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Preface

ICIAR 2010, the International Conference on Image Analysis and Recognition,
held in Póvoa do Varzim, Portugal, June 21-23, was seventh in the ICIAR se-
ries of annual conferences alternating between Europe and North America. The
idea of organizing these conferences was to foster the collaboration and exchange
between researchers and scientists in the broad fields of image analysis and pat-
tern recognition, addressing recent advances in theory, methodology and appli-
cations. During the years the conferences have become a forum with a strong
participation from many countries. This year, ICIAR was organized along with
AIS 2010, the International Conference on Autonomous and Intelligent Systems.
Both conferences were organized by AIMI—Association for Image and Machine
Intelligence.

For ICIAR 2010, we received a total of 164 full papers from 37 countries.
The review process was carried out by members of the Program Committee and
other reviewers; all are experts in various image analysis and pattern recognition
areas. Each paper was reviewed by at least two reviewers, and checked by the
Conference Chairs. A total of 89 papers were finally accepted and appear in the
two volumes of these proceedings. The high quality of the papers is attributed
first to the authors, and second to the quality of the reviews provided by the
experts. We would like to sincerely thank the authors for responding to our call,
and to thank the reviewers for their careful evaluation and feedback provided
to the authors. It is this collective effort that resulted in the strong conference
program and high-quality proceedings.

This year included a competition on “Fingerprint Singular Points Detection”
and a challenge on “Arabidopsis Thaliana Root Cell Segmentation Challenge,”
which attracted the attention of ICIAR participants.

We were very pleased to be able to include in the conference program keynote
talks by three well-known experts: Alberto Sanfeliu, Universitat Politècnica de
Catalunya, Spain; Edwin Hancock University of York, UK and José Santos-
Victor, Institute for Systems and Robotics, Instituto Superior Técnico, Portugal.
We would like to express our sincere gratitude to the keynote speakers for accept-
ing our invitation to share their vision and recent advances in their specialized
areas.

We would like to thank Khaled Hammouda, the webmaster of the confer-
ence, for maintaining the Website, interacting with the authors and preparing
the proceedings. Special thanks are also due to the members of the local Orga-
nizing Committee for their advice and help. We are also grateful to Springer’s
editorial staff, for supporting this publication in the LNCS series. We would like
to acknowledge the professional service of Viagens Abreu in taking care of the
registration process and the special events of the conference.



VI Preface

Finally, we were very pleased to welcome all the participants to ICIAR 2010.
For those who did not attend, we hope this publication provides a good view
into the research presented at the conference, and we look forward to meeting
you at the next ICIAR conference.

June 2010 Aurélio Campilho
Mohamed Kamel
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Fusing Shape Information in Lung Segmentation in Chest
Radiographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Amer Dawoud

A 3D Tool for Left Ventricle Segmentation Editing . . . . . . . . . . . . . . . . . . . 79
Samuel Silva, Beatriz Sousa Santos, Joaquim Madeira, and
Augusto Silva

Myocardial Segmentation Using Constrained Multi-Seeded Region
Growing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Mustafa A. Alattar, Nael F. Osman, and Ahmed S. Fahmy

A Level Set Segmentation Method of the Four Heart Cavities in
Pediatric Ultrasound Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Sofia G. Antunes, José Silvestre Silva, and Jaime B. Santos



XIV Table of Contents – Part II

Improved Technique to Detect the Infarction in Delayed Enhancement
Image Using K-Mean Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Mohamed K. Metwally, Neamat El-Gayar, and Nael F. Osman

Detection of Arterial Lumen in Sonographic Images Based on Active
Contours and Diffusion Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Amr R. Abdel-Dayem

Classification of Endoscopic Images Using Delaunay
Triangulation-Based Edge Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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Abstract. Automated identification of vertebra bodies from medical im-

ages is important for further image processing tasks. This paper presents a

graphical model based solution for the vertebra identification from X-ray

images. Compared with the existing graphical model based methods, the

proposed method does not ask for a training process using training data

and it also has the capability to automatically determine the number of

vertebrae visible in the image. Experiments on digitially reconstructed ra-

diographs of twenty-one cadaver spine segments verified its performance.

1 Introduction

Automated identification of vertebra bodies from medical images is important
for further image processing tasks such as segmentation, registration, recon-
struction and inter-vertebra disk identification. Due to the complexity of the
spine structure, simple feature (for example, landmarks or edges) based solu-
tions are not reliable and researchers are paying more attention on graphical
model based solutions[1][2]. The current vertebra or intervertebral disk identifi-
cation approaches usually face the following difficulties:

Unknown object number. Detecting an unknown number of vertebrae or in-
tervertebral disks invokes a model selection problem. In [1][2], they focus
on either the lumbar or the whole spine so that the number of interverte-
bral disks is taken as fixed and they can thus build their graphical models
with a fixed number of nodes and avoid the model selection problem. In
[3], the number of vertebrae is detected by a generalized Hough transforma-
tion (GHT) along the detected spinal cord. The robustness of the vertebra
number detection is highly dependent on the image quality.

Off-line training. Due to the complexity of the spine structure, most of the
existing work on the spine area ask for the involvement of prior knowledge
which is usually obtained by off-line training. In [1][2], both the low level
image observation models and the high level disk context potentials need
to be trained using training data. In [3], statistical surface models for each
vertebra, the sacrum, the vertebra coordinate system and generalized Hough
transform models are obtained from the training data. Besides the fact that
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2 X. Dong and G. Zheng

the model training and model building are complex problems themselves,
the dependency on training data makes these approaches only applicable
to the data with similar characteristics with the training data.

Our contributions to overcome the difficulties are: (1) firstly we designed a graph-
ical model of the spine, which can determine the number of visible vertebrae
during the inference procedure; (2) secondly, in the graphical model, both the
low level image observation model and the high level vertebra context potentials
need not to be learned from training data. Instead they are designed so that they
are capable of self-learning from the image data during the inference procedure.

2 Method

2.1 Graphical Model

Similar to [2], we build a graphical model G = {V, E} with N nodes for the
spine structure as shown in Fig. 1. Each node Vi, i = 0, 1, ..., N − 1 represents
a connected disk-vertebra-disk component of the spine, in which both the disks
and the vertebral body are modelled as rectangular shapes. We assign a param-
eter set Xi = {xi, yi, ri, hi, θi, h

u
i , θu

i , hl
i, θ

l
i} to Vi to describe the positions and

the shapes of Vi as shown in Fig. 2. E = {ei,j}, i, j = 0, 1, 2, ..., N − 1 defines a
connection matrix of the graph G. On this graphical model, we define the com-
ponent observation model p(I|Xi), i = 0, 1, ..., N − 1 of a single component and
potentials p(Xi, Xj), i, j = 0, 1, ...N−1, ei,j = 1 among neighboring components.
{p(I|Xi), i = 0, 1, ..., N − 1} represents the probabilities that the configurations
of the nodes match the observed images I and the potentials {p(Xi,Xj)} encode
the geometrical constraints between components. The identification of the spinal
structure is then to find the configurations of {Vi},X = {X0,Xi, ...,XN−1}, that
maximizes

P (X |I) ∝
∏

i

p(I|Xi)
∏

ei,j=1

p(Xi,Xj) (1)

2.2 Component Observation Model

The component observation model p(I|Xi) is to match a template, which is
determined by Xi, with the observed image I defined as

p(I|Xi) = pI(I|Xi)pG(I|Xi)pV (I|Xi) (2)

The three items in (2) come from the intensity, gradient and local variance of
the template as described below:

Intensity observation model pI(I|Xi): GivenXi, itdetermines adisk-vertebra
-disk template on the 2D X-ray image plane as shown in Fig. 2. We assume
that the interior area of the vertebra body has a homogeneous intensity dis-
tribution, a Gaussian model N (μi, σi), which is different from the intensity
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Fig. 1. Graphical model of the spine

distribution of the border region, which is defined as a small neighbourhood
outside the vertebra body. For each pixel s that falls in the interior and border
region of the template as shown in Fig. 2, the image appearance value of s is
defined as

p(s|Xi) = e
− (I(s)−μi)2

2σ2
i (3)

We define pI(I|Xi) = eωIci
I , where ci

I is the cross-correlation between the
image appearance values p(s|Xi) and a binary template which sets value 1
to the interior area of the template and 0 to the border region. ωI > 0 is
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Fig. 2. Vertebra body template for the component observation model

a weighting factor. Intuitively this means that we assume that the interior
region of the template should obey the Gaussian distribution and the bor-
der area should have a different intensity distribution. The Gaussian model
N (μi, σi) can be learned from the observed image once Xi is given.

Gradient observation model pG(I|Xi): Similar to pI(I|Xi), we can define
pG(I|Xi) = eωGci

G , where ci
G is the cross-correlation between the gradient

image values of the observed image in the template area and a binary gra-
dient template, which sets 0 in the interior area and 1 in the border region.
This means strong gradient values should only happen on the border of the
vertebra template.

Local variance observation model pV (I|Xi): We compute the local variance
image IV of the image I, which is defined as the intensity variance in a small
window centered at each pixel. We define pV (I|Xi) = eωV ci

V , where ci
V is

the cross-correlation between the local variance values and a binary template
identical to the gradient template.

We only consider the image observation model of the vertebra bodies but ignore
the observation model of the disks. This is due to the fact that for X-ray images
with different view directions, a unified observation model for the disks is difficult
to design.

It can also be observed that three components in the component observation
model do not need to be trained with training data as in [1][2]. Instead they can
adjust their parameters by a self-learning from the X-ray images.

2.3 Potentials between Components

We define inter-node potentials to set constraints on the geometries of the nodes
{Vi} so that all the nodes will be assembled to a meaningful spine structure.
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We define
p(Vi,Vj) = pS(Vi,Vj)pO(Vi,Vj)pD(Vi,Vj) (4)

Size constraints. pS(Vi,Vj) is used to set constraints on the sizes of the neigh-
bouring components defined as

pS(Vi,Vj) = e
−(ωr

|ri−rj |
|ri+rj | +ωh

|hi−hj |
|hi+hj | )/|i−j|

(5)

which means that neighbouring components should have similar sizes and
the strength of the constraints should decay with the distance between
components.

Orientation constraints. We define

pO(Vi,Vj) = e−ωoai•ai/|i−j| (6)

to ensure that neighbouring vertebra bodies should have similar orientations,
in which ai is the 2-dimensional axis of the vertebra body template as shown
in Fig. 2.

Distance constraints. For direct neighboring nodes Vi,Vj , i.e. |i − j| = 1,
we also define constraints on the spatial distance between their vertebra
body centers. Without losing any generality, for the case j = i + 1 we define
pD(Vi,Vj) as

pD(Vi,Vj) =

⎧⎪⎪⎨
⎪⎪⎩

e
−ωD

dC,ij
dh,ij , dC,ij <

dh,ij

4

e
−ωD

dC,ij−(dh,ij+hl
i+hu

j )/2

dh,ij , 5
4dh,ij > dC,ij > 3

4dh,ij

0 , elsewhere

(7)

where dC,ij = ‖Ci − Cj‖, dh,ij = hi + hj . Intuitively this constraint means
that we ask direct neighboring components should either be closely connected
side-by-side or merge to one object. This makes our graphical model capable
of adjusting the configuration of the nodes in the component chain to find
the number of vertebrae during the inference procedure.

2.4 Optimization

In [1], the optimization is achieved by a generalized EM algorithm given the
known disk number and a proper initialization. In [2] the candidate configura-
tion for each object can be detected by searching the whole data volume using
trained random classification trees and the inference is achieved by the A∗ al-
gorithm. Both of their optimization methods are not suitable for our graphical
model. Firstly we do not have a proper initialization of the configuration of our
components as in [1]. Secondly, the configuration of each object in our case is
high dimensional so that the complete search for candidate configurations of each
object as presented in [2] is computational costly. Our optimization procedure
to find the solution of Eq. (1) consists of two levels:
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1. The optimization to find the configuration(s) of each individual component
Vi by a particle filtering.

2. The optimization to find the joint configuration of the component set by a
belief propagation based inference [4].

For an object Vi and its configuration parameter set Xi

1. Randomly generate a set of K configuration of Vi, Xk
i , k = 0, 1, ...K − 1.

2. Compute the believe of each configuration as wk
i ∝ p(I|Xk

i ).
3. Taking the randomly generated configurations Xk

i as candidate configura-
tions of each component and the believes wk

i as local believes, run a (loopy)
belief propagation on the graphical model to approximate the joint distribu-
tion of all the components.

4. Update the configuration of Xk
i , k = 0, 1, ...K − 1 using the marginal distri-

bution of each component wk
i , which can be easily obtained from the belief

propagation procedure, The basic idea of the configuration update is to gen-
erate new configurations near the configurations with higher believes wk

i .
5. Repeat 2-4 till the procedure converges.

Algorithm 1. Optimization of the joint configuration of the component set

The basic concept of our optimization algorithm is that
– The particle filtering part (step 1,2 and 4) is used to find probable candidates

for each individual object.
– The BP part (step 3) is used to set regularization on the components so that

only the candidates that can fulfill the inter-component constraints will be
selected.

2.5 The Determination of the Number of Vertebrae

Vertebra number determination is a key factor for a correct vertebra detection.
In our approach it is solved in a semiautomatic method as described as follows:
– Users click two landmarks on the X-ray image to indicate the first and the

last visible vertebra.
– From the landmarks and the projection parameters of the X-ray image, we

can estimate an upper bound of the number of vertebrae Nupper and con-
struct a graph model with Nupper nodes.

– Carry out the inference procedure described in Algorithm 1. Due to the dis-
tance potential between neighboring components, neighboring components
will either be located side-by-side or overlap. Therefore the extra vertebrae
will merge with their neighbours, i.e., multiple nodes may be located at the
same vertebra.

– After the optimization, a simple mean-shift based clustering on the center
positions of the components using the mean height of the vertebra bodies as
its bandwidth can easily merge overlapping components and therefore find
the number of vertebrae [5].
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3 Experimental Results

We validated the present approach on digitally reconstructed radiographs (DRRs)
of twenty-one cadaver spine segments, where eight of them were from cervical re-
gion, six of them were from thoracic region and the rest were from lumbar region.
The DRRS were constructed from the CT volumes of the associated spine seg-
ments, resulting in a detection of totally 132 vertebrae from the DRRs (45 cervical
vertebrae, 56 thoracic vertebrae, and 31 lumbar vertebrae). For each CT volume,
a pair of DRRs consisting of an anterior-posterior (AP) image and a lateral-medial
(LM) image were generated.

For each pairs of DRRs, we started the detection from the LM image due to the
observation that the vertebra bodies in the LM image were more homogeneous
than those in the AP image. As soon as all the vertebrae were detected from
the LM image, we could apply the same approach to the AP image but with a
fixed number of the vertebrae that is determined from the LM image. For each
detection, the user specificed two points as the input to our approach with one
picked around the center of the top vertebra and the other around the center
of the bottom vertebra. Our approach was then used to detect all vertebrae
from the input image pair. The outputs from our approach include the number
of vertebrae in the image, as well as the three-dimensional (3D) location and
orientation of each vertebra, which are reconstructed from the associated two-
dimensional (2D) detection results in both images. Figure 3 shows three examples
of the automated detection of vertebrae in three different anatomical regions.

The automated vertebra body detection results are presented in Table 1. Al-
though our approach had false/miss detection on four images, the false/miss
vertebra detection rate was low. From the totally 132 vertebrae, our approach
could successfully detect 122 vertebrae, which results in a 92.4% success rate.

Table 1. Automated vertebra body detection results

Spine Regions Detection Results Image Number Vertebra Number

Correct 6 38
Cervical Vertebrae

False/miss 2 7

Correct 4 53
Thoracic Vertebrae

False/miss 2 3

Correct 7 31
Lumbar Vertebrae

False/miss 0 0

4 Discussion and Conclusion

In this paper we proposed a graphical model based method for automated detec-
tion of vertebra bodies from X-ray images. We validated our method on DRRs of
twenty-one cadaver spine segments of different regions. Compared to previously
introduced approach, our approach has the following advantages: (1) It need not
to be trained using training data, (2) It does not ask for the prior information
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(a) Cervical vertebra detection example

(b) Thoracic vertebra detection example

(c) Lumbar vertebra detection example

Fig. 3. Examples of detection vertebrae in different spine regions
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of the examined anatomical region and (3) It can automatically identify the
number of vertebrae visible in the image and therefore does not ask for a prior
information of the vertebra number to be identified. Our future work focuses on
investigating the performance of the proposed approach on clinical x-ray images.
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Abstract. In this paper, a new methodology for the prediction of scoliosis curve
types from non invasive acquisitions of the back surface of the trunk is proposed.
One hundred and fifty-nine scoliosis patients had their back surface acquired in
3D using an optical digitizer. Each surface is then characterized by 45 local mea-
surements of the back surface rotation. Using a semi-supervised algorithm, the
classifier is trained with only 32 labeled and 58 unlabeled data. Tested on 69 new
samples, the classifier succeeded in classifying correctly 87.0% of the data. After
reducing the number of labeled training samples to 12, the behavior of the result-
ing classifier tends to be similar to the reference case where the classifier is trained
only with the maximum number of available labeled data. Moreover, the addition
of unlabeled data guided the classifier towards more generalizable boundaries
between the classes. Those results provide a proof of feasibility for using a semi-
supervised learning algorithm to train a classifier for the prediction of a scoliosis
curve type, when only a few training data are labeled. This constitutes a promis-
ing clinical finding since it will allow the diagnosis and the follow-up of scoliotic
deformities without exposing the patient to X-ray radiations.

1 Introduction

Scoliosis is a three-dimensional deformity of the spine and the ribcage that affects the
general appearance of the trunk. In general, one of the first symptoms of scoliosis is the
manifestation of a hump on the back, called the rib hump. It constitutes one of the most
disturbing aspects of the deformity for the patients.

The management of scoliosis depends essentially on the severity, the type and the
risk of progression of the curve. Those parameters are commonly evaluated on standard
frontal and lateral X-rays of the patient’s trunk in upright position. However, there are
several limitations attributed to the radiographic evaluation of scoliosis. First of all, it
provides only bi-dimensional information that is not sufficient to fully evaluate a com-
plex three-dimensional pathology like scoliosis. Second, only the internal deformities
can be evaluated in the radiographs while the patients’ main concern is their external
appearance. And last but not least, as X-ray acquisition is invasive, and considering
the risks associated with radiation exposure from repeated radiographs, its frequency

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part II, LNCS 6112, pp. 10–19, 2010.
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is limited to every 6 months which represents a long interval for the follow-up of a
progressive scoliosis.

In order to evaluate the scoliosis on a more frequent basis, non invasive imaging tech-
niques that provide a three-dimensional reconstruction of the trunk surface have been
proposed in the literature. The main challenge currently is to relate the topographic
measurements with the radiographic ones. In this context, several authors have tried to
predict the severity of scoliosis [1,2,3,4] or the 3D shape of the spine [5] from met-
ric evaluations on the surface of the back or of the trunk, using statistical methods [4]
or machine learning techniques like neural networks [2] and supervised support vector
machines [3,5]. To build such classifiers, a large set of labeled samples, called the train-
ing data, is necessary. As the labeling is based on radiographic measurements, the size
of the training database is thus limited by the X-rays acquisition frequency. This affects
negatively the performance of the classifiers.

Since the back surface acquisition is totally non-invasive, it would be advantageous
to complement the training database with topographic data that is not necessarily la-
beled, which means that no X-ray information is available for this data. Training using
both labeled and unlabeled data is called semi-supervised learning. Recently, one such
approach has been proposed in the literature [6] and its effectiveness has been tested on
artificial data as well as on real problems such as the character recognition. The results
have shown the usefulness and the good performance of this method even when the
number of labeled data is too small.

The aim of the current study is to prove the feasibility of using a semi-supervised
learning approach for the prediction of scoliosis curve types by analysing the back
surface of the trunk.

2 3D Back Surface Analysis

2.1 Data Acquisition

Currently, at Sainte-Justine Hospital Research Centre (SJHRC) in Montreal (Canada),
the back surface of the trunk is acquired using an optical digitizer (InSpeck Inc., Mon-
treal, Canada), comprised of a color CCD camera and a structured light projector. The
acquisition process consists of projecting successively four fringe patterns, obtained by
phase-shifting a set of light fringes, onto the surface. Based on the four resulting im-
ages, the system computes, by interferometry and triangulation, the depth of each sur-
face point relative to the reference plane of the digitizer. A fifth image, with no fringes,
acquires the texture of the surface which is then mapped onto the 3D model (figure 1).

The resulting mesh consists of more than 10,000 nodes, depending on the size of
the patient.The accuracy of this system was evaluated in [7], using markers placed on
a mannequin whose coordinates were previously recorded by a computer measuring
machine. The results showed a reconstruction accuracy of 0.56 mm over the back.

During the acquisition, the patient is in upright position, with his arms slightly ab-
ducted on the sides. Prior to the acquisition, a nurse locates by palpation and places
markers over several anatomic landmarks on the trunk, such as the center of the pos-
terior superior iliac spines (CPSIS) and the vertebral prominence (VP). These markers
are used for clinical measurements and registration.
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Fig. 1. On the left: four fringe patterns are projected on the back surface of a mannequin. In
the center: color representation of depth. On the right: 3D reconstruction of the surface with the
mapped texture.

2.2 Features Extraction

To evaluate the scoliosis deformities on the surface of the trunk, local measurements
are computed on horizontal cross-sections of the trunk. More specifically, 50 sections,
equally spaced along the vertical axis of the trunk, are automatically extracted starting
from the CPSIS and going up to the VP (Figure 2). On each of the 50 sections, an auto-
matic algorithm computes the back surface rotation (BSR). This clinical measurement
is related to the amplitude of the rib hump and is defined as the angle, projected onto
the axial plane, between the dual tangent to the section and the X-axis of the acquisi-
tion reference frame. The BSR can be negative or positive depending on the side of the
hump. The accuracy of this measurement computed on a 3D reconstruction of the trunk
surface was previously evaluated at 1.4mm [8].

Thus, each back is characterized by 50 BSR values. In order to filter outliers and
obtain smoother value sets, an averaging window was applied to each set. Moreover,
for each patient, the angle values were normalized between -100 and 100 degrees to
compensate for differences between the patients in term of severity. Finally, the BSR
values corresponding to the upper 5 sections were not considered because they were too
noisy and the values of the BSR are not relevant in this area in the context of scoliosis
assessment.

3 Semi-supervised Learning

Pattern recognition problems are solved with classifiers which are designed using pro-
totypes of the data to be recognized. This data, called the training set, consists of the
patterns and their labels (the category of the pattern). This is the supervised learning
where the features extracted from the patterns and their labels are used for modeling
the classifier parameters [9,10]. However, the labeling process can become extremely
expensive and cumbersome. For instance, the labeling of handwritten documents, im-
ages, or web pages requires both human expertise and insight, whereas in the field of
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Fig. 2. On the left: 50 horizontal sections (black lines) of the trunk are extracted between the
CPSIS (black squared marker on the bottom) and the VP (black squared marker on the top). On
the right: the BSR is the angle defined by the dual tangent (red dashed line) to the back section
(black curve) and the projection of the lateral axis onto the axial plane (black line).

medicine or biology, the labeling process may require some data acquisitions that are
limited for ethical reasons. Thus, it may be very difficult, or even impossible, to label
all the available data. The alternative is the semi-supervised learning [11,12,13], where
both labeled and unlabeled data are used to train the classifier. Hence, it is not necessary
to label all the data collected in order to build the classifier.

In this work, we propose using the least squares support vector machine (LS-SVM)
in order to classify scoliosis curve types. To this end, we have collected labeled and
unlabeled data in order to train our machine in semi-supervised mode.

The LS-SVM is an interesting variant of the SVM proposed by Suykens et al.[14,15].
The standard Vapnik SVM classifier [16] is modified to transform the QP problem into
a linear one. These modifications are formulated in the LS-SVM definition as follows,
when we consider a binary classification problem with {(x1, y1), ..., (x�, y�)} the train-
ing dataset, xi ∈ R and yi ∈ {−1, 1}.

min
w,b,ξ

1
2
w′w +

1
2
C

�∑
i=1

ξ2
i (1)

s.t. ξi = yi − [w′φ(xi) + b] ∀i = 1, ..., � (2)

where w′ denotes the transpose of w, φ is the mapping function used implicitly via
the kernel function k(xi, xj) = φ(xi).φ(xj) for non linear problems, C is used to
balance the trade-off between maximizing the margin and minimizing the training error
quantified by the variable ξ.

The original SVM formulation is modified at two points. First, the inequality con-
straints with the slack variable ξi expressed in SVM formulation are replaced by equal-
ity constraints. Second, a squared loss function is considered in the objective function.
These two essential modifications simplify the problem, which becomes linear.
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The Lagrangian of problem (2) is expressed by :

L(w, b, ξ, α) =
1
2
w′w

+
1
2
C

�∑
i=1

ξ2
i −

�∑
i=1

αi{yi − [w′φ(x) + b] − ξi}

where αi are Lagrange multipliers.

The Karush−Kuhn−Tucker (KKT)1 conditions for optimality yield⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂L
∂w = 0 ⇒ w =

∑�
i=1 αiφ(xi)

∂L
∂b = 0 ⇒ ∑�

i=1 αi = 0
∂L
∂ξi

= 0 ⇒ αi = Cξi, ∀i = 1, ..., �
∂L
∂αi

= 0 ⇒ ξi = yi − [w′φ(xi) + b] ∀i = 1, ..., �

We note that the system coming from the KKT conditions is linear, and that its solution
is found by solving the system of linear equations expressed in the following matrix
form : (

K + C−1I 1′

1 0

)(
α
b

)
=

(
Y
0

)
(3)

where :
Kij = k(xi, xj)
Y = (y1, ..., y�)′

α = (α1, ..., α�)′

1 = (1, ..., 1)

In our previous work [6], we have proposed the semi-supervised LS-SVM (S2LS −
SV M ) using the following expressions:

min
w,b,ξ,ξ∗,y∗

1 ,...,y∗
n

1
2
w′w +

1
2
C

�∑
i=1

ξ2
i +

1
2
C∗

n∑
j=1

(ξ∗j )2 (4)

s.t. ξi = yi − [w′φ(xi) + b], ∀i = 1, ..., � (5)

ξ∗j = y∗
j − [w′φ(x∗

j ) + b], ∀j = 1, ..., n (6)

y∗
j ∈ {−1, 1} ∀j = 1, ..., n (7)

In this equation, the parametersC and C∗ balance the error between the labeled{(x1, y1),
..., (x�, y�)} and unlabeled data {x∗

1, ..., x
∗
n}.

Considering the combinatorial view of the optimization problem (4), the variables
w, b, ξ, ξ∗ and y∗ are optimized at different levels. Then, for a given fixed set y∗

1 , . . . , y∗
n,

1 KKT conditions are necessary conditions for optimality obtained from first derivative.
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the optimization over (w, b) is standard LS-SVM training, and we obtain a linear system
in dual space expressed in matrix form by:(

K + Γ 1′

1 0

)(
α
b

)
=

(
Y
0

)
(8)

where:
Kij = k(xi, xj)
Y = (y1, ..., y�, y

∗
1 , ..., y

∗
n)′

α = (α1, ..., α�, α
∗
1, ..., α

∗
n)′

1 = (1, ..., 1)
Γ is a diagonal matrix with Γii = 1/C for i = 1, ..., � and Γii = 1/C∗ for i =

� + 1, ..., � + n
Two methods are proposed in [6] for solving the semi-supervised problem expressed

in (4). In this paper, we used the second approach which is described as follows.
The unlabeled examples are labeled gradually during the learning process: one sam-

ple is labeled and added to the labeled set. The added sample is chosen in order to obtain
the smallest increase in the objective function. The criterion we use to select this point
is based on the value of α∗

j ; because considering the equation α∗
j = C∗ξ∗j , it is clear

that the error is proportional to the value of α∗.
First, we identify the label of the point to be labeled according to the objective func-

tion. Next, for each remaining unlabeled sample, we compute a
(1)
j = α∗

j if the identified

label is 1 and a
(−1)
j for the opposite label. As the goal is to find the unlabeled sample

x∗ with the smallest increase in the objective function, we select, at each step, the un-
labeled sample, the corresponding α∗

j of which will be the smallest if it is added to the
previous solution. We repeat this procedure until all unlabeled samples are labeled.

4 Dataset and Experimental Setup

This study was conducted on a cohort of 159 adolescents with scoliosis who were can-
didates for surgery. Among the cohort, 101 patients had their topographic and radio-
graphic acquisitions done at the same visit. Based on the radiographic measurements
of each of those patient, the scoliosis curve type was determined according to the com-
mon clinical classification that distinguishes between 4 types of curves: thoracic major
curves, thoracolumbar major curves, lumbar major curves and double major curves.
The number of lumbar major curves being too small (4/101), we mixed them with the
thoracolumbar major curves (18/101), being quite similar. The distribution of the pa-
tients among the three considered classes is illustrated in Table 1. For the remaining 58
patients, their radiographs were not acquired at the same date as the trunk topography,
thus they were considered unlabeled.

For all the patients, the 45 features are automatically extracted according to sub-
section 2.2, and four classifiers are trained distinctly. The classifiers’ performance is
evaluated on the same testing dataset composed of 69 labeled samples chosen quasi-
randomly among the database, under the condition of having a class distribution as
similar as possible to the one of the whole cohort.
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Table 1. Distribution of the patients among the classes

Classes Curve type Number of patients
Class 1 Thoracic major curve 45
Class 2 Double major curve 34
Class 3 Lumbar or thoracolumbar major curve 22
Unlabeled Unknown 58
Total 159

A first classifier (C-SSL1) is built using the semi-supervised learning algorithm as
described in section 3 and using a total of 90 training data: the 58 unlabeled samples and
the remaining 32 labeled ones. A second classifier (C-SL1) is trained using a supervised
LS-SVM and a training database made of the same 32 labeled data as for the C-SSL1.
C-SL1 constitutes the reference case since it is trained with all the available labeled data.

In order to compare the supervised and the semi-supervised learning when only a
small amount of training data are labeled, a third classifier (C-SSL2) is built using the
semi-supervised learning as described in section 3 and using, for training, only 12 la-
beled data (5 of class 1, 4 of class 2, 3 of class 3) chosen pseudo-randomly (under the
condition of having a class distribution among the retained data as similar as possible
to the one of the whole cohort) and the remaining 78 training samples considered unla-
beled. A fourth classifier (C-SL2) is trained using a supervised LS-SVM algorithm and
the same 12 labeled data as in C-SSL2 are considered for training.

Since, we have a multi-class problem, each classifier is built by training three ma-
chines using the one-against-all strategy. We used a radial basis function (RBF) kernel
and performed model selection with cross validation procedure [17].

5 Results and Discussion

Table 2 presents the prediction rates obtained in testing each of the four classifiers.
These results show first that the performance of the classifiers trained using the semi-
supervised algorithm (C-SSL1 and C-SSL2), compared respectively to C-SL1 and C-
SL2, is significantly improved by the addition of unlabeled data. Second, the perfor-
mance of C-SSL2, trained with only 12 labeled samples tends to be equal to the one of
the ideal classifier C-SL1, that is built using the maximum number of available labeled
samples. The latter outcome answers to the main goal of the semi-supervised learn-
ing: even with a few labeled data (12 among 90 training samples), the generalisation
capacity of the classifier C-SSL2 is similar to the reference case.

Table 3 illustrates the confusion matrices obtained in testing the four classifiers. It
shows first that all the classifiers clearly distinguish between patterns of class 3 and
class 1. The major confusion is between classes 1 and 2 and between classes 2 and 3.
This is also illustrated by the plot of the mean BSR values for each class (figure 3). In
fact, for some double major curves (class 2) the thoracic hump is more accentuated than
the lumbar hump which results in a pattern that is quiet similar to the thoracic major
curves (class 1). The same logic follows in the case of some double major curves (class
2) where the lumbar hump is more prominent than the thoracic hump which results
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Table 2. Learning and testing databases of the four classifiers and the prediction rates in testing

Classifiers Training data Testing data Prediction rate
Lab. Unlab.

CSSL1 32 58 69 87.0%
CSL1 32 - 69 82.6%

CSSL2 12 78 69 79.7%
CSL2 12 - 69 75.4%

in a pattern that is quiet similar to the lumbar major curves (class 3). Nevertheless, it
seems that, with the semi-supervised learning, the unlabeled samples guide the classifier
towards more generalizable boundaries for class 2 (prediction rate of 65.2% for C-SSL2
versus 56.5% for C-SL2 and 73.9% for C-SSL1 versus 65.2% for C-SL1) and for class
3 (prediction rate of 80.0% for C-SSL2 versus 66.7% for C-SL2 and 100% for C-SSL1
versus 93.3% for C-SL1). Furthermore, table 3 illustrates once again how the behavior
of C-SSL2, trained with only 12 labeled samples out of the 90 training samples, tends
to be similar to the reference classifier (C-SL1).

Table 3. Confusion matrices in testing the four classifiers

C-SSL1 C-SL1 C-SSL2 C-SL2
Target Class Target Class Target Class Target Class

Predicted class 1 2 3 1 2 3 1 2 3 1 2 3
1 28 4 0 28 6 0 29 8 0 29 9 0
2 3 17 0 3 15 1 2 14 3 2 13 5
3 0 2 15 0 2 14 0 1 12 0 1 10

Prediction rate
90.3 73.9 100 90.3 65.2 93.3 93.6 65.2 80.0 93.6 56.5 66.7

per class (%)

In this study, we considered the BSR as the only clinical index to describe the back
surface deformity. This choice is based on the clinical observation that the rib hump
generally appears on the convex side of each spinal curve. Our results show that the
BSR, computed on 45 cross-sections of the back, is a good discriminant feature. How-
ever, in future works, other characteristics of the scoliosis deformity will be considered
in order to reduce even more the misclassification rate.

Furthermore, in this work, only the back surface of the trunk is acquired. As demon-
strated in the literature, measurements made on the back surface are sensitive to the pa-
tient’s posture during the acquisition. To overcome this imprecision, the entire trunk’s
surface can be reconstructed using four optical digitizers placed all around the patient
and a registration process [7]. The measurements can thus be computed in a patient spe-
cific coordinates system. Moreover, as the whole shape of the trunk is deformed in 3D,
it could be more interesting to consider inclined cross-sections that follows the general
shape of the trunk to compute local measurements [8].

Finally, in the present paper, the back surfaces are classified in three different classes.
Due to the small number of lumbar curves in the cohort, no distinction is made between
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Fig. 3. Mean BSR values for each of the 45 sections of the trunk, computed for each class

lumbar and thoracolumbar major curves. However, in the presence of more lumbar
curves, we could consider a fourth class in our classification. Furthermore, the current
classification can be considered a high level classification and in future works, we can
refine the classification’s resolution by identifying features on the trunk’s surface that
could define distinct clusters within each class. This would be valuable in clinic since
the actual scoliosis classification systems relies only on the spinal deformity and do not
take into account the general appearance of the trunk which constitutes the patient’s
major preoccupation.

6 Conclusion

In conclusion, this preliminary study constitutes a proof of feasibility of the semi-
supervised learning in the clinical context of classifying the scoliosis curve types based
on the analysis of the back surface of the trunk. With only 12 labeled samples out of
90 training data, it is possible to predict the scoliosis curve type with a success rate
similar to the reference case where 32 labeled data are used for supervised learning.
Moreover, the unlabeled samples improve significantly the definition of the boundaries
between the classes. Unlike supervised learning, there is no need to consider a large set
of labeled data to build a consistent classifier with high generalization performance.

On a more clinical aspect, these results are valuable since it demonstrates that it
is possible to identify the scoliosis curve type without exposing patients to ionizing
radiation. This is an important finding since it could reduce the frequency of X-ray
acquisitions during the scoliosis progression follow-up.



Towards Non Invasive Diagnosis of Scoliosis 19

Acknowledgments

We would like to thank the GRSTB (Groupe de Recherche en Sciences et Technologies
Biomédicales), the MENTOR program and the CIHR (Canadian Institutes of Health
Research) for their financial support.

References

1. Ajemba, P., Durdle, N., Hill, D., Raso, J.: Classifying torso deformity in scoliosis using
orthogonal maps of the torso. Med. Biol. Eng. Comput. 45, 575–584 (2007)

2. Jaremko, J., Poncet, P., Ronsky, J., Harder, J., Dansereau, J., Labelle, H., Zernicke, R.: Ge-
netic algorithm-neural network estimation of Cobb angle from torso asymmetry in scoliosis.
J. Biomech. Eng. 124(5), 496–503 (2002)

3. Ramirez, L., Durdle, N., Raso, J., Hill, G.: A support vector machines classifier to as-
sess the severity of idiopathic scoliosis from surface topography. IEEE Trans. Inf. Technol.
Biomed. 10, 84–91 (2006)

4. Stokes, I., Moreland, M.: Concordance of back surface asymmetry and spine shape in idio-
pathic scoliosis. Spine 14, 73–78 (1989)

5. Bergeron, C., Cheriet, F., Ronsky, J., Zernicke, R., Labelle, H.: Prediction of anterior scol-
iotic spinal curve from trunk surface using support vector regression. Eng. Appl. Artificial
Intell. 18, 973–983 (2005)

6. Adankon, M., Cheriet, M., Biem, A.: Semisupervised least squares support vector machine.
IEEE Trans. Neural Net. 20(12), 1858–1870 (2009)

7. Pazos, V., Cheriet, F., Song, L., Labelle, H., Dansereau, J.: Accuracy assessment of human
trunk surface 3D reconstructions from an optical digitising system. Med. Biol. Eng. Com-
put. 43, 11–15 (2005)

8. Pazos, V., Miled, F., Debanne, P., Cheriet, F.: Analysis of trunk external asymmetry in side-
bending. IRSSD, Liverpool (2008)

9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley and Sons,
New York (2001)

10. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
11. Seeger, M.: Learning with labeled and unlabeled data. Inst. Adapt. Neural Comput., Univ.

Edinburgh, Edinburgh, U.K., Tech. Rep. (2001)
12. Zhu, X.: Semi-supervised learning literature survey. Comput. Sci. Univ. Wisconsin-Madison,

Madison, WI, Tech. Rep. 1530 (2007),
http://www.cs.wisc.edu/˜jerryzhu/pub/sslsurvey.pdf

13. Adankon, M., Cheriet, M.: Help-Training for semi-supervised discrimininative classifier. Ap-
plication to SVM. In: 19th Internationale Conference on Pattern Recognition, Tampa, pp. 1–4
(2008)

14. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares
Support Vector Machines. World Scientific, Singapore (2002)

15. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural
Process. Lett. 9(3), 293–300 (1999)

16. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
17. Adankon, M., Cheriet, M.: Model selection for LS-SVM. Application to handwriting recog-

nition. Pattern Recognit. 42(12), 3264–3270 (2009)

http://www.cs.wisc.edu/~jerryzhu/pub/sslsurvey.pdf 


Articulated Model Registration of MRI/X-Ray
Spine Data

Rola Harmouche1, Farida Cheriet1, Hubert Labelle2, and Jean Dansereau1
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Abstract. This paper presents a method based on articulated models

for the registration of spine data extracted from multimodal medical

images of patients with scoliosis. With the ultimate aim being the de-

velopment of a complete geometrical model of the torso of a scoliotic

patient, this work presents a method for the registration of vertebral

column data using 3D magnetic resonance images (MRI) acquired in

prone position and X-ray data acquired in standing position for five pa-

tients with scoliosis. The 3D shape of the vertebrae is estimated from

both image modalities for each patient, and an articulated model is used

in order to calculate intervertebral transformations required in order to

align the vertebrae between both postures. Euclidean distances between

anatomical landmarks are calculated in order to assess multimodal reg-

istration error. Results show a decrease in the Euclidean distance using

the proposed method compared to rigid registration and more physically

realistic vertebrae deformations compared to thin-plate-spline (TPS) reg-

istration thus improving alignment.

1 Introduction

Idiopathic scoliosis is a disease of unknown cause characterized by a complex
three-dimensional curvature of the spine with onset most often discovered dur-
ing puberty [1]. 5.1% of adolescent girls and 3.5% of adolescent boys are affected
by scoliosis, with the more severe cases requiring treatment being girls [2]. Cur-
vature measures are usually obtained from standing X-rays on which the skeletal
structures are visible. This spinal deviation in turn affects the external appear-
ance of a scoliotic patient, which is usually characterized by a lateral trunk
asymmetry and or a rib hump. Such external deformations are often aesthet-
ically undesirable for patients and can cause psychological problems. In more
severe cases, the spinal curvature can affect the physical functioning of the pa-
tient with symptoms such as chronic back problems or pulmonary problems [3].
When the spinal curvature is very pronounced surgery is necessary in order to
correct some of the undesirable deformation. Surgery is most often undertaken
in prone position, where a rod and screws are used to fuse the vertebrae caus-
ing the deformation. Surgeons rely on their experience and intuition in order to
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establish the adequate instrumentation that would lead to the desirable post-
operative external trunk appearance. However, changes to the external shape of
the trunk due to surgery are not directly related to the changes in the shape of
the vertebral column. This might be due to several factors including the possi-
ble non-rigid deformation of muscles following changes in the structure of the
vertebral column. As a result, the surgeon cannot predict the effects of the instru-
mentation on the shape of the trunk prior to completion of surgery. A geometric
model combining information from the vertebral column and the surrounding
soft tissue can aid in surgical planning. This additional information about soft
tissue can be obtained using magnetic resonance images (MRI), which are most
often acquired in prone position. Combining the X-ray and MRI data requires
multimodal image registration where the images are acquired in different pos-
tures. The aim of the present work is to register MRI and X-ray data of the
spine as a first step towards full MRI/X-ray registration.

So far, little work has been done on MRI/X-ray registration. Van de Kraats
et al. [4] register MRI to X-ray data using fiducials manually placed on cadaveric
data. The placement of fiducials is obviously not realistic in real patient data.
Tomazevic et al. [5] use a novel similarity measure in order to rigidly register a
series of 2D X-ray images to CT and MRI data. 11 X-ray images are required
per patient for accurate results; which is not possible to acquire in normal clin-
ical settings due to radiation issues. Registration of vertebral information from
these two image modalities is difficult for two main reasons. First, obtaining 3D
information of the spine from the 2D X-ray images, which is the case of the
majority of X-ray systems, has only been feasible using manual intervention so
far [6]. Thus, registration methods that rely on intensity information, such as
mutual information for example, are not adequate for 2D X-ray to 3D MRI reg-
istration due to the lack of intensity and spatial correspondences between the
two modalities. Second, with the knowledge that vertebrae are rigid structures,
traditional non-rigid registration algorithms are not appropriate for the task at
hand. Vertebral structures extracted from MRI data have been modeled as rigid
bodies for registration purposes [7] but only using unimodal 2D MRI data. Our
team has recently developed an articulated model representation for the spine
using X-ray data but did not using for registration purposes [8]. This model was
used by Kadoury et al. [9] in order to register a preoperative reconstructed X-ray
personalized model to the intraoperative CT data of a scoliotic surgical patient.
The work in [9] optimizes using Markov random fields which requires significant
computation time. In addition, such a model, consisting exclusively of vertebral
information, does not provide complementary information to the CT data. This
exclusivity limits the application’s clinical benefits. Preoperative MR images on
the other hand contain soft tissue information which can be useful for surgical
planning.

This paper proposes the use of articulated models for the 3D semi-rigid
registration between X-ray and MRI image reconstructions. Taking into ac-
count the vertebrae’s physical characteristics, they are modeled as rigid bod-
ies, and inter-vertebral rigid transformations are calculated using local vertebral
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coordinate systems constructed using manually extracted landmarks. The overall
transformation between the vertebrae extracted from the two image modalities
is calculated from the composition of local and global transformations. In order
to assess registration error, Euclidean distances between registered correspond-
ing points using this method are compared to those obtained using rigid and
thin-plate-spline registration.

This article is organized as follows: Section 2 describes the articulated model,
the experimental setup, and the methods used to validate our work. The results
of the proposed method are shown in section 3, followed by a conclusion in
section 4.

2 Proposed Method

In this work, we propose the use of articulated models in order to register a 3D
reconstruction of the spine obtained from X-rays of patients with one obtained
from MRIs. Vertebrae are considered as rigid bodies and inter-vertebral rigid
transformations are calculated using correspondence points located on the ver-
tebrae on each of the image modalities. In this section, the preprocessing work
consisting of the 3D reconstruction of the vertebrae from medical images and
the extraction of the correspondence points used for the registration will first be
explained. This is followed by a description of the proposed articulated model
used in order to align the vertebrae reconstructed from the MRI and X-ray
data. Finally the method used to validate the multimodal 3D alignment and to
asses the whether the shape of the column is consistent in both postures will be
explained.

2.1 3D Reconstruction of Vertebrae and Point Extraction

Prior to the registration, we gathered MRI and X-ray data available at Ste-
Justine hospital in Montreal from five patients with scoliosis for this study. In
order to generate a 3D model of the spine from MRI data, T1-weighted MRI
images are acquired using a Siemens Symphony system (1.5 Tesla, TR/TE =
771/15, 704x704, 350 FOV). Sagittal slices of 0.5mm by 0.5mm in-plane resolu-
tion and 3mm thickness are acquired with a 3.6mm separation between slices.
The 3D shape of the seventeen thoracic and lumbar vertebrae is manually seg-
mented from these images (figure 1(a)) and eight landmark points are manually
labeled using TomoVision’s SliceOmatic software so that they can be used to
generate the articulated model. Those landmarks are placed on the left and
right edges of the posterior, anterior, inferior and superior ends of the vertebral
body for all thoracic and lumbar vertebrae (figure 1(a)).

In order to generate a 3D model of the spine from X-ray data, landmarks
manually labeled on Postero-anterior and lateral radiographs are used to gener-
ate 3D landmark points representing the vertebral column. The 3D position of
the points is obtained using an explicit calibration method and optimizing the
calibration parameters with the Levenberg Marquardt method [6]. The obtained
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(a) MRI image and extracted vertebrae (b) Correspondences on vertebrae

Fig. 1. 3D reconstruction of vertebrae from MRI sagittal slices along with manually

labeled correspondences on each of the vertebrae

landmarks are used to map a generic vertebral dictionary onto the patient space.
Of those landmarks, the same eight as in the case of the MRI data are used in
order to generate the articulated model.

2.2 Articulated Model Deformations

The vertebrae reconstructed from the MRI data are aligned with those of the
Xray data using the articulated model proposed by Boisvert et al. [8], which mod-
els the spine as a series of local inter-vertebral rigid transformations (figure 2).
Inter-vertebral transformations are first calculated on each of the image modal-
ities separately. In order to calculate the inter-vertebral transformation Ti,i+1

from vertebra Vi to the consecutive vertebra Vi+1, a local coordinate system is
defined for each vertebra using the landmarks described above in the following
manner: The 3D coordinates of landmarks on each vertebra are averaged to find
the center of the coordinate system. The z-axis is defined as passing through the
center from inferior to the superior end of the vertebra, the y-axis from left to
right, and the x-axis from posterior to anterior. The Gram Schmidt algorithm[10]
is then used to construct an orthogonal basis from these axis forming the local
coordinate systems. The position and orientation of the first vertebra is defined
using the transformation between the absolute world coordinate system and the
first vertebra’s local coordinate system (T0,1). The intervertebral transformation
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Fig. 2. Local and global transformations forming the articulated model required to

align MRI onto X-ray vertebrae

matrices are then calculated as rigid transformations between the local coordi-
nate systems of two consecutive vertebrae.

The global transformation T0,i between the world coordinates and the ith
vertebra on each of the two image modalities is obtained by composing the
local inter-vertebral transformations with the global transformation of the first
vertebra in the following manner:

T0,i = Ti−1,i ◦ Ti−2,i−1 ◦ Ti−3,i−2 ◦ ..... ◦ T1,2 ◦ T0,1. (1)

Finally, in order to register any vertebra i on the MRI image Vi−MRI to its
corresponding vertebra on the X-ray data Vi−X−ray, the inverse of the transfor-
mation from the absolute world coordinates T0,iM RI is first applied, followed by
the transformation from absolute world coordinates to Vi−X−ray:

Ti−MRI−X−ray = T0,iX−ray ◦ T−1
0,iM RI . (2)

It must be noted that the point correspondences only serve to create the ar-
ticulated model and are not required during the registration process itself. The
inter-vertebral transformations are obtained in the local coordinates of the verte-
brae without directly relying on absolute landmark positions. The method does
not require point correspondences provided that another method of obtaining
the local coordinate system is used.

3 Results

In order to test the validity of the articulated model registration technique, this
method was compared to rigid registration and thin-plate-spline registration.
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Rigid registration is carried out by minimizing the least squares distance between
the source and the target landmarks. In order to calculate the error for these
methods, half of the landmarks were randomly selected and used for registration
and the remaining ones were used for validation purposes. The registration error
is then defined as the Euclidean distance between the corresponding vertebral
landmarks of the registered MRI/X-ray data. This is done in order to verify
whether this error is decreased using the proposed method thus signifying better
alignment. Errors are reported for the thoracic and the lumbar parts of the
spine separately in order to assess in which part our proposed method brings
the greatest improvement.

This section will first show some qualitative results of the registered spine
between MRI and X-ray using rigid, thin-plate-spline, and articulated model
registration. Then, quantitative results showing registration error are shown.

3.1 Qualitative Results

Registration results between the MRI and X-ray reconstructions are shown in
figure 3(a) using rigid registration, in figure 3(b) using thin-plate-spline registra-
tion, and in figure 3(c) using our proposed articulated model registration. The
landmarks used for registration are shown using spheres for the MRI data and
cubes for the X-ray data. The rigid registration results show that the curvature is
less pronounced at the bottom of the column in the case of the MRI (light gray)
as opposed to the X-ray (dark gray) data, which can be explained by the fact
that the patient is lying on a flatbed. It can be seen that our proposed method
leads to more accurate alignment of the vertebrae when compared to rigid regis-
tration. The difference between the registration accuracy in the lower part of the
spine can be seen in figures 3(d) and 3(f). Thin-plate-spline registration gives
good alignment between the two modalities (figures 3(b) and 3(e)). However, it
must be noted that non-rigid deformations such as thin-plate-splines applied to
rigid structures like vertebrae misleadingly lead to smaller error values as they
do not preserve their physical characteristics. In order to illustrate with an ex-
treme case, figures 3(g) and (h) show an X-ray vertebra and its corresponding
MRI vertebra, respectively. Even though the corresponding points are very well
aligned, a misplaced landmark at the inferior end of the X-ray target vertebra
caused a highly non-rigid deformation of the MRI vertebra and changed it’s true
physical form thus leading to erroneous results.

3.2 Quantitative Results

Table 1 shows the quantitative results for this study. The Euclidean distance
between the MRI and X-ray landmarks is first calculated using our proposed
articulated model method and compared to both rigid and thin-plate-spline
registration for the lumbar and thoracic vertebrae together. A significant de-
crease in the registration error can be seen when our proposed method is used
compared to rigid registration. The proposed method only provides a slight de-
crease in error compared to the thin-plate-spline method. Second, the results
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(a) Rigid registration (b) TPS registration (c) Articulated model

registration

(d) Closeup of (e) Closeup of (f) Closeup of articulated

rigid registration TPS registration model registration

(g) an X-ray vertebra (h) corresponding (i) TPS registered

MRI vertebra MRI vertebra

Fig. 3. Registration between vertebrae extracted from MRI (dark grey) and X-ray data

(light grey). The correspondences used for the articulated model are represented by

cubes (X-ray data) and by spheres (MRI data). The alignment between the vertebral

column appears to be more precise using the proposed method (c) when compared

to simple rigid registration (a). (d), (e) and (f) focus on the lower part of the spine

where our proposed method in (f) gives particularly better results. Registration using

TPS seems to yield good landmark alignment (b and e), however at the expense of

non-rigidly deforming MRI vertebrae, which are rigid structures (i).
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are assessed for the thoracic and lumbar areas separately. Registration errors
are generally higher in the lumbar area for all methods, and, when compared
with rigid registration, the improvement ratio upon use of the proposed method
(rigid − proposed)/proposed is about 0.97 in both areas of the spine. When
compared to thin-plate-spline registration however, the improvement ratio upon
use of the proposed method drops to 0.07 overall, 0.13 in the thoracic area,
and performs slightly worse in the lumbar area. However, as mentioned in the
previous section, thin-plate-splines non-rigidly deform the vertebrae, which is
not physically sound, as vertebrae are rigid structures. Thus, preliminary results
for multimodal image registration of the spine using an articulated model to
represent the deformation of vertebrae are promising when compared to sim-
ple rigid registration. This proposed method is also more physically appropriate
than thin-plate-spline registration.

Table 1. Registration errors in mm for rigid registration (RR), thin-plate-spline regis-

tration (TPS) and for the proposed method (PM).Case five has smaller size vertebrae

explaining the overall smaller error values.

Case Overall Overall Overall thoracic thoracic thoracic lumbar lumbar lumbar

RR TPS PM RR TPS PM RR TPS PM

01 12.08 7.18 9.08 10.79 6.52 7.21 15.18 6.52 13.57

02 9.04 5.77 4.60 8.03 4.83 3.95 11.46 6.72 6.17

03 8.12 3.70 3.17 6.54 3.22 3.00 11.91 4.19 3.58

04 13.63 5.88 4.63 12.79 6.23 4.81 15.63 5.50 4.20

05 4.45 3.35 2.52 3.78 3.15 2.30 6.09 3.56 3.07

mean 9.46 5.18 4.80 8.39 4.79 4.25 12.05 5.30 6.12

4 Conclusion

This paper described a method in order to register two 3D reconstructions of
the spine of patients with scoliosis - one obtained from X-rays and the other one
obtained from MRIs. The proposed method uses an articulated model consisting
of a series of rigid transformations, taking into account inter-vertebral transfor-
mations and thus providing a more accurate representation of the movement
of the vertebral column when compared to rigid registration. The method also
takes into account bone rigidity providing a more realistic deformation model
when compared to non-rigid registration techniques. Corresponding points on
the vertebrae of each image modality are extracted and used in order to build
the articulated model, and the transformation between the vertebrae of the two
images are obtained using a composition of transformations. Results show a
decrease in the overall registration error when using the proposed method com-
pared to simple rigid registration, and no difference in the improvement ratio
between the thoracic and the lumbar area. When compared to thin-plate-spline
registration, the proposed method gives a more physically accurate registration
by preserving the shape of the vertebrae, which in actuality are rigid structures.
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Since the landmark extraction is done somewhat manually and the extraction
process is different in the two modalities, landmark localization errors are to be
expected. In the case of the X-ray reconstruction, the localization error has been
previously calculated to be around 2.1± 1.5mm [11]. The landmark localization
error in the case of the MRIs is yet to be established. The automation of land-
mark extraction would greatly improve the multimodal registration in addition
to increasing consistency and reproducibility.

The registration of the vertebral bodies serves as a preliminary step towards
the multimodal image registration of MRI and X-ray data. Little work has been
done in this field so far, and no other method registers MRI to X-ray data
that can be acquired in a clinical setting. This registration can be used for the
purpose of evaluating the effects of posture differences on the shape of the spine.
It will also allow the construction of a geometric model of the torso of patients
with scoliosis combining musculo-skeletal information allowing further studies
in treatment techniques which would best benefit patients and improve their
quality of life.
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Abstract. In this paper, an entropic approach for multimodal image

registration is presented. In the proposed approach, image registration

is carried out by maximizing a Tsallis entopy-based divergence using a

modified simultaneous perturbation stochastic approximation algorithm.

This divergence measure achieves its maximum value when the condi-

tional intensity probabilities of the transformed target image given the

reference image are degenerate distributions. Experimental results are

provided to demonstrate the registration accuracy of the proposed ap-

proach in comparison to existing entropic image alignment techniques.

The feasibility of the proposed algorithm is demonstrated on medical

images from magnetic resonance imaging, computer tomography, and

positron emission tomography.

Keywords: Image registration; Tsallis entropy; stochastic optimization.

1 Introduction

Multimodality imaging is widely considered to involve the incorporation of two
or more imaging modalities that are acquired by different scanners. The goal of
multimodal image registration is to align intermodal images created by differ-
ent medical diagnostic modalities in order to improve diagnosis accuracy [1, 2].
Intermodal images display complementary and shared information about the
object in images with different intensity maps. Therefore, distance measures
used for multimodal image registration must be insensitive to differing intensity
maps. Recently, much attention has been paid to the multimodal image registra-
tion problem using information-theoretic measures [4–6]. The latter will be the
focus of this paper. The most popular approach in multimodal image registra-
tion maximizes the mutual information (MI) between the reference and target
images [3–5]. This approach involves maximizing the information (entropy) con-
tained in each image while minimizing the information (joint entropy) contained
in the overlayed images. Although MI has been successfully applied to multi-
modality image registration, it is worth noting that the MI-based registration
methods might have the limited performances, once the initial misalignment
of the two images is large or equally the overlay region of the two images is
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relatively small [7]. Moreover, MI is sensitive to the changes that occur in the
distributions (overlap statistics) as a result of changes in the region of overlap.
To circumvent these limitations, various methods have been proposed to improve
the robustness of MI-based registration, including normalized mutual informa-
tion (NMI) and Rényi entopy based approaches [8–10]. The NMI approach, pro-
posed by Studholme et al. [8], is a robust similarity measure that allows for fully
automated intermodal image registration algorithms. Furthermore, NMI-based
registration is less sensitive to the changes in the overlap of two images. Cahill et
al. [9] introduced a modified NMF-based approach that is invariant to changes
in overlap size. Inspired by the successful application of mutual information, He
et al. proposed in [10] a generalized information-theoretic approach to ISAR im-
age registration by estimating the target motion during the imaging time using a
Rényi entopy based divergence. Sabuncu et al. [11] proposed a minimal spanning
graph for multimodal image registration using Jensen-Rényi divergence [10] by
joint determination of both the alignment measure and a descent direction with
respect to alignment parameters.

In recent years, there has been a concerted research effort in statistical physics
to explore the properties of Tsallis entropy, leading to a statistical mechan-
ics that satisfies many of the properties of the standard theory [12]. In [13], a
Tsallis entropy-based image mutual information approach, combined with the
simultaneous perturbation stochastic approximation (SPSA) algorithm [14], was
proposed leading to accurate image registration results compared to the classi-
cal mutual information [4, 5]. In this paper, we propose a multimodal entropic
image registration approach by maximizing the Jensen-Tsallis divergence using
a modified SPSA algorithm [15]. To increase the accuracy of multimodal image
alignment, we apply a histogram-based modality transformation [16] to the tar-
get image prior to maximizing the Jensen-Tsallis divergence measure between
the reference and the transformed target images.

The outline of this paper is as follows. In Section 2, we formulate the im-
age alignment problem. In Section 3, we describe the proposed multimodal im-
age alignment method and provide its most important algorithmic steps. In
Section 4, we provide experimental results to show the effectiveness and the
registration accuracy of the proposed approach. And finally, we conclude in
Section 5.

2 Problem Formulation

In the continuous domain, an image is defined as a real-valued function I : Ω →
R, and Ω is a nonempty, bounded, open set in R

2 (usually Ω is a rectangle
in R

2). We denote by x = (x, y) a pixel location in Ω. Given two misaligned
images, the reference image I and the target image J , the image alignment or
registration problem may be formulated as an optimization problem

�∗ = argmax
�

D
(
I(x), J(Φ�(x))

)
, (1)
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where D(·, ·) is a dissimilarity measure that quantifies the discrepancy between
the reference image and the transformed target image; and Φ� : Ω ← Ω is
a spatial transformation mapping parameterized by a parameter vector �. An
example of such a mapping is a Euclidean transformation with a parameter
vector � = (t, θ, s), where t = (tx, ty) is a translational parameter vector, θ is a
rotational parameter, and s = (sx, sy) is a scaling parameter vector.

The goal of image registration is to align the target image to the reference
image by maximizing the dissimilarity measure D(I(x), J(Φ�(x))) using an opti-
mization scheme in order to find the optimal spatial transformation parameters.
Note that since the image pixel values are integers, a bilinear interpolation may
be used to determine the values of J(Φ�(x)) when Φ�(x) is not an integer.

3 Proposed Multimodal Image Registration Approach

Our proposed approach may now be described as follows: Given two images
that need to be registered, we first compute their conditional intensity proba-
bilities and the Jensen-Tsallis divergence between them. Then we optimize this
divergence measure using the modified SPSA algorithm.

Without loss of generality, we consider a Euclidean transformation Φ� with
a parameter vector � = (t, θ), i.e. a transformation with translation parameter
vector t = (tx, ty), and a rotation parameter θ. In other words, for an image pixel
location x = (x, y) the Euclidean transformation is defined as Φ�(x) = Rx + t,
where R is a rotation matrix given by

R =
(

cos θ sin θ
− sin θ cos θ

)
.

Denote by X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} the sets of pixel in-
tensity values of the reference image I(x) and the transformed target image
J(Φ�(x)) respectively. Let X and Y be two random variables taking values in
X and Y.

3.1 Jensen-Tsallis Divergence

Shannon’s entropy of a probability distribution p = (p1, p2, . . . , pk) is defined
as H(p) = −∑k

j=1 pj log(pj). A generalization of Shannon entropy is Tsallis
entropy [12] given by

Hα(p) =
1

1 − α

( k∑
j=1

pα
j − 1

)
= −

k∑
j=1

pα
j logα(pj), α ∈ (0, 1) ∪ (1,∞). (2)

where logα is the α-logarithm function defined as logα(x) = (1−α)−1(x1−α −1)
for x > 0, and α is an exponential order also referred to as entopic index. This
generalized entropy is widely used in statistical physics applications [12].



Multimodality Image Alignment Using Information-Theoretic Approach 33

Definition 1. Letp1, p2, . . . , pn ben probability distributions.The Jensen-Tsallis
divergence is defined as

Dω
α (p1, . . . , pn) = Hα

(
n∑

i=1

ωipi

)
−

n∑
i=1

ωiHα(pi),

where Hα(p) is Tsallis entropy, and ω = (ω1, ω2, . . . , ωn) is a weight vector such
that

∑n
i=1 ωi = 1 and ωi ≥ 0 .

Using the Jensen inequality, it is easy to check that the Jensen-Tsallis divergence
is nonnegative for α > 0. It is also symmetric and vanishes if and only if all
the probability distributions are equal, for all α > 0. Moreover, the Jensen-
Tsallis divergence is a convex function and achieves its maximum value when
p1, p2, . . . , pn are degenerate distributions, that is pi = (δij), where δij = 1 if
i = j and 0 otherwise [15].

3.2 Modality Transformation

Assume that I and J are normalized images, that is I(x), J(x) ∈ [0, 1]. By
looping through all pixel locations, the joint histogram h(I, J) of the images I
and J may be written as:

h
(I(x)N�, J(x)N�) = h

(I(x)N�, J(x)N�) + 1, (3)

where N is the number of bins, and α� denotes the floor function (largest integer
not greater than α).
Using the following optimization scheme

JT (x) = arg max
i

h
(iN�, J(x)N�), (4)

we can transform the target image J into another image JT that has a simi-
lar modality representation as I. In other words, the iterative scheme given by
Eq. (4) finds every pixel value i in the image I that overlaps most often with a
pixel value in the image J . It is worth pointing out that in medical images two
regions may have the same intensity value in one modality. However, in another
modality both regions may have completely different intensity values.

3.3 Proposed Algorithm

The proposed algorithm consists of the following main steps:

(i) Find the conditional intensity probabilities

pi = pi

(
J(Φ�(x))|I(x)

)
= (pij)j=1,...,n, ∀i = 1, . . . , n,

where pij = P (Y = yj |X = xi), j = 1, . . . , n.
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(ii) Find the optimal parameter vector �� = (t�, θ�) of the Jensen-Tsallis objec-
tive function

�� = argmax
�

Dω
α (p1, . . . , pn) (5)

using the modified SPSA optimization algorithm [15].

Note that if the images I and J are exactly matched, then pi = (δij) and the
Jensen-Tsallis divergence is therefore maximized. The conditional probability
pij is estimated using the normalized conditional histogram. In other words, pij

estimates the probability that a pixel has intensity j in the transformed target
image J , given that is has an intensity i in the reference image I.

4 Experimental Results

The results of the proposed multimodal image registration algorithm are pre-
sented in this section. We tested the performance of the proposed approach on
a medical imaging dataset. Fig. 1 shows the medical images that were used to
validate the performance of the proposed algorithm. These multimodal images
were obtained from the Vanderbilt Retrospective Image Registration Evalua-
tion (RIRE) database [19], which contains magnetic resonance (MR), computer
tomography (CT), and positron emission tomography (PET) images for vari-
ous patients. Each patient dataset contains MR images from several protocols,
including T1-weighted, T2-weighted, PD-weighted, etc. Most of these datasets
contain MR, CT, and PET images. Fig. 1 shows the images from the patient 5
dataset, where the MR-T1, CT, and PET images are shown in Fig. 1(a), (b), and
(c), respectively. These images are available online at [20]. It is worth pointing
out that multimodal medical images are used to provide as much information
about the patient as possible. MR and CT images provide complementary infor-
mation, with CT proving a good visual description of bone tissue, whereas soft
tissues are better visualized by MR images. Moreover, MR and CT are anatom-
ical modalities that display geometric features of the object. On the other hand,
PET is a functional modality that displays a metabolic map of the object and
captures very reliably the metabolic activity. For example, in radiation treat-
ment for cancer therapy, CT and PET are commonly used modalities to define
cancerous lesions and plan treatment strategies. CT and PET modalities dis-
play different, but complementary information and involve different acquisition
processes. These differences make registering CT and PET data one of the most
challenging medical image registration problems.

4.1 Modality Transformation

To increase the accuracy of the proposed multimodal image registration, we
apply the histogram-based modality transformation to the target image prior to
maximizing the Jensen-Tsallis divergence between the reference and transformed
target images. This modality transformation involves finding the maxima of the
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(a) (b) (c)

Fig. 1. Multimodal images from the patient 5 dataset: (a) MR-T1 image, (b) CT image,

(c) PET image

joint histogram of both images to transform one image modality representation
into another modality, allowing more accurate image registration results for MI,
NMI, and the proposed approach.

4.2 Registration Functions

In all the experiments we used an entropic index α = 2 and the normalized
histogram of the reference image as the weight vector ω for the Jensen-Tsallis
divergence. For fair comparison, it is worth mentioning that we also used modal-
ity transformation to align MR-T1 to CT and MR-T1 to PET when comparing
the performance of the proposed algorithm to MI and NMI-based approaches.

To validate the proposed approach, we first applied a Euclidean transfor-
mation Φ� with different values of the parameter vector � = (tx, ty, θ) to the
references images shown in Fig. 1. Then, we run iteratively the modified SPSA
algorithm to find the optimal parameter vector �∗ = (t�x, t�y, θ

�). We also com-
pared the image alignment results of the proposed approach to MI and NMI-
based registration methods. An ideal registration function that measures the
dissimilarity between two images should be smooth and concave with respect
to different transformation parameters. Also, the global maximum of the regis-
tration function should be close to the correct transformation parameters that
align two images perfectly [6]. Moreover, the capture range around the global
maximum should be as large as possible, and the number of local maxima of
the registration function should be as small as possible. These criteria will be
used to evaluate the registration functions generated by MI, NMI, and Jensen-
Tsallis respectively. The registration function of the proposed algorithm can
be generated by computing the Jensen-Tsallis of two images under all possible
transformations. For the medical images used in our experiments, their rela-
tive transformation parameters can be determined with the aid of four fidu-
cial markers implanted in the patients. In other words, we can first align all
testing images into the same space by using the four fiducial markers, and
then compute the Jensen-Tsallis measure between two testing images under dif-
ferent rigid-body transformations, thereby obtaining a registration function of
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Fig. 2. Registration functions of MI, NMI, and proposed approach in aligning MRI-T1

images. From top to bottom: (a), (b) and (c) rotation only; (d), (e) and (f) translation

along x-axis; (g), (h) and (i) translation along y-axis.

Jensen-Tsallis. Similarly, the registration functions of MI and NMI can be ob-
tained. The registration functions of MI, NMI, and Jensen-Tsallis with respect
to different rotation and translation parameters are depicted in Fig. 2. It is
evident from Fig. 2 that the registration functions of Jensen-Tsallis are much
smoother than those of MI and NMI. Moreover, the capture range in the regis-
tration function of Jensen-Tsallis is considerably large. In particular, the change
of registration function with respect to rotations is smoothly extended relatively
far from the global maximum, indicating a better performance of the proposed
approach.
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4.3 Robustness and Accuracy

We tested the accuracy and robustness of the proposed method by comparing
the conditional probabilities of the target image given the reference image after
applying various alignment methods. The more linear conditional probability
indicates more accurate registration method. Note that if the reference image
I and the target image J are exactly matched, then the conditional probabil-
ity plots a straight diagonal line. The conditional probabilities before and after
aligning different images modalities with the MR-T1 image using MI, NMI, and
Jensen-Tsallis respectively, are presented in Fig. 3 through Fig. 5. Fig. 3 shows
that the proposed approach is more robust to noise than MI and NMI. Note
that the presence of noise causes the joint distribution to be less correlated, and
thus increases the joint entropy estimate, resulting in a lower registration accu-
racy for MI and NMI-based approaches. Fig. 4 and Fig. 5 depict the conditional
probabilities for aligning MRI-T1 with CT and PET images respectively, after
applying modality transformation to CT and PET images. From these figures,
it is evident that the linearity of the conditional probabilities indicates the effec-
tiveness and a much improved registration accuracy of the proposed algorithm
in comparison to MI and NMI.
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Fig. 3. 2D plots of conditional probabilities for various alignment methods of MR-T1

to noisy MR-T1 images: (a) after applying Euclidean transformation Φ� to reference

image with parameter vector � = (5, 5, 5); (b)-(d) after aligning the images by MI,

NMI, and proposed approach respectively
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Fig. 4. 2D plots of conditional probabilities for various alignment methods of MR-T1

to CT images: (a) after applying Euclidean transformation Φ� to reference image with

parameter vector � = (5, 5, 5); (b)-(d) after applying modality transformation and then

aligning the images by MI, NMI, and proposed approach respectively
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Fig. 5. 2D plots of conditional probabilities for various alignments methods of MR-T1

to PET images: (a) after applying Euclidean transformation Φ� to reference image with

parameter vector � = (5, 5, 5); (b)-(d) after applying modality transformation and then

aligning the images by MI, NMI, and proposed approach respectively

5 Conclusions

An entropic framework for multimodal image registration is proposed in this pa-
per. The proposed algorithm was applied to medical images of different modal-
ities. The experimental results on MR to CT and MR to PET registrations
indicate the feasibility of the proposed approach and a much better performance
compared to MI and NMI-based methods, not only in terms of wider capture
range of registration functions but also in terms of robustness to noise. Future
work will focus on non-rigid multimodal image registration.
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Abstract. Automated localization and detection of the optic disc (OD)

is an essential step in the analysis of digital diabetic retinopathy systems.

Accurate localization and detection of optic disc boundary is very useful

in proliferative diabetic retinopathy where fragile vessels develop in the

retina. In this paper, we propose an automated system for optic disk lo-

calization and detection. Our method localizes optic disk using average

filter and thresholding, extracts the region of interest (ROI) containing

optic disk to save time and detects the optic disk boundary using Hough

transform. This method can be used in computerized analysis of reti-

nal images, e.g., in automated screening for diabetic retinopathy. The

technique is tested on publicly available DRIVE, STARE, diaretdb0 and

diaretdb1 databases of manually labeled images which have been estab-

lished to facilitate comparative studies on localization and detection of

optic disk in retinal images. The proposed method achieves an average

accuracy of 96.7% for localization and an average area under the receiver

operating characteristic curve of 0.958 for optic detection.

1 Introduction

Diabetes has associated complications such as vision loss, heart failure and
stroke. Patients with diabetes are more likely to develop eye problems such as
cataracts and glaucoma, but the disease’s affect on the retina is the main threat
to vision [1]. Complication of diabetes, causing abnormalities in the retina and
in the worst case severe vision loss, is called diabetic retinopathy [1].

To determine if a person suffers from diabetic retinopathy, fundus or retina
image is used. Performing the mass screening of diabetes patients will result
in a large number of images that need to be examined. The cost of manual
examination and screening is prohibiting the implementation of screening on
a large scale. A possible solution could be the development of an automated
screening system for diabetic retinopathy [2]. Such a system should be able to
distinguish between affected eye and normal eye. This will significantly reduce
the workload for the ophthalmologists as they have to examine only those images
classified as possibly abnormal by the system. Accurate optic disk localization
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and detection of its boundary is main and basic step for automated diagnosis
systems [3]. OD is a bright yellowish disk in human retina from where the blood
vessels and optic nerves emerge [1].

Figure 1 shows a healthy retinal image including main retinal features i.e.
optic disk, blood vessels and macula. The shape, color and size of optic disk help
in localization and detection. However, these properties show a large variance

Fig. 1. Healthy retinal image with features

Figure 2 shows examples of a swollen optic nerve, where the circular shape
and size are distorted. It also shows an example with a bright circular lesion that
appears similar to optic disk.

Fig. 2. Retinal images with lesions and distorted shape of optic disk

Localizing the centre and rim of the optic disk is necessary to differentiate the
optic disk from other features of the retina and as an important landmark. Tech-
niques described in the literature for optic disk localization are typically aimed
at either identifying the approximate centre of the optic disk or placing the disk
within a specific region such as a circle or square. In [4], an approximate location
of the optic disk is estimated where the location of the optic disk is hypothe-
sized by searching for regions of high intensity, diversity of gradient directions,
and convergence of blood vessels. Sinthanayothin [5] located the position of the
optic disk by finding the region with the highest local variation in the intensity.
Hoover [6] utilized the geometric relationship between the optic disk and main
blood vessels to identify the disk location. He described a method based on a
fuzzy voting mechanism to find the optic disc location. Mendels et al. [7] and
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Osareh et al. [8] introduced a method for the disk boundary identification using
free-form deformable model technique. Li and Chutatape [9][10] used a PCA
method to locate the optic disk and a modified active shape model (ASM) to
refine the optic disk boundary based on point distribution model (PDM) from
the training sets. A method based on pyramidal decomposition and Hausdorff
distance based template matching was proposed by Lalonde et al. [11].

In this paper, we propose a Hough Transformation based technique for OD
localization and detection. In our proposed method, firstly, optic disk localization
is done by averaging and then detecting the maximum gray values from an
image histogram. Secondly, ROI is extracted and optic disk detection is done
by taking Circular Hough Transform of an image which is followed by clinical
validation of our Hough based technique. We test the validity of our method on
four different publicly available databases i.e DRIVE [12], STARE [13], diaratdb0
and diaretdb1 [14].

This paper is organized in four sections. In Section 2, systematic overview
of our methodology is explained. Section 2 also presents the step by step tech-
niques required for an automated optic disk localization and detection system.
Experimental results of the tests on the images of the different databases and
their analysis are given in Section 3 followed by conclusion in Section 4.

2 System Overview

A systematic overview of the proposed technique is shown in figure 3. In sum-
mary, given a pair of color retinal images, the first step localizes the optic disk,
the second step extracts ROI and in the third step optic disk detection takes
place. The results are utilized for clinical validation of optic disk detected images.

Fig. 3. Retinal images with lesions and distorted shape of optic disk
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2.1 Optic Disk Localization

Localization of the optic disc is the first step in our technique. The purpose of
localization is to have low processing rate and less computational cost in further
steps. Steps for OD detection are as follows:

1. Image is preprocessed by averaging mask of size 31x31, given in eq. 1, in
order to remove the background artifacts which can cause false localization.

R =
1

961

961∑
i=1

Zi (1)

where z’s are values of image gray levels and R is the smoothed image.
2. Detect maximum gray values in an image histogram because the gray values

of optic disc are brighter than the background values.

Figure 4 shows the images after applying above steps.

Fig. 4. Optic disk localization: (a) Original retinal image from DRIVE database; (b)

Green channel image; (c) Averaged image; (d) Localized optic disk

2.2 Optic Disk Detection

After localizing the optic disc we have to define the region of interest (ROI) for
increasing the performance of optic disc detection. After smoothing the size of
ROI was set to 130 x 130. After extraction of ROI, we have to detect the optic disc
boundary using Hough Transform [15]. The Hough Transform is used to identify
the locations and orientations of retinal image features. This transform consists
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of parameterized description of a feature at any given location in the original
image space. It can be used for representing objects that can be parameterized
mathematically as in our case, a circle, can be parameterized by equation 2.

(x − a)2 + (y − b)2 = r2 (2)

Where (a,b) is the coordinate of center of the circle that passes through (x,y)
and r is its radius. From this equation, it can be seen that three parameters are
used to formalize a circle which means that Hough space will be 3D space for
this case. The steps for detecting optic disc boundary by Hough Transform are
below:

Edge Detection. In order to calculate the Hough Transform, the edge of the
OD’s circular shape is needed. Canny Edge detection operator is applied to the
image as a first step in this process. This removes most of the noise due to its
fine texture leaving only the required edges of the OD. Experimentally, we found
that the Canny Operator with the parameters σ = 1 and window size 5 x 5 gives
best results.

First Approximation of Optic Disc. For the rough calculation of OD in this
step, the accumulator parameter array is filled where each array is composed of
cells for (x,y) coordinates of the center of circle. The edge image is scanned
and all the points in this space are mapped to Hough space using equation
(2). A value in particular point in Hough space is accumulated if there is a
corresponding point in the retinal image space. The process is repeated until
all the points in the retinal image space are processed. The resulting Hough
transform image was scaled so all the values lie between 0 and 1. Then it was
threshold to leave only those points with high probability of being the centers
which are then labeled with different numbers. Afterwards the different regions
were matched by different circles and the output image is computed by drawing
circle with these points and adding this to the input image.

Detecting Best Circle. In this step, the set of approximated circles from step
2 will be compared. The best circle of this set would be that one that fits most
of the OD edges. In this step, numbers of pixels which are in the vicinity of
detected circle’s edge are counted. A mask of a ring shaped is put on the binary
edge image on the same location of each of the detected circle. Number of edge
pixels under this mask will be counted and compared for all the detected circles.
The best circle shows the location of the detected optic disc.

The results were also clinically validated. All images in our test set are sent to
ophthalmologist to identify the OD manually. All the OD’s which are automat-
ically detected by our system are then compared with clinician’s hand-drawn
ground truth. Figure 5(d) and 5(e) shows an example of our detected optic disk
and manually segmented mask by ophthalmologist respectively.
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Fig. 5. Optic disk detection: (a) Localized optic disk; (b) Extracted ROI; (c) Hough

transform circles; (d) Detected optic disk; (e) Manually segmented mask for clinical

validation

3 Experimental Results

We have extensively tested our optic disk localization and detection technique on
standard diabetic retinopathy databases. We have used four publicly available
datasets, DRIVE, STARE, diaretdb0 and diaretdb1. The DRIVE [12] database
consists of 40 RGB color images of the retina. The images are of size 768584
pixels, eight bits per color channel. The STARE [13] database consists of 20
RGB color images of the retina. The images are of size 605700 pixels, 24 bits
per pixel (standard RGB). Diaretdb0 [14] database contains 130 retinal images
while diaretdb1 [14] database contains 89 retinal images. These databases contain
retinal images with a resolution of 1500 x 1152 pixels and of different qualities in
terms of noise and illumination. The decision for successful localization or failed
localization is based on human eye observation. For the verification of optic disk
detection results, optic disks are manually labeled by the ophthalmologists for
each image. The manually segmented optic disks by human observer are used
as ground truth. The true positive fraction is the fraction of number of true
positive (pixels that actually belong to optic disk) and total number of optic
disk pixels in the retinal image. False positive fraction is calculated by dividing
false positives (pixels that don’t belong to optic disk) by total number of non
optic disk pixels in the retinal image. Table 1 summarizes the results of optic disk
localization for all four databases. It shows the accuracy (fraction of successful
localized OD) of proposed algorithm for each database. Table 2 summarizes the
results of optic disk detection for all databases. It shows the results in term of Az,
average accuracy and their standard deviation for different datasets. Az indicates
the area under the receiver operation characteristics curve and accuracy is the
fraction of pixels correctly detected.

Figure 6 illustrates the optic disk localization results for retinal images taken
from different databases. Red cross sign shows the optic disk location in each
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Table 1. Optic disk localization results

Database Total Successful Failed Accuracy

images localization localization (%)

DRIVE 40 40 0 100

STARE 81 76 5 93.8

Diarectdb0 130 126 4 96.9

Diarectdb1 89 87 2 97.7

Overall 340 329 11 96.7

Table 2. Optic disk detection results

Database Az Average

Accuracy

DRIVE 0.971 0.955

STARE 0.943 0.921

Diarectdb0 0.957 0.932

Diarectdb1 0.961 0.937

Overall 0.958 0.936

Table 3. Comparison Results for OD localization

Method Total Successful Failed Accuracy

images localization localization (%)

Hoover et al. 81 72 9 88.8

Proposed Method 81 76 5 93.8

image. These results support the validity of our technique and show that our
technique gives good results for localization even for those images where it is
difficult to locate optic disk. Figure 7 compares the results of proposed OD
localization technique against Hoover et al. [6] localization method. It shows the
successful localization results for our method.

Our method achieved an accuracy of 93.8% against 88.8% achieved by Hoover
et al.[6] and is summarized in table 3.
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Fig. 6. Experimental results: (a) Retinal images from DRIVE database; (b) Optic

disk localization results; (c) Retinal images from STARE database; (d) Optic disk

localization results; (e) Retinal images from Diarectdb0 and Diarectdb1 database; (f)

Optic disk localization results

Fig. 7. Comparison results: Column 1: Original retinal images from STARE database,

Column 2: Wrongly localized optic disks using Hoover et al [6] method, Column 3:

Correctly localized optic disks using proposed method
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Fig. 8. Experimental results for optic disk detection: Column (a) and (c) Retinal images

from different databases; Column (b) and (d) Optic disk detection results

Figure 8 shows the optic disk detection results based on Hough transform.
Red cross shows the centroid of optic disk where as blue boundary encloses the
optic disk.

4 Conclusion

Our proposed approach for automated optic disk localization and detection is
effective in handling retinal images under various conditions with reasonable
accuracy and reliability for medical diagnosis. The problem with retinal images
is that the visibility and detection of optic disk are usually not easy especially in
presence of some lesions. In this paper, retinal images are preprocessed and ROI
is extracted prior to optic disk detection. Optic disk is localized using average
masking and histogram and it is detected using Hough transform. We have tested
our technique on publicly available DRIVE, STARE, diaretdb0 and diaretdb1
databases of manually labeled images. The experimental results demonstrated
that our method performs well in locating and detecting optic disk.
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Abstract. A precise characterization of the retinal vessels into veins and

arteries is necessary to develop automatic tools for diagnosis support. As

medical experts, most of the existing methods use the vessel lightness

or color for the classification, since veins are darker than arteries. How-

ever, retinal images often suffer from inhomogeneity problems in lightness

and contrast, mainly due to the image capturing process and the curved

retina surface. This fact and the similarity between both types of vessels

make difficult an accurate classification, even for medical experts. In this

paper, we propose an automatic approach for the retinal vessel classi-

fication that combines an image enhancement procedure based on the

retinex theory and a clustering process performed in several overlapped

areas within the retinal image. Experimental results prove the accuracy

of our approach in terms of miss-classified and unclassified vessels.

1 Introduction

Several pathologies, such as hypertension, arteriosclerosis, or diabetic retinopa-
thy, change the retinal vessel tree. Moreover, some of them affect differently
veins and arteries. For example, the retinal venular widening was associated
with diabetes [1], whereas the arteriolar narrowing was considered an early sign
of hypertension retinopathy. Therefore, the automatic distinction of retinal ves-
sels into veins and arteries is necessary in order to develop automatic tools for
diagnosis.

A previous stage in the classification process is the location of the vessels
within the image. There are several methods in the literature that segment the
retinal vascular tree accurately [2,3]. However, the vessel classification task is still
an open issue due to three main problems. On one hand, the differences between
veins and arteries decrease with the vessel size. On the other hand, the intra-
image uneven lightness due to biological characteristics, such as pigmentation,
makes impossible to set two different global color ranges for both types of vessels.
Finally, the inter-image lightness and contrast variability also hinders the correct
vessel classification within the image, since all the vessels located at dark areas
can be classified as veins and the vessels located at bright areas, as arteries.
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In the literature, the techniques for the retinal vessel classification can be
divided into tracking-based and color-based methods. The former are mainly
semiautomatic, i.e. an expert labels the main vessels and after that the expert
classification is propagated through the vessel tree by means of tracking tech-
niques [4,5,6]. The color-based methods are automatic and are based on a clus-
tering algorithm that divides the vessels into two categories using the color of
the vessel pixels as the classification features since veins are darker than arteries.

Among the automatic methods, Simó and de Ves proposed a Bayesian clas-
sifier which segments the image in fovea, background, arteries, and veins [7]. Li
et al. [8] developed a supervised classifier that uses the vessel central reflex as
the classification feature and represents the vessels by means of two Gaussian
functions. Grisan and Ruggeri [9] divided the fundus image into four quadrants
and used the pixel color to classify the vessels in each quadrant by means of a
fuzzy c-means. Moreover, they normalized the color image in order to prevent
the effect of the variability in the lightness [10]. Finally, Jelinek et al. [11] tested
several classifiers and features chosen from different color models. However, the
available results show high error rates and a high number of unclassified vessels.

The aim of this work is the development of an automatic methodology to
classify the retinal vessels that takes into account the influence of the uneven
lightness. To this end, we apply a well known color image enhancement, the
retinex [12,13], previous to the vessel classification. This technique has been
successfully applied to other kinds of medical images and experimental results
indicated that it achieves a better contrast enhancement than other algorithms
such as homomorphic filtering or histogram equalization. Our classification strat-
egy is an improvement of the Grisan and Ruggeri’s method [9], that groups the
closest vessels and applies a clustering algorithm to each group independently
in order to reduce the effect of the uneven lightness.

The remainder of this paper is concerned with the details of the proposed
technique and the obtained results. In the next section, the retinex method
is explained. Section 3 presents the details of the retinal vessel classification
methodology. Section 4 shows the experimental results of this work and compares
the performance of our methodology with the classifications of several experts.
Finally, in Section 5, we present the conclusions and future work.

2 Image Enhancement

The color constancy is the ability of the human visual system to rule out the
illumination effects from the image. However, the retinal images, as other images
captured by cameras, are influenced by the light source positions, shadows, and
the object surfaces. Thus, the inhomogeneity in lightness and contrast is common
in retinal images mainly due to the image acquisition process under irregular
illumination and the spherical surface of the eye. In this sense, the retinex theory
tries to recreate a model of the human visual system to get color constancy.

In the image formation model, a color component of the image is the product
of the illumination and the reflectance. The basis of the retinex methods is
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that the illumination varies slowly, so its frequency spectrum is assumed to be
distributed at low frequencies. This way, the illumination is approximated and
the output image is obtained by subtracting this estimation from the original
image.

We propose to apply the retinex techniques [12,13] to achieve color constancy
and enhance the retinal image before the vessel classification. We have developed
two approaches based on the Single-Scale Retinex (SSR) [12] and the Multi-Scale
Retinex (MSR) [13], both proposed by Jobson et al.

In the Single-Scale Retinex (SSR), the illumination is estimated by means of
a Gaussian form and, then, it is subtracted from the original image to obtain a
description invariant to illumination. This is given by:

Ri(x, y) = log Ii(x, y) − log[F (x, y) ∗ Ii(x, y)] (1)

where Ri(x, y) is the retinex output, Ii(x, y) is the original image in the i-th
spectral band, ’∗’ denotes the convolution operation and F (x, y) is a surround
function

F (x, y) = Ke
−x2+y2

σ2 (2)

where σ is the scale that controls the extend Gaussian surround, and K =
1

(
∑

x

∑
y F (x,y))

The Multi-Scale Retinex (MSR) [13] is simply a weighted sum of several dif-
ferent SSR outputs as follows:

RMSRi =
N∑

n=1

wnRni (3)

where RMSRi is the MSR output in the i-th color component, N is the number
of scales, Rni is the SSR output in the i-th color component on the n-th scale
and wn is the weight of the output of the n-th scale.

The Multi-Scale Retinex came up to get simultaneously the dynamic range
compression of the retinex in small scale and the tonal rendition of the big-
scale retinex. Experimentally, it was achieved that equal weighting of the scales
wn = 1/3, with N = 3 was enough for most of the applications.

Figure 1 shows the image results after applying retinex with different scales.
We can observe the smaller the scale, the smaller the illumination variation, but
more color information loss.

3 Vessel Characterization Method

In this section, we describe the proposed methodology for the classification of
the retinal vessels into veins and arteries.

First, we extract the blood vessels in the interest areas. After that, we apply
a specific process to classify the vessels using a clustering algorithm and the
feature vectors selected in an experimental phase. First, we segment the blood



Using Retinex Image Enhancement to Improve the Artery/Vein 53

Fig. 1. Retinex enhancement on a retinal image. From left to right and from top to

bottom: original image, SSR σ1 = 576, SSR σ2 = 288, SSR σ4 = 144, SSR σ8 = 72

and MSR with scales σ1 = 576, σ2 = 288 and σ8 = 72.

vessels within the retinal image by means of a crease extraction algorithm [14].
If we consider the retinal image as a landscape, blood vessels can be seen as
ridges or valleys, that is, regions that form an extreme and tubular level on their
neighborhood. Once the creases are extracted from the retinal image, we define
two concentric circumferences around the optic disc and a specific deformable
model is adjusted to the vessel boundaries between both circumferences. The
crease points are used as the seed of the deformable model. As a result, we
obtain a set of vessel contour points, that forms a parallelogram, and a set of
crease points, that represents the vessel center line (see Fig. 2 left). Figure 3
shows the results of the vessel segmentation process in three different analysis
radii.

