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Preface

ICIAR 2010, the International Conference on Image Analysis and Recognition,
held in Póvoa do Varzim, Portugal, June 21-23, was seventh in the ICIAR se-
ries of annual conferences alternating between Europe and North America. The
idea of organizing these conferences was to foster the collaboration and exchange
between researchers and scientists in the broad fields of image analysis and pat-
tern recognition, addressing recent advances in theory, methodology and appli-
cations. During the years the conferences have become a forum with a strong
participation from many countries. This year, ICIAR was organized along with
AIS 2010, the International Conference on Autonomous and Intelligent Systems.
Both conferences were organized by AIMI—Association for Image and Machine
Intelligence.

For ICIAR 2010, we received a total of 164 full papers from 37 countries.
The review process was carried out by members of the Program Committee and
other reviewers; all are experts in various image analysis and pattern recognition
areas. Each paper was reviewed by at least two reviewers, and checked by the
Conference Chairs. A total of 89 papers were finally accepted and appear in the
two volumes of these proceedings. The high quality of the papers is attributed
first to the authors, and second to the quality of the reviews provided by the
experts. We would like to sincerely thank the authors for responding to our call,
and to thank the reviewers for their careful evaluation and feedback provided
to the authors. It is this collective effort that resulted in the strong conference
program and high-quality proceedings.

This year included a competition on “Fingerprint Singular Points Detection”
and a challenge on “Arabidopsis Thaliana Root Cell Segmentation Challenge,”
which attracted the attention of ICIAR participants.

We were very pleased to be able to include in the conference program keynote
talks by three well-known experts: Alberto Sanfeliu, Universitat Politècnica de
Catalunya, Spain; Edwin Hancock University of York, UK and José Santos-
Victor, Institute for Systems and Robotics, Instituto Superior Técnico, Portugal.
We would like to express our sincere gratitude to the keynote speakers for accept-
ing our invitation to share their vision and recent advances in their specialized
areas.

We would like to thank Khaled Hammouda, the webmaster of the confer-
ence, for maintaining the Website, interacting with the authors and preparing
the proceedings. Special thanks are also due to the members of the local Orga-
nizing Committee for their advice and help. We are also grateful to Springer’s
editorial staff, for supporting this publication in the LNCS series. We would like
to acknowledge the professional service of Viagens Abreu in taking care of the
registration process and the special events of the conference.



VI Preface

Finally, we were very pleased to welcome all the participants to ICIAR 2010.
For those who did not attend, we hope this publication provides a good view
into the research presented at the conference, and we look forward to meeting
you at the next ICIAR conference.

June 2010 Aurélio Campilho
Mohamed Kamel
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B. Remeseiro

A New Method for Text-Line Segmentation for Warped Documents . . . . 398
Daniel M. Oliveira, Rafael D. Lins, Gabriel Torreão,
Jian Fan, and Marcelo Thielo

HistDoc - A Toolbox for Processing Images of Historical Documents . . . . 409
Gabriel Pereira e Silva, Rafael Dueire Lins, and João Marcelo Silva

Urban Road Extraction from High-Resolution Optical Satellite
Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Mohamed Naouai, Atef Hamouda, and Christiane Weber

Geometrical Characterization of Various Shaped 3D-Aggregates of
Primary Spherical Particules by Radial Distribution Functions . . . . . . . . . 434

Marthe Lagarrigue, Johan Debayle, Sandra Jacquier,
Frédéric Gruy, and Jean-Charles Pinoli

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445



PageRank Image Denoising

Panganai Gomo�

EECE, University of Birmingham, B15 2TT, United Kingdom

panganai.gomo@gmail.com

Abstract. We present a novel probabilistic algorithm for image noise

removal. The algorithm is inspired by the Google PageRank algorithm

for ranking hypertextual world wide web documents and based upon con-

sidering the topological structure of the photometric similarity between

image pixels. We provide computationally efficient strategies for obtain-

ing a solution using the conjugate gradient algorithm. Comparisons with

other state-of-art denoising filters, namely the total variation minimising

filter and the bilateral filter, are made.

Keywords: Image Denoising, PageRank, Markov Processes, Diffusion

Maps, Spectral Graph Theory, Total Variation Minimisation, Bilateral

Filter.

1 Introduction

The problem of image denoising is well established and studied within the litera-
ture. In this paper we propose a new image denoising algorithm. Inspired by the
Google PageRank algorithm [6,23] which assigns rank to web pages based upon
a Markov process encoding the link structure of the world wide web we propose
an iterative algorithm that assigns image intensities according to a Markov pro-
cess encoding the topological structure of an image. Due to the distribution of
the eigenvalues of the Markov process we propose an efficient solution using the
conjugate gradient algorithm of Hestenes and Stiefel [17]. We compare the per-
formance of this denoising algorithm to the closely related state-of-art methods;
total variation minimisation and bilateral filters.

1.1 Previous Work

A typical formulation is to assume the noise is generated by a zero mean Gaussian
processes allowing the decomposition

f = u + η, (1)

where f is the observed signal, u is the original signal and η is a zero mean
Gaussian process with finite variance. A powerful regularisation framework was
proposed in [25]. This framework is known as the nonlinear total variation noise
� I would like to thank Dr. Mike Spann for suggestions and comments.

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 1–10, 2010.
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removal algorithm. The minimisation of their regularisation problem leads to
a nonlinear anisotropic partial differential equation diffusion filter. This algo-
rithm smooths over subsets of pixels considered similar whilst avoiding blurring
across edges hence achieving the desired effect of a structural image denois-
ing algorithm. This algorithm belongs to a class of nonlinear partial differential
equation diffusion filters. Much literature has been devoted to the study of such
filters and can be found in references such as [24,30,9,5]. Related filters have
been developed that seek to average image intensities by means of a nonlinear
combination of nearby image values. The measure of similarity and weighting of
pixels is based upon geometric closeness and photometric similarity. Such filters
are exemplified by the bilateral filter [27] and the non-local means filter [7,8].

More recently image denoising algorithms are being developed that diffuse
image intensities based upon models that capture the topological structure of
images. The topological structure of the image is modeled by photometric and
geometric similarities within the image. Algorithms based upon graph formula-
tions have appeared in the form of normalized cuts [26] for image segmentation,
heat kernel smoothing for image denoising [31] and random walks and Markov
processes for image denoising [2,15]. A common idea these methods share is that
a priori beliefs about the correlations or similarities between pixels are captured
in a kernel matrix. This matrix reflects the graph adjacency structure and can
be studied by forming the graph Laplacian [12].

Graph like data structures are ubiquitous in science; one obvious area being
the hyperlink structure of the world wide web. This is a graph of documents re-
lated to one another by hyperlinks. A successful algorithm, known as PageRank,
for exploiting the hyperlink structure of the world wide web in order to rank
web page documents, giving a measure of authority or influence of web pages,
was proposed in [6,23]. Much literature has been devoted to the study of this
algorithm with a survey of the literature to be found in [19].

2 Diffusion Models

The model input space is the discrete image vector, that is the image ordered as
a one dimensional vector f, so an n× n matrix becomes an N × 1 vector where
N = n × n. As we will be dealing with stochastic matrices we normalise the
vectors in L1 norm such that

f← f
‖f‖1

(2)

where ‖f‖1 =
∑N

i=1 |f |. We choose u0 such that {ui = 1
N : for i = 1, . . . , N}

and ‖u0‖1 = 1. The construction of the graph is motivated by the considerations
that pixels within a neighbourhood are likely to have been generated by the
same process. We want the weights used to model the topological structure of
the image to capture the photometric similarities. The typical Gaussian kernel
is used to model the photometric similarity within a neighbourhood. We only
make comparisons in an 8−connected neighbourhood for computational speed
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and pixels outside this region are considered geometrically far. We form the
weight matrix W with the entries given by the following

W =

{
Wij = w(xi, xj) = e

d(f(xi),f(xj ))2

σ2 i, j in the 8-connected region
Wij = 0 otherwise

(3)

This gaussian similarity kernel is standard in image processing [26,7,13,14].
This measures is positive preserving w(xi, xj) ≥ 0 and symmetric w(xi, xj) =
w(xj , xi). The measure d(f(xi), f(xj))1 models the photometric similarities be-
tween image intensities. In the experiments in this paper we only consider the
Euclidean distance between the intensities. The resulting matrix W is symmetric
and positive definite. The degree matrix can be defined as

D =
{

Dij = di =
∑

j Wij for i = j

0 otherwise
(4)

In graph theory normalisation of the weight matrix can be carried out in a
number of ways [12]. We recall the normalised weight matrix Mn is the matrix
whose entries are determined by

Mn,ij =
Wij√
di

√
dj

(5)

and for the random walker kernel matrix Mrw

Mrw,ij =
Wij

di
. (6)

From the kernel2 matrices we can define various graph Laplacian operators as
in table (1). In image processing the normalised Laplacian has been applied
to problems in image segmentation [26] and image denoising [31]. The matrix
Mrw defines a random walk on a graph [20]. It exhibits the Markov property
[21]. We can study this matrix in order to derive algorithms for diffusion models
on images. We note this matrix contains the geometric information contained
in the signal f. The weightings in this kernel matrix directly model the local

Table 1. Definition of Graph Laplacian Operators

Laplacian Matrix

Unormalised Laplacian Lun = D − W

Normalised Laplacian Ln = I − D
−1
2 WD

−1
2 = I − Mn

Random Walker Lrw = I − D−1W = I − Mrw

1 One should not confuse this notation d(·, ·) with that for the degree of a node di.
2 It is worth noting that the construction of this model is related to the Markov

random field formulations where a Gibbs prior is used to model the prior probability

distribution of the image [3,16].
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geometry defined by the immediate neighbours of each node. Indeed Mrw defines
the Markov matrix where its entries are transition probabilities. The entries of
the matrix

Mrw,ij = p(x(t + Δt) = xj |x(t) = xi).

represent the probability of transition in one time step from node xi to xj . As
in [21] we take Δt = σ. The parameter σ has two interpretations. First it is the
radius of the domain of influence used to determine the graph structure. Second
it is the time stepping parameter at which a random walker jumps from state to
state. We also introduce a parameter α = 1−Δt and hence Δt is in the bound
[0, 1]. We call the parameter α the mixing probability.

To motivate an algorithm to denoise a signal we may consider running Markov
matrix forward in time on the initial data. That is we generate

un+1 = Mrwun.

Equivalently we could apply powers of the Matrix Mrw on the initial data

u = Mku0.

The powers of Mrw allow us to integrate the local geometry of f and hence
reveal the relevant structure in the signal. We diffuse the original data through
the structure of Mrw. From a random walk point of view the notion of a cluster
can be viewed as a region of the graph for which the probability of escaping
is low. So we can recognise the powers of Mrw are of prime interest. In fact
it is the powers of Markov matrices that make Monte Carlo methods such as
Metropolis-Hastings algorithm and simulated annealing successful [11,1]. Indeed
such techniques have been applied to image denoising [15]. Unfortunately Markov
Chain Monte Carlo techniques can be slow and may require many iterations until
convergence. A classical approach to view the action of the powers of Markov
matrix operators on a vector is through spectral analysis. We refer the reader
to [28] for an introduction to this subject. From this theory of Markov chains as
k →∞ we obtain a stationary distribution

p = M∞u0 (7)

where

p = Mp. (8)

It is not difficult to show that the stationary distribution is given by

pi =
Dii∑
j Djj

. (9)

which is the transpose of the left eigenvector of Mrw. This eigenvector therefore
contains no useful information for denoising an image as the image would be
equalised as a uniform distribution. We may do better by seeking an eigenvectors
associated with other eigenvalues. In conclusion of prime interest in developing
our denoising algorithms are the action powers of the Matrix Mrw on the initial
data and it’s eigendecomposition.
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2.1 PageRank Denoising

Consider the dynamics

un = [αU + (1− α)Mrw]nu0 (10)

where A = [αU +(1−α)Mrw] is known as the PageRank matrix. U is a uniform
N ×Nmatrix with entries given by

U =

⎡⎢⎢⎢⎣
1
N

1
N . . . 1

N
1
N

1
N . . . 1

N
...

...
. . .

...
1
N

1
N . . . 1

N

⎤⎥⎥⎥⎦ (11)

and Uun = e where e is the uniform N × 1 vector with entries given by
e = [ 1

N , 1
N , . . . , 1

N ]T . Applying this iteration to our data produces a weighted
combination of a uniform signal αe and the local variation or detail in the image
(1− α)Mrwun. The parameter α is the probability of mixing the image intensi-
ties at each iteration. Varying this parameter produces different quality in the
denoising of the image. In the theory of web page ranking the matrix Mrw would
model and capture the link structure of the world wide web. One then imagines
a random web surfer who at each time step is at a web page deciding to follow
a web page at the next time step according to the decision: with probability α
they rest by jumping to a web page uniformly and at random with probability
(1 − α) jumps to one of the hyperlinks on the web page [22]. In this setting α
is termed the teleportation probability and chosen within the range 0.1 to 0.2
with a typical choice of 0.15. Convergence of the algorithm results in a stationary
distribution which corresponds to the ranking of the web pages.

2.2 Implementation

As the matrix A is a Markov matrix there is strong theory to suggest the exis-
tence and convergence to the stationary distribution [18]. By simple algebra the
PageRank dynamics of equation (10) can be rewritten as

un+1 = αf + (1− α)Mrwun. (12)

We prefer this formulation as we do not explicitly form and store the dense
matrix U . Secondly this iteration corresponds to what is known as personalised
PageRank [19]. From Markov theory if a stationary distribution exists then

u∗ = αf + (1 − α)Mrwu∗. (13)

where u∗ is satisfied. Using simple algebra and recalling our definition α = 1−Δt
we can show that the stationary distribution can be found by solving the linear
system

u∗ = (1−Δt)(I −ΔtMrw)−1f. (14)
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3 Evaluation and Comparison

Here we evaluate computational performance, investigate denoising performance
with respect to the mixing probability α and make comparisons with related
state-of-the-art algorithms; namely the total variation minimisation filter (TV)
and the bilateral filter (BF). To facilitate this study we use the structural sim-
ilarity index (SSIM) [29]. This index uses a measure of similarity based upon
the luminance, contrast and structure of the signal. A score is generated in the
bound [0, 1], where one indicates absolute fidelity between the signal and tar-
get. The SSIM index works on the hypothesis that the human visual system is
highly adapted to extract structural information. As our algorithm is based upon
smoothing whilst preserving topological structure this measure is better suited,
than the mean square error (MSE) and peak signal-to-noise ratio (PSNR), to
evaluate the performance of the algorithm as it provides an objective measure
of structural integrity. Our algorithm can be computed in two ways. Firstly as
the stationary distribution of the Markov chain corresponding to the matrix A.
This leads to the power method for solution of the linear system. The conver-
gence rate of the power method is given by the ration |λ2|

|λ1| [17] and we know
that |λ2| ≤ (1 − α) [18] therefore rate of convergence is contingent on this pa-
rameter. Secondly we can compute the solution of the linear system, As this
system is symmetric positive definite the ideal candidate for the linear solver is
the conjugate gradient (CG) method [17]. Moreover the eigenvalues of the ma-
trix I −ΔtMrw are well clustered around 1 implying convergence is guaranteed
[10]. We compare the convergence of the two methods and the rates of conver-
gence with respect to the mixing probability. Table (2) shows the computational
requirements of these algorithms.

Table 2. Computational requirements. Operations per iteration: IP (inner product)

counts, SAXPY counts AXPY operations per iteration, SpMV (sparse matrix vector)

multipliers per iterations, and storage counts the number of matrices and vectors re-

quired for the method. We use BLAS parlance [4].

Method IP SAXPY SpMV Storage

Power 1 1 Sparse Matrix + 2N
CG 2 3 1 Sparse Matrix + 6N

3.1 Experiments and Results

The first set of experiments investigate the relationship between the noise vari-
ance, parameter α and the number of iterations required till algorithm con-
vergence. We compute the optimal3 α for denoising an image corrupted with
zero mean Gaussian noise with standard deviaiton in the range [0.005 . . .0.1]
3 The optimality is the parameter value required to maximise the SSIM measure when

comparing the denoised image to the original uncorrupted image.
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allowing us to investigate these relationships. These experiments reveal that α
decreases with increasing noise variance and and the conjugate gradient algo-
rithm outperforms the power method. The power method is terminated when
‖un+1 − un‖2 ≤ 1 × 10−8 and the conjugate gradient method is terminated
when ‖(I − ΔtMrw)u − (I − Δt)f‖2 ≤ 1 × 10−8 The results are presented in
figure (1). The second set of experiments make comparisons of the denoising
performance of the PageRank (PR) denoising algorithm against the total vari-
ation minimisation filter and the bilateral filter. We compare the performance
for an image corrupted with Gaussian white noise with zero mean. The signal
variance is varied and performance is measured by generating the SSIM score for
optimal algorithm parameters. The PageRank denoising algorithm significantly
outperforms the other algorithms in low noise environments with competitive
performance in higher noise environments. The figures show that the PageRank

Fig. 1. The left graph plots the optimal α versus noise standard deviation σ. The right

graph investigates number of iterations to convergence versus α. The y−axis is the ratio

of number of iterations of the conjugate gradient method to the number of iterations

using the power method.

Table 3. Comparison of image denoising algorithms using the SSIM measure. The

column f shows the score for comparison of the original image with the unfiltered

image. The columns BF, TV and PR are comparisons with the respective filters.

σ f BF TV PR

0.005 0.995 0.864 0.861 0.995

0.010 0.980 0.861 0.864 0.982

0.015 0.957 0.863 0.864 0.965

0.020 0.928 0.864 0.865 0.948

0.040 0.780 0.855 0.860 0.877

0.060 0.637 0.805 0.831 0.819
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Fig. 2. The top left Albert image is corrupted with zero mean Gaussian noise and

σ = 0.060. The top right is after the application of the TV filter, bottom left is after

the application of the BF filter and the bottom right after the application of the PR

filter. Note how the related anisotropic filters (TV and BF) maintain structural detail

but fail to render fine detail such as Albert’s hair. Note how well the PageRank filter

removes Gaussian noise but renders fine detail, such as Albert’s hair, well.

Fig. 3. The left Mandrill image is corrupted with zero mean Gaussian noise with σ =

0.015 for each colour channel. The right image is after application of the PageRank

denoising algorithm with optimal parameter choice.

denoising algorithm renders fine detail very well whilst removing Gaussian noise.
The results are in table (3) and figure (2). This is particularly evident in the
mandrill image, figure (3), which is an application of the PageRank denoising
algorithm to a colour image.
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4 Conclusion

We presented a novel image denoising algorithm inspired by the Google PageR-
ank algorithm for ranking hypertextual web documents. A method for efficient
computation of the denoised image was discussed and benchmarked. Finally we
objectively compared the performance of the algorithm versus related state-of-
art denoising filters. The comparisons revealed the new algorithm significantly
outperforms the other algorithms in low noise environments with competitive
performance in higher noise environments. The highlight of the novel algorithm
being that it renders fine detail well whilst removing gaussian noise.
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Abstract. The structural similarity (SSIM) index has been shown to

be an useful tool in a wide variety of applications that involve the assess-

ment of image quality and similarity. However, in-depth studies are still

lacking on how to incorporate it for signal representation and approxima-

tion problems, where minimal mean squared error is still the dominant

optimization criterion. Here we examine the problem of best approxima-

tion of signals and images by maximizing the SSIM between them. In

the case of a decomposition of a signal in terms of an orthonormal basis,

the optimal SSIM-based coefficients are determined with a surprisingly

simple approach, namely, a scaling of the optimal L2 coefficients. We

then examine a very simple algorithm to maximize SSIM with a con-

strained number of basis functions. The algorithm is applied to the DCT

approximation of images.

1 Introduction

The structural similarity (SSIM) index [9] was proposed as a measure to predict
visual distortions between two images. If one of the images being compared is
assumed to have perfect quality, the SSIM value can also be interpreted as a
perceptual quality measure of the second image. When tested with large-scale
independent subject-rated image quality databases [6,4], SSIM has demonstrated
superior performance in comparison with traditional image distortion measures
such as the mean square error (MSE), which is the most widely employed metric
in the image processing literature [8]. In the past few years, SSIM has found a
wide range of applications, ranging from image compression, restoration, fusion,
and watermarking, to video streaming, digital camera design, biometrics, remote
sensing and target recognition [8]. In most of the existing works, however, SSIM
has been used for quality evaluation and algorithm comparison purposes only.
Much less has been done on using SSIM as an optimization criterion in the design
and tuning of image processing algorithms and systems [10,3,1,2,5].

A fundamental issue that has to be resolved before effectively employing
SSIM-based optimization in various image processing applications is how to
decompose a signal or image as a linear combination of basis functions opti-
mally in the SSIM sense (as opposed to the usual L2 sense). This is a nontrivial

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 11–22, 2010.
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problem, given the non-convex property of SSIM. It has been addressed in the
particular contexts of image compression [3,5] and image restoration [1,2]. In this
paper, however, we “step back” in an effort to understand the problem mathe-
matically. We analyze the simpler case where the SSIM function is defined over
nonoverlapping blocks (as opposed to “local SSIM,” which involves overlapping
patches) and an orthonormal basis is employed. The unique global maximum of
the SSIM function over a block may be found by examining its partial derivatives
with respect to the expansion coefficients. In this way, an optimal SSIM-based
approximation is obtained, as opposed to the well-known L2-based result, i.e.,
mean-squared-error (MSE). We obtain the remarkable result that the optimal
SSIM-based approximation may, in fact, be determined from the optimal L2-
based approximation: The zeroth-order coefficients are the same, and the higher
order SSIM coefficients are obtained from their Fourier counterparts by scaling.

In closing this section, we mention that partial derivatives of the SSIM have
been used before. In fact, formulas for the more complicated “local SSIM”
case appear in [11]. In that paper, they were used in a numerical gradient as-
cent/descent algorithm for finding the maxima and minima of the SSIM function
over spheres of constant MSE with respect to a reference image. In this case,
however, the formulas for the derivatives are very complicated and stationary
points cannot, in general, be determined analytically. The study presented below
is intended to be a first step toward a deeper understanding of the relationship
between SSIM- and L2-based approximations.

2 SSIM-Based Approximations of Signals/Images

Very briefly, the “local SSIM,” that is, the SSIM computed between two local
image patches, say a and b, measures the similarities of three elements of these
patches: (i) the local patch luminances or brightness values, (ii) the local patch
contrasts and (iii) local patch structures. These three components are then mul-
tiplied to form a local SSIM index between a and b. The “closer” that a and b
are to each other, the closer the value of the SSIM to 1. It is possible to express
this SSIM function as a product of only two components. It is this form of the
SSIM that is employed in this paper.

In what follows, we let x,y ∈ RN denote two N -dimensional signal/image
blocks, e.g., x = (x1, x2, · · · , xN ). We consider a variation of the SSIM function
described above, a global SSIM between x and y defined as follows,

S(x,y) = S1(x,y)S2(x,y) =
[

2x̄ȳ + ε1
x̄2 + ȳ2 + ε1

] [
2sxy + ε2

s2
x + s2

y + ε2

]
, (1)

where

x̄ =
1
N

N∑
i=1

xi, s2
x =

1
N − 1

N∑
i=1

(xi − x̄)2, sxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ).

(2)
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The small positive constants ε1, ε2 
 1 are added for numerical stability and
can be adjusted to accomodate the perception of the human visual system. It
will be convenient to denote the special case where these parameters are zero as
follows,

S0(x,y) =
4x̄ȳsxy

(x̄2 + ȳ2)(s2
x + s2

y)
. (3)

The functional form of the component S1 in Eq. (1) was originally chosen in an
effort to accomodate Weber’s law of perception [9]; that of S2 follows the idea
of divisive normalization [7].

Note that −1 ≤ S(x,y) ≤ 1, and S(x,y) = 1 if and only if x = y. The
component S1(x,y) measures the similarity between the means of x and y: If
x̄ = ȳ, then S1(x,y) = 1, its maximum possible value. This will be important
in the discussion below.

Unless otherwise specified, we consider x to be a given signal and y to be
an approximation to x. We shall generally consider y to be an element of a
particular subset A ⊂ RN – details to be given below – and look for solutions
to the problem

yA = arg max
y∈A

S(x,y). (4)

In the case A = RN , y = x and S(x,y) = S(x,x) = 1.
We start with a set of (complete) orthonormal basis functions RN , to be de-

noted as {ψ0, ψ1, · · · , ψN−1}. We assume that only the first element has nonzero
mean: ψk = 0 for 1 ≤ k ≤ N − 1. We also assume that ψ0 is “flat”, i.e., con-
stant: ψ0 = N−1/2(1, 1, · · · , 1), which accomodates the discrete cosine transform
(DCT) as well as Haar multiresolution system on RN .

The L2-based expansion of x in this basis is, of course,

x =
N−1∑
k=0

akψk, ak = 〈x, ψk〉, 0 ≤ k ≤ N − 1. (5)

It follows that
x̄ = a0N

−1/2. (6)

The expansions of the approximation y will be denoted as follows,

y = y(c) =
N−1∑
k=0

ckψk, (7)

where the notation y(c) acknowledges the dependence of the approximation on
the coefficients ck. It also follows that

ȳ = c0N
−1/2. (8)

In this study, the approximation spaces A in (4) will be the spans of subsets of the
set of basis functions {ψk}N−1

k=0 which include ψ0: From (6) and (8), the inclusion
of ψ0 automatically maximizes component S1(x,y) of the SSIM function. At this
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point, we do not specify exactly which other ψk basis functions will be used, but
consider all possible subsets of M < N basis functions:

A = span{ψ0, ψγ(1), · · · , ψγ(M−1)}, (9)

where γ(k) ∈ {1, 2, · · · , N − 1} and cγ(M) = · · · = cγ(N−1) = 0. Of course, we
are interested in finding the optimal M -dimensional subset, in the SSIM sense.

Before studying optimal SSIM approximations, however, it is most helpful to
review the well-known L2-based case.

Proposition 1. For a given x ∈ RN , the M coefficients ck of the optimal L2-
based approximation y ∈ A to x are given by c0 = 〈x, ψ0〉 and the M − 1
remaining Fourier coefficients ak = 〈x, ψk〉 of greatest magnitude, i.e.,

ck = aγ(k) = 〈x, ψγ(k)〉, 1 ≤ k ≤M − 1, (10)

where |aγ(1)| ≥ |aγ(2)| ≥ . . . ≥ |aγ(M−1)| ≥ |al| with l ∈ {1, 2, · · · , N − 1} \
{γ(1), · · · , γ(M − 1)}.

Proof. For an arbitrary c ∈ RN , let Δ(x,y(c)) = ‖x − y(c)‖2, the L2 error
of approximation of x by y(c). For any p ∈ {0, 1, 2, · · · , N − 1}, consider the
change in this error produced by altering the coefficient cp by ε, i.e., c→ c+εêp.
Because the squared L2-error is a quadratic form in the ck, its Taylor series in ε,

Δ2(x,y(c + εêp)) = Δ2(x,y(c)) + ε
∂

∂cp
Δ2(x,y(c)) + · · · , (11)

is finite – in fact, a quadratic polynomial:

Δ2(x,y(c + εêp)) = ‖x− y(c)‖22 + 2ε(cp − 〈x, ψp〉) + ε2. (12)

We see that the only stationary point occurs when cp = ap = 〈x, ψp〉 and that it
is, in fact, a global minimum. Since ψ0 is a basis element of A, we set c0 = a0 =
〈x, ψ0〉. Now, for some choice of distinct M − 1 indices γ(k) ∈ {1, 2, · · · , N − 1},
set ck = aγ(k), 1 ≤ k ≤M − 1, and cl = 0 otherwise. Then

‖x− y(c)‖22 = ‖x‖22 − 2
N−1∑
k=0

ck〈x, ψk〉+
N−1∑
k=0

c2
k

= ‖x‖22 − a2
0 −

M−1∑
k=1

a2
γ(k). (13)

Clearly, the smallest L2 approximation error is produced if the M−1 coefficients
aγ(k) in Eq. (13) are those with the largest magnitudes. �

We now consider the optimal SSIM-based approximation of an element x ∈ RN

in the M -dimensional subspace A defined in Eq. (9).
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Proposition 2. The coefficients of the optimal SSIM-based approximation of x
in the M -dimensional subspace A defined in Eq. (9) are given by

c0 = a0, cγ(k) = αaγ(k) for 1 ≤ k ≤M − 1, (14)

where the aγ(k) = 〈x, ψγ(k)〉 are the M − 1 optimal L2-based coefficients from
Proposition 1 and the scaling coefficient α is given by

α =
−ε2 +

√
ε22 + ( 4

N−1

∑M−1
k=1 a2

γ(k))(s
2
x + ε2)

2
N−1

∑M−1
k=1 a2

γ(k)

. (15)

Proof. Without loss of generality, we assume that the last N −M coefficients ck

are zeros. After some simple algebra, we find that

sxy =
1

N − 1

N−1∑
k=1

akck and s2
y =

1
N − 1

N−1∑
k=1

c2
k. (16)

The dependence of the SSIM function in Eq. (1) on the ck is as follows: (i) the
first term in Eq. (1) depends only on the coefficient c0 and (ii) the second term
in Eq. (1) is independent of c0. The choice c0 = a0 maximizes the first term in
Eq. (1), giving it the value of 1. In terms of the remaining ck,

S(x,y(c)) =
2

N−1

∑M−1
k=1 akck + ε2

s2
x + 1

N−1

∑M−1
k=1 c2

k + ε2
. (17)

We now look for stationary points which will be candidates for solutions to the
approximation problem in (4). Logarithmic differentiation yields the following
partial derivatives with respect to ck for 1 ≤ k ≤M − 1:

∂S

∂ck
= S

[
2x̄

2x̄ȳ + ε1

∂ȳ
∂ck

+
2

2sxy + ε2

∂sxy

∂ck

− 2ȳ
x̄2 + ȳ2 + ε1

∂ȳ
∂ck

− 1
s2
x + s2

y + ε2

∂s2
y

∂ck

]
. (18)

After some additional (yet simple) algebra, we obtain the following conditions
for a stationary point,

∂S

∂ck
=

S

N − 1

[
2ak

2sxy + ε2
− 2ck

s2
x + s2

y + ε2

]
= 0, 1 ≤ k ≤M − 1. (19)

If ap = 0 for any 1 ≤ p ≤M − 1, then cp = 0. Otherwise, we have that

ak

ck
=

2sxy + ε2
s2
x + s2

y + ε2
, 1 ≤ k ≤M − 1. (20)

Note that the RHS of each equation is independent of k, implying that
a1

c1
=

a2

c2
= · · · = aM−1

cM−1
= C (constant). (21)
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Hence
ck = αak for 1 ≤ k ≤M − 1, (22)

where α = 1/C. We now rewrite Eq. (20) as follows,

(2sxy(c) + ε2)ck = (s2
x + s2

y(c) + ε2)ak, (23)

and employ (22) and the expansions in Eq. (16) to arrive at the following quadratic
equation in α:

2α2

N − 1

M−1∑
k=1

a2
k + αε2 = s2

x +
α2

N − 1

M−1∑
k=1

a2
k + ε2. (24)

The roots of this equation are

α1,2 =
−ε2 ±

√
ε22 + ( 4

N−1

∑M−1
k=1 a2

k)(s2
x + ε2)

2
N−1

∑M−1
k=1 a2

k

. (25)

Notice that α1 ≥ 1 and α2 ≤ −1. Substituting ck = α1,2ak into Eq. (17) we
observe that α1 and α2 correspond to the scaling factors for, respectively, a local
maximum and a local minimum.

Now that the natures of the critical points have determined, we examine
the behaviour of S(x,y) “on the boundaries,” i.e., as |ck| → ∞. In this case,
|S(x,y)| → 0, which allows us to conclude that ck = α1ak at the global maxi-
mum, thus proving Eq. (15). For the remainder of the proof, we let α = α1.

For a given M < N , it now remains to determine which subset of M − 1
coefficients ck should be chosen in order to maximize the structural similarity
S(x,y(c)). The global maximum value of the structural similarity, which we
denote as Smax, is found by substituting ck = αak, 1 ≤ k ≤ M − 1, into
Eq. (17):

Smax(x,y(c)) =
2α

N−1

∑M−1
k=1 a2

k + ε2

s2
x + α2

N−1

∑M−1
k=1 a2

k + ε2
. (26)

From Eq. (24), we have the interesting result that

Smax(x,y(c)) =
1
α

. (27)

Substitution of this result into Eq. (26) yields a quadratic equation in Smax.
Only the positive root of this equation is admissible and it is given by

Smax(x,y(c)) =
ε2 +

√
ε22 + ( 4

N−1

∑M−1
k=1 a2

k)(s2
x + ε2)

2(s2
x + ε2)

. (28)

From this expression, it is clear that the maximum possible value of Smax is
achieved if the M − 1 Fourier coefficients ak with the largest magnitudes are
employed in the summation. �
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A few remarks regarding these results are in order.

1. An important consequence of Proposition 2 is that the optimal SSIM-based
approximation y(c) of x may be obtained by first computing the best L2

approximation of x that includes ψ0 (which is almost always the case), then
setting c0 = a0 and finally scaling the remaining Fourier coefficients accord-
ing to Eqs. (14) and (15).

2. Since c0 = a0, it follows that x̄ = ȳ(c). Regarding the other coefficients, the
fact that the scaling factor α > 1 for M < N implies that the SSIM-based
approximation y represents a contrast-enhanced version of x.

3. In the special case that ε2 = 0, the optimal scaling factor α in Eq. (15) has
the simple form

α =

[
N−1∑
k=1

a2
k

]1/2 [M−1∑
k=1

a2
k

]−1/2

. (29)

4. In the special case M = N , we have α = 1 and Smax = 1, as expected since
there is no approximation, i.e., y = x.

5. The existence of such a simple analytic solution to this problem is made pos-
sible by the simplicity of the approach – we have been considering “global”
SSIM, i.e., the entire signal/image (or block), as opposed to “local SSIM”
where overlapping patches/neighbourhoods are employed. In the latter case,
the derivatives of the SSIM function with respect to the ck coefficients are not
as straightforward. The above approach applies directly to (nonoverlapping)
block-based coding, which includes DCT and Haar wavelet coding.

6. The assumption that the first function ψ0 is “flat” may be relaxed, in which
case Eqs. (6) and (8) would have to be modified. This, however, will not
change the condition that c0 = a0 in the SSIM-optimality condition.

We finally remark that SSIM-based approximation (with no stability constants)
may be viewed as a kind of (inverse) variance-weighted L2 approximation of
signals after their means have been subtracted out, as shown by Richter and
Kim [5]. To see this result, let x,y ∈ RN and define x0 = x− x̄ and y0 = y− ȳ
so that x̄0 = ȳ0 = 0. Then

‖x0 − y0‖2 =
N∑

k=1

(x0,k − y0,k)2

= (N − 1)[s2
x0

+ s2
y0
− 2sx0y0 ]. (30)

From this, the definition of the SSIM function S0(x,y) in Eq. (1) and a little
algebra, we find that

1− S0(x0,y0) =
1

N − 1
‖x0 − y0‖2
s2
x0

+ s2
y0

. (31)

This, along with Proposition 2, gives an idea of the link between L2- and SSIM-
based approximations.
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3 SSIM-Based Image Reconstruction from a Constrained
Number of DCT Coefficients

Proposition 2 provides a very simple procedure to optimize L2-based expansions
from the SSIM point of view. The procedure, however, has very limited applica-
bility. When the the same number M of coefficients are employed in the L2- and
SSIM-based optimizations, we find that the latter generally yields very little, if
any, noticeable improvement in perceptual quality. Indeed, the greatest increase
in the SSIM value is usually found for small values of M , in which case both the
L2- and SSIM-based optimizations yield poor approximations.

On the other hand, SSIM-based optimization may yield significant improve-
ments in perceptual quality when it is employed to decide the allocation of a
prescribed number of coefficients/bits. We illustrate below with an application
to the block-based discrete cosine transform (DCT).

Our simple algorithm starts with the set of zeroth-order coefficients for all
blocks. The goal is to add K of the remaining higher-order DCT coefficients to
this set. At each step of the selection process, we estimate the gain in structural
similarity (with respect to the original image, using the original DCT coeffi-
cients) produced by adding a DCT coefficient that has not yet been employed.
The unused coefficients from all blocks of the image are examined. The DCT
coefficient yielding the greatest increase in the SSIM is then added to the set.
For comparison, we perform a similar algorithm in which the decrease in the L2

error of approximation is used as the criterion for selection at each step.
We define the following quantities:

1. BSSIM: the average value of the structural similarities, (Eq. 1), of all non-
overlapping blocks of the image,

2. MSSIM: the average of the weighted SSIM, computed with a Gaussian sliding
window with the parameters as in [9]. Our method will give us a BSSIM-
optimal reconstructed image, but not necessarily a MSSIM-optimal image,

3. xi: the i-th block of the image x being approximated,

4. V i
Ki

:=
1

N − 1

Ki∑
k=1

(ai
γ(k))

2: the variance of the DCT approximation of the xi

using Ki non-zero higher-order DCT coefficients.
5. ci

Ki
: the set of Ki non-zero higher-order coefficients which, along with the

zeroth-order coefficient, define the SSIM-based approximation yi to block xi.

For a given block xi, the gain in structural similarity produced by adding the
first non-zero coefficient, ci

1, is, from Eq. (28),

S(xi,yi(ci
1))− S(xi,yi(ci

0)) =

√
ε22 + 4V i

1 (s2
xi + ε2)− ε2

2(s2
xi + ε2)

. (32)
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For a given block xi, the gain in SSIM produced by adding the coefficient ci
Ki+1

(Ki > 0) to the existing set of SSIM-optimized DCT coefficients is given by

S(xi,yi(ci
Ki+1)) − S(xi,yi(ci

Ki
)) =√

ε22 + 4V i
Ki+1(s

2
xi + ε2)−

√
ε22 + 4V i

Ki
(s2

xi + ε2)

2(s2
xi + ε2)

. (33)

After examining all blocks, the coefficient ci∗
Ki∗+1 yielding the highest gain in

SSIM, according to either Eq. (32) (Ki∗ = 0) or Eq. (33) (Ki∗ > 0) is then added
to the set. The algorithm is terminated when K coefficients have been added.

As an example, the 512×512 8bpp Lena test image was decomposed with the
discrete cosine transform (DCT) over 8×8 nonoverlapping pixel blocks. In Fig. 1
are shown the results for a “total budget” of K = 10, 000 non-zero higher-order
coefficients. (4096 zeroth-order ci

0 coefficients are also employed in the expansion,
but not counted, in this simple scheme.) In the first row of this figure, we show
(a) the original Lena image, (b) the “BSSIM map” of the optimal BSSIM DCT
approximation and (c) the “BSSIM map” of the optimal L2 DCT approximation
that employs the same budget. In (b) and (c), the greyscale assigned to each
block is proportional to its SSIM value, with black representing 0, and white
representing 1.

Note that the BSSIM map in (b) is, for the most part, “lighter” than that in (c)
which, of course, is expected, since the former corresponds to SSIM optimization.
However, there are some blocks, most notably those containing edges, in which
the SSIM values of (b) are lower than those of (c). This is revealed in the lower
portion of Fig. 1, where three representative patches – (i) a part of the hat,
(ii) the face and (iii) the shoulder – of the Lena image are presented. In the
first column are shown the three patches from the original image. The second
column of the array presents the patches from the SSIM-optimized image. The
third column shows the patches from the L2-optimized image. We see that the
BSSIM-optimized approximation demonstrates less blocking effects on smooth
regions than its L2-optimized counterpart. It also preserves more details such
as the fine textures of the hat – in fact, the improvement afforded by the SSIM
method over the L2 method is quite remarkable here.

On other hand, the BSSIM-optimized approximation performs less efficiently
on edges. Here, the contrasts – as determined by the scaling factor α for each
block – are too large, giving rise to noticeable blocking effects. This could be
explained in part by the fact that the BSSIM-optimal image enhances the con-
trast of the image locally on each block without taking neighbouring blocks
into account. An MSSIM-optimized approximation could correct such blocking
problems around edges.

The excessively large contrasts exhibited in these blocks may also be due to
a small number of coefficients being assigned to them in the BSSIM procedure,
with its “total bit budget” for the entire image. From Proposition 2, the scaling
function α in Eq. (15) is greater than one, and approaches one as the num-
ber of coefficients M approaches N , the size of the block. In the case M = 2
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(a) (b) (c)

Fig. 1. Top row. (a): Original 512×512 8bpp Lena image. (b): BSSIM map of BSSIM-

optimized block-DCT approximation of Lena with 10, 000 non-zero higher-order DCT

coefficients. (c): BSSIM map of L2-optimized block DCT approximation of Lena with

10, 000 non-zero higher-order DCT coefficients. Bottom rows. First column: Patches

of the original image. Second column: Patches of the BSSIM-optimized image. Third

column: Patches of the L2-optimized image. Second row: Hat, cropped from (81, 169)

to (176, 264). Third row: Face, cropped from (257, 257) to (362, 362). Fourth row:

Shoulder, cropped from (401, 289) to (496, 384).
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(corresponding to only one higher-order coefficient), it is not too hard to show
that, for small ε2 and nonzero sx, α ≈ sx. This implies that blocks with large
variance – typically those with edges – can have large α values when a low
number of coefficients is being used. This feature is demonstrated in the figure,
particularly along the shoulder.

In Fig. 2 are presented plots of the BSSIM values vs. the number of non-zero
coefficients for the SSIM- and L2-based optimization methods. For this particular
example, we see that the greatest increase in BSSIM from the L2-based method
occurs when the number K of non-zero higher-order coefficients is between 2000
and 3000. As K increases toward 10,000, the difference between the two methods
decreases.

Fig. 2. Graphs of the BSSIM values of the BSSIM-optimized and L2-optimized 8 × 8

block-DCT approximations of Lena image, as a function of the number of non-zero

higher-order DCT coefficients employed

4 Concluding Remarks

We have mathematically examined the problem of SSIM-based approximations of
signal/image blocks in terms of an orthogonal basis. In general, the non-convex
nature of the SSIM function complicates optimization problems. In this case,
however, a closed-form solution can be found since the partial derivatives of the
SSIM function with respect to the expansion coefficients are rather straightfor-
ward and stationary points can be determined. The optimal SSIM approximation
is found to be related to the well-known optimal L2 approximation in a quite sim-
ple manner: The zeroth-order coefficients of both expansions are the same, and
higher-order SSIM coefficients are obtained from their Fourier counterparts by
simple scaling. On its own, this algorithm does not yield any significant improve-
ment in the usual L2-optimized expansions. But we have shown its potential use
in the construction of approximations that are subject to fixed “bit budgets.”
Only a simple example was studied here – there are many possibilities for further
exploration, including coding/compression and enhancement.
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The results of Section 2 have inspired an investigation of more general cases
which will be reported elsewhere. These cases include a generalization of the
basis set to the nonorthonormal and overcomplete cases. Other avenues of future
research include the combination of SSIM-optimization with prior image models
in a Bayesian framework.
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Abstract. An image enhancement algorithm based on a neighborhood depen-
dent nonlinear model is presented to improve visual quality of digital images 
captured under extremely non-uniform lighting conditions. The paper presents 
techniques for adaptive and simultaneous intensity enhancement of extremely 
dark and bright images, contrast enhancement, and color restoration. The core 
idea of the algorithm is a nonlinear sine transfer function with an image depen-
dent parameter. Adaptive computation of the control parameter increases flex-
ibility in enhancing the dark regions and compressing overexposed regions in 
an image. A neighborhood dependent approach is employed for contrast en-
hancement. A linear color restoration process is used to obtain color image from 
the enhanced intensity image by utilizing the chromatic information of the orig-
inal image. It is observed that the proposed algorithm yields visually optimal re-
sults on images captured under extreme lighting conditions, and also on images 
with bright and dark regions.  

Keywords: image enhancement, dynamic range compression, intensity trans-
formation, sine nonlinearity, contrast enhancement. 

1   Introduction 

The fact that camera does not see exactly the way human eyes do, introduces limita-
tions in the formation and display of an image of a real world scene. In the nature, the 
scene luminance ranges in the span of two to six orders of magnitude, thereby produc-
ing a very high dynamic range radiance map. The dynamic range represents the 
amount of contrast that a given device can record. Currently available standard elec-
tronic cameras can measure light between 8 to 10 stops (2 to 4 orders of magnitude). 
A high end  camera with wider dynamic range can measure light up to 14-16 stops, 
which is still inferior to human eye that can see details in a scene containing a contrast 
range of nearly 24 stops (more than six orders of magnitude). In addition, the dynamic 
range of a camera is limited by noise levels, meaning that details captured in dark 
shadow or bright areas may exhibit excessive noise and rendered as black or white 
[1]. Human eye is capable of handling the wide dynamic range radiance map due to 
its complex structure and adaptive mechanism. On the other hand, the camera aper-
ture is fixed and sets global exposure when capturing an image. Furthermore, image 
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display devices, like monitors and printers, also demonstrate limited dynamic range. 
Consequently, images captured under extremely bright or ill lighting conditions suffer 
from saturation and underexposure respectively. When displayed on LDR devices, 
important features and fine details are not visible [1]. 

In order to improve visual quality of images while dealing with the technical limi-
tations of recording and display devices, compressing the dynamic range (mapping of 
the natural range of luminance to a smaller range [4]) is important.  Several image 
processing techniques exist that can perform dynamic range compression such as, 
logarithmic compression, gamma correction, histogram equalization, etc. However, 
these techniques are not sophisticated enough to preserve all the features and fine 
details. Also, they may not be able to enhance all the regions proportionately. For 
example, in logarithmic enhancement, the low intensity pixel values can be enhanced 
at the loss of high intensity values [5]. In these techniques, regions of the scene where 
the slope of the mapping operator is low can become difficult to see [6]. 

To address the contrast issues, several advanced image processing techniques have 
been developed to compress the dynamic range along with local contrast enhance-
ment, such as  adaptive histogram equalization [7], Retinex [8], multi-scale retinex 
(MSR) [10,13],  AINDANE [14], and LTSNE [15].  Among them, Histogram Equali-
zation is a fairly simple and fast algorithm but works well only on the images possess-
ing uni-modal or weakly bi-modal histograms [14].  Many variations have been made 
to the original HE technique to improve contrast and details. The drawback of the 
advanced HE algorithms is that it makes the image look unnatural while bringing out 
the object details. Successful efforts have been made to imitate human visual system 
based on Retinex theory derived by E. Land [9].  The basic concept of the Retinex 
theory is to separate illumination and reflectance components of an image. Retinex 
based algorithms accomplish two of the requirements of a lightness-color constancy 
algorithm for machine vision [8-10]. These are: (i) dynamic range compression and 
(ii) color independence from the spectral distribution of the scene illuminant. Multi 
Scale Retinex (MSR) [11] theory was developed based on a center/surround method 
in which the best results were obtained by averaging three images resulting from three 
different surround sizes. Later, a color restoration step was added to overcome a gray-
ing out effect caused by the method. However, the biggest problem with both MSR 
and standard Retinex is the separate nonlinear processing of three color bands. It not 
only produces strong “halo” effect and incorrect color artifacts, but also makes the 
algorithm computationally intensive. 

In recent years, a more promising technique called AINDANE (Adaptive Inte-
grated Neighborhood Dependent Approach for Nonlinear Enhancement) [14] has 
been developed. It involves itself in adaptive luminance enhancement and adaptive 
contrast enhancement. The enhanced image can be obtained by a linear color restora-
tion process based on the chromatic information in the original image. This method 
handles enhancement of dark or ill-illuminated images very well, however, it does not 
provide solution for overexposed images. In order to obtain fine details and balance 
between over and underexposed regions in images, an innovative technique named 
LTSNE has been developed [15], which also forms the basis for the proposed  
algorithm. In LTSNE, the major contribution has been the simultaneous enhancement 
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and compression of dark and bright pixels using a nonlinear sine squared function 
with image dependent parameters. As an improvement over LTSNE, in the proposed 
algorithm NDNE (Neighborhood Dependent Nonlinear Enhancement of Color Im-
ages), computation of the image dependent parameters has been simplified to reduce 
processing time and yield improved visual quality.  It provides means for preserving 
dark as well as light regions in any high contrast scene. In the following section, the 
proposed algorithm is discussed in detail. Experimental results of our algorithm are 
discussed in section 3 followed by conclusions in section 4. 

2   Algorithm 

The proposed algorithm is implemented in three steps: adaptive intensity enhance-
ment, contrast enhancement, and color restoration. The goal of this algorithm is to 
enhance the visual quality of images captured under extremely non-uniform lighting 
conditions. Hence the primary step is the adaptive intensity enhancement of dark and 
bright pixels.  After intensity enhancement, the contrast is degraded in the intensity-
enhanced image, hence contrast enhancement process is applied to restore contrast 
and in turn, preserve or enhance important visual details. Finally, after the contrast 
enhancement, the enhanced color image is obtained by performing a linear color res-
toration process on the enhanced intensity image using the chromatic information in 
the input image.  The key contribution of this algorithm is the computation of control 
parameter involved in adaptive intensity enhancement and is discussed in detail in the 
following section. 

2.1   Adaptive Intensity Enhancement  

In this algorithm, the color image is first converted to gray scale image using NTSC 
standard [16] as follows: ,  . , . , . ,   (1) 

where , , ,  and ,  are red, green and blue color values respectively 
of a pixel located at (x, y) position in the image. The intensity image is further norma-
lized by: , ,

 . (2) 

Compressing the dynamic range of the intensity image is an efficient method of image 
enhancement. Thus, an enhancement and compression process is performed on the 
normalized intensity image using a nonlinear sine transfer function. The particularly 
designed sine transfer function increases the luminance of the dark pixels and reduces 
the luminance of overexposed pixels simultaneously and is defined as:  , , /2 .  (3) 



26 R. Patel and V.K. Asari 

The key contribution of this paper is the computation of the image dependent parame-
ter q used in (3) corresponding to the mean intensity value of the pixel and is defined 
as:  , , 2  (4) 

where  is the normalized mean intensity value of the pixel at location (x, y), c1 and 
c2 are constants determined empirically, and  = 0.01 is a numerical stability factor 
introduced to avoid division by zero when  = 1. The role of the control parameter q 
in intensity transfer function can be described well in the following manner. The 
transfer function is a decreasing function of the q parameter.  Therefore, to boost the 
intensity, value of q parameter should be kept small and to lower the intensity, q 
should be large. Now q is directly proportional to the ratio of , 1  ,⁄ . Hence, when the mean intensity of the pixel ,   
is very high, it generates larger q and vice versa. This can be clearly seen in figure 1 
which shows the plot of parameter q for normalized mean intensity values ranging 
from 0 to 1. 

For the mean intensity values close to 0, there is a strong possibility of noise being 
enhanced in the extreme dark regions. Therefore, c2 is added in (4) to counteract the 
noise enhancement. The range of c2 in this experiment is empirically determined to 
be .13 to .4.  Note that addition of c2 has almost negligible effect on the pixels with 
intensity values close to 1 for which equation 1 produces much larger q compared to 
that of dark pixels. For the exceedingly bright pixels, the transfer function may pro-
duce very low or almost black intensity values (when intensity value is close to 1, 
ratio of ,  / (1- , ) produces much larger q). To avoid this phenome-
non, the denominator is multiplied with c1, thus, q is inversely proportional to c1. It 
reflects the fact that for overexposed images, c1 in the range of 2 to 4 gives good 
results. If the image is very dark, then c1 value in the range of 5 to 8 helps sufficiently 
to boost the luminance.  

In this method, using the sine square transfer function, the luminance of dark pixels 
is greatly pulled up, and the intensity of bright pixels is pulled down and the well 
illuminated pixels are left unaltered. A set of curves of the sine squared transfer func-
tion is provided in figure 2 for various mean intensity values ranging from 0.01 to 
0.99. In addition, the transfer function compresses dynamic range while preserving 
fine details and provides good enhancement results. In this method, the mean image is 
computed using a Gaussian smoothing operator. The Gaussian mask is defined as 
follows: 

, ·  
(5) 

where c is the Gaussian surround space constant and K is the constant to ensure that 
the area under the Gaussian is 1. K is determined by evaluating the following integral 
across the Gaussian kernel: 

·  · 1  (6) 
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Fig. 1. Plot of q values for  (mean intensity Im) for c1 =4 and c2 = .1389 

 

Fig. 2. Curves of the transfer function corresponding to mean values ranging from 0.01 to 0.99 
for c1 = 4 and c2 = 0 

Choosing the right scale is very important as it determines the size of the neighbor-
hood for 2D discrete spatial convolution with a Gaussian kernel. Convolution using a 
small scale uses few neighboring pixels, thus luminance information of the nearest 
neighboring pixels is available. On the other hand, large scale convolution provides 
information of global luminance distribution. In other words, Gaussian smoothing 
with small scale preserves details, where as large scale convolution provides global 
tonality, which helps produce more natural looking enhanced images [14]. In this 
method, a multi scale Gaussian is used to produce the mean intensity image  as 
multiple convolutions yield more complete information about the overall luminance 
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distribution. The neighborhood averaging with multi scale Gaussian can be described 
as follows: 

 , , ,  (7) 

where Gi indicates the weighted sum of i Gaussian functions with different scales. In 
this method, we used a combination of small scale (1-5% of the image size), medium 
scale (10-15 % of the image size), and a large scale (25-45% of the image size) Gaus-
sians to obtain optimal results.  

2.2   Contrast Enhancement  

Contrast enhancement is performed in a similar way as in AINDANE [14].  As illu-
strated in [14], during the dynamic range compression, the mid-tone and low frequen-
cy components responsible for fine details and local contrast are degraded. To com-
pensate this degradation and restore the contrast of the luminance-enhanced image, a 
center-surround contrast enhancement method is performed as follows:  , 255 · , ,  (8) 

 
where the exponent is defined by: ,  , ,, . (9) 

,  is the contrast-enhanced pixel intensity,  ,  is the intensity ratio between 
low-pass filtered  ,  and original intensity image , . P is an image de-
pendent parameter determined by the global standard deviation of the input intensity 
image , . As shown in (9), if the center pixel is brighter than surrounding pixels 
then the ratio ,  is smaller than 1 and hence, the intensity of this pixel is pulled 
up. Likewise, if the center pixel is darker than the neighboring pixels then the ratio ,  is grater than 1 and the intensity of the pixel is lowered. By performing this 
method, contrast and fine details of the compressed luminance image can be suffi-
ciently improved while maintaining the image quality. 

2.3   Color Restoration  

Recall from Section 2.1 that the color image was first converted to a grayscale image 
using the NTSC standard. We now convert our enhanced gray scale image back to 
color image using the chromatic information of the original image as follows: ,  , ,, · , ,   (10) 

where j = R, G, B represents the red, green, and blue spectral bands respectively,  , , ,  and ,  are R, G, and B color values in the original color  
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image, ,  is intensity image computed using (1), ,  is the enhanced intensity 
image computed using (8), and SR, SG and SB are the RGB values obtained to form the 
enhanced color image. The parameter   adjusts the color hue of the enhanced color 
images. It takes different values in different spectral bands. Normally its value is close 
to 1. However, when all s are equal to 1, according to eqn. (10) the chromatic infor-
mation of the input color image is preserved for minimal color shifts [14]. 

3   Results and Discussion 

The NDNE algorithm has been applied to a large number of digital images captured 
under varying lighting conditions for performance evaluation and comparison with 
other state of the art techniques. Results as well as detailed discussion about specific 
characteristics of our algorithm are presented in this section.  

The sample images in figure 3 taken under varying lighting conditions are used for 
evaluating the effectiveness of the proposed algorithm. Figure 3(a) shows the image 
captured under extremely dark lighting condition. After processing it with NDNE, the 
visual quality is highly improved as can be seen in figure 3(b). In figure 3(c) the entire 
sample image is overexposed. By applying NDNE, the details in the overexposed 
regions are made visible which can be seen from figure 3(d). For example, we can see 
the letters indicating the name of the river which is not visible in the original image. 
Image in figure 3(e) was captured under medium scale lighting conditions where 
some objects are well lit while others are not. The algorithm produces well balanced 
image in which, the regions that are already sufficiently illuminated are left unaltered 
which can be verified from figure 3(f). By decreasing the intensity around the lamp, 
the details are enhanced while the intensity around the window as well as the mirror 
frame is increased. The image in figure 3(g) contains both extremely dark and bright 
regions. Again, as can be seen in figure 3(h), the resulting image shows much greater 
details. 

 
(a) Original Image                                  (b) Enhanced Image 

Fig. 3. Image enhancement results by NDNE 
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                          (h) Enhanced Image 

Fig. 3. (Continued) 
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3.1   Comparison with AINDANE and LTSNE  

In figure 4 the sample image is provided for comparison with the performance of 
AINDANE, LTSNE and NDNE. It can be observed that the images produced by 
NDNE possess more details with high visual quality in both the underexposed and 
over exposed regions than those processed by above mentioned techniques. As we can 
see in figure 4(b), AINDANE over enhances the bright areas. In the image processed 
by LTSNE (figure 4(c)), the bright areas are compressed well, however, it creates 
dark halo around the bright areas. The resultant image (figure 4(d)) of the proposed 
algorithm shows better balance in enhanced and compressed regions yielding more 
details. 

 
(a) Original Image                                       (b) Enhanced by AINDANE  

 
  (c) Enhanced by LTSNE                            (d) Enhanced by NDNE 

Fig. 4. Performance comparison with AINDANE, LTSNE, and NDNE 

3.2   Statistical Evaluation  

A statistical method proposed in [17] is used to evaluate the visual quality of the en-
hanced images in order to compare the performance of different enhancement tech-
niques. In this method, visual quality of an image is measured in terms of brightness 
and contrast using the statistical properties such as image mean and mean of the block 
standard deviation. The mean and mean of standard deviations of the original images 
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and the enhanced images are plotted in figure 5. The diamonds, circles, and squares 
represent the images enhanced using the AINDANE, LTSNE, and NDNE algorithms 
respectively. The numbers inside the shapes indicate the enhanced image correspond-
ing to the original image number. Image 1(figure 3(g)) was captured under very dark 
lighting condition. All three techniques increase the luminance as well as contrast. 
Image 2(figure 4(a)) is captured under mixed lighting condition and contains both 
dark and bright regions. All three methods enhance the image sufficiently and the 
results fall in the visually optimal region. However, LTSNE and NDNE posses higher 
contrast as they perform compression as well as enhancement. Image 3(figure 3(c)) is 
very bright for which AINDANE enhances the extremely brighter pixels whereas 
LTSNE and NDNE compresses them. As can be seen in figure 5, resultant image of 
NDNE is closer to the optimally visual region as it compresses the overexposed  
regions with more details. 

3.3   Computational Speed  

The processing time needed for enhancing images of different sizes is compared be-
tween AINDANE, LTSNE, and NDNE. The computing platform is an Intel Pentium 4 
system, processor running at 3.06 GHz, 1GB memory, and Windows XP® Profes-
sional Edition operating system. AINDANE, LTSNE, and NDNE implemented in 
C++ are applied to process the same set of images. The processing time needed to 
enhance images of various sizes is provided in Table 1 for comparison between AIN-
DANE, LTSNE, and NDNE. Table 1 show that the time required to process an image 
using NDNE is less than that of LTSNE and AINDANE. NDNE requires less 
processing time due to the fact that the intensity enhancement process requires fewer 
and simpler functions. In LTSNE, the computation of image dependent parameter 
involves computationally expensive logarithm and tangent functions. Whereas in 
NDNE, these functions are replaced with a division operation in order to reduce 
processing time. 

 

Fig. 5. Comparison of visual quality of images enhanced by AINDANE, LTSNE, and NDNE 
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Table 1. Comparison of processing time of AINDANE, LTSNE and NDNE 

Image size 
(pixels) 

Processing 
time by 

AINDANE 
(seconds) 

Processing 
time by 
LTSNE 

(seconds) 

Processing 
time by 
NDNE 

(seconds) 

360 × 240 0.25 0.19 0.173 

640 × 480 1.4 0.687 0.527 

1024 × 768 2.8 1.716 1.28 

2000 × 1312 6.7 4.572 3.438 

4   Conclusion  

In this paper, we presented a new nonlinear image enhancement algorithm NDNE to 
improve the visual quality of digital images captured under complex lighting condi-
tions. The method performs adaptive luminance enhancement, contrast enhancement, 
and color restoration steps. Dividing the enhancement process in three steps increased 
the flexibility and provided more control for fine tuning. This method allows for cor-
rections of non uniform illumination, shadows, and other traditionally difficult light-
ing issues. Effectiveness of the algorithm depending on the statistical information 
(mean and mean of standard deviation) of the original and enhanced images has been 
evaluated based on its capability to automatically refine the image quality. The algo-
rithm has been tested on a large datasets and the performance has been verified. The 
images enhanced by NDNE possess improved visual quality compared with those 
produced by other techniques in terms of better contrast and luminance enhancement 
of images containing underexposed and overexposed regions. Moreover, the 
processing speed of NDNE is faster than LTSNE, and AINDANE. NDNE algorithm 
would be a more efficient and fast image enhancement technique that could be useful 
in many applications. We envision a number of improvements that would set all the 
parameters automatically to make the algorithm fully adaptive. 
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Abstract. The quasi-distance transform introduced by Beucher shows
interesting properties for various tasks in image processing such as seg-
mentation, filtering and images simplification. Despite its simple formu-
lation, a naive and direct implementation of the transform leads to poor
results in terms of computational time. This article proposes a new al-
gorithm for computing the quasi-distance, based on a front propagating
approach by means of queues and hierarchical queues. Quantitative anal-
ysis of the running time are provided, and show an exponential downscale
of the complexity compared to the original algorithm.

1 Introduction

Morphological distance transforms on binary sets are one of the major tools
widely used in the context of Mathematical Morphology. It provides for instance
an elegant way for counting the number convex overlapping grains in binary
images. In this context, each grain is identified by a local maxima in the trans-
formed images [5]. The morphological distance transform may also be used for
grain segmentation, where the inverse of the transformed binary image is used
as a topographical map on which a watershed is applied (see Fig. 1 for illustra-
tions). More precisely, a morphological distance transform is defined as the result
of a sequence of pairs of erosions, each of them combined with a set subtracting
function. It is an instance of a wider class of transforms, namely the residual
transforms that we will be discussing below, which will serve as an introduction
for the extension of the morphological distances to grey level images.

1.1 Residual Transforms

We now give an a formal definition of the residual transforms in the binary
functions over sets, which will introduce the framework for numerical functions
detailed in the next section. A residual transform Θ on a set X is defined by the
input of a family of pairs of functions

{
(ψi, ζi)(i) , i ∈ N∗|∀i, ψi ≥ ζi

}
, together

with a family of functions (ri)(i) of two arguments, and such as:

Θ :
{
P(E)→ P(E)
X �→

⋃
i ri (ζi(X), ψi(X)) (1)
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Fig. 1. An example of the distance transform for binary functions and its possible use
for convex set counting and segmentation. From left to right: original image; ε(0) \ ε(1);
morphological distance transform; watershed on the distance map (grains separation).
The local maxima in the distance map also provide the number of convex grains in the
image.

The (ri)(i) are called the residuals while (ψi, ζi)(i) are the primitives. The def-
inition above is quite general, and we will illustrate it with first the distance
transform, and second the ultimate erosion transform. In the case of a distance
transform in a binary set framework, it is easy to see from the sequential be-
haviour of the distance transform itself that it can be achieved with residuals
being the set difference (·, ∗) �→ · \ ∗ for all i, and the primitives family being
ζi = ε(i), ψi = ε(i+1) for all i, where ε(i) is the unitary erosion iterated i times
and taking ε(0) = IdP(E). Such an example is in fact interesting in order to intro-
duce another notion in the residual transforms. For any sets A, B, C such that
C ⊂ B ⊂ A, we have (A\B)∪(B \C) = A∪C: the intermediate B has no effect.
By noticing that the family of erosions {ε(i)} is a decreasing map of i and taking
as a convention that ε(+∞) = ∅, an inference on the previous subset rule easily
leads to Θ = IdP(E). In fact what is interesting in the binary distance transform
does not lie in the results of residuals themselves, but rather in the occurring step
of each of these residuals. This is the reason why the notion of an indicator func-
tion, denoted q in the sequel, should also be introduced. In the special case of the
binary distance transform, there is no ambiguity in the choice of the occurrence
indication since the residual family ri produces a non-overlapping family of sets
(see Fig. 1). As indicator function q, we can safely take q : x �→ 1 + argi(x ∈ ri).
As a second example, by keeping the residuals as being the set subtraction and
taking as primitives ψi = ε(i) and ζi : X �→ γrec

X ◦ ε(i−1)(X), where γrec
X is the

opening by reconstruction under the set X, we define the Θ transform as being
the ultimate erosion (as convention, we use A \ ∅ = A for any possibly empty
set A, and A ⊂ B ⇒ A \ B = ∅). Again, the indicating function q here is un-
ambiguously defined since for each of connected component, the activity of the
associated family of residuals is non empty at the step just before the complete
removal of the connected component. From these two examples, it becomes clear
that the residual transforms are a powerful unifying framework for setting up
morphological transforms. However the discussion remained in the binary case,
and the next section discusses about the possible extensions onto valued sets.
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1.2 The Quasi-distance: A Morphological Distance for Grey Level
Images

We consider in this section an image function I : E → R mapping each point of
the universe E to a value in R. The extension of the previous definitions to valued
sets is not a direct transposition of the binary case. This is mainly due to the
fact that two properties were implicitly used in the binary case. The first one is
that the residuals in the binary case form a pairwise disjoint family of sets. This
property does not hold any more for grey level images: the set difference cannot
be used and a more appropriate choice should be made concerning the residuals
to keep. The grey level difference ∀i, ri : (·, ∗) �→ |· − ∗| seems to capture the
desired properties [1].

The second property, which in fact is a consequence of the first one, is that
the indicator function for binary images is uniquely defined at each point. This
remark led Beucher to consider the occurrence of the maximal residue only,
which lead to the following definition of q:

q : x �→
{

1 + ∨ argi ∨{ri|ri > 0}
0 if ∀i, ri = 0 (2)

From this setting and in case of the maximal residue at different steps (argi

returning the set of the occurrences), only the greatest occurrence is kept. If all
of the residues are null at x, it means that the activity of the operator is empty
at x, which discard x from being of any interest.

The quasi-distance transform is the immediate application of the settings
above, with the same primitives as in the binary case, ζi = ε(i), ψi = ε(i+1). This
transform is usually applied on the image and its inverse. The name “distance”
comes from the analogy one may do with the classical distance transform on
binary sets. The interesting result of the transform lays in the indicator function
which acts almost similarly as in the binary case. However, the above definition
does not lead to a proper distance function, since it does not meet the 1-Lipschitz
property, as illustrated in Fig.2. In other terms, ∃(x, y) ∈ supp(q)2 / |q(x) −
q(y)| > |x−y|. The subset of points violating the 1-Lipschitz property are named
in [2] the “hung up” points. In order to obtain a distance map meeting the 1-
Lipschitz property, a regularizing procedure is required after the computation of
the map q. To summarize, the quasi-distance transform should be processed in
two steps: the computation of the distance (indicator) function itself through the
family of successive erosions, and then the regularizing of the resulting distance
map.

An example of the quasi-distance transform in the context of visual surveil-
lance is provided on Fig.3. The residue function is such as the step of maximum
contrast is kept: in this example the clothes have a high contrast with the sur-
rounding scene. The residue is maximized at the first step on the boundary of
the silhouette, which becomes the location from which a continuous distance
outside the body is propagated. From this example, the quasi-distance acts as
a contrast filter prior to a segmentation. This contrast property is used in [3] in
order to keep the edges of maximum intensities on a grey level gradient image.
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Fig. 2. The problem of “hung up” distance points. From left to right, top row: original
set f(X) = fX, ε(1)(fX), r1 = fX − ε(1)(fX) and q1. Bottom row: ε(3)(X), r3 =

ε(2)(fX) − ε(3)(fX) and q3. The central point of the map q3 jumps from 0 to 2 and
hence violates the 1-Lipschitz property.

Fig. 3. Example of quasi-distance transform. From left to right: original image, regu-
larized distance on the image, and regularized distance on the inverse of the image.

The initial algorithms for the computation of the family of erosions and the
regularizing are presented in Alg.1 and Alg.2 respectively. The first algorithm
follows directly the definition of the erosion/residue process as previously de-
scribed. By Q[E] we denote the subset E of points of Q. The iteration stops
when no variation occurs between two successive erosions. The second algorithm
is the regularization of the distance map. The subset of points that do not sat-
isfy the 1-Lipschitz condition are looked for, and this property is enforced by
adding a unit to the current distance step. Since this modification is able to
create new non 1-Lipschitz points, the previous operations are iterated until the
idempotence is reached.

From a computational point of view, the bottleneck of such an approach is the
processing of the whole images at each step. In fact, the points that really need to
be processed form a subset of the image which usually gets smaller while the iter-
ation step increases. This assertion is asymptotically always true, in that extent
that only the lowest points of the image keep eroding before reaching the idempo-
tence. Focusing the computation on the points where the activity of the residual is
not empty would avoid unnecessary operations. This remark is the main property
we use in the design of our algorithms.

The sequel of this article is organized as follow: we propose two algorithms
for the computation of the family of erosions and for its the regularization in
section 2 and 3 respectively. Their performances in terms of computation time
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Algorithm 1. Computation of q - Algorithm presented by S. Beucher [2]
Data: I
Result: Q, R
W1 ← I1
Q, R, W2 ← 02
i ← 03
repeat4

i ← i + 15
W2 ← ε(W1)6
residue ←W1−W27
E ← (residue ≥ R and residue �= 0)8
Q[E] ← ∨{i,Q[E]}9
R ← ∨{residue,R}10
W1 ← W211

until residue = 012

Algorithm 2. Regularizing of q - Algorithm presented by S. Beucher [2]
Data: Q
Result: RQ
RQ ← Q1
i ← 02
repeat3

W ← RQ−ε(RQ)4
E ← ¬(W ≤ 1)5
RQ[E] ← ε(RQ[E]) + 16

until E = ∅7

are compared to the classical algorithms in section 4. Section 5 draws concluding
remarks and further improvements.

2 Quasi-distance Transform Algorithm

In the following, we only deal with flat structuring elements the we consider
as defining a neighbouring graph. We denote Np(W ) the neighbourhood of the
point p in the image W or simply Np if there is not ambiguity over the image.
The algorithm for the quasi-distance transform is presented in Alg. 3. It falls
into two distinct parts: an initialization followed by a propagation loop. The
initialization looks for all the points of the input image I for which the activity
of the residue is not empty or equivalently, the initial support of the residue r1.
Let us call E0 this subset, it is given by E0 = {x|∃v ∈ Nx, x < v}. All the points
of E0 are placed in the queue, but no further processing is performed at this
stage.

The propagation loop falls into two parts. The first is the effective computation
of the erosion of I and the update of the distance Q and the residue R =
∪iri maps accordingly (lines 11-13). Inside each neighbourhood and once the
erosion is done, the residue ri is computed and compared to the previous residues
∪j<irj stored in R. If the conditions of Equ.2 are met, the maps Q and R are
updated. Note that the occurrence of the maximal residue is corrected regarding
the definition of q. Since the element in the queue do not carry neighbouring
information, two intermediate images W1 and W2 are needed. These two images
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are involved for the computation of the successive erosions. This process being
iterative, the changes of the eroded image ε(i+1) should be reflected inside the
reference image ε(i) (line 15), which only occurs for the subset Ei.

The second part of the algorithm propagates the changes made on Ei to
the neighborhood of Ei, because newly eroded points of Ei can erode their
neighbours in turn. For each point p of Ei, the algorithm looks for the points
above p inside its neighbourhood. These points form a new set Ei+1. This way, a
point can be put in the propagation queue from several locations. The image C
carries the states of the points and prevents them from being inserted more than
once (line 17). The erosion and propagation steps of the algorithm are illustrated
on figure 4.

Fig. 4. Main steps of Alg.3. Left: the original profile and the subset E0 (in red). Middle:
result of the erosion of E0. Right: new subset E1 constructed from E0.

The performance of this algorithm is directly related to the cardinality #Ei

of the set Ei of points being eroded at step i: the fewer the processed points,
the faster the step. It is worth noticing that first, this cardinality is bounded
by the number of points of the image. Second, even if the sequence (#Ei)i is
not monotonically decreasing1, the family of erosions always converges to the
global minimum of the image, which means that the sequence (#Ei)i has 0 as
unique limit. This proves the convergence and justifies the stop criterion of the
algorithm (line 8).

3 Distance Map Regularization Algorithm

The algorithm for the distance regularization is given in Alg. 4. Q stands for the
non-regularized input distance map generated by the previous algorithm, while
RQ stands for the regularized distance map. “hq” is a hierarchical queue, and it
is assumed that it provides a method named “empty priority x”, which removes
all the elements at priority x from the queue.

The algorithm falls into three parts, also illustrated on Fig.5. The first part
looks for the subset NL of points that do not verify the 1-Lipschitz constraint:
NL = {x | ∃ v ∈ Nx, v < x, |x − v| > 1}. The aim of the second part is to find
the points of NL which are also neighbours of NL or, in other words, to find the
1 Consider the front around an isolated eroding point which describes a circle with a

growing radius.
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Algorithm 3. Computation of q
Data: I
Result: Q, R

1 C ← candidate, W1 ← I, W2 ← I, Q ← 0, R ← 0
2 f1, f2 ← ∅
3 forall the p ∈ W1 do
4 forall the v ∈ {N (p,W1) \ p} do
5 if (v < p) then f1 ← f1 + p, break
6 i ← 1
7 while f1 �= ∅ do
8 forall the p ∈ f1 do
9 C(p) ← candidate

10 W2(p) ← ∧Np(W1)
11 residue ← W1(p) - W2(p)
12 if residue ≥ R(p) then R(p) ← residue; Q(p) ← i

13 forall the p ∈ f1 do
14 W1(p) ← W2(p)
15 forall the v ∈ Np(W2) do
16 if (v > p) and (C(v) �= in-queue) then f2 ← f2 + v; C(v) ← in-queue
17 f1 ← f2; f2 ← ∅; i ← i + 1

interior frontier ∂NL of NL. The points of ∂NL are inserted into the priority
queue at the corrected priority. Indeed, two neighbour points of NL are mutually
dependant and regularizing one of them is likely to make the other violate the
1-Lipschitz property. To avoid any redundancy, the processing of the points
of NL ∩ ∂NL is postponed to a next propagation step. Since 0 and 1 valued
points are left unchanged by the first regularizing step, all points neighbours
to the points at height 1 should be processed before the others. From this first
step, we propagate the regularization to points of higher value. The priority
queue structure is perfectly suited for this kind of ordered sequential processing
of heights (see Fig.5). Once the priority queue has been initialized, neighbour
points of ∂NL that do not meet the 1-Lipschitz property are added. Since we
know exactly the value these points should have, they are pushed at the corrected
height into the priority queue. This is the aim of the third loop of the algorithm.
Hence, processed points are either already in the queue from the initialization
step, or added after all the heights below have been processed.

Fig. 5. Steps of the regularizing algorithm. From left to right: original profile, the subset
NL of non 1-Lipschitz points (in red), the interior frontier ∂NL (in red) inserted in
priority queue at the regularized priority (in green), regularization of the point of
highest priority (in red) and propagation to their non 1-Lipschitz neighbours.



