts when company has got the order from
the customer or the customer has indicated some other way that it will order software
development project with agreed deliverables from the supplier company. The project
start-up phase has been discussed in [8], [13], [10], [9], [23], and [24]. The project start-
up phase and its relationship with the sales process and the actual project are depicted
in Fig. 1.

Two software engineering companies where interviews were performed made soft-
ware development projects to various customers. Other two companies made embedded
software projects with close cooperation with industrial companies. The main char-
acteristic of all four companies was that they delivered unique product (software or

Fig. 1. The Start-up phase of a project

358 P. Savolainen

embedded software, or in some cases specialized hardware with embedded software) to
their customers. For these companies projects are their main way of doing business.

The persons interviewed were selected by the higher management of the companies.
For the project start-up interview the management were asked to select project managers
or other people who are responsible for project management. The interviewed people
included eleven Project Managers, one Business Unit Manager, one Team Manager,
and one Engineering Manager, altogether 14 people. Summary of the project start-up
interviews is presented in Table 1.

Table 1. Summary of the project start-up interviews

Company Project focus Persons inter-
viewed

Position

Company A Software 3 Project Manager
Project Manager
Business Unit Manager

Company B Software 3 Project Manager
Project Manager
Team Manager

Company C Embedded Software 2 Project Manager
Engineering Manager

Company D Embedded Software 6 Project Manager
Project Manager
Project Manager
Project Manager
Project Manager
Project Manager

An interview instrument was developed for interviews and it consisted of main
themes and a form for background data. In addition, few questions were planned to
obtain definitions. The interview instrument was constructed by one researcher and val-
idated by two other researchers. The interviews were performed as semi-structured in-
terviews, more the forms of a discussion, using the interview instrument as a guide of
discussion. Every interview was recorded and the recordings were transcribed to text.
The analysis of the interviews was based on these transcribed texts.

One of the questions made for definition formulation was “When do you consider a
project started?”. The question and especially answers of this question turned out to be
not so straightforward than it could have been supposed to be. Analysis of the various
answers and results of the analysis are described in the next section.

4 Results of the Analysis

The first step of the analysis was to extract all answers of question “When do you
consider a project started?” from transcript files into one manageable file keeping data
traceable. Each answer was analyzed and a simplified individual definition for project

Project Success of Outsourced Software Development Projects 359

Table 2. Individual definitions of the project start

Company Project focus Individual definitions

Company A Software - There has been a kick-off meeting with the customer.
- Work to achieve the goals of the project has been started.
- First hours have been registered to the project.

Company B Software - We got the deal.
- The project manager has taken over the project.
- There has been a kick-off meeting with the customer.

Company C Embedded Software - We have got the deal.
- A project number for the project has been opened.

Company D Embedded Software - The order has been got.
- The order has come.
- The project manager has been appointed.
- There has been an official kick-off meeting with the cus-

tomer.
- There has been an internal kick-off meeting.
- Someone is working on the project.

start was formulated for each interviewee. The result of this step is presented company
by company in Table 2.

It can be seen that there are many quite similar definitions as “The order has been
got.” and “The order has come.” These quite similar definitions were grouped together
and altogether five groups were comprised of individual definitions. After analysis of
each group one definition of project start was derived for each group. These definitions
and the number of different definitions in each group are presented in Table 3.

Table 3. Definition and the number of individual definitions

Definition Number of individual definitions

We got the order. 4
Project work has been started. 4
There has been a kick-off meeting with the customer. 3
The project manager has been appointed. 2
There has been an internal kick-off meeting. 1

The most common definitions were “We got the order” and “Project work has been
started” but only one interviewee defined the project start via internal kick-off meeting.
This may reflect that it is not very common to have internal kick-off meetings or that a
project is considered started before an internal kick-off meeting.

It is possible to place the definitions presented in Table 3 in a time-scale. The placing
represent the relative ordering of the definitions and reflects the opinion of the author
of this article. The ordering of the definitions is shown in Fig. 2.

After the supplier has got the deal, it takes some time to appoint the project manager.
When the project manager has been appointed, he/she will start getting familiar with the
project. That time can be considered to represent the first moments when some work

360 P. Savolainen

Fig. 2. The definitions of the project start in a timeline

has been done to the project. The project resources are selected by the project manager
or the resources are given to the project manager. In many cases the project manager
may have some influence on the decisions regarding the project team, but that influence
can be very limited. After the project team has been selected it is possible to have an
internal kick-off meeting. Before or after the internal kick-off meeting the members
of the project team have familiarized themselves with the project. The formal project
kick-off meeting requires that the supplier’s project team and the customer’s relevant
personnel are known. Both sides should have familiarized themselves with the project
and be ready for the meeting. It may, however, be the case that it will take some time
before the formal project kick-off meeting can be held.

The time between the order and the kick-off meeting with the customer may be
several weeks. During that time there may have been a considerable amount of effort
spent in addition to the effort directly related to start-up activities. Hence, it is not easy
to compare the effort, the duration, and the schedule of individual projects even inside
a single company. This problem is clearly seen in Table 4 where different definitions
are presented company by company. Each definition is presented once and number of
interviewed persons per company is also presented.

It is quite amazing how many different meanings project start can have amongst
professionals. There is no common understanding inside any company. If we look at
the Company B one of the interviewees define project start as “The order has been got.”
and another as “There has been a kick-off meeting with the customer.” If their process
follows author’s own experience there is a huge difference between project managers
how they manage project start and project timetable, and how they manage hours spent
for the project.

After collecting and analyzing the definitions the actual transcripted interviews were
re-read. That made the vagueness of the project start much easier to understand. The
ambiguity of the project start is described by one manager, who was not able to make
up his/her mind. He/she finally conceded that the project start is a fuzzy concept and
difficult to define.

Now, we usually have a kick-off meeting with a customer. It can be considered a
starting point of the project. . . But how it goes, when the project starts, anyway,
what is pre-planning of the project then. . . So, yes, the kick-off meeting can be
before the pre-planning, that we have agreed that we get our finger out. But
we, of course, discuss it with the customer as early as possible, what have
to be done, and so on. That it is a basis for the planning, case-specifically,
maybe. . . This is such a gray area.

Project Success of Outsourced Software Development Projects 361

Table 4. Different definitions and the number of interviews for each company

Company Project fo-
cus

Definitions Number of
interviewed
persons

Company A Software - Project work has been started. 3
- There has been a kick-off meeting with the customer.

Company B Software - The order has been got 3
- The project manager has been appointed
- There has been a kick-off meeting with the customer

Company C Embedded - The order has been got 2
Software - Project work has been started

Company D Embedded - The order has been got 6
Software - The project manager has been appointed

- Project work has been started
- There has been an internal kick-off meeting
- There has been a kick-off meeting with the customer

All interviewed managers worked for companies which make various software projects
to different customers. The difficulties to manage project starts and how to define the
project start after delays is clearly seen from the quotation of one manager:

I don’t know. . . Well, I, for one, think it’s when someone has started to work
for the project. It’s common that we have some timetable. We have offered a
project, we made a tender today, the project will start 1st January 2009 and end
30th May 2009. Some time passes, we’ll get the order, perhaps in the mid Jan-
uary, we won’t update the schedule. We’ll start the ball rolling, we’ll get maybe
one guy for the project and another maybe in the mid February. Now, we’ve
failed the start and schedule, it doesn’t matter as such, but what is actually the
project start. In my opinion, it’s when there is someone working for the project.

His/her answer included some further insight in addition to the definition of the project
start. He/she illuminated one of the problems that are inherently present in contractual
software projects. The timetable, i.e. schedule, has been outlined in a binding tender,
but the order comes much later than expected. The project is already late, the schedule
is presumably not updated, the resources are not available at once (it has to be remem-
bered that the order comes much later than expected) and the project is delayed even
more. The actual project start and the start date defined in the original project plan have
nothing to do with each other anymore.

Ambiguity with a moving project start and the activities performed during start-up
create difficulties for the supplier because the supplier has to cope not only with the
already late project but with several other projects at the same time. It is likely that at
least some of the other projects use the same resources than the original project. The
other projects may be delayed or disrupted by the timetable changes of the original
project.

The fact that the managers interviewed work for companies which operate in project
business makes the managers to pay special attention to anything that incurs difficul-
ties to the supplier. Therefore some experienced managers may select a more or less

362 P. Savolainen

arbitrary date and present it as the start date of the project. By using such a date he/she
strengthens his/her bargaining position with the customer because he/she can always re-
fer to that date and negotiate a new schedule. That is clearly expressed by one manager
who said:

I personally write it always in the project plan. I’ll try to keep it easy for me,
it’s quite difficult to define when the project has been started and therefore it’s
always written in my project plans. There can be delays for different reasons
but we have to have readiness to start the project. And when we are able to
show the project start date and the project has been started we are stronger to
negotiate with the customer for the changes of timetable.

Differences between various definitions for the project start can be interpreted to
mean that the concept of the project start was at least partly ambiguous in every com-
pany. The ambiguity is expressed in a clear way by one experienced manager who said:

My strong opinion is that it is when project manager is appointed. The order has
come, is forwarded to project manager, and that’s it.

The emphasis is used in the quotation in order to point out that the definition provided
by the interviewee is his/her personal opinion, not a fact nor a company level definition.

To summarize the results of the analysis of the interviews we can conclude that the
definition of the project start has obviously been accepted to be very difficult to create.
Moreover, it is an ambiguous issue and the definition of the project start date is at least
partly arbitrary and may have no real connection to the real start of the project. In the
world of contract based — or outsourced — software projects the relationship between
the project start and the project start date written into the schedule is not always a
reality. The ambiguity of the project start definition may make it difficult for software
companies to define and show if a project has been profitable or not. If a part of the
project work has been done without including that work in the official project, then
that work has been done outside the official agreement and the situation is not tenable
considering project success and a prosperous long-time partnership.

In order to make the situation clearer and both the customer benefits and the supplier
benefits easier to achieve the relationship between project start and the project start date
should be clarified and the term defined. In the following section such definitions are
proposed and the some impacts of the current ambiguous situation discussed.

5 Definitions

It seems to be the case that the state of the practice is as fuzzy as the almost non-
existent literature definition. The start date of the project has to be defined somehow,
but every project manager seems to have his/her own definition for the project start and
therefore he/she has his/her own definition also for the start date of the project. This
type of ambiguity may result in a situation in which the supplier performs work that is
necessary for the project but not included in the agreement.

This kind of situation is not beneficial for the supplier because there is a risk to lose
not only the profitability of one project but also the profitability of other projects if

Project Success of Outsourced Software Development Projects 363

Fig. 3. The definitions of the project start and other relevant times

there are many project managers who may act alike. Therefore the project start, project
start date and the work included in a project work should be defined. These definitions
were made by the author, and the definitions and their relationships are presented in
the Fig. 3.

The most obvious moment for having the project start is the day when the supplier
and the customer have the project kick-off meeting. This moment is defined also as the
project start date. The customer may expect the supplier to have the project team up and
running immediately after that meeting. The project start-up activities that are required
should be performed before the project start.

For the supplier the project start-up activities are a necessary part of the project
[11][24][10] and actually a part of the project effort. The start-up activities should be
included in the project work from moment when the project work has been started
(internal project start / project start date) to moment when the kick-off meeting has
been performed with the customer. In that span a remarkable amount of work has been
done and that effort should be included into the project despite the fact that the work is
invisible to the customer.

6 Conclusion

When discussing successful software development project, we should consider all three
success criteria, which are: 1) time, cost, and scope, 2) customer benefits, and 3) sup-
plier benefits. In order to achieve those criteria and create a prosperous relationship
between the customer and the supplier there has to be a common understanding of sev-
eral issues. One of the issues is the definition of the project start and the role of project
start-up activities discussed in [10], and [24].

Although the amount of effort spent in the start-up activities may be remarkable —
at least there is a minimum amount of effort that a project start-up requires [11] — the
relationship between those activities and the project start has not been clearly defined
in literature. The relationship is vague in practice also and an interview of practition-
ers provided five different definitions, all of which have a clearly different meaning
considering the project start and the type of work that belongs to a project.

364 P. Savolainen

Without proper understanding which start-up activities are needed, which start-up ac-
tivities are included in project work, when project starts, and what is actual start date of
the project, there is a risk that proper planning and design are not carried out thoroughly
enough, effort estimations made before and after project start are faulty, project planned
delivery date has been missed before project start, and overall resource usage planning
of the company becomes more challenging. All these difficulties minimize possibility to
achieve successful project from supplier’s point of view: to have commercial success of
the project and potential for future revenue. Moreover, basic project management met-
rics such effort, duration and timetable are misleading from the beginning the project
and comparing different projects is unreliable.

The understanding may be based on the definition proposed in this article. The def-
inition is that the project start and also the project start date is the moment when the
supplier and the customer have a kick-off meeting, but the internal project start / project
start date is the moment when the supplier performs the first project start-up efforts. The
project work that should be agreed includes the start-up effort required by the project.
The customer and the supplier should agree on the inclusion of the start-up effort to the
official agreement.

Although the reported study is based on a fairly limited number of interviews its
results can be considered valid because similar problematic have been reported earlier
[24]. The actual usability of the proposed definition in the business environment and the
detailed steps present in the start-up phase are left for further research.

Acknowledgment

This research was funded by the Finnish Funding Agency for Technology and Innovation
(Tekes) with the grant 70011/08, and supported in part by Science Foundation Ireland
grant 03/CE2/I303_1 to Lero—The Irish Software Engineering Research Centre.

References

1. Dvir, D., Raz, T., Shenhar, A.J.: An empirical analysis of the relationship between project
planning and project success. International Journal of Project Management 21, 89–95 (2003)

2. Atkinson, R.: Project management: cost, time and quality, two best guesses and a phe-
nomenon, it’s time to accept other success criteria. International Journal of Project Man-
agement 17, 337–342 (1999)

3. ISO/IEC, ed.: ISO/IEC 12207-2008: Systems and software engineering — Software life cy-
cle processes. ISO/IEC, Geneva, Switzerland (2008)

4. Cooke-Davies, T.: The “real” success factors on projects. International Journal of Project
Management 20, 185–190 (2002)

5. Munns, A.K., Bjeirmi, B.F.: The role of project management in achieving project success.
International Journal of Project Management 14, 81–87 (1996)

6. Haried, P., Ramamurthy, K.: Evaluating the success in international sourcing of information
technology projects: The need for a relational client-vendor approach. Project Management
Journal 40, 56–71 (2009)

7. Cooper, M.J., Budd, C.S.: Tying the pieces together: A normative framework for integrating
sales and project operations. Industrial Marketing Management 36, 173–182 (2007)

Project Success of Outsourced Software Development Projects 365

8. Fangel, M.: Planning project start-up. International Journal of Project Management 2,
242–245 (1984)

9. Egginton, B.: The project start-up process — getting it to work better. Engineering Manage-
ment Journal 6, 88–92 (1996)

10. Turner, J.R., Cochrane, R.A.: Goals-and-methods matrix: coping with projects with ill de-
fined goals and/or methods of achieving them. International Journal of Project Manage-
ment 11, 93–102 (1993)

11. Barry, E.J., Mukhopadhyay, T., Slaughter, S.A.: Software project duration and effort: An
empirical study. Information Technology and Management 3, 113–136 (2002)

12. Atkinson, R., Crawford, L., Ward, S.: Fundamental uncertainties in projects and the scope of
project management. International Journal of Project Management 24, 687–698 (2006)

13. Fangel, M.: To start or to start-up?: That is the key question of project initiation. International
Journal of Project Management 9, 5–9 (1991)

14. ISO/IEC, ed.: ISO/IEC 15288–2008: Systems and software engineering — System life cycle
processes. ISO/IEC, Geneva, Switzerland (2008)

15. ISO/IEC, ed.: ISO/IEC 15504: Information Technology — Process Assessment. ISO/IEC,
Geneva, Switzerland (2004)

16. ISO/IEC, ed.: ISO/IEC 16085: Systems and software engineering — Life cycle processes —
Risk management. ISO/IEC, Geneva, Switzerland (2006)