The feature vectors to perform the classification in the final stage, are based
on the pixel intensities within the parallelograms computed in the previous stage,
this is, the segmented vessels. We have analyzed several options to obtain the
most distinctive vessel feature vectors.

Since the feature vectors depend on the pixel intensities, we have analyzed
several color spaces (RGB, HSL, gray level) in order to identify the most suitable
feature vectors [8,9,11]. In retinal images, the blue component (B), the saturation
(S), and lightness (L) are not appropriate for the classification due to their little
contrast. Therefore, the feature vectors are made up from the remaining color
components.

The feature vectors are based on the concept of profile. A profile is a 1 pixel
thick segment perpendicular to a vessel as Fig. 2 (right) shows. The number of
profiles traced in each vessel, t, depends on the size of each parallelogram. Thus,
we define the profile set, PR, for all detected vessels as follows

PR = {PRij , i = 1 . . . n , j = 1 . . . t} (4)
PRij = {pk , k = 1 . . .m} (5)

pk = (xk , yk) (6)
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Fig. 2. Left: Detected vessel in the segmentation stage. The black points represent the

crease set whereas the white points are the vessel contour points. Right: Several profiles

extracted from the segmented vessel.

where n is the number of detected vessels, t the number of the profiles in the
i-th vessel, m is the number of points in the profile PRij , and (xk , yk) are the
image coordinates of the profile point pk.

We have defined five feature vectors based on the R component, the G com-
ponent, the union of the R and G components, the hue (H) component, and the
gray level. In this case, there is a feature vector per profile point pk. Also, we
have defined another feature vector as the mean of the H component and the
variance of the R component in the profile PRij [9]. Moreover, we have consid-
ered the mean and the median of each profile PRij in every color component in
order to minimize the effect of outliers.

Finally, we apply a clustering process to classify the vessels into arteries and
veins. The uneven intra-image contrast and lightness makes difficult the use
of a supervised algorithm. We have chosen the k-means algorithm [15] due to
its simplicity, computational efficiency and absence of parameter tuning. The
centroids of each class are initialized to the minimum and the maximum of the
k-means input set, respectively, since there are only two classes whose cluster
centers should be as far as possible.

The k-means computes the cluster centers for both artery and vein classes.
Then, the feature vectors are classified using the Euclidean distance. The empir-
ical probability of a vessel vi to be vein (P v(vi)) or artery (P a(vi)) is computed
as follows:

P a(vi) =
na

na + nv
, P v(vi) =

nv

na + nv
(7)

where na is the number of feature vectors that were classified as artery and nv

is the number of feature vectors that were classified as vein.
We have developed three approaches to apply the clustering algorithm. In

the first approach, we apply the k-means algorithm to all the feature vectors
found in the retinal image. In the second approach, we divide the image into
four quadrants centered at the optic disc. Then, we apply the k-means in each
quadrant separately. This way, we try to minimize the effect of the uneven intra-
image lightness. Additionally, in the third approach, we rotate the four quadrants
(see Fig. 3) and we apply the clustering algorithm to the feature vectors found in
each rotated quadrant. The rotation angle is set to a value that allows overlapped
areas. Therefore, a vessel can be classified several times. These classification
results are combined to make the final decision so that the influence of outliers
is reduced.
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Fig. 3. In the third clustering approach, we divide the image into four quadrants cen-

tered at the optic disc and we apply the k-means algorithm to the feature vectors found

in each quadrant separately. Then, we rotate the quadrants and we apply the clustering

process again. These two steps are repeated in order to cover the whole image. After

that, the classification results for each vessel are combined to provide the final decision.

In the third approach, the final vessel probabilities P v and P a are the mean
of the vessel probabilities P v

q and P a
q in all the quadrants q where the vessel was

found. The vessel is classified in the class with the highest probability. If the
probability values P v and P a are the same, we do not classify the vessel.

4 Experimental Results

First, we have analyzed experimentally the three classification approaches with
the feature vectors proposed in the previous section without applying the retinex
method. The train set that we have used for this purpose consists of 20 images
with a resolution of 768×576 pixels and centered at the optic disc. These images
have been acquired from a Cannon CR6-45NM non-mydriatic retinal camera and
labeled manually by an expert. The lowest training errors (12.32% and 10.88%
with analysis radius of 2.5 and 2 times the optic disc radius, respectively) have
been obtained using the third approach and the median of the G component,
x̃(G(PRij)), as feature vector. Moreover, we have concluded that a rotation
angle of 20o is suited because it balances the number of unclassified vessels and
the number of necessary rotations (classifications).

After the training phase, we test the third approach in the public VICAVR
data set [16] using the median of the G component of the profiles, x̃(G(PRij)),
or the G component value of each profile point, G(pk), as feature vectors. This
data set is made up of 58 images labeled manually by three different experts.
Table 1 shows the performance of our methodology classifying the vessels by
means of the aforementioned feature vectors. This results are obtained with
respect to the ground truth of each expert individually and with respect to
the agreement among groups of experts. Thus, the disagreement between the
automatic system and the three expert agreement is 12.63% for x̃(G(PRij)),
similar to the error rate of the training phase.
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Table 1. Vessel classification performance with respect to the gold standard obtained

from each single expert or the agreement between experts. We have used the third ap-

proach without retinex enhancement and the median of the G component (x̃(G(PRij)))

or the value of the G component in each profile point (G(pk)) as features to classify the

vessels detected in the VICAVR data set. The percentage of miss-classifications and

unclassified vessels by the system is calculated with respect to the second row, that is

the number of vessels labeled by a single expert or the number of agreement vessels

between experts.

Experts 1 2 3 1&2 1&3 2&3 1&2&3

Vessels Labeled 2472 2782 2950 2239 2247 2555 2116

x̃(G(PRij))
Error(%) 13.28 16.64 17.99 12.92 12.71 15.61 12.63

Unclass.(%) 1.29 1.29 1.25 1.16 1.25 1.21 1.18

G(pk)
Error(%) 14.63 18.15 19.58 14.30 14.04 17.15 13.95

Unclass.(%) 0.73 0.75 0.81 0.67 0.76 0.74 0.71

With the aim of improving the results avoiding the effect of the non lightness-
color constancy, we have applied the SSR and MSR image enhancement tech-
niques to the VICAVR image database. We have tested SSR and MSR with
different scales in function of the image size, min(height, width)/d, where d =
1, 2, 4, 8, 16. Since the test images have a resolution of 768×576 pixels, the scales
were σ1 = 576, σ2 = 288 , σ4 = 144, σ8 = 72, and σ16 = 36 pixels. Figure 4
show some of the best classification results obtained using SSR and MSR with
different scales before applying each labeling approach. These figures show the
accuracy rate, this is, the percentage of the vessel segments which have been
correctly classified penalizing with the vessels unclassified by the system.

Accuracy rate =
ncorrected-classifications

nvessels
∗ 100 (8)

where ncorrected-classifications is the number of vessels, veins and arteries, correctly
classified and nvessels is the total number of detected vessels that includes the
number of vessels which have not been able to classify.

There is not much difference between SSR and MSR results with the scales
shown. Nevertheless, with the smallest scales, the image loses tonal rendition
and the number of miss-classifications increases. It is worth pointing out that
applying retinex, the feature formed by the G component value in each profile
point, G(pk), discriminates better than the x̃(G(PRij)) in most of cases. This
is due to the fact that the retinex is similar to the median function as it deletes
the outlier values.

The best error percentages obtained applying the retinex technique were
9.49% and 8.38% for x̃(G(PRij)) and G(pk) respectively. Thus, the use of retinex
produces a significant improvement in the results. Comparing these results with
the results of the table 1 the improvement is about the 3.14% using x̃(G(PRij))
and 5.57% using the G(pk) as feature.
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Fig. 4. Classification performance with respect to the gold standard obtained from

each single expert or the agreement between experts, Retinex variants and x̃(G(PRij))

and G(pk) features using first (top), second (middle) and third (bottom) approaches

in the VICAVR data set
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5 Conclusions

In this paper, we have proposed a new methodology to classify the retinal ves-
sels into veins and arteries taking into account the effect of the inhomogeneity
lightness. This methodology applies the retinex image enhancement method and
a clustering strategy based on labeling overlapped groups of closer vessels inde-
pendently. These partial classifications are combined in order to make the final
decision.

We have also tested two other approaches to study the effect of the lightness
variability in the labeling and to prove the accuracy of the proposed strategy.

The results show that these approaches are not enough to classify correctly the
retinal vessels, even after applying a normalization method as retinex. Also, the
results prove that the retinex technique improves the artery/vein classification
as the error rate falls down to 9%. However, the color similarity between veins
and arteries makes difficult to establish a lightness range for each type of vessel,
making necessary the division of the retinal image into regions to classify the
vessels. Thus, the proposed clustering strategy achieves the best results since it
minimizes the miss-classification error and maintains the number of unclassified
vessels low.
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Abstract. Peripheral diabetic neuropathy is a major cause of chronic disability 
in diabetic patients. Morphometric parameters of corneal nerves may be the ba-
sis of an ideal method for early diagnosis and assessment of diabetic neuropa-
thy. We developed a fully automatic algorithm for corneal nerve segmentation 
and morphometric parameters extraction. Luminosity equalization was done  
using local methods. Images structures were enhanced through phase-shift 
analysis, followed by Hessian matrix computation for structure classification. 
Nerves were then reconstructed using morphological methods. The algorithm 
was evaluated using 10 images of corneal nerves, by comparing with manual 
tracking. The average percent of nerve correctly segmented was 88.5% ± 7.2%. 
The percent of false nerve segments was 3.9% ± 2.2%. The average difference 
between automatic and manual nerve lengths was -28.0 ± 30.3 μm. Running 
times were around 3 minutes. The algorithm produced good results similar to 
those reported in the literature.  

Keywords: Corneal nerves, image segmentation, diabetic neuropathy, confocal 
microscopy. 

1   Introduction 

The prevalence of Diabetes Mellitus is dramatically increasing worldwide, having 
developed to epidemic proportions. Consequently, there will be a substantial increase 
in the prevalence of chronic complications associated with diabetes [1]. 

Peripheral diabetic neuropathy is the major cause of chronic disability in diabetic pa-
tients. It affects 50% of the patients within 25 years of diagnosis [2]. In long term, unde-
tected and untreated neuropathy can lead to foot infections that not heal, foot ulcers and, 
in many cases, amputation. Diabetic neuropathy is implicated in 50-75% of non-
traumatic amputations [3].  

Early diagnosis and accurate assessment of peripheral neuropathy are important to 
define the higher risk patients, decrease patient morbidity and assess new therapies [4]. 
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However, early diagnosis of diabetic neuropathy is not easy. In otherwise healthy indi-
viduals, symptoms may be dismissed or attributed to incidental factors. The diagnosis 
often fails or occurs only when patients became symptomatic due to the non-availability 
of a simple non-invasive method for early diagnosis [5]. 

Diabetic neuropathy is currently quantified through electrophysiology and sensory 
tests [6]. However, these tests cannot detect small-fiber damage which is the most 
important component of nerve damage in diabetes [7]. Skin biopsy, which has been 
used for early diagnosis of neuropathy, can detect minute nerve damage [8], but is an 
invasive procedure.  

The cornea is one of the most densely innervated tissues in the humans. It is possi-
ble to image in vivo the sub-basal plexus, using corneal confocal microscopy (CCM), 
a non-invasive method of examining the living cornea that produces high resolution 
images of thin corneal layers, enabling the identification of structures without depend-
ing on conventional histology techniques [9]. This method has been used to assess the 
sub-basal plexus of healthy and diabetic corneas. 

Malik et al. [10] studied the corneas of diabetic patients with neuropathy and dem-
onstrated that CCM can accurately define the extent of corneal nerve damage and 
repair, through the measurement of fiber density and branching. Therefore, it can be 
used as a measure of neuropathy in diabetic patients. Kallinikos et al. [11] showed 
that CCM allows evaluation of corneal nerve tortuosity and that this parameter relates 
to the severity of neuropathy. 

Our group has done research on CCM. We demonstrated that the number of fibers 
in the corneal sub-basal nerve plexus of diabetic patients was significantly lower than 
in healthy humans, even for short diabetes duration [12]. This opens the possibility of 
using the assessment of corneal innervation by CCM for early diagnosis of peripheral 
neuropathy. This result was later confirmed by other authors, using different mor-
phometric parameters like the number of nerve branches, the number of beadings and 
the tortuosity of the fibers [13].  

Accurate measurement of corneal nerve morphometry requires accurate representa-
tion of the nerve network. The corneal nerves analysis is based on a tedious process of 
manual tracing of the nerves [10], using confocal microscope built-in software [10, 
14-15], commercial programs or software specifically developed for the purpose [11]. 

Ruggeri et al. proposed automatic methods for the recognition and tracing of the 
corneal nerve structures [16]. The nerves were recognized by a tracing algorithm 
based on filtering and pixel classification methods with post-processing to remove 
false recognitions and link sparse segments into continuous structures. Automatic and 
manual length estimations on the same image were very well correlated.  

The purpose of our work was to develop an algorithm for automatic analysis of 
CCM images of sub-basal nerve plexus and to extract morphometric parameters from 
these images for early diagnosis and staging of diabetic peripheral neuropathy. 

2   Methods 

In a CCM image (see Fig. 1), the corneal nerves appear as bright structures on a dark 
background. A typical corneal confocal microscope has an effective focal depth 
greater than 20 μm [17]. Therefore sub-basal nerve plexus images may include  
non-nerve structures, as basal epithelial cells (see Fig. 1a) or keratocytes (Fig. 1b). 
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a)                                                                         b) 

Fig. 1. Corneal confocal microscopy images of a corneal sub-basal nerve plexus region. The 
structures in the background of image a) are basal epithelial cells. In image b) it is possible to 
see stromal keratocytes.  

The automatic algorithm includes three stages: contrast enhancement and illumina-
tion correction, identification of line segments representing the corneal nerves and 
reconstruction for correcting discontinuities and misclassified pixels. 

2.1   Pre-processing 

Before applying the segmentation algorithm it was necessary to pre-process the  
images due to their non-uniform contrast and luminosity. CCM images show brighter 
areas in the central region, mainly due to corneal curvature, which causes non-uniform 
light reflection. 

Contrast-limited adaptive histogram equalization (CLAHE) [18] was applied to the 
original images for contrast uniformization using an 8×8 pixels square mask. 

Phase symmetry was used to enhance the boundaries of structures in the image (see 
Fig. 2). The phase symmetry is based on the analysis of local frequency information, 
overcoming the main shortcomings of symmetry detection algorithms: the need to 
segment the objects first and not providing any absolute measure of the degree of 
symmetry at any point in the image [19]. 

 

 
 

a)                                                                        b) 

Fig. 2. a) Original CCM image. b) After pre-processing. The phase shift procedure also enhances 
structures that do not belong to the nerve plexus. 
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2.2   Nerves Searching 

 

Nerves searching was accomplished using a method based on the Hessian matrix:  
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Sigma (σ) is a length scale factor that controls the scale of the extracted nerves. The 
information of the second order derivative of a Gaussian function at a scale σ gener-
ates a probe kernel that measures the contrast between the regions in the interval 
σmin ≤ σ ≤ σmax . These values are fixed according to the sizes of the smallest and the 
largest nerve to be detected in the image.  

Let λ1 and λ2 be the eigenvalues of the Hessian matrix H used as a vesselness 
measure for 2D images to describe the curvature at each point in the image. The idea 
behind eigenvalues analysis is to extract the principal directions in which the local 
second-order structure of the image can be decomposed. The parameter RB was pro-
posed to discriminate between blob-like structures and ridge-like structures [20] and 
is defined as the quotient between λ1 and λ2.  

Table 1. Structures and their relations to eigenvalues in 2D image, where λ1<λ2 

λ1 λ2 Orientation 
Low High Negative Bright tubular structure 
Low High Positive Dark tubular structure 

High Negative High Negative Bright blob-like structure 
High Positive High positive Dark blob-like structure 

 
Table 1 summarizes the relation between eigenvalues and structures in a tissue. 

Note that we are only interested in tubular structures as they represent nerves. Ac-
cordingly, since our main concern was nerves recognition and extraction, we have 
analyzed the eigenvalues for λ1 < λ2, low λ1 and high negative λ2. 

As Fig. 3 shows, the output of this process is a set of nerve fragments that require 
further processing to achieve full reconstruction of each nerve. 
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         a)        b) 

Fig. 3. Result of the nerves searching procedure for the enhanced image in Fig. 2b). Most of the 
non-nerve fragments were removed. a) Enhanced image, after pre-processing; b) enhanced 
image, indicating the region to zoom, to show in detail the procedures for post-processing. 

2.3   Nerves Reconstruction 

Segmented images of corneal nerves exhibit misclassified pixels and visible nerve 
discontinuities that are not real. Minimum cost path or clustering algorithms, as the 
ones described by [21-22] may be a suitable basis for automatic reconstruction of 
discontinued corneal nerves. Although it is usual for these methods to apply region 
growing from its centroids, this approach failed on corneal nerve images either due to 
the presence of similar-shaped structures external to the nerve plexus, like stromal 
keratocytes or basal epithelial cells, or due to nearby structures belonging to a differ-
ent nerve fiber, as seen in Fig. 4. 

 

     
 

a)                       b)                c) 

Fig. 4. Example of the post-processing algorithm based on region growing from centroids: a) 
region of interest (ROI); b) centroids of each segment of the ROI; c) centroids connection using 
the shortest distance between centroids as a criteria 

To overcome this, we used a region growing approach based on its more peripheral 
points. Our post-processing procedure starts by identifying all segments in the image. 
For each segment S0 we compute the morphological skeleton and calculate the num-
ber of branches, using morphological operations. When two or more branches are 
found, erosion is applied to the endpoints of the skeleton until only one branch is 
obtained. Then, we compute the two extreme points, P1 and P2, of each segment as the 
two opposite points that belong to the major axis of the segment. These points  
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correspond to the endpoints of the morphological skeleton of this segment (Fig. 5a). 
The next step is to perform a region growing algorithm, using as seed points P1 and P2 

until this region reaches another segment. This way, we identify the nearest segment 
neighbor S1 that suggests a connection between S0 and S1. We repeat this procedure, 
starting in P2, for obtaining another neighbor segment S2, suggesting also a connection 
between S0 and S2 (see Fig. 5b and 5c). 

 

       
 

a)                           b)                               c)                              d) 

Fig. 5. a) For each segment, the two extreme endpoints are identified; b) starting in the segment 
at the top of the image, its extreme endpoint would be connected to the nearest endpoint of the 
another segment; in this new segment, its second extreme endpoint would be connected to the 
nearest endpoint of another segment and so on until it reached the bottom of the image; c) 
image with all the segments connected, establishing a continuity between the top and the bot-
tom parts of the image d) final image; the segments that were not connected were discarded.  

After processing every segment, connections are discarded if some of the following 
conditions occur: segments Si are connected with Sj but Sj does not connect with Si. 
This occurs when the nearest segment Si is Sj but the nearest segment of Sj is Sk; the 
connections with distance between segments higher than twice the median length of 
the major axis of the segments; S0 connects to S1 and S2 but S1=S2.  

The connection of adjacent segments, S0 and S1, is established using a straight line, 
which is valid when the distance between these two segments is small, usually less 
than the length of the major axis of one segment. This straight line is dilated by the 
same size of the segments diameter, which corresponds to the lengths of the second 
major axis of the segments (Fig. 5d). 

With this algorithm, each nerve is reconstructed using the information of all their 
segments. 

2.4   Morphometric Parameters 

Once the nerves are segmented it is possible to compute several morphometric  
parameters such as nerves length, density, tortuosity and diameter.  

2.4.1   Calculation of Length and Density 
The lengths (in μm) of the nerve structures were calculated by computing the distance 
between adjacent pixels along the skeleton of the nerve. The nerve density is  
calculated by dividing the sum of the nerve lengths by the image area (μm/mm2). 
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2.4.2   Calculation of Tortuosity 
The Tortuosity Coefficient (TC) intends to convey information on the frequency and 
magnitude of nerve curvature changes. We followed an approach based on consider-
ing each nerve as a mathematical function on the image space and computing the 
function first and second derivatives [11].  

In order to treat each nerve as a mathematical function, we find its endpoints, draw 
a straight line between them and rotate the image, aligning the straight line with the x-
axis. The first and second derivatives, and the TC are calculated using: 
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The step size dx is the distance between the projections on the x-axis of two nerve 
consecutive pixels and is equal to 1, N is the number of pixels of the nerve skeleton. 

2.4.3   Calculation of Nerve Diameter 
To compute the nerve diameter, we locate all the segments that belong to a given 
nerve and compute, for each segment, its two main axes. As most segments have a 
rectangular shape, we assume that the major axis corresponds to the length of the 
nerve and the minor one corresponds to the diameter of the nerve.  

3   Results and Discussion 

The algorithms described in the previous section were applied to 10 images of corneal 
nerves available online [16]. These images were acquired in vivo from non-diabetic 
patients, using a corneal confocal microscope (ConfoScan4, Nidek Technologies, 
Padova, Italy), with a 460×350 μm field of view using a 40X objective, and com-
pressed in JPEG monochrome format, with a size of 768×576 pixels. 

Best pre-processing results were obtained using an 8×8 pixels mask. For the identi-
fication of tubular structures, λ1 was set to equal or less than 20% of its minimum and 
RB was set to be equal or greater than 1. We used 2 ≤ σ ≤ 5 with steps of 1. The  
dilation was set to 10 pixels and areas less than 3100 pixels were removed. 

Figs. 6 and 7 show examples of the results obtained with the corneal nerves seg-
mentation algorithm. The algorithm still has to be improved particularly in dealing 
with nerve branching and in rejecting non-nerve structures as can be seen in Fig. 7. 

Algorithm performance can be evaluated by comparing the nerve length correctly 
recognized by the algorithm, with the length of manually traced nerves on the same 
image. For manual nerve tracing and length measurement, we used the Simple Neu-
rite Tracer plug-in developed for Image J by Mark Longair1. The average percent of  
 

                                                           
1 http://homepages.inf.ed.ac.uk/s9808248/imagej/tracer/ 
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 a)  b) 

Fig. 6. Representative example of the results obtained for an image with few nerves: a) original 
image, b) after processing 

   
 

 a) b) 

Fig. 7. Representative example of the results obtained for an image with nerve branching: a) 
original image, b) after processing 

nerve correctly segmented by the program was 88.5% ± 7.2% (range: 78.0% - 99.8%). 
On five images structures were falsely reported as nerves by the algorithm. The per-
cent of false nerve segments on the total segmented length was 3.9% ± 2.2% (range: 
2.1% - 6.8%).  

Fig. 8 shows a Bland and Altman [23] plot for the comparison between automatic 
and manual nerve length measurement. The average difference between automatic 
and manual nerve lengths was -28.0 ± 30.3 μm. This means that, in 95% of the cases, 
the difference between nerve lengths measured automatically and manually will lie 
between - 87.4 and 31.3 μm. These limits, as well as the average difference, are 
shown in the plot. These results are similar to the ones reported in the literature and 
also show a tendency for underestimation by the automatic method [16].  

From the nerves representation obtained through automatic segmentation we have 
extracted morphometric parameters such as tortuosity, nerves density (μm/mm2) and 
segment diameter (μm). The average value of the TC was 21.7 ± 5.6 (range: 16.9 - 
32.7). This value agrees with those previously reported, using the same definition of 
tortuosity, for non-diabetic and mild-neuropathy diabetic individuals. The proposed 
algorithm for nerve identification was fully automatic, requiring no user intervention.  
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Fig. 8. Comparison between nerve lengths measured by the automatic algorithm and by manual 
tracking. The solid line represents the average difference between nerve lengths by the two 
methods. The broken lines are the limits of concordance for a 95% level of confidence. 

4   Conclusion 

The developed algorithm produced good results, in terms of percentage of nerves 
detected and nerve length measurement, similar to those reported for a different cor-
neal nerve segmentation method, and yields Tortuosity Coefficients in agreement to 
those found in the literature. The algorithm performance is affected by the image 
quality, mainly by the presence of non-nerve structures such as stromal keratocytes or 
basal epithelial cells. The issues related to non-uniform contrast and luminosity were 
successfully solved by pre-processing the images with local equalization and phase 
shift based methods. There is room for improvement particularly when dealing with 
images containing nerve branches.   

In our opinion, the pressing need of having a simple, non-invasive technique, ca-
pable of accurately documenting the extent of nerve damage and repair, for early 
diagnosis of peripheral diabetic neuropathy, can be addressed through the evaluation 
of corneal nerve morphology from images obtained through CCM. In this work we 
presented our approach to an automatic algorithm for analysis of corneal sub-basal 
nerve plexus images. This work is part of a broader project that aims to develop a 
noninvasive technique for early diagnosis and monitoring of diabetic neuropathy. 
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Fusing Shape Information in Lung Segmentation in Chest 
Radiographs 
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Abstract. This paper presents an algorithm for the segmentation of lung fields 
by fusing shape information priors into intensity-based thresholding in an itera-
tive framework. The main contribution is to maximize information utilization 
by effectively combining intensity information with shape priors. Experimental 
results performed on publicly available database demonstrate the effectiveness 
of the algorithm in comparison with other algorithms.  

1   Introduction 

Chest radiology remains the most common procedure to detect chest diseases such as 
lung cancer and tuberculosis. This is due to its advantages: it is the most cost-
effective, the most routinely available, and the most dose-effective diagnostic tool. 
This explains why the detection of subtle or early-stage of these diseases in chest 
radiographs is one of the outstanding challenges in the field of medical diagnosis. In 
the past few years, there has been an intensive research in the area of automation of 
disease detection in chest radiographs, as it assists in earlier detection and achieving 
better prognosis for the patient.  

The first step in these detection systems is the segmentation of lung fields in the 
chest radiographs in order to restrict the processing area of subsequent detection algo-
rithms. The accuracy by which this step is executed is critical to the overall perfor-
mance of the system, as inaccurate lung segmentation would increase the false-
positive and false-negative errors.  

Many techniques have been proposed in the literature for the segmentation of lung 
fields from posterior–anterior chest radiographs, and they are surveyed in an interest-
ing study [8]. These methods can be classified into four categories: 1) rule-based 
techniques have been used to detect the outline of ribcage or the diaphragm [1], [5];  
2) pixel-based techniques were proposed to classify each pixel of an image into either 
lung field or background based on a filter bank of Gaussian derivatives and a K-NN 
classifier [10], [12]; 3) hybrid techniques were formulated by combining rule-based 
techniques and pixel-based classifications for lung field segmentation [7]; and 4) 
deformable model-based techniques, such as active shape model (ASM) and active 
appearance model (AAM) [3][2][4][17], have been successfully applied in lung field 
segmentation. In ASM, the statistics of image intensities and gradients along the pro-
files of contour points are used to drive the contour toward the boundary of the object, 
and PCA-based shape statistics is used to constrain the contour. Many improvements 
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have been made to improve the performance of the matching strategy. For example, 
Seghers et al. [12] proposed the simultaneous optimization of shape and gray-level 
appearance models based on non-iterative dynamic programming. Here, the shape of 
object lungs is described by multiple landmark-specific statistical models that capture 
local dependencies between adjacent landmarks on the shape. Gleason et al. [11] had 
developed a probabilistic-based deformable model which simultaneously optimizes a 
single objective function generated by the global and local shape model, as well as the 
gray-level appearance model. Here, the local shape model is introduced to preserve 
the local shape information around each user-defined critical landmark points. Other 
researchers suggest that the local gray-level appearance model should be created by 
using some optimal features, in order to drive contour points to desired object boun-
daries. For example, Ginneken et al. [6] determined the distinct set of optimal features 
by means of machine learning. Recently, Seghers et al. [14] proposed a generic mod-
el-based segmentation algorithm is presented, which can be trained from examples 
akin to the active shape model (ASM) approach in order to acquire knowledge about 
the shape to be segmented and about the gray-level appearance of the object in the 
image. Shi et al. [15] proposed a deformable model using both population-based and 
patient-specific shape statistics. Ginneken et al. [9] proposed an automatic method for 
detection of abnormalities in chest radiographs by using local texture analysis.   

This paper is organized as follows. Next section describes the proposed algorithm 
in detail. Section 3 summarizes experimental results demonstrating the algorithm’s 
effectiveness. Section 4 concludes. 

2   Proposed Method 

This research proposes an algorithm for the segmentation of lung fields by fusing 
shape information into intensity-based iterative thresholding. The main contribution is 
to maximize information utilization by effectively combining intensity information 
with shape priors. Firstly, a statistical model for the lung shape is extracted from large 
database; features including size, orientation, major and minor ellipse lengths, eccen-
tricity, and centroid locations for the right and left lung fields are computed from a 
database of manually segmented lung fields by expert radiologists. This model is then 
used to optimize the iterative thresholding for the segmentation of lung fields in test 
images. This is achieved by making sure that shape resulting from this iterative bina-
rization is similar to the statistical model; Mahalanobis distance, which measures the 
similarity between the shape model statistics and the binarization output, is used. 
Finally, in the postprocessing stage, the optimized binarization output contour is fur-
ther adjusted using Active Shape Model techniques. The following is a detailed  
description of the proposed method. 

2.1   Lung Field Statistical Model 

To extract a statistical shape model for the lungs, the Japanese Society of Radiologi-
cal Technology (JSRT) chest radiographs database [15] was used. This is a publicly 
available database with 247 chest radiographs collected from 13 institutions in Japan 
and one in the United States. The images were scanned from films to a size of  
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Fig. 1. JSRT database image samples. (A1-A2) Original images. (B1-B2) Manual segmentation 
of left and right lung fields by expert radiologists. 

2048 × 2048 pixels, a spatial resolution of 0.175 mm/pixel and 12 bit gray levels. The 
JSRT database also includes manual segmentation results of experienced radiologists. 
Figure 1 shows two JSRT sample images and the manual segmentation of left and 
right lung fields by expert radiologists. 

Using these manual JSRT segmentations, a statistical model of the lungs’ shape is 
derived, which includes the following features: 

• Area – Scalar; the actual number of pixels in the left and right lung regions. 
• Major Axis Length – Scalar specifying the length (in pixels) of the major axis of 

the ellipse that has the same normalized second central moments as the left and 
right lung regions.  

• Minor Axis Length – Scalar specifying the length (in pixels) of the minor axis of 
the ellipse that has the same normalized second central moments as the left and 
right lung regions. 

• Centroid – 1-by-2 vector (x, y coordinates) that specifies the center of mass of the 
left and right lung regions.  

• Eccentricity – Scalar that specifies the eccentricity of the ellipse that has the same 
second-moments as the left and right lung regions. The eccentricity is the ratio of 
the distance between the foci of the ellipse and its major axis length. The value is 
between 0 and 1. (0 and 1 are degenerate cases; an ellipse whose eccentricity is 0 
is actually a circle, while an ellipse whose eccentricity is 1 is a line segment.) 

• Orientation – Scalar; the angle (in degrees ranging from -90 to 90 degrees) be-
tween the x-axis and the major axis of the ellipses that has the same second-
moments as the left and right lung regions. 

• Solidity – Scalar specifying the proportion of the pixels in the convex hull that 
are also in the left and right lung regions. Computed as Area/Convex Area. 

• Extent – Scalar that specifies the proportion of the pixels in the bounding box that 
are also in the left and right lung region. (Computed as the Area divided by the 
area of the Bounding Box, where then Bounding Box is the smallest rectangle 
containing the left and right lung regions).  
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Fig. 2. (A) Area, Major Axis Length, and Minor Axis Length features’ samples from JSRT 
database. (B) x Centroid, y Centroid, and Eccentricity features’ samples from JSRT database. 
(C) Orientation, Solidity, and Extent features’ samples from JSRT database. 

Figure 2 shows these features’ samples from the JSRT database. The mean vectors 
µl and µr and the covariance matrices ∑l and ∑r are calculated for left and right lungs, 
respectively. They will be used in the next step of optimizing the iterative binarization. 

2.2   Optimizing Iterative Binarization 

The process of lung segmentation in a test radiograph image starts with iterative bina-
rization at equally spaced thresholds (THi), where i is the iteration number. This 
process extracts objects that will be classified as lung or non-lung objects. In figures 5 
and 6, which demonstrate this process, the red and blue areas are the left and right 
lung objects (LLO) and (RLO) and the pink areas are the non-lung objects (NLO). The 
optimization of the iterative binarization involves the following steps: 

1. Initially, LLO0, RLO0 and NLO0 are empty.  
2. Image is binarized at (THi) and using 8-connected component analysis and all ob-

jects are identified. The difference between two consecutive thresholds was arbi-
trary chosen to be 16 gray-levels, which has produced satisfactory results.  

3. Objects smaller in size than a predefined limit (PL) are ignored. This allows con-
centrating on larger objects only, which is necessary to reduce run time. 

4. Assuming that lungs are located at the in middle of the image, objects touching the 
boarders or their centroids are very close to the boarders are identified as NLOi. 
LLOi and RLOi are in the left and right halves of the image.  

5. Objects identified as LLOi, RLOi and NLOi are not allowed to merge at iteration 
i+1, but are allowed to grow. 

6. In some cases, the trachea, which appears as dark area between the lungs, has to be 
identified as NLOi, as shown in Figure 6.  This is necessary to prevent the two lungs 
from touching each other through flooding of the trachea area.  

7. Estimate the similarity between the extracted LLOi and RLOi and the statistical 
models of Section 3.1. This is done by calculating the Mahalanobis distance DLi for 
the left lung and DRi for the right lung, according to the following equations: 

DLi = (XL i - µl) ∑l
-1(XL i - µl)

T                                            (1) 

DRi = (XR i - µr) ∑r
-1(XR i - µr)

T ,                                                              (2) 

where XLi and XRi are the feature vectors of LLOi and RLOi, respectively. 
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8. In the initial iterations, there will be a significant dissimilarity between the LLOi 
and RLOi and their corresponding statistical models. Therefore, we expect that XLi 

and XRi to be high. But as the iterative binarization progresses and LLOi and RLOi 
become closer to the lung shapes, XLi and XRi should decrease. Figures 7 and 8 
shows the resulting DLi and DRi for the cases in Figures 3 and 4, respectively. 

9. The iterative binarization is repeated, starting from step 2, till a bottom is reached 
for DLi and DRi, independently. In Figures 5(A) and 5(B), the bottoms for DLi 
and DRi were reached at iterations 6 and 4, respectively. Therefore, LLO6 and 
RLO6 are the segmentation outputs for Figure 3, and LLO4 and RLO4 are the seg-
mentation outputs for Figure 4. 

2.3   Postprocessing 

This postprocessing step is necessary because the iterative binarization, described in 
previous section, produces global solution that needs refinement using local informa-
tion. In the post-processing stage, the optimized binarization output contour is further 
adjusted using Active Shape Model technique [3]. The following is a brief description 
of the method, and for more details, please see the reference [3][6]. 

 

Fig. 3. Top row of images demonstrates iterative binarization of Figure1-A1 image at consecu-
tive thresholds. Bottom row of images shows the resulting LLO (red), RLO (blue) fields, and 
the NLO (pink).  

 

Fig. 4. Top row of images demonstrates iterative binarization of Figure1-A1 image at consecutive 
thresholds. Bottom row of images shows the resulting LLO (red), RLO (blue) fields, and the NLO 
(pink). This case demonstrates identifying the trachea area between the lungs as NLO. 
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An object is described by n points, referred to as landmark points. The landmark 
points are determined in a set of s training images.  

The landmark points (x1, y1), …, (xn, yn) are stacked in shape vectors x , , … , ,                                                                 (3) 

  
Shapes are fitted in an iterative manner, starting from the mean shape. Each landmark 
is moved along the direction perpendicular to the contour to ns positions on either 
side, evaluating a total of 2ns+1 positions. The landmark is put at the position with the 
lowest Mahalanobis distance. After moving all landmarks, the shape model is fitted to 
the points, yielding an updated segmentation. This is repeated a fixed number N of 
times at each resolution, from coarse to fine. 

Figure 6 shows that landmark position and directions perpendicular to the contours 
for the output of iterative binarization of the cases in Figures 3 and 4.  

 

 

Fig. 5. Mahalanobis distance of segmented LLO and RLO at the iterations of (A) Figure 3 and 
(B) Figure 4 

 

Fig. 6. Post-processing by ASM technique of the output of iterative binarization of  A) Figure 5 
case, and B) Figure 6 case  

The following table summarizes the parameter settings for the ASM post-
processing. Note that the number of resolution levels is 1, and this is because it is 
directly applied to the output of the iterative binarization step.    
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Table 1. Summary of parameter setting for the post-processing 

n number of landmark points 22 and 28 
Threshold  0.995 
Model parameter range limit ±2 λ  
k points in profile on either side of the landmark point 4 
Resolution levels 1  
ns Points to evaluate on either side of the landmark point 6 
N iteration per level 20 

3   Comparative Performance Evaluation 

To validate the efficiency of the proposed method, we compared its performance with 
other well-established methods. For that purpose, two quantitative measures compar-
ing segmentation results of various methods with the manual segmentations (ground 
truth) are calculated. The first one is the global overlap percentage 

Ω = TP / (TP+FP+FN) (4)

where TP stands for true positive (area correctly classified as object), FP for false 
positive (area incorrectly classified as object), and FN for false negative (area incor-
rectly classified as background).  A second validation criterion measures the distance 
between the two curves. For each point on the automated contour, the closest distance 
to the manual segmentation contour is computed. The averaged value along the con-
tour yields the 1-D validation measure δ.  

 

 

Fig. 7. Lung segmentation results of A) proposed method, B) ASM method, C) AAM method. 
First row: Case of Figure 5, second row: Case Figure 6. Yellow areas: True positive (TP) area 
correctly classified as lung. Red areas: False positive (FP) area incorrectly classified as lung. 
Blue areas: False negative (FN) area incorrectly classified as background. 

Figure 7 shows the lung segmentation results of the proposed method, ASM me-
thod [3], and AAM method [16] for the cases of Figures 3 and 4. The parameter set-
ting for ASM method are the same as of Table 1, except the number of levels, which 
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is set to 4. The proposed method produced better results by having less FP and FN 
classification errors.  

Table 2 summarizes the overlap percentage and contour distance (in pixels) for the 
three methods for the 247 images of JSRT database. The proposed method produced 
better results for both measures.  A weakness of the ASM segmentation method is that 
it uses an iterative optimization process that requires proper initialization in order to 
converge to the correct solution. During search, landmark points are displaced on 
lines perpendicular to the current contour. Convergence to the true solution is likely to 
fail if the distance between the true location of a landmark and its corresponding 
search line is too large. Therefore, initialization using the iterative binarization me-
thod caused ASM to produced better results because it reduced the distance to the true 
landmark positions.  

A Matlab implementation was used on a 2.8-GHz Intel Pentium processor. Our al-
gorithm needed approximately 12 and 14 seconds to segment one image using 22 and 
28 landmarks, respectively, compared to 18 and 22 seconds for ASM using 22 and 28 
landmarks, and 24 seconds for AAM. 

Table 2. Overlap percentage Ω and contour distance δ of the segmentation outputs of the pro-
posed method, ASM method (default initialization using mean shape) [3], and AAM method 
[16] for the 247 images of JSRT database 

 Overlap  
Percentage Ω 

Contour Distance 
in pixels δ 

Ground Truth 1 ± 0.0 0.0 ± 0.0 
Proposed method: postprocessing with 22 
landmarks 
Proposed method: postprocessing with 28 
landmarks 

0.92 ± 0.063 
0.94 ± 0.053 

3.71 ± 2.35 
2.46 ± 2.06 

ASM method with 22 landmarks  
ASM method with 28 landmarks  

0.90 ± 0.086 
0.92 ± 0.057 

4.11 ± 2.21 
3.23 ± 2.21 

AAM method  0.85 ± 0.095 5.10 ± 4.44 

4   Conclusions 

We presented an algorithm for the segmentation of lung fields by fusing shape infor-
mation priors into intensity-based thresholding in an iterative framework. The main 
contribution is to maximize information utilization by effectively combining intensity 
information with shape priors. Experimental results demonstrate the effectiveness of 
the algorithm in comparison with other algorithms.  
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Abstract. Image segmentation has a very important role in many appli-

cation areas, such as medical imaging. Even robust segmentation meth-

ods cannot deal with the wide range of variation observed, for example,

in shape and orientation of an anatomical structure. Given the need

to accomplish accurate segmentations in order to perform quantitative

measurements or compare structures in different time instances, it is im-

portant to have tools which allow easy segmentation editing/correction

by experts.

In 3D images (e.g., obtained using CT scanners) performing segmen-

tation editing of regions which span several slices might be a tiresome

task if it has to be done slice-by-slice with a 2D tool.

This article presents a 3D segmentation editing tool, to be applied

to left ventricle segmentations, which enables radiographers to correct

segmentations provided by an automatic method.

1 Introduction

Image segmentation is a common step in numerous application areas. Segmen-
tation in medical imaging is quite challenging as completely automatic methods
fail to work in every possible situation due to the natural biological variation.
Therefore, as important as image segmentation algorithms are the tools which
allow user interaction (a survey can be found in Olabarriaga et al. [1]) to guide
the method or correct the results. Segmentation editing is one of those features
which quite often do not deserve much attention as the focus is, in general, on
the automatic steps of the segmentation algorithm [2]. Even though, in prac-
tice, editing tools are provided for all segmentation tasks, their suitability is
sometimes neglected and, although they allow corrections to be performed, they
require a large amount of work and time. One such example is editing 3D seg-
mented regions on a slice-by-slice basis by contour manipulation [3].

Following on work carried out [4], concerning left ventricle (LV) segmentation
from cardiac angiography exams obtained using multiple detector-row comput-
erized tomography (MDCT), a software application [5] integrating the segmen-
tation method and providing left ventricle function analysis is being developed
using the Medical Imaging Toolkit (MITK) [6]. The automatic segmentations
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a) d)

b) e)

c) f)

Fig. 1. Common view planes used by the radiographers to analyse LV data: a) LV short-

axis, b) 2-chambers (left atrium and ventricle) and c) 4-chambers (both ventricles and

both atria) compared with the the usual orthogonal view planes d) coronal, e) sagital

and f) axial

provided sometimes need to be corrected. In the presence of poor segmenta-
tions, some high level parameters can be used to correct them but the most
common problems can be easily solved with some editing (as reported by ra-
diographers on a preliminary evaluation of the segmentation method presented
in [4]). Thus, an editing tool must be provided which is easy and intuitive to use
and is well suited for the task at hand. This must consider the 3D characteristics
of the segmented LV and the kind of LV analysis performed by the radiographers
using view planes which differ from the usual orthogonal planes (axial, sagital
and coronal) as depicted in figure 1.

The MITK library already provides a segmentation editing tool which presents
two limitations: it only supports editing on the usual orthogonal planes (axial,
sagital and coronal) and is a 2D tool (i.e., editing only possible slice-by-slice).
Since each image volume used for left ventricle segmentation is approx. 512 ×
512 × 256 and the LV spans over a considerable number of slices, it would be
very tiresome to perform slice-by-slice segmentation editing.

Editing is also important in our case since, for each cardiac exam, the left
ventricle must be segmented for 12 phases along the cardiac cycle (i.e., 12 image
volumes taken from systole to diastole): in case of a segmentation problem, if the
user is allowed to edit a first automatic segmentation of one of those phases, that
information can be used to improve the remaining 11 segmentations, therefore
reducing the amount of user intervention needed.
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We present a 3D tool for left ventricle segmentation editing of first segmen-
tations provided by a segmentation method developed by the authors [4]. This
tool is included in a segmentation protocol used to obtain validated left ventricle
data for analysis. Even though this tool was developed (and is presented) with
a particular application to left ventricle segmentations it can be of use in any
situation which deals with similar segmented regions.

The following section presents the editing tool developed. Section 3 presents
a simple evaluation performed to assess if the tool does bring some advantages
to the editing task when compared with a 2D tool. Finally, some conclusions are
presented in section 4.

2 3D Editing Tool

When designing the presented 3D editing tool two main goals were taken into
consideration: first, the tool needed to allow easy correction of the typically de-
tected problems (see figure 2 for some examples), and second, the tool should
support real-time interaction. This second goal limited the complexity of the
operations performed during editing in order to minimize the associated com-
putational cost. Furthermore, the tool should provide editing in any view plane
and work by using the mouse as interaction device.

2.1 Voxel Mask Editing

This method works at voxel level by adding/removing voxels from the segmented
region. The editing brush has a spherical shape thus providing 3D editing.

Two editing modes are available: ADD voxels to region and REMOVE voxels
from region. Editing mode selection is performed automatically according to the
voxel value at the center of the brush when the editing operation is started. If
it is an active voxel (i.e., a voxel part of the current segmented region), the tool
is set to ADD mode (figure 3a) and if it is an inactive voxel (i.e., not part of
the current segmented region) the tool is set to REMOVE mode (figure 3b).
The tool keeps the current mode until the editing step is finished (i.e., mouse

(a) (b) (c)

Fig. 2. Common segmentation problems detected in the automatic segmentation

method output: a) segmentation beyond the mitral valve; b) no inclusion of the out-

going tract and c) papillary muscle not included in the blood pool
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(a)

(b)

Fig. 3. Two modes available for bit mask editing. In the first mode (a), ADD, the

editing operation starts on an active region and voxels are added to the object as the

tool is moved. In the second mode (b), REMOVE, the editing operation starts on an

inactive region and voxels are removed as the tool is moved.

button is released). This automatic selection mode is based on the observation
that when the user wants to add voxels to the border of the segmented volume
it is natural to start the editing from inside the object and the contrary, i.e.,
from outside the object, when the goal is to remove voxels. This also guarantees
(although some awkward situations may arise) some continuity of the segmented
region. Since we know the left ventricle is a closed region the user must always
travel from within it to where he wants to add voxels. This does not, however,
solve the problem of isolated regions resulting from voxel removal around them
which is dealt, in our case, by a post-processing step.

To speed the voxel mask modification operation a neighborhood iterator is
used, provided by the ITK library [7]. It allows the definition of a 3D neigh-
borhood region (a cube centered on the desired voxel) in which it is possible
to activate only the neighborhood voxels we are interested in visiting. In our
case, voxels are activated to obtain a sphere shaped neighborhood (according to
the editing tool radius chosen). Since the neighborhood is defined using offsets
towards the central voxel it can be easily relocated without having to re-set the
active neighborhood voxels. Therefore, the iterator initialization needs only to
be performed once for each tool radius desired.

The tool radius can be chosen from a limited set of values established based
on the characteristics of the left ventricle and image resolution. Given that there
are no particularly thin regions there is no need for very small radius tools. It
should only be guaranteed that a small enough tool exists to be used on the
outgoing tract. On the other hand, a large radius tool could be used to edit the
segmentation on the mitral valve region but, if image resolution is high (with
a very small voxel size), the number of voxels in the neighborhood starts to
increase rapidly with the radius, thus influencing both the initialization time of
the tool (to set the spherical neighborhood) and its interactivity during editing.

2.2 Surface Editing

Another option for editing is to work with the surface of the segmented region
obtained, for example, by using the marching cubes algorithm [8] provided by the
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Fig. 4. Segmentation editing by surface deformation. The editing tool is a sphere and

can be used in any of the view planes. It appears in different sizes depending where the

view plane intersects the sphere. On the bottom right image a 3D view of the surface

(in red) and sphere (in blue) are shown.

VTK library [9] thus obtaining a polygonal representation of the surface. This
has the advantage that it does not occlude the image with the segmentation mask
as much as the voxel mask and does not suffer from isolated regions being created
when separated from the main region by removing voxels in-between. Intersecting
the surface of the segmented region with different view planes produces contours
which can be intuitively adjusted by the user.

Notice that generating contours (instead of a surface) would also be possible
by applying an image cutter to the voxel volume with the desired orientation
and extracting the contours but, as the user must be able to choose and change
to any view plane she/he finds necessary, it would result in a method of much
higher complexity.

In this case, the editing tool consists of a sphere, moved by the user, with
its center at cursor position, which deforms the polygonal surface when pressed
against it. It appears in each visualization plane as a circle (see figure 4) and
can be used freely in any of them. Surface deformation is obtained by changing
the polygonal surface vertices position in order to keep them always at no less
than sphere radius distance from the tool center (i.e., outside the sphere).

When the editing sphere approaches the surface, the closest vertex (if any at
less than the sphere radius distance) to the sphere center is determined and all its
neighbors which are also found inside the sphere are determined. Since computing
vertex neighborhoods has a high computational cost, particularly if the sphere
radius is large, the first seven neighborhoods (one-ring, two-ring, ...) are pre-
computed and stored in memory. This has also the advantage of being a lot
faster than the individual neighborhood computations since previously computed
neighborhoods for some of the vertices can be used to speed the computation of
the remaining neighborhoods.
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Fig. 5. Two different options for defining vertex displacement direction: on the left,

vertices are displaced radially in a direction defined by the sphere center and their

initial position resulting in vertex dispersion; on the right, vertices are displaced in the

direction given by the original surface normal at their original position which keeps

vertex density

After finding the list of vertices that must be displaced it is necessary to
determine the direction of their displacement. A simple idea is to displace them
radially, i.e., using the normals to the sphere surface (figure 5a). This method
has the disadvantage of creating a low density of vertices on the surface region
which suffers the largest displacement. It is easy to understand that, very rapidly,
the vertex density in that region will be so low that further displacements will
be impossible. It is also important to notice that with only a few vertices it is
harder to properly deform the surface to accurately contain the desired region.
This method will also easily allow surface self intersections as the vertices will
move freely in every possible direction.

Thus, it is important to design a vertex displacement method which reason-
ably preserves vertex density and reduces the chance of surface self-intersections,
at least for small correcting operations. This was accomplished by displacing the
vertices along the corresponding surface normal, i.e., the vertex is always moved
following the direction of the original surface normal at its position. As can be
seen in figure 5b, this method results in better vertex density preservation and is
less prone to surface self-intersection although sharp edges might be a problem.
As the vertices always move in the same direction it is possible to easily revert
any of the editing operations by applying the sphere from the opposite side.

Since the vertex neighborhoods are pre-computed the impact of a large sphere
radius on interactivity is small (within reasonable radius limits) and, thus, the
user is allowed to use a wide range of radius values suited for each situation as
illustrated in figure 6.
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a)

b)

c)

Fig. 6. Different editing situations using surface deformation: a) Correction of the

segmentation to include the papillary muscles inside the surface; b) a larger tool radius

has been chosen to correct the segmentation on the mitral valve region and c) tool

radius has been reduced to an adequate size to correct the outgoing tract

It is important to notice that in our particular situation the left ventricle will
never need significative corrections: if a really bad segmentation is performed
the user can change some high level parameters to obtain better results before
editing. For directly editing really bad segmentations this method would be
harder to use, e.g., if the surface had to be corrected to a much larger or less
smooth surface, as the number of vertices is fixed.

2.3 Mixed Editing

The methods presented above can also be used interchangeably, if necessary,
although changing between them implies some delay (around 4 seconds on a
common desktop computer). If initially editing the voxel mask, when changing to
surface editing, a new surface must be generated from the current voxel mask and
vertex neighborhoods must be computed. When reverting from surface editing
to voxel editing the voxel mask contained inside the current surface must be
computed.

Computing a new surface from the current voxel volume is accomplished, as
previously mentioned, by using the marching cubes algorithm. To obtain the
voxel mask contained inside a surface a method provided by VTK is used to
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obtain a stencil from the polygonal data which is then applied to a voxel volume
the size of the original image, as a “cookie cutter”, to obtain the desired result.

Figure 7 shows some examples of conversion from voxel mask to polygonal
surface and vice-versa.

(a) (b) (c)

Fig. 7. (a) Surface generated from the voxel mask using the marching cubes algorithm;

(b) the surface is deformed using the presented tool; (c) the voxel mask contained inside

the surface is computed

Computing the voxel volume contained inside a surface is also important to
compute features of the segmented region such as regional and global blood vol-
umes (by counting the voxels and multiplying by voxel volume) for left ventricle
function analysis.

3 Evaluation

To assess the applicability and quantify the advantages of the proposed tool a
simple first evaluation has been conducted concerning the time taken to perform
the same editing task using voxel mask (3DV) and surface editing (3DS) and
the 2D editing tool provided by MITK.

Considering the common editing operations which will be performed by the
radiographers (figure 2), two tasks have been chosen for this evaluation: task 1
consisted in adjusting the segmentation mask to the mitral valves which implied
removing voxels from the initial segmentation; task 2 consisted in adjusting the
segmentation mask to the LV wall adding voxels to the initial segmentation.

Three users participated in this evaluation. In a first stage, they received a
short explanation about the different tools and were allowed to use them (same
amount of time for each tool, per user; user A was allowed to train longer) to get
acquainted with the different features. On a second stage, the users were asked
to perform both tasks with the three available methods.

As can be observed in table 1 the developed tool clearly allows performing the
considered tasks in less time than a typical 2D editing tool available in MITK.
This shows that with a simple 3D tool, focused on the characteristics of the
region and tasks to perform, a considerable gain was attained. For the evaluated
tasks the average time taken to accomplish them was significantly greater for the
2D tool and smaller for both 3D editing modes, which yield similar task times.
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Table 1. Time (in seconds) taken to complete an editing task using the presented tool

(3DV - voxel editing and 3DS - surface editing) and a 2D tool

User Task 1 Task 2
2D 3DV 3DS 2D 3DV 3DS

A 236 35 50 333 42 61

B 594 78 99 554 88 121

C 600 105 107 768 119 90

Avg. 477 73 85 552 83 91

During and after the evaluation users were invited to comment on the different
tools. They were unanimous in stating that having to set the editing mode (add
or subtract) in the 2D tool was confusing and preferred our tool which sets the
mode based on cursor position. Even though times were similar for both 3D
tools users preferred voxel editing (3DV). This was probably due to occasional
latency in surface editing resulting from a greater computational load.

User A trained longer and managed to accomplish all tasks in less time than
the other users. This gives some sign that, with training, performance with our
tool can be further improved to even smaller task times. Nevertheless, a reduced
number of users was involved in this study and further evaluation is necessary
to clarify this aspect.

4 Conclusions

This article presents a simple 3D tool for editing left ventricle segmentations. Its
purpose is to allow radiographers to rapidly correct first segmentations provided
by an automatic segmentation method. This approach, when compared with
the usual 2D slice-by-slice method, has the advantage of being faster and more
reliable as it reduces the probability of uncorrected slices being left behind and
ensures a higher degree of coherence from slice to slice.

The tool has been developed paying attention to the characteristics of the tar-
get data (left ventricle segmentations) and necessary editing operations allowing
for simplicity and good suitability, thus presenting a smaller semantic distance
towards the tasks envisaged by the user.

Voxel mask editing is very fast, thanks to the neighborhood operator, and
allows good interactivity and results. By applying a post-processing filter at the
end it is possible to discard isolated voxels missed by the user.

The surface based method works well for small and medium scale modifica-
tions, such as those presented in figure 6, but larger modifications or a large
number of editing operations around the same region might sometimes result
in awkward situations as the one illustrated in figure 8. Apart from possible
surface self-intersections this can be just a consequence of vertices below the
current view plane starting to appear in it, due to a large displacement or their
normal having an orientation that favors such an event. Nevertheless, it has a
bad impact on users and should be avoided.
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Fig. 8. A worst case example of a problem which might occur after a modification

using an editing tool with a very large radius

Smoothing might improve the results for surface editing and some experiments
with simple smooth operations (interactivity must be kept) applied to the af-
fected neighborhood (or its border) have already been performed with some
promising results, but it is still not clear when and where to apply them and
how to detect problematic regions. So, even though the current surface editing
feature is already useful its robustness and performance can still be improved.
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Abstract. Multi-slice short-axis acquisitions of the left ventricle are 
fundamental for estimating the volume and mass of the left ventricle in cardiac 
MRI scans. Manual segmentation of the myocardium in all time frames per 
each cross-section is a cumbersome task. Therefore, automatic myocardium 
segmentation methods are essential for cardiac functional analysis. Region 
growing has been proposed to segment the myocardium. Although the 
technique is simple and fast, non uniform intensity and low-contrast interfaces 
of the myocardium are major challenges of the technique that limit its use in 
myocardial segmentation. In this work, we propose a modified region growing 
technique that ensures reliable and fast myocardial segmentation of short-axis 
images. The proposed technique initializes the region growing process using 
different seed points. Then two types of spatial constraints are used to 
guarantee fast and accurate segmentation. The technique has been tested and 
validated quantitatively using a large number of images of different qualities. 
The results confirm the reliability and accuracy of the proposed technique. 

Keywords: Region Growing, Segmentation, Cardiac MRI, Left Ventricle. 

1   Introduction 

Imaging the heart using standard cine MRI sequences is an important tool to evaluate 
the cardiac global and regional function. This includes estimating the ejection 
fraction, left ventricle (LV) mass and volume, wall-thickness and wall-thickening. 
These parameters are usually estimated from datasets that typically include 3-6 short-
axis slices of the heart acquired over the entire cardiac cycle with frame rate equal to 
20-35 image/cycle [1]. In these images, the LV appears as a doughnut-shape gray area 
enclosing a brighter region of the blood and surrounded by a number of regions of 
different intensities (e.g. lung, liver, RV cavity) as shown in figure (1).  

Manual segmentation of the contours in all images through different slices is a 
cumbersome task. Therefore, methods were proposed to automatically or semi-
automatically segment the contours from short-axis images. In literature, a number of 
LV segmentation techniques have been proposed. This includes region growing, active 
deformable models and clustering techniques, etc [2, 3]. In this work, we focus on the 
region growing technique as a powerful, classic and simple technique for myocardial 
segmentation. 
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1.1   Standard Region Growing Algorithm (RG) 

In standard region growing, an initial region composed of one seed point starts to 
grow iteratively by adding more neighboring pixels that satisfy some predefined 
criterion. This criterion can be based on intensity, texture, or edge information. One 
simple yet popular criterion is the intensity similarity among the region pixels. Let Ri 
be a set of pixels composing the growing region at the ith iteration. Initially, the region 
is composed of a single seed point. That is, 

  (1) 

Then at ith iteration, the region is given by this equation, 
 

 
 

(2) 

Where T is a predetermined threshold, I(x, y) is the intensity of the candidate pixel (x, 
y) and µR is the mean intensity of the pixels inside region R defined as, 

 

 

(3) 

Where n is the cardinality of the set R. 

1.2   Limitations of Region Growing 

Despite its simplicity and speed, a major limitation of the technique occurs at elevated 
noise levels and/or intensity nonuniformity of the region to be segmented [2]. In 
myocardial cine MR images, severe intensity variation are frequently encountered due 
to field inhomogeneity at the myocardium-lung and/or the flow and respiration 
artifacts. This was one of the reasons that region growing has not been used in left 
ventricle segmentation [4]. 

For example, figure (1.a) shows two images, the first is artifact free where the 
intensity variation inside the myocardium is very limited. On the other hand, figure (1.b) 
shows large intensity variation inside the myocardium due to respiratory motion. This 
significantly degrades the performance of RG as will be shown later.  

 

 
 

Fig. 1. Short-axis image of the heart with a good quality (Left) Another image with 
inhomogeneity artifacts (Right) 
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Another limitation of using region growing in myocardial segmentation is the low-
contrast interface between the LV and the liver which causes the growing region to 
extend beyond the actual borders of the myocardium [5]. 

In this work, we propose to initialize the region growing with a number of seed 
points spread inside the myocardium at equi-angle separations. This guarantees 
correct segmentation even if the myocardial pixel intensities are severely non 
uniform. In order to reduce the computation time, the growing region of each seed is 
constrained by an automatically determined surrounding sector of the myocardium.  

The sectors of the different seed points are overlapping to guarantee the continuity 
of the extracted myocardium segment. In addition, using a priori knowledge of the 
intensity profile along radial lines of the myocardium, control points are set 
automatically to determine the epicardium near low-contrast interfaces (e.g. with 
liver). 

2   Methods 

2.1   Multi-Seeded Region Growing (MSRG) 

In MSRG, m seed points are used to initialize m small regions whose union would 
form the segmented myocardium at the end of the growing operation. 

For a given time frame, the seed points are selected automatically from an estimate 
of the interior myocardial contour. The latter can be estimated as the mean of the epi 
and endocardium contours of the previous time frame. We choose to select the seed 
points at equi-angles on the estimated interior contour as shown in figure (2). 

 

 
 

Fig. 2. Short axis image with epi, interior and endocontour are drawn (Left) 4-constraining 
overlapped masks with their seed points (Right)   

To avoid long computation time, constraining masks, , have been used to limit 
the circumferential and radial growing of the different regions, . The masks are 
taken as overlapping sectors covering the entire area of the LV with one seed point 
lies inside each sector. Each region is thus allowed to grow according to the following 
equation, 

, 
 

(4) 
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(5) 

 

Where   is the seed for region Rj and j=1: m. After the termination of the 
iterations, the segmented myocardium is taken as the union of the individual regions. 

2.2   Epicardial Control Points 

The resulting region from the MSRG technique may include non-myocardial tissues 
due to low contrast interfaces. This problem occurs mainly at the outer boundary. To 
avoid this problem, control points on the true interface boundaries are identified by 
means of feature matching and used to constrain the outer contour to the real 
epicardium. Thirty four datasets have been analyzed offline to learn the true location 
of the epicardial points at low contrast interfaces as follows. 

First, the outer interface between the myocardium and all other tissues were 
delineated manually and the intensity profiles along radial lines at these interfaces 
were plotted. Then, these profiles have been classified into three main classes: 
myocardium-lung, myocardium-liver and myocardium-blood profiles. The mean 
profile of each class (shown in figure 3.c) is taken as a template for subsequent profile  

 

 

Fig. 3. (a) A myocardium image shown in the polar representation showing different types of 
interfaces (b) Three regions are highlighted with the same color of their types in the next chart 
(c) Chart represents the three types of features 
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matching. The correct interface point along each interface was determined according 
to a certain criterion depending on the interface type. For the myocardium-liver 
interface, whose profile appears as inverted Gaussian, the minimum intensity index is 
set as the true interface point. For the myocardium-lung and myocardial-blood 
interfaces, the true interface points are determined as the first point on the profile 
satisfying intensity value smaller than 33% and 66% of the maximum profile 
intensity, respectively. Those values (33% - 66%) have been concluded from studying 
the manual segmented contours and founding their positions on the profiles. 

After determining interface profile templates and the rules for selecting the true 
interface points from these templates, the output of the MSRG technique is then 
processed as follows. The intensity profiles of all points on the outer contour are 
matched with the three interface templates. If matched with one of the templates, then 
the type of the interface and thus the location of the true interface points are 
estimated. This leaves the outer contour of the MSRG segmented region irregular and 
thus needs some smoothing. 

2.3   Refinement of the Contours  

After determining the control points, the outer and inner contours of the MSRG 
segmented region are then refined to smooth sharp bending segments by using a few 
iterations of standard active contour model [6]. For the outer contour, however, the 
locations of the control points are enforced unchanged. The complete proposed 
algorithm is summarized in the flowchart in figure (4). 

 

 

Fig. 4. Flowchart of the whole proposed algorithm (Left) Detailed flowchart of the main 
algorithm block (Right) 
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3   Results and Discussion 

3.1   Using Simple Region Growing 

Figure (5) shows the result of applying simple region growing on a mid-slice short-
axis image using threshold value equal to 25. It is obvious that the original image has 
a good quality and high homogeneity, so that the result is good in the right image but 
there are some small holes inside the myocardium. 

 

 
 

Fig. 5. Short-axis image (Left) Result of applying the simple RG (Right) 

 

 

Fig. 6. (a) Original image (b) Result of applying region growing with threshold = 27 (c) 
Another result using threshold = 52 

 
Another image with bad quality is shown in figure (6.a), the MSRG technique gave 

bad results as shown in (6.b) and the region discontinuity also is shown. To recover 
this error the only way to route is to increase the threshold value and the resulted 
region from this raise is shown in (6.c), there is over estimation for the myocardium 
tissue and the technique begin to identify the blood in the cavity as tissue. Then the 
raising in the threshold value will not solve the inhomogeneity problem. 
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3.2   Using Multi Seeded Region Growing Constrained by Overlapped Sectors 

The final result of MSRG is the union of the multiple sectors m resulting as stated 
before. Then internal and external contours can be segmented using boundary tracing. 
The result of applying MSRG is shown in figure (7) using no of sectors = 10, 
overlapping ratio = 0.1 and two different threshold values 21, 29. 

 

 

Fig. 7. (a) Original image (b) Result of MSRG with threshold = 21, no. of sectors = 10 and 
Overlapping Ratio = 0.1 (c) result using threshold = 29 

 
The problem of discontinuity which was caused by image in-homogeneity has been 

solved but there were some black holes that have been removed using some 
morphological operation. There are some parameters that affect the performance of 
MSRG and they are the number of constraining sectors and overlapping ratio between 
sectors. To study the effect of these parameters on MSRG performance, the MSRG 
technique was tested with all different and possible values of no. of sectors and 
overlapping ratio using one hundred selected image [7] representing different 
qualities, SNRs and homogeneities. True positives and false positives have been 
computed for each result of RG and MSRG to compare between them. 

The segmented inner and outer contours which attached with datasets are available 
at York University website [7]. It has been found that the mean performance of the 
MSRG is better than the RG in terms of TP and FP in a specific range of threshold 
values, as shown in figure (8) and it enables us to pick the best threshold values to 
perform well. Also the best values deduced from the figure for the overlapping 
percentage is 10% because it gives partially higher TP and low FP. Another study has 
been made on the effect of the number of sectors and the overlapping ratio on the 
MSRG performance. 

It has been found that increasing the number of sectors improves the performance 
and it reaches the steady state at no. of sectors ≥ 10 as shown in figure (9). FP will 
increase if we increase the overlapping percentage and we found that the optimal 
overlapping ratio from figure (8) and (9) is nearly 10% and more than this percentage 
it begins to perform worse. Figure (10) shows the final result of applying the proposed 
algorithm and these results are for 4 series representing four different qualities.  
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Fig. 8. Performance curves of the RG and MSRG 

 

 

Fig. 9. Three surfaces are representing the ground truth, TP and FP from upper to lower 
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Fig. 10. Final results of the whole algorithm are shown where the white and red contours are 
representing epicardium and endocardium contour 

4   Conclusion 

A new method for segmenting the myocardium in CINE SSFP MR Images has been 
proposed. The MSRG technique takes 112 ms/frame using Matlab code running on 
2.26MHz Core2Due processor. The method was tested using 100 images with various 
qualities. The results show the feasibility of the proposed method for fast and reliable 
myocardial segmentation. 
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Abstract. Echocardiography is the most used medical imaging in pediatric 
cardiology. It is a fundamental tool to analyze the major heart disease and 
abnormalities since it is non invasive and simple to use for physicians even 
when the children are wiggle. Ultrasound images are very noisy, making the 
segmentation a difficult, not accurate and time consuming task. In this work we 
propose an automatic segmentation method to extract the four heart cavity 
boundaries using a new pre-processing algorithm, based on phase symmetry. 
Experimental results using real echocardiographic images of children show 
good performance of the proposed method, providing a reliable tool to segment 
the heart walls that can be helpful for clinical practice. 

Keywords: Heart segmentation, echocardiographic images, level set, phase 
symmetry. 

1   Introduction 

Medical ultrasonography is an important tool used in newborns due to its non-
invasive and fast application. Heart disease can be diagnosed using an 
echocardiographic examination where pediatricians may visualize the whole heart to 
analyze its proportions and morphology. Nowadays the best choice is a three 
dimensional view, which helps the understanding of congenital malformations and 
defects. An important step in achieving 3D heart reconstruction is the segmentation of 
the cardiac cavities and the enclosing of their respective volumes. There are several 
ultrasound segmentation methodologies focusing on techniques developed for 
medical B-mode ultrasound images [1]. 

Echocardiographic images have multiplicative noise (mainly speckle noise), 
artifacts such as shadowing from the lungs, and attenuation which can complicate the 
analysis task. Thereby the human interactivity is needed to select the correct regions 
of interest (ROI). 

Several pre-processing methods, retaining as much as possible the clinical details, 
have been proposed to reduce the speckle noise: adaptive filtering [2], Bayesian 
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methods [3], adaptive wavelet thresholding [4] and other approaches such as the 
wiener filter [5]. It has also been shown that local phase-based methods are a good 
choice for the pre-processing of ultrasound images due to the absence of speckle or 
low contrast nature affection [6]. 

The Active Contours also known as snakes are today one of the most used tools for 
medical image boundary detection because they tend to smooth the speckle-induced 
error. Kass et al. [7] were the first to propose this method, based on an energy 
minimization scheme. This classical approach lacks the capability of splitting or 
merging, which is relevant for the detection of more than one target object in an 
image. The Geometric models, are a more flexible and convenient solution to 
overcome the restrictions given by the parametric approach. They were initially 
proposed by Caselles et al. [8] and Malladi et al. [9], also known as gradient based 
algorithms. The level set approach, an implicitly formulation of such models can 
handle complex shapes and topological changes. It was proposed by Osher et al. [10] 
and has been used intensively since then. In the literature there exist work that use 
edge based approach using a stopping criterion, region based approach [11-13] which 
takes into account the statistical information of the image intensity to minimize a 
global energy and also a combination of both, edge and region based [14-16] that 
combines edge detection with intensity homogeneity. 

The human heart is divided in two ventricles and two auricles. We can find several 
methods to segment the left ventricle, the most important heart cavity. But, the 
segmentation of all four chambers is more complex, however an essential element for 
the 3-D reconstruction. In the present work, we propose a segmentation method to 
identify simultaneously the four heart chambers. In our method, the echocardiographic 
images are pre-treated with a phase symmetry algorithm. As far as we know, it is the 
first time that this pre-processing and the level set segmentation are used in the 
simultaneous segmentation of the four cardiac cavities, in a successful way. Then, we 
implement a geometric deformable model with an alternative stopping function that 
efficiently and shortly identifies the four chambers. Finally we evaluate the performance 
of the proposed method by comparison with pediatrician’s manual segmentation.  

The outline of the paper is as follows. In Section 2, we outline the basic level set 
equations. Concepts and descriptions of our segmentation approach are presented in 
section 3. Results and discussion of the method applied to individual two dimensional 
(2D) slices of children heart, and comparison with expert’s contours are presented in 
section 4. Finally, conclusions are presented in Section 5. 

2   Mathematical Formulation 

In this section a few level set formulations are described which performance was 
evaluated in order to select the best one to be used with the proposed algorithm.  

The main purpose of level set model is to minimize a function, solving the 
corresponding partial differential equation (PDE) using as numerical method the level 
set evolution equation. The basis is to evolve a contour (or surface) implicitly by 
manipulating a higher dimensional function φ(x,t) where the zero set is used to extract 
the evolving contour }0)(|{ == xxC φ . It is based on geometric measures and the 

general curve evolution PDE in the level set framework [12] is: 
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The velocity term F has different evolutions dependent on the authors. In the 
geometric active contour model [12] F depends on an edge indicator function:  
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where P is the image gradient functional responsible for pushing the model towards 
image boundaries, attracting in that way the contour. The term ν, an outward growing 
force, provides a faster convergence [14]. F still depends on the curvature 

function )( || φ
φ

∇
∇div . 

Due to the edge based segmentation drawbacks [12], region information of the 
target objects are used in equation (3) without image gradient related terms. Based on 
region piecewise constant segmentation [11], it is possible to separate the image 
background from the image foreground. The author used the regularized Dirac 
functional (always different from zero) instead || φ∇  in equation (1) to remain close 

to the minimization problem. 
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The first two terms in equation (3) measure variations inside/outside the active 
contour, the area inside the contour is given by the third term; the length of the curve 
is measured by the fourth term. The last two are regularization terms. In medical 
images with complex backgrounds, µin and µout can fail in performance due to their 
global nature since they are based on the assumption that image intensities are 
statistically homogeneous in each region.  

The method proposed by Li et al. [13], which F is shown in equation (4) is based 
on a region-scalable fitting (RSF) energy functional that locally approximate the 
image intensities on both contour sides. The minimization of the energy is achieved 
by minimizing the integral over all center points in the image and smoothing the 
contour by penalizing its length. Note, once more, that || φ∇  in equation (1) is 

replaced by the smoothed Dirac function. 
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The term ν(div(∇φ/|∇φ|)) has a smoothing effect and is fundamental to maintain a 
regularized contour. The term (λ1e1 - λ2e2), responsible for driving the contour toward 
object boundary, is called the data fitting term. The last term, called level set 
regularization term, looks for the regularity of the function. 

Zhang et al. [14] proposed for the evolution equation a hybrid method integrating 
both boundary and region information: 
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The first term encourages the contour to enclose the regions with gray-levels greater 
than a specific value. The second term aids the contour to attach the areas with high 
image gradients. 

3   Segmentation Method 

The method described in the present work starts with a pre-processing algorithm that 
detects low-level features in ultrasound images. Then, the signed distance function is 
iteratively modified applying shrink/expansion operations according to the level set 
curvature and stopping function to obtain the zero curves. Finally, small regions are 
removed in post-processing remaining only the four contours of the heart chambers. 

3.1   Phase Symmetry 

Phase-based symmetry detection (PSD) is an illumination and contrast invariant 
measure of symmetry in an image, useable as a line or blob detector, to analyze and 
understand shapes identifying the structure of objects in the frequency space. The 
components of the signal are analyzed using log Gabor wavelet and the results point 
out each component that exhibit symmetry or partial symmetries. Six orientations 
were considered for symmetry searching in 2D images [17].  

 

   
                              (a)                                                             (b) 

Fig. 1. Echocardiographic image: (a) Original image and (b) image after pre-processing with 
phase symmetry 

As we want to delineate the heart walls, (partial) symmetry information shows 
good results in attenuating ultrasound image noise (see figure 1). 

3.2   Level Set Evolution 

The different approaches presented in section 2 were firstly implemented. The 
analysis led to conclude that additional terms for F appearing in eq. 3, 4 and 5 do not 
produce considerable improvements compared to the results of the edge based 
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formulation. Thus, considering the best results provided by the level set described by 
eq. 2, combined with its lower complexity when compared with the other three 
formulations, led us to select it as the methodology to follow in this work, according 
to the implementation in [18]. The initial level set φ0 is a signed distance function in 
the Euclidean metric where the central pixel has the largest value and decrease at each 
deviated element, ending with value zero at the four corners of image. For the 
stopping function P, we use a logarithmic variation that adjusts itself to the regions to 
be segmented and where additional terms to impose convergence or fast evolution are 
not needed; in the following form: 

)1|log(| +−=
γ
εI

P  (6) 

where, I is the image, ε the average intensity value of the image and γ the dynamic 
range of the region that we are searching for. 

3.3   Post-processing 

Due to the B-mode echocardiographic image characteristics and the level set nature, 
several boundaries are detected (see figure 2a) most of them are noise that need to be 
eliminated to put in evidence only the four cardiac cavities. The post-processing is 
necessary to discard these unwanted small regions. Since the result of the 
segmentation is a binary image, the background pixels were ignored (with zero value) 
and all contours identified as follows. For each contour an initial pixel is selected, and 
then one proceeds through its adjacent pixels until the starting pixel is reached again. 
This procedure is repeated for each contour and the respective area is calculated. The 
contours corresponding to the four biggest areas are the four heart chambers. Due to 
the often existing irregularities in the detected contours, they were smoothed by using 
morphological operations of dilation and erosion, as a final step (see figure 2b). 

 

   
                          (a)                                                                (b) 

Fig. 2. Image of the final step of our method (a) before and (b) after post-processing 

3.4   Validation 

In order to evaluate the performance of the presented method, the resulting contours 
are compared with the ones manually drawn by the expert physicians, using images 
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randomly selected. First, the interior of the two contours are white filled giving rise to 
the areas A1 and A2 illustrated in figures 3a and 3b. Then, the pixels shown in 
figure 3c are computed using the xor operation (D = A1 xor A2). The resulting pixels 
are the ones that belong to one image and do not belong to the other image. The 
number of “white” pixels in this new image D, is a measure of similarity between the 
two contours (see figure 7 and section 4 for results explanation). 

 

 
                (a)                                            (b)     (c) 

Fig. 3. The left ventricle white filled contour: (a) produced by the proposed segmentation 
method, (b) drawn by an expert physician and (c) mismatch pixels for the compared images 

4   Results and Discussion 

Several frames were randomly extracted from echocardiographic videos collected by 
two different ultrasound equipments using four children (two children for each an 
equipment). The condition to extract the selected frame is that the boundaries of the four 
heart cavities are all visible. If the region to be segmented was out of the field of view, 
the frame would be rejected and another one was randomly selected. For each child, the 
four best frames were chosen, corresponding to sixteen images of 576×720 pixels. 

The proposed method detected simultaneously the four heart chambers, and 
produced results comparable to the contours drawn by the physicians. Our method 
needs no user intervention and convergence is achieved after five iterations. Figures 4 
and 5 show two of the processed images. 

 

    
                               (a)                                                             (b) 

Fig. 4. Echocardiographic image from equipment A: (a) contour produced by the proposed 
method and (b) contour drawn by the physician 

A1 A2 D 
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                            (a)                                                                (b) 

Fig. 5. Echocardiographic image from equipment B: (a) contour produced by the proposed 
method and (b) contour drawn by the physician 

Sometimes it was not possible to get a good automatic segmentation. Figure 6 shows 
two examples illustrating the worst boundary extraction cases, for both automatic and 
manual procedure. The inadequate segmentation is due to the right ventricle’s 
moderator band that justifies the reason why the level set detects an incorrect boundary 
(see arrow in figure 6a). Figure 6b illustrates a manually drawn contour, where the 
physician considers part of the pulmonary vein as being left auricle.  

 

    
 (a)                                                               (b) 

Fig. 6. Inadequate image segmentation: (a) algorithm failure due to the presence of artifacts and 
(b) consideration of the pulmonary vein in left auricle by the physician 

The segmentation error was calculated using the validation procedure explained in 
section 3.4. The deviation from the regions drawn by the experts was calculated for 
each one of the four regions separately. The results are illustrated in figure 7. The 
numerical quantity lies between zero and one hundred. The zero value corresponds to 
the total matching of both regions, i.e., when no pixels are out of the common region. 
If the percentage is equal to one hundred, both regions do not have any pixels in the 
common region, meaning that both images are completely different. 
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Fig. 7. Box-plots: LV-left ventricle, RV-right ventricle, LA-left auricle and RA-right auricle. 
Percentage of discrepancy pixels when the reference region and the algorithm produced region 
are overlapped. 

As outlined in figure 7, the smallest error occurs for the left ventricle, where the 
mean error (median) value of the region is about 14%. The most problematic cavities 
are the right ventricle and the left auricle. This fact is essentially due to the window 
view of the heart. It is not always possible to correctly identify the cavity boundaries 
because of the noise and the attenuation in the heart nearby organs. The left auricle is 
the more problematic one, since it is hidden behind the pulmonary veins in most of 
the views. It is important to mention that the values shown in table 1 are based on 
references that also present errors and depend strongly on the physician’s 
interpretation. In fact, sometimes the physicians need to presume where to place the 
correct contour. 

5   Conclusions 

We propose a method that efficiently segments the four heart cavities in the 
echocardiographic images. A pre-processing step calculates the phase symmetry of 
the ultrasound image. Then, the level set methodology is used to locate all contours in 
the image. The final step consists of a post-processing procedure to clean the four 
cavities and delineate the contours. Our method has shown very good results in noise 
reduction verified in the ultrasound images. The geometric approach has been chosen 
for the level set evolution because the model is simple to compute and reveal good 
performance. The stopping function used, is more robust than traditional Gaussian or 
exponential functions. The proposed method is capable to segment the four heart 
chambers, which is an advantage compared to other available methods (see 
references) that only succeeded in segmenting one heart cavity. The proposed method 
needs no user intervention and convergence is achieved after few iterations. 

The positive results obtained with this work, acts as motivation to improve this 
method and/or to develop new methods that can simultaneously segment the four 
heart chambers, and to assist the clinical diagnosis in the identification of various 
congenital heart diseases: septal defects, valve defects, coarctation of the aorta. 
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Abstract. Cardiac magnetic resonance (CMR) imaging is an important 
technique for cardiac diagnosis. Measuring the scar in myocardium is important 
to cardiologists to assess the viability of the heart. Delayed enhancement (DE) 
images are acquired after about 10 minutes following injecting the patient with 
contrast agent so the infracted region appears brighter than its surroundings. A 
common method to segment the infarction from DE images is based on 
intensity Thresholding. This technique performed poorly for detecting small 
infarcts in noisy images. In this work we aim to identify the best threshold value 
to segment the infarction in case of segmentation using simple Threshold and 
propose a modified technique to improve the segmentation in noisy images. Our 
proposed technique is based on enhancing Thresholding using k-means 
clustering. We test our proposed model using computer simulated and real 
images with different contrast-to-noise ratio (CNR). We used F-score, which is 
a combined measure of the precision and sensitivity, to determine the 
performance of the proposed technique versus simple Thresholding. The results 
show that the proposed technique outperforms existing methods. 

Keywords: Cardiac Magnetic resonance, Delayed Enhancement, k-means 
clustering technique. 

1   Introduction 

Myocardial Infarction (MI) is one of the most significant causes of death; therefore, 
cardiologists are keen in finding ways to identify the infarcted tissue (fibrotic or 
scarred tissue) in the cardiac muscle in order to define the degree of cardiac viability 
to plan the proper treatment. Delayed Enhancement (DE) Magnetic Resonance (MR) 
images are considered the gold standard images to identify infarcted regions. The 
images are acquired about 10 minutes after injecting the patient with a gadolinium-
based contrast agent, such as gadolinium diethyltriaminepentaacetic acid (Gd-
DTPA)[2, 5]. The contrast perfuses the myocardium and after the 10 minutes it 
finishes withdrawal from the normal tissues in a faster rate than the withdrawing from 
the scarred tissue. Inversion recovery (IR) imaging pulse sequence produce images in 
which the residual contrast agent that remains inside the dead tissues (the infarction) 
appears brighter than its surroundings; hence, they are called DE images.  
                                                           
∗ Corresponding author. 
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There are various methods of image segmentation, such as thresholding, region 
growing, artificial neural network, deformable models as active contour, and clustering 
as k-means and ISODATA algorithms [1] that can be used. However, it is important to 
objectively determine the extent of the hyperenhanced region based on the intensity of 
the images in order to segment the scarred tissue, which is our main target in this work.  
In literature of segmenting the infarction from DE images, the most common technique 
was using simple Thresholding. The threshold value was determined based on the mean 
and the standard deviation of the intensity of healthy tissues or the blood pool [2, 3].  
Another method used is the watershed approach [4], however it is reported to be time 
consuming. 

In this work, we aim to 1) Identify, experimentally, the best threshold value to 
segment the infarction; and 2) enhance the results of threshold segmentation using k-
means where we apply the clustering technique on the resulted pixels out from simple 
Thresholding step taking in consideration the intensity and spatial information of 
those pixels. Because of the difficulty of determining the true status of the tissue other 
than pathology labs, we use numerical simulations to produce realistic DE images 
while providing a ground truth reference. We also investigate the choice of the 
thresholding level of the current methods as it seems to be ad hoc and anecdotal. 

The paper is organized as follows: Section 2 describes the DE simulator used and 
reviews the simple Thresholding method to segment infracted regions. Section 3 
reviews the K-means clustering algorithm and introduces the enhanced thresholding 
technique that is based on K-means. In section 4, we outline the experiments 
conducted; performance measures used and present the results together with a 
quantitative analysis. The paper is summarized and concluded in Section 5. 

2   Segmentation of Infarction Using Simple Thresholding 

2.1   DE Image Simulators 

A DE image simulator was built using MATLAB (The MathWorks, Inc) to 
investigate the performance of different segmentation techniques for different 
contrast-to-noise ratio (CNR)s. The simulator simulates short axis image that shows 
the tissue of left ventricle (LV), blood inside LV, and the infarction (gray zone and 
core). Fig. 1 shows a schematic drawing to simulated image. 

 

Fig. 1. Schematic drawing to simulated image shows tissue, blood, and infarcted regions 
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We set the intensity values for normal tissue, blood pool, and the infarction region 
and the dimensions of the left ventricle (LV) and the infarction. There are 3 
parameters, which specify the dimension of infarcted region: the start angle, the end 
angle, and the depth of which is the maximum radial distance between the 
endocardium, which is the inner wall or circle of LV, and a point on the boarder of 
infarcted region. Fig.2 shows simulated images containing infarction regions that 
have different depths or different start angles. 

 

Fig. 2. Simulated image (a) with infarction depth = 0.3 cm, (b) with infarction depth = 0.6 cm, 
(c) with start angle = 15o, and (d) with start angle = 100o 

Our simulated patterns to the infarction are consistent with the infarction patterns 
in [6]. We apply white Gaussian noise with different noise variance and take the 
absolute of the image to avoid existence of negative values because the real MR 
images are magnitude images and as a result to the absolute operation, the 
background, such as air, has Rayleigh distribution for the background noise model in 
cardiac MR images [7]. After applying the Gaussian noise, we have applied second 
order Butterworth low pass filter [8] to achieve partial volume effect, which appears 
as smoothing to the image.  

2.2   Contrast-to-Noise Ratio (CNR) 

In image processing, CNR is a ratio between the contrast between intensities of two 
objects and the noise in the image [14]. It’s calculated by  

 =   , 
                                               

(1) 
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where IA and IB are the average intensities of the objects A and B respectively. In our case 
the object (A) is the infarction and the object (B) is the normal tissue. σ0 is the standard 
deviation of the noise. This standard deviation is calculated by selecting a region in 
background and calculating the standard deviation of the intensities in this region. The 
division by the standard deviation of the noise is used instead of the mean intensity of the 
noise because it’s assumed theoretically that the noise has zero mean value. 

2.3   Segmentation Using Simple Threshold Technique 

The most common way to select the threshold intensity is done, after segmenting the 
LV manually, by selecting a region of interest in the normal myocardial tissue, and 
the threshold intensity (τ) is then defined as follows: 

                            =  ( ) + m ×  ,                                       (2) 

where NT is the set of intensities of normal tissue that the user selects, μ is the mean 
intensity and σ is the standard deviation of those intensities. Usually m is chosen to be 
2 [3]. In this study we aim to investigate the best multiple (m) of standard deviation 
which achieves best performance. We used F-score as our measure of performance 
(refer to section 4.1 for more elaboration on this measure). We experimented with 
different variations of m ϵ {1, 1.5, 2, 2.5, 3, 3.5, 4}. 

3   Enhanced Thresholding Technique Using K-Mean 

3.1   K-Means Clustering 

The K-means method is a simple and popular method that aims to identify groups 
(clusters) of data points in a multidimensional space [5]. The cluster consists of data 
points whose inter-point distances are small with respect to the distances to points 
outside of the cluster. The data point considered here in this work is 2-dimesional 
representing two features: the intensity of the pixel, and the distance between the 
pixel and the spatial central pixel as it will be illustrated in section 3.2. We fixed the 
number of clusters to be 2 clusters; one of them represents the infarction cluster, 
which has pixels that are close to each other and have higher intensity values than the 
second cluster, which represents noisy pixels.  

3.2   Proposed Thresholding Technique Using K-Means 

Applying the Thresholding technique as described in Eq. (2) can result in identifying 
some scattered noisy pixels as infarction. We assume that the pixels in infarction 
region are very close in addition to their high intensities with respect to surrounding 
pixels. Our proposed "enhanced threshold technique" attempts to use k-means to 
cluster pixels resulting from simple Thresholding technique. The features used for 
clustering are the distance between the pixel and the spatial central pixel and the 
intensity. We can define the set of locations of pixels that result from the 
Thresholding step (PLS) as follow 
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  , 
                                  

(3) 

and the set  that contains their corresponding intensities (PIS) is 

                                
 , 

                                    
(4) 

where IM is the DE image. The distance feature for each pixel in PLS is the Euclidian 
distance between the pixel and the spatial central pixel (SCP) of the pixels in PLS, 

                                                  
 

                                                       (5) 

where N is the number of elements in the set PLS. Now we calculate the distances set 
(Dis) as follow, 

                        
   . 

                                          (6) 

The k-means divides the feature space (intensity  and distance), which is described by 
equations 4,6 respectively into 2 clusters the first cluster represents high intensity 
pixels with small distance to the spatial central pixel (the infarction group) and the 
second cluster is normal tissue or noisy pixels. 

4   Experiments and Results 

Experiments were conducted on computer simulated and real images. In this section 
we present the results on both data sets using the simple Thresholding method and the 
enhanced K-means Thresholding technique. We also investigate results under 
different variations of m for specifying the threshold value, which is a common hurdle 
in similar segmentation technique. As follow we present performance measure (F-
score) to evaluate our experiments. Sections 4.2 and 4.3 present the results on 
simulated and real data respectively.  