42 R. Enficiaud

Algorithm 4.Regularization of the distance map
Data: I
Result: RQ

1 RQ ← Q
2 C ← none
3 hq ← ∅
4 forall the p ∈ RQ do
5 forall the v ∈ Np do
6 if v > p + 1 then C(v) ← in-queue
7 forall the p ∈ RQ do
8 if C(p) = in-queue then
9 forall the v ∈ Np do

10 least-neighbor ← I(v) + 1
11 if (C(v) = none) and (p > least-neighbor) then
12 RQ(p) ← least-neighbor
13 hq ← hq + p at priority least-neighbor
14 while hq �= ∅ do
15 pr ← highest priority of hq
16 forall the p ∈ hq(pr) do
17 forall the v ∈ Np do
18 if RQ(v) > pr + 1 then hq ← hq + v at priority pr + 1, RQ(v) ← pr + 1

19 hq ← empty priority pr

4 Results

We tested the proposed algorithms on 44 images of different dimension and
content. We used a Pentium 4 PC at 2.8GHz, with 512MB of DDR2 RAM
and running Windows XP. For each image, we considered the average time of
10 realizations, which we then normalized by the number of pixels in the image.
Processing time results are shown on Fig.6. Each figure is divided into two plots.
The barplots show four bars per image: the two bright ones (first and third bars)
represent the times associated with the proposed algorithms 3 and 4 respectively,
while the two dark bars show the time per pixel for the classical algorithms 1
and 2. For each pairs of bars, one is for the original image and the other for the
inverted image. The vertical unit is the log10 of the milliseconds per pixel. The
line plots on the top show the difference between the new and classic algorithms.
The dashed plot is for the inverted images while the plain one for the original
images. Vertical unit is logarithmic (without dimension).

As we see on these figures, the proposed algorithms provide an improvement
in terms of processing time. All time ratios are above 1, both for the quasi-
distance algorithm and for its regularizing part. Since the points are processed
only once in the regularization, the regularization algorithm performs very fast
and offers a downscale log10ratio ∈ [1, 2] which is of an exponential magnitude.
The proposed quasi-distance algorithm also reduces the overall complexity of
the transform. The benefit is lower than for the regularization, for reasons that
will be discussed. The log-ratio is however above 0.4 and often around 0.6, which
means 100.6 = 3.98 less time spent on each pixels.

As mentioned, the performances are directly related to #Ei (see section 2).
We see on Fig. 7 that this sequence quickly decreases during the firsts steps of
the propagation. The queue approach suffers mainly from two major drawbacks.
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Fig. 6. Left: time per pixel for the Quasi-Distance algorithm 3 and 1. Right: time per
pixel regularization algorithm 4 and 2. Please refer to the text for the legend.

Fig. 7. Amount of points inside the queue of Alg.3 for two different images. The dashed
line on the top indicates the number of points in the image. Units are logarithmic in
number of pixels.

First, in order to avoid multiple insertion of a point and since the queue struc-
ture does not allow to do this, an additional work image implying an overhead
is needed. Second, the implementations for computing the sequence of erosions
can take advantage of the redundancy between two successive neighbourhoods
(by eg. vectorized instructions [6]). As mentioned in introduction, there is no
need to compute the erosion for all the pixels, and the latter kind of implemen-
tations necessarily suffer from a high computational costs at some step of the
computation. The queue structure is well adapted when the subset of eroding
points is sparse in the image but the natural order of the pixel being lost, not
well adapted for taking into account the mutual information of its elements.
From these observations, we also tested a combined approach which performs
the vectorized processing at the first k steps, and then switches to the queued
approach. The number of steps k depends naturally on the content of the image.
We have determined k ≈ 14 on the same set of images as providing the best
results.
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5 Conclusion and Future Work

In this article, we proposed a new algorithmic approach for computing the quasi-
distance transform. Considering the results, an improvement of the computation
time has been achieved without introducing any bias in the transform itself.
On the conducted tests, the new approach is always faster than the original
one: the new regularizing algorithm is often 10 to 100 times faster, which is very
satisfactory. The quasi-distance itself is often 4 times faster, and we also proposed
to further reduce the overhead introduced by the queue-based approach through
an combined algorithm. We however think that these results can be improved.

As concluding remarks, we may say that the quasi-distance transform can
also be subject to some modifications. An extension to colour images has been
proposed in [7], which derives directly from the grey valued functions by means
of lexicographical orders and colour distances. Besides, one may notice that from
the initial setting of the quasi-distance, any global minimum has an influence over
the entire image. However, it is often desirable this influence having a restricted
support, for instance for taking into account an a priori knowledge concerning
the size of objects of interest. By modifying the indicating function, one would
benefit from the filtering properties of the residual transform while discarding
some of its drawbacks. In such a case, the proposed algorithms can be easily
extended to handle a new stop criterion, and the advantages in processing times
would be even more important.
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Abstract. The denoising of a natural signal/image corrupted by Gaussian white 
noise is a classical problem in signal/image processing. However, it is still in its 
infancy to denoise high dimensional data. In this paper, we extended Sendur 
and Selesnick’s bivariate wavelet thresholding from two-dimensional image 
denoising to three dimensional data denoising. Our study shows that bivariate 
wavelet thresholding is still valid for three dimensional data. Experimental  
results confirm its superiority.  

Keywords: Denoising, high dimensional data, wavelet transforms, thresholding. 

1   Introduction 

Wavelet denoising for one-dimensional (1D) signal and two-dimensional (2D) images 
has been a popular research topic in the past two decades. The denoising problem to be 
solved can be defined as follows. Let )(tg  be a noise-free signal and )(tf  the signal 

corrupted with Gaussian white noise )(tz , i.e., 

                                                )()()( tztgtf nσ+= ,                                         (1) 

where )(tz has a normal distribution with zero mean and unit variance, and nσ  is the 

noise variance. Our goal is to remove the Gaussian noise and recover the noise-free 
signal )(tg . The basic procedure of wavelet denoising [1] is to transform the noisy 

signal into the wavelet domain, threshold the wavelet coefficients, and then perform 
the inverse wavelet transform to obtain the denoised image. The thresholding may be 
undertaken on one wavelet coefficient alone or by considering the influence of other 
wavelet coefficients on the wavelet coefficient to be thresholded.  

We briefly review the most popular wavelet denoising methods in the literature. 
Chen and Bui [2] extended the neighbouring wavelet thresholding idea to the  
multiwavelet case. They claimed that neighbour multiwavelet denoising outperforms 
neighbour single wavelet denoising and the term-by-term multiwavelet denoising [3] 
for some standard test signals and real-life signals. Chen et al. [4] proposed an  
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image-denoising scheme by considering a square neighbourhood window in the wave-
let domain. Chen et al. [5] also considered a square neighbourhood window, and tried 
to customize the wavelet filter and the threshold for image denoising. Experimental 
results show that both methods produce better denoising results. Chen and Kegl [6] 
have successfully applied the dual-tree complex wavelet to image denoising by using 
the complex ridgelet transform.  Chen and Qian [7], [8] recently developed two meth-
ods for denoising hyperspectral data cube by using bivariate wavelet thresholding and 
wavelet packets, respectively. Sendur and Selesnick [9], [10] developed a bivariate 
shrinkage function for image denoising. Their results showed that the estimated wave-
let coefficients depend on the parent coefficients. The smaller the parent coefficients 
are, the greater the shrinkage is.   

In this paper, we extended the 2D bivariate wavelet thresholding proposed in [10], 
to 3D data cube denoising. We found that the bivariate thresholding formula is still 
valid for 3D datacube denoising. Experimental results show that the proposed method 
is better than denoising every spectral band separately. Our proposed method can de-
noise the whole data cube in one shot instead of performing a 2D wavelet thresholding 
on each spectral band of the data cube. 

The paper is organized as follows. Section 2 extends the 2D bivariate wavelet de-
noising [10] to 3D data cube. Section 3 conducts experiments for denoising both a 
simulated 3D data cube and a real hyperspectral data cube. Our experimental results 
show that the proposed method outperforms band-by-band denoising. Finally, Section 
4 draws the conclusions and gives future work to be done.  

2   Bivariate Wavelet Thresholding for 3D Data Cube 

In this section, we extended the 2D bivariate wavelet thresholding [10] to the 3D case. 
We found that the bivariate wavelet thresholding formula is still valid for denoising 3D 
data cube. However, the parameters in the thresholding formula have to be changed 

from the 2D case to the 3D case. For any given wavelet coefficient 1w , let 2w be the 

parent of 1w , and define 

                                                      nwy +=                                                         (2) 

where ),( 21 www =  is the noise-free wavelet coefficients, ),( 21 yyy =  the noisy 

coefficients, and ),( 21 nnn =  the Gaussian white noise. The 2D bivariate threshold-

ing formula [10] is given by  
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where ).0,max()( xx =+  The noise variance nσ [1] can be approximated as 
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and 

                                                +
∈

−= ∑ )
1

( 22
1

1

n
Sy

i

i

y
M

σσ                                  (5) 

The 1HH  in (4) is the finest 2D wavelet coefficient subband, and M is the number of 

pixels in the 2D neighborhood window S.  
The orthonormal basis of compactly supported wavelets of L2(R) is formed by the 

dilation and translation of a single function )(xϕ  

)2((2)( 2/
, kx jj
kj −= −− ϕϕ  

The function )(xϕ  has a companion, the scaling function φ(x), and these functions 

satisfy the following relations 
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The hk and gk are the low-pass and high-pass filter coefficients, respectively. The 
wavelet transform of a signal is just the projection of the signal onto the wavelet 
bases. The above analysis is suitable for 1D signals. Let L denote the low pass output 
subband, and H the high pass output subband. The 3D wavelet transform can be ap-
plied recursively to the low-low-low (LLLi-1) subband by performing a 1D wavelet 
transform along each of the three dimensions of the 3D data cube. The output sub-
bands for the ith decomposition scale are the LLLi, and seven high pass wavelet sub-
bands HLLi, HLHi, HHLi, HHHi, LLHi, LHLi, and LHHi. For denoising a 3D data 
cube, our study showed that the thresholding formula (3) is still valid.  

 

Fig. 1. The Lena image used to build the simulated data cube 



48 G. Chen, T.D. Bui, and A. Krzyzak 

                                             .)

3

1(
2
2

2
1

2

11 +
+

−⋅=
yy

yw
nσ

σ                                (7) 

The noise variance nσ  has to be approximated as 

                               
6745.0

|)(| 1i
n

ymedian
=σ , ∈iy1 subband 1HHH .                    (8) 

The subband 1HHH  is the finest high-high-high subband in the forward 3D wavelet 

transform. Also,  

                                                      +
∈

−= ∑ )
1

( 22
1

1

n
Sy

i

i

y
M

σσ                                (9) 

where M is the number of pixels in the 3D neighbourhood cube S, and 

).,0max()( xx =+  In this paper, we have chosen S as a 777 ×× neighbourhood 

cube centered at y1, the noisy 3D wavelet coefficient to be thresholded. 
The proposed wavelet-denoising algorithm for 3D data cube can be summarized as 

follows. 
1. Perform the forward 3D wavelet transform on the noisy data cube until a cer-

tain specified decomposition scale J. 

2. Estimate the noise variance nσ  according to (8) and σ  according to (9). 

3. Threshold the 3D wavelet coefficients by using the bivariate thresholding for-
mula (7). 

4. Conduct the inverse 3D wavelet transform to obtain the denoised data cube. 

It is worth explaining the parent-child relation in the 3D wavelet coefficients here. For 
any 3D wavelet coefficient y1 and its parent y2, both of them have to be in the same 
subands in two consecutive decomposition scales.  For example, if y1 is in subband 
LLHi, then its parent has to be in subband LLHi-1.  

3   Experimental Results 

In this section, we conducted some experiments to both simulated data cube and real 
life hyperspectral data cube. For the simulated data cube, we extracted a region of the 
Lena image with 128128× pixels, and repeatedly pack this region for 128 times so 

that we can have a simulated data cube of size 128128128 ×× . We also tested a 
real life hyperspectral data cube in this paper. This data cube was acquired by the 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in the Cuprite mining 
district, Nevada, by Jet Propulsion Laboratory (JPL) in 1997. The original scene with 
size of 512614×  pixels and 224 bands is available online at 
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http : //aviris.jpl.nasa.gov/html/aviris.freedata.html. 
 

The upper-right corner of the scene that consists of 350 × 350 pixels and 224 bands 
was extracted for the experiments in this paper. This scene is well understood miner-
alogically and it has been made a standard test site for validation and assessment of 
remote sensing methods. For our experiment in this paper, we extracted a small cube 
from this Cuprite data cube with size 128128128 ×× . Fig. 2 shows the AVIRIS 
Cuprite scene at wavelength 827 nm (spectral band 50).  

The noisy data cubes are obtained by adding Gaussian white noise to the original 

noise-free data cubes. The noise variance nσ  goes from 5 to 40 in the experiments 

conducted in this paper. The Daubechies-8 wavelet filter is used for the existing de-
noising methods. The neighbourhood window size is chosen as 777 ××  pixels and 
the wavelet transform is performed for three decomposition scales. Tables 1 and 2 
tabulate the PSNR values of the denoised data cube resulting from the proposed 
method and the method that denoises each spectral band separately for the simulated 
and Cuprite hyperspectral data cubes at different levels of noise variance. The peak 
signal to noise ratio (PSNR) is defined as 
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where N is the number of pixels in the data cubes, and B and A are the denoised and 
noise-free data cubes. From the experiments conducted in this paper we found that the 
proposed method is better than denoising every spectral subband separately. Therefore, 
it is preferred in denoising real life noisy data cubes.  

 

Fig. 2. The AVIRIS Cuprite scene at wavelength 827 nm (spectral band 50) 
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Table 1. PSNR values of the 2D bivariate thresholding and the proposed method for the simu-
lated data cube 

σn Bivariate thresholding 

on each spectral band 

Proposed 

Method 

5 34.82 38.86 

10 31.42 34.55 

15 29.46 32.48 

20 28.12 31.12 

25 27.08 30.11 

30 26.21 29.31 

35 25.46 28.64 

40 24.79 28.06 
 

Table 2. PSNR values of the 2D bivariate thresholding and the proposed method for the cuprite 
data cube 

σn Bivariate thresholding 

on each spectral band 

Proposed 

method 

5 36.60 39.53 

10 33.26 35.85 

15 31.50 34.10 

20 30.24 32.94 

25 29.20 32.06 

30 28.26 31.33 

35 27.39 30.70 

40 26.58 30.14 
 

4   Conclusion 

In this paper, we have extended the 2D bivariate wavelet thresholding proposed in [9], 
[10], to the 3D case. We found that the bivariate wavelet thresholding formula is still 
valid for 3D data denoising. Experimental results show that the proposed method is 
better than denoising every spectral band separately. Our proposed method denoises 
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the whole data cube in one shot instead of performing a 2D wavelet thresholding on 
each spectral band of the datacube.  

Further investigation will be carried out by exploiting both inter-scale and intra-
scale relationships in the 3D wavelet coefficients. The parent-child relations in multi-
wavelet coefficients could also be investigated to achieve better denoising results. We 
could also extend the 2D bivariate wavelet thresholding technique to even higher di-
mensional data. 
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Abstract. A new algorithm for image quality assessment based on en-

tropy of Gabor filtered images is proposed. A bank of Gabor filters is

used to extract contours and directional textures. Then, the entropy of

the images obtained after the Gabor filtering is calculated. Finally, a

metric for the image quality is proposed. It is important to note that

the quality of the image is image content-dependent, so our metric must

be applied to variations of the same scene, like in image acquisition and

image processing tasks. This process makes up an interesting tool to

evaluate the quality of image acquisition systems or to adjust them to

obtain the best possible images for further processing tasks. An image

database has been created to test the algorithm with series of images

degraded by four methods that simulate image acquisition usual prob-

lems. The presented results show that the proposed method accurately

measures image quality, even with slight degradations.

1 Introduction

Image acquisition is a fundamental stage in every machine vision system. Ob-
taining the best quality images is critical to ensure a good performance. In this
context, it is interesting to have a reliable way to measure the quality of the
captured images or, from another point of view, to adjust the system to obtain
the best possible images. Image quality assessment plays a fundamental role in
this process, as well as in many image processing applications. It can be used to
compare the performance of different methods (processing or acquisition) and
to select the one which provides the best quality (or less image degradation); it
can be used to measure the degradation itself after image processing operations;
it also provides a metric to evaluate the performance of compression methods,
like JPEG, or the quality of transmission channels (which is not covered in this
work).

The most challenging problem in image quality assessment is the subjectivity
inherent to perceived visual quality [1]. Several attempts to measure the quality
of an image have been made, but it remains an open problem. Methods based on

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 52–61, 2010.
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the measurement of Peak Signal to Noise Ratio (PSNR) or Mean Square Error
(MSE) have been widely used due to their easy implementation, but the results
show that they are not well suited to measure the human observer perceived
quality [2]. Methods based on the use of previous knowledge of the Human Visual
System (HVS) have shown a better performance in image quality assessment [3],
[4]. HVS relays on the assumption that human observers pay more attention
to details like structural information, which are more relevant to image quality
measurement. Some previous contributions have pointed the use of entropy to
measure image quality [5]. However, an entropy measure is unable to distinguish
between noise and structural information. To solve this problem, a method based
on image anisotropy has been proposed in [6].

Gabor filters have been extensively used in texture analysis and classification
[7], [8], [9], but their use in image quality assessment remains little explored
[10], [11]. The proposed method uses a bank of Gabor filters to model the linear
filtering properties of single cells in visual cortex and to extract image contours
and directional textures, which are directly related to HVS. Then, an estimation
of the amount of visual information (randomness) perceived is calculated mea-
suring the entropy of the outputs of the filter bank. The entropy value is directly
related to the randomness of the image. Poorly defined transitions in the per-
ceived image (Gabor response), which means less image quality, would produce
a high entropy value. A metric is calculated by averaging the entropies obtained
from the different Gabor filter bank outputs. This value can be used by itself as
a reference, or can be normalized in relation to the original reference image, to
show whether certain adjustment or process diminishes the image quality.

The paper is organized as follows. A theoretical background and the proposed
algorithm are presented in Sect. 2. In Sect. 3 the developed test procedure to
validate the method is shown. Results and discussion are presented in Sect. 4.
Finally, some conclusions are given in Sect. 5.

2 Algorithm

2.1 Gabor Filters

Gabor filtering for image textural analysis has been introduced by Daugman
[12]. The success of Gabor filters in this field is due to their aptitude to model
the response of simple cortical cells in the visual system.

A 2D Gabor filter can be thought of as a complex plane wave modulated by
a 2D Gaussian envelope and can be expressed in the spatial domain as:

Gθ,f,σ1,σ2(x, y) = exp
[
−1
2

(
x′2
σ2
1

+ y′2

σ2
2

)]
cos (2πfx′ + ϕ)

x′ = x sin θ + y cos θ
y′ = x cos θ − y sin θ

(1)

where f is the spatial frequency of the wave at an angle θ with the x axis, σ1 and
σ2 are the standard deviations of the 2D Gaussian envelope, and ϕ is the phase.
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Frequently in textural analysis applications, and also in this case, the Gaussian
envelop is symmetric, so we have σ = σ1 = σ2.

A Gabor filter is suited to obtain local frequency information in a specific ori-
entation (given by θ), which is directly related with image contours. A common
practice in Gabor texture analysis is to use a bank of Gabor filters with dif-
ferent parameters tuned to capture several orientations and spatial frequencies.
Attempts to systematize the design of the bank have been proposed [9], showing
that increasing the number of frequencies and orientations has a little effect on
the performance of the filter bank. However, the smoothing parameter, σ, is a
significant factor to be carefully chosen in the bank design. Unfortunately, most
of the times, it needs to be empirically chosen.

2.2 Image Entropy

The concept of entropy is associated with the amount of disorder in a physical
system. Shannon redefined the entropy as a measure of the amount of information
(uncertainty) in a source [13]. If the source is an image, it can be seen as a 2D
array of information. The Shannon entropy is given by:

H(X) = −
n∑

i=1

p(xi) logb p(xi) (2)

where Pr [X = xi] = p(xi) is the probability mass distribution of the source. This
equation can be used to estimate the global entropy of an image characterized
by its histogram:

H(I) = −
N∑

i=1

histnorm(Li) log(histnorm(Li)) (3)

where Li represents the N intensity levels of the m × n image I(x, y) and
histnorm(Li) is the histogram properly normalized to fit a probability distri-
bution function:

N∑
i=1

histnorm(Li) = 1 (4)

The entropy of an image is an estimation of randomness, and is frequently used
to measure its texture. As shown in Fig. 1, entropy can be thought as a mea-
surement of the sharpness of the histogram peaks, which is directly related with
a better defined structural information.

2.3 The Proposed Method

A flowchart of the proposed process is shown in Fig. 2. The input image is a grey
level one; however the process can be easily applied to planes of a color space
(like RGB). A bank of Gabor filters is used to extract contours and textural
information. This stage converts the information to the HVS domain (cortex
responses). The selected parameters for the filters are the following:



Entropy of Gabor Filtering for Image Quality Assessment 55

Fig. 1. Example of the entropy of different shape histograms. a) shows a higher entropy

than b) (Ha = 13.9627; Hb = 6.9216).

Fig. 2. Flowchart of the process

– Six different orientations are used. However, the empirical tests show that
the number of filters and angles does not seem to be crucial:

θ ∈
[
0,

π

6
,
π

3
,
π

2
,
2π

3
,
5π

6

]
(5)

– Two phases are used, ϕ1 = 0 for a symmetric filter (on the θ orientation)
and ϕ2 = π

2 for an anti-symmetric filter. This can be thought as real and
imaginary parts of the same filter response.

– Two different spatial frequencies are used: f1 = 1
8 (spatial period λ of 8

pixels) and f2 = 1
4 (spatial period λ of 4 pixels).

– The standard deviation of the Gaussian envelope is empirically fixed to σ =
λ
2 for all the filters.

24 filtered images are obtained, 12 with ϕ1 = 0 and 12 with ϕ2 = π
2 . Each pair

is combined to estimate the energy of the filtered images by:

E(x, y) =
√

Rϕ1(x, y)2 + Rϕ2(x, y)2 (6)

where Rϕi(x,y) is the Gabor response for the phase ϕi.
This process results in 12 energy images. The histogram of these energy images

is computed, and their entropy estimated through Eq. (3). Entropy measures
the amount of information or, in other words, the randomness of the image
histogram.

This procedure combines the benefits of objective and subjective measure-
ments. On the one hand, Gabor filtering provides features inherent to the visual
perceived quality by modelling the behaviour of visual cells. On the other hand,
this information is quantified by the use of entropy.

However, the amount of information in an image depends on its content as
well as on its quality. E.g. there is less information in an image of a white sheet
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than in a written one. For this reason, the entropy of the Gabor filtered image
is not an absolute quality measurement, unless compared to a reference image.
This is not a problem for the applications proposed in Section 1, in which the
interest lies in comparing the quality of images of the same scene, or the effect
of certain processing.

Taking this into account, the proposed relative quality metric (Qr) is com-
puted averaging the entropy of the energies of the 12 Gabor filtered images. The
result is inverted and multiplied by the entropy of the reference image, obtained
the same way:

Href = 1
12

∑12
i=1 Hrefi

H = 1
12

∑12
i=1 Hi

Qr = Href

H

(7)

with H being the calculated entropy and Href the entropy of the reference
image. As the entropy increases, the quality of the image decreases, so a Qr ∈
(0, 1) means the quality of the image is lower than the reference (e.g. after the
transmission through a noisy channel). If the resultant Qr > 1, the quality of
the image is higher than the reference (e.g. a noisy image which is enhanced by
a median filtering, a blurred image which is enhanced by a fine tuning of the
acquisition system, etc.).

3 Test Design

Two different test procedures have been developed to validate the performance
of the proposed metric. The fist one is intended to model subtle variations in the
image acquisition system. This is an objective quality test. The second one is
intended to compare the proposed metric with the quality perceived by human
observers. This is a subjective test.

3.1 Objective Test

For this purpose, an image database of natural scenes has been created. It is
composed of 1100 images of 2136× 1424 pixels. It was originated by 25 original
images (see Figure 3) progressively degraded in 10 steps following 4 different
procedures (see below), which becomes in 25×(10+1)×4 quality tagged images.

The degradations introduced to the original images in this first database are:

– Blur: Gaussian blur has been applied by increasing the filter size in 10 steps
(from 3× 3 to 21× 21 pixel blocks).

– Noise: Zero mean Gaussian noise has been added by increasing its standard
deviation in 10 steps (from 5 to 25 in 8 bits per pixel grey scale images).

– Blur & Noise: Gaussian blur has been applied, followed by adding Gaussian
noise (10 steps). It models the effect of sensor noise after an out of focus
imaging.
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Fig. 3. Original images of natural scenes used to create the image database

– Noise & Blur: Gaussian Noise has been added, followed by Gaussian blur
(10 steps). It models the effect of software blurring operations after a noisy
image acquisition (sensor noise).

The combination of noise and blur effects in different order, allows to simulate
the effects of different acquisition systems, preprocessing operations, etc. [14].
Gaussian blur simulates the blur in an out of focus image. The Gaussian noise
models the electronic noise which is produced in the camera sensor if the illumi-
nation, exposure time and gain parameters are not properly set. Figure 4 shows
the effect of the 4 degradation procedures. This first database is intended to test
the performance of the metric in the presence of subtle degradations.

3.2 Subjective Test

For the second test procedure, images from the LIVE Image Database [14] have
been used. LIVE database contains images obtained by several distortion pro-
cedures, which have been subjectively classified and scored by human observers.
The scores have been scaled and shifted to a 1 to 100 range, and a Difference
Mean Opinion Score (DMOS) was computed. For our test, images distorted
with white noise and Gaussian blur have been used. The database also contains
images affected by JPEG compression, but it is not the aim of the proposed
algorithm to test compression formats. The test is performed in a similar way
to the first one. Images from the same scene have been sorted by their DMOS
value (original and distorted ones). Then, the Qr metric has been computed.
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Fig. 4. Some steps for the blur, noise, blur & noise, and noise & blur degradation

process of an example image

4 Results and Discussion

Figure 5 shows the results of the quality evaluation for the progressively degraded
image shown in Figure 4. Similar results are obtained for the rest of the images
used for the objective quality test.

It is interesting to note that most of the image quality assessment algorithms
are tested using images that have a broad variation in quality. This is adequate
when the objective is to model the quality perceived by an observer, e.g. to
evaluate the performance of a compression algorithm or a transmission system.
In these situations, the evaluation algorithm can be less precise (more tolerant),
since variations in quality which are not perceived by the observer are not critical
for the system.

However, if the objective is to select the best imaging system (or adjust it at
its best) for a machine vision application, we have to be more strict in the perfor-
mance of the method in a narrow error interval around the best possible image,
which we call Critical Peak. In other words, we need to measure the quality of the
image with a sufficiently high precision to obtain a strictly crescent/decreasing
function.

As can be seen again in the example of Figure 4, the degradation applied
is kindly subtle (low noise variance and small blurring mask) to test the Crit-
ical Peak performance. Figure 6 shows that all tested images have a strictly
de-crescent function for their measured qualities in the test. The slope of the
quality function varies significantly from image to image, because the degrada-
tion depends on the introduced distortion, as well as on the image content.



Entropy of Gabor Filtering for Image Quality Assessment 59

Fig. 5. Measured quality of the 10 step degraded images: a) blur; b) noise; c) noise

after blur; d) blur after noise

Fig. 6. Quality graphics of the test procedure. All images shown a strictly de-crescent

function through the degradation procedures.
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Fig. 7. LIVE images test. a) shows Gaussian blur distorted images; b) shows white

noise distorted images.

For the second part of the test (LIVE images), crescent curves have been
obtained, without taking into account the differences in scale (Qr ranges from
0 to 1, where 1 is the higher quality value). The results are shown in Figure 7.
As can be seen, the proposed metric also correlates with the quality perceived
by human observers. Note that a higher DMOS value means less quality (larger
difference to the reference image).

In this case, most of the curves are strictly crescent. However, there are some
anomalies in some functions, which can be due to several factors (inherent to
the image database): variance in the perceived qualities by different observers or
from one day to another; the DMOS scaling system grades every image in a 1 to
5 discrete scale, which means that the minimum DMOS values for a distorted
image is always higher than 20 (in a 1 to 100 re-scaled range); in addition, every
single image is evaluated by comparison with the original one, but not with the
whole sequence of distorted images.

There are also differences in the slopes, which produce dispersion in the curves
of different images, due to the dependency of image content (besides its degrada-
tion). However, we obtain a good performance in quality evaluation for degraded
sequences of the same image, which is the aim of the method.

5 Conclusions

Image quality assessment is an important tool that allows the user to perform a
comparison between variations of an image. This can be useful when developing
image processing algorithms and when designing imaging systems. A method
based on the entropy of Gabor filtered images has been developed. It combines
objective measures (entropy) with subjective ones (HVS).

An image database has been created to test our metric, by means of an original
set of natural images and applying different degradation methods to this initial
set. With these degradations, real world behaviours present in image acquisition
and image processing systems are modeled. When tested with this database, the
proposed metric works properly even in narrow ranges, which can be checked by
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its strictly de-crescent charts. A test using LIVE Image Database also confirms
it is well suited to human observer perception of image quality.

To conclude, the combination of subjective characteristics, modelled by Ga-
bor filtering, and objective features, like entropy, provide a useful and powerful
starting point for further developments on Image Quality Assessment.
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6. Gabarda, S., Cristóbal, G.: Blind image quality assessment through anisotropy.

Journal of the Optical Society of America 24(12), 42–51 (2007)

7. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters.

Pattern Recognition 24(12), 1167–1186 (1991)

8. Jain, A.K., Ratha, N.R., Lakhsmanan, S.: Object detection using Gabor filters.

Pattern Recognition 30(2), 295–309 (1997)

9. Bianconi, F., Fernández, A.: Evaluation of the effects of Gabor filter parameters

on texture classification. Pattern Recognition 40, 3325–3335 (2007)

10. Taylor, C.C., Pizlo, Z., Allebach, J.P., Bouman, C.A.: Image Quality Assessment

with a Gabor pyramid model of the human visual system. In: Proc. SPIE Int.

Symposium on Electronic Imaging Science and Technology, vol. 3016, pp. 58–69

(1997)

11. Zhai, G., Zhang, W., Yang, X., Yao, S., Xu, Y.: GES: A new image quality as-

sessment metric based on energy features in Gabor Transform Domain. In: IEEE

Proc. Int. Symposium on Circuit and Systems, pp. 1715–1718 (2006)

12. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency,

and orientation optimized by two-dimensional visual cortical filters. Journal of the

Optical Society of America 2(7), 1160–1169 (1985)

13. Shannon, C.E.: The Mathematical Theory of Communication. The Bell System

Technical Journal 27, 379–423, 623–656 (1948)

14. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE Image Quality Assessment

Database Release 2, http://live.ece.utexas.edu/research/quality

http://live.ece.utexas.edu/research/quality


Segmentation Based Noise Variance Estimation
from Background MRI Data

Jeny Rajan, Dirk Poot, Jaber Juntu, and Jan Sijbers

Vision Lab

University of Antwerp

Antwerp 2610, Belgium

{jeny.rajan,dirk.poot,jaber.juntu,jan.sijbers}@ua.ac.be

Abstract. Accurate and precise estimation of the noise variance is often

of key importance as an input parameter for posterior image processing

tasks. In MR images, background data is well suited for noise estimation

since (theoretically) it lacks contributions from object signal. However,

background data not only suffers from small contributions of object sig-

nal but also from quantization of the intensity values. In this paper, we

propose a noise variance estimation method that is insensitive to quan-

tization errors and that is robust against low intensity variations such as

low contrast tissues and ghost artifacts.

The proposed method starts with an automated background segmen-

tation procedure, and proceeds then by correctly modeling the back-

ground’s histogram. The model is based on the Rayleigh distribution of

the background data and accounts for intensity quantization errors. The

noise variance, which is one of the parameters of the model, is then es-

timated using maximum likelihood estimation. The proposed method is

compared with the recently proposed noise estimation methods and is

shown to be more accurate.

Keywords: Noise Estimation, MRI, Segmentation.

1 Introduction

Noise estimation in Magnetic Resonance Images (MRI) is important as it can
play a key role in effective denoising of these images. It also finds application in
quality assessment of MR images and various parameter estimation problems.
Many techniques have been proposed in the literature to estimate the noise vari-
ance from MR images. A survey of these methods is given in [2]. The noise
variance in MRI can be estimated from either complex or magnitude images.
Usually, the estimation is done in magnitude MR image, since it is the usual
output of the scanning process. Most of the methods in this category estimate
the image noise variance from the background region of the image. Typical MR
images usually include an empty region of air outside the tissue of interest. Es-
pecially in multi-slice or 3D images, there is an abundant number of background
voxels available for noise estimation. Since the signal in these empty region of
air is zero, the noise in these areas will be Rayleigh distributed.
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In previous work the noise variance was estimated by fitting a Rayleigh prob-
ability density function to the partial histogram of the MR image [1]. This ap-
proach proved to be highly effective as long as the noise variance is not too
high. For high noise variance, however, the information in the signal region of
the MR data may significantly contribute to the partial histogram and this may
lead to a bias in the estimation of the variance. This is particularly applicable
in the case of diffusion weighted MRI (DW-MRI) where the signal-to-noise ratio
(SNR) is inherently low. The Rayleigh model of the background can also fail
when ghosting artifacts are present. In this paper, we propose a method to re-
duce the influence of low signal-intensity areas (eg: scalp in DW-MRI of brain)
and ghost effects in the noise estimation process. The improvement is achieved
through background segmentation and there by estimating the noise variance by
fitting the Rayleigh PDF to the histogram of the segmented background.

The paper is organised as follows. Section 2 discusses the segmentation al-
gorithm proposed for extracting the image background from the MR image. In
Section 3, the noise estimation procedure followed for the estimation of noise
level from the segmented background is given. Comparative analysis of the pro-
posed method with recently proposed approaches is shown in Section 4. Finally,
conclusion and remarks are given in Section 5.

2 Background Segmentation

Segmentation of an image with low SNR is a challenging task. In this work, we
combine the wavelet based bivariate shrinkage and morphological operations to
achieve this goal. The image is first denoised using the wavelet based method
to avoid the segmentation artifacts. Morphological operations are then applied
to the denoised image for segmenting the image background. In the following
subsection, we will discuss the approaches we followed for segmenting the signal
and background from the noisy MR image.

2.1 Noise Reduction

Presence of noise can always lead to wrong segmentation. Considering high noise
levels in MR images, especially in diffusion weighted images, an efficient denois-
ing algorithm is a must. Since the algorithm which we are developing for noise
estimation is fully automatic, the smoothing operation should be adaptive to
varying noise levels. Another requirement for smoothing is anisotropic behavior
of filter. i.e, the edges should be preserved while smoothing. Considering these
requirements, we choose the bivariate shrinkage with the Dual Tree Complex
Wavelet Transform (DTCWT)[9] for denoising the noisy MR image.

The DTCWT calculates the complex transform of a signal with two separate
Discrete Wavelet Transform (DWT) decompositions. The two main disadvan-
tages of DWT, the lack of shift invariance and poor directional selectivity, can
be overcome by using DTCWT. The properties of DTCWT are discussed in
detail in [9]. Along with DTCWT, we used the bivariate shrinkage method pro-
posed in [3] to estimate the original wavelet coefficients from the noisy one. For
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Fig. 1. Selection of threshold from the histogram of the denoised MR volume. It can

be seen from the histograms that the accurate threshold selection for segmentation is

not possible from noisy MR image without denosing.

the implementation of DTCWT, the wavelet software from [10] is used. In our
work we applied a 4 level wavelet decomposition. The model proposed in [3]
is a modification of Bayesian estimation problem where the statistical depen-
dency between adjacent wavelet coefficients is also considered. This model can
be written as

ŵ1 =
y1√

y2
1 + y2

2

(√
y2
1 + y2

2 −
√

3σ2
n

σ

)
+

(1)

where (g)+ is defined as

(g)+ =
{

0, if g < 0
g, otherwise (2)

and y1 and y2 are noisy observations of adjacent wavelet coefficients w1 and w2

(w2 represents the parent of w1). The noise variance σ̂2
n is estimated from the

finest scale wavelet coefficients [4].

2.2 Background Extraction

Once the image is denoised, a threshold t is to be estimated for creating a back-
ground mask. We computed this threshold from the histogram of the denoised
image. The index of the first local minimum occurs after the maximum value
(peak) in the histogram is considered as the threshold value t. An example for
the selection of t is shown in Fig. 1. The MR volume is converted to a binary
image based on this threshold value. Morphological closing is then applied on
this binary image to fill the holes in the data area which is defined below

C = (A⊕B)�B (3)
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Automatic background segmentation from noisy MR image (a),(b) and (c)

Original simulated images : T1,T2 and PD respectively (d),(e) and (f) Image after

background segmentation

where A is the binary image and B is the structuring element. ⊕ denotes the
morphological dilation operation and � denotes the morphological erosion op-
eration. We used a disk shape structuring element of size 5× 5.

Morphological closing may still leave some holes inside the signal area and
some noisy data in the background area. For an improved segmentation, we
applied connected component analysis to select the largest connected component
from the binary image C. The resulting mask (with all the holes filled) was then
used to extract the background from the foreground areas of the MR image. The
result of this operation is shown in Fig. 2. The algorithm was tested for T1, T2,
Proton Density (PD), and Diffusion Weighted MR images with various noise
levels.

One problem earlier reported with the background segmentation of Diffusion
Weighted MR images of brain is the improper segmentation of the scalp [2,5].
Most of the conventional algorithms segment scalp as background and this may
introduce a bias in the noise estimation. This wrong segmentation is mainly
due to the high contrast difference between brain and scalp area. Contrary to
conventional MR images, the intensity of scalp is very low in diffusion weighted
images which makes the segmentation of scalp difficult here. As the noise level
increases, it becomes more and more difficult to differentiate between scalp and
the noisy background. Experiments with our proposed background segmentation
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(a) (b) (c)

Fig. 3. Background segmentation from noisy diffusion weighted MR image (a) Original

Image (b) Image segmented with the conventional approach (c) Image segmented with

the proposed method

(a) (b)

Fig. 4. Background segmentation from noisy MR image with ghost artifact (a) Original

Image (b) Image segmented with the proposed method

algorithm show that the segmentation results are good for diffusion weighted MR
images also. For diffusion weighted MR images, we used b0 images for generating
the mask and this mask is used to segment the background from all b value
images. This will also help in reducing segmentation artifacts. Fig. 3 shows the
segmentation of a DW-MR image with the proposed segmentation algorithm.
Another issue reported with the method in [1] is the induction of error, if there
is significant ghost artifacts. The proposed method will consider ghost data as
part of MR signal, if there is significant ghost effect. The segmentation result of
an MR image corrupted with ghost artifacts are shown in Fig. 4.

3 Estimation of the Noise Variance

The raw, complex MR data acquired in the Fourier domain is characterized by
a zero mean Gaussian probability density function (PDF) [8]. After the inverse
Fourier transform, the noise distribution in the real and imaginary components
will be still Gaussian due to the linearity and orthogonality of the Fourier trans-
form. But when it is transformed to a magnitude image, the noise distribution
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will be no longer Gaussian but Rician distributed [7]. If A is the original signal
amplitude, then the PDF of the reconstructed magnitude image M will be

pM (Mi,j |Ai,j , σn) =
Mi,j

σ2
n

e
−M2

i,j+A2
i,j

2σ2
n I0

(
Ai,jMi,j

σ2
n

)
u(Mi,j) (4)

where I0(.) being the 0th order modified Bessel function of the first kind, u(.) the
Heaviside step function and σ2

n the variance of the noise. Mi,j is the magnitude
value of the pixel (i, j) and Ai,j , the original value of the pixel without noise.

In the image background, where the SNR is zero due to the lack of water-
proton density in the air, the Rician PDF simplifies to a Rayleigh distribution
with PDF[5]

pM (Mi,j |σn) =
Mi,j

σ2
n

e
−M2

i,j

2σ2
n u(Mi,j) (5)

Once the segmentation algorithm is applied to the image, there will be only
background, and the image variance reduces to the variance of a Rayleigh distri-
bution. One straight forward approach to estimate the noise standard deviation
from the segmented background is to use the equation which relates normal
distribution and Rayleigh distribution [5] which is given below

σ̂n =

√
σ2

M

(
2− π

2

)−1

(6)

where σ2
M is the variance of the segmented background. One problem with this

approach is the possibility of over-estimation of the noise level, if the segmented
area also contains signal contributions. A maximum likelihood (ML) estimation
of the noise standard deviation using the joint PDF of the histogram of the
Rayleigh data was proposed in [1]

σ̂n = arg min
σ

[
Nk ln

(
e−

l20
2σ2 − e−

l2K
2σ2

)
−

K∑
i=1

ni ln
(

e−
l2i−1
2σ2 − e−

l2i
2σ2

)]
(7)

where li with i = 0, ..., K denote the set of boundaries of the histogram bins, ni

represent the number of observations within the bin [li−1, li] which are multino-
mially distributed and Nk =

∑k
i=1 ni. A method to select the optimal number of

bins is also described in [1]. In our experiments we used Eq. (7) for the estima-
tion of the noise standard deviation from the segmented background. Usage of
the background histogram, instead of the partial histogram, makes the proposed
approach more robust to higher noise levels.

4 Results and Discussion

Experiments were conducted on both synthetic and real MR images (2D and
3D) to measure the improvement achieved with the proposed method over the
existing ones.
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Fig. 5. Comparison of different noise estimators for Rician magnitude MR data : 100

experiments were considered for each σ value. The graph shows the mean of the esti-

mated value divided by the actual value. The proposed method is compared with the

estimators suggested in [5].

(a) (b)

Fig. 6. MR image of a cherry tomato (a) acquired with 1 average (b) acquired with 12

averages

Synthetic data: For simulations, we used the standard MR image phantom
(T1, T2 and PD) with a voxel resolution of 1 mm3 (8 bit quantization) from
the Brainweb database [6]. Rician distributed data with varying σ were then
generated from this noiseless image. The dimensions of the image were 181×217×
181. For computational simplicity (with wavelets), we resized it to 256×256×181
by zero padding. The graph in Fig. 5 shows the mean of the estimated value (σ̂)
divided by the actual value (σ). The value closer to 1 is the best estimator.

The result of the experiments on a 2D slice of the above mentioned MR data
is shown in Fig. 5. In the experiment, for every σ, the σ̂ is estimated from the
mean of 100 simulations. The proposed method is compared with the recently
proposed estimators mentioned in [5]. In [2] a comparative analysis of these
estimators with other popular methods can be seen. The labels in the graph,
Aj1, Aj2 and Aj3 refer to the estimators based on local second order moment,
local mean, and local variance in the MR data, respectively. These local moments
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Fig. 7. Estimated σ as a function of the number of averages n used during the acqui-

sition. MR image of a cherry tomato was used for this experiment.

were calculated using a 7 × 7 window. It can be seen from the graph that the
σ̂ estimated with the proposed method is closer to the ground truth than other
methods.

Real data: For the experiments on real data, we used the MR image of a cherry
tomato. A set of MR images was reconstructed by averaging 1 to 12 acquired
images. Fig. 6 shows the images reconstructed with 1 and 12 averages, respec-
tively. Averaging was done in the complex k-space. The resulting noise variance
as a function of the number of averages over n images was then estimated. The
theoretical reduction of the noise standard deviation as a function of the num-
ber of images n over which the average was taken is known to be 1√

n
. Since the

experimental setup for all the acquisitions were the same, except for averaging,
σ̂ ×

√
n should be constant over n. It can be seen from Fig. 7 that the proposed

method exhibits this property.

5 Conclusion

In this paper, we presented a method that needs prior segmentation of MR image
background for the estimation of noise level. The proposed method minimizes
the artifacts introduced in the segmentation process by conventional approaches.
The reliability of the method is proved on both simulated and real MR images at
various noise levels. Comparative analysis with the recently proposed methods
shows that the proposed approach has an edge over the existing ones.

Acknowledgments. This work was financially supported by the IWT (Insti-
tute for Science and Technology, Belgium; SBO QUANTIVIAM) and the UIAP.
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Abstract. Thick line center and width estimation are important prob-

lems in computer vision. In this paper, we analyze this issue in real sit-

uations where we have to deal with some additional difficulties, such as

the thick line distortion produced by interlaced broadcast video cameras

or large shaded areas in the scene. We propose a technique to properly

extract the thick lines and their centers using mathematical morpholog-

ical operators. In order to illustrate the performance of the method, we

present some numerical experiments in real images.

1 Introduction

The detection of thick lines and their centers is an important issue in computer
vision (see, for instance, [11]). In this paper, we analyze this problem in real
application scenarios where we have to deal with some additional difficulties,
such as the line distortion produced by interlaced broadcast video cameras or
large shaded areas in the scene (see figures 1 and 2). The main tools we use
are mathematical morphological operators, which are very convenient to extract
geometric shape information. The main assumption we make is that, in the
image, all lines of interest are brighter (or darker) than the background. As
optional additional information for the applications we deal with, we can assume
that the background has a rather uniform color. For instance, in figures 1 and
2, we can appreciate that the background is green (the color of the soccer field
grass). This information is useful in order to avoid spurious line detection outside
the region of interest, i.e. the field of play. In this application, we call thick lines
all line markings in a soccer field, straight as well as curved, including touchlines,
goal lines, the half-way line, goal and penalty areas, the center circle and penalty
arcs.

This paper is structured as follows: In section 2, we present a short overview
of some related previous works. Section 3 briefly explains the mathematical mor-
phological operators we have used. In section 4, we introduce the simple dein-
terlacing method used to remove thick line noise. In section 5, we present the
thick line detection method we propose in scenarios without large shaded areas.
Section 6 presents the method proposed in scenarios with large shaded areas.
Finally, in section 7 we give an account of our main conclusions.
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Fig. 1. Real HD video frame from a soccer match (image provided by Mediapro)

Fig. 2. Real image of a soccer stadium with a large shaded area (image provided by

Mediapro)

2 Related Works

Line detection is an important task for the processing of video sequences from
the broadcasting of sport events because it is useful for a wide variety of pur-
poses, such as camera calibration, player tracking, ball tracking, mosaicing, de-
tection of on-field advertisement billboards, change of the view point, detection
of highlights (e.g. goals or fouls), automatic summarization or insertion of vir-
tual objects. Most line detection methods applied to sport events assume that
line and background colors are constant in the region of interest. Moreover, they
also assume that lines are one-pixel wide. It is common to use a segmentation
with dominant color detection using RGB space [3,10,7], or HSV space [9,2,4].
These methods use cumulative histograms [4], extract their peaks and, accord-
ing to some criteria, decide which pixels belong to the lines and which ones
belong to the background [3,10,7]. Some other methods to extract lines start



Morphological Thick Line Center Detection 73

with a segmentation with Gaussian mixture models [5,8]. These methods cannot
be applied when dealing with interlaced images, HD definition images (where
lines may be 8-pixels wide or even more), or scenarios with significant contrast
variations between the background and the thick lines.

3 Mathematical Morphology

Mathematical morphology is a theory and a technique for the analysis and pro-
cessing of geometric structures [6]. It can be stated in a continuous or discrete
way and for binary or grayscale images. The basic morphological operators we
will use in this paper to locate thick lines and their centers in an image are the
following ones:

Disk morphological operators : Given a disk Ds(x) of center x and radius
s, we define:

Disk dilation: I ⊕Ds(x) = supy∈Ds(x) I(y)
Disk erosion: I �Ds(x) = infy∈Ds(x) I(y)
Disk opening: I ◦Ds(x) = (I �Ds)⊕Ds(x)
Disk closing: I •Ds(x) = (I ⊕Ds)�Ds(x)
Disk morphological operators will be used to extract thick lines in the image.

For instance, we can observe that, if the maximum line width in the image is s,
and if the image lines are brighter than the background, then the morphological
operation I ◦Ds removes image lines.

Line morphological operators: Given a set of angle orientations Θ, θ ∈ Θ
and a segment Ls,θ(x) of center x, radius s and orientation θ,we define:

Line opening: I ◦ Ls(x) = supθ∈Θ(infy∈Ls,θ(x) I(y))
Line closing: I • Ls(x) = infθ∈Θ(supy∈Ls,θ(x) I(y))

Line morphological operators will be used to filter noise in the image and to
clean line boundaries.

Morphological skeleton: Given a set X , the morphological skeleton is given
by:
Morphological skeleton: S = ∪s>0 (∩μ>0 (X �Ds\(X �Ds) ◦Dμ))
where Ds is a disk of radius s centered at 0

The skeleton represents, for a given shape X , the centers of the maximal disks
included in X . Morphological skeleton will be used to find out the centers of thick
lines.

4 A Simple Deinterlacing Procedure Using Morphological
Line Filters

Interlaced video technology may introduce strong perturbations in thick lines,
especially when the camera moves quickly and we work with HD video (1920×
1080 frames). In figure 3, we illustrate this phenomenon for a real HD video
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Fig. 3. Original interlaced image (left) and deinterlaced image using the proposed

algorithm (right)

frame acquired in a sport event scene. In order to properly find out image thick
lines, we need to preprocess the image to remove noise. Deinterlacing video is
a major problem in computer vision and developing sophisticated deinterlacing
techniques is beyond the scope of this paper. In fact, what we need is a simple
and fast deinterlacing procedure which removes the image line noise. We propose
the following simple deinterlacing procedure: we replace even lines by odd lines
in the image and then we apply a line morphological operator to clean thick
lines. This operation is performed independently in each one of the image RGB
color channels.

5 Thick Line Detection in Scenarios without Shaded
Regions

We start with the simplest case, where no thick line of interest is located in a
shaded region. We use the morphological disk opening I◦Ds to find out the lines.
We observe that if image lines are brighter than the background and the maxi-
mum line width is s, then, for each one of the RGB color channels, the opening
operation removes the lines from the image. Therefore, a first approximation of
the thick line region A, can be expressed as :

A =

⎧⎨⎩x :

⎧⎨⎩ (R(x)−R ◦Ds(x)) > tR
(G(x) −G ◦Ds(x)) > tG
(B(x) −B ◦Ds(x)) > tB

⎫⎬⎭ (1)

where tR, tG, tB are thresholds for each image channel. We observe that the
proposed method is robust against illumination changes, as far as the contrast
between the lines and the background remains high enough.

In case the background color does not change significantly in the image, as
in the case of a soccer field, where the background is green, we can select the
region of interest a priori in the image, according to the background color. To
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Fig. 4. Thick lines extracted with the proposed method for the image in figure 1

Fig. 5. Details of the thick lines extracted in image 1. We observe that lines of quite

different widths are detected.

manage color information, it is more convenient to work in the HSV color space.
Hue (H) is the main component concerning color information. Let us denote by
(Hs(x), Ss(x), Vs(x)) the HSV channels of the image (R ◦ Ds, G ◦ Ds, B ◦ Ds).
Then, the line background area C can be expressed as

C = {x : tH1 ≤ Hs(x) ≤ tH2} (2)

That is, we threshold the hue value Hs. We observe that, since Hs is computed
after the opening process, the image thick lines we are interested in are included
in C. In other words, the set A∩C represents the final set B of line points which
corresponds to image thick lines located in the background region of interest. In
the numerical experiments we present, the parameters are chosen in the following
way: s, the maximum radius of line width, is set to 5 in order to be sure that
all lines of interest in the image are included. tH1 and tH2 are chosen analyzing
the peak of the histogram of Hs channel using standard histogram segmentation
technique (see [1] for details). As the thick line area is very small with respect
to the line background area, the parameters tR, tG and tB are chosen in terms
of a percentage 0 < p < 1 with respect to the histogram of the corresponding
image channel. For instance, tR is chosen to satisfy
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Fig. 6. Details of the thick lines extracted in image 1

p =
|x ∈ C : (R(x) −R ◦Ds(x)) > tR|

|C|

where |.| represents the cardinal (size) of the set. In the experiment we chose
p = 0.02.

Figure 4 illustrates the thick lines extracted in a sample image without large
shaded regions. Figures 5 and 6 show two zooms of the extracted lines. As
observed, even very low contrast lines can be detected.

6 Thick Line Detection in Scenarios with Shaded Regions

In scenarios with large shaded regions, see figure 2, the method presented in the
above section does not work properly because we cannot set a single threshold

Fig. 7. Thick lines extracted with the proposed method for the image in figure 2
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Fig. 8. Details of the thick lines extracted for the image in figure 2

Fig. 9. Details of the thick lines extracted for the image in figure 2

configuration for tR, tG and tB which works simultaneously in the shaded and
lighted regions. Therefore, we first need to identify that there exist two regions
of interest in the scene (the shaded and lighted areas where the thick lines of
interest are located) and next set a different threshold configuration for each
region.

Usually, the hue value of the background area does not change significantly
from the lighted to the shaded areas (e.g., a soccer field has a similar hue value
-green color- in the lighted and in the shaded areas). However the value channel
Vs(x) in the HSV space varies significantly from the lighted to the shaded area.
In order to automatically identify whether we deal with large shaded area scenes
we analyze the histogram of the value channel Vs(x) but in the region of interest
defined by the hue channel. Let h(w) be the histogram of the Vs(x) values in the
region of interest, i.e. Hs(x) ∈ [tH1 , tH2 ]. If we deal with just one region, then
h(w) has a profile with a single peak. If we deal with two regions, h(w) has a
profile with two peaks. Using a standard histogram segmentation technique (see
[1] for details) we can automatically identify the number of significant peaks in
h(w) profile. Once we have separated the shaded and lighted regions, we apply
the same procedure proposed in the above section to each region and we obtain
the line region B for the whole image.

Figure 7 illustrates the thick lines extracted in a sample image with large
shaded regions. Figure 8 shows that thick lines are properly extracted in the
shaded and lighted areas. Figure 9 shows that the central circle is quite well
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extracted despite being in the shaded and lighted areas and with a very low
contrast in the shaded area.

7 Thick Line Center Detection Using Morphological
Skeleton

In the case of discrete lattices, the morphological skeleton can be stated in the
following way: If we denote by Dn the disk of radius n centered in 0, then, the
center points of the line of width n can be obtained as the set :

Sn = (B �Dn) \ ((B �Dn) ◦D1))

where B is the detected thick line region. Therefore, the skeleton computation
also provides, automatically, the line width.

Figures 10, 11, 12 and 13 show some examples of thick line center detection
in different situations.

Fig. 10. Details of the thick line centers extracted for the image in figure 1

Fig. 11. Details of the thick line centers extracted for the image in figure 1
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Fig. 12. Details of the thick line centers extracted for the image in figure 2

Fig. 13. Details of the thick line centers extracted for the image in figure 2

8 Conclusions

We have presented a new technique for image thick lines and thick line centers
extraction based on morphological operators in real situations. The proposed
method works properly even in complex scenarios where we have to deal with
interlaced broadcast images of large shaded areas. The numerical experiments
are very promising. Most of the significant thick line centers are extracted. The
amount of spurious false thick lines detected is small and isolated. Moreover,
these false detections could be easily removed in a postprocessing stage where
we search for straight lines and ellipses in the image based on the extracted thick
line centers.

Acknowledgement. We acknowledge Mediapro for providing us with the test
images used in this paper. This work was partially funded by Mediapro through
the Spanish project CENIT-2007-1012 i3media.
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Abstract. As the improvement of the resolution of aerial and satellite remote 
sensed images, the semantic richness of the image increases which makes im-
age analysis more difficult. Dense urban environment sensed by very high-
resolution (VHR) optical sensors is even more challenging. Occlusions and 
shadows due to buildings and trees hide some objects of the scene. Fast and ef-
ficient segmentation of such noisy images (which is essential for their further 
analysis) has remained a challenging problem for years. It is difficult for tradi-
tional methods to deal with such noisy and large volume data. Clustering-based 
segmentation with swarm-based algorithms is emerging as an alternative to 
more conventional clustering methods, such as hierarchical clustering and k-
means. In this paper, we introduce the use of Particle Swarm Optimization 
(PSO) clustering algorithm segmenting high resolution remote sensing images. 
Contrary to the localized searching of the K-means algorithm, the PSO cluster-
ing algorithm performs a globalized search in the entire solution space. We ap-
plied the PSO and K-means clustering algorithm on thirty images cropped from 
color aerial images. The results illustrate that PSO algorithm can generate more 
compact clustering results than the K-means algorithm. 

Keywords: Swarm Intelligence, Particle Swarm Optimization (PSO), Remote 
Sensing, Aerial Images, and Clustering-Based Segmentation.  

1   Introduction  

With the rapid development of aerospace technologies and remote sensing sensor 
technologies, images of very high spatial resolution of the earth surface have been ob-
tained more frequently and quickly than before (for example the recently launched 
satellites: GeoEye-1 and WorldView-2). Therefore, remote sensing images have sig-
nificant applications in different areas such as urban planning, surveys and mapping, 
agricultural analysis, environmental monitoring and military intelligence, etc. Remote 
sensing image analysis, such as image segmentation, image classification and feature 
extraction, can be challenging because there are many uncertainties in remote sensing 
data and there is no definite mathematical model that truly captures the image data. 
Urban land cover information extraction is a hot topic within urban studies. Heteroge-
neous spectra of the VHR imagery caused by the inner complexity of dense urban  
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areas and the occlusions and shadows caused by the variety of objects in urban area, 
for example buildings, roads, and trees - make it even more difficult and challenging, 
hindering exhaustive automatic or manual extraction. 

In most cases, information needed for image analysis and understanding is not rep-
resented in pixels but in meaningful image objects and their mutual relations. There-
fore, to partition images into sets of useful image objects is a fundamental procedure 
for successful image analysis or automatic image interpretation. In this sense, image 
segmentation is critical for subsequent image analysis and understanding. Image seg-
mentation may be defined as the process of subdividing an image into meaningful 
non-overlapping regions [1]. Image segmentation can be viewed as a clustering prob-
lem, which aims to partition the image into clusters such that the pixels within a clus-
ter are as homogenous as possible whereas the clusters among each other are as het-
erogeneous as possible with respect to a similarity measure. Clustering algorithms can 
be divided into four main classes: partitioning methods, hierarchical methods, den-
sity-based clustering and grid-based clustering. An extensive survey of clustering 
techniques is described in [2]. 

VHR Remote sensing image clustering-based segmentation is a complex task as 
images are noisy and of large size. It is difficult for traditional methods to deal with 
these images. This type of data has posed a formidable task for finding global optima 
in most of traditional clustering techniques. This motivates exploring the use of com-
putational intelligence techniques. For many years now, several papers have high-
lighted the efficiency of approaches inspired from nature [3]. A variety of algorithms 
inspired from the biological examples by swarming, flocking and herding phenomena. 
These techniques incorporate swarming behaviours observed in flocks of birds, 
schools of fish, or swarms of bees, and even human social behaviour.  

Swarm Intelligence (SI) is actually a complex multi-agents system, consisting of 
numerous simple individuals (e.g., ants, birds, etc.), which exhibit their swarm intelli-
gence through cooperation and competition among the individuals. Although there is 
typically no centralized control dictating the behaviour of the individuals, the accu-
mulation of local interactions in time often gives rise to a global pattern, SI mainly 
involves two approaches, i.e., Particle Swarm Optimization (PSO) and ant colony op-
timization (ACO). SI has currently succeeded in solving problems such as traveling 
salesman problems, data clustering, combination optimization, network routing, rule 
induction, and pattern recognition [4], However, using SI in remote sensing clustering 
is a fairly new research area and needs much more work. In [4] PSO was used as a 
clustering algorithm. The results show that despite k-means is known to be efficient at 
clustering large data sets, as its computational complexity only grows linearly with 
the number of data points [5], k-means may converge to solutions that are not opti-
mal, hence PSO outperformed it as well as fuzzy c-means and other state-of-the-art 
clustering algorithms.  

In the literature most of the conventional and SI clustering methods are tested on 
simple scenes, such as low scale grayscale images of rural or suburban sites, where 
objects of the sensed scenes are quite visible with less shade or occlusion artefacts 
than in inner cities. Encouraged by the success of PSO in such scenes, in this paper 
we aim at using the PSO potential in solving complex optimization problems, to han-
dle dense VHR remote sensing images of dense urban areas, the result shows that 
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PSO algorithm is capable of segmenting  such complex images and it outperforms k-
means algorithm. 

2   Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population-based evolutionary computation 
technique developed by [3]. PSO simulates the social behaviour of animals, i.e. birds 
in a flock or fish in a school. Members of such societies share common goals (e.g., 
finding food) that are realized by exploring its environment while interacting among 
them. The popularity of PSO is partially due to the simplicity of the algorithm, but 
mainly to its effectiveness for producing good results at a very low computational cost 
[6]. In PSO, each solution can be considered an individual particle in a given D-
dimensional search space, which has its own position (xid) and velocity (vid). During 
movement, each particle adjusts its position by changing its velocity based on its own 
experience (memory) pid, as well as the experience of its neighbouring particles, until 
an optimum position is reached by itself and its neighbour. All of the particles have 
fitness values based on the calculation of a fitness function. Particles are updated by 
following two parameters called pbest and gbest at each iteration. Each particle is asso-
ciated with the best solution (fitness) the particle has achieved so far in the search 
space. This fitness value is stored, and represents the position called pbest. The value 
gbest is a global optimum value for the entire population. The two basic equations 
which govern the working of PSO are that of velocity vector and position vector 
given by: 

vid(t+1) = w vid(t) + c1r1(t)(pid(t) –xid(t)) + c2r2(t)(pid(t)-xid(t)) (1)

xid(t+1) = xid(t) + vid(t+1) (2)

The first part of Eq (1) represents the inertia of the previous velocity, the second part 
is the cognition part and it tells us about the personal experience of the particle, the 
third part represents the cooperation among particles and is therefore named as the so-
cial component. Acceleration constants c1, c2 and inertia weight w are the predefined 
by the user and r1, r2 are uniformly generated random numbers in range of [0, 1]. 

2.1   PSO Clustering  

A particle represents a K-cluster centroids. That is, each particle xi is constructed as xi 
= (mi,1,….mi,j,…mi,d) where mi,j refers to the j-th cluster centroid vector of ith particle. 
Therefore, a swarm represents a number of candidate data clusterings. The quality of 
each particle is measured using an objective function [7]. There is a matrix represent-
ing the assignment of patterns to the cluster of particle i. Each element zi,k,p  indicates 
if pattern zp belongs to cluster ck of particle i. The fitness function has an objective to 
simultaneously minimize the intra-distance between pixels and their cluster means 
and to maximize the inter-distance between any pair of clusters. The algorithm is 
composed of the following steps: 

1.  Initialize each particle to contain Nc randomly selected cluster centroids. 
2.  For t = 1 to tmax do 
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i. For each particle i do 
ii. For each data vector zp 

a. calculate the Euclidean distance d(zp,mij) to all cluster centroids Cij 
b. assign zp to cluster Cij  such that distance  

    d(zp,mij) =  min∀ c=1,…Nc { d(zp,mic)} 
c. calculate the fitness function [7]. 

iii. Update the global best and local best positions 
iv. Update the cluster centroids. 

where tmax is the maximum number of iterations. The population-based search of the 
PSO algorithm reduces the effect that initial conditions have, as opposed to the K-
means algorithm; the search starts from multiple positions in parallel. However, the 
K-means algorithm tends to converge faster (after less function evaluations) than the 
PSO, but usually with a less accurate clustering [4].  

2.2   Clustering Validation Measures 

These measures are usually used to evaluate to quantitatively evaluate the result of a 
clustering algorithm[8]. In the following, we briefly explain some quality measures of 
clustering techniques[7]: 

• Compactness: samples in one cluster should be similar to each other and different 
from samples in other clusters. An example of this would be the within-cluster dis-
tance and can be calculated by: 

∑ ∑
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where d(·) is the distance between cluster center, mk, and yjk  which is sample j of 
cluster  k. The objective is to minimize this measurement as possible. 

• Separation: clusters should be well-separated from each other. It’s also known as 
between-clusters distance. An example of this criterion is the Euclidean distance 
between clusters centroids. The objective is to maximize the separation between 
different clusters as possible. Separation is calculated using the following equation: 
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• Combined measure: This measure is a linear combination of the compactness and 
separation measures [7]. Having the within-cluster and between-cluster distances 
defined, we can now construct the combined measure  

F combined  = ω1Fc – ω2FS (5)

where ω1 and ω2 are weighting parameters such that ω1+ ω2= 1. 
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• Turi’s validity index: Turi, [9], proposed an index incorporating a multiplier func-
tion (to penalize the selection of a small number of clusters) to the ratio between 
intra-cluster and inter-cluster, the measure is defined as; 

er

ra
NcmmF KTuri int

int
)1)1,2((),....,( 1 ×+×=  (6)

where c is a user specified parameter and N(2,1) is a Gaussian distribution with mean 
2 and standard deviation of 1. The intra term is the average of all the distances between 
each data point and its cluster centroid  and it’s used to measure the compactness of clus-
ters as given is Eq. 3 while the inter term is the minimum distance between the cluster cen-
ters, this term used to measure the separation of the clusters and is given by: 

{ } KklKkmmer lk ,....1,1,..1minint +=−=∀−=  (7)

The goal is to minimize the Turi’s validity index as possible. 

3   Experimental Results 

The goal here is to compare the performance of the PSO clustering methods and k-
means in segmenting VHR remote sensing imagery, and to investigate the PSO ability 
to segment land-use classes in dense urban areas.  

3.1   Dataset 

The study area is the city of Kitchener-Waterloo (K-W), Canada. The data was pro-
vided by the University Map Library at the University of Waterloo [10] as ortho-
rectified aerial images taken in April 2006 at 12 cm spatial resolution by a digital 
color airborne camera with 8 bit radiometric resolution. We cropped a set of forty test 
images of size 666*372 from the original image. The cropped test images were cho-
sen for high density urban parts which are highly corrupted by noise. Samples of the 
test image are shown in Figure. 1. 

 

 

Fig. 1. Samples of test images that are corrupted by noise 

It is difficult to specify any desired number of clusters in the segmentations of re-
mote sensing images, because the ground truth is always not available for the scenes 
covered by those images. The major objects of interests in urban planning are roads, 
buildings and green area such as parks. Test images were manually segmented into 
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four land use types (roads, buildings, green area and other). Other represents  
pixilation which is either difficult to interpret or does not correspond to the objects of 
interests like building entrance with a very small parking area alongside the road, 
swimming pools and other small objects in the image. A sample test image is shown 
in Fig. 2 with its ground truth. 

3.2   Experiment Setup  

In the applications of VHR remote sensing images in urban studies, road extraction is 
the most basic and important task. To extract it, the number of clusters is defined em-
pirically to be four clusters. It was chosen by minimize the error between the clustered 
image and the ground truth images. Although four to seven spectral clusters work 
well for most of the test images, four clusters have been selected as it gives the best 
average accuracy for the entire set of the test images.  

For each clustering method there are some free parameters need to be tuned in or-
der to assess the best average performance provided by each one of them over the 
whole set of the test images. K-means doesn’t require any parameter tuning. In  
the PSO clustering algorithm, we carried out different trials with different values for 
the number of particle, the value was set to 60 particles for all images which is higher 
then the recommended number, 20 to 30 particles, giving in [11] as the image data is 
large data set. Increasing the particle number in the algorithm can increase the chance 
for finding the optimal solution however the algorithm require more time to converge, 
the inertia weight w is initially set as 1.2 and is reduced by 1% at each generation to 
ensure good convergence . The acceleration coefficient constants c1 and c2 are set as 
1.49. These values are chosen based on the results shown in [11]. 

Throughout this paper, we use f-measure as a quality assessment measure for the 
mapping between classes (ground truth) and clusters returned using four cluster valid-
ity indices. We compare the average performance of PSO clustering and K-means 
methods.  We look at the average over 40 multiple runs for each method and consider 
the standard deviation. The average execution time of the 40 runs are also compared. 

 

 

Fig. 2. Sample of the images and its ground truth: (a) original image, (b) ground truth and (c) 
ground truth overlaying the original image (right) 

3.3   Results 

We compare the average performance of PSO and K-means clustering methods focus-
ing on dense urban areas in VHR aerial images. The original image pixel’s RGB val-
ues are used as spectral feature. The average is taken over 40 for each method. The 

(a) (b) (c)
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standard deviation of the error is around 0.1 and 0.2 for all methods. Table 1 shows 
the results over the 40 test set images using an Intel core 2 Duo T5550 @ 1.83 GHz 
Processors with 2 MB cache and 3 GB RAM. The table shows the clustering accuracy 
and the different error measures mentioned in sec 2.2. The result shows the potential 
of the PSO clustering of aerial images starting from the three RGB bands only. In the 
experiment we could achieve an average rate of 83% of extracting road areas even in 
the noisy images of the residential areas. 

Table 1. Comparison of clustering accuracies and errors for k-means, PSO clustering methods 
using different clustering objective functions for road extraction from the aerial images test set 

Roads Clustering 
Accuracy ↑  

Compact-
ness ↓ 

Separa-
tion ↑ 

Combina-
tion ↓ 

Turi’s index ↓ 

PSO-
Separation   0.837±  0.081 

63.628± 
6.703 

104.029± 
11.487 

37.655± 
4.422 

1.169± 0.203 

PSO-
Compactness  0.811±  0.078 

12.232± 
2.456 

48.9729± 
8.7828 

3.166± 
0.459 

3.050± 1.019 

PSO-
Combined  0.853±  0.076 

21.413± 
3.897 

87.576± 
5.869 

3.003± 
1.116 

2.7883± 0.769 

PSO- Trui  0.826±  0.073 
32.419± 

3.098 
55.836± 

5.848 
8.919± 
1.234 

1.830± 0.202 

K-means 0.754 ± 0.074 
6.0837± 
0.1474 

39.525± 
1.022 

-0.756± 
0.716 

0.611± 0.231 

4   Conclusion 

In this research, which has been motivated by the superiority of PSO over the tradi-
tional clustering algorithms in segmenting remote sensing imagery of rural and subur-
ban areas, we tackled the use of PSO in segmenting more complex scenes as VHR 
remote sensing data in urban areas. The results show that we can extract geographic 
objects such as roads with 83% accuracy using primitive features as the RGB inten-
sity values of the image pixels. 

The next step in this research is to investigate the effect of adding texture and 
shape descriptors to differentiate between objects with similar spectral signatures such 
as roads and parking lots.  
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Abstract. In this paper a new method using selective shape priors in a level set 
framework for image segmentation under occlusion is presented. To solve oc-
cluded boundaries, prior knowledge of shape of objects is introduced using the 
Nitzberg-Mumford-Shiota variational formulation within the segmentation en-
ergy. The novelty of our model is that the use of shape prior knowledge is 
automatically restricted only to occluded parts of the object boundaries. Ex-
periments on synthetic and real image segmentation show the efficiency of our 
method. 

Keywords: Image segmentation, level set, shape priors. 

1   Introduction 

Image segmentation is a fundamental topic in image processing. Its aim is to partition 
an image into several parts in each of which the intensity is homogeneous. However, 
it is often considered a difficult problem due to noise which results in spurious edges 
and boundary gaps, and occlusions which leads to an overlap of object boundaries. 
From a variational analysis point of view, level set is considered as a main approach 
to perform the segmentation [1]. However, classical level set techniques are intensity-
based models. They will fail to segment meaningful objects when they are occluded 
by others or some parts of them are in very low contrast or missing. In fact these 
situations always happen in practical applications. This hints that shape priors should 
be incorporated into the segmentation. 

There are many work on shape prior segmentation in the literature. Almost all 
these work are linear combinations of two terms of which one about some specific 
segmentation functional and the other about shape difference. For example, Leventon 
et. al. [2] presented a model which incorporates statistical based shape information 
into Caselles’ geometric active contour model. Chen et. al. [3] defined an energy 
functional depending on the gradient and the average shape of the target object. Cre-
mers et. al. [4] modified the Mumford-Shah’s functional by incorporating statistical 
shape knowledge. 

In this paper, we propose an alternative approach consisting in defining a selective 
shape prior using a variational framework by Nitzberg, Mumford and Shiota (NMS) 
in [5,6]. The novelty of our model is that the use of shape prior knowledge is  
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automatically restricted only to occluded parts of the object boundaries. That is, the 
algorithm selectively activates the shape term within the energy functional only for 
occluded regions. Thus, the evolution of the segmenting level set function for the 
unoccluded regions is solely driven by image intensity, even though the governing 
energy functional also includes the shape term. This selective use of local prior shape 
avoids enforcing shape constraints on regions where the object boundary is clearly 
defined by image intensity. Finally, this model is used for segmentation on both syn-
thetic and real images. 

The remainder of this paper is organized as follows. Section 2 briefly introduces 
level set method and the NMS model. Our new model is presented in Section 3. Sec-
tion 4 shows some experimental results and discussions, followed by concluding 
remarks in Section 5. 

2   Preliminaries 

2.1   Level Set Theory 

Level set [1] is a useful mathematical formulation for implementing efficiently curve 
propagation. Its central idea is to follow the evolution of a function φ  whose zero 
level set always corresponds to the position of a propagating curve. The motion for 
this evolving function φ  is determined from a partial differential equation in one 
higher dimension. The fundamental level set scheme is given by [1]: 

F
t

φ φ∂ = ∇
∂

, (1)

where φ  is a surface whose zero level set represents the propagating curve Γ , i.e.: 

( ) { | ( , ) 0}t x x tφΓ = =v v
, (2)

and φ∇  denotes the gradient norm of φ , F  is the speed function that controls the 
motion of the propagating curve. In general F  consists of two terms: an image-based 
term and a curvature-based term. 

Level set representations have many advantages [1]. Firstly, the level set function 
φ  always remains a function as long as F  is smooth. So topological changes of the 

propagating curve Γ  can be handled naturally. Secondly, the unique, entropy-
satisfying weak solution of equation (4) can be obtained relying on viscosity solutions 
of the associated partial differential equation. Thirdly, the finite difference computa-
tional schemes by exploiting numerical solutions of hyperbolic conservation laws are 
stable and accurate. And finally, intrinsic geometric properties of the propagating 
curve (e.g., normal, curvature, etc.) can be estimated directly from the level set  
function and the method can be very easily extended to deal with problems in higher 
dimensions.  

One powerful level set model proposed by Chan and Vese [8] is to minimize the 
following energy functional 
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where I(x,y) is the image intensity, 0μ ≥ � 0v ≥ � 1 2, 0λ λ >  are fixed parameters. 
The Heaviside function H and the one-dimensional Dirac measure δ  are defined 
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And its final level set formation is: 
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where ( )divκ φ φ= ∇ ∇  is the curvature. 
This model can detect objects with smooth boundaries or discontinuous bounda-

ries. Moreover, even if the initial image is very noisy, the boundaries can be very well 
detected and preserved. However, there is still no way to characterize the global shape 
of an object. Additional information about the object is needed to help the segmenta-
tion process, especially those with complex backgrounds. 

2.2   Nitzberg-Mumford-Shiota Formulation 

In [6,7] Nitzberg, Mumford and Shiota (NMS) proposed a variational framework for 
the segmentation with depth problem and numerical techniques for minimizing the 
NMS functional which have been presented in [7,9]. Zhu et al. utilize level set method 
to minimize the NMS functional in [10]. We briefly review the related NMS formula-
tion for segmentation with depth. 