17. ISO/IEC, ed.: ISO/IEC 16326: Systems and software engineering — Life cycle processes —
Project management. ISO/IEC, Geneva, Switzerland, Final Draft (2009)

18. Project Management Institute, ed.: A Guide to the Project Management Body of Knowledge,
3rd edn. Project Management Institute, Pennsylvania, USA (2004), ANSI/PMI 99-001-2004

19. Sommerville, I.: Software Engineering, 8th edn. Pearson Education Limited, London (2007)
20. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 6th edn. McGraw-Hill,

New York (2005)
21. Royce, W.: Software project management: a unified framework. Addison-Wesley Longman,

Inc., Amsterdam (1998)
22. Torp, O.: Efficient project start-up (2003),

http://www.concept.ntnu.no/attachments/058_2004_johanesen_
nordnett_efficientprojectstart_up_torp.pdf, Unpublished paper
(accessed January 4, 2010)

23. Halman, J.I.M., Burger, G.T.N.: Evaluating effectiveness of project start-ups: an exploratory
study. International Journal of Project Management 20, 81–89 (2002)

24. Haapio, T., Ahonen, J.J.: A case study on the success of introducing general non-construction
activities for project management and planning improvement. In: Münch, J., Vierimaa, M.
(eds.) PROFES 2006. LNCS, vol. 4034, pp. 151–165. Springer, Heidelberg (2006)

http://www.concept.ntnu.no/attachments/058_2004_johanesen_nordnett_efficientprojectstart_up_torp.pdf
http://www.concept.ntnu.no/attachments/058_2004_johanesen_nordnett_efficientprojectstart_up_torp.pdf

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 366–379, 2010.
© Springer-Verlag Berlin Heidelberg 2010

The Rosetta Stone Methodology – A Benefits Driven
Approach to Software Process Improvement

Fionbarr McLoughlin and Ita Richardson

Lero – The Irish Software Engineering Research Centre
University of Limerick, Limerick, Ireland

Abstract. In response to the lack of a business-focused approach to software
process improvement (SPI), the Rosetta Stone objective-driven SPI Methodol-
ogy (RSM) has been developed which allows organizations to undertake SPI
based on business-driven objectives using proven SPI methodologies. To dem-
onstrate usefulness and practicality, the Rosetta Stone IGSI-ISM to CMMI
Instance mapping (RS-ICMMI) is developed using a generic set of business
objectives which are mapped to the CMMI (Staged) model using a modified
version of GQM. This methodology and the RS-ICMMI instance have been
validated by experts.

1 Introduction

In companies, a significant amount of capital expenditure and operating expenses are
spent on Information and Communications Technology (ICT). In fact, according to
the Organization for Economic Co-Operation and Development (OECD) [1], total
worldwide spending on ICT was expected to reach $2.964 trillion in 2005 (the most
recent OECD estimates). Therefore, it is important that the ICT maturing process
continues to evolve. From a Software Process Improvement (SPI) perspective, there
are several competing and, in some cases, complementary standards such as the Soft-
ware Engineering Institute’s CMMI for Development version 1.2 [2]; the Interna-
tional Standards Organization’s (ISO) ISO15504 [3], formerly known as SPICE; the
Trillium Model [4], developed originally in 1991 by Bell Canada; the ISO’s 9000-3
standard [5] and the ISO 9001:2000 standard [6], a process-driven approach to define,
establish and maintain software quality within an organization that will allow organi-
zations to meet their business objectives [7].

Quite a deal of literature supports the hypothesis that implementation of the various
SPI methodologies will result in benefits to organizations. However, they do so from
an IT perspective. There are few, if any, methodologies which approach systems im-
provement from a business goals and objectives perspective. Our research has demon-
strated that these benefits come about as a result of implementation of SPI which is
IT-centric. In other words, ICT drives the business benefits. The Rosetta Stone Meth-
odology1, developed and evaluated as part of our research and presented in this paper,

1 The Rosetta Stone is an Egyptian stele found by the French in 1799 with three translations of

a single passage in Hieroglyphics, Demotic, and classical Greek. It allowed scholars to trans-
late between these three languages. The analogy is that the Rosetta Stone Methodology will
allow the translation between business objectives and SPI methodologies.

 The Rosetta Stone Methodology – A Benefits Driven Approach 367

consists of a methodology which allows businesses to undertake business- and organ-
izational-driven goals and objectives.

Section 2 of this paper describes the reported benefits of implementing software
process improvement, and our research method is described in section 3. In section 4,
we present the development of the Rosetta Stone Methodology, its constituent ele-
ments and a specific implementation. This is followed by a discussion and conclusion
in sections 5 and 6.

2 Benefits of SPI

Software and systems development methodologies have evolved to enable the devel-
opment of ever larger and more complex solutions to real-world problems. However,
there are concerns and while advances have been made there are still quite a few hor-
ror stories reported [8]. To get to where we are now has resulted from the gradual
evolution of development processes. This evolution includes, but is not limited to,
solutions such as software inspections [9], structured programming [10], software
process improvement techniques and project management methodologies. We are
cognisant of the work of Solon and Statz [11] and Zahran [12] when they discuss the
difficulties of using benchmark SPI benefits in making business cases for the imple-
mentation of SPI. While at a high level benefits are categorized consistently in macro
terms such as Return On Investment (ROI), Quality, Defect Density, and Reduced
Cycle Times, upon more detailed review results are not normalized nor is there
consistency in how benefits are defined. An additional problem is that much of the
literature deals with the results of SPI from individual organizations. Also, there are
benefits which, while of interest to the community as a whole, are mentioned in only a
small minority of research reports.

We now present an overview of the reported benefits resulting from the implemen-
tation of SPI. Our intention here is not to provide an exhaustive review of all the re-
ported benefits of SPI but merely to demonstrate that there is considerable evidence to
support the view that SPI is beneficial to organizations.

2.1 Reported Benefits of SPI

Return On Investment (ROI) reviews often feature large companies. Humphrey et al.
[13] described the Software Process Improvement initiative at Hughes Aircraft where,
during a 4 year period (1987-1990) they progressed to CMM Level 3. From an ROI
perspective, the assessments cost Hughes Aircraft $45,000 and a further $400,000
over the two-year program of improvements. Hughes estimated savings to be about $2
million. The effects of a CMM-based SPI program at Software Systems Laboratory
(SSL) within Raytheon Inc. are described in [14], [15]. Over 5 years this program cost
$5million, and the organisation progressed from Level 1 to Level 3, and was working
towards a Level 4 assessment. ROI had increased by a factor of 7.7 based on a sam-
ple of six projects. Boeing STS, a division of Boeing Inc. that supports space trans-
portation programs for the Department of Defense and NASA, achieved a rating of
CMM Level 5 in July 1996. Yamamura and Wigle [16] present an analysis of cost-to-
benefit ratios citing a reduction in rework effort by 31% due to formal inspection

368 F. McLoughlin and I. Richardson

alone - this translated into a 7.7:1 ROI. In reporting on the progression of the Okla-
homa City Air Logistics Center (OC-ALC) from CMM Level 1 to CMM Level 4,
Butler and Lipke [17] reported that, for an investment of $6 million, the OC-ALC
calculated a reduction in cost of $50.5 million – an 8.4:1 ROI. To further support the
argument that ROI increases as a result of implementation of CMMI, the SEI [18]
reported an increased ROI of between 2:1 and 27.7:1%, with a median increase in
ROI of 4.7:1, based on 16 separate data points. In addition to the individual reports
outlined above, both El Emam and Briand [19] and Krasner [20] report summary
evidence of the benefits of SPI.

There are many studies which demonstrate that productivity increases as a result of
software process improvement. Brodman and Johnson [21], [22], [23] investigated the
effect of improving process capability in 33 companies who were at various levels of
CMM maturity. They demonstrate increases in productivity ranging from 6.4% to
100%. A study of four projects was undertaken by Software Productivity Research Inc.
of the benefits of SPI within Oklahoma City Air Logistics Center (OC-ALC) [24]. This
determined that there was a 10 times increase in productivity from the baseline project
to their most recent project (while OC-ALC was at CMM Level 2, working its way to
Level 4). Dion [14], [15] also reported Productivity increases of a factor of 2.3 in a 5
year time period as a result of implementing CMM. Also reporting productivity in-
creases as a result of implementation of CMM are Herbsleb et al.[25], [26]. Their report
shows a productivity increase of between 9% and 67% over a wide range of maturity
levels after implementing CMM, with the median increase being 35%.

Goldenson and Gibson [27] detail some preliminary results from the application of
CMMI process improvement. In particular, they quoted a 30% increase in Productiv-
ity as a result of implementation of CMMI. In a follow-up to the initial 2003 report,
the SEI [28] attributed productivity increases as a result of implementation of CMMI
of between 9% and 255%, with a median value of 62%. Garmus and Iwanicki [29]
report productivity increases of 132% (based on Function Point/Effort Month), and an
effort reduction by 50%. NASA’s (National Aeronautics and Space Administration)
SEL (Software Engineering Laboratory) spent 10 years undertaking an SPI initiative
at their Goddard Space Flight Center. Reporting on the SEL in 1994, Krasner, Pyles
et al. [30] report that predicted costs were always within 10% of actual costs; only one
deadline was missed in 10 years; maintenance cost of code was half that at other IBM
software facilities; defects of 0.01 per thousand lines of source code (KSLOC); and an
increased error detection rate of 95%. Krasner [31] further reported a reduction in
error rates of 75% between 1985 and 1993, a reduction of software development costs
by 55%, and an increase of reuse by 300%. He also notes that costs have become
more predictable. Yamamura and Wigle [16], in their report on their implementation
of CMM Level 5, report that their processes were finding 89% of the defects – thus
leaving 11% still baked in. After implementing SPI, virtually 100% of all defects are
found. Putnam and Myers [32] reported that quality improvements (by defect ratio)
fell from just over 0.1 defects per 1 KSLOC to 0 defects per KSLOC.

The SEI [18], based on 20 separate data points, has attributed quality increases of
between 7 and 132%, with a median of 50% to the successful implementation of
CMMI. From a defect perspective, McLoone and Rohde [33] found a significant
reduction in the hours/KSLOC metric and another reduction in the dollars/KSLOC
cost while Garmus and Iwanicki [29] report a reduction in defect density of 75%, all

 The Rosetta Stone Methodology – A Benefits Driven Approach 369

through CMMI implementation. Liu [34] reports significant improvements as a result
of Motorola’s implementation of CMMI Level 5 in their sites in China. Between
2003 and 2006, Cost of Quality was reduced from approximately 35% to 25%, fewer
defects were inserted into code and the faults per line of code was reduced by 13.01%
from its pre-CMMI Level 5 level. Studies analysed demonstrate that as organizations
implement more quality-oriented processes, the quality of code improves. Addition-
ally, quality increases as process capability maturity levels increase. We also note that
it becomes more difficult, and therefore more costly, to increase quality between
higher maturity levels.

There is a note of caution, however, associated with these reported results. While
there appears to be clear evidence of a correlation between increased ROI and imple-
mentation of various SPI initiatives, there also seems to be a trade-off between ROI
and Quality, which would seem natural. In the case of SPI programs like CMM and
CMMI, the higher an organization progresses up the maturity ladder, the more quality
processes are put in place and therefore there is a tendency for quality to increase but,
at the same time, ROI decreases [35]. As Fayad and Laitinen [36] note, “moving to
levels 4 and 5 sounds worthwhile but there is little empirical evidence to support the
move.” In addition, while there is consistent evidence of increases in productivity
coinciding with the implementation of CMM/CMMI, there is also evidence to suggest
that the rate of increase in productivity is not uniformly higher as successive
CMM/CMMI levels are implemented. In addition, some research suggests that at least
part of the productivity increases relates to technological innovation as a result of
process improvement.

2.2 SPI Challenges

There are several challenges associated with the interpretation and use of the research
we have reported in the previous sections. Firstly, there is a lack of uniformity in the
definition and interpretation of the metrics/indicators used as evidence of the benefits
of SPI. Different researchers and practitioners use the same metric to mean different
things. Secondly, for various reasons, not all companies, even when using standard
industry definitions for metrics, use the same metrics in their studies. The effect of
this is that, while there may be quite a lot of research, it is sometimes difficult to find
like-metrics upon which to base comparisons. Thirdly, companies may be reluctant to
divulge information for commercial reasons, particularly if the results of their SPI
effort paint them in a worse light than their peers. Therefore, it is difficult to find
studies which report negatively on process improvements.

However, to say that SPI in itself is the silver bullet for the software development
process would be less than disingenuous. Nothing in life is free and SPI is no excep-
tion to this rule. Various criticisms such as high cost, rigidity in approach, and the
increased administrative overhead associated with SPI have all been levelled at SPI –
or more particularly at SPI models such as CMMI or ISO15504 [37], [38]. These have
been legitimate criticisms. However, it is up to individual organizations to balance
the increased costs of assessment and accreditation, the increased size and overhead
associated with the SPI model, and any issues arising from rigidity in application of
the model with the benefits to the organization as a whole.

370 F. McLoughlin and I. Richardson

In summary, there is a lot of evidence in the literature to show that there are defi-
nite benefits to be realized from implementing SPI. However, we have noted little
evidence to show that implementation of particular process improvements have a
particular effect on the business requirement.

2.3 Bridging the Gap between SPI and the Business

As noted in section 1, there are several SPI methodologies currently available for
organizations to use in order to improve their software processes. These methodolo-
gies are software centric and are often not tightly linked to an organization’s business
goals and objectives. In fact, Debou and Kuntzmann-Combelles [39] contend that the
major bottleneck to the success of SPI initiatives is the lack of business orientation in
how the program is run. Specifically with regard to CMMI, Liu et al. [40] state that
there exists a disconnect between business goals and maturity levels. The RSM
bridges these gaps by adding two weapons to the practitioner’s arsenal. Firstly, it
provides a generic methodology, based on a modified version of GQM [41], [42],
which can be used to couple a generic benefits model to an arbitrary SPI. Secondly,
and perhaps more importantly from a practitioner’s perspective, it provides an imple-
mentation of the RSM using a for-profit benefits model tied to an industry-standard
SPI methodology which has been validated by industry peers and modified based on
their feedback.

3 Research Methodology

The research commenced with a literature review and initial interviews with academ-
ics and industry personnel. No approach was identified which supported businesses
in deciding which software processes to improve to gain specific business benefits.
Therefore, the purpose of our research is to create an objectives-driven approach
whose use should allow this. It is expected to save organizations both time and re-
sources by allowing them to focus only on those process areas which have a direct
bearing on the business objectives they are trying to achieve.

The first step was to create a generic methodology, the Rosetta Stone Methodology
(RSM). This was done by creating a meta-model of all the elements involved in an SPI
implementation (see LHS of Fig. 1). After this, a step-by-step approach was developed
which guides practitioners in using an SPI methodology and benefits model to define a
mapping between business-focused benefits and individual SPI process areas. In es-
sence, this process allows practitioners to substitute the meta-model with a concrete
implementation instance of the model (see RHS of Fig. 1). This mapping is then used
as the basis to answer various questions regarding which process areas should be im-
plemented to achieve specific business benefits and in what particular order.

To demonstrate the implementation of the RSM in a specific instance, we investi-
gated available return on investment models which did not deal exclusively with
software process improvement, but with which existing SPI models could be com-
bined. We chose to work with the IGSI-ISM Benefits Model [43] and CMMI Version
1.2 [2]. This is done as follows:

 The Rosetta Stone Methodology – A Benefits Driven Approach 371

1. Determine which benefits model and which SPI model which is to be used;
2. Define the mapping (relationships) between objectives/benefits and software

processes;
3. Answer the questions that are relevant to the individual organization.