4.1   F-Score 

In our work, precision and sensitivity measurements are equally important to compare 
among different segmentation methods. Therefore we used the F-score as a measurement 
that combines the precision and the sensitivity [9, 10].  F-score is the harmonic mean for 
precision and sensitivity, and it is calculated by the following formula 

                                
    ,  

                                           
(7) 

The F value always lies between zero and one. A low F value indicates that both of 
precision and sensitivity have low values or even one of them has extremely low 
value, while a high value of F indicates a good value of precision and sensitivity. 
On the other hand, precision is a ratio that indicates the robustness of the 
segmentation technique to noise. The technique that has higher precision is more 
robust to noise. The precision is calculated by                                                          (8) 
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where TP is the number of detected pixels that are truly infarcted, and FP is the 
number of pixels that are not infarcted but are detected as infarction. Sensitivity is a 
ratio that indicates how well the segmentation technique is able to detect all infarcted 
pixels. The sensitivity is calculated by 

                                                                                             (9) 

where FN is the number of infarcted pixels that are  not detected. 

4.2   Simulated Data Results 

We simulated DE images with CNR= .  The actual CNR in DE images 
using 1.5T scanners is 

g
21.4  and 32   for images obtained by a high field, 3T 

MRI scanners [12, 13]. Fig. 3 shows 2 examples of our simulated images: one at 
CNR=45.26 and the other at CNR=31.46. The simulated images have following 
parameters: image dimensions are 128x128 pixel, field of view is 10 cm, the radius of 
the epicardium, which is the outer wall or circle of LV, is 3.5 cm while that of the 
endocardium is 2.5 cm, the maximum depth of infarction is 0.3 cm, the mean 
intensities of normal tissue, gray zone, hyper enhanced region and blood pool are 20, 
150, 200 and 35, respectively. 

We segmented the simulated images using simple Thresholding technique (Eq. 2) 
at different multiples (m) of standard deviation of normal tissues’ intensities. We 
compared the F-score value for different segmentation results. Fig. 4 shows the 
relation between the CNR of the simulated images and the F-scores that were resulted 
from applying simple Thresholding technique at different multiples (m) of standard 
deviation. From the depicted results in Fig. 4 it can be seen the best combination 
between the precision and sensitivity is achieved by using threshold intensity at 3 
multiples of standard deviation, especially at the lower CNRs, which indicate very 
noisy images, because this curve (the green curve with circular markers) has the 
highest values of F-scores. It should be noted that with increased number of (m) of 
standard deviation, the simple Thresholding technique shows more robustness to 
noise. However the sensitivity decreases rapidly because the threshold value discards 
part from the infarction region due to its relative low intensity. Fig. 5 shows the 
results of segmentation of the 2 images that are in Fig. 4 for different multiples (m) of 
standard deviation. 

 

Fig. 3. Anatomy DE image (a) at CNR=45.26, (b) at CNR=31.46 
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Fig. 4. The F-scores of segmentation using simple Thresholding technique at different multiples 
(m) of standard deviation at different CNRs. The x-axis is CNR and y-axis is F-scores.  (STD: 
standard deviation). 

 

 

Fig. 5. 1st and 2nd rows show segmentation results corresponding to the 2 shown images that 
have CNR = 45.26 and 31.46 respectively. The columns from left to right are the results of 
segmentation using simple Thresholding at (a) 2, (b) 2.5, and (c) 3 multiples of standard 
deviation of the normal tissues’ intensities. 

We applied the enhanced thresholding technique using K-means with 2 features, 
which are the distance and the intensity of the pixels, to eliminate the pixels that are 
falsely classified as infarction. Fig. 6 shows the relation between the CNR and the  
F-scores that result from applying k-means after simple Thresholding step. It can be 
seen that when we applied the minimum value of threshold intensity, we enforced a  
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Fig. 6. The F-scores of the proposed technique at different (m) multiples of standard deviation 
followed at different CNR. The x-axis is CNR and y-axis is F-scores. (STD: standard deviation). 

large number of pixels to be labeled as infarctions' pixels. However, applying k-
means with 2 features on the results filtered those pixels and selected the infarctions’ 
pixels that are close to each other and have high intensity. At this point we can state 
that the proposed method has high precision while maintaining acceptable sensitivity 
values. Fig. 7 shows the results of segmentation of the 2 images that are in Fig. 4 with 
simple Thresholding technique using 1, 2, 2.5, and 3 multiple of standard deviation 
and followed by k-mean. Fig. 8 depicts the best curves from Fig. 4 and Fig. 6 in one 
graph and table 1 shows the F-scores that are corresponding to each segmentation 
method that was mentioned in Fig. 8 over different CNRs. 

 

Fig. 7. 1st and 2nd rows show segmentation results corresponding to the 2 shown images that 
have CNR = 45.26 and 31.46 respectively. The columns are the results of segmentation using 
simple Thresholding at (a) 1, (b) 2, (c) 2.5, and (d) 3 multiples of standard deviation of the 
normal tissues’ intensities and followed by k-mean. 
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Fig. 8. The best segmentation methods in terms of F-scores (STD: standard deviation) 

Table 1. Quantitative measurements to the best methods in terms of F-scores at different CNRs 

22.8
CNR 

44.6 36.3 31.5 26.9
Segmentation Method 

Si )
88.4 % 71.8 % 5  46.8 % 43.6 % 

mple Thresholding (m=2
6.8 %

Simple Thresholding (m=2.5) 
92.6 % 81 % 68.2 % 59.2 % 57 % 

Simple Thresholding (m=3) 
91.6 % 82.4 % 72.8 % 62.2 % 59 % 

En uehanced Thresholding techniq
using k-means (m=1) 

88.6 % 83.2 % 77.6 % 73 % 70 % 
 

4.3   Results on Real Data 

We applied the best four methods, which are summarized in Table 1 and Fig. 8, to 
segment the infarcted region in real images. The ground truth was provided by experts 
who selected the infarction manually. Fig. 9 shows the real images that we used. The 
short axis images show the LV and right atrium (RA) with infarction in the wall of  
the LV. The white arrow points to the infarcted region. The real images have the 
following specifications: field of view 15.6 cm × 19.2 cm, slice thickness = 8 mm, the 
image dimensions are 192 pixels × 156 pixels for each case. The first and third cases 
were acquired by Siemens MR modality 1.5T while the second case was acquired by 
Siemens MR modality 3T. Fig. 10 shows the segmentation results of applying the four 
segmentation methods on the 3 cases. 

The quantitative measurements of the results in terms of sensitivity, precision and 
the corresponding F-scores are summarized in table 2. Results of table 2 emphasize 
again that applying k-means enhances the precision of the resulting images in 
contrast to simple Thresholding significantly. However, the technique may affect the 
sensitivity. 
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                                  Case 1                         Case 2                      Case 3 

Fig. 9. Real images show the infarction in LV 

 

                         (a)                     (b)                      (c)                  (d) 

Fig. 10. Results of segmentation using (a) threshold intensity at 1 standard deviation followed 
by k-mean, simple Thresholding at (b) 2, (c) 2.5, and (d) 3 multiples of standard deviation 

Table 2. The quantitative measurements of the applied methods in terms of sensitivity, precision 
and F-core 

 

 Threshold 
at 1 STD 

followed by 
k-mean 

Threshold 
at 2 

multiples of 
STD 

Threshold 
at 2.5 

multiples of 
STD 

Threshold 
at 3 

multiples of 
STD 

Sensitivity 75 % 87.5 % 87.5 % 87.5 % 
Precision 83.3 % 42.16 % 47.29 % 57.37 % 

C
as

e 
1 

F-score 79 % 56.9 % 61.4 % 69.3 % 
Sensitivity 89.23 % 100 % 100 % 100 % 
Precision 72.5 % 21.67 % 24.71 % 28.14 % 

C
as

e 
2 

F-score 80 % 35.6 % 39.6 % 43.9 % 
Sensitivity 73.25 % 100 % 100 % 100 % 
Precision 100 % 56.58 % 59.07 % 60.32 % 

C
as

e 
3 

F-score 84.56 % 72.27 % 74.27 % 75.27 % 



118 M.K. Metwally, N. El-Gayar, and N.F. Osman 

5   Summary and Conclusions  

In this work we aimed to identify the best threshold value to detect the infarction in 
case of segmentation using simple Thresholding. We proposed a modified technique 
to improve the segmentation of noisy images. Our proposed technique was based on 
enhancing Thresholding using K-means clustering. We tested our proposed model 
using computer-simulated and real images with various contrast-to-noise ratios 
(CNR). We used F-score - a combined measure of precision and sensitivity - to 
determine the performance of the proposed technique versus simple Thresholding. 
The results showed that the proposed technique outperforms existing methods with 
respect to the precision measure. It was shown that, in simple Thresholding, µ+3σ 
(the mean intensity of normal tissue plus 3 multiples of standard deviation of the 
normal tissues’ intensities) is a better choice of the threshold to detect the infarction in 
DE images. This conclusion was found to be consistent with that in [2]. On the other 
hand we showed that the proposed technique - which applied a µ+σ threshold (mean 
plus one standard deviation of normal tissue’s intensities) followed by K-means on 
the feature space that encompasses the pixel intensities and their distances from their 
spacial central pixel results in better performance in terms of F-score when compared 
to the results of the common simple Thresholding technique. The precision showed 
higher contribution to the F-score than to the sensitivity due to the strong effect of 
spatial information which means that the technique is more robust to noise than the 
current simple Thresholding technique. For future work, we intend to investigate 
more clustering techniques for segmentation of infarction in DE images. We aim at 
using cluster validity measures to validate and enhance clustering results. Also, it is 
interesting to investigate, for any studied techniques, what the minimum detectable 
size of infarctions is. 
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Abstract. This paper presents a scheme for extracting carotid artery contours 
from ultrasound images using a modified active contour model. The scheme 
uses a single seed point as an input. A complex diffusion filter is used to 
provide a robust estimation of the image’s edge map. This edge map is used to 
define the external energy function for the proposed active contour. The scheme 
produces accurate results compared to the gold standard images. Moreover, the 
proposed snake model was compared to two snake models found in literature. 
While the first model uses Canny edge detector, the second employs the Sobel 
operator to calculate the image’s edge map. Experimental results over a set of 
40 images show that the proposed model outperforms the other two models. 
Finally, sensitivity analysis over the entire set of test images revealed that the 
scheme is insensitive to the seed point location, as long as it is located inside 
the artery area. 

Keywords: Segmentation, parametric active contours, complex diffusion, 
carotid artery lumen, ultrasound image. 

1   Introduction 

Vascular plaque, a consequence of atherosclerosis, results in an accumulation of 
lipids, cholesterol, smooth muscle cells, calcifications and other tissues within the 
arterial wall. It reduces the blood flow within the artery and may completely block it. 
As plaque layers build up, it can become either stable or unstable. Unstable plaque 
layers in a carotid artery can be a life-threatening condition. If a plaque ruptures, 
small solid components (emboli) from the plaque may drift with the blood stream into 
the brain. This may cause a stroke. Early detection of unstable plaque plays an 
important role in preventing serious strokes.  

Currently, carotid angiography is the standard diagnostic technique to detect 
carotid artery stenosis and the plaque morphology on artery walls. This technique 
involves injecting patients with an X-ray dye. Then, the carotid artery is examined 
using X-ray imaging. However, carotid angiography is an invasive technique. It is 
uncomfortable for patients and has some risk factors, including allergic reaction to the 
injected dye, renal failure, the exposure to ionic radiation, as well as arterial puncture 
site complications, e.g., pseudoaneurysm and arteriovenous fistula formation. 
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Ultrasound imaging provides an attractive tool for carotid artery examination. The 
main drawback of ultrasound imaging is the poor quality of the produced images. It 
takes considerable effort from clinicians to assess plaque build-up accurately. 
Furthermore, manual extraction of carotid artery contours generates a result that is not 
reproducible. Hence, a computer aided diagnostic (CAD) technique for segmenting 
carotid artery contours is highly needed. 

Abolmaesumi et al. [ 1] proposed a scheme for tracking the centre and the walls of 
the carotid artery in real-time using an improved star algorithm with temporal and 
spatial Kalman filters. The scheme depends on the estimation of the Kalman filter’s 
weight factors, which are estimated from the probability distribution function of the 
boundary points. In practice, this distribution is usually unknown. 

Hamou et al. [ 2] proposed a segmentation scheme for carotid artery ultrasound 
images based on Canny edge detector [ 3]. This scheme has shortcomings dealing with 
noisy images, leading to contour bleeding in such cases. 

Da-Chuan et al. [ 4] introduced a dual dynamic programming method to detect 
arterial wall in ultrasound images. Some progress has been achieved in reducing the 
sensitivity to speckle noise. However, the computational complexity of the proposed 
method is questionable. Moreover, it requires the user to manually select the region of 
interest for further processing. 

Abdel-Dayem et al. proposed many schemes for segmenting carotid artery 
ultrasound images, including the watershed based segmentation  [ 5][ 6], fuzzy region 
growing based segmentation [ 7][ 8], fuzzy c-means based segmentation [ 9], graph-
based segmentation [ 10], and complex diffusion based segmentation [ 11].These 
schemes provide satisfactory performance (overlap with the clinician-segmented 
images) in most cases. 

All methods, described so far, may fail to produce accurate contours in some 
challenging cases (images with shadowing effects, high noise levels, partially 
occluded or incomplete contours). This performance pitfall hinders the applicability 
of the proposed schemes in real clinical trials. Active contours (snakes) are good 
candidates, if properly tuned, to overcome some of these shortcomings particularly, 
the incomplete contour problem. 

Active contours [ 12, 13, 14, 15] are widely used in various computer vision 
applications to locate object boundaries. They are divided into two main categories, 
according to their representation and implementation: the parametric and the level set 
active contours. Both categories suffer the following shortcomings: 

a) the difficulties encountered in progressing into boundary concavities 
b) the sensitivity to contour initialization 
c) poor convergence to object boundaries when dealing with noisy images. 

The first is usually insignificant in the medical arena, as biological objects usually 
exhibit smooth structure, with no deep cavities. Whereas, estimating accurate initial 
contours is a tedious and time consuming task for clinicians, who prefer systems with 
minimal inputs. Finally, the presence of high level of speckle noise in ultrasound 
images severely degrades the performance of active contour models on extracting 
carotid artery boundaries, as noise-corrupted pixels may influence the contour 
progression. 
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Mao et al. [ 16] proposed a scheme for extracting carotid artery walls from 
ultrasound images using a deformable model. The model’s external force is defined in 
terms of the gradient image, which is highly influenced by the noise level within the 
original image. As a result, this scheme is susceptible to poor convergence to artery 
boundaries. 

Da-chuan et al. [ 17] proposed a modified snake model for automatic detection of 
intimal and adventitial layers of the common carotid artery wall in ultrasound images 
using a snake model. The proposed model modified the Cohen’s snake [ 18] by adding 
spatial criteria to obtain the contour with a global minimum cost function. However, 
this scheme has the same pitfall as [ 16], where the gradient image is used to calculate 
the model’s external energy. Moreover, the computational time for the proposed 
model was significantly high. 

Based on their initial contribution in [ 2], Hamou et al. [ 19] used Canny edge 
detector [ 3] to provide more robust estimation of the image’s edge map. Then, a 
parametric active contour model is used to extract the artery boundaries. Due to the 
higher accuracy of Canny edge detector, compared to simply using the gradient image 
as in [ 16] and [ 17], some improvements have been achieved. Similar to [ 2], Canny 
edge detector generates a lot of false edges which influence the progression of the 
active contour. Moreover, the scheme requires the user to provide an accurate initial 
contour, which limits the use of the proposed scheme in clinical trials. 

This paper proposes a snake-based scheme to extract carotid artery contours from 
ultrasound images. The proposed scheme overcomes most of the shortcomings of the 
previous work in [ 16, 17, and  19]. First, a single seed point is needed to initialize the 
snake. This saves considerable clinician time and effort, making the system more 
attractive for real clinical applications. Second, a robust edge map estimator is used to 
define the snake’s external force. This edge map estimator is based on our previous 
contribution [ 11]. As a result, the influence of noisy pixels and false edges on the 
snake’s progression is diminished.  

The rest of this paper is organized as follows. Section  2 describes the proposed 
scheme in details. Section  3 and Section  4 present the experimental setup and the 
obtained results, respectively. Finally, Section  5 offers the conclusions of this paper. 

2   The Proposed Solution 

This paper presents a two-stage scheme to extract carotid artery boundaries using 
ultrasound images. The former stage employs a complex diffusion filter to produce a 
robust estimation of the artery boundary. Then, the latter stage utilizes a snake model, 
where the snake’s external energy function is measured by the Euclidean distance 
map of the extracted boundary. In the following subsections, a detailed description of 
each stage is introduced. 

2.1   Robust Estimation of Artery Boundary 

The diffusion equation (Equation 1) is widely used to model various physical 
phenomena such as wave propagation, gas dynamics, heat transfer, and mass transfer. 
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where, u is the concentration of matter (e.g. mass or heat,..etc.), and D is the 
diffusivity (describes how fast or slow an object diffuses).  

Diffusion processes are widely used in various image processing and computer 
vision applications, such as image de-noising, smoothing, segmentation, optical flow 
and stereo vision [ 20, 21, 22]. In image processing context, pixel intensity can be 
considered as the concentration of mass (or heat) which diffuses following the 
diffusion equation (Equation 1). This leads to various types of diffusion filters based 
on the diffusivity D. The evolution of the original image uo(x,y) with respect to the 
time parameter t into a steady state solution uss(x,y) is equivalent to the filtering 
process. 

Various research studies [ 23, 24, 25, 26, 27] introduced different classes of diffusion 
filters, based on the selection of the diffusivity function D. Among these studies is the 
pioneer model of nonlinear diffusion, introduced by Perona and Malik [ 23]. In this 
model, the diffusivity function is reduced at those locations having a larger likelihood 
to be edges. This likelihood can be measured by u. Perona and Malik [ 23] 
demonstrated that edge detection based on their nonlinear diffusion model 
outperforms Canny edge detector [ 3]. 

Gilboa et al. [ 28] proposed a complex shock filter based on a complex diffusion 
equation. This equation can be viewed as a generalization of the traditional real-
valued one. They followed the Perona-Malik model [ 23] with the adoption of the 
complex time τ: 

te j ×= θτ  (2) 

where )
2

,
2

(
ππθ −∈ , 1−=j , and t is the time parameter. 

Furthermore, Gilboa et al. [ 28] mathematically proved that the imaginary part of 
the complex diffusion coefficient approximates a smoothed second derivative of the 
image as the parameter θ (Equation 2) approaches zero. Hence, it can be used as an 
efficient edge detector in noisy images. They demonstrated that edge detection by 
their proposed complex diffusion is superior to the real-valued diffusion, proposed by 
Perona and Malik [ 23]. The detailed proof is outside the scope if this paper. Interested 
readers may consult Gilboa et al. [ 28] for more details. 

In this stage, a complex shock filter [ 28] is used to provide a robust estimation of 
the image’s edge map. Then, the user is asked to select a seed point within the artery 
area to focus on the region of interest (ROI) and to neglect all other edges. The 
contour enclosing the seed point will be used as a robust estimation of the artery 
contour. Please, note that the same seed point will be used during the next stage to 
initialize a snake. Finally, the distance transform is used to compute the Euclidean 
distance map relative to the extracted edge map. This map represents the Euclidean 
distance between each pixel and the nearest contour pixel. This map is used to define 
the external energy for the proposed snake model. 

It is worth mentioning, that employing a complex diffusion filter to extract carotid 
artery contours was explained in more details and was experimentally validated in our 
previous contribution [ 11]. 
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2.2   Snake Segmentation 

2.2.1   Initialization 
As discussed in the introduction section, introducing a system with minimal clinician 
interaction is a major design decision in this scheme. As a result, only a single seed 
point is required from the user to initialize the snake. The scheme uses the same seed 
point, specified by the user during the first stage. From this seed point, a circle with 
radius r is automatically generated and used as an initial snake. Then, this initial 
snake evolves to minimize the snake’s energy function. The value of r was set to 30 
pixels, which is believed to represent a close approximation of the size of a typical 
carotid artery. The scheme’s sensitivity to the seed point selection was experimentally 
studied, and the results are reported in Section  4.1. 

2.2.2   Snake Model 
A snake is a parametric curve X(s) = [x(s), y(s)], where the parameter s ∈ [0,1]. It 
moves through the spatial domain of an image to minimize a specified energy 
function. This energy function is defined in terms of both internal and external energy 
functions: 
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where Eint and Eext are the internal and external energy functions, respectively. 
The objective of the internal energy function Eint is to force the snake to have a 

smooth shape. As a result, the internal energy is defined as a function of both the 
snake’s tension and rigidity: 

22
)('')(' sXsXEint βα +=  (4) 

where α and β are weighting parameters that control the snake’s tension and rigidity, 
respectively. X ′and X ″ are the first and second derivatives of X(s) with respect to the 
parameter s. 

The external energy function Eext should be defined in terms of the image features 
under consideration. In our model, Eext is defined as: 

[ ]2))(( sXdistEext γ=  (5) 

where γ  is a weighting parameter, and dist(X(s)) is the Euclidean distance at point 
X(s), which is computed during the first stage of the proposed scheme (Section  2.1). 

We used a snake model with the internal and external energy functions defined in 
Equation 4 and Equation 5, respectively. The snake evolves from its initial 
configuration (Section  2.2.1) to minimize the total energy, by balancing internal and 
external energy functions on each vertex. The weighting parametersα, β and γ  have 
great influence on the snake’s convergence to the desired boundary. The values of 
these parameters were adjusted through a training process, which is explained in 
section  3.2. 
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3   Experimental Setup 

Our proposed scheme was tested using a set of 40 B-mode ultrasound images. These 
images were obtained using ultrasound acquisition system (Ultramark 9 HDI US 
machine and L10-5 linear array transducer) and were digitized with a video frame 
grabber. These images were carefully inspected by an experienced clinician and artery 
contours were manually highlighted to represent gold standard images. These gold 
standard images are used to validate the results produced by our proposed scheme. 

3.1   Objective Analysis Metric 

To compare the output of the proposed scheme to the gold standard images, we define 
the overlap ratio as: 
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ratioOverlap

++
= , (6) 

Fig. 1 shows the definition of the true positive (TP), false positive (FP), true negative 
(TN) and false negative (FN) terms. 
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Fig. 1. The definition of the true positive (TP), false positive (FP), true negative (TN) and false 
negative (FN) terms, used to calculate the overlap ratio 

3.2   Parameter Tuning 

As explained in Section  2.2.2, the parameters α, β and γ  of Equation 4 and 
Equation 5 have great influence on the snake’s convergence to the desired boundary. 
To adjust theses parameters, a training set of 10 B-mode ultrasound images were 
collected and were manually segmented. This training set is different from the 40 
images, used to evaluate the performance of the proposed scheme. This is to ensure 
independence between training and testing data. Then, the unit interval [0,1] is 
discretized into sub-intervals of length 0.1. The scheme was tested for all possible 
combinations of the parameters α, β and γ  in the discrete range. The average 
percentage overlap ratio (Equation 6) with the gold standard images was calculated 
for every combination. Finally, the parameters α, β and γ  are set to the values that 
maximize the average overlap ratio over the entire training set. The training process 
revealed that, setting the parameters α, β and γ  to 1, 0.9, and 0.2, respectively, 
produces the maximum average overlap ratio over the entire training set. 
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(e) (f) 

Fig. 2. Experimental results: (a) Original ultrasound image; (b) The edge map, produced by the 
first stage of the proposed scheme “Section  2.1 - Robust Estimation of Artery Boundary”; (c)
The Euclidean distance map relative to the extracted edge map shown in (b); (d) The initial 
snake; (e) The final out of the proposed scheme; (f) The clinician segmented image (gold 
standard image) 

4   Results 

We used the image shown in Fig. 2(a) to demonstrate the output produced by one of 
our experiments. This image is a typical carotid artery ultrasound image. 

Fig. 2(b) shows the edge map, produced by the first stage of the proposed scheme 
(Section  2.1 - Robust Estimation of Artery Boundary). Whereas, Fig. 2(c) shows the 
Euclidean distance map relative to the extracted edge map. This map represents the 
Euclidean distance between each pixel and the nearest contour pixel. 

Fig. 2(d) shows the initial snake, defined as a circle, where a single seed point is 
required to represent the centre of the circle. Fig. 2(e) shows the final output of the 
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proposed scheme after the snake’s convergence. Comparing Fig. 2(e) to the gold 
standard image (Fig. 2(f)) shows that the proposed scheme accurately highlights the 
artery lumen. 

The performance of the proposed system over the entire set of 40 images was 
objectively compared to the gold standard images, using the overlap ratio 
(Equation 6) as a performance metric. On average, our proposed scheme produces an 
overlap ratio of 0.766. 

Two further experiments were conducted to evaluate the improvement achieved by 
the modified external energy function, employed in the proposed scheme. The two 
experiments used the entire 40 test images (same data set), the same seed point and 
snake initialization. However, the first experiment used Canny edge detector [ 3] to 
calculate the image’s edge map. Whereas, Sobel operator was employed in the second 
experiment. The two experiments produces overlap ratios of 0.654 and 0.578, 
respectively; see Table 1 and Fig. 3 for detailed comparison results. This comparison 
shows that our proposed snake model surpasses the traditional snake models, under 
the same testing conditions. 

Table 1. The performance measure of our experiments over the entire set of images 

Proposed Scheme Snake with Canny Snake with Sobel 

Average overlap 
ratio 

0.766 0.654 0.578 

Standard deviation 0.113 0.179 0.217 

95% confidence 
interval 

[0.735, 0.797] [0.605, 0.704] [0.517, 0.638] 

4.1   Sensitivity Analysis 

Since, the seed point represents the only input from the user, it is crucial to analyze 
the proposed scheme sensitivity to the seed point selection. For this analysis, we used 
the entire 40 test images. For each image, four seed points were randomly selected 
inside the artery. The artery region was segmented for each selected seed point. Then, 
these segmented binary images were added up to produce a grayscale image that 
demonstrates the overlapping areas between segmented regions generated by the four 
seed points. Finally, the percentage overlap between segmented areas (the number of 
pixels having a value of 4 over all non-zero pixels) was calculated.  

The statistical analysis over the entire 40 test images revealed that, on average, the 
proposed scheme achieved a percentage overlap equal to 94.9%. Hence, we can 
conclude that the proposed scheme is insensitive to the selected seed point, as long as 
it is located inside the artery area. Note that, selecting a seed point within the artery 
area is a trivial process even for ordinary user. Hence, the proposed scheme provides 
accurate results which are independent of the clinician’s level of expertise. 
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Fig. 3. The 95% confidence interval of the overlap produced by the proposed scheme, snake 
model with edge map extracted by Canny edge detector, and snake model with edge map 
extracted by Sobel operator 

5   Conclusion 

In this paper, a modified snake model is introduced to extract carotid artery contours 
from ultrasound images. The snake’s energy functions are designed to force the snake 
to converge to a robust edge map, which is produced by employing complex 
diffusion-based filtering scheme. Experimental results demonstrate the efficiency of 
the proposed scheme in producing accurate artery contours. Furthermore, our 
modified snake was experimentally compared to two different snake models, found in 
literature. The two models force the snake to converge to the image’s edge map which 
is produced by either Sobel or Canny edge detector. Comparative studies, using 
identical testing conditions, show that incorporating the complex diffusion filtering 
into our modified snake model outperforms the other two snake models. Finally, 
sensitivity analysis over the entire set of test images revealed that the scheme is 
insensitive to the seed point location, as long as it is located inside the artery area. 
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Abstract. In this work we present a method for an automated classification of en-
doscopic images according to the pit pattern classification scheme. Images taken
during colonoscopy are transformed using an extended and rotation invariant ver-
sion of the Local Binary Patterns operator (LBP). The result of the transforms
is then used to extract polygons from the images. Based on these polygons we
compute the regularity of the polygon positions by using the Delaunay triangu-
lation and constructing histograms from the edge lengths of the Delaunay trian-
gles. Using these histograms, the classification is carried out by employing the
k-nearest-neighbors (k-NN) classifier in conjunction with the histogram intersec-
tion distance metric.

While, compared to previously published results, the performance of the pro-
posed approach is lower, the results achieved are yet promising and show that a
pit pattern classification is feasible by using the proposed system.

1 Introduction

Today, the third most common malignant disease in western countries is colon cancer.
Therefore a regular colon examination is recommended, especially for people at an age
of 50 years and older. Currently the gold standard for colon examination is colonoscopy,
which is performed by using a colonoscope. Modern colonoscopes are able to take
pictures from inside the colon which allows to obtain images for a computer-assisted
analysis with the goal of detecting tumorous lesions. To get highly detailed images a
magnifying endoscope is used [1]. Such an endoscope represents a significant advance
in colonoscopy as it provides images which are up to 150-fold magnified, thus uncov-
ering the fine surface structure of the mucosa as well as small lesions.

In Sect. 2 we review the classification of pit patterns of the colonic mucosa. Sec-
tion 3 describes the feature extraction process, including image transformation using
a LBP extension, polygon extraction, Delaunay-based feature computation, histogram
creation, and the classification. Experimental results and configuration details of the
classification system proposed are given in Sect. 4. Section 5 concludes the paper.

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part II, LNCS 6112, pp. 131–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Pit Pattern Classification

Polyps of the colon are a frequent finding and are usually divided into metaplastic,
adenomatous, and malignant. As resection of all polyps is time-consuming, it is im-
perative that those polyps which warrant endoscopic resection can be distinguished:
polypectomy of metaplastic lesions is unnecessary and removal of invasive cancer may
be hazardous. For these reasons, assessing the malignant potential of lesions at the time
of colonoscopy is important.

The most commonly used classification system to distinguish between non-neoplastic
and neoplastic lesions in the colon is the pit pattern classification, originally reported by
Kudo et al. [2]. This system allows to differentiate between normal mucosa, hyperplas-
tic lesions (non-neoplastic), adenomas (a pre-malignant condition), and malignant can-
cer based on the visual pattern of the mucosal surface. Thus this classification scheme is
a convenient tool to decide which lesions need not, which should, and which most likely
can not be removed endoscopically. The mucosal pattern as seen after dye staining and
by using magnification endoscopy shows a high agreement with the histopathologic di-
agnosis. Due to the visual nature of this classification it is also a convenient choice for
an automated image classification.

As illustrated in Fig. 1(a)-(f) in this classification scheme exist five main types ac-
cording to the mucosal surface of the colon. Type III is divided into types III-S and
III-L, designating the size of the pit structure. It has been suggested that type I and II
pattern are characteristic of non-neoplastic lesions (benign and non-tumorous), type III
and IV are found on adenomatous polyps, and type V are strongly suggestive of invasive
carcinoma, thus highly indicative for cancer.

Furthermore lesions of type I and II can be grouped into non-neoplastic lesions and
types III to V can be grouped into neoplastic lesions. This allows a grouping of lesions
into two classes, which is more relevant in clinical practice as indicated in a study by
Kato et al. [3].

(a) I (b) II (c) III-S (d) III-L (e) IV (f) V

(g) I (h) II (i) III-S (j) III-L (k) IV (l) V

Fig. 1. Pit pattern classification according to Kudo et al. (a)-(f) Schematically and (g)-(l) example
images for the respective classes taken from the available image database
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Using a magnifying colonoscope together with indigo carmine dye spraying, the
mucosal crypt pattern on the surface of colonic lesions can be observed [4]. Several
studies found a good correlation between the mucosal pit pattern and the histological
findings, where especially techniques using magnifying colonoscopes led to excellent
results [3].

From Fig. 1 we notice that pit pattern types I to IV can be characterized fairly well,
whereas type V is a composition of unstructured pits. At a first glance this classifi-
cation scheme seems to be straightforward and easy to be applied. But it needs some
experience and exercising to achieve fairly good results [5].

As evident from Fig. 1(g)-(l), pit pattern types I and II are regular to some extent and
the pits are distributed more tightly. Types III to V in contrast are more irregular in terms
of the pit distribution, showing a lower pit density or even a complete absence of pits.
These observations are the basis for the method presented in the following sections.

3 Proposed Approach

In the past we have already shown that an automated classification of endoscopic images
based on the pit pattern scheme is feasible. But in our previous work we mainly focused
on general purpose features describing texture properties (e.g. [6,7,8]), dealing with the
two-classes case as well as with the six-classes case. By contrast, the method proposed
in this work aims at distinguishing between non-neoplastic and neoplastic images only.
It is furthermore based on high level features obtained by measuring the density of pits
visible within the images. This is inspired by the fact that the pit distributions in non-
neoplastic images are more dense than in case of the neoplastic ones, as already pointed
out above. An overview of the feature extraction process is shown in Fig. 2.

Edge-lengths
histogram (1D) RLBPAR

Operator (9x9)

Thresholding Pre-processing
of binary image

Edge detection Post-processing
of edge map

Computation of
polygon centers

Delaunay
triangulation

Color
channel G

Edge-lengths
histogram (1D) G

Edge-lengths
histogram (1D) B

Color
channel R

Color
channel B

Fig. 2. This figure illustrates the different parts of the feature extraction process. The parts within
the gray box are carried out for each color channel under consideration separately.

3.1 Local Binary Patterns

Prior to any further processing all color channels of the input images are transformed
separately using a modified Local Binary Patterns operator (LBP) based on block aver-
aging which we already used successfully to classify endoscopic images [8]. In contrast
to the standard operator, which is described in more detail in [9], we compute the aver-
age over neighboring blocks and compare the average of the center block against the av-
erages of the neighboring blocks to obtain the LBP number. By adjusting the block size
used it is possible to find a trade-off between noise-suppression (higher block widths)
and detail preservation (smaller block widths). Throughout this work we used a rather



134 M. Häfner et al.

high block width of 9 pixels to suppress noise which otherwise would have had a nega-
tive influence on the subsequent edge detection.

The motivation behind extracting edges from LBP transformed channels is that the
pit structures we try to locate can be identified more easily since pits usually are sur-
rounded by brighter areas. In terms of LBP searching for pits thus corresponds to locat-
ing LBP numbers above some certain threshold. Another advantage of the LBP operator
is that it is known to be invariant against global illumination changes in images.

Furthermore, we achieve rotation invariance by circularly rotating each LBP number
obtained until the minimum is reached [10]. This way we are able to cope with changes
in the direction of illumination across different images. In the remaining part of this
work this combination of averaged LBP blocks and rotation invariance is abbreviated
with LBPAR.

3.2 Polygon Extraction

In order to extract polygons from a LBP channel we first apply a global thresholding.
The choice for the threshold used throughout this work is motivated by the appearance
of an ideal pit (t = 127). It is chosen such that at least 7 of the 8 neighbor block averages
must be higher than the center block average for a pixel to be assumed to be part of a
pit.

Prior to edge detection we pre-process the binary image by using a set of six differ-
ent morphological operators (OC, OB, OI , OH , OM , and OR). First, we apply a closing
(OC) - using a disk of radius 1 as structuring element - to remove small “holes”. The
small radius has been chosen to not disturb the shape of the pits too much but to only
fill small holes and cancel out small notches eventually present along the borders of
pit areas. Then we bridge (OB) unconnected pixels by setting pixels to white which lie
between two unconnected, white neighbors (using a 3×3-neighborhood). Furthermore
we remove isolated pixels (OI) followed by setting black pixels surrounded by white
ones to white (OH). Finally, we cancel out pixels which have less than five white neigh-
bors if only half of the pixels in the 3× 3-neighborhood or less are set to white (OM).
This step helps to minimize the number of small spurs which might eventually have
endured the previous steps.

To extract edges from the resulting binary image we use the Canny edge detector
without multi-resolution feature synthesis [11] which may produce polygons having
a boundary with gaps. Thus we post-process the edges by using the morphological
operators from above, except for the closing (in the same order). To obtain the final
edge map we remove all interior pixels of the white areas (OR).

This processing of the binary map and edges ensures that we end up with closed
polygons only, which are smooth and free of unwanted artifacts. We get only closed
polygons since when applying the filling of closed areas (OH ) polygons previously not
closed are not affected (not filled) as can be seen in Fig. 3(e). By subsequently applying
OM these polygons are removed, which can be noticed from Fig. 3(f).

Apart from that we see from Fig. 3(a) that some images contain ridges which can
be considered to be artifacts. By applying the post-processing steps to the edges ridges
touching the image border are removed, thus reducing the number of these artifacts.



Classification of Endoscopic Images 135

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Some steps from the process of obtaining polygons from a color channel of a pit pattern
type I image (a) the red color channel of the input image, (b) the according LBPAR transformed
image, (c) the result of thresholding, (d) result of the Canny edge detector, (e) the pits (white
and filled) and the parts which get discarded by the edge map post-processing (not filled), (f) the
final edge map, (g) the respective Delaunay triangulation, and (h) the triangulation with the pits
overlayed to the original color channel

After tracing the edges of the connected components we determine the polygon cen-
ter for each polygon as the mean position of all edge pixels belonging to the polygon.
Some of these steps are illustrated in Fig. 3(a)-(f).

3.3 Delaunay Triangulation

To measure the density of pits within an image we aim at constructing a mesh from the
previously extracted polygon centers. Then we deduce the density of the pits from the
edge lengths within the mesh. For this purpose we employ the Delaunay triangulation
based on the Quickhull algorithm [12].

This algorithm basically transforms the 2D points to 3D (lifted to a paraboloid),
computes the convex hull in 3D, and projects the lower part of the hull back to 2D
to obtain the triangulation. This way we get a set of non-overlapping triangles with
the minimum of the inner angles maximized. An example triangulation for a pit type I
image is shown in Fig. 3(g).

Figure 4 shows sample images from our image database along with the respective
Delaunay triangulations and the detected pits. From this figure we notice that non-
neoplastic images exhibit a higher density with respect to the arrangement of the de-
tected pits. But we also notice that in case of the non-neoplastic images ridges have a
negative influence on this density in some parts of the images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4. Results of the Delaunay triangulation along with the detected pits. (a)-(c) example images
from the non-neoplastic class (red channel), (d)-(f) neoplastic images, and (g)-(l) the according
Delaunay triangulations along with the detected pits.

3.4 Histogram Creation and Classification

Based on the triangulations we create 1-dimensional histograms from the edge lengths
of all triangles for each color channel of an image separately. To concentrate on triangles
not located on the border of the triangulation we iterate over all triangles and use each
edge of each triangle to update the histogram. This way edges shared by two triangles
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Fig. 5. (a) Relative occurrences of the different edge lengths in our image database and (b) the
relative occurrences of the different number of detected pits across all images

contribute to the histogram twice, while edges located on the border of the triangulation
result are used only once.

If only a few pits are detected within an image the respective edge lengths will be
rather high. For a high number of detected pits (higher density) the distances between
them will get smaller, hence lowering the respective Delaunay edge lengths too.

Since the number of edges between images most likely will vary we normalize each
histogram such that the histogram bins sum up to 1. This makes the histograms compa-
rable during the classification process. Moreover, since all our images have a dimension
of 256× 256 pixels the upper limit for an edge length is

√
2562 + 2562 ≈ 362 (corre-

sponding diagonal). But it is very unlikely that pits are only detected in the image cor-
ners. This implies that it is also unlikely that the maximum possible edge length occurs.
Apart from that, the more pits we detect the more likely it is that the distances between
neighboring pits get smaller.

The images used throughout our experiments show a maximum edge length of ap-
proximately 249, but most edge lengths lie between 10 and 100, as can be observed from
Fig. 5(a). We also detect a rather high number of pits in each of our images (between
35 and 130), as can be seen from Fig. 5(b).

Based on these observations we consider the range for the edge lengths between 1
and 256 as a reasonable choice and therefore use this range throughout our experiments.

For the classification of unknown images we employ the k-NN classifier along with
the histogram intersection distance metric, defined as

d(Hi,Hj) =
B

∑
k=1

min
(
Hi,k,Hj,k

)
, (1)

where Hi and Hj are two normalized histograms, B denotes the number of bins used in
our histograms, and Hi,k and Hj,k represent the value of the k-th bin of histogram Hi and
Hj, respectively. We also carried out experiments using the Euclidean distance metric
and the Bhattacharyya distance metric but the histogram intersection always yielded a
slightly better classification performance.

To combine multiple color channels we compute the distances for each color channel
separately and multiply them to obtain the final distance D. This can be formulated as
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D(Ia, Ib) =
C

∏
i=1

d
(

H(a)
i ,H(b)

i

)
, (2)

where Ia and Ib denote two images, C is the number of color channels considered for

combination, and H(a)
i and H(b)

i represent the histograms for the i-th color channel con-
sidered of image Ia and Ib, respectively. There are also other possibilities for a combi-
nation, for example summing up the distances instead of multiplying them by replacing
the product in (2) by a sum. But since the product is more tolerant against outliers - one
similar color channel in terms of histogram distance leads to a very small total distance
between two images already - we favor the product instead of a sum.

4 Experiments

4.1 Settings

The image database used throughout our experiments consists of 627 images acquired
between the years 2005 and 2008 at the Department of Gastroenterology and Hepatol-
ogy (Medical University of Vienna) using a zoom-colonoscope (Olympus Evis Exera
CF-Q160ZI/L) with a magnification factor set to 150.

Lesions found during colonoscopy have been examined after application of dye-
spraying with indigocarmine as routinely performed in colonoscopy. Biopsies or mu-
cosal resection have been performed in order to get a histopathological diagnosis. Biop-
sies have been taken from type I, II, and type V lesions, as those lesions need not to
be removed or cannot be removed endoscopically. Type III and IV lesions have been
removed endoscopically. Out of all acquired images, histopathological classification re-
sulted in 178 non-neoplastic and 449 neoplastic cases which is used as ground truth for
our experiments.

Using leave-one-out cross-validation, 626 out of 627 images are used as training set.
The remaining image is then classified. This process is repeated for each image.

To find the optimal values for B (number of histogram bins used) and k for the k-NN
classifier we carry out a naive search testing all possible combinations for k = 1, . . . ,25
and B = 16, . . . ,256 (for different color channel combinations).

4.2 Results

From the results shown in Table 1 we see that the proposed method achieves very
promising results – in particular when combining two or more color channels. The
best result has been obtained by combining the red and the blue channel, resulting in an
overall classification accuracy of 93,3%. But also combining all color channels avail-
able yielded a high result of 93%.

From the results we also see that in case of the single channel results the green
channel yielded the worst results. Also in case of combined channels the results always
drop as soon as the green channel is taken into consideration.

Despite the high overall classification results we also notice that there is an imbalance
between the two classes. While the results for the neoplastic images are always above
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Table 1. Overall classification rates obtained by different color channel combinations along with
the respective choices for k and B (compared to the results published in [8])

Non-neoplastic Neoplastic Total k B

R 61,2 98,0 87,6 5 249
G 57,9 94,9 84,4 11 243
B 74,2 91,3 86,4 8 179
R+B 83,2 97,3 93,3 15 202
R+G 68,0 98,2 89,6 7 249
G+B 78,7 92,9 88,8 10 220
R+G+B 77,5 99,1 93,0 11 53
[8] 98,3 99,5 99,2 – –

90% the results for the first class vary between approximately 58% and 83% only. This
effect is especially apparent in case of the single channel results. When considering the
ground truth we notice that the number of neoplastic images is about 1.6 times higher
compared to the other class, which is one reason for this behavior.

Compared to the results we published in [8] we see that especially in case of the non-
neoplastic images the results of the proposed approach are still very low. This is most
possibly due to ridges, which – although not characteristic for non-neoplastic images
– sometimes appear in these images too (see Fig. 3). As we also notice from Fig. 3(g)
these ridges have a noticeable influence on the triangulation result.

Additional problems arise from image artifacts and noise which are quite frequently
misinterpreted as being pits. As a consequence neoplastic images get more similar to
non-neoplastic ones in terms of the Delaunay edge length histograms which makes
misclassification of such images more likely. Although this problem exists, especially
in case of neoplastic images, this is not evident from Table 1 due to the imbalance
between the two classes.

5 Conclusion and Future Research

In this work we presented a method for an automated pit pattern classification system
which - in contrast to all our previously published methods - is strongly linked to the
visual appearance of the pits on the colonic mucosa. Although, compared to previously
obtained results, this method still delivers lower recognition rates, the results we cur-
rently achieve are very promising already - especially when combining different color
channels for the classification.

We also identified ridges as a potential problem being very likely one cause for a
lowered classification performance. In future work we will therefore focus on minimiz-
ing the effect of ridges to a maximum possible extent. Besides that we will also have to
investigate other features in order make the system work in the six-classes case as well.
This case has been neglected completely in this work due to the nature of the features
used, since these rely on differences in the density of pit distributions across different
image classes. In the six-classes case this is unfortunately not sufficient since these dif-



140 M. Häfner et al.

ferences are not that distinct between all of the six classes. We will also have to make
the pit detection more robust to improve the discrimination between the image classes.

Another interesting possibility will be to use the method proposed as part of an en-
semble classifier, since this method works completely different compared to our previ-
ous approaches.
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Abstract. Stroke is among the most frequent cause of death around the world 
and the decision to treat and final outcome is highly dependent on the quality of 
diagnosis. Recently, cerebral perfusion tomography have been used with 
promising results in the stroke evaluation mainly because this technique gives 
further information about the hemodynamic changes within the stroke area. 
However many different parameters are actually used to analyze the CT 
perfusion results, trying to integrate the temporal information it contains. Some 
of these parameters are Blood Volume, Blood Flow or Transit Time for 
example. This paper reviews the most relevant methods used to calculate 
perfusion related parameters and describes our framework that defines a 
reproducible processing pipeline that supports visual and quantified comparison 
between them. 

Keywords: Stroke, computed tomography, perfusion CT, brain imaging, blood 
volume, blood flow, transit time. 

1   Introduction 

Stroke [1] is one of the major causes of death around the world. A stroke happens 
when there’s a sudden vessel occlusion – usually with a blood clot – which results in 
inefficient blood supply and leads to poor oxygenation of brain cells. As a result, 
cellular activity is perturbed and can lead to cellular death if early recanalization does 
not occur. 

However it is possible to distinguish two different areas in stroke. One is the 
infarct penumbra where cells are affected by the lack of oxygen but still intact and 
possible to recover with a fast reperfusion, the other is called infarct core where 
there’s a cell death and no recovery is possible. Within a limited timeframe (around 3 
hours from the stroke) it is possible to recover the brain tissue in the penumbra with 
an injection of a tissue plasminogen activator to destroy blood clots – thrombolysis –
and avoid total tissue loss [2-5]. Discriminating the penumbra from the unrecoverable 
area is, for that reason, the main clinical issue in the acute stroke management [6-9]. 
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Several imaging tools are currently used to support such decision namely 
Computed Tomography (CT) and Magnetic Resonance Image (MRI) [10]. In the 
current paper the focus is on cerebral perfusion CT (PCT – Perfusion Computed 
Tomography).  

Cerebral perfusion uses a contrast material that is injected in brain vessels that 
enables tracing the blood flows in cerebral vessels along time [11]. Both PCT and 
MRI perfusion modalities measure the concentration of contrast material along time 
in the tissues generating a Time-Concentration Curve for each voxel (Fig. 1) from 
time of injection to time of contrast material leave the system resulting in 
tridimensional perfusion maps for overall brain perfusion. 

 

Fig. 1. Time concentration curve – The curve is obtained by measuring the concentration (C) of 
the contrast material in a given brain position (voxel) along time. [6, 12-13] 

From the Time-Concentration curve several parameters can be extracted to 
characterize the hemodynamic blood flow. The usual parameters  are Cerebral Blood 
Flow (CBF), Cerebral Blood Volume (CBV), Mean Transit Time (MTT) and Time 
To Peak (TTP) [14]. CBV is the percentage of blood per unit volume of tissue. In 
infarct penumbra CBV is usually normal or high due to auto-regulation mechanism 
but low in the infarct core. CBF represents the time a certain amount of blood takes to 
pass the cerebral blood vessels and arrive to the veins, in infarct penumbra and infarct 
core this value is low because of the artery obstruction. MTT is the time between the 
inflow and outflow blood flow in the brain. TTP is the time elapsed between the 
injection of the contrast material and the appearance of a maximum concentration in 
the cerebral blood vessels [6-8, 13, 15-17]. 

Regardless of the clinical relevance of these measures [6, 15], their actual use lacks 
an independent and reproducible validation namely because the measurement process 
and algorithms often depends on closed commercial applications use or in human 
expertise making it difficult to compare objectively the different methods [18-20]. 
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The objective of this work is to present the most relevant methods used to calculate 
perfusion related parameters and describe our framework that defines a reproducible 
and traceable processing pipeline that can support visual and quantified comparison 
between them. 

2   Methods 

In this section we present the methods described in the literature for calculating 
Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF), Mean Transit Time 
(MTT) and Time To Peak (TTP). 

2.1   Cerebral Blood Volume (CBV) 

Cerebral Blood Volume is the percentage of blood per unit volume of brain tissue, 
according to Axel [21] the CBV can be determined using the following equation:  
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The integral of the concentration indicates the fractional vascular volume, this volume 
represents the ratio between the area under the concentration curve of the contrast 
material Ct(t) through the brain tissue and the area under the curve of the artery Ca(t) 
or vein Cv(t), if Blood Brain Barrier (BBB) is still intact the results are the same. The 
integral can be replaced by a sum as we are in discrete time [21-22]. 

In another method proposed by Klotz and König [22], CBV is determined using 
maximum values concentration tissue and vein, according to equation (2): 
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2.2   Cerebral Blood Flow (CBF) 

Cerebral Blood Flow represents the time that a certain amount of blood takes to flow 
through the brain vessels and arrive to the veins. 

CBF can be obtained using Fick’s method, calculating the derivation of 
concentration curve. This method is simple but relies on the assumptions of single  
blood inflow and outflow [23]. In this method, the CBF is given by equation (3) 
where parameter tmax represents the instant of maximum slope (maximum derivation 
in upslope segment of the curve, see Fig. 1) of the curve. 

If the maximum tissue slope is reached before venous outflow starts Cv(tmax) = 0 
and equation (3) turns into equation (4). 
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This method does not require correction for recirculation of contrast material and the 
results derived from a short period of time reducing possible patients movements, 
however, it is more susceptible to noise  and require a pre-processing step to reduce 
noise in input data [22]. 

Another method widely used is based on deconvolution. The main advantage is the 
possibility to reduce administration rates of contrast material since delay and 
dispersion of the contrast material is corrected using the residue function. The 
Singular Value Decomposition (SVD) is generally used in most commercial 
applications as it is less sensitive to variations in vascular anatomy because of the 
assumption of the single point of input and output blood [23-24].  

The variation of contrast concentration tissues can be described in function of 
arterial input function (AIF), the residue function and CBF (5). 

CBFtRtCtC at ⋅⊗= )()()(  . (5) 

The residue function R(t) represents the fraction of the contrast material that remains 
in the tissue at time t. The final CBF in each voxel is the maximum value of R(t) [25]. 
In our implementation, we compute R(t) using SVD. Since the concentration analysis 
performed for small time intervals Δt, we can consider the residue function and 
arterial flow as constant and can use the following approach: 
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For simplification we can assume: 

cbA =⋅  . (7) 

Where b are the values of the residue function and c is the concentration in tissue. 
Equation (7) is solved using SVD. The method uses three matrices: V, W and UT, 

where W is a diagonal matrix, V and UT are orthogonal matrices, UT denotes a 
transpose matrix. 

cAbcbA ⋅=⇔=⋅ −1  . (8) 

TVSUA ⋅⋅=  . (9) 

TT UWVUSVA ⋅⋅=⋅⋅=− /11  (10) 

cUWVb T ⋅⋅⋅=  . (11) 
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Ostegaard et al. [26] assumes Ca(t) and R(t) varies linearly with time, and the 
elements aij matrix A are: 

( )
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To minimize the oscillation of R(t), a cutoff threshold level of 20% of the maximum 
value of the diagonal matrix W is used [26-28]. 

2.3   Mean Transit Time (MTT) 

The Mean Transit Time is the average time necessary for the blood to flow through 
the brain. 

Using the first moment of the curve (equivalent to the center of gravity of the 
shape defined by the time concentration curve, see Fig. 1 [12]), MTT can be 
calculated using the equation (13): 
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Another method proposed by Axel [21] is the area of the curve divided by its height 
according to the equation (14), where height is the difference between Cmax and 
Cmin for each voxel. 
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In this equation we must translate the curve to zero because in PCT the values of the 
curve do not start in zero, the concentration in baseline is zero however we have a 
different contrast value. 

Based on central volume principle MTT can be defined by the ratio of CBV and 
CBF [25]. 

CBFCBVMTTMTTCBVCBF // =⇔=  . (15) 

Finally, according to Phillips the MTT can also be defined as the width of curve at 
half of the maximum value [13]. To estimate the width of the curve the average 
perfusion value between the upward and downward curve slopes is used as reference. 
This value is used to determine the points in both curve slopes that will be used to 
calculate the time difference that is the actual estimation of the MTT (see Fig. 1). 

2.4   Time To Peak (TTP) 

Time to Peak is the time of the contrast material to reach a concentration peak in the 
cerebral blood vessels after the injection. Phillips [13] ignore the delay from the 
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injection of contrast material until it reaches the cerebral tissue but others authors [6, 
12] correct the concentration curve to remove the injection delay.  

In our implementation, we determine the instant where the concentration in the 
artery reaches its peak, after that the curve is back-tracked from the maximum to the 
arrival time (arrival time is the instant of time corresponding to the arrival of contrast 
material to cerebral tissue). This implementation corrects the injection delay. TTP is 
the time between the arrival of contrast material to the tissue and the moment where 
the concentration is maximum (see Fig. 1). 

3   Methods Comparison and Results 

Our main objective was to define an automatic processing pipeline that calculates and 
displays the perfusion related parameters with reduce human input – selection of 
artery and vein references. This ensures that, regardless of the method considered, the 
final visualization results will not be user dependent and quantified measure can be 
mapped directly to original data. The pipeline starts with the selection of both artery 
and veins two reference voxels that will be used as static reference along the 
following stages.  

3.1   Pre-processing 

To minimize noise and smooth the vein and artery contrast concentration curve an 
initial filtering of the image data using Simple Moving Average (SMA) is applied 
(Fig. 2). The objective of this step is to minimize the presence of noise in the image 
data namely due to equipment, patient movements or to the effect of discretization 
when sampling the data [17, 27].  

 
Fig. 2. Time concentration curve for artery and vein, without filter in A and filtered data using 
SMA in B 

SMA filter was chosen among others (Simple Moving Average, Moving Median, 
smoothing) because it was a good trade-off between simplicity and results. 
Preliminary tests with a 7 seconds window centered in the current time (t-3, t+3) 
shows that SMA can remove noise and smooth with low processing time. The 
perfusion parameters are calculated for each voxel after removing non brain tissues 
(e.g. bone). Non brain tissues are removed using the minimum and maximum values 
of Time Concentration Curves as references: all values above the maximum value and 
below 80% of the minimum value are considered as non brain tissue.  
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3.2   Post-processing 

To ensure a good contrast on the images without any manual adjustment by the users, 
we applied a window level correction, the image is truncated with the maximum value 
corresponding to the maximum value obtained in artery voxel (in the current method 
not in the concentration curve) in the artery and the minimum is a global minimum in 
the image. By using an automatically generated reference we maintain a clear map 
between transformed and original perfusion values. 

 

 
 

Fig. 3. Comparison between CBV before and after postprocessing: initial CBV image (left) and 
after hitogram equalization (right). The histogram distribution is also presented for both images. 

 

 

Fig. 4. The perfusion parameters estimation methods for CBV: (A1) using Axel method 
(equation 1), (A2) using Klotz and König method; for CBF: (B1) using SVD method; (B2) 
using Fick’s method; (B3) using central volume principle; and for MTT: (C1) using Axel 
method; (C2) using Phillips method; (C3) using central volume principle. Images A3, B4 and 
C4 are the original image given by medical equipment for each of the parameters. 
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To enhance visually the different brain tissues (e.g. gray vs. white matter) and 
structures (e.g. brain tissues and ventricles) - expected to present different values 
regardless of the perfusion parameter in consideration - we also applied a histogram 
equalization method. The result of this step is emphasized in Fig. 3. The OpenCV 
library [29] was used to calculate histogram information as well as SVD (see 2.2) for 
visualization purposes, VTK was used [30]. 

3.3   Results 

We have tested this pipeline in several perfusion CT exams and the results are 
presented for the same dataset for the CBV methods, CBF and MTT in Fig. 4 in the 
next page. All the images presented are the final visualization results with no user 
intervention except the selection of the voxel references (artery and vein). 

4   Conclusion 

This paper describes a first step in deploying a framework to perform quantified 
comparisons between different existing methods used in the literature to estimate 
perfusion related parameters methods. Our main objective was to define an automatic 
processing pipeline that calculates and displays the perfusion related parameters with 
reduce human input – selection of artery and vein references - while keeping a map 
between the several calculated parameters and the original perfusion data. By using as 
unique references along all the processed the artery and veins perfusion values to rescale 
the different methods parameters, a comparison is possible either quantified or visual. 
Given the clinical relevance of visualization of the results, our method also provides a 
standardized post processing stage, where regardless of clinicians own preferences (e.g. 
window levels, lookup tables, scales), we provide a  reproducible baseline 
representation that enables the visual comparison of different methods – critical to have 
a clinical comparison using standard inter-rater agreements evaluation (e.g. [18]). 

This work can have an impact in clinical practice with special emphasis in the 
acute stroke management by contributing to define which methods are more clinically 
relevant and, in consequence, quantify relevant stroke related features like the 
penumbra or unrecoverable brain tissues. 

At this stage, some details were overlooked in the present work that are part of 
planned future work. On the technical side, a more thorough analysis on the filter 
selection is planned. Currently we use the SMA filtering but other methods exist that 
may exhibit better results. The delay between injection and arrival of contrast material 
may also result in inaccurate CBF and MTT, we plan to study its impact using SVD 
method with delay-corrected SVD (dSVD) namely trying corrections by shifting the 
concentration curve in time [28]. We also need to quantify the effect of post 
processing enhancements on the clinical decision process to avoid inducing erroneous 
clinical interpretations. 

The present work will support such comparisons both quantified (by using 
quantified comparison between different methods features) and clinical to assess the 
clinical value of the results within a diagnosis context vs. the actual solution based on 
proprietary systems.  
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Abstract. The paper provides some experimental results on medical

images enhancement, namely digital dental radiographic images of entire

dentition — pantomograms. This problem is a first step in the process

of automatic identification of persons basing on the mentioned kind of

images. The most crucial task is the emphasizing of some characteristics,

e.g. shapes of the teeth and dental fillings. These features are widely

used as an input for the methods of automatic dental identification. In

the paper the Laplacian pyramid-based image enhancement approach is

utilized. This method has been successfully used for other radiographic

images — mammograms and computed tomograms (CTs). Exemplary

methods of uniform and non-uniform Laplacian pyramid enhancement

are presented along with their influence on a typical image.

1 Introduction

Digital radiography has become increasingly popular in the last two decades over
its analog counterpart. The usage of computers and electronic detectors in lieu
of film speeds up the process of developing photographs, removes the necessity
of using possibly harmful chemicals and allows for further image processing.
The latter reason is especially significant, since X-ray examination is considered
intrusive and allowed only in certain time intervals. Therefore, the ability to
increase the legibility of a low-quality image provides an extended margin of
error for radiography technicians and in the end, helps the physician (in the
described case — a dentist) in making a correct diagnosis. Every commercial
dental software program allows, to some degree, for image enhancement. Some
popular programs have been described in [1] by Lehmann et al., along with
the list of the methods implemented by them. According to the authors all the
programs offer contrast and brightness adjustments, scarcely including image
filtering and comparison options.

There have been previous attempts at improving the quality of radiograms in
general. Most of them focus on decomposing the source image into layers con-
taining a subset of the information derived from the original image. Afterwards,
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the layers can be processed independently allowing for an improvement of dif-
ferent types of signals — both high- and low-frequency. There are two major
approaches to the decomposition of original images. The first one is based on
the wavelet transform and the second — on the Laplacian pyramid.

In wavelet-based decomposition, continuous wavelets are used as the basis
functions. The restriction of continuity must be upheld in order to prevent dis-
continuities in the resulting image, thus rendering the popular Haar transform
inutile. Wavelet-based approach has been tested in [2] and [3]. Its main drawback,
as discussed in [3], is the appearance of ringing artifacts during the reconstruc-
tion of the image.

In Laplacian pyramid decomposition, the images are firstly low-pass filtered
using a Gaussian filter and downsampled and the achieved result is interpolated
to the original size and subtracted from the original image at the end. The result
becomes the next layer of the pyramid and the subsampled intermediate image
becomes the original image in the next step of the algorithm. This process is
reiterated until the image size reaches one pixel. This method is more robust than
the wavelet-based one and it will be described more precisely in the following
sections. We focus in the paper on the Laplacian-based decomposition and its
usefulness in enhancement of dental radiographs.

The described process of enhancement has to be performed in order to improve
the quality of the pantomograms before they can be further used in the process
of automatic human identification, as described by Jain in [4]. Even though
the image enhancement is frequently mentioned as the first step of the human
identification process, specific methods used are scarcely mentioned. Zhou and
Abdel-Mottaleb ([5]) proposed a rather simple method of using top-hat filtered
and bottom-hat filtered versions of the original image in the process of enhance-
ment ([5]):

XE = XO + XT − XB, (1)

where:
XO — the original image,
XE — the resultant enhanced image,
XT — top-hat filtered version of the image XO,
XB — bottom-hat filtered version of the image XO.

This approach is sufficient for bitewing images used in the study presented in
[5], but proves inefficient when only pantomograms are used for identification.

Pantomograms require relatively low amounts of radiation, taking into con-
sideration the surface that is presented on the radiogram. Therefore, they are
considered to be of lower quality than the other two popular types of dental ra-
diographic images: bitewing and periapical. Some additional image enhancement,
such as edge sharpening and contrast improvement, is highly recommended and
could prove beneficial at the later stages of the process, i.e. image segmentation
and feature extraction.
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Dental fillings and teeth shapes are two major sources of information used by
identification methods based on dental radiograms and any improvement in their
legibility will be sought for the most, but amelioration in other aspects, such as
trabecular structure visibility, will also be described. An exemplary image being
an object of interest in the paper is provided in Fig. 1.

Fig. 1. Sample digital dental radiographic image, used courtesy of Pomeranian Medical

University

2 Image Quality Enhancement

The concept of Laplacian decomposition of an image was firstly introduced by
P. J. Burt and E. H. Adelson in [6]. Subsequent layers of Laplacian pyramid are
calculated by subtracting consequent layers of a Gaussian pyramid. The process
can be described using the equation ([6]):

Xk =↓ (X̄k−1),
Lk = Xk−1− ↑ (Xk),

(2)

where:
↓ (X) and ↑ (X) represent the process of downsampling and upsampling the
image by a factor of 2,
X̄k — low-pass filtered image Xk (with X0 denoting the original image)
Lk — the successive layer of the Laplacian pyramid.

Gaussian filter is popularly used as a low-pass filter, but Stahl et al. ([7]) point
out that small binomial filter kernels can also be used.

The above decomposition method was later used as a basis for multiscale
image enhancement in [4], [7] and [8]. The methods used there were uniform, i.e.
applying the same transformation to all the layers, with a small change in the
method presented in [8], where the gain parameter could vary depending on the
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layer. Those methods will be examined later in this paper, after presenting the
non-uniform methods, where the layers are processed independently.

Before we describe existing methods of enhancing the quality of a decomposed
image, it must be noted that there is no simple quality measure of an image.
Whether an image is considered of high or low quality can only be measured by
its ability to satisfy some specific needs. Because these needs can be different,
as dental radiographs could be used by a dentist as well as a forensic special-
ist identifying a body, we assumed that a measure of quality is a subjective
prediction of how the enhancement could affect further stages of digital image
processing, e.g. image segmentation. This measure does not necessarily overlap
with the definition of quality agreed upon by experienced physicians, for whom
some important minutiae might have been lost in the process of enhancement.

As it was noted, the images that form the Laplacian pyramid contain progres-
sively lower frequencies of the image data. In result the first layer of the pyramid
can be instinctively identified with the trabecular structures of the mandible and
maxilla. Some of the smaller layers of the pyramid contain unobstructed con-
tours of the teeth and surrounding bones and on the lowest level there is only
the mean of the image brightness. Stahl et al. ([8]) noted that because of the
downsampling performed after the frequency range is reduced, even though every
layer theoretically represents the spatial frequencies of up to half the Nyquist
frequency of the previous one, the spatial frequencies contained in the actual
layer are on a par with the frequencies of the previous layers. An example of the
normalized 4th layer of the sample image is presented in Fig. 2.

Fig. 2. The 4th layer of the Laplacian pyramid decomposition achieved for a panto-

mogram. The image is eight times smaller than the original one and contains lower

frequency signals — edges.

The simplest modification of the processed image can be achieved by changing
the value of the only pixel on the last layer of the pyramid, thus changing the
bias of the original image or relative brightness. Operating on the layers with
low frequency data — usually the 2-3 layers before the last one — allows for
easy enhancement of large portions of the original image. This can be especially
useful if the image is not evenly developed due to a non-uniform distribution
of radiation when the radiograph was taken — a simple averaging filter or even
substitution of all coefficients on the layer with the mean value of that layer
solves this problem.

Additional enhancement of an image can be achieved by using the unsharp
filter on a layer containing high frequency signal, ideally the second or third
layer. The first layer contains too much fine detail, including noise, therefore
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the usage of the unsharp filter on it would give a similar result as using it on
the original image. When using it on further layers the sharp edges of teeth and
bone structures are enhanced without strong amplification of the noise.

The most significant drawback of the non-uniform methods is that they hardly
work automatically. Images of the same type should have the same layer distri-
bution, but it has to be determined beforehand, what could be time-consuming.
Uniform layer manipulation methods are free of this problem.

The use of multiscale images in contrast enhancement was introduced in [9]
and further developed in [7]. It is also commercially used in Agfa ADC system.
Vuylsteke et al. proposed a contrast equalization function given by the formula
([7]):

f(x) = a(
x

|x| )|x|
p, (3)

where ([7]): “x are normalized to the range [−1, 1] and the factor a is needed for
rescaling the resulting image to the original dynamic range”. This operator re-
sembles a standard exponential operator, working for both positive and negative
pixel values.

This function is further developed in [8], where Stahl et al. proposed another
version of equation 1, with slight modifications ([8]):{

r(x) = G · x · (1 − |x|
M )p + x, if |x| ≤ M

r(x) = x, elsewhere
, (4)

where M is the upper limit for linear enhancement and G is a constant gain.
This contrast equalization function was also used in [3]. Its main drawback is a
significant amplification of image noise. Fortunately it can be easily solved —
Stahl et al. proposed an additional method of noise suppression in their model,
given by the formula ([8]):

Sn(x, y) = b(x, y) · Sf (x, y) + (1 − b(x, y)) · So(x, y), (5)

where Sn is the final value of the pixel, b(x, y) is the attenuation factor such that
it is ([8]): “smaller than 1 in the noise sensitive region and equal to 1 elsewhere”,
So is the original pixel value in the layer being contrast-equalized and Sf is the
pixel value after initial equalization.

3 Experimental Results

The various approaches to Laplacian pyramid manipulation, presented in the
previous sections, were tested using several pantomograms. The effect of every
method will be presented on the exemplary image and some additional images
will be shown to demonstrate the effect of the selected best method on other
examples.

The first presented example (see Fig. 3) is a result of using the averaging
filtration on low-frequencies layers.
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Fig. 3. The result of averaging the low-frequencies layers — smoother background and

uniformly colored bones

The appearing discoloration in the general areas of cheeks and lower mandible
has been removed and the background behind teeth has been smoothened. That
could be helpful during the image segmentation, where smooth background and
a uniform underlying bone color would improve the detection of edges belonging
to crowns and roots.

The following example (see Fig. 4) shows the effect of using the unsharp filter
on the second layer of the Laplacian pyramid decomposition.

Fig. 4. The result of the application of unsharp filter — the edges of teeth fillings and

roots are improved

The all-important improvements can be seen in the areas that lacked sharpness
in the original image — the surroundings of the roots, the fillings and the tips of
the molars. Trabecular structures also look sharper and can be easily extracted
from the image. The noise amplification is not as severe as it is the case of
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an unsharp filtering for the whole image. The contrast between the teeth and
mandible\maxilla is rather low.

The effect of the contrast equalization function (for p = 0.75) on layers 3
through 11, achieved using eq. 3 for the sample image can be seen in Fig. 5.

Fig. 5. The result of the contrast equalization of a pantomogram — the edges of fillings,

dental pulp and roots are more pronounced

The contrast of the most important areas has been significantly increased. Dark
bone areas have become darker and bright teeth and the fillings have become
brighter. This also causes the dental pulp to become more distinct, what can be
valuable in diagnosing lesions in this part of the tooth. The silhouettes of the roots
also have sharper edges, thus simplifying the separation of teeth from bone. Tra-
becular structure of the bones is also sharper than on the original image.

An example of the second contrast enhancing method, as described in equation
[4], with the parameters M = 0.15 and p = 1.5, is presented in Fig. 6.

Fig. 6. Exemplary result of the contrast boost. It allows for an easier distinction be-

tween fillings and teeth and between teeth and surrounding bones.
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Fig. 7. The result of a combination of three enhancement methods (left) and the same

enhancement applied to the image in spatial domain (right)

Fig. 8. The comparison between the original (left) and enhanced using the explored ap-

proach digital dental radiographic images (right). The enhanced images provide better

basis for further image segmentation.

Considering further processing of the resultant image, this achieved image has
the highest quality so far, with greatly improved contrast, sharper edges and the
easier discernible difference between bone and teeth. Trabecular structures are
also sharper than as a result of any method applied so far. The most important
is the high contrast between three distinct groups of objects useful in people’s
identification: the teeth, surrounding bones and teeth fillings.
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The last performed by us experiment was based on a combination of three oper-
ations on a digital dental radiographic image. We have used the following sequence:
the averaging of the two layers next to last, unsharp filter on the second layer, and
the second presented in the paper method of contrast enhancement, achieved using
eq. 4. The result is provided in Fig. 7. As we can see some very interesting elements
are emphasized, e.g. roots of the teeth. The same image was enhanced in spatial
domain, using the above methods and is also presented in Fig. 7. The averaging
could not be implemented in the spatial domain as it would remove all the details
from the image, so a more complex operator would have to be included in order to
remove the effects of the unequal exposure of the picture. The use of the unsharp
filter used in spatial domain also increased the noise.

At the end of this section, we present some additional results of the explained
approach, achieved using the combination of the three methods. The results,
compared to the original images, can be seen in Fig. 8.

The images after the enhancement have generally better contrast, easily dis-
cernible teeth from surrounding bones and sharper edges. In all of the presented
cases, the image enhancement improved the possibilities of successful teeth and
fillings segmentation at the cost of amplified noise.

4 Conclusions

The approach presented in this paper covers only one group of existing radio-
gram enhancement methods. We did not compare methods that do not employ
the Laplacian pyramid decomposition, like the mentioned wavelet-based image
decomposition ([2,3]) or a method based on manipulation on local standard de-
viations ([10]). Moreover, the evaluation was purely subjective. However, the
obtained enhanced images gave promising results seeing that the regions of an
original image, where the contrast was improved the most, were the regions that
are the most important in the process of human identification, whether done by
a specialist or automatically. Further improvement could be easily achieved at
the cost of the automation, which is crucial when the size of an average dental
radiograms database is taken into account.

As it was stated in the paper, the quality of an image can only be measured by
its ability to satisfy specific needs, thus making the influence of selected methods
on the accuracy of a sample persons identification system based on pantomograms
the only reliable measure of image quality change. Therefore our future work will
be concentrated on experiments exploring this influence on a larger database of
pantomograms in order to validate the initial results presented in the paper.
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Abstract. An automatic system which is capable of recognizing white blood 
cells can assist hematologists in the diagnosis of many diseases. In this paper, 
we propose a new system based on image processing techniques in order to 
recognize five types of white blood cells in the peripheral blood. To segment 
nucleus and cytoplasm, a Gram-Schmidt orthogonalization method and a snake 
algorithm are applied, respectively. Moreover, three kinds of features are 
extracted from the segmented areas and two groups of textural features 
extracted by Local Binary Pattern (LBP) and co-occurrence matrix are 
evaluated.  Best features are selected using a Sequential Forward Selection 
(SFS) algorithm and performances of two classifiers, ANN and SVM, are 
compared. In this application, the best result is obtained using LBP as the 
textural feature and SVM as the classifier. In sum, the results demonstrate that 
the methods are accurate and fast enough to execute in hematological 
laboratories.  

Keywords: White blood cell, peripheral blood, segmentation, textural feature, 
feature selection, classification. 

1   Introduction 

Recognition and inspection of white blood cells in peripheral blood can assist 
hematologists in diagnosing many diseases such as AIDS, Leukemia, and blood 
cancer. Thus, this process is assumed as one of the most salient steps in hematological 
procedure. This analysis can be accomplished by automatic and manual approaches.  
Automatic methods usually examine white blood cells just quantitatively but not 
qualitatively, because they do not benefit from image processing techniques. 
Applying automatic systems juxtapose to image processing techniques may provide 
some qualitative evaluation and thus enhanced judgments. Furthermore, some of these 
tasks such as manually scrutinizing blood cells by experts are tedious and susceptible 
to error. Therefore, an automatic system based on image processing techniques can 
help the hematologists and expedite the trend.  
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Albeit not extensive, some methods are proposed in the literature for this purpose. 
Since segmentation is the most challenging step in white blood cells recognition 
procedure, improvement of nucleus and cytoplasm segmentation is the most 
widespread effort in many researches.  For example, in [1], [2], [3] and [4], the 
authors suggested several methods to segment nuclei of white blood cells via 
techniques that can be categorized into color-based methods. These methods are 
simple but are not capable of segmenting the white blood cells nucleus accurately. In 
addition, cytoplasm is colorless in most cases. Thus, its boundary is not detectable 
and cannot be segmented by these methods. Methods based on imaging techniques 
generate superior results. For example, the method proposed in [5] obtained more 
acceptable results using multi-spectral imaging techniques. In this method, intensity 
of each pixel in different spectra is used to construct the feature vectors and a support 
vector machine (SVM) is used for classification and segmentation. In spite of efficacy 
of this method for segmenting white blood cells components, this system’s 
implementation is costly and thus cannot be used widely at all laboratories. 
Cytoplasm and nucleus segmentation via mathematical and contour models is the 
third method and also the most important one. In this field, some methods such as 
region growing [6], watershed [7], parametric active contour deformable models [8], 
and also combination of the watershed technique and a parametric deformable model 
[9] are introduced in the literature. These methods are more complex and require 
more processing time in comparison with the first group of methods. However, their 
advantage is subtle more accurate segmentation. Since morphological and textural 
features are the features which are elicited from white blood cells by a hematologist, 
many papers such as [1], [10], [11] use feature extraction methods on the basis of 
these features. For classification, Bayes classifier [12], different types of artificial 
neural networks (ANNs) such as feed-forward back-propagation [13] and [14], local 
linear map [15], and fuzzy cellular neural network [16] are often used in the literature.  

In this paper, our purpose is to design a new system based on image possessing 
methods to classify five major groups of white blood cells in peripheral blood. 
Therefore, at first, segmentation of white blood cells nuclei is carried out via Gram-
Schmidt method. Then, distinguishing basophils from the other samples are 
performed using features extracted from nucleus areas. As cytoplasm edge is 
unobservable, a snake algorithm is used after some preprocessing procedures in order 
to segment the cytoplasm. The features elicited from the nucleus and cytoplasm areas 
in both steps are categorized into color, morphological, and textural features. Two 
groups of textural features attained by the Local Binary Pattern (LBP) and the co-
occurrence matrix are evaluated. The feature selection step is adjoined to this process 
for ameliorating the classifier performance and expediting the program trend. Finally, 
the performance of two different classifiers, SVM and ANN, when using different 
sets of features is compared. The main difference between this research and other 
researches is that we propose an accurate and high-speed system for recognition of 
white blood cells which processes all segmentation, feature extraction and 
classification steps automatically. 

The rest of the paper is organized as follows. In Section 2, we propose a pertinent 
system for recognition of five types of white blood cells.  The experimental results are 
presented and discussed in Section 3. Finally, Section 4 is appropriated to 
presentation of the conclusions. 
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2   System Architecture 

Designing an automatic system to recognize five types of white blood cells in a 
hematological image of the peripheral blood is the main purpose of this work. It is 
necessary to design a block diagram based on this type of dataset. Fig. 1 illustrates the 
block diagram of our proposed system.  

As shown in this figure, the method has three major phases whose details are 
explained in the next sections. 

 

Fig. 1. The block diagram of the proposed system 

2.1   Phase I 

Since in most of the samples, the boundary between nucleus and cytoplasm of 
basophils cannot be distinguished visually; these cells should not involve in 
segmentation of cytoplasm’s step. Therefore, they should be recognized from the 
other samples in this Phase.  

 
Segmentation of nucleus by Gram-Schmidt method: In this method, pixel 
intensities of the RGB components of the color image of the dataset are considered as 
3D vectors. Then, 1  as a desired vector is obtained by averaging the 3D vectors of 
the nucleus area in some samples. The 2 and 3  as undesired vectors are defined 
from the areas that are similar to the nucleus but are not the nucleus area. The training 
samples are selected randomly from one of the samples of each class which are not 
used in evaluation step. Using the Gram-Schmidt orthogonalization method proposed 
in [17] and 1 , 2 and 3 , a weighting vector  is attained whose inner product with 
the pixel vectors results a composite image with higher intensity in the nucleus area 
compared to other areas (Fig. 2(a)). Next, by choosing an appropriate threshold based 
on the histogram information, we segment the image. The final result of the nucleus 
segmentation is shown in Fig. 2(b). 
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(a)                                                    (b) 

 

Fig. 2. (a) Resulting image with higher intensity in nucleus area relative to the other areas after 
applying the Gram-Schmidt orthogonalization method in a hematological image. (b) Final 
result of nucleus segmentation after thresholding.  

 
Feature extraction from nucleus area and classification to distinguish basophils: 
As previously stated, basophils should be recognized and separated from the other 
types of white blood cells in this step. Therefore, some morphological features such as 
nucleus area and perimeter, number of the separated parts of nucleus, mean and 
variance of the nucleus boundaries and roundness criterion of nucleus are extracted 
from the segmented area. Color features are the other features extracted as a 
normalized vector of averaged nucleus color. To extract textural features, the co-
occurrence matrix and the local binary pattern are applied and the results are 
compared.  
 

Co-occurrence Matrix: The co-occurrence matrix is constructed on the basis of gray 
levels with the distances d and angles φ. In fact, this matrix describes the second order 
probabilistic features. Fourteen features are extracted from the co-occurrence matrix 
that explain contrast, homogeneity, entropy and others that properly represent the 
image textural properties. To make the features rotation invariant, 4 matrices are 
usually computed at 4 angles and the average of these matrices specifies the 14 
features [18]. 
 

Local Binary Patterns (LBP): Local Binary Pattern (LBP) is another feature for 
texture processing. Because LBP analyzes textures in different radii, it can be 
supposed as a multi-resolution textural feature. Two features are usually extracted for 
each radius. The first one is LBPriu2 which represents the structure of texture and the 
other one is VAR which depicts changes in the gray levels [19].  

2.2   Phase II 

In this Phase, the main purpose is to prepare the image for the snake algorithm in 
order to segment the cytoplasm. To this end, image size reduction, preprocessing 
before the snake algorithm, and finding an initial contour for the snake algorithm are 
applied. These are explained below. 

 

Image size reduction: Using the nucleus area segmented in the previous phase, we 
find the center of each nucleus and fit an appropriate window around to get sub 
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images with a complete white blood cell. This trend makes the segmentation process 
easier. In our research, a 141*141 window is used.  
 

Finding an initial contour for snake algorithm: To find an initial contour for the 
snake algorithm, the morphological dilation operation is first applied to the segmented 
nucleus region. The structuring element for the dilation operation is a square with an 
adaptive size based on the nucleus size.  In this step, the boundary of this region is 
used as the initial contour. Fig. 3 shows this procedure. 

 

 
(a)                          (b)                          (c) 

Fig. 3. (a) A segmented nucleus, (b) The image after dilation operation, (c) Initial contour 

The adaptive parameter, size of the structuring element, is because of the 
differences in the white blood cells sizes. To have a congruous initial contour next to 
the cytoplasm edge, the contour of a small nuclei should be processed with the 
smaller dilation operator than a large nuclei.  

 
Preprocessing before snake algorithm: Due to high accumulation of the red blood 
cells, they may touch the cytoplasm of the white blood cells. Thus, the boundary 
between the cytoplasm and the red blood cells may not be distinguished when the 
color image is changed into gray-scale. To solve this problem, the image is enhanced 
by color histogram equalization. Next, the enhanced image is transferred into the 
Hue-Saturation-Intensity (HSI) space. The final image is attained by extracting the 
saturation plate from the HSI image. Based on this idea, we have a gray-scale image 
that has good discrimination between the boundaries of the cytoplasm and the red 
blood cells. Then, the image is smoothed by a Gaussian kernel to eliminate the 
cytoplasm cavities and inhomogeneities and ameliorates the image for the snake 
algorithm (Fig. 4). 

 

    
(a)                            (b)                          (c)                           (d) 

Fig. 4. (a) A sample image. (b) The image after Histogram Equalization. (c) The image after 
extracting the saturated plate. (d) The smoothed image by a Gaussian kernel. 
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2.3   Phase III 

The main aim of this phase is to recognize the four remaining classes of the white 
blood cells. For this purpose, after preprocessing and initial contour detection, the 
snake algorithm is applied to segment the cytoplasm. After segmentation, textural and 
morphological features are extracted from both of the nucleus and the cytoplasm and 
the four cell types are classified. 

 
Cytoplasm segmentation using snake algorithm: The snake algorithm used in this 
paper is the algorithm proposed in [20].It starts from the obtained initial contour and 
its parameters are set as = 2, = 5, = 0.7, ñ = 0.4. The snake algorithm ends 
when no snake points move to new positions for four consecutive iterations. 
 
Feature extraction from both nucleus and cytoplasm areas, and classifying the 
four remaining classes: in this step, features are extracted from the cytoplasm area in 
combination with the features extracted from the nucleus area in phase I. 
Retrospectively, these features are categorized into three groups of morphological, 
textural, and color features. The morphological features are cytoplasm area and whole 
cell body perimeter, mean and variance of the cytoplasm boundaries, roundness of the 
whole cell and the ratio between the cytoplasm and nucleus areas. Textural features 
are also extracted from the cytoplasm area by a co-occurrence matrix and the local 
binary pattern and their results compared. At the end, a normalized vector of the 
average cytoplasm color is extracted as color features. 

3   Experimental Results 

The proposed method was evaluated by 251 blood smear slide images acquired by a 
light microscope from stained peripheral blood using the Digital Camera-Sony-Model 
No. SSC-DC50AP with magnification of 100. The images contain 720*576 pixels and 
were classified by a hematologist into the normal leukocytes: basophil, eosinophil, 
lymphocyte, monocyte, and neutrophil. Also, the areas related to the nuclei were 
manually distinguished by an expert.   

3.1   Segmentation Results 

In order to quantitatively evaluate the results of the nucleus and cytoplasm 
segmentations, the following similarity measure is defined. 

                                       
(1) 

where  is the segmented area by the algorithm and  is the segmented 
area by an expert. When these two areas are the same, Ts is 100. In Table 1, the 
resulting measures for each kind of the white blood cells and their overall 
segmentation are presented. 
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Table 1. Similarity measures (Ts ) for the segmentation of different types of white blood cells 

Basophil Eosinophil Lymphocyte Monocyte Neutrophil Overall

Nucleus 94.7% 90.81% 88.86% 96.7% 94.05% 93.02%

Cytoplasm - 95.55% 93.05% 81.23% 97.25% 91.79%

Average 94.7% 93.22% 90.01% 91.23% 96.23% 93.09%  
 
According to Table 1, it can be inferred that the accuracy result of nucleus 

segmentation for the lymphocyte class is lower than the other classes. The main 
reason is that the color of the cytoplasm is analogous to the color of the nucleus in 
many of the lymphocytes samples, especially young ones. Therefore, the 
segmentation error for this type of the white blood cells is larger than the others. Also, 
since in most of the cases, the vitreous cytoplasm of monocytes is colorless, even the 
deformable model with a congruous preprocessing is unable to find the cytoplasm 
boundaries precisely. Therefore, the accuracy result of the cytoplasm segmentation is 
worse than those of the other classes. 

3.2   Classification Results 

In this paper, classification is performed in two sections, discriminating the basophils 
from the other types of white blood cells in phase I and recognizing the remaining 
classes in phase III.  

To appraise the performance of the classifiers and the result of our proposed 
algorithms in recognizing the white blood cells, an accuracy criterion is used.  
 

Experimental result for basophil classification: To compare the performance of the 
textural features, two groups of features, extracted from the nucleus area, are created. 
These two groups include similar morphological and color features but they are 
different in textural features. To classify these features, at first, feature dimension is 
reduced by a SFS algorithm [21] and the results for ANN [22] and SVM [23] are 
compared by means of an overall accuracy criterion. In this research, a Multi-Layer 
Perceptron (MLP) [22] ANN is used. Fig. 5(a) and (b) illustrate the results related to 
the local binary pattern and the co-occurrence matrix, respectively. 

Some points are construed from these figures. The first point is that reduction in 
dimension of features aggravates the classification as expected. The second one is that 
the overall accuracy does not have considerable escalation after 15 features for both 
ANN and SVM. This occurs because after selecting 15 features, the differentiation 
between the features of each class is at a maximum and increasing the features 
dimension perplexes the classifier. The third one is that the ANN classifier has more 
fluctuation in the overall accuracy in comparison with the SVM. These changes are 
because the MLP is not trained well as a result of trapping in a local minimum. The 
other point is that the ANN and SVM classifiers have similar performances in most of 
the feature dimensions. But due to the stability of the SVM in training, it may be 
preferred. The last point is that the groups of the features attained from the co-
occurrence matrices have generally better performance in comparison with the groups 
of features obtained from LBP. However, the time required for calculating the first 
group of features is significantly higher than the second one. 
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(a)                                                                 (b)                                 

Fig. 5. The overall accuracy results for the ANN and SVM using: (a) LBP (b) Co-occurrence 
matrix as their textural features, to distinguish basophils 

According to the above conclusion, selecting 15 features and utilizing SVM is the 
best way to have optimal performance in classification results and speed. To compare 
these two groups of features, Tables 2 and 3 show confusion matrices, the accuracy, 
and the overall accuracy for these two groups when 15 features are selected and SVM 
is used as the classifier, respectively. 

Table 2. Confusion matrix, Accuracy, and Overall Accuracy for 15 LBP features and SVM 
classifier 

 Recognized 
Basophil 

Recognized 
Non-Basophil 

Accuracy 

Basophil 50 0 100% 
Non-Basophil 23 150 86.71% 

Overall Accuracy  89.69% 

Table 3. Confusion matrix, Accuracy, and Overall Accuracy for 15 Co-Occurrence features 
and SVM classifier 

 Recognized 
Basophil 

Recognized 
Non-Basophil 

Accuracy 

Basophil 49 1 98% 
Non-Basophil 5 168 97.11% 

Overall Accuracy  98.64% 

 
According to these tables, the results of classification with the features of the co-

occurrence matrix are superior to those of the LBP. However, considering a trade-off 
between accuracy and processing time, LBP may be preferred. The ratio between the 
times required for feature extraction using the co-occurrence and LBP methods is 20 
to one. 
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Experimental result for classifying the four remaining groups of white blood 
cells: Similar to the previous section, the performance of the two groups of features 
whose textural features are extracted by the LBP and the co-occurrence matrix are 
compared whilst these features are obtained from both of the nucleus and cytoplasm 
areas. For a second time, the SFS algorithm is applied in order to select the best 
features in a prespecified dimension and the results are compared for ANN and SVM 
by the accuracy criterion. Fig. 6(a) delineates the overall accuracy of the SVM and 
ANN for the first group of features and Fig. 6(b) demarcates the result for another 
group of features. 
 

 
(a)                                                                 (b)  

Fig. 6. The overall accuracy results of the ANN and SVM using: (a) LBP; (b) Co-occurrence 
matrix as their textural features, in order to distinguish the 4 remaining classes                                

According to the above figures, some points related to the performance of the 
classifiers are analogous to the conclusion discussed in the previous section. For 
instance, reduction in dimension of features exacerbates the classifier performance. 
Furthermore, the oscillation of the overall accuracy of the ANN classifier is 
considerably more than that of the SVM. Other points inferred from the figures are:  
after 10 features, curves do not have significant escalation for both of the ANN and 
SVM, the SVM classifiers have superior performance in this case in comparison with 
the ANN. In addition, it is obvious that the groups of features obtained from the co-
occurrence matrices have generally superior performance again. 

In conclusion, considering both of the classification accuracy and processing time, 
SVM classifiers and feature dimension of 10 can be considered as optimal.  