Briefly, segmentation with depth is to determine the ordering of objects in space as 
well as their boundaries in a given 2D gray scale image I. The ordering of objects 
refers to the position that one object is farther or nearer an observer than the others. 
Due to the permission of occlusions between objects, farther objects always consist of 
two parts: visible and invisible parts. The visible parts are determined by the gray 
intensity distribution, while the invisible parts should be reconstructed by following 
some principles. In NMS model, they reconstruct invisible parts of regions by using 
curvature information along the boundaries. Suppose the 2D image I is composed of n 
objects 1{ }n

i iO = . And R1,…,Rn are the regions occupied by the objects inside the image. 

An occlusion relation ‘>’ is defined on object indices given by i > j when Oi is in front 
of Oj (from the viewer’s perspective). Suppose the objects O1, …, On are listed in 
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order of increasing distance to the observer, so that O1, On are the nearest and farthest 
objects respectively. Then the visible part Ai of Oi is given by 

1 1, , for 2,...,i i j
j i

A R A R A i n
>

= = − =U , (7)

and the background is denoted by 1
1

n j
j n

A A+
> +

= Ω − U . Then the NMS functional is [6]  

1
2

1 1

{ ( ) } ( )
i i i

n n

i
i iR R A

E ds ds I c dxα β φ κ
+

= =∂ ∩Ω ∂ ∩Ω

= + + −∑ ∑∫ ∫ ∫ , (8)

where ,α β  are two nonnegative parameters, and the unknown ci denote the approxi-
mate gray scale intensities of the corresponding objects. Here, the second term is the 
prior knowledge that the NMS model incorporates to solve occlusions. The function 
φ  determines how the curvature information will be incorporated in the functional. 
The authors in [9] choose φ  as follows: 

2 1
( )

1

x x
x

x x
φ

⎧ ≤⎪= ⎨ >⎪⎩
. (9)

The level set formulation of NMS functional is [9] 

1
2

1 1 1

2
1

1

( ( )) ( ) ( ) ( ) (1 ( ))

( ) (1 ( ))

in n

i i i i i i
i i j

n

n i
j

E dx I c H H dx

I c H dx

α βφ κ ψ δ ψ ψ ψ

ψ

−

= = =Ω Ω

+
=Ω

= + ∇ + − −

+ − −

∑ ∑ ∏∫ ∫

∏∫
. (10)

The unknown intensities ci are computed as follows: 

( )
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1

1 1
11

1 1

(1 ( )d d (1 ( )d d
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ψ ψ ψ

−

Ω Ω
= =

+−

Ω Ω
= =

− −
= =

− −

∏ ∏∫ ∫

∏ ∏∫ ∫
. (11)

3   Our New Model Using Selective Shape Priors 

In many works on shape prior segmentation in the literature, the prior shape informa-
tion can be introduced into the level set functional either to the evolution equation 
[2,4] or directly as a shape energy to the functional [3]. However, just adding a shape 
term as in these methods means that the shape term might influence boundary shapes 
even in unoccluded regions, where the boundary is unambiguously defined by image 
intensity. Hence, we introduce our shape term in a selective manner. That is, the 
shape term is allowed to take effect only for occluded boundaries. Our model is  
derived from [11]. 
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For each intersection region of p objects, p>1, define  1 1{ } { }p N
s s s p sP A A= = += ∩ − ∩

 
with mean intensity Pμ , then the following shape term, 

2

1

( ) ( )
s

p

P s sP
s

c dxμ φ κ
=

−∑∫ , (12)

use shape prior only to boundaries of P that belong to occluded objects, where 

1 1{ } { }p N
t t s p s
t s

P A A= = +
≠

= ∩ − ∩ . Firstly, the terms ( )sφ κ , that constrain the shape of As, are 

weighted by 2( )P scμ − , which is larger for occluded objects, and is minimal for the 

object that is in front. Secondly, the shape term in (12) is defined only on Ps, the re-
gion that occludes the As-boundary of P. 

Now for N = 2, for the intersection 1 2P A A= ∩  with mean intensity μ, the local 

shape term defined in (12) in a level set formulation is  

2 2
2 1 1 1 2 2{ ( )( ) ( ) ( )( ) ( )}H c H c dxψ μ φ κ ψ μ φ κ

Ω

− + −∫ . (13)

Thus the energy with a local shape term is: 

1 1 1 1 1 2

2 2 2
1 1 2 2 3 1 2

2 2
2 1 1 1 2 2
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Ω
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∫ ∫

∫ ∫

∫

. (14)

Here, the last term is the shape term used to globally influence the shape of the seg-
mented objects to avoid local minima. β and λ  balance the shape terms with 
λ β� . 

To minimize (14), a finite difference scheme is used to solve the resulting Euler 
Lagrange equations as in [11]. 

4   Experimental Results 

Experiments with both synthetic image and real image are utilized to demonstrate the 
performance of our method.  

We first evaluate our algorithm on a synthetic image: a triangle (close to an equi-
lateral triangle) occluded by other objects (Fig.1 (a)). The white curve in Fig.1 (a) is 
the initial curve. The shape prior is an equilateral triangle (Fig. 1 (b)). The final result 
is shown in Fig.1 (c), where the white curve is the segmentation curve. This example 
shows that our model can combine the prior shape information to segment an object 
with a similar shape even though the object is occluded by others or some of its parts 
are missing. 
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Fig. 1. Segmentation on synthetic image: (a) Original image with initial contour; (b) Prior 
shape; (c) final result 

Our next experiment is carried out on a real image: a hand occluded by other ob-
jects (Fig.2 (a)) with cluttered background. The prior shape is a similar hand (Fig.2 
(b)). The final results are shown in Fig.2 (c).  The example listed here validate that 
our model is also capable of dealing with real images, i.e., it can segment an object 
which is similar in shape to the prior one from an image even though the object is 
occluded by others or has some missing parts.  

     

Fig. 2. Segmentation on real image: (a) Original image with initial contour; (b) Prior shape; (c) 
Final result 

5   Conclusions 

In this paper, a new model using selective shape priors in a level set framework for 
image segmentation under occlusion is proposed. Experiments on synthetic and real 
images show that this model is able to converge to a reference shape, providing ro-
bustness to partial occlusion in image segmentation applications. Our future work will 
be conducted to multiple object segmentation problems. 
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Abstract. This paper proposes an algorithm that fuses edge information into 
Markov Random Fields (MRF) region growing based image segmentation. The 
idea is to segment the image in a way that takes edge information into consider-
ation. This is achieved by modifying the energy function minimization process 
so that it would penalize merging regions that have real edges in the boundary 
between them. Experimental results confirming the hypothesis that the addition 
of edge information increases the precision of the segmentation by ensuring the 
conservation of the objects contours during the region growing. 

1   Introduction 

Image segmentation is a process that decomposes an image into disjoint regions and is 
a fundamental step for many image-processing tasks such as image understanding and 
content based image retrieval. In general, image segmentation aims at producing re-
gions that are homogeneous with respect to the extracted features, such as gray level 
or texture, and have significant different feature values across region boundaries [1]. 
Many algorithms were proposed over the years. Feature-based approaches such as 
thresholding [2] and clustering [3] would usually produce noisy results. Many other 
methods utilize spatial context information explicitly or implicitly. Edge-based seg-
mentation [4], [5], [6] are efficient in describing local behavior but inefficient in pro-
ducing global meaningful results.  Region splitting and merging algorithms [7], [8] 
have problem with merging and stopping criteria that would usually cause the result 
to be either over-segmented or under-segmented.  Model-based approaches, such as 
curve evolution [9], [10], [11] and random fields [12] [13] [14] [15], have established 
mathematical foundation but they require accurate model and the optimization 
process to be able to converge to a reasonable solution, which are difficult to achieve. 

In this paper, image segmentation algorithm is presented, which is based on the 
work of Yu and Clausi [1]. Our algorithm can be characterized by two aspects: 1) it 
uses region growing technique in search for optimal solution. 2) it fuses edge infor-
mation in the energy minimization process in a way that penalizes merging region 
with real edges in the boundary between them. Next section describes our algorithm 
in detail, and section 3 shows experimental results demonstrating that our algorithm 
increases the precision of the segmentation by ensuring the conservation of the ob-
jects contours during the region growing. 
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2   Problem Statement and Related Work 

This work is an extension to Yu and Clausi’s work [1], so it is necessary to distin-
guish our contribution by briefly introducing their work first and then clearly describ-
ing our contribution, which is the fusion of edge information. 

2.1   MRF-Based Formulation of Image Segmentation 

Let S denote the discrete rectangular lattice on which images are defined. Suppose 
there are n different classes in the image to be segmented.  |  is a set of 
discrete valued random variables constituting a random field on S, with each variable 
Xs taking a value in {1,…,n} representing the class to which the site s belongs.  |   is another random field somehow related to X and the observed 
image is a realization from Y. Let x  |   and y  |  denote the 
realizations of X and Y, respectively. The image segmentation is an inverse process 
that attempts to estimate the best x given the observed image y. With the obtained 
class labels x, S is segmented to n classes, Ω , … , Ω such that  Ω | , , 

                                             b) Ω ,                                                                 1  

c)  : Ω Ω .      
The image segmentation task can be formulated as a maximum a posterior (MAP) 
problem for which maximizing the posterior P(x|y) gives a solution. By the Bayes’ 
rule, this is equivalent to maximizing p(y|x) P(x). Two models are used for analytical-
ly representing p(y|x)  (the feature model) and P(x) (the spatial context model). With 
both the feature model and the spatial context model defined, the MAP formulation of 
the segmentation task is transformed into minimizing energy 

                                                                                                 2  

where                                                        0         ,,                                         3  

where a and b are neighboring sites forming a pair-site clique and  is a positive 
number. Such a model makes the prior P(x) large if the local neighborhood is  
dominated by one single class and small otherwise and, hence, is effective in sup-
pressing noisy configurations of class labels. R is the set of all cliques on the entire 
lattice S. 

                                      ∑ ln 2 ,                              (4) 

where  and are the mean and variance of the pixel values in class i. So the image 
segmentation problem is formulated as follow as 
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       arg   min, 12 ln 2 2  1 ,, ,         5  

where .  is the Kronecker delta function. 

2.2   Extending to Region-Based Segmentation 

Finding a solution for (5) represents a combinatorial optimization problem, which 
could be mathematically intractable. Many combinatorial optimization techniques 
have been proposed, including iterated conditional mode (ICM) [16], simulated an-
nealing (SA) [17], mean field theory [18], genetic algorithm [19], belief propagation 
[20], and graph theoretic techniques [21]. To simplify the complexity of the problem, 
the MRF can be defined on irregular graphs rather than the regular image lattice. This 
allows the image segmentation problem formulated by (5) to be based on a set of 
interconnected groups of pixels, with the MRF spatial context model based on a re-
gion adjacency graph (RAG) [22]. Here, the labeling is not on single pixels but on 
regions, where the regions are commonly obtained by a deliberate over-segmentation. 
Each node in the RAG represents a region and a link between the nodes represents the 
existence of a common boundary between the regions. 

Defined on the RAG, the MRF models the behaviors of the regions in a similar 
way as for pixels. Let Ri denote node i in the graph and let xi denote the label for all 
sites s  Ri. The feature model energy for Ri can be defined as 

                             12 ln 2 2  ,                                               6  

and the MRF pair site clique energy for two neighboring nodes Ri. and Rj is                                            0      ., ,
                                                          7  

Summation of the above energies over the entire RAG gives exactly (5). A combina-
torial optimization technique is then applied to RAG nodes instead of pixels. Such a 
region-based segmentation method is advantageous in computation speed as the num-
ber of RAG nodes is usually significantly less than the number of pixels.  

3   Proposed Algorithm 

3.1   Combing Edge Lines with Watershed Lines 

Figure 1 shows the flowchart of the proposed algorithm. The initial step is over-
segmentation of input image using watershed [23], which is a well-establish method 
that is based on the image topology. The magnitude of the gradient is interpreted as 
elevation information.  With successive flooding, watersheds with adjacent catchment 
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basins are constructed. This operation results in image being over-segmented and 
regions separated by watershed lines as shown in Figure 2 (A).  

Next, Canny edge detector [24] is used to detect edges lines. The affect of adjust-
ing the parameter settings of Canny detector, which control how sensitive the detec-
tor is, will be discussed in next section. The watershed lines are combined with edge 
lines, which will divide some of the watershed segmentation regions even into 
smaller ones. This is demonstrated in Figure 2(B), where the number of regions 
increased from 4 to 8. Figure 1 shows a real image in A, Detected edges using Canny 
in B, Watershed over-segmentation in C with number of regions is 642, and the seg-
mentation after combining edge lines with watershed lines where the number of 
regions is 681. 

The purpose of this step is to make sure that the edge lines are coinciding with 
boundary of the regions. As we will see in the next steps of the algorithm, this is  
necessary to integrate the edge information in the MRF clique energy. 

 

Fig. 1. Algorithm's Flowchart 
 



100 A. Dawoud and A. Netchaev 

3.2   Fusion of Edge Information in MRF Energy Minimization  

 |  is a set of edge random field on S, with each variable Ds taking a 
value of {0,1} representing a non-edge and an edge site in s, respectively. Let d  |   denote the realization of D. 

The MRF pair site clique energy  for two neighboring nodes Ri. and Rj is mod-
ified from (7) to                       0                                ., ,

                                       8  

 

Fig. 2. A) Watershed over-segmentation: the white lines are the watershed lines separating 
regions, and the total number of regions is 4. B) Combining edge line: black line is a detected 
edge line, and the total number regions after combining the edge line is 8. 

The difference between (7) and (8) is the introduction of , since  is similar to  in 
(7). Eq. (8) means that for a clique of two neighboring sites to contribute to  then 
they must belong to two different classes. And if one and only one of the sites is an 
edge site then that clique adds  to , and if both sites are either edge sites or non-
edge site then that clique adds  to . The effect of introducing , which should be 
negative, is that it should reduce the MRF pair site clique energy instead of increasing 
it as with the case of , which is positive. With regard to region growing (to be dis-
cussed in next sub-section), introducing  will promote keeping regions with edge 
lines passing through the boundaries between them separated.  

3.3  Iterative Region Growing Image Segmentation 

The algorithm starts merging image regions with the aim of minimizing the overall 
energy, which is the summation of feature model energy  (6) and MRF pair site 
clique energy  (8).  This is achieved, as shown in flowchart of Fig. 1, by finding the 
RAG, and calculating the statistics of all regions  and . Then the differences in 
energy associated with merging each two neighboring regions, which are represented 
as an edge in the RAG, are calculated.   
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Suppose two classes, Ω  and Ω  , are being investigated. Let Ω   Ω   Ω   denote 
the class obtained by merging the two classes. The energy difference 

= ∑ ln 2  ∑ ln 2
      ∑ ln 2  ∑                     0                                ., ,    9  

 

Fig. 3. A) Original image. B) Detected edges using Canny. C) Watershed over-segmentation 
(number of regions is 642). D) Segmentation after combining Canny edge lines with watershed 
lines (number of regions is 681). 

The two regions producing the lowest in the RAG are merged. This process is 
repeated iteratively and regions are merged sequentially, till number of desired classes 
is reached. In the next iteration, there is no need to do the whole calculations from 
scratch. The only calculations needed to update RAG and  will be related to new 
region formed by the merging in pervious iteration, which makes the program run 
faster.  

4   Results 

Figure 4 shows experimental results of the image in Figure 3 comparing our algo-
rithm, which fuses the edge information, with Yu and Clausi’s algorithm [1]. The 
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segmentation results at various iterations or number of regions (N = 50, 10, 5, 4) are 
captured. First three columns shows the segmentation results using our proposed 
algorithm with different  and  settings. The first row of images shows the edge 
image detected by Canny method at different parameters (sensitivity) settings. Last 
two columns show the segmentation results without the fusion of edge information 
(Yu and Cluasi algorithm [1]) with different   settings. 

Our algorithm performed better in terms of segmenting the image along the edge 
lines, which confirms confirming the hypothesis that the addition of edge information 
increases the precision of the segmentation by ensuring the conservation of the ob-
jects contours during the region growing. This is a direct result for introducing that 
neqative  in the MRF energy function, which makes it difficult to megre regions 
separated by edge line. Therefore, the settings that controls the sensetivity of the edge 
 

 

Fig. 4. Segmentation Results for the image shown in Figure 3 at various N (number of regions). 
First three columns shows the segmentation results using our proposed algorithm with different 

 and  settings. Last two columns show the segmentation results without the fusion of edge 
information (algorithm Yu and Cluasi [1]) with different  settings. 
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detector are also important in achieving a precise segmentation that preserves the 
object contours.  

5   Conclusions 

We proposed an algorithm that fuses edge information into Markov Random Fields 
(MRF) region growing based image segmentation. The idea is to segment the image 
in a way that takes edge information into consideration. We achieved this by modify-
ing the energy function minimization process so that it would penalize merging  
regions that have real edge in the boundary between them. Experimental results con-
firming the hypothesis that the addition of edge information increases the precision of 
the segmentation by ensuring the conservation of the objects contours during the 
region growing. 
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Abstract. Image segmentation is a critical low-level visual routine for robot per-
ception. However, most image segmentation approaches are still too slow to allow
real-time robot operation. In this paper we explore a new method for image seg-
mentation based on the expectation maximization algorithm applied to Gaussian
Mixtures. Our approach is fully automatic in the choice of the number of mixture
components, the initialization parameters and the stopping criterion. The ratio-
nale is to start with a single Gaussian in the mixture, covering the whole data set,
and split it incrementally during expectation maximization steps until a good data
likelihood is reached. Singe the method starts with a single Gaussian, it is more
computationally efficient that others, especially in the initial steps. We show the
effectiveness of the method in a series of simulated experiments both with syn-
thetic and real images, including experiments with the iCub humanoid robot.

Keywords: image processing, unsupervised learning, self-adapting gaussians
mixture, expectation maximization, machine learning, clustering.

1 Introduction

Nowadays, computer vision and image processing are involved in many practical ap-
plications. The constant progress in hardware technologies leads to new computing ca-
pabilities, and therefore to the possibilities of exploiting new techniques, for instance
considered to time consuming only a few years ago. Image segmentation is a key low
level perceptual capability in many robotics related application, as a support function
for the detection and representation of objects and regions with similar photometric
properties. Several applications in humanoid robots [1], rescue robots [2], or soccer
robots [3] rely on some sort on image segmentation [4]. Additionally, many other fields
of image analysis depend on the performance and limitations of existing image segmen-
tation algorithms: video surveillance, medical imaging and database retrieval are some
examples [5], [6].

Two main principal approaches for image segmentation are adopted: Supervised
and unsupervised. The latter one is the one of most practical interest. It may be de-
fined as the task of segmenting an image in different regions based on some similarity
criterion among each region’s pixels. Particularly interesting is the Expectation Maxi-
mization algorithm applied to gaussians mixtures which allows to model complex prob-
ability distribution functions. Fitting a mixture model to the distribution of the data is
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equivalent, in some applications, to the identification of the clusters with the mixture
components [7].

Expectation-Maximization (EM) algorithm is the standard approach for learning the
parameters of the mixture model [8]. It is demonstrated that it always converges to a lo-
cal optimum. However, it also presents some drawbacks. For instance, EM requires an
a-priori selection of model order, namely, the number of components (M) to be incorpo-
rated into the model, and its results depend on initialization. The more gaussians there
are within the mixture, the higher will be the total log-likelihood, and more precise the
estimation. Unfortunately, increasing the number of gaussians will lead to overfitting
the data and it increases the computational burden. Therefore, finding the best compro-
mise between precision, generalization and speed is a must. A common approach to
address this compromise is trying different configurations before determining the opti-
mal solution, e.g. by applying the algorithm for a different number of components, and
selecting the best model according to appropriate criteria.

1.1 Related Work

Different approaches can be used to select the best number of components. These can
be divided into two main classes: off-line and on-line techniques.

The first ones evaluate the best model by executing independent runs of the EM
algorithm for many different initializations, and evaluating each estimate with criteria
that penalize complex models (e.g. the Akaike Information Criterion (AIC) [9] and the
Rissanen Minimum Description Length (MDL) [10]). These, in order to be effective,
have to be evaluated for every possible number of models under comparison. Therefore,
it is clear that, for having a sufficiently exhaustive search the complexity goes with the
number of tested models, and the model parameters.

The second ones start with a fixed set of models and sequentially adjust their con-
figuration (including the number of components) based on different evaluation criteria.
Pernkopf and Bouchaffra proposed a Genetic-Based EM Algorithm capable of learn-
ing gaussians mixture models [11]. They first selected the number of components by
means of the minimum description length (MDL) criterion. A combination of genetic
algorithms with the EM has been explored.

An example are the greedy algorithms. Applied to the EM algorithm, they usually
start with a single component (therefore side-stepping the EM initialization problem),
and then increase their number during the computation. The first formulation was orig-
inally proposed in 2000, by Li and Barron [12]. Subsequently, in 2002 Vlassis and
Likas introduced a greedy algorithm for learning Gaussian mixtures [13]. Nevertheless,
the total complexity for the global search of the element to be splitted O(n2). Subse-
quently, Verbeek et al. developed a greedy method to learn the gaussians mixture model
configuration [14]. However, the big issue in these kind of algorithm is the insertion
selection criterion: Deciding when inserting a new component and how can determine
the success or failure of the subsequent computation.

Ueda et Al. proposed a split-and-merge EM algorithm to alleviate the problem of lo-
cal convergence of the EM method [15]. Subsequently, Zhang et Al. introduced another
split-and-merge technique [16]. Merge and split criterion is efficient in reducing number
of model hypothesis, and it is often more efficient than exhaustive, random or genetic
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algorithm approaches. Particularly interesting is the method proposed by Figueiredo
and Jain, which uses only merge operations, therefore starting with a high number of
mixture parameters, merging them step by step until convergence [17], making then no
use of splitting operations. This method can be applied to any parametric mixture where
the EM algorithm can be used. However, the higher the number of mixture components
is, the more expensive the computation will be. Therefore, since the idea of Figueiredo
and Jain starts with a very high number of mixture components, greatly slowing the
computation from the first steps.

1.2 Our Contribution

In this paper, we propose an algorithm that automatically learns the number of compo-
nents as well as the parameters of the mixture model. The particularly of our model is
that we approach the problem contrariwise than Figueiredo and Jain did, i.e. by starting
from only one mixture component instead of several ones and progressively adapting
the mixture by adding new components when necessary. Therefore, in order to accom-
plish this we needed to define a precise split and stopping criteria. The first is essential
to be sure to introduce a new component (and therefore new computational burden) only
when strictly necessary, while the second one is fundamental to stop the computation
when a good compromise has been obtained (otherwise the algorithm will continue to
add components indefinitely, until the maximum possible likelihood is obtained). Our
formulation guarantees the following advantages. First, it is a deterministic algorithm;
we avoid the different possibilities in the components initializations that greatly affect
the standard EM algorithm, or any EM technique that starts with more than one compo-
nent, by using a unique initialization independently from the input data. Therefore, by
applying the same algorithm to the same input data we will get always the same results,
Second, it is a low computationally expensive technique - in fact, new components will
be added only when strictly necessary.

1.3 Outline

The paper is organized as follows. In sec. 2 we introduce the proposed algorithm.
Specifically, we describe the insertion of a new gaussians in sec. 2.4, the initializations
in sec. 2.2, the decision thresholds update rules in sec. 2.5, and the stopping criterion
2.6. Furthermore, in sec. 3 we describe our experimental set-up for testing the valid-
ity of our new technique and the results. Finally, in sec. 4 we conclude and propose
directions for future work.

2 FASTGMM: FAST Self-adapting Gaussian Mixture Model

We distinguish two main important features for our algorithm: The splitting criterion
and the stopping criterion. The key issue of our algorithm is looking whether one or
more gaussians are not increasing their own likelihood during optimization. In other
words, if they are not participating in the optimization process, they will be split into
two new gaussians. We will introduce a new concept related to the state of a gaussians
component:
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– Its age, that measures how long the component’s own likelihood does not increase
significantly (see sec. 2.1);

Then, the split process is controlled by the following adaptive decision thresholds:

– One adaptive threshold LTH for determining a significant increase in likelihood
(see sec. 2.5);

– One adaptive threshold AgeTH for triggering the merge or split process based on
the component’s own age (see sec. 2.5);

– One adaptive threshold STH for deciding to split a gaussians based on its area (see
sec. 2.4).

It is worth noticing that even though we consider three thresholds to tune, all of them
are adaptive, and only require a coarse initialization.

These parameters will be fully detailed within the next sections.

2.1 FASTGMM Formulation

Our algorithm’s formulation can be summarized within three steps:

– Initializing the parameters;
– Adding a gaussians;
– Updating decision thresholds.

Each mixture component i is represented as follows:

ϑ̄i = 	(wi, μ̄i, Σi, ξi, Λlast(i), Λcurr(i), ai) (1)

where wi is the a-priori probabilities of the class, μ̄i is its mean, Σi is its covariance
matrix, ξi its area, Λlast(i) and Λcurr(i) are its last and its current log-likelihood value,
and ai its age. Here, we define two new elements, the area (namely, the covariance
matrix determinant) and the age of the gaussians, which will be described later.

During each iteration, the algorithm keeps memory of the previous likelihood. Once
the re-estimation of the vector parameter ϑ̄ has been computed in the EM step, our
algorithm evaluates the current likelihood of each single gaussians as:

Λcurr(i)(ϑ) =
k∑

j=1

log(wi · pi(x̄j)) (2)

If ai overcomes the age threshold AgeTH (i.e. the gaussians i does not increase its own
likelihood for a predetermined number of times significally - over LTH ), the algorithm
decides whether to split this gaussians or merging it with existing ones depedending on
whether their own single area overcome STH .

Then, after a certain number of iterations the algorithm will stop - see sec. 2.6. The
whole algorithm pseudocode is shown in Fig. 2.1.
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Algorithm 2.1. Pseudocode
1: - Parameter initialization;
2: while (stopping criterion is not met) do
3: Λcurr(i), evaluation, for i = 0, 1, . . . , c;
4: L(ϑ̄) evaluation;
5: Re-estimate priors wi, for i = 0, 1, . . . , c;
6: Recompute center μ̄

(n+1)
i and covariances Σ

(n+1)
i , for i = 0, 1, . . . , c;

7: - Evaluation whether changing the gaussians distribution structure -
8: for (i = 0 to c) do
9: if (ai > AgeTH) then

10: if ((Λcurr(i) − Λlast(i)) < LTH ) then
11: ai+ = 1;
12: - General condition for changing satisfied; checking those for each gaussians -
13: if (Σi > STH ) then
14: if (c < maxNumgaussians) then
15: split gaussians → split ;
16: c+ = 1;
17: reset STH ← SM−INIT

ng
;

18: reset LTH ← LINIT ;
19: reset aA, aB ← 0, with A, B being the new two gaussians;
20: return
21: end if
22: end if
23: STH = STH · (1 + α · ξ);
24: end if
25: end if
26: end for
27: end while

2.2 Parameters Initialization

At the beginning, STH will be automatically initialized to the Area of the covariance of
all the data set - i.e. the determinant of the covariance matrix relative to the whole data
set. The other decision thresholds will be initialized as follows:

LINIT = kLTH

AgeINIT = kATH

(3)

with kLTH and kATH (namely, the minimum amount of likelihood difference between
two iterations and the number of iterations required for taking into account the lack of
a likelihood consistent variation) relatively low (i.e. both in the order of 10, or 20). Of
course, higher values for kLTH and smaller for kATH give rise to a faster adaptation,
however adding instabilities.

2.3 Gaussians Components Initialization

The algorithm starts with just only one gaussians. Its mean will be the whole data mean,
while its covariance matrix will be those of the whole data set. Of course, one may
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desire to start with more than one gaussians in case that a-priori the gaussians com-
ponents of the data set are more than one, for sake of convergence speed. In that case
means and covariances will be as follows.

2.4 Splitting a Gaussian

If the covariance matrix determinant of the examined gaussians at each stage overcomes
the maximum area threshold STH , then another gaussians is added to the mixture.

More precisely, the original gaussians with parameters ϑ̄old will be split within other
two ones. The new means, A and B, will be:

μ̄A = μ̄old +
1
2
(Σi=j)1/2

μ̄B = μ̄old −
1
2
(Σi=j)1/2 i, j = {1, 2, . . . , d}

(4)

where d is the input dimension.
The covariance matrixes will be updated as:

ΣA(i,j) = ΣB(i,j) =

{
1
2Σold(i,j), if i = j;

0, othrewise.
(5)

The a-priori probabilities will be

wA =
1
2
wold wB =

1
2
wold (6)

The decision thresholds will be updated as follows:

STH =
SM−INIT

ng
LTH = LINIT (7)

where ngold and ng are the previous and the current number of mixture components,
respectively. Finally, their ages, aA and aB , will be reset to zero.

2.5 Updating Decision Thresholds

The thresholds LTH , and STH vary at each step with the following rules:

LTH = LTH −
λ

ng
· LTH = LTH · (1−

λ

ng
)

STH = STH −
αMax

ng
· STH = STH · (1 −

αMax

ng
)

(8)

with ng is the number of current gaussians, λ, and αMax Using high values for λ,
and αMax results in high convergence speed. However, with faster convergence comes
significant instability around the optimal desidered point. Following this rules LTH

will decrease step by step, approaching the current value of the global log-likelihood
increment. This is the same for STH , which will become closer to the maximum area of
the gaussians, allowing splitting. This will allow the system to avoid some local optima,
by varying its configuration if a stationary situation occurs.

Finally, every time a gaussians is added these thresholds will be reset to their initial
value.
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2.6 Stopping Criterion

Analyzing the behavior of the whole mixture log-likelihood emerges a common trend:
It always acts like a first order system. In fact, it produces a curve with a high derivate
at beginning that decreases going on with the number of iterations, reaching the log-
likelihood maximum value asymptotically. We know from the theory that the rate at
which the response approaches the final value is determined by the time constant. When
t = τ (in our case i = τ ), L has reached 63.2% of its final value. When t = 5τ , L has
reached 99.3% of its final value. Again, we know from the theory that the time constant
τ is the angular coefficient of the output curve at the time t = 0.

We know from the EM theory that at each iteration it has to grow, or at least
remaining the same. However, spikes during the splitting operations that make the log-
likelihood decreasing abruptly are present. Moreover, in order to avoid local optima-like
situations, we average the log-likelihood increments by sampling it with a fixed sam-
pling rate (e.g. Ts = 25 iterations).

For each i = n · Ts, with n an integer number, we store the current log-likelihood
within an array. The first time the log-likelihood increment between two consecu-
tive sampled value increases less than 0.7% we store the relative number of iterations
ifirst = nstopTs. Then, we stop after the log-likelihood does not increase over 0.7%
for a number of times equal to nstop.

2.7 Computational Complexity Evaluation

Within this section we will use the following convention: ng is the number of the mix-
ture gaussians components, k is the number of input vectors, d is the number of input
dimension, and it is the number of iterations.

The computational burden of the EM algorithm is, referring to the pseudocode in tab.
2.1 as follows:

– the original EM algorithm (steps 3 to 6) take O(k · d · ng) for 3 and 6, while step 4
and step 5 take O(1) and O(k · ng);

– our algorithm takes O(ng) for evaluating all the gaussians (step 8 to 26);
– our split (step 15) operation requires O(d).
– the others take O(1).

Therefore, the original EM algorithm takes O(k · d · ng), while our algorithm adds
O(d · ng) on the whole, giving rise to O(k · d · ng) + O(d · ng) = O(k · d · ng + d ·
ng) = (ng · d · (k + 1)). Considering that usually d << k and ng << k this does
not add a considerable burden, while giving an important improvement to the original
computation in terms of self-adapting to the data input configuration at best.

3 Experimental Validation

3.1 Experimental Set-Up

To compare our algorithm other EM-based methods we choose three techniques, BIC,
AIC, and MDL, as the most common used selection criteria. In order to reduce the arti-
fact of the initialization on the standard EM algorithm, we adopted a standard approach:
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Fig. 1. The 2D representation of the final gaussians mixture generated by our algorithm vs. the
real one and the relative log-likelihood outputs as function of the iterations number, for different
input mixtures of data (4, 8, 12 gaussians components). Moreover the 8-gaussians case compari-
son between the generated and computed mixtures is shown on the bottom right.

We selected 10 different initial random conditions, keeping those giving the highest
likelihood. The stopping criteria we adopted for the EM computation is the most com-
mon used, i.e. it requires that the log-likelihood increment goes below a threshold ε. We
used ε = 10 · e−5. We evaluated our technique’s performances by applying it both to
synthetic data (artificially generated with a known mixture) and with different kind of
pictures, i.e. some well known pictures and some real images (taken by a webcam or by
our robotic platform iCub’s cameras).

Mixture precision estimation. It is possible to see that FASTGMM usually achieves
a higher final log-likelihood than the other techniques, although running more itera-
tions. This suggests a better approximation of the data mixture. However, a higher log-
likelihood does not strictly imply that the extracted mixture covers the data better than
another one. This is because it is based on the probability of each component, which
may be more or less exact, being not deterministic. Nevertheless, it is not a good index
on the probability that such mixture would be better.

A deterministic approach is to adopt a unique distance measure between the gen-
eration mixture and the evaluated one. In [18] Jensen et Al. exposed three different
strategies for computing such distance: The Kullback-Leibler, the Earh Mover, and the
Normalized L2 distance. The first one is not symmetric, even though a symmetrized
version is usually adopted in music retrival. However, this measure can be evaluated in
a close form only with mono-dimensional gaussians. The second one also suffers ana-
log problems of the latter. The third choice, finally is symmetric, obeys to the triangle
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inequality and it is easy to compute, with a comparable precision with the other two.
We then used the last one. Its expression states [19]:

zcNx(μ̄c, Σ̄c) = Nx(μ̄a, Σ̄a) ·Nx(μ̄b, Σ̄b)
where

Σ̄c =(Σ̄−1
a + Σ̄−1

b )−1 and μ̄c = Σ̄c(Σ̄−1
a μ̄a + Σ̄−1

b μ̄b)

zc =|2πΣ̄aΣ̄bΣ̄
−1
c | 12 · exp

{
−1

2
(μ̄a − μ̄b)T Σ̄−1

a Σ̄cΣ̄
−1
b (μ̄a − μ̄b)

}
=|2π(Σ̄a + Σ̄b)|

1
2 · exp

{
−1

2
(μ̄a − μ̄b)T (Σ̄a + Σ̄b)−1(μ̄a − μ̄b)

}
(9)

Therefore, we evaluated the Normalized L2 distance as a measure of synthetic data
estimation precision, and we reported our result in tab. 3.3.

3.2 Synthetic Data

In order to evaluate the performance of our algorithm, we tested it by classifying dif-
ferent input data randomly generated by a known gaussians mixture, and subsequently
saved to a file. We choose to show the results for 2-dimensional input because they are
easier to show than multidimensional ones (for instance, a 2-dimensional gaussians is
represented in 2D as an ellipse).

The output of the two algorithms is shown in Fig. 1. Each distribution has a total of
2000 points, but disposed differently. The first one has been generated by a 4 gaussian
mixture, the second one by a 8 gaussian mixture and the third one by a 12 gaussian
mixture. The generation mixture (blue) and the evaluated one (red) are represented in
each subfigure. Finally, the 3D histogram representation of the 8-components generated
gaussians mixture data and the estimated one. Due to space limitations, we choose to
show only the one that gave rise to the worst log-likelihood estimation plot, i.e. the one
with 8 components.

We can see that our algorithm is capable to learn the input data mixture starting from
only one component with a good accuracy.

Table 1. Experimental results on synthetic data

Actual number Detected number Total number Final Normalized
of Gaussian Algorithm of Gaussian of iterations log-likelihood L2
components components distance

4

AIC 4 91 -7403.656573 6.595441
BIC 4 91 -7405.021887 6.382962

MDL 6 98 -7460.206259 13.715347
FASTGMM 4 268 -7405.078438 0.075190

8

AIC 9 120 -8400.626025 34.796101
BIC 7 91 -8428.323612 18.092732

MDL 8 111 -8554.125701 22.052649
FASTGMM 8 650 -8446.063794 6.184175

12

AIC 14 103 -7475.658908 45.687874
BIC 12 124 -7547.612061 2.811907

MDL 13 161 -7613.774605 21.293496
FASTGMM 12 393 -7511.032752 2.658803



114 N. Greggio, A. Bernardino, and J. Santos-Victor

3.3 Colored Real Images

Learning the right number of color components (i.e. mixture components) within a
colored image is a difficult task. This is because an general image contains several
of the three fundamental color combinations. Therefore, it is clear that the number of
mixture components needed to represent the image at best rapidly rises up excessively,
becoming too high.

The color image segmentation results are shown in Fig. 2. The set of images is di-
vided into two groups: Some general images, on the left (from (1) to (5)), and some
images taken by the iCub’s cameras, on the right (from (6) to (11)). For each group
we show the original images, those obtained with the standard EM algorithm initialized
with the BIC/AIC/MDL criteria, and those obtained with our algorithm on the left, in
the middle, and on the right, respectively.

Here we will find some differences in the number of mixture components detected
by our algorithm and those detected by the BIC/AIC/MDL techniques. Our approach
tends to use more components than BIC/AIC/MDL do. This is more evident on the real
images (which of course contain more color variations than the artificial ones). In table

Fig. 2. Color image segmentation results. We divide these images into two groups: Some general
images, on the left (from (1) to (5)), and some images taken by the iCub’s cameras, on the right
(from (6) to (11)). For each group we show the original images, those obtained with the standard
EM algorithm initialized with the BIC/AIC/MDL criteria, and those obtained with our algorithm
on the left, in the middle, and on the right, respectively.
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Table 2. Experimental results on real images

Image Detected number Total number Image Detected number Total number
(Fig. 2) Algorithm of mixture of iterations (Fig. 2) Algorithm of mixture of iterations

components components

(1)

AIC 8 85

(6)

AIC 8 234
BIC 7 91 BIC 7 180

MDL 7 106 MDL 8 213
FASTGMM 10 400 FASTGMM 8 350

(2)

AIC 4 120

(7)

AIC 5 92
BIC 4 91 BIC 4 90

MDL 4 134 MDL 4 104
FASTGMM 4 175 FASTGMM 3 150

(3)

AIC 20 213

(8)

AIC 4 92
BIC 18 192 BIC 4 90

MDL 18 221 MDL 4 94
FASTGMM 22 475 FASTGMM 4 175

(4)

AIC 18 145

(9)

AIC 4 78
BIC 17 126 BIC 3 94

MDL 16 153 MDL 3 97
FASTGMM 20 325 FASTGMM 3 150

(5)

AIC 4 86

(10)

AIC 16 121
BIC 4 93 BIC 16 112

MDL 4 91 MDL 15 146
FASTGMM 4 175 FASTGMM 18 300

(11)

AIC 7 131
BIC 7 124

MDL 6 156
FASTGMM 8 350

3.3 the results of our algorithm and the BIC/AIC/MDL criteria applied to the selected
images are shown.

4 Conclusion and Future Work

In this paper we proposed a unsupervised algorithm that learns a finite mixture model
from multivariate data on-line. We approached the problem starting from a single mix-
ture component and sequentially growing both increases the number of components
and adapting their means and covariances. Therefore, its initialization is unique, and
it is not affected by different possible starting points like the original EM formulation.
Moreover, by starting with a single component the computational burden is low at the
beginning, increasing only whether more components are required. We also defined a
precise stopping criteria, otherwise the algorithm continues to split indefinitely. Finally,
we presented the effectivity of our technique in a series of simulated experiments with
synthetic data, artificial, and real images.

- Future work: At the moment we tested our algorithm with synthetic data and static
images. As future work, we will improve our algorithm by implementing also a merge
technique. So far, it will be possible to remove unused components, too. Our final aim is
to apply it to moving objects, online adapting the mixture description with varying input.
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Abstract. Graph cut minimization formulates the segmentation prob-

lem as the liner combination of data and smoothness terms. The smooth-

ness term is included in the energy formulation through a regulariza-

tion parameter. We propose that the trade-off between the data and the

smoothness terms should not be balanced by the same regularization pa-

rameter for the whole image. In order to validate the proposed idea, we

build a system which adaptively changes the effect of the regularization

parameter for the graph cut segmentation. The method calculates the

probability of being part of the boundary for each pixel using the Canny

edge detector at different hysteresis threshold levels. Then, it adjusts the

regularization parameter of the pixel depending on the probability value.

The experiments showed that adjusting the effect of the regularization

parameter on different image regions produces better segmentation re-

sults than using a single best regularization parameter.

Keywords: Regularization Parameter, Graph Cut, Image Segmenta-

tion.

1 Introduction

The first step of many computer vision systems is the object-background segmen-
tation. For the performance of the advanced steps of the system, the foreground
segmentation should be accurate. There are different segmentation techniques
in the literature based on clustering [1], curve fitting [2], and energy minimiza-
tion [3]. The graph cut approach [4,5] is one of the energy based algorithms which
solves the object-background segmentation relatively successfully. The algorithm
first builds a graph G = (V, E). V consists of set of nodes that correspond to
the image pixels. Two additional nodes are also added to V that represent the
object and the background terminals. E are the edges that connect the nodes
with nonnegative costs. The optimal segmentation is determined by finding the
minimum cost cut on the graph through minimizing the graph energy functional.
The standard graph energy functional is formulated as,

E(f) =
∑
i∈V

Ed(fi, di) + λ
∑

i,j∈N

Es(fi, fj), (1)
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where V is the nodes on the graph, fi is the segmentation label and di is the a
priori data of pixel i, and N represents the neighborhood pixels j of pixel i. The
first term in the energy functional is called the data term Ed, which confines
the segmentation labels to be close to the observed image. The second term is
used for the smoothness which confines the neighboring nodes to have similar
segmentation labels.

The data term of the energy formulation is inadequate to obtain a successful
segmentation because of the ill-posed nature [6,7] of the segmentation prob-
lem. Therefore, energy minimization approaches constrain the solution space by
adding a smoothness term. The smoothness term is included in the energy for-
mulation through a regularization parameter λ which determines the degree of
the smoothness of the solution. Choosing a suitable λ is important to obtain a
meaningful solution. If λ is small, the segmentation will be noisy; on the other
hand, if λ is large, the segmentation will not fit the observed data. Figure 1
illustrates the trade-off between the data and smoothness terms on a graph cut
minimization. The segmentation with a small regularization parameter (Fig 1.b)
produces noisy solutions (grassy regions). If we increase the regularization pa-
rameter in order to obtain a noiseless segmentation, this time we lose the details
such as the legs and the ears of the horses (Fig 1.c). The better segmentation is
obtained with the most suitable regularization parameter (Fig 1.d). However, it
still has problems on some parts of the foreground. Note that the ear and the
tail regions of the horses are over-segmented (red marked regions); the legs of
the horses are under-segmented (blue marked regions).

This paper introduces a new idea that, the trade-off between the data and the
smoothness terms should not be balanced by the same regularization parameter
for the whole image. For example, the grassy part of the image in Figure 1.a needs
higher regularization than the leg part of the horses. However, using the same λ
makes the smoothness effect equal on the whole image, and causes over/under-
segmented regions even with the most suitable regularization parameter. We
propose a method that adaptively changes the regularization parameter of the
graph cut minimization depending on the image regions. The method determines
the foreground boundary of the image. Then, it adjusts the regularization pa-
rameter for each pixel based on the probability of that pixel being part of the
boundary.

We introduce the method on interactive graph cut [8,9] which is one of the
convenient and widely used graph cut approaches. The user initially marks some
pixels as object and some pixels as background to direct the graph cut algo-
rithm. The marked pixels form the object and background intensity distribu-
tions. Then, the data and the smoothness energy terms are formulated using
these distributions. In order to validate the proposed idea, we implemented a
series of experiments on the interactive graph cut minimization by applying our
method. The experiments showed that, adjusting the effect of the regularization
parameter on different regions of the image produced better segmentation results
than using a single best regularization parameter.
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(a) (b)

(c) (d)

Fig. 1. The illustration of the trade of between the data and the smoothness terms of

the graph cut minimization. a) Input image. b) Segmentation is obtained with a small

λ, where the smoothness term has small importance in graph energy formulation. c)

Segmentation is obtained with a large λ, where the smoothness term has significant

importance in the graph energy formulation. d) The best segmentation with the most

suitable regularization parameter. Red marked area denote the over segmentations;

blue marked area denote the under segmentations.

The rest of the paper is organized as follows: The next section summarizes
the related work on the regularization parameter. We introduce the method in
Section 3. We show the experimental results in Section 4. Section 5 provides
discussions and concluding remarks.

2 Related Work

Obtaining a suitable regularization parameter is as old as the regularization prob-
lem [10]. Researchers proposed general techniques such as L-curve method, dis-
crepancy principle, cross-validation principle [11], and U-curve [12]. Besides the
general methods, problem-specific techniques are proposed such as for snakes [13]
and for image restoration [14]. However, it is recently realized that the suitable
regularization parameter depends on statistics of image noise and variation of
scene structures [15,16]. Therefore, different image sets need different regular-
ization parameters for an optimal performance. A few papers focused on the
optimal choice of regularization parameter from the observed image. Zhang and
Seitz [16] proposed a probabilistic mixture model for the λ determination of a
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stereo pair. Peng and Veksler [17] proposed a regularization parameter selection
method for the segmentation problem. Although these approaches estimate suit-
able parameters, they produce a single regularization parameter for the whole
image. Our method on the other hand, claims that the regularization parameter
between the energy terms should not be the same for all regions of the image.
Different parts of the image needs different regularization effects for a better per-
formance. To the best of our knowledge, our system is the first one to attempt to
adaptively regularize the trade-off between the data and the smoothness terms
in graph cut segmentation.

As mentioned in the introduction section, using the same λ for the whole
image sometimes over-segment the foreground, at other times under-segment
such that small foreground details are lost. Vincente and Kolmogorov [18] re-
alized that the graph cut algorithm produces inadequate segmentation for the
thin and elongated objects. They proposed a method in which the user marks
some additional connectivity priors. Then the algorithm runs the Dijkstra’s al-
gorithm for the thin parts of the objects separately. Their work segments the
thin parts of the objects successfully. However, it needs additional marking and
increases the computational load because of the run-time costs of the Dijkstra’s
algorithm. Moreover, their approach did not solve the over-segmented part of
the segmentation such as the tail part of the horses.

3 Proposed Method

Graph cut approach solves the segmentation problem by minimizing an energy
functional which is the linear sum of the problem constraints. The data constraint
is inadequate to obtain a unique solution, therefore, the smoothness constraint
is included to the energy formulation through a regularization parameter. The
general approach is using a single suitable λ for the graph energy formulation,
however, we propose that the effect of the regularization should not be the same
for the whole image.

We propose a method which arranges the effect of the regularization parameter
on different parts of the image. The method first calculates the edge pixels of the
image by the Canny edge detector. We run the edge algorithm on the observed
image at different hysteresis threshold levels between [0.1-1] (the maximum is
1). Then we calculate the edge probability of each pixel by the linear average
of edge maps such that I = 1

n

∑n
k=1 Ik, where Ik is the binary edge map at

hysteresis threshold set k. If pixel i is labeled as an edge pixel for the most
of the threshold levels, it has a high probability of being an edge pixel. We
illustrated the probability calculation of each pixel in Figure 2. Figure 2.b shows
the probabilities of being an edge pixel. In order to decrease the smoothness
effect at the near boundary regions, we convolve the probability map with a
gaussian kernel (Figure 2.c).

The proposed algorithm modifies the regularization parameter by reducing
the smoothness terms of the pixels on the boundary regions. We formulated the
proposed idea as
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(a) (b) (c)

Fig. 2. a) The edge maps of horse image in fig.1 at different hysteresis threshold levels of

Canny edge detector. b) The edge probability map of the horse image is obtained by the

linear average of the edge maps at threshold levels between [0.1-1]. c) The probability

map is obtained by gaussian smoothing in order to decrease the smoothness effect on

the near-boundary regions.

E(f) =
∑
i∈V

Ed(fi, di) + (1− Ii)λ
∑

i,j∈N

Es(fi, fj), (2)

where Ii is the edge probability of pixel i. If the probability of being an edge of
the pixel i is high, the regularization parameter will be multiplied with a small
value. Therefore, the smoothness effect will decrease for the pixel i. Similarly,
if the probability of being an edge is small, we multiplied the smoothness term
with a larger value.

4 Experiments

In order to validate the proposed idea, we implemented the interactive graph cut
algorithm and segmented the images in Berkeley data set [19]. We first marked
some pixels as object and some pixels as background on the image. We con-
structed the graph structure using the marked pixel histograms. Then we min-
imized the graph using the energy formulation of Eq. 1 with the regularization
parameters between 0 and 99. We calculated the percentage errors of segmenta-
tions for each regularization parameter by comparing the obtained labeling with
the ground truth segmentation.

We segmented the same images using the proposed approach. We first ob-
tained edge maps of the images using the Canny edge detector at different hys-
teresis threshold values. Then, we calculated the edge probability of each pixel
of the observed image. We minimized the graph structure using the energy for-
mulation of Eq. 2. For a reliable comparison, we used the same graph structure
for both approaches. Figure 3 shows the segmentations of both approaches for
the best λ values. Note that the tail and the ear regions of the horses are not
segmented accurately even using the best λ, which was chosen manually. Some
of the leg pixels are also labeled as background (Fig. 3b). The similar corrup-
tions are observed for the other images. The best λ is inadequate to properly
segment the region between the wing and the tail of the insect. Some of the
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a) User Input b) Original segmentation c) Segmentation with

with best λ (Eq.1) adaptive regularization (Eq.2)

Fig. 3. Comparison of the original graph cut segmentation with the proposed approach.

a) User Input. Red marks denote object pixels, blue marks denotes background pixels.

b) Original Segmentation with the best λ. Over and under segmented regions are

denoted in rectangles. c) Segmentation with adaptive regularization.

background regions, especially at the near boundary parts of the eagle and the
bear are segmented as foreground. The proposed approach on the other hand,
adaptively adjusts the regularization parameter based on the edge probability.
Since the effect of the regularization parameter is decreased on the edge parts
of the image, the segmentation solution is not over-smoothed on the thin and
elongated parts of the foreground (Fig. 3c).

We illustrate the reversed normalized edge maps in Figure 4 which represent
the smoothness proportion of image regions. The dark intensities denote the image
parts which should have smaller regularization parameter. The lighter intensities
on the other hand should be more regularized in the energy formulation.

We formulated the proposed method based on the boundary knowledge of
the observed image. However, the boundary regions cannot be accurately deter-
mined. For example, the back parts of the horses in Figure 4.a cannot be deter-
mined. In some part of the images, on the other hand, the unnecessary edges
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(a) (b) (c)

Fig. 4. Illustration of the adaptive regularization values. (a) and (b) are the reversed

normalized edge maps of the images in Figure 3. (c) represents the effectiveness of the

regularization parameter on the different image regions.

a) Regularization Maps b) Segmentation with adaptive λ
(using ground truth edges) (using ground truth edges)

Fig. 5. Segmentation results with the ground truth boundary information

mislead the proposed algorithm (the edge leaf in the insect image Figure 4.b).
As a result, the proposed method is influenced by the boundary accuracy. In
order to observe the effect of the proposed idea with a better boundary knowl-
edge, we used the ground truth edges of the images. We decrease the effect of
the regularization parameter for the boundary and the near-boundary regions
of the images manually. Then we used these regularization parameters for the
graph cut minimization. The regularization parameters based on the edge maps
in Figure 5.a increase the quality of the segmentations (the legs of the horse and
the legs of the insect)(Figure 5.b).

We also compared the percentage errors of both approaches using the ground
truth segmentation(Figure 6). The red curve denotes the percentage errors of
segmentations which are obtained by graph cut minimization in Eq.1. The
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Fig. 6. Comparison of the original graph cut segmentation with the proposed approach

for the whole ranges of regularization parameter between 0 and 99

minimum point of this curve is the best λ for the observed image. The green
curve on the other hand, denotes the percentage errors of segmentations which
are obtained by the proposed approach (Eq.2). Thegraphs show that the pro-
posed method performs better than the original graph cut segmentation for the
meaningful ranges of the regularization parameter.
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5 Discussion

For the graph cut based segmentation tasks, the trade-off between the data
and the smoothness terms should not be balanced by the same λ value for
the whole image. The boundary regions should be less regularized than the
other regions of the image. We proposed a method which adaptively changes the
regularization parameter. The method first determines the boundary regions
through the Canny edge detector at different hysteresis threshold levels. The
linear average of the edge maps produces the edge probability of each pixel. The
proposed method adjusts the effect of the regularization parameter using the
probabilities of pixels being part of the boundary. Experimental results showed
that the proposed method produces better segmentation results than the original
graph cut approach for the best λ.

One of the novelties of this paper is the idea that using adaptive regulariza-
tion parameters for the different parts of the image improves the segmentation
result than using a single regularization parameter. The proposed method is the
another novelty of the paper. To the best of our knowledge, our system is the
first one to attempt to adaptively regularize the trade-off between the data and
the smoothness terms in graph cut segmentation.

The method adjusts the regularization effectiveness depending on the proba-
bility of pixels being on the boundary region. If the boundary regions are deter-
mined incorrectly, the smoothness effect would not be adjusted properly. In the
experiments, we used only the edge knowledge for the boundary probabilities.
However, the intensity variations cannot not yield reliable boundary probabili-
ties at all times. Therefore, the proposed method should be improved using the
other features of the image for the boundary probability calculation, such as the
texture and color features of the image.
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Abstract. Support Vector Machine (SVM) is a powerful classification

methodology where the Support Vectors (SVs) fully describe the de-

cision surface by incorporating local information. On the other hand,

Nonparametric Discriminant Analysis (NDA) is an improvement over

the more general Linear Discriminant Analysis (LDA) where the nor-

mality assumption from LDA is relaxed. NDA is also based on detecting

the dominant normal directions to the decision surface. This paper intro-

duces a novel SVM + NDA model which combines these two methods.

This can be viewed as an extension to the SVM by incorporating some

partially global information about the data, especially, discriminatory

information in the normal direction to the decision boundary. This can

also be considered as an extension to the NDA where the support vec-

tors improve the choice of κ-nearest neighbors (κ−NN ’s) on the decision

boundary by incorporating local information. Since our model is an ex-

tension to both SVM and NDA, it can deal with heteroscedastic and

non-normal data. It also avoids the small sample size problem. More-

over, this model can be reduced to the classical SVM model so that the

existing SVM programs can be used for easy implementation. An exten-

sive comparison of the SVM + NDA to the LDA, SVM, NDA and the

combined SVM and LDA, performed on artificial and real data sets, has

shown the advantages and superiority of our proposed model. In particu-

lar, the experiments on face recognition have clearly shown a significant

improvement of SVM + NDA over the other methods, especially, SVM

and NDA.

Keywords: Linear Discriminant Analysis, Nonparametric Discriminant

Analysis, Support Vector Machines, Small Sample Size Problem, Face

Recognition.

1 Introduction

In the last decades, a number of powerful linear classifiers have been proposed
in the machine-learning community. One of them is the Linear Discriminant
Analysis (LDA), whose main goal is to solve the well-known problem of Fisher’s
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linear discriminant criterion. This criterion aims at finding the linear projections
such that the classes are well separated, i.e, maximizing the distance between
means of classes and minimizing their intraclass variances. The LDA was suc-
cessfully applied in appearance-based methods for object recognition, such as,
face recognition [1].

However, LDA shows poor performance when the underlying assumptions of
homoscedasticticity (i.e., data in which classes have equal covariance matrices
[8]) and normality (i.e. data with Gaussian distribution [2]) are not satisfied. To
relax these assumptions, Fukunaga [2] proposed the Nonparametric DA (NDA)
which measures the between-class scatter matrix on a local basis in the neigh-
borhood of the decision boundary. This is done based on the observation that
the normal vectors on the decision boundary are the most informative for dis-
crimination [6]. For a data point, these normal vectors are approximated by the
κ−NN ’s from the other class in case of a two class classification problem. There-
fore, NDA can be considered as a classification method based on the “partially
global” characteristics of data which are represented by the κ − NN ’s. How-
ever, it is not always an easy task to find a common and appropriate choice of
κ−NN ’s on the decision boundary for all class points to obtain the best linear
discrimination.

Support Vector Machine (SVM) [10] is another powerful method which em-
phasizes the idea of maximizing the margin or degree of separation in the training
data. SVM tries to find the optimal decision hyperplane using support vectors.
The support vectors are the training samples that approximate the optimal de-
cision hyperplane and are the most difficult patterns to classify. In other words,
they consist of those data points which are closest to the optimal hyperplane.
As SVM deals with a subset of data points (support vectors) which are close
to the decision boundary, it can be said that the SVM solution is based on the
“local” characteristics of the data. However, SVM does not take into consider-
ation the global or partially global properties of the class distribution on which
LDA-based methods (e.g. LDA, NDA) are based.

In this paper, we propose an SVM + NDA classification model which takes
into account both the partially global characteristics of data distribution rep-
resented by NDA and the local characteristics represented by SVM. Being an
extension to both SVM and NDA, this model does not depend on any global
distribution pattern of training data. Therefore, it is capable of dealing with
heteroscedastic and non-normal data. Moreover, our method combines the dis-
criminatory information represented by the normal vectors to the decision sur-
face and the support vectors which are crucial for accurate classification. Also,
our method avoids the small sample size problem, which is a general problem for
LDA-based methods (e.g. LDA, NDA) [8]. We have particularly targeted the face
recognition problem as an application of interest to our proposed model given
that it has become one of the most challenging tasks in the pattern recognition
area.

This paper is organized as follows: Section 2 provides the formulation of the
classical SVM and NDA method. Section 3 presents the derivation of the novel
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SVM + NDA model. We also show that this model is a variation of the classical
SVM so that the existing SVM programs can be used. Section 4 provides a
comparative evaluation of the SVM + NDA model to LDA, SVM [10], NDA
[2] and combined SVM and LDA [11], carried out on a collection of benchmark
synthetic, real and face data sets. Finally, Section 5 presents the conclusion.

2 The SVM and NDA Methods

Let X1 = {xi}N1
i=1 and X2 = {xi}N1+N2

i=N1+1 be the two different classes constituting
an input space of N = N1+N2 samples or vectors in R

M and the tags associated
with these vectors be represented by T = {ti}N

i=1, where ti ∈ {+1,−1} ∀i =
1, 2, ..., N . The goal is to construct an optimal linear separating hyperplane from
the training data as represented by the following function:

y(x; w) = wT x + w0, (1)

where x is an input vector and w = {wi}N
i=1 and w0 represent the unknown

weights to compute.

2.1 Formulation of the NDA

Similar to LDA, NDA tries to find the most discriminative linear projections
of the class distributions which can be achieved by maximizing the Rayleigh
coefficient (the ratio of the between-class scatter matrix against the within-class
scatter matrix) with respect to the weights [8]. Finding the most discrimina-
tive projectional direction w∗ can be described by the following optimization
problem:

w∗ = arg max
w

wT Sbκw

wT Sww
, (2)

where the within-class scatter matrix is defined as Sw = 1
N1+N2

(N1S1 + N2S2),
such that S1 and S2 are the covariance matrices for the two classes. Sbκ is the
non-parametric between-class scatter matrix [2] which relaxes the normality as-
sumption of classical LDA. It is constructed on a partially global basis. This
formulation is based on the observation that the normal vectors on the deci-
sion boundary preserve the classification structure. These normal vectors are
approximated by the directions of the lines that connect points between the two
classes. For every point, the κ − NN ’s from the other class is considered. The
non-parametric scatter matrix is defined as:

Sbκ =
1

(N1 + N2)

N1∑
i=1

ωi(xi −Mκ
2 (xi))(xi −Mκ

2 (xi))T

+
1

(N1 + N2)

N1+N2∑
i=N1+1

ωi(xi −Mκ
1 (xi))(xi −Mκ

1 (xi))T , (3)
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where Mκ
j (xi) is the mean vector of the κ −NN ’s from class Xj to sample xi,

j ∈ {1, 2}. ωi is the weighting function to deemphasize samples which are far
from the classification boundary and is defined as:

ωi =
min{d(xi, xNNκ

1i)
γ , d(xi, xNNκ

2i)
γ}

d(xi, xNNκ
1i)γ + d(xi, xNNκ

2i)γ
, (4)

where d(xi, xNNκ
ji) is the Euclidean distance from xi to its κ − NN from the

class Xj . The parameter γ controls how rapidly the value of weighting function
falls to zero as we move away from the classification boundary.

Problem (2) can be solved by finding the eigenvalues and eigenvectors of
S−1

w Sbκ [2]. w is formed by the eigenvector corresponding to the largest eigen-
value. However, it is not always an easy task to find the optimal choice of
κ − NN ’s for NDA which may be suitable for all data points. The local in-
formation crucial for accurate classification is not considered here.

2.2 Formulation of the SVM

In SVM, the decision hyperplane is approximated by two parallel hyperplanes
which provide the maximum margin between the two classes. The problem of
finding these hyperplanes can be expressed as the following problem:

min
w �=0,w0

1
2
‖w2‖,

s.t. ti(wT xi + w0) ≥ 1 ∀i = 1, . . .N. (5)

By transforming this convex optimization problem into its dual problem, the
solution can be found as w =

∑N
i=1 αitixi where, equation (5) achieves equality

for nonzero values of αi only. The corresponding data samples are called support
vectors. Therefore, SVM considers only those data points which are close to
the decision boundary. In this sense, SVM is a local method. On the contrary,
NDA incorporates the partially global discriminatory information present in the
training data.

3 The SVM + NDA Model

SVM + NDA combines the discriminatory information represented by the nor-
mal vectors to the decision surface for the NDA and the support vectors for the
SVM. The Model is formulated by different optimization problems in case of
linearly separable and non-separable data which we will discuss individually.

3.1 SVM + NDA for Linearly Separable Data

In this case, SVM + NDA is defined by the following optimization problem:

min
w �=0,w0

1
2
wT (λSw(Sbκ + βI)−1 + I)w,

s.t. ti(wT xi + w0) ≥ 1 ∀i = 1, . . . N. (6)
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a
b

SVMNDA SVM+NDA

Test Data

Class 1

Class 2

H H1 2

Support Vectors

Support Vectors

Fig. 1. Geometrical interpretation of SVM + NDA

Here, the term βI represents the regularization matrix to tackle the small sam-
ple size problem [8]. β can be any positive scalar value. The idea is to maximize
the margin of the separating hyperplane for the two classes and minimize the
scatter of data in the normal direction of the hyperplane while incorporating
partially global information about the data points simultaneously. Here, the key
parameter is λ, which controls the tradeoff. λ can take any value from zero to
infinity and is tuned via cross validation. By incorporating the information ob-
tained through NDA in the optimization problem of SVM, we are changing the
orientation of the decision hyperplane in such a way that retains the benefit of
both SVM and NDA, which may yield better classification accuracy as will be
demonstrated in the experimental results section. A rough geometrical interpre-
tation of SVM + NDA compared to the SVM and the NDA in case of a simple
two dimensional case can be seen on Figure 1. Here, we see that the hyperplane
defined by NDA is obtained by considering κ−NN ’s (κ = 3) for each data point
(for simplicity, only a few of the κ−NN ’s are depicted here). On the other hand,
the hyperplane defined by SVM is obtained using two separating hyperplanes
H1 and H2 which provide the maximum margin. In case of SVM + NDA, we
see how the orientation of the decision hyperplane changes in an optimal way by
incorporating information from both SVM and NDA. Here, we see that the two
(hypothetical) data points for testing a and b are being misclassified by NDA
and SVM, respectively, but accurately classified by SVM + NDA.

3.2 Implementation of the SVM + NDA Model

Problem (6) is a convex optimization problem which can be solved by Lagrange
undetermined multipliers and using the Karush-Kuhn-Tucker conditions [5].
However, in practice there is an easier way to implement SVM + NDA. Ac-
cording to Lemma 1, our formulation is just a variation of the classical SVM
method. Hence, it can be solved using the existing SVM programs, which are
widely available [7].
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Lemma 1. The SVM + NDA formulation is equivalent to:

min
ŵ �=0,ŵ0

1
2
‖ŵ2‖,

s.t. ti(ŵT x̂i + ŵ0) ≥ 1 ∀i = 1, . . .N, (7)

where

ŵ = Σ1/2w, (8)

x̂i = Σ−1/2xi ∀i = 1, . . .N (9)

and
Σ = λSw(Sbκ + βI)−1 + I. (10)

Proof. Substituting (8-10) into (7) we get (5).

Hence, we can easily use the existing SVM programs for training and testing
SVM + NDA. The only pre-calculation we have to do is for Σ1/2 and Σ−1/2

which can be achieved by eigenvalue decomposition [4]. Now, the only problem
left is to choose a suitable implementation of SVM. We used an SVM implemen-
tation for MATLAB by the MathWorks TM[7].

3.3 SVM + NDA for Linearly Non-separable Data

In this case, we use the Soft Margin method described in [10] which leads us to
the following optimization problem:

min
w �=0,w0,C>0

1
2
wT (λSw(Sbκ + βI)−1 + I)w + C

N∑
i=1

ξi,

s.t. ti(wT xi + w0) ≥ 1− ξi, ξi ≥ 0, ∀i = 1, . . .N. (11)

Here, ξi denotes the slack variable which measures the degree of misclassification
for each data point xi. C is the regularization parameter, the value of which
determines how large or small the penalty factor should be for each misclassified
data point. This is again a quadratic optimization problem, and we can reduce
it to the classical SVM problem in the same way as described before.

4 Experimental Results

In this section we present a comparison of the SVM + NDA model with the
LDA, NDA [2], SVM [10] and SVM + LDA [11] on synthetic, real and face data
sets. The value of all the control parameters (λ, κ and regularization parameter
C) is tuned properly via cross validation in these experiments.
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Fig. 2. (a) Gamma distributions (b) Identical Gaussians (c) Different Gaussians

Table 1. Comparison of % classification accuracies on synthetic data sets: best in bold

face, second best emphasized

Data Distribution SVM + NDA LDA NDA SVM SVM + LDA

Gamma Distributions (a) 80.4 77.4 78 79.1 79.6

Identical Gaussians (b) 83.4 83.4 83.2 82.4 83.4

Different Gaussians (c) 81.9 78.9 79.6 81.2 81.2

4.1 Evaluation and Comparison on Synthetic and Real Data Sets

We have used here synthetic data and a collection of benchmark real data sets
to evaluate the SVM + NDA and to compare them to the other four methods in
term of classification accuracy. Since SVM + NDA is an extension to the classical
SVM and NDA, it makes no assumption on the data. Hence, the synthetic data
sets are generated with different distributions (e.g. Gamma distribution and
Gaussian distribution) to tease out the advantage of SVM + NDA over methods
like LDA or SVM + LDA whose performance depend on the underlying class
distributions. The first set of experiments are performed on three synthetic data
sets, each of which has two clusters with a total of N = 3000 points (1500
points per cluster), generated from Gamma distributions, identical Gaussians
and different Gaussians, respectively. The data sets are shown in Figure 2. 10-
fold cross validation is used on each data set. Table 1 illustrates the classification
accuracies on the synthetic data sets. In the second set of experiments, we have
compared the SVM + NDA to the LDA, NDA, SVM and SVM + LDA on
eight real data sets obtained from the Benchmark Repository used in [9]: Breast-
Cancer, Flare-Solar, German, Heart, Diabetes, Ringnorm, Splice, Thyroid.1. 100
partitions into test and training set (about 60%:40%) are generated for each data
set(see [9] for details). The results in Table 2 show the average classification
accuracy over these 100 runs. From Table 1, we can see that SVM + NDA
outperforms the other methods in terms of classification accuracy in all but one
case. Even in that case, it is equal to the best method. This strengthens our

1 The data sets can be obtained from http://www.first.gmd.de/ r̃aetsch/
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Table 2. Comparison of % classification accuracies and average computational times

(in seconds) on real data sets: best in bold face, second best emphasized

Data set SVM + NDA LDA NDA SVM SVM + LDA

Breast-Cancer 73.8 71.9 72 72.9 72.9

Flare-Solar 66.9 65.4 65 66.2 66.5

German 76.7 75.6 74.9 76.1 75.9

Heart 84.9 83 83.5 84 83.6

Diabetes 76.7 74.7 74.7 76.7 76.6

Ringnorm 75.9 75 75.6 75 74.9

Splice 84.2 82.9 83.3 83.8 83.2

Thyroid 90.6 87.7 89.4 88.6 89.2

Avg. time (s) 0.86 0.09 0.15 0.86 0.86

claim that the information on classification structure can be obtained from two
sources, namely the local information represented by the support vectors and the
partially global information represented by the normal vectors to the decision
boundary. As SVM + NDA combines these two sources, it results in the best
classification accuracy. In particular, we see that being an extension to SVM and
NDA, our method always yields better results than these two methods. In case of
identical Gaussians, we see that LDA and SVM + LDA perform equally to our
method. This is expected as LDA is supposed to give the best result possible in
case of identical Gaussians. As SVM + NDA is robust and free from underlying
assumptions, it can compete with LDA even when the assumptions are satisfied.

From Table 2, it is again obvious that SVM + NDA is superior to all these
methods. The inferior performance of NDA compared to LDA in some cases
explains the problem of choosing the optimal κ − NN ’s for all data points.
SVM + NDA solves this problem by using the support vectors and as a result,
outperforms NDA by a considerable margin.

Another interesting observation from these results is the comparison between
SVM + NDA and the SVM + LDA method [11]. We can see that the SVM +
LDA method comes as the “second best” in most of the cases. Even if SVM +
LDA combines the local and global information from SVM and LDA, there is a
dependency on LDA here. As a result this method is sensitive to the underlying
distributions. But in case of SVM + NDA, the support vectors and the normal
vectors to the decision boundary are obtained from SVM and NDA, both of
which are free from any underlying assumption. Therefore, as a result, SVM +
NDA outperforms SVM + LDA.

In terms of computational complexity, the classical SVM scales with O(N2),
where N is the number of data points [10]. As for LDA and NDA, the training
time scales with O(M3) (dominated by the inversion of the within-class scatter
matrix [1,2]), where M is the dimension of data points. In SVM + NDA, the
inversion of between-class scatter matrix is part of pre-processing and done only
once before training. Therefore, the computational complexity of our proposed
SVM + NDA method is on par with classical SVM. The last row of table 2
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is the training computational times in seconds. As we can see, the required
computational time is compatible with the complexity of each method.

4.2 Face Recognition Application

We have also compared the SVM + NDA to the other methods in context of face
recognition. This comparison has been carried out on the ORL face database [12]
and the Yale face database [3]. The ORL database consists of 400 frontal faces,
10 images each of 40 individuals with variations in pose, illumination, facial
expression and facial details. The Yale database consists of 165 images of 15
individuals. There are 11 images per subject, one per different facial expression
or configuration. For all these databases, Principal Component Analysis (PCA) is
used to project the images onto a reduced subspace. PCA is a standard technique
to get rid of redundant information present in patterns. To observe the result of
varying PCA dimension on different methods, we have repeated our experiment
with projecting all the images onto PCA subspace of 10, 20, 30, . . .100 dimensions
each. For each individual (class) of each face database, the number of samples
are randomly divided into two equal parts, and both parts are used for training
and testing in turns. The classification accuracy is computed as an average of
these two runs with one-against-all algorithm.

ORL Database Yale Database
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Fig. 3. Classification accuracy vs. PCA dimension for facial databases

From Figure 3, we can see that our proposed method again outperforms all
other methods irrespective of the reduced PCA dimension. We also see that LDA
and NDA do not perform well in case of high-dimensional data. However, being a
variation of classical SVM, SVM + NDA does not suffer from that problem and
as we can observe, results in better classification accuracy because of combining
all the classification information available through the support vectors and the
normal vectors to the decision boundary.
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5 Conclusion

We have presented the SVM + NDA classification model which incorporates clas-
sification information from two different sources, namely the local information
represented by classical SVM using the support vectors and the partially global
information represented by NDA using the normal vectors to the decision bound-
ary. SVM + NDA helps improve the choice of κ−NN ’s for NDA using the sup-
port vectors. Moreover, since our proposed model is based on SVM and NDA, it
is capable of dealing with hetroscedastic and non-normal data. It also resolves the
small sample size problem. We have also shown that SVM + NDA is a variation
of the classical SVM and can be implemented using the existing SVM programs,
which makes it more attractive for real world applications. Our experimental re-
sults demonstrate that the SVM + NDA is superior or at least competitive to
the LDA, NDA, SVM and the combined SVM and LDA in almost all the cases in
terms of classification accuracy. In case of face recognition, the proposed model
has provided the best results for the two data sets in case of all PCA dimensions.

In our future work, we intend to investigate extending SVM + NDA to incor-
porate non-linear decision boundaries. An extension in kernel space of SVM will
help to solve the problem of non-linearity and make this method more robust.
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Abstract. This paper describes a novel approach for incremental sub-

space learning which combines the best features of the evolving cluster-

ing method and the spectral clustering algorithm based on the graph

p-Laplacian. The evolving clustering method is employed to classify each

input sample into a set of spherically-shaped groups. Then, the spectral

clustering algorithm is used to unsupervisedly cluster this reference set,

resolving the shape of classes having non-zero covariance. The proposed

approach has been applied to the problem of visual landmark recogni-

tion, in a mobile robot navigation framework. Experimental results show

that the performance of the method is high in terms of error rate.

1 Introduction

Pattern recognition, data mining or time-series prediction are examples of real-
world applications where the complete set of training samples could not be
provided in advance when building a classifier. Besides, in many of these ap-
plications, samples are generally provided little by little and the properties of
the data source or the real scenario where they are acquired could be slightly
changed as time passes. Therefore, the learning of a system must be also con-
ducted sequentially in an incremental manner. On the other hand, training sam-
ples are provided in many cases only when the system does not correctly classify
patterns; hence the system is learned incrementally to improve the classification
performance. Incremental learning is primarily focused on processing the data in
a sequential way so that in the end the classifier is no worse than a hypothetical
classifier trained on the batch data [1].

In this paper, we describe an incremental classifier which can perform with-
out an a priori knowledge about the number and shape of the classes which
compound the feature space where samples will be represented. This approach
combines the evolving clustering method (ECM) [4] and the spectral clustering
algorithm based on the graph p-Laplacian [2] as two independent steps. ECM
is a distance-based clustering algorithm which includes the input feature vector
in the most suitable existing cluster, creating a new one if necessary. As other
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c© Springer-Verlag Berlin Heidelberg 2010

http://www.grupoisis.uma.es


138 A. Bandera and R. Marfil

approaches, it is capable of achieving this goal with no supervision nor previous
training. However, contrary to other clustering algorithms, it cannot optimize
a classification criterion because it does not memorize information about all
samples which were supplied to the classifier. On the other hand, the spectral
clustering algorithm is launched when a chunk of training samples has been pro-
cessed and a new cluster has been created. It mainly avoids to force the shape
of the final clusters to a predefined geometric form when there is another shape
in the sample density. The proposed classifier works with no previous training
process and is specially suitable to be used in applications where computational
resources must be minimized.

The remainder of this paper is organized as follows. Section 2 presents the
proposed method. Experimental results showing the application of the proposed
classifier to visual landmark recognition in a mobile robot framework and reveal-
ing the efficacy of the method are described in Section 3. The paper concludes
along with discussions and future work in Section 4.