The initial methodology, meta-model and implementation instance were developed as
described and were then reviewed by a small group of peers for validity. For triangu-
lation purposes, they were validated through a Delphi review of 17 people with an
average work experience in the software industry of 19 years along with an average of
11 years of SPI experience. Additionally, to validate the implementation instance, a
group of experts was interviewed about each relationship within the RS-ICMMI
model. Out of a pool of ten experts, two experts were randomly selected to review a
set of IGSI-ISM Benefit/CMMI Level 2 combinations. They discussed whether they
agreed with the relationship presented and where they had seen these relationships
work in practice. This process was repeated until all combinations had been reviewed.
In some cases, the RS-ICMMI was modified as a result of these interviews.

Fig. 1. Rosetta Stone objective-driven software process improvement Model (RSM)

4 Rosetta Stone Methodology

While there are many reported benefits from SPI projects, our observation is that the
SPI agenda has been undertaken to improve particular processes for the process-sake,
rather than organizational benefits as the primary objective. This is typically not the
way the commercial world works. Therefore, to achieve a business-oriented focus, the
outcome from our research will allow organizations to achieve organization-specific
objectives through improving their software process.

In the first instance we have developed the Rosetta Stone Meta Model. The meta-
model is, in essence, an entity-relationship model which relates together all the major
elements within any SPI initiative – business objectives desired, returns associated

372 F. McLoughlin and I. Richardson

with achieving the business benefits, process areas, costs of implementing the process
areas, and the metrics/indicators to determine progress/regression towards the objec-
tives (see LHS of Fig. 1). The Rosetta Stone Methodology (RSM) consists of using
the Rosetta Stone Meta Model to create a concrete instance of the meta model. The
main benefits of using this methodology are that users are able to:

• Achieve specific business objectives by targeting particular software proc-
esses to improve in order to achieve business benefits

• Understand what benefits may be derived from the improvement of which
particular software process

• Given a set of existing metrics and values, determine what processes may be
more readily and quickly implemented than others.

4.1 Objectives, Process Areas, and Indicators

The most important element in RSM is the set of business objectives or benefits which
an organization wishes to achieve. If possible, these should be hierarchical so that the
achievement of one should lead to the achievement of others. For example, if on-time
delivery of projects is achieved (one possible business objective) then this should
result in better customer satisfaction (another possible business objective). Each bene-
fit should have some form of return associated with it – some way of determining,
frequently quantifiable but sometimes qualitative, the value of the benefit. Returns are
meaningful to the business and, as such, are typically not SPI-type metrics such as
defects/KSLOC or defects/function point – unless, of course, the business is primarily
focused on software development. For example, if productivity were the objective, it
might be possible to say that, for an x% increase in productivity, there should be an
increase in profits of y%. For each objective, there is at least one indicator - a set of
metric(s) that are an indication that a particular benefit has occurred. In other words, a
set of indicators that can prove (or disprove) that progress is being made towards a
specific benefit – a way to measure a benefit. Process areas are those processes which
are being improved during the SPI program, and would include, for example require-
ments management, risk management and project planning. Each process area has a
cost associated with it – costs associated with implementing the improvement.

In order to make a concrete instance of the model, the practitioner must first
choose which objectives are most relevant to their business and then choose which
SPI model is most appropriate for their organization. These two entities then drive the
choice of costs, returns, and indicators. In addition, it is important to define the rela-
tionships between the objectives/benefits model and the software processes. This can
be done using specific instances of the model.

4.2 Return, Costs and ROI

For the majority of organizations, where profit is a primary goal, benefits should ulti-
mately lead to a monetary impact on the organization. One of the main advantages of
RSM is that it is now possible to tie software process improvements to specific bene-
fits due to the fact that the benefits defined in RSM are very granular. It must be rec-
ognized, however, that in some cases it is difficult to measure the monetary value of a
benefit – for example, how can a dollar value be put on increased team morale? In the

 The Rosetta Stone Methodology – A Benefits Driven Approach 373

case of RSM, the return on the SPI is compared to the cost of improving the specific
software process. Great care must be taken, therefore, to not only capture the mone-
tary equivalents that accrue from the benefits of process improvement but also the
cost of implementation.

5 Rosetta Stone Methodology: CMMI Implementation Instance

We demonstrate the implementation of the RSM through mapping the CMMI (staged)
model to a benefits model developed by IBM Global Services, the IGSI-ISM Benefits
Model [43]. The implementation of this instance is illustrated in the RHS of Fig. 1
and the final output is the RS-ICMMI.

The IGSI-ISM model (see Fig. 2) shows the relationships between the various
benefits which culminate in the ultimate benefit for the organisation – increased reve-
nues/profits. This benefit can be achieved through relationships between 21 separate
identifiable benefit areas. These include benefits such as lower time-to-market, better
risk management and competitive proposals. In addition, the model is a hierarchy of
benefits – higher level benefits are derived from elements that are lower in the benefit
tree. For example, better product quality leads to increased productivity. Similarly,
increasing the understanding of customer needs leads to setting right customer expec-
tations, thus to improved predictability and to more competitive proposals. Both
increased productivity and more competitive proposals lead to an improved image
which feeds directly to increased revenues/profits.

Fig. 2. IGSI-ISM Benefits Model

374 F. McLoughlin and I. Richardson

The RSM requires us to map the IGSI-ISM Benefits model to the software proc-
esses whose improvements will provide these benefits. To do this, each the generic
goal, specific goal and specific practice of each CMMI process area was reviewed,
determining which ones have particular relevance to the IGSI-ISM benefit model. To
define the mapping between objectives/benefits and software processes, a modified
approach to Basili’s Goal-Question-Metric approach [41], [41] is used. A reverse
mapping between process areas (Questions) and business objectives (Goals) is created
by asking what process areas (Questions) impact what business objectives (Goal). In
effect, the reverse lookup asks “What objectives does this process area fulfil?”

We note here that not all benefits are equal and the RSM differentiates between
primary and secondary benefits. A primary benefit of a process area is one that is
brought about as a direct result of implementation of that process area where the
cause and effect relationship between the process area implementation and the benefit
is very strong. Secondary benefits are those benefits which are not primary benefits
and include derived benefits. A derived benefit is a benefit which is a hierarchical
ancestor of either a primary or secondary benefit. As we shall see later, the benefit
classification is used to determine the recommended order of process areas to be
implemented.

5.1 Examples of CMMI Level 2 Process Area to Benefit Mappings

Requirements Management. The Requirements Management (REQM) process area
contains 1 Specific Goal (SG) which in turn consists of 5 Specific Practices (SP). The
goal is that “requirements are managed and inconsistencies with project plans and
work products are indentified”, maintaining a current approved set of requirements
over the life of the project. REQM requires the implementation of the obtaining of an
understanding of requirements (SP 1.1-1), the obtaining of a commitment to require-
ments (SP 1.2-2), the management of requirements (SP 1.3-1), and the identification
of inconsistencies between project work and requirements.

Based on the specifications of the REQM as defined by the SEI, the following are
the expected primary benefits of implementing REQM:

• Better Risk Management: By managing requirements and identifying inconsisten-
cies, we are better able to identify alternative strategies and avoid building soft-
ware that isn’t part of a customer’s requirements.

• Understanding Customer Needs: Proper management of requirements forces us to
consistently review those requirements and thus focus on understanding customer
needs. By indentifying inconsistencies between requirements, plans, and work
products we are constantly ensuring that the customer’s needs are always
foremost.

• Lower Time to Market: by identifying inconsistencies up front, we will spend less
time working on items that are not required by customers or that are inconsistent
with customers’ needs and expectations. As a result, less time will be spent on
rework, thus saving resources and reducing time to market.

Configuration Management. The purpose of Configuration Management (CM) is to
establish and maintain the integrity of work products using configuration identifica-
tion, configuration control, configuration status accounting, and configuration audits

 The Rosetta Stone Methodology – A Benefits Driven Approach 375

[44], [45]. CM consists of 3 SGs – SG1 (the establishment of baselines), SG2 (the
tracking and control of changes), and SG3 (the establishment of integrity). In software
projects it is absolutely essential that all artefacts are correctly baselined and tracked.
Without this baselining and tracking, there is no guarantee that code, requirements or
any other project artifact will be consistent with each other, thus increasing risk and
reducing quality. In fact, the opposite is true, effective configuration management is
essential for increasing quality and reducing risk. In addition, as [28] note, “configu-
ration management, and in particular version control, plays a role in supporting to
work of teams” and that “software configuration management serves as a mechanism
for communication, change management and reproducibility.”

Configuration management allows projects to properly track the various parts that
make up their products. By instituting CM, multiple teams will be able to edit/modify
code without stepping over each others’ toes. In addition, CM allows project teams to
map changes back to specific issues or requirements, this increasing product quality
and managing risk. Therefore in the RS-CMMI, CM results in the primary benefits:
Better Quality Product, Better Risk Management, Teaming / Synergize.

5.2 Achieving Specific Business Objectives

In the exemplar we have demonstrated that organisations may (normally) require
increased revenues/profits, and are not particularly interested in which software proc-
ess improvement methodology or software process area is used to deliver the business
benefits. The process to determine which process areas to execute in order to achieve
specific business benefits is as follows:

1. Determine which of the IGSI-ISM objectives that we wish to achieve. This is
normally determined from outside the software process improvement group, pos-
sibly from either external clients or senior management. We will use lower time-
to-market as the objective in this example.

2. Using the IGSI-ISM model (Fig. 2), determine which other objectives, if any,
contribute to achieving our primary objective. We observe that skill development
facilitation by management, effective information management, team-
ing/synergize, improved institutionalization of tools/process/methods and busi-
ness focus all contribute to lower time-to-market.

3. Using the implementation mapping developed during the creation of the imple-
mentation instance of the RSM methodology, establish which process areas con-
tribute to both the primary and secondary objectives of the selected business
benefits. For illustrative purposes we will use lower time-to-market (node 5-2 in
Fig. 2) as the example benefit we wish to achieve and have provided a reduced
version of the RS-ICMMI mapping in Table 1 which contains only those process
areas which have lower time-to-market as either a primary or secondary benefit.

4. Rank the PAs in order of relevance and implementation. There are quite a few PAs
which have an effect on lower time-to-market. Most organizations have finite re-
sources and therefore will need to prioritise their implementation. There are many
different ways to rank them. More consideration should be given to those PAs that
primarily satisfy a particularly objective. In the case of lower time-to-market, we
would implement Process and Product Quality Assurance (PPQA) before implement-
ing Configuration Management (CM) as PPQA primarily satisfies lower time-to-
market while CM only secondarily satisfies lower time-to-market (see Table 1).

376 F. McLoughlin and I. Richardson

Additionally, we should observe the software process model we are using. Although
within RS-ICMMI both Requirements Management (RM) and Requirements Devel-
opment (RD) directly satisfy lower time-to-market, as, within the CMMI staged
model, RM is a Level 2 PA, it should be undertaken before RD. Using these princi-
ples, the first three process areas that we propose implementing to lower time-to-
market from the Level 2 Process Areas would be Requirements Management,
Supplier Agreement Management, Measurement and Analysis and Process and Prod-
uct Quality Assurance. Configuration Management would not be implemented until
later as lower-time-time market is only a secondary benefit. By ordering implementa-
tion based on relevance, as above, we ensure that those process areas are imple-
mented which have most impact on the business objective. As a result, we implement
those process areas up front which provide biggest bang for the buck for the business
objective desired.

We must recognize, however, that this proposed methodology is not without its limi-
tations. From a practical perspective, while both the methodology and the RS-ICMMI
implementation instance have been reviewed at length by practitioners, it has not yet

Table 1. Example Objective - Lower Time to Market

 The Rosetta Stone Methodology – A Benefits Driven Approach 377

been actually put into practice. Another challenge is that this research has taken place
over several years and one of the challenges is to keep the RS-ICMMI model up to
date with the latest version of CMMI. Finally, while the IGSI-ISM Benefits model is
a good generic business objectives model there are many organizations out there
which do not follow a for-profit business model such as represented by the IGSI-ISM
model. Further research may be appropriate to bring in other types of benefits model.

6 Conclusion

The purpose of this research was to develop a generic methodology that allows or-
ganizations to achieve specific business-focused objectives by implementing various
existing and proven SPIs. While a business-driven approach to SPI is research-worthy
in itself, in order for such a model to be successful in the real world it should be flexi-
ble enough to be able to support the sometimes vastly different organizational objec-
tives of various types of business – government organizations, non-government
organizations (NGOs), the military, and for-profit commercial companies to name but
a few. Not only should it be flexible enough to support these various organization
types, but it should also be customizable so that individual organizations are able to
customize benefit models. In addition, as an enormous amount of effort has been
spent on SPI and SPI research, any proposed model should leverage existing work as
much as possible. In order to meet these objectives the Rosetta Stone methodology
was developed. It is a generic benefits-driven methodology which, in its essence,
allows practitioners to map from a benefits model which is appropriate to an organiza-
tion to a proven SPI methodology. In addition, is it fully customizable and allows
organizations to make adjustments to the model where they feel it appropriate.

This research has brought together business focus and SPI. Two business-focused
SPI models are presented – the RSM meta-model which maps from arbitrary benefits
models to arbitrary SPI models and the RS-CMMI model which maps from the IGSI-
ISM benefits model to the CMMI (Staged) model. We are currently evaluating both
models through case study research with software process practitioners.

Acknowledgement

This research was supported by the Science Foundation Ireland funded projects,
Global Software Development in Small to Medium Sized Enterprises (GSD for
SMEs) grant number 03/IN3/1408C and B4-Step grant number 02/IN.1/108 within
Lero - the Irish Software Engineering Research Centre (http://www.lero.ie).

References

1. Organization for Economic Co-Operation and Development: OECD Information Technol-
ogy Outlook, 2006. OECD (2006)

2. Software Engineering Institute: CMMI for Development Version 1.2. SEI (2006)
3. International Standards Organization: ISO/IEC 15504-2:2003 Information technology -

Process assessment - Part 2: Performing an assessment (2003)

378 F. McLoughlin and I. Richardson

4. Coallier, F.: Trillium Reference Manual (1994)
5. International Standards Organization: ISO 9000-3. International Standards Organization

(1994)
6. International Standards Organization: ISO 9001:2000. International Standards Organiza-

tion (2000)
7. Hailey, V.A.: ISO 9001: A Tool for Systematic Software Process Improvement. In:

Hunter, R., Thayer, R.H. (eds.) Software Process Improvement, pp. 291–309. IEEE Com-
puter Society, Los Alamitos (2001)

8. Standish Group: The Chaos Report. The Standish Group (2009)
9. Fagan, M.E.: Design and Code inspections to reduce errors in program development. IBM

Systems Journal 15, 182–211 (1976)
10. Dijkstra, E.: Go to statement considered harmful. Classics in Software Engineering,

pp. 27–33. Yourdon Press (1979)
11. Solon Jr., R., Statz, J.: Benchmarking the ROI for Software Process Improvement (SPI).