Tables 4 and 5 illustrate the confusion matrix, accuracy, and overall accuracy when 
10 features are selected and SVM is used as a classifier with the local binary pattern 
and the co-occurrence matrix, respectively. According to these tables, in this case, the 
classification accuracy for the two defined groups of features seems to be equal. 
However, noting this fact that calculation of the features extracted by the co-
occurrence matrix is noticeably more computational, using LBP for the textural 
features is proposed for this phase again. 
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Table 4. Confusion matrix, Accuracy, and Overall Accuracy for 10 LBP features and SVM 
classifier 

 Recognized 
Eosinophil 

Recognized 
Lymphocyte 

Recognized 
Monocyte 

Recognized 
Neutrophil 

Accuracy 

Eosinophil 19 0 0 0 100% 
Lymphocyte 0 27 2 0 93.1% 

Monocyte 0 0 23 1 95.83% 
Neutrophil 1 0 0 27 96.43% 

Overall Accuracy  96% 

Table 5. Confusion matrix, Accuracy, and Overall Accuracy for 10 the co-occurrence features 
and SVM classifier 

 Recognized 
Eosinophil 

Recognized 
Lymphocyte 

Recognized 
Monocyte 

Recognized 
Neutrophil 

Accuracy 

Eosinophil 18 0 0 1 94.74% 
Lymphocyte 0 27 2 0 93.1% 

Monocyte 0 0 23 1 95.83% 
Neutrophil 0 0 0 28 100% 

Overall Accuracy  96% 

4   Conclusion 

In this paper, we proposed a system in order to recognize five groups of white blood 
cell in the peripheral blood. The proposed system has a reasonable processing time 
and is sufficiently accurate. The overall segmentation result of 93% and classification 
accuracies of 90% and 96% in phases I and III verify the accuracy of the system. 
Regarding the processing time, the program requires 10 seconds for analyzing a single 
white blood cell on a Pentium-4 PC, running at 3.2 GHz, with 1 GB of RAM and 
MATLAB. Hence, differential counting of 100 white blood cells lasts about 16 
minutes. As a comparison, an expert requires almost 15 minutes to carry out this 
process. Thus, this program can be used in the hematological laboratories.  

Notwithstanding mentioned advantages, the proposed method may need initial 
calibration at the start point of the program when new datasets with different 
characteristics are introduced to the system. This is due to the required alignment of 
the initial vectors in the Gram-Schmidt method. As a future work, an algorithm can be 
designed to align the three preceded vectors in the Gram-Schmidt method 
automatically. In addition, it is cogent to add a new class for the white blood cells that 
do not belong to those five classes. This is due to the fact that sometimes other cells 
called Blast appear in the peripheral blood. This cell type is more frequently found in 
the abnormal blood samples.  
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Abstract. The human papillomavirus, coming in over 100 flavors/types,

is the causal factor of cervical cancer. The identification of the types

that have infected the cervix of a patient is a very laborious yet criti-

cal task for molecular biologists that is still performed manually. HPV-

Typer is a novel research software application that assists biologists by

analyzing digitized images of electrophorized gel matrices that contain

cervical samples processed by the PCR-RFLP technique in order to

semi-automatically identify the existing types of the virus. HPVTyper

has been designed to be functional under minimum user input condi-

tions and yet to allow the user to intervene in any step of the typing

procedure.

Keywords: HPV typing, gel electrophoresis, PCR-RFLP, biomedical

image processing, software application.

1 Introduction

The human papillomavirus (HPV) is a double stranded DNA virus that is respon-
sible for many forms of genital dysplasia and neoplasia [1,2] and is considered
to be the causal factor for cervical cancer [3,4]. There have been identified more
than 100 types of HPV having similar but slightly altered genotypes; more than
40 of these infect the anogenital tract [5]. However, not all of them are associated
with the development of malignancies of the cervix [6]; there are HPV types as-
sociated with a high risk of malignant progression (high-risk types), types with
a low risk of malignant progression (low-risk types) and types whose associated
risk has not been determined yet (undetermined-risk types).

Given the above facts, it becomes evident that the discovery of the identity of
the HPV type(s) that have infected a patient is crucial for determining the pa-
tient’s risk of developing cervical lesions and cancer. This identification process
is called HPV typing and remains even nowadays an inherently manual proce-
dure. In this paper we introduce a software application that is intended to help
molecular biologists in the task of HPV typing.

HPVTyper is a novel research application that has been developed within the
Information Processing Laboratory of the Electrical and Computer Engineering

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part II, LNCS 6112, pp. 173–184, 2010.
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Department of the Aristotle University of Thessaloniki. The application has
been designed with the collaboration of and is currently under evaluation by
the Molecular Biology Laboratory of the Papageorgiou Hospital of Thessaloniki.
HPVTyper attempts to semi-automatically identify the types of HPV that have
infected a patient by analyzing the image resulting from the gel electrophoresis
of material that has been processed by the PCR-RFLP method (see Sect. 2.1
for an explanation of the molecular biology terms). In this effort, many of the
steps are performed automatically while others require input from the biologist.
However, the user can intervene at every step in order to adjust the miscomputed
parameters of the problem.

The paper is structured as follows: In Sect. 2 we present the molecular biology
techniques that comprise the current in vitro HPV typing protocol and also
cite the related software applications. In Sect. 3 we describe HPVTyper and its
components. Finally, in Sect. 4 we discuss the results of the preliminary use and
also possible future improvements of HPVTyper.

2 Background

2.1 HPV Typing

In this section we describe step by step the in vitro protocol that is followed by
molecular biologists in order to perform HPV typing on human samples.

First of all, a cervical tissue sample is being collected and is amplified with the
use of the polymerase chain reaction (PCR) technique [8] by employing an ap-
propriate set of primers. The reaction increases the concentration of any existing
viral DNA molecules up to six orders of magnitude. Afterwards, the amplified
material is being digested by a carefully selected restriction enzyme, which cuts
the genetic material of HPV at positions of specific DNA base sequence; this
is the restriction fragment length polymorphism (RFLP) technique [9], which
results, due to genotype differences among HPV types, in a – known in advance
– set of fragments of different lengths in base pairs (bp) for each virus type.

The next step in the protocol is gel electrophoresis. Solutions containing the
genetic material from different samples are marked with a fluorescent dye and
loaded into separate wells at the front end of a gel matrix. Then, in the presence
of an electric field, the DNA fragments of various sizes are forced to move with
different mobilities in a direction parallel to the field: the fragments of large
size remain close to the well, while the more agile smaller fragments cover a
much larger distance. This way, a number of lanes, starting from each well, are
formed that contain blobs of DNA fragments of the same size shaped as bands
perpendicular to the electric field. One or more wells are reserved to include
material of known length (usually fragments constantly increasing by 20, 50,
or 100bp). These wells serve as ladders that help the biologist estimate the
unknown lengths associated with the bands of the other lanes.
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After the electrophoresis, a digitized image of the electrophorized gel is ac-
quired by an appropriate digital camera in order to obtain a permanent record
of the resulting gel matrix. Figure 1 depicts such an image and also emphasizes
the concepts of lane, band and ladder. The electrophoresis image is analyzed by
the biologist in order to answer to the following questions for each lane/sample:
Is the sample infected by HPV? If so, by which types of the virus?

LADDERLANE LANE

BAND

BAND

BAND

20bp

40bp

60bp

80bp

100bp

120bp

Fig. 1. Typical image of a gel matrix after electrophoresis. Samples of lanes, bands and

ladder are enclosed in rectangles.

The first step towards answering the above questions is locating the bands of
viral DNA that exist in each lane. Then, the fragment length which corresponds
to each band is calculated by comparing its location with the locations of the
bands of known length from the ladder(s). This is accomplished through an
appropriate interpolation procedure (see Sect. 3.4). The result of this step for
each lane is a set of estimated fragment lengths for the viral DNA existing in the
sample. At this point, the biologist determines the combination of HPV types
which is the most probable to have produced the estimated fragment lengths on
each lane, having in mind for each type the set of fragment lengths that result
from its digestion by the employed restriction enzyme. This is a tedious and
often error-prone procedure.

2.2 Related Work

Gel electrophoresis has been at the forefront of molecular biology for many
decades and it remains the most popular technique for separation of macro-
molecules. Thus, it comes as no surprise that there are plenty of software ap-
plications that deal with the processing and analysis of electrophoretic images:
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TotalLab Quant [10], GelCompar II [11], Gel-Pro Analyzer [12] – just to name a
few. However, all these applications are generic and cannot be employed directly
for the typing of HPV. The most a biologist can get out of them is the estimation
of the fragment lengths corresponding to the bands of a lane (see the previous
section). Still, the actual typing procedure, i.e., the discovery of the combination
of types that best explains the estimated lengths has to be performed manually.

On the other hand, there are application-specific programs that analyze elec-
trophoretic images. For example, SAFA [13] which deals with DNA footprinting,
GASepo [14] with Epo doping control, GelBandFitter [15] which defines the
boundaries of closely spaced bands, etc. However, to the best of our knowledge,
there is no software application dealing with HPV typing and this makes HPV-
Typer both innovative and useful.

3 System Description

3.1 System Overview

HPVTyper is a standalone software application implemented in C++; for the de-
velopment of its graphical interface we have employed the cross-platform wxWid-
gets library [16,17].

HPVTyper handles digital images of electrophorized gel matrices and is
parametrized according to the restriction enzyme(s) used by the RFLP tech-
nique. The parametrization is accomplished through a configuration file which
contains for each HPV type the list of the lengths (in bp) of the DNA frag-
ments that result from the application of RFPL with the employed restriction
enzyme(s). Genetic material that have been digested with different restriction
enzymes can be analyzed as long as the information of the resulting fragment
lengths per virus type for each utilized restriction enzyme is contained in the
above configuration file.

Our application consists of three modules. The Image Processing and Seg-
mentation module performs all the required image processing operations on the
input image and also locates the boundaries of the existing lanes. The Fragment
Mobility Calibration module deals with the ladder(s) included in the image and
employs optimization techniques to map band positions (in pixels) to fragment
lengths (in bp). This is achieved by optimally estimating the parameters that
determine the mobility of the DNA molecules on the gel from the observed posi-
tions of the bands of the ladder(s). The Band Selection and Type Identification
module performs the actual HPV typing procedure. For each lane, it helps the
user select the existing bands of viral DNA and, based on the selected bands, it
calculates for each type the probability1 of the fact that this type is present in
the sample loaded on the lane. The system architecture of HPVTyper is given
in Fig. 2.

1 It will be explained later that this is not exactly the probability but a compatibility

degree.
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Fig. 2. HPVTyper’s system architecture

The application is organized in four tabs that have a serial relation. This
means that, in order to perform any action on some tab, the user has to visit
the previous tabs and interact with the application so that HPVTyper can set
all the prerequisite parameters. Each one of the above modules corresponds to
a different tab of the application.

3.2 Image Processing and Segmentation

After loading the digitized image of an electrophoresis experiment into the appli-
cation, the user can isolate the useful part of it, cropping the blank margins. This
part, that contains only the lanes, looks like the one depicted in Fig. 1. Next,
the application attempts to correct three types of defects that are apparent on
the remaining part of the image. First, the lanes might not be exactly vertical.
HPVTyper allows the user to rotate the image by small angles until the lanes
are aligned to the vertical axis. Second, there exist dark stains of undetermined
shape all over the area of the image due to unavoidable gel impurity. The ap-
plication tries to eliminate them by applying a 3×3 median filter on the image.
Finally, it is often the case that the bands appear dark on lighter background.
However, it is visually better for the bands to appear light on darker background.
Thus, the image can be subjected to color inversion by a simple click in order
to stick to the above color convention.

After the above preprocessing actions, the application is ready to segment the
image into lanes, i.e., to attempt to automatically locate the boundaries of the
lanes. The only input the user has to provide is the number of the lanes. As the
image is now properly oriented, the boundaries are simply vertical lines. The
main idea is that, since the lane areas are covered with viral genetic material,
each lane area generally appears lighter than the empty gel areas between the
lanes. Therefore, we expect high intensity transitions between lanes and back-
ground when moving horizontally. This effect is magnified if we consider the
entire length of a lane. Thus, the application calculates the discrete intensity
derivative in the horizontal direction and sums its value across the vertical di-
rection. The resulting one-dimensional curve has local extrema at the boundaries
of the lanes with positive sign at transitions from lane to background area,2 and
2 When moving from the left to the right of the image.
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with negative sign at the inverse transitions. The extraction of the local extrema
is performed by the watershed algorithm [18].

However, in the case of noisy images, the discovered extrema do not always
correspond to lane boundaries. To overcome this problem, we employ a sec-
ond idea: The lanes must by design have similar – if not equal – widths. This
means that the distance between the left or right boundaries of two neighboring
lanes should be almost constant for all lanes. This “equadistance” property is
combined with the located extrema positions so as to conclude to the actual
boundaries of the lanes.

When the lane boundaries have been determined, the application displays the
results by drawing blue dotted lines on the image at the positions of the left
boundaries, and red dotted lines at the positions of the right boundaries. The
user is allowed to modify the boundary positions by dragging the dotted lines
accordingly. A snapshot of the application’s tab which is used to perform the
actions described in this section is given in Fig. 3.

Fig. 3. A snapshot of the Image Processing and Segmentation tab

3.3 Lane Identification

In this tab, the user designates the ladder(s) that exist in the image, thus di-
scriminating them from the other lanes and provides IDs for the lanes that
correspond to patient samples. For the subsequent analysis, a ladder is assigned
automatically to each lane in order to serve as a ruler of fragment lengths. By
default, if there exist more than one ladders, the ladder assigned to a lane is the
one closest to it. However, the user can manually alter this assignment.
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3.4 Fragment Mobility Calibration

The goal of this module is to perform the mapping of pixel positions on the
image to lengths of DNA fragments. This is accomplished by processing the
ladder(s) that exist in the image. First, the positions of a number of ladder’s
bands corresponding to known fragment lengths are located. Then, the extracted
pairs of positions on the image and fragment lengths are fitted into a predefined
model of DNA mobility on the gel. This analysis is performed individually for
each ladder and this also applies to the description that follows.

Before the application takes action, the user has to specify the step of the
ladder, i.e., the constant length in bp by which the material loaded in the lad-
der increases. After that, the average intensity profile along the width of the
lane is extracted, and the background intensity is subtracted from it. Next, the
application attempts to locate a predefined number of bands on the ladder start-
ing from the band corresponding to the smallest fragment length. These bands
are basically local maxima of the extracted one-dimensional profile satisfying
the following condition: Between two local maxima corresponding to successive
bands the curve must fall below a near-zero intensity threshold. The number of
the maxima sought depends on ladder’s step. For instance, for a 20bp ladder
the lowermost 10 bands are sought.

The ladder part is detached from the gel image and displayed in horizontal
orientation with the estimated positions of the bands indicated as superimposed
red lines. The average intensity profile of the ladder with the located maxima is
drawn just below the ladder image and serves as a visual aid for the user in case
he would like to move some of the band position indicators.

According to [19,20], the theory which best describes the mobility of DNA
fragments on gel under electrophoresis is the one claiming that the distance
covered by a fragment on the gel is inversely proportional to the logarithm of its
length. Hence, if li is the length of the DNA fragments forming the i-th of the
N bands of a ladder and di is the distance they have covered from the start (i.e.
the well) of the lane in pixels, then the above statement can be expressed as:

di = θ1 − θ2 log(li) for i = 1, 2 , . . . , N . (1)

This can be treated as a linear least-squares optimization problem with respect
to the unknown parameters θ1 and θ2. The extracted set of band positions and
their corresponding fragment lengths are used in (1) to estimate θ1 and θ2 and
when this is accomplished a ruler of fragment lengths is drawn just below the
ladder’s profile curve. The ruler also depicts the fragment length values that
correspond to the bands of the ladder as they are calculated from the estimated
mobility parameters.

Since the above estimation procedure is determined by the automatically lo-
cated band positions on the ladder, it is evidently error-prone. To overcome this
problem, the user may alter the band positions, thus invoking a new parameter
optimization round as many times as needed. A snapshot of the application’s
tab in which the actions just described are performed is given in Fig. 4.
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Fig. 4. A snapshot of the Fragment Mobility Calibration tab. This is the case where

only one ladder exists in the image.

3.5 Band Selection and Type Identification

The last tab of the application is linked with the Band Selection and Type Iden-
tification module. Here, the user locates, with the guidance of the application,
the bands that exist in each lane and, based on this information, the HPV types
that may be present in the sample are identified. This analysis is performed for
each lane separately and this also applies to the description that follows. The
tab displays from top to bottom:

1. The image of the ladder that is assigned to the lane in horizontal orientation.
2. The image of the selected lane, also in horizontal orientation.
3. The background-free average intensity profile of the lane, which is extracted

as explained in the previous subsection.
4. The ruler that has resulted from the estimated mobility parameters of the

ladder.

At this point the user has to manually select all the bands that exist in the lane
under investigation by clicking on the lane’s image. The user selection is marked
with a thick red line on the image and with a dotted red line on the profile curve.
Moreover, the corresponding fragment length is displayed on the ruler. Although
band selection is a manual procedure, HPVTyper assists the user in this task
in many ways. First of all, the displayed profile of the lane can be proved very
helpful during band selection, especially when the bands are thick or vague. The
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same holds for the ruler. Moreover, the application can indicate with the click
of a button the expected positions of the bands that correspond to all the pos-
sible fragment lengths for all the types of the virus. These virtual bands are
displayed as dotted blue lines and can guide the user while selecting the band
positions.

After the band selection, the HPV typing algorithm takes over. The algorithm
aims to answer to the following question for each type of the virus: Is the exis-
tence of this type in the sample compatible with the image of the lane? In other
words, could the genetic material of this type have caused some of the observed
bands on the lane? Thus, a compatibility degree is calculated for each type with
the algorithm that is described in the following paragraphs. The degree ranges
from 0 to 1, with 0 meaning that the type is completely incompatible with the
gel image and 1 meaning that the type is fully compatible with it.

Obviously the fragment lengths that are interpolated for the selected bands
are not completely accurate. There are plenty of reasons for that: impurities of
the gel, imperfections of the capturing device, misplaced selection of the bands
by the user, etc. In order to overcome this problem, the algorithm assigns to
each selected band, instead of the corresponding estimated fragment length, a
range of lengths centered around it. The width of the range is determined by
its center. For instance, for fragment lengths lower than 80bp, the range spans
2 bp on each side of the center, while for fragment lengths greater than 80bp, it
spans 7 bp on each side. This length-dependent assignment of the range’s width
makes perfect sense if we consider the motion mechanism of the macromolecules
on the gel.

Next, for each HPV type, the application counts how many of its expected
fragments lengths after digestion belong in the ranges of the observed bands.
Only these lengths that can be interpolated by the discovered ladder bands
are considered.3 For example, since for the case of a 20bp ladder, the mobility
parameters estimation algorithm considers the 10 smaller fragment lengths, i.e.,
from 20 to 200bp, all the fragment lengths (both observed and expected) that
do not belong in this range are ignored. The compatibility degree of a type is the
percentage of the type’s expected fragments within the considered length range
that belong in the ranges of the observed lengths.

In case no type is found to be compatible with degree higher than 0.7, the
application suggests that the sample loaded on the lane has no HPV infec-
tion. Otherwise, the type(s) that overpass the above threshold appear on the
right pane of the tab in order of decreasing compatibility. HPVTyper displays
up to 5 HPV type employing a color-coding scheme for their names. Low-risk
types are typed in blue font, high-risk types in red font and undetermined-risk
types in green font. A report containing both the intermediate and the final
(typing) results can be stored in a human-readable format and reloaded by the
application at a future time. A snapshot of the application’s last tab is given
in Fig. 5.

3 Forbidding length extrapolation is the common practice among molecular biologists.
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Fig. 5. A snapshot of the Band Selection and Type Identification tab

4 Discussion

HPVtyper was subjected to some early tests in the typing of images of gels
that had been produced according to the materials and methods described in
[7]. More specifically, cervical tissue samples from 20 individuals were collected,
including 4 healthy subjects, 14 single type infections and 2 double type infec-
tions. The L1 region of the viral DNA existing in the samples was amplified
using MY09/11 (pair of primers) and then was digested by HpyCH4V (restric-
tion enzyme). The material was loaded to non-denaturating polyacrylamide gel
for the electrophoresis and each gel matrix included one 20bp ladder. Only the 41
types and subtypes of HPV given in [7] were considered. Each lane that resulted
from the electrophoresis was manually typed by an expert molecular biologist
and these were our ground-truth results for the comparison with HPVTyper’s
outcomes.

The results were very satisfactory. All the types that had been discovered
by the expert were also identified by HPVTyper with very high compatibility
degrees (ranging from 0.85 to 1). Moreover, all the lanes for which the expert
had found no type, were also characterized healthy by the application (i.e. no
type had compatibility degree higher than 0.7). At this point, we should mention
that there were cases where HPVTyper pointed out as partially compatible types
that had not been mentioned by the expert.

We consider HPVTyper as an application that can help molecular biologists in
HPV typing as it is now, but also as a basis for a much more powerful application
in the future. It is our intention to add new features that will automate some
steps of the typing procedure and make more accurate some other steps. First of
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all, more efficient strategies for removing the noise from the image and subtract-
ing the background intensity have to be employed during the profile extraction
procedure. Moreover, if more than one ladders exist in the same image, the in-
formation extracted from both of them should be combined for the estimation of
the mobility parameters. This can improve the accuracy of length assignment to
bands especially for lanes that lie far from the ladders. Furthermore, the process
of locating the bands that belong to the lanes should be automated by fitting the
extracted profile to a superposition of properly shaped parametric functions (e.g.
superposition of Gaussian or Lorentzian functions). Finally, we have to employ
typing algorithms that are sophisticated enough to actually combine the types
of the virus in order to explain the observed bands on a lane and not just deal
with each type separately. Such algorithms could possibly be based on the use
of more than one restriction enzymes [21].
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A.M. Pessoa3, and S. Pereira3

1 Instituto Superior de Engenharia de Coimbra, R. Pedro Nunes, Qt.Nora,

3030-199 Coimbra, Portugal
2 Faculdade de Ciências, Univ. Porto, Dep. Matemática, R. Campo Alegre, 687,
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Abstract. This paper presents a method (GEIAS) for the automatic

processing of digital images obtained from Gel Electrophoresis. The per-

formance of GEIAS was tested using 12 images, obtained from 4 gels

with 3 different exposures with a total of 1082 bands, comparing the

results provided by GEIAS and 3 other software tools. The GEIAS is

able to fully automatically detect DNA lanes while the other 3 software

tools tested can only do this in a semi-automatic or manual way. For

the correct location of DNA bands, GEIAS required a manual correc-

tion of the location in 10.0% of the bands, and the other software tools

13.0%, 15.0% and 25.4%. The average error in the estimation of molec-

ular weight was tested using a total of 5443 bands in 12 image using 672

reference/observed lane pairs. The average error was found to be 9.2%

for GEIAS and 11.2%, 14.4% and 13.1% for the other software tools

tested.

1 Introduction

In molecular biology laboratories, fluorescent dyes are used for the detection
and sizing of DNA and RNA in agarose gels. The most common dye to visualize
DNA or RNA bands in agarose gel electrophoresis is ethidium bromide, usually
abbreviated as EtBr [1]. It fluoresces under UV light when intercalated into
DNA. Typically DNA bands containing more than ∼10ng DNA become visible
in an EtBr-treated gel viewed under UV light and the fluorescent images can
be recorded as photographs or digital images. Under a constant field strength, a
linear duplex DNA molecule migrates through the gel matrix at a rate inversely
proportional to the log10 of their molecular weight (or molecular size expressed
in number of base pairs) and proportional to the applied voltage [2] [3]. However
with higher voltages (5-10 V/cm) the migration of large DNA molecules increase
at a faster rate than small DNA molecules [2]. Electrophoresis in agarose gels
provides a rapid and convenient way to measure the quantity of DNA. Because

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part II, LNCS 6112, pp. 185–194, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



186 C.M.R. Caridade et al.

the amount of fluorescence is proportional to the total mass of DNA, the amount
of nucleic acid can be estimated from the intensity of fluorescence emitted by
ethidium bromide. The quantity of DNA in the sample can be estimated by
comparing the fluorescent yield of the sample with that of a series of standards
[3]. DNA molecules are sized by their relative movement through a gel compared
to a molecular weight standard, so mobility measurements are critical to size
determinations. To compute the size of unknown DNA fragments separated on
gels, a standard curve must be created using fragments of known size from the
standard molecular weight markers that are run in parallel with the unknown
samples during gel electrophoresis. The colors on the Gel Electrophoresis Image
(GEI) vary with the dye/stain used, but generally the GEI can be converted to
an intensity (or greyscale) image without any loss of information. An example
of a greyscale GEI is presented in figure 1 (left). A GEI might contain one or
more gels, each with a number of lanes. In this example the image has a single
gel with 8 lanes. Each lane has various bands, corresponding to the presence of
DNA molecules with a given molecular weight. The intensity of a band depends
on the mass (amount, quantity) of DNA present.

Fig. 1. Example of a Gel Electrophoresis Image (G1b). Original image in greyscale

(left) and sub-image with the interest area extracted automatically (right).

The calculation of the molecular weight and mass for an observed substance is
done using a reference in one of the lanes. The reference is a standard substance,
with the molecular profile of the various bands known.

There are a number of software tools available for GEI analysis, such as Im-
ageQuant TL (GE Healthcare, UK), Kodak 1D software (KodaK, USA) and
Quantity One (Bio-Rad, USA). However, in all these software packages there
are several steps that require a considerable interaction from the operator, in-
cluding the identification of the exact location of a gel in the image, and very
often also the location of individual lanes.
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The purpose of this work is to present GEIAS - Gel Electrophoresis Image
Analysis Software and to compare it with 3 software tools: Quantity One version
4.6.3 from Bio-Rad [6], ImageQuant TL from GE Healthcare [7] and Kodak 1D
from Kodak [8]. The current version of GEIAS is an improvement from initial
versions presented in [4] and [5], with the inclusion of an automatic correction
procedure, which improves the molecular weight profile calculation precision.
The performance evaluation of GEIAS and the other software packages include
tests on the automatic identification of interested area, image rotation correction,
location of lanes and bands, as well as the calculation of the molecular weight
profile for each lane observed, given a reference lane.

2 Method

2.1 Pre-processing

Initially, the original GEI image is converted to greyscale (by averaging the
RGB components), and from greyscale to binary using the Otsu global thresh-
old method [9]. To eliminate noise, morphological operators [10] are used with a
circular structure element of 5 pixels radius (more details in [5]). Cumulative line
function are used to identify and extract the gels present in an image and cumu-
lative column function are used to detected the interested area that correspond
to non-void pixels in the binary image (more details in [4]). As an example, the
result for the image G1b after the pre-processing stage is presented in Figure 1
(right), which includes only the area of interest from the original image.

2.2 Automatic Rotation

Once the interest area on the GEI is established, it might be necessary to rotate
the image so that the lanes became vertical. Initially, rotated versions of the
original image are created, by applying rotation angles from −10◦ to 10◦ with
an increment of 0.5◦ (40 different images). For each rotated image, the pre-
processing described in 2.1 is also applied. The number of pixels ON in each
column of the binary images created are used to produce a histogram function
f . Figure 2 (middle row) shows the function f for the original test image G1b
and for a rotated version of this image (by 5◦). The basic assumption to estimate
the correction for rotation is that when the best alignment of lanes is achieved
(lanes near by vertical) the separation between lanes is maximum, which results
in the highest number of null values in f . The total number of null values found
in f is thus used as a measurement of the lane separation. This value (h) is
obtained for each rotated image. The maximum value of h, as a function of the
rotation angle, indicates the rotation correction needed for the image. Figure 2
shows the plots of h as a function of θ, for the original image (G1b) and for the
rotated version of the image (by 5◦).

For a more accurate estimation of the rotation, the process is repeated using
increments of 0.1◦ on a range of 1◦ centered around the previous estimate (max-
imum of h). For the examples presented in Figure 2 the local estimation was



188 C.M.R. Caridade et al.

Fig. 2. Original G1b image (top left) and rotated version (top right), with the corre-

sponding plots for functions f (middle row) and h (bottom row)

made for θ between −0.5◦ and 0.5◦ for the left image, and between 4.5◦ and 5.5◦

for the right image. In these examples, the rotation correction for the original
image was found to be 0.0◦, and for the rotated image 5.0◦. Once the rotation
angle is found, the image is corrected by applying that rotation.

2.3 Lane Detection

The number of lanes is detected using cumulative column function (f) from the
interested area. The assumption is that all lanes have equal width (Wn). The
image (interested area only) is divided in n equal parts (with n between 3 and
25), providing an estimate for the lane’s width. If the estimate is correct, the
lane centres i (Equation 1) should have high values of f and in the edges between
i and i + 1 (Equation 2) there should be low values of f (i = 1, ..., n).
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X i = (i − 1
2
)Wn (1)

X
′i = iWn (2)

Three function are thus constructed: the cumulative average for edges Fe(n)
(Equation 3); the cumulative average for centres Fc(n) (Equation 4); and the
Lane Detection Index (LDI), represented by φ (Equation 5). The final estimation
of the number of lanes (n′) is obtained by searching for the LDI maximum. A
sub-image is obtained for each lane by dividing the original image into n′ parts,
where n′ represent the maximum value of φ (number of lanes).

Fe(n) =

∑n
i=1

∑Wn−3
j=4 f(Wn × (i − 1) + j)

(Wn − 6) × n
(3)

Fc(n) =
∑n−1

i=1 f(Wn × i − 1) + f(Wn × i) + f(Wn × i + 1)
3 × (n − 1)

(4)

φ(n) = (Fc(n) − Fe(n)) ×√
n (5)

2.4 Band Extration

A band is an area of a roughly rectangular shape, with a high density of pixels
ON in the binary image. Its location corresponds to a local maximum of the his-
togram function (t) obtained for the number of pixels ON per line. This function
is calculated using only the central 2/3 of the lane’s width. The local maxima
below a certain threshold are ignored, as they represent false bands (more details
in [5]). Figure 3 shows a lane sub-image (bottom) and the corresponding plot of
t as a function of the image line (top).

2.5 Reference Calibration

In order to compare the performance of the proposed method with existing soft-
ware tools, 5 standard molecular weight DNA markers were used: MassRulerTM

DNA Ladder Mix (A)1, GeneRullerTM DNA Ladder Mix, ready-to-use (B)2,
Lambda DNA/EcoRI Marker (C)6, Lambda DNA/ HindIII Marker (D)6, and
Lambda DNA/EcoRI+HindIII Marker (E)3 (Fermentas, Lithuania). The char-
acteristic of each reference substance is unique. Figure 4 shows the standard
signature of the 5 DNA markers used.

The calibration is performed in two steps. The first step matches the strong
bands with a linear function. In the second step, the strong bands are used to
1 MassRulerTM DNA Ladders, LabAidTM , Fermentas, 2006

http://www.fermentas.com/pdf/labaids/labaid_massruler2006.pdf
2 GeneRullerTM DNA Ladders, LabAidTM , Fermentas, 2006

http://www.fermentas.com/pdf/labaids/labaid_generuler2006.pdf
3 Conventional Lambda DNA Markers, LabAidTM , Fermentas, 2005

http://www.fermentas.com/pdf/labaids/labaid_lambdamarkers2005.pdf

http://www.fermentas.com/pdf/labaids/labaid_massruler2006.pdf
http://www.fermentas.com/pdf/labaids/labaid_generuler2006.pdf
http://www.fermentas.com/pdf/labaids/labaid_lambdamarkers2005.pdf
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Fig. 3. Example of an histogram function t (top) for a reference lane (bottom)

Fig. 4. Reference substances used for the evaluation experiment

predict the location of the weaker ones. If the distance between the predicted
and observed bands is less than 10 image lines, the match is accepted, otherwise
it is ignored (more details in [5]).

2.6 Lane Analysis

The estimation of the molecular weight of an observed band is obtained by linear
interpolation between the closest values along the vertical axis in the reference
lane, using Equations (6) and (7)

bp = exp[M ∗ (ln(Xband)− ln(XOref−)) + ln(Xref−)] (6)
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M =
ln(Xref+) − ln(Xref−)

ln(XOref+) − ln(XOref−)
(7)

where Xband is the x-axis position of a band, XOref+ and XOref− are the x-
axis position of the closer observed reference bands and Xref+ and Xref− are
the x-axis positions of the reference bands matching with XOref+ and XOref−
(more details in [5]).

3 Results

3.1 Test Images

DNA electrophoresis experiments were prepared to evaluate the performance of
GEIAS, comparing it with 3 other software tools, according to standard molec-
ular biology procedures [3]. The 25 mL gels used contained 1% (w/v) agarose
(Molecular Biology Grade - Bioron GmbH, Germany) and 0,2 μg/mL Ethidium
Bromide (BioRad GmbH, Germany), dissolved in 1X TAE (40 mM Tris, 20 mM
Sodium Acetate, 2 mM EDTA (pH=8,0) - BioRad GmbH, Germany). Each gel
was loaded with four of the DNA markers twice (1 μg each); the Lambda DNA
Markers were mixed with 0,20 volumes of 6X Orange DNA Loading Dye (Fer-
mentas, Lithuania). The electrophoresis were performed for 50 min, using 80V (5
V/cm) and 1X TAE as the running buffer [3] and conducted using the LifeTech-
nologies Horizon 58 apparatus (GibcoBRL, UK). The GEI were acquired using
the Kodak EDAS 290 imaging system and Kodak 1D software v.3.5.4 (Kodak,
USA). Four different gels were prepared (G1, G2, G3 and G4 ), each with differ-
ent exposures (a, b, and c), resulting in a total of 12 images (all with 8 lanes).
The test images G1, G2 and G3 have (from left to right) the references sub-
stances B, C, D, E, B, C, D, E and G4 have reference substances A, B, C, D,
A, B, C, D. Using each lane as reference at a time, a total of 96 (4× 3× 8) dif-
ferent test cases were made available, with the remaining 7 lanes on each image
used as observations, resulting in a total of 672 (96× 7) lane observations (more
details in [5]). The evaluation was made in three issues: (i) the detection of the
number and location of lanes in the GEI, (ii) the detection of bands, (iii) the
quantitative estimation of the molecular weight for each band. A typical GEI is
presented in Figure 1, in greyscale (the original is in 24 bits color).

3.2 Automatic Detection of Lanes

The first step is the identification of the region of interest in the original image,
which is basically the removal of the margins around the gel. The automatic
detection of the region of interest was successful in all 12 images tested in the
GEIAS, as well as the automatic rotation. In the other software tools tested,
both the identification of the area of interest and the rotation correction have
to be performed manually by the user.

The results for the detection of the number of lanes and their location in
the image are presented in Table 1. The semi-automatic detection is used when
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the application did not detected the correct number os lanes. In that case, the
user must provide the number of lanes so that the software can detected their
correct position in the image. In those cases where the software fails to prop-
erly locate the lane’s position, there has to be a manual identification of each
lane. All 12 images were detected in the semi-automatic made by ImageQuant
and 11 by Quantity One. For Kodak, 3 images were detected automatically and
the remaining 9 had to be processed manually. The proposed system (GEIAS )
managed to process all 12 images without any operator intervetion.

Table 1. Evaluation of lane detection (12 images tested)

Detection \ Appl. Quantity One ImageQuant Kodak GEIAS

Fully Automatic1 0 0 3 12

Semi Automatic2 11 12 0 0

Manual 1 0 9 0

(1) user indicates number lanes

(2) user marks 1 or more lanes

3.3 Automatic Detection of Bands

The results for the detection of band locations in lanes are presented in Table 2.
Positional error represents a band detected in the wrong position, false positive
(false +) refers to bands that do not exist and false negative (false −) to bands
that are not detected. Kodak was the only software with bands detected with a
positional error (8 cases). All 4 software tools produced more false + (90 to 239)
than false − (8 to 28). Overall, the percentage of bands that required manual
correction (bottom row in Table 2) was found to be between 10.0% (GEIAS ) to
25.4% (Kodak).

Table 2. Evaluation of band detection (total of 1082 bands in 12 images)

Error \ Appl. Quantity One ImageQuant Kodak GEIAS

Positional error 0 0 8 0

False + 124 154 239 90

False − 17 8 28 18

Bands requiring

manual correction(%) 13.0% 15.0% 25.4% 10.0%

3.4 Molecular Weight Estimation

The molecular weight (bp) estimation was processed separately for each band in
the 12 GEI, using each lane as reference at a time (12 × 8 = 96 cases) and the
remaining 7 lanes as observations. A total of 672 (96× 7) testes where therefore
considered (more details in [5]). The relative error in the estimation of bp (in %)
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for GEIAS and the 3 other software tools tested are presented in Table 3. The
bp error values range from 6.8% (GEIAS ) to 17.8% (ImageQuant). The error is
lowest for image G1b (6.8% to 7.7%) (Fig. 1) and worst for for G4b (10.9% to
17.8%). GEIAS was found to have a lower relative error in the estimation of bp
less than the other software tools for all images tested except for G1a and G3b.
For image G1a the best software was Kodak (7.5%) and for image G3b Quantity
One (9.5%). The average error for all 12 images is presented in in the bottom
row of Table 3. According to this experimental, the ranking of the 4 software
tools tested was: 1st - GEIAS (9.2%), 2nd - Quantity One (11.2%), 3rd - Kodak
(13.1%), 4th - ImageQuan (14.4%).

Table 3. Relative error in bp for all the G1, G2, G3 and G4 with 3 levels of exposure

(a, b and c). 1082 band tested in 12 images.

I \ Appl. Quantity One ImageQuant Kodak GEIAS

G1a 7.6% 12.3% 7.5% 8.4%

G1b 7.5% 7.6% 7.7% 6.8%

G1c 7.3% 12.4% 15.8% 7.2%

G2a 14.4% 16.4% 14.4% 10.2%

G2b 14.4% 19.1% 15.1% 10.0%

G2c 15.7% 16.5% 17.7% 9.2%

G3a 9.5% 12.0% 10.2% 11.5%

G3b 11.4% 13.7% 12.5% 8.1%

G3c 8.7% 12.3% 17.1% 8.5%

G4a 12.0% 16.0% 12.3% 9.0%

G4b 13.0% 17.8% 13.7% 10.9%

G4c 13.0% 17.2% 13.2% 10.4%

Average 11.2% 14.4% 13.1% 9.2%

4 Conclusions

The proposed method (GEIAS ) for the automatic processing of DNA Gel Elec-
trophoresis Images (GEI) was found to be very efficient in the automatic de-
tection of the number of gels, the region of interest, as well as the number and
location of lanes. The method is fully automatic in the gel and lane detection pro-
cess. For the others software tools tested, these tasks had to be done manually.
The automatic correction of the image rotation is only performed by GEIAS.
The other 3 software tools do not perform any correction for image rotation. The
band detection is automatic in all softwares, although manual corrections are re-
quired for a number of bands. For GEIAS 10.0% of the bands required correction,
while for the other software tools the values were higher: 13.0% (Quantity One),
15.0% (ImageQuant) and 25.4% (Kodak). The quantitative calculation of the
molecular weight (bp) for an observed DNA band depends on the experimental
conditions, including the reference substance used, but also on the quality of
the resulting GEI (exposure, amount of drag and noise). The average error in
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the estimation of bp was lowest for GEIAS in 10 out of 12 images tested. The
overall average in the estimation of bp was 9.2% for GEIAS, 11.2% (Quantity
One), 13.1% (Kodak) and 14.4% (ImageQuant).

The experiment presented in this paper showed the potential of GEIAS as an
alternative to existing GEI processing software. Plans for future work include
the computation of the mass present on each band as well as the development
of an easy to use interface.
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Abstract. In recent years, imaging techniques have been adapted to

indirectly measure stiffness of biological tissues, with the hope of using

this information to aid in detecting and classifying pathological regions.

Several methods have been developed to convert a sequence of strain

images into a single elasticity image, but most are based on assumptions

that limit the local variability of stiffness in the estimate. In this paper,

two direct inversion methods are introduced. The novelty of these meth-

ods is that they concurrently solve a system of differential equations for

the stiffness, allowing for strong local variations. Some ideas regarding

uniqueness of solutions, an issue that is ignored in existing works, are

also presented. Preliminary numerical results show that by keeping the

differential terms in the tissue model, the new inversion methods can

more accurately determine the tissue’s stiffness distribution.

1 Introduction

It has been well known for millenia that the presence of abnormally stiff regions
in a biological tissue is a strong indicator of damage or disease. Palpation has
been the primary diagnostic procedure used since the days of Hippocrates [1], and
is still one of the most common and efficient methods for detecting pathology in
some soft tissues (such as tumours or cysts in the breast). This method, however,
is limited to tissues near the surface of the body. In order to non-invasively
examine tissues not accessible by touch, imaging techniques must be employed.
Conventional imaging procedures are not able to discern pathological tissue from
the surrounding healthy tissue if the two have similar molecular densities. This
has led to the development of elastography techniques, which combine imaging
with tissue mechanics in order to estimate stiffness values.

Magnetic Resonance Elastography (MRE) is a recently developed medical
imaging technique used to non-invasively ‘measure’ mechanical properties of tis-
sue [2]. The result is an image that quantitatively describes stiffness, and can be

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part II, LNCS 6112, pp. 195–206, 2010.
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used by clinicians to diagnose or classify pathology. The MRE method consists of
the following steps: (i) apply a known stress to the tissue, (ii) measure the phys-
ical response using MR phase-differencing [2], and (iii) invert a mathematical
model that describes the mechanical behaviour of the tissue to find the desired
stiffness parameters. Inversion can be performed using the measured data di-
rectly in the model [3,4,5], or indirectly with the use of an iterative technique
[6,7]. In this paper, direct methods are considered.

The standard model is a system of differential equations that describes tissue
motion in response to an applied stress. Inverting such a system can be diffi-
cult due to a lack of proper boundary conditions for stiffness, which cannot be
measured due to the non-invasive nature of the experiment. To avoid this issue,
simplifying assumptions are typically imposed when using direct methods, the
most common of which is that the mechanical parameters can be locally ap-
proximated by constant functions [3,4,5]. In this case, the system of differential
equations is converted into an algebraic system in terms of the unknown mechan-
ical parameters, which can be easily solved using well-known matrix methods.
The assumption, known as local homogeneity, limits the local variability of the
parameters in the estimate. Furthermore, wherever the true parameters do vary
significantly, the estimate is invalid. From a clinician’s point-of-view, regions
where the true stiffness changes rapidly are perhaps the most important, for
they indicate the boundaries of any pathology.

In this paper, two novel direct methods are proposed to solve the system
of differential equations, rather than the algebraic approximation. In the first
method, the differential system is set as an equality constraint, and optimiza-
tion methods are used to steer any free parameters. The second technique uses
Green’s functions to solve the system of differential equations. By solving the
system of differential equations, a more accurate description of the stiffness pa-
rameters can be obtained, allowing for strong local variations. The result is an
elastogram of more practical utility.

The structure of the paper is as follows. In Section 2, the tissue model is
presented, and a few simplifying assumptions are used to reduce the number of
free parameters. In Section 3, the issue of uniqueness of solutions is discussed.
The novel methods are described in Sections 4 and 5, and preliminary results
are presented for both simulated and measured data. The paper ends with some
concluding remarks.

2 The Tissue Model

In this work, the tissue is modelled as a linearly viscoelastic isotropic continuum
undergoing harmonic motion. To induce harmonic motion, a sinusoidal shear
stress is applied to the boundary of the tissue near the region of interest, and
the system is allowed to reach a quasi-steady state. The harmonic assumption is
required for the MR phase-difference data acquisition technique [2]. An example
of a measured displacement field is shown in Fig. 1. A linear constitutive law
is adopted since the displacements have very low amplitudes (on the order of



Elastography of Biological Tissue: Direct Inversion Methods 197

micrometres). With these assumptions, the equations of motion, written in the
frequency domain, are the following:

−ω2ρ U = ∇·(M [∇U + ∇T
U

])
+ ∇ (Λ∇·U) , (1)

where ω is the frequency of excitation, ρ is the density of the tissue, U is
the three-dimensional harmonic displacement field, and Λ and M are complex,
frequency-dependent versions of Lamé’s first and second parameters. The vec-
tor differential operators act in such a way that the dimensions are consistent,
and ∇T

U = [∇U ]
T
. Equation (1) is a system of three differential equations

with three unknown functions: ρ, Λ and M. Without specifying some form of
boundary or regularizing conditions, these three functions cannot be uniquely
determined. The second Lamé parameter, M (also referred to as the complex
shear modulus), is the parameter of interest since it has been experimentally
shown to vary strongly with pathology [2,4,5].

Fig. 1. Harmonic excitation of a gel phantom containing four stiff cylindrical inclusions:

MR magnitude image (left) and the displacement pattern estimated from a sequence

of MR phase-difference images (right). The experiment was performed in Dr. Richard

Ehman’s MRE lab at the Mayo Clinic [8].

In order to limit the number of free parameters in the system, two of the
unknown functions are eliminated. Soft tissues are mainly composed of water,
so the density is usually assumed to be constant with a value of 1 g/cm3. The
large presence of water also causes the tissue to be nearly incompressible; thus,
the longitudinal component, ∇ (Λ∇·U), is expected to be negligible. With these
two further assumptions, the system is reduced to

−ω2U = M∇·(∇U + ∇T
U

)
+ ∇M · (∇U + ∇T

U
)

, (2)

where the only unknown function is the desired shear modulus, M, and the
equations have been expanded using a vector calculus identity. If the local ho-
mogeneity assumption is imposed, then ∇M is forced to be zero everywhere.
The result is an algebraic expression for the shear modulus that can be solved
using least-squares. This approach is known as Algebraic Inversion of the Differ-
ential Equation (AIDE) [5,9]. In this paper, however, the gradient of the shear



198 C. Antonio Sánchez et al.

modulus is not ignored. Two novel techniques are proposed to invert the system
of differential equations in (2). If the combination of the three equations in the
system does not provide enough information to determine a unique solution,
then regularizing assumptions are invoked to isolate a particular one.

3 Uniqueness

If the mathematical model accurately describes the tissue of interest, then there
is a theoretical ‘true’ distribution of the complex shear modulus. The goal of elas-
tography is to determine this modulus using the measured displacement data. If
there is not enough information to determine a unique solution, then further as-
sumptions must be made. However, the determined solution will only be accurate
if the assumptions are valid. As soon as assumptions like local homogeneity are
imposed, there is no guarantee that a good approximation to the true solution
will be found.

Uniqueness has not been thoroughly explored in existing MRE literature. It
has been strongly suggested that including the ∇M term in the inversion proce-
dure requires the boundary conditions to be known [5,9]. However, mathematical
analysis shows that this is not necessarily true; there exist local conditions for
which (2) has a unique solution, without the need for boundary conditions. The
differential system, ignoring density and the longitudinal component, can be
expressed in matrix form as follows:[

∇·[∇U + ∇T
U

] [∇U + ∇T
U

]] [
I
∇T

]
M = −ω2 U , (3)

where I is the identity operator. Note that this is a system of three equations
involving four unknown terms: M, ∂M

∂x , ∂M
∂y , and ∂M

∂z . Also, note that the co-
efficients of the differential operator depend on the displacement field, U . A
consequence of this is that if a second, linearly independent displacement field
is obtained (perhaps by repeating the experiment while changing the location of
the shear stress), enough equations are generated to locally estimate all unknown
terms. Without repeating the experiment, there are additional conditions that
still guarantee uniqueness, at least locally. For example, for all points satisfying

rank
{[∇U + ∇T

U
]}

< rank
{[

∇·[∇U + ∇T
U

] [∇U + ∇T
U

]]}
, (4)

M is uniquely determined. This condition allows for ∇M to be removed using
local Gaussian elimination techniques, leaving an expression involving only M.
If

[∇U + ∇T
U

]
has full rank, then another condition that guarantees local

uniqueness is

∇×
[ [∇U + ∇T

U
]−1 ∇·(∇U + ∇T

U
) ] �= 0 . (5)

With Condition (5), it can be shown that the only consistent solution to the
homogeneous problem is the zero solution, which guarantees uniqueness of the
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inhomogeneous problem [10]. Thus, for any local regions where either of (4) or
(5) hold, the system in Equation (2) can be locally inverted without the need for
boundary conditions. In these instances, the system is known as being completely
integrable in the Frobenius sense [11].

There are cases, however, where the solution is not unique. For example,

U =

⎡
⎣eikx

eiky

eikz

⎤
⎦ =⇒ M =

w2

2k2
+ α e−ik(x+y+z), for any α ∈ C .

Thus, there is a family of solutions with one free parameter, α. A regularizing
condition must be enforced in order to isolate a particular solution. This will
only match the true solution if the assumptions are valid. Physically, the complex
shear modulus should satisfy Re{M} > 0 and Im{M} ≥ 0, which forces α to be
zero. Thus, based on physically justifiable assumptions, the true solution might
still be uniquely determined.

The family of solutions to the system in (2) has very few free parameters to
begin with, if any. Assumptions like local homogeneity, while convenient, are not
always required. By enforcing them, one is limiting the accuracy of the inversion
method. To accurately capture strong variations in the shear modulus, it might
be best to attempt to solve the differential system instead of the algebraic ap-
proximation, then impose regularizing conditions as a last resort to set any free
parameters.

4 Direct Inversion Using Optimization Techniques

In order to solve (2) for the complex shear modulus, the problem is re-posed in
a constrained optimization framework:

Minimize f(M) = ‖∇M‖2 ,

subject to the equality constraint given by (2) .

Inequality constraints, such as Re{M} > 0 and Im{M} > 0, can also be im-
posed. The equality constraint guarantees that the the complex shear modulus
satisfies the equations of motion. The quadratic minimization functional, f , then
sets the free parameters in order to select a particular solution out of the space
of admissible ones. Even though the condition that ‖∇M‖2 be minimized is sim-
ilar to the local homogeneity assumption, ∇M = 0, this optimization method
is fundamentally different from AIDE. Here, one is searching for the particular
solution among the set of admissible solutions that is the most locally homoge-
neous. In the AIDE technique, local homogeneity is enforced before the inversion
is performed, and the resulting estimate will not be found in the set of admissible
solutions if the true shear modulus varies at all.

To minimize computational complexity, inversion is performed on local block
domains, similar to Van Houten’s subzone approach [6]. On these domains,
derivative operators acting on M are represented by discrete approximations,
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such as finite-difference matrices, with the boundary conditions left as free pa-
rameters. This can be accomplished by setting to zero all rows in the finite-
difference matrices that correspond to boundary points. A simple null-space
method is used to steer any free parameters if the discretized version of (2) is
not invertible. Otherwise, the system is solved using least-squares.

4.1 Results

Simulated Data
Two simulated displacement fields were generated by solving the full three-
dimensional forward problem of (2) for U , given a known distribution of the
shear modulus, M. In the first simulated test-case, a spherical inclusion was in-
troduced in the centre of the domain, with a stiffness value of Re{M} = 7 kPa.
The background stiffness was taken to be 3 kPa, and a linear transition was intro-
duced around the boundary of the inclusion to ensure continuity. In the second
simulated test-case, a Gaussian bump was added to the centre of the domain
with background stiffness of 3 kPa, to have a peak of 7 kPa. Sinusoidal varia-
tions were then introduced everywhere to test the impact of local variations.
The volume of the simulated tissue is 10 × 10 × 4.8 cm, with grid dimensions
128 × 128 × 24. A sinusoidal shear force was applied to one side of the tissue,
with an amplitude of 1 μm at a frequency of 100 Hz. Absorbing boundary con-
ditions were implemented using a perfectly matched layer adapted to the elastic
wave equation [10,12]. The first harmonic was extracted using a Fast Fourier
Transform, and this was fed into the new inversion algorithm.

The inversion was performed on 20 × 20 × 20 blocks, with a 50% overlap.
Solutions in overlapping regions were averaged together to ensure smooth tran-
sitions. Savitzky-Golay filters were used to estimate derivatives of the data [13].
Fourth-order centred finite difference matrices were used to represent the deriva-
tive operators acting on M, with the boundary conditions left free. For these
two simulated test-cases, it was found that the discretized version of (2) was
a fully determined system, implying the solution is unique. Results are shown
in Fig. 2. The shear modulus estimates from the new method are significantly
more accurate than those obtained using the traditional AIDE technique. In
AIDE, the shear modulus distribution is deformed for both test-cases, and a
ringing behaviour is exhibited at the boundary of the spherical inclusion of the
first test-case. By allowing local variations in M, the sharp transition about
the spherical inclusion can be accurately determined, and the true shapes of the
stiffness maps are preserved.

Experimental Data
Measurements of a three-dimensional displacement field were obtained from an
experiment on a gel phantom containing four cylindrical stiff inclusions. The
background gel was 1.5% Agar, having a stiffness of approximately 2.9 kPa, and
the four cylindrical inclusions were composed of 10% B-gel (bovine), with a
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Fig. 2. Centre slice, parallel to the xy-plane, of the real component of the complex

shear modulus for two simulated test-cases. Waves are travelling from left to right in

the simulated displacement fields.

stiffness of approximately 6.4 kPa. The diameters of the four cylinders were ap-
proximately 5, 10, 16 and 25 mm. The field of view was 20 × 20 cm with a slice
thickness of 3 mm. The grid dimensions were 256× 256 × 16. A sinusoidal force
was applied to one side of the domain with an amplitude of 2 μm at a frequency
of 100 Hz. The displacement field was measured using a MR phase-difference
technique. This experiment was performed by Dr. Richard Ehman’s MRE lab
at the Mayo Clinic [8]. The data was preprocessed with a third-order Savitzky-
Golay smoothing filter to remove noise, and was trimmed to contain 188×98×14
points. The first harmonic was extracted using a Fast Fourier Transform.

Inversion was performed on 20 × 20 × 14 blocks, with 50% overlap. Again,
Savitzky-Golay filters were used to estimate derivatives of the data, and the
derivative operators acting on M were represented by fourth-order centred finite
difference matrices with boundary conditions left as free parameters. Similar to
the simulated test-cases, the solution was determined to be unique. The estimates
using the new method and AIDE are shown in Fig. 3. Again, one can see that
the estimate from the new method is more accurate, particularly in and around
the stiff inclusions, than that from AIDE. The AIDE result continues to show
a ringing behaviour at sharp transitions of the shear modulus. This is caused
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by the local homogeneity assumption; in these regions of sharp variation, the
assumption breaks down, rendering the shear modulus estimate invalid. The
AIDE result, however, is smoother, particularly in the background region. This
is because the local homogeneity assumption also regularizes, smoothing the
solution. No such regularization is performed in the new block inversion method,
making it more sensitive to background noise.

Ideal Block Inversion AIDE

Fig. 3. Centre slice, parallel to the xy-plane, of the real component of the complex

shear modulus for a the experimental data. Waves are travelling from left to right in

the measured displacement field.

5 Direct Inversion Using Green’s Functions

Both the AIDE and block inversion methods require knowledge of second-order
derivatives of the displacement data. In practice, the measured data will contain
noise, which is amplified by differentiation. This can make inversion methods
unstable. The block inversion method presented in the previous section is par-
ticularly sensitive to variations in the data, so heavily relies on preprocessing
techniques. To reduce this sensitivity, the need to estimate high-order deriva-
tives of the data must be eliminated. This can be accomplished with the use of
a Green’s function.

Green’s functions are used extensively in the study of Partial Differential
Equations (PDEs), and are extremely useful in solving inhomogeneous problems
subject to known boundary conditions. If a Green’s function for a particular
differential operator exists, then the PDE can be inverted using a convolution.
To demonstrate this concept, consider the following simplified equations:

−ω2U = ∇2 (MU) . (6)



Elastography of Biological Tissue: Direct Inversion Methods 203

In order to arrive at this Helmholtz system, it must be assumed that the tissue
is locally homogeneous and completely incompressible. However, like the previ-
ous method, the complex shear modulus is expressed in a system of differential
equations with unknown boundary conditions. The free-space Green’s function
for the 3D Laplacian operator is given by

G(x) = − 1
4π‖x‖ .

A convolution with this Green’s function will invert a Laplacian provided the
function decays rapidly at the extremes. Unfortunately, the convolution is defined
on all IR3, but the data is only known in some finite region. Thus, either the
Green’s function must be modified to account for the finite boundary, or a data
window must be introduced. To prevent the need to numerically determine a
Green’s function based on the data, the latter approach is used. Both sides
of (6) are multiplied by a window function, W , that has compact support. A
convolution with the Green’s function, G, is then performed, resulting in the
following system:

−ω2 G ∗ (WU) = MWU − G ∗ (
2∇W · ∇ (MU) + MU∇2W

)︸ ︷︷ ︸
B

. (7)

If W is discontinuous, then derivatives must be considered in the sense of dis-
tributions. A typical example of a window is the boxcar function, which has a
value of one in some interior region, and zero outside. With a 3D boxcar window,
the boundary term, B, depends on the values of M and its derivatives at the
boundaries. Unfortunately, this means boundary conditions on M are required
in order to evaluate the expression given in (7).

As an initial estimate, it is assumed that the complex shear modulus is con-
stant over the boundaries of the data window. With this assumption, M can be
pulled outside of the boundary term, allowing the initial estimate to be expressed
as follows:

M(1) = − ω2G ∗ (WU)
WU − G ∗ (2∇W · ∇U + U∇2W )

.

This only involves first derivatives of the data, resulting in a more stable system.
In this way, three estimates of the shear modulus are obtained, one from each of
the three equations of motion. These should be combined using a weighted aver-
aging scheme, like least-squares. The estimate can then be iteratively improved
by using the boundary values found in the previous iteration:

M(k) = − ω2G ∗ (WU)
WU − G ∗ (

2∇W · ∇ (M(k−1)U
)

+ M(k−1)U∇2W
) ,

where k is the iteration number. In this way, it is hoped that the complex shear
modulus will converge to a solution that satisfies the system given in (7). If
the system of differential equations has any degrees of freedom, then further
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regularizing assumptions must be included in the iterative procedure to steer
any free parameters and guarantee convergence.

Preliminary Results
The Green’s function method was applied to the two simulated displacement
fields and the one measured displacement field. Derivatives of the data window
and Green’s function were analytically determined, then discretized. For these
preliminary results, only the first estimate, M(1), is reported. A small window
with a 5× 5× 5 support was used in order to reduce the impact of the constant
boundary assumption. The window was shifted one point at a time in order
to simplify the inversion procedure, allowing the estimate to be expressed as a
single ratio of two convolutions:

M(1) = − ω2(WG) ∗ U

∇2(WG) ∗ U
.

A slice of the results is shown in Fig. 4.

Fig. 4. Centre slice of the real component of the complex shear modulus for the three

test-cases. Waves are travelling from left to right in the simulated displacement fields

(left, centre), and top to bottom in the measured displacement field (right).

Since the simplified equation of motion is based on the local homogeniety and
incompressibility assumptions, the accuracy of the shear modulus estimate is
limited. Just as for the AIDE method, the sharp transitions about the inclusions
in the first and third test cases cannot be accurately captured; the local homo-
geneity assumption introduces a ringing artifact in these regions. The incom-
pressibility assumption also affects the estimated stiffness values, particularly
within the regions of high stiffness for the two simulated cases. The advantage
of this method, however, is that it is incredibly robust. Even with high levels of
noise, reasonable estimates of the complex shear modulus can be obtained. The
convolution acts as a smoothing operator, averaging noise that falls within the
support of the data window.
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In order to increase accuracy, the original system of equations, (2), should be
used instead of the Helmholtz system. Unfortunately, the Green’s function will
depend on the displacement field, so will need to be determined numerically.
The same iterative procedure can still be used, where an initial estimate of the
shear modulus can provide boundary conditions for the next iteration. In this
way, the system of differential equations can be solved using a Green’s function.

6 Conclusions

Using theory for systems of PDEs, it can be shown that the equations relat-
ing the complex shear modulus to the displacement field, (2), can admit unique
local solutions, without the need for regularizing assumptions or boundary con-
ditions. When local homogeneity is imposed, the estimate of the shear modulus
is rendered invalid in any regions where the true stiffness varies strongly. These
regions mark the boundaries of any pathological tissue, so are important from a
clinical perspective. By keeping the differential terms, a more accurate estimate
of the true stiffness distribution can be obtained.

One approach to solving the system of partial differential equations is to leave
the boundary conditions as free parameters, and use constrained optimization
techniques to converge to a solution. In this way, the obtained solution is guaran-
teed to satisfy the original system, even in regions with local stiffness variations.
This method has been found to produce more accurate estimates of the com-
plex shear modulus than the traditional AIDE technique. However, the inversion
is quite sensitive to noise. To reduce sensitivity, Green’s functions can be em-
ployed. These functions are applied through a convolution, which has desireable
numerical properties; noise is smoothed out over the region of integration, and
derivatives of the data can be passed onto the Green’s function, which helps
stabilize the system. Boundary conditions are determined through an iterative
procedure. The result is a very robust method to solve the system of PDEs. The
‘best’ method to use depends on the quality of the data. If it is relatively noise-
free, then the optimization technique is the most straightforward and produces
the most accurate estimate. If the data contains a lot of noise, then the more
robust Green’s function method provides a more reliable estimate of the complex
shear modulus. By improving the accuracy of stiffness estimates, the resulting
elastograms can be used more reliably in clinical applications, becoming part
of a non-invasive tool to aid in the initial diagnosis of tissue pathology, and in
tracking the progress of treatment strategies.
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Abstract. The work flow of cell biologists depends more and more on the anal-
ysis of a large number of images. The manual analysis is a tedious, time consum-
ing and error-prone task. Therefore the aid of automatic image analysis would be
beneficial. This however needs segmentation techniques which can handle low
contrast noisy images with bleed-through from different fluorescent dyes. In this
paper we propose a technique which can cope with these problems by using inten-
sity statistics. The proposed techniques are validated conform the requirements
for the ICIAR Arabidopsis Thaliana Root Cell Segmentation Challenge, which
allows straight forward comparison of different techniques for segmentation of
Arabidopsis nuclei.

1 Introduction

The biotechnology industry is a fast growing industry. However, the number of bio-
engineered products that reach the market is only a small part of the wide range of ideas
tested in research and development labs. Typically, such tests are designed to measure
the effect of a given treatment in samples of the specimen of interest. Observable effects
include growth, cell division and behavioural changes. The aim of image analysis is to
obtain a quantitative description of such variations. Thus, a specialist needs to outline
the biological objects in images or video sequences before any measurement can be
taken. This is often done manually, which is a tedious, error-prone and time consuming
task. Especially, since a large number of images have to be processed to obtain stati-
cally significant results. Currently, an increasing number of tests use automatic image
acquisition systems, such as high throughput systems. They provide new possibilities
for research and development, however, manual process is still the main bottleneck in
the sample processing chain.

To overcome this bottleneck, serious efforts have been made toward automatic de-
tection of biological objects such as cells and cell nuclei. For some applications, good
contrast images are available, such as DIC or contrast phase micrographs. A wide range
of techniques have already been reported in literature [1,2,3,4,5] for the automatic anal-
ysis of these kind of images. Other applications might need fluorescence microscopy,
where certain biological features, such as DNA or membranes are tagged by a fluores-
cent dye. It is this dye which is visible in the micrographs. For a more detailed overview

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part II, LNCS 6112, pp. 207–216, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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of fluorescence microscopy, we refer to [6,7]. Automatic analysis of fluorescence mi-
croscopy has been investigated in [8,9,10,11]. Although they report good results on the
segmentation of cell nuclei, they only consider micrographs with a single channel. So
they don’t have to cope with the problem of bleed-through, i.e. a fluorescent marker is
not only visible in its corresponding channel, but it also affects other channels. In [12]
the micrographs analyzed do consist of multiple channels, but the bleed through is lim-
ited, which allows them to use only one channel for segmentation, ignoring information
coming from other channels. In this paper we propose a technique for the segmenta-
tion of cell nuclei in fluorescence images coming from a confocal microscope. The
micrographs consists of two channels, one channel corresponding with cell walls and
one channel corresponding with the cell nuclei such as can be seen in Fig. 1. In this
technique we will use information coming from both channels This paper is part of the
Arabidopsis Thaliana Root Cell Segmentation Challenge1.

Fig. 1. An example of a fluorescence micrograph of Arabidopsis roots

This paper is organized as follows: In section 2 an overview is given of the proposed
segmentation technique. The following four sections explain the main blocks of the
segmentation algorithm in more detail. Section 6 discusses the results and section 7
recapitulates and concludes.

2 General Method

In Fig. 2, the main steps of the processing method are summarized. The method consists
of four main phases: pre-processing, image fusion, nuclei detection and finally nuclei

1 This is a challenge in order to provide a basis for comparison of different segmentation tech-
niques for this kind of application.
http://paginas.fe.up.pt/˜quelhas/Arabidopsis/

http://paginas.fe.up.pt/~quelhas/Arabidopsis/
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segmentation. The pre-processing step takes the green and red channel as input and cor-
rects both images in order to get a more uniform intensity. After this, the root itself is
extracted using a simple thresholding technique. Then in a second phase it combines
both images to a single image expressing the probability a pixel belongs to a cell nu-
clei. In the nuclei detection phase, this probability map is split into different regions,
where each region contains maximum one nucleus. Then each region is classified as
background or as containing a nuclei. In the final phase each region is segmented. As a
last control, each segment is classified as background or as cell nuclei. The phases are
discussed in more detail in the following four sections.

Fig. 2. The main steps of the processing method: In the first phase a region of interest (ROI) is
defined for the green and red channel. Both ROI’s are corrected for non uniform lightning. Then
based on these two ROI’s a single probability map is calculated in the second phase. The third
phase partitions the ROI in possible regions of nuclei. The final phase detects the actual nuclei in
the partitions.

3 Pre-processing

The intensity of a pixel is not only depending on the amount of fluorescent protein in
the sample, but also depending on how well the sample is in focus. This can be seen
in Fig. 1, where the cell walls and nuclei are much brighter near the border of the root
than they are in the centre or the tip of the root. This non uniform light makes it hard
to use statistics based on intensity. In order to use this kind of statistics, we correct the
images. We use a morphological based method to correct both the red and the green
channel independently [13]. The idea is that the background is similar to the image,
except for the locally high intensity parts, which correspond to nuclei and cell walls.
By using the morphological opening operator on the images, with a structuring element
bigger than the foreground object, cell nuclei and cells are replaced by the intensities of
the surrounding background. The size of the structuring element can be learned out of
a ground truth training set, e.g. calculate the maximum radius of nuclei or a cell. The
background is subtracted from the image, resulting in an image with a more uniform
intensity. In Fig. 3 the illumination correction is shown for both the green and the red
channel.
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(a) green channel (b) corrected green channel

(c) red channel (d) red channel corrected

Fig. 3. Example of correcting non uniform light. On the left are the original green and red micro-
graphs, on the right are the images corrected using morphological operators.

Based on the green image, a region of interest is defined (ROI). We consider each
pixel with a green intensity higher than a certain threshold to be part of the ROI. This
threshold is chosen manually and is the same for all images. By defining this ROI, only
pixels belonging to the root are considered. If it is a cell wall, a nuclei or something
else, as long as it belongs to the root, it is considered to be part of the ROI. Note that
although the ROI is calculated based only on the green channel, it is the same region
for both the green and the red channel.

4 Probability Map

Although only the red channel contains information about the cell nuclei, it is interest-
ing to consider the information in the green channel as well. The first reason is that the
green channel influences the red channel, due though bleed-through. This means that
there is a certain response in the red channel, not because there’s a nucleus in the image,
but because there is a cell wall in the image. A second reason is because it provides us
with extra knowledge: a nucleus belongs to only one cell, so at places where there is a
cell wall, it is unlikely to see a cell nucleus. This property will be used implicitly in our
method.
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Out of the red and green ROI, we define a probability map. This map will have high
values at places where it is likely to find a nucleus and it is near to zero if it is very
unlikely that there is a nucleus. Let us define this probability map as follows:

P
(
N(x, y) = true

∣∣R(x, y), G(x, y)
)

(1)

where N(x, y) is a function returning true if (x, y) belongs to a cell nucleus, otherwise
the function returns false. The R and G are the red and green intensities at coordinates
(x, y). This formula expresses the probability that (x, y) belongs to a nucleus, given the
red and green intensity values. Note that in this formulation, we assume each pixel to
be independent, i.e. the probability is only influenced by its own intensity values and
not by its surrounding probabilities. Formula 1 can be rewritten using Bayes rule:

P
(
N(x, y) = true

∣∣R(x, y), G(x, y)
)

=

P
(
R(x, y), G(x, y)

∣∣N(x, y) = true
)
P
(
N(x, y)

)
P
(
R(x, y), G(x, y)

) (2)

In the following we discuss the semantics of this equation:

– P
(
R(x, y), G(x, y)

∣∣N(x, y) = true
)
: this is the probability that a given green-red

combination appears, if you know that (x, y) belongs to a nucleus. This can be
learned from the training data, i.e. consider the green-red probability for all ground
truth pixels.

– P
(
N(x, y)

)
: this is the probability that a certain pixel belongs to a nucleus. For

simplicity reasons, we assume each pixel in our ROI to have the same probability.
This assumption results in a constant value for each pixel and so this term can be
discarded in Eq. (2).

– P
(
R(x, y), G(x, y)

)
: this is the probability that a given green-red combination ap-

pears, if no prior knowledge is available about (x, y) belonging to a nucleus or not.
This can be learned from the training data set: calculate the ROI in each image, and
based on the 2D histograms calculate this probability.

Due to the high amount of shot noise in the micrographs, there is a high amount of shot
noise in the probability map. To minimize the influence of this noise the probability
map is filtered with a median filter. In Fig. 4 an example is shown of a probability map
based on the red and green ROI. As can be seen in Fig. 4.c, there is nearly no influence
of bleed-through in the probability map. It is also clear that nuclei with low intensity
also have good probabilities.

5 Nuclei Detection

Based on the previously defined probability map, candidate nuclei will be detected.
These candidates will correspond to regional maxima in the probability map. In order
to overcome the problem of touching nuclei, we will use a similar technique as in [10]
to detect the regional maxima. Instead of diffusing the probability map using gradient
vector flow [14], such as is done in [10], we will use a more computational efficient
technique which will be described in the following subsection.
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(a) green ROI (b) red ROI (c) probability map

Fig. 4. Example of a probability map: based on the green (a) and red (b) micrograph, a probability
map is calculated. This probability map denotes how likely it is that a pixel belongs to a cell
nucleus.

5.1 Probability Propagation

The goal of this step is to get a map where pixels with high probabilities propagate their
probability to surrounding pixels with lower probability. By doing so, we get a map
where the probability slowly decreases as it gets further away from pixels with high
probability. This can be achieved using the following two scan line algorithm:

1. Scan the map row by row, starting from top to bottom
2. In each row, the pixels are scanned from left to right
3. Replace the pixels by:

P (x, y) =

max
(
P (x, y), γP (x, y−1), γP (x−1, y−1), γP (x−1, y), γP (x−1, y+1)

)
(3)

Where γ ∈ [0, 1] is a weighting factor, which determines the speed at which prob-
abilities decrease. Note that all pixels in eq. (3), except P (x, y), are already pro-
cessed in previous steps, due to the scanning order. So this propagates the probability
of a pixel beyond its direct neighbours with lower probability. An optimal γ has to
be found manually.

This algorithm propagates probabilities from top to bottom and from left to right of the
map. In order to propagate probabilities in the remaining directions the algorithm is
repeated in the opposite direction, from the bottom right corner to the upper left corner.

5.2 Nuclei Detection

By applying a watershed algorithm [15] on the new probability map, the map is split
into different partitions. Each regional minimum, e.g. a single cell nucleus, results in
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a separate partition. However, not every partition contains a nucleus. In Fig. 5.(b) an
example of such a partitioning is shown, i.e. this is the partitioned probability map be-
longing to the micrograph in Fig. 5.(a). Based on the maximum probability belonging
to a partition, a selection is made of invalid partitions: if the maximum probability of
a partition does not exceed a given threshold, the partition is discarded. An optimal
threshold can be learned out of the training dataset: the maximum probability is calcu-
lated for each ground truth segment, then the minimum of these maxima can be used
as a threshold. The result of this simple classification can be seen in Fig. 5.(c) where
discarded partitions are coloured red.

6 Nuclei Segmentation

All remaining partitions will be segmented independently. First each partition is filtered
using a variance filter, i.e. each pixel is replaced by the variance in a certain window
around the pixel. An example of the filtered partitions can be seen in Fig. 5.(d). Then
each filtered partition is segmented using the watershed algorithm. This results in a set
of segments for each partition. These segments are delineated green in Fig. 5.(e). For
each partition a single segments has to be selected as candidate nucleus. The segment
containing the pixel with the highest probability of the partition is considered to be the
nucleus of the partition. All other segments in the partition are considered background
and are discarded. This results in a single small segment for each partition, however, not
all these segments are true nuclei, so a final check is done: the average probability of the
nucleus segment is calculated, if it does not exceed a certain threshold it is considered
to be noise and is discarded. This threshold can be calculated out of a training dataset
in a similar way as the threshold in sec. 5.2. in Fig. 5.(f) the final segmentation result is
shown.

7 Results and Discussion

In order to quantitatively evaluate the proposed technique and to compare this tech-
niques with others, the ICIAR Arabidopsis Thaliana Root Cell Segmentation Challenge
provided a set of 10 ground truth images. This ground truth consists of manually de-
lineated nuclei with their corresponding micrographs. For the training of the algorithm,
e.g. calculating the thresholds and defining the necessary probability distributions, a
training set of 22 ground truth images was provided. As a validation of the proposed
method, two groups of measurements will be used. One group are metrics concerning
the cell detection, the second group puts a measure on how well detected cells are seg-
mented. We will first discuss the second group since results of this measurement are
used for the other group.

For the validations of the segmentation, the Dice coefficient is used. For each seg-
ment found by our method, S, a corresponding segment, GT, will be searched in the
ground truth, i.e. the ground truth segment with the maximum overlap with S. Then the
Dice coefficient between S and GT is defined as:

d(S, GT ) =
2 Area(S ∧ GT )

Area(S) + Area(GT )
(4)
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(a) Original micrograph (b) probability map partitioning (c) Cell nuclei detection

(d) Variance filter of partitions (e) segmentation of the partitions (f) Resulting segmentation

Fig. 5. Example of nuclei segmentation

Where S ∧ GT consist of all pixels which both belong to the detected segment as to
the ground truth segment. If S and GT are equal, the Dice coefficient is equal to one.
The Dice coefficient will approach zero if the overlap is much smaller then area of S
and or the area of GT. All detected segments which have no corresponding ground truth
segment have a Dice coefficient of zero.

For the validation of cell detection the following measures will be used:

– True positives (TP): each segment having a Dice coefficient higher than 0.5 is con-
sidered a TP.

– False positives (FP): all detections which have no corresponding ground truth seg-
ment are considered to be FPs

– False negatives (FN): All ground truth segments with no corresponding detections
are FN’s
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– Precision is the ratio of the number of TP’s in an image, over the total number of
detected cells in that image, i.e. including FP’s

– Recall is the ratio of the number of TP’s in an image, over the total number of cells
in the ground truth image

Table 1. The validation results: column A shows the results for the proposed technique, column
B shows the results for the WCIF method

A B
average # TP 93.60 71.6
average # FP 8.50 21.90
average # FN 15.40 28.40
average precision 0.86 0.62
average recall 0.83 0.64
average Dice coefficient 0.77 0.62

Table 1 shows in the A column the results of the proposed method. These results
are compared to the WCIF method [16], i.e. a method based on Otsu thresholding and
watershed for splitting touching nuclei. Note that the first five measurements in Table 1
are the average results over the images, where the last measurement is the average Dice
coefficient for all TP’s. As can be seen, does the proposed method have significant better
results than the WCIF method. One of the main reasons for this significant improvement
is the use of a probability map, which reduces the influence of bleed through and noise.

8 Conclusion

We presented a new method for the segmentation of cell nuclei in fluorescent micro-
graphs of Arabidopsis Thaliana roots. This method calculates a probability map ex-
pressing how likely it is a pixel belongs to a nucleus. Based on this map, cell nuclei
are first detected and then segmented. The method was validated on the Arabidopsis
Thaliana Root Cell Segmentation Challenge test set, resulting in a precision and recall
of respectively 0.85 and 0.83
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Abstract. The study of cell division and growth is a fundamental aspect

of plant biology research. In this research the Arabidopsis thaliana plant

is the most widely studied model plant and research is based on in vivo

observation of plant cell development, by time-lapse confocal microscopy.

The research herein described is based on a large amount of image data,

which must be analyzed to determine meaningful transformation of the

cells in the plants.

Most approaches for cell division detection are based on the morpho-

logical analysis of the cells’ segmentation. However, cells are difficult to

segment due to bad image quality in the in vivo images. We describe

an approach to automatically search for cell division in the Arabidopsis

thaliana root meristem using image registration and optical flow. This

approach is based on the difference of speeds of the cell division and

growth processes (cell division being a much faster process).

With this approach, we can achieve a detection accuracy of 96.4%.

Keywords: Biology image processing, cell division detection, Arabidop-

sis Thaliana.

1 Introduction

Cellular division is a fundamental process responsible for originating other cell
types in multicellular organisms. In plants, specialized regions, the meristems,
concentrate cellular division. Arabidopsis thaliana is a plant with rapid devel-
opment and with a simple cellular pattern. Due to these characteristics, it is
considered a model organism, widely used in plant research. The Arabidopsis
root meristem, located at the tip of the root, is responsible for perpetuating
this pattern by cellular division [1]. However, the control of the divisions is not
completely understood, which motivates in vivo analysis of the Arabidopsis root.

Development biologists studying roots find it difficult to cope with the lack
of suitable technology to analyze root growth in vivo [1]. The great amount of
data produced leads to the development of image analysis tools to automatically
extract useful information, such as identifying cell division and growth. Some of
these solutions focus on the analysis of Arabidopsis development. Cell growth is
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Fig. 1. In vivo microscopy image of the Arabidopsis thaliana root. Cell wall and nuclei

channels shown in middle and right images respectively.

analyzed using different approaches, such as mathematical models [2] and motion
estimation methods [3]. The relation between cell division and elongation in the
regulation of organ growth rate is also investigated [4]. These studies show that
in vivo imaging of the root is a valuable tool. However, none of them provide an
automatic way to study the images at a cellular level.

In most automated cell analysis approaches, the first step is image segmen-
tation, as in approaches described in [5,6]. Individual cell tracking is then per-
formed based on proximity and cell division events are detected due to the
mitotic cell morphological changes [7]. To avoid making a decision based on mor-
phological features Yang et. al. proposed a shape independent division detection
method based on 2D+time segmentation using level set methods [8]. However,
this approach requires a fine time sampling which cannot be obtained in the
case of in vivo plant imaging due to bleaching problems arising from excessive
sampling. Moreover, segmentation is a difficult problem in computer vision and,
in the case of in vivo plant imaging, is made worse by image acquisition process,
data variability and noise [9] (Figure 1). These characteristics can often lead
to errors in the segmentation process, such as over-segmentation of the cells.
This, together with the small number of cell divisions, makes the detection of
cell division through segmentation a very difficult task.

Recently, advances have been made in the detection of cell division by ana-
lyzing the shape of cell nuclei for mitotic changes [10]. This approach uses local
convergence filter [11] for cell detection and an SVM classifier based on mor-
phological features of the detected cells. No segmentation was used. However,
problems in cell detection still remained.

In this work, we introduce a novel approach to cell division detection in plants
based on optical flow, which does not depend on cell detection. Due to the slow
changing overall structure of the root tip’s walls, image registration between
time-lapse images is possible. Root tip walls do not change rapidly since little
elongation occurs in the root tip meristem. Changes in the root tip come from
cell division and these changes are relatively fast and localized, being clearly
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Fig. 2. Uncontrolled time-lapse in vivo imaging (showing only the GFP channel)

visible in the cell nuclei images. Our approach takes advantage of the different
rates of evolution (local/global) and based on the optical flow between registered
cell nuclei images detects fast changes in the root’s morphology which signal a
cell division.

The plant cell images used in this paper are confocal fluorescence images,
which have separate channels for cell nuclei and cell wall images. Cell walls are
marked using Green Fluorescent Protein (GFP) and cell nuclei are marked using
Yellow Fluorescent Protein (YFP) [12]. Figure 1 shows an in vivo image of the
root meristem and each channel separately. Cell walls are shown in the green
channel and nuclei are shown in the red channel. However, our approach is not
limited to these type of images and could be applied to other images and other
types of plant cells where division occurs.

This paper is organized as follows: Section 2 describes the data used in this
work and its capturing system, Section 3 describes the approach proposed and
Section 4 presents the results of the proposed approach applied to the data.
Finally, conclusion is presented in Section 5.

2 Database

For this work we used an in vivo image database of Arabidopsis Thaliana roots.
This data was obtained using a confocal microscope with a motorized stage,
which is automatically controlled to compensate the relative translation intro-
duced by the root’s growth. The specific control method used was proposed by
Garcia et. al. [12]. The time duration of the experiments ranged between 5 and
13 hours, with images being acquired every 15 minutes.

The reason for the use of microscope stage control is that in in vivo experi-
ments, if no compensation is performed, the area under study will grow out of
the field of view. Depending of the zoom this can happen in as little as 15 min-
utes. Also, this type of control is required to releave the biology research from
adjusting the microscope stage every few minutes. In Figure 2, we can see an
example of images acquired without motion compensation, in this case the area
under study leaves the frame in little more than an hour.

While the control method used applies estimation techniques to keep the root
in view it does not completely eliminate motion between frames. Furthermore, it
does not compensate rotation as the microscope stage is only capable of transla-
tion. As such, the resulting time-lapse images retain some residual motion which
we will need to eliminate for the success of our approach.
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3 Methodology

Our approach is divided into three main steps: time-lapse image registration,
time-lapse image pairwise optical flow estimation and root local morphology
change detection based on the extracted optical flow.

As mentioned in the previous section the images used in this work have both
cell wall and cell nuclei information, stored in the green and red channels respec-
tively. We will base cell division detection on the nuclei image channel, as nuclei
suffer clear change during division. As cell walls are more stable the cell wall
channel will be used for image registration of time-lapse frames. While some
channel bleed through can occur in this type of data, it was not significative
for our methodology. In the next subsections we will describe each step of our
approach.

3.1 Image Registration

Image registration in time-lapse videos deals with the registration of motion
throughout the complete image sequence. However, as we require only that there
is no motion between each frame pair, we only register images in pairs ignor-
ing all previous motion information. This allows us to safeguard against error
propagation throughout the image sequence.

Given the pair of images constituted by the current image It and the next
image It+1, we want to correct their relative motion and obtain an estimation
for the next image Ît+1 which has no global motion relative to It. As mentioned
before, we choose to base such estimation on cell walls as they have more struc-
tural information, higher contrast and may be considered to be rigid at the time
scale used in the experiments analyzed.

Assuming a rigid root we limit motion between frames to rotation and trans-
lation. This type of transformation is defined by equation 1, more details in [13].[

x′

y′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∗
[
x
y

]
+

[
tx
ty

]
(1)

where (x, y) are the coordinates for a plant root location in frame t and (x′, y′)
are the coordinates the same plant root location coordinates for frame t + 1. To
compensate for the unknown motion between frames we need to estimate the
motion parameters: (tx, ty, θ).

Motion estimation between images is a vast area with many possible solu-
tions of varying complexity. In the case of our application we chose to perform
motion estimation based on local interest point correspondences using the DOG
local interest point detector and SIFT local point descriptors proposed by David
Lowe [14]. While simpler approaches may have produced similar results, we chose
this combination of local interest point detectors and descriptors due to their
robust nature to make our approach applicable to a wider range of experimental
conditions.
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The local interest point based motion estimation between images used in our
approach has three steps: interest point detection and descriptor extraction,
point matching between images, and rigid motion parameter estimation:

Interest point detection and descriptor extraction: Given an images I we extract
local interests points using the Difference of Gaussian (DOG) interest point
detector [14]. For each image we obtain a set of interest points:

L(I) �→ P = {pi, i = 1, . . . , n}, (2)

where L is the DOG interest point detector, P is the set of resulting n local
interest points pi = (xi, yi). For each point in set P we extract a SIFT descrip-
tor [14]. This descriptor captures the local texture and structure so that it is
possible to distinguish between local points and match similar points.

Point matching: Based on the Euclidian distance between SIFT descriptors we
can obtain putative correspondences between point sets Pt and Pt+1 from time
lapse frames It and It+1:

Ct(pi, pj) =
{

1 if DE(pi, pj) < DE(pi, pj′)∀j′ �= j
0 otherwise

(3)

where DE is the Euclidian distance, i and j are indexes for point sets Pt and
Pt+1 respectively.

Motion parameter estimation: The set of correspondence Ct can contain a large
percentage of incorrect matches. As such to estimate the motion parameters
(tx, ty, θ) a robust estimation method is required. In our approach we applied a
RANSAC estimator [13], based on Ct, to obtain the motion parameters (tx, ty, θ).
The RANSAC algorithm is based on the exact solution to equation 1, using ran-
dom sample correspondences from Ct. This results in a tentative solution for
the motion parameters: t̃x, t̃y, θ̃. Using this solution, we project points Pt from
image It to obtain P ′

t . We then compute the distance between the projected
points P ′

t and the corresponding points Pt+1, according to Ct. If the coordinate
distance between projected and putative matched points is within a threshold
(15pixelsinourexperiments), we classify the correspondence as an inlier of the
tentative solution. This process is repeated by selecting other random correspon-
dence samples and obtaining other tentative solutions for the motion parameters.
After a number of iterations the solution with the largest number of inliers is
kept as the estimate for the motion parameters: t̂x, t̂y, θ̂. Applying the inverse
of the estimated motion parameters (t̂x, t̂y, θ̂) we can transform image It+1 and
by doing so obtain a pair of images that is registered, which retain only small
amounts of residual rigid motion.

3.2 Optical Flow Estimation

After performing rigid motion registration between the time-lapse images based
on the cell wall channel we estimate the optical flow of the cell nuclei channel.
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Optical flow deals with the estimation of the displacement field between two
images, giving the correspondences between each individual pixels from each
image. Contrary to the previously applied image registration the root is free to
have non-rigid motion between frames.

To obtain the time-lapse images pairwise optical flow we use the high accuracy
estimation method presented by Brox et. al. [15]. This method combines three
spatiotemporal assumptions: a brightness constancy assumption, a gradient con-
stancy assumption, and a discontinuity-preserving smoothness constraint. The
brightness and gradient constancy are expressed as:

I(x, y, t) = I(x + u, y + v, t + 1) (4)

and,
∇I(x, y, t) = ∇I(x + u, y + v, t + 1), (5)

where (u, v) is the searched displacement vector between an image at time t and
another image at time t + 1. Let x := (x, y, t) and w := (u, v, 1) the data energy
to be minimized in the estimation of the optical flow can be written as:

EData(u, v) =
∫

Ω

Ψ(
∣∣I(x + w) − I(x)|2 + γ|∇I(x + w) −∇I(x)|2) dx (6)

where Ψ =
√

s2 + ε2 which is a modified L1 norm and γ is the weight between
both assumptions. By using a large value for γ we ignore changes in grey value
and base optical flow estimation mostly in image gradient information.

Finally, a smoothness term has to describe the model assumption of a piece-
wise smooth flow field. This is achieved by penalizing the total variation of the
flow field, which can be expressed as:

ESmooth(u, v) =
∫

Ω

Ψ(
∣∣∇u|2 + |∇v|2) dx (7)

with Ψ =
√

s2 + ε2 as in the EData term. The spatial gradient ∇ := (∂x, ∂y)
indicates that a spatial smoothness assumption is involved.

The total energy is the weighted sum between both energy terms:

E(u, v) = EData + αESmooth (8)

with some regularization parameter α > 0. Higher α values cause the method
to ignore local optical flow variations. In the case of our approach we used the
parameters α = 20 and γ = 150 in order to trust mostly the image gradient and
have little smoothing of the displacements field [15].

Next a coarse to fine approach based on warping techniques is used to find
the displacement field given by u and v that minimizes the energy E(u, v). The
scale of this estimation regulates the magnitude allowed for the displacement
field. As cell motion is in the order of 5 to 10 pixels we chose 4 levels of coarse
to fine estimation.

While division could be analyzed through frame subtraction, the results would
be more easily corrupted by local greylevel variations.
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(a) (b) (c)(a) (b) (c)

Fig. 3. Optical flow resulting from plant root time-lapse images when cell division

occurred: (a) image at time t, (b) image at time t + 1, (c) magnitude of the estimated

optical flow. Cell divisions occurring are highlighted within green circles.

3.3 Optical Flow Segmentation

Given the estimated optical flow (Figure 3), we can find the locations where cell
division is most likely to have occurred. Since most global (rigid) motion was
eliminated by the image registration step, any large magnitude displacement in
the optical flow should signal a cell division. However, the root is a 3D object and
it does not move only in the viewed 2D confocal plane. As such, sometimes cell
nuclei can appear or disappear from the image plane even if the cell walls remain
visible. As such, some optical flow disturbances are not due to cell division.
Figure 4 shows some examples of high magnitude optical flow disturbances which
were not caused by cell division, these can cause false cell division detections.

To detect possible cell divisions in a robust way we do not rely on a single
threshold but analyze the areas of strong optical flow disturbance at several
thresholds. We take 6 different threshold level between 4/12 and 9/12 of the
full range of values of the optical flow magnitude in the displacement field and
obtain 6 different binary images. Segmented regions within those images are
grouped based on overlap across thresholds and those that appear in more than
2 threshold images are retained as possible cell divisions. A final check is made
that the area of such regions is not too large (900 pixel squared) and the area
of the segmented regions does not suffer large area variations between threshold
level (variance bellow 1000). This approach is based on the idea that cell division
causes an isolated peak in flow disturbance.