2 Proposed Method

Briefly, the proposed classifier combines two different approaches. Thus, it firstly
accomplishes the ECM, a distance-based clustering algorithm. This algorithm
can classify the input feature vector into a set of groups or generate a new one
if it is necessary. Then, to determine the number and shape of the final clusters,
a second step is achieved. This second step of the hybrid approach employs the
spectral clustering algorithm based on the graph p-Laplacian. This algorithm
merges the data groups generated by the ECM and provides the final groups.
Therefore, the shape of these final data groups does not adopt a predefined
geometric form. One condition is imposed by this scheme: the ECM must perform
an over-classification of the parameter space, i.e. the number of obtained groups
at this stage must be greater than the real one. Next subsections briefly deal
with the two stages of the proposed method.

2.1 Evolving Clustering Method (ECM)

The ECM is an algorithm for dynamic clustering of an input stream of data [4],
where there is no predefined number of clusters. The prototypes are determined
such that the maximum distance between an input sample and the closest pro-
totype cannot be larger than a threshold value, T . After create a first group by
taking the first input pattern as the prototype x̄1 and setting to 0 the value
of the radius r1 of this group, the ECM conducts one of the following actions
according to its input:

– if the Euclidean distance between the closest prototype to the input sample,
dyx̄k , is lower than the current radius of this group rk, the sample y is
included in this group k. Neither a new group is created, nor any existing
group is updated;
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– if the Euclidean distance between the closest prototype to the input sample
is greater than the current radius of this group, then the algorithm will find
the group j such as

sj = dyx̄j + rj = min{si}np

i=0, (1)

where np is the number of prototypes. If sj is greater than 2 · T , then the
sample y does not belong to any existing group. A new group is created
and the input sample becomes its prototype x̄np+1 = y. The radius rnp+1

is set to 0, and the number of prototypes np is increased. Otherwise, the
sample y is included in the group j. This group is now updated by moving
its prototype x̄j and increasing its radius value rj . The updated radius, r

′
j

is set to sj/2, and the prototype x̄
′
j is located on the line that connects the

input sample y and the old prototype, at a distance from y equal to r
′
j .

It can be noted that the ECM only needs to store the prototype of every group
(centroid cluster analysis). Therefore, it is computationally cheap and does not
need to store all input samples. On the contrary, all input samples cannot be
used to redefine the set of data groups (reference set) when a new sample ar-
rives. Besides, the ECM tends to force observations into spherically-shaped data
groups. However, if a low threshold value is employed, then there will be a large
number of data groups and the group shapes will be all relatively small, but
the resulting data groups will also correctly map the densest part of the feature
space. It is interesting to note that the choice of a distance (instead of the clas-
sical Euclidean distance) plays an important role allowing to control this biased
effect [5].

2.2 Spectral Clustering Based on the Graph p-Laplacian

Given the reference set obtained by the ECM and a similarity function, which
should be chosen depending on the domain the data comes on, the data can
be transformed into a weighted, undirected graph G. In this graph, vertices are
defined by the cluster prototypes provided by the ECM, and the similarity of
pairs of prototypes are encoded by positive edge weights. With respect to the
edges, there are different strategies to define them, such as the ε-neighbourhood
graph or the k-nearest neighbour graph [3]. Then, the aim is to divide this graph
into subgraphs such that vertices in the same group are similar and vertices in
different groups are dissimilar to each other. To achieve that, our approach uses
a spectral clustering algorithm. The spectral clustering techniques look for a
partition of the graph such that the edges between different groups have a very
low weight and the edges within a group have high weight. Besides, the groups
should be balanced in the sense that the size of the groups should not differ too
much [2].

Although the spectral clustering can divide the graph employing the infor-
mation provided by the eigenvectors and eigenvalues of its adjacency matrix,
it usually works with the Laplacian of the graph adjacency (pairwise similar-
ity) matrix. Let G = (N, E) be an undirected, weighted graph with node set
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Fig. 1. a) Set of 125 bidimensional samples, b) classification of the set a) using the

ECM with a high T value (two data groups), c) classification of the set a) using the

ECM with a low T value (20 data groups), and d) classification of the set a) using the

proposed hybrid approach

N = {n1, ...nn} and where each edge between two vertices ni and nj has associ-
ated a non-negative weight wij ≥ 0. The weighted adjacency matrix or similarity
matrix of the graph G is the matrix W = (wij)i,j=1,...n. Values wij equal to zero
mean that vertices ni and nj are not connected. As the graph is undirected, this
matrix is symmetric (wij = wji). The degree of a vertex ni ∈ N is defined as

di =
n∑

j=1

wij . (2)

Then, the degree matrix D is defined as the diagonal matrix with the degrees
{di}n

i=1 on the diagonal. Given a subset A ⊂ N , |A| denotes the number of
vertices in A and vol(A) is a measure of the size of A defined by the weights of
its edges

vol(A) =
∑

ni∈A

di. (3)

A subset A ⊂ N is connected if any two vertices ni and nj in A can be joined
by a path {ni...nm...nj} such that all intermediate vertices nm also are in A.
The subsets A1, ...Ak are a partition of the graph G if (Ai ∩ Aj)i�=j = ∅ and
A1 ∪ ... ∪Ak = N .

The degree and weighted adjacency matrices can be both combined in a matrix
which will resume the graph properties. The unnormalized Laplacian matrix is
defined as L = D −W , and it presents interesting characteristics [6]:
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1. it has only real eigenvalues
2. it is positive semidefinite
3. the smallest eigenvalue of L is λ1=0, with corresponding eigenvector equal

to (1, 1, 1...1)T . The multiplicity of this eigenvalue 0 determines the number
of connected components of L.

In the literature, there are different variants of graph Laplacians. Thus, in order
to normalize the matrix with respect to the number of graph nodes, Chung [8]
provides one definition of the normalized Laplacian1 as

Lnorm = D−1/2LD−1/2. (4)

The normalized Laplacian is closely related to the unnormalized one. Thus, if x
is an eigenvector of L, then D−1/2x is an eigenvector of Lnorm. However, the nor-
malization does not imply that the bounds obtained for Lnorm can be obtained
by dividing the eigenvalues of L by the number of graph nodes. Although the two
spectra share some global similarities, their properties are different. Chung [8]
points out that the eigenvalues of Lnorm relate well to graph invariants in ways
that eigenvalues of L have failed to do. In any case, the number of eigenvalues
equal to 0 will be also equal to the number of connected components of the
graph.

Then, if λ1 ≤ λ2 ≤ ... ≤ λn are the eigenvalues of L or Lnorm in increasing
order and repeated according to their multiplicity, then λ1 will be equal to
0 and λ2 will be greater than 0 if and only if the graph is connected. The
second smallest Laplacian eigenvalue λ2 of graphs is one of the most important
information contained in the spectrum of a graph [6]. It is also known as the
Fiedler value [7], and it has been shown that if this value is small, partitioning the
graph into two disjoint subsets A1 and A2 based on the associated eigenvector
will lead to a good ratio cut [9]. The ratio cut computes the degree of dissimilarity
of a graph partition, and it is defined as

ratioCut(A1, A2...Ak) :=
k∑

i=1

cut(Ai, Āi)
|Ai|

, (5)

where cut(Ai, Aj) =
∑

n∈Ai,m∈Aj
wnm. Thus, this measure takes into account

the total weight of the edges going accross the partitioned parts and the number
of vertices of the subsets. The aim is to find balancing partitions, avoiding to
cut small subsets of isolated vertices in the graph [7]. In a similar way, the ratio
Cheeger cut is defined as

CheegerCut(A, Ā) :=
cut(A, Ā)

min{|A|, |Ā|} . (6)

Both strategies to obtain balanced partitions can be also employed using their
corresponding normalized versions, where the term |A| is changed by vol(A). As
1 The normalized graph Laplacian is typically defined in two distinct ways: the sym-

metric matrix (Lsym := D−1/2LD−1/2) and the random walk (Lrw := D−1L) [3].
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main disadvantage, minimizing these criterion constitutes a NP-hard problem.
Spectral clustering provide efficient and robust techniques to approximate the
cut of a graph.

In a recent work, Buhler and Hein [2] propose a new generalized version of
spectral clustering based on the second eigenvector of the graph p-Laplacian, a
nonlinear generalization of the graph Laplacian. The p-Laplacian of a function
f on the set of vertices N which can be defined by∑

nj∈N,wij≥0

wij(f(nj)− f(ni))[p−1] (7)

where the symbol a[b] denotes a ’power’ function that preserves the sign of a
(a[b] = sign(a) · |a|b). It can be noted that this p-spectral clustering considers
the algorithms based on the previously described Laplacian matrices as special
cases for p equal to 2.

Using the Cheeger cut criterion to measure the partition goodness, the normal-
ized generalized spectral clustering algorithm provides a superior performance
for p → 1 when compared to standard spectral clustering algorithm [2]. How-
ever, there does not exist a multi-partition criterion of the Cheeger cut, which is
defined for a bipartition (see Eq. (6)). Hence, the p-spectral clustering algorithm
will use a multi-partition version of the ratio cut or the normalized cut [7].

3 Numerical Results and Application to Visual Landmark
Recognition

In the mobile robotics community, there exists a recent interest for using object
detection and recognition algorithms to provide natural landmarks for the sake of
simultaneous robot localization and environment mapping. If a landmark can be
defined as a distinct environment feature that the robot can recognize reliably
from its sensor observations, then visual landmarks can be associated to 3D
surface patches which are significantly different from its surroundings (salient
image regions). In our case, we have developed a visual landmark detection
approach which has been recently published [10]. This approach looks for image
boundaries which delimitate high-contrasted regions of data-dependent shape.
In order to describe each landmark, the SIFT descriptor has been extended to
characterize the image region defined by an ellipse which have the same first and
second moments as the originally shaped region. The orientation of this region is
defined by the ellipse’s major axis, but it is always assumed that this axis is drawn
from top to bottom. That is, we are using a rotation-variant descriptor. Besides,
the image region content is blurred and resized to obtain a final descriptor of
(4× 4)× 8 = 128 components, like the original SIFT descriptor [11].

The experimental evaluation has been conducted on a Pioneer 2AT platform
from ActivMedia. The image acquisition system used in the experiments employs
a STH-MDCS stereoscopic camera from Videre Design. This is a compact, low-
power colour digital stereo head with an IEEE 1394 digital interface. It consists
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of two 1.3 megapixel, progressive scan CMOS imagers mounted in a rigid body.
The camera was mounted at the front and top of the vehicle at a constant
orientation, looking forward. Images were restricted to 320× 240 pixels.

In the trial illustrated in Fig. 2, a set of 528 images was acquired. Although
visual landmarks were unsupervisedly detected, they were manually labelled to
estimate error rates. In this sense, it must be noted that although the employed
approach allows to detect stable landmarks, all of them are not associated to
labelled items. Thus, from the total set of 2670 detected landmarks, we only
labelled a set of 1237 landmarks. This set of labelled visual landmarks was
provided to the incremental classifier in the same order that they were acquired.
All training samples were presented only once to learn. Fig. 2 shows the map
with some of the detected visual landmarks. A map built previously using a
laser scanner and Mapper3 software from ActivMedia Robotics, whose process
is based on offline scanmatching techniques applied over the complete set of
scans, is shown at Fig. 2a. The trajectory followed by the robot in this trial is
also shown in this figure. Fig. 2b illustrates a 3D version of the environment.
Landmark locations at this figure are only roughly estimated for illustration
purposes.

When a feature vector is provided to the classifier, the ECM tries to include it
in a previously defined group, updating the corresponding prototype and cluster
radius, but it creates a new one if this process fails. The Euclidean distance has
been employed to define the similarity between input feature vectors. As it has
been mentioned above, the ECM threshold should be small enough to guarantee
over-segmentation. It must be also noted that if this threshold is too small no
clusters will be formed and this reduces to spectral clustering on the original
data points, a process which will consume large computational resources. Ex-
perimental tests have been conducted varying this parameter, and a final value
of T equal to 2.0 has been used. When a new cluster is created by the ECM
approach, a k-nearest neighbour algorithm was employed to obtain the weighted
graph associated to the reference set of prototypes (k=3). The similarity be-
tween two vertices is defined by means of the Euclidean distance. Then, the
graph is partitioned using the p-spectral clustering. The partitioning is itera-
tively conducted, and the number of classes is determined by thresholding the
last obtained second eigenvalue. When this value is under a given threshold, the
partitioning is stopped [3]. Empirical tests have been also used to fix this value
to 0.25. With respect to the p value, this test provides a final error rate of 12.0
% when p is equal to 2. This error rate is reduced to 7.8 % when a p value equal
to 1.2 is employed (see Fig. 3). It must be noted that if a batch classification is
conducted by executing the p-spectral clustering over the whole set of patterns,
the final error rate is reduced to 6.7 % (p=1.2).

Finally, once the database of visual landmarks is learned, the recognition sys-
tem was tested addressing several unsupervised trials. In these tests, a confidence
value was employed to determine how confident a recently recognized landmark
is that it can match to the closest landmark stored in the database. Thresholding
this value, the system is able to classify a landmark as an ’unrecognized’ one.
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Fig. 2. a) Environment layout; and b) some detected visual landmarks (see text for

details)

The confidence value C is defined as

C = min{Ci}np

i=0 = min{
(

1− np
||y − x̄i||2∑np

j=0 ||y − x̄j ||2

)
}np

i=0, (8)

where Ci displays the similarity of an input sample y with the i prototype stored
in the database, x̄i. An input sample y is considered to be classified as ’unrec-
ognized’ if the obtained confidence value C is under a fixed threshold, which has
been empirically set to 0.2 in our tests. Fig. 4 shows several images acquired in
these unsupervised trials. Landmarks and labels, both of them unsupervisedly
provided by the system, are overimposed on the images. It can be noted the
presence of ’unrecognized’ detected landmarks.
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Fig. 3. Results of p-spectral clustering using the normalized ratio cut (patterns were

always provided in the same order and all thresholds are fixed except the p value

Fig. 4. a-c) Recognized visual landmarks in unsupervisedly performed trials (provided

labels are overimposed on the images)

4 Conclusions

This paper has described an incremental classifier which performs two steps.
Firstly, it employs a centroid-based, evolving clustering method to reduce the
size of the set of stored samples and to obtain a tesselation which maps the
densest part of the sample space. The main advantage of this approach is that
only cluster prototypes are stored, reducing the storage requirements. This step
is able to learn from each pattern without revisiting it. Besides, the time em-
ployed to process each pattern do not depend on the number of patterns pro-
cessed in the past. However, if only the mean and radius are stored, the ECM
is very conditioned to look for spherically-shaped clusters. The geometric form
of the obtained clusters can be changed if other parameters are employed and
updated, but it will be always limited by the chosen shape. The second step of
this classifier employs a generalized version of spectral clustering using the graph
p-Laplacian [2]. This algorithm divides the reference set by consecutive splitting
of clusters, recovering the structure within any elongated cluster.
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In a mobile robot navigation framework, this classifier has been tested into a
visual landmark recognition system. Experimental results show that the system
works correctly although it has no information about the nature of the input
patterns. The classifier is specially suitable to deal with applications where a
huge number of samples are on-line acquired, and it is necessary to classify them
in an unsupervised manner. As main disadvantage, the approach employs a set of
thresholds whose values have been empirically set. It is also neccesary to divide
the whole reference set into clusters after the ECM creates a new cluster. This
issue must be changed and future work will be focused on applying the spectral
clustering only to the part of the graph affected by the inclusion of this new
vertex.
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Abstract. Textures have an intrinsic multiresolution property due to their  
varying texel size. This suggests using multiresolution techniques in texture 
analysis. Recently linear scale space techniques along with multiple classifier 
systems have been proposed as an effective approach in texture classification 
especially at small sample sizes. However, linear scale space blurs and dislo-
cates conceptually meaningful structures irrespective of the type of structures 
exist. To address these problems, we utilize nonlinear scale space by which im-
portant geometrical structures are preserved throughout the scale space con-
struction. This adds to the discrimination power of the classification system at 
higher scales. We evaluate the effectiveness of this approach for texture classi-
fication in Brodatz dataset using multiple classifier systems and learning curves. 
Compared with the linear scale space, we obtain higher accuracy in texture 
classification utilizing the nonlinear scale space.  

Keywords: Multiscale, Nonlinear scale space, texture, multiple classifier  
systems. 

1   Introduction 

Texture provides important information in various fields of image analysis and  
computer vision. It has been used in many different problems including texture classi-
fication, texture segmentation, texture synthesis, material recognition, 3D shape  
reconstruction, color-texture analysis, appearance modeling, , and indexing [1-4].  

As texture is a complicated phenomenon, there is no definition that is agreed upon 
by the researchers in the field [2, 3]. This is one of the reasons that there are various 
texture descriptors in the literature, each of which tries to model one or several prop-
erties of texture depending on the application in hand. 

However, most textures show multiresolution property. In the recent years, multi-
resolution techniques become prevalent in texture analysis due to this intrinsic multis-
cale nature of textures. Some of the most well-known multiresolution techniques on 
texture analysis in the literature are: multiresolution histograms [4] including locally 
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orderless images [5], multiresolution local binary patterns [6], multiresolution Markov 
random fields [7], wavelets [8], Gabor filters [8, 9], multiresolution fractal feature 
vectors [10], texton based approaches especially those based on MR8 (maximum 
response 8) filter banks [11], and techniques based on scale space theory [5, 12]. 

Despite the success of multiresolution techniques in texture analysis, these tech-
niques suffer from high dimensional feature space. This is due to the concatenation of 
the feature subsets obtained from different scales to be submitted to a classifier. This 
high dimensional feature space causes that the classifier suffers from the 'curse of 
dimensionality' [13], i.e., many data samples are required to train the classifier with a 
reasonable performance. This drawback is not usually revealed in the literature as the 
results are reported for sufficiently large training set size.  

Recently, an alternative approach based on multiple classifier systems (MCS) is 
proposed that avoids this problem by submitting each feature subset (obtained at a 
resolution) to a classifier, which is called a base classifiers (BC). Hence, instead of 
fusion of feature subsets, the decisions made by these BCs are combined. The im-
provement in the results is especially significant at small sample sizes, which is 
shown by using learning curves [14]. 

Linear scale space is used in [14] as multiresolution technique. However, linear 
scale space suffers from two main restrictions: first, it blurs all the structures in the 
image without considering their geometrical meaning. This may destroy meaningful 
structures especially at higher scales. Second, it dislocates the structures in the image, 
which is due to homogeneous diffusion of the image at all directions irrespective of 
the structures exist. The first issue is more important in texture classification as we 
would like to use the information at higher scales to improve the performance of the 
classification system [14]; vanishing the structures at higher scales may limit this 
goal.  

We propose using nonlinear scale space here to preserve the structures at higher 
scales and show that this improves the performance of the classification system in 
comparison to linear scale space, especially at small sample sizes. 

2   Scale Space in Texture Classification  

In this section, the theoretical background needed for this research is explained. Spe-
cifically linear versus nonlinear scale space theory, feature extraction, and multiple 
classifier systems in the context of multiresolution texture classification are discussed. 

2.1   Nonlinear versus Linear Scale Space  

A linear scale-space representation of an image can be derived from diffusion equa-
tion as given in (1) with constant diffusivity  and (time-like) scale variable   . . (1)

Using convolution integral, this diffusion equation corresponds to the Gaussian 
smoothing of the original image  with varying standard deviations. The variance of  
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the Gaussian kernel is, therefore, proportional to the scale parameter (σ2 = 2s).  In 
linear diffusion equation, the intensity of each pixel is evolved by the divergence of 
the radial spatial concentration gradients ( ) of the surrounding pixels.  

Any multiscale signal processing approach that uses linear (Gaussian) scale space 
filtering suffers from two drawbacks. First, Gaussian smoothing is an isotropic diffu-
sion filtering in which two (or more) regions of different structures might merge as 
the scale increases. In texture recognition, this side effect may result in blurring of 
conceptually meaningful structures such as parallel stripes shown in Fig. 1.  Conse-
quently, the extracted features at higher scales are less informative and reliable. 
Second, due to the dislocation of important structures such as edges, any feature  
extractor has dislocation problem. 

To avoid undesirable blurring and dislocation of important structures (e.g., edges) 
in linear scale space filtering, it is proposed in [15] to control the diffusivity by incor-
porating the evolving image as a feedback in the smoothing process as follows: | |.  . (2)

In other words, image gradient is used as a measure of edge map. Consequently, an 
edge-stopping function, like what is given in (3), controls the diffusivity at each direc-
tion in this anisotropic filtering scheme  | | | |/ . (3)

Stopping the diffusion at the direction of gradients higher than a threshold (k) pre-
vents the sharing of intensity between two (or more) different regions in the image 
and, hence, avoids their fusion. In this way, as the scale increases, the homogeneous 
regions smooth more while different regions are still separated.  

 

Fig. 1. Linear (top row) versus nonlinear (bottom row) scale space on texture D11 of Brodatz 
album (left  texture). Note that as the scale increases (from left to right), linear scale space fails 
to preserve small slant patterns while nonlinear scale space can successfully do it. 

 

Linear Scale Space

Nonlinear Scale Space
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2.2   Multiscale Feature Spaces 

Multiscale feature subsets are obtained by computing the N-jet of derivatives up to the 
second order at various scales on patches. This means that in (2), I is a patch whose 
derivative is computed at scale . Hence, features are computed at each scale and 
derivative to generate n-dimensional vectors , … , , 1, … ,

, where ns and nd are the number of scales and derivatives respectively. This gene-
rates  feature subsets at various scales/derivatives.  

These feature subsets can be composed into a single feature space , … , , which is called distinct pattern representation (DPR) [16].  

2.3   Feature Extraction 

As the pixels in each patch are used as the features, the dimensionality of the feature 
subsets (n) depends on the patch size. As discussed in [14], it is beneficial to the per-
formance of the classification system to increase the patch size at higher scales. The 
main reason is that at higher scales the coarser structures are emphasized and hence, 
they should be looked at through larger windows. This increases the dimensionality of 
feature subsets at higher scales. There are various feature reduction techniques in the 
literature among which principal component analysis (PCA) is adopted in this re-
search. It is shown in [17] that PCA can have an adaptive feature extraction effect on 
multiscale texture classification. That is, at higher scales where larger patches are 
used and, thus, the dimensionality of feature subsets is higher, PCA reduces the di-
mensionality more than lower scales. The reason is that due to fewer details at higher 
scales, fewer components are needed to preserve certain fraction of variance of the 
original space.  

By applying PCA to original DPR, a new DPR y , … ,  is obtained in 
an uncorrelated space.  

2.4   Multiple Classifier Systems  

After computation of the DPR in reduced feature space, i.e., y, there are two main 
approaches for submitting the DPR to the classification system. The common tech-
nique (see, for example, [5, 8]) is to fuse the feature subsets and submit the resulting 
feature space  to one classifier1 : Ω, where Ω , … ,  is 
the set of class labels for textures. The fusion of feature subsets generates a high di-
mensional feature space that can degrade the performance of the classifier  due to 
the 'curse of dimensionality' [13]. This problem is usually solved in the literature by 
severe dimensionality reduction of feature subsets, e.g., by computation of moments 
of histogram [5] or estimation of energy at the output of filter banks [8].  

An alternative solution is to submit the DPR to an ensemble of classifiers [14]: 
 

                                                           
1 For simplicity of the notations, here we assume that each feature subset in reduced space has a 

dimensionality of k and that there are m feature subsets. However, as mentioned in subsection 
2.4, due to adaptive feature reduction effect of PCA, the dimensionality of feature subsets are 
not necessarily the same. 
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, … , , : Ω      4  

where, : Ω, 1, … , , is the base classifier (BC) trained on each feature 
subset , i 1, … , m. The decisions made by these BCs are subsequently fused 
to yield a single decision on the class of the pattern submitted for classification. 
Hence, the problem of finding a classifier : Ω is converted into finding an 
aggregation function  for combining the outputs of the BCs such that  

The outputs of the BCs make a decision matrix, which is also called decision pro-
file (DP) as given in (5) 

 

 

 

 

 

(5) 

 

In (5), each row is the output of one BC and the DP is divided to some submatrices to 
represent the different derivatives at multiple scales. Here, we assume that the outputs 
of the BCs are continuous values. That is, each base classifier  in the ensemble 
generates a c-dimensional vector , , … , , 0, 1 .   

The outputs of the BCs can be combined in one stage. However, in multiscale 
analysis, it makes sense to group the different derivatives of the same scale in a first 
stage (as shown in (5) for scale S1) and then different scales in a second stage to see 
the effect of each scale on the overall performance of the system. The structure of the 
proposed two-level classification system is shown in Fig. 2 and can be formulated as: 

 (6) 

where  is the first aggregation function and the vector  is defined 
as:       , , , , … , , , 1, … ,  . (7) 

3   Experimental Setup 

To evaluate the performance of the system on the classification of small texture 
patches, we perform some experiments on supervised classification of several test 
images from Brodatz album. These test images are shown in Fig. 3. All textures used 
are homogeneous and have a size of 640 × 640 with 8 bit/pixel intensity resolution.   
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Data Preparation and Preprocessing. There is only one texture image per class in 
Brodatz album. Hence, to guarantee disjoint training and test sets, each image is  
divided into two halves. The upper and lower halves are used for the extraction of 
training and test patches, respectively. The patches of 32 × 32 pixels are then syste-
matically taken from top left to bottom right with some overlap to extract 1769 
patches in total from each half. In order to make sure that the classification is based 
on the texture type not the variations in average intensity or contrast, the patches 
should be indiscriminable to their mean and variance. To this end, DC cancellation 
and variance normalization are performed on each patch. 

Computation of Multiscale Patches. The N-jet of derivatives up to the second order 
is used for the computation of multiscale patches. For nonlinear scale space, we set 
experimentally the edge threshold k = 10 and select three scales evenly distributed in 
250 iterations of nonlinear diffusion equation (2). This iteration is performed with 
scale difference ds = 0.25 and central finite difference operation. Similar to what is 
reported in [14], I (zeroth order derivative), Ix, Iy, Ixx, Ixy, and Iyy are computed at mul-
tiple scales for each patch.  

Construction of Training and Test Sets. As described in subsection 2.4 and also 
shown in [14], increasing the patch size at higher scales is beneficial to the perfor-
mance of the classification system. Hence after preprocessing and computing the 
multiscale patches, the patches of 18 × 18, 24 × 24, and 30 × 30 are taken from the 
central part of multiscale patches at scales S1, S2, and S3 respectively.  

Feature Extraction. Principal component analysis (PCA) is adopted as the feature 
extraction technique. PCA is computed over all classes in each scale/derivative sepa-
rately and 95% of original variance is retained in uncorrelated space. As discussed in 
2.3, fewer components are needed to retain this percentage of variance at higher 
scales due to fewer details available at these scales. 

Multiple Classifier System. A two-stage parallel combined classifier with the struc-
ture shown in Fig. 2 is used in the experiments. Quadratic discriminant classifier 
(QDC) with regularization at scale S1 performed the best among the base classifiers 
(BCs) tested and hence adopted in our experiments. Regularization at scale S1 is re-
quired because the dimensionality of feature subsets at this scale (even after using 
PCA) is still high and this degrades the performance of the BC at small sample sizes. 
The mean combiner is used at both stages as it consistently shows good performance 
comparing to other type of combiners over different sample sizes. 

Evaluation. One of the main shortcomings of the papers in multiresolution texture 
classification is reporting the performance of the system at only a single (usually 
large) sample size. This keeps the performance of the algorithm in small training set 
sizes unrevealed. To overcome this problem, we use the learning curves to show the 
classification error of patches at various sample sizes from 10 to 1500. The experi-
ments are repeated 5 times on different randomized patches in training and test sets 
and averaged results are reported. The test set size is fixed at 900. 
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Fig. 2. The structure of proposed two-stage multiple classifier system. In first stage, different 
derivatives at the same scale are combined. In second stage, different scales are combined.  

 

Fig. 3. 4-class (D4, D9, D19, and D57) and 16-class (D3, D4, D5, D6, D9, D21, D24, D29, 
D32, D33, D54, D55, D57, D68, D77, and D84) problems of Brodatz used in the experiments 

4   Results 

In this section, we present the results of texture classification using nonlinear scale 
space and two-stage multiple classifier systems. The performance is compared with 
linear scale space to show how using nonlinear scale space helps to improve the re-
sults, especially at smaller sample sizes. 

The results for 4-class and 16-class problems using nonlinear and linear scale space 
are shown in left and right graphs of Fig. 4, respectively. The top graphs are for 4-
class and bottom graphs are for 16-class problems of Brodatz dataset. In each graph, 
the thick curve displays the overall performance of the classification system, i.e., the 
output of the second stage in the proposed structure shown in Fig. 2. Thinner curves 
are the intermediate results, i.e., the outputs of the first stage of classification in Fig. 
2, which are the results of combining different derivatives at the same scale.   
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Comparing the overall performance of left (nonlinear SS) and right (linear SS) 
graphs in Fig. 4 clearly shows the advantage of using nonlinear over linear scale 
space. The improvement is especially important at small sample sizes and could be 
due to this phenomenon that nonlinear SS preserves the structures at higher scale and 
this adds to the discriminative power of base classifiers at these scales. As can be seen 
from the graphs in Fig. 4, the performance of combined S1 and combined S2 are im-
proved in nonlinear SS comparing to linear one. The overall performance is subse-
quently improved. 

To verify the superiority of combined classifiers over combined feature space 
(CFS), which is the common technique in the literature, we here compare these two 
techniques on 4-class problem of Brodatz. Fig. 5 displays these results using CFS. 
Here, the feature subsets from different scales and derivatives are concatenated and 
after feature reduction, the combined feature space is submitted to a single QDC with 
the same regularization parameters as the BCs in Fig. 2. As can be seen from compar-
ing Fig. 5 and top right graph of Fig. 4, high dimensional feature space of CFS, causes 
that the single classifier suffers from the 'curse of dimensionality' and its performance 
is significantly degraded especially at smaller sample sizes. If there are many data 
samples for training, we expect that CFS performs asymptotically as good as MCS. 
However, in this example this will happen for more than 1500 data samples which is 
the maximum training set size used in our experiments.  

 

Fig. 4. Learning curves for the classification of 4-class (top row) and 16-class (bottom row) 
problems of Brodatz using nonlinear (left) and linear (right) scale space texture classification 
system with the structure proposed in Fig. 2 
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Fig. 5. Learning curves for the classification of 4-class problem of Brodatz using combined 
feature space (CFS) technique. These curves should be compared with the ones on top right 
graph of Fig. 4 which are the results for the same problem using multiple classifier systems. 

5   Discussion and Conclusion 

In this paper nonlinear scale space along with multiple classifier systems are proposed 
for texture classification. This is to address the problem of linear scale space in blur-
ring and dislocating the important texture structures. Consequently, we obtained im-
provement in classification of Brodatz texture dataset. 

It is shown using learning curves and multiple classifier systems that nonlinear 
scale space can improve the performance of texture classification system especially at 
small sample sizes. This is due to more discriminative power available at higher 
scales of nonlinear scale space comparing to linear one. The improvement of perfor-
mance at small training set size is important in applications where data acquisition is 
cumbersome or costly and the number of data samples for training the texture classifi-
cation system is limited. This is, for example, the case in medical applications such as 
the diagnosis of lung diseases in high resolution CT [12] or liver diseases in B-scan 
images of ultrasound [10].  

It is also shown that multiple classifier systems improve the performance of texture 
classification system based on multiresolution techniques comparing to combined 
feature space.  
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Abstract. Features for recognition of affinely distorted objects are of

great demand. The affine moment invariants can be generated by a few

methods, namely the graph method, the tensor method and the direct

solution of the Cayley-Aronhold differential equation. The proof of their

equivalence is complicated; it can be derived from the Gurevich’s proof

for affine tensor invariants. The theme of this paper is this derivation.

1 Introduction

Recognition of objects on images is an important part of many image process-
ing applications. The images are often geometrically distorted and derivation of
features invariant to such a distortion is of great demand. The invariants with re-
spect to affine transform are often used, mostly as approximation of a projective
distortion. The affine invariants can be computed from various measurements
of the image, e.g. as point invariants, differential invariants, Fourier descriptors,
etc. The invariants computed from moments play important role among them.

The affine moment invariants can be derived by a few ways. Recently, approx-
imately from beginning of 90’s, they are generated automatically, by a computer.
There are two groups of methods for this generation, the graph method [1] and
computationally equivalent tensor method [2] on one hand and direct solution
of the Cayley–Aronhold differential equation [3] on the other hand. The graph
method is easier to implement, but with worse computing complexity, while the
direct solution of the equation is faster, but less numerically stable.

It is natural to ask the question whether or not all the invariants generated by
the graph method are equivalent to that found by means of the Cayley-Aronhold
equation, and vice versa. We have used invariants from both methods in pattern
recognition for many years and have not found any inequivalence between them,
so, the positive answer is likely, but precise proof is difficult. Both the book [2]
with the tensor method and the book [4] with a survey of both methods reference
only to the Gurevich’s proof from [5] (Russian edition [6]) that can be used for
derivation of our proof. This derivation is theme of this paper.
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2 Basic Terms

Affine transformation can be expressed as

x̂ = q1
1x + q1

2y + q1
3

ŷ = q2
1x + q2

2y + q2
3 ,

(1)

its Jacobian is J = q1
1q

2
2 − q1

2q
2
1 . The geometric moment of the order p + q of an

image f(x, y) is defined

mpq =

∞∫
−∞

∞∫
−∞

xpyqf(x, y) dx dy. (2)

2.1 Graph Method

The affine moment invariant can be computed as

I(f) =

∞∫
−∞

· · ·
∞∫

−∞

r∏
k,j=1

C
nkj

kj ·
r∏

i=1

f(xi, yi)dxidyi, (3)

where Ckj = xkyj − xjyk is the oriented double area of the triangle, whose
vertices are (xk, yk), (xj , yj), and (0, 0) and nkj are some non-negative integers.
The number w =

∑
k,j

nkj is called the weight of the invariant and r is called

the degree of the invariant. The maximum order s of moments of which the
invariant is composed is called the order of the invariant. Another important
characteristic of the invariant is its structure, it is defined by an integer vector
s = (k2, k3, . . . , ks), where kj is the total number of moments of the jth order
contained in each term of the invariant.

After an affine transform (we consider no translation) it holds Ĉkj = J · Ckj ,
which means that Ckj is a relative affine invariant. The functional (3) can be
normalized to translation and scaling to be invariant to the general affine trans-
form. Each such an invariant can be represented by a connected graph, where
each point (xk, yk) corresponds to one node and each cross-product Ckj corre-
sponds to one edge of the graph. If nkj ≥ 1, the respective term C

nkj

kj corresponds
to nkj edges connecting kth and jth nodes. The problem of derivation of the in-
variants up to the given weight w is equivalent to generating all connected graphs
with at least two nodes and at most w edges.

2.2 Tensor Method

The generation of the affine moment invariants can be expressed in terms of
tensors. The moments themselves do not behave under affine transform like
tensors, but we can define a moment tensor [7]

M i1i2···ir =

∞∫
−∞

∞∫
−∞

xi1xi2 · · ·xirf(x1, x2)dx1dx2, (4)
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where x1 = x and x2 = y. If p indices equal 1 and q indices equal 2, then
M i1i2···ir = mpq. The behavior of the moment tensor under an affine transform

M̂ i1i2···ir = |J |−1qi1
α1

qi2
α2
· · · qir

αr
Mα1α2···αr ,

i1, i2, . . . , ir, α1, α2, . . . , αr = 1, 2;
(5)

i.e. the moment tensor is a relative contravariant tensor with the weight g =
−1 (in tensor calculus, the affine transform is understood inversely, pi

α are the
coefficients of the direct transform, qi

α are that of the inverse transform, J =
p1
1p

2
2 − p1

2p
2
1 is its Jacobian).

The covariant unit polyvector εi1i2···in is a skew-symmetric tensor over all in-
dices and ε12···n = 1. The term skew-symmetric means that the tensor component
changes its sign and preserves its absolute value when interchanging two indices.
In two dimensions, it means that ε12 = 1, ε21 = −1, ε11 = 0 and ε22 = 0. The
contravariant unit polyvector (in two dimensions εi1i2) has similar properties
except that it is multiplied as contravariant tensor, e.g.

εi1i2ε
i1i2 = 2. (6)

If we multiply the proper number of moment tensors and unit polyvectors so
that the number of upper indices at the moment tensors equals the number of
lower indices at polyvectors, we obtain a real-valued relative affine invariant, e.g.

M ijMklmMnopεikεjnεloεmp =
= 2(m20(m21m03 −m2

12)−m11(m30m03 −m21m12) + m02(m30m12 −m2
21)).

(7)
This method is analogous to the graph method. Each moment tensor corresponds
to a node of the graph and each unit polyvector corresponds to an edge. The
indices indicate, which edge connects which nodes. The graph corresponding to
the invariant (7) is on Fig. 1.

Fig. 1. The graph corresponding to the invariant from (7) and (8)

This invariant can be generated by the graph method as
∞∫

−∞
· · ·

∞∫
−∞

C12C13C
2
23f(x1, y1)f(x2, y2)f(x3, y3)dx1dy1dx2dy2dx3dy3. (8)
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2.3 Solution of the Cayley-Aronhold Equation

The affine transformation (1) can be decomposed into horizontal and verti-
cal translation, scaling, stretching, horizontal and vertical skewing and possible
mirror reflection. Each of these transformations imposes one constraint on the
invariants.

The invariance to translation and scaling is provided by the same way in all
the methods. We use central moments for translation invariance

μpq =

∞∫
−∞

∞∫
−∞

(x− xc)p(y − yc)qf(x, y) dx dy, (9)

where xc = m10/m00, yc = m01/m00 are the coordinates of the object centroid.
The normalization to scaling can be assured by using scale-normalized moments

νpq =
μpq

μ
((p+q)/2+1)
00

. (10)

The invariants are supposed to have a form of a linear combination of moment
products

I =
nt∑

j=1

κj

r∏
k=1

νpjk,qjk
, (11)

where nt is the number of terms of the invariant. The invariance to stretching
can be achieved by using only that products of moments, where the sum of first
indices (labeled as p) equals the sum of second indices (labeled as q)

∀j = 1, . . . , nt :
r∑

k=1

pjk =
r∑

k=1

qjk = w. (12)

From the horizontal skew constraint we can derive the Cayley–Aronhold differ-
ential equation ∑

p

∑
q

pνp−1,q+1
∂I

∂νpq
= 0. (13)

The Cayley–Aronhold differential equation leads to a solution of a system of
linear equations for the unknown coefficients κj of the invariant.

3 Relation between the Invariants from Both Methods

We have generated two feature sets, one from the graph method, the other
as a solution of the Cayley–Aronhold differential equation. The features are
homogeneous polynomials of the moments of the same degree, so, the features
from one set are linear combinations of the features from the other set and there
is the question: are both sets equivalent? If we have some weight limit, then we
have finite number of invariants from the graph method, while the number of
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invariants from the solution of the equations is infinite (each linear combination
of the basic solution is also a solution).

All affine moment invariants must satisfy the Cayley–Aronhold differential
equation, i.e. if the features generated by the graph method are really affine
invariants (and they are), they can be obtained as a solution of the equation.
The inverse statement is not so clear, we will formulate it as theorem:

Theorem 1. All affine moment invariants in the polynomial form (11) can
be expressed as linear combinations of some invariants generated by the graph
method

I(e) =
n∑

P=1

cP I
(g)
P . (14)

Here I(e) is a general affine moment invariant, e.g. generated as some solution
of the Cayley-Aronhold differential equation, and I

(g)
P , P = 1, . . . n is a set of

invariants generated by the graph method with the same structure as I(e).

Proof. Without loss of generality, we will work with the moments without nor-
malization to translation and scaling, i.e. the geometric moments, because the
main question are coefficients of the invariants, not this normalization. The equa-
tion (14) can be understood as a system of liner equations for unknown cP ’s and
we exert to prove that this system has always a solution.

Decomposition. The invariant I(e) can be decomposed into a part of moments
B and a part of coefficients K

I(e) = Ki1i2···i2wBi1i2···i2w , (15)

where w is the weight of the invariant. The part B can be expressed as a product
of moment tensors

Bi1i2···i2w = M i1i2···id1 M id1+1id1+2···id1+d2 · · ·M i2w−dr+1i2w−dr+2···i2w , (16)

where r is the degree of the invariant. If I(e) has a structure (k2, k3, . . . , ks), then
k2 numbers from d1, d2, . . . , dr equals 2, k3 of them equals 3 up to ks equals s.

The product of moment tensors in (16) contains all possible products of mo-
ments with the given structure, so the decomposition (15) is always possible.
If some product of moments occurs several times (e.g. m times) in B, then the
corresponding components of K must be multiplied by 1/m. The invariants I

(g)
P

for each P can be decomposed to the part of coefficients and the part of moments
by the same way, the part B is the same for all I

(g)
P and I(e), while the part of

coefficients of I
(g)
P can be expressed as a product of unit polyvectors

I
(g)
P = ε{i1i2εi3i4 · · · εi2w−1i2w}P

Bi1i2···i2w , (17)

where {i1i2 · · · i2w}P means P -th permutation of the indices i1, i2, . . . , i2w.
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Comparison of the decompositions. Equation (14) can then be rewritten as

Ki1i2···i2wBi1i2···i2w =
(2w)!∑
P=1

cP ε{i1i2εi3i4 · · · εi2w−1i2w}P
Bi1i2···i2w . (18)

If the moments do not identically equal zero (they identically equal zero for zero
image only), then the part B can be omitted

Ki1i2···i2w =
(2w)!∑
P=1

cP ε{i1i2εi3i4 · · · εi2w−1i2w}P
. (19)

The single equation (18) with variable moments is splitting into system of 22w

linear equations for (2w)! unknown cP ’s with constant coefficients. The summa-
tion over all permutations of unit polyvector indices is not anything else than
summation over all graphs generating invariants with the given structure.

Solvability. Now, we multiply K by the corresponding number of contravariant
unit polyvectors. Then we obtain from (19)

Ki1i2···i2w εx1x2εx3x4 · · · εx2w−1x2w =
(2w)!∑
P=1

c∗P δx1
{i1

δx2
i2
· · · δx2w

i2w}P
, (20)

where c∗P = 2wcP and δi1
i2

is Kronecker delta, δi1
i2

= 1 if i1 = i2 and δi1
i2

= 0 if
i1 �= i2. The system of equations (20) has 24w equations for (2w)! unknowns,
but many of the equations are linearly dependent, the rank of the system was
not increased. Denote it ((2w)! − t), where t is some positive integer. Now take
the system of equations

(2w)!∑
P=1

δx1
{i1

δx2
i2
· · · δx2w

i2w}P
λP = 0 (21)

with unknowns λ1, λ2, . . . , λ(2w)!. The matrices of the systems (20) and (21) are
the same, therefore the rank of (21) is also ((2w)! − t). That is why the system
(21) has t linearly independent solutions

λP = λσ
P , σ = 1, 2, . . . , t. (22)

Now, we can add to the system (21) t equations

(2w)!∑
P=1

λσ
P λP = 0 (23)

and obtain a system of 24w + t equations. Let the new connected system of
equations (21) and (23) has some solution λP = λ0

P , P = 1, 2, . . . , (2w)!. This
solution satisfies all the equations (21), therefore it must be a linear combination
of the solutions λσ

P
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λ0
P =

t∑
σ=1

ασλσ
P , P = 1, 2, . . . , (2w)!. (24)

The equations (23) must be satisfied for every λP , therefore they are satisfied
for their arbitrary linear combinations and also for

t∑
σ=1

ασ

(2w)!∑
P=1

λσ
P λP = 0. (25)

It can be rewritten by (24) in the form

(2w)!∑
P=1

λ0
P λP = 0. (26)

It must be satisfied for every λP thus also for λ0
P

(2w)!∑
P=1

(λ0
P )2 = 0, (27)

i.e. λ0
1 = λ0

2 = · · · = λ0
(2w)! = 0. It means the only solution of the connected

system of equations (21) and (23) is zero and therefore its rank is (2w)!. A
relation of the form

(2w)!∑
P=1

λσ
P δx1

{i1
δx2
i2
· · · δx2w

i2w}P
= 0 (28)

corresponds to each of the solutions (22). Let px1x2···x2w be an arbitrary tensor
of covariance 2w. Since

δx1
i1

δx2
i2
· · · δx2w

i2w
px1x2···x2w = pi1i2···i2w , (29)

then we obtain from (28)

(2w)!∑
P=1

λσ
P p{i1i2···i2w}P

= 0. (30)

The components of the tensor px1x2···x2w can be selected quite arbitrarily and in
spite of it each component on the left-hand side of (30) equals zero. From it

(2w)!∑
P=1

λσ
P c∗P δx1

{i1
δx2
i2
· · · δx2w

i2w}P
= 0, σ = 1, 2, . . . , t. (31)

The equality (31) gives t independent linear relations between the unknown
coefficients c∗P . If we add (31) to the equations (20), we obtain a system (A) of
24w + t equations in the coefficients c∗P . The matrix of this system coincides with
the matrix of the connected system (21) and (23). Consequently, the rank of the
system (A) is (2w)! and one may select from it (2w)! equaitons in such a way that
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the determinant formed by their system (B) is non-zero; the system (B) involves
all the t equations (31) and ((2w)! − t) equations of the system (20) obtained
from certain definite values of the indices x1, x2, . . . , x2w . Solving the system
(B) we express the left-hand side of (20) in the form of linear combinations of
the right-hand sides of the system (B), i.e. again in the form of the right-hand
sides of (20). It means (20) has always a solution. ��
Notes: The solution of (19) is not unique, since we can add to the right-hand side
of (20) any linear combination of the left-hand sides of (28). We supposed two-
dimensional space here, but the proof can be generalized for arbitrary number
of dimensions.

4 Example

For illustration, we created the simplest affine moment invariants up to the third
order by the graph method

I1 = (μ20μ02 − μ2
11)/μ4

00

with weight w = 2 and structure s = (2),

I2 = (−μ2
30μ

2
03 + 6μ30μ21μ12μ03 − 4μ30μ

3
12 − 4μ3

21μ03 + 3μ2
21μ

2
12)/μ10

00

with weight w = 6 and structure s = (0, 4),

I3 = (μ20μ21μ03 − μ20μ
2
12 − μ11μ30μ03 + μ11μ21μ12 + μ02μ30μ12 − μ02μ

2
21)/μ7

00

with weight w = 4 and structure s = (1, 2),

I4 = (−μ3
20μ

2
03 + 6μ2

20μ11μ12μ03 − 3μ2
20μ02μ

2
12 − 6μ20μ

2
11μ21μ03 − 6μ20μ

2
11μ

2
12

+12μ20μ11μ02μ21μ12 − 3μ20μ
2
02μ

2
21 + 2μ3

11μ30μ03 + 6μ3
11μ21μ12

−6μ2
11μ02μ30μ12 − 6μ2

11μ02μ
2
21 + 6μ11μ

2
02μ30μ21 − μ3

02μ
2
30)/μ11

00

with weight w = 6 and structure s = (3, 2),

I5 = (μ3
20μ30μ

3
03 − 3μ3

20μ21μ12μ
2
03 + 2μ3

20μ
3
12μ03 − 6μ2

20μ11μ30μ12μ
2
03

+6μ2
20μ11μ

2
21μ

2
03 + 6μ2

20μ11μ21μ
2
12μ03 − 6μ2

20μ11μ
4
12 + 3μ2

20μ02μ30μ
2
12μ03

−6μ2
20μ02μ

2
21μ12μ03 + 3μ2

20μ02μ21μ
3
12 + 12μ20μ

2
11μ30μ

2
12μ03

−24μ20μ
2
11μ

2
21μ12μ03 + 12μ20μ

2
11μ21μ

3
12 − 12μ20μ11μ02μ30μ

3
12

+12μ20μ11μ02μ
3
21μ03 − 3μ20μ

2
02μ30μ

2
21μ03 + 6μ20μ

2
02μ30μ21μ

2
12

−3μ20μ
2
02μ

3
21μ12 − 8μ3

11μ30μ
3
12 + 8μ3

11μ
3
21μ03 − 12μ2

11μ02μ30μ
2
21μ03

+24μ2
11μ02μ30μ21μ

2
12 − 12μ2

11μ02μ
3
21μ12 + 6μ11μ

2
02μ

2
30μ21μ03

−6μ11μ
2
02μ

2
30μ

2
12 − 6μ11μ

2
02μ30μ

2
21μ12 + 6μ11μ

2
02μ

4
21 − μ3

02μ
3
30μ03

+3μ3
02μ

2
30μ21μ12 − 2μ3

02μ30μ
3
21)/μ16

00

with weight w = 9 and structure s = (3, 4), The corresponding graphs are on
Fig. 2. All other invariants were eliminated as linearly dependent. The invariant
I5 has dependent absolute value

|I5| =
√
−4I3

1I2
2 + 12I2

1I2I2
3 − 12I1I4

3 − I2I2
4 + 4I3

3I4,

therefore it was omitted from the set. Its sign can be used for recognition of an
object from its mirror reflection.



Proof of Completeness of the Graph Method for Generation 165

I1 I2 I3 I4 I5

Fig. 2. The generating graphs of the invariants I1, I2, I3, I4 and I5

The same invariants were also generated as a solution of the Cayley-Aronhold
differential equation except I ′4 = −(I4 + 6I1I3) instead of I4. So, we have two
sets of features for recognition of affinely distorted objects, {I1, I2, I3, I4} and
{I1, I2, I3, I ′4}, there is one-to-one mapping between them and features from
one set are linear combinations of that from the other set. The presented proof
means the same situation is in all higher orders.

5 Numerical Experiment

The goal of this experiment is to show the behavior of the affine moment invari-
ants. We have photographed a series of cards used in a game called mastercards

Fig. 3. The mastercards: Girl, Old scratch, Tyre-ride, Room-bell, Fireplace, Winter

cottage, Spring cottage, Summer cottage, Bell and Star

−0.2 0 0.2 0.4

−0.2

0

0.2

0.4

0.6

−0.5 0 0.5

−0.5

0

0.5

1

I3 I5

Fig. 4. The feature space of I3 and I5 of red (horizontal axis) and blue (vertical axis)

channels. Legend: Girl, Old scratch, Tyre-ride, Room-bell, Fireplace,

Winter cottage, Spring cottage, Summer cottage, Bell and Star. A card from

each pair is expressed by the black symbol while the other card is expressed by the

magenta (gray) symbol.
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(also pexeso), where the objective is to find the same pairs of cards turned face-
down. Cards from each of the ten pairs are shown on Fig. 3.

First, we used the feature set {I1, I2, I3, I4} for each color channel separately,
i.e. 12 features. The result was 3 errors from 140 cases, i.e. error rate 2.1%. Then
we added I5 to the feature set and the result was 17 errors, i.e. the error rate
worsened to 12.1%. It is an illustration, how a dependent invariant can worsen
the recognition. The feature space of the independent invariant I3 is on Fig. 4a,
that of the dependent invariant I5 is on Fig. 4b.

6 Conclusion

The proved theorem means the features from all the methods mentioned in
the paper are equivalent. The suitable method for the generation of the affine
moment invariants can be chosen freely, only on the base of the computational
aspects as complexity of programming, computing complexity, memory demands
and numerical precision.
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Abstract. This paper proposes a novel and robust appearance-based

method for human motion recognition based on the eigenspace technique.

This method has three main advantages over the existing appearance-

based methods. First, the Linear Discriminant Analysis (LDA) is used

for dimensionality reduction and eigenspace generation, while preserving

maximum separability between classes. Second, by combining a novel

centering technique with an incremental procedure, the motion data be-

comes more concise, expressive, and less confused. Third, data storage

is greatly enhanced by using a directed acyclic graph (DAG) structure

based on Euclidean distance between projected data. The method is rig-

orously trained and tested using KTH dataset which contains a large

number of motion videos partitioned into six human motions. The ex-

perimental results are very promising yielding an average recognition

rate of 94.17%.

1 Introduction

Human motion recognition has gained great attention by researchers in the
computer vision area. This attention has been triggered by the interest in many
applications, such as, motion recognition in surveillance systems, robotics, wire-
less interfaces and interactive environments. In the literature, two main types
of methods for human motion recognition are available: model-based methods
and appearance-based methods. Since model-based methods require much more
computation complexity to build models, the appearance-based methods have
acquired priority over model-based methods. In the appearance-based methods,
the image sequence is considered as the primitive component, and is transformed
into a suitable form for the purpose of learning as well as recognition. There are
many techniques available for human motion analysis and recognition in the
context of the appearance-based methods. For example, hidden markov model,
motion energy and history images, dynamic time warping and many others.
Comparatively to the techniques mentioned above, the eigenspace technique,
used in [1, 2, 3, 4], does not require geometrical calculation or partial segmen-
tation of the models. Therefore, it is much more easily adaptable and compu-
tationally less expensive [1]. However, the existing appearance-based methods
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based on the eigenspace technique have used the Principal Component Analysis
(PCA) for dimensionality reduction and eigenspace generation. The PCA may
discard dimensions that contain important discriminative information [5]. More-
over, these methods have relied on the standard XOR compression technique
for motion discrimination [2,4]. This technique can lead to a strong overlap be-
tween the motions, especially, when the human moves in different directions in
the scene. Finally, some of these methods [2] have employed the binning and
basic B-trees techniques for motion indexing. The performance of these tech-
niques degrades in high dimensions. To overcome these drawbacks, we propose a
novel appearance-based method based on the eigenspace technique. This method
has three main advantages over the existing methods. First, we use the Linear
Discriminant Analysis (LDA) for dimensionality reduction and eigenspace gener-
ation. In fact, unlike the PCA, LDA seeks to find the projection directions along
which the classes are best separated [5]. Second, instead of the XOR compres-
sion technique, we combine a centering technique with an incremental procedure
for motion compression to make data more concise and expressive, and then to
avoid motion overlapping. Third, data indexing and retrieving are significantly
enhanced using a DAG structure based on Euclidean distance between projected
data, instead of the B-trees technique. This paper is organized as follows. Sec-
tion 2 presents the preprocessing operations. Section 3 details the training phase.
Section 4 describes the recognition process. The implementation and experiments
are given in Section 5.

2 Preprocessing Operations

Preprocessing operations are crucial for achieving efficient high level processing
such as training and recognition tasks. Two essential preprocessing operations
are considered here : (1) Background subtraction, where each image frame is sub-
tracted from a background model [6]. The output of this step are binary images
with white representing the removed background and black the human-body(see
Fig. 1). (2) Centering Human-body Blobs, by performing this operation on each
frame, we can narrow down and restrict human motion to a very limited and
expressive area. Centering the human body provides many advantages. First, the
resulting data will be concise and expressive (see Fig. 2), second, the centering
will help to get rid of the static portions and keeps only the parts of the body,
where the motion is concentrated. As a consequence, the subsequent steps will
be faster and more reliable. The algorithm below describes the centering process:

input <V :background-subtracted binary video>
for each image Ii ∈ V , do

using a vertical scan line moves from left to right in Ii, do
find h = max. height of the blob, and x = XCoor(h);

using two vertical scan lines move towards x in Ii, do
find x1 and x2 where blob height >= T × h;

C = x1 + x2−x1
2 ; // C: blob centre
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Fig. 1. The training stage

shift the blob horizontally by [width(Ii)
2 − C] pixels;

next Ii;
output <V :binary video>

3 Learning Human Motion

Recognition systems cannot recognize anything unless they have learned it. In
our proposed method, the learning stage is built up on the data samples produced
from the preprocessing stage. Each sample used for learning is a blob-centered
background-subtracted binary video. The main goal of this stage is to reduce the
dimensionality of the training samples to their minimum possible dimensionality
as long as discrimination between classes can be achieved. This stage consists
of three main steps, (1)video compression, (2)projection into an eigenspace and,
(3)data storage (see Fig. 1).

3.1 Generating Motion Intensity Images (MIIs)

Given the output from our preprocessing stage, centered background-subtracted
binary blobs, the goal here is to collapse(compress) these images into a single
image, an MII. We have used an incremental procedure for this image compres-
sion where, only the differences between consecutive frames are considered. This
type of compression provides more details about slow and fast moving portions
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Fig. 2. Generating the MII from a binary video

of the blob. The middle colored image of Fig. 2 shows clearly how an MII of
a jogging motion appears. Motion intensity varies from light to heavy and can
easily be noticed through colors from green to red respectively. In the same fig-
ure, the outer set of binary images represents an input motion video starts from
the lower-left frame. The vertical line in each frame indicates the horizontal blob
center. The corresponding blob-centered video is shown by the intermediate set
of binary images. The following algorithm describes how an MII is created:

input <V :background-subtracted binary video>
reset C;
starting with the 2nd image I2 ∈ V , do

for each pixel Pj ∈ Ii, do

Pj(C) = Pj(C) +
{1, if Pj(Ii) �=Pj(Ii−1)

0, otherwise

for each pixel Pj ∈ C, Pj(C) = Pj(C)
f × 100;

output <C: motion intensity image>

where f is the number of frames in V and C is the MII.
Standard XOR compression techniques have been used for motion discrimina-
tion [2] when the body remains at the same location. However, when the body
moves in different directions, an incremental method is more appropriate.

3.2 Capturing and Scale-Normalizing Motion Window

As CPU-time is always a major issue, the size of images are typically reduced to
their minimum as long as there is no negative effect on the outcome. The most
popular methods for image scaling are Nearest Neighbor, Linear Interpolation
and Cubic Interpolation. The latter is often preferred over the first two when
quality is important [7]. As it can be seen from Fig 2, the human motion is
concentrated at the center of the MII. Therefore, most of the MII area shows
no motion information or some scattered noise. In our case, each MII image
is a W × H matrix that can be reduced to a new w × h MII, where w < W
and h < H . We have scaled down our MIIs by a factor of 4 using the cubic
interpolation method, hence reducing our data size by more than 16 times.
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3.3 Dimensionality Reduction and Eigenspace

Significant improvements can be achieved by mapping the data into a lower-
dimensionality space in both recognition and computational aspects. Many
recognition systems have employed the eigenspace technique for dimensionality
reduction. There are two common algorithms used for constructing eigenspaces,
PCA and LDA. The existing recognition systems using the eigenspace technique
have employed PCA [2] [4]. We have analyzed both PCA and LDA in order
to determine the best suitable for human motion recognition. We have found
that LDA preserves the most of the class discriminatory information and seeks
to find directions along which classes can be best separated [5]. As we have
seen, human-blob centering has helped a great deal in obtaining very expressive
motion representations. Hence, LDA is the better algorithm for dimensionality
reduction in our case. It seeks the best separation between classes by taking
into account the scatter within-classes as well as the scatter between-classes.
It tries to maximize the ratio of between-classes matrix (Sb) to within-classes
matrix (Sw), S−1

w Sb [5]. Eigenspace projection matrix can then be constructed
by choosing the eigenvectors with the largest R eigenvalues of S−1

w Sb, where R
is the desired reduced dimensionality. These eigenvectors provide the directions
of the maximum discrimination.

Methodology: Let W be the total number of elements in each MII, C be the
number of classes, μc be the mean feature vector for class c, Nc be the number
of training samples from class c, and N be the total number of training samples
from all classes, N =

∑C
c=1 Nc, then:

1. Each MII image In(n = 1, .., N), is formed as a vector xn = (p1, .., pW ).
2. A super matrix Xc(c = 1, .., C) is constructed for each class from all its

training vectors, Xc = (x1, ..., xNc).
3. A mean vector μc is computed for each super matrix, μc = 1

Nc

∑Nc

n=1 xn, and
then subtracted from its super matrix, Xc = Xc − μc.

4. A super mean matrix is constructed from all mean vectors, M =(μ1, μ2,.., μC)
5. A mean-of-means vector μ is computed out from all mean vectors, μ =

1
C

∑C
c=1 μc, and then subtracted from the super mean matrix, M = M − μ.

6. The scatter within-classes and scatter between-classes matrices, Sw and Sb,
are computed using Eq. 1.

7. Finally, the transformation matrix T is constructed by choosing the eigen-
vectors, er(r = 1, .., R), with the largest R eigenvalues of S−1

w Sb.

Sw =
C∑

c=1

XT
c Xc, Sb = MT M (1)

The dimensionality of each MII can be drastically reduced and projected as a
point on the eigenspace G using Eq. 2.

gn = (xn − μ)T · T (2)

By labeling and projecting all training data into G, a global eigenspace for all
classes is built.
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3.4 Storage into a DAG Structure

Before any data storage, we have integered the original indices of data samples
in order to lower the computational cost of subsequent arithmetic and logical
operations. We have achieved this by shifting the floating point d digits to the
right (d ≥ 6) then, replacing the number with the integer closest to it. A DAG [8]
structure G is built based on Euclidean distances between projected data. Within
each node n ∈ G, there are three data fields, an index consisting of R sub-indices
along each eigenspace axis, a label indicating its class and, a set of pointers
pointing to its children. For constructing the database, a bubble scenario has
been used where the closest point to the center of all projected training data
will be taken as a starting root. Each other data point will be connected to
the root directly or indirectly through a closer point. The following algorithm
describes this process:

input <E:eigen-space distribution, G = φ:DAG>
find the closest point c ∈ E to the distribution center;
remove c from E and make it the root of G;
while E �= φ, do
for each leaf node n ∈ G, do
for each projected point p ∈ E, do

if 1: p is closer to n’s parent than other leafs’ parents
and 2: p is closer to n than n’s siblings
and 3: no intermediate point t ∈ E satisfies 1, 2,
and d(p, t) + d(t, n) > T × d(p, n): where T > 1 then
remove p from E and make it a child node of n;

output <G:DAG>

4 Human Motion Recognition

By storing the projected training data in a DAG structure, the system is learned
and ready to be used for motion recognition. This is the most important part
from the user’s point of view as it is responsible for giving the final decisions.
The accuracy level of the decisions plays a central role in evaluating recognition
systems. This stage is very similar but much faster than the learning stage.
The unknown human motion will simply be recognized as the retrieved nearest
neighbor’s class.

Given an unknown video as input, the following steps will take place in order:
(i) Background subtraction; (ii) Human-blob centering; (iii) Monochrome-video
compression generating a primary MII; (vi) Capturing and then scaling down
the motion window producing a final MII; (v) Dimensionality reduction of the
MII by forming it into a vector U = (p1, p2, .., pW ), and then projecting it into
the eigenspace using Eq. 2.

As our DAG is well-structured for finding nearest neighbors, the search will
be fast, accurate and simple. The unknown-projected motion, as a point u, is
taken and, its coordinates are integered into u. Finding the nearest neighbor in
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our DAG structure is done based on finding a node whose Euclidean distance
to the unknown motion index is the smallest. The unknown motion is simply
recognized as its closest neighbor’s class. Once the compound query index is
ready, its closest training neighbor can be retrieved from the DAG using the
algorithm below:

input < G:DAG, u:CompoundIndex>
NN = root(G); // Nearest Neighbor
MinD = distance(u, NN); // Min. Euclidean distance
CurrNode = NN ;
while children(CurrNode) �= φ do

find a child node ch with min. dch = distance(u, ch);
if dch < MinD then

NN = ch; MinD = dch;
endif;
CurrNode = ch;

endwhile;
output<NN ’s ClassLabel>

5 Implementation Results

Our system has been implemented in C++ on a 1.6GH PC. KTH dataset from [9]
is mainly used for both training and testing of our method.

Table 1. Confusion matrix for testing 150 new videos

InputVideo→
Classification↓

Boxing Hand clapping Hand waving Jogging Running Walking

Boxing 100% 0% 0% 0% 0% 0%

HandClapping 0% 100% 0% 0% 0% 0%

HandWaving 0% 0% 100% 0% 0% 0%

Jogging 0% 0% 0% 80% 12.5% 2.5%

Running 0% 0% 0% 15% 87.5% 0%

Walking 0% 0% 0% 5% 0% 97.5%

The obtained results emphasize the effectiveness of the proposed human mo-
tion recognition system when compared to methods reported in [2, 9,4]. In our
implementation, each MII is a 160 × 120 matrix yielding 19, 200 elements. An
88× 108 window is used to capture the motion within each MII and becomes a
new MII of 9, 504 elements. Each new MII is scaled down to 22 × 27, reducing
our data size about 32 times, with almost no data loss (see Fig. 1). Data is then
projected drastically into an eigenspace of 5 axes using LDA, while preserving
maximum class separability. We have used more than 30, 000 images representing
625 short motion videos to train our system. Those videos are captured for 25
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Table 2. Confusion matrix for testing 775 videos

InputVideo→
Classification↓

Boxing Hand clapping Hand waving Jogging Running Walking

Boxing 100% 0% 0% 0% 0% 0%

HandClapping 0% 100% 0% 0% 0% 0%

HandWaving 0% 0% 100% 0% 0% 0%

Jogging 0% 0% 0% 94.28% 3.38% 0.71%

Running 0% 0% 0% 4.29% 96.62% 0%

Walking 0% 0% 0% 1.43% 0% 99.29%

different people having 6 different motions in different environments and cloth-
ing. The motions are boxing, hand-clapping, hand-waving, jogging, running and,
walking. We have first used 8, 000 images representing 150 new motion videos
and have obtained the recognition results shown as a confusion matrix in table 1.
Table 2 shows the resulting confusion matrix obtained from the performed tests
using the whole set of videos in our possession - 775 videos. These two tables
show an excellent recognition rate with only a few confusions. As it can be seen,
there is a clear separation between each of boxing, hand-clapping, and hand-
waving, and all the others. Walking and running has also a clear separation.
On the other hand, jogging has some confusion with both running and walking.
Although this can be seen as a shortcoming, one has to realize that jogging is a
motion that falls between walking and running. It becomes especially confusing
when some actors jog too slow/fast as it is here.

6 Conclusions

We have proposed a novel and efficient appearance-based method based on
eigenspace for human motion recognition. Thanks to the combination of the
centering technique with the incremental procedure, the motion discrimination
has significantly improved. Moreover, the eigenspace is generated and the data
dimensionality is drastically reduced using the LDA, while preserving maximum
class separability. Hence, the recognition process is very fast and efficient, espe-
cially, when it is enhanced by the DAG structure. Future work will be dedicated
to make the recognition method robust to more complicated motions and to
improve the LDA discriminatory power using Kernel space.
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Abstract. This paper presents a marker-less approach for human body

pose estimation. It employs skeletons extracted from 2D binary silhou-

ettes of videos and uses a classification method to partition the resultant

skeletons into five regions namely, the spine and four limbs. The classifi-

cation method also identifies the neck, the head and the shoulders. Using

the center of mass principles, a model is fitted to the body parts. The

spine is modeled with a 2nd order curve while each limb is modeled by

two intersected lines. Finally, the model parameters represented by a ref-

erence point and two angles belonging to the lines are estimated and the

pose is reconstructed. The proposed approach can estimate body poses

from single images as well as multiple frames and is considerably robust

to occlusions. Unlike existing methods, our approach is computationally

efficient and can track human motion while correcting for pose errors

using multiple frames. The proposed approach was tested on real videos

from MuHAVi and MAS databases and gave promising results. 1

1 Introduction

Recently, there has been intensive interest in the estimation of human body
pose from images and video. Applications of human pose estimation are many
including visual surveillance, image retrieval, human computer interaction, sign
language, and animation. Pose estimation is the process of estimating human
articulated poses with the aim to identify the posture of the human body. This
gives information about the action being performed by a person. Pose estima-
tion can be done using a single image, a stereo image pair, or a video sequence.
Human pose estimation is very challenging because of the large number of pos-
sible articulated deformations and different body scales. Moreover, factors like
loose clothing, self occlusion can significantly deteriorate the data[1,2,3]. Sev-
eral algorithms have been proposed in the literature for pose estimation. These
approaches can be broadly divided into two main categories namely analytic
algorithms and learning-based algorithms [4,5,6]. Analytic algorithms are used
when the geometry of the body is known or can be determined i.e. the projected
image of the body is assumed to be a well-known function of a person’s pose. In

1 This research is sponsored by ARC Discovery Grant DP0881813.
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this case, if a set of control points of the body such as corners, edges or other
feature points are identified, it is possible to determine the 3D body pose coor-
dinates from their corresponding 2D image ones in an analytical way. Learning
based algorithms use machine learning techniques to map 2D image features to
the respective 3D pose representation. The mapping is learned offline from a
sufficiently large training data of images of the human body, with different and
known poses. During online phase, the learnt model is used to estimate the 3D
body pose from 2D image features.

In existing literatures, the most effective methods for estimating/tracking a
person’s pose are based on markers. Some of these methods use sensing devices
e.g. electro-mechanical/magnetic (data gloves), or light emitting diodes attached
to the body [8,9,10]. However, these methods are very expensive, can hinder the
real body posture, require complex setup and calibration in order to provide pre-
cise pose information and are not user friendly. Moreover, they cannot be used for
surveillance applications. In [11] a single hypothesis approach for pose tracking is
proposed using a Kalman filter, but it invariably fails because human body ex-
hibits multiple motions for different limbs. This requires the simultaneous track-
ing of multiple body parts. To achieve this, particle filters have been employed
which maintain multiple hypotheses [12], however a large number of particles are
required in order to estimate the full range of poses. Furthermore, both of the pre-
vious methods have to be initialized by external means at the beginning and every
time the tracking is lost e.g. due to occlusions. In [3], a 3D skeleton-based body
pose recovery method using multiple views is developed. However, the 3D skele-
ton obtained from the 3D hull was very noisy and as a result a computationally
expensive probabilistic approach was employed, even though it was not efficient
in minimizing the skeleton noise. In [13], a learning-based method is conducted
for 3D human body pose recovery using single images and monocular image se-
quences. The method however requires complex computations and a large library
of labeled poses. In [16], a multicamera silhouette-based power spectral method is
proposed, the method however uses training data and space-time volume of poses
and sensitive to the frame rate.

In this paper, we propose a marker-less approach that uses skeletons of silhou-
ettes extracted from images or video sequences. Our method does not require
labeled training data and is computationally efficient. It can track human mo-
tion and correct for errors using pose estimates from previous frames guided by
a regression model. The proposed approach was tested on real data comprising
still images and video sequences from the MuHAVi and MAS databases and
achieved promising results. A demo of the results is provided as supplementary
material with the paper.

2 Data Model

The model used in this work consists of 15 body points connected with a skeleton
as shown in Fig 1. These points correspond to the head, neck, top-left arm
(TL), top-right arm (TR), bottom-left leg (BL) and bottom-right leg (BR).
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We assume a prior segmentation of the image and work with 2D silhouettes
extracted from an image or a video sequence [1,13,3]. The data used in our
experiments is provided by [14,15] which include Multicamera Human Action
Video Data (MuHAVi) and Manually Annotated Silhouette Data (MAS) (with
prior background subtraction). Our aim is to estimate the human pose by fitting
the skeleton model to the silhouettes Fig. 1. The proposed approach should be
able to identify different body poses within given error bounds and should be
able to deal with still images, video frames and be robust to self occlusions.

3 Human Body Pose Identification

The proposed approach proceeds as follows: (i) an initial estimate of skeleton
is first obtained from the 2D binary silhouettes, (ii) skeleton parts/data that
describe the body spine, arms and legs are identified and separated into different
sub-skeletons (partitions), (iii) each sub-skeleton is then modeled by lines or
curves (depending on the natural shape of the human body parts), and (iv)
finally, using these lines/curves, the associated body points depicted in the model
in Fig. 1 are identified and the pose is reconstructed. Details about the procedure
are explained in the following sections.

3.1 Skeletonization Process

Unlike existing methods [11]-[13], where the raw 2D image or the edge maps are
used for human pose classification, we only use body skeleton which makes our
method computationally very efficient and able to classify human poses more
effectively. The proposed skeletonization algorithm is summarized in Table 1.

Table 1. Proposed Skeletonization Algorithm

Step 1: read the silhouette image/frame, define Io and choose a binary image threshold 0.5 ≤ τ ≤ 0.9
Step 2: crop out the silhouette I from Io and let In = I
Step 3: find the blurred silhouette Ib = I ∗ ∗G, where G is a Gaussian point spread function (PSF)
of size � × � and variance σ2

Step 4: find the borders/edges of Ib, Id =
√

(Ib ∗ ∗H)2 + (Ib ∗ ∗HT )2 where HT is the transposed

of the horizontal sobel PSF H

Step 5: find the the binary borders IBW (x, y) =

{
1 Id(x, y) ≥ τ
0 otherwise

, then determine In = In − IBW

Step 6: find the shrinked silhouette I(x, y) =

{
1 In(x, y) ≥ τ
0 otherwise

Step 7: remove from the shrinked silhouette any pixel of value equal to ’1’ that is surrounded by
Nz zero pixels and do the same of a zero pixel surrounded by Nz ’1’ pixels
Step 8: repeat steps 3 to 6 until the error between the current and previous shrinked silhouettes
reaches ε (a small value).

To demonstrate the skeletonisation algorithm see the examples shown in Fig. 3
for τ = 0.85, � = 9, σ2 = 3 and Nz = 5 and ε = 0.01 which can be adjusted
based on the captured image/frame size.
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3.2 Classifying the Estimated Skeletonized Image

To correctly classify the skeletonized data/image obtained using the previous
section, we employ combinations of the following methods: (i) center of mass
fundamentals, (ii) curve fitting, and (iii) pixel histograms. To initiate the clas-
sification process, first we divide the skeletonized frame into four different par-
titions, (P11) for right arm, (P12) for left arm, (P21) for right leg, and (P22) for
left leg. These partitions can be done equally or differently using mathematical
approaches that use body weight or shape. In the curve fitting-based method,
each partition can be fitted to an nth order polynomial with a typical value of
n = 2 or 3. Because each arm or leg can be approximated by only two lines, then
an accurate approach is to find the two best fit lines for the considered nth order
polynomial. In the center of mass based method (CM), each partition’s curve is
divided into Np different segments, the CM of each segment is then obtained,
and finally the two best fit lines for the Np segments are identified. Center of
Mass of a system of N particles each of which has a mass mi located a distance
ri =

√
x2

i + y2
i from an origin is defined by,

CM =

N∑
i=1

rimi

N∑
i=1

mi

(1)

where xi and yi, i = 1, 2, . . . , N define the cartesian locations of mi = 1.

3.3 Estimated Skeleton Partitions

Since we are dealing with binary images, then the value of the mass mi will be
either 1 or 0. In this case CM takes the form,

CM =

N∑
i=1

ri

N
(2)

To separate each body part correctly, reference points are required. In recent
pose classification techniques such as the one in [13], points belonging to all of
the body edges were used as references, thus the computational complexity was
high. In this work however we use few reference points to classify different human
body poses. The first is the body curve of equilibrium which defines a curve that
passes through the (x, y) coordinates around which the body masses (mi = 1, i =
1, 2, . . . , N) are in equilibrium. The equilibrium curve, as an example, is shown
in “cyan” in Fig. 3. Mathematically, a coordinate y = yo at x = xo in this curve
can be determined by,

yo = mean{#(Io(xo, y) = 1)}∀y (3)

where #() define the number of times the statement inside the parenthesis is true.
The second important reference is the center of mass for the entire body define
CMo = {CMox, CMoy} (see Fig. 1) which will be defined using the formulae,
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CMox =

N∑
i=1

xi

N
, CMoy =

N∑
i=1

yi

N
(4)

CMo, indicated by red stars and circles in Fig. 3, together with the curve of
equilibrium are used as pilots to divide the skeleton into five main partitions.