Software Tech. News 5, 6–11 (2002)
12. Zahran, S.: Business and Cost Justification of Software Process Improvement - "ROI from

SPI". In: International Software Process Association Conference, Brighton, England
(1996)

13. Humphrey, W.S., Snyder, T.R., Willis, D.R.: Software Process Improvement at Hughes
Aircraft. IEEE Software 8, 11–23 (1991)

14. Dion, R.: Elements of a Process-Improvement Program. IEEE Software 9, 83–85 (1992)
15. Dion, R.: Process Improvement and the Corporate Balance Sheet. IEEE Software 10,

28–35 (1993)
16. Yamamura, G., Wigle, G.B.: SEI CMM Level 5: For the Right Reasons. CrossTalk - The

Journal of Defense Software Engineering (1997)
17. Butler, K.L., Lipke, W.: Software Process Achievement at Tinker Air force Base,

Oklahma. Software Engineering Institute, 58 (2000)
18. Software Engineering Institute: CMMI Performance Results - 2005, vol. 2008 (2005)
19. El Emam, K., Briand, L.: Cost and Benefits of Software Process Improvement. Fraunhofer

IESE, 27 (1997)
20. Krasner, H.: Accumulating the body of Evidence for the Payoff of Software Process Im-

provement. In: Hunter, R., Thayer, R.H. (eds.) Software Process Improvement, pp. 519–539.
IEEE, Los Alamitos (2001)

21. Brodman, J.G., Johnson, D.L.: Return on Investment (ROI) from Software Process Im-
provement as Measured by US Industry. Software Process: Improvement and Practice 1,
35–47 (1995)

22. Brodman, J.G., Johnson, D.L.: Return on Investment from Software Process Improvement
as Measured by U.S. Industry. CrossTalk - The Journal of Defense Software Engineering
(1996)

23. Brodman, J.G., Johnson, D.L.: Realities and Rewards of Software Process Improvement.
IEEE Software 13, 99–101 (1996)

24. Butler, K.L.: The Economic Benefits of Software Process Improvement. CrossTalk - The
Journal of Defense Software Engineering 1995 (1995)

25. Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., Zubrow, D.: Benefits of CMM-Based
Software Process Improvement: Initial Results. Software Engineering Institute, Carnegie-
Mellon University (1994)

26. Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., Zubrow, D.: Benefits of CMM-Based
Software Process Improvement: Executive Summary of Results. Software Engineering In-
stitute, 16 (1994)

 The Rosetta Stone Methodology – A Benefits Driven Approach 379

27. Goldenson, D.R., Gibson, D.L.: Demonstrating the Impact and Benefits of CMMI®:An
Update and Preliminary Results. The Software Engineering Institute, 55 (2003)

28. Burzcuk, S.P., Appleton, B.: Software Configuration Management Patterns: Effective
Teamwork, Practical Integration. Addison Wesley, Reading (2002)

29. Garmus, D., Iwanicki, S.: Improved Performance Should Be Expected from Process Im-
provement. Software Tech. News 10, 14–17 (2007)

30. Krasner, H., Pyles, J., Wohlwend, H.: A Case History of the Space Shuttle Onboard Sys-
tems Project (1994)

31. Krasner, H.: A Case History of Process Improvements at the NASA Software Engineering
Laboratory (1995)

32. Putnam, L.H., Myers, W.: How Solved is the Cost Estimation Problem. IEEE Software 14,
105–107 (1997)

33. McLoone, P.J., Rohde, S.L.: Performance Outcomes of CMMI-Based Process Improve-
ments. Software Tech. News 10, 5–9 (2007)

34. Liu, A.Q.: Motorola Software Group’s China Center: Value Added by CMMI. Software
Tech. News 10, 18–23 (2007)

35. O’Neill, D.: Determining Return on Investment Using Software Inspections. CrossTalk -
The Journal of Defense Software Engineering (2003)

36. Fayad, M.E., Laitinen, M.: Process Assessment Considered Wasteful. Communications of
the ACM 40, 125–128 (1997)

37. Jones, C.: The economics of software process improvement. IEEE Computer 29, 95–97
(1996)

38. Reifer, D.: The CMMI: it’s formidable. The Journal of Systems and Software 50, 97–98
(2000)

39. Debou, C., Kuntzmann-Combelles, A.: Linking Software Process Improvement to Busi-
ness Strategies: Experiences from Industry. Software Process: Improvement and Prac-
tice 5, 55–64 (2000)

40. Liu, X.F., Sun, Y., Kane, G., Kyoya, Y., Noguchi, K.: Business-oriented Software Process
Improvement Based on CMM using QFD. Software Process Improvement and Practice 11,
573–589 (2006)

41. Basili, V.: Software Modeling and Measurement: The Goal/Question/Metric Paradigm.
University of Maryland (1992)

42. Basili, V., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. In: Mar-
ciniak, J.J. (ed.) Encyclopedia of Software Engineering, vol. 1. John Wiley & Sons Inc.,
Chichester (1994)

43. Goyal, A., Kanungo, S., Muthu, V., Jayadevan, S.: ROI for SPI: Lessons from Initiatives at
IBM Global Services India. In: SEPG 2001 (2001)

44. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration and
Product Improvement. Addison-Wesley, Boston (2003)

45. Software Engineering Institute: CMMI for Software Engineering, Version 1.1, Staged
Representation (CMMI-SW, V1.1, Staged) - CMU/SEI-2002-TR-029 (2002)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 380–394, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Defining and Monitoring Strategically Aligned Software
Improvement Goals

Andrea Oliveira Soares Barreto and Ana Regina Rocha

COPPE/UFRJ, Universidade Federal do Rio de Janeiro
Caixa Postal 68511, CEP 21945-970, Rio de Janeiro, Brazil

{ansoares,darocha}@cos.ufrj.br

Abstract. Software engineers are always aiming at improving software proc-
esses and products. However, the adoption of these improvements on software
organizations must be aligned to their strategic goals. Otherwise, these im-
provements may not improve the organization. However, to guarantee this
alignment can be complex, since improvement initiatives would have to be
planned and monitored considering aspects starting from strategic level and go-
ing all the way to the organization daily operations. Thus, this work presents an
approach to define and monitor software improvement goals, which are decom-
positions of strategic goals and are related to software products or processes.
Our approach comprises strategic, tactical and operational planning activities,
always aiming at strategic alignment. As important tools to monitor the goals
defined, software measurement and statistical process control are also consid-
ered. An infrastructure to monitor the goals is described, and also an experience
of use of the approach at a Brazilian software development organization.

Keywords: Software Improvement Goal, Strategic Planning, Software Process.

1 Introduction

The increase of demand for high quality software products has forced organizations to
find out alternatives to improve their products, including the improvement of their
software processes. However, the search for better software processes and products
without aligning them to business goals can be insufficient. Software process im-
provement initiatives have to be consistent with business goals of an organization and
also with its business strategy [1].

Although the literature highlights the need for strategic alignment in software
process improvement [2], [3], [4], [5], [6], achieving this alignment may be difficult.
Even existent software reference models, such as CMMI-DEV [5], do not provide
proper guidance on how organizations should define their processes based on their
strategic priorities. As a result, although the practices suggested by the models may be
successfully deployed in an organization, there is no guarantee that they will satisfy
business goals [2]. Moreover, translating business goals into actions and more specific
plans that can be enacted in projects can be difficult, mainly when there is no specifi-
cation of the steps to be followed.

 Defining and Monitoring Strategically Aligned Software Improvement Goals 381

In this context, we define a software improvement goal as a decomposition of a
business goal (i.e., it is strategically aligned) which is related to software products or
processes and that can guide software process improvement.

One of the ways an organization can control its processes is through the use of
statistical process control – SPC. Applying SPC means using statistical methods to
analyze processes and provide subsidies for its improvement [5]. Moreover, SPC
practices are required by maturity models, like the CMMI-DEV, to achieve their
higher maturity levels. Although SPC can be seen as a practice usually performed
only by more mature organizations, it can be a powerful tool to determine whether
goals are being achieved or not. However, if SPC is adopted in an organization with-
out taking business goals into account, it is possible that the initiative does not satisfy
or even conflict with them. In this context, planning software process improvement
initiatives that are strategically aligned can be even harder.

Software improvement goals must be measurable, making it possible to frequently
check their achievement. If monitoring is not continuous, even if goals are strategi-
cally aligned, the effort to define suitable goals can be less beneficial, since it will not
be possible to determine if they tend to be achieved. Nowadays, organizations have
realized that monitoring and continuously analyzing business performance is crucial
to achieve operational excellence, and to better align daily operations with long-term
business strategies [7].

In this context, we present an approach that aims to define and monitor software
improvement goals promoting their alignment with business goals. Our approach
defines a method to support strategic planning activities, tactical planning activities
related to software, considering software improvement goals, SPC and software
measurement planning, and also project planning activities related to the defined
goals. Our approach also defines an infrastructure to monitor the defined goals.

This paper is divided into six sections, including this introduction. Section 2 pre-
sents some background concepts and related work on strategic planning and software
improvement goals. In Section 3 we present the proposed method to define software
improvement goals and Section 4 describes the infrastructure to monitor the defined
goals. Section 5 presents the experience of defining software improvement goals
at a Brazilian software development organization. Finally, Section 6 presents some
conclusions and future work.

2 Strategic Planning and Software Improvement Goals

According to Mintzberg et al. [8], strategic planning can be seen as the definition of
goals, investments and plans based on the analysis of strengths, weaknesses, opportu-
nities and threats related to the organization. Each organization can be analyzed in
three different levels [9]:

• Strategic or Top level: the highest level of the organization, responsible for
identifying the business goals and performing strategic planning. This level
aims at long term goals.

382 A.O.S. Barreto and A.R. Rocha

• Tactical or Middle level: the intermediate level responsible for linking the
strategic and operational levels, defining tactical goals and performing tacti-
cal planning. This level aims at medium term goals.

• Operational or Low level: is the basis of the organization and is related to the
actual accomplishment of tasks. In this level, operational planning is per-
formed to define the tasks to be done. This level aims at short term goals.

To accomplish strategic planning, one of the possible approaches is to use BSC -
Balanced Score Card [10], a framework for describing strategy and managing its
execution, linking goals, actions and indicators. BSC recommends an analysis based
on performance indicators using four perspectives: (i) Financial; (ii) Customer; (iii)
Internal Business Process; and (iv) Learning and Growth.

Aiming at aligning the efforts related to support business goals applied to the con-
text of information technology (IT), COBIT - Control Objectives for Information
Technology [11] was proposed. COBIT describes a set of generic business goals and
a set of generic IT goals linked to business goals. Although COBIT is a synthesis of
good practices about management, measurement and control of business and IT goals,
it does not address specifically the software improvement.

Some researchers have investigated how to support and improve strategic planning.
Huang [12] presents an integrated approach for the BSC and a knowledge-based
system to support strategic planning. In [13] the MECIMPLAN is presented as a
methodology to support strategic planning using agents to generate a list of the most
possible scenarios, considering some events and their influence and probability.

To achieve what was established by strategic planning we have to implement the
strategies at lower levels of the organization. This requires breaking down strategic
planning into tactical planning that can be understood and enacted by the middle level
[9]. In software organizations, some tactical goals can be related to software while
others can be related to other issues like marketing, training and so on. The tactical
goals that are related to software usually indicate the organization desires to improve
its software processes and products. Thus, in this work, we are considering the tactical
goals related to software as the software improvement goals.

Although tactical planning addresses strategic planning translation to the middle
level, the actions defined on the tactical level aim at medium term goals. These ac-
tions still have to be more detailed to allow their execution on the operational level,
which is the operational planning purpose. Sometimes, projects are utilized as a
mean to achieve strategic plan of an organization [14]. Specifically in software or-
ganizations, operational level is frequently arranged in software projects. Therefore,
operational planning usually becomes project planning.

In project planning, one of the first steps is to define project goals. Projects may
have a wide variety of goals. They can also include cost, schedule, and quality re-
quirements [14]. Project goals, as operational goals, provide the basis for measuring
the progress toward meeting strategic goals [15].

In addition to identify the strategic, tactical and operational goals, it is important to
plan how to monitor and control the defined goals. The measurement of a goal is a
way to check whether it has been achieved or not [15]. In software organizations, the
control of the goals depends on software measures. Thus, these organizations also
need to plan how to measure their software processes and products.

 Defining and Monitoring Strategically Aligned Software Improvement Goals 383

An approach for software measurement is Goal Question Metric – GQM [16],
which proposes to plan the measurement based on measurement goals. A variant of
GQM is the Goal-Question-(Indicator)-Measure - GQ(I)M [17], a measurement
method to guide the identification and definition of software measures to support
business goals of the organization. This method defines ten steps to explicitly align
software measures to business goals. Another software measurement approach is the
GQM+ Strategies that provides mechanisms for explicitly linking software measure-
ment goals, to higher-level goals for the software organization [18]. These software
measurement approaches focus on measurement and they do not intend to guide the
execution of strategic planning activities.

Monitoring and controlling the processes is crucial. However it can be difficult to
effectively monitor process data, analyze current status, detect and diagnose process
anomalies, or take appropriate actions to control the processes [19]. As mentioned
earlier, SPC can be used as a mean to monitor software processes. However, SPC may
bring some extra complexity to the context of strategically aligned software im-
provements, since some extra steps need to be performed in this case.

One of the possible ways to continuously monitor processes is to use agents. An
agent is anything that can be viewed as perceiving its environment through sensors
and acting upon that environment through effectors [20]. Huang et al. [7] propose an
agent based system to support business performance monitoring and analysis. An
agent based architecture to business performance monitoring is presented in [21].

Although there are several works that deal with strategic planning, goals monitor-
ing, measurement planning and SPC, these works usually do not address these issues
together. We believe that an integrated approach that deals with the definition of
strategic, tactical and project goals, considering SPC and software measurement, also
supporting the monitoring of the defined goals would be of great value for organiza-
tions aiming at addressing these questions.

3 Defining Strategically Aligned Software Improvement Goals

Before the definition of software improvement goals, an organization needs to per-
form its strategic planning, which will provide guidelines to define these goals in a
way that they are aligned with business goals. Our approach defines a method that
describes steps to plan and monitor the strategic, tactical and operational levels. The
method starts on the strategic level, as shown in Fig. 1.

The characterization of the organization is necessary as a guide for the beginning
of strategic planning, outlining the expected time period to perceive planning results,
and defining the perspectives of the organization to be considered. In this step, the
scope of planning and the intervals of short, medium and long term adopted for the
organization, considering its specific characteristics are specified.

To make it easier to establish the right focus on critical areas of the organization,
some perspectives which focus on specific issues and are interrelated can be defined,
making it possible to address each critical area in a balanced way. In our method, the
characterization of the organization includes the definition of important perspectives
for the organization. As an example, organizations can use the perspectives suggested
by BSC.

384 A.O.S. Barreto and A.R. Rocha

Fig. 1. Context of definition, monitoring and review strategic planning

The next step is to perform strategic planning followed by tactical and operational
planning. In the following sections we describe our method considering each level,
i.e. strategic, tactical and operational (project). Throughout the description, some
examples based on real situations are presented.

3.1 Strategic Planning

In our approach, strategic planning is performed by eight steps, as Fig. 2 illustrates.
The first step is the definition of the mission and the vision of the organization, which
will guide the definition of strategic goals. The mission of an organization represents
its overall purpose and the vision describes what it would like to be, considering a
determined time period [9]. After that, the strategic goals and their indicators must be
defined. To make it possible to focus on critical areas of the organization, each strate-
gic goal must be related to one perspective, among those that were specifically de-
fined for the organization. To assure balanced perspectives, there must be at least one
strategic goal for each perspective defined to the organization.

The definition of a strategic goal must describe the following information: (i) Ac-
tion: desired action, such as: increase, decrease, improve, maintain; (ii) Action target:
what must be affected by the action, for example: revenue, client satisfaction, quality;
(iii) Perspective: perspective to analyze the goal, such as financial. Table 1 shows
some examples of strategic goals.

In addition to identify the strategic goals, it is important to plan how to continu-
ously monitor them. Therefore, indicators must be identified and related to each stra-
tegic goal defined. To promote pro-active monitoring, the description of the indicators
specifies the target in three ranges of values: (i) Acceptable range: values are consid-
ered within the target and there is no risk of deviation around; (ii) Risk range: values
are considered within the target, however, they indicate some risk of deviation around
(potential deviation); and (iii) Unacceptable range: values are considered out of the
target, pointing a real deviation.

 Defining and Monitoring Strategically Aligned Software Improvement Goals 385

Fig. 2. Strategic planning steps

Depending on the defined indicator, it can be necessary to specify three targets
considering the expected results in the short, medium and long term. These targets can
be specified in an ad-hoc way, based on historical data or using simulation to identify
possible values. A high maturity organization (i.e. the one that performs the practices
required by higher levels of maturity models, like the CMMI-DEV) must specify
these targets based on knowledge about its processes, acquired using SPC.