4 Results and Discussion

To validate our methodology we used images from two time-lapse biology exper-
iments, comprising a total of 49 images. The time-lapse fluorescence microscopy
sequences were recorded using a temporal resolution of one image per 15 min-
utes. The dataset contained a total of 4412 cells and 35 of those cells where
annotated as undergoing division during the time-lapse capture.

Table 1 shows the cell division detection results for our approach, when applied
to the dataset. The results show that our method has a good accuracy and recall,
while precision has a low value. However, it has to be taken into account that
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Error caused by 
fluorescence 
intensity 
variation

Error caused byError caused by
cell nuclei 
motion caused 
by growth

Error caused by 
ff loff plane 3D 

motion of the 
plant root

It It+1 Optical flow 
magnitude

Fig. 4. Examples of root regions where nuclei changed appearance between frames

causing peaks in optical flow which did not originate in cell division

Table 1. Detection performance results of our approach for cell division detection

Classification results

Accuracy(%) 96.4

Precision(%) 14.9

Recall(%) 74.3

the dataset has 4412 cells from which only 0.8% are dividing. As such, false
positives are always to be expected. Overall the results are good and present an
improvement over shape based approaches [10].

During the experiments presented here we found that the main source of
error is the time-lapse interval excessive duration. Based on the results from
our experiments we believe that by using a time-lapse interval shorter than 15
minutes the proposed approach would be more efficient. The second problem
found is the 3D of-plane motion of the plant root. This is a more complex
problem as it would required a more complex microscope stage compensation
method and 3D root acquisition.

5 Conclusion

We introduced an automatic segmentation free approach to detect cell division
in in vivo time-lapse sequences of growing Arabidopsis thaliana. This method is
based on the analysis of the optical flow between time-lapse images and detects
the localized distortion caused by the, relatively rapid, cell nuclei division event.
Results show an improvement over previously proposed methods with higher
detection accuracy(96.4). Being segmentation free means that this method can
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Fig. 5. Cell division results overlayed on current (left) and next image (middle) as well

as on the resulting optical flow (right). False detections show in dashed circles and

correctly detected divisions shown in solid squares.

be used even in the presence of high noise levels and low contrast. While the
test images were only of the root tip, we believe that as long as the plant images
can be properly registered this approach will work with the shoot meriterms and
with other image types.

As future work we expect that combining both optical flow and cell morphol-
ogy analysis approaches will produce improved results leading to the performance
levels necessary for a laboratory prototype implementation.
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Abstract. The biometric identification of persons became a very important 
problem nowadays. Various aspects of criminality, and lately terrorism, forced 
us to increase the financial outlays allocated for safety measures based on  
biometrics. Fingerprints and face are the most popular biometric features. How-
ever, new modalities are still desirable (moreover, nowadays the usage of mul-
timodal systems becomes very popular). An ear seems to be a very interesting 
one. The auricle has complex and stable structure and is as distinguishable for 
various persons as the face. During the development of biometric algorithms 
their proper and reliable testing is one of the most important aspects. For that 
purpose a test database can be very helpful. There are many test bases with 
faces, but ear databases are very rare. Moreover, the existing ones are usually 
strongly limited. Therefore, in this paper a new ear  images database (the West 
Pomeranian University of Technology Ear Database) is presented for usage in 
various scientific applications, e.g. for testing biometric algorithms. 

Keywords: Ear biometrics, ear recognition, ear database. 

1   Introduction to Ear Biometrics 

The identification of human individuals became the key problem of our times and 
concerns many aspects of life and science. An increasing competition in the world 
market and development of technological thought caused necessity of data security, 
whereas a wave of terrorism and criminality contributed to intensified protection of 
the society. In areas of finances, health care, transport, entertainment, communication 
as well as governmental organizations, automatic identification issue gains more and 
more importance. Secure systems appear to be an indispensable element of our life. A 
verification of a person, who has access to specific buildings or data is counted among 
routine procedures that prevent abusing and state fundamental protection ([1-4]). 

The usage of biometry became an essential component of effective person identifi-
cation as biometric features of the human being can not be lost, copied or the same for 
different individuals. Biometric characteristics can be divided into behavioral  
(e.g. signature, keystroke dynamics) and physical (related to the shape of the body, 
[5]). The second group leads to the passive identification methods that do not require 
user's active participation in the process of identification (demanded data can be even 
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acquired without person's knowledge). Systems used for monitoring of crowded pub-
lic places like airports or sport centers, are ones of the most desired applications. 
Usually, a face as a source feature is used for that purpose. In studies devoted to bio-
metrics an ear is often compared to it, because similar recognition methods and equip-
ment (camera or camcorder) are applied to it ([1,6]). 

1.1   Brief History of an Ear as a Biometric Feature 

The genesis of scientific interest in potential usage of human ear took place in 1854, 
when for the first time patrimonial features of an auricle were noticed by A. Joux. In 
1890 primary application of ears for personal identification was presented and advo-
cated by the French criminologist A. Bertillon, who pointed out ears' rich, stable and 
time independent character. Later, in the beginning of the 20th century fundamental 
assumptions for application of ear in human identification were published by R. Im-
hofer, who also asserted that in the set of 500 ears only four characteristic features 
were required to prove their uniqueness ([7]). 

In 1910 the lecture about possibilities of exploiting ears in human identification by 
J. H. Evans has become a scientific sensation. It was presented for the members of 
The Forensic Medicine Association. In the same year for the first time the person 
identification based on ear photos was used by the court of Liverpool. Since early 50's 
of the last century ear-prints have played a significant role in forensic science, where 
they have been used quite extensively ([8]). 

Application of advanced computer techniques to the discussed problem in the 90's 
of the last century made possible the automatic identification of individuals basing on 
pattern recognition and image analysis methods. Almost decade ago Burge et al. ([9]) 
were amongst the first scientists exploring an ear as a biometric. They were using 
graph matching techniques on a Voronoi diagram of curves extracted from the Canny 
edge map. Moreno et al. ([10]) presented two approaches employing neural network 
classifiers based on feature points (recognition rate of 43% was reported) and ear 
morphology (recognition rate - RR of 83%). Hurley et al. ([11,12]) used a "force 
field" feature extraction based on simulated potential energy fields. This method 
achieved a 99.2% RR on a dataset of 252 images selected from the XM2VTS face 
database. Chang et al. ([13]) used Principal Components Analysis (PCA) and reported 
performance not significantly different for both face and ear.  

Some of approaches use geometrical parameters, e.g. Mu et al. (85% RR, [14]), 
Choras (100% RR for a dataset of non-occluded ear images, [15,16]). Yan et 
al.([17,18]) used Iterative Closest Point (ICP) method for recognition performed on a 
set of 3D ear images and reported 97.8% RR. Bhanu et al. presented recognition sys-
tem based on ICP and a local surface descriptor (also using 3D images) for which rate 
of 90.4% has been reported ([19]). After testing combinations of 2D-PCA, 3D-PCA 
and 3D edges on database of 203 images, Yan et al. concluded that better result can 
be achieved after a fusion of the all three ([20]). Akkermans et al. ([21]) developed a 
biometric system based on measurements of acoustic transfer function of an ear by 
projecting a sound wave and recording it reflected signal. They achieved equal 1-5% 
error rates, depending on the device used for measuring. Description of many other 
approaches for ear recognition can be found in [22]. 
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1.2   Biometric Test Databases 

The databases for testing the effectiveness of recognition methods are required, re-
gardless of the chosen biometric feature. Such a repository of biometric templates 
seems to be one of the most important elements determining correctness and effi-
ciency of an identification system. Since the face is the most popular and explored 
biometrics, face databases are the most numerous and rich collections of images, as 
opposed to ear databases, which are very small in numbers and usually have strong 
limitations (e.g. lighting, background conditions). Three exemplary ear databases 
exist: owned by the University of Technology and Life Sciences ([6,16]), the Notre 
Dame University ([23]) and the one based on profiles of the XM2VTS face database 
([24]). Generally, the research material was collected in the above cases only at ma-
ternal universities, where datasets were created, what caused unintentional limitation 
to similar individuals (students). Lack of age differences in a population are followed 
usually by another restriction in the form of controlled environment in which photos 
where taken (e.g. uniform background or lighting conditions). Moreover, no outdoors 
photos have been taken. The above assumptions make the recognition less difficult, 
however they have significant impact on reliability of tested methods as they do not 
reflect real-life conditions. Detailed specification of ear in the presence of occlusion is 
another factor that effects recognition results, but this problem has been omitted in all 
mentioned cases. Moreover, the single image description contains usually only basic 
information reduced to ID, sex and possibly the lighting conditions. 

Analysis of the state of the art convinced us that a new database of ear images 
avoiding the listed limitations is desirable. That is why our goal was to construct a 
representative and diverse database (regarding age, sex, occlusion etc.). Full concept 
and presumptions of the West Pomeranian University of Technology Ear Database 
(WPUTED) were stated in our previous article ([25]). Here the database is presented 
in details. We assume that it can be used in all scientific applications, which can be 
very helpful in testing of new biometric algorithms. The database is available at 
http://ksm.wi.zut.edu.pl/wputedb/. Conditions of its usage and some other information 
are also provided there. 

2   The Characteristic of the West Pomeranian University of 
Technology Ear Database 

The priority of created database was the elimination of problems concerning existing 
biometric ear images databases. One of the most important assumptions was the selec-
tion of suitable data that would be enriched by additional factors and information 
(disregarded in other collections) so that it could provide wide range of cases of ear 
images for their recognition and identification. 

The collection contains 2071 ear images of 501 individuals (254 women and 247 
men) of various age. The more detailed description (e.g. angles, ages) are provided in 
table 1. At least two photos per ear (profile and half-profile) for each subject were 
taken. Therefore usually four ear images for every person were collected. However, in 
some cases more images were acquired (see table 2). In order to make further testing 
of appropriate identification methods easier, the ear images were extracted and stored 
separately. 
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Table 1. Overview of the conditions characterizing the ear database 

Attribute Range 
No. of subjects 501 (254 female and 247 male) 
No. of photos 2071 
Photos per ear Min. 2 + doubles 
Poses 90 deg., 75 deg. 
Age 0-20 (25%) 

21-35 (48%) 
36-50 (15%) 
50 and above (12%) 

Table 2. Number of ear images per subject in the database 

No. of photos per subject No. of individuals Repeated sessions 
4 451 No 
5 40 Yes 
6 6 Yes 
7 1 Yes 
8 3 Yes 

Table 3. Overview of the conditions characterizing the database 

Distortion Percentage of images Total percentage  
One earring 24.75 
More than one 
earring 

2.60 
27.35 

Occlusion caused 
by hair 

27.15 

Significant 
occlusion caused by 
hair 

5.99 
33.14 

M
ajor occlusion 

Glasses 14.37 
Dirt, dust 0.60 
Hat 2.79 
Headband/ 
Headscarf 

1.00 

Hearing aid 0.40 
Head phones 0.40 

19.56 

M
inor occlusion 

 
For the first time in the preparation of the ear database some of pictures were taken 

outdoors (15,6% photos) and some were taken in the dark (2%).  
Occlusions within an area of an ear seem to be the most important problem in hu-

man identification, therefore those cases became especially desirable when collecting 
the images. Ear deformations were recorded for 80% of photos. They appear mostly 
in form of hair covering (166 subjects), earrings (147 subjects) and in minority as 
glasses, headdresses, noticeable dirt, dust, birth-marks, ear-pads etc. The whole range 
of occurred auricle deformations are presented in table 3. On the other hand, a 20% of 
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acquired images are free of any auricle occlusions. Another problem is the appearance 
of additional artifacts, which happened in 8% of photos and was usually caused by 
motion blur effect. 

 

      

      

      

      

Fig. 1. Some examples from the WPUT Ear Database 

The WPUTEDB is organized in one-directory structure, in which a filename of 
each image has encoded information that includes conditions, distortions of an image 
as well as basic data about a subject. The strict description of single image is crucial 
regarding the possible dissimilarities in performance of various recognition algo-
rithms in the presence of variable ear features. Moreover, the precise specification 
makes opportunity of creating a proper set fulfilling requirements of a specific 
method (e.g. distinguishing the set of images without hear coverings). Rich informa-
tion encoding within the filename makes easier strict determination of parameters that 
significantly impact the recognition results. After prior analysis of ear deformations 
four categories were proposed in order to systematize information about an ear image: 
personal data (ID, sex, race, age group), technical data (image position, angle, side of 
chosen ear), external conditions (factors describing environment like lighting and 
background conditions), occlusions (all significant deformations of shape and appear-
ance of ear). 
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Table 4. A coding description for a single ear image 

 Pos. Attribute Description 

1-3 ID number number from 0 to 999  

4 Sex F – female; M – male 

5 Age 
0 –  0-20 years; 1 – 21-35 years;  
2 – 36-50 years; 3 – 51 years and above 

personal data 6 Skin Color 
W – white; B – black 
A – yellow; O – other 

7 Image category 0 – original photo; 1 – extracted ear 

8 Side L – left ear; R – right ear 

9 Angle 
0 – 90 degrees (profile);  
1 – 75 degrees (half-profile); 2 – unknown / other 

10 Image orientation V – vertical; H – horizontal 

technical data 

11 Distance 0 – less than 1m; 1 – about 1-1,5m; 2 - higher 

12 Place I – indoor; O – outdoor 

13 Natural lighting conditions 0 – daylight; 1 – dark 

external 
factors 

14 Background 
0 – uniform; 1 – heterogeneous 
2 – other people are visible on a photo

15 Hair 0 – none; 1 – covered; 2 – strongly covered 

16 Earrings 0 – none; 1 – one; 2 – more than one 

17 Head covering 0 – none; 1 – hat/cap; 2 – band/scarf 

18 Glasses 0 – none; 1 – present 

19 Dirt 0 – none; 1 – significantly covered; 2 – local dirt  

20 Marks 0 – none; 1 – mole; 2 – ear burst; 3 – tattoo 
occlusion 

21 Special features 0 – none; 1 – hearing aid; 2 – ear pads; 3 - other 

22 Artifacts 
0 – none; 1 – underexposure; 2 – overexposure 
3 – motion blur; 4 – options 1 & 3;  
5 – options 2 & 3 

23 Face covered 0 – no; 1 – yes; 2 – cut 

other 

24 No. of session Numbered from 0 to 9 

 
To encode the most important information within a filename, alphanumeric charac-

ters as well as their order in a string were used. The meaning and coding rules for a 
single image description are presented in table 4. There are some possible cases which 
did not appear in the database so far (e.g. tattoos or ear burst), but may show up dur-
ing its future development. 

3   An Example of Encoded Filename and Its Interpretation 

In this section filename coding for a sample image from WPUTEDB and its descrip-
tion is provided (position numbers within the filename string are put in braces). The 
image (see fig. 2) presents left ear {8} of white {6} female {4} individual no. 039  
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{1-3} of age within 21-35 years {5}. This is extracted ear image {7} from its original 
form of full women profile {9} which was taken indoors {12} in poor natural lighting 
conditions (in dark {13}) in horizontal orientation{10} from distance lower than 1m 
{11}. The background of the image is non-homogeneous, because other people were 
visible on the initial image before ear extraction {14}. Only one earring appears {16}. 
Other occlusions in form of hair {15}, head covering {17}, glasses {18}, dirt {19}, 
ear marks {20}, hearing aid or earphones {21} have not been reported. This is a first 
session for this subject {24}. 
 
 
 
 
 
0 3 9 F 1 W 0 L 0 H 0 I 1 2 0 1 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

.jpg

 
 
 

Fig. 2. Example filename encoding for an image from the WPUTEDB 

The biometric features hold the most promising solution and the future direction of 
human identification. An ear for which recognition methods have shown encouraging 
progress in the last decade, appears as one of the most unique and exquisite data 
source for the purpose of identity verification. To support those algorithms, reliable 
and extensive database provided with crucial information about each ear is required. 
More demanding sets with more complex cases of ear images (e.g. in terms of occlu-
sions, the environment, the number of samples per subjects, changes over time, image 
description etc.) are not guaranteed by existing databases especially due to population 
selection, no-age variance and environment choice (so far, none of photos were taken 
outdoors).  

Therefore in this paper a database was presented, which can be used in scientific 
applications, e.g. for testing biometric algorithms. The database can be downloaded 
from http://ksm.wi.zut.edu.pl/wputedb/. Some other information about the West Pom-
eranian University of Technology Ear Database is also provided there. 
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Abstract. This paper proposes to associate minutiae between distorted finger-
prints by locating two matched minimal spanning trees, and then apply affine 
transformation to one of the two images. This process is iterated until corre-
spondences are stable. A radial basis function –based warping model is estab-
lished from the final correspondences, and is applied to nonlinearly align the 
two images. The experimental results show that the proposed method leads to 
an improved matching performance. 

Keywords: Fingerprint matching, minutiae correspondence, minimal spanning 
tree. 

1   Introduction 

Fingerprint recognition is still a challenging problem, due to the difficulties of extract-
ing features from low quality images, and the difficulties of matching low quality or 
nonlinearly distorted images. This paper discusses the problems posed by the match-
ing of nonlinearly distorted fingerprint images. Fig. 1 (a) and (b) show examples of 
distorted images of the same fingerprint from FVC2004 [1].  

In order to deal with distortions of fingerprint images, Watson [2] uses multiple 
images of a fingerprint to establish a composite distortion-tolerant filter to improve 
fingerprint correlation matching performance. Kovacs-Vajna [3] uses triangular 
matching to cope with the deformation of fingerprint images. Senior [4] copes with 
the distortion by normalizing the ridge distance and accordingly removing distortion. 

Some methods such as the reported in [5],[6] use a bounding box to develop a dis-
tortion tolerant method. The representative bounding box -based method in [5] rigidly 
aligns (rotation and translation) images and uses bounding box to detect correspon-
dences. We refer to this method as RIGID model. For distorted images, especially 
heavily distorted images, this method gives large number of false correspondences. 
Fig. 1 (c) shows the rigid alignment result for the two distorted images, Fig. 1 (a) and 
(b), under a pair of reference minutiae. The regions far away from the reference minu-
tiae are not well aligned. 

There have been a number of attempts to use thin plate spline to match distorted 
fingerprint images. For instance, Bazen [7] and Ross [8] use a thin-plate spline (TPS)  
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Fig. 1. Distorted fingerprints and their rigid alignment. (a) Template image. (b) Query image. 
(c) Rigid alignment of the skeletonised images.  Regions around the reference minutiae are well 
aligned, while regions far away from the reference are not. 

function [9] to match minutiae. Ross [8] use the thin-plate spline function to establish 
an average distortion model from multiple template fingerprints so as to improve the 
system performance at the identification stage. Bazen [7] uses the TPS model to warp 
fingerprint images from initial correspondences and new correspondences are identi-
fied between the warped images. This process is iterated until correspondences no 
longer change. The TPS model is effective for matching distorted fingerprints. It aims 
to find new correspondences and needs correct initial correspondences to establish 
warping model that can be used to detect attached correspondences. Compact distri-
bution or false results in initial correspondences or in middle stages may well estab-
lish false warping model and subsequently lead to the successive false correspon-
dences. The TPS model is a specific case of image registration based on radial basis 
functions (RBF). Liang [10] divides the fingerprint into two regions, namely the rigid 
region (inner region) and the nonrigid region (outer region). They then applies a rigid 
transformation and multiquadric RBF function to the two regions respectively. 

In order to match distorted fingerprints, in this paper, we propose to find corre-
spondences using minimal spanning tree. The motivation and the intuitions under-
standing the proposed method are explained in the following section. 

2   Motivations and the Proposed Method 

The challenge of matching two distorted fingerprints is how to associate minutiae be-
tween the two images, i.e. locating minutiae correspondences. Using a bounding box is 
effective if only minor distortions are present. For nonlinear or large distortions as 
illustrated in Fig. 1 (a) and (b), a bounding box will fail to locate true correspondences 
and produce false correspondences. Fig. 2 (a) shows the correspondences obtained 
using a bounding box (distance is equal to or less than 15 pixels, and the direction dif-
ference is equal to or less than 10 degree) after rigidly aligning the two images using 
the reference of template minutia 19 and query minutia 20. Denote by c(u,v) a corre-
spondence between the template minutiae u and the query minutiae v, and denote by 
r(i,j) the reference minutiae pair consisting of the template minutia i and the query 
minutia j. The correct correspondences between the two given images should be: 
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c(3,1), c(4,2), c(5,3), c(6,5), c(7,11), c(8,10), c(9,7), c(10,15), c(11,13), c(12,9), 
c(13,14), c(16,18), c(17,17), c(19,20), c(20,23), c(21,19), c(22,21), c(23,24), c(24,26), 
c(25,25), c(26,28), c(27,29), c(29,32), and c(30,31), giving 24 correspondences in total. 
Under the reference of r(19,20) as show in Fig. 2 (a), 9 correspondence minutiae pairs 
are located, of which two, c(9,9) and c(27,30), are false correspondences. From Fig. 1 
(c) it is clear that c(9,9) and c(27,30) are close. The false correspondences c(9,9) and 
c(27,30) are both far away from the reference r(19,20). We turn to another reference 
minutiae pair r(26,28) as shown in Fig. 2 (b), where c(27,30) is no longer a  
correspondence, and a c(27,29) is a correspondence. If c(19,20) and c(26,28) are true 
correspondences, then c(27,29) under r(26,28) should be more reliable than c(27,30) 
under r(19,20), since c(27,29) is closer to r(26,28) than c(27,30) to r(19,20). From Fig. 
2 (a), it is also clear that c(29,32) is not a correspondence under r(19,20), while they 
are in correspondences under r(26,28) in Fig. 2 (b). Therefore, if we properly combine 
the correspondences under the two reference pairs, it may be possible to both remove 
false correspondences and to locate more true correspondences. In general, each pair of 
reference minutiae will detect some true correspondences together with some false 
correspondences and miss some true correspondences. The located correspondences far 
away from the reference are likely to be unreliable, and the missed correspondences 
are also in general far away from the reference. If a template minutia is in correspon-
dence to a different query minutia under a different reference, the correspondence with 
the closer reference minutiae pair is likely to be more reliable. These observations 
motivate us to consider locating correspondences using a minimal spanning tree 
(MST). 

We abstract the relationships between minutiae using a graph, in which vertices are 
minutiae. Given a pair of reference minutiae r(u,v), if c(i,j) are in correspondence, then 
(u,i) is a directed edge in the template graph, and (v,j) is the corresponding directed 
edge in the query graph. Corresponding minutiae pairs under a given reference pair can 
be taken as new reference pairs, and in turn, new correspondences will be found and 
new edges can be added to the template graph and query graph. The two graphs are 
implicit (not constructed explicitly), and are implied by the correspondences under 
each pair of reference minutiae. Our idea is to find two matched minimal spanning 
trees from the template graph and query graph respectively. The minimal spanning tree 
is located using Prim algorithm. In order to decrease false match rate, additional con-
straints will be imposed on the spanning tree, i.e. the intersection between tree edges is 
forbidden, which can reduce false correspondences for genuine matching and decrease 
correspondences for impostor matching. 

There are two main steps for the proposed method: 

(1) Locate correspondences under each pair of reference minutiae using rigid 
alignment. 

(2) Select a pair of reference minutiae with the largest number of correspondences. 
Commencing from the selected reference minutiae, which are considered as the roots 
of the minimal spanning tree to be located, locate two matched minimal spanning 
trees. The vertices from the two trees are then the minutiae correspondences. 

With the correspondences produced by step (2), a transformation, for instance a rigid 
affine or a non-rigid warping, can be applied to the template minutiae. The two steps 
can then be interleaved and iterated to convergence until the correspondences are 
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stable. Using the final correspondences, a warping model based on radial basis func-
tion is established to warp the template image for alignment. 

 

Fig. 2. Different correspondence sets are produced using rigid alignment under different refer-
ence minutiae pairs. (a) Correspondences under the reference of r(19,20) (alignment is shown 
in Fig. 1 (c)). (b) Correspondences under reference of r(26,28). 

3   Rigid Transformation and Initial Correspondences Estimation 

Minimal spanning tree requires initial correspondences under each pair of reference 
minutiae pair, so that an implicit template graph and query graph can be established 
using the correspondence relations. Let 1 2{ , ,..., }mt t t  be the template minutiae set, and 

1 2{ , ,..., }nq q q  be the query minutiae set. Each template minutiae it  is represented by 
a triple ( , , )t t t

i i ix y θ , where ( , )t t
i ix y  are the minutiae coordinates and t

iθ  is the minu-
tiae direction. Similarly a query minutia iq  is represented by ( , , )q q q

i i ix y θ . Hereinaf-
ter, we use ( , )r v w  to denote a pair of reference minutiae, vt  and wq . Given a pair of 
reference minutiae ( , )r v w , we can translate and rotate the minutiae to allow the ref-
erence minutia to overlap the origin centering, and the reference minutia direction to 
point along the positive x axis. Therefore, in order to locate correspondences under 
each pair of reference minutiae, the transformation will be executed only m n+  times, 
m  for the template and n  for the query. In this case, ( , , )t t t

i i ix y θ  is transformed to 
' ' '( , , )t t t

i i ix y θ , and ( , , )q q q
i i ix y θ  is transformed to ' ' '( , , )q q q

i i ix y θ  as follows: 
 

'
v

'
v

1 0cos( ) sin( ) 0
sin( ) cos( ) 0 0 1

0 0 1 0 0 11 1

t ttt t
v vi i

t t t t t
v vi i

x xx
y y y

θ θ
θ θ

−⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟= − −

⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 (1) 

't t t
vi iθ θ θ= −  (2) 
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'
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1 0cos( ) sin( ) 0
sin( ) cos( ) 0 0 1
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q qqq q
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 (3) 

'q q q
wi iθ θ θ= −  (4) 

 

The rigid transformation brings the two images into alignment, and a bounding box 
can be used to detect correspondences. We use ( , ) | ( , )c i j r v w  to denote that it  is in 
correspondence to jq  under the reference ( , )r v w . Define , ( )v wcorres i  as follows: 
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{,
if ( , ) | ( , )( ) 0 if  has no correspondence under ( , )v w

j c i j r v wcorres i t r v wi
=  (5) 

Let ( , )score v w  be the number of correspondences under the reference minutiae pair 
( , )r v w . It is possible that , ,( ) ( ) 0,v w v wcorres i corres j k i j= = > ≠ . In this case, there 

is a conflict between it  and jt . Before locating the minimal spanning tree, we resolve 
this conflict in the following manner: If ( , ) ( , )score i k score j k≥ , then we set 

, ( ) 0v wcorres j =  and decrease ( , )score j k  by 1, else set , ( ) 0v wcorres i =  and de-
crease ( , )score i k  by 1. Finally, troott  and qrootq  will be selected as the roots of the 
two minimal spanning trees, where 

,
( , ) arg max ( , )t q

v w
root root score v w=  (6) 

Fig. 2 (a) and (b) show the correspondences for the images in Fig. 1 (a) and (b) under 
(19,20)r  and (26,28)r  respectively. Here (19,20) 9score =  and (26,28) 7score = , 

and (19,20) 9score =  is the maximum score among all the reference minutiae pairs. 
Therefore ( , ) (19,20)t qroot root =  in this example. 

4   Locate Minimal Spanning Tree 

The root minutiae troott  and qrootq  are acquired from the initial correspondences de-
scribed in Section 3, and the initial correspondences are represented by 

, ( )v wcorres i (1 ,1 ,1 )v m w n i m≤ ≤ ≤ ≤ ≤ ≤ . In this section we describe the process of 
locating the two matched minimal spanning trees (MST), namely the template MST 
and query MST. Let ( , )T T TMST V E=  and ( , )Q Q QMST V E=  be the template MST 
and query MST respectively. The vertex sets TV  and QV  index the template minutiae 
and the query minutiae. The edge sets of the trees are T T TE V V⊆ ×  and Q Q QE V V⊆ × . 

TMST  is found by locating the minimal spanning tree, and QMST  is generated using 
the correspondences between QV  and TV . Let ( , )d i j  be the distance between it  and 

jt . The distance matrix ( )( , )d i j  will be used to locate the minimal edges represent-
ing the arrangement of minutiae in the first pattern. Using ( )MSTcorres i  to record the 
minutiae correspondences between TMST  and QMST , ( ) 0MSTcorres i =  indicates that 

it  has no corresponding query minutia, and ( ) 0MSTj corres i= >  indicates that it  
corresponds to jt . At the outset of the process, ( )MST t qcorres root root= , and 

( ) 0MSTcorres i =  for 1 , ti m i root≤ ≤ ≠ . 
Supposing that function Intersect( , )e f ( , Te f E∈ , or , Qe f E∈ ) returns true if the 

edge e intersects with the edge f, else returns false, MST_Corres (Algorithm 1) locates 
the matched minimal spanning trees. In step (2.4) of the algorithm, if there is a Tk V∈ , 
satisfying the condition ( )MSTcorres k j= , then conflict occurs between kt  and it , 
since it  attempts to be in correspondence with jq  which has already been associated 
with kt . In this case, we cease attempting to associate it  to jq . An example is  
provided in Fig. 2 where (27,30)c  and (27, 29)c  are in conflict with each other (dif-
ferent query minutiae are associated to the same template minutiae). Step (2.4) also 
requires that the newly generated edges of the tree do not intersect with any existing 
edges, because not allowing intersection can decrease the number of correspondence 
for impostor matching and decrease false correspondence for genuine matching. In 
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step (2.4), {( , )}T TE E u i= +  means that a new edge ( , )u i  is appended to the template 
MST, and ut  is the parent minutia of it . Similarly, {( , )}Q QE E v j= +  means that a 
new edge ( , )v j  is appended to the query MST, and vq  is the parent minutia of jq . 

Algorithm 1. MST_Corres 
Input: ( , )d i j (1 i m≤ ≤ ,1 j n≤ ≤ ), ( , )t qroot root , and , ( )v wcorres i (1 v m≤ ≤ , 1 w n≤ ≤ ,

1 i m≤ ≤ ).
Output: ( , )T T TMST V E= , ( , )Q Q QMST V E= , and ( )MSTcorres i (1 i m≤ ≤ ).
1: Initialization: {1,2,..., }TM m= , {1,2,..., }QM n= , { }T tV root= , { }Q qV root= ,

TE =∅ , QE =∅ , ( )MST t qcorres root root= , and ( ) 0MSTcorres i = (1 , ti m i root≤ ≤ ≠ ).
2: While ( T TV M≠ ), do: 
2.1: ,( , ) arg min { ( , )| , }k l T T Tu i d k l k V l M V= ∈ ∈ − .
2.2: If ( , )d u i =∞ , return. 
2.3: ( )MSTv corres u= , , ( )u vj corres i= , 1 ( , )e u i= , 2 ( , )e v j= .
2.4: If 0j > , and Tk V∀ ∈  ( )MSTcorres k j≠ , and ' Te E∀ ∈ 1Intersect( , ')e e¬ , and 

'' Qe E∀ ∈ 2Intersect( , '')e e¬ , then { }T TV V i= + , { }Q QV V j= + , {( , )}T TE E u i= + ,
{( , )}Q QE E v j= + , ( )MSTcorres i j= , else ( , ) ( , )d u i d i u= =∞ .

 

Fig. 3 (a) provides an example of locating matched minimal spanning trees for the 
images in Fig. 1 (a) and (b). In Fig. 3 (a), 12 correspondence pairs are located, namely 

(5,3)c , (9,14)c , (11,13)c , c(16,18), c(19,20), c(20,23), c(22,21), c(24,26), c(26,28), 
c(27,29), c(29,32), and c(30,32), among which there is one false correspondence 
c(9,14). In Fig. 2 (a), 9 correspondences are located, in which there are 2 false corre-
spondences, c(9,14) and c(27,30). The false match c(27,30) in Fig. 2 (a) is removed in 
Fig. 3 (a) and is replaced with c(27,29). In Fig. 3 (a), the parent node of template mi-
nutia 27 is minutia 29 in the minimal spanning tree, therefore c(27,30) is produced 
under reference r(29,32), and the correspondence c(27,29)|r(29,32) is more reliable 
than c(27,30)|r(19,20), since template minutiae 27 is much closer to minutia 29 than 
to minutiae 19. Compared with Fig. 2 (a), Fig. 3 (a) gives 3 additional correspondence 
pairs, c(5,3), c(11,13), and c(29,32), and replaces a false correspondence c(27,30) 
with the true correspondence c(27,29). In this example, the algorithm MST_Corres 
can locate a greater number of true correspondences and can also decrease the number 
of false correspondences.  

We observe that many potential correspondences are missed. The missed corre-
spondences can be located after affine transforming the template image. The affine 
transformation of the template image from ( , , )t t t

i i ix y θ  to ' ' '( , , )t t t
i i ix y θ is given by 

 

( ) ( )
2

'
1 2 3

' 1 3

t t
i i
t t
i i

x xa a a
b b by y

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (7) 

( ) ( )2 3'

2 3

cos( )
sin( )

T Tt
t i
i t

i

a aangle b b
θθ θ
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 (8) 

 
where 1a , 2a , 3a , 1b , 2b  and 3b  are the least square parameters for the correspon-
dences produced by the minimal spanning tree, and (( , ))angle x y  returns the direction 
(in the interval [0,2 )π ) of vector ( , )x y . This transformation brings the template 
minutiae (template image) and the query minutiae (query image) into alignment  
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(Fig. 4 (a)) better than rigid alignment (Fig. 1 (c)). After the transformation, 
, ( )v wcorres i  ( 1 v m≤ ≤ , 1 w n≤ ≤ , 1 i m≤ ≤ ) is re-estimated, and the algorithm 

MST_Corres is applied again to locate two new minimal spanning trees. Fig. 3 (b) 
shows the result of applying this procedure to the result shown in Fig. 3 (a). In Fig. 3 
(b), 20 correspondences are located, and each of them is correct. This procedure can 
be interleaved and iterated until correspondences are stable. In fact, we find that in-
creasing the number of iterations does not improve correspondences, because MST is 
stable for significant heavy distortions. The MST_Corres procedure is therefore iter-
ated just two times in the experiments. 

 

Fig. 3. Minutiae correspondences by finding minimal spanning tree. (a) Minimal spanning tree 
based on initial correspondence. (b) Minimal spanning tree after affine-transforming the tem-
plate (the transformed result is shown in Fig. 4.) 

Based on the final correspondences, we can use a warping-transformation based on 
the radial basis function (RBF) to better align the template minutiae (template image) 
and query minutiae (query image). Suppose that there are C final correspondences, 
and in which the coordinates of template minutiae are ( , )i ix y (1 )i C≤ ≤ , and the cor-
responding query minutiae are ' '( , )i ix y (1 )i C≤ ≤ . The RBF model is as follows: 

' '1,1 1, 1 1 ,1 ,1 1 1

' ',1 , , ,

1 1

2 21

3 31

1

1
1 1 0 0 0 0 0
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⎜ ⎟⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟
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( ), ( , )i j i j i jG G x x y y= − −  (10) 

where ,a iw , ,b iw (1 )i C≤ ≤ , ka  and kb (1 3)k≤ ≤  are parameters acquired by solving 
equation (9), and ( )G r  is a radial basis function, and for thin-plate spline [9],  

{ 2
0( ) log( ) 0

rG r r r r
λ == >  (11) 

where λ  is a positive constant for approximating warping transformation. When 
transforming the image or the minutiae, the coordinates ( , )x y  will be transformed to 
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{ 0( ) 0
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where ε  is a small positive constant for approximately transforming the landmark 
minutiae. After applying the warping-transformation to the template image based on 
the final correspondences of Fig. 3 (b), we obtain the alignment results shown in  
Fig. 4 (b). 

 

Fig. 4. Alignment of images from Fig. 1. (a) and (b). (a) Using affine transformation based on 
correspondences produced by the first application of MST_Corres. (b) Using warping-
transformation based on the final correspondences. 

5   Experimental Results 

Four genuine matchings using images in Fig. 5 are tested for correspondences com-
parison between the proposed MST model and the TPS model used in [7] and the 
RIGID model used in [5]. The four matchings are (1)MATCH_1: image_1 against 
image_2, (2) MATCH_2: image_2 against image_3, (3) MATCH_3: image_3 against 
image_4, (4) MATCH_4: image_5 against image_6. Minutiae extraction method is 
from [11],[12],[13]. The correspondences estimation results are shown in Fig. 6, 
which tells us that the MST model improves the correspondences results compared 
with the RIGID model and TPS model. The three models are tested on 
FVC2004DB1_A (100 fingers, 8 samples for each finger) for matching performance 
comparison. We feed 3 values into a BPNN network (with 3 input nodes, 3 hidden 
nodes, and 1 output node) to estimate the matching score. The 3 values are (1) C, the 
number of correspondences, (2) 1n , the number of template minutiae in the overlap-
ping area, (3) 2n , the number of query minutiae in the overlapping area. The ROC 
curves of them are shown in Fig. 7, which tells us that the MST model performs better 
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than the TPS model and RIGID model. The matching time of the MST model is simi-
lar to the TPS, about 30 ms on Intel Core 2 U7600 1.2GHz. 

 

Fig. 5. Experimental images for correspondences estimation 

 

Fig. 6. Examples of correspondences 
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Fig. 7. ROC curves on FVC2004DB1_A 

6   Conclusion 

We have proposed to use minimal spanning tree (MST) to locate minutiae correspon-
dences, in which each correspondence is determined under the reference of their par-
ent minutiae. Each determined correspondence is more reliable, since they are close 
(shortest edge) to their parent minutiae. MST can find more true correspondences, and 
decrease the number of false correspondences, and it is effective for matching heavily 
distorted fingerprints. 
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Abstract. Law enforcement, border security and forensic applications are some 
of the areas where fingerprint classification plays an important role. A new 
technique based on wave atoms decomposition and bidirectional two-
dimensional principal component analysis (B2DPCA) using extreme learning 
machine (ELM) for fast and accurate fingerprint image classification is pro-
posed. The foremost contribution of this paper is application of two dimen-
sional wave atoms decomposition on original fingerprint images to obtain 
sparse and efficient coefficients. Secondly, distinctive feature sets are extracted 
through dimensionality reduction using B2DPCA. ELM eliminates limitations 
of classical training paradigm; trains data at a considerably faster speed due to 
its simplified structure and efficient processing. Our algorithm combines opti-
mization of B2DPCA and the speed of ELM to obtain a superior and efficient 
algorithm for fingerprint classification. Experimental results on twelve distinct 
fingerprint datasets validate the superiority of our proposed method. 

1   Introduction 

Biometric verification has received considerable attention during the last decade due 
to increased demand for automatic person categorization. Automated classification of 
an individual based on fingerprints is preferred since they are less vulnerable to be 
copied, stolen and lost [1] and due to their uniqueness and stability [2,3]. Fingerprint 
detection is a technology that has been widely adopted for personal identification in 
many areas such as criminal investigation, access control and internet authentication.  

Fingerprint classification algorithms are classified into two categories; local and 
global. Local feature based methods include correlation, minutiae and ridge feature 
based matching algorithms. Global features are obtained using mathematical trans-
forms; a classifier compares energies of different fingerprints and classifies them 
based on the global trends. Correlation-based techniques utilize gray level information 
of an image and take into account all dimensional attributes of a fingerprint, thereby 
providing enough image resolution. These techniques have been successfully applied 
for fingerprint classification [5] but they suffer from higher computational cost. Minu-
tiae based techniques [7] extract minutiae from two fingerprints and store them as  
sets of points in a two dimensional plane and execute matching by generating an 
alignment between the template and the input minutiae set that result in maximum 
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pairings. In low quality fingerprint images minutiae extraction becomes extremely 
difficult and thus ridge patterns [4] are reliably extracted for classification.  

Researchers have also used fast Fourier transforms (FFT) and multi-resolution 
analysis tools that extract global features from fingerprint images for classification. 
Fitz and Green [8] used a hexagonal fast Fourier transform (FFT) to transform finger-
print images into frequency domain and employed a ‘‘wedge-ring detector’’ to extract 
features. A fingerprint classifier based on wavelet transform and probabilistic neural 
network is proposed in [9]. Wilson et al. [10] developed a Federal Bureau of Investi-
gation (FBI) fingerprint classification standard that incorporates a massively parallel 
neural network structure. Other neural network classification schemes, using self or-
ganizing feature map, fuzzy neural networks, radial basis function neural network 
(RBFNN) and ellipsoidal basis function neural networks (EBFNN) have also been 
proposed [11].  

In this work, we present a fast and accurate fingerprint classification algorithm that 
extracts sparse fingerprint representation using wave atoms decomposition; these co-
efficients are dimensionally reduced using bidirectional two-dimensional principal 
component analysis (B2DPCA). An extreme learning machine (ELM) classifier, 
based on a fast single hidden layer feedforward neural network (SLFNN), is trained 
and tested using dimensionally reduced extracted features. The proposed classifica-
tion algorithm requires less human interventions and can run at thousand folds faster 
learning speed than conventional neural networks. ELM determines network parame-
ters analytically, avoids trivial human intervention and makes it efficient for online 
applications. 

The remainder of the paper is divided into 5 sections. Section 2 discusses wave at-
oms decomposition, followed by a discussion of B2DPCA in section 3. ELM algo-
rithm for classification is discussed in section 4 and the proposed method is described 
in section 5. Experimental results are discussed in section 6. 

2   Wave Atoms Decomposition 

Wave atoms [12] are the most recent mathematical transforms for harmonic computa-
tional analysis. They are a variant of 2D wavelet packets that retain an isotropic as-
pect ratio. Wave atoms encompass a sharp frequency localization that cannot be 
achieved using a filter bank based on wavelet packets and offer a significantly sparser 
expansion for oscillatory functions than wavelets, curvelets and Gabor atoms. Wave 
atoms capture coherence of a pattern across and along oscillations whereas curvelets 
capture coherence only along the oscillations. Wave atoms precisely interpolate be-
tween Gabor atoms and directional wavelets in the sense that the period of oscillations 
of each wave packet (wavelength) is related to the size of essential support via para-
bolic scaling i.e. wavelength is directly proportional to square of the diameter. 

Two distinct parameters α; indexing multiscale nature, and β representing direc-
tional selectivity are adequate for indexing all known forms of wave packet architec-
tures namely wavelets, Gabor, ridgelets, curvelets and wave atoms. The triangle 
formed by wavelets, curvelets and wave atoms, as shown in the Fig. 1, indicates the 
wave packet families for which sparsity is preserved under transformation. Wave at-
oms are defined for α=β=1/2, where α indexes the multiscale nature of the transform, 
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from α = 0 (uniform) to α = 1 (dyadic). β measures the wave packet’s directional se-
lectivity  (0 and 1 indicate best  and poor selectivity respectively). Wave atoms repre-
sent a class of wavelet packets where directionality is sacrificed at the expense of  
preserving sparsity of oscillatory patterns under smooth diffeomorphisms. Essential 
support of wave packet in space (left) and in frequency (right) is shown in Fig. 2. 

 

Fig. 1. Comparison of different wave packets architectures with respect to multiscale nature 
and directional selectivity [12] 

2.1   1D Discrete Wave Atoms  

Wave atoms are constructed from tensor products of adequately chosen 1D wave 
packets. Let )(, xj

nmψ represent a one-dimensional family of wave packets, where 
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Fig. 2. Wave atoms tiling in space and frequency [12] 
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The coefficients
nmjc ,,
, for each wave

nmjw ,,
, are obtained as decimated convolution 

at scale 2-j. Input sample u is discretized at xk=kh, h=1/N, k=1,…N, and discrete coef-
ficients D

nmjc ,,
 are computed using a reduced inverse FFT inside an interval of size 
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A simple wrapping technique is used for the implementation of discrete wavelet 
packets and the steps involved are: 

1. Perform an FFT of size N on the samples of u(k). 
2. For each pair (j,m), wrap the product uj

m ˆψ̂  by periodicity inside the interval  

[-2jπ, 2jπ] and perform an inverse FFT of size 2j to obtain D
nmjc ,,
. 

3. Repeat step 2 for all pairs (j,m). 

2.2   2D Discrete Wave Atoms  

A two-dimensional orthonormal basis function with 4 bumps in frequency plane is 
formed by individually taking products of 1D wave packets. 2D wave atoms are in-
dexed by μ=(j,m,n), where m=(m1,m2) and n=(n1,n2). Construction is not a simple 
tensor product since there is only one scale subscript j. This is similar to the non-
standard or multi-resolution analysis wavelet bases where the point is to enforce same 
scale in both directions in order to retain an isotropic aspect ratio. In 2D eq. (1) is 
modified accordingly.  

. )2( )2(),( 22211121 nxnxxx jj
m

jj
m

−−+ −−= ψψϕμ  (3) 

Combination of (3) and its Hilbert transform provides basis functions with two bumps 
in the frequency plane, symmetric with respect to the origin and thus directional wave 
packets oscillate in a single direction.  

2
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)1(
μϕ and )2(

μϕ together form the wave atoms frame and are jointly denoted by μϕ . 

Wave atoms algorithm is based on the apparent generalization of the 1D wrapping 
strategy to two dimensions. 

3   Bidirectional Two Dimensional Principal Component Analysis 

Principal Component Analysis (PCA) is a data representation technique widely used in 
pattern recognition and compression schemes. In the past researchers used PCA and 
bunch graph matching techniques for enhanced representation of face images. PCA 
cannot capture even a simple variance unless it is explicitly accounted in the training 
data. In [13] Yang et al. proposed two dimensional PCA for image representation. As 
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opposed to PCA, 2DPCA is based on 2D image matrices rather than 1D vector so the 
image matrix does not need to be vectorized prior to feature extraction. Instead an im-
age covariance matrix is computed directly using the original image matrices.  

Let X denote a q dimensional unitary column vector. To project a p x q image ma-
trix A to X; linear transformation Y=AX is used which results in a p dimensional  
projected vector Y. The total scatter of the projected samples is characterized by the 
trace of the covariance matrix i.e. matrix of the projected feature vectors, j(X)=tr(Sx), 
where tr( ) represents the trace of Sx, and Sx denotes covariance matrix of the pro-
jected features.  

.])][()[())())((( TT
x XEAAXEAAEYEYYEYES −−=−−=  (5) 

.)]()([)( XEAAEAAEXStr TT
x −−=  (6) 

)]()[( EAAEAAEG T
t −−=  is q x q  nonnegative image covariance matrix. If there are 

M training samples, the jth image sample is denoted by p x q matrix Aj.  
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where A  represents an average image of all the training samples. Above criterion is 
called the generalized total scatter criterion. The unitary vector X that maximizes the 
criterion j(X) is called the optimal projection axes. An optimal value represents a col-
lection of d orthonormal eigen vectors X1,X2,….Xd of Gt corresponding to d largest 
eigen values. A limitation of 2DPCA based dimension reduction is the processing of 
higher number of coefficients since it works along row directions only. Zhang and 
Zhou [14] proposed (2D)2 PCA based on the assumption that training sample images 
are zero mean, and image covariance matrix can be computed from the outer product 
of row/column vectors of images.  

4   Extreme Learning Machine 

Feedforward neural networks (FNNs) are widely used in classification techniques due 
to their approximation capabilities for non-linear mappings. Slow learning speed of 
FNNs is a major bottleneck encountered, since input weights and hidden layer biases 
are updated using a parameter tuning approach such as gradient descent algorithm. 
Huang et al. [16] proposed an extremely fast learning algorithm called ELM for train-
ing a SLFNN. ELM randomly assigns input weights and hidden layer biases if the hid-
den layer activation function is infinitely differentiable. In ELM a learning paradigm is 
converted to a simple linear system whose output weights are analytically determined 
through a generalized inverse operation of the hidden layer weight matrices.  

An N  dimension random distinct sample (xi,ti) where xi=[xi1,xi2,….xin]
T∈ nℜ  and 

ti=[ti1,ti2,….tim]T∈ mℜ , ELM with L hidden nodes and an activation function g(x) is 
modeled as: 
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Where wi=[wi1,wi2,….win]
T, βi=[ βi1, βi2,.…βiL]

T represent weight vectors connecting 
input nodes to an ith hidden node and from the ith hidden node to all output nodes. bi 
indicates threshold for ith hidden node whereas wi.xj represents an inner product of wi 
and xj. An ELM can reliably approximate N samples with zero error.  
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Eq. (10) is modified as Hβ=T, H=(w1,…,wL,b1,…,bL,x1,…,xN),  such that ith column of 
H is the output of ith hidden node with respect to inputs x1,x2,….xN. If the activation 
function g(x) is infinitely differentiable, it is proved that the number of hidden nodes 
are such that L<<N. Training of SLFNN requires minimization of an error function E. 
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H is determined using gradient descent and the weights wi, βi and bias parameters bi 
are tuned iteratively with a learning rate ρ. A small value of ρ causes the learning al-
gorithm to converge slowly whereas a higher rate leads to instability and divergence 
to local minima. To avoid these limitations, ELM incorporates a minimum norm 
least-square solution, and instead of tuning the entire network parameters a random 
allocation of input weights and hidden layer biases help to analytically determine the 
hidden layer output matrix H and curtail the problem to a least-square solution of 
Hβ=T. H is a non-square matrix, the norm least-square solution of the above linear 
system becomes β=H*T, where H* is the moore-penrose generalized inverse of H. 
The above relationship holds for a non-square matrix H whereas the solution is 
straightforward for N=L. An infinitely small training error is achieved using the above 
model since it represents a least-square solution of the linear system. 

. min* THTTHHTH −==−=−
∧

ββ
β
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5   Proposed Fingerprint Classification Algorithm 

The proposed classification scheme is independent of fingerprint patterns and is based 
on individual features and the number of trained fingerprint classes. Table 1 consists 
of detailed steps that demonstrate our proposed technique. Our system classifies fin-
gerprint images into one of the trained classes; therefore, only one verification process 
is required per image. Our proposed scheme deals with classification of fingerprint 
images using ELM design and utilizes dimensionally reduced feature vectors obtained 
from wave atoms decomposition. Wave atoms decomposition is used for sparse repre-
sentation of fingerprint images since they belong to a category of images that oscillate 
smoothly in varying directions. Discrete 2D wave atoms decomposition is applied on 
the original fingerprint image to efficiently capture coherence patterns along and 
across the oscillations. Fingerprint images are digitized using 256 gray levels there-
fore a transformation in color space is not required. Dimension of fingerprint images 
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within each database were reduced to 64×64 prior to wave atoms decomposition. Im-
age resizing was the only pre-processing performed on all datasets to minimize com-
putations and to guarantee uniformity with other methods used for comparison. An 
orthonormal basis is used instead of a tight frame since each basis function oscillates 
in two distinct directions instead of one. This orthobasis variant property is important 
in applications where redundancy is undesired.  

In addition to the aforementioned alterations there were no further changes made to 
the images as it may lead to image degradation. We randomly divide image database 
into two sets namely training set and testing set. All images within each database have 
the same dimension, i.e. R×C. Similar image sizes support the assembly of equal sized 
wave atoms coefficients and feature vector extraction with identical level of global 
content. 2D wave atoms decomposition of every image is computed and coefficients 
are saved as initial feature matrix. Wave atoms decomposition is a relatively new 
technique for multiresolution analysis that offers significantly sparser expansion, for 
oscillatory functions, than other fixed standard representations like wavelets, curvelets 
and Gabor atoms. 

Table 1. Outline of our Proposed Classification Scheme 

INPUT: Randomly divide image database into two subsets TRi and TEj where i={1,2,…,n} and 
j={1,2,…,m} representing training and test image sets respectively. 
OUTPUT: Classifier - f(x) 

1. Resize fingerprint images from all databases to RxC.
2. Compute the wave atoms decomposition of each training and test images and extract 

feature sets. Each feature set is of dimension RxC. (Refer to section 2 for details of 
wave atoms decomposition) 

3. Calculate image covariance matrix of test and train images to obtain intermediate 
featue matrix. 
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5. Repeat steps 3-4 on the transposed intermediate feature matrix to obtain B2DPCA 
based feature vectors, fp of size UxV.

6. Train Extreme Learning Machine (ELM) classifier: Generate set of 2DPCA based 
feature vectors (vectorized feature vectors obtained in previous step) for training.

7. Classify images with test feature vectors using ELM trained in step 6.  
 
Application of ELM based classification on original wave atoms coefficients is 

computationally expensive due to higher dimensionality of data originating from large 
image datasets. Outliers and irrelevant image points being included into classification 
task can also affect the performance of our algorithm; hence B2DPCA is employed to 
reduce dimensionality of initial feature vectors. Features are extracted by computing 
2DPCA of initial feature matrix along image rows, called as intermediate feature ma-
trix. 2DPCA is again applied on the transposed intermediate feature matrix along its 
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rows so as to generate a final feature matrix. Application of 2DPCA using the modi-
fied approach retains better structure and correlation information amongst neighbor-
ing pixel coefficients. Dimensionally reduced wave atoms coefficients are vectorized 
into a U×V dimension vector, final feature vector, where U×V << R×C.  

B2DPCA based feature vectors better retain the global structure of input space and 
facilitate accurate classification with lower computational complexity, diminished 
outliers and irrelevant information. ELM is trained using labeled B2DPCA feature 
vectors and classified using the trained network.  

6   Results and Discussion 

Extensive experiments were performed using 3 standard and distinctive collections of 
fingerprint datasets; FVC2000, FVC2002 and FVC2004 [2] to test the practicality of 
our proposed method. Each dataset consists of four diverse databases generated using 
various fingerprint acquisition techniques. Each database contains 8 fingerprints of 
each of the 100 distinctive subjects.   

All images were resized to 64×64 in our experiments and 5 images from each data-
base were used as prototypes and the remaining 3 for testing to ensure consistency 
with other methods used for comparison. Experiments were also performed on origi-
nal fingerprint image without resizing and consistently better results were obtained 
since detailed fingerprint information is incorporated at the expense of large feature 
vectors. Both the testing and training sets of images are decomposed using 2D wave 
atoms transform using an orthonormal basis function and dimensionally reduced 
through application of B2DPCA. Dimensionally reduced features are vectorized and 
classification is performed by using ELM. The above process was repeated 10 times 
for all the databases and averaged results of few experiments are documented in the 
paper. The classification accuracy for Db1 database from FVC2000, FVC2002 and 
FVC2004 is compared with wavelet transform (WT) based RBFNN and EBFNN fin-
gerprint classification algorithms. Results, obtained with the proposed method (only 6 
principal components are used for consistency with other methods), are compared 
with the classification accuracy reported in [11] using WT-2DPCA-RBFNN and WT-
2DPCA-EBFNN. 

Table 2. Fingerprint classification rates (%) for different techniques 

Database WT-2DPCA-
RBFNN 

WT-2DPCA-
EBFNN 

Proposed 
Method 

FVC 2000  91 91 93.25 
FVC 2002  87 87 92.63 
FVC 2004  86.5 87 89.62 

 
We conclude from the results in Table 2 that our proposed fingerprint classification 

algorithm performs significantly better than the wavelet based RBFNN and EBFNN 
fingerprint classification algorithms. In addition to the improved classification accu-
racy, our proposed ELM based classifier performs training and testing thousands folds 
faster than conventional neural network based classification algorithms [15].  
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From Fig. 3 it is evident that several factors influence classification accuracy, 
namely, fingerprint acquisition techniques, climatic and environmental conditions and 
most notably the number of principal components. Dataset Db4 from each of the da-
tabases is generated using a synthetic fingerprint generator; consequently the effects 
of environment and other irrepressible conditions are trifling and are substantiated by 
improved classification accuracy at low principal components.  
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Fig. 3. Classification accuracy vs. number of principal components 

7   Conclusion 

An original supervised fingerprint classification algorithm for multiclass categoriza-
tion based on wave atoms decomposition and bidirectional two-dimensional principal 
component is proposed. Improvements in classification accuracy validate the fact that 
wave atoms multiresolution analysis offers significantly sparser expansion, for oscil-
latory functions, than other fixed standard representations like wavelets, curvelets and 
Gabor atoms. The proposed classifier is capable of handling marginal fingerprint  
orientations, illumination variations, moderate pressure changes against the sensor 
surface and climatic conditions. The algorithm combines the strengths of both 
B2DPCA and ELM; creates distinctive and improved feature set, an efficient and fast 
algorithm for fingerprint classification. The proposed fingerprint classification algo-
rithm is independent of the number of prototypes used for training and or testing and 
is also free of the amount of hidden neurons used for classification, unlike traditional 
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neighborhood based classifiers whose accuracy is greatly affected by the number of 
prototypes and neighborhood size. Law enforcement, multimedia, and data mining 
related applications can benefit from our proposed classification scheme. 
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Abstract. Robust segmentation of an iris image plays an important role in iris 
recognition. Most state-of-the-art iris segmentation algorithms focus on the 
processing of the ideal iris images that are captured in a controlled environment. 
In this paper, we process the unideal iris images that are acquired in an uncon-
strained situation and are affected severely by gaze deviation, eyelids and eye-
lashes occlusion, non uniform intensity, motion blur, reflections, etc. The  
novelty of this research effort is that we apply the modified Chan-Vese curve 
evolution scheme, which extracts the intensity information in local regions at a 
controllable scale, to find the pupil and iris boundaries accurately. A data fitting 
energy is defined in terms of a contour and two fitting functions that locally ap-
proximate the image intensities on the two sides of the contour. This energy is 
then incorporated into a variational level set formulation with a regularization 
term. Due to the kernel function used in energy functional, the extracted intensi-
ty information of the local regions is deployed to guide the motion of the  
contour, which thereby assists the curve evolution scheme to cope with the in-
tensity inhomogeneity that occurs in the same region. The contours represented 
by the proposed variational level set method may break and merge naturally 
during evolution, and thus, the topological changes are handled automatically. 
The verification performance of the proposed scheme is validated using the 
UBIRIS Version 2, the ICE 2005, and the WVU unideal datasets.  

Keywords: Iris recognition, iris segmentation, region-based active contour, 
Chan-Vese curve evolution, intensity inhomogeneity. 

1   Introduction 

The current stress on security and surveillance has resulted in a rapid development of 
automated personal identification systems based on biometrics [1]. Recently, the iris 
recognition is in the limelight for many high security biometrics applications [2, 3]. 
The exact segmentation of the iris plays perhaps the most important role in iris recog-
nition [4, 5]. The main task of the segmentation routine is to localize the inner/outer 
boundary from the iris. Apart from the proper localization of the iris structure, the 
segmentation scheme should also identify the eyelid and eyelash occlusions and 
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detect the other noisy regions such as reflections. The localization error may result in 
lower recognition performance due to incorrect encoding of the textural content of the 
iris [6, 7]. For iris segmentation, most of the researchers assume that the iris is circu-
lar or elliptical. However, in the case of unideal iris images, which are captured in an 
uncontrolled environment, iris may appear as noncircular or nonelliptical [3]. Also, in 
the iris images where the eyes are not properly opened, highly occluded regions can-
not be extracted, and thus, the segmentation performance is deteriorated [6]. The iris 
images may also be affected by the intensity inhomogeneity, deviated gaze, nonlinear 
deformations, pupil dilation, head rotation, motion blur, reflections, non-uniform 
intensity, low image contrast, camera angles and diffusion, and presence of eyelids 
and eyelashes. Recently, several researchers proposed different unideal iris recogni-
tion schemes. In [2], inner and outer boundaries were detected in terms of active con-
tours based on the discrete Fourier series expansions of the contour data. In [3], two 
approaches were proposed in which the first approach compensated for the off angle 
gaze direction, and the second approach used an angular deformation calibration 
model. In [6, 7], curve evolution approaches were applied based on geometrics active 
contours to segment the non-frontal iris images. To localize the unideal iris images 
accurately, we proposed the level set based curve evolution approaches using the 
edge-stopping function and the energy minimization algorithm in [8], and in [9], we 
deployed a variational level set based curve evolution scheme, which uses significant-
ly larger time step for numerically solving the evolution partial differential equation 
(PDE). The segmentation approaches proposed in [6-8] consume huge computational 
time due to costly reinitialization process. In [2, 7], curves evolve from the previously 
obtained pupil boundary to the outer boundary, which in turn, slows down the seg-
mentation process. The parametric active contours based iris segmentation scheme 
may terminate at certain local minima such as the specular reflections, the thick radial 
fibers in iris or the crypts in ciliary region [2]. The active contours with an edge stop-
ping function as a halting criteria proposed in [6, 7, 8] may fail to detect the outer 
boundary accurately if the iris is separated from the sclera region by relatively a 
smooth boundary. Furthermore, the intensity inhomogeneity often occurs in the un-
ideal iris images due to reflections, motion blur, luminosity, etc. Most of the current 
unideal iris segmentation schemes based on active contours models proposed in [2, 6-
9] tend to rely on intensity homogeneity in each of the regions to be segmented, and 
furthermore, most of the unideal iris localization algorithms [2, 6-8] consume huge 
computational time due to expensive curve evolution approach. This impedes the 
traditional level set based iris recognition systems to be deployed in real-time scena-
rio. Addressing the above problems, we apply a modified Chan-Vese curve evolution 
scheme proposed in [10], which extracts the intensity information in local regions at a 
controllable scale, to find the pupil and iris boundaries accurately. A data fitting ener-
gy is defined in terms of a contour and two fitting functions that locally approximate 
the image intensities on the two sides of the contour [11]. This energy is then incorpo-
rated into a variational level set formulation with a regularization term. Due to the 
kernel function used in energy functional, the extracted intensity information of  
the local regions is deployed to guide the motion of the contour, which thereby assists 
the curve evolution scheme to cope with the intensity inhomogeneity that occurs in 
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the same region [10]. In addition, the level set regularization term is used to ensure 
the accurate computation and to avoid expensive reinitialization of the evolving 
curve. The contours represented by the variational level set may break and merge 
naturally during evolution, and thus, the topological changes are handled automatical-
ly. Prior to applying the curve evolution approach using the active contours, we  
deploy Direct Least Square (DLS) based elliptical fitting to obtain an initial approxi-
mation of the pupil and the iris boundaries [8, 9].  

2   Unideal Iris Segmentation 

The segmentation of the unideal iris image is a difficult task because of the noncircu-
lar shape of the pupil and the iris, and the shape differs depending on the image acqui-
sition techniques [3]. We divide the iris segmentation process into two steps. In the 
first step, we use an elliptical model to approximate the inner (pupil) and outer (iris) 
boundaries of the iris, and then, we apply the region-based active contour model to 
find the exact inner and outer boundaries of the iris based on the approximated boun-
daries obtained in the previous step.      

Before applying the curve evolution approach, we deploy DLS based elliptical fit-
ting to approximate the pupil boundary. However, the accuracy of the ellipse fitting 
process degrades in the presence of the outliers such as eyelashes. Therefore, we ap-
ply a morphological operation, namely, the opening to an input image to suppress the 
interference from the eyelashes. DLS based elliptical fitting returns five parameters 
(p1, p2, r1, r2, φ1): the horizontal and vertical coordinates of the pupil center (p1, p2), the 
length of the major and minor axes (r1, r2), and the orientation of the ellipse φ1. To 
approximate the outer boundary, we apply the DLS based elliptical fitting scheme 
again, and obtain five parameters (I1, I2, R1, R2, φ2): the horizontal and vertical coordi-
nates of the iris center (I1, I2), the length of the major and minor axes (R1, R2), and the 
orientation of the ellipse φ2. This method, thus, provides the rough estimation of iris 
and pupil boundaries.  

Based on the approximation of the inner and outer boundaries, the curve is evolved 
using the modified Chan-Vese functional [10, 11] for accurate segmentation of the 
pupil and iris regions. In the following paragraphs, we briefly discuss the segmenta-
tion process based on active contour approach [10].  

In our proposed curve evolution method, the following energy functional is  
deployed [10]: 

                                           , , , ,                                   (1) 

The term , ,  in (1) can be defined as: 

           , ,  ∑ λ |  |                                                                                                                 (2) 

where the level set function  represents the closed contour  in the image domain Ω, 
and this closed contour separates Ω into two regions: Ω   and Ω . λ  are positive constants, and the functions  are the values that ap-
proximate image intensities outside and inside the closed contour . In this research 
effort, level set function  takes the positive and negative values outside and inside , 
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respectively. In (2),  is called the Heaviside function and , 1 . The intensities , which  are effectively involved in the above energy 
term, are in a local region centered at the point , whose size can be controlled by the 

Gaussian kernel function, | | /  with a scale parameter 0. The 

last term  in (2) computes the length of the zero level contour of . 
The length of the zero level contour can be equivalently defined by the integral | |  with the Dirac delta function . The Heaviside function  can be ap-
proximated as follows: 

                                           1 arctan                                             (3)  

The derivative of is . Now if we replace  in (2) with , 

the energy functional  in (2) can be approximated by: 
                                     , ,  ∑ λ |  |                                                     H                                                           (4)  

where  and 1 .  
The level set regularized term , ( 0) in (1) which is used for accurate 

computation and stable level set evolution can be defined as | |1  , and this term measures the deviation of the function  from a signed distance 
function. Now we minimize the energy functional  , ,  with respect to  using 
the standard gradient descent method by solving the gradient flow equation as fol-
lows: 

            | |  | |      (5) 

where and  are functions which can be expressed as: 
                                                                      | | ,       1, 2                             (6)   
 
The above (5) is the required active contour model. The term   
is responsible for driving the active contour toward the iris/pupil boundaries. The 

second term | |  has a length shortening or smoothing impact on the 

zero level contour which is useful to maintain the regularity of the contour. The third 

term  | |   is denoted as level set regularization term, which is used 

to maintain the regularity of the level set function. In order to estimate the exact 
boundary of the pupil, we initialize the active contour  to the approximated pupil 
boundary, and evolve the curve in the narrow band of 10 pixels. We evolve the 
curve from outside the approximated inner boundary to remove the effect of reflec-
tions. Similarly, for computing outer boundary, the active contour  is initialized to 
the estimated iris boundary, and the optimal estimation of the iris boundary is com-
puted by evolving the curve in a narrow band of 20 pixels. In this case, the curve is 
evolved from inside the approximated iris boundary to reduce the effects of the eye-
lids and the eyelashes. Fig. 1 (b, c) shows the segmentation results.    
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Fig. 2. Segmentation results on datasets (a) WVU, (b) ICE, and (c) UBIRIS 

   
                                                                                                                                                                          

   

                                                                                                                                                                           

Fig. 3. ROC curves show the comparison of different existing segmentation techniques on (a) 
ICE, (b) WVU, (c) UBIRIS, and (d) Combined datasets  

and outer boundaries using region based active contour algorithm are 2.0,0.5, 1.0, 1, 200.0,  and time step Δ 0.4. Fig 2 shows the segmenta-
tion results on the three datasets, and we find form this figure that our segmentation 
scheme performs well even if the intensity inhomogeneity occurs in the iris and the 
pupil regions. In order to exhibit the effectiveness of our segmentation approach, we 
compare the region-based active contour model using variational level set formulation 
(VLS) with integro-differential operator (IDO) proposed by Daugman [1], the Canny 
edge detection and Hough transform (CHT) based approach applied in our early work 
[12], and the active contour based localization approaches proposed by Vatsa et al. [6] 
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plotted for comparison, and it is observed from this figure that the proposed algorithm 
achieves higher GAR with a very low EER of 0.42% for the combined dataset. It 
means that the proposed algorithm achieves higher discriminating capabilities than the 
approaches reported in [1, 4, 5]. Moreover, the approaches proposed in [1, 4, 5] were 
not adjusted specifically for the unideal situation. The proposed approach based on the 
region-based active contour algorithm obtains a higher GAR of 97.49 % at the fixed 
FAR of 0.001% on the combined dataset that contains the iris images with the irregu-
larities due to motion blur, off angle gaze deviation, diffusion, and other real-world 
problems. Therefore, ROC curves in Fig 6 reveal the effectiveness of the proposed 
scheme in an unideal situation. Furthermore, we compare the proposed region-based 
active contour model with three of our most recent works reported in [8, 9, 12]. The 
schemes proposed in [8, 9] represent the unideal iris recognition algorithms whereas 
the method demonstrated in [12] recognizes the iris images in an ideal situation. The 
ROC curves in Fig. 7 clearly demonstrate that our proposed approach outperforms the 
other methods since region-based curve evolution scheme takes into account the inten-
sity inhomogeneity. 

 

Fig. 6. Comparison with existing iris recognition schemes on the combined dataset 

 

Fig. 7. Comparison with our previous iris recognition schemes on the combined dataset 
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A new technology development project for iris recognition, namely, the Iris Chal-
lenge Evaluation (ICE), has been conducted by the National Institute of Standards and 
Technology (NIST), USA [13]. We further compare our results with the results summa-
rized by NIST [12] for the ICE 2005 dataset. In ICE 2005, NIST conducted two differ-
ent experiments: Experiment 1 (right iris and right iris comparison): 12,214 genuine 
attempts and 1,002,386 imposter attempts.  Experiment 2 (left iris and left iris compari-
son): 14,653 genuine attempts and 1,151,975 imposter attempts. In these experiments, 
the genuine and imposter matching scores should be evaluated for all possible combina-
tions [13]. In our experiments, we strictly follow the instructions of the fully automatic 
test on ICE 2005 dataset [13]. In our experiment, ROC curve is used to evaluate the 
matching performance. Fig. 8 shows the ROC curves of the proposed approach on the 
ICE 2005 dataset. The performance of the participants is evaluated by verification rate 
at FAR=0.1%. For the experiment 1, we observe from the Fig 8 that the proposed 
scheme achieves the GAR of 99.60% whereas the ROC curve for the experiment 2 
demonstrates the GAR of 98.80%, and this is encouraging. From the existing iris litera-
tures, it is observed that the segmentation error is very common to any dataset, and it 
degrades the overall recognition performance substantially. However, the segmentation 
approach described in section 2 works well for most of the cases even with the iris im-
ages of deviated gazes and weak iris boundaries. The DLS based elliptical fitting pro-
vides an initial estimate of the inner and outer boundaries, and the variational level set 
approach localizes the iris and pupil regions accurately based on that initial estimation.  

 

Fig. 8. ROC curves on ICE 2005 dataset. The experimentation was conducted according to 
instructions provided by NIST [13].   

4   Conclusions 

The accurate segmentation of the iris plays an important role in iris recognition. In this 
research effort, we have achieved three performance goals. First, the accurate segmenta-
tion of the iris/pupil regions from the degraded eye images that are affected by severe 
gaze deviation, diffusion, non linear deformation, low intensity, poor acquisition 
process, eyelid and eyelash occlusions and small opening of eyes. Second, the proposed 
localization scheme based on region-oriented active contour model addresses the issue 
of processing the iris images where the inner and outer boundaries are not exactly circu-
lar, elliptical and concentric. Third, the intensity inhomogeneity often occurs in iris 
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images and may cause considerable difficulties in iris/pupil segmentation. Our proposed 
algorithm provides a better performance than the existing unideal iris recognition algo-
rithms when the iris images suffer from intensity inhomogeneity. The proposed localiza-
tion scheme is validated on the ICE 2005, the WVU unideal, the UBIRIS version 2, and 
the nonhomogeneous combined datasets with an encouraging performance.  
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Abstract. In this paper we propose a fast and efficient iris recognition

algorithm which makes use of local intensity variations in iris textures.

The presented system provides fully revocable biometric templates sup-

pressing any loss of recognition performance.

1 Introduction

Over the past years plenty of biometric traits have been established to be suitable
for personal identification [1,2], iris being one of the most reliable [3]. Several
iris recognition algorithms have been proposed throughout literature, reporting
impressive recognition rates of over 99% and EERs below 1% on diverse datasets.
However, iris recognition algorithms are still left to be improved with respect to
computational performance as well as template protection, which has recently
become an important issue [4,5]. Elapsed time during matching becomes relevant
if huge databases are introduced whereas template protection guards users from
identity theft. Fig. 1 shows a diagram of a generic iris recognition system.

The contribution of this work is the proposal of a new, computationally fast
iris recognition algorithm providing practical recognition rates. By examining
local intensity variations in preprocessed iris textures, features are extracted.
We demonstrate the efficiency of our algorithm through recognition rates as
well as comparing time measurements to a well-established algorithm. Further-
more, fully revocable templates are generated, meeting demands of high security
applications. Revocable templates are created without the loss of recognition
performance, while in many schemes, degradation of accuracy is observed [6].

This paper is organized as follows: first related work regarding iris recogni-
tion is summarized (Sect. 2). Subsequently the proposed system is described in
detail (Sect. 3) and experimental results are given (Sect. 4). The security of our
algorithm is discussed and a technique for providing secure revocable templates
is proposed (Sect. 5). Finally, a conclusion is given (Sect. 6).

2 Related Work

Pioneer work in iris recognition was proposed by Daugman [7,8]. Daugman’s
algorithm forms the basis of today’s commercially used iris recognition systems.
� This work has been supported by the Austrian Science Fund, project no. L554-N15.
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Fig. 1. Iris Recognition System: the common operation mode of enrollment and au-

thentication in an iris recognition system

Within Daugman’s approach each point of a preprocessed iris texture is treated
as center of a 2D Gabor wavelet. For each of these wavelets the coefficients are
generated out of which two bits are extracted resulting in an iris-code of a total
number of 2048 bits. The matching process is performed using the Hamming
distance as metric, comparing the number of mismatching bits against a thresh-
old reaching an almost perfect recognition rate. A different approach to that
presented by Daugman was proposed by Wildes [9]. Here an isotropic band-
pass decomposition derived from application of Laplacian of Gaussian filters is
applied to the preprocessed image data at multiple scales. That is, filtered im-
ages are realized as a Laplacian pyramid to generate the biometric template.
In the matching process normalized correlation between acquired samples and
stored template is calculated. Since these two first algorithms several approaches
have been proposed suggesting several different filters to be used in the feature
extraction step. Ma et al. [10] as well as Masek [11] examine 1D intensity sig-
nals applying a dyadic wavelet transform and a Log-Gabor filter, respectively.
Chenhong and Zhaoyang [12] and Chou et al. [13] convolve iris images with a
Laplacian-of-Gaussian filter. Ko et al. [14] apply cumulative sum based change
analysis where iris textures are divided into cells out of which mean gray scale
values are calculated and furthermore, upward and downward slopes of grayscale
values are detected.

Approaches to template protection regarding iris biometrics have been pro-
posed in so-called Biometric Cryptosystems [5]. Davida et al. [15] were the first
to create a so-called “private template scheme” in which a hashed value of pre-
processed iris codes and user specific attributes serves as a cryptographic key.
By introducing error correcting check bits the scheme is capable of regenerating
the hash at the time of authentication. Jules and Wattenberg [16] introduced a
novel cryptographic primitive termed “fuzzy commitment scheme” which they
suggest to be used in biometric cryptosystems. The key idea is to bind a crypto-
graphic key prepared with error correcting codes with biometric data in a secure
template. Additionally, a hash of the key is stored together with the template.
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(a) (c)

(b) (d)

Fig. 2. Preprocessing: (a) an image of a person’s eye is acquired (b) the iris is located

and extracted (c) the iris ring is unwrapped to create a normalized iris texture (d)

Gaussian blur and CLAHE contrast enhancement technique are applied to obtain a

well distributed image

During authentication biometric data which is “close enough” (to some specified
metric) to that captured during enrollment is able to reconstruct the key with
the use or error correction decoding. The resulting key is then hashed and tested
against the previously stored hash. Several systems applying the above concepts
have been proposed. Although the main target of these schemes is biometric key
management these techniques provide template protection as well [4]. Focusing
on reported performance, in general security is increased at the cost of recogni-
tion rates. Additionally, iris-based cryptosystems are mostly based on existing
iris recognition algorithms performing non-trivial feature extraction. Thus, per-
formance with respect to runtime remains an issue.

In summary, most iris recognition systems exhibit high recognition rates, while
these lag the requirement of providing secure biometric templates. Additionally,
some algorithms are rather slow due to complex feature extraction techniques.
Template protection schemes, such as biometric cryptosystems, provide secure
templates, yet, security is mostly achieved at the cost of recognition performance.

3 System Architecture

3.1 Preprocessing

Preprocessing corresponds to the approach presented by Daugman [8]. Hav-
ing detected the pupil of an eye, the inner and outer boundary of the iris are
approximated. Subsequently, pixels of the resulting iris ring are mapped from
polar coordinates to cartesian coordinates to generate a normalized rectangu-
lar iris texture. Due to the fact that the top and bottom of the iris are often
hidden by eyelashes or eyelids, these parts of the iris are discarded (315o to
45o and 135o to 225o). To obtain a smooth image a Gaussian blur is applied to
the resulting iris texture. To enhance the contrast we use an advanced contrast
enhancement technique called CLAHE (Contrast Limited Adaptive Histogram
Equalization) [17]. Compared to other contrast enhancement algorithms, for ex-
ample histogram equalization, this algorithm operates on local image regions.
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For this purpose the image is subdivided into image tiles (so-called contextual
regions) and the contrast is enhanced within each of these regions. To avoid
artifacts between two adjacent tiles an interpolation algorithm is employed. In
Fig. 2 the entire preprocessing procedure is illustrated.

3.2 Feature Extraction

The applied feature extraction technique represents the fundamental part of our
system. By tracing intensity variations in horizontal stripes of distinct height of
preprocessed iris textures, so-called “pixel-paths” are extracted. We found that
these paths are suitable to identify users.

First of all, the preprocessed iris texture of a person i, Ii (in form of a rect-
angle), is divided into n different horizontal texture stripes

Ii → {Ii1, Ii2, ..., Iin} (1)

of height h pixels (needless to say n depends on the size of h). Each texture strip
is of dimension l × h, where l denotes the length of preprocessed iris textures.

In the next step two pixel-paths, representing light and dark intensity varia-
tions are created for each texture strip Iij . We define these paths as,

PLij := {pLij0, pLij1, ..., pLijl} (2)
PDij := {pDij0, pDij1, ..., pDijl} (3)

To calculate the value of elements pLijk and pDijk of each of these paths the
first element of each path is defined as

pLij0 ← h/2, pDij0 ← h/2 (4)

In other words, each path starts at the leftmost center of the according strip.
Elements pLij1 and pDij1 are then calculated by examining the three directly
neighboring pixel values of pLij0 and pDij0 (pLij0 = pDij0) in next pixel column.
Then pLij1 is set to the y-value of the maximum and pDij1 is set to the y-value of
the minimum of these three values (maxima and minima correspond to brightest
and darkest grayscale values of pixels). Thus, we define the values of pLijk and
pDijk recursively such that,

L := MAX

⎛
⎝Iij [k + 1, pLijk − 1],

Iij [k + 1, pLijk],
Iij [k + 1, pLijk + 1]

⎞
⎠ (5)

D := MIN

⎛
⎝Iij [k + 1, pDijk − 1],

Iij [k + 1, pDijk],
Iij [k + 1, pDijk + 1]

⎞
⎠ (6)
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(a) (b) (c)

Fig. 3. Feature Extraction: (a) the preprocessed iris texture (b)-(c) two pixel-paths are

extracted for each texture strip respresenting light and dark intensity variations for a

height of h = 3 (notice that the paths of light and dark intensity are not necessarily

complementary)

where Iij [x, y] represents the pixel value of the jth texture strip at coordinates
[x, y] and the MAX and MIN functions derive the according points. The values
of pLijk+1 and pDijk+1 are then set to the y-values of L and D:

pLijk+1 ← Ly (7)
pDijk+1 ← Dy (8)

This means, pLijk ∈ {0, 1, ..., h−1} and pDijk ∈ {0, 1, ..., h−1}. In the case pL or
pD reach the top or bottom of the texture strip, only the according two directly
neighboring pixel values are taken into account. An example for constructing
light and dark intensity paths is shown in Fig. 3.

To complete the feature extraction extracted paths are further smoothed,
which means small peaks are discarded. For this purpose a threshold t is defined
and variations of y-position of pixel-paths occurring within a range of t pixels are
discarded in order to smooth the whole path. An example of smoothing pixel-
paths is illustrated in Fig. 4. The top and the bottom strip are discared since
we found that those stripes normally do not carry useful information.

As a result of the described feature extraction procedure extracted paths are
stored for the ith user. The size of the generated template depends on the size of
the preprocessed iris texture as well as parameter h. For a number of n stripes
2 × n × l elements out of the set {0, 1, ..., h − 1} form the biometric template.
At the time of enrollment, where a user i registers with the system, feature
extraction is performed for a single iris image and a biometric template Ti is
stored. In Sect. 5 we will discuss how to secure these templates.

The feature extraction is based on simple comparisons, thus, no complex cal-
culations are required. With respect to systems where computational simplicity
and runtime of feature extraction are issues (for example, smart-card based
verification systems) the proposed feature extraction method provides fast com-
putation based on simple comparisons.

3.3 Template Matching

For the ith user, the feature extraction generates a template, denoted by Ti.
This template consists of 2×n× l integer values which correspond to y-positions
of elements of extracted pixel-paths for light and dark intensity variations. To
calculate the similarity between two templates Tj and Tk the square of differences
of all elements of Tj and Tk are summed up in a matching value M such that
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(a) (b)

Fig. 4. Smoothing Pixel-Paths: (a) the original pixel-path resulting out of a texture

stripe (b) the smoothed pixel-path where t is set to 4. That is, all peaks in the y-

direction lying within a range smaller than 4 are discarded.

Mjk :=
N∑

m=0

(abs(Tjm − Tkm))2 (9)

where N is set to 2 × n × l. By definition small differences increase the match-
ing value slightly, large differences increase the matching value significantly. A
small matching value indicates high similarity between templates and vice versa.
Depending on the chosen size of h the highest possible match value varies. An
appropriate threshold has to be set up according to intra-class and inter-class
distributions of genuine and non-genuine users.

In comparison to existing approaches aiming at extracting distinct binary iris-
codes which are matched by comparing the Hamming distances of two iris-codes
against a predefined threshold (for example, [8,9,11,10]), the proposed matching
process lags performance and, thus, is expected to be inappropriate for template
matching on large-scale databases. To overcome this restriction we introduce a
more efficient way of matching templates for an appropriate height h in Sect. 4.2.

4 Experimental Results

Experiments are carried out using the CASIAv3-Interval [18] iris database, which
comprises iris images over two-hundred different persons, where on average about
6 iris images are available per person. As a result of the preprocessing procedure
iris textures of 256 × 64 pixels are extracted (⇒ l = 256). A total number of
2 × n × 256 integers are extracted and stored as biometric template. For each
person a single iris image is processed in the enrollment step. Additionally, a
circular shift of ten pixels to the left and to the right is implemented in order to
provide rotation invariance for small head tilts.

4.1 Recognition Performance

In our experiments best results were obtained for stripes of height h = 3 pixels.
For a height of h = 3 we get 64/3 = 21 stripes where the top and bottom strip
are discarded, resulting in a total number of 19 stripes. Each strip consists of
256 integers in the range [0, 3). That is, an iris-code of 256 × 19 × 2 = 9728
codewords out of the set {0, 1, 2} is stored in the template. Experimental results
for several different values of h are summarized in Table 1, where for all values
of h best results were achieved with a threshold of t = 4.

The false rejection rate (FRR) and false acceptance rate (FAR) for a height
of h = 3 and a threshold of t = 4 are plotted in Fig. 5. For zero FAR a FRR of
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Table 1. Performance measurements for the proposed systems according to different

values of h for a threshold of t = 4 and recognition rates of existing algorithms

Height (Pixels) / Algorithm FRR(%) @ FAR = 0 EER (%)

2 3.829 2.227

3 1.978 1.016

4 3.959 2.128

5 5.817 2.992

Masek [11] 3.952 2.477

Ma et al. [10] 1.817 1.073

Ko et al. [14] 20.531 4.738
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Fig. 6. The receiver operating curve and

the equal error rate of the proposed algo-

rithm for a height of h = 3 and a threshold

of t = 4

1.978% is obtained. The according receiver operating curve is plotted in Fig. 6
resulting in an EER of 1.016%. Compared to our own implementations of existing
iris recognition algorithms (see Table 1), these are satisfying results with respect
to the simplicity of the proposed feature extraction method.

4.2 Computational Performance

The above described system was implemented in C and tested on a 1.3 GHz Linux
system. As mentioned earlier the feature extraction method is based on simple
comparisons between grayscale values. In detail, the maximum and minimum of
three numbers are calculated using three comparisons. That is, for a height of h =
3 a total number of 256× 19× 3 = 14592 comparisons are necessary. Measuring
the runtime of the feature extraction method for a single preprocessed iris texture
an average processing time of 0.0344 seconds was obtained. To emphasize the
performance of the feature extraction method we compare the computational
performance to our C implementation of the algorithm of Ma et al. [10]. In the
algorithm of Ma, a 1-D wavelet transform is applied to ten 1-D intensity signals of
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average grayscale values of pixel blocks in the preprocessed iris texture. Detected
minima and maxima serve as features where sequences of 1 and 0 are assigned
to the iris-code until new maxima or minima are found. This whole process
is applied to two subbands extracting a total number of 10240 bits where the
Hamming distance is applied as similarity metric. As experimental results of our
implementation of this algorithm we achieved a FRR of 3.821% for zero FAR
and a EER of 1.401% for the whole CASIAv3-Interval [18] iris database (circular
shifts are implemented as well; we do not consider any bit-masking information).
We measured the runtime of the feature extraction of this algorithm on the same
system resulting in an average processing time of 0.1345 seconds for a single
feature extraction. On average, the proposed feature extraction method is three
times faster than that of Ma.

While most iris recognition systems compare iris-codes by calculating the
Hamming distance between these, the matching procedure of our algorithm in-
volves the calculation of a matching value which is expected to be much slower.
Since we obtained best results for a height of h = 3 we are able to gain per-
formance. To retrieve binary iris-codes we encode elements of calculated pixel
paths with a Gray code:

0 ← 00, 1 ← 01, 2 ← 11 (10)

By applying this encoding, calculating the Hamming distance between two iris-
code generates the same results as the previously described matching. For a
height of h = 3 the matching process is now computationally efficient as well.
Compared to the algorithm of Ma which extracts 10240 bits we extract a total
number of 2×9728 = 19456 bits. However, calculating the Hamming distance for
larger bitstreams does not drastically decrease performance. For the algorithm
of Ma we measured an avergage time of 0.0137 seconds and for the proposed we
now achieve a average time of 0.0193 seconds for the matching of two templates.
The time for calculating the Hamming distance between two bitstreams of twice
the length of those generated by the algorithm of Ma takes only slightly longer,
due to system overhead.

5 Cancellable Templates

Recently template security has become an important issue [4]. If biometric tem-
plates are stolen or compromised these can not be modified ex post and, thus,
become useless. Ratha et al. [6] introduced the concept of cancellable biometrics.
The idea of cancellable biometrics consists of intentional, repeatable distortion
on a biometric signal based on a chosen transform where the matching process
is performed in transformed space. Recovering of original biometric template
data becomes infeasible. If the transformed biometric data is compromised the
transform function is changed, that is, the biometric template is updated.

In order to provide cancellable biometric templates we suggest a permutation
of extracted paths following the idea of line permutation as proposed by [19].
For example, for a height of h = 3 we calculate a total number of 38 paths.
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(a) (b)

Fig. 7. Secure Template Creation: (a) paths calculated during feature extraction (b)

secure template defined by a distinct permutation

Paths are permutated according to some user or application specific permuta-
tion, where a total number of 38! � 5.23 · 1044 different permutations are pos-
sible. By permutating paths, reconstructing original iris images becomes highly
complicated. Guessing a specific permutation is assumed to be computationally
infeasible (38! � 2128). Thus, high security regarding template protection is pro-
vided. In Fig. 7 a sample invertible permutation is illustrated. If non-invertible
permutations are applied in our system, performance decrease is expected as
pointed out in [19]. In case a specific permutation is compromised, an imposter
may reconstruct the original order of paths. However, reconstructing the orig-
inal iris texture from iris codes is not possible, since the feature extraction is
non-invertible by definition.

By introducing a two-factor authentication scheme permutations are inte-
grated in the system, where secret permutations represent the second factor.
For example, user-specific permutations could be stored on smart-cards, so that
permutations are applied after feature extraction and permutated templates are
matched against stored templates, previously permuted during enrollment. In
comparison to template encryption our system is capable of performing the
matching procedure in the encrypted (permuted) domain. Furthermore, com-
pared to approaches to cancellable iris biometrics which operate in the image
domain [20], the proposed system does not suffer from performance degrada-
tion if invertible permutations are applied. This is one important aspect of the
presented approach since security applications must not require a decryption of
encrypted templates prior to matching [4].

6 Conclusion

In this work we presented a new, computationally efficient iris recognition al-
gorithm. Besides providing practical recognition rates we demonstrate that the
proposed algorithm is suitable for generating secure and fully revocable biomet-
ric templates.
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Abstract. To enable cancelable biometrics, we apply two classical trans-

formations, block re-mapping and texture warping, in two variants to iris

image data: first, the transformations are applied to rectangular iris im-

agery prior to iris detection and iris texture unwrapping, and second,

the transformations are applied to polar iris images after the generation

of the corresponding iris texture patch. The CASIA V3 Iris database

is used and experimental results on the matching performance and key

sensitivity of a popular iris recognition method employing the cancelable

transforms are given.