3.4 Identification of Spine

The spine of the body is the most important reference for pose estimation. In
this work, the spine is identified using the above determined curve of equilibrium
along the location of CMo. This is done by first moving CMo (red star) to the
nearest skeleton coordinates (red circle) Fig. 3(b)(c). Then all points belonging
to the curve of equilibrium are shifted towards the closest skeleton points. Since
the body weight/width is larger than that of any nearby arm, this will guarantee
that the curve of equilibrium will converge to the skeleton part representing the
body and not the arms. Moreover, the neck and the intersection point between
the two legs shown in green in Figs. 1, 3(b)(c) are identified by shifting a window
of proper dimensions along the new line of equilibrium (green). At each shift, all
pixels inside the circle are summed and recorded. The two shifts around CMo

that have the maximum number of pixels, (i) define the neck location and (ii)
the legs intersection location (see Fig. 2). This can also be interpreted as finding
the distribution of pixels (histogram) along the shifted curve of equilibrium and
the two locations that have the highest histograms around CMo are the required
ones. In cases where any of the two locations is close to CMo, the body weight
represented by the sum of pixels can be used. To correct for the location. For
example, see the false neck location in Fig. 2, to correct this location, the body
weight starting from this false location (above CMo in the direction of the equi-
librium curve) is calculated and compared with the total body weight. Based on
human body standards [17] and using several conducted experiments, the weight
of the head plus the neck contributes a certain portion of the body weight. Based
on that, the weight associated with this false location is compared with these
standards and the false location is disregarded, i.e. a new search for the correct
neck which excludes this false location is considered. We use the formula,

xn = 0.9(1−Wn)/Wt xf (5)

to provide the final correct x coordinate for the false xf neck coordinate. The
yn correct coordinate is the corresponding y for the coordinate xn in the shifted
curve of equilibrium, where Wn is the body weight associated with the identified
neck, and Wt is the total body weight. Once the two locations, define pn =
{xn, yn} and similarly pb (see Fig. 2) are accurately identified, the spine location
is found by fitting all points belong to the shifted curve of equilibrium and
between the two identified locations to a 2nd order curve, co(x) = a2x

2+a1x+ao

as shown in Fig. 3(d). The values of a2, a1, ao are calculated using least squares
estimation techniques.
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3.5 Identification of the Arm Portions

To identify the arm poses, i.e. points {TR1, TR2, TR3} and {TL1, TL2, TL3},
we first use the 2nd order curve co(x) identified above for the spine as a reference.
We then generate two different 2nd order curves cr(x) (right) cl(x) (left) along
the spine curve (Fig. 3(d)). Again, using human body standards [17] together
with several experiments, the two curves are located at a distance equal to 1/4W
at the location pb and 2/4W at the neck location pn, where W is the body width
at the intermediate location CMo, pb, i.e.,

cr(x) = co(x) − 1/4W

(xpb
−xpn) (x− xpn)− 1/4 W

cl(x) = co(x) + 1/4W

(xpb
−xpn) (x− xpn) + 1/4 W

(6)

The skeleton data between the two curves are set to zero, see Fig. 3(e). Finally,
the skeleton data behind the curve cr(x) is used to represent the partition p11

(TR), and the skeleton data in front of the curve cl(x) is used to represent the
partition p12 (TL), the lower boundaries for the two partition is set to pb−W/2
as shown in Fig. 3(f).

3.6 Identification of the Leg Portions

The leg partitions p21 and p22 are identified according to the following steps: (i)
CMo and a portion of the original curve of equilibrium (in cyan) which starts
from the location pb down to the last skeleton point are used for referencing,
(ii) the location CMo is considered as a common body point for the two legs,
(iii) the skeleton data between CMo and pb are set to zero as shown in Fig. 3(e)
and, (iv) finally the right and left skeleton data for p21 and p22 are identified as
shown in Fig. 3(f).
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Fig. 3. Two examples explaining the sequence of steps in the approach: (a) Skeletoniz-

ing the silhouettes (b) Estimating CM and equilibrium curve (c) Detecting the spine

(d) Fitting a 2nd order curve to the spine (e) Locating and (f) separating the limbs

3.7 Challenging Poses

In real situations, human body can take infinite number of poses. In many of
them, the previously described technique can be easily used to isolate each arm
and leg portion. However, since we are dealing with 2D silhouettes, other pose
cases for example when arm(s) or leg(s) is/are occluded or merged within the
body image, will be difficult to handle. Many existing approaches fail to deal with
such situations. In this paper, we attempt to deal with such type of difficult poses
as follows:
– when an arm (or both) are hidden, we use portion of the body curvature

(edges) to represent the unknown pose of the hidden arm (e.g. Fig 4). This
portion will then be shifted to the mid-distance between it and pn. In cases
of video sequences, we will also consider further correction to this arm pose
case by considering information from the previous arm poses.

– when the two legs are close (fully overlapped, or occlude each other), their
skeleton in this case will be a single line. In this situation the two legs will
be assigned the same line as shown in Fig 4. In case of on-line pose tracking
in videos, further correction will also be considered using information from
previous leg poses. Information from future poses can also be incorporated
for off-line cases or during online pose estimation but with a time lag.

– distances between the point pn, and the closest skeleton points of each sep-
arated arm (see Fig. 4) are employed to correct for shoulder locations. This
can happen when a small part of an arm(s) is available. If this distance con-
tributes more than 50% of the arm length, then the person is mostly moving
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Fig. 4. Two examples of special body poses showing occlusions and ambiguity in the

locations of the limbs. The body curvature is used to correct for the ambiguities to a

certain extent.

right or left and the shoulder location associated with arm is the point pn,
see Fig. 4 in the examples.

3.8 Estimation of the Overall Body Pose

Using the above procedure, we are now able to isolate the body arms and legs
and identify the spine. Our target then is to fit each one of these parts to a
model that can correctly (fully) estimate its pose. To achieve this, a 2nd order
curve is fitted to the spine. The curve starts at CMo and ends at the neck point
pn. It can be clearly seen that the spine is a portion of co(x). The head location
define co(ph) is found by extending co(x) further than the neck point pn using a
length related to human body standards for average neck length [17].

Since the arms and the legs can only be formed into two intersected lines,
we consider a two-lines ( a single reference and two angles) model to represent
their poses. To clarify our two-lines model, let us consider the identified right
arm of the lady silhouette in Fig. 3. The arm partition is separated and detailed
in Fig. 5. The proposed model can be described as follows:

– use Eqn. 6 to find the center of mass for the arm, define CMr

– use CMr as a reference to divide the skeletonized arm into Np sub-partitions
of equal weight (Fig. 5). We use an odd number for Np ≥ 5 to enforce a
common intersecting point between the arm portions.

– find the center of mass for each sub-partition, CM1, CM1, . . . , CMNp
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– fit the first CMnp points, np = 1, . . . , (Np + 1)/2 to a line and determine its
angle w.r.t the horizontal θ1

11

– fit the last overlapped CMnp points, np = (Np + 1)/2, . . . , Np to another a
line and determine its angle w.r.t the horizontal θ2

11. For accurate results we
use a common point np = (Np + 1)/2 for both lines.

– find the intersection between the two lines
– record the outputs {TR1, TR2, TR3, θ

1
11, θ

2
11} (see Fig. 5). It can be clearly

seen that {TR1, θ
1
11, θ

2
11} and basic knowledge about the length of a human

arm are enough to fully describe each arm’s pose
– follow the same procedure above for the skeletonized leg case, but consider

the total body center of mass CMo as one of the CMnp . The feet are excluded
when determining the leg CMnp points.

– record the same results for the two legs
– reflect the overall identified results in the model depicted in Fig. 6 where

La, Lb, Lc, Ld are settings for the arms and legs lengths
– compare the estimated pose in Fig. 6 with the original body pose

Fig. 5. Identifying the shoulder and fitting the obtained

Center of Mass points to the two-lines model then esti-

mating the two angles required for the pose reconstruc-

tion process

Fig. 6. The final recon-

structed pose after reflecting

all identified and estimated

body pose parameters

4 Experimental Results and Discussion

Experiment 1: In this experiment, we apply the proposed approach to estimate
8 real human body poses using their stand alone silhouette images. The skeleton
is obtained using � = 9, σ2 = 3 and Nz = 5 and ε = 0.01 (approximately
20 iterations). The number of segments used to represent each arm and leg
is Np = 15, then the two-line model is applied and the required body points
and angles are determined then reflected in Fig. 6. As shown in Fig. 7, 8, our
method was successful in estimating body poses where self-occlusion is absent.
For silhouette images with partial occlusions, the proposed method was able
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Fig. 7. Four examples showing the reconstruction of some human body poses where

ambiguities are minimal to average. In these cases the reconstructed poses can be seen

very close to the original ones.

to recover the pose partially, but for cases with excessive self occlusions, the
method attempted to estimate the best body pose match using the body edges.
Some mis-match pose cases between the actual pose and the estimated pose also
present, however they are not very significant. Note that pose estimation using
single still images in the presence of occlusions is one of the biggest challenges
in computer vision. However, our approach achieved promising results in this
scenario with minimal computational complexity compared to [13,16]. A Matlab
implementation of the approach takes approximately 3 seconds on a 1.73Ghz
machine with 2.5G to reconstruct a pose from single image.

Experiment 2: In this experiment, we apply the proposed approach to es-
timate body poses from real video representing a person walking and turning
changing the direction of movement. The video has 466 frames of silhouette im-
ages [14]. Skeletons are obtained as before but with Np = 5 segments. Unlike
the single image case, a correction is applied to the estimated pose to eliminate
mis-identified poses. This is done by smoothing the change in the estimated pose
between successive frames. More precisely, if the difference in the estimated an-
gles is greater than a certain threshold then the current pose angle is determine
through an auto regressive (AR) process of order 3. The estimated and the cor-
rected angles for this video sequence is depicted in Fig. 9 2. For video frames that
have no or insignificant occlusion, the maximum difference (error) in degrees be-
tween a real pose and an estimated pose is found to be less than 8o degrees. In
this experiment, the total number of fully mis-classified poses was about 10/466.
This number is represented by the spikes in Fig. 9, however, when the person

2 The estimated and corrected poses for the video are provided as supplementary

material with the paper.
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Fig. 8. Four examples showing the reconstruction of some human body poses where

ambiguities are average to sever. In these cases some of the reconstructed poses are

close to the original ones, while others with sever ambiguities, the approach attempted

to identify the best fit pose configuration to them.

Fig. 9. The estimated limb angles w.r.t the frame index of a real video representing

a person walking and turning changing the direction of movement. Correction for for

errors using pose estimates from previous frames guided by a regression model can be

seen effective.
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is turning or his/her hands are merged within the body, there are partial pose
mismatches between the original pose the estimated one.

5 Conclusion

We presented a marker-less approach for human body pose estimation from still
images and from video sequences. The proposed approach is computationally
very efficient. Unlike existing approaches, where the raw image or silhouettes
are used to recognize the pose, our approach only uses a limited number of
points obtained from an automatically estimated body skeleton. The skeletons
are obtained using a fast filtering algorithm applied to 2D binary silhouettes of
images or video frames. The proposed approach can deal with some of the chal-
lenging scenarios involved in single image based pose estimation and can correct
for pose errors in video sequences using temporal information. The proposed ap-
proach gave promising results when tested with real data comprising still images
and video sequences from the MuHAVi and MAS databases.
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Abstract. This paper addresses a learning-based human action recog-

nition system from multiple images based on integrating features of seg-

mented 3D human body parts such as face, torso, and limbs. The in-

novation of our proposed 3D human action recognition system consists

of three parts: (1) 3D reconstruction of the target object by tracking

the position of a target object in a scene to voxelize the accurate 3D

human model, (2) Human body model segmentation into several human

body parts using ellipsoidal models in the space of second-order three di-

mensional diffusion tensor fields, and (3) Classification and recognition

of human actions from features of the segmented human model using

Multiple-Kernel based Support Vector Machine. Experimental results on

a set of test volume data show that our proposed method is very efficient

to visualize and recognize the human action using few parameters which

are independent to partial occlusion, dimension, and viewpoint.

1 Introduction

Human action recognition systems [1-3], which are defined to understand ba-
sic human actions from images, have a long history in computer vision. They
give rise to many applications, such as automated surveillance systems, smart
home applications, video indexing and browsing, and human-computer interac-
tion. Human action recognition from a single 2D image is heavily studied by
numerous researchers, but still a challenging issue due to the partial occlusion,
clutter, dependence of viewpoint, and pose ambiguity in the image. In multiple
camera environment, the numbers of observables which can be used for robust
3D human action recognition are extended and its recognition ratio is more reli-
able than single camera based methods and independent of viewpoint. However,
these systems are much more complex and difficult in a high-dimensional and
multi-modal space.

Even though there are some approaches for human action recognition from
multiple images or 3D model recognition systems, human action recognition
system from 3D reconstruction of multiple images combined with a segmenta-
tion technique is new to our knowledge. We propose to solve the problems of
3D human action recognition by focusing on adequate feature extraction and
separation of the human body model into several human body parts from 3D

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 189–199, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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reconstructed models, and measuring the similarity using the features which are
extracted from three-dimensional second order diffusion tensor fields.

The contribution of our proposed 3D human action recognition system can
be summarized as:

1. A photo-realistic 3D reconstruction methodology by tracking the center of
gravity of the target object (section 3.1).

2. The ellipsoidal representation of 3D reconstructed human models whose scale
and rotation are determined by normalized eigen-features (section 3.2), fol-
lowed by a 3D model segmentation into several parts which have similar
tensorial characteristics used as features to recognize human actions (sec-
tion 3.2).

3. Human action recognition using Multiple Kernel based Support Vector Ma-
chine (section 3.3).

2 Related Work

2.1 3D Model Reconstruction

The topic of 3D scene reconstruction with multiple images has been investigated
and produced numerous results in the area of computer vision. The 3D recon-
struction research started early on from a stereo vision based reconstruction
technique [4]. Kang et al. [5] developed a method of multi-view reconstruction
from images to overcome the large occlusions. Hence, they are usually not suit-
able for a full 3D scene reconstruction. Image based visual hull reconstruction
(IBVH) [6] is a real-time 3D scene reconstruction technique from multiple view
images. Seitz et al. [7] presented voxel coloring method to reconstruct the con-
cave objects which cannot be solved by IBVH.

2.2 3D Segmentation

Most 3D model segmentation techniques are based on polygon meshes which
are flexible enough to approximate an arbitrary shape. Chen et al. [8] surveyed
and implemented the 3D segmentation of 3D model segmentation methodologies
such as K-means, graph cuts, hierarchical clustering, primitive fitting, random
walks, core extraction, tubular multi-scale analysis, critical point analysis, spec-
tral clustering, and so on. The number of segments and segment area are different
according to the characteristic of features and clustering methods.

2.3 3D Human Action Recognition

2D/3D human action recognition systems can be largely separated into four
categories. First, structural methods [9] use parameterized models describing
geometric configurations and relative motions of parts in the motion patterns.
This method provided explicit locations of parts which led to advantages for
application of HCI and motion animation, but this approach requires a large
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number of free parameters that have to be estimated. Second, appearance-based
methods using template features [10] need a lower degree of freedom than those
of structural approach, but they rely on either spatial alignment, or spatial-
temporal registration of image sequences prior to reconstruction. The statistical
approach [11] was proposed to overcome the difficulty of finding corresponding
features between models and structures in test images of structural and appear-
ance based methods. Lastly, the event-based motion interpretation method [12]
are popularly used for human action recognition.

3 Our Approach

Most of the above studies are based on computing local space-time gradients
or other intensity based features and might thus be unreliable in the cases of
low quality video, motion discontinuities and motion aliasing. To overcome these
problems, we will explain our new approach for photo-realistic 3D reconstruction
from multiple images, 3D model segmentation, and multiple kernel based human
action understanding.

3.1 Photo-Realistic 3D Reconstruction Based on 3D Boundary
Tracking

We propose a photo-realistic 3D reconstruction methodology from multiple im-
ages which have camera calibration data and appearance model of target object.

From numerous previous photo-realistic 3D reconstruction techniques from
multiple images, IBVH [6] and voxel coloring [7] promised an efficient 3D re-
construction technique in real-time. Nevertheless, the IBVH algorithm is very
dependent on the number of images used, on the position of each viewpoint con-
sidered, on the camera’s calibration quality, and on the complexity of object’s
shape. Voxel coloring takes much time to voxelize the whole environment.

Our proposed 3D reconstruction methodology continuously tracks the 3D
boundary of the target object and then reconstructs the radiance or color at
the surface points by projecting every voxel which is within tracked 3D bound-
ary. Using this method, we do not need to voxelize the hole 3D scene and check
the color consistency for the meaningless voxels.

We consider a scene observed by n calibrated static cameras and we focus on
the state of one voxel at position V chosen among the positions of the 3D lattice
used to discretize the scene. Here we model how knowledge about the occupancy
state of voxel V influences image formation, assuming a static appearance model
which is extracted from kernel density estimation based background subtraction
[13]. As the target object moves in the 3D scene, we track the 3D position of
the target object and extract the candidate 3D region in a 3D scene. Figure 1
shows the concept of our approach. We continuously track the center of gravity
g1, g2, ..., gn of the appearance model in each image and calculate the G points
in the 3D scene which is obtained by intersection of n 3D lays. We extract the
3D lattice by combining the silhouette images of the target object to be recon-
structed with camera calibration information to set the visual rays in 3D space



192 S.M. Yoon and A. Kuijper

Fig. 1. 3D lattice configuration by tracking the 3D boundary of a target object and

voxel carving using color consistency check within 3D lattice. The 3D lattice is deter-

mined by intersection of convex cones. The voxels which are painted with ”green” are

survived voxels by using the color consistency check.

for all silhouette points. They define a generalized cone in which the same object
is presented. The 3D lattice in a whole scene is determined by its intersection
of these cones. Within a 3D lattice, we used the photo-consistency measure to
determine if a certain voxel V belongs to the object being reconstructed or not.
Figure 2 shows the 3D reconstructed object from different viewpoints using our
method. Figure 2(a) shows the input images in various viewpoint, Figure 2(b) is
the 3D lattice which is built by the intersection of convex cones and its carved
3D volume data in a 3D lattice, and Figure 2(c) visualizes 3D model which is
reconstructed by using our approach.

(a)Input images from multiple viewpoints (b)3D lattice and 3D reconstructed object

within the 3D lattice (c)3D reconstructed human body model

Fig. 2. Multiple images and its reconstruction procedure

3.2 3D Human Model Segmentation in Diffusion Tensor Fields

Among variety of 3D surface representation methodologies, the ellipsoidal rep-
resentation of 3D deformable human models is very efficient and effective to
visualize and recognize its actions using few parameters. It allows us to auto-
matically segment the decomposed human model into several body parts by
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measuring the similarity between neighbor voxels for the component-based 3D
human action recognition.

In the following, we describe the two stages in this process: the computa-
tion of the ellipsoidal representation of voxels of the 3D human model and the
segmentation procedure.

Ellipsoidal model based 3D human model representation. The tensorial
maps, defined as topological representations of 3D symmetric, second-order ten-
sor fields, contain and provide more information than other spaces to measure
the similarity between neighbor regions. The generalized symmetric, second-
order three dimensional diffusion tensor fields are defined as follows:

T =

⎛⎝Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

⎞⎠ , (1)

where Txy = Tyx, Txz = Tzx, Tyz = Tzy because the tensor is a symmetric
positive definite matrix. This matrix can be reduced to its principal axes by
solving the characteristic equation:

(T − λ · I)e = 0, (2)

where I is the identity matrix, λ are the eigenvalues of the tensor and e are the
eigenvectors. In each pixel, the tensor can be represented by an ellipsoid, where
the main axis lengths are proportional to the eigenvalues λ(λ1 > λ2 > λ3 > 0).

Evaluating tensor ellipsoidal geometry and their properties are faciliated with
an intuitive domain that spans all possible tensor shapes. Such a domain is
afforded by the geometric anisotorpy metrics of Kindlmann [14]. Given the non-
negative tensor eigenvalues λ1, λ2, λ3, the metrics quantify the certainty with
which a tensor may be said to have a given shape like:

cl = λ1−λ2
λ1+λ2+λ3

, cp = 2(λ2−λ3)
λ1+λ2+λ3

, cs = 3λ3
λ1+λ2+λ3

.

The three metrics add up to unity, and define a barycentric parametrization of a
triangular domain, with the extremes of linear, planar, and spherical shapes at
the three corners. Figure 3 represents a 3D ellipse whose main hemiaxis length is
proportional to the square root of eigenvalues λ and the direction correspond to
the respective eigenvector e of each tensor. Each voxel within 3D reconstructed
human body model is replaced by its corresponding ellipsoidal model which is
shown in Figure 3.

3D model segmentation. The degree of anisotropy using the ellipsoidal de-
composed 3D model can be quantified in a single number called a diffusion
anisotropy index and it is represented as fractional anisotropy (FA). The FA
representation method of the tensorial elements geometrically characterizes the
shape of 3D ellipsoid of each voxel and is defined as follows.
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Fig. 3. Ellipsoidal representation of each voxel according to its eigenvalues and eigen-

vectors

FA =

√
3[(λ1 − λavg)2 + (λ2 − λavg)2 + (λ3 − λavg)2]

2× (λ2
1 + λ2

2 + λ2
3)

(3)

where λavg is the average of λ1, λ2, and λ3. The FA is used as feature to measure
the similarity of neighbor voxels to segment the 3D model.
The 3D model segmentation procedure is as follows:

STEP0 : Initially, the numbers of subregions of the human body model is equal
to the number of voxels of the 3D human model. Calcuate FAij =√

(FVi − FVj)× (FVi − FVj), where FVi and FVi are FA of voxel i and j,
respectively.

STEP1 : Progressively merge the neighbor voxels if FAij is less than threshold
and recalculate the average FA of the merged subregions, FAsub = 1

n

∑n
k=1 FAk,

where the merged sugregion which have n voxels. The voxels i and j are splitted
if FAij exceeds the threshold.

STEP2 : Repeat STEP1 until there are no subregions whose the FAsub is less
than threshold.

Figure 4 shows our segmented human actions from unlabeled volume data
to segmented subregions through the characteristic of ellipse. Figure 4(a) shows
the 3D reconstructed human action from multiple images using our proposed
method, Figure 4(b) shows the ellipsoidal decomposition of the 3D model, and
Figure 4(c) visualizes the 3D segmentation by measuring the similarity between
neighbor voxels.

3.3 3D Human Action Classification Using Multiple Kerrnel Based
Support Vector Machine

In this section, we describe how Support Vector Machine (SVM) is used for effi-
cient classification of highly variant human motions. SVM is primarily a classier
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(a) 3D reconstructed human body model of boxing, jogging, and walking (b)

Superquadric representation

(c) 3D segmentation of human body

Fig. 4. 3D model segmentation from volume data of boxing, jogging, and walking

method that performs classification tasks by constructing hyperplanes in a mul-
tidimensional space that separates cases of different labels. SVM supports clas-
sification tasks and handles multiple continuous and categorical variables.

The performance of different classifiers applied in object detection and recog-
nition systems have been evaluated and compared in the area of pattern recog-
nition and data learning. Bazzani concluded that the Support Vector Machine
(SVM) performs better than the Multi-Layer Perception (MLP) for a small num-
ber of training data [15]. Papadopoulos [16] has also shown that SVM achieves
a higher accuracy rate than Neural Network. Having evaluated the SVM, Ker-
nel Fisher Discriminant (KFD), Relevance Vector Machine (RVM), Feedfoward
Neural Network (FNN), and committee machines.

In {xi, yi}l
i=1, x ∈ Rm where l the number of training features, each x is then

mapped to a Φ(x) and yi is separated into human actions like boxing, jogging,
and walking. The non-linear SVM maps the training samples from the input
space into a higher-dimensional feature space via a mapping function Φ and
construct a hyperplane defined as wΦ(x) + b = 0 to separate examples from the
classes. {xi, yi}l

i=1 in the kernel-induced feature space is related to the kernel
function K which intuitively computes the similarity between examples in SVM.
The standard SVM [17] tries to find a hyperline that has large margin and small
training error.

Instead of having a single kernel (SK) K, suppose that we have a set of
M base kernels K1, K2, ..., KM with corresponding kernel-induced feature maps
Φ1, ..., ΦM . The MK-SVM [18] is extended from the SK-SVM as follows:
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minw,b,ξ
1
2
(ΣM

k=1||wk||)2 + C

l∑
i=1

ξi (4)

s.t. yi(ΣM
k=1w

T
k Φk(xi) + b) � 1 − ξi, ξi � 0, i = 1, 2, , ..., l, where w = {w1, w2, ..

., wM} which is the weight for component Φk, and ξ is the non-negative slack
variables. The regularization parameter C determines the trade-off between the
maximization margin 1

||w||2 and the minimum experience risk.
The eigen-features x, given by FAsub, which are extracted from segmented hu-

man body parts from last section, are used for the learning based human action
recognition system. The FA represents the characteristic of the segmented subre-
gion of human body and it is used for classification of human action recognition
instance.

4 Experiments

We setup our proposed methodology with a Pentium 4 and a CUDA which is
a technology for GPU computing from NVIDIA Geforce 8200. Our experiments
are separated in three categories: (1) 3D reconstruction, (2) 3D segmentation
in the space of diffusion tensor fields, and (3) action recognition results from
MK-SVM technique. Table 1 shows the average running time of our procedure.
In our approach the 3D segmentation clearly consumes most time.

Table 1. Average running times for 3D action recognition from multiple images using

128x128x128 dimensional human body model

Category time(ms)
3D Reconstruction 153
3D Segmentation 1286

3D Action classification 28

4.1 3D Reconstruction

First, we tested our algorithm on the HumanEva dataset1. The images came
from the HumanEva database which contains 7 calibrated video sequences We
first reconstructed the target object from multiple images by the tracking based
3D reconstruction procedure using the provided camera calibration data and
the statistics of the background modeling with voxel size 128x128x128 and
64x64x64 to compare the recognition ratio by changing its dimension. Fig-
ure 5 visualizes the difference between our proposed tracking based 3D recon-
struction method and the original voxel coloring method. The proposed 3D
reconstruction method provides more detail than the original voxel coloring
method.

1 http://vision.cs.brown.edu/humaneva/
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(a) Our proposed 3D reconstruction method (b) Original voxel carving method

Fig. 5. Comparison of 3D reconstruction between our proposed and original voxel

coloring method

4.2 3D Model Segmentation and Action Recognition

Next, we conducted our proposed MK-SVM based 3D human action recognition
and compared it with K-Nearest Neighbor(KNN) classification, and a single
kernel based SVM(SK-SVM). The HumanEva dataset provides various human
motions for four different people. We reconstructed the 3D human model of
boxing, jogging and walking actions and trained the tensorial features. Table
2 is the human action recognition matrix of boxing, walking, and jogging ac-
tions by changing the dimension of 3D human body model from 64x64x64 to
128x128x128. The acceptance ratio of each action in dimension of 128x128x128
is better than in dimension of 64x64x64, especially for jogging.

Table 2. 3D human action recognition ratio using HumanEav Dataset of 128x128x128

and 64x64x64 dimension

Human action Training Testing Boxing Walking Jogging Boxing Walking Jogging
Boxing 600 1200 94.2 1.9 3.9 92.7 2.2 5.1
Walking 600 1200 6.7 84.7 8.6 5.8 83.8 10.4
Jogging 600 1200 7.5 10.8 81.7 5.1 13.5 81.4

(a) 128x128x128 dimension (b) 64x64x64 dimension

Table 3. Comparison of human actio recognition system using KNN and single-kernel

SVMs to compare with our proposed MK-SVM based human action recogntion system

Human action Traning Testing Boxing Walking Jogging Boxing Walking Jogging
Boxing 600 1200 86.2 6.8 8.4 87.4 4.4 7.2
Walking 600 1200 9.3 75.8 12.9 11.6 74.8 13.6
Jogging 600 1200 7.8 12.5 79.7 4.8 14.3 80.

(a) KNN classification method. (b) SK-SVM classification method

Analyzing the errors of not correctly recognized actions we found that, for
example, the action of “boxing” goes to “walking” category because the main
human upper body parts arms and torso are too close to each other and could
not be segmented as separate parts.

We also tested the 3D motion action recognition system in an experimental
environment using four IEEE 1394 cameras using our proposed method. We
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Fig. 6. Example of a wrong classification of our proposed human action recognition

system

Table 4. 3D human action recognition matrix in our experimental environment

Human action testing Boxing Walking Jogging
Boxing 500 83.2 5.4 10.4
Walking 500 13.8 72.7 16.1
Jogging 500 9.5 16.3 74.2

tested 500 3D human models (500 images from 4 cameras which have 640x480
resolution) in a large environment (4m x 15m). The human action recognition
ratio of walking and jogging is lower than the acceptance ratio of boxing, because
their motions are is more similar than that of boxing.

Unfortunately, there is no public dataset for 3D human model based action
recognition system, so we could not directly compare our approach and others.
The state of the art in human action recognition from 2D images [19] is based
on the Weizman and KTH human action dataset. It is not able to correctly
recognize the actions jogging, walking, and running satisfactorily, while our pro-
posed approach using the 3D reconstructed model has a balanced human action
recognition ratio and overcome the dependency of viewpoints.

5 Discussion

In this paper, we have presented a novel 3D human action recognition tech-
nique whose properties come from segmented human body parts’ eigen-features.
Our system extends existing 3D reconstruction methods in the view of photo-
realistic 3D reconstruction, and eigen-feature based 3D model recognition tech-
nique whose properties are come from diffusion tensor fields. Our system is also
very efficient and robust in partial occlusion and clutter of 3D model as shown
in Section 4.

Future work will focus on efforts to reduce processing time. The approach will
also be extended to a 3D model detection and retrieval system.
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Abstract. In this paper, we describe the components of a novel algo-

rithm for the detection of grasping points from monocular images of

previously unseen objects. A basic building block of our approach is

the use of a newly devised descriptor, capable of representing grasping

point shape and appearance by the use of histograms of oriented gradi-

ents in a semi-local manner. Combined with boosting our method learns

discriminative grasp point models for new objects from a set of anno-

tated real-world images. The method has been extensively evaluated on

challenging images of real scenes, exhibiting largely varying characteris-

tics concerning illumination conditions, scene complexity, and viewpoint.

Our experiments show that the method, despite these variations, works

in a stable manner and that its performance compares favorably to the

state-of-the-art.

1 Introduction

Building affordable and scalable platforms, capable of interacting with real en-
vironments represents a tempting goal for robotics research. In this context,
solutions based solely on visual sensory input are moving more into the center
of interest. On one side there are economical considerations to reduce prices by
avoiding expensive sensors. On the other hand, vision input already contains
rich information to harvest for the task of reasoning about an observed scene,
and ultimately manipulating its content by grasping and moving objects.

In our work, we focus on mining monocular vision input to detect potential
points for grasping of previously unseen objects. Recently, Saxena et al. [16,17]
presented a promising approach capable of grasping previously unseen objects
purely based on vision. Their local, texture and colour based, grasp point rep-
resentation is learned from artificially created images of object examples [15].
Grasp points are separately searched for in two input images provided by a
stereo system and only image locations with high confidence of being a grasp
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point are triangulated to infer the 3D-position were the object can be grasped.
Thus the need for reconstructing the object’s 3D shape is avoided.

Bohg and Kragic [5] find grasping points by describing the global object shape
using shape context [3]. As shape context is known to perform poorly in clut-
tered scenes [19], the work assumes high quality figure ground segmentation.
In practice this is achieved with help of an active stereo system and approxi-
mate knowledge of object placement. In [4] their approach is directly compared
to Saxena’s work drawing upon the latter’s training database - reporting sig-
nificantly improved performance. However, this database of artificially created
images presents objects on homogeneous background, thereby greatly simplifying
the task of figure-ground segmentation. Furthermore, performance was quanti-
fied utilizing metrics devised for binary classification - an assessment which, as
we will detail later in the paper, is not suitable for the detection task at hand.

Our approach is motivated by the existence of similar semi-local parts in
objects that themselves have rather dissimilar shapes. A typical example is the
presence of handles in a large variety of objects ranging from scissors to jugs. In
that sense, our method is similar in spirit to the one proposed in [16]. However,
by encoding more semi-local information around grasp points, we arrive at grasp
point representations which, as we will show experimentally, are able to ignore
image clutter to a larger extent. Here, our contribution is twofold: a) We devised
a novel image descriptor based on radially configured histograms of oriented
gradients, facilitating efficient grasp point detection in real scenes. The descriptor
is simple to implement, and can be easily extended to include more visual cues
such as color or texture. b) In contrast to preceding work utilizing artificially
created data, we demonstrate that discriminative grasp point representations can
be learned from images of real scenes. In experiments on a challenging data set,
we show that our method is able to significantly outperform the state-of-the-art.

The remainder of the paper is organized as follows: A sketch of the entire
method is given in Sec. 2. Sec. 3 describes the image-based representation of
grasp points followed by an outline of how these representations are learned in
Sec. 4. The process of detecting grasp points in a novel image is detailed in
Sec. 5. We present our evaluation in Sec. 6 and conclude the paper with Sec. 7.

2 Method Overview

The proposed method is composed of two main steps: 1) Grasp point represen-
tations are learned from annotated images in a discriminative fashion by means
of boosting. For this, our descriptor based on radially configured histograms of
oriented gradients is employed. 2) In the detection phase, the learned models are
densely scanned over a range of scales of an input image. Then, the mean-shift
algorithm is employed to detect the modes of the resulting scale-space response
maps, yielding both the scale and position of potential grasp points. A typical
result obtained with our mehod is depicted in Fig. 1.
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p=0.83

p=0.99

Fig. 1. Detected grasp points (blue circles) and detector responses (right image). Note

the zoom view of the bottle neck in the lower right of the left image.

Fig. 2. Illustration of the descriptor. Probes (red circles) are radially arranged around

the center (red dot). Each probe pools the gradient strength separately from underlying

orientation channels and stacks them in a histogram. To avoid clutter, only K = 3

concentric probe rings on O = 4 orientation channels are shown.

3 Grasp Point Model / Descriptor

Our representation of grasp points is an adoption of Carmichael and Hebert’s [6]
shape descriptor using a circular arrangement of edge probes. Each of these
probes captures the density of the underlying edge image by weighted integration
within a gaussian-shaped receptive field. Borrowing the idea from [20], we extend
the descriptor to operate on oriented gradient responses instead of edges. Having
an input image I, we compute a number C of blurred orientation channels Gσp

o =
Gσp ∗ Go, o = 1 . . . C, one for each discrete orientation. Here, Go = ∂I

∂o is
the image gradient with the derivative taken w.r.t. orientation o. Gσp denotes
a Gaussian kernel with standard deviation σp and ∗ stands for convolution.
Using the blurred orientation channels, probe values at image location (x,y)
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for orientation o can now be efficiently obtained by simply accessing Gσp
o (x, y)

which equals the pooled oriented gradient density at that position. By stacking
all channel-values for one probe location into a vector, a C-dimensional histogram
p of oriented gradients is obtained.

Surrounding a probe at the query position, additional probes are located on
K concentric circles with radii rk = kσp, k = 1..K. Each circle is populated with
an increasing number of 6k evenly spaced probes resulting in a total number of
Np = 3K(K + 1) + 1 probe positions, see Fig. 2.

From this, our descriptor is constructed by stacking all probe histograms
into one vector and normalizing it to unit length to achieve a certain degree of
illumination invariance. Overall, the representation has three parameters: The
size of a probe σp, the number of circles K, and the number of orientation
channels C. Its total dimensionality is given by C(3K2 + 3K + 1).

4 Learning

We employ boosting to learn a discriminative visual representation of grasp
points from annotated training examples. In the context of object detection and
image classification, boosted classifiers have been widely adopted and have been
empirically shown to achieve excellent performance [14,18]. Here, we utilize the
GentleBoost algorithm to build a so-called strong classifier by iteratively com-
bining the outputs of weak learners. In our case, the weak learners are defined
as regression stumps [11] built from individual probe-based gradient histograms.
Following the idea of Laptev [12], at each boosting round weighted Linear Dis-
criminant Analysis (wLDA) is conducted on the vectors formed by the bins of the
orientation histograms for each probe position in the descriptor. The histogram-
vectors are then projected onto the normal w of the discriminant and regression
stumps are fitted to the resulting scalars.

After M rounds of boosting, the final classifier has the form of:

H =
M∑

m=1

am(wT
mp > thm) + bm, (1)

where am, bm, thm are the parameters of the best weak classifier, and wm is
returned by wLDA - all at round m. p is the C dimensional feature vector
described in Sec. 3.

4.1 Training Procedure

In order to train the boosted grasp point detector, positive and negative examples
of grasp points are extracted from training set annotations. Positive examples are
obtained by scaling the annotated grasp regions in each image to the canonical
scale and computing the descriptor at the central point of the grasping region.

Given the high dimensionality of the data and the relatively low number
of positive examples compared to the enormous space of negative examples to
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sample from, we further augment the set of positive examples by employing
jittering. Small amounts of noise are added by randomly re-scaling and rotating
the image, and translating the grasp point position in small ranges [12].

To obtain the negative examples we use two different methods: a) For each
training image we extract descriptors from positions chosen randomly from
points not on the grasping region. b) For positions close to the grasping re-
gion but which do not constitute grasp points, the classifier is often not able to
construct adequate discriminative models based on the randomly chosen nega-
tive examples, and thus returns false detections during testing. To counter this,
we shape the classifier response by providing additionally negative examples po-
sitioned near the grasping region [18]. In particular, we use positions located
on circles centered at the grasp points, with a radius 1.5 times of that of the
grasping region.

5 Detection

Next, we describe how grasp points are found by a sliding window approach,
often utilized in image-based object detection frameworks of which the famous
Viola-Jones detector[21] is probably the most prominent example. Specifically,
to find grasp points of different sizes, we scan images in a range of predefined
scales {sk}, k = 1 . . .K. For an image at scale sk, we proceed as follows:

1. Gradients are computed and their energies are distributed over C different
channel images according to their orientation. Between adjacent orientation
bins, i.e. at the same image position, linear interpolation is used to arrive at
smooth estimates for the channels. The resulting maps are then smoothed
by a Gaussian kernel to obtain blurred channel images Gσp

o , see Sec. 3.
2. At each image position (x, y), the boosted classifier is evaluted on the de-

scriptor values extracted by accessing the blurred orientation maps at the
radially configured probe positions centered on it.

Repeating the above for each scale, we obtain the strong classifiers confidence
H(x, y, sk) which we convert to the posterior probabilities of a grasp point pres-
ence at image position (x, y) and scale sk using the logistic transform proposed
in [10]:

P (grasp point(x,y,sk)) =
1

1 + e−H(x,y,sk)
(2)

For a confidence map computed in such way, we refer the reader to Fig. 1. To
find the set of grasp point detections, mean-shift mode estimation is adopted as
described by Shotton et al. [18]. Mean-shift efficiently locates the local maxima
of the underlying probability distribution, and delineates the associated basin of
attraction thereby effectively supressing nearby weaker maxima. Location and
scale of a detected grasp point are given by the respective mode, while the
confidence in the detection is obtained from the probability density estimate at
the mode’s location.
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Fig. 3. Example images from the dataset consisting of mugs, bottles, and Martini

glasses

Fig. 4. Illustration of grasp point and object annotation. Bounding boxes (red) and

grasp points (black-white dots).

6 Evaluation

6.1 Dataset

To emulate a challenging testing scenario, we compiled a dataset containing
images of 3 object categories taken in realistic settings. The collection consists
of 630 images, of which 210 were images of mugs, 210 of bottles, and 210 of
Martini glasses. 30 of the mug images and 30 bottle images were taken from
the database of Ferrari et al. [9], the remainder was found by a Google image
search. The images exhibit viewpoint changes, considerable background clutter
and in many cases more than one object instance and class are present. The
number of annotated object instances totaled 720. Examples are depicted in
Fig. 3.

Grasp points are represented by circular regions giving position and approx-
imate scale of the relevant structure. Two grasp points were selected for each
mug - one at the top of the handle and one in the middle. Martini glass grasp
points are located at the upmost part of the shaft, bottles were annotated by
the top of the neck. Overall, 956 grasp points have been annotated. In addition,
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(a) (b)

Fig. 5. Evaluation of grasp point detection performance. (a) Precision-recall curves for

different variants of our approach. (b) Our algorithm (blue crosses) versus Saxena’s [16]

method (red circles and green triangles).

each object instance is provided with a bounding box and a label of the object
category, designating the class of the associated grasp points. Note that the
geometric information provided by the bounding box is not used in the current
approach. In our future work however, we plan to integrate this as means of
delineating the class specific image context around the grasping point. Fig. 4
shows examples of annotated object instances and grasp points.

6.2 Procedure

The dataset is split into two equally sized sets for training and testing. From the
training set, grasp point models are learned using the position and size given by
the annotation. During training, images are rescaled such that each grasp point
attains a canonical radius of 7 pixels before extracting the descriptor.

Test images were not rescaled and grasp points exhibit a scale range of roughly
3× from smallest to largest. The detection procedure returns the positions, sizes,
and confidences of grasp point presence at the respective locations. Given a
minimum confidence threshold, resulting detections are regarded as correct if
the circular region of the inferred grasp point rinf agrees sufficiently with the
ground truth grasping point rgt. This is checked using the symmetric overlap
criterion Area(rgt∩rinf )

Area(rgt∪rinf ) ) > 0.25 similar to [1].
In contrast to [4], we compare detection performance by means of precision-

recall (PR) curves [8,13] rather than receiver-operating-characteristics (ROC)
which have been designed for binary classification tasks. The fundamental prob-
lem is that the number of negatives used in ROC’s false positive rate is not
clearly defined for the detection task we are facing. See [2] for a more thorough
discussion on this matter.
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Table 1. PR-AUC values for our approach using different orientation quantisation

and gradient operators. The subscripts π and 2π denote the polarity-ignoring and

non-ignoring filter versions respectively.

4 bins 8 bins

Derivatives PR-AUC PR-AUC

GaussDπ 0.6627 0.6164

GaussD2π 0.5251 0.6112

Sobelπ 0.6656 0.6325

Sobel2π 0.5441 0.6290

6.3 Results

In order to study the influence of histogram granularity and the particular choice
of gradient computation, we compared Gaussian derivatives and the Sobel op-
erator in two variants: Orientation estimation in the full 4-quadrant range, and
ignoring the gradient direction by mapping its orientation in the range from 0
to π, i.e. bright to dark image transitions have the same orientation as dark to
bright. Additionally, orientations were quantisized into C = 4 and C = 8 bin
histograms (channel images). During all tests reported here, the remaining de-
scriptor parameters (see Sec.3) were set to σp = 5 and K = 5, determined by
cross-validation over the training set.

The results of these experiments are depicted in Fig. 5 (a), the corresponding
area-under-curve values (PR-AUC) [18] are listed in Tab. 1. Note that we omitted
plots of Sobelπ and GaussDπ for 8 bins to reduce clutter. One can see that
the Sobel filter consistantly outperforms Gaussian derivatives and that ignoring
gradient polarity has the edge over its counterpart. This is in accordance with [7].
Overall, the best PR-AUC of 0.6656 was obtained by the polarity-ignoring Sobel
operator (Sobelπ) using orientation quantization into 4 channels. Fig. 6 shows
some example detections taken from the test set.

In addition, we compared our method with the approach suggested in [16].
There, a descriptor based on Laws masks was used to encode texture over
multiple scales. Since experiments revealed a poor performance (PR-AUC of
0.3460) of the proposed logistic regression algorithm, to have a fairer compar-
ison we also present the improved results (PR-AUC of 0.5249) obtained using
our GentleBoost-based learning framework. As can be seen from the precision-
recall curves depicted in Fig. 5 (b), the proposed semi-local detector achieves
significantly higher performance.

Finally, we tested our algorithm on images showing novel object classes, not
contained in the training set, with semi-local structures similar to those learned
during training. Thus the handles on the jar, though belonging to a quite dissim-
ilar object than the mugs, were detected as they resemble the mug handles. The
same effect can be seen in the case of scissors. Furthermore as can be observed
in case of the flowers, the detector is able to detect similarities which are per-
haps not immediately apparent - the similarity of a flower stem to a martini glass
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Fig. 6. Detection examples showing successful detections (red) and false positives

(blue)

Fig. 7. Grasp point detections for object classes not contained in the training set

showing meaningful detections (red)

shaft. These examples illustrate that the descriptor is capable of capturing the
shape similarity of image structures leading to meaningful detections of grasping
regions.

7 Conclusions

We presented a method for detecting grasp points in monocular images of newly
seen objects, based on learning grasp points from images containing three ob-
ject classes and four distinct grasping types. Extensive tests have shown that
our approach based on boosted histograms outperforms the state-of-the-art. We
were able to demonstrate that the approach is capable of capturing grasping
relevant information, achieving promising results on familiarly shaped objects
from classes not contained in the training set.

Current work focuses on incorporating more monocular image cues into our
descriptor in order to examine their influence on the detection rate. A more care-
ful investigation of the blurring scale and extensions to automatically determine
the best size of the the semi-local descriptor representation is also of interest.
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Abstract. The vast majority of methods that successfully recover 3D

structure from 2D images hinge on a preliminary identification of cor-

responding feature points. When the images capture close views, e.g.,
in a video sequence, corresponding points can be found by using local

pattern matching methods. However, to better constrain the 3D infer-

ence problem, the views must be far apart, leading to challenging point

matching problems. In the recent past, researchers have then dealt with

the combinatorial explosion that arises when searching among N ! possi-

ble ways of matching N points. In this paper we overcome this search by

making use of prior knowledge that is available in many situations: the

orientation of the camera. This knowledge enables us to derive O(N2)

algorithms to compute point correspondences. We prove that our ap-

proach computes the correct solution when dealing with noiseless data

and derive an heuristic that results robust to the measurement noise and

the uncertainty in prior knowledge. Although we model the camera using

orthography, our experiments illustrate that our method is able to deal

with violations, including the perspective effects of general real images.

1 Introduction

Methods that infer three-dimensional (3D) information about the world from
two-dimensional (2D) projections, available as ordinary images, find applications
in several fields, e.g., digital video, virtual reality, and robotics, motivating the
attention of the image analysis community. Using single image brightness cues,
such as shading and defocus, researchers have proposed methods that work in
highly controlled environments, like laboratories, but result sensitive to the noise
and are unable to deal with more general scenarios. Consequently, the effort of
the past decades was mainly on the exploitation of a much stronger cue: the
motion of the brightness pattern between images. In fact, the image projections
of objects at different depths move differently, unambiguously capturing the 3D
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shape of the scene. This lead to the so-called 3D Structure-from-Motion (SfM)
methods.

SfM splits the problem into two separate steps: i) 2D motion estimation, from
the images; ii) inference of 3D structure (3D motion of the camera and 3D shape
of the scene), from 2D motion. Usually, the 3D shape of the scene is represented
in a sparse way, by a set of pointwise features, thus the 2D motion is represented
by the corresponding set of trajectories of image point projections. When dealing
with video sequences, consecutive images correspond to close views, and those
trajectories can be obtained through tracking, i.e., by using local motion estima-
tion techniques. However, since very distinct viewpoints are required to better
constrain the 3D inference problem, in many situations there is the need to pro-
cess a single pair of distant views. In this scenario, the 2D motion estimation
step i), i.e., the problem of matching pointwise features across views, becomes
very hard and, in fact, the bottleneck of SfM (step ii) has been extensively
studied and efficient methods are available [1]).

Researchers have then addressed the problem of computing point correspon-
dences in a global way, by incorporating the knowledge that the feature points be-
long to a 3D rigid object. However, the space of correspondences to search grows
extremely fast: considering N feature points, there exist N ! ways to match them.
Due to this combinatorial explosion, only sub-optimal methods have been pro-
posed to solve the problem, see, e.g., [2], for an iterative approach that strongly
depends on the initialization. Curiously, in the simpler scenario of dealing with
noisy observations of geometrically equal point clouds, the optimal solution can
be efficiently obtained as the solution of a convex problem [3]. The challenge in
SfM is that the point clouds from which we must infer the correspondences have
distinct shape because they are different 2D projections of the (unknown) 3D
shape.

In this paper, we overcome the difficulty pointed out in the previous para-
graph by using as prior knowledge the orientation of the camera. In fact, in
many situations, that knowledge is available from camera calibration or can be
computed without using feature points and their correspondences. For example,
in scenarios where many edges are aligned with three orthogonal directions, e.g.,
indoor or outdoor urban scenes, the orientation of the camera can be reliably
obtained from the vanishing lines of a single image, see, e.g., [1], or even directly
from the statistics of the image intensities [4]. We show how the knowledge of
camera orientation simplifies the problem, enabling us to derive an algorithm
of complexity O(N2). We prove that this algorithm computes the optimal set
of correspondences for the orthographic camera projection model in a noiseless
scenario and propose a modified version that results robust to uncertain mea-
surements and violations of orthography.

2 Problem Formulation

Consider the scenario of Fig. 1, where two cameras C1 and C2 (or, equivalently,
the same camera in two different positions) capture two different views of the
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world. As usual when recovering SfM, we assume that a set of N feature points
was extracted from each of the images, and their coordinates in the image plane
are represented by

I1 :=

[
x

(1)
1 x

(1)
2 · · · x

(1)
N

y
(1)
1 y

(1)
2 · · · y

(1)
N

]
, I2 :=

[
x

(2)
1 x

(2)
2 · · · x

(2)
N

y
(2)
1 y

(2)
2 · · · y

(2)
N

]
, (1)

where the superscript (i) indexes the points to Ci, for i = 1, 2. Each feature point
has 3D coordinates (Xn, Yn, Zn), with respect to some fixed coordinate frame.
Let that frame be attached to C1 such that: 1) the axes X and Y are parallel
to the axes x and y of the camera frame; 2) the optical center of the camera C1

is aligned with the axis Z (see Fig. 1). The major challenge when attempting
to recover {(Xn, Yn, Zn), n = 1, . . . , N} from I1 and I2 is the correspondence
problem. In fact, we do not know the pairwise correspondences between the
columns of I1 and I2 in (1) because there is not a “natural” way to automatically
order the feature point projections. Although estimating this ordering leads to a
combinatorial problem whose solution, in general, becomes a quagmire for large
N , we show in this paper that, when the relative orientation of the cameras is
known and the perspective projection is well approximated by the orthographic
projection model, an efficient solution can be found.

Consider the orthographic model of a camera [1]: x = PX, where X ∈ P
3

and x ∈ P
2 are, respectively, the homogeneous coordinates of the points in space

and in the image plane. The matrix P ∈ R
3×4 is given by

P =
[

R t
0T
3 1

]
, (2)

where R ∈ R
2×3 contains the first two rows of a 3D rotation matrix, t ∈ R

2 is a
translation vector and 03 is the zero vector in R

3. With the choice of reference

x

y

zC1

C2

Fig. 1. Our scenario, with a choice for the reference frame



Efficient Methods for Point Matching with Known Camera Orientation 213

frame of the previous paragraph, it is straightforward to see that camera C1

captures the first two coordinates of the feature points, i.e., that (x(1)
n , y

(1)
n ) =

(Xn, Yn), n = 1, . . . , N . Naturally, camera C2 captures projections that depend
on the relative position of the cameras, the 3D coordinates of the points, and
their correspondences:

[
I2

1T
N

]
=

[
R t
0T
3 1

]⎡⎢⎢⎣
X1 X2 · · · XN

Y1 Y2 · · · YN

Z1 Z2 · · · ZN

1 1 · · · 1

⎤⎥⎥⎦Π, (3)

where 1N ∈ R
N has all its entries equal to 1, and Π ∈ R

N×N is a permutation
matrix, i.e., a matrix with exactly one entry equal to 1 per row and per column
and the remaining entries equal to 0 (when we multiply a matrix M by Π , we
get a matrix with the same entries of M but with the columns arranged in a
possibly different order).

By using (3), we obtain the model relating the projections of the feature points
in images I1 and I2 with all the unknowns:

I2 =
[
R̂I1 + r̂ZT + t1T

N

]
Π, (4)

where Z = [Z1, Z2, . . . , ZN ]T and R was decomposed as R = [R̂, r̂], with R̂ ∈
R

2×2 and r̂ ∈ R
2×1. When the relative orientation of the cameras is known

(which, as discussed in the previous section, occurs in several practical situa-
tions), i.e., when R̂ and r̂ are known, the problem becomes to find a permutation
matrix Π , a set of 3D point depths {Z1, . . . , ZN}, and a translation vector t that
solve (4). In general, the problem is hard due to the huge cardinality of the set
of all N ×N permutation matrices: N !.

3 Closed-Form Solution for Translation

The choice of the reference frame in the previous section leaves one degree
of freedom: we can place the frame at any point along the axis Z. We now
choose this position in such a way that the problem is simplified: let it be such
that

∑N
n=1 Zn = 1T

NZ = 0, i.e., that the plane XY contains the center of mass
of the feature points.

Multiplying both sides of (4) by 1N and simplifying, we get

I21N =
[
R̂I1 + r̂ZT + t1T

N

]
1N (5)

= R̂I11N + Nt. (6)

where (5) uses the fact that Π 1N = 1N (permutation of a vector with all equal
entries) and (6) uses equalities ZT 1N = 0 (from the choice of reference frame)
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and 1T
N1N = N . From (6), we see that the solution for the translation vector t

does not depend on the remaining unknowns (Π, Z):

t =
1
N

(
I2 − R̂I1

)
1N . (7)

By removing the (now known) translation from the problem, i.e., by replacing
the solution (7) in (4) (and using 1T

N Π = 1T
N ), we get

I2 =
[
R̂I1 + r̂ZT

]
Π +

1
N

(
I2 − R̂I1

)
1N1T

N . (8)

To simplify notation, we re-define our observations by introducing matrices Ĩ1

and Ĩ2, both computed from known data:

Ĩ2 := I2 −
1
N

(
I2 − R̂I1

)
1N1T

N , Ĩ1 := R̂I1. (9)

With these definitions, problem (4) is re-written as

Ĩ2 =
[
Ĩ1 + r̂ZT

]
Π, (10)

where the unknowns are the depths Z1, . . . , ZN , in Z, and the correspondences,
coded by Π .

4 Optimal Solution for Noiseless Data

We first present an efficient algorithm to compute the solution to our problem
when there is no noise, meaning that there exists at least one pair (Z, Π) that
solves (10).

Naturally, the solution for the permutation matrix Π is given by the asso-
ciation of each column of Ĩ1 with a column of Ĩ2, for the correct value of Z.
Let column n of Ĩ1 (resp. Ĩ2) be represented by [X̃n, Ỹn]T (resp. [x̃n, ỹn]T ) and
consider the error Eij of associating column j of Ĩ1 with column i of Ĩ2, i.e.,

Eij = min
Zj

[
x̃i − X̃j − r̂1Zj

]2

+
[
ỹi − Ỹj − r̂2Zj

]2

, (11)

where r̂ = [r̂1, r̂2]T . The minimizer Z∗
j solving (11) is straightforwardly obtained

in closed-form:

Z∗
j =

r̂1(x̃i − X̃j) + r̂2(ỹi − Ỹj)
‖r̂‖2 . (12)

Our algorithm, detailed and analyzed in the sequel, computes for each column i
of Ĩ2, the column j∗ of Ĩ1 that minimizes error Eij (11) with respect to j (without
noise, for each i there exists at least one j∗ such that Eij∗ = 0). In the algorithm
description below, the N × N permutation matrix Π is simply parameterized
by a N × 1 vector perm: the jth column of Π has entry permj equal to 1 (and,
obviously, the others equal to zero); also, |S| denotes the cardinality of set S
and S1\S2 the set of elements of S1 that do not belong to S2.
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Algorithm 1

Inputs Matrices Ĩ1 and Ĩ2, organized into the corresponding sets of columns
B1 = {[X̃1, Ỹ1]T , . . . , [X̃N , ỸN ]T } and A =

{
[x̃1, ỹ1]T , . . . , [x̃N , ỹN ]T

}
, and

vector r̂.
Procedure For i = 1, . . . , N (N = |A|)

– For all j = 1, . . . , |Bi|, compute Z∗
j (12) and Eij (11);

– j∗ = argminj Eij;
– permj∗ = i, Zj∗ = Z∗

j∗ ;
– Bi+1 = Bi\[X̃j∗ , Ỹj∗ ]T .

Outputs Vectors perm and Z.

Algorithm 1 consists of N loops where, in each loop, a column of Ĩ2 is assigned to
a column of Ĩ1. Each assignment requires a search over, at most, N possibilities.
It is then clear that our algorithm has complexity of O(N2), in particular, we
obtain the total number of floating point operations (flops) as 7N2 + 7N − 14.
Before proving optimality of Algorithm 1, we interpret it in a geometric way.
Defining each possible “displacement” Ĩ1 → Ĩ2 as aij := [x̃i − X̃j , ỹi − Ỹj ]T , the
cost minimized in (11) can be written as ‖aij−Zj r̂‖2. So, for each column [x̃i, ỹi]T

of Ĩ2, our algorithm searches the column [X̃j , Ỹj ]T of Ĩ1 that minimizes ‖aij −
Zj r̂‖2 for all possible values of Zj . Since this expression achieves its minimum
(zero) when aij is collinear with r̂ (which we synthetically denote by aij//r̂),
Algorithm 1 assigns pairs of columns such that their difference is “as parallel as
possible” to r̂. This collinearity is a re-statement of the fact that epipolar lines
are parallel in an orthographic stereo pair [1] (more generally, the trajectories of
image projections of a rigid scene can be represented in a rank 1 matrix [5]).

Theorem 1 (Optimality of Algorithm 1). If there exists at least one pair
(Z, Π), such that (10) holds, then the outputs of Algorithm 1 determine a pair
(Z̄, Π̄) that solves (10).

Proof. Suppose the pair (Z∗, Π∗) is such that (10) holds. For each i = 1, . . . , N ,
there exists one and only one k such that

Π∗
ki = 1 (13)

(because Π∗ is a permutation matrix). We now denote by j∗(i) the assignment
produced by Algorithm 1, i.e., we make explicit the dependence of j∗ on i.
Obviously, if j∗(i) = k for all i = 1, . . . , N , then the algorithm returned an
optimal solution. So, for the remaining of the proof, we assume there is an
index i such that j∗(i) �= k. We will see that, even in this case, (10) holds for
the solution provided by the algorithm, because Eij∗(i) = 0, for all i.

A simple way to complete the proof is using contradiction. Assume i is the
smallest index such that Eij∗(i) > 0 (obviously j∗(i) �= k). If Eij∗(i) > 0, then
[X̃k, Ỹk]T �∈ Bi (at the ith loop). Thus, there exists an index l (1 ≤ l < i) such
that [x̃l, ỹl]T //[X̃k, Ỹk]T (because Elj∗(l) = 0 for all 1 ≤ l < i). According to the
assignment defined by (13), we have [X̃k, Ỹk]T //[x̃i, ỹi]T , thus [x̃l, ỹl]T //[x̃i, ỹi]T .
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Also, since Π∗ is a permutation matrix, there exists an index m (1 ≤ m ≤
N), such that Π∗

ml = 1, or, equivalently, such that [X̃m, Ỹm]T //[x̃l, ỹl]T , thus,
[X̃m, Ỹm]T //[x̃i, ỹi]T . We now consider two cases: 1) if [X̃m, Ỹm]T ∈ Bi, there is
a contradiction because Eim = 0; 2) if [X̃m, Ỹm]T �∈ Bi, it is straightforward to
find a vector [X̃m′ , Ỹm′ ]T ∈ Bi such that [X̃m′ , Ỹm′ ]T //[x̃i, ỹi]T , by performing
steps like the ones above, which brings us back to case 1).

5 Approximate Solution for Noisy Data

In practice, not only the knowledge of the camera orientation is uncertain but
also the feature point projections are noisy. Since Algorithm 1 is based on the
collinearity of a vector that depends on the camera orientation (r̂) with vectors
that depend on the feature point projections ([x̃i− X̃j , ỹi− Ỹj ]T ), its behavior is
sensitive to disturbances affecting these vectors. We now propose a modification
of this algorithm, which results robust not only to the noise but also to violations
of the orthographic projection model.

From model (10) we note that the clouds of points in Ĩ1 and Ĩ2 differ by r̂ZT .
Since r̂ contains entries of a rotation matrix, thus with magnitude smaller than
1, in practice, the patterns of points in Ĩ1 and Ĩ2 will almost coincide when the
depth of the scene is not too large (more rigorously, when r̂ZT is negligible if
compared to the minimum distance between points), even if the corresponding
points in I1 and I2 are very distant (see an insightful example in Fig. 4). This
motivated us to use the matching criterion of minimizing the Euclidean distance
between points in Ĩ1 and Ĩ2,

E′
ij =

∥∥∥∥[x̃i

ỹi

]
−

[
X̃j

Ỹj

]∥∥∥∥2

, (14)

rather than the less robust collinearity implicit in (11).

Algorithm 2

Inputs Matrices Ĩ1 and Ĩ2, organized into the corresponding sets of columns
B1 = {[X̃1, Ỹ1]T , . . . , [X̃N , ỸN ]T } and A =

{
[x̃1, ỹ1]T , . . . , [x̃N , ỹN ]T

}
, and

vector r̂.
Procedure For i = 1, . . . , N (N = |A|)

– For all j = 1, . . . , |Bi|, compute E′
ij (14);

– j∗ = argminj E′
ij;

– permj∗ = i, Zj∗ = Z∗
j∗ (12);

– Bi+1 = Bi\[X̃j∗ , Ỹj∗ ]T .
Outputs Vectors perm and Z.

Our experiments, some of them singled out in the following section, demonstrate
that Algorithm 2 successfully infers correct feature point correspondences when
dealing with real images. In spite of correctly determining correspondences, the
accuracy of the depth estimates in Z strongly depends on the magnitude of the



Efficient Methods for Point Matching with Known Camera Orientation 217

components of r̂. In fact, assuming the correspondences are known, for example,
Π = IN×N (for simplicity), model (10) becomes Ĩ2 − Ĩ1 = r̂ZT , making clear
that the accuracy in the estimation of Z depends not only on the accuracy of
the measurements (Ĩ1, Ĩ2, r̂) but also on the magnitude of the components of
r̂. In particular, we obtain an upper-bound for the depth estimation error as
ρZ = max |Ĩ2 − Ĩ1|/ min |r̂|. Naturally, when the ratio ρZ is large, we can still
use our algorithm to estimate the correspondences between the feature points
(the bottleneck of the problem), whose accuracy is not affected by ρZ , and then
use a standard algorithm to recover SfM, eventually using a larger set of images
to reduce ambiguity, see, e.g., [1].

6 Experiments

To test the algorithms with ground truth, we synthesized data. In particular, we
generated the 3D world as a set of 50 points randomly distributed in [−200, 200]3

and relative orientations between the cameras by specifying random rotation ma-
trices. Then, we synthesized measurements according to the model in expression
(3), for random permutation matrices. As expected, according to our theoretical
derivation of Section 4, Algorithm 1 always produced the correct result: it suc-
cessfully recovered the permutation, i.e., the correct correspondences between
the points, and their depth. To test robustness to disturbances, we then ran ex-
periments by considering inaccurate knowledge of camera orientation and noisy
feature point projections. As anticipated in Section 5, we observed that Algo-
rithm 2 results more robust than Algorithm 1. The plot in Fig. 2 illustrates this
point by showing the average number of wrong correspondences as functions
of the (white Gaussian) measurement noise standard deviation (st.dv.). Note
that, even for noise st.dv. of 5 pixels, Algorithm 2 almost always recovers to-
tally correct correspondences. In what respects to depth estimation accuracy, the
magnitudes of the errors were smaller than the magnitudes of the measurement
noise.

We tested our algorithms with real images. Two examples are shown in Fig. 3,
which contains the two pairs of images with feature points superimposed. Note
that, in both examples, corresponding features are far from being close to each
other, preventing thus the usage of “local” methods. We used standard cali-
bration techniques to compute camera orientation [6] and then run our algo-
rithms. The plots in Fig. 4 provide insight over our approach: while the feature
point projections of corresponding features in I1 and I2 are in general far apart,
their “versions” in Ĩ1 and Ĩ2 are close. As a consequence, Algorithm 2 recovered
the correct correspondences in both cases. We emphasize that these examples
strongly depart from the assumed orthographic projection (see the perspective
effects between the pairs of images in Fig. 3), thus, that our approach is able to
deal with a wide range of real life scenarios.
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Fig. 2. Number of incorrect correspondences, for a 3D world of 50 points, as functions

of the noise power (mean over 1000 runs)
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Fig. 3. Two pairs of real images with feature points superimposed
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Fig. 4. Left: feature point coordinates in I1 and I2, extracted from the pair of images

in the top of Fig. 3 (the blue circles are from the left image and the red crosses from

the right one). Right: corresponding entries of Ĩ1 and Ĩ2, computed from known data,

see (9).

7 Conclusion

We proposed efficient algorithms for finding simultaneously the correspondences
between points in two images and their depth in the 3D world. Our approach
is based on the facts that, in many situations, the relative orientation of the
cameras is available, or can be easily inferred, and the camera model can be
approximated by an orthographic projection. The resulting complexity is O(N2),
where N is the number of feature points (compare with N !, the number of
possible correspondences). We prove the optimality of a first algorithm when
dealing with noiseless data and develop a modified version that results more
robust to uncertainty in the measurements.
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Abstract. Stereo cameras, laser rangers and other time-of-flight rang-
ing devices are utilized with increasing frequency as they can provide
information in the 3D plane. The ability to perform real-time registra-
tion of the 3D point clouds obtained from these sensors is important in
many applications. However, the tasks of locating accurate and depend-
able correspondences between point clouds and registration can be quite
slow. Furthermore, any algorithm must be robust against artifacts in 3D
range data as sensor motion, reflection and refraction are commonplace.
The SIFT feature detector is a robust algorithm used to locate features,
but cannot be extended directly to the 3D range point clouds since it
requires dense pixel information, whereas the range voxels are sparsely
distributed. This paper proposes an approach which enables SIFT appli-
cation to locate scale and rotation invariant features in 3D point clouds.
The algorithm then utilizes the known point correspondence registration
algorithm in order to achieve real-time registration of 3D point clouds.

1 Introduction

Due to the relative inexpensiveness and multiple benefits available from repre-
senting the viewed environment in 3D images, sensors and stereo cameras that
are able to provide 3D point cloud data are becoming increasingly popular. 3D
point cloud data representation is extremely important in various fields such as
archaeology, geology, oceanography and lately even in robotics, where 3D point
clouds are increasingly utilized for mapping and localization of robots in a 3D
environment.

However, in all these application domains it is rare to obtain a single repre-
sentation of the data [1] and as such multiple frames of point clouds have to
be obtained and registered with respect to each other in order to construct a
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Fig. 1. Point cloud obtained from an IR-Ranger

composite map or scene. This composite data can be then further utilized for
localization, analysis or visualization purposes.

Full automation of the registration process of range image 3D point clouds
is a topic of active research and most systems still rely upon user input in
order to determine the initial transformation. Additionally, the algorithms are
highly processor intensive [2] making real-time registration of these point clouds
a non-trivial effort. Furthermore, range point clouds provide another challenge as
compared to intensity images in the form of noise that may be present within the
returned data, causing false artifacts to appear in the point clouds or making
the point cloud too sparse, with not enough usable information within it [3].
For example, range image point cloud data obtained from IR rangers can be
highly noisy because of spurious readings resulting from ambient light and also
as a result of the surface property of the target object; if the object is dark the
range data would be erroneous since infra-red light is absorbed by darker colors.
Though it is possible that this erroneous data may provide matchable features
in some applications, in all our tests there were no matches located within such
areas. Furthermore, the 3D shape formation errors induced by this data can lead
to the registered point clouds appearing highly deformed.

A rendering of one such frame of a point cloud is provided in Figure 1. The
noisy nature of this data is clearly visible in this representation. The point cloud
frame consists of a number of boxes stacked upon each other; the boxes have a
large circular black section painted in the middle. In the front view, this section
appears as a white empty space, but if a top view is obtained it becomes clear
that this feature is still present, but displays much further behind the box. This
erroneous result is introduced because the black color absorbs the IR ranging
beacon and as such the farthest possible distance is assumed for that region. It
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is extremely important for the correspondence detection algorithm to be able to
successfully function despite the existence of noise [4].

In order to enable real-time automatic registration of these point clouds, our
approach depends upon locating robust features, invariant to scale, rotation and
point of view within the point clouds. These robust features can then be used
with a high certainty to locate correspondences between the point clouds, by
matching these features within two sets of voxels. Registration of the two images
is then carried out using a known point correspondences algorithm. However, to
reduce the effect of the possible noise in range data, it is necessary to select a
feature descriptor that is very robust and, more importantly, invariant to scale
and rotation changes.

As such, to meet our goals of locating a high number of features with a high
degree of certainty, repeatability from multiple poses and in data with high
noise, an algorithm utilizing features based upon the Scale Invariant Feature
Transform (SIFT) descriptor model [5] was developed to find correspondences
between the point clouds. The SIFT features are highly robust in that they are
orientation invariant and are applicable at multiple scales. The SIFT feature
detector algorithm is able to generate a large number of localized features with
a relatively low computational cost. The detected SIFT features in the point
clouds can be matched with a high degree of certainty and repeatability, from
multiple poses and without respect to scale.

The following sections of the paper present information related to the SIFT
algorithm and then proceed to describe the approach used to find SIFT features
in 3D point clouds. The correspondence detection algorithm and the registra-
tion method used are also discussed. Some results, test and performance data
obtained using the approach are presented and discussed along with the conclu-
sions that are drawn from the results.

2 The SIFT Feature Detector

Robust detection of features in a scene are necessary in order to find correspon-
dences within a point cloud so as to expedite the registration process, which
normally can be computationally expensive. The features provided by the SIFT
algorithm are local and invariant to image scale and rotation, thereby making
them quite robust. These features are also robust in response to changes in il-
lumination and minor changes in viewpoint while, being highly distinctive [6].
The SIFT algorithm is implemented in four stages that provide a result in form
of multiple feature descriptors that are represented as a 128-element vector to
achieve scale and rotational invariance.

The first stage of the algorithm is where all possible points of interest, known
as key-points, are detected. In order to achieve this, the input data is succes-
sively convolved with Gaussian filters at different scales, and then the difference
of successive Gaussian-blurred images are taken. The local extremum points that
exist within the Difference of Gaussians (DoG), an approximation to the Lapla-
cian, at multiple scales are then accepted as the key points. Once the initial set
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of candidate key points is obtained from the DoG images, they are analyzed
within their own neighborhood and adjacent scales, to determine whether they
are a local maxima or minima. Furthermore, the second step discards the key-
point coordinates that are located in noisy space. This is achieved by eliminating
candidates that lie in a region of low contrast or on the edges.

The third step achieves invariance to rotation by assigning each key-point one
or more orientations. To compute the orientation of a point in a scale-invariant
manner, the Gaussian-smoothed image corresponding to the scale from which
the key-point was originally derived is taken and an orientation and gradient
magnitude assigned to it. Magnitude and direction calculations for the key-points
are performed for every pixel in the neighborhood and an orientation histogram
is generated with 36 bins, each bin covering 10 degrees. Once the histogram is
fully populated the orientations with the highest peaks and those that are within
80% of the highest peaks are assigned to the key point.

The final step in the SIFT algorithm actually computes the descriptor vector
that can be used to identify and further match each key point. This step is
extremely similar to the orientation assignment method. The feature descriptor
is computed as a set of orientation histograms on a pixel neighborhood of size
4 times 4. The histograms are relative to the key point orientation and the
orientation data is derived from the image that corresponds to the key point’s
scale. The representations now contain 8 bins, each leading to the derivation of
a SIFT feature vector that contains 128 elements. This vector may be used to
perform image matching or pattern recognition.

3 The Registration Algorithm

The aim of the work presented is to be able to enable automatic real-time reg-
istration of the 3D point clouds. Currently, the most popular method for regis-
tration is the Iterative Closest Point (ICP) algorithm or some derivative of the
same [1]. The ICP algorithm and most of its derivatives are computationally ex-
pensive, giving rise to the necessity of being able to perform registration based
upon pre-located correspondences from a fewer set of points, in order to speed
up the overall performance of the registration process. However, this approach
requires that the pre-computed correspondences between the point clouds be
calculated quickly, while also ensuring their accuracy between frames that could
have changing rotation, translation and scaling. In order to achieve this goal a
three-step algorithm that uses the SIFT feature descriptor to describe key points
in point clouds is designed. The three steps of the algorithm (data preprocessing;
SIFT descriptor generation and feature matching to locate correspondences; and
registration of point clouds) are discussed in the following subsections.

3.1 Data Preprocessing

The SIFT feature detector is designed to function only with 2D datasets and as
such, in order to extract SIFT features from the range data in the point cloud,
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Fig. 2. Square-root scaled image of a point cloud; (a) The point cloud; (b) Square-root
scaled range data

this information is square root scaled to fit between 0-255. The Euclidean dis-
tance to each individual (x, y, z) coordinates within the point cloud is calculated
from the origin (0, 0, 0) and scaled using square root scaling. An image represen-
tation of this range data square root scaling can be seen in Figure 2. This data
was derived from a Swiss IR Ranger mounted on a mobile robot.

Upon performing the square-root scaling, the data is passed through a PNG
converter in order to obtain images to which the SIFT operator is applied. The
SIFT feature detector requires continuous points in the neighborhood of a pixel
to function. Voxels in a 3D range point-cloud are not densely located, and as
such the SIFT detector cannot be extended to 3D range point-clouds directly.
This necessiates the square-root scaling step before the SIFT feature detector
can be used.

3.2 SIFT Feature Detector and Matching

The SIFT feature detector is built using OpenCV [7] to follow closely the SIFT
algorithm from [5,6]. The SIFT algorithm takes as input a PNG image corre-
sponding to the square-root scaled representation of the point cloud and com-
putes the 128-element vectors for every identified feature key point.

Upon obtaining the SIFT feature descriptors from the square root scaled
images for the two point clouds to be registered, correspondences between the
(x, y, z) coordinates in the point clouds is obtained by searching for matching
SIFT descriptors, using the RANSAC algorithm [8]. The RANSAC algorithm
selects a set of feature pairs randomly and computes the set of all feature pairs
conforming to the implied transformation. A support set is rejected if it results
in a size that is below a certain threshold.

Figure 3 shows matches found between the scaled point cloud images. The
results in Figure 3 make it appear as though the the number of corresponding
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Fig. 3. SIFT descriptor based matches for two frames from a 3D point cloud data
set. Each subfigure represents different types of point cloud data from the same frame
(a) Range point cloud (b) Intensity point cloud (c) Range & Intensity combined point
cloud (using intensity as another dimension in scaling) (d) Another Range and Intensity
combined point cloud (obtained by multiplying intensity and distance before scaling).

matches is not very high. However, the data depicted in this figure is from a Swiss
IR Ranger mounted on a robot that is moving swiftly, causing it to be blurry.
This gives rise to a limited set of features to match, but our approach functions
by successfully performing registration between images as long as at least three
correspondences are located. Since a relatively high number of correspondences
are located even in noisy and blurry data, the SIFT feature detector appears to
function robustly on scaled range images as well.

Once the matches are found on the basis of the RANSAC algorithm, correspon-
dences between the 3D point clouds are easily derivable since the corresponding
location of each key point in the square-root scaled data is known within the point
cloud as well. The set of resultant correspondences can now be further used with
the chosen registration algorithm.

3.3 Point Cloud Registration

Registration is necessary in order to be able to compare or integrate the data
from different measurements. This step provides the relative rotation, transla-
tion and scale of the two 3D point clouds being compared. The popular ICP
algorithm is memory and processor intensive, thereby being unsuitable for real-
time applications [9]. However, if a known points correspondence algorithm is
used, this can considerably speed up the registration performance.