Table 1. Examples of strategic goals

Strategic Goals
Action Action Target Perspective

Increase Revenue Financial

Increase Client satisfaction Client

To facilitate the achievement of strategic goals, it is important to analyze the inter-

nal and the external environments of the organization, identifying forces that can
contribute or threaten their achievement. The analysis of external environment in-
cludes identifying factors or tendencies which are external to the organization and
could represent threats or opportunities. Moreover, it is necessary to analyze possible
impacts related to each factor: an impact can be positive, identifying an opportunity,
or negative, identifying a threat. The analysis of internal environment includes an
evaluation of its strengths and weaknesses based on the defined strategic goals.

Strategic goals aim at long term results. Thus it is necessary to decompose them
into strategic actions that when executed, make it easier to achieve the strategic goals
defined. Strategic actions must aim at achieving strategic goals increasing the oppor-
tunities and strengths identified and addressing the threats and weaknesses perceived
in external and internal environments analysis. Potential strategic actions should be
identified with the participation of professionals from the tactical level. The definition
of a strategic action must describe the action, the expected value, the target of the
action and the expected contribution for the related strategic goal. This definition
must determine if the strategic action is related to software. Table 2 shows examples
of these actions.

386 A.O.S. Barreto and A.R. Rocha

Table 2. Examples of strategic actions

Strategic Goal: Improve client satisfaction

Strategic Actions Contribution Software Related
Decrease 20% Software products price 40% Yes

Improve - Software products quality 30% Yes

Decrease 15% Time to market 20% Yes

Improve - Client attendance 10% No

After the identification of the strategic actions, it is necessary to analyze their vi-

ability and select those that will be executed. For each strategic action selected, it
must be defined: (i) Its priority; (ii) Responsible: responsible for executing the action
(tactical level); (iii) Resources: financial resources available for executing the action;
(iv) Indicator: indicator related to the action monitoring.

To complete strategic planning, it is important to analyze the strategic goals de-
fined, the strategic actions and the indicators to identify and document possible inter-
actions among them. Each interaction among any goals defined in our method can be
classified as a qualitative and direct interdependence, a qualitative and inverse inter-
dependence or a quantitative interdependence.

3.2 Tactical Planning Aligned to Strategic Planning

In strategic planning, strategic actions are planned and the responsibility for their
implementation is assigned to some professionals. In tactical level, on the other hand,
these professionals perform tactical planning to execute the assigned strategic actions.
Tactical planning guides operational planning. It can be monitored through the use of
operational level execution and monitoring data. If any deviation is detected, an
analysis must be performed to determine if it is necessary to execute corrective ac-
tions or if tactical planning has to be revised.

Tactical planning starts with the decomposition of the strategic actions into tactical
goals. Fig. 3 shows the steps for tactical planning. Since the focus of this work is on
software organizations, the method proposed by us details only the tactical goals that
are related to software products or processes, what we name software improvement
goals, as mentioned earlier. However, to allow adequate monitoring of strategic goals,
it is also recommended to identify tactical goals not related to software and their
monitoring indicators. A tactical goal not related to software is described as the ac-
tion, the action target, the expected value, the expected contribution to the related
strategic action, and the interactions with other goals.

Strategic actions related to software must be decomposed into software improve-
ment goals. To make it easier to monitor software improvement goals and to allow a
better visibility of the results, we propose the definition of medium term software
improvement goals (from now on, MTSIG) and short term software improvement
goals (from now on, STSIG). Each MTSIG has to be decomposed into STSIGs, which
indicate nearer milestones in the way to achieve the MTSIG. From time to time, tacti-
cal planning needs have to be updated, and in these occasions, MTSIG could become
STSIG. To illustrate, an organization could have as a MTSIG to adopt CMMI Level 3
practices, while adopting CMMI Level 2 practices could be one of its STSIG.

 Defining and Monitoring Strategically Aligned Software Improvement Goals 387

Fig. 3. Tactical planning steps

The definition of software improvement goals describes: the action, the expected
value, the action target, the expected contribution to the strategic action related (if it is
a MTSIG) or to the MTSIG (if it is a STSIG). The interactions with other goals are
also described. Table 3 exemplifies two MTSIG. To allow the monitoring of the de-
fined software improvement goals, indicators related to each goal are defined in the
same way as the indicators related to strategic goals.

Table 3. Examples of medium term software improvement goals

Strategic Action: Improve software products quality

Medium Term Software Improvement Goals
Action Value Action Target Contribution
Deploy - CMMI level 3 40%

Decrease 10% Defect density 60%

The definition of software improvement goals (considering MTSIG and STSIG)

may involve important decisions to the organizations, which may need the approval
from higher level management. Therefore, once the goals are defined it may be
necessary to present them to higher level management to guarantee their approval and
commitment. This step could be unnecessary, depending on the relationship among
the different levels of the organizations, considering the autonomy of the tactical level
and the participation of higher level management throughout the definition phase.

Once their software improvement goals are defined, an organization needs to plan
SPC of its processes (if it is a requirement) and also plan the measurement initiative
of the organization. Our method applies to organizations that want to statistically

388 A.O.S. Barreto and A.R. Rocha

control its processes as well to the ones that want to use less formal ways of control,
since it optionally supports software SPC planning as part of tactical planning.

SPC requires time and adds costs to the organization and, therefore, does not need
to be applied to all software processes of the organization. Thus, this step starts with
the selection of the subprocesses that are going to be statistically controlled. This
selection must be based on the software improvement goals defined. Based on the
selected subprocesses, it is necessary to identify the quantitative quality and
performance goals of the organization and analyze the behavior of these subprocesses,
considering these goals and also measurement data from the enactment of the
subprocesses. This knowledge must be stored through the establishment of process
performance baselines, that characterize real results previously obtained through the
enactment of the processes, describing their expected behavior. It is also possible to
define process performance models, which relate statistically controlled process
attributes to try to forecast the process behavior.

Regardless of the adoption of SPC by the organization, the monitoring of each of
the defined goals is strongly related to measurement data from projects and from the
organization itself. However, if SPC is used, software measurement becomes even
more critical. Therefore, organizational measurement planning is part of tactical
planning, and is performed in parallel with SPC planning (if applicable).

The measurement planning step consists of identifying measurement goals from
the short term software improvement goals and from the quantitative quality and
performance goals, if available. Afterwards, it is necessary to specify organizational
measurement, identifying and describing measures from the goals. Literature presents
some approaches to derive measures from goals, such as GQM [16].

The monitoring of software improvement goals is done through the analysis of the
indicators related to these goals, as described earlier. However, the expected values
for these indicators have to be defined or updated in the last step of tactical planning,
since SPC and measurement on the organization could influence these values. Thus,
to complete tactical planning related to software, it is necessary to establish expected
values to the indicators related to the software improvement goals.

3.3 Project Planning Aligned to Tactical Planning

On the operational level of software organizations, tactical planning guides the plan-
ning and execution of each software project. Each project is monitored, and if any
deviation is detected, an analysis is done to determine if it is necessary to run correc-
tive actions or if project planning has to be revised.

Our approach to project planning focuses on project goals, SPC and measurement
as shown in Fig. 4. Therefore, the several other steps usually required to plan a project
are not considered.

Each project has its unique characteristics that must be addressed. Thus, project
planning begins characterizing the project. This step defines, among other kinds of
information, the expected contribution of the project to the tactical goals, considering
each project being run. This information is important to determine the achievement of
tactical and strategic goals.

 Defining and Monitoring Strategically Aligned Software Improvement Goals 389

Fig. 4. Project planning steps

Once the project is characterized, it is necessary to define its goals, which are ini-
tially selected from short term software improvement goals (STSIG) and from quanti-
tative quality and performance goals (if SPC was selected during tactical planning)
that apply to the project. To assure project alignment to tactical planning, and there-
fore to strategic planning, it is common to consider all STSIG and quantitative quality
and performance goals (if available) as project goals. If on very specific situations
some of these goals do not apply to the project, it is necessary to document and justify
this situation. An example of this situation is when the organization has some projects
related to a specific software product and there is a STSIG which specifies the maxi-
mum response time for this product. This STSIG is not applicable to a project that is
not related to this product.

Project goals definition also considers the needs of projects, their characteristics
and constraints, as well as customer requirements. Thus, the analysis of these project
specific kinds of information can lead to new project goals, regardless of the software
improvement goals. Therefore, it is possible to assure that projects are going to im-
plement the software improvement goals, but projects are not constrained by them.
Each new project goal has to describe the action, the expected value, the action target,
and the interactions with other project goals.

If the organization has adopted SPC and planned it on the tactical level, each pro-
ject needs to plan how to statistically control processes throughout its enactment. SPC
planning on a project consists of selecting subprocesses that will be statistically
controlled on the project, based on quantitative quality and performance goals. This
selection must be based on the subprocesses selected for SPC during tactical planning.

Regardless of the adoption of SPC by the project, the monitoring of each project
goal is performed through measurement. Therefore, measurement planning of the
project is part of project planning, and is performed in parallel with SPC planning (if
applicable). The measurement planning step consists of identifying measurement
goals from the project goals, identifying measures related to measurement goals,
planning how to collect and analyze each measure, based on the measurement plan-
ning performed on tactical level.

To complete project planning, it is necessary to define or update the expected val-
ues for the indicators related to the project goals. At this point it is important to check

390 A.O.S. Barreto and A.R. Rocha

the consistency among these expected values and the quantitative quality and per-
formance goals considered on the project.

4 An Infrastructure to Monitor Software Improvement Goals

Throughout the enactment of projects, project goals must be continuously monitored
aiming at detecting real or potential deviations. This information is also used to moni-
tor goals that were defined on tactical and strategic levels. However, to continuously
monitor the three levels at the same time can be very hard.

To support monitoring activities, our approach suggests an infrastructure to con-
tinuously and proactively monitor the defined goals. This infrastructure is based on
agents and is capable of monitoring goals, searching for deviations and alerting when-
ever a real or potential deviation is detected. To do so, we have defined two agents:
Indicators Update Agent and Deviation Detection and Notification Agent, as depicted
in Fig. 5 and Fig. 6.

Fig. 5. Steps of the Indicators Update Agent

The monitoring of the goals defined on each level happens through the monitoring
of the actual values of the indicators related to the goals. However, indicators are
often measures derived from other ones. Thus, to be able to get an online updated
monitoring of these indicators, it is necessary to continuously monitor the collection

 Defining and Monitoring Strategically Aligned Software Improvement Goals 391

of new measures, to analyze if any indicator has to be updated (recalculated), and
update it, if necessary. Likewise, the analysis and detection of deviations are accom-
plished through the collection of measures that are part of indicators related to goals.
Thus, goals’ monitoring begins by monitoring each measure collected.

The Indicators Update Agent is responsible for assessing the need to update indica-
tors whenever new measurement data is collected, and then update them. Fig. 5 shows
the steps performed by the Indicators Update Agent. The Deviation Detection and
Notification Agent is responsible for analyzing each measure collection that affects
indicators related to the defined goals, checking the occurrence of deviation and,
whenever a deviation is detected, notifying the occurrence through an alert. The de-
viation checking consists of analyzing the data collected to compare it with the three
ranges of values defined for the indicator (as defined in Section 3.1). If data is out of
the acceptable range, a real or potential deviation occurred. The main steps performed
by the Deviation Detection and Notification Agent are shown in Fig. 6. These agents
and the related infrastructure are currently being implemented and will be fully func-
tional in the near future. Once implementation is complete, we will be able to use
them in real situations and properly evaluate their behavior.

Fig. 6. Steps of the Deviation Detection and Notification Agent

5 Defining Software Improvement Goals at a Brazilian Software
Development Organization

COPPE/UFRJ is one of the most important Software Engineering research and con-
sulting centers in Brazil, located at Rio de Janeiro. Its Software Engineering initia-
tives are supported by the Software Engineering Laboratory – LENS (the acronym in

392 A.O.S. Barreto and A.R. Rocha

Portuguese), which develops software products aiming to aid these initiatives [22]. As
a software organization, this laboratory was successfully appraised in accordance with
the level E of MR-MPS model [3], a Brazilian reference model for software process
improvement, compatible with CMMI-DEV [5]. Recently, our approach was used by
LENS to accomplish its strategic and tactical planning.

We believe this experience was a great opportunity to evaluate parts of our ap-
proach. Subjects were all master or PhD students or professionals, but all of them
were also working on industry initiatives. The group of subjects consisted of fourteen
people and involved professionals that had never took part on strategic planning ac-
tivities before as well as professionals that had already participated in different strate-
gic planning efforts. The strategic and tactical level professionals accomplished some
meetings at which each strategic planning step proposed by our approach was en-
acted. During this planning, five strategic goals, eight external factors, three strengths
and two weaknesses were identified. Based on the external and internal analysis,
eighteen strategic actions were planned. One of the defined strategic goals was
“Achieve the level A of MR-MPS” model and one related strategic action defined was
“Deploy new software processes required by the level A”.

After performing strategic planning, as suggested by our method, we have performed
tactical planning activities. It is important to mention that strategic level professionals
also participated in this planning. The strategic actions which were related to software
were decomposed into software improvement goals. However, we have observed that
before planning statistical process control, it was necessary to address some specific
issues identified throughout the strategic and tactical planning. Thus, the tactical plan-
ning was temporarily suspended and some action plans were defined to address these
issues. It was interesting to realize that throughout strategic planning it was possible to
identify issues that could threaten the achievement of the defined goals. Thus, before
finishing this planning, strategic level professionals took some important decisions in
order to address these issues and notified them to all organization.

To complete the study, a brief survey about the proposed approach was sent to all
subjects of the study. We have reached 86% of answer rate. Subjects were asked
about some aspects of our approach, such as: the expected benefits from the enact-
ment of the strategic planning performed, the adequacy of the method used and the
adequacy of the sequence of steps. The survey showed that the professionals expected
good benefits from the enactment of the strategic planning accomplished. In regard of
the proposed method, considering the opinion of the subjects, there is some indication
that the sequence of steps is adequate. According to the subjects, the use of a method
that guides the steps that need to be followed and the information that has to be pro-
vided, considering the specific context of a software organization, made it easier to
accomplish strategic and tactical planning and guided the debate, avoiding waste of
time. Some improvements to our approach were identified and they were already
analyzed and deployed.

6 Conclusions

Software process improvement initiatives need to be aligned with the business goals of
the organization. If these initiatives are performed in an organization without taking

 Defining and Monitoring Strategically Aligned Software Improvement Goals 393

business goals into account, it is possible that the initiatives do not satisfy or even
conflict with them.

In this paper we present an approach to define and monitor software improvement
goals promoting strategic alignment. Our approach supports strategic, tactical and
operational planning activities focusing on software processes and products. Meas-
urement planning and statistical process control are addressed too. A method for stra-
tegic, tactical and operational planning is described and an infrastructure to support
the monitoring of the defined goals across the three levels is presented.

Our method was partially used on a real context and brought several good results,
guiding the strategic and tactical planning, promoting the software improvement
alignment and avoiding waste of time. There is some expectative that the aspects
addressed by our approach can help software organizations to achieve the expected
software improvement benefits.

We intend to use our approach on other real contexts soon. We are also developing
the infrastructure to continuously monitor the goals defined in the strategic, tactical
and operational levels. We also intend to develop a tool to support the use of the
method to make it easier to use the approach in others situations. Currently, we are
performing a survey to characterize similarities among software projects. We believe
this characterization will make it possible to compare similar deviation scenarios.
Based on previous deviations, our infrastructure can monitor the project goals, rec-
ommend adequate actions to address detected deviations and propagate it to the upper
levels.