1 Introduction

The use of biometrics comes with different problems as compared to conventional
authentication methods, like passwords or ID cards. As biometric features are
specific to an individual person, they cannot be changed (or not often, as one
person for example has only ten fingerprints and two iris patterns available). So
where a password can simply be changed or an e-card invalidated, this is not
possible with biometrics. In the same way, it is not possible to use different keys
for different applications - for example if one wants to use a different key for the
bank account and for access to the workplace computer.

A possible approach to cope with this problem are cancelable biometrics [1],
which apply a key-dependent transformation to the captured biometric signals in
order to achieve revocability of biometric templates. The transformation must
be non-invertible so that the original data cannot be reconstructed from the
stored transformed version even in case the key used for the transformation
is compromised. At the same time matching still has to be possible with the
transformed version of the biometric data.

The classical approach for cancelable biometrics [1] proposes to apply trans-
formations in the image domain of sample data prior to feature extraction. This
has the advantage that existing recognition algorithms can be used unmodified
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for the later feature extraction and matching stages. However, the obvious prob-
lem of possible difficulties in extracting features from transformed data needs to
be considered. Alternative solutions are to apply transformations to biometric
template data or to adopt a key-dependent feature extraction process including
a non-invertible stage.

In iris recognition, several ideas for cancelable systems have been discussed al-
ready [2,3,4]. In this work we focus on applying transformations to iris enrolment
and sample image data before the feature extraction and template generation
stages. Two types of these data exist. “Rectangular iris images” are pictures of
the entire eye with the surrounding region including eye lids, while “polar iris
images” consist of iris texture data only and are the result of iris detection and
iris texture unwrapping to polar coordinates being applied to rectangular iris
images.

When applying a transform to rectangular iris data we have the advantage
that after having acquired the image, the transformation can be conducted imme-
diately, eventually even integrated into the acquisition process. This is especially
beneficial when viewing the biometric system as a “black box” we cannot trust –
transformation is separated here from any further processing and specifically
from the recognition process itself. A possible disadvantage are potential diffi-
culties when detecting and unwrapping the iris texture from transformed image
data.

When applying the transformations to polar iris image data (as being sug-
gested in [5,4]), only feature extraction itself can be influenced by the trans-
formed data, however, the downside is that the unprotected sample data is
subject to iris detection and texture unwrapping which can be seen as a part of
the matching process (in this case, this process deals with data subject to pri-
vacy constraints). While both approaches have their respective advantages and
disadvantages, we will investigate how their actual application interferes with
recognition accuracy and impacts on system security.

In section 2, we will investigate how the two classical transforms originally
proposed for cancelable biometrics (block re-mapping / permutations and grid
morphing / image warping [1]) can be applied to the two types of iris image
data. The iris recognition system we use is described in section 3 while section 4
presents our experimental results.

2 Cancelable Iris Recognition

2.1 Transforming Rectangular Iris Images

Running a block permutation or grid morphing on the rectangular iris image
would render the image useless for any further processing, especially iris texture
segmentation would of course fail. Iris detection and texture unwrapping as
implemented for almost all iris recognition techniques can only be successful if
the circular nature of the iris texture boundaries (inner pupil and outer sclera
boundary) is preserved. In order to accomplish this, we transform the image to
polar coordinates using the center of the pupil as origin (see Fig. 1.a).



278 P. Färberböck et al.

(a) Polar coordinates (b) Polar permutation and result in image space

Fig. 1. Block-permutation in polar coordinates

In this polar space, permutations can be applied as follows. As depicted in
Fig. 1.a, the image data is cut into vertical stripes which can be subsequently
permuted. To reduce the impact of high frequency block boundaries, we use
a blurred edge overlay, which basically softens the edges before it overlays a
block onto another block. By using the same block multiple times and carefully
dropping other blocks out, it is possible to achieve a non-invertible block re-
mapping (see Fig. 4.a). An example of a block permutation together with the
corresponding reconstruction in the image domain can be seen in Fig. 1.b.

In addition to block re-mapping, a composition of arbitrary functions can
be used as a morphing function, still the pupil borders need to remain intact.
Therefore, the morphing needs to either leave these borders unchanged or ap-
ply translations only in direction of the axis which represents the angle in polar
space. For simplicity and mere testing if morphing would gain any further ad-
vantages we apply a sine function with amplitude and frequency as parameters.
An example can be seen in Fig. 2.a – in the left image, the distortion is applied
along the x-axis, which preserves the pupil borders. The right image shows a
possible distortion parallel to the y-axis, which cannot be used, as it distorts the
pupil border as can be seen in Fig. 2.b.

(a) Sine applied along x- and y-axis (b) Image space: sine along y-axis

Fig. 2. Sinoid distortions in polar coordinates
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A combination of sinoid distortion and block permutation in polar coordinates
can be seen in Fig. 3.a which demonstrates that such a combination is feasible in
principle. Contrasting to this, Fig. 3.b reveals that in some cases even the pupil
border is distorted (caused by inaccuracies in finding the pupil center and by
the fact that those boundaries often do not exactly correspond to circles) and
that eye lashes seem to get scattered over the entire image with obvious impact
on iris texture segmentation.

(a) Permutation plus sinoid

distortion

(b) Corrupted pupil

border

(c) Optimal image

Fig. 3. Examples in image domain

Fig. 3.c shows an example image (taken from a specific iris image database1

also used in rating iris recognition schemes [6]) which better fits our approach as
there are no occlusions and as almost the entire image is covered by iris texture.
However, typical iris image data do not look like this.

2.2 Transforming Polar Iris Images

For this approach, first iris detection and texture unwrapping is conducted. Sub-
sequently, transformations are applied to the polar iris image data. While line-
based transformations have been also considered [4], we employ block-based
transformations as being applied in earlier work in context with a different iris
recognition scheme [5].

Block Re-mapping. For block re-mapping, each block of the target texture
is mapped to a block from the source texture. An example of such a mapping
scheme is shown in Fig. 4.a.

As stated in [1], using a re-mapping of blocks instead of a permutation should
be preferred for the application of cancelable biometrics, as it is not reversible.
Source blocks which are not part of the mapping are not contained in the trans-
formed texture at all, and therefore it is impossible to reconstruct the complete
original for an attacker, even in case the key defining the mapping gets compro-
mised. For a discussion on key-space size of this approach please refer to [5].

1 www.inf.upol.cz/iris/

www.inf.upol.cz/iris/
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Image Warping. Another transformation we applied to textures is a distortion
called mesh warping [7]. In this approach the texture is re-mapped according to a
distorted grid mesh laid over it. A key is used to specify one particular distortion,
by offsetting each vertex in the original mesh by some amount. This is done by
starting with a regular grid placed over the texture, in which the vertices are then
randomly displaced using the key as seed to a pseudo random number generator.

0 1 2 4 0 1

3 4 5→ 2 8 3
6 7 8 7 1 5

(a) Random re-mapping of

blocks

(b) Warping a regular grid

Fig. 4. Re-mapping and Image Warping

The transformation distorts the texture by sampling each pixel in the target
texture from the corresponding area in the source texture, so that each vertex
of the source mesh is placed to its translated position in the target mesh, inter-
polating pixels inside grid cells accordingly. In the version we used, this works
in two passes, distorting rows along the offset of vertical splines through the
mesh vertices, and then columns along offsets of horizontal splines. In the case
of miniaturisation, a box-filter is applied to rows and columns, and linear inter-
polation is used in case of magnification. An illustration for the two passes is
shown in Fig. 4.b. Due to the interpolation strategies applied, the transforma-
tion is non-reversible as the original data may not be exactly recovered even if
the warping parameters are known. The effect of non-revertability is more pro-
nounced of course in the case of miniaturisation. For a discussion on the size of
the key-space, please refer to [5].

3 Iris Recognition

Many iris recognition methods follow a quite common scheme [8], close to the
well known and commercially most successful approach by Daugman [9]. After
image acquisition, in a first step the iris texture is localised and extracted. From
this texture, discriminative features are derived, which then can be used for
comparison.

We extract iris texture from rectangular iris images as a first step. In our
approach (following e.g. Ma et al. [10]) we assume the texture to be the area
between the two almost concentric circles of the pupil and the outer iris. These
two circles are found by contrast adjustment, followed by Canny edge detection



Transforming Rectangular and Polar Iris Images 281

and Hough transformation. After the circles are detected, unwrapping along
polar coordinates is done to obtain a rectangular texture of the iris. In our case,
we always resample the texture to a size of 512x64 pixels.

Working now only on these texture patches, we divide the data into N stripes
to obtain N one-dimensional signals, each one averaged from the pixels of M
adjacent rows. We used N = 10 and M = 5 for our 512x64 pixel textures
(only the 50 rows close to the pupil are used from the 64 rows, as suggested
in [10]). For feature extraction, we use a custom C implementation similar to
Libor Masek’s Matlab implementation2 of a 1-D version of the Daugman iris
recognition algorithm. A row-wise convolution with a 1-D complex Log-Gabor
filter is performed on the texture pixels. The phase angle of the resulting complex
value for each pixel is discretized into 2 bits. Those 2 bit of phase information
are used to generate a binary code, which therefore is 512x20 bit.

Once bitcodes are obtained, matching can be performed using Hamming dis-
tance as distance measure. If bit codes are obtained from textures of different
eyes, the Hamming distance is expected to lie around 0.5. For codes computed
from the same eye but different samples, the distance is smaller. For matching
to work well, two more refinements are made. The first one aims to improve
rotation invariance. To overcome the problem of slightly rotated iris images, we
match each bit code multiple times, shifted a few bits left or right. In our results,
we use 33 comparisons, from shifting -16 pixel positions to +16 pixel positions.
The other improvement is to ignore parts of the binary code we can recognise as
not belonging to the iris. This includes parts of the iris cut off the image, or parts
hidden by the lids, which our implementation tries to detect approximately.

4 Experiments

4.1 Experimental Setup

For testing, we used the Interval dataset out of the CASIA Iris V3 database,
consisting of 2653 images in 396 classes (i.e. persons). In the first test focused
on matching performance (Test 1), we assigned a random key to each class, then
calculated the Hamming distance of resulting bit-codes between any two images
(3517878 iris comparisons, 9008 of which are intra-class comparisons). If irises
from the same class match worse after transformation, or irises from different
classes match better after transformation, this shows in the match results as
increased false non-match rate (FNMR) and increased false match rate (FMR),
respectively. We plot the resulting FNMR against FMR as receiver operating
characteristics (ROC) curves, and also indicate the equal error rate (EER) where
FNMR and FMR are closest to each other. This is then used as indication in
how far matching performance is influenced by the transformation applied.

However, even when we can see no degradation in matching performance in
Test 1, this does not mean the key-dependent transformations actually increase
security. For example, applying the same key to each class could lead to good
2 http://www.csse.uwa.edu.au/~pk/studentprojects/libor/sourcecode.html
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results in the first test but does not influence security at all. Therefore, we per-
formed a second test (Test 2) to evaluate how discernible one transformation is
from another, when they result from different keys (i.e. key-sensitivity is inves-
tigated). For this purpose, an iris class is copied multiple times, and each such
identical class is then assigned a random key as before. If the key-dependent
transformations do not lead to sufficiently distinct features, in this case we will
observe higher FMR because features of different classes will match. For this
second test, we used the first 20 classes with at least 10 samples out of the In-
terval dataset, and created 50 random keys for each to have a roughly similar
number of comparisons as compared to the first test (2495000 iris comparisons,
45000 of which are intra-class).

4.2 Experimental Results

Transforming Rectangular Iris Images. The results for this approach are
based on a subset of the described data only and we restrict our attention to
vertical block permutation only (no additional morphing is used). In Fig. 5 we
display the Hamming distances found when conducting Test 1.

(a) intra-class HDs (b) inter-class HDs

Fig. 5. Hamming distances when transformations are applied to rectangular iris images

While the inter-class distances are concentrated between 0.4 and 0.5 as desired
(which would enable to apply a threshold at e.g. 0.4 as being suggested for the
used iris recognition system), we observe a bi-modal distribution for the intra-
class distances. While the first peak centred about 0.3 is the “desired” one, we
face a second peak similarly distributed as the inter-class distances. This second
peak results from failed iris texture segmentation attempts for data as shown in
Fig. 3.b, where especially the degraded pupil boundary severely impacts iris tex-
ture extraction. With these highly overlapping distributions, sensible recognition
results cannot be obtained.

Therefore, we omit further results for added image morphing since a further
degradation can be observed. As a consequence, although highly desirable from
a conceptual and security point of view, we have to abandon the idea of applying
the discussed transforms to the rectangular iris image data directly and do not
provide recognition results for the complete dataset.

Transforming Polar Iris Images. Figure 6.a shows the matching results using
different block sizes for block re-mapping applied to polar iris images in Test 1. For
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Fig. 6. ROC curves with block re-mapping using different block-sizes

Table 1. EERs with block re-mapping for Test 1 (recognition accuracy impact) with

rectangular block sizes

size(pixel) 56x7 64x8 73x9 85x10 102x12 128x16

blocks 81 64 49 36 25 16

EER (%) 3.2 3.7 3.1 3.3 4.6 4.8

comparison, also the ROC curve for matching without any transformation applied
is included (which is the bottom-most curve), with a resulting EER of 1.5%.

When permuting blocks of size 32x32 (note that only 32 such blocks fit into
the used 512x64 pixel textures), 16x16 and 8x8 pixels, the EER is 3.3%, 4.8%
and 5.5.%. Even smaller block sizes increase EER to over 10%. Note that this
is different as compared to applying the algorithm of Ma et al. [10] for feature
extraction, where 4x4 pixel blocks yielded the highest EER and smaller block
exhibited decreasing error rates [5]. Instead of quadratic blocks, blocks also can
be rectangles. Table 1 compares the match results when using different rectan-
gular grid sizes for the block re-mapping, from fitting 81 blocks of 56x7 pixels to
the 512x64 texture, down to fitting 16 blocks of 128x16 pixel. Re-mapping these
rectangular blocks results in EERs from 3.2% to 4.8%. We see that even for the
best settings, EER is clearly worse compared to the original algorithm without
permutations being applied.

Table 2. EERs with block re-mapping for Test 2

size(pixel) 56x7 64x8 73x9 85x10 102x12 128x16

blocks 81 64 49 36 25 16

EER (%) 3.1 3.5 2.8 2.6 4.2 5.1

Figure 6.b shows again the result of using the same block sizes as Figure 6.a,
but now using the same images but only different keys for each class (Test 2), to
get an indication on the sensitivity of the keys, as described earlier. Note that
now, a FMR of 1% means that 1% of comparisons of images from different classes
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resulted in a wrong match. As all classes use the same images, it means despite
having different keys and therefore different block re-mappings, they were still
close enough to match. Block sizes 32x32, 16x16 and 8x8 have an EER of 3.6%,
5.8% and 6.2%, with smaller block sizes over 10%. The EER for big rectangular
block sizes is shown in Table 2, going up to 5.1% in the case of only 16 blocks.
The best error rates are obtained when using 73x9 and 85x10 pixel blocks, with
an EER of 3.1%/3.3% for matching and an EER of 2.8%/2.6% when only using
different keys.
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Fig. 7. ROC curves for warping a fixed 32x4 grid by different amounts

When using the mesh warping transformation, the size of the used mesh as
well as the range of random offsets available can be adjusted. Results on Test 1
are shown in Figure 7.a, for different warp offsets and a fixed grid of 16x16 pixel
blocks with 128 vertices (note the expression 32 × 4 in the legend of the figure
designates the number of 16x16 pixel blocks that can be accommodated in our
texture patch). In the transformed grid, varying ranges for the horizontal and
vertical pixel offsets of each mesh vertex are used. In the case of the largest offset
where warped blocks can overlap the strong distortions result in less information
in the features and the resulting EER is 6.7%. Using offsets in the range of 8x8
pixel, the EER is 2.2%, and for even smaller distortions the EER gets close to the
untransformed case. However, when using identical pictures in different classes
(Test 2), the small transformations do not lead to sufficient difference, as can be
seen in figure 7.b, which compares the same transformation parameters. Using
different warp amounts for the 16x16 pixel blocks, the EER never goes below
7.4% in the case of 16x16 pixel offsets. Looking at both figures, the best case is
the warp amount of using half the block dimension, in this case 8x8 pixels, as it
also had a low EER in figure 7.a.

Figure 8.a shows ROC curves of Test 1 for some rectangular block sizes. For
normal matching, the worst result is an EER of 2.5% for warping with a mesh of
6x6 nodes, offsetting each one by up to 42x5 pixels. Using the same parameters
in figure 8.b, again with only different transformations in classes (Test 2), it can
be seen that the FNMR to FMR ratio gets higher when using only few vertices
- but the EER for using a mesh of 2x2 vertices still is at 2.1%. The best overall
result is using a mesh with 9x9 vertices, which results in an EER of 2.0% for
normal matching (Test 1) and 1.8% when comparing keys (Test 2).
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Fig. 8. ROC curves for warping with different grid sizes, with the maximum offset so

the grid can not self-overlap

5 Conclusion

We applied the concept of cancelable biometrics to iris recognition by performing
two transformations to iris textures. The two transformations, one a simple block
re-mapping, the other a mesh deformation, were applied in two variants. The first
variant applies the transformations to rectangular iris data as being captured
by a sensor, the second variant applies the transformations to polar iris images
after extracting the iris texture, but prior to feature extraction.

The strategy to apply transformations to rectangular iris image data was
not successful at all due to a high rate of iris segmentation errors caused by
problems for iris detection in transformed image data. For this approach, other
types of transforms need to be used preserving the circular nature of the iris
texture boundaries better. For the transformations being applied to polar iris
images, the best parameters found for block re-mapping resulted in an EER of
3.1% instead of 1.5%. For the mesh-warping transformation, our tests resulted
in 2.0% EER instead of 1.5% for the best parameters found.

References

1. Ratha, N., Connell, J., Bolle, R.: Enhancing security and privacy in biometrics-

based authentication systems. IBM Systems Journal 40(3), 614–634 (2001)

2. Chong, S.C., Jin, A.T.B., Ling, D.N.C.: High security iris verification system based

on random secret integration. Computer Vision and Image Understanding 102(2),

169–177 (2006)

3. Chong, S.C., Jin, A.T.B., Ling, D.N.C.: Iris authentication using privatized ad-

vanced correlation filter. In: Proceedings of the 1st International IAPR Conference

on Biometrics (ICB’06). Volume 4642 of Springer Lecture Notes on Computer Sci-

ence. (2006) 382–388

4. Zuo, J., Ratha, N.K., Connel, J.H.: Cancelable iris biometric. In: Proceedings of

the 19th International Conference on Pattern Recognition 2008 (ICPR’08), pp. 1–4

(2008)

5. Hämmerle-Uhl, J., Pschernig, E., Uhl, A.: Cancelable iris biometrics using block re-

mapping and image warping. In: Samarati, P., Yung, M., Martinelli, F., Ardagna,

C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 135–142. Springer, Heidelberg (2009)



286 P. Färberböck et al.
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Abstract. This paper is focused on proving the concept that the EEG signals 
collected during a perception or mental task can be used for discrimination of 
individuals. The viability of the EEG-based person identification was success-
fully tested for a data base of 13 persons. Among various classifiers tested, 
Support Vector Machine (SVM) with Radial Basis Function (RBF) exhibits the 
best performance. The problem of static classification that does not take into 
account the temporal nature of the EEG sequence was considered by an empiri-
cal post classifier procedure. The algorithm proposed has an effect of introduc-
ing a memory into the classifier without increasing its complexity. Control of a 
classified access into restricted areas security systems, health disorder identifi-
cation in medicine, gaining more understanding of the cognitive human brain 
processes in neuroscience are some of the potential applications of EEG-based 
biometry.  

Keywords: Classification, support-vector machine, biometry, electroencepha-
logram (EEG). 

1   Introduction 

The Electroencephalogram (EEG) is an effective non-invasive method to analyze the 
brain electrical activity. Recently the interest in decoding and interpreting Event-
Related Potentials (ERPs) induced by mental or perception tasks is rapidly growing. 
ERPs are transient components in the EEG generated in response to a stimulus (e.g. 
presentation of images, motor imagery or mental tasks). The reported ERP decoding 
success brought new application scenarios as for example the Brain Machine Interface 
(BMI), Biometrics, Neuro-feedback (NF) treatment. In all these emerging applications, 
the major challenges with the study of ERPs are: i) Low signal-to-noise ratio (SNR) 
due to the large and salient background noise in the EEG; ii) Identification of relevant 
patterns in the ERPs, which is related with more efficient procedures of feature extrac-
tion and classification; iii) Identification of targeted brain functional states and the 
associated experimental protocols (looking for appropriate stimulus, temporal aspects 
as the number and timing of sessions, adequate feedback to the tested subjects). 

With this paper we pretend to tackle the above defined problems in the particular 
framework of EEG-based biometry. We report our study on proving the concept that 
EEG data collected following a strictly defined protocol can be reliably used for per-
son identification. 
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There is very little research work published using brain signals as biometric tools 
to identify individuals, Poulos et al. (1999), Paranjape, et al. (2001); Palaniappan and 
Mandic, (2007). Nevertheless, in these studies it was suggested that the brain-wave 
pattern of every individual is unique and, therefore, the EEG can be used for building 
personal identification or authentication systems. The identification attempts to estab-
lish the identity of a given person out of a closed list of persons (one from many), 
while the authentication aims to confirm or deny the identity claimed by a person (one 
to one matching), Marcel and Millan, (2007). The identified person is exposed to a 
stimulus (usually visual or auditory) for a certain time and the EEG signals coming 
from a number of electrodes spatially distributed over the subject’s scalp are collected 
and input to the biometry system. 

The raw EEG signals are too noisy and variable to be analyzed directly. Therefore, 
the EEG signals need to go through a sequence of processing steps: i) Data acquisition, 
storage and format transforming; ii) Filtering (removal of interferences from other 
unwanted sources, as for example physiological artifacts or baseline electrical trends); 
iii) Feature extraction and classification; iv) Feedback generation and visualization.  

The identification/authentication systems built so far differ basically in filtering 
and classification components, Palaniappan and Mandic, (2007); Marcel and Millan, 
(2007). However, our initial study (Ferreira, 2009, Almeida, 2009) has shown that the 
discrimination process is slightly dependent on the specific filter and classifier. Criti-
cal issues related with building an efficient EEG based biometry system are briefly 
discussed below. 

Biometry as a modeling problem. The EEG recordings are unique for each person 
and the problem of EEG-based biometry can be interpreted as a modeling problem, 
i.e., design a feature model that belongs to a certain person and design a personal 
classifier with a respective owner. The trained identification model has to identify the 
subject from a data base of personal profiles and the authentication system has to 
confirm or not that the subject being evaluated is who he claims to be. 

Stimulus. Study on the type and the duration of the evoked potentials (visual or audi-
tory) that would enhance the identification/authentication capacity. Preliminary tests 
have demonstrated that the type of the stimulus (for example mental task, motor task, 
image presentation or a combination of them) is crucial for reliable extraction of per-
sonal characteristics. It seems that some mental tasks are more appropriate than oth-
ers. At the same time, experiments with combination of stimuli appear to be more 
advantageous for the personal uniqueness of the EEG patterns. 

Post-processing. Ongoing research suggests that post-processing techniques on the 
classifier output as instant error correction and averaging would improve the identifi-
cation/authentication capacity. 

Real-time biometry. Optimization of the evoked potential duration (EPD) in order to 
implement the paradigm in an on-line scheme. Current study has shown that both two 
short or too long EPD worsen the biometrical system, Ferreira, (2009). The compro-
mise can be learned by cross validation during the classifier training.  

The paper is organized as follows: Section 2 presents the experimental setup for the 
present study. In section 3 and 4 the main modules of the EEG biometry system are 



 Advances in EEG-Based Biometry 289 

 

discussed, namely the feature extraction, the classification and the post-processing 
procedure. In Section 5 the effect of the EPD is analyzed. Finally, the concluding 
remarks are addressed in section 6.  

2   Experimental Setup 

Visually Evoked Potential (VEP) signals were extracted from thirteen female subjects 
(20-28 years old). All participants had normal or corrected to normal vision and no 
history of neurological or psychiatric illness. Neutral, fearful and disgusting faces of 
16 different individuals (8 males and 8 females) were selected, giving a total of 48 
different facial stimuli. Images of 16 different house fronts to be superimposed on 
each of the faces were selected from various internet sources. This resulted in a total 
of 384 grey-scaled composite images (9.5 cm wide by 14 cm high) of transparently 
superimposed face and house with equivalent discriminability.  

Participants were seated in a dimly lit room, where a computer screen was placed 
at a viewing distance of approximately 80 cm coupled to a PC equipped with software 
for the EEG recording. The images were divided into two experimental blocks. In the 
first, the participants were required to attend to the houses (ignoring the faces) and in 
the other they were required to attend to the faces (ignoring the houses). The partici-
pant’s task was to determine, on each trial, if the current house or face (depending on 
the experimental block) is the same as the one presented on the previous trial. Stimuli 
were presented in sequence, for 300ms each and were preceded by a fixation cross 
displayed for 500 ms. The inter-trial interval was 2000 ms.  

EEG signals were recorded from 20 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, 
O1, O2; F7, F8, T3, T4; P7, P8, Fz, Cz, Pz, Oz) according to the 10/20 International 
system (see Fig.1). EOG (Electrooculogram - eye movemen) signals were also re-
corded from electrodes placed just above the left supraorbital ridge (vertical EOG) 
and on the left outer canthus (horizontal EOG). VEP were calculated off-line averag-
ing segments of 400 points of digitized EEG (12 bit A/D converter, sampling rate 250 
Hz). These segments covered 1600ms comprising a pre-stimulus interval of 148 ms 
(37 samples) and post-stimulus onset interval of 1452 ms. Before processing, EEG 
was visually inspected and those segments with excessive EOG artifacts were manu-
ally eliminated. Only trials with correct responses were included in the data set. The 
experimental setup was designed by Santos et al. (2008) for their study on subject 
attention and perception using VEP signals. 

3   Person Identification 

3.1   Feature Extraction 

The neuro-engineering theoretical and application studies related with the EEG sig-
nals are based on the knowledge that the EEG signals are composed of waves inside 
the 0-60 Hz frequency band and that different brain activities can be identified based 
on the recorded oscillations. For example, signals within the delta band (below 4 Hz) 
correspond to a deep sleep, theta band (4-8 Hz) signals are typical for dreamlike state, 
alpha frequencies (8-13 Hz) correspond to relaxed state with closed eyes, beta band 
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(13-30 Hz) are related with waking activity and gamma frequencies (30-50 Hz) are 
characteristics for mental activities as perception and problem solving. The relation-
ship between the EEG and the brain functions is well documented in Niedermayer and 
Lopes da Silva, (1999).  

 

 

Fig. 1. Spatial location of the EEG electrodes over the frontal, central and parietal areas 

For the present study the gamma-band spectral power of the VEP signals was com-
puted by the Welch’s periodogram method. The temporal segments, over which one 
value of the spectral power matrix is computed, correspond to one trial (around 1600 
ms), i.e., the samples collected during one image presentation. The normalized 
gamma-band spectral power for each channel was computed. It is a ratio of the spec-
tral power of each channel and the total gamma-band spectral power of all channels. 
The level of perception and memory access among individuals are different and this 
reflects in significant difference between the gamma-band spectral power ratios of the 
subjects which is the key for the VEP based individuals identification.  

3.2   Classifiers 

Multiclass Support Vector Machine (SVM). Two strategies of training multiple 
binary classifiers for classification of the VEP spectral power ratios were imple-
mented, Tan (2006): i) Support Vector Machine - One Against Other (SVM_OAO) 
and ii) Support Vector Machine - One Against All (SVM_OAA). Each strategy cre-
ates a set of binary classifiers that are afterwards combined to output the final label-
ing. Linear or nonlinear functions are comparatively tested as the SVM feature space 
mapping functions. Radial Basis Function (RBF) is selected for the nonlinear SVM 
case. The SVM-OAO creates P(P-1)/2 binary classifiers where P is the number of the 
persons identified. The classification principle is the max-wins voting strategy, in 
which every classifier assigns the instance to one of the two classes, the class with 
most votes determines the instance classification. The SVM-OAA creates P binary 
classifiers with the classification principle - the winner-takes-all and the binary classi-
fier with the highest output function assigns the class.  
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Two training scenarios were considered:  

• Scenario 1: The classifier is trained with data set coming from one experimental 
block (subject has to attend to the faces ignoring houses) and tested with data from 
the other experimental block (subject has to attend to the houses and ignore the 
faces). 

• Scenario 2: The classifier is trained with data coming from both experimental 
blocks and tested with unseen data from the same blocks.  

3.3   Principal Component Analysis (PCA)  

A possible way to increase the signal to noise ratio is to accompany the feature extrac-
tion step with the principal component analysis (PCA). For the case considered, the 
PCA was designed first to extract only principal components of the normalized 
gamma-band spectral power (the feature space) that accumulates 95% of the signal 
energy (this is equivalent to feature space reduction). Then, it follows a step to recon-
struct the feature space with the same dimensionality. The performance of both SVM 
classifiers was evaluated with or without PCA processing in the framework of the two 
scenarios. The results, summarized in Table 1 and Table 2, suggest that while the 
PCA is aimed at capturing the main EEG patterns, the individual specificity is lost 
and the classification accuracy is worsen. A possible interpretation is that the energy 
in the 30-50 Hz band of the original data set is already attenuated due to an embedded 
filtering process of the EEG acquisition apparatus. The PCA processing additionally 
reduces the VEP power spectral density and, therefore, all classifiers studied exhibit 
worse generalization performance (Table 1). 

Table 1. Average classification error with PCA feature selection 

With PCA Classifier 1st PP 
step 

2nd PP 
step 

3rd PP 
step 

4th PP 
step 

5th PP 
step 

 Linear  
(Scenario 1) 

65,94 63,10 60,01 59,71 59,79 59,61 

Linear  
(Scenario 2) 

56,42 51,58 48,05 47,12 46,25 45,57 

Nonlinear 
(Scenario 1) 

44,53 37,26 31,24 27,95 26,19 24,07 

 
SVM_ 
OAO  
 
(One 
Against 
One ) Nonlinear  

(Scenario 2) 
36,43 28,00 22,08 19,01 17,41 14,49 

Linear 
(Scenario 1) 

58,65 54,24 50,64 49,88 49,34 48,60 

Linear  
(Scenario 2) 

59,79 56,55 54,42 53,42 52,36 51,24 

Nonlinear 
(Scenario 1) 

43,78 36,76 31,12 28,03 24,93 23,33 

 
SVM_ 
OAA 
 
(One 
Against 
All) Nonlinear  

(Scenario 2) 
35,99 27,60 21,24 18,67 16,44 15,17 
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Table 2. Average classification error without PCA feature selection 

Without PCA Classifier  1st PP 
step 

2nd PP 
step 

3rd PP 
step 

4th PP 
step 

5th PP 
step 

 Linear 
(Scenario 1)  

38,21 35,36 33,43 31,89 31,63 30,37 

Linear 
(Scenario 2) 

29,98 24,88 23,19 23,55 22,77 21,54 

Nonlinear 
(Scenario 1) 

26,42 20,31 17,42 16,87 15,97 14,95 

 
SVM_ 
OAO  
 
(One 
Against 
One ) Nonlinear  

(Scenario 2) 
15,67 10,16 8,32 6,95 5,54 5,10 

 Linear 
(Scenario 1) 

30,57 25,02 23,56 22,58 21,27 20,26 

Linear 
(Scenario 2) 

26,84 21,17 17,87 16,45 14,52 13,71 

Nonlinear 
(Scenario 1) 

26,99 21,54 18,32 16,70 15,16 14,49 

 
SVM_ 
OAA 
 
(One 
Against 
All) Nonlinear 

(Scenario 2) 
17,43 12,05 9,78 8,49 6,96 6,62 

4   Post Processing (PP) Procedure 

Both classifiers perform a static (memoryless) classification that does not consider 
explicitly the temporal nature of the VEP signals. Time accounting classifiers, as  
for example Recurrent Neural Networks (NNs), Time Lag NNs or Reservoir Comput-
ing, have the disadvantage to require complex training procedures that not always 
converge.  

In order to keep low complexity of the biometrical system, we propose here an 
empirical way to introduce memory into the classifiers. During a post processing (PP) 
procedure, a moving window of a sequence of n past classifier outputs (personal la-
bels) is isolated and following a predefined strategy the labels are corrected. For ex-
ample, during the first PP step a window of the last three labels is defined (n=3) and, 
in case the first and the last labels are the same but different from the central one, this 
label is corrected to be equal to the others. The window dimension of the second PP 
step is increased with one (n=4). If the first and the last elements have the same label, 
but the two central elements are different from each other and from the lateral ele-
ments they are corrected. It was observed that increasing the dimensionality of the 
moving window (third PP step with n=5; fourth PP step with n=6; fifth PP step with 
n=7) the overall performance of both classifiers improved. The strategy of each next 
step is to increase the number of central elements and to correct them in case they are 
different from the equal lateral elements of the moving (with one sample) window. 
After the fifth PP step the performance started to decrease, therefore five PP steps 
were subsequently implemented in the EEG-based biometry system (see Table 1 and 
Table 2 above).  

In Fig.2 an example of classifier response for 5 classes with a sequence of 10 sam-
ples per class is depicted. Though the classifier recognizes in general the different 
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persons correctly some of the responses are incorrect and the aim of the PP procedure 
is to correct these wrong guesses. The incorrect responses of the classifier decrease 
after each subsequent PP step.  

 
Epochs 

Fig. 2. Example of classifier response for 5 classes with a sequence of 10 samples per class  

5   Evoked Potential Duration 

The effect of the Evoked Potential Duration (EPD) was particularly studied since it 
defines the viability of the biometry system. If the identified person has to be exposed 
too long time to a stimulus in order to be identified, it would make the system not quite 
practical and difficult to realize in real time. Therefore, the length of the ERP time 
series required for person identification needs to be reasonably short. The results of this 
study are summarized in Figs. 3-5 where the average classification error (ACE) is 
depicted as a function of the training segment length (Nº of trails). This analysis was 
done for the two studied SVM classifiers: SVM_OAO (Fig.3), SVM_OAA (Fig.4) and 
confirmed also for the k-Nearest Neighbor (k-NN) basic classifier (Fig.5) with k=3 and 
k=5. Note that for all classifiers there is a number of trails for which the ACE is mini-
mized and longer time exposure does not suggest better person’s discrimination. These 
results are averaged over the total number of identified subjects (13 persons) and an 
interval of 25-30 trials is determined as the optimal duration. Each trial corresponds to 
400 samples with duration of about 1.5 s. Subsequently, 40-45 s. is going to be the 
expected time for stimulus expose before the classifier identify one person with the 
highest probability to make a correct guess. Though the conclusions go beyond of what 
can be analytically proved, the intuition behind is that too long time exposure to visual 
stimuli leads to accommodation and tiredness, thus the personal specificity encoded in 
the ERPs is vanishing and the classifier error increases.  
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Av e r a g e  c l a ss ifi c a tio n e rr o r  (% )

 

Tr ai n in g  se g m e n t l e n gt h (N º  o f t ria l s)   

Fig. 3. SVM_OAO: ACE without PP (bold line) & after the 5th PP step (dashed line) 

 

Average classification error (%) 

Training segment length (Nº of trials) 
 

Fig. 4. SVM_OAA: ACE without PP (bold line) & after the 5th PP step (dashed line) 

ACE (%) 

 
Training segment length (Nº of trials) 

Fig. 5. k-NN: ACE without PP (bold (K=5) and dashed (K=3) lines below) & after the 5th PP 
step (bold (K=5) and dashed (K=3) lines above) 

ACE without PP 

ACE after the 5th PP 
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6   Concluding Remarks 

This paper tested the feasibility of the EEG-based person identification. Although the 
results are only for 13 person subject pool, it does provide evidence of stability and 
uniqueness in the EEG shapes across persons. However, the classification accuracy of 
the EEG biometry currently cannot compete with the conventional biometrics (such as 
fingerprint, iris or palm recognition systems) and in general the EEG person identifi-
cation modality can be seen just as a supplement (“a second opinion”). However, our 
long term goal is to use the principles of EEG-based biometry to detect abnormal 
scenarios, i.e. scenarios where a person is not acting as it would normally do in simi-
lar circumstances. Cognitive functions, such as attention, learning, visual and audio 
perception and memory, are critical for many human activities (for example driving) 
and they trigger numerous brain activities. Assuming that those brain activities follow 
a pattern for each person in normal circumstances (reference pattern), they are likely 
to change when the person is stressed, fatigued (physically, visually or mentally), or 
under the influence of several substances (alcohol, stimulants, drugs, etc.) (deviation 
pattern). In this context the EEG-based biometry would be particularly effective in 
health care applications, where it could be used not only to verify a patient’s identity 
in medical records, prior to drug administration or other medical procedures but also 
to detect early in advance abnormal physiological or mental states of the patient. 

In all, we expect several potential applications to emerge in the future. Control of 
the classified access into restricted areas security systems, illnesses or health disorder 
identification in medicine, gaining more understanding of the cognitive human brain 
processes in neuroscience are among the most appealing. 
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Abstract. Two-factor authentication has been introduced in order to

enhance security in authentication systems. Different factors have been

introduced, which are combined for means of controlling access. The

increasing demand for high security applications has led to a growing in-

terest in biometrics. As a result several two-factor authentication systems

are designed to include biometric authentication.

In this work the risk of result distortion during performance evalua-

tions of two-factor authentication systems including biometrics is pointed

out. Existing approaches to two-factor biometric authentication systems

are analyzed. Based on iris biometrics a case study is presented, which

demonstrates the trap of untruly increasing recognition rates by intro-

ducing a second authentication factor to a biometric authentication sys-

tem. Consequently, several requirements for performance evaluations of

two-factor biometric authentication systems are stated.

1 Introduction

Reliable personal recognition is required by a wide variety of access control sys-
tems. Examples of these systems include ATMs, laptops and cellular phones [1].
If these systems fail to meet the demands of reliable and robust authentication
potential imposters may gain access to these systems. In order to enhance the
security of access control systems two factor authentication (T-FA) has been
introduced, wherein two factors are combined in order to authenticate a user.
The key idea of T-FA is to sum up the security of two factors. These factors in-
clude, passwords, representing “something you know”, or physical tokens, such as
smart-cards, representing “something you have”. Additionally, biometric traits
are applied, respresenting “something you are”.

However, several problems may occur when introducing biometric authenti-
cation to T-FA systems. Performance gain with respect to recognition rates is
often achieved due to the assumption of unrealistic preconditions. Resulting per-
formance distortions may not be recognized at first sight, yet, these could lead
to serious security vulnerabilities. In order to shed light on the use of biometrics
as additional factors in T-FA schemes we demonstrate a way of how to untruly
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Fig. 1. The basic operation mode of a two-factor biometric authentication system.

During enrollment and authentication additional factors are presented to the system.

improve recognition rates in an biometric recognition system by introducing a
token-based T-FA scheme. As a consequence, we manifest requirements with
respect to performance measurements in T-FA systems including biometrics.

The remainder of this paper is organized as follows: in Sect. 2 we first summa-
rize the fundamentals of T-FA and biometric systems. Performance evaluation
in biometric verification systems is described and existing T-FA systems involv-
ing biometric authentication are analyzed. In Sect. 3 we propose a case study
in which we apply T-FA to an iris-biometric verification system. Experimental
results are analyzed and a summary of T-FA and biometric verification systems
is given in Sect. 4. In conclusion, requirements for performance evaluations in
such systems are stated.

2 T-FA and Biometric Systems

An authentication factor is a piece of information used to authenticate or verify
the identity of a user. In a T-FA system two different factors are combined in
order to authenticate a user. It is claimed that T-FA generally delivers a higher
level of authentication assurance compared to using just one factor. Three basic
classes of factors can be distinguished: personal factors, such as user-defined
passwords, physical factors, such as smart-cards [2] or human factors, such as
biometric traits [3]. Combining two factors from two different classes yields T-FA
where each factor is applied independently.

A common example of T-FA systems are ATMs, where physical factors are
combined with personal factors. T-FA only applies to systems which use factors
of different classes – authentication schemes based on, for example, two biomet-
ric modalities are referred to as multi-modal authentication [4]. Besides known
vulnerabilities of T-FA schemes [5], such as “man-in-the-middle” attacks, where
an imposter does not need to be in possession of any physical factor, we will focus
on the risk of false performance evaluation of T-FA schemes involving biomet-
rics as human factor. Fig. 1 shows the basic operation mode of a T-FA system
including biometric authentication. At the time of enrollment biometric traits
and a second personal or physical factor are presented. During authentication
this factor is presented again in order to achieve successful authentication.
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With respect to biometric authentication two different modes are distin-
guished: verification and identification [1]. Since we aim at analyzing T-FA
schemes including biometrics we will only focus on verification, since the presen-
tation of an additional personal or physical token represents an identity claim
per se. Due to the variance in biometric measurements biometric systems do not
provide perfect matching, as it is easily implemented in password or PIN-based
authentication systems [3]. Thus, a fuzzy matching is performed where decision-
thresholds are set up in order to distinguish between genuine and non-genuine
users, respectively. Hence, several magnitudes define the performance of a bio-
metric system. Widely used measures include False Rejection Rate (FRR), False
Acceptance Rate (FAR) and Equal Error Rate (EER).

2.1 Biometric T-FA Systems

Obviously, T-FA increases the security of biometric authentication systems since
potential imposters have to compromise the second factors in order to gain access
to the system as a first attack stage. However, if a T-FA scheme is constructed
where one factor is represented by a biometric trait additional factors are either
personal or physical tokens. Both of these factors require a perfect matching. This
means a wrong PIN or a wrong smart-card would result in a rejection of the im-
posters. If each imposter would be in possesion of the correct second factor of the
account he wants to gain access to (i.e. the second factor has been compromised),
the overall recognition rate of system is expected to remain the same. Apply-
ing a sequential check of both factors (regardless of the order), the recognition
rate is equal to a system which only performs biometric authentication. That is,
additional factors become meaningless with respect to recognition performance
since these are potentially compromised by all imposters. By analogy, if no im-
poster would be in possesion of the correct second factor of the account he wants
to gain access to, the overall recognition rate is of course expected to increase.
This is because imposters which may have tricked the biometric authentication
system are rejected at the time the additional factor is checked. Throughout
literature several approaches have been proposed where T-FA is introduced to
biometric systems. In any case, authors claim to introduce personal or physical
tokens in order to enhance the security of the system. However, in some cases
it is doubtful if the proposed system can maintain recognition rates without the
use of a second factor (i.e. in case the second factor has been compromised). In
order to underline the problem of evaluating the performance of biometric T-FA
schemes in terms of recognition performance, we will discuss several approaches
which we found questionable regarding reported performance results. Hence, we
do not cover all approaches to biometric T-FA schemes, but only a small se-
lection to emphasize that potential incorrect performance evaluations should be
considered an important issue.

The introduction of biometrics to generic cryptographic systems resulted in
a new field of research, named biometric cryptosystems [6]. Most approaches
which can be subsumed under the category of biometric cryptosystems aim at
extracting cryptographic keys out of biometric data. Performance evaluations



T-FA or How to Potentially Counterfeit Experimental Results 299

are adopted such that correctly generated keys are equivalent to successful au-
thentication and vice versa. Due to biometric variance a widespread usage of
helper data, for example error correction codes, has proven to be worthwhile.
However, in several approaches the application of helper data conceals the actual
performance rates. In the following, we provide three examples for that.

Teoh et al. [7,8] introduced a technique to generate cryptographic hashes out
of face biometrics which they refer to as “BioHashing”. Like in generic T-FA
schemes, in the BioHashing approach random numbers are associated with each
user. These user-specific random numbers are used as seed in order to generate
biometric hashes. These random numbers, which represent the second factor,
have to be presented to the system in addition to biometric data at authentica-
tion. The authors report almost perfect performance rates for the generation of
biometric hashes. In order to expose the true performance of BioHashing, Kong
et al. [9] presented an implementation of FaceHashing. It was found that the
reported performance was achieved under the hidden assumption that random
numbers are never lost, stolen, or compromised. This assumption does not hold
in general. Physical tokens can be stolen or duplicated while personal tokens
can be easily guessed or broken, for example by dictionary attacks [10]. In order
to associate cryptographic with biometric data Reddy et al. [11] proposed a so-
called “fuzzy vault scheme” [12] based on iris biometrics. The authors achieve
T-FA by embedding an additional layer of security, namely a password. With
this password the generated vault as well as the secret key is encrypted. In ex-
periments the security of a fuzzy vault scheme which exhibits a FRR of 8% and
a FAR of 0.03% is increased, where a total number of 100 templates are used.
As result of the hardening scheme the FRR increases to 9.8% due to misclassi-
fication of a few minutiae. At the same time the FAR decreases to 0.0%. It is
claimed that this is due to the fact that minutiae are distributed more randomly.
If this was the case for the use of one single password (identical for all users), this
could be integrated into the original algorithm to increase performance. How-
ever, if passwords are compromised the systems’ security decreases to that of an
ordinary fuzzy vault scheme which indicates that the FAR of 0.0% was calcu-
lated under unrealistic preconditions. In recent work Jassim et al. [13] proposed
a method of improving the performance of PCA based face recognition system.
The authors introduce random projections based on the Gram-Schmidt process
which are used to map biometric features onto secret personalized domains. For
this purpose a secret permutation matrix is assigned to each user, which repre-
sents a second factor. This means, each user is in possession of a unique matrix.
In experimental results accumulations of genuine users remain the same while
inter-class distances increase. While the original PCA based system reveals an
EER of 17% an EER of 0.2% is reported if random projections are applied for
each user. The authors do not consider the case where the same permutation
matrix is assigned to each user. Therefore, again the results are achieved under
the assumption, that the second factor has not been compromised.

Ratha et al. [14] introduced the concept of “cancellable biometrics”. Biomet-
ric data can be compromised and therefore become useless because it can not
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be modified ex post. The idea of cancellable biometrics consists of intentional,
repeatable distortion of a biometric signal based on transforms where matching
is performed in the transformed space. Thus, if a potential imposter is able to
steal the stored template recovering of original biometric data becomes infea-
sible. In contrast to biometric recognition systems or biometric cryptosystems
the scope of cancellable biometrics is template security. By definition, a T-FA
system is constructed since user-specific transformations are applied. That is,
different transformations represent second factors which are used to secure bio-
metric templates. All of the approaches presented in Section 2.1 can be seen as
systems which provide cancellable biometrics, since random numbers, passwords
or transformations which are applied to biometric features can be updated easily.
With respect to recognition performance approaches to cancellable biometrics
aim at maintaining the performance of the original underlying systems (in gen-
eral loss of performance is expected). This means, approaches to cancellable
biometrics in which better performance as compared to the original algorithm is
reported should be examined carefully. For example, the BioHashing approach
of Teoh et al. [7,8] was extended to be used as cancellable biometrics. As pointed
out by Cheung et al. [15], experimental results were obtained under the unprac-
tical assumptions stated above.

3 T-FA and Iris Recognition: A Case Study

In this section we describe an existing iris recognition system which we apply to
construct a T-FA system. First we will consider the performance of the biometric
system. Subsequently, we will construct a generic T-FA scheme by introducing
user-specific bit streams as second factor.

3.1 Iris Recognition System

In order to apply biometric authentication we use our own implementation of
the algorithm of Ma et al. [16]. In their approach the iris texture is treated as a
kind of transient signal which is processed using a 1-D wavelet transform. The
local sharp variation points, which denote important properties of transient sig-
nals, are recorded as features. We always extract an iris texture from eye images
as a first step. We assume the texture to be the area between the two almost
concentric circles of the pupil and the outer iris. These two circles are found by
contrast adjustment, followed by Canny edge detection and Hough transforma-
tion. After the circles are detected, unwrapping along polar coordinates is done
to obtain a rectangular texture of the iris. In our case, we always resample the
texture to a size of 512x64 pixels.

The texture is subsequently divided into N stripes to obtain N one-dimensional
signals, each one averaged from the pixels of M adjacent rows. We used N = 10
and M = 5 for our 512x64 pixel textures (only the 50 rows close to the pupil
are used from the 64 rows, as suggested in [16]). A dyadic wavelet transform
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Fig. 2. T-FA scheme: random numbers are introduced with which iris codes are sequen-

tially XORed during enrollment. At authentication the biometric template is XORed

with another random number and the result is matched against an extracted iris code.

is then performed on each of the resulting 10 signals, and two fixed subbands
are selected from each transform. This leads to a total of 20 subbands. In each
subband we then locate all local minima and maxima above some threshold, and
write a bitcode alternating between 0 and 1 at each extreme point. Using 512
bits per signal, the final code is then 512x20 bit.

Once bitcodes are obtained, matching can be performed on them and Ham-
ming distance lends itself as a very simple distance measure. For matching to
work well, we compensate for eye tilt by shifting the bit-masks during matching
by three pixels in each direction.

3.2 Two-Factor Iris Recognition System

In algorithm described above, a users iris serves as the only authentication factor.
In order to construct a T-FA system a second factor has to be introduced.
Therefore we simply apply random numbers which are associated with specific
users. These random numbers can be stored on a smart-card, representing a
physical factor. Additionally, we choose rather short random bit streams, hence,
these are easily remembered representing personal factors as well. At this point it
is important that the application of random bit streams yields a generic approach
to T-FA, since these just represent a user-specific secret.

During enrollment for each user a randomly generated bitstream is generated.
The iris code of a user, which is extracted during enrollment is sequentially
XORed with the random number in order to generate a secure template. That
is, the stored iris code is protected by the random bit stream, similar to the
approach presented by Zuo et al. [17]. If a user wants to authenticate with the
system an appropriate random number has to be presented firstly. Subsequently,
the stored template is sequentially XORed with this random number and the
resulting iris code is matched against the one extracted from the presented iris
image. Hence, a T-FA system is realized by simply introducing random numbers
which are associated with users by sequentially XORing these with iris codes.
The operation mode of the whole system is illustrated in Fig. 2.
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Fig. 3. Intra-class and inter-class distribu-

tion of the algorithm of Ma
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Fig. 4. Intra-class and inter-class distribu-

tion of the algorithm of Ma using T-FA

3.3 Experimental Results

Experiments are carried out using the CASIAv3-Interval iris database1, a widely
used test set of iris images of over two hundred persons. The database comprises
iris images of size 320×280 pixels out of which normalized iris textures of 512×64
pixels are extracted in the preprocessing step as described earlier. Applying
our implementation of the feature extraction of Ma et al. to preprocessed iris
textures, a total number of 10240 bits are extracted per iris image. Matching is
performed by calculating the Hamming distance between extracted iris codes,
where a circular shift of three pixels to the left and right is implemented in order
to provide some degree of rotation invariance. In Fig. 3 the distribution of the
intra-class distance and the inter-class distance are plotted. Fig. 5 shows the
FRR and the FAR resulting in an EER of 1.76%. For a threshold of 42% (in
terms of correct bits), a FRR of 5.61% and zero FAR is achieved. In other words,
the system will in general reject 5.61% of all genuine users while no imposters are
untruly accepted. We are aware that these results are worse than those reported
by Ma.et al., however, the absolute performance of the algorithm is not the topic
of this work. Thus, our implementation serves its purpose.

For the construction of a T-FA system we introduce random numbers consiting
of 8 bits. Performance is measured in the same way as in the iris recognition
system applying the same test set, however, now users have to present biometric
data which has to pass the fuzzy match of the recognition system as well as
a random number which is sequentially XORed with stored templates. Since
genuine users are in possession of correct random numbers the construction of
the T-FA system does not effect the intra-class distribution. Therefore, calculated
Hamming distances between genuine iris codes remain the same as can be seen
in Fig. 4. If we make the assumption that imposters are not in possesion of valid
random numbers the performance of the whole system is increased. This means
we calculate the inter-class distribution applying the random numbers to users
which were assigned to them during enrollment. In other words, users claim the
1 The Center of Biometrics and Security Research: CASIA Iris Image Database,

http://www.sinobiometrics.com

http://www.sinobiometrics.com
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Ma

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60

R
el

at
iv

e 
M

at
ch

 C
ou

nt
 (

%
)

Hamming Distance (%)

False Rejection Rate
False Acceptance Rate

Fig. 6. FRR and FAR of the algorithm of

Ma using T-FA

identity of other users but present their own biometric data as well as their
own random number (a randomly chosen number could be used as well). The
distribution of the resulting inter-class distances is also plotted in Fig. 4 and the
FRR and the FAR are plotted in Fig. 6 resulting in a EER of 0.25%. It becomes
clear that now inter-class distances accumulates around 50% instead of around
47% in the original system. This is because iris codes are now XORed with
potentially different random numbers resulting in almost random bitstreams.
Since binary iris codes are extracted, the Hamming distance between random
bit streams is expected to be 0.5. This means we can now increase the threshold
and result in overall (virtual) performance gain of the system. For an increased
threshold of 48% correct bits we now achieve a FRR of 0.43% and zero FAR
resulting in an EER of 0.25% which is about 1.5% better than the performance
of the original iris recognition system (see Fig. 6).

3.4 Analysis

In the above presented biometric system two authentication factors are combined
by sequentially XORing iris codes with 8-bit random numbers. Based on the
assumption that random numbers are never compromised we increase inter-class
distances and are able to gain performance by increasing the threshold which is
used to separate genuine and non-genuine users.

The problem of the presented scenario is that additional factors are consid-
ered to never be stolen, lost, shared or duplicated where in practice the opposite
is true. The assumption that imposters would try to infiltrate the system by
presenting some random personal or physical factor is rather absurd. Additional
factors such as passwords or PIN must not be considered secure since these are
easily compromised [3]. As we demonstrated inter-class distributions increase.
In case the decision-threshold is increased according to the new inter-class dis-
tribution the biometric system becomes more tolerant. This is because access to
the system is even eased if potential imposters are in possession of a valid second
factor which is a realistic scenario. In case a potential imposter is in possesion
of a valid random number the recognition rate degrades to that of the original
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biometric system. In this case, a threshold of 48% correct bits would yield a FAR
of 24.21%, that is, the system becomes highly vulnerable. Thus, performance only
holds if random numbers are never compromised. Having adjusted the system
decision threshold to the virtual performance as determined under unrealistic
preconditions, the accuracy of the system is actually severely degraded, in case
the second factor is compromised.

4 Summary and Conclusion

In all of the above discussed T-FA schemes additional factors (random num-
bers, passwords or permutation matrices) are considered to never be stolen, lost,
shared or duplicated. If this would be the case the introduction of biometrics
becomes meaningless since the system could rely on these random numbers or
passwords without any risk. That is, authentication could be performed just by
presenting appropriate random numbers or passwords. In case inter-class dis-
tributions are calculated under these assumptions for performance evaluations,
the FAR of the system is kept artificially low. Hence, thresholds can be adapted
to generate better results like in our presented scheme. That is, the biometric
system is set to be more tolerant since inter-class distances become larger. How-
ever, if imposters are in possession of valid random numbers or passwords, T-FA
systems become highly vulnerable as has been shown.

We conclude that it is incorrect and also severely misleading to claim that
T-FA does increase the recognition performance of an biometric authentication
system. In practice, security may be enhanced since two factors are necessary to
achieve successful authentication, yet it is essential that the recognition perfor-
mance and the corresponding decision parameters remain the same as compared
to the employment of the “pure” biometric system. In all of the presented sys-
tems claimed performance is achieved through the unpractical assumption that
non-genuine users are not in possession of valid second factors. If performance
evaluations are carried out like in the above presented systems the true perfor-
mance of the underlying biometric system is concealed.

4.1 Requirements for Performance Evaluations of T-FA Systems

From the analysis of all the above presented approaches and our case study sev-
eral requirements to performance evaluations regarding T-FA schemes including
biometric authentication can be derived:

1. It is required that in experiments, especially when calculating inter-class
distances, any type of personal or physical token has to be considered com-
promised. Focusing on biometric systems T-FA must not be interpreted as
a way to increase the recognition performance of a system.

2. If any sort of helper data is introduced, especially in biometric cryptosys-
tems, this helper data must be considered compromised during experimental
results if this helper data is not dependent on biometric data only.

3. The scenario where potential imposters are in possession of additional second
factors must not be ignored since physical or personal factors are easily
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compromised in general (decision thresholds have to be set up according to
this scenario).

4. The security provided by introducing second factors to biometric systems
must not and cannot be measured in terms of FRR or FAR.
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2 ISR, Instituto Superior Técnico, Av. Rovisco Pais, 1049–001 Lisboa, Portugal

lpcbandeira@ist.utl.pt, jsm@isr.ist.utl.pt, jose.saraiva@ist.utl.pt,

ppina@ist.utl.pt

Abstract. In this paper we show that the detection of dune fields on

images of the surface of Mars, however varied they are, can be achieved

through the application of an automated methodology. The procedure is

based on the extraction of local information from images after they are

organized according to a regular grid which defines cells, in turn aggre-

gated into larger regions (blocks) that constitute the detection units. A

set of gradient features is extracted and tested with Boosting and Sup-

port Vector Machine classifiers. A detection rate of 98.7% was obtained

for a 5-fold cross validation on a set of images captured by the Mars

Orbital Camera on board the Mars Global Surveyor probe.

Keywords: Gradient and HOG features, SVM and Boosting classifiers,

Mars.

1 Introduction

Dunes are the most frequent aeolian features on the Martian surface, and their
study contributes to the understanding of the interactions between the atmo-
sphere and the surface of the planet, of the way the climate has evolved along
the history of Mars and of how it works currently [1,2]. Dunes on Mars were first
observed in the early 1970s on Mariner 9 images, but only the largest kilomet-
ric fields were detected. In the late 1990s, with the orbital mission of the Mars
Global Surveyor probe (MGS), equipped with a higher spatial resolution camera,
many more dune fields were resolved and it was confirmed that the shapes visible
showed many similarities with those occurring on Earth [3]. Recently, a group
of planetary scientists created the Mars Dune Consortium (http://www.mars-
dunes.org) whose stated intention is to produce a catalogue containing all dune
fields identifiable on the surface of Mars [4]. The results of their program of
search and delineation of dune fields, which has been performed manually, are
available online in a geographical database, the MGD3-Mars Global Digital Dune
Database [5]. This database only contains, at the moment of writing, informa-
tion about the area between latitudes 65◦N and 65◦S, in which dunes cover an
area of approximately 70,000 km2. A rough estimation of the total area covered
by dune fields on Mars gives about 120,000 km2 in the southern hemisphere and
about 680,000 km2 in the northern [6]; thus, more than 90% of the Martian dune
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fields have yet to be mapped. Furthermore, the remotely sensed images used so
far to construct the database still leave outside this venture the smallest dune
fields.

Besides this huge quantity of dunes still unmapped, the detection of changes
on the characteristics of these dynamic aeolian features is another issue that
could also benefit a lot if an automated method were available to delineate
them on remotely sensed images at different scales and moments in time. In
the last years, some techniques have begun to be implemented to automatically
detect structures on planetary surfaces but, so far, only the field of impact crater
studies has achieved some maturity. A large variety of methodologies have been
developed and tested, using the most recent and powerful tools, with steadily
improving performances [7,8,9,10,11,12,13,14]. On the contrary, there is as yet
no automated approach to deal with the identification of sand dunes. There
are some applications dealing with temporal change detection or measuring the
height of dunes, but they are restricted to geographically confined case studies.

Thus, the objective of this paper is to test the adequacy of recent and up-
to-date machine learning methodologies for the detection of aeolian dunes on
remotely sensed images of Mars. This work is partly inspired on some previous
strategies and algorithmic sequences used for automated crater detection. For
the purpose now considered, we have selected two types of features that work
best in the extraction of the directional and periodic characteristics of the dunes
(gradient and histogram-of-oriented-gradients features), and which were both
used on Boosting and Support Vector Machine classifiers to indicate if a given
region of the image contains dunes. The performance of those methods is eval-
uated with a set of high spatial resolution images acquired by the MOC camera
of the MGS probe which represent the diversity of Martian dune types.

2 Formulation of the Problem

2.1 Dune Types

A geological classification scheme of sand dunes was proposed by McKee [15]
for terrestrial examples, mostly based on field work. It considers the different
shapes that exist and relates them to specific environments of deposition and
the factors acting upon it. The dunes so far identified on the Martian surface have
been classified according to that scheme, and although most of them fit into the
main types there are some undefined morphologies not known to occur on Earth
[4]. On Fig. 1, we present some examples of the predominant Martian dune type
(barchan dunes). From this, it becomes clear the multitude of factors that affect
the visual aspect of dune fields - constituents, size, shape and density, association
to seasonal advance and withdrawal of ice cover, angle of illumination, just to
name some - and that must be tackled by any automated approach designed to
detect their presence on an image. Thus, the nature and varied characteristics
of occurrence of sand dunes on images of the Martian surface demand a learning
strategy, able to adapt itself to distinct situations.
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Fig. 1. Diversity of Martian sand dunes on portions of MGS/MOC images (from left

to right): R18-01906, S01-00739, S01-00925, E23-00005 and R22-00101. Each image

covers an area of 1500x3000 m2 [image credits: MSSS/NASA/JPL].

2.2 Image Analysis

The procedure adopted for the identification of the dunes is based on the analysis
of the local information of the image along a regular grid. For that purpose, an
image is divided into cells (Fig. 2a) from which given features will be extracted.
To increase the invariance to specific factors such as illumination and shad-
owing, an aggregation of the local features is performed within larger regions,
blocks constituted by 3 × 3 cells, which are the detection windows (Fig. 2b).
The displacement of the block along the entire image grid is performed with an
overlapping between adjacent blocks equal to one cell side (Fig. 2c).

(a) (b) (c)

Fig. 2. Tiling an image in (a) cells and (b) blocks (3 × 3 cells, in red); (c) Block

displacement with overlapping. This region corresponds to a sample of image E02-

01086 [image credits: MSSS/NASA/JPL].

3 Features and Classifiers Used

Important advances were achieved in the last decade in the field of computer
vision, both in the type of features used to characterize objects and in the recog-
nition methods which are needed to learn and classify the objects present in the
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images. From those recent contributions we selected the features we consider to
be among the most appropriate to detect the patterns presented by sand dunes.
We considered features based on the image gradient g(x) ∈ R

2 computed at each
image point x. The gradient vector is characterized by its amplitude |g(x)| and
phase φ(x). These features are grouped into the following four sets:

- HP(9): This corresponds to the features introduced by Dalal and Triggs [16]
in their face detection problem, the histogram-of-oriented gradients or HOG
features. They intend to capture the characteristic edge structure of the local
shape of the dune, with a controlled degree of invariance to local geometric and
radiometric factors. To obtain them, it is necessary to compute the weighted
histogram for each cell which results from the multiplication of the gradient
phase by its magnitude for each contributing point. Therefore, the histogram
value associated to the kth cell Ck is:

hk
i =

∑
x∈Ck

|g(x)|.bi(φ(x)). (1)

where bi(φ) =
{

1, if φ ∈ ith bin
0, otherwise

For our problem, we defined an angular interval of 20◦ for the computation of the
directional histograms, so we have a total of 81 features per block (9 histogram
bins/cell × 9 cells). The phase histograms were not normalized.

- HPM(9): This consists of a modified version of the HOG features, by using
separately the phase histogram:

hk
i =

∑
x∈Ck

bi(φ(x)). (2)

and the magnitude histogram:

h̃k
i =

∑
x∈Ck

b̃i(|g(x)|). (3)

where b̃i(|g|) =
{

1, if |g| ∈ ith bin
0, otherwise

For the phase, with the same angular interval of 20◦, we have 81 features (9
histogram bins/cell × 9 cells), and for the magnitude, considering 11 bins (re-
sulting from a 4-unit interval between a minimum of 0 and a maximum of 40),
we have 99 features (11 histogram bins/cell × 9 cells) Thus, for this set, a total
of 180 features per block are obtained.

- HP: This refers to the histograms of the gradient phase for each image
block B:

hi =
∑
x∈B

bi(φ(x)). (4)
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in the same 9 bins (angular interval of 20◦). Thus, 9 features (9 histogram
bins/block × 1 block) are used in this situation. In this case, the phase votes
were not weighted by the gradient magnitude.

- HPM: It consists of using the histograms of phase, as defined previously for
HP, and of magnitude of the gradient on each block separately. The histogram
amplitude is given by:

h̃i =
∑
x∈B

b̃i(|g(x)|). (5)

Thus, it gives 9 features for the phase (1 histogram × 9 bins of 20◦ of angular
interval) and 11 features for the magnitude (the same bins of the HP features).
For this set, a total of 20 features are extracted.

The size of each cell is the same for all images and is equal to 40 × 40 pixels.
In order to have the features varying between 0 and 1, a normalization step
was performed globally for each image and for each individual feature. For the
classification of the blocks we used two of the most advanced and powerful
classifiers that have already proven their ability in dealing with a variety of
classification problems, namely in remotely sensed imagery of the Earth and
other planetary surfaces: Boosting and Support Vector Machines (SVM).

Boosting algorithms achieve remarkable results by combining a large number
of weak classifiers, using weighted majority vote [17]. They are also able to per-
forme feature selection i.e., to select a subset of informative features for a given
problem. This can be done by assuming that each weak classifier depends on
a single feature [18]. The application of boosting algorithms in object recogni-
tion lead to excellent results in, for instance, face [18] and impact craters [12]
problems.

SVM are kernel methods that use an implicit transformation to a higher
dimensional space in order to achieve good separability by means of a linear
classifier in the new space [19]. The hyperplane used for separation in the higher
dimensional space is chosen in such a way that the so-called margin (the dis-
tance to the closest samples in each class) is maximized. The samples determin-
ing the margin are called the support vectors. Different transformation kernels,
such as Gaussian, polynomial, linear and circular can be used, yielding different
classifiers.

4 Results

4.1 Dataset

To test our approaches, we have selected a set of 20 remotely sensed images
captured by the Mars Orbiter Camera N/A (narrow angle mode) of the Mars
Global Surveyor probe. Those images are from different locations on the planet,
cover a total area of about 1320 km2 and are representative of the diversity of
barchan dunes, one of the most common types on Mars that we have chosen to
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test these features and classifiers. These single-band images with 256 grey levels
have a spatial resolution between 3.22 and 6.79 metres/pixel. Their dimension
is variable, but a typical value is of about 1000 columns per 6000 lines.

For each image we constructed ground-truth information, by manually delin-
eating the dunes therein contained (examples are shown in Fig. 3a and Fig. 4a),
indicating the ’dune’ and ’not-dune’ regions). The tiling of the ground-truth into
cells was then performed. In this process, only the cells containing more than
30% of dune area were considered as ’dune’, whereas the cells with less than 10%
of dune area were considered as ’not-dune’; the cells with dune areas comprised
in the interval 10-30% were not considered (examples in Fig. 3b and Fig. 4b).

4.2 Evaluation

Every classifier was tested with each of the four sets of features using a 5-fold
cross-validation, i.e., the total number of image blocks was divided into five
subsets of the same size: four of them were used for training, the remaining one
was used for testing. This procedure was repeated five times, so that each subset
was used once for testing.

For the tests with the SVM classifier we have used the freely distributed
package SVMLight [20]. Several kernels were exploited, but among those with
higher performances we chose the linear kernel since it is the most simple. The
performance of each classifier with each one of the 4 sets of features is eval-
uated through the computation of the probabilities of false negatives (pFN =
FN/(FN + TP )), false positives (pFP = FP/(FP +FN)) and of a global error
(perror = pN .pFP + pP .pFN ), where FN stands for the number of false negative
blocks, TN the number of true negative blocks, FP the number of false positive
blocks, TP the number of true positive blocks, N the total number of negative
blocks and P the total number of positive blocks.

The classification output is illustrated in Fig. 3c and Fig. 4c with two distinct
MOC images (R17-00333 and S01-00925). The overall performances obtained
for all images are synthesized in Table 1. Globally, the values achieved are very
good, with the majority of situations (6 out of 8) presenting probabilities of error
below 0.024: these refer to the features HP(9), HPM(9) and HPM, with both
classifiers. The exception is given by the HP features which, both for Boosting
and SVM classifiers, attain a probability of error of 0.347 and 0.436. This means
that the phase of the gradient is not, by itself, a discriminative feature.

Table 1. Performance of the two classifiers for the detection of Martian dunes

Features
Boosting SVM

pF N pF P perror pF N pF P perror

HP(9) 0.019 0.032 0.023 0.0408 0.007 0.024

HPM(9) 0.017 0.016 0.017 0.0362 0.007 0.022

HP 0.353 0.330 0.347 0.6431 0.228 0.436

HPM 0.013 0.014 0.013 0.0341 0.004 0.019
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(a) (b) (c)

Fig. 3. First example of dune classification on part of the image R17-00333 (TP in

green, TN in yellow, FN in red, FP in blue): (a) input image with overlapping of

manual ground-truth; (b) ground-truth tiling in cells; (c) output of SVM classifier with

HPM features [image credits: MSSS/NASA/JPL].

Although the best performances of each classifier are achieved with the same
HPM features (0.013 for Boosting and 0.019 for SVM), their difference is not
relevant when compared to the values obtained with HP(9) and HPM(9) fea-
tures. There is some concordance in these results, since both classifiers perform
excellently for the same sets of features (HP(9), HPM(9) and HPM) and both
have a weak performance when using the HP features. The histogram of magni-
tude seems to be the most discriminative feature and no advantage is observed
in this problem by splitting the image block into 9 cells.
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(a) (b) (c)

Fig. 4. Second example of dune classification on part of the image S01-00925 (TP

in green, TN in yellow, FN in red, FP in blue): (a) input image with overlapping of

manual ground-truth; (b) ground-truth tiling in cells; (c) output of Boosting classifier

with HP(9) features [image credits: MSSS/NASA/JPL].

5 Conclusions

The major conclusion put forth in this paper is that the adequacy of automated
methods for dealing with the diversity of sand dunes on the Martian surface was
verified, as correct detections with significant performances were achieved. The
values obtained in this first experiment indicate that the key factor resides on the
selection of the features that are more adequate for describing the characteristics
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of these aeolian structures. In particular, the amplitude of the gradient has proved
to be the most informative feature.

Although a set of powerful features and classifiers were successfully used on
representative samples of the large diversity of Martian dune fields, we must
remind that this is only a preliminary study. We have dealt with dune fields
composed by individuals of different sizes, shapes and densities in distinct illu-
mination conditions, but we are aware that many more different situations will
have to be faced, namely considering the scale and the diversity of the Martian
landscape where many other geomorphological features can and will sometimes
be present. Nonetheless, we believe that the adaptive and learning nature of the
methods we are using will be able to deal with those different circumstances.

In future work we intend to greatly expand the datasets by incorporating
images of every type of Martian dunes and testing on them the approaches we
have employed here; we will also test additional types of features and classifiers.
Moreover, and with the ultimate goal of making available a robust tool to be
used in the cartography of Martian dunes at a planetary scale, we also intend
to automatically classify the Martian dunes according to the scheme used in the
classification of analogue terrestrial structures [15].
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Abstract. The analysis of the gaze direction has many applications.

Most of the proposed techniques need special devices to estimate the

gaze direction, but, in practice, the high cost of these devices prevents

a widespread use. For this reason, the research in this field is currently

focused on the development of techniques that work with low-cost de-

vices. In this paper, we present a novel approach to perform a directional

gaze analysis from webcam video sequences. This approach is based on

well-known segmentation and pattern recognition techniques. It is fully

automatic since it does not need user interaction and it can be applied

in real time. We also present preliminary results that prove the efficiency

and accuracy of the proposed methodology.

1 Introduction

Eye gaze is one of the most studied facial features due to its practical applica-
tions. The detection of sleepiness in drivers, the improvement of the usability
in web sites, and the use of the gaze as a human-computer interface are some
examples that highlight the importance of the research in this field.

Most of the current methodologies need specific devices or several light sources
to follow the eye gaze. On one hand, several works use special cameras to gather
eye information [1,2]. Even though much research has been devoted to the de-
velopment of lightweight devices [3], these approaches are uncomfortable for the
final users. On the other hand, other techniques [4,5,6] use infrared illumination
to make the pupil tracking easier. Nevertheless, in spite of their accuracy, the
cost and complexity of the hardware makes difficult the proliferation of systems
based on these devices.

In this sense, many efforts have been focused on the development of low-cost
approaches, mainly based on webcams, to analyze the eye gaze. Lin et al. [7]
presented an eye tracking system to control the mouse. Their approach is based
on a K-nearest neighbor classifier and an adaptive skin model to locate the face
and, after that, to segment the eyes using color information. Torricelli et al.
[8] used the Hough transform to extract the eyes from the video frames. The
eye areas were the input to a neural network that estimated the gaze direction.
Valenti et al. [9] proposed a method that uses a scale space framework to locate
the eyes and a linear mapping method to estimate the eye gaze. As a consequence,
this approach needs some user calibration. Also, the OpenGazer project [10] is an
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open source gaze tracking application that needs some user interaction. First,
the user selects several relevant feature points on the input video. The input
frames and the selected feature points are used to train a Gaussian process that
represents the mapping between the image of an eye and the position on the
screen. After that, the system is ready to perform the gaze tracking using the
Viola-Jones algorithm [11] for face and eye detection and the Gaussian process
for gaze prediction. The calibration process is performed for each video sequence
and needs some user interaction (e.g. the user should keep the head still).

In this paper, we propose a methodology to perform a basic directional gaze
analysis in a real time scenario using inexpensive technology, such as a webcam.
In our methodology, we receive the input video from the webcam and we search
for the area where the eyes are located. Then, we use threshold techniques to
characterize the skin and, consequently, the sclera and pupil. Finally, we apply
directional patterns in order to decide the gaze direction in each frame. Our
approach is fully automatic since it does not need further training, calibration,
user interaction, or special lighting conditions.

This paper is organized as follows. Section 2 describes the proposed methodol-
ogy. Section 3 shows the preliminary results obtained with our approach. Finally,
Section 4 presents the conclusions and future work.

2 Methodology

The goal of this work is the development of a generic methodology to perform a
directional analysis of the eye gaze. There were three main requirements in the
design of this methodology. First, it should process data in real time in order
to be used in real scenarios. Second, it should work with low-cost non-intrusive
acquisition devices, such as standard webcams. Third, it should avoid interaction
from the final users in order to simplify its operation. To this end, we propose a
methodology with three stages, as Fig. 1 shows. First, we extract the image area
where the eyes are located from the webcam video frames. Then, we identify
each eye within the interest region and, finally, we analyze the gaze direction in
both eyes. This section explains in detail these three stages.

Webcam
frame

Eye location Eye identification Gaze analysis

Fig. 1. Main stages of the proposed methodology for directional gaze analysis
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2.1 Eye Location

The eye location task is performed by means of the Viola-Jones algorithm [11].
It is based on the combination of a cascade of classifiers that explore the image
in multiple scales and locations. In the training stage, simple features, similar to
Haar basis functions, are located. After that, an Ada-Boost learning algorithm
selects the best features and trains the classifiers with them. A strong classifier is
finally built from a collection of weak classifiers. In the detection stage, a series of
classifiers are applied to every subwindow. The background areas are eliminated
by the initial classifiers with very little processing and only the interesting areas
are analyzed in detail by subsequent classifiers. Thus, this algorithm is very
efficient and can be used in real-time applications. Also, this algorithm was
successfully applied in several face detection and eye location applications [10].

2.2 Eye Identification

Once the Viola-Jones algorithm locates the eye region within the frame, next
step is the identification of both right and left eyes. This task is very complex
since the eye areas are very small and are affected by the lighting conditions.
Some approaches use threshold techniques to identify the sclera within the image
region [7]. However, the results depend on the lighting conditions since the light
sources can generate white spots in the skin or shadows in the eye region. Other
approaches find circles in the image in order to locate the iris [8]. But, depending
on the gaze direction or the head pose, the iris is not always a circle.

In this work, we propose a novel approach. Since we want to segment the
eyes from the rest of the face in the eye region, we try to discard the skin
pixels. To this end, we convert all the pixels in the eye region to the TSL (Tint,
Saturation, Lightness) color space [12]. This color space is very robust for the
segmentation of skin pixels under different lighting conditions since it isolates
the usual skin colors from the rest of the color values. Thus, a simple threshold
technique identifies the skin pixels. Results of the skin segmentation using the
TSL color space can be seen in Fig. 2.

Since the quality of the segmentation decreases with poor lighting conditions,
as Fig. 3 shows, we apply morphological operators in order to improve the eye
segmentation. First, we apply n dilations to the segmented image and, finally,
we erode m times the image to link the isolated points. The number of dilations
and erosions depends on the video resolution.

The last step in this stage is a region growing algorithm to put together each
eye region. Two seeds are selected to start the growing procedure, one seed in
each eye. Note that the eyes are usually located in the same position within the
extracted eye region. If we draw a horizontal line that splits the eye region down
the middle, the line will go through both eyes. Moreover, if we draw a vertical
line that divides the eye region into equal portions, each eye will be located on
each side of the line. If the input eye regions do not fulfill these conditions and,
as a consequence, a correct seed is not found, the current frame is discarded from
subsequent analysis.
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Fig. 2. Examples of skin segmentation using the TSL color space. The red pixels in

the subwindows point out the skin pixels. The rectangles show the eye region detected

by the Viola-Jones algorithm.

Fig. 3. The eye segmentation gets complicated in different lighting conditions. In this

example, the video frames are super-exposed.

Once the seeds are selected, the region growing algorithm puts together all
the non-skin pixels. We consider several criteria as the stop conditions of the
algorithm. Besides the classic criterion of similarity between each pixel and its
neighboring pixels, we take into account the size and the shape of the regions.
If the final regions does not fulfill these criteria, the region growing algorithm is
applied again from different seeds.

2.3 Gaze Analysis

Once both eyes are segmented, we analyze the gaze direction in each eye sepa-
rately and we combine the results in order to increase the accuracy of the final
decision. This analysis includes two steps. First, the input images are thresh-
olded in order to obtain binary images. Then, the gaze direction is defined by
means of a pattern matching technique.
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The aim of the thresholding is obtaining a binary image for each eye. In these
images, the black pixels should correspond to the iris and the pupil while the
white pixels represent the sclera. Since the lighting conditions are unknown, we
apply an adaptive thresholding. This way, we compute a threshold α for each
pixel using the intensity information of its neighborhood as follows:

α =

∑x+ τ
2

i=x− τ
2

∑y+ τ
2

j=y− τ
2

EyeImage(i, j)

τ2
− ς (1)

where EyeImage(i, j) is the intensity value of the eye input image at the po-
sition (i, j), τ is the window size, and ς is a correction factor. The correction
factor prevents the pixel being marked as background in a region with constant
intensity. Note that the window size affects, not only the segmentation quality
(bigger windows are more affected by lighting conditions), but also the compu-
tation times.

Once the binary image is computed, we compare the position of the black
pixels (pupil and iris) with four directional patterns (North, South, East, and
West) and we obtain a similarity measure for each direction. Figure 4 shows
the directional patterns we have defined. Each directional pattern is scaled to
the eye image size and the Hamming distances between the eye image and each
directional pattern are computed. The Hamming distance counts the number of
pixels in which both images differ. A high value means that the eye is looking at
the opposite direction whereas a low value means that the eye is looking at this
direction. Since the values of the Hamming distances depend on the image size,
we normalize the distances in order to obtain a suitable similarity measure. To
this end, the distance D in each direction a is computed as follows:

Da =
HDa′ ∗ β

HDa
(2)

where HDa and HDa′ represent the Hamming distance between the image and
two patterns in opposite directions (a, a′) = {(N, S), (S, N), (W, E), (E, W )}.
β weights the distances and makes the thresholding easier. When the gaze is
centered, HDa ≈ HDa′ so that Da ≈ β and Da′ ≈ β. This way, we can say that
values similar to β represent the center direction.

Fig. 4. Directional patterns. From left to right: North, South, East, and West patterns.

The highest Da value points out the gaze direction. However, we can also
determine how much the user is looking in a specific direction. Moreover, the
similarity between Da and β represents how centered is the gaze.
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Finally, we compare the directions obtained for both right and left eyes. If both
directions coincide, we set the gaze direction for the current frame. Otherwise, the
gaze direction remains unknown. Figure 5 shows two frames of a video sequence
where the gaze direction is correctly detected.

Fig. 5. Directional analysis. The red dots point out the gaze direction in each frame.

Since this methodology comprises several stages, a wrong processing in any
stage implies that the gaze direction will be unknown in the current frame.
However, changes in the gaze direction involve several frames so that we include
a delay parameter δ in the methodology. If the gaze direction is lost in a frame,
we keep the direction of the previous frame for δ frames. Nevertheless, δ should
be set to a small value in order to prevent errors in case of abrupt eye movements.
The results show that this parameter improves the performance of the proposed
methodology.

3 Results

We apply the proposed methodology to several webcam video sequences in order
to prove the suitability of our approach. Table 1 shows the number of frames in
each video sequence. All the videos were captured at 10 fps with a Sony Visual
Communications VGP-VCC1 camera and with a resolution of 640x480 pixels.
In order to validate our approach, we tested, not only the complete system, but
also each single stage of the proposed methodology.

In the eye location stage, the training set for the Viola-Jones algorithm con-
sisted of 10 eye regions and 667 non-eye regions extracted from the Faces94
database [13]. This database contains images of both men and women with dif-
ferent facial expressions and no lighting variations. To test the trained algorithm,
we select 236 frames at random from the video sequences. Table 2 shows the sta-
tistical results of this stage in the set of frames randomly selected. We assess the
quality of our approach in terms of sensitivity since it measures the proportion
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Table 1. Number of frames in each video sequence used for the validation of the

proposed methodology

Sequence 1 2 3 4

Number of Frames 113 105 109 85

Table 2. Statistical analysis of the methodology in the test set. The sensitivity mea-

sures the proportion of gaze directions correctly identified.

Stage Test set TP FN FP Sensitivity

Eye location 236 random frames 234 2 13 0.99

Eye identification

Sequence 1 86 23 4 0.79

Sequence 2 90 15 0 0.86

Sequence 3 106 1 2 0.99

Sequence 4 69 10 6 0.87

Gaze analysis

Sequence 1 81 3 2 0.96

Sequence 2 69 16 5 0.81

Sequence 3 101 3 2 0.97

Sequence 4 65 3 1 0.96

Complete system

Sequence 1 100 7 6 0.93

Sequence 2 75 25 5 0.75

Sequence 3 105 3 1 0.95

Sequence 4 72 10 3 0.88

of gaze directions correctly identified. In this sense, the high sensitivity value
(0.99) proves the accuracy of the Viola-Jones algorithm and the suitability of
the selected train set.

Table 2 also shows the results of the eye identification and gaze analysis
stages. First, we apply the eye identification stage to the whole video sequences.
Even though the sensitivity values are not very high in some cases, the number of
false positives is low. Then, we only apply the gaze analysis stage to those frames
correctly segmented in the eye identification stage. In this case, the sensitivity
values are very high. The gaze analysis stage has several parameters. In the
adaptive thresholding, the parameters τ and ς were empirically set to 7 and −5,
respectively. Bigger windows are affected by the lighting conditions and slow
down the thresholding process whereas smaller windows produce irregular eye
boundaries. In the directional analysis, the central direction is represented by
β = 1200. Finally, the delay parameter δ was set to 3 frames.

The complete system row in Table 2 shows the results of the whole methodol-
ogy in the test sequences. Note how the delay parameter δ allows the correction
of a high number of undetected gaze directions. Even though Sequence 2 presents
a high number of false negatives due to lighting conditions, the sensitivity values
are high.

The methodology was implemented using the OpenCV library in GNU/Linux
and the tests were performed in an Intel Core 2 Duo at 2.40 GHz with 2GB
of RAM. Figure 6 shows the computation times for several video sequences.
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Fig. 6. Mean computation times per frame in several video sequences. The bottle-neck

of the system is the eye localization stage.

The mean computation time is lower than 26 ms so that this methodology can
process 38 fps. The eye localization stage is the most time-consuming stage since
it analyzes the whole image. The other stages work with small eye regions.

4 Conclusions

This work presents a novel approach for the directional gaze analysis in video
sequences using a low-cost acquisition device. The proposed methodology is fully
automatic and does not need user interaction. First, we apply a Viola-Jones
algorithm to identify the eye region. This algorithm requires a previous training
stage to distinguish the regions of interest. This stage is performed once using a
public face database and its results can be applied to any video sequence. After
that, we distinguish between skin and eye pixels using a thresholding technique
in the TSL color space. The result of this stage is the segmentation of both
right and left eyes. The gaze direction is given by a pattern matching between
directional patterns and the binary representation of each eye. The methodology
is very fast and can be applied in real time applications. The sensitivity of the
proposed methodology is greater than 0.75 under usual lighting conditions.

Future work in this field includes the study of the lighting conditions in order
to increase the accuracy of the segmentation. In this sense, the application of
histogram techniques or the analysis of the color components could improve the
selection of suitable threshold values. Also, the directional analysis can be ex-
tended using more directional patterns or taking into account all the directional
similarity measures.
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Abstract. Defect detection on painted metallic surfaces is a challenging task in 
inspection due to the varying illuminative and reflective structure of the surface. 
This paper proposes a novelty detection scheme that models the defect-free sur-
faces by using Gaussian Mixture Models (GMMs) trained in Gabor space. It is 
shown that training using the texture representations obtained by Gabor filtering 
takes the advantage of multiscale analysis while reducing the computational 
complexity. Test results reported on defected metallic surfaces including pin-
hole, crater, hav, dust, scratch, and mound type of abnormalities  demonstrate 
the superiority of developed integrated system with respect to the stand alone 
Gabor filtering as well as the spatial domain GMM classification.  

Keywords: Novelty Detection, Gaussian Mixtures, Gabor Filters. 

1   Introduction 

Computer based novelty detection on painted metallic surfaces is a challenging task 
due to the structure of the surface. Painted metallic surfaces have varying brightness 
and highly reflective features which cause a complex and difficult structure in model-
ing and novelty detection. In addition, the color of the painted surface and whether 
paint includes small metallic particles is another issue to be considered.  

Providing a multiscale approach, Gabor filtering is a frequently used technique in 
novelty detection for its orientation and frequency selective features. In [1], Jain et all. 
developed an inspection technique to grade the painting quality of automotive finishes 
by using Gabor filters. In this work, it is shown that under appropriate lighting, Gabor 
features can provide sufficient textural information about painted metallic surfaces. 
Main difficulty in using Gabor filtering is it requires a precise tuning the filter pa-
rameters according to the texture under inspection. Another successfully applied 
method in novelty detection with aperiodic and complex textures is Gaussian mixture 
models (GMMs). In [2], the complex and aperiodic form of ceramic surfaces is mod-
eled by the GMMs using multiscale gray level as well as chromatic images to im-
prove the modeling performance of GMMs. The defect detection accuracy reported in 
[2] reaches to 92.7% when gray level images of ceramic tiles are classified. In this 
paper, in order to model complex and difficult structure of the painted metallic sur-
faces, we propose a GMM classifier trained in Gabor space. It is shown that being a 
multiscale filtering scheme, Gabor filtering can provide an efficient feature set that is 
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capable of modeling textural structure of metallic surfaces.  It is also shown that 
GMMs trained in Gabor space is capable of reflecting aperiodic textural structure of 
metallic paintings that yields a powerful classification task which is highly robust to 
lighting variations as well as color changes arise from complex form of  the surface.  

In Section 2, GMM modeling of textural features in Gabor space is presented. 
Novelty detection  using GMMs is formulated in Section 3. Section 4 reports the test 
results obtained on the metallic surfaces of car paint finishes. In Section 5 we summa-
rize conclusions and give some directions for the future work. 

      
        (a)                   (b)                     (c)                     (d)                    (e)                     (f) 

Fig. 1. Painting defects acquired by a digital camera zoomed on a metallic gray finish: (a) 
crater, (b,c) Hav, (d) mound , (e) bump, (f) scratch   

     
                 (a)                      (b)                     (c)                        (d)                    (e) 

Fig. 2. Gray level images of painted metallic surfaces with different colors: (a) metallic gray, 
(b) white, (c) navy, (d) metallic nacreous black, (e) metallic black.  

2   Modeling the Painted Surfaces by GMMs in Gabor Space 

We propose a novelty detection method that integrates Gabor filtering with the Gaus-
sian Mixture Modeling. As it can be seen from Fig. 1, defects on painted automotive 
surfaces may have varying size, direction and depth. This requires a multiscale, multi 
orientation inspection. Therefore we propose extraction of features which represent 
the surface texture in Gabor space. In the literature, Gabor filtering has been widely 
used because it provides a multiresolution feature extraction scheme and offers a 
wavelet like transformation [3, 4]. However, in our case Gabor filtering itself is not 
adequate to detect the novelties accurately. This is because of the nonstructural and 
highly variable nature of metallic surface textures that may cause several false alarms 
(Fig.2). To eliminate this drawback, unlike the existing works, we propose GMM 
modeling of Gabor features for automatic novelty detection. Details of the method are 
presented in the following subsections. 

2.1   Extraction of Textural Features by Gabor Filtering   

As accepted a good model of 2D receptive profiles of mammalian cortical simple 
cells, Gabor filters provide optimal localization in space and frequency domains and 
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offer orientation selectivity and spatial locality  [4, 5, 6, 7]. In this work these features 
of Gabor filters are exploited in modeling the background texture of painted metallic 
surfaces for defect detection.  