As such, for the purpose of speeding up the registration step and owing to the
robustness of the SIFT features, the known points correspondence registration
algorithm based on quaternions is utilized in our approach. Every corresponding
point in the range point clouds can represent a quaternion with c = 0 and x, y
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and z coordinates given by the respective coordinates of the point in the 3D
point cloud.

By comparing data from two consecutive point clouds, we are able to retrieve
the quaternion of the rotation matrix ǔ∗ from the eigenvector corresponding to
the maximum positive eigenvalue of the 4x4 matrix N shown below:

N =
n∑

i=1

Γ̄ (řl,i)T Γ (řr,i) (1)

Further, the rotation matrix can be obtained from the rotation quaternion by,

R = Γ̄ (ǔ∗)T Γ (ǔ∗) (2)

Having obtained the rotation matrix R, the translation quaternion and scale
factor are calculated using,

r∗l/r ≡ r̄r + sRr/l(r̄l) (3)

s∗ =

∑n
i=1(r

′
r,i)

T Rr/l(r′l,i)∑n
i=1

∥∥∥r′l,i
∥∥∥2 (4)

The matrix calculations required for the registration step were performed using
the GSL library [10] and several extensions were written in order to calculate
the eigenvectors, eigenvalues, vector normalization and etc.

We also further extended our work in order to utilize registration to derive
the roll, pitch and yaw between the consecutive frames. This can be extremely
useful in robotics since it provides a method to derive odometry by using only
range sensor data, rather than depending upon sensors like GPS, which may not
function under certain conditions. After obtaining the rotation matrix, calcula-
tion of the respective roll, pitch and yaw is a straightforward task of selecting
the appropriate row/column pairs from the rotation matrix. Having obtained
translation and the yaw, pitch and roll the robot odometry is available. This can
be used in localization and mapping tasks commonly performed by robots.

4 Testing and Results

The test dataset used to evaluate the overall algorithm was obtained from a
Swiss IR Ranger mounted on a mobile robot. The dataset consists of 290 frames
of point clouds. The (x, y, z) location within the point cloud corresponds to
the measured distance in millimeters. This data is retrieved frame by frame and
supplied to the software running on a Linux platform in order to register the two
point clouds. The test system used was a SuSe Linux installation on a platform
with 512MB RAM and a 1 GHz AMD Athlon64 CPU.

The robustness of the SIFT features and their ability to have more than a
single orientation at a particular point can cause the RANSAC algorithm to
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(a) (b) (c)

Fig. 4. Results of matching a template; (a) Template without rotation; (b) 60◦ rotated
template; (c) 90◦ degree rotated template

successfully find more than one correspondence of a feature in the adjacent
frame. This is especially useful in case a particular pattern or object needs to
be located within a particular point cloud. This may be achieved by having a
reference template point cloud of a particular object and then using our approach
to register the target and template point clouds.

Figure 4 shows the results of such a template matching experiment. In this
case the template used was a subset of a cardboard box placed in front of the
Swiss IR Ranger. The target point cloud was obtained by stacking multiple
boxes of this type and then registering the point cloud to the template. The
lower half of all the images in Figure 4 show the template and the upper half
are the target point cloud representation. The template data was also rotated in
order to ensure that the features from the template could still be matched in the
target point cloud. As is clear from Figures 4(a), (b) and (c), our approach is
able to find multiple correspondences between the template and the target point
cloud, irrespective of the rotation of the template data and angular position of
the targets within the point clouds.

We also ran an experiment to test the ability of our approach to provide
robot odometry using the method described in Section 3.3. In order to do so,
each consecutive 3D point cloud was registered with the previous one and a
rotation, translation and scaling were derived, which also provided us with the
yaw, pitch and roll. The obtained yaw, pitch, roll, and translation values were
compared with those provided by the on-board sensors by plotting a route map
for the robot as predicted by both data sources and also plotting the yaw, pitch
and roll in a similar fashion. Since the robot was moving on a 2D surface, the
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Fig. 5. Motion of the robot as predicted by the odometry derived from 3D point cloud
registration vs. robot motion as obtained from navigational sensors (IMU, gyroscope
and compass). Red line is from point clouds matching, while blue is the recorded robot
odometry.

roll data was always constant. However, the odometry derived from the 3D point
clouds closely matched that provided by the other sensors.

Figure 5 shows the path taken by our test robot. While the shape of the po-
sitional odometry derived from the 3D point cloud data is similar to the actual
path, there is quite a lot of deviation between the two. However, this deviation
can be explained by the fact that some of the frames that had multiple corre-
spondences, like those in Figure 4, were not considered in the final result since
the multiple locations of the correspondences led to errors. In the figure, the
odometry seems more accurate, but it represents the ideal path, which does not
consider wheel-spin. The difference between the resulting endpoints can reduced
by applying a Kalman filter on the SIFT matching results. As such, these re-
sults could further be improved by applying some filtering, however, they clearly
demonstrate the effectiveness of using 3D point cloud data for obtaining odom-
etry information as well. The obtained results can at least be used as a basis for
understanding robot trajectory.

Lastly, the other important performance criterion is the run-time performance
of the algorithm in finding the correspondences between point clouds and then
performing the corresponding registration. In our tests, the software was able
to achieve a frame rate of 6.36 fps. We are confident that this could further be
improved by adding optimizations methods, which were omitted in this version
for the sake of simplicity and testing. However, this frame rate is within the
range for real-time performance.
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5 Conclusion

In our work we porposed a new feature extraction method for 3D data by ap-
plying the SIFT feature descriptor to 3D point clouds and scaling the data sets
into images, which the SIFT descriptor could work with. The point clouds could
then be registered based upon the correspondences of the feature points. This
implementation makes it clear that the SIFT descriptor retains its robustness
even when utilized with range data since the correspondences obtained appear
to be visually correct. Moreover, even in highly noisy IR range data, multiple
correspondences are successfully found in case of template matching.

The algorithm performs quite well in locating correspondences between point
clouds and registering them with near real time performance. Furthermore, the
preliminary experimental results suggest that even odometry data derived from
calculating the relative translation, rotation and scaling between successive point
clouds is close to being accurate, however, it may need further filtering and an
implementation of Kalman filters to have the error component removed.
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Abstract. This paper presents a robust technique for estimating on-

board monocular vision system pose. The proposed approach is based

on a dense optical flow that is robust against shadows, reflections and

illumination changes. A RANSAC based scheme is used to cope with

the outliers in the optical flow. The proposed technique is intended to

be used in driver assistance systems for applications such as obstacle or

pedestrian detection. Experimental results on different scenarios, both

from synthetic and real sequences, shows usefulness of the proposed

approach.

1 Introduction

During the last decade on-board vision has gained popularity in the automotive
applications due to the increase of traffic accidents in modern age. According to
the World Health Organization, every year almost 1.2 million people are killed
and 50 million are injured in traffic accidents worldwide [1]. A key solution to
this is the use of intelligent vision systems that are able to predict dangerous
situations and anticipate accidents; these systems are usually referred in the
literature as advanced driver assistance systems (ADAS). They help the driver
by providing warnings, assisting to take decisions and even taking automatic
evasive actions in extreme cases. Some common examples are lane departure
warning, pedestrian protection systems and adaptive cruise control.

On-board vision systems can be classified into two different categories: monoc-
ular or stereo. Although each one of them has its own advantages and disadvan-
tages both approaches have a common problem: real-time estimation of on-board
vision system pose—position and orientation—, which is a difficult task since:
(a) the sensor undergoes motion due to the vehicle dynamics, and (b) the scene
is unknown and continuously changing.

In general, monocular based approaches tackle the camera pose problem by
using the prior knowledge of the environment as an extra source of information.
For instance, Coulombeau and Laurgeau [2] assume that the road observed on
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images has a constant known width; Liang et al. [3] assume that the vehicle
is driven along two parallel lane markings, which are projected to the left and
to the right of the image; Bertozzi et al. [4] assume that the camera’s position
and orientation remain constant through the time. Obviously the performance
of these methods depends on fulfillment of assumptions, which in general cannot
be taken for granted.

On the other hand, stereo based approaches have also used prior knowledge of
the scene to simplify the problem and to speed up the whole process by reducing
the amount of information to be handled. For instance, [5] proposes to reduce
the processing time by computing 3D information only on edge points (e.g.,
lane markings on the image). Similarly, the edge based v-disparity approach
proposed in [6], for an automatic estimation of horizon lines and later used for
applications such as obstacle or pedestrian detection (e.g., [7],[8]), only computes
3D information over local maxima of the image gradient. A different stereo vision
based approach has been proposed in [9]. It uses dense depth maps and is based
on the extraction of a dominant 3D plane that is assumed to be the road plane.
Camera’s position and orientation are directly computed, referred to that plane.
A recent work [10] proposes a novel paradigm that is based on raw stereo images
provided by a stereo head. This paradigm includes a stochastic technique to
track vehicle pose parameters given stereo pairs arriving in a sequential fashion.
In [10], the assumption is that the selected region only contains road points, as
well as the road surface is assumed to be a plane.

The current work proposes a novel approach for estimating camera’s position
and orientation for monocular vision systems, which are finally represented as
a single value. It is based on a dense optical flow estimated by means of the
TV-L1 formulation. Previous approaches rely on local formulations: a technique
based on optical flow with template matching scheme was used in [11], while a
maximum likelihood formulation over small patches was introduced in [12].

The main advantage of the proposed approach with respect to other monocu-
lar based approaches is that it does not require feature extraction neither imposes
restrictive assumptions. The advantage with respect to the previous optical flow
based approaches is that the current one is based on an accurate variational
dense optical flow formulation. Finally, since it is based on a monocular vision,
a system cheaper than stereo based solutions can be reached.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the TV-L1 formulation used to compute dense optical flow, together with
the proposed adaptation to reduce the processing time or to increase the accu-
racy of the flow estimation. The proposed approach is presented in Section 3.
Experimental results on different sequences/scenarios are presented in Section
4. Finally, conclusions are given in Section 5.

2 TV-L1 Optical Flow

State of the art in optical flow techniques unveil that varational techniques give
dense estimation with more accuracy as compared to other approaches. TV-L1
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is a variational optical flow technique proposed in [13] that gives dense flow field.
In the current work, an improved version [14] is used, which is briefly presented
in this section. As the initial formulation of the variational method proposed
by Horn and Schunck [15], the formulation in [14] also involves an optical flow
constraint and a regularization term but both of them with L1 norm. The TV-L1

optical flow is obtained by minimizing the following energy function:

E =
∫

Ω

{ α |I1(x + u(x))− I0(x)|︸ ︷︷ ︸
Data Term

+ |∇u|︸︷︷︸
Regularization

} dx, (1)

where I0 and I1 are two images; x = (x1, x2) is the pixel location within a rect-
angular image domain Ω ⊆ R2; and u = (u1(x), u2(x)) is the two dimensional
displacement field. The parameter α weighs between data term and regulariza-
tion term. The objective is to find the displacement field u that minimizes the
energy function in (1). The regularization term |∇u| with L1 norm is called
total variation regularization. Replacing these data and regularization terms
with L2 norm lead us to the original Horn and Schunck formulation [15]. Since
the terms in (1) are not continuously differentiable, the energy function can be
minimized using dual formulation for minimizing total variation as proposed in
[16] and adapted to optical flow in [13]. Linearizing I1 near to (x + u0), where
u0 is a given flow field, the whole data term is denoted as an image residual
ρ(u) = I1(x + u0) + 〈∇I1,u − u0〉 − I0(x). Then, by introducing an auxiliary
variable v, the data term and regularization term in (1) can be rewritten as indi-
cated in (2), making easier the minimization process. Without loss of generality,
in the two-dimensional case, the resulting energy can be expressed as:

E =
∫

Ω

{
α |ρ(v)|+

∑
d=1,2

(1/2θ)(ud − vd)2 +
∑

d=1,2

|∇ud|
}

dx, (2)

where θ is a small constant, such that v is a close approximation of u; and d
indicating the dimension takes value as 1 and 2. This convex energy function is
optimized by alternative updating steps 1 and 2 for u and v :

Step 1. By keeping u fixed, v is computed as:

min
v
{α |ρ(v)|+

∑
d=1,2

(1/2θ) (ud − vd)2}, (3)

Step 2. Then, by keeping vd fixed for every d, ud is computed as:

min
ud

∫
Ω

{1/2θ(ud − vd)2 + |∇ud|}dx. (4)

Equation (4) can be solved for each dimension using the dual formulation. The
solution is given by:

ud = vd − θ divpd, (5)

where the dual variable p = [p1, p2] for a dimension d is iteratively defined by

p̃n+1 = p + τ/θ(∇(vd + θ divpn)), (6)
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Fig. 1. Camera coordinate system (XC , YC , ZC) and world coordinate system

(XW , YW , ZW )

pn+1 = p̃n+1/ max(1, |p̃n+1|), (7)

where p0 = 0 and the time step τ ≤ 1/4.
The solution of equation (3) is a simple thresholding step since it does not

involve derivative of v, and is given by:

v = u +

⎧⎨⎩
αθ∇I1 if ρ(u) < −αθ|∇I1|2

−αθ∇I1 if ρ(u) > αθ|∇I1|2

−ρ(u)∇I1/|∇I1|2 if |ρ(u)| ≤ αθ|∇I1|2
(8)

In this optical flow method, the structure-texture blended image that is robust
against sensor noise, illumination changes, reflections and shadows as explained
in [14] is used. Additionally, in the current implementation an initialization step
is proposed for reducing the CPU time or increasing the accuracy. This step
consists in using the optical flow computed between the previous couple of frames
as initial values for the current couple instead of initializing by zero.

3 Proposed Approach

Before detailing the approach proposed to estimate the monocular vision system
pose, the relationships between the coordinate systems (world and camera) and
the camera parameters, assuming a flat road are presented.

3.1 Model Formulation

Camera pose parameters are computed relative to a world coordinate system
(XW , YW , ZW ), defined for every frame, in such a way that: the XW ZW plane is
co-planar with the current road plane. Figure 1 depicts the camera coordinate
system (XC , YC , ZC) referred to the road plane. The origin of the camera coordi-
nate system OC is contained in the YW axis—it implies a (0, ty, 0) translation of
the camera w.r.t. world coordinate system. Hence, since yaw angle is not consid-
ered in the current work (i.e., it is assumed to be zero), the six camera pose pa-
rameters1 (tx, ty, tz, yaw, roll, pitch) reduce to just three (0, ty, 0, 0, roll, pitch),
1 A 3D translation and a 3D rotation that relates OC with OW .
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Yaw Pitch
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ZC

YC

XC rHL
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Fig. 2. (left) On-board camera with its corresponding coordinate system. (right) Hori-

zon line (rHL) estimated by the intersection of projected lane markings.

denoted in the following as (h, Φ, Θ) (i.e., camera height, roll and pitch). Figure
2(left) shows the onboard camera used for testing the proposed approach.

Among the parameters (h, Φ, Θ), the value of the roll angle (Φ) will be very
close to zero in most situations, since when the camera is rigidly mounted on
the car, a specific procedure is followed to ensure an angle at rest within a given
range, ideally zero, and in regular driving conditions this value scarcely varies
(more details can be found in [9]). Finally, the variables (h, Θ) that represents
the camera pose parameters are encoded as a single value, which is the horizon
line position in the image plane (e.g., [17],[18]). The horizon line corresponds to
the back-projection of a point, lying over the road at an infinite depth. Assuming
the road can be modelled as a plane, let ax + by + cz + h = 0 be the road plane
equation and h the camera height, see Fig. 1 (since (h �= 0) the plane equation
can be simplified dividing by (−h)). Let Pi(0, y, z) be a point lying over the
road plane at an infinite depth z from the camera reference frame with x = 0;
from the plane equation the yi coordinates of Pi corresponds to yi = 1−czi

b .
The backprojection of yi into the image plane when zi → ∞ defines the row
coordinate of the horizon line rHL in the image. It results into:

rHL = r0 + f
yi

zi
= r0 +

f

zib
− f

c

b
, (9)

where f denotes the focal length in pixels, r0 represents the vertical coordinate
of the camera principal point, and zi is the depth value of Pi. Since (zi → ∞),
the row coordinate of the horizon line in the image is finally computed as rHL =
r0 − f c

b . Additionally, when lane markings are present in the scene, the horizon
line position in the image plane can be easily obtained by finding the intersection
of these two parallel lines, see Fig. 2(right).

3.2 Horizon Line Estimation

In the current work, a RANSAC based approach is proposed to estimate the
horizon line position. It works directly in the image plane by using the optical
flow vectors computed between two consecutive frames. The TV-L1 optical flow
[14] with a minor modification as explained in the previous section is used. The
flow vectors within a rectangular region centered in the bottom part of the
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A
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C

F
E

D

Fig. 3. A couple of consecutive synthetic frames illustrating the rectangular free space

{A,C,D,F}, containing the ROI {B,C,D,E} from which computed flow vectors are used

for estimating horizon line position. (top − right) Enlarged and sub-sampled vector

field from the ROI. (bottom − right) Color map used for depicting the vector field in

the ROI.

image are used instead of considering the flow vectors through the whole image.
The specified region is a rough estimation of the minimum free space needed
for a vehicle moving at 30km/h to avoid collisions—rectangle defined by the
points {A, C, D, F}, in Fig. 3. Note that, at a higher speed this region should
be enlarged. Actually from this rectangular free space only the top part is used
(rectangular ROI defined by the points {B, C, D, E} in Fig. 3), since the flow
vectors at the bottom part (image boundary) may not be as accurate as required.
Figure 3 presents a couple of synthetic frames with the optical flow computed
over that ROI; an enlarged and sub-sampled illustration of these flow vectors is
given in the top-right part.

Let u be the computed flow field corresponding to a given ROI {B, C, D, E}.
This vector field can be used for recovering the camera motion parameters
through a closed form formulation (e.g., [11] and [12]). However, since it could be
noisy and contains outliers, a robust RANSAC based technique [19] is proposed
for computing the horizon line position. It works as follow:

Random sampling: Repeat the following three steps K times

1. Draw a couple of vectors, (u1,u2) from the given ROI where u1 = (u1
1, u

1
2)

and u2 = (u2
1, u

2
2).

2. Compute the point (Sx, Sy) where these two vectors intersect.
3. Vote into the cell C(i,j), where i = "Sy# and j = "Sx# and (i, j) lie within

the image boundary.

Solution:

1. Choose the cell that has the highest number of votes in the voting matrix
C. Let C(i,j) be this solution.

2. Set the sought horizon line position rHL as the row i.
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Fig. 4. Horizon line computed by the proposed approach on a synthetic sequence
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Fig. 5. Plot of variations in horizon line in a sequence of 100 frames

4 Experimental Results

The proposed technique has been tested on several synthetic and real video se-
quences. Firstly, a synthetic sequence (gray scale sequence-1 in set 2 of enpeda
[20]) was used for validating the proposed approach. Figure 4 shows some frames
with the horizon line computed by the proposed technique. Note, that in this
case, since a perfect flat road without any vehicle dynamics, camera pose al-
most remains constant (horizon line variation through this synthetic sequence
is presented in Fig. 5). On the contrary, horizon line undergoes large variations
in Fig. 6. This synthetic sequence (gray scale sequence-2 in Set 2 of enpeda
[20]) contains uphill, downhill and flat road scenarios. Figure 7(left) presents
the variations of horizon line for the whole sequence. Figure 7(right) depicts the
pitch angle variation from the ground-truth data. The similarity between these
two plots confirms the effectiveness of the presented approach. The sequences in
Fig.4, and Fig.6 are of a resolution of 480 × 640 pixels, and the ROI contains
96× 320 pixels placed above 48 pixels from the bottom of the image.

Figure 8 shows a frame from a real sequence (Intern-On-Bike-left sequence
in set 1 of enpeda sequences [20]) with the horizon line estimated by the pro-
posed approach. The variation of the horizon line over a set of 25 frames of that
sequence is presented in Fig. 8(right). Additionally, few different real frames,
with horizon line estimated by the proposed approach, are shown in Fig.2(right)
and Fig. 9. Notice that the horizon lines estimated by intersecting the projected
lane markings (dotted lines) also coincide with those obtained by the proposed
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Fig. 6. Horizon lines computed by the proposed approach on a synthetic video sequence

illustrating different situations: uphill, downhill and flat roads
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Fig. 7. (left) Variations in horizon line position over a sequence of 396 frames. (right)
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Fig. 8. Horizon line for a real sequence and its variations for 25 frames

approach, in spite of the fact that some frames contain outliers (see lane barri-
ers in the top-left frame in Fig. 9). The video frames in Fig. 9 are captured at
a resolution of 480 × 752 pixels at about 30fps. The value of K is empirically
determined and the better value is about half of the total number of flow vectors
in the specified ROI. The specified ROI contains 96 × 376 pixels and is placed
above 48 pixels from the bottom of the image.
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Fig. 9. Real video frames with the horizon lines estimated by the proposed approach

(note that they correspond with the intersections of the projected lane markings)

5 Conclusions

A robust technique for pose estimation of an on-board monocular vision system
has been presented. It uses dense flow field from a state of the art variational
optical flow technique that is robust against common obstructions in real traffic
such as shadows, reflections and illumination changes. The proposed modified
initialization step to the optical flow estimation has the advantage to be more
accurate or less computation time. The camera pose parameters estimation is
modelled as a horizon line estimation problem and has been solved using a
RANSAC based approach that is robust against outliers in the flow field. The
proposed approach is validated on both synthetic and real sequences. With the
advance in the real-time implementation of optical flow algorithms and particu-
larly, for our problem of estimating the flow vectors only in the specified region
instead of the whole image, the proposed approach can be implemented on real
applications with real-time performance.
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Abstract. In this paper we present an approach to speed up the com-

putation of sparse optical flow fields by means of integral images and

provide implementation details. Proposing a modification of the Lucas-

Kanade energy functional allows us to use integral images and thus to

speed up the method notably while affecting only slightly the quality of

the computed optical flow. The approach is combined with an efficient

scanline algorithm to reduce the computation of integral images to those

areas where there are features to be tracked. The proposed method can

speed up current surveillance algorithms used for scene description and

crowd analysis.

Keywords: Lucas-Kanade, optical flow, fast implementation, integral

images, optimization, real-time.

1 Introduction

Computation of optical flow is a common topic in the computer vision community
whose applications range from motion estimation to point tracking. There are
many different approaches to compute optical flow, among them the classical
Lucas-Kanade method [12].

Introduced in 1981, it still has many applications ([1]) and is a popular method
to compute the movement of sparse feature points from one video frame to the
next. This is often used for tracking objects or persons directly as e.g. in [11]
or [9]. As another approach based on the idea of individual motion, [5] builds
trajectories from sparse feature tracks which are afterwards clustered to obtain
the number of persons in a scene. Similarly, yet in a different context, crowds
are described in [14] by their pointwise motion which yields information on their
activity and on abnormal events. Other applications are 3D pose and camera
parameter estimation as e.g. in [10]. The Lucas-Kanade method also inspired
other more recent algorithms as e.g. [7], [6] or [3].

Formulating brightness constancy between two points in consecutive images
leads to an equation in two unknowns and cannot be solved as such. This is
commonly known as the aperture problem. As a solution, the Lucas-Kanade
method assumes constant flow for a window around the current pixel and solves
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the corresponding system of equations in an iterative manner. We recapitulate
this process shortly in section 2. While computing the solution, it is necessary
to repeatedly sum the pixel values around the features which is a considerable
computational effort. This complexity can be reduced by using integral images
as shown in section 2.2. To take full advantage of these, we propose to modify
the Lucas-Kanade method by using another linearization in the image differ-
ence term. Thus, we are able to compute all sums of image pixels by means
of integral images which accelerates the algorithm remarkably. In section 3 we
explain an extension to reduce computational complexity in the case of tracking
of sparse features. In section 4 we show evaluations of the proposed method and
the possible benefit in terms of speed-up.

2 Modifying the Lucas-Kanade Method by Integral
Images (II-LK)

Let I
A

(x, y) and I
B

(x, y) be two consecutive grayscale images of a video se-
quence. IA is an image at a discrete time t and IB the consecutive image at
time (t + 1). To compute the optical flow of an image domain Ω ⊂ R

2 Lucas
and Kanade [12] formulated the well-known brightness constancy assumption
IA(x, y, t) = IB(x + u, y + v, t + 1) in combination to the assumption that all
pixels in domain Ω = wx×wy are subject to a constant movement. Formulating
this into an error energy term yields

ε =
∑
Ω

(
I

A

(x, y)− I
B

(x + u, y + v)
)2

→ min. (1)

Minimizing the term is done via a Newton-Raphson iteration scheme which is
linearized using a Taylor expansion. Using

h = (u, v)T , G =
∑

Ω ∇I · ∇IT ,

bk−1 =
∑

Ω(I
A

(x, y) − I
B

(x + uk−1, y + vk−1)) · ∇IT (2)

with h being the motion vector, G the gradient matrix and b the mismatch
vector, the iteration scheme for the k -th iteration is given by

hk = hk−1 + G−1 · bk−1. (3)

Now it is possible to apply an iterative scheme to solve the equation and obtain
the image displacement vector h for the window Ω. This implies computing
repeatedly the sums of pixel values and gradient values within the domain Ω.
Computing motion vectors for a whole image results in a computational effort of
O(Nwxwy) with N being the number of pixels. As a consequence of overlapping
domains there are regions where constant values are computed twice or even
more often. In the next section we present a method to reduce this effort.
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2.1 Integral Images Reduce Computational Overhead

Integral images or summed area tables are image representations used for fast
computation of region sums. Introduced in [8], they are often used to accelerate
learning algorithms (e.g. in [13]). The values of an integral image, denoted Î,
contain the sum of the original pixel values I from the upper left corner to their
position. They can be computed in one pass over the image using the following
formal description

s(x, y) = s(x− 1, y) + I(x, y) (4)
Î(x, y) = s(x, y) + Î(x, y − 1) (5)

with the boundary condition s(x,−1) ≡ 0 and Î(−1, y) ≡ 0. Using integral
images, a sum of a rectangular region given by four points A (upper left), B
(upper right),C (lower left), D (lower right) can be computed by∑

Ω

I = Î(A)− Î(B)− Î(C) + Î(D). (6)

In the case of not using integral images, the computational complexity for the
sum depends on the window size with O(wx × wy). Using integral images it
reduces to O(4) for the sum and, as shown above, O(N) (with N being the
number of pixels) to create the integral image of the current frame.

Within the iteration scheme (3) we can directly substitute building the gra-
dient matrix G using the integral images ÎI2

u
, ÎIuIv , ÎI2

v
. Provided that we use a

non-weighted window, the gradient matrix

G =
[∑

Ω Iu · Iu

∑
Ω Iu · Iv∑

Ω Iu · Iv

∑
Ω Iv · Iv

]
=

[
Guu Guv

Guv Gvv

]
(7)

for a window Ω with its vertices A, B, C, D ∈ Ω can be built rapidly by

Guu = ÎI2
u
(A) − ÎI2

u
(B)− ÎI2

u
(C) + ÎI2

u
(D)

Gvv = ÎI2
v
(A)− ÎI2

v
(B) − ÎI2

v
(C) + ÎI2

v
(D)

Guv = ÎIuIv (A) − ÎIuIv (B)− ÎIuIv (C) + ÎIuIv (D)

(8)

2.2 Modification of the Lucas-Kanade Method

Using (7) we enhance the computation of the gradient matrix by using integral
images. However, due to the iterative window shifts the computation of b in (3)
is difficult to compute by integral images. We propose therefore an extension of
(3) which uses a second linearization of the image difference term and allows us
to use integral images in the whole equation. Approximating the shifted image
by a first-order Taylor-expansion results in

I
B

(x + uk−1, y + vk−1) = I
B

(x, y) + hk−1 · ∇I + ε. (9)
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The mismatch vector b can then be approximated by

b̃k−1 =
∑
Ω

(
I

A

(x, y)− I
B

(x, y)− hk−1 · ∇I
)
· ∇IT (10)

and the final iteration scheme by

hk ≈ hk−1 + τ ·G−1 · b̃k−1. (11)

Now all sums of pixel values in this formula can be computed by using integral
images and benefit from the huge speed-up they provide. Therefore, we will
refer to this as the Integral Image Lucas-Kanade method (II-LK). However, the
proposed linearization introduces additional approximation errors. In practice it
has been shown that a parameter τ ≤ 1 enhances the robustness of the solution
by avoiding overshooting. The approximated mismatch vector b̃ can now be
computed with the four integral images

BAu = ÎIA·Iu
(A) − ÎIA·Iu

(B)− ÎIA·Iu
(C) + ÎIA·Iu

(D)

BAv = ÎIA·Iv
(A)− ÎIA·Iv

(B)− ÎIA·Iv
(C) + ÎIA·Iv

(D)

BBu = ÎIB ·Iu
(A) − ÎIB ·Iu

(B)− ÎIB ·Iu
(C) + ÎIB ·Iu

(D)

BBv = ÎIB ·Iv
(A)− ÎIB ·Iv

(B)− ÎIB ·Iv
(C) + ÎIB ·Iv

(D)

(12)

and
b̃uk−1 = BAu −BBu − uk−1 ·Guu − vk−1 ·Guv

b̃vk−1 = BAv −BBv − uk−1 ·Guv − vk−1 ·Gvv

(13)

so that the final displacement is given by

uk = uk−1 + τ
b̃uk−1 ·Gvv − b̃vk−1 ·Guv

Guu ·Gvv −Guv ·Guv

vk = vk−1 + τ
b̃vk−1 ·Guu − b̃uk−1 ·Guv

Guu ·Gvv −Guv ·Guv

. (14)

In section 4, we show that the additional approximation error is acceptable
in surveillance applications, where runtime is an important criterion. A larger
window size increases the advantage of integral images because in this case the
classical approach has a complexity depending on Ω compared to a constant
complexity of integral images.

Yet, if one only needs to compute optical flow vectors for some points in
a large image, the creation of integral images might be more costly than the
benefit that they bring. To cope with this problem, we propose in section 3 a
scanline algorithm which permits to identify the regions where an integral image
is needed thus reduces the overall computational cost.

3 Tracking Sparse Features

For tracking tasks it is common to select only a certain number of features
to track. A classical approach to find easily trackable features is the “Good
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Fig. 1. Left: Example for “Good Features To Track” (Picture from PETS 2006). Right:

marker scheme for features: (cross: feature point, blue: 2, green: -2, violet: 1, red: -1)

and area for which integral images have to be built.

Features To Track” method [15]. Its main idea is to select good feature points
by choosing the highest minimal eigenvalues of the covariance matrix G of the
points, computed by

λmin =
Guu + Guv

2
−

√
(Guu −Gvv)2

2
−G2

uv. (15)

As shown in (6) integral images can be easily used to reduce the computational
overhead in this method. So the minimal eigenvalues can be computed in one
pass over the image. This is an even bigger advantage because the same integral
images that are needed for feature selection can afterwards be used to compute
the flow vectors for this frame. Therefore it is not necessary to compute these
integral images twice.

Given a set S of feature points to track, an important point is that the com-
putational benefit integral images provide is dependent on the window size and
the number of features |S|. For a small |S|, their gain might be less than the
additional effort to build them. We therefore propose an algorithm to compute
integral images only in image regions covered by feature domains.

For every window Ω, four labels l ∈ { 2 (“top left”), -2 (“top right”), 1 (“bot-
tom left”), -1 (“bottom right”)} are stored in a mask to represent its vertices.
The output of the scanline algorithm is a mask indicating if a pixel lies within
a feature window or not. Therefore, a variable nH is used to store the number
of connected windows on the current line. The number of overlapping windows
on the current column (see. figure 2) is directly stored in the mask which is
parsed from top-left to bottom-right. If a “top-left”-label is found, this label is
propagated to the same column in the next line.

For all newly found “top left”- [“top right”-] labels, the propagated label is
increased [decreased] by one. Accordingly, for the labels “bottom left” [“bottom
right”], the propagated label is decreased [increased]. Finding a “left”-label, nH

is increased whereas for a “right”-label it is decreased. So the pixels for which
an integral image pixel has to be created are identified by nH > 0. Formally:



II-LK – A Real-Time Implementation for Sparse Optical Flow 245

Fig. 2. Left: Vertical propagation scheme for scanline algorithm: propagated values

(red) depend on feature window labels (gray). Right: Horizontal parsing scheme for

scanline algorithm: nH (white) is increased or decreased depending on feature window

labels (gray).

s(x, y) =

{
s(x− 1, y) + I(x, y), if nH > 0
0, otherwise

(16)

Î(x, y) =

{
s(x, y) + I(x, y − 1), if nH > 0
0, otherwise

(17)

In this way it is possible to build the integral images only for the image regions
which have to be processed.

4 Experimental Results

In this section we evaluate the execution time and accuracy of our algorithm and
compare the results to the public implementation of S. Birchfield’s KLT-Tracker1

and to the very fast implementation in Intel’s OpenCV library2 described in [4].
OpenCV is one of the standard vision libraries and known to provide fast imple-
mentations for many algorithms. Our implementation is based on the Birchfield
algorithm and not optimized for specific CPU architectures as OpenCV. We give
the results for these three implementations to demonstrate the performance gain
II-LK provides compared to the standard Lukas-Kanade-method and to see this
in relation with the highly optimized OpenCV method.

The numerical evaluation was performed for different, benchmark sequences
and for sequences from the PETS workshop 2006. No color information was used
by either algorithm. All tests were conducted on a PC with an 3.00 Ghz Intel
Core2Duo CPU using a C/C++-implementation, one thread and a τ = 0.25.
The runtime was measured by the Microsoft c©Visual Studio 2008 profiler. To
compare the quality of the computed motion vectors, we used ground truth
values from [2].

1 Available at http://ces.clemson.edu/ stb/klt
2 Available at http://sourceforge.net/projects/opencvlibrary
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Fig. 3. (Left) Image detail from the PETS 2006 dataset for comparison of our method

with OpenCV. (Middle) Optical Flow result (Birchfield): good overall result. In homo-

geneous regions, outliers can reach high values and are then filtered out which leads

to regions without result vectors. (Right) Optical Flow result (II-LK): overall compa-

rable results. Outliers are not filtered as their size is limited through the introduced

linearization.

Figure 3 illustrates a visual difference in the results of II-LK and the stan-
dard KLT-Tracker: By using the introduced second linearization in (9), image
gradients are not recalculated. This leads to smaller outlier errors which are
not filtered out as in the standard KLT algorithm. Visually, the results are not
very different than the ones obtained by the standard KLT which shows the
applicability of this algorithm for e.g. crowd analysis in surveillance scenarios.

The results obtained for the PETS 2006 sequence (720× 576 pixels) can be
found in table 1. Our method outperforms the standard KLT-Tracker implemen-
tation and as well OpenCV’s highly optimized implementation especially for a
large number of feature points. Comparing the number of feature points and the
time needed for the computation of their motion vectors shows that the runtime
per feature for our method decreases for higher numbers of features, which is
due to the fact that in this case windows around feature points tend to overlap.
This and the scanline algorithm in our method reduce the corresponding effort
of building integral images.

Table 1. Execution time and time per feature for the PETS 2006 sequence (Values in

ms, window size Ω = 17 × 17) for different numbers of features (N)

Run-time per frame (per feature) in msec

# Features OpenCV KLT II-LK

345280 2249 (0.007) 43470 (0.126) 713 (0.002)

86320 850 (0.010) 15726 (0.182) 292 (0.003)

21580 210 (0.010) 3977 (0.184) 97 (0.004)

9657 95 (0.010) 1813 (0.187) 63 (0.006)

5395 54 (0.010) 1044 (0.194) 50 (0.009)
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Table 2. Execution time for different window sizes (21580 feature points, Values in ms).

Compared to the other candidates, the performance of “II-LK” changes only slightly

with an increasing window size which is due to the constant time for summing up the

windows around features.

Run-time per frame in msec

Ω OpenCV KLT II-LK

25x25 368 7648 136

21x21 285 5705 112

17x17 210 3977 97

13x13 143 2519 84

7x7 90 1359 73

Table 3. Evaluation results: color code scheme proposed in [2] shows the visual per-

formance of the algorithms. Discarded points are labeled black. EP: relative endpoint

errors (window Ω = 17×17), DP: percentage of discarded points (0 - rounded to zero).

Overall, II-LK performs comparable to KLT. As visible in the “Urban3” sequence, it

generates less outliers than the KLT algorithm.

Yosemite Marbled-Block Grove2 RubberWhale Urban3

OpenCV

EP 0.15 0.44 0.44 0.30 4.38

DP (%) 0 2.4 0.2 0 8.3

KLT(Birchfield

EP 0.21 0.23 0.65 0.41 6.99

DP (%) 14.4 9.2 10.6 4.2 67.4

II-LK

EP 0.39 0.56 0.52 0.59 6.07

DP (%) 0 2.9 1.0 0 0
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Table 2 shows the runtime that the algorithms needed for different window
sizes. The time needed by the KLT-Tracker and OpenCV rises strongly with the
window size. Thanks to the constant time integral images need for computing
the sums over Ω, our algorithm shows a better performance. Still, the needed
time grows slightly because the regions in which integral images are computed
grow with the window size.

Table 3 shows the relative endpoint errors of the different methods. Normally
the KLT algorithm discards bad matches (outliers) automatically, so for a more
accurate comparison, we allow all methods to discard their bad matches. This is
done by setting a threshold of 200% of the maximal absolute value of the ground
truth data.

Compared to KLT, OpenCV’s runtime is superior, but II-LK is still much
faster as seen in table 1 and 2. As our algorithm is based on the Birchfield
implementation, we focus on a comparison between these two.

The error of e.g. 0.39 pixels in the “Yosemite” sequence compared to Birch-
field’s 0.21 pixels means that our algorithm expects an average feature 0.18 pixels
further away from its actual position than the standard KLT method. This is due
to the introduced linearization. On the other hand, II-LK discards less points
and can improve the robustness of the results in homogeneous regions. By com-
paring the results of the “Urban3” sequence, it can be seen, that II-LK still
returns many acceptable values e.g. inside the buildings where the KLT tracker
produces outliers. Overall, the accuracy loss is acceptable (see also figure 3) for
applications which do not focus on subpixel accuracy, as [5] or [14].

5 Conclusion

In this paper we present an approach to speed up the tracking of sparse feature
points. By modifying the classical Lucas-Kanade feature tracker by a second lin-
earization, integral images can be used in all parts of the equation. This method
is combined with an efficient scanline algorithm to compute integral images only
in the regions where they are needed. Depending on the number of features to be
tracked and the window size around the features, both methods together allow a
huge speed-up of several magnitudes compared to a standard tracker. Compared
to the optimized OpenCV code, our method needs also much less time. Applying
similar optimizations to our code as they are in OpenCV will further enhance
the system’s speed.

We propose this algorithm for surveillance applications needing motion vec-
tors and feature trajectories which can be used for crowd description or crowd
behaviour analysis. Those applications can be speeded up and can thus track
more points which will further enhance their results. With the upcoming of
high-definition video content the need for fast optical flow algorithms in the
surveillance domain becomes more important and we propose this algorithm as
an adequate solution.
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For the future, we are working towards an optimization of our method to
obtain a superior runtime behaviour and more accurate flow vectors by adapting
the minimization scheme.
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Abstract. This paper describes the implementation and qualitative and quanti-
tative evaluation of a 3D optical flow algorithm, whose derivation is based on
the 2D optical flow method published by Brox et al. [ECCV2004]. The optical
flow minimizes an energy function built with three assumptions: a brightness con-
stancy assumption, a gradient constancy assumption, and a smoothness assump-
tion. Brox et al. minimize the 2D version of this function using a robust estimator,
which make the functional convex and guarantees convergence to a single solu-
tion. They propose a numerical solution based on nested fixed points iterations
and use this scheme within a coarse-to-fine warping strategy in a 2D hierarchical
image pyramid. In our 3D extension, our solution requires the regularization of a
3D function based on 3D extensions of their assumptions in a 3D hierarchical vol-
ume pyramid. We solve the corresponding Euler-Lagrange equations iteratively
using nested iterations. We present 3D quantitative results on three sets of 3D
sinusoidal data (with and without motion discontinuities), where the correct 3D
flow is known. We also present a qualitative evaluation on the 3D flow computed
using gated MRI beating heart sequence.

Keywords: 2D and 3D optical flow, regularization, brightness constancy con-
straint, gradient constancy constraint, Horn and Schunck smoothness constraint,
hierarchical volume pyramid, 3D reverse warping, quantitative and qualitative
error analysis.

1 Introduction

Starting with the pioneering work of Horn and Schunck (1981) [1] and Lucas and
Kanade (1981) [2], many methods have been proposed to estimate optical flow. Brox et
al. [3] presented a variational model for computing 2D optical flow that integrates three
constraints: brightness constancy and global smoothness (both proposed by Horn and
Schunck [1]) and gradient constancy. They employed an image warping technique and
showed that warping is a good way to handle large displacements in a multi-resolution
pyramid. Their published quantitative results are still the best for the Yosemite image
sequence. Indeed, they obtain near perfect flow for the clouds in the Yosemite images
by using heavy smoothing [4]. These clouds are fractal-based deformable objects and
should not lend themselves to an accurate flow recovery. Later, Papenberg et al. [5] ex-
tended this method and investigated additional constancy constraints. These only make
the flow slightly better so we ignore them in our algorithm.

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 250–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This paper presents the design, implementation and analysis of a 3D extension of the
2-frame 2D Brox et al. algorithm in MatLab to see if we can obtain good 3D flow using
3D volumetric data sequences [6]. We quantitatively evaluate our algorithm on three
datasets of synthetic sinusoidal data (with both continuous and discontinuous motions)
and we also perform qualitative evaluation on a gated MRI cardiac dataset [7,8,6].

2 3D Optical Flow Algorithm

Brox et al.’s algorithm [3] uses several constraints which we extend to 3D. The Gray-
value Constancy Constraint requires the grayvalue distribution about a voxel move
with that voxel. That is, I(x, y, z, t) = I(x+u, y+v, z+w, t+1), where I denotes a 4D
volumetric dataset and (u, v, w, 1) is the displacement vector between an image (when
we say image from now on we mean 3D image or volume) at times t and t + 1. Per-
forming a 1st order Taylor series expansion of I(x, y, z, t), yields the optical flow con-
straint (sometimes called the motion constraintt) equation in 3D,∇I ·(u, v, w)+It =
0, where ∇I = (Ix, Iy, Iz) is the spatial intensity gradient at (x, y, z). The Gradient
Constancy Constraint is a constraint that ensures I is invariant under small grayvalue
changes by requiring∇I(x, y, z, t) = ∇I(x+u, y +v, z +w, t+1). These constraints
only consider displacement of a voxel locally without taking into account the interac-
tion between neighboring voxels. Therefore, if the gradient vanishes somewhere or if
the flow can only be computed in the direction normal to the gradient (this is the aper-
ture problem), the model presented so far will not work. As a result, we need to include
a spatial Horn and Schunck like Smoothness Constraint to attenuate these problems
and give a globally smooth flow field. This constraint requires |∇u|2+∇v|2+|∇w|2 be
as near 0 as possible. Finally, a hierarchical pyramid of the images is constructed with
smoothing and downsampling using a small reduction factor, η ≈ 0.95. We use Mat-
Lab’s function imresize to build the pyramid from 2 original Gaussian blurred images
(σ = 1.3). The use of a pyramid allows faster motions to be computed using a coarse
to fine strategy (motions are slower the further up the pyramid you go), where at each
pyramid level, the flow between the 2 images is computed and use to reverse warp the
2nd image into the 1st image: if the flow is good, the 1st image and the warped second
image will closely agree. Warping, effectively, removes the motion from the 2nd image.

2.1 The Energy Function

The grayvalue and gradient constraints are measured by the energy:

EData(u, v, w) =
∫

Ω

Ψ
(
|I(x + u, y + v, z + w, t + 1)− I(x, y, z, t)|2

+ γ |∇I(x + u, y + v, z + w, t + 1)−∇I(x, y, z, t)|2
)
dxdydzdt. (1)

Here Ψ does robust estimation by ensuring the function is convex (a single global solu-
tion results) and Ψ(s2) =

√
s2 + ε. Brox et al. use ε = 0.001. A smoothness term that

models the assumption of piecewise smoothness is:

Esmooth(u, v, w) =
∫

Ω

Ψ
(
|∇u|2 + |∇v|2 + |∇w|2

)
dxdydzdt. (2)
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Here∇ = (∂x, ∂y, ∂z) is the spatio-temporal gradient. The total energy is the weighted
sum between the data term and the smoothness term:

E(u, v, w) = EData + αEsmooth, (3)

with regularization parameter α > 0. Now the computational task is to find the values
u, v and w that minimizes this function. Brox et al. derive the Euler-Lagrange equations
(which are nonlinear) and then use a nested iteration scheme to minimize these. The ve-
locity at iteration a + 1, (ua+1, va+1, wa+1), is computed from the velocity at iteration
a as (ua, va, wa) + (dua, dva, dwa), where (dua, dva, dwa) is the iteration improve-
ment velocity vector. The idea is to initially set (dua, dva, dwa) to (0, 0, 0), compute
Ψ ′

Data and Ψ ′
Smooth using these values at the start of the outer iterations and then to iter-

atively refine (dua, dva, dwa) in an inner iteration to best satisfy these Ψ ′ values. Then
these new (dua, dva, dwa) values are used to update Ψ ′

Data and Ψ ′
Smooth and modify

(ua, va, wa) for the next step in the outer iteration, after which (dua, dva, dwa) are
zero to (0, 0, 0) again and then iteratively re-computed in another inner iteration using
these new Ψ ′ values. This outer iteration and all the inner iterations terminate when ei-
ther a specified maximum number of iterations is reached (typically 100 or 200) or the
difference between the computed vector between two adjacent iterations is less than a
threshold TOL (we use 10−3 in this paper).

Processing starts at the highest level in the pyramid. This computed flow field is
then projected down one level in the pyramid (see details in Section 2.3) and used to
inverse warp the second image into the first image (see detail in Section 2.4). The idea
is that the measured motion between the 1st and 2nd images is “removed”. Of course,
the flow field used to do the warping is not precisely correct. Flow is now computed
between the 1st image and the inverse warped 2nd image and this correction flow field
is added to the projected flow field from the higher pyramid level to obtain the new flow
field for that level. Projection and warping are continually performed until the final
level in the pyramid (the original image) is reached. Note that this processing allows
“fast” motion to be handled because at the higher levels in the pyramid the motion is
slowed by the image size reduction and the warping calculation prevents the motion
from increasing in magnitude as processing descends the pyramid. Full mathematical
development, including all the equations and their derivations and pseudo code for the
nested iterations algorithm are available in a M.Sc. thesis [6].

2.2 Intensity Differentiation

Brox et al. used 4 point central differences to compute spatial derivatives Ix, Iy and Iz

using the kernel (0.0866,−0.6666, 0.0, 0.6666,−0.0866). Second order derivatives are
computed using the same kernel applied on the first order derivatives. Temporal deriva-
tives are computed as simple voxel differences. In image processing nomenclature, this
is called a 2 point difference and is known to be a poor approximation to a temporal
derivative.

2.3 Projecting Velocities between Adjacent Levels

Note that the size (including the width, the height and the depth) of images at different
pyramid levels are not the same. Therefore, we use MatLab function imresize to use
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resample the new flow field (with rescaling by multiplication of this new flow field by
expansion factor 1

η ) to go from a coarser level to the next finer level in the pyramid.

2.4 3D Inverse Warping

Given a flow field for an image I(t), v(t) = (u(t), v(t), w(t)) and the 2nd image
I(t + 1) in the sequence we can compute the 1st image using inverse warping. That is,
for floating point image location (i + u(t), j + v(t), k + w(t)), one can use tri-linear
interpolation via MatLab function interp3 on the grayvalues at the 8 surrounding
neighbourhood integer image locations in the 2nd image to compute the grayvalue at
integer location (i, j, k) in the 1st image. The reverse nature of this calculation ensures
each pixel in the interpolated 1st image gets a grayvalue (if (i+u(t), j+v(t), k+w(t))
is outside the image boundaries the interpolated value is set to 0).

3 Generation of 3D Sinusoid Volume Datasets

The main advantage of sinusoidal sequences is that both the flow fields and the 1st and
2nd order derivatives can be computed precisely, allowing quantitative analysis of the
algorithm’s performance. We generate three sinusoid volume datasets: sinL, sinR and
sin. Each volume contains 31 slices of 256× 256 data (unsigned shorts in the range [0-
4095], i.e. 12 bits). The sin data is a combination of sinL and sinR which have different
velocities in its left part and right part. We generate sinL and sinR using:

sin(k1 · p + ω1t) + sin(k2 · p + ω2t) + sin(k3 · p + ω3t), (4)

where ki = (kix, kiy, kiz) are the spatial frequencies, p = (x, y, z) are 3D spatial
coordinates, ωi is the temporal frequency and t is the temporal coordinate. We use
vL = (3, 2, 1) for the sinL sequence and vR = (−3,−2,−1) for the sinR sequence.
The sin dataset is made from the sinL and sinR datasets with a motion boundary

(a) (b)

Fig. 1. (a) The 10th slice of the sin.9 sinusoid dataset and (b) the 40th slice of the 10phase.9
MRI dataset
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separating the two sinusoids. Initially, the upper left corner point of the boundary at
(120,120,10) and this is displaced by vR at each frame. Simple differentiation of Equa-
tion (4) gives all 1st and 2nd order derivatives for the 3 sequences. Figure 1a shows the
10th slice of the sin.9 dataset while Figure 2 shows the correct flow.
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Fig. 2. The correct flow field of the 9th volume of sin with a downsampling rate 8 in the z
dimension and 32 in the x and y dimensions and with a scale factor of 10

4 3D Quantitative Error Measurement

We use the average Fleet 4D angular error measurement [9] to measure the error be-
tween the correct 3D flow field and the computed 3D flow field. Velocity can be written
as displacement per time unit as in v = (u, v, w) pixels/frame or as a space-time di-
rection vector (u, v, w, 1) in units of (pixel,pixel,pixel,frame). Let vc = (uc, vc, wc, 1)
represent the correct velocity at the pixel (i, j, k) and ve = (ue, ve, we, 1) represent the
computed velocity at point (i, j, k). We can compute the 4D angular error as:

ψE = arccos

(
(ue, ve, we, 1)√

u2
e + v2

e + w2
e + 1

· (uc, vc, wc, 1)√
u2

c + v2
c + w2

c + 1

)
. (5)

Angular error has the advantages of encoding both magnitude and direction error as 1
number and preventing zero division problems.

5 Gated MRI Cardiac Datasets

Nowadays, it is possible to acquire good gated MRI (Magnetic Resonance Imagery) data
of a human beating heart. The 3D motions of the heart can provide useful information
for physician to detect heart disease. However, as we shall see, the measurement of 3D
velocities of a beating heart is still challenging [8].
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The gated MRI data we use was generated by the Robarts Research Institute at the
University of Western Ontario [7]. Each set of this data contains 20 volumes of 3D data
for one EGK synchronized heart beat. In our experiments, we examined the flow for one
dataset, 10phase.9, which has size 256 × 256 × 75 and voxel intensities in the range
[0 − 4095]. The MRI datasets is considerably more complex than our synthetic sinu-
soid datasets. A beating human heart is deformable, and its motion is discontinuous in
space and time: different chambers in the heart are contracting/expanding at different
times and the heart as a whole undergoes a twisting motion as it beats. The heart is also
“textureless” in places, meaning good intensity derivatives are difficult to compute. The
word “gated” refers to the way the data is collected: 1 or a few slices of each volume set
are acquired at the same instance in a cardiac cycle. A patient lies in an MRI machine
and holds his breath for approximately 42 second intervals to acquire each set of slices.
This data acquisition method relies on the patient not moving or breathing during the
the acquisition (this minimizes heart motion caused by a moving diaphragm or expand-
ing/contracting lungs) [8]. Figure 1 shows the 40th slice of the 10phase.9 dataset.

6 Experimental Results

Table 1 show the comparison between a basic version of 3D Horn and Schunck [8] and a
version that uses Brox et al.’s hierarchical pyramid and our implementation of 3D Brox

Table 1. The 3D angular errors and standard deviations for flow fields with 100% density
computed by 3D Horn and Schunck (α = 100.0, 100 iterations), hierarchical 3D Horn and
Schunck (α = 100.0, 10 levels of pyramid, 100 iterations), and 3D Brox et al.’s algorithm
(α = 100.0,γ = 100.0 and γ = 0.0, 10 levels in the pyramid, outer iterations=1, inner iter-
ations=100, all with 3 × 3 × 3 median prefiltering, for sinL.9, sinR.9 and sin.9

sinL AAE STD
3D Horn and Schunck (Brox derivatives, α = 100.0) 22.89◦ 9.08◦

3D Horn and Schunck (Correct derivatives, α = 100.0) 0.24◦ 0.25◦

3D Horn and Schunck (α = 100.0,10-levels pyramid ) 10.09◦ 6.52◦

3D Brox et al.(α = 100.0,γ = 100.0,10-levels pyramid) 2.06◦ 2.56◦

3D Brox et al.(α = 100.0,γ = 0.0,10-levels pyramid) 0.65◦ 1.10◦

sinR AAE STD
3D Horn and Schunck (α = 100.0) 23.26◦ 12.56◦

3D Horn and Schunck (Correct derivatives, α = 100.0) 0.78◦ 0.41◦

3D Horn and Schunck (α = 100.0,10-levels pyramid ) 9.90◦ 6.87◦

3D Brox et al.(α = 100.0,γ = 100.0,10-levels pyramid) 1.99◦ 3.55◦

3D Brox et al.(α = 100.0,γ = 0.0,10-levels pyramid) 0.75◦ 1.56◦

sin AAE STD
3D Horn and Schunck (α = 100.0) 32.32◦ 24.49◦

3D Horn and Schunck (Correct derivatives, α = 100.0) 12.78◦ 24.49◦

3D Horn and Schunck (α = 100.0,10-levels pyramid ) 22.67◦ 29.00◦

3D Brox et al.(α = 100.0,γ = 100.0,10-levels pyramid) 16.20◦ 29.96◦

3D Brox et al.(α = 100.0,γ = 0.0,10-levels pyramid) 13.11◦ 28.71◦
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et al.’s algorithm. AAE is the abbreviation for Average Angular Error and STD is the
abbreviation for Standard Deviation. Poor temporal differentiation (simple differences)
is the main reason for the poor results for 3D Horn and Schunck. Error results com-
puted using the correct derivatives are much more accurate than those computed using
Brox et al.’s differentiation. For all three datasets, hierarchical 3D Horn and Schunck
gives much better results than the original 3D Horn and Schunck, showing one of the
benefit of using a pyramid. 3D Brox et al.’s results (α = 100, γ = 100 and 10 levels of
pyramid) surpasses them both. When the gradient parameter γ is turned off even better
results can be obtained (see below). These results show that the worst results are for
the sin dataset, which has significant error at the motion boundary. We sometimes use
medium filtering in an attempt to remove outliers.

6.1 Inner and Outer Iterations and Convergence

Another experiment we performed with the correct derivatives was to see the effect
of the inner and outer iteration on the result. The outer iterations update Ψ ′

data and
Ψ ′

smooth, which are used in Equations (1) and (2) [6]. The inner iterations update the
increments in velocities du, dv and dw. We can define the motion constraint term eqID,
and gradient constraint terms, eqIx, eqIy and eqIz, as:

eqID = (ID + Ixdu + Iydv + Izdw)2, (6)

eqIx = (IxD + Ixxdu + Ixydv + Ixzdw)2, (7)

eqIy = (IyD + Iyxdu + Iyydv + Iyzdw)2, (8)

eqIz = (IzD + Izxdu + Izydv + Izzdw)2. (9)

Then, the arguments to Ψ ′
Data can be written as Ψ ′ (eqID + γ(eqIx + eqIy + eqIz)).

As velocities get better, Equation (6) and Equations (7), (8) and (9) should become
close to 0. Tables 1 shows the average change in Ψ ′

data and Ψ ′
smooth, the average values

of eqID, eqIx, eqIy and eqIz, the average angle error and standard deviation for 10
inner iterations for the 1st, the 5th and the 10th outer iteration of sin using Brox et
al.’s spatial derivatives and temporal differences. We can see that as we perform more
iterations, eqID, eqIx, eqIy and eqIz become smaller and smaller, which means the
constraints are better satisfied. Brox et al. [3] used 10 inner and 10 outer iterations only
for all their results. However, they never say why they used these number of iterations or
report any investigation into the effect of this number of iterations on the flow accuracy.

The results for sinL and sinR converge quickly. By the 10th outer iteration, values
of these equations are almost zeros, and the average angle error goes down to 0.65◦-
0.75◦, which is very close to the correct velocities (within roundoff error). Instead, we
concentrate on the sin data, which is our worst case synthetic dataset.

Table 2 show the average change in Ψ ′
data and Ψ ′

smooth, the average values of eqID,
eqIx, eqIy and eqIz, the average angle error and standard deviation for each of the 10
inner iterations for the 1st, the 5th and the 10th outer iterations for the sin data using
correct derivatives. [Using correct derivatives eliminates differentiation as a cause of
poor performance.] In all cases, eqID, eqIx, eqIy and eqIz still decrease as more
iteration are performed, although it is harder for them to approach 0 as there is now
significant flow error at the motion boundary.
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Table 2. Average differences in Ψ ′
data and Ψ ′

smooth and average values of eqID, eqIx, eqIy,
eqIz, average angle error and standard deviation for 10 inner iterations of the 1st, 5th and 10th

outer iterations for sin.9 computed with Brox et al. derivatives (α = 100, γ = 100, number of
outer iteration=10, number of inner iteration=10, 1 pyramid level with no median filtering)

1st Outer Iteration
Inner Ψ ′

data diff. Ψ ′
sm. diff. ave eqID ave eqIx ave eqIy ave eqIz AEE.±STD.

1 0.0005877 15.8113 170839.255 3722.804 2099.715 2897.699 70.69◦ ± 1.73◦

2 0.0000193 2.0166 159501.420 3455.617 1924.327 2623.482 66.85◦ ± 3.05◦

3 0.0000188 1.6025 148917.033 3230.226 1776.601 2400.909 63.41◦ ± 4.17◦

4 0.0000190 1.0764 139030.474 3031.516 1647.400 2211.502 60.34◦ ± 5.16◦

5 0.0000193 0.7289 129889.763 2853.311 1532.762 2047.496 57.63◦ ± 6.04◦

6 0.0000196 0.5160 121482.966 2691.516 1429.927 1903.577 55.23◦ ± 6.83◦

7 0.0000199 0.3808 113774.957 2543.410 1336.984 1776.070 53.12◦ ± 7.56◦

8 0.0000202 0.2914 106717.469 2407.037 1252.514 1662.261 51.25◦ ± 8.24◦

9 0.0000205 0.2304 100257.859 2280.929 1175.425 1560.079 49.61◦ ± 8.86◦

10 0.0000208 0.1866 94343.514 2163.938 1104.849 1467.893 48.15◦ ± 9.44◦

5th Outer Iteration
Inner Ψ ′

data diff. Ψ ′
sm. diff. ave eqID ave eqIx ave eqIy ave eqIz AEE.±STD.

1 0.0131558 5.8824 2724.246 20.078 28.104 34.088 19.30◦ ± 20.05◦

2 0.0347743 0.2602 2234.735 14.483 22.206 25.176 18.60◦ ± 20.12◦

3 0.0059093 0.2068 2041.729 12.709 20.032 22.482 18.00◦ ± 20.19◦

4 0.0051870 0.2228 1905.180 11.597 18.541 20.735 17.49◦ ± 20.25◦

5 0.0045679 0.2327 1804.209 10.821 17.427 19.489 17.03◦ ± 20.30◦

6 0.0043418 0.2334 1726.878 10.246 16.556 18.546 16.62◦ ± 20.34◦

7 0.0042219 0.2287 1666.133 9.807 15.859 17.809 16.25◦ ± 20.37◦

8 0.0041733 0.2211 1617.340 9.465 15.294 17.218 15.91◦ ± 20.40◦

9 0.0041689 0.2119 1577.376 9.195 14.830 16.736 15.61◦ ± 20.43◦

10 0.0041954 0.2017 1544.075 8.977 14.445 16.335 15.32◦ ± 20.45◦

10th Outer Iteration
Inner Ψ ′

data diff. Ψ ′
sm. diff. ave eqID ave eqIx ave eqIy ave eqIz AEE.±STD.

1 5.2872770 11.2821 684.577 5.147 7.791 9.594 6.90◦ ± 18.75◦

2 0.6563276 0.0441 667.738 5.040 7.599 9.421 6.80◦ ± 18.71◦

3 0.3178679 0.0422 658.751 5.011 7.546 9.373 6.71◦ ± 18.67◦

4 0.2265391 0.0396 651.884 4.991 7.507 9.332 6.64◦ ± 18.64◦

5 0.1905575 0.0362 646.484 4.975 7.475 9.300 6.58◦ ± 18.62◦

6 0.1744226 0.0330 642.100 4.963 7.449 9.274 6.52◦ ± 18.60◦

7 0.1672531 0.0301 638.465 4.952 7.427 9.252 6.47◦ ± 18.59◦

8 0.1642882 0.0275 635.401 4.943 7.408 9.233 6.43◦ ± 18.57◦

9 0.1626395 0.0252 632.786 4.935 7.392 9.216 6.39◦ ± 18.56◦

0 0.1600340 0.0232 630.531 4.928 7.377 9.201 6.36◦ ± 18.55◦

We used 1 outer iteration and 100 inner iterations for most of the results in this
paper, because this gives much better results than using different sets of numbers of
inner and outer iterations in our implementation. Again, we emphasize that Brox et al.
[3] do not investigate this behaviour and do not (necessarily) iterate until convergence.
One possible reason we don’t get good results when using more outer iterations may be
the poor quality of the temporal derivatives used. These derivatives are used to update
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Ψ ′
data and Ψ ′

smooth in each outer iteration which, in turn, may propagate errors in further
iterations.

6.2 Hierarchical Optical Flow

One way to understand the Brox et al. method is to see how fields change at different
pyramid levels. Figures 3 and 4 show the start and end flow fields for sin.9 for levels
10 and 1. At top of the pyramid (level 10), the size of the volume is the smallest and
then both the volume size and the magnitude of the flow get larger and larger as it
goes down the pyramid. Note the many erroneous flow vectors in the final flow field
at the motion discontinuity at level 1. Since the correct velocities are known for the
lowest pyramid image, we can compute the correct velocities at any level with a certain
η value by resizing and rescaling. This allows quantitative evaluation at each level of
the pyramid so we can see how the accuracy of the results evolve from level to level.
Table 3 shows the angle error for the sin.9 data at different levels. We can see that the
angular error goes down to 13.56◦ at level 7, but then increase to 16.20◦ at level 0.
This is most likely because we can’t compute accurate velocities in the boundary area
where the 2 sinusoids, sinL and sinR, meet. Warping in this area of the image will add
error and these errors will accumulate as the pyramidal processing continues. When the
refinement can’t suppress the errors, the angular error increases.

We also exam the effect of 3D inverse warping. The spatial difference between the
1st and 2nd volume images should become smaller and smaller as we descend the pyra-
mid, if the velocities we compute are becoming more and more accurate. Figures 5a to
5c shows the difference between the 15th slice of the 1st and 2nd volume images for
the sin.9 data at (a) the 10th, (b) the 9th and (c) the 1st pyramid level. White means
no difference while black means large difference. We can observe obvious refinement
between the top two levels, but for later levels, refinements between adjacent levels are
very slight and so we can hardly tell if there is any changes in the image. Therefore,

Table 3. The 3D angular errors, standard deviation and density for the flow fields at all pyramid
levels of the 9th volume of the sin data (10 levels of pyramid, α = 100.0, γ = 100.0, number of
outer iteration=1, number of outer iterations=1, number of inner iterations=100, size of median
filter (3 × 3 × 3)

Pyramid level AAE ± STD Density(%)
10 25.12◦ ± 22.27◦ 100.00
9 20.12◦ ± 24.19◦ 100.00
8 15.45◦ ± 24.48◦ 100.00
7 13.56◦ ± 25.26◦ 100.00
6 13.85◦ ± 25.60◦ 100.00
5 14.95◦ ± 26.86◦ 100.00
4 16.05◦ ± 28.30◦ 100.00
3 16.89◦ ± 29.79◦ 100.00
2 16.55◦ ± 29.92◦ 100.00
1 16.20◦ ± 29.96◦ 100.00
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Fig. 3. The computed flow field at the 10th level for sin.9 (with α = 100.0, γ = 100.0, number
of levels in the pyramid=10, outer iteration=1, inner iteration=100, 3 × 3 × 3 median filtering),
downsampling rate 32 in x and y dimensions and 8 in the z dimension and flow scaling by 10
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Fig. 4. The computed flow field at the 1st level for sin.9 (with α = 100.0, γ = 100.0, number
of levels in the pyramid=10, outer iteration=1, inner iteration=100, 3 × 3 × 3 median filtering),
downsampling rate 32 in x and y dimensions and 8 in the z dimension and flow scaling by 10
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(a) (b) (c)

Fig. 5. The difference between the 15th slice of the left image and the right image for the 9th

volume of sin data at (a) the 10th, (b) the 9th, and (c) the 1st pyramid levels

Table 4. Error analysis for parameter variation for sin.9

Parameter Angular Error
Pyramid levels α γ filter size AAE. STD.

1 100 100 3 28.50◦ 25.08◦

10 10 100 3 30.14◦ 32.89◦

10 100 0 3 13.11◦ 28.71◦

10 100 20 3 14.55◦ 28.27◦

10 100 50 3 20.89◦ 33.53◦

10 100 100 0 17.03◦ 30.40◦

10 100 100 3 16.20◦ 29.69◦

30 100 0 3 12.90◦ 28.83◦

we just show the final difference image at the last level. We can see that at the mo-
tion boundary there is always a large difference because we can’t actually compute the
correct velocities here and therefore warping in this area will be wrong.

Lastly, we briefly discuss the effects of variation of the various parameters of the
algorithm for the sin data in Table 4. We can conclude:

– The algorithm works better with more levels of pyramid. It never produce the best
result if it is run at just one level. But it is also possible that more levels will cause
the accumulation of errors introduced by warping and interpolation.

– Larger α means more smoothing which in most cases produces better results. But
this may not be true when there are motion discontinuities in the input images.

– In all of these results, the algorithm seems to return more accurate results when
γ = 0, which means no gradient constraint is used. It is quite likely that the reason
we get better result when the gradient constraint is turned off is because of the
inaccuracy of the IxD , IyD and IzD values which use simple temporal differences.

– A median filter with larger size does remove more outliers and make the results
more accurate.

– Computation costs are high. For example, with 1 outer iteration and 100 inner it-
erations or with 10 outer iterations and 10 inner iterations, about 2 hours of CPU
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time (on a 2.8GHz PC running Linux with 8GB of RAM) was required to run our
vectorized MatLab code).

7 Gated MRI Cardiac Datasets Result

We note that the different parts in heart are contracting/expanding at different rates and
times and the heart is undergoing a twisting as a whole. Although the heart expansion
seems to have been captured, the flow field for 10phase.9 is poor, with many outliers
present and is not clinically useful.
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Fig. 6. The computed flow field for 10phase.9 (with α = 100, γ = 30, number of level in the
pyramid =10, outer iteration=1, inner iteration=100, 3 × 3 × 3 median filtering, downsampling
by 32 in the x and y dimensions and 8 in the z dimensions and a flow scale factor of 50

8 Conclusions and Future Work

Our 3D extension of Brox et al.’s optical flow algorithm produces very good flow for
data sequences generated with continuous motion. The algorithm is not designed to
handle motion discontinuities and performs poorly there. The flow field for the gated
MRI cardiac dataset seems to capture some of essential motions of a beating heart but
overall it is not good.

Future work includes finding out how to improve the temporal derivatives we com-
pute and/or how to get the gradient constraint to work under poor temporal differenti-
ation. We are investigating the parameterization of the 4D data using B-splines and a
way to get good derivatives. We are currently building a functional model of the heart
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that will be able to predict the motion of individual parts of the heart over time. We
would then add this as an additional constraint to our regularization. Lastly, we are
investigating “Oriented Smoothness” in 3D as way to have motion discontinuities.
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Abstract. The paper is focused on the computation of optical flow from

time-lapse 2D images acquired from fluorescence optical microscope. The

Heeger’s traditional established method based on spatio-temporal filter-

ing is adopted and modified in order to solve issues that arose from this

sort of image data. In particular, a scheme for effective and fast com-

putations of complex Gabor convolutions is used. The filter tuning is

changed to better support the detection of movement. The least squares

fitting of the original method is also revised. A parametric study was

conducted to assess optimal parameters. With optimal parameters, the

proposed method showed lower average angular errors than the original.

C++ implementation is available on the author’s web pages.

1 Introduction

It is not unusual to see a method working beautifully on selected data while
failing to give good results on other data, at least not in the field of image pro-
cessing. This is probably the motivation that gives rise to new ideas, development
of new or modifications of established methods. The same situation is observed
in the field of optical flow computation where, only to give some illustration far
from ambition to cite all papers in the field, new methods are being published,
recently [3,7], and many derivates are appearing regularly [12,18,14,5]. In this
paper, we aim to present some changes to the traditional method by Heeger
[9,10] for computing optical flow using spatio-temporal filters. Our motivation
are time-lapse 2D image sequences acquired from fluorescence optical microscope
to estimate motion of whole cells and their individual inner structures.

Fluorescence optical microscopy focuses, among other targets, on live cell
studies. The progress in staining of living cells together with advances in confocal
microscopy devices has allowed detailed studies of the behaviour of intracellular
components including structures inside the cell nucleus. To increase significance
of a study, the typical number of investigated cells in one study varies from
tens to hundreds. Trying to automate estimations of movements, for instance
to correct for global movement of a cell before its subsequent analysis, in such
image analyses has also become a challenge for computer vision methods [4,8].

Images of living cells are acquired periodically. Due to different nature of bio-
logical experiment and imaging limitations, such as bleaching of fluorescence in

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 263–273, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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the specimen, the interval between two consecutive acquisitions varies in range
from fractions of second up to tens of minutes. The interval is usually a com-
promise between quality of acquired images and rapidity of observed movement.
Thus, we usually deal with an increased level of noise and displacements up to 10
pixels between two consecutive images. However, Hubený et al. reported recently
good results achieved with PDE-based optical flow methods with multigrid nu-
merical framework on similar data [11].

For example, time-lapse images of displacements of human HL-60 cell nucleus
with moving HP1 protein domains exhibit both global movement of the nuclei
with additional local movements of the domains. We artificially generated such
image sequences to obtain reliable test data [17] for quantitative evaluations
in this paper. Real images, unlike artificially generated images, do not provide
dense correct information regarding its content. Without it, it is hard to judge
on quality of any optical flow computation method, quantitatively.

We have decided to use a method based on spatio-temporal filters, namely
the original Heeger’s method [10]. The acknowledged survey by Barron et at.
[1] showed that filtering-based methods tend to give good results on variety of
different images. These methods are also typical for requiring increased temporal
support, e.g. 7 subsequent images were used in Heeger’s work. As a real move-
ment of specimen in microscopy is usually not sampled ideally motion aliases
may be observed when using only two images from a sequence. This is especially
true for the noisy stained nuclei when not viewing it as a whole. This is referred to
as the aperture problem in the literature. By considering more images we hoped
to alleviate from this shortcoming. Moreover, by increasing the filters’ support
in the spatial domain we hoped to detect velocities larger than 1px/frame in
an original full resolution without scaling input images. The recent results on
fast IIR filtering of arbitrarily oriented anisotropic Gaussians [15] were hoped to
support it as well as to allow for reasonable accuracy and computational times.

In the next section we will shortly describe the Heeger’s method. The third
section continues by explaining changes made to it. Results on artificially gen-
erated data and discussion will be given in the fourth section. The last section
concludes the paper.

2 Heeger’s Method

In this section we aim to give a closer look at the original method. We only outline
the computation steps and give a bit more details on those where changes will
be made in the next section. We do not want to discuss merits or drawbacks
nor we want to explain all theory and reasoning that lead researches to their
method. Also note that a sequence of 2D time-lapse images can be regarded as
a 3D image in which all 2D images are stacked along the z-axis. We occasionally
refer to such 3D images in the paper.

The first step of the original method is convolution with broad filter to remove
local means or subtract Gaussian filtered copy of input image from the original
input image. The Gaussian can be isotropic with large sigma to give very narrow
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peak in the Fourier domain. Both variants remove DC offset from input 3D
image.

The next step is convolutions with three 3D Gabor filtering banks, four fil-
ters in each bank. All filters in a bank have the same Gaussian envelope and
frequency band but different spatial-frequency tuning. If [wx, wy, wz ] is the fre-
quency tuning of a Gabor filter then (w2

x + w2
y)1/2 and wz are constant within

a bank. In particullar, there are always four differently spatially-tuned filters
within a bank and three differently temporally-tuned banks. All Gaussians are
separable along the Cartesian axes. The 2D illustration is shown in Figure 1.

In fact, quadrature pairs of filters, odd-phase and even-phase of identical ori-
entation and bandwidth, is used in the original method. Convolutions with 3D
complex Gabor filters can be used instead. What follows is computing sum of
squared convolution results to compute Gabor energy. It returns the process
back to the real domain.

Fig. 1. An example with intentionally large sigmas of even-phase Gabor filters similar to

those in the original method. A), B) and C) show x-t sections from 3D images of filters

with the same fixed spatial-frequencies wx, wy and tuned to detect velocities (−1, 0),
(0, 0) and (1, 0), respectively. D) and E) show, in the x-t sections, relation of a patch

moving with velocities (1, 0) and (3, 0), respectively, to Gabor filter tuned to (1, 0).

A Gaussian filtering with small sigma then sets some maximum Fourier fre-
quency present in the images. This allows for setting bounds to an integral that
enumerate a Gabor filter response on an ideally random 2D image translating
with given velocity (u, v). We will denote the results of Gaussian filtering the
measured responses mi and values of such integrals the ideal responses Ri(u, v),
i = 1 . . . 12. There are twelve ideal responses for every combination of (u, v) in
the original method.

Finally, the last step is to compare all twelve measured Gabor energies with
all twelve-tuples of ideal responses, Figure 4. Heeger suggested to group the
twelve-tuples by three, according to the heading of the spatial-frequency of their
Gabor filters, and normalize each tripple independently of the others. The result
is such (u, v) that minimizes a sum of squared differences between the measured
and ideal twelve responses:

12∑
i=1

[
mi − m̄g(i)

Ri(u, v)
R̄g(i)(u, v)

]2

, (1)

R̄j(u, v) =
∑

i,g(i)=j

Ri(u, v), m̄j =
∑

i,g(i)=j

mi (2)
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where g(i) : 〈1, 12〉 → 〈1, 4〉 is a function that groups responses as specified above.
The method was originally presented with Gauss-Newton gradient-descent tech-
nique to locate, possibly, global minimum.

Most people start with Gaussian presmoothing of input image sequence before
removing the DC offset. Thus, some may consider this a part of the method too.

3 Modifications to Heeger’s Method

Basically, we have made only four changes to the original method in order to
improve its results on our time-lapse fluorescence microscopy images.

The first change was in the setup of filtering banks. We increased the number
of banks to nine. The temporal-frequency tunings matched velocities up to 4
pixels/frame, see Figure 2. Furthermore, the anisotropic Gaussian envelope was
oriented according to the frequency tuning of each filter to closely wrap the
motion-induced edge in time-lapse images.