References

1. Conradi, R., Fuggetta, A.: Improving Software Process Improvement. IEEE Soft-
ware 19(4), 92–99 (2002)

2. Becker, A., Prikladnicki, R., Audy, J.: Strategic Alignment of Software Process Improve-
ment Programs Using QFD. In: 1st International Workshop on Business Impact of Process
Improvements, Leipzig, Germany, pp. 9–14 (2008)

3. SOFTEX: MPS.BR Official Web site (hosted by Association for Promoting the Brazilian
Software Excellence - SOFTEX),

 http://www.softex.br/mpsbr/_home/default.asp
4. Rocha, A., Montoni, M., Santos, G., Oliveira, K., Natali, A., Mian, P., Conte, T., Mafra,

S., Barreto, A., Albuquerque, A., Figueiredo, S., Soares, A., Bianchi, F., Cabral, R., Neto,
A.: Success Factors and Difficulties in Software Process Deployment Experiences based
on CMMI and MR-MPS.BR. In: 8th International Workshop on Learning Software Or-
ganizations, Rio de Janeiro, Brasil, pp. 77–87 (2006)

5. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration and
Product Improvement, 2nd edn. Addison-Wesley, Nova York (2006)

6. Dyba, T.: An Empirical Investigation of the Key Factors for Success in Software Process
Improvement. IEEE Transactions on Software Engineering 31(5), 410–424 (2005)

7. Huang, P., Lei, H., Lim, L.: Real Time Business Performance Monitoring and Analysis
Using Metric Network. In: IEEE International Conference on e-Business Engineering,
Shanghai, China, pp. 442–449 (2006)

8. Mintzberg, H., Ahlstrand, B., Lampel, J.: Safári De Estratégia: Um Roteiro Pela Selva Do
Planejamento Estratégico. Bookman, Porto Alegre (2000)

394 A.O.S. Barreto and A.R. Rocha

9. Chiavenato, I.: Administração: Teoria, Processo e Prática, 3rd edn. Makronbooks, São
Paulo (2000)

10. Kaplan, R., Norton, D.P.: The Balanced Scorecard Translating Strategy Into Action.
Havard Business School Press, Boston (1996)

11. IT Governance Institute: Control Objectives for Information and Related Technology,
4.1th edn., http://www.itgi.org

12. Huang, H.: Designing a knowledge-based system for strategic planning: A balanced score-
card perspective. Expert Systems with Applications 36, 209–218 (2009)

13. Castillo, J., Ossowski, S., Pastor, L.: The ‘MECIMPLAN’ approach to Agent-based Stra-
tegic Planning. In: International Conference on Web Intelligence and Intelligent Agent
Technology, Hong Kong, China, pp. 540–543 (2006)

14. Project Management Institute: PMBOK - A Guide to the Project Management Body of
Knowledge, 3rd edn., Newtown Square (2004)

15. Markovic, I., Kowalkiewicz, M.: Linking Business Goals to Process Models in Semantic
Business Process Modeling. In: 12th International IEEE Enterprise Distributed Object
Computing Conference, Munich, Germany, pp. 332–338 (2008)

16. Basili, V., Caldiera, G., Rombach, H.: Goal Question Metric Paradigm. Encyclopedia of
Software Engineering 1, 528–532 (1994)

17. Park, R.E., Goethert, W.B., Florac, W.A.: Goal-Driven Software Measurement — A
Guidebook. CMU/SEI-96-HB-002, Carnegie Mellon University (1996)

18. Basili, V., Heidrich, J., Lindvall, M., Münch, J.: GQM+ Strategies - Aligning Business
Strategies with Software Measurement. In: 1st International Symposium on Empirical
Software Engineering and Measurement, Madrid, Spain, pp. 488–490 (2007)

19. Uraikul, V., Chan, C.W., Tontiwachwuthikul, P.: Artificial Intelligence for Monitoring and
Supervisory Control of Process Systems. Engineering Applications of Artificial Intelli-
gence 20(2), 115–131 (2007)

20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice
Hall, Englewood Cliffs (2003)

21. Thomas, M., Redmond, R., Yoon, V., Singh, R.: A Semantic Approach to Monitor Busi-
ness Process Performance. Communications of the ACM 48(12), 55–59 (2005)

22. Montoni, M., Santos, G., Rocha, A., Weber, K., Araújo, E.: MPS Model and TABA Work-
station: Implementing Software Process Improvement Initiatives in Small Settings. In: 5th
International Workshop on Software Quality, Minneapolis, USA, pp. 4–9 (2007)

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 395–408, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Strategy for Painless Harmonization of Quality
Standards: A Real Case

Maria Teresa Baldassarre1, Danilo Caivano1, Francisco J. Pino2, Mario Piattini3,
and Giuseppe Visaggio1

1 Department of Informatics, University of Bari, SER&Practices SPINOFF
Via E. Orabona 4, 70126, Bari, Italy

{baldassarre,caivano,visaggio}@di.uniba.it
2 IDIS Research Group University of Cauca,

Calle 5 # 4 – 70 Popayán, Colombia
fjpino@unicauca.edu.co

3 University of Castilla-La Mancha,
Paseo de la Universidad, 4, 13071, Ciudad Real, Spain

Mario.Piattini@uclm.es

Abstract. Globalization, is pushing companies towards continuous improve-
ment. Quality frameworks addressing SPI practices are classifiable in ones de-
scribing: “what” should be done (ISO9001,CMMI); “how” it should be done
(Six Sigma, GQM). When organizations adopt improvement initiatives, many
models may be implied, each leveraging best practices for addressing improve-
ment challenges. This may generate confusion, extra effort and cost, as well as
increase the risk of inefficiencies and redundancies. So, it is important to har-
monize quality frameworks, i.e. identify intersections and overlapping parts and
create a multi-model improvement solution. Our aim is to propose a Harmoni-
zation Process supporting organizations interested in introducing/improving SPI
practices. We present: a what/what combination of ISO9001 and CMMI-
DEVv.1.2 models in the direction from ISO-CMMI; and detail the what/how
perspective by showing how GQM is used to define operational goals that ad-
dress ISO9001 statements, reusable in CMMI appraisals. The harmonization
process has been applied to a SME certified ISO9001:2000.

Keywords: Harmonization, Mapping, SPI, Multi-model Process Improvement,
GQM, CMMI-DEV, ISO9001.

1 Introduction

The increasing rate of globalization, following to the competition of international
markets, is pushing companies towards continuous innovation and improvement of
processes and products. This asks for methods and approaches able to manage busi-
ness processes, as well as processes for measuring and controlling quality.

As so, quality management and SPI in general become of strategic importance not
only as internal factor for improvement, but also as success factor once a company
decides to overlook the global market and interacts with contractors, suppliers and

396 M.T. Baldassarre et al.

customers. In this scenario, SPI efforts are motivated by the need for achieving
competitiveness advantage related to aspects like customer satisfaction, business
profitability, market share, product and service quality, cost reduction and so on.
Furthermore, the need for standardized quality management systems is important in a
market where, from a few years this way, a lot of attention is being paid to the quality
of products and services offered.

Literature offers numerous reference models, standards, best practices, technolo-
gies for addressing software process improvement practices. In general we can clas-
sify the frameworks into two groups: the ones that describe what should be done, like
for example ISO 9001 [1] and CMMI [2], and the ones that describe how it should be
done, just to cite a few: Six Sigma, Team Software Process [3], PMBOK [4], GQM
[5], [6]. All offer unique features and address particular problems. In some cases they
are discipline-oriented, others relate to the enterprise as a whole. When organizations
decide to adopt improvement initiatives related to different organizational functions
and different hierarchical levels, many models may be implied, each leveraging the
best practices provided in order to address the improvement challenges in the best of
ways. However, this may at the same time generate confusion and overlapping activi-
ties as well as extra effort and cost. This risks to generate a series of inefficiencies and
redundancies that end up leading to losses rather than effective process improvement.
Consequently, it is important to move towards a harmonization of quality frameworks
in order to identify intersections and overlapping parts and create a multi model im-
provement solution.

A recent study [10] has pointed out that more and more product development or-
ganizations are tending towards multi-certifications with specific attention to ISO
9001, CMM and ITIL technology standards respectively. In Europe interest in multi-
certifications has increased especially because in some sectors and in calls for bids, on
behalf of government institutions and public administrations, they are compulsory and
are explicitly requested. Our work focuses on ISO and CMMI. Although the two
constellations have been developed independently and have different purposes they
have intersections and connections with each other. In this sense our contribution is
twofold:

- investigate to what extent the practices described in the CMMI-DEV and ISO
9001 models are related (i.e. what/what relation);

- how a certified organization implements its quality model by using a GQM-
based approach (i.e. what/how relation).

Our Harmonization Process, presented in this work analyzes both these aspects, as
well as applies them to real industrial data of an enterprise certified ISO 9001:2000.

More precisely, our aim in this work is to propose a harmonization process that
supports organizations interested in introducing or improving their practices for
quality management and software development. In this sense and considering that
mapping is one of the most widely used specific strategies for the harmonization of
models [11], we present a what/what combination of ISO 9001 and CMMI-DEV v.1.2
models, in the direction from ISO to CMMI, as well as an application of the compari-
son to an Italian SME providing detail on the what/how perspective by combining
ISO 9001 & GQM, i.e. how measurement goals are defined to operationally address
ISO statements in order to be possibly reused in a CMMI appraisal.

 A Strategy for Painless Harmonization of Quality Standards: A Real Case 397

The rest of the paper is organized as follows: Section 2 provides a quick overview
of the frameworks considered (ISO 9001:2000, CMMI DEV v.1.2, GQM) and then
presents the related works from other research works. Section 3 outlines the Harmoni-
zation Process which is described with respect to the comparison and application sub-
processes. Each step of the process is described with respect to the outcomes of an
application to a real case. Finally conclusions are drawn.

2 Background

In this section, we first of all outline a general view of ISO 9001:2000 and CMMI
DEV v.1.2 and then we present the related works from other research.

2.1 ISO 9001:2000 and CMMI v.1.2 Overview

Next will provide some general and synthetic information to the reader on the three
quality models that we have considered in our work.

ISO 9001:2000
ISO 9001:2000 is an international standard that gives requirements for an organiza-
tion’s Quality Management System (“QMS”). It is part of a family of standards pub-
lished by the International Organisation for Standardisation (“ISO”) often referred to
collectively as the “ISO 9000 series”. A process model based on the QMS is shown in
figure 1. The objective of ISO 9001:2000 is to provide a set of requirements that, if
effectively implemented, will provide the organization with confidence that they can
provide goods and services that: meet needs and expectations and comply with appli-
cable regulations. The requirements cover a wide range of topics, including supplier's
top management commitment to quality, its customer focus, adequacy of its
resources, employee competence, process management, quality planning, product
design, review of incoming orders, purchasing, monitoring and measurement of its
processes and products, calibration of measuring equipment, processes to resolve
customer complaints, corrective/preventive actions and a requirement to drive contin-
ual improvement of the QMS.

Fig. 1. Model of a process based QMS

398 M.T. Baldassarre et al.

CMMI
Capability Maturity Model Integration (CMMI) is a process improvement approach
that provides organizations with the essential elements of effective processes that
ultimately improve their performance. Developed by a group of experts from industry,
government, and the Software Engineering Institute (SEI) at Carnegie Mellon Univer-
sity, CMMI models provide guidance for developing or improving processes that
meet the business goals of an organization. It can be used to guide process improve-
ment across a project, a division, or an entire organization [12]. An organization
cannot be certified in CMMI; instead, an organization is appraised. Appraisals are
typically conducted for one or more of the following reasons: to determine how well
the organization’s processes compare to CMMI best practices, and to identify areas
where improvement can be made; to inform external customers and suppliers of how
well the organization’s processes compare to CMMI best practices; to meet the con-
tractual requirements of one or more customers.

Fig. 2. Comparison of Continuous and Staged Representation Levels

Depending on the type of appraisal, the organization can be awarded a maturity
level (Staged Representation) rating (1-5) or a capability level achievement profile
(Continuous Representation). Figure 2 summarizes both representations in levels.

Goal Question Metrics (GQM)
The main idea behind GQM is that measurement should be goal-oriented and based
on context characterization.

According to [5], [25], the measurement model has three levels (figure 3):

- Conceptual Level (GOAL): a goal is defined for a specific purpose based on
the needs of the organization, for a variety of reasons, with respect to various
quality models, from various points of view, in a particular environment.

- Operational Level (QUESTION): a set of questions is used to characterize the
way the achievement of a specific goal is going to be performed.

- Quantitative Level (METRIC): a set of collectable data is associated with
every question in order to quantitatively answer them.

 A Strategy for Painless Harmonization of Quality Standards: A Real Case 399

Fig. 3. Goal Question Metrics Structure

In the interpretation phase, measurements are used to answer the questions and to
conclude whether or not the goal is achieved. Thus, GQM uses a top-down approach
to define metrics and a bottom-up approach for analysis and interpretation of meas-
urement data. GQM defines a dynamic quality model on which basing an effective
measurement program. Quality goals reflect the business strategy and GQM is used to
identify and refine goals based on the characteristics of software processes, products
and quality perspectives of interest.

2.2 Related Works

Although the number of related works on the harmonization of multiple models is
small, in the last 4 years there is within the software engineering community an ever-
increasing interest in defining solutions for this type of environments. This is evi-
denced by the initiatives and projects performed or being carried out, such as: PrIME
project [16], ARMONÍAS project [17], Enterprise SPICE [18]. Furthermore, some
experiences reported in literature involve comparisons and mapping between different
versions of CMMI and other processes models, including ISO 9001. Among these,
some relate to what/what combinations such as CMMI & ISO; more precisely:

- A mapping between two models is described in [19].
- In [7] a proposal that integrates the content of these two models is introduced.
- A proposal for transiting from ISO 9001 to SW-CMM is defined in [8]
- In [9] a comparison and a correspondence between ISO 9001 and SW-CMM

are shown.
- In [20] an recent comparative analysis of the CMMI DEV v.1.2 and the ISO

9000 family is discussed.
- An ontology for the integration of these quality standards for collaborative

projects is show in [21].
- Some works that involve relationships, comparisons and mapping between dif-

ferent versions of CMM(I) and SPICE (ISO/IEC 15504) can be found in [15],
[22], [23], [24].

400 M.T. Baldassarre et al.

However, in all these comparisons none of the studies refer to the latest versions of
these models (with the exception of the work presented in [20]); none describe the
specific process used to carry out the comparison and/or mapping. Consequently the
approach is not replicable from others. They are all theoretical works and none have
been applied to real enterprise data. Furthermore, no insight is given on the what/how
perspective. None of the studies adopt or indicate a strategy used for defining
the measurement goals with the aim of harmonizing the models. The contribution of
the proposal described in this paper consists in taking into account and addressing the
issues above in order to provide organizations a specific stepwise strategy for harmo-
nizing quality standards.

3 Harmonization Process

Any organization that have a software process improvement (SPI) strategy follow it
as a means for assessing and assuring quality. They will most likely have their busi-
ness, organizational and production processes formalized in some way. The processes
can be formally defined and conform to some kind of SPI framework (CMMI; ISO,
TQM, SPIQ, etc.) [13], or can be informally defined based on the previous history
and experience of the organization. Independently of the framework adopted, the
description of the processes contain details on the: activities, procedures, products
produced, relations with other activities, tools and technologies used to execute them;
the quality model (i.e. goals, metrics and interpretations) defined to assess the
achievement of desired quality levels. In this sense, the quality model must be struc-
tured so that its goals (Gi) relate to specific process model grains (Pj) specified by the
SPI framework referred to (eg. Process areas for CMMI, statements for ISO 9001,
etc.), forming a matrix [GxP] (Table 1) where each crossing (Gi, Pj) means that the
goal Gi measures that process grain Pj.[5].

Table 1. Goal x Process Model matrix

In this scenario it is reasonable that an organization with an organized SPI strategy
may to want to or have to conform to other frameworks due to explicit requests on
behalf of contractors, public administrations or restrictions in bids. For simplicity, let
us define the process model of the current SPI framework PCurrent, and the process
model of the new SPI framework the organization wants to conform to as PTarget. An
interesting question is therefore: How can an organization painlessly shift from PCurrent
to PTarget and reuse as much possible of the information produced in PCurrent? Given an
SPI framework (eg. ISO or CMMI), how can an organization operationally define a
quality model (i.e. measurement goals and interpretation models) for it?