The Gabor filtered output image at the spatial coordinate (x,y), Om,v(x,y), can be 

expressed as  convolution of an input image I  with a Gabor filter family vm,ψ  as it is 

shown in Eq.(1). 

( ) ( )*, ,( , ) , ,m v m vO x y I x y x yψ=  (1) 

The Gabor filter family is formulated by Eq.(2) [4].  
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      (2) 

As it can be seen from Eq.(2), Gabor function is a sinusoidal function modulated with 
a Gaussian. The first multiplicative term is the Gaussian function which localizes the 
oscillation while the second term in the bracket refers to the oscillatory part. Here, m 
and v determine respectively the orientation and scale of the kernel. σ refers to the 
ratio of the Gaussian window width to wavelength.  ||.|| denotes the norm operator and 

km,v is the wave vector defined in Eq.(3) where { }/ 4,  0,...,3m m mφ π= ∈  refers to 

the orientation of the kernel  

( ),  cos , sin   .
v

i m
m v m mk k e k

φ
ν φ φ= =    (3) 

It is shown that kv, the central frequency can be formulated as in Eq.(4), where kmax is 
the maximum frequency of the kernel and is set to π/2,  f  is the frequency spacing 
between kernels and v determines the scale [4].  

max
,v m v

k
k k

fν= =      (4) 

We propose a feature extraction scheme that fuse the information extracted at differ-
ent orientations of a scale by Gabor filtering. Figure 3(a) illustrates the proposed 
scheme at one scale for four orientations. Assuming that each orientation as a differ-
ent channel, in each channel dxd patches are collected as training samples and each 
training sample is filtered with a Gabor filter yielding a 1xd2 dimensional feature 
vector. Concatenating these vectors together from each channel, the training sample 

set  { }P
iiZZ 1==  is created and the 4xd2 dimensional feature sets at different scales are 

calculated correspondingly, where P is the number of patches.  
Conventionally an appropriate Gabor filter set that represents the characteristic of a 

background texture, i.e., painted metallic surface images in our case, is designed. In 
novelty detection, the inspection system filters the observed surfaces by using the 
designed filter and the multiscale multi orientation filter outputs are integrated either  
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(a)     (b) 

Fig. 3. (a) Proposed feature extraction scheme. (b) Standard deviation versus mean plot of 
features extracted for 3x3 patches taken from gray level image of a metallic gray painted sur-
face and its Gabor filtered image. Number of training samples is 1000. Blue circles represents 
gray level image patches where red crosses represents Gabor filtered image patches. 

by a simple thresholding or by another fusion logic to detect defected pixels. Fusion 
of multiscale multi orientation information is a difficult task in Gabor filtering. In 
contrast we propose a feature level integration scheme that models the background 
texture by Gaussian mixtures. In our scheme the training samples  extracted by Gabor 
filtering are fed into the GMM  module. Hence the fusion of Gabor filtered outputs 
problem is converted to a GMM learning problem that can be expressed as a GMM 
parameter estimation scheme. Fig.3(b) illustrates the standard deviation versus mean 
plot of features extracted for 3x3 patches taken from gray level image of a painted 
metallic gray car surface and its Gabor filtered image.  Blue circles and red crosses 
respectively denote the features extracted in spatial gray level domain and filtered 
Gabor image domain. As it is seen, characteristic of textural features has a Gaussian 
form in both domains, however Gabor features provide compactness in terms of mean 
and standard deviation that leads us to model the background by GMMs in Gabor 
space. 

2.2   Metallic Surface Modelling by GMMs 

The proposed inspection system is trained for each color of automotive finish and 
then novelty detection is achieved as abnormality detection. Abnormalities may arise 
from several no complete or inappropriate processing steps performed by automotive 
painting mechanism. Therefore defects may vary in terms of their size, orientation, 
etc. Basically our system is capable of detecting pinhole, crater, hav, dust, scratch, 
and mound type of abnormalities that constitute most frequent cases.  

We propose modeling the defect free painted metallic surface of a specific color by 
a K component GMM. Let µk and wk denote respectively the mean vector and  
the covariance matrix of a mixture component k, where k=1..K. Hence the para- 
meter vector of the Gaussian mixture model with K components is represented  
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as 1{ }K
k kM m ==  where ,{ }k k km μ= w  denotes the feature vector of component k. 

The training set { }
1

P

i i
Z Z

=
=

 
constructed by Gabor filtered defect free painted metal-

lic surface samples is used for the estimation of M where P is the total number of 
training samples. Note that  Zi is one point in the sample space and space dimension is 
determined by the patch size d. We use four orientations in Gabor filtering thus the 
space dimension is 4d2.  Under the assumption that αk, the prior probability of the kth 
Gaussian mixture component, is also unknown,  the probability of a training sample Zi 
belongs to the mixture component k is modeled by Eq.(5), 

( )( | ) ; , , ,i k i k k kp Z N Zψ α μ ω=  (5) 

where { }K
kkkk 1,, == ωμαψ  denotes the GMM parameter vector. Note that sum of the 

prior probabilities is∑ = =K

k k1 1α . As all mixture components are unknown the density 

function of Zi given the parameter set ψ, can be calculated by the conditional prob-
ability given by Eq.(6). 
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Then the log-likelihood that needs to be optimized for the entire training data set Z, is 
formulated by Eq.(7). 
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The maximum likelihood estimation of the Gaussian mixture parameters ψ̂  given in 
Eq.(8) is calculated using Expectation Maximization (EM) algorithm. 

ˆ arg max log ( | )p Z
ψ

ψΨ =  (8) 

In the learning of GMM parameters, conventional EM algorithm steps are called re-
cursively. In the first step, initial ψ values are assigned randomly. Then in every t. 
step ψ(t) is updated as given in Eq.(10), where the likelihood of kth mixture component 
given Zi is calculated according to Eq.(9). 
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Until the estimated parameter values are stabilized the Expectation and Maximization 
steps are called recursively and the Gaussian mixture parameters are updated. The 
GMM parameters of defect free paintings learned in Gabor space are stored for auto-
matic novelty detection. 

3   Automatic Novelty Detection 

In the modeling step, Gaussian mixture parameters representing the metallic surfaces 
are learned in Gabor space. Automatic novelty detection is performed maximization 
of  the likelihood ratio for each pixel. This is achieved by first filtering the observed 
test image with the Gabor filters used in the learning phase. For each pixel, test sam-
ple patches are created from the filtered test images as explained in sub section 2.2. 
For each pixel, a dxd patch is created from each filtered image and test patches con-
catenated together. Probability of a pixel belonging to a known defect free metallic 
surface is calculated by using the likelihood ratio given by Eq.(11). 

( )
1

( | ) |
K

i i k k
k

p T p T mψ α
=

=∑  (11) 

In Eq.(11), Ti denotes the Gabor feature vector corresponding to  the pixel to be clas-

sified, ( )|ip T ψ is the probability value which is a similarity measure between that 

test sample and trained texture. In Eq(11), mk and αk respectively denote the mean 
vector and prior probability of the kth Gaussian mixture component, ψ   is the  

Gaussian mixtures parameter set learned at the training step as it is explained in sub 
section 2.2.  

The test pixel is assigned to one of the known defect free metallic surfaces if the 
likelihood calculated according to Eq.(11) remains less than a threshold which is 
specified during the training phase. Otherwise it is labeled as a defected pixel. The 
same decision criteria is applied through the observed pixels that concludes the nov-
elty detection. In our work the decision threshold is specified by applying k-means 
clustering on the Gabor filtered defect free surface images while k is set to 2 denoting 
the defected and defect free cluster labels. Note that it is not easy to apply a similar 
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task in spatial domain because of the high variations of pixel gray levels of metallic 
surfaces. Another issue that needs to be clarified is the number of defect free parame-
ter sets. Although the same parameter set can be used for similar colors, we have 
learned the parameter set of each color to increase the performance. This results in a 
longer training step but does not change the decision criteria. 

4   Test Results 

Novelty detection performance tests are performed on gray level images acquired 
from painted metallic surfaces by a digital camera using an inspection lighting sys-
tem. Performance of the proposed GMM learning in Gabor space method (ND1) is 
evaluated for different patch sizes at several scales where the number of mixtures k 
varies from 1 to 10. It is observed that satisfactory performance is achieved for  the 
patch size d=1(patch becomes 1 pixel) and k=2. Performance  achieved by the stand 
alone Gabor filtering (ND2) and the spatial domain grayscale GMM modeling method 
introduced in [2] (ND3) are also reported for comparison purposes. For the ND2, 
Gabor parameters are selected as  f=1.5, σ=1.5, v=2 and 4 orientations are used. The 
same Gabor filter set is used for the ND1. For ND3, the best results are obtained with 
patch size d=3 and mixture component number k=5. Test results showed that the ND3 
is very sensitive to illumination changes hence using smaller patch sizes results in 
higher false alarm rates.  
 

   

   

   

   

Fig. 4. Test results obtained on metallic gray colored metallic surface. 1. row: Gray level test 
images, 2.row: Histogram equalized test images. 3. row: Detected abnormalities by the pro-
posed GMM learning  in Gabor space (ND1). 4. row: Detected abnormalities by Gabor filtering 
with simple thresholding (ND2). 
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In Fig.4 test results obtained by using Gaussian mixture modeling based on Gabor 
features (ND1) and standalone Gabor filtering (ND2) are illustrated. Method pre-
sented in [4] is used for standalone Gabor filtering. Filtered images obtained at one 
scale and four orientations are fused with an ‘OR’ operation. First row of Fig.4 illus-
trates the gray level test images acquired from a metallic gray colored car surface. 
Second row presents histogram equalized images in order to highlight the defects. 
Note that histogram equalization amplified the textural components since the contrast 
is very low. The textural structure of defect free surface is complex hence applying a 
thresholding method gives high false alarm ratio. Third row and fourth row of Fig.4, 
respectively illustrate the detected abnormalities by ND1 and ND2. Superiority of the 
proposed GMM learning in Gabor space (ND1)  to standalone Gabor filtering (ND2) 
on detection of defects with low contrast is clear. 

A number of test has been performed to evaluate the performance improvement 
achieved by GMM learning in Gabor space (ND1) with respect to the spatial domain 
GMM classification (ND3). Fig. 5(a) illustrates a metallic surface image  with a crater 
type of defect. Histogram equalized defected image is also given (Fig.5(b)) to high-
light the defect. Note that histogram equalization amplified the textural components 
since the contrast is very low. Using the proposed GMM modeling in  Gabor space, 
the defect is detected precisely (Fig.5(c)) where the GMM modeling in gray level 
space yields a one pixel defect (Fig.5(d)).  We run similar routines on the defected 
image with scratch type of defect (Fig.5(e)). In histogram equalized version of  image 
(Fig.5(f)) defects are seen in a connected form like resulting image obtained by ND1 
(Fig.5(g)) where the abnormalities detected by ND3 (Fig.5(h))  are in  separated form. 
In addition, the defect on the left upper side of the image could not be found by gray 
level GMM due to the reflective structure of the defect. 

 

    
        (a)                                   (b)                                  (c)                                (d) 

    
          (e)                                    (f)                               (g)                              (h) 

Fig. 5. Abnormalities detected on gray colored metallic surface. a), e) Gray level test images. 
b), f) Histogram equalized test images. Crater type defect c) detected by our method (ND1), d) 
detected by ND3. Detected scratch type defect g) by our method (ND1), h) by ND3. 

Fig.6(a) illustrates two craters on the test surface. The first one is in the upper right 
region and the second one is in lower right region. In the histogram equalized image 
the defect in the upper side could be seen easily (Fig.6(b)). Both defects are detected 
by GMM learning in Gabor space (ND1) (Fig.6(c)), however GMM in spatial domain  
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            (a)                                 (b)                                  (c)                                 (d) 

    
             (e)                                (f)                                    (g)                                (h) 

Fig. 6. Detected abnormalities on metallic gray colored car surface. a), e) Gray level test im-
ages. b), f) Histogram equalized test images. Hav type defect c) detected by our method (ND1), 
d) detected by ND3. Detected crater type defect g) by our method (ND1), h) by ND3. 

    

    
 

    
 

    

Fig. 7. Test results on metallic gray colored metallic surface. Col 1: Gray level test images, Col 
2: Histogram equalized test images. Col.3: Defects detected by our method (ND1). Col 4:  
Defects detected by by ND3. 
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(ND3) misses the defect in upper right region (Fig.6(d)). This is because Gabor fea-
tures are superior to gray level features in detection of defects with low contrast. In 
Fig.6(e) there is a low illuminated metallic surface patch. Illumination change from 
lower left corner to upper right corner could be seen in histogram equalized image 
(Fig.6(f)). Using Gabor features two actual defects are detected (Fig.6(g)), however 
using gray level image, extra defects are detected as false alarms (Fig.6(h)). This is 
because Gabor features are more robust to varying illumination conditions compared 
to gray level features. 

Results reported in Fig.7 illustrate superiority of the introduced GMM modeling in 
Gabor space (ND1) over GMM modeling in spatial domain (ND3) for several type of 
metallic surface painting defects.  In the first column gray level test samples are illus-
trated and in the second column histogram equalized  test samples are given in order 
to highlight painting defects. Third and fourth columns respectively show the detected 
abnormalities by ND1 and ND3. 

5   Conclusions 

We propose a feature level fusion scheme in which the background texture is modeled 
by Gaussian mixtures that integrate the information extracted at different orientations 
and scales by Gabor filtering. It is shown that the introduced scheme is capable of 
correctly detecting common painting defects including pinhole, crater, hav and 
scratch with a small false alarm ratio. It is also shown that transforming the gray level 
information into Gabor space provides a more compact representation that yields a 
modeling capability with a lower number of Gaussian mixture components. Moreover 
the proposed GMM modeling scheme eliminates the main drawback of standalone 
Gabor filtering that needs a fine tuning in parameter space.  
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Abstract. This paper describes a computer vision system designed to automati-
cally read the displays of digital instrumentation. The system is used in calibra-
tion sessions where many measurements have to be made and where we are  
interested in getting the whole numerical series downloaded on a host com-
puter. Before our system was running, a human operator had to inspect the in-
struments at the right times (required by the calibration procedure) and to write 
down all the results. Note that we are speaking of very simple and sometimes 
old instruments that usually do not provide a digital interface or a removable 
memory (and if they do, we do not have a standard interface accepted by all the 
manufacturers). Results show the benefits of this system, obtaining a success 
rate higher than 99% in display recognition 

Keywords: Computer vision, text segmentation, character recognition, digital 
instrumentation. 

1   Introduction 

1.1   Purposes of Development 

The computer vision system was designed to automatically read digital instrumenta-
tion measurements avoiding a time-consuming work and minimizing errors due to 
tiredness or forgetfulness. The application was first implemented at the “Laboratorio 
Oficial de Metroloxía de Galicia” (LOMG: www.lomg.es) for digital thermometer 
calibration (Fig. 1). Nevertheless, our application will be useful with all types of in-
struments that exhibit a numerical display. 

The process starts with a photograph of the instrument displaying a stable meas-
urement. Then we use standard image processing techniques to segment the image 
characters. Finally, we will see how we recognize the digits with a new approach that 
combines two different classifiers. 
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Fig. 1. Examples of different instruments, some of them are showing display defects (bubbles 
in the first one, stripes in the third one) 

1.2   Related Work 

Our system is an example of character recognition in scene images like that in [1]. We 
have taken some ideas from there such as the interpolated threshold in non uniformly 
illuminated images. 

Our system also shares ideas with car plate recognition systems [2], [3]. In such 
plate recognition systems, plate has to be located automatically but a fixed character 
font is assumed. In contrast, for digital instrumentation, we have to take into account 
multiple fonts (Fig. 2) which is, as we will see, a source of problems. As the operator 
must set up the calibrating experiment, we started with a system where the region of 
interest (ROI) is user supplied. 

 

Fig. 2. Examples of different displays using different character fonts. Our system deals with all 
of them. 

As we will describe in the following, image preprocessing and segmentation are 
based on standard image processing techniques adequately adjusted to our problem. 
The recognition stage combines two methods: first a classical one based on feature 
extraction followed by 1-NN classification; second an original method especially 
suited to recognize instrumentation digits (as we will see is somewhat inspired by the 
classical 7-segment display). The fusion of both recognizers is also an original contri-
bution where we use the second one to correct possible errors of the first one. 
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2   Image Capturing and Preprocessing 

2.1   Image Capturing 

Capturing is perhaps the most important part of the whole system. A good capture 
will make recognition easy while a bad one would make it impossible. 

Due to some in-site restrictions at LOMG, we cannot modify the environment il-
lumination. We use a C-Cam BCi4 camera with 1280x1024 resolution (Fig. 3). In 
most of the cases, we use a 25 mm lens (able to focus from 15 cm to 1 m). However, 
sometimes the physical conditions oblige to the use of a 75 mm lens with a focal 
distance from 1.5 m to 10 m. 

To help in capturing, we designed a mechanical arrangement that can be used with 
most instruments to get always the same capturing conditions (Fig. 3). 

  

Fig. 3. System camera and mechanical arrangement for stable capture 

As the observed instrument is not moving during image capturing (remember we 
are calibrating the instrument, not using it dairy), we decided to rely on user to extract 
the ROI (Fig. 4). The region will have to be marked only once for all the series. Af-
terwards, we developed an automatic extraction system using the methods described 
in [3]. This new subsystem gets correct location in more than 99% of the test images 
[4] (Fig. 5) but it is not integrated with the rest of the system yet. 

 

Fig. 4. User selection of Region of Interest (ROI) 
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Fig. 5. Automatic location [4]. Still not used at LOMG. 

2.2   Binarization  

Binarization is the process that converts a grayscale or color image into a binary one 
with only two levels. We start by converting our colored images to grayscale using 
the ITU-R BT.709 recommendation (gray=0.2125R+0.7154G+0.0721B). We use this 
equation because instrument displays are often green or, at least, dominated by the 
green channel. As expected, the resulting gray level distribution shows a bimodal 
histogram (two main peaks, see Fig. 6). 

 

Fig. 6. Grayscale display image and its gray histogram 

We use a combination of the well known Otsu method [5], implementing it via an 
approximate iterative version found in [6] and the peak detection method [7] (based 
on searching histogram peaks and locating thresholds on the minima between them). 

As can be seen in Fig. 7, Otsu method can create some segmentation problems due 
to the thicker characters it produces. We also experienced some problems with images  
 

 

Fig. 7. Left: Peak detection method. Right: iterative Otsu method. 
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with important illumination gradients (Fig. 8). In these cases, a global threshold is not 
enough. This can be solved splitting the image into sub-images and applying interpo-
lated thresholds [1] (see results in Fig. 9). 

 

Fig. 8. Left: Image with illumination gradient (not very evident, more visible in an equalized 
image: middle). Right: binarization with a single threshold. 

 

Fig. 9. Images binarized with interpolated thresholds. Left: 8x8 sub-images. Right: 4x3  
sub-images. 

The final solution consists on applying first the peak detection method and then 
measuring threshold quality using the histogram area in the threshold neighborhood. 
If that area is bigger than usual the threshold is considered incorrect and we switch to 
an interpolated threshold with 12 sub-images (4x3 sub-image grid). We use Otsu 
threshold on each piece. 

 

Fig. 10. Threshold quality test based on area in the threshold neighborhood. If this area exceeds 
2.5% of total histogram area, threshold is not good. 

2.3   Skew Angle Correction 

To correct a possible skew angle, we estimate the upper contour of the characters and 
compute the slope of the resulting straight line (Fig. 11). 
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Fig. 11. Skew angle correction 

2.4   Extracting the Character Row (Presegmentation) 

Extracting the character row is the same as removing the blank lines above and below 
characters and also to the left and to the right of them. As shown in Fig. 12, this is an 
easy process using horizontal and vertical image projections. 

On each projection, we detect the region of interest beginning and ending by 
searching for large gradients, first from left to right (top to bottom) and afterwards in 
the opposite direction. 
 

 

Fig. 12. Binary display image and both projections 

3   Character Segmentation 

To isolate the different characters in a preprocessed row, we use what we call “en-
hanced projections”. The enhanced horizontal projection of an image is the vector that 
contains in position i the dot product ( ∑>=< jjyxy,x ) between the (i-1)th and 

(i+1)th column. With this kind of projection, minima that mark character transitions 
are deeper than with standard projections. 

The main procedure consists of searching the horizontal projection from right to left 
while applying a kind of hysteresis process. The right to left direction is chosen be-
cause digit ending is usually more evident than its beginning (most digits end by a 
vertical line, i.e., a strong projection gradient). We use the word hysteresis because 
the threshold to detect a character beginning is different (bigger) to the threshold used 
to detect an ending (Fig. 13). 
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To detect segmentation errors (linked characters), we compute the aspect ratio of 
all segmented items (R=height/width). For a ratio R of less than 1.2 we decide that we 
rather have two characters. In this case, we first compute the local maxima and min-
ima of the projection (using a sliding window procedure as described in [8]). The 
deeper minimum that is between two peaks is selected as the optimum breaking point. 

 

Fig. 13. Detection with hysteresis 

4   Digit Recognition 

First, we normalize the extracted characters by scaling them to a fixed size of 16x16 
points. Note that we do not maintain the aspect ratio. We started by keeping that ratio 
(getting a character with 16 points height and less than 16 points width) followed by 
centering with vertical lines [8]. Nevertheless, we discovered that, in the end, we 
yielded slightly worse results. Distorting input characters is not a problem as long as 
we also distort the patterns as well. 

4.1   Feature Extraction 

We extract features in two ways. First, we use horizontal and vertical projections of 
the individual characters. As different characters may have almost the same projection 
(Fig. 14), we split each character into two halves (upper and lower) and then we com-
pute 4 vectors: upper horizontal (16 values), upper vertical (8 values), lower horizon-
tal (16 values), and lower vertical (8 values). Final feature vector has 48 values. 

Second, we use features based on Kirsch gradients [6], [8]. The Kirsch operator 
computes a first order derivative (similar to operators from Prewitt, Sobel, Canny… 
[9]). Our purpose is to compute image components along four directional axes: hori-
zontal, vertical, right diagonal and left diagonal. For example, the horizontal compo-
nent is computed via a vertical gradient (being always perpendicular to the desired 
direction). 
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Fig. 14. Characters with almost identical projections 

Eventually, we obtain four local feature maps as 16x16 images. Using all of them 
as a feature vector would result in a 1024 length vector. In [8] it is suggested to deci-
mate the 16x16 images to size 4x4. However, in our particular system we obtained 
better results leaving the 4 directional components in its original size (Fig. 15). 

We combine the two feature vectors, i.e., projections and Kirsch, yielding a total 
vector of length 1024+48=1072. 

 

Fig. 15. Example of directional components 

4.2   Classification 

We tried various classifiers (like probabilistic neural networks, Gaussian classifiers 
and k-NN). Best results were for the nearest neighbor algorithm (1-NN). This is not 
very surprising as it is explained in [10]. This system has to deal with several different 
character types (7-segment, graphical fonts, skewed, not skewed, etc.). In this multi-
font situation, there exists sometimes more variance between the samples of the same 
character in different fonts than between different characters in the same font (intra-
class variance greater than inter-class variance). 

As patterns for the 1-NN classifier we chose perfect ones (obtained from the dif-
ferent fonts). We tried to use patterns from segmented input digits but the 1-NN got 
better results for the artificial, perfect ones. 

4.3   Visual Inspection and Fusion with 1-NN Classification 

Visual inspection is an intuitive method. We developed it studying the reasoning that 
people express when they describe how they recognize characters. For example, no 
matter which font, number ‘2’ has always two openings: one in the upper left part and 
the other in the lower right one. 
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We implemented a complete recognizer [11] based on a template that defines the 
regions of interest (Fig. 16). We check whether each region is active or not by major-
ity voting between foreground and background pixels. See that the template is a  
7-segment digit with no corners (sharp in some fonts and rounded in others). 

 

Fig. 16. Regions of interest tested (a 7-segment like template) 

To benefit from both classification schemes, we run them in parallel and combine 
their results in the following manner: 

- We run the feature extraction and compute the norm-1 distance to every pattern 
yielding a distance vector. 

- We run the visual inspection algorithm yielding an estimate for the digit to be 
recognized. This is coded as a binary vector of length 10 where an active bit at 
a position corresponds to recognition of that class. 

- We reduce the distances that correspond to the class that was recognized by 
visual inspection by 20%, empirical. 

- We apply 1-NN and minimum distance wins. 

5   Results 

Our test set consisted of 16 image sequences, with a total of 448 images. The system 
obtained the correct values 445 times, id. est: 99.33% recognition rate (measured on 
display images, not on individual digits). We have tried samples from all accessible 
fonts: 7-segment, skewed, not skewed, graphic display… In routine work of the 
LOMG, 7-segment displays (easier to recognize) are the most common ones.  

Average execution time is 25 milliseconds per image (Intel Core Duo, 2.53 GHz). 
Our results are similar to other found in literature like [12], although in this publi-

cation they only consider 7-segment displays. 

6   Conclusions and Future Lines 

We have designed and implemented a useful system able to read almost any display 
of digital instrumentation devices. 
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We have employed standard image processing techniques adapted to this problem. 
We also designed a hybrid recognizer, which combines a classical classifier with a 
visual inspection algorithm. Final recognition rate suggests that we have solved the 
problem despite the intra-class variance due to the presence of multiple fonts. 

As future work lines, we emphasize on the following: integrating the automatic 
ROI location into the industrial system, optimizing the feature vector trying to detect 
the principal components and, finally, using knowledge from previous images (for 
instance the font type) when recognizing subsequent images in a sequence. 
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Abstract. We present fast, robust and fully automatic method for high

dynamic range images acquisition for non-static scenes. The key compo-

nents of our technique are probability maps calculated from sequences

of hand-held photographs. In practice, several basic problems occur with

image sequences used for creating HDR images. Firstly, camera move-

ment causes images to misalign, what results in blurred output image.

Secondly, ob jects in the scene are in movement, causing ghost artifacts.

In our method we focus on removing such artifacts in order to generate

sharp HDR images. We validate our results via HDR VDP and compare

them with other known approaches.

1 Introduction

Image composition from input image sequences is a well-known approach. The
example is panorama generating from photographs showing different parts of
the scene. Another example is HDR image acquisition, where component images
depict the same part of the scene. Common problem in both cases is overlapping
of parts of input images where ghost artifacts may occur.

Recently, there is tremendous progress in the development and accessibility
of high dynamic range (HDR) imaging technology [1]. Its popularity comes from
possibility of registration in one image the radiance of real scenes that contain
dozen of orders of magnitude. Modern image processing and graphics software
becomes HDR enabled. Also HDR digital photography replaces low dynamic
range (LDR) technologies. HDR photographs are of much better quality and
easier to be processed in a digital darkroom. Unfortunately, HDR cameras are
still very expensive and not available for average users. On the other hand, taking
HDR photographs seems to be legitimate and crucial. The development of high
dynamic range imagery (HDRI) has brought us to verge of arguably the largest
change in image display technologies since the transition from black-and-white to
color television. Novel capture and displays hardware will soon enable consumers
to enjoy the HDR experience in their own homes [2].

The multi-exposure HDR capture technique [3] seems to be a good alternative
to HDR cameras, which can be used to create an HDR image from photographs
taken with a conventional LDR camera. The technique uses differently exposed
photographs to recover the response function of a camera. The main disadvantage
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Fig. 1. Problem: LDR sequence (top row), HDRI: conventional approach (bottom left),

our approach (bottom right)

of those techniques is a necessity of using a tripod. Any movement of a camera
causes misalignments between hand-held images what makes blurry image at the
end. The second problem is when the ob jects on the photographed scenes are
in movement what causing so-called ghost artifacts. In this paper we propose a
technique for HDRI acquisition of non-static scenes (Figure 1). Our application of
this technique allows to create correct HDR image based on a simple sequence
of three LDR photographs with overlapped ghost regions. In our application
we introduce additional modules for image aligning and image de-noising. All
functionality is fully automatic. The technique is robust and fast due to GPU-
based implementation. We validated them by HDR VDP algorithm.

The paper is organized as follows. In section 2 previous works are discussed.
In section 3, the application of our HDR acquisition technique is presented in
details. In section 4 we briefly describe a GPU implementation of our method.
Section 5 shows and discusses achieved results. In the last section, the paper is
concluded and possible future work is suggested.

2 Previous Work

There is a growing demand for HDR image of both static and dynamic scenes.
That is why as far as hardware solutions of HDRI acquisition are not easily avail-
able, software solutions will be needed. A few approaches have been developed in
order to remove ghosts artifacts during HDRI acquisition. The first technique is
based on tracking non-static objects by matching their key points in a sequence
of images [4]. The method fails for occluded objects or for patterns for which it
is not possible to find correct matching. Another approach replaces the whole re-
gions, where ghost artifacts are likely to occur, with reference ones. The regions
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Fig. 2. Image acquisition pipeline

can be selected manually [5][8] or detected automatically [6][7]. Unfortunately,
the technique works correctly only when the whole dynamic range of a region
can be registered in a single image exposure. In [13] they proposed a histogram
based ghost removal method, in which object motion and background change be-
tween two exposures are detected using multi-level threshoding of the intensity
histogram. A different solution was presented in [9] where iterative propagation
of ghost probability was used. The method requires a large number of images
in LDR sequence and still background for moving objects. Moreover, it is time
consuming and must be computed in many iterations.

Image registration is another problem during acquisition of HDR image. Mis-
alignments between photographs in a sequence can appear due to camera move-
ment (in the case of hand-held photographs) or not careful usage of tripod.
There are two basic techniques of image registration: matching key points and
checking pixels difference. In the first case the same drawbacks as during ghost
removal occurs (matching key-points problem). The solutions based on pixels
difference generally give better results. In some software solution for alignment
only horizontal and vertical shifts without rotation compensation are considered
due to complexity of computations [10].

In the paper we propose modified pixel-based approach for ghosts removing.
Deghosting is based on the ghost maps. The ghost maps are calculated using
probability of belonging of pixels to background. They depict regions where ghost
artifacts are likely to occur, or regions with under- and overexposed pixels. The
technique is fast due to GPU based implementation of de-ghosting and alignment
modules.

3 Ghost Removal Algorithm

Generating of HDR images of arbitrary static or non-static scene requires in-
troducing a ghost removal component. We developed such module in the GPU
based application for HDRI acquisition. The algorithm used in the application
has four successive stages: image de-noising, position alignment, ghost removal
and HDRI composition. First three of them can be used optionally (Figure 2),
however, it is easier to align denoised images or remove ghost from aligned pho-
tographs. Therefore each successive stage works better if previous stages are
included into the acquisition pipeline.
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Fig. 3. Ghosts maps generation schema

The image denoising module is based on the wavelet coefficient thresholding
method presented in [11]. We optimized the existing implementation of the algo-
rithm to perform it on GPU. The images alignment module compensates camera
shifts or rotations. In the first step, an image with middle exposure is chosen as a
reference one. Other images in a sequence are aligned to this image. Additionally
simple algorithm for removing of misalignments was implemented. We assume,
that images taken with auto-bracketing are registered very fast one by one, so
misalignments are also limited. Therefore we used a simplified approach to align
pictures based on error minimization.

In some situations one of the input images (with the best exposure) must
be used as reference image. It happens where only a part of the ob ject is in
movement and may be treated as ghost. In this case only a movement effect
should be removed but not the whole object. Recognized ghost is replaced by
corresponding fragment from reference image.

3.1 Ghost Maps Generation

In order to remove ghosts, for each input LDR image a ghost map is gener-
ated. This map shows how much the pixel color influences the pixel color in
result image. The module is composed from three states: initial map generation,
normalization and final smoothing (Figure 3). As an input to the ghost maps
generation we provide normalized image sequences for which maps are calcu-
lated. In the first stage, corresponding pixels values for every color channel from
LDR sequence are compared. It estimates a probability that a pixel belongs to
a still background or to moving object (ghost). The initial ghost map for each
LDR image is computed based on (1).

Gi(x, y) =
k∑

j=1,j �=i

F (Pi(x, y), Pj(x, y)), (1)

where: Gi means ghost map of i-th image, F - deghosting comparison function,
Pi, Pj - i-th and j-th normalized LDR images respectively , k - number of images.

F (Pi(x, y), Pj(x, y)) =
∑

c=r,g,b

1

1 + exp
(
−

(
max

(
Pi(x,y)c

Pj(x,y)c
,

Pj(x,y)c

Pi(x,y)c

)
− 1.35

)
· 20

) ,

(2)
where: Pic, Pjc - pixel componets c of normalized images i and j respectively.

The deghosting comparison function F is based on sigmoid function (Equation
(2)). At development stage function was designed and tuned with registration
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Fig. 4. Example LDR images sequence (top raw: 1
640

s, 1
160

s, 1
40

s) and their normalized

ghost maps (bottom raw)

error distribution graphs. Even for static scenes captured values are not linearly
dependent due to registration errors. That is why distribution graphs were used
to determine acceptable and unacceptable limits in color difference. For ghost
free images values Pi and Pj should be equal. In ghost regions difference in color
is very likely. Function max returns the ratio between brighter and darker value.
For each rgb channel such value is transformed by sigmoid function and then
sum up to estimate that two pixels match or not.

In the next stage the initial ghost maps must be normalized and the zero
value is assigned to over-exposed pixels. Normalized ghost maps are prone to
errors. They look noisy due to independent computation of each pixel in ghost
maps (see Figure 4). In the next stage the ghost map smoothing is proceeded.
It integrates map values with neighbor pixels and is based on dilatation, erosion
and convolution. The smoothing is based on dilatation, erosion and convolution.
Firstly the (3 × 3) dilatation is applied. It removes one or two pixels regions
recognized as ghost from the ghost maps. After dilation, the (15 × 15) erosion
is applied It fills holes in ghost regions recognized as valid pixels. These regions
are additionally extended during dilatation. Finally ghost maps are smoothed
based on convolution with (5× 5) window kernel The example results after each
step are presented in Figure 5 [6].

3.2 HDRI Composition

Generation of HDR image from sequence of LDR pictures depicting dynamic
scene, with calibration and ghost removal taken into account, is similar to tra-
ditional approach for static scenes [3]. The novelty is using of ghost maps in the
final equation, where pixel color is computed according to Equation (3) using
weighted function which was tuned experimentally (Equation (4)).
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Fig. 5. Ghostmap i=3 results after: dilatation – Gd
i (left), erosion – Ge

i (middle),

convolution – Gc
i (right)

H(x, y) =

k∑
i=1

Si(x, y)c

Ei
Wi(x, y)Gc

i (x, y)

k∑
i=1

Wi(x, y)Gc
i (x, y)

, (3)

where: Si(x, y) is pixel of input LDR image i, Ei is exposure value of image
i, Gc

i (x, y) is grayscale pixel of ghost map i and Wi(x, y) means pixel weight
of image i according to modified (experimentally) Equation (4). A chart of the
weight function for a single color component is shown in Figure 6.

Wi(x, y) =
∑

c=r,g,b

min

(
1

1 + exp (5 − 100Si(x, y)c)
,

1

1 + exp (30Si(x, y)c − 24)

)
, (4)

Fig. 6. Weight function graph for single color component

4 Implementation

To speed up calculation we used hardware acceleration. The image is repre-
sented by four textures RGBA respectively. In calibration module we imple-
mented aligning algorithm, which enables to calibrate up to 4 images at the same
time. This solution was proposed in order to optimal parallel down-sampling of
all image channels.

The ghost maps generation module was implemented in GPU. It creates maps
in a single rendering pass. Number of input textures to the shader is equal to
the number of images in the sequence. Every shader output is RGBA texture
where every channel corresponds to the single ghost map. For more than four
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Fig. 7. Detail shader for HDRI acuisition for the three LDR images

images in an image sequence, multi-texture hardware extension (MRT) is used.
To improve performance, horizontal and vertical kernels are applied separately
in each operation. The HDR image color is computed based on Equation (3) in
a single rendering pass. The shader has scalable number of input textures.

Input LDR sequence and ghost maps are combined in single pass shader.
Detailed shader schema for three image sequence is depicted in Figure 7.

5 Results

A few example image sequences were used to test quality and performance of
the HDRI acquisition application. Both hand-held and tripod sequences with
varying number of images and exposure range were assessed. The best results
were achieved for exposure difference less or equal to two F-stop. It is compatible
with exposure bracketing functionality in typical cameras that allows for such
exposure change.

The result of experiment depicted on Figure 8 presents ghosts removal results.
In this sequence, moving objects causes ghosts artifacts. Our ghost removal mod-
ule detects moving objects and removes ghost from a final HDR image.

In the next test we compared result images with and without ghost removal
module with the static scene with HDR-VDP algorithm [12] (see Figure 9). HDRI
with ghost removal contains much less visible artifacts. It is worth to mention,
that differences in HDR-VDP results for our approach come from changes illu-
mination of the scene.
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Fig. 8. Deghosting example: LDR sequence from Figure 4, conventional acquisition

(left), our approach (right)

Fig. 9. Results for HDR-VDP test for image sequences 8 with static scene (without

moving object) with image created (left) without ghost removal module (right) with

ghost removal module

We conducted also the test for scene where only a part of the object is treated
as ghosts. The best example is a man who waves his arms. His body is still, only
arms are moving. In that situation we need to use reference image Figure 10
(right) to avoid removing unwanted parts of image. Without reference image,
mans arms would be recognized as ghosts and removed, what is depicted in
Figure 10 (left).

Finally we compare our approach with the image technique with existing
application for acquisition of a dynamic HDRI scenes: Dynamic Photo HDR,
Qtpfsgui and Photomatix. The results of comparison is shown in Figure 11. Our
application seems to produce the best images with correctly removed ghosts.
Our application requires 11 seconds to align, de-ghost and create a final HDR
image based on a sequence of three LDR images of resolution 3039x2014 pixels
(GPU textures upload/download 4.55 s, alignment 6.11 s, ghost detection and
HDRI composition 0.47 s). The high performance of algorithms computation
was achieved due to careful GPU implementation.
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Fig. 10. Deghosting comparison: LDR sequence (top), our approach without/with ref-

erence image (bottom)

Fig. 11. Deghosting comparison: DynamicPhotoHDR and Qtpfsgui (top), Photomatix

and our approach (bottom)

6 Conclusions and Future Work

In the paper we present ghost removal technique and its GPU based implemen-
tation. Our approach was applied for HDR image acquisition and validated via
HDR-VDP [12] algorithm.
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A fully automated tool for HDRI acquisition was presented. It allows to create
HDRI images of static and dynamic scenes from hand-held photographs.

In future work we plan to improve the ghost map generation module. We
noticed that some ghost removal errors could occur for images with many high
dynamic range ghost regions like reflections on a waving water. Performance of
alignment module could be also improved, because currently it is 12-times slower
module than de-ghosting and final composition modules.
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Abstract. This paper presents an exponential model to correct the distortion 
that appears when bound books are digitalized using flatbed scanners. The pro-
posed algorithm infers the height of the book spine for every column in the im-
age and fits an exponential curve. The de-warping is done regarding the scanner 
acquisition model and shape binding. This new de-warping method is effective, 
fast, accurate and easy to implement. 

Keywords: Shape-from-shading, image processing, book binding de-warping. 

1   Introduction 

Scanners are the device most widely used for document digitalization. Figure 1 (a) 
shows only one page scanned at a time, in which the sweeping line is perpendicular to 
the book spine. Figure 1(b) depicts the scanning of two pages a time, with the book 
spine lying parallel to the scanning line. Examples of images obtained in such scena-
rios can be seen in Figures 1(c) and 1(e). In both situations, an unpleasant warp ap-
pears near the book binding, which is better visualized in the enlarged parts of Figures 
1.d and 1.f, respectively. It is important to notice that the two scenarios yield very 
different images: the scanner projection is orthographic in the direction of the lamp 
movement, but has perspective projection in the direction orthogonal to the lamp 
movement [1][11]. 

This paper proposes a new method to correct both scenarios presented in Fig.1 as-
suming that the document image has only one page. It is organized as follows: Section 
1.1 shows a brief review of the de-warping literature and sketches the proposed me-
thod. Section 2 presents the scanner acquisition model and its parameters extraction. 
Section 3 explains new distortion correction methods whose results are provided in 
Section 4. Conclusions and lines for further work are in Section 5. 
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a. One page scan 

 
b. Two-page scan  

c. (a) example 
 

d. Detail of (c) e. (b) Example
 

f. Detail of (e) 

Fig. 1. Book scanning scenarios 

1.1   Review of the De-warping Literature  

Tan et al propose in [1] a de-warping algorithm for scanned document images that 
reconstructs the volume surface using a shape-from-shading pattern in the scenario of 
Fig. 1.b. The main disadvantage of this method is the need for several scanner para-
meters (focus, gain and bias of the photoelectric transformation, etc). Scanner manu-
facturers seldom provide those parameters, making impossible the application of the 
algorithm. Ukida and Konishi [2] introduce a warp restoration in scanned images, 
using the scanner with three different light sources (red, blue and green) at fixed loca-
tions. Ukida et al [3] propose a shape and color reconstruction method using a scanner 
equipped with four light sources which are located symmetrically under the scanning 
line. Most scanners have a single white light source, thus the application of the algo-
rithms in references [2] and [3] may not be possible. 

Reference [15] introduces a new method that only asks the user to scan a calibra-
tion grid placed at the center of the volume to be scanned. This grid allows inferring 
the relation between pixel intensity and depth. Such parameters are used to correct the 
distortion is the other pages of the volume. This method is efficient in a large number 
of book images, but in a few pages tested the noisy areas had their shading wrongly 
estimated causing excessive widening of the de-warped area. 

There are several works which focus on estimating the 3D-model using the shading 
pattern of photo objects. Two surveys can be found in references [4] and [5]. Most of 
those solutions are time intensive, besides not yielding good de-warping results [6]. 

Another approach, recently proposed by Pintus et al in [10] modifies the scanner to 
gather two images at the same time to build a 3D model by stereo vision 3D recon-
struction. This method claims for a customized scanner. 

There are also several other methods for removing such distortion for documents 
captured with portable digital cameras. Most algorithms try to find document text-lines 
[8][9], assuming that they are parallel in the original document. Those algorithms get 
the envelope of each line and attempt to “straighten” them by moving font cases, not 
correcting the narrowing of the fonts in the distorted region. Such algorithms are unsuit-
able for scanned documents, because as shown in Fig. 1.c, images from scanned books 
often present binding distortion but lines remain parallel to each other. This happens due 
to the orthographic/perspective projection of scanners as explained earlier on, therefore 
most portable camera de-warping algorithms in the literature cannot be used. 

The algorithm proposed herein borrows some ideas of [15], by using the document 
shading pattern to estimate its depth using the relation obtained in section 2. The 
depth is fitted onto an exponential curve as shown in section 3. 
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2   The Scanner Acquisition Model 

To validate this scanner projection model, a square grid was placed on a flat slope [2] 
as illustrated in Fig. 2.a. Using HP ScanJet 5300c scanner with 300dpi, Fig. 2.b was 
acquired with Ψ=90° and θ=30° (1.c scenario); Fig. 2.d with Ψ=0° and θ=30° (1.e 
scenario). The height of the squares is constant, independently of the paper depth 
(orthographic projection), whereas the square “widths” are narrower and closer to the 
focal axis. The paper becomes darker with increasing distance, as shown in Fig. 2.c. 

 

Fig. 2. Square grid for validating the projection model 

 

Fig. 3. Warped/unwarped (flat) projection relations 

.   .

y

x

y

x
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From Fig. 3.a it is possible to infer warped/flat x values relation in equation (1) 
with triangle relations, where   is the focal axis x-coordinate. Fig. 3 also shows Fig. 
2.d distorted square. Using triangular relations, one gets eq. (2). Let L  and L  be 
the values of the upper and lower projected square sides. The difference between 
them yields to (3). The value for ∆z is calculated using Pythagoras theorem (Fig. 3.b). 
Finally, the focal distance can be obtained with (4). As there is more than one square 
available, the focal distance is calculated for each square and the median of the values 
obtained is chosen for use.  / . (1) . (2)

∆ ; ∆  . (3)

∆  . (4)

The relation between the paper depth and shading is assumed to be linear (see Fig. 
2.c), where zero depth means that the paper is on the scanner flatbed (region without 
distortion). With the focal distance, it is possible to infer the distance to the flatbed  
( -value) using equation (2). 

• Let  and  be the square grid whitest paper shading values in the region 
around the corner.  is measured from the warped horizontal side,  is meas-
ured from the flat region. 

• Let  and  be as above, but measured from the warped document, respectively. 

Thus, the shading/depth relation is expressed in (5). One may observe that for b b  the depth equals 0, that means that it is on the flatbed. For the HP ScanJet 
5300c, the values found for 300dpi were: 2,894.37 pixels (24.51cm using eq. (6)) for 
F, 233/255 for I , 174/255 for I  and 270.1412 pixels for

 
Z . d b Z 1 b/b / 1 I /I . (5)pixelsToCm v /DPI 2.54 . (6)

3   The De-warping Procedure 

To better understand the shape of the book binding distortion, 8 pictures were taken 
with different warp levels (Fig. 4.a shows one of them). Sample points were fitted into 
an exponential curve as described by eq. (7) (Fig. 4.b shows plotting for 4.a) with a 
mean error of less than 0.08 cm for all 8 images. Thus, eq. (7) models binding with 
acceptable accuracy. z  . (7)
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a. Distortion of a page in middle of book 

 
b. Plot and exponential fitting of (a) 

Fig. 4. Validation of book binding modeled as an exponential curve 

To correct the book binding distortion, the depth is estimated and fitted onto the 
exponential curve represented by equation (7). One simple and effective method is 
presented in [14] using equations (8) and (9). De-warping is done by the line integral 
of (7) which is presented by equations (10) and (11). The next sections show how to 
obtain the value of the depth for both scenarios in Fig. 1. ;  ∑ ln ∑ ∑ ∑ ln∑ ∑  (8)∑ ln ∑ ∑ ln∑ ∑  (9)

s 1 1 ln 1
 (10)

x s s 0  (11)

3.1   Shape-from-Shading 

Assuming that an image was obtained in the scenario depicted in Fig. 1.a, and the 
projection to be pure orthographic due to small flatbed distances, the proposed proce-
dure for de-warping is summarized as: 

1. For each column i of the image find the mode of the intensity of the pixels in the 
highest 10-percentile in the histogram of the pixels in the column. This value  is 
taken as representative of the intensity of the paper column. 

2. Identify the shading value of a flat region ( ) by getting the most frequent value 
of . 

3. The exponential fitting is done to obtain  and  with ,  (where d ) 
using equations (8) and (9) [14]. The values for   that are too close to 0 have a 
greater influence than others as the logarithm goes to minus infinite as the input 
approaches zero [14]. The curve fitting is done with 20/255.  

4. Apply the de-warping procedure using the line integral of z  as described in 
equations (10) and (11). 
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The inverse function for equation (10) cannot be calculated analytically. The direct 
mapping is done (from source x to target x) with values for the orphan x columns in 
the target, calculated by linear interpolation of the closest columns. Figure 5 shows 
the proposed procedure applied to Figure 1.c, with the shading pattern at (a) and the 
detail of the final result in (b). The advantages of proposed method are: 
 
• The fitting procedure detects the deformation side (left or right) automatically as  

can be positive or negative 
• There is no need to detect when the warped region starts. The exponential has low 

derivative values on the opposite side of the deformation, thus it acts as a constant 
straight line in this area. Thus equation (7) can be applied to every value of x. 

 

 
a. Shading pattern

 
b. De-warped text

Fig. 5. Proposed shape-from-shading applied to Figure 1.c 

3.2   Text-Line Depth Extraction 

Looking at the central part of the book image in Figure 1.e one may observe that closer 
to the book spine the top page looks brighter than the bottom page. Thus, at the same 
depth one finds two different luminance values, therefore shape-from-shading cannot be 
used to estimate the distance to the scanner flatbed in the scenario of Figure 1.b. As one 
may observe, the lines are curved in this case, thus text-line segmentation can be used to 
get depth values. There are several text-line segmentation for black-and-white warped 
documents such as [8][9]. For the sake of space, the method used herein is not pre-
sented. As segmentation requires a monochromatic image as input, image binarization 
[7] is performed. One assumes that the text-lines are already segmented and the baseline 
envelope for each of them is found. The following procedure is executed: 

1. Un-warped straight lines are estimated by doing a linear regression with text-line 
central letters, as illustrated in Figures 6.a and 6.b in gray. 

2. For each point of the baseline envelope there is a corresponding point on the 
straight line that represents where it should be if there were no warp. For the given 
point, depth (z value) can be obtained using eq. (2), where  and  are the dis-
tance to the focal axis for “un-warped” and warped points, respectively, with the 
focal axis assumed to be the vertical middle line (e.g. Fig. 6.b); 
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flatbed. To correct such distortion, PhotoDoc [16] perspective correction routine is 
used. An example of such pre-processing is shown in Figure 8, with zoomed results in 
(d)-(f). The improvement of the new method can be seen in (e) if compared with me-
thod [15] in (f). 

Text-line segmentation can be also used to detect portrait/landscape orientation as-
suming that horizontal lines are dominant. As the end-user does not know when to 
apply shape-from-shading or text-line depth extraction, the flow in Figure 7 is pro-
posed. For all tested images it correctly identified all page orientations. 

Fig. 7. End-users processing flow 

a. Original image b. Perspective corrected image c. De-warped image 

d. Zoom into (a) binding e. New method on (d) f. Method [15] on (d) 

Fig. 8. Example of image with perspective and volume binding warp 

Input 
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Textline
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Which
Orientation
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4.2   Post-processing Improvements 

The image de-warping algorithm presented herein does not correct the variation in 
illumination which darkens the region towards the volume binding of the page. Com-
pensating illumination variation is part of the full de-warping procedure. Figure 9 
shows the application of two [7] [12][13] shading removal algorithms. Oliveira and 
Lins [7] searches for blocks with low color variation then tries to find overlapping 
blocks that belongs to document paper followed by shading removal. Fan’s method 
[12][13] uses a watershed-based color segmentation that works in a wide range of 
document contents such as those containing large continuous-tone image regions, 
with a high computational complexity. Figure 9.a shows the application of [7] with 
inferred paper value; Figure 9.b shows the result forcing the final background to pure 
white. Figure 9.c presents the result of applying the algorithms in references [12][13]. 

 

 
a. [7] with true paper value b. [7] with pure white paper 

 
c. Fan’s [12][13] result 

Fig. 9. Shading removal 

5   Conclusions and Lines for Further Work  

This paper presents a new algorithm for the correction of volume biding distortion in 
scanned books. First, the document orientation is automatically detected, and then 
proper depth estimation is chosen followed by exponential fitting and de-warping is 
performed by using an exponential line integral. For depth estimation, two new me-
thods were proposed. The first one uses shape-from-shading, the other extracts the 
height by analyzing the envelope of text-lines. Both of them yielded satisfactory re-
sults. The application of shading removal algorithms is also recommended. 

As some scanned documents with binding distortion may have blurred characters a 
document de-blurring strategy seems to be appropriate, but is left for further work. 
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Image-Based Drift and Height Estimation for
Helicopter Landings in Brownout
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German Aerospace Center (DLR), Braunschweig, Germany

Abstract. After years of experiences regarding enhanced and synthetic

vision research projects in the fixed wing domain, the DLR’s Institute of

Flight Guidance is now addressing helicopter applications as well. The

project ALLFlight is one example. The main objective of this project

is to demonstrate and evaluate the characteristics of different sensors

for helicopter operations within degraded visual environments, such as

brownout or whiteout. Radar, Lidar, IR and TV cameras are part of

this sensor-suite. Although this project aims for the large solution of the

brownout problem, there are also simple small solutions investigated,

which can be installed in low cost helicopters as well. The following

paper is dealing with such an approach.

We assume a pair of off-the-shelf vertical looking cameras and an

inertial attitude system, which are feeding their data into a low-budget

processing system. The outcome consists of the helicopter’s lateral drift

and its altitude above the ground. These data can be shown easily to the

pilot on a cheap display. The paper describes the proposed setup and

methods for drift and height measuring.

1 Introduction

Compared to fixed-wing aircraft, flying a helicopter is still relatively unsafe.
Statistics show that the number of accidents per flight hours is much higher (e.g.,
in 2007: 4.9 per 100, 000 flight hours [4]) compared to the number of accidents
of fixed-wing aircraft (1.39 accidents per 1 million flight hours [11]). The main
reasons for this unacceptable number of accidents are pilot errors due to high
workload and bad weather conditions. This is the main motivation for developing
assistant systems to increase the level of safety in flying helicopters. As daily
problems of helicopter operation, like search and rescue (SAR), or helicopter
emergency medical service (HEMS), show, visual assistance for the helicopter’s
pilot is even more essential.

During landing on sand, dust or snow, whirled up particles from the ground
can produce a dense cloud around the helicopter so that a visual guidance of
the helicopter becomes impossible. This effect is called brownout for landings on
sand, or whiteout for landings on snow. During landing the pilot has to ensure
that the lateral drift of the helicopter does not exceed a certain magnitude
directly before touching down. Otherwise a dangerous moment around the roll
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axis would occur after the first contact of the landing gear or skid with the
ground. This turning moment could finally lead to a total roll over of the entire
helicopter.

The effect of whirling up dust is caused by the main rotor’s down stream.
Its strength increases with decreasing flight altitude. As long as the flight path
of the helicopter has some forward movement, a horizontal cylinder of dust is
formed behind the helicopter. This cylinder becomes a torus (like a “donut”) as
soon as the altitude and forward speed are falling below certain thresholds (see
Fig. 1). After the dust torus has fully developed, the entire external horizontal
field-of-view around the helicopter becomes in-transparent. Thus, the pilot is
no longer able to acquire visual cues from outside to evaluate the helicopter’s
lateral drift. Nevertheless, a certain region directly under the helicopter remains
free of dust during hovering - at least for a certain amount of time. Through this
hole within the “donut” the ground remains recognizable. If the pilot would be
able to see a picture of the landing zone below the helicopter (e.g., on a camera
display), it would still be difficult for him to interpret this image. This is due
to the fact that the lateral shift of the entire image is not only effected by drift,
but also by rotations of the helicopter around its roll and pitch axis. Therefore
we propose to apply an automatic image analysis system to determine the cross-
and along-drift of the helicopter. This system has to be supported by data of the
turning rates around the along and transverse axis of the helicopter (pitch and
roll axis). Together with a suitable display to show the computed drift rates to
the pilot, this system will be able to assist the pilot in controlling the helicopter
until touch down. Additionally, to estimate the height above the ground and the
possible tilt angles of the landing surface, we apply a stereo camera system.

2 State of the Art

2.1 Optical Position Estimation

Position estimation by optical means is arguably the oldest technique known.
Early examples are numerous and cover at most static scene reconstruction [6,3].
However, we will concentrate on the more recent dynamic methods. Application
areas included autonomous robot navigation [10,7] and camera pose estimation
[2]. Integrated sensor solutions combining optical sensors with Laser measure-
ments will become available in the next years [15,9]. Especially the availability of
cheap computer vision hardware integrated into mobile phones has raised some
recent interest [16,8].

2.2 Assisted Landing

Different concepts and methods for assisting helicopter pilots during the landing
phase under brownout situations have been published within the last years and
there are several patent applications available within this field (e.g., [5,14,12]).
The proposed methods can be divided into three main categories:
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Fig. 1. Imaging situation: A stereo camera is looking downwards in brownout through

the remaining hole in the dust below the helicopter’s fuselage

– large solution - high sophisticated sensor-suite and complex data fusion setup
– see and remember - perspective display of real-time acquired 3D terrain data
– small solution - downward looking sensors are driving a simple drift and

altitude display.

The large solution to solve the low visibility problem consists on one hand of
a large and complex suite of different imaging sensors, such as millimeter wave
Radar systems, optical Lidar systems, and infrared cameras. On the other hand,
high accurate data bases and high precision navigation systems are an essen-
tial element of this concept. The biggest challenge of this approach is to design
intelligent algorithms for data fusion and display generation. The expected ad-
vantage is that in every phase of the helicopter landing, at least one sensor is
able to look through dust and snow. The main disadvantage is that such a large
and complex system will be rather heavy and expensive and therefore is not easy
to install [5,14,12,1]. Due to this, such systems will not be affordable for every
helicopter.

The second concept, called see and remember, means that during the ap-
proach phase some imaging sensors are acquiring data from the terrain below as
long as possible. From these data a consistent 3D-model of the landing zone is
permanently updated in real-time. In combination with precise positioning and
attitude data, a perspective view onto this 3D-model is generated and shown
to the pilot [14]. After the sensor looses its direct visual contact to the ground,
pilots shall still make use of the continuously available perspective display of
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the 3D-model. Although the perspective presentation of the 3D data is steadily
updated with respect to the changing position and attitude of the helicopter,
the 3D data itself becomes outdated over time. The main disadvantage of this
approach is the scepticism of pilots. Although they are familiar with flight train-
ing in simulated environments, they cannot accept to fly a real aircraft based
on a (probably) outdated 3D model (although the age of the model data might
become rarely older than some 30 seconds until touch-town).

The third approach, the small solution, applies only downward looking cam-
eras, which are mounted below the helicopter’s fuselage. In [12] a system is
presented which makes use of several of so-called PMD sensors [13]. These are
solid-state cameras which are able to measure ranging data for each pixel by
using some special range gating technique. The basic principle is similar to an
optical radar system (Lidar), where the whole scene is illuminated by a very short
pulse of light. Pfenninger states that such an optical system, mounted below the
helicopter’s fuselage, would be able to help within the brownout situation. This
is true, because during brownout there remains a dust-free zone within the inner
part of the “donut-like” cloud. This inner zone allows a visual look-through onto
the ground below. We follow this argumentation within our contribution. How-
ever, instead PMD cameras (which are more or less in a prototype developing
state), we will apply a pair of off-the-shelf standard CMOS-cameras, which are
used to built-up a stereo-camera setup.

3 Experimental Setup

We assume the following setup. A pair of cameras are mounted on a common
bracket. Additionally, an attitude sensor is also mounted on this bracket for
measuring turning rates (Fig. 2).

We purchased two CMOS b/w cameras from IDS, Germany (see table 1).
For operation on a Win-XP system, this type of camera has a WDM-driver
interface. The implemented software for image acquisition is based on the Di-
rectShow SDK. The camera has a built-in automatic intelligent gain and shutter
control. Taking into account the typical levels of light of outdoor scenes, the ex-
cellent light sensitivity of the camera allows rather small shutter times (< 5 ms).
This is important for operation on a rather dynamic helicopter platform. Other-
wise, motion blurring of the acquired images would harm the following feature
extraction.

To measure the turning rates around all three axes, we apply the Interti-
aCube of Intersense. This system uses a serial interface (RS-232) and delivers
its data with a frequency of up to 180 Hz. Such a sensor is needed to build-up
a stand-alone demonstrator. Of course, the rate sensor becomes obsolete, when
our system is integrated into helicopters with digital interface to the attitude
and heading reference system (AHRS), where the turning rates can be read out
via any avionics bus (e.g., ARINC-429).
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Fig. 2. Applied camera pair (uEye SE1220-M) and attitude sensor (InertiaCube)

Table 1. Applied camera uEye 1220SE-M from IDS

camera type uEye 1220SE-M

manufacturer IDS, Obersulm, Germany

sensor type CMOS - b/w

senor chip MTV0922 Micron, ID, USA

typical application automotive industry

resolution 752 × 480 pixel

optical area 4.51 × 2.88 mm

pixel size 6 × 6 micron

ADC resol. 10 bit

frame rate 60 Hz full resolution

global shutter 0.04 ... 5000 ms

lens Fujinon 1.2/6.0 mm

interface USB-2.0

Software interface WDM-driver

size (incl. lens) 32 × 34 × 75 mm

weight (incl. lens) 120 g

4 Image Processing and Feature Extraction

We implemented a feature based image analysis technique. First each input
image is converted into a list of features representing the main image content.
Feature are extracted by multistage processing. The single stages of processing
are:

1. Low pass or median filtering for noise reduction and application of some
gradient filter algorithms (e.g., a Sobel filter) for edge enhancement.
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2. Converting the gray scale image into a set of binary images (black and white).
By applying a number of different predefined binarization thresholds, pixels
with values below the threshold become black. Remaining pixels become
white. Usually three or four binary images are sufficient for processing images
with a reasonable brightness distribution. Although the binarisation levels
are currently set manually they can easily be adjusted by applying histogram
analysis techniques.

3. Contour extraction and contour following is carried out for each binary layer.
The result is a set of closed contours. Each contour is denoted by a starting
point and a list of contour points. In case the number of contour points is
below a predefined threshold the contour becomes a candidate for a blob fea-
ture and is further processed in step 6. All other contours-sets are processed
in step 4.

4. Cutting the closed contours into linear sub-sets. Each identified sub-set is fed
into an orthogonal regression algorithm, which computes the best fitting line
for the sub-set. The result is a list of line features which is further processed
in step 5.

5. Post processing of extracted lines: parallel and/or interrupted lines are
grouped or combined into one representative line. Each line is denoted by its
starting and ending point and its contrast, i.e., the difference of gray values
between the left and right side of the line within the original image.

6. Post processing of extracted blobs: different blobs from different binary layers
are grouped into one representative blob in case the differences in size and
position are below a certain predefined level. Each blob is denoted by its
center coordinates, its width and height, and its contrast, i.e., the difference
of gray values between inner and outer regions of the blob within the original
image.

The implemented program allows adjustment of most predefined processing pa-
rameters during run-time. Thus, adaptation to different types of input images
can be done easily. Processing time for feature extraction takes something be-
tween 20 and 40 ms for a single typical outdoor image (320 × 240 px, 4 binary
layers, Intel Core2, 1.6 GHz).

5 Drift Estimation and Stereo Reconstruction

5.1 Drift Estimation

Drift estimation is based on a shift analysis of the feature lists over time from
image to image. This is done in two steps:

1. Each acquired image is converted into a list of features as described above.
The list of features from the last image(t-1) is denoted as list(t-1) and
the list from the actual image(t) is denoted as list(t). It is assumed that
for each feature of the list(t) exists exactly one corresponding feature of
the same type of the list(t-1). The most probable global shift vector (de-
noted in x and y-direction) of all features is estimated by means of a 2D
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shift histogram. At first, each feature from list(t) is assumed to have po-
tentially several corresponding features of list(t-1). However, assuming
that feature parameters change only slightly between images the assign-
ment possibilities are substantially reduced. For each established candidate
pair, the corresponding entry in the 2D shift histogram is incremented by
one. The resolution of histogram bins must not be set too high in order to
avoid spreading of similar entries over several histogram bins. To this end
we applied a value of two or more pixels. The maximum histogram entry is
interpreted as a first coarse estimation of the global 2D shift vector, which
is applied as starting value for the next step.

2. We can assume that the local shift vector of each feature in the image has
a relatively small deviation from the global coarse shift value, determined
in step 1. So, we run again through the feature pairing process, now with
a smaller expectation window with a size of a few pixels around the global
coarse shift vector. The result is an unambiguous assignment of features
of image(t) to the features of image(t-1). This assignment is used for
computing the fine mean value of the global 2D shift vector.

Considering the time-stamp of each acquired image, we can compute the global
2D shift speed vector (denoted in pixels per second). With regard to the known
field of view (FOV) of the camera (in degrees), the 2D angular speed vector
(denoted in degrees per second) is obtained. Finally, by adding distance data
(computed from stereo reconstruction, or – if available – from the helicopter’s
radar altimeters) and the turn rates from the rate sensor, the lateral 2D drift
vector (denoted in meters per second) results. The resulting drift vector can be
displayed to the pilot.

Of course it is true that the image drift will not be constant over the entire
image field below some small distance. However, regarding the application of
helicopter landing this effect can be neglected since the smallest distance between
camera and ground will stay above half a meter for most helicopter models and
landings are usually carried out on planar terrain only.

5.2 Height Estimation and Stereo Reconstruction

To estimate the helicopter’s height above the ground, a stereo matching process
of the images from the left and the right camera has to be carried out. This is
done with a similar method as applied for drift estimation. Before starting the
actual estimation we need to calibrate the camera setup. We apply a fronto-
parallel camera setup (see Fig. 3). For such a setup the distance z from a given
3D point P (z) results from the following equation:

z(d) = D
f

d
(1)

where d = dR − dL denotes the disparity of the image of P (z) in both images,
f denotes the focal length of the cameras and D is the lateral distance of both
cameras. For calibration purposes and to adjust some deviation of the principle
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points between the cameras, as well as for correcting small disalignments between
the cameras we apply an additional shift d′. To calibrate the setup some points
with known distance z0 have to be analysed and the value of d′ has to be adjusted
so that the result is just the known distance z0.

The contents of image(L) and image(R) are already converted to list(L)
and list(R). Here L stands for the left and R for the right camera. Now we
apply the following feature matching process:

1. It is assumed that for each feature of the list(L) exists exactly one corre-
sponding feature of the same type of the list(R). Again, the most probable
global shift vector (denoted in x and y direction) of all features is esti-
mated by means of a 2D shift histogram. By assuming the fact that feature
parameters are similar between the left and right image, the assignment
possibilities are substantially reduced. For each established candidate pair,
the corresponding entry in the 2D shift histogram is incremented by one.
Unlike the above method of drift estimation, we assume now that the verti-
cal shift component is small. Instead, the horizontal shift values could take
larger values. Again, we obtain a first coarse estimation of the global 2D
shift vector from the maximum histogram entry, which is applied as starting
value for the next step. In case of acquiring images from 3D objects which
are randomly distributed in depth, this method will adapt to some type of
a majority disparity. Concerning the application of helicopter landing, this
behaviour can be regarded as an advantage. It is true that each helicopter’s
landing field can be regarded as a more or less tilted plane. Thus, all features
from the ground plane are projected at similar disparities.

2. Again, we can assume that the local shift vector of each feature in the image
has some deviation from the global coarse shift value. Again we run through
the feature pairing process, but now with a much wider expectation window
in horizontal direction. Again, the result is an unambiguous assignment of
features of image(L) to the features of image(R). For each feature we store
the individual horizontal shift value which is fed into the stereo reconstruc-
tion process.

From the measured disparity list of features between the left and right image we
compute a set of 3D points (denoted in relative sensor coordinates). In order to
generate an estimated best fitting plane from this list we use a plane regression
algorithm. Basically, we implemented two similar approaches: Least square fit-
ting using direct matrix inverse and least square fitting using eigenvalues of the
covariance matrix.

In the first case we use the plane equation ax+by+z+d = 0 taking advantage
of the fact that the face normal will be oriented towards the camera in positive
z-direction. Thus, a coefficient for z can be set to 1, the resulting normal will be
of the form (a, b, 1). Minimization yields:⎛

⎝
∑

x2

∑
xy

∑
x∑

xy

∑
y2

∑
y∑

x

∑
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Fig. 3. Geometry setup for stereo camera calibration

with
∑

kl :=
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i=1
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3D points.
In the second case we first compute the center (x0, y0, z0) of all points. Then

we compute the covariance matrix⎛
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∑
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⎞
⎠ (3)

The normal vector is then the eigenvector of this matrix belonging to the smallest
eigenvalue.

In our case both methods perform well with the first method being slightly
faster.

6 Experimental Results

We conducted an experiment with a white plate with dark markings on it
mounted on a rotateable platform with a highly adjustable angle and the cam-
eras at a fixed distance (see Fig. 4). We recorded a set of measurements for
predefined angles between −20◦ and +20◦.

The results can be seen in Fig. 5. The maximal, mean and mean square error
of the measurements against the exact angles are 2.36, 0.5 and 0.48 respectively,
the variance of the error is 0.24. With an image resolution of 352 × 240 pixels
and 19 randomly distributed dark targets on a white plane at a distance of
0.5 m, our method provides an angular accuracy better than 0.5 degrees. The
accuracy of the measurements could be improved by using an appropriate camera
calibration model. In the present state the method generates a small systematic
error due to radial distortion. However, for most applications the method is
already adequate ever since angles beyond 10◦ are of no practical importance
for the intended helicopter application. The implementation runs at frame rates
better than 10 Hz on a typical desktop computer system.
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Fig. 4. Experimental setup to test measurement accuracy

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5  0  5  10  15  20
-10

-5

 0

 5

 10

-10 -5  0  5  10

Fig. 5. Results of angular measurements (same data plotted in two resolutions)

7 Conclusion

We presented a contribution to the small solution as support of the landing
of an helicopter in brownout situations. The proposed system consists of two
light-weight downward-looking cameras, one sensor for measuring the pitch and
roll rate of the helicopter, and a computer system for image processing, fea-
ture matching and display generation. We expect that the system is suitable for
easy integration in smaller helicopters, which do not provide any avionics inter-
face. For application in helicopters with digital avionics systems, data from the
AHRS (Attitude and Heading Reference System) and the radar altimeter can
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be fed directly into our system. In that case the separate rate sensor would be-
come obsolete. The radar altimeter data could serve for monitoring the system’s
integrity.

It should be mentioned, that state-of-the-art inertial navigation systems (INS)
can measure drift rates, as well. However, due to their operational principle,
which is mainly based on integrating data from accelerometers, the smallest de-
tectable drift value exceeds the demand for controlling the helicopter shortly
before touch-down. It is another advantage of our proposed system that it pro-
vides increasing drift measuring sensitivity as the height above ground decreases.
In fact, it reaches its best drift measuring performance during touch-down.

Flight trials in typical environments are planned to be conducted in the forth-
coming months, as part of the project ALLFlight. It is planned that the accuracy
of the drift estimation is evaluated during the flight tests comparing the rsults
to the highly precise drift estimators in the helicopter’s INS.
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Abstract. Graphical passwords have been proposed as an alternative to alpha-
numeric passwords with their advantages in usability and security. However, 
they still tend to follow predictable patterns that are easier for attackers to ex-
ploit, probably due to users’ memory limitations. Various literatures show that 
baroque music has positive effects on human learning and memorizing. To alle-
viate users’ memory burden, we investigate the novel idea of introducing ba-
roque music to graphical password schemes (specifically DAS, PassPoints and 
Story) and conduct a laboratory study to see whether it is helpful. In a ten min-
utes short-term recall, we found that participants in all conditions had high re-
call success rates that were not statistically different from each other. After one 
week, the music group coped PassPoints passwords significantly better than the 
group without music. But there was no statistical difference between two 
groups in recalling DAS passwords or Story passwords. Further more, we found 
that the music group tended to set significantly more complicated PassPoints 
passwords but less complicated DAS passwords.  

Keywords: Graphical password, Baroque music, Memorability, DAS,  
Passpoints. 

1   Introduction 

Graphical passwords have been proposed as an alternative to alphanumeric passwords 
and the main motivation is the hypothesis that people perform far better when re-
membering pictures rather than words [1, 2]. Visual objects seem to offer a much 
larger set of usable passwords. It is conceivable that humans would be able to remem-
ber stronger passwords of a graphical nature. However, users still tend to choose 
passwords that are memorable in some way, which means that the graphical  
passwords still tend to follow predictable patterns that are easier for attackers to ex-
ploit [6, 13, 14]. 

Various literatures reveal that users are the ‘weakest link’ in any password authenti-
cation mechanism, probably due to their memory limitations [11]. Although human 
memory capacity is unlikely to increase significantly over the next few years, recent 
psychological and physiological studies indicate that certain music like baroque music 
has positive effects of great importance on human memorizing and learning [20, 22]. 
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Motivated by these observations, we investigate the novel idea of introducing back-
ground baroque music to graphical password schemes with the purpose of alleviating 
users’ memory burden and improving usable security. Based on DAS, PassPoints and 
Story schemes, we conduct a laboratory study to explore the efficiency of background 
baroque music on memorizing graphical passwords. We are also interested in whether 
the background music would enable users to choose more complicated or less predict-
able passwords, which are usually more resistant to dictionary and other guess attacks.  

The following section briefly reviews graphical password schemes and related 
works. Sections 3 and 4 describe the methodology of our studies and present the  
results respectively. Section 5 provides several interpretations to the experiment and 
discusses the experimental results. Conclusion and future work are addressed in  
Section 6. 

2   Related Works 

2.1   Graphical Password Schemes 

In the open literature to date, the ubiquity of graphical interfaces for applications and 
input devices, such as the mouse, stylus and touch-screen, has enabled the emergence 
of graphical authentications. There have been three dominant techniques available 
which can be defined as: Drawmetrics (DAS [4], Syukri [9], YAGP [21]), Locimet-
rics (Blonder [3], PassPoints [7]) and Cognometrics (Déjà Vu [5], Story [6], Passfaces 
[10]) [19]. 

Drawmetrics systems require users to reproduce a pre-drawn outline drawing on a 
grid. A well-known scheme in this category is DAS which liberates users from re-
membering complicate text strings and has the advantage of better security over alpha-
numerical passwords [4]. Nevertheless, Passdoodle revealed that people are able to 
remember complete doodle images while less likely to recall the stroke order [8]. Fur-
thermore, Thorpe and Van Oorschot found that users tend to design symmetrical and 
centered or approximately centered passwords, significantly reducing password space 
in practice and impacting the security [14]. Gao et al. proposed a modification to DAS 
where approximately correct drawings can be accepted, based on Levenshtein distance 
string matching and “trend quadrants” looking at the direction of strokes [21]. 

Locimetrics systems are based on the method of loci, an old and well-known mne-
monic [18]. Originating in Blonder’s work, the approach involves users choosing 
several sequential locations in an image [3]. PassPoints [7] is a representative scheme 
of this category, where users may choose any place in the image as a password click 
point. Since it is a cue of great importance for users to recall their passwords, the 
image should be complex and visually rich enough to have many potentially memora-
ble click points. This scheme was found that although relatively usable, security con-
cerns remains. A primary security problem is hotspots: people tend to select obvious 
points in the image with high visual salience, leading to a reduced effective password 
space that facilitates more successful dictionary attacks [12,13].  

In the Cognometrics systems, users must recognize the target images embedded 
amongst a set of distractor images. This category includes Passfaces which relies on 
face recognition [10], Déjà Vu [5] based on abstract images and Story [6] where users 
are suggested to create a story and so on. User studies by Valentine have shown that 
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Passfaces has a high degree of memorability [15, 16], but Davis found that people 
tended to select faces of their own race and gender [6]. Assigning faces to users arbi-
trarily may alleviate the problem, whereas it would lead people hard to remember the 
password. A similar scheme to Passfaces is Story where the password selection is 
sufficiently free from bias [6]. But, the Story is not as good as Passfaces in memora-
bility, because few people actually choose stories despite the suggestion. In addition, 
memorability for abstract images in Déjà Vu was found to be only half as good as that 
for photographic images with a clear central subject [17]. 

Through the above discussion, we find that most graphical passwords either tend to 
follow predictable patterns or have a low degree of memorability. The crux of the 
problem is the users’ memory limitations. As human memory capacity is unlikely to 
increase significantly over the next few years, creating a nice environment for memo-
rizing passwords might alleviate users’ burden. There are demonstrations that music 
can improve memory and in what flows we will illustrate it.  

2.2   The Efficiency of Baroque Music 

Extensive researches have shown that music has different uses for education and 
therapy [20]. As our particular interest is to explore the role of music in learning and 
memorizing graphical passwords, we will briefly review the researches into the ef-
fects of music on learning in this subsection. 

Georgi Lozanov, a Bulgarian psychologist, made remarkable impact in integrating 
music into teaching practice. He created a teaching method called ‘Suggestopedia’, 
wherein the use of background music, particularly the baroque music with a rate of 50 
to 70 beats per minute (BPM), is a cornerstone of accelerated learning techniques. It 
is stated that the method of Suggestopedia involves three stages where different types 
of music are used for specific purposes. First, introduce music to relax participants 
and help them to achieve the optimum state for learning. Second, listen to an “active 
concert” with music from Mozart, Beethoven and Brahms. Finally, apply a “passive 
concert” to help participants move the information into the long-term memory. While 
no details are given as to which exact music is suggested for the first stage, both the 
concerts in the later two stages result in high memory retention [22]. Further more, 
Lozanov says that “well organized Suggestopedia accelerates learning 5 times on an 
average” [22]. 

Baroque music can help the brain produce alpha waves, and information imbued 
with music has a greater likelihood of being encoded in the long-term memory by the 
brain. That is why accelerated learning techniques introduce music into the learning 
process. For example, ‘Mozart Effect’ [23] is a phenomenon that music has a positive 
effect on learning and memory. In the following sections, we bring background ba-
roque music to graphical password schemes, specifically, PassPoints, DAS and Story, 
and do an investigation to check whether it can improve users’ memory or induce 
users to set stronger passwords. 

3   User Study 

As mentioned earlier, our evaluation is based on three representative graphical password 
schemes. For the purpose of collecting and analyzing the success rate, user habits, and 
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login time automatically, we reproduce three schemes which are intentionally very 
closely modeled after DAS [4], PassPoints [7] and Story [6], respectively. We still adopt 
the names “DAS”, “PassPoints” and “Story” for convenience. In this section, after de-
scribing the three schemes deployed in our experiments, we will present our methodol-
ogy in great detail. 

3.1   Brief Introduction of the Reproduced Schemes 

DAS is a drawing reproduction based scheme, where a 55×  grid was deployed for 
users to draw on. Each grid cell is denoted by rectangular discrete coordinates (x, y) 
∈ [0, 4] × [0, 4]. A completed drawing is encoded as the ordered sequence of cells 
that the user crosses whilst constructing the secret, with a distinguished coordinate 
pair (5, 5) inserted in both ends of each stroke. Two passwords are identical if the 
encoding is the same. Figure 1 shows how DAS works. Input a graphical password 
consisting of three strokes, which are colored by black, green and red in sequence. 
The drawing is mapped to (5,5)(1,2)(1,3)(2,3)(3,3)(3,2)(5,5); (5,5)(2,1)(2,2)(2,3)(5,5); 
(5,5)(2,1)(5,5). 

 

Fig. 1. An example of DAS password with length being 9 

In the PassPoints scheme, users are required to select several positions in a single 
image as their passwords and click close to the chosen points in correct order and 
within a tolerance distance for authentication. For example, the password in Figure 2 
contains five click points orderly labeled by small red rectangle. 

In Story, a password is a sequence of k (k≤9) images selected by the user to make 
a “story”. To keep consistent with that in [6], the images used here are also classified 
into nine categories, which are animals, cars, women, food, children, men, objects, 
nature, and sports. Images of “men” and “women” are gathered from FordMod-
els.com and the others http://images.google.com. Figure 3 shows the interface of 
Story, where the man, woman, car and the house are orderly selected and the underly-
ing story is “a gentle man and his girlfriend drive a car to their house”. 
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 Fig. 2. Passwords in PassPoints with length being 5   Fig. 3. An example of Story password 

3.2   Experiments 

We conducted a lab study with 28 subjects (16 males and 12 females). All the sub-
jects were university students of computer science and in the age range of 20 to 30. 
We hypothesized that background music could improve humans memory and then 
induced people to choose more complex passwords and take less time to log in. This 
study used a between-subjects design and had two conditions; half of the subjects 
were assigned to the control group (without background music) and half to the music 
group. None of them had previously used DAS, PassPoints or Story passwords. We 
chose the baroque music suggested by Lozanov with a rate of 50 to 70 BMP as the 
background music and utilized a Lenovo speaker to play it. The volume was set to 30-
40 decibels as suggested. 

Our study included two lab-based sessions. Session 1 took about two hours. At the 
beginning of Session 1, each participant was asked to read an instruction document. 
This provided information of their activities on the experiments and helped them 
know how DAS, PassPoints and Story work. To make the rules clearer, an example 
was included in each scheme. Then participants were required to complete the regis-
tration and login of DAS, then PassPoints, and finally Story. People were asked to 
reenter the password to confirm it. After a short delay (about 10 minutes), participants 
were asked to log in within three attempts. In the end, participants need answer a 
demographic questionnaire collecting information including age, sex and experience 
on graphical passwords. 

One week later, at Session 2, all the participants returned to the lab and tried to log 
in each scheme within three attempts using their previously created passwords. 

4   Results 

We used two types of statistical tests to assess whether differences in the data reflect 
actual differences between conditions or whether these may have occurred by chance. 
A t-test (two tails) was used for comparing the means of two groups and Fisher’s 
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exact test was used to compare recall success rates. In all cases, we regard a value of 
P<0.20 as indicating that the groups being tested are different from each other with at 
least 80% probability, making the result statistically significant. In the tables, “not 
significant” indicates that the test revealed no statistically significant difference be-
tween the two conditions (i.e., P>0.20). 

4.1   Success Rates 

We first examine success rates as a measure of participants’ performance. Table 1 
compares the successful recalls in each group. 

Table 1. Success rates in each group for DAS, PassPoints and Story 

10-minute test 1-week test 
Group 

ratio 
Fisher-
test 

ratio 
Fisher-
test 

DAS (no music) 78.6% 71.4% 
DAS (music) 92.9% 

P=0.59 
64.3% 

P=1 

PassPoints (no music) 100% 35.7% 
PassPoints (music) 100% 

P=1 
92.9% 

P=.004 

Story (no music) 100% 92.9% 
Story (music) 100% 

P=1 
92.9% 

P=1 

 
In the 10 minutes short term phase, the success rates were high on the whole, indi-

cating that participants’ memory was not strongly taxed. In PassPoints and Story, 
participants under both conditions recalled their passwords. In DAS, the success rate 
of the music group was 92.9%, higher than that of the control one (78.6%). However, 
a Fisher’s exact test yields a result of P=0.59, indicating that the difference was not 
statistically significant. 

Table 2. Complexity of DAS secrets 

Group 
DAS 
(no music) 

DAS 
(music) 

Avg. 3.36 3.71 
t-test Not significant 
S.d. 1.71 2.25 
Max 7 7 

Strokes 

Min 1 1 
Avg. 13.79 10.43 
t-test t=1.34, P<0.20 
S.d. 6.39 6.41 
Max 27 21 

Password 
Length 

Min 2 1 

 
After one week, the performances of two groups varied in schemes. Both groups in 

Story had the same success recall rate 92.9%, but differed in DAS and PassPoints. In 
DAS, only 64.3% of the music group and 71.4% of the control group were able to 
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recall their passwords. It appears that the control group performed better than the 
music group. It should be noted that it was only a difference of one person in practice. 
The result of Fisher’s exact test showed that there was no statistical difference be-
tween two conditions. In PassPoints, we found a significant difference between two 
groups. The music group was significantly more likely to successfully recall the 
passwords than the control group. In addition, the success rate of the control group 
decreased from 100% in the previous phase to 35.7% while the success rate of the 
music group only decreased by 7.1%. It aligns with psychology research which con-
tinues to show that certain music advance the long-term memory. 

The results suggest that the background music works differently when it was avail-
able in different graphical password schemes. In Drawmetrics and Cognometrics 
systems, background music seems to have no influence on short-recalls or long-term 
memory. But in Locimetrics systems, it appears that background music could signifi-
cantly help people remember passwords in long-term memory. 

4.2   Password Complexity 

For each scheme, we compare password complexity in both groups. While the pass-
word length in PassPoints or Story is easy to understand, it is necessary to explain it in 
DAS. In DAS, the length of a password yields by adding the lengths of its component 
strokes wherein the length of a stroke is the number of coordinate pairs it contains 
exclusive of the distinguished ones(5,5). For example, for the password in Figure2, the 
length of each stroke is 5, 3 and 1 respectively, producing a password length of 9. 

Table 3. Complexity of PassPoints and Story secrets 

Password length 
Group 

Avg. t-test S.d. Max Min 

PassPoints (no music) 3.79 1.20 5 1 
PassPoints (music) 4.5 

t=1.61, P<0.20 
1.05 6 3 

Story (no music) 3.64 0.97 6 2 
Story (music) 4.07 

Not significant 
0.70 6 3 

 
In DAS (see Table 2), the average password length with music was 10.43 and 

without, 13.79. The standard deviation of password length with music was 6.41, com-
pared to 6.39 without. A t-test yields a result of t=1.34, P<0.20(two tails), indicating 
that the password length in the music group was significantly shorter than that in the 
control group. The background music increased the stroke count of passwords on 
average, but not to a statistically significant level. The standard deviation with respect 
to stroke count was higher with music (2.25 vs. 1.71). 

While background music reduced the password length in DAS, it increased the 
password lengths in PassPoints and Story. As shown in Table 3, the average password 
length with music in PassPoints was 4.5 as opposed to 3.79 without. A t-test yields a 
result of t=1.61, P<0.20(two tails), indicating that there was statistically significant 
difference between two conditions. In Story, the password length for two groups dif-
fered by 0.43 (4.07 vs. 3.64), which is not statistically significant.  
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As such, the background music had a negative effect on DAS password length, but 
encouraged people to choose more complex passwords in PassPoints and Story. 

5   Discussion 

5.1   Validation of Hypotheses 

Based on the results of our study, we now revisit our hypotheses that background 
music could improve humans’ memory and then induced people to choose more com-
plex passwords. This hypothesis was only supported in PassPoints. In PassPoints, 
people in the music condition not only chose significantly more complicated pass-
words, but also had significantly higher recall success rates in the long-term test. 
However, in DAS, the average password length of the music group was much shorter 
than that of the control group.  

5.2   Recall Errors 

This subsection will discuss the recall errors in DAS and PassPoints (Few errors oc-
curred in Story and thus be ignored). People committed different types of error shown 
in Figure 4 (DAS) and Figure 5 (PassPoints). In DAS, there are three types of error: 
Stroke (i.e., entering more or less strokes), Pwd-Len (i.e., people could recall stroke 
count but forget the length of password) and Position (others including mixing up the 
stroke order or crossing incorrect cells). From figure 4, we can see that errors in 
Stroke and Pwd-Len account for the main proportion of recall errors. At the same 
time, music group committed more errors than the non-music group and the differ-
ence resulted possibly from the long-term recall test.  
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                  Fig. 4. Recall errors in DAS                         Fig. 5. Recall errors in PassPoints 

There are also three types of error in PassPoints: Pwd-Len (i.e., forgetting the 
password length), Position (i.e., people can recall the password length but click points 
outside the tolerance region) and Order (i.e., only mixing up the click-points order) 
(see Figure 5). In this scheme, the nature of many recall failure was down to either 
forgetting the password length or clicking points outside the tolerance region. In recall 
errors and especially in Position errors, music group had a great advantage over non-
music group, probably due to its higher success recall rate in the long-term recall test. 
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5.3   Limitations 

Our intent in this study was to examine the effects of background music on the memo-
rability of graphical passwords. We made our study follow the established methods of 
experimental psychology as much as possible and acknowledged that it did not mirror 
real-life usage. First, the participants in our study (all of them were university students 
of computer science) only represented a small part of the whole. It was important to 
get a good selection of people with various backgrounds in the further studies. Sec-
ond, users are unlikely to familiar with and create three different graphical passwords 
one after the other in real life, or be asked to recall in quick succession them after one 
week (without having used any of them in the intervening time). Third, the partici-
pants had no incentive to perform as if protecting or accessing anything of real-life 
value to them, therefore it was not difficult to understand that many passwords cre-
ated in both conditions were weak. For example, in Story, the average password 
length of the control group was less than 4. Furthermore, the effect of the background 
music volume remains to be discussed when it was embedded into a scheme. Despite 
these limitations, our controlled laboratory experiment paved the road to numerous 
further studies. 

6   Conclusion 

Results of the user study have shown that it is an effective enhancement to introduce 
baroque music to the PassPoints scheme. Surrounding with music, people not only 
tended to construct significantly more complicated passwords than their counterparts 
without the music stimulus, but also performed significantly better in terms of recall 
success in the long-term tests. This result indicated that the background music im-
proved the memorability of passwords in PassPoints. 

In DAS and Story, the introduction of background music has been shown unneces-
sary for security and usability. The recall of the passwords in both conditions was not 
statistically different from each other in short-term or long-term test. Further more, 
the background music significantly impaired the complexity of DAS passwords.  

Although results obtained in three representative schemes are not consistent and 
should be treated with caution, we believe that this work provides a significant exten-
sion to the study of security and usability of graphical passwords. The future work 
includes a larger sale of studies with careful experimental design and Locimetrics 
systems will be our focus. 
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Abstract. The tear lipid layer is not homogeneous among the popula-

tion and its classification depends on its width. Too thin or too thick films

can lead to unhealthy eyes as well as create problems when interacting

with contact lenses. This work proposes a preliminary methodology to

classify the tear lipid layer according to its texture into four main cate-

gories. The proposed methodology works on several stages to detect the

region of interest, extract the texture descriptors on colour information

and classify these descriptors. The method has been tested on several im-

ages from each tear type. In some cases, we obtain classification results

over the 90%.

Keywords: Tear film, lipid layer, opponent colors, band pass filtering.

1 Introduction

The tear film is a complex, dynamic structure of lipids, proteins, and mucins
riding on the hydrophobic surface of the epithelium [1]. Classically, the normal
tear film is described as a trilaminar structure comprising a superficial lipid layer,
an intermediate aqueous phase and an underlying mucous layer[2]. The tear film
provides a smooth optical surface by compensating for the micro irregularities
of the corneal epithelium[3]. It also plays an essential role in the maintenance
of ocular integrity by removing foreign bodies from the front surface of the eye,
supplying antimicrobial and mechanical protection to the corneal epithelium[4,5].
Furthermore, since the corneal surface is avascular, it is highly dependent on the
tear film for its nutrition[6].