Fig. 2. An example with intentionally large sigmas of even-phase Gabor filters similar

to those in the proposed method. A) to D) and F) to I) show x-t sections from 3D

images of filters with the same fixed spatial-frequencies wx, wy and tuned to detect

velocities from (−3, 0) to (4, 0), respectively. E) and J) show, in the x-t sections, relation

of a patch moving with velocities (1, 0) and (3, 0) to Gabor filters tuned to (1, 0) and

(3, 0), respectively.

The second change was in the normalization of measured and ideal responses.
We wanted the least squares fitting to seek ideal responses with major peaks
located over major peaks in measured responses, marginal peaks shouldn’t have
much influence. It is achieved by computing mi/m̄g(i) and Ri(u, v)/R̄g(i)(u, v),
both measured and ideal responses are then scaled linearly to interval 〈0, 1〉 and
the function [0.5−0.5 cos(πx)]2 is applied but only on measured responses. This
function slightly enhances x when above 0.77 and greatly lowers the smaller ones.
This prepares responses m′

i and R′
i(u, v) which are used to seek minimum of

12∑
i=1

[m′
i(m

′
i −R′

i(u, v))]2 . (3)
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The third change was due to our observation that stationary pixels in the input
image give rise to responses that form a ridge similar to the ideal response for
(-0.5,0) in Figure 4. We employ the ridge detection which compares measured
responses of stationary filters, on the ridge, with their two filters with the same
spatial-frequencies and closest temporal-frequencies, at foots of both hillsides of
the ridge. For each spatial tuning, two pairs of responses are always compared in
this way. We count in how many pairs the stationary filter has equal or stronger
response. If the number is greater than 1.5 times the number of spatial tunings
used then a ridge is deemed present and velocity (0, 0) is returned without any
further search for other velocities. Similarly, if there is any measured response
from a stationary filter greater than 0.6 or sum over all measured responses is
close to zero then we also return with velocity (0, 0).

The last change is that we always seek for correct (u, v) among 289 combi-
nations spread on a grid u, v ∈ 〈−4, +4〉 in steps of 0.5. The search is repeated
once in the vicinity of global minimum with smaller step 0.1.

Returning to the convolutions with filtering banks, we have developed a
scheme for convolution with arbitrarily-oriented anisotropic Gaussians previ-
ously [15]. A given 3D Gaussian is separated along six specifically oriented axes
into six 1D Gaussians. We used IIR filtering [19] whose speed performance is
not influenced by the magnitude of Gaussian’s sigma. The scheme allowed for
enhancement [16] such that convolutions with Gaussian or Gabor filtering banks
can be computed nearly optimally according to [13,2] and with very low com-
putational times. As a result, improved suppression of DC offset [2] could have
been implemented as well.

Repetitive computing of ideal responses can be rather time demanding. We
implemented software caches to alleviate this.

4 Results and Discussion

We compared three variants of the original Heeger’s method for computations of
optical flow: the original method as described in the section 2 with global search
for optimal (u, v) instead of gradient descent, the extended original method,
which is nearly the same as the proposed method from the section 3 with the
difference that anisotropic Gaussian envelopes are (not oriented and hence) still
separable only along Cartesian axes, and the proposed method with anisotropic
oriented envelopes.

We generated two test sets of 2D+t time-lapse artificial images from cell mi-
croscopy [17]. Images in the first set showed only local movements of foreground,
i.e. inner cell structures of interest. Images in the second set showed global move-
ments of the whole cell with additional local foreground movements. There were
10 time-lapse images with different movements in each set.

Owing to the generation of images, we had correct flow fields at hand for
evaluating quality by means of the average angular error [6]. The angular error is
an angle between computed vector (u, v, 1) and the expected vector (ugt, vgt, 1):
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arccos

(
uugt + vvgt + 1

((u2 + v2 + 1)(u2
gt + v2

gt + 1))1/2

)
. (4)

We computed the absolute average angular error over a region of a whole cell and
the foreground average angular error only over regions of foreground movement.
The latter error is important indicator for tracking of cell structures of interest.

It must be noted that, unfortunately, the implementation of all three methods
at the time of writing wasn’t able to work with scaled versions of input image.
It worked only with full resolution input images. After removing this limitation,
we believe the proposed method has a potential to provide even better results on
time-lapse 2D image sequences acquired from fluorescence optical microscope,
especially of larger displacements. It managed already to detect movement of
around 2px/frame, Figure 6C.

Table 1. The best Gabor parameters for image with only local movements

5–1–4,8 4–1–3,8 5–1–4,8 4–1–3,8 3–2–2,8 4–3–2,8

original method 17�/60� 18�/59�

extended original 6�/59� 6�/60�

proposed method 9�/37� 9�/38�

Table 2. The best Gabor parameters for image with global and local movements

5–4–4,8 5–4–1,7 5–4–4,8 5–4–3,7 5–4–4,8 5–3–4,8

original method 33�/28� 36�/24�

extended original 28�/29� 33�/25�

proposed method 23�/23� 25�/26�

We first conducted parametric studies on just one image from each set of
test images to discover optimal setups of filtering banks. Tables 1 and 2 show
setups that achieved the smallest absolute/foreground average angular errors
for parameters σx–σy–σz, P where period P = 100.0/[w2

x + w2
y + w2

z ]1/2. These
parameters are constant for all filters. The frequency tuning of wx, wy and wz

depends on a filter’s bank and filter position within a bank. Underlined setups
were used in the rest of this section. The study was for sigmas from 1 to 5 and
periods from 3 to 8.

We increased the number of filtering banks to be able to detect velocities
of magnitudes up to 4px/frame. This is maximum, considering the best found
setup, because the filters for velocities of 3px/frame and 4px/frame considerably
overlap in the Fourier spectrum, see Figure 3. Increasing the Gaussian envelope
in the spatio-temporal domain would reduce the overlap in the Fourier domain,
thus increasing selectivity, but would also increase the spatio-temporal support of
filters. This is not desirable due to weaker motion coherency observed between
pairs of consecutive images, which is a consequence of longer intervals used
during time-lapse image acquisition in optical microscopy.
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Fig. 3. Overlaid Fourier spectra of filters from the proposed method. The left-hand

image shows wx-wt section of Fourier energy image of a filter with wy = 0 from every

filtering bank. The right-hand image shows wx-wy section of Fourier energy image of

all filters with wt = 0, i.e. the bank sensitive to stationary regions.
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Fig. 4. Measured filtering responses for all filters in all banks for pixels denoted a and

b in Figure 6. The upper row gives an example of responses at motion boundary, pixel

a, while the middle row for pixel inside a region of motion (0,−2), pixel b. The lower

row shows ideal responses for velocities realizing global minima in graphs in lower row

of Figure 5, i.e. best matching ideal responses inside the region of motion. From left

to right, the original method with just 3 filtering banks and error given in equation

(1), the original method after using 9 filtering banks and the new error (3) and the

proposed method with oriented anisotropic filters and the new error.
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Fig. 5. Least squares evaluation on the 289 combinations of velocities (u, v), u, v ∈
〈−4, +4〉 in steps of 0.5 for pixels denoted a and b in Figure 6. The upper row gives an

example of the fitting for pixel at motion boundary while the lower for pixel inside a

region of motion. The velocity of motion was in both cases (0,−2). From left to right,

the original method with just 3 filtering banks and error given in equation (1), the

original method after using 9 filtering banks and the new error (3) and the proposed

method with oriented anisotropic filters and the new error.

Fig. 6. Illustration of flow fields computed by the three variants of the method. A), B)

and C) show flow field for the original method, the extended original and the proposed

method, respectively, on input data shown in x-y and y-t sections in D) and E). Green

colour denotes flow vectors with directions to up-left, yellow for direction up and red

for directions up-right. The evaluation in Figure 5 was for pixels a and b.

The heart of Heeger’s method is the matching of possible ideal responses to the
measured responses. Figure 4 shows responses measured at some two pixels in
a test image with only local movements. The original method has small number
of filters resulting in poorer characterization of local texture in the test image.
In other words, the characterization is too vague and no ideal response seems
to fit perfectly while many seems to almost fit. The variant of original method
with increased number of filters detected some significant patterns in the time-
lapse image. The corresponding peaks were enhanced while minor peaks were
suppressed by the new normalization procedure. Notice the weighted fitting,
given in eq. (3), forced to select a set of ideal responses in which the strongest
peak was obtained by the same filter as in the measured responses. As a result
of this behaviour, errors dropped to the average of 6�, Table 1. Also notice that
major features of measured responses computed with the proposed method in the
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Table 3. Error rates on biomedical images

absolute error, set1 foreground error, set1

original method 35.9�± 2.5� 36.9�± 8.6�

extended original 10.7�± 1.6� 62.9�± 5.0�

proposed method 13.8�± 1.6� 35.5�± 5.7�

absolute error, set2 foreground error, set2

original method 37.4�± 1.4� 36.8�± 16.0�

extended original 34.0�± 2.4� 34.0�± 15.0�

proposed method 33.2�± 1.7� 32.4�± 14.6�

region and at the boundary of the region of a local motion were rather similar.
The fitting should match the same or similar set of ideal responses, i.e. the same
or similar velocities, in both situations. The process of fitting is illustrated in
Figure 5.

Figure 6 presents visualization of flow fields computed by the all three methods
as well as the input 3D image. The bright spot in the image is local foreground
region of interest. It is moving straight up by 2 pixels per frame. The pictures
D) and E) were enhanced for visualization purposes. We utilize a colour cod-
ing of flow vectors, direction is given by colour and vector’s length is given by
intensity, to inspect optical flow computation results easier. Only the proposed
method managed to detect motion inside the foreground region without a need
to resample the input image. The original method and its extension, which both
are using Gabor filters separable only along Cartesian axes, presented a flow field
with vectors in the direction of local gradient. This is typical for many optical
flow computing methods when they start to suffer from the aperture problem.
Owing to large Gaussian envelopes, the regions of local movement were overes-
timated in all cases.

Finally, we tested the methods for accuracy on the two test sets of images.
Each method was tested with underlined setup according to Table 1 and 2,
respectively. Table 3 shows error rates for the two test sets. The proposed method
improved the error rates when compared to the original method. However, there
seems to be left a great deal for future work and further improvements.

5 Conclusion

The paper was focused on the computation of optical flow from time-lapse 2D
images acquired from fluorescence optical microscope. The aim was to obtain
reasonably accurate flow fields, in reasonable computational times, that would
eventually enable tracking of inner cell structures of interest simply from flow
vectors.

The traditional established Heeger’s method based on spatio-temporal filter-
ing was adopted and modified in order to solve issues that arose from our image
data. In particular, we used a scheme for effective and fast computations of com-
plex Gabor convolutions. The filter tuning was changed to better support the
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detection of movement. We also revised the least squares fitting of the original
method.

We conducted a parametric study to assess optimal parameters for the method
to work the best. The parameters were used during the demonstrations in the
section 4. With the tracking application in mind, we measured errors also only
over some local regions of interests in order to see quality of flow field com-
puted there. Generally, the proposed method shows lower average angular errors
compared to the original method or similar errors but with smaller standard
deviation. However, room is still left for further improvements.

The proposed method’s C++ implementation is freely available at the URL
http://cbia.fi.muni.cz/projects/optical-flow-for-live-cell-imaging.html. It can’t
scale input images, hence larger velocities can’t be detected reliably. This will
be the subject of our future research.
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Abstract. This paper deals with the problem of reconstructing shapes from an
unorganized set of sample points (called S). First, we give an intuitive notion
for gathering sample points in order to reconstruct a shape. Then, we intro-
duce a variant of α-shape [1] which takes into account that the density of the
sample points varies from place to place, depending on the required amount
of details. The Locally-Density-Adaptive-α-hull (LDA-α-hull) is formally de-
fined and some nice properties are proven. It generates a monotone family of
hulls for α ranging from 0 to 1. Afterwards, from LDA-α-hull, we formally de-
fine the LDA-α-shape, describing the boundaries of the reconstructed shape, and
the LDA-α-complex, describing the shape and its interior. Both describe a mono-
tone family of subgraphs of the Delaunay triangulation of S (called Del(S)). That
is, for α varying from 0 to 1, LDA-α-shape (resp. LDA-α-complex) goes from
the convex hull of S (resp. Del(S)) to S. These definitions lead to a very sim-
ple and efficient algorithm to compute LDA-α-shape and LDA-α-complex in
O(n log(n)). Finally, a few meaningful examples show how a shape is recon-
structed and underline the stability of the reconstruction in a wide range of α
even if the density of the sample points varies from place to place.

Keywords: Shape Reconstruction, Delaunay Filtration, α-shape, Local Density.

1 Introduction

Reconstruction of a sampled shape from a set of points is important in many domains
such as computer vision, image analysis, clustering, or pattern recognition. The whole
issue is the reconstruction of a shape only from its sample by respecting its topology.

Early works dealing with this problem did not define the reconstruction formally and
their results was validated according to human perception. They proposed heuristics
based on the Delaunay triangulation in order to capture the shape. These algorithms are
quite difficult to implement, have numerous thresholds, and give results close to human
perception for some sets of points. Among these works the Urquart’s algorithm [2]
makes use of the relative neighborhood graph while Ahuja and Tuceryan [3] propose a
classification method mainly based on some geometrical properties of Voronoı̈ regions.

Jarvis [4] was the first to consider the shape as a generalization of the convex hull.
A couple of years later, Edelsbrunner, Kirkpatrick and Seidel [1] gave a formal defini-
tion of such a generalization, named α-shape. These concepts led to important progress
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in the domain of pattern recognition and gave rise to many works as A -shape intro-
duced by Melkemi [5]. More rigorous definitions of reconstruction and simpler algo-
rithms without threshold were presented. The main step that followed concerns curve
reconstruction in 2D or surface reconstruction in 3D with, for instance, methods with
anisotropic-density-scaled-α-shapes of Techmann and Capps [6], or works of Dey and
Kumar [7] or those of Amenta, Choi and Kolluri [8]. Amanta and Bern [9] introduced
the notion of ε-sample and proved that their algorithm reconstructs a ε-sampled curve.
Boissonnat and Oudot [10], Chazal and Lieutier [11], and Cohen-Steiner, Edelsbrun-
ner and Harer [12], among others, were interested in insuring the reconstruction of a
3D surface, provided some sample conditions were fullfiled. Very recently, Dey et al.
present in [13] an algorithm for the reconstruction of a surface with boundaries in 3D
and guarantes that the output is isotopic to the sampled surface.

Our main interest is the reconstruction of shapes from a set of points, which are not
just lying on the boundary of the shape but which cover its whole area. The issue is to
find a subgraph of the Delaunay triangulation which is a good interpolation of the shape.
The algorithms previously cited, using heuristics based on the Delaunay triangulation,
are related to a significant number of thresholds to be adjusted and the interpretation
of their results is often related to visual criteria. Some approaches consisting in recon-
structing a region from slices can also be considered, in some way, close to ours. The
interior of the region is also sampled, but with segments in R

2 or with polygons in R
3.

Boissonnat and Geiger [14] reconstruct the region using the Delaunay complex of two
consecutive slices, Barequet et al. suggest an interpolation algorithm that uses the me-
dial axis of the overlay of two consecutive slices [15] and more recently, Boissonnat
and Memari [16] generalized the algorithm proposed by Boissonnat and Geiger in 1993
for cutting planes whose positions and orientations may be arbitrary. Among the works
concerning the problem of reconstructing a region, the α-shapes proposed by Edels-
brunner in 1981 and the A -shapes proposed by Melkemi in 1999 are those that have
inspired us most. The α-shape are very helpful with almost relatively uniform sampling
but shows some limits with non uniform sampling. The Weighted α-shape [17], which
extends this notion, aims at overcoming this problem. However, this solution does not
completely solve irregular sampling problems because, as the influence zone associated
with each point has a disc shape, the variation of density must be equal in all directions
around it. Our works propose to provide a variant of α-shape which takes into account,
in a very natural way, that the local density of the points can varie from place to place,
depending on the required amount of details. This is a filtration of the Delaunay triangu-
lation called Locally-Density-Adaptive-α-shape or shorter LDA-α-shape based on the
local density of the points. LDA-α-shape is less generic than conformal-α-shape [18]
since its main objective is to provide a precise and formal sense of what is the shape
of a set of points according to α , even if these points are not uniformally distributed.
And it leads to a simple and efficient algorithm with a local filtering condition which
can adapt to the variations of the density of the set of points.

After presenting in section 2 different geometrical concepts on which our works are
based, we give, in section 3, a definition of the reconstruction. Then, in section 4, we
present the intuitive idea of the sampling conditions and of our reconstruction algorithm.
In section 5, we give the LDA-α-empty disk definition and its properties. They allow to
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introduce the notions of LDA-α-hull, LDA-α-shape, and LDA-α-complex. In the last
sections, we describe our algorithm and its complexity followed by some significant
examples.

2 Related Geometrical Concept

In this section we briefly describe the background for our work.
Let S be a set of points of R

2. We assume that points of S are in general position,
that is, there are neither three points on a line nor four points on a circle. The general-
assumption simplifies the forthcoming definitions, however the difficulties that arise
without these assumptions could be treated by more elaborated definitions.

2.1 Delaunay Triangulation

The Delaunay Triangulation of a set of points S, introduced by Boris Delaunay in 1934,
is the dual graph of the Voronoı̈ Diagram of S. Such a triangulation can be defined with
the following remarkable property: this is the only triangulation whose the circumcircle
of each triangle does not contains any point of S in its interior. This property is gen-
eralized to the higher dimensions. In the following, the Delaunay triangulation of S is
denoted Del(S).

2.2 Maximal Disk

Definition 1. We define a maximal disk of S as either, an open disk containing no point
of S and whose boundary passes through three points of S, or, an open half plane con-
taining no point of S and whose boundary passes through two points of S.

In the first case, a maximal disk is the interior of the circumcircle of a Delaunay triangle
and is also called a finite maximal disk. In the second case, a maximal disk is an open
half plane containing no point of S and bounded by the straight line spanned by a convex
hull edge. It is also called an infinite maximal disks and its radius is considered to be
infinite.

It must be noticed that T.K. Dey et S. Goswami use in [19] a notion of “big Delaunay
balls” close to our definition LDA-α-eliminated maximal balls.

3 Reconstruction

The issue of shape reconstruction is to produce an approximation of a shape from a
degraded view, like the one from its set of sample points for instance. A problem is
how to detect a well reconstructed shape. Albeit this seems quite subjective, it is pos-
sible to give an exact definition of the reconstruction. Indeed, the restricted Delaunay
triangulation [20] is widely considered as a good approximation of the shape, as well
topologically as geometrically if it is well sampled [21].

Let Σ be a shape sampled by S. A subgraph of Del(S) reconstructs Σ if it is the
Delaunay triangulation of S restricted by Σ .
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Fig. 1. Variation of the local density of the sample points

4 Sample Condition and Idea of Reconstruction

In order to reconstruct a region Σ , its set of sample points S has to carry enough infor-
mation. Some assumptions about its quality have to be done. First, points of S are all
supposed included in the interior of Σ . In other words, the sample is not noisy. Then,
the repartition of the points and the local density of the sample is under consideration.
The idea of a uniform sample points is avoided, i.e. such that its local density is approx-
imatively the same everywhere. So, the sample is not regular but it is nevertheless under
conditions. In particular, it has to be of strong density when a big amount of detail is
required. For instance, the figure 1 shows a shape and its sample. The rectangular areas
1 and 2 have a relatively strong density close around holes because the difference be-
tween interior and exterior has to be explicitly shown. But, the rectangular area 3 does
not need to be strongly sampled. Indeed, the local density of the sample can become
less and less strong from left to right. However, in the rectangular area 3, the variation
of the density need to be progressive to avoid the “apparition” of “nonexistent” holes.

To summarize, the assumptions done about a sample S in order to allow the recon-
struction of Σ ,

1. S is included in Σ .
2. Its local density is relatively dense close to an hole or an hollow. Relatively means

that if we were able to measure a local density, the ratio between the local density
around the hole and inside it might be smaller than a threshold, so called α .

3. On the other hand, its density variation inside the region must be progressive. In-
deed, the ratio between the local density of two neighboring areas must be greater
than α .

Our idea of reconstruction utilizes this concept. From the first assumption, points of
S are inside Σ . It remains to find out the kind of areas between them. Which areas
are inside the shape? Which areas are outside the shape? The problem comes down to
determining how to efficiently obtain a significant measure of the local density of S for
all points of S.

Correctly, by definition the maximal disks of S are empty. Thus, the larger they are,
the sparser is the density at this place. Moreover, the ratio between two neighboring
maximal disks gives a good interpretation of density variation between both places. The
idea is to consider that a maximal disk relatively large compared with all its neighboring
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maximal disks means it is included outside the shape. Our reconstruction algorithm is
based on this simple idea and its concept is formally explained in what follows.

5 Definitions

5.1 LDA-α-empty Disk

Definition 2. let D be a maximal disk with radius r, P be the set of all points of S lying
on the boundary of D and α a positive real number. The disk D is said to be LDA-α-
empty if and only if, for all p of P, there exists a maximal disk with radius r′, whose
boundary passes through p, and such that r′

α ≤ r.

Observation : all infinite maximal disks are LDA-α-empty, for all α since they are all
infinitely larger than any finite maximal disk.

Property 1. There exists an α ′ such that, for every α ≤ α ′, the maximal infinite disks
are the LDA-α-empty disks.

Proof: Let D be a finite maximal disk with radius r, let p be a point of S on the boundary
of D, and D′ be a maximal disk with radius r′ whose boundary contains p. Let rmax be
the radius of the largest finite maximal disk of S, rmin be the radius of the smallest one,
and α such that rmin

rmax
> α . Since r′

α > r′/ rmin
rmax

= r′ rmax
rmin
≥ rmin

rmax
rmin

= rmax ≥ r, D is not
LDA-α-empty.

Thus, we extend the range of α . It is a non-negative real number and we set that all
infinite maximal disks and only infinite maximal disks are LDA-0-empty.

Property 2. For every α ≥ 1, all maximal disks are LDA-α-empty.

Proof: Let D be a maximal disk with radius r, p be a point of S on the boundary of D,
D′ be a maximal disk with radius r′ whose boundary contains p, and α such that α ≥ 1.
Now, choosing D′ = D, we have r′

α = r
α ≤ r and thus D is LDA-α-empty.

From now on, α is ranging from 0 to 1.

5.2 LDA-α-hull

Definition 3. The LDA-α-hull of S is the intersection of all complements of the closures
of LDA-α-empty disks.

Property 3. The LDA-0-hull of S is the convex hull of S.

Proof: From property 1, the infinite maximal disks are the LDA-0-empty disks. By
definition, the LDA-0-hull is the intersection of all half-planes whose closures contain
S and whose boundaries pass through two points of S. Hence, it is the convex hull of S.

Property 4. The LDA-1-hull of S is S.

Proof: The interiors of the circumcircles of the Delaunay triangles of S, i.e., the finite
maximal disks cover the convex hull of S, but S since they are opens. The infinite max-
imal disks cover the complement of the convex hull of S, but S because S is included in
the convex hull.
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Property 5. If α1 ≤ α2 then the LDA-α1-hull is a set containing the LDA-α2-hull since
an LDA-α1-empty disk is also LDA-α2-empty.

Thus the LDA-α-hulls of S for α ranging from 0 to 1 form a discrete monotone family
of hulls, from the convex hull of S to S itself.

5.3 LDA-α-shapes

Definition 4. The points of S lying on the boundary of LDA-α-empty disks are LDA-α-
extreme.

From Property 5, we have:

Property 6. For α1 ≤ α2, the set of all LDA-α1-extreme points is included in the set of
all LDA-α2-extreme points.

Definition 5. Two points p and p′ of S are LDA-α-neighbors if p and p′ are LDA-α-
extreme, both lie on the same LDA-α-empty disk, and the open edge pp′ is included in
a unique LDA-α-empty disk.

Now, LDA-α-shape can be defined similarly to α-shape [1].

Definition 6. Given a set S and a real number α ranging from 0 to 1, the LDA-α-shape
of S is the straight line graph whose vertices are the LDA-α-extreme points and whose
edges connect the respective LDA-α-neighbors.

It immediately follows from properties 3 and 4 that an LDA-0-shape of S is the bound-
ary of the convex hull of S and that an LDA-1-shape of S is S.

An LDA-α-shape of S is obviously a sub-graph of Del(S) because every edge con-
nects two points which are on the same maximal disk.

An LDA-α-shape is a straight line graph. It describes the boundary of the recon-
structed domain. It is sometime necessary to distinguish the interior from the exterior:
interior faces are those which contain the sample. Another way to describe the domain
considering interior and exterior is done by defining LDA-α-complex.

5.4 LDA-α-complex

Definition 7. Given a set S and a real number α ranging from 0 to 1, the LDA-α-
complex of S is the straight line graph whose edges are edges of Del(S) included in at
most one LDA-α-empty disk.

By definition, the LDA-α-shape of S is included in the LDA-α-complex of S.
It immediately follows that an LDA-0-complex of S is the Delaunay triangulation of

S and an LDA-1-complex of S is S.
Moreover, LDA-α-complexes of S describes a discrete monotone family of sub-

graphs of Del(S) from Del(S) to S, when α varies from 0 to 1.
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6 Algorithm

Computing an LDA-α-shape and an LDA-α-complex of S can be done quite simply
and in a efficient way since they are both subgraph of Del(S) and may be obtained by
filtering it in linear time.

For reason of efficiency, we consider the following observation deduced from the
Definition 2:

We call rmin(q), the radius of the smaller maximal disk whose boundary passes

through q. If for each point p of P, rmin(p)
α ≤ r then D is LDA-α-empty. So D is by

definition LDA-α-empty.
The main algorithm has to compute if the circumdisk of a face f adjacent to an edge

is LDA-α-empty or not. This is done in constant time in the following function:

Algorithm 1. Is the circumdisk of f LDA-α-empty ?
Let p, p′, p′′ be the vertices of f
Let r be the radius of the circumcircle of f

return ( rmin(p)
α ≤ r)∧ ( rmin(p′)

α ≤ r)∧ ( rmin(p′′)
α ≤ r)

Algorithm 2. Computing of the LDA-α-shape and of the LDA-α-complex
Compute Del(S)
Associate each point p of S to the smaller radius rmin(p) of the circumcircles of the triangle
whose p is a vertex.
for all edges pp′ of Del(S) do

{To reconstruct the LDA-α-complex}
Let f and f ′ be both faces incident to pp′

if the circumdisk of f is not LDA-α-empty ∨ the circumdisk of f ′ is not LDA-α-empty
then

pp′ is an edge of the LDA-α-complex
end if

end for
for all edges pp′ of Del(S) do

{To reconstruct the LDA-α-shape}
Let f and f ′ be both faces incident to pp′

if the circumdisk of f is LDA-α-empty ⊕ the circumdisk of f ′ is LDA-α-empty then
pp′ is an edge of the LDA-α-shape

end if
end for

The computation of the LDA-α-shape and the LDA-α-complex of S is done in time
O(nlog(n)), where n is the number of points of S.

– The computation of Del(S) is done in O(nlog(n))
– The computation of each rmin(p) associated to each p is done in linear time because

each circumcircle of a Delaunay triangle is processed once and only once for each
vertex of a triangle.

– The test for each edge of Del(S) is done in constant time.
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Observation : For any new value of α , it is useless to compute Del(S) again nor rmin(p).
This “piece” of computation has to be done once and for all α . It has to be done again
every time S is modified.

7 Meaningful Examples

The algorithm presented in this paper has been implemented. For all experiments that
we have done, it was always easy to find a set points and a value of α (or even a range
of values) for which our algorithm was able to reconstruct the shape.

A few meaningful samples and their reconstruction are presented in what follows.
Figure 2 shows a shape whose bottleneck requires a sample with a relatively strong

density at this place. On the over hand the density of the sample do not need to be so
strong elsewhere.

Figure 3 shows a case of reconstruction with two connected components whose
neighborhood implies a relatively strong sample.

Figure 4 shows a case of reconstruction when a component is nested in another.
Interweaving may be as deep as wanted.

Fig. 2. The sample of a shape with a bottleneck, its reconstructed shape and complex for α = 0.5

Fig. 3. The sample of two close different shapes, its reconstructed shape and complex for α = 0.5

Fig. 4. The sample of two nested components, its reconstructed shape and complex for α = 0.5
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α=0.0 α=0,1 α=0.2 α=0,3

α=0.7 α=0,8 α=0.9 α=1.0

Fig. 5. A few LDA-α-complexes of the same sample according to different values of α

Figures 5 shows LDA-α-complexes of the same sample according to different values
of α . The generated complex is Del(S) for α = 0.0. More and more edges are filtered
while α is increasing. The sampled shape is reconstructed from α = 0.3 to α = 0.7.
Next, edges are filtered until it remains only S. One may notice the outstanding stability
of the reconstruction in a wide range of values of α: from 0.3 to 0.7.

8 Conclusion

We introduced the notion of LDA-α-hulls, LDA-α-shapes and LDA-α-complexes of a
sample set of points of the plane. LDA-α-hull is a variant of α-hull [1], from which we
took inspiration. Variation of α spawns a monotone family of hulls from the “crudest”
to the “finest” interpretation of the sample. The main difference is that the variation
of the density of the set of sample points is taken into consideration. A simple and
efficient algorithm based on this concept was proposed. It was easily implemented and
a few meaningful results have shown, on the one hand, some reconstructions from sets
of sample points that included few points, on the other hand, the strong stability of the
reconstruction because the shape is reconstructed in a wide range of α .

Our actual work is, first, to generalize it to higher dimensions and, second, to find out
a distribution function of the sample such that the reconstruction of the sampled shape
is guaranted for a range of values of α .
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Abstract. In a previous paper we have presented the idea of represent-

ing the shape of a 2D object by scanning it following a Hilbert curve

then performing wavelet smoothing and sampling. We also introduced

the idea of using only a subset of the resulting signature for comparison

purposes. We called that set the Key Feature Points (KFPs). In this

paper we introduce the idea of taking the KFPs over a number of views

of the original shape. The proposed improvement results in a significant

increase in recognition rates when applied to the MPEG-7 and ETH-80

data sets when the Hilbert scan is used. Similar improvement is achieved

when the raster scan is used.

1 Introduction

Shape representation is fundamental for many tasks, including object recogni-
tion, registration, and image retrieval. The exponential growth of digital multi-
media data and the need to describe and identify the content of this information
have made shape representation and description a very active research area.
One user survey, regarding the cognitive aspects of image retrieval, indicates
that users are more interested in retrieval by shape than by colour or texture [1].
Researchers are also more interested in the shape features due to the increased
discrimination, easy handling, and the wide array of existing mathematical and
geometrical models that can be applied to shape.

The current methods for shape representation can be categorized as either
boundary-based (sometimes called contour-based) or region-based methods. For
boundary-based methods, the shape’s outer boundary is needed in computation,
whereas in region-based ones, the inner shape pixels are utilized. Region-based
methods reflect the global shape features, whereas the boundary-based ones
exploit the local variations of a shape’s outer boundary.

In a previous publication [2], we have introduced a new region-based shape
representation technique that captures the shape features by scanning the object
image with the Hilbert Curve (HC) producing a 1D version of the image which is
smoothed and sampled to produce the image’s Shape Feature Vector (SFV). The
proposed technique runs in linear time and is invariant to translation, scaling,
and stretching. Because in many cases the class which each object in a database
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belongs to is known (e.g., cars, planes) we have demonstrated how this knowledge
can be applied to determine the most prominent features of the shape vectors of
the objects within each class in order to maximize the representational power of
these vectors. These prominent features are called Key Feature Points (KFPs).

In this paper we introduce the concept of Rotational KFPs (RKFPs). Instead
of determining the KFPs based only on the SFVs of the class objects in their
original view, we create SFVs for multiple views for each shape, concatenate them
into a Cumulative SFV (CSFV), then use CSFVs to determine the RKFPs for
the class. The different views are obtained by rotating the object a number of
times. For each view, the SFV representing the shape is generated.

Section 2 describes the basics for shape representation using the Hilbert curve
scan and KFPs. The proposed improvement is discussed in Section 3. Experi-
mental results are presented in Section 4.

2 Shape Representation Using the HC and KFPs

A shape is distinguished from its background by its pixels intensity variation.
Ebrahim et al. [2] suggest to capture this variation, which has the shape informa-
tion embedded in it, by scanning the segmented out object image by using the
HC. The intensity value for each visited pixel is saved in a vector, V . To smooth
out noise while keeping the main shape features intact, the wavelet transform
is applied to V , producing the vector WV which is then sampled to obtain the
vector SWV which is normalized to produce the object’s Shape Features Vector
(SFV).

In many applications, the shapes in the database are grouped into classes
(e.g., cars, airplanes, phones). In the same paper [2], the authors propose that
in such applications, the knowledge about the class of each shape is utilized as
leverage to improve the accuracy of the proposed approach. The idea is that
shapes belonging to the same class share some features that make the class
different from other classes. The SFV points that correspond to these features
are called Key Feature Points (KFPs). At search time, only the SFV elements
that correspond to the class’ KFPs are used to compute the distance between
the search object and each of the objects belonging to the class. Other feature
points that have been deemed less important (i.e., are not KFPs) are ignored.

The KFPs for each class are determined first by calculating the standard
deviation of each SFV element across the class. Next, and the elements with
the lowest standard deviation are identified as the KFPs and their locations are
saved.

When a query shape is to be searched for in the database, its SFV is compared
to each SFV in the class and the closest distance of the two is recorded to be used
in the nearest neighbour search. Note that only the elements that correspond to
the KFPs of the class the database object belongs to are compared.

Figure 1 exhibits the 11 shape vectors for the ”dude” class in the Kimia-99
dataset and the class’ KFPs (at the top of the graph). As expected, the KFPs
are located where the shape vectors differ the least.
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Fig. 1. Shape vectors of the 11 ”dude” objects in Figure 2 and their associated KFPs

(the dots at the top)

Fig. 2. The 11 ”dude” objects in the Kimia-99 dataset

The use of KFPs improves the retrieval accuracy by maximizing the similarity
of the objects within the same class. Figure 3 presents ”dude-0” (top left) and
”dude-8” (top right), along with their shape vectors, and the ”dude” class KFPs.
Correlating the full two SFVs yields a cross-correlation of 0.5, but when only the
SFV points corresponding to the class KFPs are correlated, the cross-correlation
becomes 0.88 better reflecting the similarity between the two objects (using SFV
size of 512, rbio3.1 wavelet with approximation level 3, KFPs vector size is 20%
of the SFV vector).

3 Proposed Improvement

In this section we propose a simple yet effective improvement over the technique
described in Section 2. Instead of having an SFV that results from only one scan
of the object, the CSFV will be the concatenation of the SFVs resulting from
scanning the object at different views at different rotation angles. For example,
the object can be scanned at the original position (0 rotation angle), rotated 120
degrees, and 240 degrees.

When scanning an object using the HC at each rotation angle, the HC inter-
sects with the different pixels of the object in a different sequence. This results
in a different representation of the shape of the object. Figure 4 shows an object
with its three representations at angles 0, 120, and 240.

Figure 5 depicts three views of the dude0 object and the RKFPs superimposed
on them in grey. From the figure, it is evident that the KFPs on each view
capture different features of the shape. This increases the number of features
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Fig. 3. Shape vectors of ”dude-0” and ”dude-8” in Kimia-99 and their associated KFPs
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Fig. 4. (a)Dude0 from Kimia-99 and its SFVs at rotation angles (b) 0, (c) 120, and

(d) 240 degrees
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(a) (b) (c)

Fig. 5. RKFPs (in grey) superimposed on the three rotations of the dude0 object. (a)

0 degrees rotation, (b) 120 degrees rotation, (c) 240 degrees rotation.

Air 33% 38% 29% Animal 24% 41% 34% Bunny 55% 45% 0%

Dude 32% 40% 28% Fgen 58% 42% 0% Fish 66% 21% 14%

Hand 32% 36% 32% KK 83% 17% 0% Tool 20% 43% 37%

Fig. 6. RKFPs percentage in each of the 3 rotation angles for the Kimia-99 dataset

used for discrimination among different shapes. Using the RKFPs, the correlation
between the two objects in Figure 3 goes from .88, when KFPs are used, to .93,
when RKFPs are used, better reflecting the similarity between the two shapes.

Notice that the way the RKFPs are selected does not guarantee that each
of the object rotations will get an equal share of the RKFPs. The RKFPs are
selected based on the similarity of the CSFV elements throughout the class
regardless of the view SFV that the element belongs to. Table 6 lists the RKFPs
percentage in each of the 3 views for each class within the Kimia-99 dataset. It
can be seen from the figure that some classes have a fairly even distribution of
the RKFPs such as Air and Hand. Other classes have a high concentration of
RKFPs in one of the object views such as KK and Fish.

4 Experimental Results

In this section, a number of experiments are described. The proposed technique
is tested on the MPEG-7 and ETH-80 datasets. The first dataset contain a
fair amount of affine (scaling, rotation, and translation) and visual (occlusion
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Table 1. MPEG-7 core experiment (CE-Shape1) part B results of the proposed tech-

nique compared to some popular techniques in the literature

Algorithm CSS [4] DTW [5] MCC [4] Curve Generative IDSC+DP HC+KFPs HC+RKFPs
Edit [6] Model [7] [8] [2] 12 views

Score 75.44% 77.76% 84.93% 78.17% 80.03% 85.4% 85.3% 98%

Complexity O(N2) O(N3) O(N3) O(N3) O(N) O(NM)
M=#of views

Table 2. ETH-80 results of the proposed technique compared to some popular tech-

niques in the literature

DxDy Mag-Lap PCA PCA Cont. Cont. HC+KFPs HC+RKFPs
Masks grey Greedy DynProg 12 views

Average 79.79% 82.23% 83.41% 82.99% 86.4% 86.4% 89.6% 99.3%

and articulation) transformations. The test datasets were not preprocessed in
any way. The results are compared to those obtained when the object image is
raster-scanned and with results of other techniques in the literature.

If it is not indicated otherwise, SFV size 512, wavelet approximation level
3, rbio3.1 wavelet, RKFPs vector size of 0.2 the CSFV size, and the Euclidean
distance measure are used.

4.1 MPEG-7 Dataset

The MPEG-7 dataset consists of 70 classes of objects each of which has 20
different silhouette images (i.e. a total of 1400 silhouettes). The recognition rate
is measured by the ”Bulls eye” method [3]. Every image in the dataset is matched
with all image and the 40 best matched candidates are determined. Within the
40 best matches, the objects belonging to the same class as the search object
-except itself- are counted as correct hits.

Table 1 illustrates how the proposed approach fares against others in the
literature. Note that for the HC+KFPs method the KFPs size is 25% of the
SFV size while for the HC+RKFPs method the RKFPs size is 5% of the CSFV
size. These settings gave the best results (please see below for more about this
issue). All other variables are equal and are set to the default values mentioned
above.

Figure 7 shows some observations made when the proposed improvement is
applied to the MPEG-7 dataset. From (a), it is clear that the recognition rate
tends to improve as the number of views increases. That is true for both the HC
and raster scans (i.e., the algorithm in Section 2 is used but with two different
scan types.) The raster scan seems to benefit more from the proposed improve-
ment but is still inferior to the HC scan. From (b), it can be seen that the size
of the RKFPs -that produces the best results- as a percentage of the size of the
CSFV tends to decrease as the number of views increases. This helps to dampen
the negative effect of increasing the number of views which results in larger
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Fig. 7. MPEG-7 (a)HC and Raster scan Recognition Rate. (b) RKFPs size as a % of

CSFV size. (c) RKFPs size as a # of points vs. Recognition Rate.
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Fig. 8. ETH-80 silhouette (a)HC and Raster scan Recognition Rate. (b) RKFPs size

as a % of RSVF size. (c) RKFPs size as a # of points vs. Recognition Rate.
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CSFVs. The raster scan seems to require smaller number of RKFPs for lower
numbers of views than the HC scan. The relationship between the recognition
rate and the number of the RKFPs in points is depicted in (c). The figure shows
a positive correlation between the two. Notice that even with the highest number
of views tested, 12, the number of the RKFPs is still less than the SFV size of a
single view of 512 points. This means that using the HC+RKFPs approach with
its dramatically superior performance is still cheaper in terms of storage space
than using the HC approach with no KFPs. Remember that we don’t need to
store the whole CSFV vector for each object. All we need is those elements of
the CSFV that correspond to the RKFPs, discarding all the rest. This is where
the savings are achieved.

4.2 ETH-80 Dataset

For this experiment, the ETH-80 dataset from ETH Zurich [9] is chosen. We
use 1280 images of the dataset grouped into 8 classes with 10 objects each.
Each object has 16 images obtained by walking around the object. The images
are shot at an interval of 22 to 26 degrees. Each set of shots taken at a certain
angle for each class of objects is considered a class on its own for RKFPs creation
purposes. This means that the results obtained in this experiment not only show
the success rate of identifying the right class of objects an object belongs to, but
also that of identifying its right orientation. The experiment is performed on the
silhouette version of the dataset.

Table 2 compares the results obtained by the HC+KFPs and HC+RKFPs
techniques to that obtained by a set of techniques listed in [9]. Note that for
the HC+KFPs method, the KFPs size is 45% of the SFV size, while for the
HC+RKFPs method the RKFPs size is 25% of the CSFV size. These settings
gave the best results. All other variables are equal and are set to the default
values mentioned above.

Figure 8 shows the obtained results for the ETH-80 dataset in a similar way
to that used with the MPEG-7 dataset above. From (a), it is evident that the
recognition rate tends to improve as the number of views increases which is
inline with the results obtained for the MPEG-7 dataset. That is true for both
the HC and raster scans. Although both scans did comparably well, the HC scan
performed better for higher number of views.

The trend found in Figure 7(b) is less evident in Figure 8(b). That is reflected
in the significantly larger number of RKFPs at each number of views compared
to that for the MPEG-7 dataset as can be seen in (c). Also from (b), the raster
scan seems to require smaller number of RKFPs than the HC scan.

5 Conclusion

This paper describes a simple yet significant improvement over the the technique
described in [2]. Instead of creating the shape signature based on one view of the
object, it is created based on multiple views obtained by rotating the object a



292 Y. Ebrahim et al.

number of times. The result is the Cumulative Shape Features Vector (CSFV).
The key feature points are determined over the entire CSFV resulting in a set
of Rotational Key Feature Points (RKFPs). Because the different views of the
object produce different SFVs, the CSFV contains a richer set of shape features
than any one view SFV would have on its own. The RKFPs select the most
prominent of those features for a superior representation of the shape class.
As a result, the inter-correlation among the objects of each class is increased
significantly. That extra discrimination power results in a dramatic increase in
the recognition rate.

The results depicted in Section 4 raise a number of interesting issues. While
the increase in the number of views tends to improve the recognition rate, when
4 and 8 views are used, the opposite tends to happen. This is more evident when
the HC scan is used. Further investigation of how the number of views affects
recognition rate may reveal interesting findings that may help in achieving higher
recognition rates with fewer number of views.

Although the HC scan results in better recognition rate than the raster scan,
the latter seems to need less RKFPs which translates into less storage require-
ments. Finding out why the raster scan requires less RKFPs may help in im-
proving the HC scan in ways that lowers its storage requirements as well.

Experimental results show that the best results obtained for the ETH-80
dataset are associated with a much higher number of RKFPs than that of the
MPEG-7 dataset. Further research into this phenomenon may lead to the deter-
mination of a set of dataset features that would help in estimating the number
of RKFPs that would result in best results.

It would be interesting to see if the results obtained here would be affected
significantly by changing the other parameters of the technique such as the
wavelet used, the wavelet approximation level, and the SFV size. Testing on
grey-scale objects is needed to see if the improvements achieved on the silhouette
objects will carry over to grey objects.
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Abstract. The general shape analysis is a problem similar to the recog-

nition or retrieval of shapes. The most important difference is that the

processed object does not have to belong to a base class, but usually

is only similar to the template representing the class. The most general

information about a shape is here concluded, i.e. how round, elliptical,

triangular, etc. it is. Such a problem can occur in applications with few

general base classes, e.g. in pre-classification or the assignment of stamps

extracted from an image to few classes in order to find the fraudulent

stamp images (mainly governmental, official ones). In the paper seven

shape descriptors were explored using the template matching approach.

In order to select the best approach their performance was compared

with results provided by almost two hundred humans and collected us-

ing appropriate inquiry forms.

1 Introduction

The idea of image recognition can be realized in many various ways. One of them
is based on identification of objects placed in a digital image. In that case one can
use some features that are supposed to appropriately represent an object. Usually
color, texture and shape are taken for that purpose. In many cases the last one
is especially useful (however, lately the idea of combining completely different
features becomes more tempting and popular, [1]). The recognition of shapes
can be realized through the template matching approach. Roughly speaking, in
this method an object under identification is matched with the base objects
(templates). Obviously the matching of objects itself is insufficient, since in real
situations they tend to be strongly deformed. In case of shapes not only the
affine transformations (e.g. rotation, scaling and translation), but also noise and
occlusion have to be considered ([2]). Therefore the so-called shape descriptors
are used in order to represent a shape invariantly to particular deformations.

However, there is a class of applications, where the problem can not be con-
sidered as the traditional recognition. In that case the processed shape does not
have to belong to a base class and usually it does not. The problem is depicted

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 294–305, 2010.
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in Fig. 1. An object can be considered as similar to the three templates, yet
it definitely is not one of them. It can be assigned to one of the very general
shape classes, e.g. circle, triangle, star. It means that we are not interested in the
exact identification of an object, but we are trying to find one or several general
shapes, which are the most similar to the object being processed.

Fig. 1. Illustration of the problem — which general shape is the most similar?

The problem of general shape analysis can be utilized in various applications.
Here, three examples will be briefly described. The first one is searching for
probable false documents stored on a hard drive in a digital form ([3]). In this
problem we can identify a general template — type of seal (e.g. official, public,
business, institutional) instead of performing the exact process of recognition.
This is based on the assumption that particular types of seal have an expected
shape, e.g. official ones are round, whereas medical ones are rectangular (in
Poland). The second example is the process of initial classification when work-
ing with large databases. In order to speed up the whole process the object is
firstly matched with small number of general classes. Later it can be recognized
more precisely within the preliminarily selected general class. In fact this pro-
cess can be performed several times, with the classes becoming more detailed
at each subsequent iteration. The third example is the possibility of using voice
commands (e.g. ’find round red objects’) for shape retrieval in large multimedia
databases.

In the paper seven shape descriptors are used to indicate the general shapes.
Their selection is not random. Firstly two so-called simple shape descriptors were
taken, namely Roundness ([4]) and one of the Feret measures ([5]) — the X/Y
ratio. Also, five more sophisticated shape descriptors were applied: Moment In-
variants ([6]), 2D Fourier Descriptors ([7]), Point Distance Histogram ([8]), UNL
([9]) and UNL-Fourier ([10]). Two of them (PDH and UNL-F) are invariant to
rotation, the other three — are not. The 2D FD is known for its ability of gener-
alization ([7]). On the other hand, the PDH, thanks to the combination of polar
coordinates with histogram, can emphasize the small differences between objects.
Finally, the UNL and UNL-F have been successfully used in shape recognition,
and are invariant (especially UNL-F) to many shape deformations.

The shape under analysis can be represented in two different ways. The first
one is the outline of an object and the second is the whole region covered by it
([11]). Each of the algorithms works with one of the mentioned representations.
In the paper the contour was explored using PDH, UNL, UNL-F, Roundness
and the X/Y Feret ratio. The region was a subject for MI and 2D FD.

The rest of the paper is organized as follows. The second section describes
precisely the shape descriptors used in the problem of general shape analysis.
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The third one provides experimental results achieved using them. The fourth
section presents the results provided by humans and the comparison between
them and the artificial algorithms. The last section concludes the paper and
provides some ideas for future work with the problem.

2 The Description of Selected Algorithms

Seven various shape descriptors were taken for the experiments with the general
shape analysis. The methods were selected deliberately in order to consider var-
ious ways of performing the analysis by humans. Some people take into account
only the simplest features, e.g. curvature; others analyze an object on a higher
level. However, the most important difference is the invariance to rotation. Some
people during general analysis of a shape assume that it can not be rotated and
that strongly influences the results.

In this section all the algorithms used will be described in detail. The order of
their presentation is based on the ascending level of difficulty and sophistication.

2.1 Simple Shape Descriptors

Two simple shape descriptors were chosen. Those fast methods for measuring a
shape are less popular nowadays thanks to the increasing computational power of
computers. However, the generality of the simple methods can be an advantage in
the presented problem. The first one, X/Y Feret shape measure, can be computed
using the formula:

Fxy =
xmax − xmin

ymax − ymin
, (1)

where:
xmin, xmax — minimal and maximal horizontal coordinates of a contour shape,
ymin, ymax — minimal and maximal vertical coordinates of a contour shape.

The Roundness (a measure of the sharpness of a shape) was a second simple
descriptor used in the experiment. This measure is based on two other shape
features: the area (A) and the perimeter (P ), and can be formulated as ([4]):

R =
4πA

P 2
. (2)

2.2 Moment Invariants

The moments are commonly used in image representation. Hu introduced the
name of Moment Invariants in 1962 ([12]). For shapes this representation uses
only two values of image function f(x, y) — 1 for a pixel belonging to an object
and 0 for background pixels — instead of 256 levels as for a grayscale image.
The general geometrical moments are given by the formula ([6]):

Mpq =
∫ ∞

−∞
xpyqf(x, y)dxdy, (3)

where: p, q = 0, 1, ...,∞.
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For the discrete values in the image the above can be written as ([13]):

mpq =
∑

x

∑
y

xpyqf(x, y). (4)

We calculate the centre of gravity of an object ([13]):

xc =
m10

m00
yc =

m01

m00
. (5)

Then we calculate the central moments ([13]):

μpq =
∑

x

∑
y

(x− xc)p(y − yc)qf(x, y). (6)

The next step is the calculation of normalized central moments ([13]):

ηpq =
μpq

μ
p+q+2

2
00

. (7)

Finally we can derive the Moment Invariants (MI). In practice usually the first
seven MI are used ([14]):

ϕ1 = η20 + η02

ϕ2 = (η20 + η02)2 + 4η2
11

ϕ3 = (η30 − 3η12)2 + (3η21 − η03)2

ϕ4 = (η30 − η12)2 + (η21 − η03)2

ϕ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η03 + η21)2]
+(3η21 − η03)(η03 + η21)[3(η30 + η12)2 − (η03 + η21)2] (8)

ϕ6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2] + 4η11(η30 + η12)(η03 + η21)
ϕ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η03 + η21)2]
−(η30 − 3η12)(η03 + η21)[3(η30 + η12)2 − (η03 + η21)2].

The received shape representation is very compact — it is constituted by a vector
of only seven values.

2.3 Fourier Descriptors

The Fourier transform is widely used in pattern recognition. In case of shapes
usually its one-dimensional version is applied to the contour representation (e.g.
[15]). However, in the literature another approach is also present. The so-called
2D Fourier Descriptors are applied to a region (e.g. [16]).

In the experiments the 2D FD were utilized. They can be derived using the
2D Fourier transform, where only the absolute spectrum is used ([7]):

C(k, l) =
1

HW

∣∣∣∣∣
H∑

h=1

W∑
w=1

P (h, w) · e(−i 2π
H (k−1)(h−1)) · e(−i 2π

W (l−1)(w−1))

∣∣∣∣∣ , (9)
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where:
H , W — height and width of the image in pixels,
k — sampling rate in vertical direction (k ≥ 1 and k ≤ H),
l — sampling rate in horizontal direction (l ≥ 1 and l ≤W ),
C(k, l) — value of the coefficient of discrete Fourier transform in the coefficient
matrix in k row and l column,
P (h, w) — value in the image plane with coordinates h, w.

2.4 UNL and UNL-Fourier Shape Descriptors

The UNL (Universidade Nova de Lisboa) descriptor is based on the transform
of the same name ([9]). It uses complex representation of Cartesian coordinates
for points and parametric curves in discrete manner ([9]):

z(t) = (x1 + t(x2 − x1)) + j(y1 + t(y2 − y1)), t ∈ (0, 1), (10)

where z1 = x1 + jy1 and z2 = x2 + jy2 (complex numbers) and zi denotes point
with coordinates xi, yi. The centroid O is now calculated ([9]):

O = (Ox, Oy) = (
1
n

n∑
i=1

xi,
1
n

n∑
i=1

yi), (11)

and the maximal Euclidean distance between points and centroid is found ([10]):

M = max
i
{‖zi(t)−O‖}, ∀i = 1...n, t ∈ (0, 1). (12)

Now coordinates are transformed ([9]):

U(z(t)) = R(t) + j × θ(t) =
‖z(t)−O‖

M
+ j × atan(

y(t)−Oy

x(t)−Ox
). (13)

The discrete version is formulated as follows ([9]):

U(z(t)) = ‖(x1+t(x2−x1)−Ox)+j(y1+t(y2−y1)−Oy)‖
M

+j × atan( y1+t(y2−y1)−Oy

x1+t(x2−x1)−Ox
).

(14)

The parameter i is discretized in the interval [0,1] with significantly small steps
([10]). Derived coordinates are put into a matrix, in which the row corresponds
to the distance from centroid, and the column — to the angle. The obtained
matrix is 128 × 128 pixels size.

Since after the UNL-transform we obtain 2-dimensional binary image again,
the author of the approach proposed using the 2D Fourier transform as the
next step ([9]). That gave one of the best descriptors in shape recognition called
shortly the UNL-F and achieved using the UNL-Fourier transform.
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2.5 Point Distance Histogram

The Point Distance Histogram ([8]) is an algorithm combining the advantages
of histogram with the transformation of contour points into polar coordinates.
Firstly the mentioned coordinates are derived (with O = (Ox, Oy) as the origin
of the transform) and put into two vectors Θi for angles and P i for radii ([8]):

ρi =
√

(xi −Ox)2 + (yi −Oy)2, θi = atan

(
yi −Oy

xi −Ox

)
. (15)

The resultant values are converted into nearest integers ([8]):

θi =
{
"θi# , if θi − "θi# < 0.5
'θi( , if θi − "θi# ≥ 0.5 . (16)

The next step is the rearrangement of the elements in Θi and P i according
to increasing values in Θi. This way we achieve the vectors Θj , P j . For equal
elements in Θj only the one with the highest corresponding value P j is selected.
That gives a vector with at most 360 elements, one for each integer angle. For
further work only the vector of radii is taken — P k, where k = 1, 2, ..., m and m
is the number of elements in P k (m ≤ 360). Now, the normalization of elements
in vector P k is performed ([8]):

M = max
k
{ρk} , ρk =

ρk

M
, (17)

The elements in P k are assigned to r bins in histogram (ρk to lk,[8]):

lk =
{

r, if ρk = 1
"rρk# , if ρk �= 1 . (18)

3 Conditions and Results of the Experiments

The problem was explored using objects from [17]. The database included 10
templates (the general shapes) and 40 tested objects (see Fig. 2).

For each explored algorithm the idea of a test was simple. A test object
was represented using a shape descriptor, and so were all the general shapes
(templates). Basing on the typical template matching approach, the description
of a test shape was matched using Euclidean distance with all the descriptions
of the templates. The three smallest dissimilarity values indicated the general
shapes closest to a test shape according to the algorithm explored. Pictorial
representations of the results will be provided in consecutive figures.

The results for Roundness presented in Fig. 3 can not be considered ideal.
However, in some cases they seem to be correct. For example, the rhombus
(object no. 2) is firstly connected to the square and secondly to the rectangle,
which is a very good result. However, the third indicated general shape — the
disc — completely does not fit to the previous ones. Similarly, the triangle was
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Fig. 2. The division of shapes into 10 templates and 40 test objects

Fig. 3. Results of the experiment on general shape analysis using Roundness

properly matched with a general triangular shape and a rectangle with rounded
corners was connected with the ellipse. In other cases the star was selected very
often. That is clearly seen for various versions of crosses. The results for more
complicated objects are less convincing. Usually the star, triangle or cross were
indicated.

As one might expect, the results achieved using such a simple approach (X/Y
Feret) are not satisfactory (see Fig. 4). Only in a few cases the results can be
considered correct. The rounded rectangle is the first example. Definitely the
first two selected general shapes (the square and the ellipse) are similar to the
test object. Similarly, the results achieved for the car are correct in all three
cases — the ellipse, the trapezoid and the rectangle. In few other cases the first
result is also acceptable. That concerns for example the heart that is similar to
the triangle and the flag close to the square.

The results provided using Moment Invariants (see Fig. 5) are usually very
promising for the first indicated general shape. This time the rectangle ’became
more popular’. In fact, e.g. for the crosses, the human, the cat, the car, etc. one
can agree that when rotated they are very similar to the rectangle.

The results for Fourier Descriptors (see Fig. 6) are very interesting. For the
first five simple test shapes they are very proper. The results achieved for group
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Fig. 4. Results of the experiment on general shape analysis using X/Y Feret ratio

Fig. 5. Results of the experiment on general shape analysis using Moment Invariants

Fig. 6. Results of the experiment on general shape analysis using Fourier Descriptors

of crosses is also correct. For other objects the indication of the star as the most
similar general shape is clearly visible yet not always correct.

The UNL shape descriptor (Fig. 7) completely failed in our problem. Only few
results can be considered proper. Usually, the square and the disc were taken
at the first place. Sometimes the pentagon and the hexagon were selected. The
lack of other templates in results, e.g. the star and the cross, is noticeable.

The results achieved using the UNL-Fourier descriptor (Fig. 8) are not con-
vincing. This method is very effective in the traditional shape recognition prob-
lem. However in the general shape analysis it often fails. For example, the results
achieved for the parallelogram and crosses are irrational. On the other hand, the
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Fig. 7. Results of the experiment on general shape analysis using UNL descriptor

Fig. 8. Results of the experiment on general shape analysis using UNL-F descriptor

performance of the descriptor for the rounded rectangle, stars and some more
complicated test objects is definitely acceptable.

In some cases the results of the PDH approach (Fig. 9) are acceptable. For
example, the first indicated general shape is correct for the first four test objects
as well as for the human, the hand and the car. In general this approach gave
slightly worse results than expected. However, in comparison with other explored
descriptors it seems to be appropriate for the problem under consideration.

4 The Results Provided by Humans

The results provided and briefly described in the previous section can not be
adequately judged, since we can only guess if a method is working well or not.
There is no independent measure for the problem of general shape analysis.
Therefore, in order to estimate the behavior of explored algorithms an inquiry
form was filled by 187 persons (124 men, 63 women, aged from 9 to 62) in.
This inquiry was conducted in order to investigate the manner in which humans
perform the task of general shape analysis. This can serve as a benchmark, an
ideal result. Now, we only have to investigate which of the explored artificial
algorithms is the most similar to it and in what degree. The results of general
shape analysis performed by humans are depicted in Fig. 10. The analysis of the
inquiry forms could be performed in various ways. Here, the most popular result
at the particular place was selected. That gave the most common general shapes
indicated by humans for particular test objects.
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Fig. 9. Results of the experiment on general shape analysis using PDH descriptor

Fig. 10. Results of the general shape analysis test performed by humans, a benchmark

for the artificial methods

Table 1. The comparison of the general shape analysis performed by humans and

artificial algorithms - the percentage of convergence between a shape descriptor and

benchmark human results

Shape descriptor 1st indication 2nd indication 3rd indication

1. FD 35% 22.5% 17.5%

2. PDH 25% 15% 27.5%

3. Roundness 25% 12.5% 17.5%

4. MI 20% 17.5% 5%

5. UNL-F 17.5% 10% 12.5%

6. UNL 15% 5% 12.5%

7. X/Y Feret 10% 7.5% 2.5%

The degree of similarity between shape descriptors and results provided by
humans is presented in Table 1. Each time the percentage of proper indications
compared to benchmark human results is presented, separately for the three
firstly selected templates. As it can bee seen, the Fourier Descriptors work most
similarly to the benchmark human statistics. The result is much higher than
for other six explored methods. That concerns the first (35%) and the second
(22.5%) selected template. Only for the third selection another descriptor works
better, namely — PDH. It is accordant with the human results in 27.5 %.



304 D. Frejlichowski

5 Conclusions and Future Plans

The paper described experimental results on usage of shape descriptors in the
general shape analysis. The problem is similar to recognition or retrieval, but
here we assume that the processed shape does not have to belong to any of the
template classes, which include the few most general shapes — triangle, square,
disc, etc. Therefore, it can be considered as the determination how triangular,
square, round, etc. is a tested shape. The general shape analysis, as presented in
the paper, can be useful in many applications. The first one is the preliminary
classification of shapes, when we firstly assign an object to a major class and
subsequently we increase the level of details in the identification. Another ex-
ample is the shape retrieval based on the similarity of an object to few the most
general shapes. It can be combined for example with the usage of voice com-
mands. The third example is the analysis of seals when searching for probable
false documents stored on a hard drive in a digital form.

During the experiments on the problem seven shape descriptors were explored.
In order to measure their performance, a special inquiry form was developed. It
was similar to the performed tests and it was filled in by almost two hundred
persons. The selection of the best method was based on a very simple criterion.
The artificial method with the results most similar to the ones provided by hu-
mans was treated as the best. As it turned out the FD were the best among the
tested approaches. The second place went to the PDH, which was also rather
successful. However, the achieved numerical results can not be treated as satis-
factory enough. On the other hand, the results provided by humans are in many
cases ambiguous as well. Nevertheless, the results achieved by the best shape
descriptor among tested are worse than expected (35%), therefore there is still
necessity of exploring some other algorithms in the problem. This is the first
conclusion related to the future work. The second important issue is the a differ-
ent way of constructing the benchmark. In the paper the simplest approach was
utilized. Plainly, the most popular result in the inquiry forms was treated as the
proper one. However, in some cases the differences between the most popular
indication and the second one were very small. This can be taken into consider-
ation in the future improved method of comparing the artificial results with the
human benchmark. Finally, the experiments on some practical examples will be
performed to illustrate the capabilities of the best approaches. The first problem
to explore is the identification of document seals by means of the general shape
analysis.
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Abstract. Real time and markerless motion capture is an active re-

search area, due to applications in human-computer interactions, for ex-

ample. A large part of the existing markerless motion capture methods

require an initialization step, consisting in finding the initial position of

the different limbs of the subject. In this paper, we propose a new method

for interactive time initialization step, only based on morphological and

topological information and which can be easily adapted to any kind of

model (full human body or only hand, animals, for example).

Keywords: motion capture, initialization, markerless, skeleton, tree

matching.

1 Introduction

Motion capture without marker is a highly active research area, as shown by
Moeslund and al. [1]: between 2000 and 2006, more than 350 papers on this topic
have been published. Markerless motion capture approaches can be classified in
two categories: those which detect the pose of the subject independently at each
frame, and those which start by an initialization step in order to find the initial
pose of the subject, then use tracking to find the pose in the following frames.
In most of these methods, the initialization step uses an a priori model, which
can be of several kinds, describing different information: kinematic skeleton,
shape, color priors. Most of real-time methods for full body pose estimation
purpose [2,3,4] use both color priors and shape fitting for the initialization. The
method proposed in [5], close to interactive time (about one iteration per second),
uses kinematic skeleton fitting.

In a context of generic motion capture, where the subject can be a full body,
the hand, or the the upper part of the body for example, some of this infor-
mation cannot be retained, as the color information (hands have homogeneous
color). Furthermore, the shape of the subject can differ from person to person.
In addition, from our point of view, the a priori model in generic motion capture
must be as simple as possible.

Our goal is to propose a motion capture initialization method which has the
following properties:

interactive runtime: our method must be fast enough to be usable in online
context (more than one iteration per second).

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 306–315, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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markerless: our method does not require any kind of marker.
generic: our method has to be compatible with any subject.

Our method is based on 3D shape obtained by visual hull reconstruction. In our
method, we use a voxel representation of the visual hull, in opposition to the
polygonal representation. This choice is guided by the fact that we use some
discrete treatments which are easy and fast to perform in a voxel grid. As we
use a small number of cameras, the 3D shape can contain some deformities, as
variations of limb thickness, noisy surface, or ghost limbs (i.e. parts which not
exist in the subject). Thus only the global topology of the shape and the length
of the different limbs are well preserved.

The method starts by extracting this information by skeletonizing the shape
(Sec.2). Then a data tree representation of the skeleton is extracted (Sec.3), con-
taining all the information we need: positions of ending and intersection points
on vertices, and distances between them on edges.

Then, according to the edge information, we proceed to a matching between
an a priori model and the data tree (Sec.4). Finally, we discriminate similar
limbs if necessary, using “between” constraints of the model (Sec.5). Figure 1
show the complete pipeline of our method.

Visual Hull
Reconstruction Skeletonization

Data Tree
Extraction

Matching with
Discrimination
Similar Parts

Model Tree

Model Tree

Infinite Border Points
Detection

Input OutputInput
Camera Images

Subject Pose

Limbs in
Model

?

YES

(1) (2) (3)

(4)

(1) (2) (3) (4)

Fig. 1. Pipeline of our method

1.1 A Priori Model Definition

Our a priori model is very simple. It consists of a tree, where vertices represent
the different parts of the subject, and the edges contain information on distance
between the different parts. Two kinds of models can be considered (see Fig.2
for examples):

– the incomplete models, which are part of a biggest shape, as in the case of
hand pose estimation. In this case, a part of the shape intersects the border
of the 3D acquisition space, and we represent this part in the model as an
infinite limb.

– the complete models, for subjects fully contained in the 3D acquisition space,
as in the case of full human body motion capture, for example.
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In addition of the tree representation, two kinds of constraints can be added:

“Between” constraints specify the position of a part between two others, in
order to discriminate similar limbs. In the case of hand model, we require
e.g. that the index is between the thumb and the middle finger. More details
about “between” constraints are given in Sec.5.

“Coordinate” constraints require a particular spatial position of a part in
regard of the spatial position of one of its neighbor. In the case of full body
model for example, we require that the head is above the torso. Constraints
of this kind improve the matching robustness.
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Fig. 2. From left to right: description of the hand model, model tree for the hand,

description of the full body model, and model tree for the full body

2 Skeletonization

Topology-preserving operators, like homotopic skeletonization, are used to trans-
form an object while leaving unchanged its topological characteristics. In discrete
grids (Zn, with n = 2, 3), such a transformation can be defined thanks to the
notion of simple point [6,7,8]: intuitively, a point of an object (i.e., a subset of
Z

n) is called simple if it can be deleted from this object without changing its
topological characteristics.

The most “natural” way to thin an object consists of removing some of its
border points in parallel, in a symmetrical manner. By repeating such a pro-
cedure until stability, one can obtain a well-centered “skeleton” of the original
object. However, parallel deletion of simple points does not, in general, guar-
antee topology preservation. In fact, such a guarantee is not obvious to obtain,
even for the 2D case. To check whether a point is simple or not, it is sufficient
to examine its 3 × 3 × 3 neighborhood (3 × 3 in 2D), but such a local criterion
does not allow to check whether a simple point may be safely removed together
with other ones.

In [9], G. Bertrand introduces a general framework for the study of parallel
thinning in any dimension. The most fundamental result proved in [9] is that, if a
subset Y of an object X contains the so-called critical kernel of X , then Y has the
same topological characteristics as X . In [10], several new parallel algorithms to
compute curvilinear skeletons are proposed, in which topological and geometrical
conditions are clearly separated, unlike in many previous works. The topological
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soundness of these algorithms is proved thanks to the aforementioned property
of critical kernels. Furthermore, these algorithms may be expressed by the way
of masks and are relatively simple to implement.

The skeletonization algorithm that we use in this study is named ACK3

in [10]. We choose this algorithm for its computational speed, the possibility of
parallelization, and for the quality of the resulting skeleton (very low amount of
noise, and guaranty that branch thickness is always of one voxel (asymmetrical
skeleton). Since the complete presentation of this algorithm is beyond the scope
of this paper, we give here a sketch of its main lines.

Let us describe one step of algorithm ACK3. Let X be the current object.
The set S of all simple points of X is computed, as well as the set I of all
1D isthmuses of X (points of which the removal would break locally X into sev-
eral components). Then a subset Y of X is computed, that verifies the following
conditions: i) Y is a superset of X \ S, ii) Y contains the critical kernel of X ,
and iii) Y contains I. If Y = X then the algorithm stops, otherwise X is set to
Y and the algorithm continues.

In the case of incomplete models, we have to take into consideration the part
of the shape which is on the border of grid. Preliminary to the iterative process,
the set B of the border points contained in X is computed. For each connected
component of B, we compute the centroid, which will be preserved during the
skeletonization process. Figure 3 show iterations results, for both kinds of model.

Fig. 3. From left to right, results of successive iterations of skeletonization. Top: human

model. Bottom: hand model. The circled points represent the border points used to

constraint the skeletonization.

3 Extraction of Data Tree Representation

We extract the data tree representation from the skeleton obtained in the pre-
vious step. The skeleton points can be classified into three classes, in regard of
their number of neighbors included in the skeleton: ending points (exactly one
neighbor included in the skeleton), linking points (exactly two neighbors), and
intersection points (strictly more than two neighbors).

The points of interest are the ending points and the intersection points. For
each of them, we create a vertex in the data tree. If several intersection points
are neighbors, we merge their associated vertices. Intersection points and ending
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points are connected by sequences of linking points. For each sequence, we create
an edge between vertices associated to its extremities, weighted by the length of
the sequence, incremented by one if an extremity is an ending point. See Fig.4
for an example with a 2D skeleton.

In the case of an incomplete model, the skeleton is tied to contain at least one
border point. It implies that at least one intersection point is a border point. We
consider that all the edges having a bounding vertex associated with a border
point have infinite weight. See Fig.4 for an example with a 2D skeleton.

A skeleton can contain cycles, for example if a sequence of linking points has
its two extremities in the same point. In this case, the extracted graph is not a
tree, and we stop the pipeline for the current frame.

e
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4 3

3
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2D Skeleton data tree data tree
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Fig. 4. Example of a data tree extraction from a 2D skeleton. On the left, the 2D

skeleton, with pixels labeled by i,e and l representing respectively intersection, ending,

and linking points. The light gray pixel represents a border point. In the middle, the

data tree extracted from the skeleton, with the edge weights represented by numbers.

On the right, the data tree extracted from the skeleton, in the case of an incomplete

model.

4 Matching with a Priori Model

The data tree can be affected by different kinds of noise, which must be taken into
consideration during the matching: due to the irregularities of the shape surface,
skeleton branches without important topological signification can appear. These
branches are not difficult to remove, but the problem is that it generates new
vertices in the tree. These vertices, after the removing of branches, uselessly split
an edge (and its weight) into two parts, making difficult a good matching. The
second kind of noise is due to the skeletonization: a cluster of vertices linked by
weakly weighted edges in the data tree can correspond to a vertex with more
than three neighbors in the model tree. In order to match the data tree with the
model tree, we use the optimal homeomorphic alignment method [11], especially
designed to be robust in regard of these kinds of noise.

4.1 Preliminary Definitions and Notations

In order to present the homeomorphic alignment, some definitions and notations
are necessary. We denote a weighted tree as a triplet T = (V, E, ω), V is a finite
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set (called the vertex set), A is a subset of V ×V (called the edge set), and ω is
a mapping from A to R

+, corresponding to the weights.
An homeomorphic alignment is based on edit operations: deletion consists of

removing an edge in the tree, resizement consists of changing the weight of an
edge, and merging consists of replacing two edges (a, b) and (b, c), where b has
exactly two neighbors, by an unique edge (a, c) weighted by ω((a, b))+ω((b, c)),
and removing b from V . The merging kernel of a tree T is obtained by applying
iteratively all possible mergings on T .

The cost of an operation is equal to the variation of weights in the tree before
and after the application of the involved operation. Then, the cost of a deletion
is equal to the deleted edge weight and is denoted by γ(w, 0), where w is the
weight of the deleted edge. In the same way, the cost of a resizement γ(w, w′) is
equal to the difference between the former weight w and the new weight w′ of
the resized edge. A merging has a null cost, since the total weight of the tree is
preserved by the operation.

In order to match trees with infinite weights, we have to take the convention
that γ(+∞, +∞) = 0.

Two weighted trees T = (VT , ET , ωT ) and T ′ = (V ′
T , E′

T , ω′
T ) are said to

be isomorphic if there exists a bijection f : VT → V ′
T , such as for any pair

(x, y) ∈ VT × VT , (x, y) ∈ ET if and only if (f(x), f(y)) ∈ E′
G.

Two weighted graphs T = (VT , ET , ωT ) and T ′ = (V ′
T , E′

T , ω′
T ) are homeo-

morphic if there exists an isomorphism between the merging kernel of T and the
merging kernel of T ′.

4.2 Homeomorphic Alignment Definition

Let T1 = (V1, E1, ω1) and T2 = (V2, E2, ω2) be two weighted trees. Let T ′
1 =

(V ′
1 , E′

1, ω
′
1) and T ′

2 = (V ′
2 , E′

2, ω
′
2) be weighted graphs obtained by deleting edges

in T1 and T2, such that there exists an homeomorphism between T ′
1 and T ′

2

(not necessarily unique). Let T ′′
1 = (V ′′

1 , E′′
1 , ω′′

1 ) and T ′′
2 = (V ′′

2 , E′′
2 , ω′′

2 ) be
the merging kernel of T ′

1 and T ′
2, respectively. By definition, there exists an

isomorphism I between T ′′
1 and T ′′

2 . The set of all couples of arcsH = {(e, e′); e ∈
E′′

1 , e′ ∈ E′′
2 , e′ = I(e)} is called an homeomorphic alignment of T1 with T2 (see

figure 5).
The cost CH of H is the sum of the costs of all operations used to homeomor-

phically align T1 and T2: the deletion of edges in T1 and T2, to obtain T ′
1 and T ′

2

respectively, and the resizement for each edge e1 ∈ E′′
1 to the weight of H(e1).

An homeomorphic alignment with minimal cost is said to be optimal. The cost
of an optimal homeomorphic alignment is called the homeomorphic alignment
distance.

The “coordinate” constraints of the model are applied during the optimal
homeomorphic alignment: the cost of the resizement of a model edge (vM , v′M ),
weighted by wM , to the weight wD of a data edge (vD, v′D) is equal to +∞
if there is a constraint C associated to (vM , v′M ), and the 3D point associated
to vD is in a spatial position relative to the one associated to v′D which is not
compatible with C.
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Fig. 5. Left: two trees G1 and G2. Middle: G′
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2, obtained respectively from G1

and G2 by deletion of edges, and which are homeomorphic. Right: G′′
1 and G′′

2 , which

are respectively the merging kernels of G′
1 and G′

2, and which are isomorphic. Dotted

lines represent an optimal homeomorphic alignment.

For the purpose of scale invariance, we start our method by normalizing the
weights of the two trees, so that the sum of all non-infinite weights in a tree is
equal to 1. Then, we compute the homeomorphic alignment distance between
the trees, using the algorithm described in [11]. If the distance is greater than a
given threshold Td, which is defined by the user, we assume that the data tree
is not enough similar to the model tree to provide a good matching, and we
stop the pipeline for this frame. Otherwise, we use the optimal homeomorphic
alignment to match the labels associated to the model vertices, with the 3D
positions associated to the data vertices.

The number of non-aborted matchings, and their quality, obviously depend
on the choice of the threshold value Td : as both trees are normalized, Td = 2
means that none matching will be aborted (both trees can be deleted), but the
resulting matching can be null, or poor. In the other hand, a lower value yields
a lower amount of non-aborted matchings, but with better probability of good
matching.