 A Strategy for Painless Harmonization of Quality Standards: A Real Case 401

Fig. 4. Harmonization Process

To answer these two questions we have defined a Harmonization Process made up
of two sub-processes: a comparison process and an application process. The process is
general and can be instantiated to any couple of SPI frameworks (PCurrent, PTarget). In
this specific work, we have considered PCurrent: ISO 9001:2000 and PTarget: CMMI-Dev
A general representation is given in Figure 4. This section will primarily focus on the
application sub-process, as the comparison one has been described more in detail in a
previous work [14]. In the next two sections we will provide a description of the two
processes, with more detail on the application process.

3.1 Comparison Sub-Process

The Comparison Sub-Process is the first part of the harmonization of any two SPI
frameworks. This activity followed the process for mapping described in [15]. In this
specific case, the comparison process considers the ISO 9001:2000 standard as start-
ing point, i.e. supposing that an enterprise is currently certified ISO 9001, and sees
CMMI v1.2 as the target one. The outcome of this sub-process is a document that
maps the two models and points out the relations between them, i.e. in this specific
case, the extent to which ISO satisfies CMMI requirements and whether there are any
overlapping areas that possibly allow to reuse information and data collected in the
ISO certification to assess any of the CMMI levels, allowing for a quantitative analy-
sis (what/what comparison). The mapping is tracked on a spreadsheet having the ISO
statements as rows and CMMI Process Areas with detailed Practices as columns. The
overlapping areas are filled with colour. An extract related to the ISO statement “4.
Quality Management System” and CMMI process area “Organizational Process
Definition + IPPD” is shown in Figure 5. The mapping criteria was iterated for each
statement, one at a time, with respect to every process area.

This sub-process steps have been completely described in more detail in a previous
work by the authors [14]. For completeness sake we have however provided a brief
description to give the reader a general picture of the approach and better understand
the application sub-process. The approach is general and stepwise. So if the SPI stan-
dards change, the instantiations change, but the approach remains the same.

402 M.T. Baldassarre et al.

The outcome of the mapping is a document (Result of Comparison) that specifies
the correlations between the two models traced on the spreadsheet, i.e. the intersec-
tions of the ISO 9001 statements with the specific practices of CMMI process areas
together with their degree of relation. . The degree of relationship indicates the extent
to which an ISO 9001 statement supports, or has any connection with, a Process area
of CMMI. This expresses a one-to-one relationship. In order to express the degree of
relationship between an ISO 9001 statement and a CMMI Process area, we have de-
fined a discrete scale (scale of comparison) when each of the elements of the scale has
been associated with a set of numeric values which are described in terms of percent-
age. This scale is made up of the following elements: Strongly related (86% to 100%),
Largely related (51% to 85%), Partially related (16% to 50%), Weakly related (1% to
15%) and Non-related (0%). The numeric values can be found by dividing the number
of specific practices (from a Process area of CMMI) that are related to shall state-
ments (from ISO 9001) by the total number of specific practices defined in that Proc-
ess area. For this work, it is important to highlight that this numeric value is only
indicative of the extent to which a process area of CMMI is addressed by means of
the statements of ISO 9001. The degree of relationship is hence expressed only
through the discrete scale. So, the blue indicate correlations/intersections between the
areas. For each area, a degree of relation is quantified.

Fig. 5. Extract of results for the comparison sub-process

3.2 Application Sub-Process

If the comparison sub-process points out the overlapping common areas between the
two SPI frameworks, and therefore provides a what/what perspective, instantiated in
this case on ISO 9001 and CMMI, the application sub-process applies the comparison
results to a specific organization’s Quality Management System (QMS).

 A Strategy for Painless Harmonization of Quality Standards: A Real Case 403

Indeed, if an organization certified, lets say ISO 9001 intends addressing CMMI, it
would be worth investigating what part of the data and information collected with the
ISO standard could be reused for a CMMI appraisal. This is done by formalizing a
GQM-based quality model and then, according to the overlapping areas, reusing the
data/information related to the intersections. More precisely, this part of the process
defines how to structure a quality model, through operational goals, based on the
mapping results and in accordance to the organization’s QMS, and provides a
what/how perspective by tracing ISO 9001:2000 with GQM.

The steps of the application sub-process are represented in figure 6.

Fig. 6. Application Sub-Process

In the following, we will describe each of the three steps that make up the sub-
process and provide evidence on their application to the data of an Italian SME. The
company involved in the application operates in the ICT sector that for privacy reasons
will be referred to as SME. It is certified ISO 9001:2000, other than having other certi-
fications of the ISO family. The company allowed us to access their entire QMS which
is structured conformingly to the chapters of the standard. For the case study, we simu-
lated their intention to certify their processes according to CMMI levels.

Map Company’s QMS
This step starts from the outcome of the comparison sub-process, i.e. the theoretical
mapping of the two frameworks. Moreover, it consists in extracting the relevant doc-
uments from the QMS, based on the relations pointed out in the general comparison,
in order to identify the specific documents, procedures, guidelines, templates and
operational instructions that can be used in the future CMMI-DEV quality model.

The result of this step is an extension of the comparison (Extended Comparison),
which not only contains the mapping of the two SPI frameworks, ISO 9001 and
CMMI, but with respect to each relation identified, it also explicitly specifies the
documents of the QMS. An example is shown in figure 7.

The two columns added are: SME’s QMS, which contains the references to the pa-
ragraphs of the QMS, and SME’s Procedures, which refers to the procedures, through
links. This was done for each ISO statement having relations with a CMMI process

404 M.T. Baldassarre et al.

area. This step is important because the references can be reused when the SME de-
cides to shift to the target SPI framework, i.e. CMMI, and must define the target qual-
ity model. The question this step answers is: “How are the ISO 9001 statements,
which are mapped with CMMI specific practices, traced in the SME's Quality Manual
and other procedures?”

Fig. 7. Extended Comparison

Define GQM-Based Quality Model
The second step of the sub-process consists in defining a quality model. This is done
by adopting a GQM-based approach [5], [25], according to the output of the previous
step. Moreover, analyze the QMS documentation traced in the extended comparison,
in depth, and define measurement goals based on the mapped areas. As so, the quality
model produced allows to quantitatively measure the organization’s processes with
respect to the mapped areas.

This step provides insight on the what/how perspective mentioned in the previous
sections, in that it shows how to operatively produce a quality model by instantiating
ISO 9001 statements (what to do) through measurement goals (how to do it).

The result of this step is a matrix like the one in table 1, where the process PCurrent is
ISO 9001, and the process grains are the ISO statements, while the Goals are the
GQM measurement goals related to each statement. In Table 2 we show an example
of a measurement goal, with questions and metrics defined for the ISO Shall State-
ment n.4.1. In our real case study, the procedure was iterated for each statement of the
framework to obtain a complete quality model for all the ISO statements. The ques-
tion this step answers is: “Given an ISO Statement, how can the related SME’s QMS
and Procedures be measured through operational GQM goals?”

This information is then used to evaluate the degree of coverage of the CMMI
practices with respect to each “shall statement”.

 A Strategy for Painless Harmonization of Quality Standards: A Real Case 405

Table 2. Goal for ISO Shall Statement 4.1

Statement ISO 9000:2001 4.1 General requirements a) identify the processes needed for the quality
management system and their application throughout the organization

 Goal 1

Object of study Management Manual (Quality management system)
Purpose Evaluate
Quality Focus defined processes' correctness
Point of view Management
Context Italian SME

Question Metric Description
Q1.1 M1.1.1 List of processes expected for the quality management system

Q1.2 M1.2.1 List of processes for the quality management system really runned
Q1.3 M1.3.1 Level of adhesion of defined processes to the standard normative
Q1.4 M1.4.1 Level of completeness of defined processes for the quality management system

Q1.5 M1.5.1 Level expected of adhesion of defined processes to the standard normative
Q1.6 M1.6.1 Level expected of defined processes for quality management system

Tailoring Towards the Target Model
The last step of the sub-process collects the results of the previous steps and organizes
them according to the practices of CMMI-DEV. It consists in identifying to what
extent the CMMI-DEV process areas are covered by the ISO statements, based on the
measurement goals (GQM-Based QM) defined in the previous step and the mapping
applied to the SME (Extended Comparison). Given a Process Area (eg. Organiza-
tional Process Definition + IPPD), the goals that relate to that process area are identi-
fied. These goals are extracted from the previous step based on the mapping results
with the ISO Statements. Next, a similar activity is done with respect to the work
products and sub-practices of the process area considered. In other words, for each
work product and sub-practice, we evaluate their degree of coverage with respect to
the SME’s QMS. Figure 8 reports the result of the step with respect to the Organiza-
tional Process Definition + IPPD process area. For each Specific Practice, the goals of
the ISO quality model that can be reused in CMMI assessment are specified; for each
work product and sub-practice the coverage is highlighted in color, together with a
specification of the document in the SME’s QMS.

In this way, we assure that the migration towards the target model (Ptarget), CMMI,
reuses as much as possible of what is already defined in the current model (Pcurrent).
This time the step produces a matrix like the one in table 1, where the process grains
are the specific practices of the CMMI Process Areas and the goals are the GQM-
based measurement goals reused from the quality model defined in the previous step.
The matrix of the target model is obtained as follows: [G x Ptarget] = [G x Pcurrent] X
[Pcurrent x Ptarget], where [G x Pcurrent] is the set of goals for each ISO statement, and
[Pcurrent x Ptarget] is the mapping between ISO and CMMI. In our application, the com-
pleteness of the target model matrix indicates the degree of coverage of the CMMI-
DEV with respect to ISO. Although, the matrix is not complete for the areas that are
not mapped and for those that are not related, it assures that the existing quality model
is reused as much as possible.

406 M.T. Baldassarre et al.

Fig. 8. Coverage of CMMI Process Area from ISO Statements

Fig. 9. Degree of Coverage of CMMI Process Areas

For space reasons we are not able to show the results of every single process area.
We have provided a general picture, i.e. the overall results of the application process to
the Italian SME, shown in Figure 9. The results are shown with respect to the compari-
son sub-process, which represents the theoretical mapping of the two SPI frameworks;
and the application sub-process, where the comparison was applied to the QMS of a
real enterprise.

As it can be seen, the percentages related to the Process Areas in the application
sub-process are lower than the ones defined in the comparison one. This was predict-
able because the application not only considers the theoretic comparison but also how

 A Strategy for Painless Harmonization of Quality Standards: A Real Case 407

it is actually accomplished within the enterprise. These results relate to the QMS of
the Italian SME considered, and therefore represent a first application of the harmoni-
zation process in the direction from ISO to CMMI.

4 Conclusions

In this paper we have presented a harmonization process of two SPI frameworks: ISO
9001:2000 and CMMI-DEV v1.2, by mapping the models and identifying overlap-
ping areas in the direction from ISO to CMMI. Furthermore the general results of the
mapping have been applied and instantiated to a real case, i.e. a QMS of an enterprise.
This has also provided some insight on the differences between the theoretical com-
parison, carried out based on the documentation available from the SPI institutions,
and the application sub-process in which the instantiated documentation to the real
QMS has been considered.

Such harmonization can help an organization to: (i) understand both the differenti-
ating and the overlapping features of the improvement models, and (ii) determine and
understand which of these improvement models can support the organization’s mis-
sion. Carry out cost/benefit analysis before transiting to a new quality standard.

The application of the harmonization process to the QMS of an ISO 9001 certified
company QMS represents a first validation. Indeed, the relations pointed out by the
mapping of the two frameworks are the starting point for applying the harmonization
and identify the existing data of the organization that can be reused for appraising
CMMI levels.

For what concerns the theoretical comparison, this work is limited to the viewpoint
from ISO to CMMI, and therefore represents only half of the complete picture. More-
over, the application process data relates to a small enterprise so, this may also be the
reason for such differences for the degree of coverage between the application and
theoretical sub processes. As so, other applications will be necessary with refer to
various types of certified organizations of various dimensions.

Currently we have applied the application process to a large enterprise, we are ana-
lyzing the data. We expect, for example, that in the large enterprise the comparison
and application sub-processes have similar coverage percentages.

References

1. ISO, ISO 9001:2000. Quality management systems-Requirements. International Organiza-
tion for Standardization: Geneva (2000)

2. SEI, CMMI for Develpment, Version 1.2. Technical Report CMU/SEI-2006-TR-008.
Software Engineering Institute (SEI): Pittsburgh (2006)

3. Humphrey, W.S.: TSP(SM): Coaching Development Teams. Addison Wesley, Reading
(2006)

4. Project Management Institute.: A Guide to the Project Management Body of Knowledge.
Pmbok Guide, 4th edn. (2009) ISBN: 978-1933890517

5. Ardimento, P., Baldassarre, M.T., Caivano, D., Visaggio, G.: Multiview framework for
goal oriented measurement plan design. In: Bomarius, F., Iida, H. (eds.) PROFES 2004.
LNCS, vol. 3009, pp. 159–173. Springer, Heidelberg (2004)

408 M.T. Baldassarre et al.

6. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric Paradigm. Encyclopedia
of Software Engineering, vol. 1, pp. 528–532. John Wiley & Sons, Chichester (1994)

7. Yoo, C., Yoon, J., Lee, B., Lee, C., Lee, J., Hyun, S., Wu, C.: A unified model for the im-
plementation of both ISO 9001:2000 and CMMI by ISO-certified organizations. Journal of
Systems and Software 79(7), 954–961 (2006)

8. Jalote, P.: CMM in Practice: Processes for Executing Projects. Addison-Wesley, Reading
(1999)

9. Paulk, M.C.: A Comparison of ISO 9001 and the capability maturity model for software
(CMU/SEI-94-TR-12). Software Engineering Institute (1994)

10. Violino, B.: Frameworks Boost Business Efficiency. Optimize Magazine 4(3), 68–70
(2005)

11. SEI: Process Improvement in Multimodel Environments (PrIME Project) (2008),
http://www.sei.cmu.edu/prime/primedesc.html

12. Godfrey, S.: What is CMMI? NASA presentation (December 2008),
http://software.gsfc.nasa.gov/docs/What%20is%20CMMI.ppt

13. Halvorsen, C.P., Conradi, R.: A Taxonomy to Compare SPI Frameworks. In: Ambriola, V.
(ed.) EWSPT 2001. LNCS, vol. 2077, pp. 217–235. Springer, Heidelberg (2001)

14. Baldassarre, M.T., Caivano., D., Pino, F.J., Piattini, M., Visaggio, G.: A strategy to har-
monize ISO/IEC 9001:2000 and CMMI-DEV. In: Proc.of the 4th Int.Workshop on Soft-
ware Quality and Maintainability, Madrid, Spain (to appear, March 2010)

15. Pino, F., Baldassarre, M.T., Piattini, M., Visaggio, G.: Harmonizing maturity levels from
CMMI-DEV and ISO/IEC 15504. Software Process: Improvement and Practice
10.1002/spip.437 (online) (September 2009)

16. Siviy, J., Kirwan, P., Marino, L., Morley, J.: The Value of Harmonization Multiple Im-
provement Technologies: A Process Improvement Professional’s View. Software Engi-
neering Institute, Carnegie Mellon (2008)

17. ARMONÍAS: A Process for Driving Multi-models Harmonization, ARMONÍAS Project
(2009), http://alarcos.esi.uclm.es/armonias/

18. SPICE. Enterprise SPICE. An enterprise integrated standards-base model (2008),
http://www.enterprisespice.com/

19. Mutafelija, B., Stromber, H.: ISO 9001:2000-CMMI V1.1 Mappings. Software Engineer-
ing Institute - SEI, 1–31 (2003)

20. Kitson, D.H., Vickroy, R., Walz, J., Wynn, D.: An Initial Comparative Analysis of the
CMMI Version 1.2 Development Constellation and the ISO 9000 Family. SEI (2009)