There are several clinical tests available to evaluate quality or quantity aspects
of the tear film. However, some of them are invasive and may disrupt the tear film
[7,8,9,10] and others are very expensive for clinical settings[11]. The observation
of the superficial lipid layer offers a valuable and non invasive technique that
evaluates the tear film quality, since the lipid layer enhances the stability of the
tear film by retarding water evaporation from the surface of the open eye[12].

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part II, LNCS 6112, pp. 388–397, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Lipid layer thickness can be evaluated by the observation of the interference
phenomena [13,14,15], which correlates with tear film quality [16,17,18], since a
thinner lipid layer speeds up water evaporation, decreasing tear film stability.[19]

Guillon [3,13] proposed five main categories of lipid interference patterns. In
order of increasing thickness and visibility these are: open meshwork, closed
meshwork, waves, amorphous and colours. Abnormal appearances and phenom-
ena are also described in [20]. Thicker lipid layers (≥ 90 nm) are readily observed
since they result in colour and wave patterns. Thinner lipid layers (≤ 60 nm) are
difficult to observe, since the colours and other distinct morphological features
are not present. If the lipid layer is ≤ 50 nm, only a gray or white surface, without
other features, is observed. However, this technique is affected by the subjective
interpretation of the observer and sometimes is difficult to observe, especially
with thinner lipid layers that lack distinct features. Some techniques have been
designed to objectively calculate the lipid layer thickness where a sophisticated
optic system was necessary [21,22], other techniques used an interference cam-
era that evaluates the lipid layer thickness by only analyzing the interference
colour[23].

The purpose of this study is to present a novel methodology for the clas-
sification of the eye lipid layer into four of the categories defined by Guillon,
based on the characterization of both texture and colour patterns. The amor-
phous category has not been included in this research due to the lack of images
from this category in the clinical image dataset available for the validation of
our methodology. In a first step the lipid layer patterns have been classified into
waves, colours and meshworks; in a second step a refinement of the meshwork
patterns into open meshwork and closed meshwork, has been performed.

This paper is organized as follows. Section 2 describes the proposed methodol-
ogy including the acquisition of the image, the extraction of the region of interest
and the color texture analysis. Section 3 shows the experimental results obtained
by the system using a set of images provided by opticians. And section 4 briefly
exposes and discusses the conclusions of this work.

2 Methodology

The proposed methodology consists of four main stages. The first stage involves
the acquisition of the digital image of the lipid tear film. The second stage entails
the extraction of the region of interest where the classification takes place. In the
third stage, the underlaying texture is analyzed. Finally, the last stage classifies
the images into the categories previously presented. In the following sections, all
these stages will be explained in detail.

2.1 Acquisition of the Lipid Film Image

The acquisition of the image is the first step towards the tear film classifica-
tion. The lipid layer was assessed with the TearScope Plus R© (Keeler, Windsor,
United Kingdom) attached to a Topcon SL-D4 slit lamp. The Tearscope Plus R©
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(Keeler, Windsor, United Kingdom), designed by Guillon [13,24], is the instru-
ment of choice for rapid evaluation of lipid layer thickness in clinical settings.
The Tearscope Plus R© projects a cylindrical source of cool white fluorescent
light onto the lipid layer illuminating almost all of the corneal surface area and
the interference patterns are observed with the magnification of the slit-lamp
microscope.

The interference lipid layer images were acquired by a Topcon DV-3 digital
camera and stored via Topcon IMAGEnet i-base with a spatial resolution of
1024×768 pixels. Since the tear lipid film is not static between blinks, a video was
recorded and analyzed to select the image to be processed. An image is suitable to
go through the processing step when the tear lipid film is completely expanded
after the eye blink, so only the frame fulfilling this condition is processed to
extract the region of interest, as explained in the next section.

2.2 Extraction of the Region of Interest

The extracted image, as depicted in Figure 1(a), contains several areas of the
eye, including the sclera, eyelids, eyelashes and other non interesting areas. The
experts that analyze the image usually focus on the bottom part of the iris,
since this is the area where the tear is shown with better contrast. This fact
forces a previous preprocessing step to extract the region where the lipid tear
film classification takes place.

(a) (b)

Fig. 1. (a)An original image acquired with the TearscopeP lus. (b) The luminance

component in the LAB color space.

The acquisition technique that we use generates a central area in the image,
more illuminated than the others, that corresponds to the area used by the
experts in the classification step. Thus, to obtain the region of interest we restrict
our analysis to the most illuminated area in the image.

Concretely, the proposed method uses a normalized cross-correlation to locate
the most illuminated area of the image. In order to restrict our analysis to the
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illumination, the input image is transformed to the LAB color space and only
the luminance component L, depicted in Figure 1(b), is analyzed in this step.
The cross-correlation technique matches the luminance component with several
templates that cover the various shapes the region of interest can have. Figure
2(a) shows the matching score between one of the templates and the image. The
highest peak corresponds to the best match and, therefore, with the position of
the area of interest, as depicted in Figure 2(b).

(a) (b)

Fig. 2. (a) Correlation value for a given mask. (b) Final region of interest.

2.3 Texture Analysis

Our textural features are extracted by applying a bank of filters to the input
image and computing the energy of the filter responses. Concretely, we have used
the rotationally invariant bank of band-pass filters described below.

Rotational invariant filter bank. The Difference of Gaussians (DoG) is one
of the most widely used filters to extract texture features. The difference of two
smoothed images using different Gaussian kernels highlights the image features
present at different scale ranges. The kernels we have used in this project are
defined as,

G(x, y, σ1, σ2) =
1

2πσ2
1

e
− x2+y2

2σ2
1 − 1

2πσ2
2

e
−x2+y2

2σ2
2 (1)

Using this non orientation selective filter kernel, the texture features present at
particular spatial frequency ranges are extracted by varying the parameters σ1

and σ2.
As stated in section 1, tears can be classified into five different categories

according to the width of the lipid layer which influences the texture features
of the tear. This work is focused on the classification of four of these categories:
colour fringes, wave, closed meshwork and open meshwork. The simplified texture
pattern for this four tear types is shown in Figure 3. As the pattern for each
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type of tear is different, a different frequency band is expected to have a higher
response. Thus, a wide range of frequencies, covering the whole spectrum of
frequencies of interest, have been studied.

(a) (b) (c) (d)

Fig. 3. Simplified texture pattern of the (a) colour fringe, (b) wave, (c) open meshwork

and (d) closed meshwork tear film types

The experimental results, widely discussed in section 3, will confirm our in-
tuition that the four types of tears produce high responses to different and very
limited frequency bands, which will allow us to focus our future research in those
particular frequency ranges.

As shown in Figure 3, some of the target patterns contain distinctive colour
features. For this reason, we have included colour information in the texture
analysis. We have extracted the texture in each colour component -R, G and B-
and analyzed the results in an opponent colour space, as described in the next
section.

2.4 Color Space: Opponent Colours

The opponent process theory of human colour vision was proposed by Hering
[25] in the 1800’s. Following the experiments of Hurvich and Jameson [26] in
1957, considerable neurophysiological evidence emerged in 1960’s supporting the
colour opponency [27].

A receptive field is a pattern of photoreceptors in the retina that determines
the behaviour of a cell in the visual system. Receptive fields have a centre-
surround organization so that, for example, a cell that is excited by a light
stimulus in the centre of its receptive field will be inhibited by a light stimulus
in the annulus surrounding the excitatory centre. This causes the cell to exhibit
spatial antagonism.

The receptive fields for some cells include different classes of photoreceptors,
causing the cells to exhibit chromatic antagonism. Single opponent cells are ex-
cited (or inhibited) by the response to a class of photoreceptor in the centre field
and inhibited (or excited) by the response to a different kind of photoreceptors
in the surrounding field.

The existence of these receptive fields was stated by Edward Hering as pairs
of colours that are never seen together at the same place at the same time. This
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pairs of opponent colous, red-green, green-red and blue-yellow; are the differences
used in our methodology to analyze the colour of the regions of interest. This
three components correspond to a cell with a red, green or blue centre and its
opposite surround. More precisely,

RG = RF − p ∗ GF

GR = GF − p ∗ RF

BY = BF − p ∗ (RF + GF )

(2)

where p is a low pass filter and RF , GF and BF are the filtered RGB components,
as explained in the previous section. Given these three new color components -
RG,GR and BY - the texture descriptor is calculated as its probability density
function in the region of interest of the input image.

3 Results

The proposed methodology was tested over a set of 91 digital images of the tear
lipid layer including 22 colour fringes, 14 wave, 27 open meshwork and 28 closed
meshwork images. All the images have a spatial resolution of 1024 × 768 pixels
and have been acquired with the TearScopeP lus.

The technique chosen for the classification step is the k-nearest neighbour
algorithm [28] that, despite being a simple machine learning algorithm, is widely
used in pattern recognition and produces good results. In this particular case,
we have used an approximation with k=1 nearest neighbour and the euclidean
distance as the distance metric.

In order to analyze the generalization of our results to larger data set, a 6-fold
cross validation has been performed. The original dataset has been randomly
partitioned into six subsets, using five of them for the training step and the
remaining one for the validation. The process has been repited six times and the
results averaged over these six executions.

Our experiment was divided into two stages. The first stage classifies the tear
film image into three main categories - colour fringes, waves and meshworks
- and the second stage classifies the images in the last category into open or
closed meshwork. This is due to the fact that the similarities between the open
and closed meshwork patterns create too many misclassifications when analyzed
separately with the other tear types but the accuracy improves when both tear
types are agrupated into a category that we have called meshwork.

Thus in the first experiment, all the 91 images have been classified into three
categories - colour fringe, wave and meshwork. Tables 1, 2 and 3 show the confu-
sion matrix for the three frequency ranges corresponding to the frequencies were
the best classification result for each type is achieved.

The results obtained confirm our intuition that the three main categories
produce high responses to different and very limited frequency bands, which will
allow us to focus our future research in those particular frequency bands. Table 4
shows how the different categories are distributed along the frequency spectrum.
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Table 1. Best classification for the colour fringe tear film type. Confusion matrix for

the filter with σ1 = 7 and σ2 = 1.

��������������Obtained Type

Expert Type
Colour Fringe Wave Meshwork

Colour Fringe 94.58% 1.67% 3.75%

Wave 20.75% 73.75% 5.50%

Meshwork 9.64% 11.18% 79.18%

Table 2. Best classification for the wave tear type. Confusion matrix for the filter with

σ1 = 17 and σ2 = 7.

��������������Obtained Type

Expert Type
Colour Fringe Wave Meshwork

Colour Fringe 81.42% 1.58% 17.00%

Wave 0.00% 94.24% 5.75%

Meshwork 11.60% 11.42% 76.98%

Table 3. Best classification for the meshwork category. Confusion matrix for the filter

with σ1 = 3 and σ2 = 0.5.

��������������Obtained Type

Expert Type
Colour Fringe Wave Meshwork

Colour Fringe 91.67% 1.75% 3.68%

Wave 21.00% 70.00% 9.00%

Meshwork 8.16% 6.24% 85.60%

Table 4. Distribution in the frequency space of the best result for each category

�����σ1

σ2
98 41 17 7 3 1

41 *** *** *** *** ***

17 *** *** *** ***

7 WAVE *** *** ***

3 *** ***

1 COLOUR ***

0.5 MESHWORK

Meshwork classification refinement. As previously explained our meshwork
category includes the open and closed meshwork tear types. Our next step is to
further analyze the images classified in this category in order to assign them
to their correct tear types. To this end, the images classified in the meshwork
category have been analyzed with the same methodology presented in this paper.
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Table 5. Best classification for the open meshwork tear type. Confusion matrix for the

filter with σ1 = 17 and σ2 = 1.

��������������Obtained Type

Expert Type
Open Meshwork Closed Meshwork

Open Meshwork 86.41% 13.59%

Closed Meshwork 40.72% 59.28%

Table 6. Best classification for the closed meshwork tear type. Confusion matrix for

the filter with σ1 = 7 and σ2 = 0.5.

��������������Obtained Type

Expert Type
Open Meshwork Closed Meshwork

Open Meshwork 77.41% 22.59%

Closed Meshwork 37.33% 62.67%

4 Conclusions and Future Research

In this paper we have presented a preliminary methodology to classify the tear
lipid film into the colour fringe, wave, open meshwork and close meshwork tear
types. Tear film classification is necessary to evaluate both quality and quantity
aspects from the tear and the automatization of this classification is important
ta avoid the burden and subjectivity of the manual task. The results obtained so
far show that a colour-based frequency analysis is suitable for the task in mind.
Furthermore, this work shows how the target features that allow the correct
classification of the tear types are present in limited frequency bands.

The next step in our research is the integration of the results in the frequency
bands of interest, the analyis of different texture descriptors and the analysis of
different classification techniques among others.

The obtained results show a quite good accuracy in the classification of some
of the tear types achieving over a 90% of correct classifications. Despite these
resutls, the main contribution of the paper to our future work is the determina-
tion of the limited and very defined frequency bands where the response for each
type is highest. This contribution will allow us to focus our future work in those
frequency bands with the aim to improve the results obtained by the presented
methodology.
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Abstract. Bound documents either scanned or captured with digital cameras of-
ten present a geometrical warp that makes text-lines curled. The identification 
of text-lines is one of the steps for document de-warping when only a single 
image is available. This paper presents a new method for text-line segmenta-
tion. It is based on a simple, but effective, skew detector proposed by Ávila-
Lins and simplifies the idea of coupled snakes introduced by Bukhari to a  
moving parallel line regression. The proposed method performed better than the 
best of the similar algorithms in the literature. 

Keywords: Text-line segmentation, document de-warping, layout analysis. 

1   Introduction 

The digitalization of bound documents, such as books, either performed by flatbed 
scanners or digital cameras often yields images that exhibit a geometrical distortion in 
the region close to the book spine. Such distortion not only makes more difficult the 
document reading for humans, but also degrades OCR performance. Text-line 
envelope segmentation is one of the pre-processing steps for many algorithms. The 
segmentation process can be accompanied of a baseline and/or mean line estimation, 
Figure 1 illustrates these typographic lines and others. 

Bukhari, Shafait, and Breuel [9] introduce the concept of baby snakes for extrac-
tion of text-lines. Later on, they use coupled snakelets [7] for the same purpose. Final-
ly, in references [8][10] they obtain text-lines by ridges detection on grayscale im-
ages. Coupled snakes are used for base/mean line estimation. De-warping is done by 
calculating y-coordinates using upper/lower neighboring lines followed by a perspec-
tive correction. 

Stamatopoulos and his colleagues [6] detect text-lines and estimate a document 3D 
model by approximating the border lines with a polynomial of degree three. Fu et al  
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Fig. 1. Font typographic lines following reference [14] 

[2] estimate border points fitting them in 3D-cylinder model. Masalovitch and Mes-
tetskiy [1] estimate the spaces between lines; a bezier patch is built and followed by 
de-warping procedure. 

This paper proposes new text-line segmentation method. It borrows ideas from a 
simple but effective skew detector proposed by Ávila-Lins [3] and coupled snakes 
introduced by Bukhari, Shafait, and Breuel [7] and can be used regardless document 
orientation. Reference [4] uses the new method presented herein for de-warping 
scanned documents. It is organized as follows. Section 2 presents details of the new 
algorithm. Section 3 shows that the proposed algorithm benchmarked on the CBDAR 
2007 de-warping contest test-set achieved an accuracy rate of 91.10% with an under 
segmentation rate of 1.81%, while the performance of algorithm by Bukhari, Shafait, 
and Breuel [7], the best algorithm in the literature yields 89.65% and 3.30%, respec-
tively. Section 4 concludes this works.  

2   Segmenting Text-Lines  

The proposed algorithm improves the Ávila-Lins skew detection scheme [3] for text-
line segmentation which is summarized below as illustrated in Figure 2. Black and 
white images are assumed as input for the algorithm. 

1. Component labeling transforming components as enclosing blocks (Figure 2.a); 
2. For each unvisited block B do: 

a. Locate the nearest unvisited neighbor block N of block  B (Figure 2.b); 
b. Group a text-line starting from blocks B and N (Figure 2.c-d) forming up-

per/lower or right/left lines; 
c. Detect the skew angle and landscape/portrait orientation of the document; 
d. Detect the up-down orientation of the document; 

3. Detect total document rotation;  

a. b. 

c. d. 

Fig. 2. Ávila-Lins skew detection [3] 
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This (in C language) algorithm is fast. For a 200dpi scanned image, it takes 115ms 
on a Pentium IV of 2.4GHz and 512MB of RAM with accuracy of 98%. Despite the 
good results in skew detection, text-line segmentation requires a more robust  
approach. 

2.1   Letter/Line Properties 

Let V be the vector formed by the extreme points of a line. The slope of V, called the 
V angle, is considered to be the angle that the text-line forms with the horizontal line. 
If the absolute value for the x-component is greater than the y-component of this 
vector, the line is considered to be horizontal, otherwise it is vertical. The Text-line 
length is set to V length. 

Table 1. Letter properties definition 

Orientation
Horizontal Vertical 

Letter property  

Letter case height Block height Block width 

Letter case width Block width Block height 

Letter case top point Upper middle point Left middle point 

Letter case bottom point Lower middle point Right middle point 
 
One may notice that letter properties are subject to orientation, thus term “block” is 

used for the “letter case”, the enclosing box relative to image; term “letter” depends 
on the document orientation as described in Table 1. The discrimination between the 
character height and width is useful as the width is less stable than the height due to: 
variable font width values and character merging caused by digitization and/or binari-
zation (e.g. see “precondition” and “width” of Fig. 3). 

For the steps presented in the next section, some terms are underlined in a high 
level language with a more precise definition below; the ratio function is defined  
by (1): 

• Small block –  Box where width and height have less than 6 pixels;  
• Similar size letters – Letters N and M have similar size if the , 0.6 and , 0.1. 
• Parallel lines with offset – an offset of 40% relative to y-axis intercept (i.e. | |) is added to top/down lines; 
• Smaller than window mean widths/heights – Letter N and properties window W 

with , 0.6  and . 
• Maximum distance between letters – 2.50 times window mean height; 
• Search for text-line upwards/downwards – search range are limited to 3 times the 

height of a letter;   , , / ,   . (1)
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2.2   The New Approach 

The main idea of the new method proposed here is to group together characters with 
same properties by “walking” through the document to form a text-line. Instead of 
coupled snakes [7], moving parallel straight lines are used; Section 2.2.1 explains how 
to obtain them. As the warp level may distort character sizes, a moving letter window 
is used while a text-line is formed; A window of length of 7 components was used 
herein. Listing 1 summarizes the whole procedure. 

Listing 1 

1. Label components transforming them as enclosing boxes; 
2. Remove small blocks or if a block encloses another totally; 
3. For each block  do (term “block” is used; orientation is not available): 

a. Locate the nearest neighbor block  of block ; 
b. If N and B have similar sizes, place them in   priority queue, with , , ; 

4. While  is not empty 
a. Pull-out neighbors (B and N) from   
b. If any of B or N was visited go to step 4 
c. Create new text-line TL and add (B and N) neighbors 
d. Search letters between in B to N direction (width/height are orientation de-

pendent): 
i. Create a moving properties window; 

ii. Search for a letter using parallel lines; 
iii. If a letter is found add it to TL if: 

1. It has similar size when compared to moving mean of 
widths/heights or if it is smaller than window mean 
widths/heights; 

2. The box center is between  parallel lines with offset; 
3. The distance between the last letter and new one is less than the 

maximum distance between letters; 
iv. Add the letter onto neighbor candidate list on TL if conditions 1-2 

above are met and the third is not; 
v. If the letter was added to TL, append it to properties window if it is 

not smaller than window mean widths/heights; this prevents from 
adding small components (e.g. accents, punctuation marks) to parallel 
regression; 

e. Execute previous step for direction N to B; 
f. Place text-line in  priority queue, with   
g. Mark all letters on the new text-line as visited; 

5. Remove text-lines whereas its angle is 90° apart most common text-line angle; 
6. While  is not empty (process bigger text-lines first) 

a. Pull-out text-line TL from  
b. If TL was merged go to step 6 
c. For each letter on TL search for text-line upwards and add it to UTL; 
d. For each letter on TL search for text-line downwards and add it to DTL; 
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e. If there are any letter in common between UTL and DTL then 
i. Mark current TL text-line as an invalid text-line; 

ii. Delete it from text-line list; 
iii. Go back to step 6; 

f. Merge two text-lines in UTL if one have a candidate neighbor of the other 
and vice-versa; 

g. Add new textlines to  with   
h. Repeat steps 6.f-g  for DTL; 

7. Remove text-lines where letter count is less the moving window; 
8. Remove text-lines if it contains a letter on 10% of image border (mark them as 

noise); 
9. For each text-line 

a. Calculate a simple moving linear regression [12] for top/down points 
b. Compute corresponding point in the line and its deviation error 

10. Set top or down points as baseline whether the set with less error; 

Figure 3 shows an example of the execution of step 4, where letters with boxes belong 
to the moving window. Figure 4 shows on upper left finding parallel lines and neigh-
bor candidates between lines on upper right, on bottom shows merging result. Figure 5 
shows the execution of step 7-8, with top and down sample points in gray and baseline 
points in black. The Method described herein can also be used to estimate document 
orientation using text-line angle histogram. 
 

  

  

  

  

  

Fig. 3. Example of text-line formation by the new method 
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Fig. 4. Text-lines merging procedure: (upper left) parallel lines; (upper right) candidate 
neighbors; (bottom) merging result 

  

  

  

 

Fig. 5. Baseline estimation with simple moving simple linear regression 

2.1.1   Parallel Line Regression 
The aim of parallel lines regression is to minimize the error function of equation (2). 
Where  is the slope which is the same for both lines;  and  parallel lines inter-
cept for top and bottom lines, respectively; ,  and ,  are the top and bottom 
samples points, respectively;  is the number of pairs of sample points. 

E m, b , b m x b y m x b y (2) 

Making E/ m E/ E/ 0, results in eqs. (3)-(5). 

     (3)

Candidate 
neighbors 

Candidate 
neighbors 

Search range de-
pends on letter 

height 

Search range depends on letter height
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     (4)

     (5)

Using Cramer’s rule, ,  and  values are obtained in eqs. (6)-(9). 

∆  0
0

 (6)

∆∆ ;  ∆  0
0

 (7)

∆∆ ;  ∆  0   (8)

∆∆ ;  ∆
0

  (9)
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3   Results 

Reference [11] compares the methods presented in [7][9][10] using CBDAR de-
warping dataset [5]. Herein, the same comparison methodology, described in [13], is 
used. The ground truth and hypothesized (processed) image have each line painted 
using a different color. Their similarity is compared by a pixel-correspondence graph, 
where each node represents a text line in both images; the edges are text-line pixels 
that are shared between them where the weight is the total number of pixels shared. 
Black and white are not text-line colors; they stand for non-textual (noise) and back-
ground pixels, respectively. An incoming edge is significant if wi/P ≥ Tr and wi ≥ Ta, 
where wi is the weight of the edge; P is the total number of node pixels; Tr and Ta are 
the relative and absolute thresholds. The following parameters are computed (copied 
from [11]). 

• Number of ground truth lines (Ng) – total number ground truth lines in the whole 
database. 

• Total correct segmentation (No2o) – the number of one-to-one matches between the 
ground-truth components and the segmentation components. 

• Total over segmentations (Noseg) – the number of significant edges that ground 
truth lines have, minus the number of ground truth lines. 

• Total undersegmentations (Nuseg): the number of significant edges that segmented 
lines has minus the number of segmented lines. 

• Oversegmented components (Nocomp): the number of ground truth lines having more 
than one significant edge. 

• Undersegmented components (Nucomp): the number of segmented lines having more 
than one significant edge. 

• Missed components (Nmcomp): the number of ground truth components that matched 
the background in the hypothesized segmentation. 

• False alarms (Nfalarm): the number of components in the hypothesize segmentation 
that did not match any foreground component in the ground-truth segmentation. 

• % correct segmentation (Po2o) – No2o/Ng 
• % oversegmented text-lines (Pocomp) – Nocomp/Ng 
• % undersegmented text-lines (Pucomp) – Nucomp/Ng 
• % missed text-lines (Pmcomp) – Nmcomp/Ng 

Table 2 shows results of new algorithm and [7][9][10] (copied from [11] until writing 
of this article), where G-ridges and B-ridges stands for [10] the segmentation in 
grayscale and binary images, respectively. The proposed method has the best perfor-
mance for under segmentation, false positives and correct segmentation figures. No 
parallel line merging was registered, lines where merged if they were aligned but 
belong to other column such as in Figure 6. Despite the highest missed components 
among other algorithms, missed lines are suppressed by matched ones when it is used 
together with a de-warping method. An example of successful (Po2o=100%) 
processing can be seen in Figure 7 with noisy pixels in black. The proposed algorithm 
proved also to be fast, running in 8.75s with Java implementation over Windows 
Vista Business on a Dell D531 3GB. 
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Table 2. Algorithms comparison metrics 

Algorithm Ng Ns Po2o Pocomp Pucomp Pmcomp Noseg Nuseg Nfalarm 

New 3091 2924 91.10% 21.71% 1.81% 4.43% 682 57 785 

B-Snakes 3091 3371 87.58% 5.79% 2.91% 0% 294 117 13199 

Ridges (G)  3091 3045 89.10% 3.53% 3.85% 0.91% 115 131 1186 

Ridges (B)  3091 3115 89.65% 4.40% 3.30% 0.29% 144 110 2183 

C-Snakes 3091 2799 78.26% 1.26% 9.06% 0% 39 359 3251 

 

 

 

Fig. 6. Line merging examples 

 

Fig. 7. Example of successful processing 
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4   Conclusions 

A new algorithm for text-line segmentation is presented. It outperforms the other 
state-of-the-art algorithms with 91.10% of accuracy and 1.81% of under segmentation 
rates. It can automatically detect text baselines with any orientation, proving also to 
be fast running in 8.75s with Java implementation for CBDAR 2007 images. The new 
process was used successfully in correcting the binding distortion in scanned books 
[4] where the document orientation is arbitrary.  

Acknowledgments 

The authors like to thank Syed Bukhari, Thomas Breuel and Faisal Shafait for provid-
ing page segmentation performance evaluation program source code and for discus-
sions on the subject. 

The research reported herein was sponsored by a MCT-Brazilian Government 
R&D Grant and CNPq funding. 

References 

[1] Masalovitch, A., Mestetskiy, L.: Usage of continuous skeletal image representation for 
document images de-warping. In: Proceedings of International Workshop on Camera-
Based Document Analysis and Recognition, Curitiba, pp. 45–53 (2007) 

[2] Fu, B., Wu, M., Li, R., Li, W., Xu, Z.: A model-based book de-warping method using 
text line detection. In: 2nd Int. Workshop on Camera-Based Document Analysis and 
Recognition, Curitiba, Brazil (September 2007) 

[3] Ávila, B.T., Lins, R.D.: A fast orientation and skew detection algorithm for monochro-
matic document images. In: Proceedings of the ACM Symposium on Document Engi-
neering, Bristol, UK, pp. 118–126 (2005) 

[4] Lins, R.D., Oliveira, D.M., Torreão, G., Fan, J., Thielo, M.: Correcting Book Binding 
Distortion in Scanned Documents. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010, Part 
II. LNCS, vol. 6112, pp. 355–365. Springer, Heidelberg (2010) 

[5] Shafait, F., Breuel, T.M.: Document Image De-warping Contest. In: 2nd Int. Workshop 
on Camera-Based Document Analysis and Recognition, CBDAR 2007, Brazil, Septem-
ber 2007, pp. 181–188 (2007) 

[6] Stamatopoulos, N., Gatos, B., Pratikakis, I., Perantonis, S.J.: A two-step de-warping of 
camera document images. In: Proceedings 8th IAPR Workshop on Document Analysis 
Systems, Nara, Japan, pp. 209–216 (2008) 

[7] Bukhari, S.S., Shafait, F., Breuel, T.M.: Coupled snakelet model for curled textline seg-
mentation of camera-captured document images. In: Proceedings 10th International Con-
ference on Document Analysis and Recognition, Barcelona, Spain, pp. 61–65 (2009) 

[8] Bukhari, S.S., Shafait, F., Breuel, T.M.: Ridges based curled textline region detection 
from grayscale camera-captured document images. In: Jiang, X., Petkov, N. (eds.) Com-
puter Analysis of Images and Patterns. LNCS, vol. 5702, pp. 173–180. Springer, Heidel-
berg (2009) 

[9] Bukhari, S.S., Shafait, F., Breuel, T.M.: Segmentation of curled textlines using active 
contours. In: Proceedings 8th IAPR Workshop on Document Analysis Systems, Nara, 
Japan, pp. 270–277 (2008) 



408 D.M. Oliveira et al. 

[10] Bukhari, S.S., Shafait, F., Breuel, T.M.: Textline information extraction from grayscale 
camera-captured document images. In: Proc. The 13th International Conference on Im-
age Processing, Cairo, Egypt (2009) 

[11] Bukhari, S.S.: Technical Report: Performance Evaluation and Benchmarking of Three 
Curled Textline Segmentation Algorithms. IUPR Techinal Report, Kaiserslautern (2010) 

[12] Wolfram Resarch. Least Squares Fitting, 
http://mathworld.wolfram.com/LeastSquaresFitting.html  
(accessed January 15, 2010) 

[13] Shafait, F., Keysers, D., Breuel, T.M.: Performance evaluation and benchmarking of six 
page segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine In-
telligence 30(6), 941–954 (2008) 

[14] Naylor, M.: Typographic line terms, 
http://en.wikipedia.org/wiki/File:Typography_Line_Terms.svg 



 

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part II, LNCS 6112, pp. 409–419, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

HistDoc - A Toolbox for Processing  
Images of Historical Documents 

Gabriel Pereira e Silva, Rafael Dueire Lins, and João Marcelo Silva 

Universidade Federal de Pernambuco, Recife, Brazil 
gfps.cin@gmail.com, rdl@ufpe.br, joao.mmsilva@ufpe.br 

Abstract. HistDoc is a software tool designed to process images of historical 
documents. It has two operation modes: standalone mode - one can process one 
image a time; and batch mode - one can process thousands of documents auto-
matically. This tool automatically detects noises present in the document image 
including back-to-front interference (also called bleeding or show-through) and 
uses the best techniques to filter it out. Besides that it removes noisy borders 
and salt-and-pepper degradation introduced during the digitalization process. 
PhotoDoc also allows document binarization and image compression. 

Keywords: Back-to-front interference, bleeding, show-through, historical docu-
ments, border removal, binarization, document enhancement. 

1   Introduction 

Document images - acquired either by scanners or digital cameras - almost always 
present some kind of noisy artifacts. This statement is particularly true in the case of 
images of historical documents, in which one often finds back-to-front interference 
[10] (also known as bleeding [6] or show-through [19]), darkened paper, faded ink, 
folding marks, stains and damaged or torn off regions. The bequest of the letters of 
Joaquim Nabuco, a Brazilian statesman, writer, and diplomat, one of the key figures in 
the campaign for freeing black slaves in Brazil (b.1861-d.1910) is a file of historical 
documents of paramount importance to understand the formation of the political and 
social structure of the countries in the Americas and their relationship with other coun-
tries. This rich file is kept by the Joaquim Nabuco Foundation [3] (a social science 
research institute in Recife - Brazil). It encompasses over 6,000 letters of active and 
passive correspondence. The HistDoc tool presented here was conceived as a way to 
preserve this important heritage, as the chemical process used in producing paper in the 
late 19th century used too much beach and the papers are in a fast decomposition proc-
ess. An example of a document of the Nabuco collection is presented in Figure 1, in 
which one may observe back-to-front interference, paper darkened, document filing 
annotation, and writing in different directions, a feature often found in such documents. 

HistDoc was conceived as a device independent software tool to run on PCs. When-
ever the user unloads the images of the historical documents, he will be able to run the 
tool prior to storing, printing or sending through networks the document images. Hist-
Doc works in two different ways user driven standalone mode and batch mode. In 
standalone mode the user chooses which filters to use to enhance the document image.  
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Fig. 1. Letter from Nabuco data base 

In batch mode HistDoc uses the noise classifier presented in reference [33] specially 
tuned for historical documents, which automatically detects which undesirable artifacts 
are present in each document image and applies the suitable filtering technique. One 
should observe that such a priori noise classification is an important new feature in 
batch image processing. 

HistDoc also encompasses a document compression module which decomposes the 
document image into paper background and writing. The color distribution and tex-
ture of the paper and writing are collected and the monochromatic image of the 
document is stored. Whenever the document is to be printed the data collected allows 
to colorize the monochromatic image yielding an image similar to the original one, at 
the cost of storing (or network transmitting) a compressed monochromatic document.  

This paper is organized as follows. Section 2 briefly sketches the automatic noise 
classifier. The image filters implemented and the user interface for the standalone 
operation mode is presented in Section 3. The document image compression scheme 
is presented in Section 4. Conclusions and lines for further work are drawn at the final 
section. 

2   The HistDoc Noise Classifier 

Each document exhibits different noises and in general batch processing applies filters 
blindly and this may even cause document image degradation. In this section, the 
HistDoc Noise Classifier is outlined.  
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A number of features are extracted from each image to allow classification and 
training set as specified in [33].The noise classifier used is Random Forest [31] which 
was implemented in Weka [32], an open source tool for statistical analysis developed 
at the University of Waikato, New Zealand. The noise detection architecture is 
formed by parallel classifiers that detect framing border noises, skew, orientation and 
back-to-front interference. The first three classifiers detect noises with almost 100 % 
accuracy, while the last one due to its complex nature claimed for a more sophisti-
cated noise detection and classification strategy as explained below. 

2.1   The Back-to-Front Interference Classifier 

Researchers [29] [30] have pointed out that no algorithm in the literature is good 
enough to remove bleeding noise in all sorts of documents. Depending on the strength 
of the noise, some algorithms may perform better than others.  Unfortunately, the 
back-to-front noise appears more often in the digitalization of documents than one 
may assume to start with. The test set of documents with show-though used was 
formed by 2,027 real-world documents (no synthetic ones) which were obtained ei-
ther from historical files (such as the one shown in Figure 1 from Nabuco bequest) or 
from the scanning of printed proceedings of technical events. Images were hand la-
beled according to four levels of interference as: strong, medium, light and none. The 
classifiers for this noise were cascaded. The architecture of the cascaded classifier to 
handle the spotting of the back-to-front noise is shown in Figure 2.  

 

Fig. 2. Cascaded back-to-front noise detection architecture 

The strong-classifier was trained with the images human tagged as strong in the 
training set, against all the remaining images (Medium-Light-None) from the training 
set. Similarly, the medium-classifier was trained with the images labeled as medium, 
against the others with a lighter or no interference. The classification results obtained 
are shown in Table 1. 

The analysis of the data obtained shows that the classifier was able to detect the 
back-to-front noise in 90.97% of the noisy images and also to classify 93.90% of the 
noise-less images correctly. It is also worth mentioning that the misclassification of 
the images without noise was in the direction that they had a light back-to front inter-
ference. If one takes into account that such images were in JPEG format and that the  
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Table 1. Confusion matrix of the back-to-front noise classifier with sub-sampled images 

Back-to-front Strong Medium Light None Accuracy % 
Strong 1,073 65 3 1 93.95 

Medium 91 638 15 19 83.61 
Light 5 9 96 12 76.22 
None 24 53 106 2,817 93.90 

 
background of many documents was not solid white, but also encompassed other 
noises due to aging, stains, etc, the results obtained are quite reasonable. 

One should also note that the noisy documents, whenever misclassified, tend to be 
placed in the group immediately below. For instance 91 of the documents labeled as 
having strong bleeding noise were classified as having a medium noise, an acceptable 
result as the tagging followed no quantitative criteria. The adoption of synthetic noisy 
images could be of some help in solving the aforementioned problems, but their gen-
eration is far from being a simple task as it involves not only the overlapping of two 
images, one of which is faded. The image in the background also presents some  
degree of blur and this scenario gets complicated further in the case of the simulation 
of aged documents, a situation very often found whenever dealing with historical 
documents. 

3   HistDoc Filters 

This section explains the filters implemented in HistDoc and presents the user inter-
face for operating them in standalone user driven filtering. The filters developed in 
HistDoc are able to process the kinds of noise often found in historical document. The 
same filters are used in batch mode processing. The current version of HistDoc is 
implemented as an ImageJ [4] plug-in. Figure 3 shows a screen shot of HistDoc being 
activated from ImageJ. 

As one may observe in Figure 3, the present version of the HistDoc plug-in offers 
five different filters, which appear in alphabetical order: 
 

1. Back-to-front interference removal 
2. Binarization 
3. Border removal 
4. Document Enhancement 
5. Compression 

 
The fact that HistDoc is now in ImageJ also allows the user to experiment with the 
different filters and other plug-ins already present in ImageJ. 

ImageJ, as an open code library, allows the developer to extract from it only the 
needed functionality in such a way that the developer may provide to ordinary user a 
HistDoc interface that looks independent from ImageJ. At present, the authors of this 
paper consider such possibility premature. Such tool particularization seems to be 
more adequate if the processing tool becomes embedded into a particular device, 
which allows also a better tuning of the algorithms implemented in HistDoc devel-
oped for such a device. In what follows the HistDoc filter operations are described. 
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Fig. 3. HistDoc plugin in ImageJ 

3.1   Border Removal  

Very often document binarization either performed with scanners or cameras yield an 
image framed with some background which served of physical support to the docu-
ment, an instance of which may be found in Figure 4 left. There are obvious draw-
backs in keeping such frame: larger space and network bandwidth are needed for 
storage and transmission, respectively; The visualization area in a device such as a 
CRT is wasted in exhibiting pixels that convey no information and ink or toner are 
used in printing such border noise. Besides that, the digitalization border has a serious  
 

  
Original                                                        Filtered 

Fig. 4. Images: original and border removed 
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deleterious impact in the quality of the image subjected to palette reduction. This 
brings important implication as most automatic transcription tools (OCR and ICR) 
pre-process their input images into grayscale or binary before character recognition. 
The very first step to perform in processing a document image in HistDoc is to detect 
the actual physical limits of the original document [3]. Reference [3] reports on the 
binarization of documents. HistDoc offers to the user 16 thresholding techniques 
suitable for this sort of document, as it is detailed in the next section. Global and even 
local binarization algorithms take into account a statistical analysis of the document 
image, thus the presence of such border mislays the binarization process. 

The algorithm presented in reference [20] was used in the development of the Hist-
Doc (see Figure 4). 

3.2   Back-to-Front Interference Removal 

The HistDoc document processing environment offers three different strategies for 
filtering out the back-to-front noise [11], [21], [25] (see Figure 5). Whenever HistDoc 
is used in the user driven mode the user may select the most suitable algorithm for 
removing the back-to-front noise present in the document. If operated in batch mode 
the noise classifier will automatically choose the filter to be applied based on the 
strength of the interfering artifact. 

  
Original                                                        Filtered 

Fig. 5. Zoom into parts with back-to-front interference 

The basic idea of the algorithm presented in reference [25], the most sophisticated 
and general of the algorithms implemented in HistDoc is to segment the three compo-
nents of the document (background, ink and interference). Figure 6 shows the segmenta-
tion of the components of the document. The scheme used applies twice a global  
entropy-based thresholding algorithm. The first application of the algorithm separates 
the text from the rest of the document. The second pass separates the back-to-front inter-
ference from the rest of the paper background. Different loss factors α, an empirically 
found adjustment parameter that allows a better adjustment between the distributions of 
the original and binarized images, are used in the two applications of the algorithm. In 
the case of the batch automatic application of this algorithm three pairs of are used to 
suitably remove the strong, medium and weak back-to-front interference. The result of 
the application of such scheme to the document shown in Figure 1 appears in Figure 6. 
This scheme is also of central importance in the parametric image compression strategy 
presented in Section 4 below, also implemented in HistDoc. 
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(a) front ink (b) paper with interference 

  

(c) interference (d) paper 

Fig. 6. Image segments of a document with back-to-front interference 

3.3   Binarization  

Document binarization is an important operation not only because a binary image is 
much smaller than its color counterpart but also due to most automatic transcription 
tools (OCR and ICR) pre-process their input images into grayscale or binary before 
character recognition. Reference [34] presents a survey of the most important binari-
zation techniques applied to documents. HistDoc in user driven mode offers to the 
user 16 thresholding techniques suitable for this sort of document:  
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• 11 global ([5], [7], [8], [9], [13], [15], [17], [23], [24], [27], [28]) and,  
• 5 local ([1], [14], [16], [18], [26]).  

Figure 7 shows the result of the binarization of the image in Figure 3 and provides an 
account that the removal of the back-to-front interference prior to binarization is 
mandatory; otherwise the show-trough noise irrecoverably degrades document infor-
mation in the monochromatic version. 

 
Fig. 7. Direct binarization (left) and after back-to-front interference removed (right) 

In the case of using HistDoc in the automatic batch mode the binarization algo-
rithm is called from the back-to-front noise detector. 

3.4   Document Enhancement  

This task creates a mask that identifies the pixels of the foreground and background 
objects. The final image is obtained through keeping the object pixels and replacing 
the background pixels with the average of the colors of the pixels in that class. Hist-
Doc brings two strategies to do this. The first is the proposed by Castro and Pinto [2], 
that uses the Sauvola and Pietikainen’s binarization algorithm [18] to determine the 
mask. The second strategy is based on the algorithm in reference [23]. Figure 8 pre-
sents the results of the latter algorithm. 

  
Original                                                        Filtered 

Fig. 8. Images: original and enhanced (filtered) 

4   HistDoc Compression Module 

If the user wants to obtain an image that resembles the color original image, but is 
very efficiently compressed, HistDoc offers the compression scheme described in 
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reference [22], in which the image is decomposed and stored as a compressed mono-
chromatic image together with the colors and texture of the different graphical ele-
ments in the document (paper, printing, signature, etc.). The basic principle adopted in 
this compression scheme is shown in Figure 9.  

 

Fig. 9. Parametric generation of synthetic color document images 

The user may also save images with the several file formats available in ImageJ 
(jpg, jpeg2000, png, tiff, etc), with and without losses. 

5   Conclusions and Lines for Further Work 

HistDoc is a user friendly tool for processing images of historical documents. It works 
in two different modes: user driven and automatic batch filtering mode. The batch 
mode makes use of a noise detecting tool that automatically detects and removes 
noisy framing borders, skew, orientation and back-to-front interference. The output 
may be either a binary image, a color image in the same file format of the input image 
or a parametrically compressed image which closely resembles the original one but is 
far more efficiently compressed.  

The user driven operating mode of HistDoc provides a wide range of filters to en-
hance the document image at will. The first version was developed using the MAT-
LAB [12] environment. It can be used as a MATLAB Tool, but a standalone version 
is also available. Aiming to speed-up the document processing phase, some of the 
algorithms are implemented in C. 

The current version of HistDoc was developed as a plug-in in ImageJ, an open 
source portable Java library freely available. HistDoc runs on the users’ PC and has 
the advantage of the great portability of Java. The executable code of HistDoc is 
freely available and may be obtained by requesting to the authors of this paper. 

Several lines may be followed to provide further improvements to HistDoc filters 
and environment. Some of them are: being able to easily erase marks and stains from 
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the digital version of the document, incorporate screens in which the user may provide 
annotations, interface with an OCR to automatically transcribe or find keywords in 
documents. The interfacing of Tesseract [35] with HistDoc is on progress. Incorporat-
ing into HistDoc some of the functionalities of Gamera [36] another free platform of 
similar purpose is also a possibility. Preliminary tests performed with Gamera showed 
that although its OCR mechanism presents a much lower recognition performance than 
Tesseract, it allows the user to train the OCR recognizer with new font types, for in-
stance, which may be of interest in some files of historical documents in which all 
documents were typed using a particular machine. Gamera is implemented in Python 
and C++ and is slightly faster than the current version HistDoc which is implemented 
as an ImageJ plugin in Java. 
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Abstract. Road extraction research has always been an active research on 
automatic identification of remote sensing images. With the availability of high 
spatial resolution images from new generation commercial sensors, how to  
extract roads quickly, accurately and automatically has been a cutting-edge 
problem in remote sensing related fields. In this paper, we present a novel road 
extraction approach which uses a scale space segmentation and two measures of 
the shape index to filter all regions from the result of the segmentation. The ap-
proach makes full use of spectral and geometric properties of roads in the im-
agery, and proposes a new algorithm named “Road Segments joint Algorithm” 
to ensure the continuity of roads. 

Keywords: Object recognition, road extraction, shape index, scale-space seg-
mentation, skeletonization, remote sensing, Feature Extraction. 

1   Introduction 

At first, roads are among the most important objects that are extracted from high reso-
lution images; they are necessary for many applications, for example navigation sys-
tems or spatial planning. Since roads are subject to frequent changes, it is necessary to 
check road databases frequently to eliminate errors and to add new road objects. 
Many approaches for road extraction have been developed; some of them are summa-
rized in [1]. However, only few approaches work in urban or suburban areas due to 
the highly complex structure found in urban scenes which complicates the task of 
automatic road extraction[35][36]. In [4][27] , the road network is expected to be a 
more or less regular grad but this constraint is not suitable for many urban areas. An-
other approach can use a very sophisticated road and context model and is based on 
grouping small extracted entities to lanes, carriageways and road networks [28]. It 
employs a large set of parameters that must be carefully adapted for different scenes. 
In recent works, color properties are exploited, for example in [26]: the authors per-
form a pixel-based multispectral classification and use shape descriptors to reduce the 
number of misclassifications. But they still only have a completeness and correctness 
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rate of approximately 50%. In our opinion, this is due to the fact that the multispectral 
classification does not take into account the spatial relations of the pixels and that 
color and shape properties are treated separately. 

From the above mentioned works we can deduce that a proper segmentation algo-
rithm is essential for the extraction of roads in urban areas and that it is important to 
combine several features for the segmentation. A simple line based road model as 
used in many road extraction approaches for rural areas is not applicable. 

In this part, this paper deals with road extraction in urban scenes with a focus on 
segmentation. Initially we use scale space segmentation, for a set of objects, these 
ones represent different structures that exist in the image.  After the segmentation, the 
filtering operation could be necessary to remove objects which do not have geometric 
properties similar to road. In fact, our algorithm uses two shape indexes to make this 
step. However, the main goal of the algorithm is to output a set of segments represent-
ing the entire road network in the segmented image. For this, we apply the technique 
skeletonization, which is a technique of mathematical morphology on the region list 
obtained after a filtering operation. Finally, we propose a new algorithm named 
“Road Segments joint Algorithm” to ensure the continuity of roads. 

2   Methodological Framework 

In this work we introduce a road model in high spatial resolution remotely sensed 
images. This model is based on several properties with geometric and radiometric 
characteristics, these had the following properties:  
 
Stability of spectral property: The spectral properties of uncovered roads are stable 
to a certain degree. Because urban roads are mainly constructed by asphalt or cement, 
especially asphalt dominates a large part; spectral properties of roads are limited to a 
fixed range which corresponds to the spectral range of road materials. However, in the 
imagery, objects on roadsides like zebra crossings, cars and people cause noises due 
to the huge spectral difference to roads.  
 
Continuity of roads: Normally roads in reality are continuous and regular in geome-
try, while in the imagery, trees and shadows of high buildings interrupt the continuity 
of roads to a large degree. But on the whole, roads in the imagery still have impres-
sive connectivity and regularity.  
 
Straightness: On high spatial resolution images, urban roads are straight and smooth 
with no small wiggles thus can be recognized as combinations of straight road  
segmentation.  
 
Topological property: Road segments are always connected with each other consti-
tuting road networks, and impossible to be broken suddenly.  

Since this, in our case, the geometric and radiometric characteristics appear together, 
it is possible to apply a combination of these characteristics by representing a segmen-
tation algorithm. We assume that each road segment is represented as an elongate 
rectangle has constant width and length, and they branches from often wide angles. 
The flow diagram of automatic road extraction process is shown in (fig1). 
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Fig. 1. Automatic road extraction process 

3   Automatic Road Extraction Approach  

Automatic road extraction can be concentrated on road model, which embody the 
global features and local features of the road. So achieve to road detection, the key 
problem is correct description and understanding of the road and the establishment of 
appropriate road model. In this section, an innovative method (see fig. 1) is presented 
to guide the road extraction in an urban scene starting from a single complex high-
resolution image. 

3.1   Scale-Space Segmentation 

The basis of scale-space segmentation is the extraction of the hierarchical structure of 
the image. In (fig. 2) the description represent the general algorithm that we can see. 
First, the Scale-Space representation is generated. Right after, the structure analysis is 
realized building up the tree-like hierarchy (fig.3). From this, a set of segments is 
obtained. Those correspond to all the pixels hanging down the selected roots from the 
hierarchy. In the end, just a morphological filtering on the encountered regions mask 
the performance to erase little spots or regions corresponding to mistakes occurred 
during the phase of structure analysis. In this work, the multi-resolution segmentation 
algorithm by Vincken [2] is taken as a starting point. 

 

Fig. 2. Scale Space Segmentation Diagram 

3.1.1   Scale-Space Generation 
Assumptions made by Lindeberg [20] are based on the idea of using successive con-
volutions to generate the scale-space. Koendering first realized [3] about which 
should be the basis for the structure of images analysis. Under several constraints, he 
defined the diffusion equation, given by (1), as the generator of its scale-space. 
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Where I stand for the luminance of the image which depends on  position  ),( yxu =r  

and t, scale. From (1) and from the constraint of using convolution to generate the 
subsequent scale levels, one finds that the unique kernel that satisfies both is the 
Gaussian. 

3.1.2   Linking Up through Space 
The algorithm for the construction of the structure, on a simple approach [2], is based 
on the tracking of the iso-intensity paths through scale. Other algorithms where pro-
posed relying on extrema [23], [22], [24], [21], [25], but we considered that could be 
more consistent and generic to search for the iso-intensity paths.  

This is because image pixels can not be fully described by maxima and minima. 
The algorithm sets up the structure establishing relations between pixels of consecu-
tive levels. On the finest scale (the original image) all the pixels are related to the 
pixel from the first blurred image on the scale direction. At this level, not all pixels 
will receive a link from a pixel or from the level below. That because due to blurring, 
the image contains less information, and so a pixel from the upper level (bigger 
scale), will be related to a bigger number than one pixel from the level below (finer 
scale). Consequently, Pixels provided from the finer scale level will represent the 
details lost by blurring in the upper level. This linking up is performed between all the 
scale levels. (Fig. 3) shows a simple schema of the idea. Levels are linked in a tree 
like structure. These links converge through scale according to the reduction of in-
formation imposed by the low-pass filtering. 

 

Fig. 3. Hierarchical analysis of the image structure linking pixels through levels 

In addition to the base criteria of gray level difference, some others where added in 
order to help the convergence [2]. Those are relying on different features like for 
example volume of pixels hanging from the selected parent pixel. That can influence 
by the way that a pixel having many children is very likely to have more. Another 
feature would be the average gray level of the hanging pixels. Such a characteristic is 
quite advantageous when segmenting regions with a uniform gray level, for example 
medical images. Factors are represented by: 
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Where 
IC  is the driving feature that relies on the intensity of pixels ( )PI  parent and 

( )CI  Children.   

GC  represents the accessory feature that favorizes big segments ( )PSG  

_Àrepresents the number of pixels associated to a parent pixel, and ( )maxSG  the maxi-

mum value associated to a parent pixel. 
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Where 
MC  is the feature associated to the mean gray value of segments. 

3.1.3   Reconstructing Segments 
There for, the image structure has been estimated, the obtention of segments is evi-
dent. To carry out the segmentation it is necessary to select the scale of analysis. From 
this, all the nodes at that scale level will define a segment separately. The segment 
will be all the pixels connected through the hierarchical tree to the upper selected 
node (fig4). 

 

Fig. 4.Scanning of the image structure to obtain the segments 

So we can see, selection of the upper nodes that define the final number of seg-
ments can be done in different ways (fig. 5). The most simple is the selection of scale 
level and from there takes all the segments emerging from the hierarchical tree. 

         
                   (a) Original Image                                           (b) Segmented Image 

Fig. 5. A QuickBird satellite image covering the City of Strasbourg in 2008 
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3.1.4   Cleaning Up Regions 
The problem of little regions miss-segmented (fig.5.(b)) due to linking errors intro-
duces quite a high number of little segments of few pixels. It is clear that they do not 
belong to the selected scale level. A way to remove them is to delete regions smaller 
(fig.6) than certain area proportional to scale and re-assign those pixels to the big 
neighbords segments on the basis of some criteria, like average gray level, or big 
existing regions can be grown using geodesy with some morphological operators. 

 

Fig. 6. Result of remove small region 

3.2   Filtering 

The segmentation algorithm can provide as output a set of regions or a set of objects 
where we will have several different geometry ways, for this reason, a geometric 
filtering step is necessary to keep only the objects that have properties similar to the 
geometric road parameters. The shape index offers a natural and invariant description 
of pure 2nd order image structure. Therefore the filtering step uses a shape index to 
keep only the structure having a rectangular form. 

3.2.1   Area-to-Perimeter Ratio of a Region 
In general, the width of a road is almost constant, or piecewise constant. However, it 
is difficult to estimate the width of a road for two reasons. One is that some of the 
extracted vertices are not on road, and in another way the vertices at T intersections 
has multiple directions at the road cross section. Instead of directly calculating the 
width of road at a vertex v, we consider an area-to-perimeter ratio in that region, 
called A/P ratio and that is denoted by d(v). Fig. 7(a) shows an ideal two-directional 
rectangular region of vertex v. The lengths of the shorter edge and the longer edge are 
denoted by w and w + 2r, respectively, where w is determined by the width of road, 
and r is dependent on the length of the spoke. In this case, the A/P ratio is: 
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When the spokes are selected so that their lengths are much longer than the width of 
road, then r >> w; therefore,  
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Similarly, for the T-shaped region [see Fig.7(b)], the A/P ratio is:       
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For the X-shaped region [see Fig.7(c)], the A/P ratio as presented in equation (9). We 
conclude that the A/P ratio of a region is close to half the road width and is independ-
ent of the number of toes in a region. In the next section, we prune the superfluous 
paths using A/P ratio d(v) over the set of extracted vertices. 
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Fig. 7. (a) Ideal rectangular region. (b) Ideal T-shaped region. (c) Ideal X-shapedregion. 

3.2.2   Rectangle Fitting 
Our approach for rectangle fitting is based on [34] [37], where the author propose one 
shape attribute Q → [0,1] called Rectangularity, which is obtained by the ratio  
between one object area and its bounding box area. However, due to rotation this  

 

 
Fig. 8. Filtering using shape index 
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measure can not be correctly represent the object rectangularity, unless a pre-
processing step is performed to transform Rectangularity invariant to rotation. 

Given an object and its internal points coordinates, the eigenvectors are calculated. 
The first eigenvector shows the object’s main angle. Than a new object is created by 
rotating it, in relation to this main angle. Afterward, the unbiased Q is obtained by 
dividing the object area and the area of its rotated bounding box. This value is used 
for inspecting each alternative for merging regions (see Fig. 8).  

3.3   Mathematical Morphology Grooming 

The rude result image deriving from the last procedure is groomed using mathemati-
cal morphology in this stage. The grooming stage relies on four basic steps: connect-
ing, smoothing, thinning and linking. The connecting joins discrete road segments 
using morphological dilation. The smoothing, which combines morphological open-
ing and closing operator, reduces the roughness of road edges significantly. The im-
age is split into equal sized regions and in each region, so morphological thinning 
operators are selected automatically according to local road width information. 

 

Fig. 9. Result of mathematical morphology grooming 

The linking, the last step of grooming stage, concentrates on correct connection of 
one-pixel wide road segments and final elimination of non-road information from the 
image. Geometrical features such as size, connectivity and distance between road 
segments are considered to achieve the purpose. Single or too short segments would 
be eliminated from the image.  After this final step, we acquire the result image 
(fig.9.) which contains road network information extracted from original remotely 
sensed imageries.  

3.4   Skeleton-Based Methods 

The main family of methods for finding the lines is to compute the skeleton. There are 
two well-known paradigms for skeletonization methods: The first is that of “peeling 
an onion”, i.e. iterative thinning of the original image until no pixel can be removed 
without altering the topological and morphological properties of the shape [32]. These 
methods require only a small number of lines in an image buffer at any time, which 
can be an advantage when dealing with large images. But on the other side, multiple 
passes are necessary before reaching the final result, so that computation times may 
become a high quality. The second definition used for a skeleton is that of the ridge 
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lines formed by the centers of all maximal disks included the original shape, is to 
preserve the connectivity. This leads directly is using on distance transforms or simi-
lar measures [29, 30, 33], which can be computed in only two passes on the image. In 
our group, we have been testing both approaches.  

 

 
 

             (a) Position of the junction point                            (b) Main skeleton extraction  
             with a skeleton-based method 

Fig. 10.  

The iterative thinning algorithm is straightforward and can give good results, but 
it’s very sensitive to noise. We therefore prefer to use skeletons computed from dis-
tance transforms, to guarantee the precision of the skeleton, we advocate the use of 
chamfer distances, which come closer to approximation :the Euclidean distance. A 
good compromise between precision and simplicity seems to be the 3–4 chamfer 
distance transform (see reference [31] for details.), for which a good skeletonization 
algorithm has been proposed by Sanniti di Baja [31](see Fig.10(b)). A single thresh-
old on the significance of a branch enables correct removal of the smallest barbs. The 
correct positioning of junctions is often very important in graphics recognition appli-
cations. All skeleton based methods are weak with respect to the correct restitution of 
the junction at the location the draftsman wanted to be. This is a direct consequence 
of the fact that the skeleton follows the centers of the maximal discs of the pattern, 
whereas the position of the junction as envisioned by the draftsman is not on these 
centers (see Fig. 10 (a)). 

 

Fig. 11. Result after skeletonization algorithm 

4   Road Segments Joint Algorithm 

In order to extract roadside in spite of heavy shadows on roads, we bring forward a 
new algorithm named “road connection algorithm”. This is the key procedure of the 
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whole frame work, in which spectral and geometric features of roads are represented 
in two rules: (1) spectral feature: for each pixel, only when its three radiometric prop-
erties are similar to those of roads, it can be identified as road candidates. (2) geomet-
ric feature: on high resolution image, roads are usually smooth with no small wiggles. 
Thus in an appropriate distance, road segments, including smooth curves, can be rec-
ognized as straight line segments.  

According to road geometrical properties mentioned above, for each pixel on the 
image, search in specific direction in a straight line at fixed step. If the proportion of 
road candidate pixels (refers to pixels whose spectral property satisfies the road) to all 
pixels on the line exceeds a threshold value S that we give in advance, all pixels on 
the line L could be identified as pixels of  roads . After that, we convert original non-
road pixels to road pixels. However, we assume the image after skeletonization as IS, 
and the result after road connection algorithm as RC, and the value of number 1 
marks road. Then the pseudo codes are as follows:  

 
W = image width, H = image height 
RC is an image of dimension [W,H] and whose values equal 0 
for  i = 1 to H  
       for i = 1 to W  
              for φ = 0 to 180 by 5   
                  X= the pixel positions on the line segments 
                     starting from (i,j) in φ direction with  
                     length L.  
                  RN= number of pixels in X in image  
                  If (RN ≥ 1)  
                      N=number of pixels in X in image IS    
                        whose value equal 1  
                      N1=number of pixels in X in image IS  
                      If (N1/N) ≤ S then  
                          RC (X) = 0  
                      End if  
                      If (N1/N) ≥ S then  
                          RC (X) = 1  
                      End if 
                  End if 
              End for  
       End for  
End for 

 

Fig. 12. Final Road Network using “Road Segments joint Algorithm” 
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5   Evaluation 

In this section we discuss some results of our algorithm. In order, to simplify the evalua-
tion of the result, we define main road as those with the width larger than 10 pixels or the 
length more than 300 pixels, and the sub-road as those with the width less than 10 pixels 
and the length between 100 and 300 pixels. Road segment which is also defined to evalu-
ate the result refers to the segment between intersections of roads of the same level.  
Accuracy is given at last in table 1. As results turn out, 93.4% main road segments and 
54.2% sub-road segments are extracted correctly, while 5.0% main road segments and 
10% sub-road segments are recognized partially. Only 2.44% main road segments are 
failed to be extracted, while that proportion of sub road segments is 15.8%. 

Table1. Road information extraction accuracy assessment 

 Main roads Sub-roads 

Complete 93.4 54.2% 

Incomplete 5% 10% 

Missing 2.44% 15.8% 

Manual Ref 45 32 

Result 
Wrong 

45 
0 

38 
15.7% 

           
(a)                                                (b) 

     
                                       (c)                                          (d) 

Fig. 13. Results of road line extraction ((a),(c) Original Image (c), (d) Road line Extraction) 
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6   Conclusion  

The proposed approach of automatic road extraction from high spatial resolution 
images can improve the accuracy of road extraction and reduce the effects of occlu-
sions on roads such as shadows. Through tests, the method proves to be simple,  
accurate, and highly automatic, applying well to road extraction from high spatial 
resolution images of huge volumes. We use scale space segmentation, for a set of 
objects, these ones represent different structures that exist in the image.  After the 
segmentation, the filtering operation could be necessary to remove objects which do 
not have geometric properties similar to road. In fact, our algorithm uses two shape 
indexes to make this step. 

We process the rude result image through morphological operators to connect dis-
crete line segments and smooth the lines. So, the subjects of morphological process 
are roads, excluding non-road objects, and will not cause errors on non-road region, 
which acquires higher accuracy compared to simply morphological process in the 
whole image. Finally we use our algorithm ‘Road Segments joint‘ to eliminate the 
discontinuity of roads segments. This procedure significantly ensures the continuity of 
roads, reducing the road occlusions caused by other unrelated objects. Besides, if the 
pixel on a direction has been searched, the next pixel will be searched immediately, 
which avoids the repetitive search and improves the efficiency significantly. 

After connecting and smoothing, we introduce the concept of region to erode roads 
according to local road width information to get the skeleton of roads, and the result is 
one-pixel road width image. Considering the topological and geometric properties of 
roads, we can eliminate single and too short line segment further. To sum up, the 
approach in this paper could extract urban road network from high spatial resolution 
image accurately and automatically and is of satisfactory practical value. 
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Abstract. Multi-scale aggregates are composed of particles which re-

sults themselves of agglomeration of other primary particles. If particles

are modeled by their centers, the geometrical characterization of aggre-

gates refers to point pattern analysis. Radial distribution and function

of pairs allow a description of the point pattern to be performed. They

describe how points are radially packed around each other. In this paper,

the characterization of different simulated aggregates are computed and

compared.

1 Introduction

In precipitation process, the final product is often obtained in the form of ag-
gregates of particles, which themselves consist of assembling of smaller crystals.

The purpose of this research work is to characterize 3D solid aggregates by a
morphological method. Ultimately, this characterization will be related with an
optical method which consists in analysing the scattering parameter of an aggre-
gate under an incident light beam. Indeed, the scattering parameter particularly
depends on the internal and external geometry of the aggregates e.g. the chord
length distribution (see, for instance Jacquier and Gruy [1]). The final aim of
this study is to find a link between the underlying optical and morphological
parameters.

This paper is focused on the geometrical characterization of aggregates. Two
methods of morphological characterization of the internal and external geometry
are proposed: the radial distribution function, and the function of pairs.

Several experimental studies are then performed with computationally sim-
ulated aggregates. A comparison of the two proposed methods is carried out
for aggregates constituted by different shape of convex hulls, different ratios of
filling, and different geometrical shape ratios.
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2 3D Aggregates Modelling

To study the aggregates morphology, it is necessary to simulate them in order
to understand the influence of several geometrical parameters.

First of all, an aggregate is defined by its scale number. In this paper only the
case of aggregates with two scales is presented.

1. The smaller scale level consists in spherical particles (imposed by the optical
model [2]). The centers of these primary particles are distributed along the
close-packed hexagonal mesh [4], selected for its compactness. The radius is
chosen equal to 10 nm because it is the usual order of magnitude for primary
particles of the first scale level in the optical domain.

2. The second scale level is defined by geometrical shapes: sphere, cube, cylin-
der, spheröıds (oblate and prolate). The cylindrical convex hull is defined by
its base diameter and its height which is k-proportional to the base diameter,
with k ∈ {1; 2; 8; 20}.

The geometry of the two spheröıdal convex hulls (oblate and prolate) are
defined by the axis a, b and c, with an equality between two axis lengths
(a = b for example). The third parameter, c, is proportional to the first one
by a factor k, k > 1 for the prolate and 0 < k < 1 for the oblate, respectively.
In this paper will be used k ∈ {2; 20} for the prolate case and k ∈ {1/2; 1/20}
for the oblate case.

Some examples of aggregates are shown in the figure 1.

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 1. Representation of different aggregates with a ful convex hull: (a) spherical, (b)

cubic, (c) cylindrical with k = 2, (d) oblate with k = 1/2, (e) prolate with k = 2, (f)

cylindrical with k = 20, (g) oblate with k = 1/20, (h) prolate with k = 20

Moreover, in order to compare the aggregates, the volume of their convex hull
is the same value for all of them. This volume is fixed equal to that of a sphere
with a 300 nm diameter, because this size is an usual order of magnitude of the
second scale length in the optical domain.

The last studied parameter is the filling ratio of the convex hull by spherical
primary particles: 100%, 75%, 50% and hollow aggregates.
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The 100% filling aggregate is composed of particles whose center is inside the
convex hull. This convex hull is placed so that it would be as fulfilled as possible.
The method is shown in the figure 2).
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Fig. 2. Building of the 100% filling spherical convex hull

The 75% et 50% random filling correspond to a random choice (standard
uniform law) of, respectively, 75% and 50% of the particles selected in the 100%
filling case.

Concerning the full aggregate, each primary particles has 12 adjacent primary
particles, implied by the closed-packed hexagonal mesh, except the ones located
on the aggregate’s surface. So, the particles constituting the hollow aggregates
are those of the corresponding aggregates with a full convex hull, which doesn’t
have their 12 neighbours.

The figure 3 illustrate the different filling ratios for the spherical convex hull.

(a) (b) (c) (d)

Fig. 3. Representation of aggregates with a spherical convex hull and different filling

ratio: (a) full filling, (b) hollow filling, (c) random filling at 50%, (d) random filling at

75%

After aggregates simulation, the study of their geometrical characterization
using two methods is performed in the next section. The particles are modeled
by their center. As a consequence the aggregate is analysed such as a distribution
of points (point pattern analysis).

3 Geometrical Characterization

Firstly, for each method, some results are presented to compare the different
filling ratios (explained below): this is done for only one type of convex hull
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(the spherical convex hull) because the comments done for one are similar for
the other ones. Next, analogies and differences between aggregates with quasi-
similar convex hull are analyzed: spherical, cubic, cylindrical with k = 2, oblate
with k = 1/2 and prolate with k = 2. Lastly, the cylindrical convex hull with
several k-parameter values are compared.

3.1 Radial Distribution (RD)

The radial distribution (RD) method uses a sphere S, the center of which is
chosen within the aggregate, and the radius r of which is variable. The value of
r starts from 0 and then increases until the sphere totally incircles the aggregate.
For each r value, the number of particle centers included in S is calculated. The
same process could be done with the particle volume (quantity of matter), in-
cluded in S as shown in Fig.4 with an aggregate constituted of non-connected
particles. The study is focused on the distribution of the particle centers. There-
fore, the cumulative radial distribution function (CRDF) can be extracted with
regard to the parameter r. In this paper, the center of S is the geometrical center
of the aggregate. Concerning the discretization of the r value, the step between
two r values is fixed to 20 nm, because it is the smallest distance between two
particle centers, the radius of one particle being equal to 10 nm.

Fig. 4. Process of radial distribution function with an increasing radius r

Mathematically, the formula for the CRDF is defined by:

CRDF (r) =
Number of particle centers at a distance ≤ r

T otal number of particles in the aggregate
(1)

Since the aggregates have similar volume and are built along the same mesh, the
focus has been placed on the particle mean number, normalized or not by the
total number of particle within the aggregate.

Characterization of the filling ratios of one convex hull
Fig.5 shows the CRDF for the spherical convex hull aggregates with different
filling ratios.

In Fig.5(a), it can be noticed that random filled aggregates are uniformely
filled, because for each value of r, the ratios 50% and 75% are conserved between
the concerned curves, until the r-value equal to the convex hull radius.

In Fig.5(b), for aggregates with full convex hull, or filled at 75% or at 50%
respectively, the normalized number of inclusion follows the same curve. This
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Fig. 5. Radial cumulative distribution function for the aggregates with a spherical

convex hull and different filling ratios. The graph (a) is non-normalized. In (b) the

number of centers included in S is normalized (CRDF(r)) by the total number of

particles within each aggregate.

curve’s equation is f(r) = r3

R3 , where r and R are the radius of the sphere
S, and the radius of the spherical hull, respectively. This equation comes from
the fact that the distribution of the centers is uniform (standard uniform law).
Consequently, the normalized radial cumulative distribution function with the
aggregate is calculated as the volume of the sphere S, normalized by the volume
of the convex hull of the aggregate.

However, this is different for the aggregate with a hollow convex hull. Indeed,
the particles are along the convex hull so that the centers are included at the
same step. It is the reason why, the curve for the hollow spherical convex hull is
(theorically) a Heaviside function (see Fig. 5(b)).

Characterization of aggregates of quasi-similar convex hulls
Spherical, cubic, cylindrical, prolate with k = 2 and oblate k = 1/2 (Fig.7)
convex hull aggregates are now studied.

The CRDF curves corresponding to each type of convex hull are different. All
the curves have a common part: there, S is included within the aggregate. The
equation of the radial cumulative distribution function is linked to the volumic
fraction of the variable sphere S (Fig.5(b)). It is the reason why four phases in
the curve corresponding to the cubic convex hull aggregate can be observed as
in Fig.6(b) and Fig.7.

The first graph (Fig. 7(a)), is identical for all the type of convex hull: this is
the phase where the variable sphere is totally included in the aggregate.

The second phase (Fig. 7(b)), is when the sphere overflows the aggregate
forming spherical caps. The form of the cap basis depends on the aggregate
convex hull: it is plane for the cubic convex hull, but, for example, curved for
the oblate.
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Fig. 6. (a) CRDF for quasi-similar and full convex hull aggregates. (b) CRDF for only

the cubic convex hull.

(a) (b) (c) (d)

Fig. 7. For the cubic convex hull, visualisation of the different phases CRDF curve

In some cases, there may be a third phase (Fig. 7(c)), where the caps begin to
join, even if the aggregate is not totally incircled. For example, concerning the
cubic convex hull, caps join before that the corners would be inside the variable
sphere S. The ultimate phase (Fig. 7(d)) starts when the aggregate is totally
incircled.

Characterization of aggregates with the same convex hull and several
aspect ratios
The figure 8 shows the results for a cylindrical convex hull with several values
for the parameter k (shape ratio).
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Fig. 8. CRDF for cylindrical and full convex hull aggregates with several shape ratio k
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As mentioned for the previous graph, four phases of the cumulative radial dis-
tribution function curve can be seen (Fig.9), especially for the case with k = 1.
These four stages can be also observed for k �= 1 cases. As all the convex hulls
have the same volume, the larger k is, the shorter the base diameter is (and
longer the heigth is). Thus the more large is k, the longer the second phase is,
contrary to the others phases.

(a) (b) (c) (d)

Fig. 9. Four phases for CRDF of the cylindrical convex hull aggregates

To conclude on this first quantification method, the radial distribution method
allows to differenciate the external structure of an aggregate.

3.2 Function of Pairs

The functions of pairs are morphological functions developped by means of in-
tegral geometry in Santalo [5]. They act as radial distribution functions, but are
applied to each center of the particles constituting an aggregate. A pair desig-
nates the distance between a couple of particle centers. This function is closed
to Ripley’s function exposed in [6]. In the works of Gruy [7] are expressed the
analytical pairs distribution functions of a spheröıd, oblate and prolate. In this
paper, a simulated cumulative distribution of inter-center distances (averaged
over the total number of pairs) is then computed.

The mathematical formula of the cumulative pair distribution function
(CPDF) is:

CPDF (r) =
Number of pairs ≤ r

T otal number of pairs in the aggregate
(2)

Characterization of the filling ratios of one convex hull
The results for the spherical convex hull aggregates ar shown in Fig.10.

As in the CRDF, the CPDF does not distinguish the filling ratio. Indeed, after
normalization by the total number of inter-center distances of each aggregate
respectively, the curves of 100%, 75% and 50% exactly coincide. Besides, the
curve of the hollow convex hull aggregate remains isolated.

In Fig.10, especially in Fig.10(b), a inflection point of the curves can be no-
ticed. It means that, for the spherical convex hull aggregate, there is a particular
inter-center distance (about 150 nm), which is the same for full, 75% and 50%
filling ratios, and another particular inter-center distance for the hollow spherical
convex hull which is equal to 250 nm.
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Fig. 10. Inter-center distances distribution for the aggregates of spherical convex hull,

with different filling ratios. (a) non-normalized case. (b) Distribution normalized by

the total number of inter-centers distances of each aggregate respectively, i.e. CPDF.

Characterization of aggregates of quasi-similar convex hulls
The results obtained for quasi-similar full convex hull aggregates are compared
(Fig.11).

The CPDF for pherical, cubic, cylindrical, prolate with k = 2 and oblate with
k = 1/2 convex hull aggregates are calculate and shown in the figure 11.
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Fig. 11. CPDF for quasi-similar convex hull and full aggregates (spherical, cubic, cylin-

dric with k=2, oblate with k=1/2, prolate with k=2=)

As in the figure 10, an inflection point is also observed at some inter-center
distance values in the figure 11. These values are the same for the different convex
hulls presented, and corresponds to a statistical mode (a class of the distribution
having the maximum of elements).

Characterization of aggregates with the same convex hull type and
several shape ratios
A similar inflection point can be remarked in the figure 12, which represents

the results for aggregates with a cylindrical of convex hull, and different values
for the k-parameter (1, 2, 8, 20).
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Fig. 12. CPDF for full and cylindrical convex hull aggregates, with different shape

ratio k

Firstly, a proportionality between the largest inter-center distance values of
each cylindrical convex hull aggregate and the k-parameter can be confirmed by
the figure 12.

Further, the inflection point can be located for smaller inter-distance value
while k-parameter increases.

The inter-center distance corresponding to the inflection point, and the max-
imal inter-center distances of each CPDF characterize the isotropy of the ag-
gregate shape. These relation between these two elements characterize if the
aggregate is hunched up (cubic, oblate convex hulls) or if the hull presents ex-
tensions (cylindric convex hull with k=8 or 20...), or anisotropies.

4 Conclusion and Perspectives

This article deals with two statistical methods for the morphological character-
ization of an aggregate of spherical particles. In a first time, cumulative radial
distribution function allows an external analysis of the convex hull aggregate
to be performed. In addition, this function is linked with the volumic fraction
of the sphere S, normalized by the volume of the convex hull of the aggregate.
It would be interesting to find analytically the equation of this function. On a
second time, the analysis of the cumulative distribution function of pairs, i.e.
distances between all of the particle centers of an aggregate, is performed. This
analysis has shown that two elements seem to be important in the distribution
of inter-centers distances: the inflection point and the spreading of all the dis-
tances. These two parameters characterize the isotropy of the aggregates shape.
A good discrimination between the different convex hulls is reached with the two
methods. However, they don’t allow distinguishing the internal structure of the
aggregates. For a better discrimination ofa ggregates, the authors are currently
working on their geometrical characterization using more specific tools of point
pattern analysis.
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Kardos, Péter I-316

Khader, Mohammed II-30

Khaksari, Kosar II-161

Khan, Aftab II-40

Khan, Naimul Mefraz I-127

Kim, Jong-Nam I-336

Koletsis, Pyrros I-374
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Tomé, Ana II-287

Torreão, Gabriel II-355, II-398

Torres-Guijarro, Soledad I-52

Tyszkiewicz, Natalia II-227

Uhl, Andreas II-131, II-266,

II-276, II-296

Ulman, Vladimı́r I-263

Vanrell, Maria I-354

Vázquez-Fernández, Esteban I-52,

II-335

Vázquez, S.G. II-50

Vécsei, A. II-131

Vivero, V. II-316

Vrscay, Edward R. I-11, II-195

Vylder, Jonas De II-207

Wanat, Robert II-151

Wang, Liming II-378

Wang, Zhou I-11

Weber, Christiane II-420

Wildenauer, Horst I-200

Wrba, F. II-131

Wu, Q.M. Jonathan II-246

Xuhong, Yang I-89

Yin, Jianping II-235

Yoon, Sang Min I-189

Zhang, Jianming II-235

Zheng, Guoyan II-1

Zheng, Jun I-454

Zhu, En II-235


	Title Page
	Preface
	Table of Contents
	Biomedical Image Analysis
	Automated Vertebra Identification from X-Ray Images
	Introduction
	Method
	Graphical Model
	Component Observation Model
	Potentials between Components
	Optimization
	The Determination of the Number of Vertebrae

	Experimental Results
	Discussion and Conclusion
	References

	Towards Non Invasive Diagnosis of Scoliosis Using Semi-supervised Learning Approach
	Introduction
	3D Back Surface Analysis
	Data Acquisition
	Features Extraction

	Semi-supervised Learning
	Dataset and Experimental Setup
	Results and Discussion
	Conclusion
	References

	Articulated Model Registration of MRI/X-Ray Spine Data
	Introduction
	Proposed Method
	3D Reconstruction of Vertebrae and Point Extraction
	Articulated Model Deformations

	Results
	Qualitative Results
	Quantitative Results

	Conclusion
	References

	Multimodality Image Alignment Using Information-Theoretic Approach
	Introduction
	Problem Formulation
	Proposed Multimodal Image Registration Approach
	Jensen-Tsallis Divergence
	Modality Transformation
	Proposed Algorithm

	Experimental Results
	Modality Transformation
	Registration Functions
	Robustness and Accuracy

	Conclusions
	References

	Retinal Images: Optic Disk Localization and Detection
	Introduction
	System Overview
	Optic Disk Localization
	Optic Disk Detection

	Experimental Results
	Conclusion
	References

	Using Retinex Image Enhancement to Improve the Artery/Vein Classification in Retinal Images
	Introduction
	Image Enhancement
	Vessel Characterization Method
	Experimental Results
	Conclusions
	References

	Automatic Corneal Nerves Recognition for Earlier Diagnosis and Follow-Up of Diabetic Neuropathy
	Introduction
	Methods
	Pre-processing
	Nerves Searching
	Nerves Reconstruction
	Morphometric Parameters

	Results and Discussion
	Conclusion
	References

	Fusing Shape Information in Lung Segmentation in Chest Radiographs
	Introduction
	Proposed Method
	Lung Field Statistical Model
	Optimizing Iterative Binarization
	Postprocessing

	Comparative Performance Evaluation
	Conclusions
	References

	A 3D Tool for Left Ventricle Segmentation Editing
	Introduction
	3D Editing Tool
	Voxel Mask Editing
	Surface Editing
	Mixed Editing

	Evaluation
	Conclusions
	References

	Myocardial Segmentation Using Constrained Multi-Seeded Region Growing
	Introduction
	Standard Region Growing Algorithm (RG)
	Limitations of Region Growing

	Methods
	Multi-Seeded Region Growing (MSRG)
	Epicardial Control Points
	Refinement of the Contours

	Results and Discussion
	Using Simple Region Growing
	Using Multi Seeded Region Growing Constrained by Overlapped Sectors

	Conclusion
	References

	A Level Set Segmentation Method of the Four Heart Cavities in Pediatric Ultrasound Images
	Introduction
	Mathematical Formulation
	Segmentation Method
	Phase Symmetry
	Level Set Evolution
	Post-processing
	Validation

	Results and Discussion
	Conclusions
	References

	Improved Technique to Detect the Infarction in Delayed Enhancement Image Using K-Mean Method
	Introduction
	Segmentation of Infarction Using Simple Thresholding
	DE Image Simulators
	Contrast-to-Noise Ratio (CNR)
	Segmentation Using Simple Threshold Technique

	Enhanced Thresholding Technique Using K-Mean
	K-Means Clustering
	Proposed Thresholding Technique Using K-Means

	Experiments and Results
	F-Score
	Simulated Data Results
	Results on Real Data

	Summary and Conclusions
	References

	Detection of Arterial Lumen in Sonographic Images Based on Active Contours and Diffusion Filters
	Introduction
	The Proposed Solution
	Robust Estimation of Artery Boundary
	Snake Segmentation

	Experimental Setup
	Objective Analysis Metric
	Parameter Tuning

	Results
	Sensitivity Analysis

	Conclusion
	References

	Classification of Endoscopic Images Using Delaunay Triangulation-Based Edge Features
	Introduction
	Pit Pattern Classification
	Proposed Approach
	Local Binary Patterns
	Polygon Extraction
	Delaunay Triangulation
	Histogram Creation and Classification

	Experiments
	Settings
	Results

	Conclusion and Future Research
	References

	A Framework for Cerebral CT Perfusion Imaging Methods Comparison
	Introduction
	Methods
	Cerebral Blood Volume (CBV)
	Cerebral Blood Flow (CBF)
	Mean Transit Time (MTT)
	Time To Peak (TTP)

	Methods Comparison and Results
	Pre-processing
	Post-processing
	Results

	Conclusion
	References

	Application of the Laplacian Pyramid Decomposition to the Enhancement of Digital Dental Radiographic Images for the Automatic Person Identification
	Introduction
	Image Quality Enhancement
	Experimental Results
	Conclusions
	References

	Automatic Recognition of Five Types of White Blood Cells in Peripheral Blood
	Introduction
	System Architecture
	Phase I
	Phase II
	Phase III

	Experimental Results
	Segmentation Results
	Classification Results

	Conclusion
	References

	An Application for Semi-automatic HPV Typing of PCR-RFLP Images
	Introduction
	Background
	HPV Typing
	Related Work

	System Description
	System Overview
	Image Processing and Segmentation
	Lane Identification
	Fragment Mobility Calibration
	Band Selection and Type Identification

	Discussion
	References

	Automatic Information Extraction from Gel Electrophoresis Images Using GEIAS
	Introduction
	Method
	Pre-processing
	Automatic Rotation
	Lane Detection
	Band Extration
	Reference Calibration
	Lane Analysis

	Results
	Test Images
	Automatic Detection of Lanes
	Automatic Detection of Bands
	Molecular Weight Estimation

	Conclusions
	References

	Elastography of Biological Tissue: Direct Inversion Methods That Allow for Local Shear Modulus Variations
	Introduction
	The Tissue Model
	Uniqueness
	Direct Inversion Using Optimization Techniques
	Results

	Direct Inversion Using Green’s Functions
	Conclusions
	References

	Segmentation of Cell Nuclei in Arabidopsis Thaliana Roots
	Introduction
	General Method
	Pre-processing
	Probability Map
	Nuclei Detection
	Probability Propagation
	Nuclei Detection

	Nuclei Segmentation
	Results and Discussion
	Conclusion
	References

	Optical Flow Based Arabidopsis Thaliana Root Meristem Cell Division Detection
	Introduction
	Database
	Methodology
	Image Registration
	Optical Flow Estimation
	Optical Flow Segmentation

	Results and Discussion
	Conclusion
	References


	Biometrics
	The West Pomeranian University of Technology Ear Database – A Tool for Testing Biometric Algorithms
	Introduction to Ear Biometrics
	Brief History of an Ear as a Biometric Feature
	Biometric Test Databases

	The Characteristic of the West Pomeranian University of Technology Ear Database
	An Example of Encoded Filename and Its Interpretation
	References

	Associating Minutiae between Distorted Fingerprints Using Minimal Spanning Tree
	Introduction
	Motivations and the Proposed Method
	Rigid Transformation and Initial Correspondences Estimation
	Locate Minimal Spanning Tree
	Experimental Results
	Conclusion
	References

	Application of Wave Atoms Decomposition and Extreme Learning Machine for Fingerprint Classification
	Introduction
	Wave Atoms Decomposition
	1D Discrete Wave Atoms
	2D Discrete Wave Atoms

	Bidirectional Two Dimensional Principal Component Analysis
	Extreme Learning Machine
	Proposed Fingerprint Classification Algorithm
	Results and Discussion
	Conclusion
	References

	Unideal Iris Segmentation Using Region-Based Active Contour Model
	Introduction
	Unideal Iris Segmentation
	Performance Evaluation
	Conclusions
	References

	Secure Iris Recognition Based on Local Intensity Variations
	Introduction
	Related Work
	System Architecture
	Preprocessing
	Feature Extraction
	Template Matching

	Experimental Results
	Recognition Performance
	Computational Performance

	Cancellable Templates
	Conclusion
	References

	Transforming Rectangular and Polar Iris Images to Enable Cancelable Biometrics
	Introduction
	Cancelable Iris Recognition
	Transforming Rectangular Iris Images
	Transforming Polar Iris Images

	Iris Recognition
	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	References

	Advances in EEG-Based Biometry
	Introduction
	Experimental Setup
	Person Identification
	Feature Extraction
	Classifiers
	Principal Component Analysis (PCA)

	Post Processing (PP) Procedure
	Evoked Potential Duration
	Concluding Remarks
	References

	Two-Factor Authentication or How to Potentially Counterfeit Experimental Results in Biometric Systems
	Introduction
	T-FA and Biometric Systems
	Biometric T-FA Systems

	T-FA and Iris Recognition: A Case Study
	Iris Recognition System
	Two-Factor Iris Recognition System
	Experimental Results
	Analysis

	Summary and Conclusion
	Requirements for Performance Evaluations of T-FA Systems

	References


	Applications
	Automated Detection of Sand Dunes on Mars
	Introduction
	Formulation of the Problem
	Dune Types
	Image Analysis

	Features and Classifiers Used
	Results
	Dataset
	Evaluation

	Conclusions
	References

	Directional Gaze Analysis in Webcam Video Sequences
	Introduction
	Methodology
	Eye Location
	Eye Identification
	Gaze Analysis

	Results
	Conclusions
	References

	Novelty Detection on Metallic Surfaces by GMM Learning in Gabor Space
	Introduction
	Modeling the Painted Surfaces by GMMs in Gabor Space
	Extraction of Textural Features by Gabor Filtering
	Metallic Surface Modelling by GMMs

	Automatic Novelty Detection
	Test Results
	Conclusions
	References

	Digital Instrumentation Calibration Using Computer Vision
	Introduction
	Purposes of Development
	Related Work

	Image Capturing and Preprocessing
	Image Capturing
	Binarization
	Skew Angle Correction
	Extracting the Character Row (Presegmentation)

	Character Segmentation
	Digit Recognition
	Feature Extraction
	Classification
	Visual Inspection and Fusion with 1-NN Classification

	Results
	Conclusions and Future Lines
	References

	Dynamic Scenes HDRI Acquisition
	Introduction
	Previous Work
	Ghost Removal Algorithm
	Ghost Maps Generation
	HDRI Composition

	Implementation
	Results
	Conclusions and Future Work
	References

	Correcting Book Binding Distortion in Scanned Documents
	Introduction
	Review of the De-warping Literature

	The Scanner Acquisition Model
	The De-warping Procedure
	Shape-from-Shading
	Text-Line Depth Extraction

	Results
	Pre-processing Improvements
	Post-processing Improvements

	Conclusions and Lines for Further Work
	References

	Image-Based Drift and Height Estimation for Helicopter Landings in Brownout
	Introduction
	State of the Art
	Optical Position Estimation
	Assisted Landing

	Experimental Setup
	Image Processing and Feature Extraction
	Drift Estimation and Stereo Reconstruction
	Drift Estimation
	Height Estimation and Stereo Reconstruction

	Experimental Results
	Conclusion
	References

	Can Background Baroque Music Help to Improve the Memorability of Graphical Passwords?
	Introduction
	Related Works
	Graphical Password Schemes
	The Efficiency of Baroque Music

	User Study
	Brief Introduction of the Reproduced Schemes
	Experiments

	Results
	Success Rates
	Password Complexity

	Discussion
	Validation of Hypotheses
	Recall Errors
	Limitations

	Conclusion
	References

	Color Texture Analysis for Tear Film Classification: A Preliminary Study
	Introduction
	Methodology
	Acquisition of the Lipid Film Image
	Extraction of the Region of Interest
	Texture Analysis
	Color Space: Opponent Colours

	Results
	Conclusions and Future Research
	References

	A New Method for Text-Line Segmentation for Warped Documents
	Introduction
	Segmenting Text-Lines
	Letter/Line Properties
	The New Approach

	Results
	Conclusions
	References

	HistDoc - A Toolbox for Processing Images of Historical Documents
	Introduction
	The HistDoc Noise Classifier
	The Back-to-Front Interference Classifier

	HistDoc Filters
	Border Removal
	Back-to-Front Interference Removal
	Binarization
	Document Enhancement

	HistDoc Compression Module
	Conclusions and Lines for Further Work
	References

	Urban Road Extraction from High-Resolution Optical Satellite Images
	Introduction
	Methodological Framework
	Automatic Road Extraction Approach
	Scale-Space Segmentation
	Filtering
	Mathematical Morphology Grooming
	Skeleton-Based Methods

	Road Segments Joint Algorithm
	Evaluation
	Conclusion
	References

	Geometrical Characterization of Various Shaped 3D-Aggregates of Primary Spherical Particules by Radial Distribution Functions
	Introduction
	3D Aggregates Modelling
	Geometrical Characterization
	Radial Distribution (RD)
	Function of Pairs

	Conclusion and Perspectives
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