21. Ferchichi, A., Bigand, M., Lefebvre, H.: An Ontology for Quality Standards Integration in
Software Collaborative Projects. In: 1st International Workshop on Model Driven Interop-
erability for Sustainable Information Systems (MDISIS 2008), France (2008)

22. Lepasaar, M., Mäkinen, T., Varkoi, T.: Structural comparison of SPICE and continuous
CMMI. In: SPICE 2002, Venicia, Italia, pp. 223–234 (2002)

23. Wangenheim, C.G., Thiry, M.: Analysing the Integration of ISO/IEC 15504 and CMMI-
SE/SW. Technical Report LPQS001.05E, UNIVALI: Sao José/SC, Brazil, p. 28 (2008)

24. Rout, T., Tuffley, A.: Harmonizing ISO/IEC 15504 and CMMI. Software Process: Im-
provement and Practice 12(4), 361–371 (2007)

25. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric Paradigm. Encyclopedia
of Software Engineering, vol. 1, pp. 528–532. John Wiley & Sons, Chichester (1994)

Author Index

Aguirre, Lukas 191
Ahmad, Rashid 146
Amasaki, Sousuke 276

Baca, Dejan 176
Baldassarre, Maria Teresa 395
Barreto, Andrea Oliveira Soares 380
Bener, Ayse 116
Berrocal, Javier 321
Biffl, Stefan 17
Bowes, David 107
Buglione, Luigi 131

Caivano, Danilo 395
Cancian, Maiara Heil 234
Card, David N. 92

Daneva, Maya 131

Ebert, Christof 2
Engström, Emelie 3

Faderl, Kevin 17
Fushida, Kyohei 32

Garćıa-Alonso, José 321
Gómez-Rodŕıguez, Alma M. 206
González-Moreno, Juan C. 206

Hall, Tracy 107
Hauck, Jean Carlo Rossa 234
He, Mei 306
Heidenberg, Jeanette 47
Henriques, Cristina 263
Hirkman, Piia 47
Höst, Martin 248

Iida, Hajimu 32, 220
Inoue, Katsuro 220

Kajko-Mattsson, Mira 161
Kalinowski, Marcos 92
Kawaguchi, Shinji 32
Kazman, Rick 263

Khan, Siffat Ullah 146
Krzanik, Lech 77
Kubo, Kozo 220
Kula, Raula Gaikovina 32
Kusumoto, Shinji 220
Kuvaja, Pasi 77

Li, Mingshu 306
Li Helgesson, Yeni 248
Liebchen, Gernot 107

Machado, Ricardo J. 263
Mandić, Vladimir 291
Markkula, Jouni 77
Matinlassi, Mari 47
Matsumoto, Ken-ichi 220
Matsumura, Tomoko 220
McLoughlin, Fionbarr 366
Melleg̊ard, Niklas 336
Mendes, Emilia 92
Menzies, Tim 116
Meyer, Sebastian 191
Monteiro, Paula 263
Mörschbach, Jonas 191
Murillo, Juan Manuel 321

Niazi, Mahmood 146
Nikitina, Natalja 161
Nuseibeh, Bashar 1

Oivo, Markku 291

Partanen, Jari 47
Peters, Maximilian 191
Petersen, Kai 176
Piattini, Mario 395
Pikkarainen, Minna 47
Pino, Francisco J. 395

Rabelo, Ricardo José 234
Racheva, Zornitza 131
Richardson, Ita 366
Rocha, Ana Regina 380
Rodriguez, Pilar 77
Rohunen, Anna 77
Runeson, Per 3

410 Author Index

Savolainen, Paula 351
Schliephacke, Felix 191
Schneider, Kurt 191
Sikkel, Klaas 131
Staron, Miroslaw 336
Szőke, Ákos 62

Travassos, Guilherme H. 92
Tsunoda, Masateru 220
Turhan, Burak 116

Visaggio, Giuseppe 395
von Wangenheim, Christiane Gresse

234

Wang, Qing 306
Wernick, Paul 107
Weyns, Kim 248
Winkler, Dietmar 17

Yang, Ye 306

Zhang, He 306

	Title Page
	Preface
	Organization
	Table of Contents
	Keynote Addresses
	Mobile Privacy Requirements on Demand
	Lean Development - Potentials, Principles and Practices

	Software Quality Assurance I
	A Qualitative Survey of Regression Testing Practices
	Introduction
	Method Description
	Focus Group
	Questionnaire
	Threats to Validity

	Analysis of the Results
	What?
	When?
	How?
	Weaknesses and Strengths

	Conclusions
	References

	Investigating the Temporal Behavior of Defect Detection in Software Inspection and Inspection-Based Testing
	Introduction
	Related Work
	Inspection with UBR Reading Technique
	Inspection-Based Testing

	Research Issues and Hypotheses
	Variables
	Hypothesis

	Study Description
	Study Process
	Study Artifacts
	Subjects
	Threats to Validity

	Experiment Results
	Effort
	Effectiveness
	Efficiency
	False Positives

	Discussion
	Conclusion and Further Work
	References

	Analysis of Bug Fixing Processes Using Program Slicing Metrics
	Introduction
	Methodology
	Bug Fixing Process Definitions and Analysis
	Program Slicing Metrics for Bug Characteristics
	Experiment Approach

	Experiment
	Experiment Tools
	Test Subjects
	Findings

	Discussion
	Threats to Validity
	Findings in Analysis
	Testing Hypothesis

	Conclusion and Future Works
	References

	Agile Software Development
	Systematic Piloting of Agile Methods in the Large: Two Cases in Embedded Systems Development
	Introduction
	Piloting in Context
	Background and Motivation
	A Method for Agile Piloting
	Marketing the Pilot
	Preparing the Pilot
	Executing the Pilot

	Pilot Implementation in EB
	Marketing the Pilot
	Preparing the Pilot
	Executing the Pilot

	Discussion
	Conclusion and Future Work
	References

	Optimized Feature Distribution in Distributed Agile Environments
	Introduction
	Related Work
	Problem Statement and Analysis
	Objectives

	Background
	Agile Software Development Process
	Agile Distribution Strategies
	Modular Design

	Feature Distribution Method for Agile DSD
	Assembly Model Design Method
	Feature Assembly Analysis
	Tool Support

	Experiments
	Research Questions
	Context and Methodology
	Data Collection
	Results and Analysis

	Discussion and Future Work
	Conclusions
	References

	Approaches to Agile Adoption in Large Settings: A Comparison of the Results from a Literature Analysis and an Industrial Inventory
	Introduction
	Research Setting
	Performing Literature Analysis
	Industrial Inventory
	Agile in the Large

	Literature Analysis Results
	Agile Adoption Framework Analysis
	Outcomes of the Literature Analysis

	Industrial Inventory Results
	Strategy Types in Adoption of Agile Methods
	Stages of Agile Adoption
	Managing Dependencies between Different Agile Practices during Their Adoption

	Synthesis of the Results
	Strategy Types in Adoption of Agile Methodologies
	Stages of Agile Adoption
	Managing Dependencies between Different Agile Practices during Their Adoption

	Conclusions and Limitations of the Study
	References

	Software Quality Assurance II
	Applying DPPI: A Defect Causal Analysis Approach Using Bayesian Networks
	Introduction
	Defect Causal Analysis
	DPPI Overview
	Development Activity Result Analysis
	DCA Preparation
	DCA Meeting
	Development Activity Improvement

	DPPI Proof of Concept
	Applying Development Activity Result Analysis
	Applying DCA Preparation
	Applying DCA Meeting

	Industrial Considerations
	Underlying Usage Assumptions
	Considerations on Tool Support
	Other Usage Possibilities

	Conclusions
	References

	Evaluating Three Approaches to Extracting Fault Data from Software Change Repositories
	Introduction
	Background
	Methodology
	The Barcode Open Source System
	Procedures for Implementing the Three Approaches
	Inter Rater Reliability Measurement
	Limitations of the Study

	Results
	Manual Classification of Change Diffs
	Keyword Search
	Size of Change Search

	Conclusions
	References

	Regularities in Learning Defect Predictors
	Introduction
	Background
	Examples of Regularities in General SE Research
	On Learning Defect Predictors

	Regularities in Defect Predictors in Commercial Domain
	Validity in Open Source Domain
	Summary of Results and Limitations
	Conclusions
	References

	Software Business
	Business Value Is Not Only Dollars – Results from Case Study Research on Agile Software Projects
	Introduction
	Background
	Motivation
	Related Work

	The Research Method
	The Case Study Process and Participants
	The Data Collection
	The Data Processing

	Results
	Discussion on the Results
	Limitations
	Conclusions
	References

	Critical Success Factors for Offshore Software Development Outsourcing Vendors: An Empirical Study
	Introduction
	Background
	Research Methodology
	Measure Development
	Data Sources
	Data Analysis Method

	Analysis and Results
	Success Factors Identified through Empirical Study
	Success Factors in the Opinions of Junior, Intermediate and Senior Level Experts

	Summary and Discussions
	Limitations
	Conclusion and Future Work
	References
	Appendix: Distribution of success factors based on Experts’ experience

	Impact of Corporate and Organic Growth on Software Development
	Introduction
	Research Method
	Method Steps
	Interview Questionnaire

	Corporate and Organic Business Growth
	Historical Perspective of the VSG Period
	Historical Perspective of the SIG Period
	Historical Perspective of ESP Period
	Changes

	The Impact of Corporate and Organic Growth
	Benefits of Corporate and Organic Growth
	Problems of Corporate and Organic Growth
	Challenges of Corporate and Organic Growth

	Conclusions and Lessons Learned
	References

	Software Systems
	Prioritizing Countermeasures through the Countermeasure Method for Software Security (CM-Sec)
	Introduction
	Background and Related Work
	Countermeasure Method for Software Security (CM-Sec)
	Countermeasure Graphs: An Extension to Attack Trees
	Process

	Application
	System Description and Development Environment
	Result of Applying ACM-Sec

	Discussion
	Practical Implications
	Research Implications

	Conclusion
	References

	Feedback in Context:Supporting the Evolution of IT-Ecosystems
	Introduction: Evolution in IT Ecosystems
	Assumptions, Opportunities, and Concepts
	Related Work
	Architecture and Process of Feedback in IT Ecosystems
	Implementation of the ConTexter Framework
	Example Case Study: UniImprove
	Semi-automatic Feedback Evaluation
	Summary and Conclusions
	References

	Comparing Agile Processes for Agent Oriented Software Engineering
	Introduction
	INGENIAS Methodology
	The Scrum Process for INGENIAS
	Identify the Process Model
	Defining Lifecycle View
	Define the Disciplines View
	Define Guidances View

	Case Study and Results
	Case Study Description
	Experiment and Results
	Discussion

	Conclusions and Future Work
	References

	Standardizing the $Software$ Tag in Japan for Transparency of Development
	Introduction
	Overview of the Software Tag Scheme
	Development of Software Tag Technologies
	Software Tag Standard 1.0
	Support Tools
	Applications of the Software Tag

	Activities for Promotion and Diffusion
	Discussion
	Conclusions
	References

	Process Quality I
	Discovering Software Process and Product Quality Criteria in Software as a Service
	Introduction
	Related Work
	Research Methodology
	Domain Analysis
	Elicitation of Quality Criteria
	Validation and Prioritization of Quality Criteria
	Results: Quality Criteria for SaaS
	Discussion

	Conclusions
	References

	A Maturity Model for IT Dependability in Emergency Management
	Introduction
	Background
	Related Work
	Methodology
	Process Improvement with IDEM3
	Maturity Levels
	Outcomes
	IT Management
	Cooperation
	Organisational Issues

	Transition from One Level to the Next
	From Level 1 to Level 2
	From Level 2 to Level 3
	From Level 3 to Level 4
	From Level 4 to Level 5
	Commitment Required

	Relation to Other Maturity Models
	Evaluation of the Maturity Model
	Conclusions
	References

	Dependency Analysis between CMMI Process Areas
	Introduction
	CMMI for Development Model
	Staged vs. Continuous Representations
	Introduction to Notation

	Discovering the Process Areas Dependencies
	Elementary Dependency Analysis
	Dependencies of CMMI Process Areas
	ML-2 Centric Dependency Analysis

	ML-2 Centric Dependency Analysis with Elementary Dependency Analysis for Validation and Verification Process Areas
	Conclusions
	References

	Software Measurement
	Productivity Reanalysis for Unbalanced Datasets with Mixed-Effects Models
	Introduction
	Related Work
	Mixed-Effects Models
	Overview
	ANOVA and ANCOVA Using MEM

	Experiment
	Research Questions
	Dataset
	Experiment Procedure

	Results
	Comparison of Estimates between FEM-Based and MEM-Based ANOVA
	Comparison of MEM-Based ANCOVA and IPR
	Examination of Usefulness of Group-Level Predictors

	Conclusion and Future Works
	References

	SAS: A Tool for the GQM+Strategies Grid Derivation Process
	Introduction
	Background and RelatedWork
	GQM Paradigm and Abstraction Sheet
	GQM+Strategies

	Importance of Context
	Strategies Abstraction Sheet (SAS)
	SAS Research Requirements
	The Structure of SAS
	The Logic of SAS

	Early Validation
	Design of Questionnaire
	Results and Discussion
	Validation Validity

	Conclusions
	References

	Understanding the Influential Factors to Development Effort in Chinese Software Industry
	Introduction
	Research Questions and Related Work
	CSBSG Dataset
	Project Size
	Team Size
	Duration
	Development Type
	Business Area
	Programming Language

	Analysis Procedure and Result
	Data Validation and Preliminary Analysis
	Model Development
	Model Validation

	Discussions
	Conclusions and Future Work
	References

	Process Quality II
	Lean Management of Software Processes and Factories Using Business Process Modeling Techniques
	Introduction
	Background and Related Work
	The Zentipede Approach
	Zentipede’s Main Workflow
	Zentipede BPMS
	Zentipede Management Centre
	Zentipede Development Toolkit
	Zentipede Documentation Centre

	Validation and Evaluation of Zentipede
	Conclusions
	References

	Improving Efficiency of Change Impact Assessment Using Graphical Requirement Specifications: An Experiment
	Introduction
	Background and Related Work
	Requirement Specification Format
	Requirements Abstraction Model
	gRAM – DSL for Modelling Requirements

	Experiment Design
	Population and Sample
	Instrumentation
	Analysis of Results

	Discussion
	Conclusions
	References

	Vague Project Start Makes Project Success of Outsourced Software Development Projects Uncertain
	Introduction
	A Literature Review
	TheInterview
	Results of the Analysis
	Definitions
	Conclusion
	References

	Software Process Improvement
	The Rosetta Stone Methodology – A Benefits Driven Approach to Software Process Improvement
	Introduction
	Benefits of SPI
	Reported Benefits of SPI
	SPI Challenges
	Bridging the Gap between SPI and the Business

	Research Methodology
	Rosetta Stone Methodology
	Objectives, Process Areas, and Indicators
	Return, Costs and ROI

	Rosetta Stone Methodology: CMMI Implementation Instance
	Examples of CMMI Level 2 Process Area to Benefit Mappings
	Achieving Specific Business Objectives

	Conclusion
	References

	Defining and Monitoring Strategically Aligned Software Improvement Goals
	Introduction
	Strategic Planning and Software Improvement Goals
	Defining Strategically Aligned Software Improvement Goals
	Strategic Planning
	Tactical Planning Aligned to Strategic Planning
	Project Planning Aligned to Tactical Planning

	An Infrastructure to Monitor Software Improvement Goals
	Defining Software Improvement Goals at a Brazilian Software Development Organization
	Conclusions
	References

	A Strategy for Painless Harmonization of Quality Standards: A Real Case
	Introduction
	Background
	ISO 9001:2000 and CMMI v.1.2 Overview
	Related Works

	Harmonization Process
	Comparison Sub-Process
	Application Sub-Process

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