5 Discrimination of Similar Limbs Using Model
“Between” Constraints

In case of similar limbs, the matching with the model tree can generate multiple
solutions. In the case of our model of hand, as the descriptions of index, middle
finger, ring finger and little finger are identical, the matching will give a set of
four possible positions for each finger. To solve this problem, we introduce the
“between” constraints. It consists of constraining the position of some limb to lie
between two other ones. A usual ternary relation “between” definition is based
on collinearity [12] : a point is said to be between two other points P1 and P2

if it belongs to the segment P1P2. However, this definition is too restrictive. On
the other hand, we could say that a point is between P1 and P2 if its projection
on the line (P1P2) is between P1 and P2. In this case, the problem is that there
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exist triplets (P1, P2, P3) such that each point is between the two others (for
example, the three vertices of an equilateral triangle).

We propose a definition which is not too restrictive, and which gives at most
one possibility of “betweenness” for three points P1, P2, P3 : consider B the
unique ball with diameter P1P2 which contains P1 and P2. The point P3 is
between P1 and P2 iff P3 ∈ B. An other formulation is that P3 is between two
points P1 and P2 iff the angle between

−−−→
P3P1 and

−−−→
P3P2 is greater than

π

2
. Then,

if there exists a “between” constraint on model vertices, defined by a sequence
m0, ..., mn, the corresponding data vertices d0, ..., dn, with associated positions
P0, ..., Pn must be chosen such as, for each i ∈ [1, n− 1],

−−−−→
PiPi−1 ·

−−−−→
PiPi+1 < 0.

6 Implementation and Results

Our method has been tested on a computer with a processor Intel(R) Core(TM)
2 Quad Q8200 at 2.33 GHz, a GPU Nvidia(R) Geforce(TM) 9800 GT and 3
Go of RAM. Our implementation is implemented in C++, and the visual hull
is computed on GPU, using GLSL. For the tests, we use two data sets: a set
for hand pose estimation, produced by our team, and the dancer set produced
by the INRIA Perception Group 1, for full body body pose estimation. We have
tested our method for different voxel grid resolutions, in order to estimate the
computation speed, the number of matchings and their quality.

Figure 6 shows the results of speed measurement. Since image data must be
loaded from a data base instead of being captured online, shape acquisition cost
is overestimated. It can be observed that our implementation reaches interactive
time. However, our program is still a prototype, and can be widely optimized, e.g.
by parallelizing the skeletonization step. The difference of initialization speed for
both models can be explained by taking into consideration the time complexities
of the two costly steps: the skeletonization time complexity is in O(SG+SS×TS),
where SG and SS are respectively the size of the voxel grid and the size of the
shape(in voxels), and TS the thickness of the shape. The tree matching time
complexity is in O(S2∗(D×23×D+S2×D)), where S and D are respectively the
maximal size and the maximal degree of the both trees. The values of SS , TS, S
and D being higher for the hand model, the initialization speed for this model
is slower than for the other one.

Figure 7 shows some results of pose initialization. The accuracy of our method
obviously depends on the size of the voxel grid. It is also the case for the propor-
tion of non-aborted matchings, and for their probability to give robust matching,
as shown in Table 1. The reasons of high rate of aborted matching are different
for the two sets. In the case of the dancer set, it is due to the fact that the pose
of the subject does not always allow the initialization : an arm can be too close
to the torso, cycles can appear, or other cases of the same kind. In the case of
the hand set, even if the hand always has a good pose for initialization (spread
fingers), the positioning of the four cameras is not efficient enough to provide a
good shape reconstruction.
1 http://4drepository.inrialpes.fr/
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Fig. 6. Speed results for two kinds of model (Left: human body model; Right: hand

model) for different sizes of grid. (The complete grid size is N3 voxels).

Table 1. Matching count. Left: dancer data set. Right: hand data set. A matching is

considered as a false positive (FP) if at least one part is not in a correct position.

grid side threshold Td matching FP

40 0.4 52% 16.3%

40 2.0 87.5% 15.4%

100 0.4 58% 11.2%

100 2.0 71.5% 9%

grid side threshold Td matching FP

40 0.4 40.6% 40%

40 2.0 75.6% 49.8%

100 0.4 18.1% 0.0%

100 2.0 61.5% 0.0%

Fig. 7. Some examples of initial pose estimation results. In green, the skeleton, in blue

the matched points, and in red, the corresponding labels.

7 Conclusion

In this paper, we have presented a new method for generic pose initialization,
for markerless motion capture purpose. The performances of our method allow
the initialization in interactive time, for an online usage. Our future works will
focus on the detection of 2-degree joints, as elbows or shoulders, which can be
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detected by the presented method, and on the optimization of our prototype, in
the aim to reach real time initialization.
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Abstract. Thinning is a frequently applied technique for extracting

skeleton-like shape features (i.e., centerline, medial surface, and topo-

logical kernel) from volumetric binary images. Subfield-based thinning

algorithms partition the image into some subsets which are alternatively

activated, and some points in the active subfield are deleted. This paper

presents a set of new 3D parallel subfield-based thinning algorithms that

use four and eight subfields. The three major contributions of this paper

are: 1) The deletion rules of the presented algorithms are derived from

some sufficient conditions for topology preservation. 2) A novel thinning

scheme is proposed that uses iteration-level endpoint checking. 3) Vari-

ous characterizations of endpoints yield different algorithms.

Keywords: 3D image analysis, Shape representation, Feature extrac-

tion, Thinning algorithms, Topology preservation.

1 Introduction

Skeleton-like shape features (i.e., centerline, medial surface, and topological ker-
nel [1]) extracted from volumetric binary images play an important role in nu-
merous applications of image processing, pattern recognition, and visualization,
such as topological analysis [2], measurement [12], surface generation [4], shape
matching [15], or automatic navigation [16].

Parallel thinning algorithms [3] are capable of extracting skeleton-like shape
descriptors in a topology preserving way [5]. They use parallel reduction oper-
ations: some points having value of “1” in a binary image that satisfy certain
topological and geometric constraints are deleted (i.e., changed some “1” points
to “0” ones) simultaneously, and an iteration step is repeated until stability
is achieved. Thinning algorithms use operators that delete some points which
are not endpoints, since preserving endpoints provides important geometrical
information relative to the shape of the objects.

Thinning has a major advantage over other skeletonization methods: it is
capable of extracting all the three kinds of skeleton-like shape features: surface-
thinning algorithms extract medial surfaces by preserving surface-endpoints,
curve-thinning algorithms produce centerlines by preserving curve-endpoints,
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and topological kernels (i.e., minimal structures which are topologically equiva-
lent to the original objects) can be generated if no endpoint criteria are consid-
ered during the thinning process. Medial surfaces are generally extracted from
general shapes, tubular structures can be represented by their centerlines, and
topological kernels are fairly useful in topological description. Note that thinning
is sensitive to coarse object boundaries, hence it is to be coupled with an efficient
pruning method [14].

One type of parallel thinning algorithms is the subfield-based technique [3].
In existing subfield-based 3D thinning algorithms, the digital space denoted by
Z

3 is partitioned into two [7,8,11], four [9], and eight [1] subfields which are
alternatively activated (see Fig. 1b-d). At a given iteration step of a k-subfield
algorithm, k successive parallel reductions associated to the k subfields are per-
formed. In each parallel reduction, some border points in the active subfield can
be designated to be deleted.

In [11], we proposed some 2-subfield 3D thinning algorithms that are based
on Ma’s sufficient conditions for parallel reduction operators [6]. In this paper,
we introduce a set of 4- and 8-subfield 3D thinning algorithms that satisfy some
sufficient criteria for such operators. In addition, a new thinning scheme with
iteration-level endpoint checking is suggested.

2 Basic Notions and Results

Let p be a point in the 3D digital space Z
3. Let us denote Nj(p) (for j = 6, 18, 26)

the set of points that are j-adjacent to point p (see Fig. 1a).
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Fig. 1. Frequently used adjacencies in Z
3 (a). The set N6(p) contains point p and the

6 points marked “•”. The set N18(p) contains N6(p) and the 12 points marked “◦”.
The set N26(p) contains N18(p) and the 8 points marked “�”.

The divisions of Z
3 into 2 (b), 4 (c), and 8 (d) subfields. If partitioning into k subfields

is considered, then points marked “i” are in the subfield SFk(i) (k = 2, 4, 8, i =

0, 1, . . . , k − 1).

The 3D binary (26, 6) digital picture P is a quadruple P = (Z3, 26, 6, B) [5],
where each element of Z

3 is called a point of P , each point in B ⊆ Z
3 has a value

of “1”, each point in Z
3\B has a value of “0”. 26-connectivity (i.e., the reflexive

and transitive closure of the 26-adjacency relation) is considered for “1” points
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forming the objects, and 6-connectivity (i.e., the reflexive and transitive closure
of the 6-adjacency) is considered for “0” points [5] (see Fig. 1a).

A “1” point is called a border point in a (26, 6) picture if it is 6-adjacent to at
least one “0” point. A “1” point is called an interior point if it is not a border
point.

A parallel reduction operator changes a set of “1” points to “0” ones (which
is referred to as deletion). A 3D parallel reduction operator does not preserve
topology if any object (i.e., maximal 26-connected component of “1” points) is
split or is completely deleted, any cavity (i.e., maximal 6-connected component
of “0” points) is merged with another cavity, a new cavity is created, or a hole
(that donuts have) is eliminated or created.

A “1” point is called a simple point if its deletion does not alter the topology of
the image [5]. Note that simplicity of point p in (26, 6) images is a local property
that can be decided by investigating the set N26(p) [5].

Parallel reduction operators delete a set of “1” points. Hence we need to
consider what is meant by topology preservation when a number of “1” points
are deleted simultaneously. First we define the concept of simple sets.

Definition 1. [6] The set of “1” points D = {d1, . . . , dk} ⊂ B in a picture
P = (Z3, 26, 6, B) is called a simple set if D can be arranged in a sequence
〈di1 , . . . , dik

〉 in which point di1 is simple in P, and each point dij is simple in
(Z3, 26, 6, B\{di1, . . . , dij−1}), for j = 2, . . . , k. (By definition, let the empty set
be simple.)

The following theorem provides sufficient conditions for 3D parallel reduction
operators to preserve topology.

Theorem 1. [6] A 3D parallel reduction operation preserves topology for (26, 6)
pictures if all of the following conditions hold:

1. Only simple points can be deleted.
2. If a set of two, three, or four mutually 18-adjacent “1” points are deleted,

then it is a simple set.
3. No object formed by mutually 26-adjacent points can be deleted completely.

The three kinds of partitionings of Z
3 into two, four, and eight subfields are

illustrated in Fig. 1b-d. Without loss of generality, we can assume that (0, 0, 0) ∈
SFk(0) (k = 2, 4, 8). We can state the following properties:

Proposition 1. For the 4-subfield case (see Fig. 1c), two points p and q ∈
N26(p) are in the same subfield if q ∈ N26(p)\N18(p).

Proposition 2. For the 8-subfield case (see Fig. 1d), two points p and q ∈
N26(p) are not in the same subfield.
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As consequences of Propositions 1 and 2 if a 3D parallel reduction operation
may delete some points from the subfield SFk(i) (k = 4, 8, i = 0, 1, . . . , k − 1),
then we get the following simplified versions of Theorem 1:

Theorem 2. [9] A 4-subfield 3D parallel reduction operation preserves topology
for (26, 6) pictures if both of the following conditions hold:

1. Only simple points can be deleted.
2. No object formed by two 26-adjacent, but not 18-adjacent points can be

deleted completely.

Theorem 3. [9] An 8-subfield 3D parallel reduction operation preserves topol-
ogy for (26, 6) pictures if only simple points can be deleted.

3 Existing Thinning Algorithms Using Four and Eight
Subfields

Each existing k-subfield (k = 4, 8, see Fig. 1c-d) 3D thinning algorithm can be
sketched by the following program:

Input: picture (Z3, 26, 6, X)

Output: picture (Z3, 26, 6, Y )

Y = X
repeat

// one iteration step
for i = 0 to k − 1 do

// subfield SFk(i) is activated
D(i) = { p | p is “deletable” in Y ∩ SFk(i) }
Y = Y \ D(i)

until
⋃k−1

i=0 D(i) = ∅

Ma, Wan, and Lee [9] proposed the following two 4-subfield 3D thinning
algorithms:

– SF-4-C-MWL: 4-subfield curve-thinning algorithm,
– SF-4-S-MWL: 4-subfield surface-thinning algorithm.

Deletable points of both algorithms are defined by three-color matching tem-
plates.

The three existing 8-subfield thinning algorithms proposed by Bertrand and
Aktouf [1] are:

– SF-8-C-BA: 8-subfield curve-thinning algorithm,
– SF-8-S-BA: 8-subfield surface-thinning algorithm,
– SF-8-K-BA: 8-subfield algorithm for extracting topological kernels.
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They are based on Theorem 3 (i.e., sufficient conditions for topology preservation
in eight subfields) and two types of endpoint characterizations: one for surface-
endpoints and one for curve-endpoints. Their algorithm for extracting topological
kernels does not consider any endpoint criteria.

4 The New Subfield-Based Thinning Algorithms

We propose a set of new thinning algorithms using four and eight subfields. Their
deletable points are derived directly from Theorems 2 and 3 (i.e., sufficient con-
ditions for topology preservation for four and eight subfields, respectively). The
proposed algorithms using the same kind of partitioning differ from each other
just in the considered endpoint characterizations. In order to reduce the noise
sensitivity and the number of skeletal points (without overshrinking the objects),
we introduce a new subfield-based thinning scheme. It takes the endpoints into
consideration at the beginning of iteration steps, instead of preserving them in
each parallel reduction as it is accustomed in existing subfield-based thinning
algorithms.

Let us consider an arbitrary characterization of endpoints that is called as type
E . Our algorithm denoted by SF-k-E uses k subfields (k = 4, 8) and endpoints
of type E . It is outlined as follows:

Algorithm SF-k-E.
Input: picture (Z3, 26, 6, X)

Output: picture (Z3, 26, 6, Y )

Y = X
repeat

E = { p | p is a border point, but not an endpoint of type E in Y }
for i = 0 to k − 1 do

D(i) = { q | q is an SF-k-deletable point in E ∩ SFk(i) }
Y = Y \ D(i)

until
⋃k−1

i=0 D(i) = ∅

We are to lay down SF-k-deletable points (k = 4, 8):

Definition 2. A “1” point in a (26, 6) picture P is self-SF-4-deletable if it is
simple in P (see Condition 1 of Theorem 2).

Definition 3. A “1” point p in a (26, 6) picture P is SF-4-deletable if p is self-
SF-4-deletable (see Definition 2), and it does not come first in the lexicographic
ordering of any object O of two self-SF-4-deletable points, where O = {p, q} and
q ∈ N26(p)\N18(p) (see Condition 2 of Theorem 2).

It can be readily seen that simultaneous deletion of SF-4-deletable points satisfies
both conditions of Theorem 2, hence it preserves the topology.

Let us define SF-8-deletable points:
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Definition 4. A “1” point in a (26, 6) picture P is SF-8-deletable if it is simple
in P.

It is easy to see that Definition 4 was derived directly from Theorem 3, hence
simultaneous deletion of SF-8-deletable points is a topology preserving reduction.

We can state that all of our algorithms SF-k-E (k = 4, 8) with any endpoint
characterizations are topologically correct.

At the end of this section, we illustrate the usefulness of the new subfield-based
thinning scheme (i.e., just border points in the input picture of the iteration step
may be deleted). Figure 2 compares the conventional and the proposed methods
using four subfields.

conventional

new (proposed)

active subfield SF4(0) SF4(1) SF4(2) SF4(3)

Fig. 2. One iteration step of the conventional 4-subfield thinning process (see Section

3) and the proposed thinning scheme. For simplicity, no endpoints are preserved when

the 9×9×9 cube is thinned. The conventional thinning may delete some points that are

interior ones in the picture at the beginning of the iteration step, hence some objects

may not be reduced uniformly. It may create numerous unwanted endpoints (according

to some endpoint characterizations) that blocks the rest of the thinning process.

5 Examples of the Subfield-Based Thinning Algorithms

In Section 4, we defined the deletable points of the proposed algorithms that
follow our new thinning scheme using iteration-level endpoint checking. Vari-
ous characterizations of endpoints yield different algorithms. Here, we define six
types of endpoints that determine twelve new algorithms.

Definition 5. Any “1” point in a (26, 6) picture is not an endpoint of type K.
(If no endpoints are preserved, then we get topological kernels.)

Definition 6. A “1” point p in picture (Z3, 26, 6, B) is a curve-endpoint of type
C1 if (N26(p)\{p})∩B = {q} (i.e., p is 26-adjacent to exactly one “1” point q).
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Definition 7. A “1” point p in picture (Z3, 26, 6, B) is a curve-endpoint of type
C2 if (N26(p)\{p}) ∩B = {q} and

– (N26(q)\{q}) ∩B = {p} or
– (N26(q)\{q}) ∩B = {p, r}.

Note that the characterization of C2 curve-endpoints is inspired by the concept
of “twig voxel” that was introduced by Ma, Wan, and Chang [8].

original (378 043) SF-8-K-BA (293) SF-4-K (288) SF-4-K (287)

Fig. 3. A 304× 96× 261 image of a helicopter and its topological kernels produced by

the three algorithms under comparison. The original image contains just one object,

there is no cavity in it, and the skid of the helicopter consists of two holes that are

preserved in the topological kernels (i.e., minimal structures which are topologically

equivalent to the original helicopter).

Definition 8. A “1” point p in picture (Z3, 26, 6, B) is a surface-endpoint of
type S1 if there is no interior point in the set N6(p) ∩B.

Definition 9. A “1” point p in picture (Z3, 26, 6, B) is a surface-endpoint of
type S2 if there is no interior point in the set N18(p) ∩B.

Definition 10. A “1” point p in picture (Z3, 26, 6, B) is a surface-endpoint of
type S3 if there is no interior point in the set N26(p) ∩B.

Note that these three characterizations of surface-endpoints are hidden in the
algorithms proposed by Manzanera et al. [10].

In experiments our twelve new algorithms based on four and eight subfields
and using the endpoints according to Definitions 5-10 were tested on objects
of different shapes. Here we present some illustrative examples below (Figures
3-7). Numbers in parentheses mean the count of “1” points. Skeleton-like shape
features produced by the proposed twelve algorithms are compared with the
results of 8-subfield algorithms SF-8-K-BA, SF-8-C-BA, and SF-8-S-BA
proposed by Bertrand and Aktouf [1]. Unfortunately, we could not make credible
implementations of the two existing 4-subfield algorithms SF-4-C-MWL and
SF-4-S-MWL proposed by Ma, Wan, and Lee [9].

Note that our algorithms are not time consuming and it is easy to implement
them on conventional sequential computers by adapting the efficient implemen-
tation method presented in [13]. Skeleton-like features can be extracted from
large 3D shapes within one second by the proposed algorithms on a usual PC.
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original (317 742) SF-8-C-BA (1 855) SF-4-C1 (1 912)

SF-4-C2 (1 899) SF-8-C1 (1 942) SF-8-C2 (1 884)

Fig. 4. A 300× 300× 300 image of a tubular structure and its centerlines produced by

the five algorithms under comparison

original (656 424) SF-8-C-BA (1 021) SF-4-C1 (1 266)

SF-4-C2 (1 205) SF-8-C1 (1 298) SF-8-C2 (967)

Fig. 5. A 217 × 304 × 98 image of an airplane and its centerlines produced by the five

algorithms under comparison
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original (656 424) SF-8-S-BA (42 118)

SF-4-S1 (71 331) SF-4-S2 (62 490) SF-4-S3 (62 231)

SF-8-S1 (71 391) SF-8-S2 (62 883) SF-8-S3 (65 581)

Fig. 6. A 217× 304× 98 image of an airplane and its medial surfaces produced by the

seven algorithms under comparison

original (81 000) SF-8-S-BA (2 624)

SF-4-S1, SF-8-S1 (7 864) SF-4-S2, SF-8-S2 (3 292) SF-4-S3, SF-8-S3 (3 172)

Fig. 7. The 3D image of a 45 × 45 × 45 cube with a hole and its medial surfaces

produced by the seven algorithms under comparison. Interestingly, the same medial

surfaces are extracted from this special object by the corresponding 4-subfield and

8-subfield algorithms
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Abstract. Inspired by the successful application of image secret shar-

ing schemes in multimedia protection, we present in this paper two se-

cret sharing approaches for 3D models using Blakely and Thien & Lin

schemes. We show that encoding 3D models using lossless data compres-

sion algorithms prior to secret sharing helps reduce share sizes and re-

move redundancies and patterns that possibly ease cryptanalysis. The

proposed approaches provide a higher tolerance against data corrup-

tion/loss than existing 3D protection mechanisms, such as encryption.

Experimental results are provided to demonstrate the secrecy and safety

of the proposed schemes. The feasibility of the proposed algorithms is

demonstrated on various 3D models.

Keywords: Secret sharing; Lossless data compression; 3D graphics.

1 Introduction

The ongoing developments in computer technologies and the rapid increase in
internet users have led to the increasing usage of network-based data transmis-
sion. In numerous applications, such as military documents and sensitive business
data, this information must be kept secret and safe. Recently, 2D images and
3D models are considered as important as any other text sensitive information.
As a result, several 2D image-protection techniques, such as data encryption
in [1, 2] and steganography in [3, 4], have been proposed to increase the secu-
rity of secret images. One common disadvantage of the traditional protection
techniques, such as encryption, is their policy of centralized storage, in that an
entire protected model is usually maintained in a single information storage. If
an intruder detects security vulnerability in the information storage in which the
protected model resides, then s/he may attempt to decipher the secret model
inside, or simply damage the entire information storage. Hence, the secret shar-
ing is a defense mechanism to protect the secret that does not suffer from these
problems. It works by splitting the secret into n shares that are transmitted and
stored separately. One can then reconstruct the original secret if at least a preset
number t (1 � t � n) of these n shares are obtained. However, knowledge of less
than t shares is insufficient for revealing the secret. The idea of secret sharing
was introduced independently in [5] and [6]. These schemes are based on the
use of Lagrange interpolation polynomial and the intersection of affine hyper-
planes, respectively. Since then, several studies have investigated the different
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implementations of the (t, n)-threshold scheme by mainly concentrating on the
communication of keys in cipher systems. Most of these schemes are based on
different mathematical primitives, such as matrix theory and prime numbers [7].
These protocols are specifically designed for text and numeric data. Due to the
main distinctive nature of multimedia, in the sense that they have a large amount
of data and the difference between two neighboring values is typically very small,
it is considerably difficult to apply directly traditional secret sharing schemes to
digital images or 3D objects.

On the other hand, visual secret sharing scheme, which is based on the hu-
man visual system, is an important cryptographic technique for secret sharing
of 2D images [18]. This method is a visual variant of the ordinary secret shar-
ing schemes. The secret image is divided into n shares (transparencies) such
that if any t transparencies are overlaid together, then the image becomes vis-
ible. However, if less than t transparencies are overlaid together, then nothing
can be seen. Such a scheme is constructed by viewing the secret image as a
set of black and white dots, and by handling each dot separately. The scheme
is shown to be perfectly secure and easily implementable without any crypto-
graphic computation. A further development allows each transparency to be a
valid image instead of noisy dots in order to hide the fact that the secret sharing
is taking place, for example an image of a landscape or an image of a human.
Over the last decade, various construction methods based on visual cryptogra-
phy have been proposed [8, 9, 10, 11, 12]. Also, other protocols for digital images
sharing have been designed based on vector quantization [13], Shamir-based
schemes [14,15,16], sharing circle [7,12], and cellular automata [1,2]. Just a few
of these schemes generate shares that have smaller sizes than the original image.
The method proposed in [15] generates shares of 1/t the size of the secret im-
age, whereas the method proposed in [14], that involves using Huffman coding
generates shared images 40% smaller than that of the approach in [15].

Recently, a flurry of research efforts have been carried out to design secure
and efficient approaches for 2D image protection. However, 3D models have
received less attention due to the fact that 2D image algorithms do not gen-
erally extend to 3D models. Besides, the rapid development in computer and
information technology has increased the use of 3D models in various applica-
tion domains, including manufacturing industries, entertainment and even in the
military. Thus, the need for protection techniques to keep these 3D models se-
cret and safe is of paramount importance. Inspired by the successful application
of image secret sharing schemes, we propose in this paper two secret sharing
approaches for 3D models using Blakely scheme [6] and Thien & Lin [15]. We
then show that encoding the 3D models using Huffman coding [19] or ZLIB [20]
prior to secret sharing reduces the shares sizes significantly.

The rest of the paper is organized as follows. In Section 2, we briefly review some
traditional and image secret sharing schemes. In Section 3, we propose two secret
sharing approaches for 3D models, and describe their algorithmic steps. In Section
4, we provide experimental results to validate the effectiveness of the proposed
secret sharing schemes on various 3D models. Finally, we conclude in Section 5.
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2 Previous Work

The simplest secret splitting method is the (2, 2)-scheme [7], where the secret K
is split into two shares X and Y . Neither X nor Y independently provide any
information about the secret.

Let K = k1, . . . , kn be a binary string of length n, called the secret.

1. for 1 ≤ i ≤ n, let xi ∈ F2 be chosen at random.
2. for 1 ≤ i ≤ n, let yi = xi + ki mod 2.
3. then X = x1, . . . , xn and Y = y1, . . . , yn are two shares of the secret K.
4. To recover the secret, K is computed as K = X + Y mod 2.

The majority of existing secret sharing schemes are generalized within the so-
called (t, n)-threshold framework [7]. This framework confidentially splits the
content of a secret message into n shares in a way that requires the presence of at
least t shares for the secret message reconstruction. If t = n, then all the shares
are required in the (n, n)-threshold scheme to recover the secret. Conversely,
the lost of any of the produced shares results in inaccessible secret messages.
Therefore, apart from the simplest (2, 2)-schemes that are commonly used as a
private key cryptosystem solution, the general (t, n)-threshold schemes with t <
n are often the point of interest due to their ability to recover the secret message
even if several shares are lost. In this case, any possible combinations of t shares
can be used to recover the secret message. Since protection against cryptoanalytic
attacks, including brute force enumeration, should remain unchanged regardless
of how many shares are available until the threshold t is reached, the use of
(t−1) shares should not reveal any valid information about the secret compared
to that obtained by only one share.

2.1 Blakley (t, n)-Threshold Scheme [6]

The Blakley scheme uses hyperplane geometry to solve the secret sharing prob-
lem. The secret is a point in a t-dimensional space. The n shares are constructed
such that each share is defined as an affine hyperplane that passes through the
secret point. An affine hyperplane can be described by a linear equation of the
following form a1x1 + . . . + atxt = b. The intersection point is obtained by find-
ing the intersection of any t of these hyperplanes. The secret can be any of the
coordinates of the intersection point or any function of the coordinates.
For (3, n)-threshold scheme:

1. Choose a prime number P larger than the point coordinates.
2. Given a secret point (x0, y0, z0), n shares are generated as follows:

For each share:
2.1. Choose a, b ∈ FP independently at random.
2.2. Let

c = z0 − ax0 − by0 mod P (1)

where z = ax + by + c is the equation of a hyperplane.



Robust Approaches to 3D Object Secret Sharing 329

Fig. 1. The secret point is the intersection point between the three planes

Given any t hyperplanes, the secret point is the intersection point of these t
hyperplanes. Fig. 1 illustrates how the three hyperplanes intersect in only one
point (secret point).

The traditional Shamir and Blakley (t, n)-threshold schemes produce shares
with same size as the original secret. In multimedia, a secret can be an image
or 3D model. Typically, these files have a large amount of data. Thus, applying
these traditional schemes may be inefficient in terms of the storage space. Con-
sequently, several image secret sharing approaches have been proposed to reduce
the shares sizes. The method proposed in [15] produces shares of 1/t the size of
the secret image, whereas the Huffman coding-based scheme introduced in [14]
generates shared images 40% smaller than the method in [15].

2.2 Thien & Lin (t, n)-Threshold Scheme [15]

Thien & Lin proposed a (t, n)-threshold-based approach using Shamir scheme [5]
for grayscale images to generate image shares. Suppose we want to divide an
image S into n image shares (S1, . . . , Sn), and the secret image S cannot be
revealed without t or more image shares. The essential idea is to use a polynomial
of degree (t − 1) to construct n image shares, by letting the t coefficients be
the gray values of t pixels. The main difference is that these coefficients are
randomly chosen in Shamir scheme. To this end, we first divide an image into
several sections. Each section has t pixels of the image, and for each section j,
the following t − 1 degree polynomial is defined

qj (x) =
(
a0 + a1x + . . . + at−1x

t−1
)

mod P, (2)

where the coefficients a0, a1, . . . , at−1 are the values of the t pixels of the sec-
tion. Then qj(1), qj(2), ..., qj(n) are computed. These n values of the section
are distributed to the n participants to assign them sequentially to their n im-
age shares. Since for each given section (of t entries) of the secret image, each
image share receives only one value of the generated shares, the size of each im-
age share is 1/t of the secret image. This method reduces the size of image shares
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to become 1/t of the size of the secret image. We should note here that since the
gray values are between 0 and 255, the value of P was set to 251, which is the
greatest prime number less than 255. For this method to be valid, all the pixel
values greater than 250 must be rounded down to 250. Obviously, there will be
some loss in terms of pixel values during the reconstruction of the secret image.
Thus, Thien & Lin modified their technique to offer a lossless image secret shar-
ing method. It should be noted here that applying Thien & Lin’s scheme directly
to the image shares can outline partially the original secret image. Therefore,
some sort of initial permutation is needed before employing the scheme. Fig. 2
illustrates Thien & Lin’s image secret sharing scheme, where t = 2 and n = 4.

(a)

(b) (c)

 

(d) (e)

Fig. 2. Thien & Lin’s secret sharing process for a Jet plane: (a) original image 512×512;

(b)-(e) the four share images after the original image is permuted, each of size 1/2 of

the original image size

3 Proposed 3D Secret Sharing Schemes

In computer graphics and geometric-aided design, a 3D triangle mesh M may
be defined as M = (V , T ) where V = {v1, . . . , vm} is the set of vertices and
T = {t1, ..., t�} is the set of triangles (faces). In matrix form, the sets V and T
may be written as follows:

V =

⎛⎜⎜⎜⎝
v1

v2

...
vm

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
v1x v1y v1z

v2x v2y v2z

...
...

...
vmx vmy vmz

⎞⎟⎟⎟⎠ , T =

⎛⎜⎜⎜⎝
t1
t2
...
t�

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
t1i t1j t1k

t2i t2j t2k

...
...

...
t�i t�j t�k

⎞⎟⎟⎟⎠
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3.1 3D Secret Sharing Using Blakley Scheme

Our proposed approach is motivated by Blakley secret sharing scheme. The main
idea is to split every vertex in the vertices matrix V and every face in the faces
matrix T into n share hyperplanes, where n > 3. Each share hyperplane is
represented by an equation z = ax + by + c. The main algorithmic steps of the
proposed scheme are shown in Table 1.

Table 1. Algorithmic steps of the proposed approach

For the faces matrix T :

1. We choose PT as the next prime number larger than m.

2. For each i-th share, 1 ≤ i ≤ n:

(i) Select two random numbers independently ai, bi ∈ FPT .

(ii) Find ci using Eq.(1), where x, y, z are the values of the face and ai, bi, ci are

the coefficients of the hyperplane equation z = aix + biy + ci.

(iii) Distribute the hyperplane equations (coefficients) to all n participants.

3. Repeat step (2) for all � faces in T matrix.

In the recovery phase, the original values of the faces and vertices coordinates
are the intersection points between any three or more hyperplane equations.
To be able to draw the shares, all the calculations are performed in a prime
field FPT . This FPT is essential in splitting the faces matrix T to ensure the
coefficients of the shared hyperplanes are within the range of the number of
vertices, i.e. less than m. Moreover, since all the values in T are integers, FPT is
necessary to avoid the prediction of the range of the faces original values from the
shared-values. On the other hand, the modular operation in splitting the vertices
matrix is not crucial. In this case, the scheme is still secure since the vertices
coordinates (vx, vy, vz) and the random coefficients (ai, bi) are floating negative

(a) (b)

Fig. 3. Four planes generated by Blakley secret sharing scheme of F15 model for (a)

vertex v1, and (b) face t1
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numbers, and sometimes integers. For this reason, the values of the shares will
not correlate with the original values of the vertices matrix. Thus, we apply
the same algorithmic steps to split the vertices matrix V , with the exception
of using the prime field. Knowing the numbers of the vertices and faces of the
share, the adversary can guess the share corresponds to which 3D model. To
resist this statistical attack, we duplicate the last vertex (resp. last face) by a
random numbers prior to finding PT . Fig. 3 shows how Blakley scheme split the
vertex v1 and face t1 of the 3D F15 fighter jet into four share hyperplanes.

3.2 3D Secret Sharing Using Thien & Lin Scheme

Blakley’s scheme produces shares of the same size as the original (secret) 3D
model. However, Thien & Lin scheme produces shares 1/3 the size of the secret
model. In the latter scheme, we divide each vertex (resp. each face) into n shares,
where each share is m × 1 array (resp. � × 1 array), as shown in Fig. 4.

V =

⎛⎜⎜⎜⎝
v1

v2

...
vm

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
v1x v1y v1z

v2x v2y v2z

...
...

...
vmx

vmy
vmz

⎞⎟⎟⎟⎠ T =

⎛⎜⎜⎜⎝
t1
t2
...
t�

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
t1i

t1j
t1k

t2i
t2j

t2k

...
...

...
t�i t�j t�k

⎞⎟⎟⎟⎠

SV1 =

⎛⎜⎜⎜⎝
γ1

γ2

...
γm

⎞⎟⎟⎟⎠ ST1 =

⎛⎜⎜⎜⎝
τ1

τ2

...
τ�

⎞⎟⎟⎟⎠ . . . SVn
=

⎛⎜⎜⎜⎝
γ1

γ2

...
γm

⎞⎟⎟⎟⎠ STn
=

⎛⎜⎜⎜⎝
τ1

τ2

...
τ�

⎞⎟⎟⎟⎠

Share 1 Share n. . .

Fig. 4. Thian & Lin secret sharing process: each share has two sub-shares m×1 vertices

array and � × 1 faces array

To split the faces matrix T , we use the vertex coordinates vi = {vix , viy , viz },
1 ≤ i ≤ m , and the face values te = {tei , tej , tek

}, 1 ≤ e ≤ �, as the coeffi-
cients to Eq. (2), where t = 3. The main difference between Shamir’s scheme
and Thien & Lin scheme is that the coefficients are not taken randomly. An
important issue in the implementation of secret sharing schemes is the size of
the shares, since the security of a system lessens as the amount of the informa-
tion that must be kept secret increases. Unfortunately, in most secret sharing
schemes the size of the shares cannot be less than the size of the secret. There-
fore, to reduce the share size, we compress the 3D models using lossless data
compression methods such as Huffman coding [19] or ZLIB [20] before applying
the secret sharing schemes. Besides, compression prior to secret sharing helps
remove redundancies and patterns that might facilitate cryptanalysis. ZLIB is a
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Table 2. Compression results of 3D objects using Huffman coding and ZLIB algorithm

3D Model Uncompressed Compressed using

Huffman Coding

Compressed using

ZLIB

F15 176.55 KB 150.56 KB 85.2 % 98.38 KB 55.7 %

Tank 317.96 KB 271.15 KB 85.2 % 143.90 KB 45.2 %

Engine 81.32 KB 66.88 KB 82.2 % 23.12 KB 28.4 %

lossless data compression library that uses a compression algorithm called De-
flate. This lossless compression algorithm uses a combination of LZ77 algorithm
and Huffman coding, and provides good compression on a wide variety of data
with minimal use of system resources. Table 2 displays the sizes of different 3D
models before and after compression using Huffman coding and ZLIB.

4 Experimental Results

We applied the (3, 4)-Blakley scheme on two 3D models: F15 fighter jet and
tank. The 3D F15 model consists of 5401 vertices and 9665 faces, whereas the
3D tank model consists of 8659 vertices and 18474 faces. All the share models
have the same number of vertices and faces. If the number of vertices is not a
prime number, then we may duplicate the last vertex until we reach the next
prime number greater than the number of vertices. For F15 and tank models,
we used the prime numbers PT = 5407 and PT = 8663, respectively. From

(a) (b) (c) (d) (e) (f)

Fig. 5. (3, 4)-Blakley secret sharing process for the 3D F15 model: (a) original model;

(b)-(e) the four split shares; (f) reconstructed model using any 3 shares

(a) (b) (c) (d) (e) (f)

Fig. 6. (3, 4)-Blakley secret sharing process for the 3D tank model: (a) original model;

(b)-(e) the four split shares; (f) reconstructed model using any 3 shares
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Table 3. Comparison between the sizes of the shares generated by Blakely and Thien

& Lin schemes using Huffman coding and ZLIB

3D Model Blakely Scheme

Share Size

Thien & Lin Scheme

Share Size

Uncompressed Huffman ZLIB Uncompressed Huffman ZLIB

F15 176.55 KB 150.56 KB 98.38 KB 58.85 KB 50.18 KB 32.79 KB

Tank 317.96 KB 271.15 KB 143.90 KB 105.98 KB 90.38 KB 47.96 KB

Engine 81.32 KB 66.88 KB 23.12 KB 27.1 KB 22.29 KB 7.7 KB

Fig. 5 and Fig. 6, it is clear that the four generated shares of both models are
unrecognizable, indicating that the secret property is satisfied. Combining any
3 shares from Fig. 5(b)-(e) (resp. Fig. 6(b)-(e)), we can reconstruct the original
secret model as shown in Fig. 5(f) (resp. Fig. 6(f)). Therefore, the lost of one
share will not prevent recovery of the model. These results are in fact consistent
with numerous 3D models used for experimentation. To further increase the
security by minimizing the share sizes and also reduce the overhead calculations
of the sharing process, we compress the 3D models before applying the secret
sharing schemes. Table 3 shows the comparison results between the sizes of the
shares generated by Blakely and Thien & Lin schemes using Huffman coding [19]
and ZLIB [20].

5 Conclusions

A geometric framework for 3D secret sharing is proposed in this paper. The
proposed algorithms were motivated by Blakley and Thien & Lin secret sharing
schemes. To increase the security of the schemes by decreasing the amount of
the information that must be kept secret, we used two lossless data compression
algorithms Huffman Coding and ZLIB prior to splitting the 3D models. The
experimental results on several 3D models indicate the feasibility of the proposed
approaches.
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Abstract. In this paper, we propose a new fast full search block matching algo-
rithm which significantly reduces unnecessary computations without degrada-
tion of prediction quality. The proposed algorithm identifies computational 
matching order from initial matching errors. According to the computational 
order obtained, matching errors are calculated based on partial distortion  
elimination (PDE) method. The proposed algorithm reduces significantly com-
putational cost for calculating block matching errors compared with the conven-
tional lossless motion estimation algorithm without degrading prediction  
quality. The proposed algorithm will be useful for realizing fast real-time video 
coding applications, such as H.264 video coding, that require large amount of 
computations for motion estimation.  

1   Introduction 

In video coding, full search (FS) algorithm based on block matching finds optimal 
motion vectors which minimize the matching differences between reference blocks 
and candidate blocks in search area. FS algorithm has been widely used in video cod-
ing applications because of its simple and easy hardware implementation. However, 
high computational cost of the FS algorithm with very large search area has been 
considered as a serious problem for realizing fast real-time video coding.  

Several fast motion estimation algorithms have been studied in recent years in or-
der to reduce the computational cost required. These algorithms can be classified into 
two main groups. One group of algorithms is based on lossy motion estimation tech-
nique with degradation of prediction quality compared with the conventional FS algo-
rithm. The other group of algorithms is based on lossless estimation technique that 
does not degrade the prediction quality. The lossy group of algorithms includes uni-
modal error surface assumption algorithm, multi-resolution algorithm, variable search 
range algorithm with spatial/temporal correlation of the motion vectors, half-stop 
algorithm using threshold of matching distortion, and others [1]. Lossless group of 
algorithms includes successive elimination algorithm (SEA), modified SEAs [2]-[8], 
fast algorithm using a fast 2-D filtering method [9], massive projection algorithm, 
[10], partial distortion elimination (PDE) algorithm and modified PDE algorithms 
[11]-[13]. 
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The PDE algorithm as a lossless motion estimation technique has been known as a 
very efficient algorithm in the sense that it could reduce unnecessary computations 
required for matching error calculations. To further reduce unnecessary computational 
cost in calculating matching errors, Kim et al. proposed fast PDE algorithms based on 
adaptive matching scan [11]-[12]. Obtaining adaptive matching scan order however 
requires additional computational overhead.  

In this paper, we propose a new lossless fast full search motion estimation algo-
rithm by reducing unnecessary computations. To achieve this, we divide the matching 
blocks into sub-square blocks and determine the computational order for the sub-
blocks from initial calculation of matching errors. Instead of using conventional top-
to-bottom matching ordering, we calculate the matching errors adaptively according 
to the pre-determined computational order. The proposed algorithm requires very 
little additional computational overhead for checking computational order, which 
makes our algorithm efficient enough to be used with other fast algorithms such as 
SEA or Multilevel SEA (MSEA). The proposed novel algorithm reduces large 
amount of computational cost for block matching error calculations compared with 
the conventional PDE algorithm without any loss of prediction quality.  

2   Conventional Fast Full Search Algorithms 

SEA algorithm is well known lossless FS motion estimation algorithm. It removes 
impossible candidate motion vectors by using the sum of the current block, the sum of 
the candidate blocks and the minimum sum of absolute difference (SAD) [2]. At first, 
the algorithm computes sum of the rows or the columns in the reference and candidate 
blocks. After calculating initial matching error of the search origin in the search area, 
the algorithm removes impossible candidate motion vectors by the Eq. (1). In the Eq. 
(1), R means the norm of the reference block in the current frame and C(x,y) repre-
sents the summation of the norms of the candidate blocks with the motion vector (x,y) 
in the previous frame. SADmin means the sum of absolute differences as a distortion 
measure at that checking time. By the Eq. (1), useless computations required for im-
possible candidates can be eliminated without any degradation of predicted images. If 
the summation of the candidate blocks is satisfied with the Eq. (1), the candidate 
blocks are calculated for matching errors with SAD, otherwise the candidate blocks 
are removed and next candidate blocks will be checked. 

minmin ),( SADRyxCSADR +≤≤−                           (1) 

A few modified algorithms based on SEA have been reported. The performance of the 
various modified SEA algorithms depends on the way how to calculate the initial 
matching errors. Oliveira et al. [3] proposed the modified algorithm with less initial 
matching distortion from the adjacent motion vectors. Lu and others [4] could reduce 
impossible candidate vectors further by using hierarchical structure of Minkowski’s 
inequality with pyramid of 5 levels. Coban and others [5] used the concept of the  
Eq. (1) to determine motion vector with optimized rate-distortion. They extended  
the Eq. (1) by adding the weighted rate term to avoid unnecessary computations. 
Wang et al. [6] used the Eq. (1) by adding PDE, square root, and square term in order 
to reduce computational cost. Meanwhile, Gao et al. [7] proposed an algorithm for 
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reducing impossible candidate vectors by using tight boundary levels shown in Eq. (2) 
and Eq. (3).  
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Another algorithm to reduce the computational cost is the PDE approach [11]-[13]. 
The algorithm uses the partial sum of matching distortion to eliminate impossible 
candidates before completing calculation of matching distortion in a matching block. 
That is, if an intermediate sum of matching error is larger than the minimum value of 
matching error at that time, the remaining computations for matching errors is aban-
doned. The kth partial SAD can be expressed by the Eq. (4), 
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where N represents matching block size. The term, ft+1 (i,j), means  image intensity at 
the position (i,j) of the (t+1)th frame. The variables x and y are the pixel coordinate of 
a candidate vector. If the partial sum of matching distortion exceeds the current mini-
mum matching error at k, then we can abandon the remaining calculation of matching 
error (k+1 to Nth rows) by assuring that the checking point is an impossible candidate 
for the optimal motion vector. Kim et al. [11] calculated block matching errors to 
reduce unnecessary calculations with the four-directional scan order based on the 
gradient magnitude of images instead of the conventional top-to-bottom matching 
scan order. Block matching errors are calculated to further reduce unnecessary com-
putations with adaptive matching scan [12].  While these approaches could reduce 
unnecessary computations for getting block matching errors, they need additional 
computations to determine the matching scan order. 

3   Proposed Algorithm 

Modified PDE algorithms, such as spiral search algorithm and cascaded algorithms, 
have used adjacent motion vectors [11]-[12]. Ability to reject impossible candidate 
vectors in the PDE algorithm depends on the search strategy, which makes minimum 
matching errors can be detected faster. Because PDE algorithm with spiral search 
rejects impossible candidate vectors faster than simple PDE, we employ the spiral 
search in the proposed matching scan algorithm. The relationship between matching 
error and image gradient of the matching block can be summarized by Taylor series 
expansion [11]-[12]. Let the image intensity at the position (x,y) of the (t+1)th frame 
be {ft+1 (p), p=(x,y)}, and the motion vector of the position p be  mv=(mvx, mvy). We 
can describe the relationship between the reference frame and the candidate frame as 
shown in the Eq. (5). 

ft+1 (p)=ft(p+mv)                                         (5) 
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By using modified form of the Taylor series expansion, we can express the relation-
ship between the matching distortion and the gradient magnitude of the reference 
block as shown in the Eq. (6). Here, cmv=(cmvx, cmvy) represents candidate motion 
vector corresponding to the matching distortion. From the Eq. (6), we can find out an 
important fact that the matching distortion at pixel p is proportional to the gradient 
magnitude of the reference block in the current frame, which corresponds to the com-
plexity of the image data. By localizing the image complexity well, we can further 
reduce unnecessary computations. In general, image complexity is well localized in a 
block rather than the whole span of an image. In this paper, we calculate the matching 
error using 4x4 square sub-blocks instead of the conventional 1x16 row vector to 
measure the complexity of the matching block.  

Efficiently identifying complex square sub-block needs to be performed at early 
stage of the algorithm. In the previous algorithms, a complex square sub-block was 
found by calculating gradient magnitude in the reference matching block, where the 
additional computation for calculating the gradient magnitude can be avoided with 
large candidates. The previous algorithms [11]-[12] can increase computational load 
more than the original PDE algorithm when both of them are cascaded to other fast 
algorithms such as SEA [2]. Instead of calculating the gradient magnitude of the 
matching blocks, we find complex sub-blocks from initial SAD computation at center 
point of search area. At first, we calculate block matching error by the unit of square 
sub-block, and then accumulate the sum of sub-blocks. According to the accumulated 
sum of sub-blocks, we determine the matching order for the following candidates. 
The idea further reduces unnecessary computations as explained below. Our proposed 
algorithm uses the matching order for sub-blocks in all candidates of the search range. 
The Eq. (7) shows our modified PDE algorithm which employs sub-blocks and the 
matching order of the sub-blocks from initial computation of SAD. 
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In the Eq. (7), matching_order[] is obtained from the initial partial SAD value for 
each block. We put the pixel number of N/s*N/s square sub-block as N. The matching 
order of N candidate sub-blocks is calculated for every reference block of the search 
range. Thus, we increase the probability of scan order that have larger matching ear-
lier. The computational cost required for sorting N/s*N/s sub-block is small and neg-
ligible compared to the overall computational cost of the block matching algorithm.  

If we cascade the SEA algorithm to our proposed algorithm, we can further remove 
unnecessary computation. In the MSEA algorithm, block size is 16x16 and sub-block 
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size for adaptive matching scan is 4x4. If we employ the multilevel SEA instead of 
the original SEA, we can further reduce computations.   

4   Experimental Results 

To compare the performance of the proposed algorithm with the conventional algo-
rithms, we use 100 frames of 'foreman', 'car phone', 'trevor', 'clair', ‘akio’ and ‘grand 
mother’ image sequences. In these sequences, 'foreman', and 'car phone' have higher 
motion variance than the other image sequences. 'clair', ‘akio’ and ‘grand mother’ are 
rather inactive sequences compared with the first two sequences. 'trevor' sequence has 
intermediate level of motion variance. Matching block size is 16x16 pixels and the 
search window is ± 7 pixels. Image format is QCIF( 144176 × ) for each sequence 
and only forward prediction is used.  

The experimental results shown in Figures 2 and 3 and Tables 1 and 2 are pre-
sented in terms of average number of checking rows with reference to that of full 
search without any fast operation. Table 3 shows the peak-to-peak-signal-to-noise 
ratio (PSNR) performance of the proposed algorithm. All the algorithms employed 
spiral search scheme to make use of the distribution of motion vectors.  

Figure 1 and Figure 2 show the reduced computation of average checking rows 
using 4x4 square sub-blocks based on PDE algorithm. The adaptive matching scan 
algorithm significantly reduces unnecessary calculations compared with the conven-
tional sequential scan algorithm. We apply the proposed algorithm to SEA [2] and 
MSEA [7] to further demonstrate the performance. From the experimental results, 
we can see that the proposed matching algorithm can reduce unnecessary computa-
tions efficiently for PDE itself and cascaded algorithms with SEA and MSEA. Note 
that the computational reduction is different among three algorithms. In PDE, all 
candidates in search area are involved in calculating partial matching distortion. 
However  fewer candidates are involved in calculating distortion by SEA or MSEA 
because many candidates are filtered out by the Eq. (1) and the Eq. (3). MSEA has 
smaller candidates in calculating partial matching distortion than SEA because of 
tighter boundary. 

Table 1 and Table 2 summarize average numbers of checking rows computed for 
various algorithms in all sequences of 30Hz and 10Hz, respectively. The average 
number of checking rows of the conventional full search algorithm without any fast 
operation is 16.  

The importance and efficiency of spiral scan in PDE algorithm was shown in [11]-
[12]. From the Table 1, we can see that the computational reduction ratios from the 
proposed adaptive matching scan combined with SEA and MSEA are 37% and 16% 
compared with the conventional sequential matching. The results of PSNR are all the 
same for all algorithms as shown in Table 3 because they are all lossless algorithms.  

With the experimental results, we can conclude that our adaptive matching scan al-
gorithm can reduce computational cost significantly without any degradation of pre-
diction quality and any additional computational cost for obtaining matching order. 
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Fig. 1. Average number of rows computed for “foreman” sequence of 10Hz 
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Fig. 2. Average number of rows computed for “carphone” sequence of 10Hz 
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Table 1. Average number of rows computed for all sequences of 30Hz 

Algorithms Fore-
man 

Car 
phone 

Trevor Claire Akio Grand 

Original FS 16.00 16.00 16.00 16.00 16.00 16.00 

PDE 
(sequential) 4.05 4.23 3.18 3.94 1.71 4.18 

PDE Hadamard [13] 2.84 3.21 2.46 3.21 1.33 3.55 
PDE 
(adaptive matching) 2.86 3.16 2.43 3.26 1.36 3.45 

SEA + 
PDE (sequential) 1.90 2.03 1.29 1.31 0.62 1.99 

SEA + 
PDE(adaptive matching) 1.55 1.72 1.12 1.24 0.56 1.85 

MSEA + 
PDE(sequential) 1.32 1.56 0.91 1.05 0.58 1.77 

MSEA + 
PDE(adaptive matching) 1.19 1.43 0.85 1.03 0.57 1.71 

Table 2. Average number of rows for all sequences of 10Hz 

Algorithms 
Fore-
man 

Car 
phone 

Trevor Claire Akio Grand 

Original FS 16.00 16.00 16.00 16.00 16.00 16.00 

PDE 
(sequential) 4.81 4.87 4.51 4.45 2.09 4.66 

PDE Hadamard [13] 3.65 3.76 3.49 3.64 1.58 3.78 
PDE 
(adaptive matching) 

3.64 3.75 3.53 3.54 1.54 3.80 

SEA + 
PDE (sequential) 2.50 2.48 2.17 1.57 0.83 2.30 

SEA + 
PDE(adaptive matching) 2.10 2.12 1.84 1.44 0.69 2.10 

MSEA + 
PDE(sequential) 1.75 1.88 1.46 1.21 0.68 1.92 

MSEA + 
PDE(adaptive matching) 1.58 1.71 1.32 1.16 0.63 1.83 

Table 3. Average PSNR of all sequences for the frame rates 30Hz and 10 Hz 

Frame rate Foreman 
Car 

phone 
Trevor Claire Akio Grand 

30 Hz 32.85 34.04 34.05 42.97 44.14 43.44 

10 Hz 29.50 31.54 28.63 37.50 38.66 39.01 
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5   Conclusions 

In this paper, we propose a new block matching algorithm by sorting square sub-
blocks according to the initial matching distortion. The proposed algorithm reduces 
unnecessary computations for motion estimation while keeping the same prediction 
quality compared with the conventional full search algorithm. Unlike the conventional 
fast PDE algorithms, the proposed algorithm does not require additional computations 
to identify matching order. The proposed algorithm can be efficiently cascaded to 
other fast algorithms such as MSEA or SEA. The proposed algorithm will be particu-
larly useful for realizing fast real-time video coding applications, such as MPEG-4 
advanced video coding, that require large amount of computations. 
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Abstract. A non-predictive video coding is a new branch of emerging research 
area in video coding, where the motion estimation/compensation or prediction 
step in the temporal domain is omitted. One direction was to look for the ex-
ploitation of temporal decomposition of video frames. The proposed method 
consists on 3D to 2D transformation of the temporal frames that allows explor-
ing the temporal redundancy of the video using 2D wavelet transforms and 
avoiding the computationally demanding motion compensation step.  Although 
the many advantages presented by the proposed coder, some annoying artifacts 
still exist. In this paper, we will explore the performances of the proposed 
method and try to better show what it actually offers to users. The paper pre-
sents also the extensions chosen in order to reduce the perceived artifacts and 
increase the perceptual as well as objective (PSNR) decoded video quality, 
which is actually competitive with state-of-the-art video coder algorithms, es-
pecially when low computational demands of the proposed approach are taken 
into account. 

Keywords: video coding, temporal decomposition, wavelet, correlation. 

1   Introduction 

Video compression has generated a lot of discussion and increasing attention from the 
research in recent years.  

Among many proposed methods, motion compensated coding has taken the most 
attention and taken its place in many standards. These include Mpeg, H.26L, etc. 
Such encoders exploit inter-frame correlation in order to further improve its compres-
sion. However, the main challenge of these methods lies on the motion estimation 
process which is known to be computationally intensive. Besides, its real time imple-
mentation is difficult and costly [1],[2]. Nevertheless, new applications such as sensor 
networks and portable video devices necessitate a low processing capability for the 
compression, which makes the encoding complexity a big burden. To deal with this 
problem, motion-based video coding standard MPEG was primarily developed for 
stored video applications, where the encoding process is typically carried out off-line 
on powerful computers. With the explosive growth of video devices ranging from 
hand-held digital cameras to low-power video sensors, a new class of multimedia 
devices is required which includes the following architectural requirements: Low 
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power, less- complexity encoding and real time constraint. Therefore, there have been 
extensive research efforts in video coding in order to give response to the new re-
quirements of video applications different than those targeted by conventional coding 
schemes in the past years [1]. A non-predictive video coding is a new branch of 
emerging research area in video coding, where the motion estimation/compensation or 
prediction step in the temporal domain is omitted. 

In [3]-[4], authors exploit 3D transforms in order to exploit temporal redundancy. 
Coder based on 3D transform produces video compression ratio which is comparable 
to some motion estimation based coding one but with lower processing complexity 
[5]. However, 3D transform based video compression methods process temporal and 
spatial redundancies in the 3D video signal in the same way. This can reduce the 
efficiency of these methods as pixel's values variations in spatial or temporal dimen-
sions are not uniform and hence, temporal and spatial redundancies have not the same 
pertinence. It is known that the temporal redundancies are more relevant than spatial 
one [2], hence its practical importance. It is more beneficial to utilize the proposed 
method rather than the 3D based methods, because it is able to achieve higher com-
pression by more exploiting the redundancies in the temporal domain.  

This method consists on 3D to 2D transformation of the video frames; it will then 
explore the temporal redundancy of the video using 2D transforms and avoids the 
computationally demanding motion compensation step. In particular, the used method 
projects temporal redundancy of each group of pictures into spatial domain and com-
bines it with spatial redundancy in one representation with high spatial correlation [6]. 
Then, the new representation will be compressed as still image using wavelet  
transform based coder (JPEG2000). Actually, the proposed approach presents many 
advantages. It exploits objectively temporal and spatial redundancy. It omits the tem-
poral prediction step and transforms a 3D processing into 2D one while reducing 
considerably the complexity processing. Furthermore, it inherits the JPEG 2000  
proprieties such as scalability ROI and error resilience.  

In this paper, we focus on the analysis of experimental results, solutions and exten-
sions proposed to remove some annoying artifacts of the presented method. Experi-
mental results will show the efficiency of the proposed method at an expense of some 
annoying artifacts.  

The rest of paper is organized as follows. In section 2, we review the basics of the 
used approach. In section 3, we present some experimental results and explore the 
method performances and limitations. Section 4 presents the extensions chosen to 
further improve the compression ratio. Finally, conclusions are drawn in Section 5. 

2   Description of the Used Approach 

Actually, the used method relies on the following assumption: high frequency data is 
more difficult to compress compared to low frequency one.  

The main idea of the proposed method is to make some geometric transformation 
of the 3D data in order to make one representation with very high correlation, and 
consequently without high frequencies data. We will play on the disposition of pixel’s 
data in the video cube.  
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2.1   Hypothesis 

The video stream contains more temporal redundancies than spatial ones [2]. This 
assumption will be the basis of the proposed method where we will try to put pixels - 
which have a very high temporal correlation - in spatial adjacency. Thus, video data 
will be presented with high correlated form which exploits both temporal and spatial 
redundancies in video signal with appropriate portion that put in priority the temporal 
redundancy exploitation. 

2.2   Accordion Representation 

The input of our encoder is the so called video cube (GoF), which is made up of a 
number of frames. This cube will be decomposed into temporal frames which will be 
gathered into one 2D representation. Temporal frames are formed by gathering the 
video cube pixels which have the same column index.  

These frames will be projected on 2D representation (further called "IACC" frame) 
while reversing the direction of odd frames, i.e. the odd temporal frames will be 
turned over horizontally in order to more exploit the spatial correlation of the video 
cube frames extremities. In this way, Accordion representation also minimizes the 
distances between the pixels spatially correlated in the source. This representation 
transforms temporal correlation of the 3D original video source into a high spatial 
correlation in the 2D representation ("IACC") [6]. Figure 1 illustrates the principle of 
this representation. 

 

Fig. 1. Accordion representation [6] 

In the following, we will present the diagram of coding based on the Accordion 
representation further called ACC-JPEG2000. 

2.3   ACC-JPEG2000 Coding Scheme 

The proposed ACC-JPEG2000 coding scheme follows the following steps: 
 

• The decomposition of video sequence into groups of frames (GOF). 
• Accordion representation of the GOF. 
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• DWT transform. 
• Quantization of obtained coefficients (Q). 
• Arithmetic coding of obtained coefficients. 

 

Figure 2 presents ACC-JPEG2000 coding scheme. 
 

 

Fig. 2. ACC-JPEG2000 coding scheme  

 

The video encoder takes a video sequence and passes it to a frame buffer. The 
buffer dispatches a group of frames at a time to Accordion process before being send-
ing to DWT blocks. Each of the DWT blocks performs a 2-D discrete wavelet trans-
form using JPEG2000 wavelet filters coefficients. In this system, we use five levels of 
wavelet decomposition which is sufficient for CIF sequences.  

3   Experiments 

In the following, we summarize the experimental results with some analysis and 
comments. 

3.1   PSNR Evaluation 

In these experiments, we use the XVID MPEG-4 video coder including P frames. The 
GOF number of frames relative to ACC-JPEG 2000 is fixed to 8 frames. 

The experiments prove the efficiency of ACC-JPEG2000 on slow and uniform mo-
tion sequences. In these sequences, temporal redundancy is relevant; the spatial rep-
resentation “IACC” performs a pertinent correlation. In this case, it is expected that 
the proposed method proves its efficiency. However, the method shows a remarkable 
sensitivity to very fast motion video sequences.  
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Among the studied sequences, we have got worst compression performance with 
“tennis” sequence. Tennis sequence contains very fast motion with fast complex  
background changes.  The generated spatial representation still presents some high 
frequencies. The ACC-JPEG2000 efficiency decreases with the apparition of trans-
parency effect due to background change, measured PSNR is relatively low with an 
alternate character. In fact, such results are expected as ACC-JPEG2000 eliminates 
"IACC" frame's high frequency data which actually contains the high temporal fre-
quency produced by the fast motion. Foreman sequence contains fast non-uniform 
motion which is caused by the camera as well as the man's face movement. So meas-
ured PSNR is relatively low and visual quality suffers from some blur effect, espe-
cially in face detail which represents the high resolution data. Hall monitor sequence 
seems to involve less motion compared to the Foreman sequence; the motion takes 
place only in a very concentrated area. Due to the little amount of motion taking place 
on the overall image, we observed that our method get better results. Miss America is 
a low motion sequence. The motion is confined to the person's lips and head. Since 
motion is low, temporal redundancy is high and it is expected that ACC- JPEG2000 
becomes efficient.  

 

Fig. 3. PSNR evaluation: Miss America (QCIF, 25Hz) 

Figure 3 shows results of PSNR based comparative study between ACC-JPEG2000 
and MPEG 4 relative to miss america sequence. Up to 230 kb/s, the proposed  
coder outperforms the mpeg 4, the relative PSNR continue to increase until  
lossless level. Otherwise, MPEG 4 can not rich less than 22 kbits/s, but  
ACC-JPEG2000 can go less than 10 kbits/s. we can state that the proposed coder is 
highly scalable.   

Table 1 shows results of PSNR based comparative study between ACC-JPEG2000 
and MPEG 4 coder. 
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Table 1. PSNR EVALUATION 

 Bit Rate (Kbits/s) ACC-JPEG 2000 MPEG 4 

100 29 30.1 Water fall 

(CIF, 25Hz) 1000 35 36.6 

200 21.3 25.5 Bus 

(CIF, 25Hz) 1000 26.6 32 

100 25 29 Tennis 

(CIF, 25Hz) 1000 34 43 

100 22 23 Mobile 

(QCIF, 25Hz) 1000 36 35 

50 28.3 29.1 Hall monitor 
(CIF, 25Hz) 

1000 41.2 39.1 

25 33.8 34.2 Miss America 
(QCIF, 25Hz) 

300 46.7 44.9 

 
 
Moreover, the PSNR Curve relative to the ACC-JPEG2000 coding is in continuous 

alternation from one frame to another unlike MPEG PSNR which is almost stable as it 
is shown in figure 4. 
 

 

Fig. 4. PSNR evaluation: Miss America (QCIF, 25Hz) 

In one hand, ACC-JPEG2000 affects the quality of some frames of a GOP, but on 
the other hand, it provides relevant quality frames in the same GOP, while MPEG 
produces frames practically of the same quality. In video compression, such feature 
could be useful for video surveillance field; Generally, we just need some good qual-
ity frames in a GOP to identify the objects (i. e. person recognition) rather than me-
dium quality for all the frames. The example of the “hall monitor” in table 1proves 
that the video surveillance is one of the best application field to the proposed coder.  
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Differently to MPEG codec’s, ACC-JPEG2000 can reach very low bit rates. In 
high bit rates it provides a relevant quality (until lossless level). 

3.2   Visual Evaluation 

Some artifacts existing in DWT based compression methods (MJPEG 2000) and in 
motion estimation based method (MPEG) such as spatial distortions generated 
through the massive elimination of the high spatial frequencies (tiling artefact and 
blocking artefact) as it is presented in figure 6, does not exist in the proposed method 
as shown in figure 5.  It’s actually replaced by some less annoying blur artifact. 

 

  
Blocking artefact in MPEG 4 Blur artefact in ACC-JPEG 2000 

Fig. 5. Perceptual evaluation: Tennis (CIF, 25Hz) 

In the proposed method, the DWT is exploited in both spatial and temporal  
domain. Actually, temporal and spatial redundancy is projected on spatial domain 
forming the IACC representation. The application of the DWT on IACC allows the 
transformation from the spatial domain to the frequency domain. 

After quantification process, we will eliminate the high spatial frequencies of 
"IACC" frame which actually include the high temporal frequencies of the 3D signal 
source. As temporal redundancy is more exploited than spatial one, a strong quantifi-
cation will not seriously affect the quality of image but will rather affect the fluidity 
of the video. Spatial high frequency is mainly made of fast pixel’s values change from 
one frame to another. Once some of the coefficients have been quantized (set to zero) 
the signal is smoothed out. Thus some fast changes over time is somewhat distorted. 
As a consequence, the PSNR significantly decreases in very fast motion sequences 
leading for some annoying blur artifact. 

However, some sudden pixels change will be eliminated. This will offer a useful 
functionality such as the noise removal. Indeed, the very high temporal frequency 
(sudden change of a pixels value over time) is generally interpreted as a noise. 

As it is shown in figure 6, some other artifacts appear in video sequences contain-
ing cuts: transparency [7]: 

 



 New Non Predictive Wavelet Based Video Coder: Performances Analysis 351 

  
Frame N-1 Frame N 

Fig. 6. Transparency artefact: Tennis (CIF, 25Hz) 

The input data stream is divided into n frames (in our case n=8) as shown in Fig. 7. 
These groups of n frames are completely independent to each other. The problem 
appears when one group contains several types of video sequences. In consequence, 
particular frames compound images from different video sequences.  

 

Fig. 7. Video sequence with cut 

There are many solutions for this known issue in the prior art [7][8]. However their 
integration are not well adapted to our coder, and it increase the coder complexity. 

4   Performance Improvement 

Our current work is directed towards finding solutions to treat certain weaknesses 
shown by our method. First, the proposed method exhibits significant boundary ef-
fects at GOF boundaries. The PSNR drops every N frames, leading to annoying jitter-
ing artifacts in video playback. This well known [12] issue can be resolved by extend-
ing some temporal filtering indefinitely in time [13][14]. Some spatial filter can be 
useful when applied on IACC frame. We are currently testing this approach. 

Second, the proposed method lose its efficiency in very fast motion sequences es-
pecially fast moving objects details are often lost in video playback. Iin this case, we 
are trying to exploit the ROI propriety of the JPEG 2000. Moreover the extension 
presented below should clearly decrease this weakness effect. 
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Another annoying artifact is the transparency; we don’t look for some post process-
ing but rather we look for eliminate the cause of this anomaly. Thus, proposed solu-
tion is to work with a dynamic strategy in the construction of the GOF, the number of 
frames will not be previously fixed, but rather will vary according to the semantics of 
the video in order to avoid cuts in the video inputs GOFs. For this reason an addi-
tional inter frame change detection module will be integrated (figure 8).  

 

Fig. 8. Integration of the change detection module 

There are many existing techniques related to cuts detection [9][10][11], in our case, 
we don’t only look for cuts detection, but also local frames change due to fast moving 
objects, that’s why we proceeded with local comparison with threshold based method. 
This module is responsible for detecting significant and fast inter-frames changes. This 
module allows removing transparency artifact by avoiding cuts in inputs GOFs. It also 
contributes in the improvement of the video quality by reducing the number of frames 
in the GOF in fast video sequence. The figure 9 shows the disappearance of the trans-
parency artefact after the integration of the change detection module. 

 

  
Frame N-1 Frame N 

Fig. 9. Transparency removal: Tennis (CIF, 25Hz) 
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5   Conclusion 

In this paper, we tended to explore a new non predictive wavelet based video coder; 
many experiments were conducted in order to prove the method performances and 
point out its limits. Taking into account its operating simplicity in one hand, and its 
competitive performances in other hand, we can state that this approach can be useful 
in large application domains, especially, in embedded systems and video surveillance 
applications. There are various directions for future investigations. First of all, we will 
try to combine the Accordion representation with other image coding techniques. 
Another direction could be to explore others possibilities of video representation in 
order to look for one more correlated one.  
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Abstract. Color and texture are visual cues of different nature, their

integration in an useful visual descriptor is not an easy problem. One

way to combine both features is to compute spatial texture descriptors

independently on each color channel. Another way is to do the integration

at the descriptor level. In this case the problem of normalizing both cues

arises. In this paper we solve the latest problem by fusing color and

texture through distances in texton spaces. Textons are the attributes of

image blobs and they are responsible for texture discrimination as defined

in Julesz’s Texton theory. We describe them in two low-dimensional and

uniform spaces, namely, shape and color. The dissimilarity between color

texture images is computed by combining the distances in these two

spaces. Following this approach, we propose our TCD descriptor which

outperforms current state of art methods in the two different approaches

mentioned above, early combination with LBP and late combination with

MPEG-7. This is done on an image retrieval experiment over a highly

diverse texture dataset from Corel.

Keywords: color-texture descriptors, retrieval, Corel dataset.

1 Introduction

In the literature there are several works dealing with color and texture in different
applications, however the integration of both features is still an open problem
[6]. The different nature of these two visual cues has been studied from different
points of view. While texture is essentially a spatial property, color has usually
been studied as a property of a point.

Computational approaches have proposed several algorithms to integrate these
features. Some approaches [2,3] process texture and color separately, using differ-
ent descriptors, they combine both descriptions at a similarity measure level af-
terwards. This means that for every visual cue a dissimilarity measure is obtained,
each one in a different space and then they are combined to obtain a final similarity
that needs to be scaled in order to be comparable. Other approaches [6,11,12] use
the same descriptor over the three components on the chosen color space. The final
descriptor is composed by the concatenation of the three feature vectors obtained
separately from each color channel.

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 354–363, 2010.
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In this paper we propose a perceptual approach to combine color and tex-
ture in order to define a compact color-texture descriptor. Our combination is
based on two low-dimensional spaces that describe color textures through the
texton concept. Here we use the original definition of texton given by Julesz
in his Texton Theory [4]. Textons are defined as the attributes of image blobs.
The differences of their first order statistics are the responsibles for texture dis-
crimination. We use two different spaces, one to represent shape textons and a
second one to represent color textons. In this way we obtain a combination of
cues directly from the attributes of the blobs.

The paper is organized as follows: in section 2 we review the perceptual consid-
erations justifying the attribute spaces and describe the computational method
to obtain the important blobs of an image. In section 3 we describe the two tex-
ton spaces where the descriptor, Texture Component Descriptor (TCD), we pro-
pose is derived from the fusion of similarities computed in each of these spaces.
Section 4 contains the experiment that evaluates our approach, showing that
our descriptor achieves better performance than current descriptors in retrieval.
We compare our TCD with MPEG-7 and LBP descriptors in standard Corel
datasets. In the last section we sum up our proposal of a perceptual integration
of color and texture descriptors.

2 Texture and Blobs

Texton theory [4] was originally introduced as the basis for the first steps in
texture perception. This theory states that preattentive vision directs attentive
vision to the location where differences in density of textons occur, ignoring
positional relationships between textons and defines the concept of textons as
the attributes of elongated blobs, terminators and crossings. From several psy-
chophysical experiments they conclude that preattentive texture discrimination
is achieved by differences in first-order statistics of textons, which are defined
as line-segments, blobs, crossings or terminators; and their attributes, width,
length, orientation and color.

Inspired by this idea, we consider hereby that a texture can be defined as a set
of blobs, but we will not consider terminators or crossings, since it is not clear
whether they would be necessary for natural images. Therefore, we propose a
texture descriptor based on the attributes of the image blobs or perceptual blobs.

Thus, following the assumption that a texture can be described by their blobs
then we are also assuming that a texture is provided by the existence of groups
of similar blobs. This is the basis of the repetitiveness nature of texture images.
Some examples of this proposal can be seen in Fig. 1. In image (a) a striped
texture is described by two different types of blobs: blue elongated blobs and
grey elongated blobs. In the same figure, texture (b) can be described in terms
of 6 different types of blobs, which are blue, green and orange, of different sizes
and shapes. The groups of blobs sharing similar features (size, orientation and
color) are called texture components (TC). This description of a textured image
in terms of the attributes of blobs or textons is the basis of our descriptor.
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(a) Blue Grey
Original vertical oriented vertical oriented
Image large blobs large blobs

(b) Orange Green Green Dark blue Dark blue Dark blue
Original non-oriented non-oriented non-oriented non-oriented non-oriented right oriented
Image medium blobs medium blobs small blobs medium blobs small blobs small blobs

Fig. 1. Texture components and their description

2.1 Blob Detection

To obtain the attributes of the image blobs we use the differential operators in
the scale-space representation proposed in [5]. We use the normalised differential
Laplacian of Gaussian operator to detect the blobs of the image (∇2

norm Lσ).
This operator also allows us to obtain the scale and the location of the blobs.
The aspect-ratio and orientation of non-isotropic blobs are obtained from the
eigenvectors and eigenvalues of the windowed second moment matrix [5].

Since blob information emerge from both intensity and chromaticity varia-
tions, this procedure is applied to each component in the opponent color space
in order to obtain the blobs of a color image. Previously, all the components were
normalized to be invariant to intensity changes and then a perceptual filtering
was carried out. This perceptual filtering is performed with a winner-take-all
mechanism that selects the blobs of higher response of ∇2

norm Lσ from those
that overlap in different channels. This last step provides us with a list of per-
ceptual blobs and their attributes, that we refer as Blob Components (BC), which
are given in matrix form as:

B = [BshaBcol] (1)

where B is formed by joining two matrices: Bsha that contains blob shape at-
tributes and Bcol contains blob color attributes. These matrices can be defined
as:

Bsha = [WLΘ], Bcol = [IRGBY] (2)

where WT = [w1 . . . wn], LT = [l1 . . . ln], ΘT = [θ1 . . . θn] being (wj , lj, θj) shape
attributes of the j-th blob (width, length and the orientation respectively), and
I
T

= [i1 . . . in], RG
T

= [rg1 . . . rgn], BY
T

= [by1 . . . byn] being (ij , rgj , byj)
color attributes of the j-th blob (median of the intensity and chromaticities of
the pixels forming the winner blob respectively).
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3 Texton Spaces

At this point we have to deal with the problem of the different nature of the
attributes we have computed for the Blob Components that is given by B. We
will use two different texton spaces to represent the two sets of attributes, Bsha

and Bcol. The first one is the shape texton space and the second one is the color
texton space. Both need to be perceptual spaces since the fusion of color and
texture is done through the Euclidean distances in these two spaces separately.

The uniform space used to represent shape is a three dimensional cylindrical
space where two axes represent the shape of the blob (aspect-ratio and area)
and the third axis represents its orientation. The space we have used is shown in
Fig. 2.(a). This perceptual shape space is obtained by performing a non linear
transformation U ,

U : R
3 → R

3

(w, l, θ)→ (r, z, φ) (3)

where r = log(ar), z = log(A) and φ = 2θ, being ar the blob aspect ratio
(ar = w/l), A its area (area = w · l) and θ its orientation.

(a) (b)

Fig. 2. (a) Shape Texton Space in cylindrical coordinates. (b) Color Texton space

(HSI).

To represent the color attributes of blobs we use the HSI color space cor-
responding to the transform given in [1]. This space is shown in Fig. 2.(b).
Although this color space is not perceptually uniform, our choice is based on the
fact that is close to an uniform space when we need to represent non-calibrated
color.

Following our initial assumption that a texture is provided by the existence of
groups of similar blobs (Texture Components), in the next section we propose a
color-texture descriptor based on clustering blob attributes in these two texton
spaces.
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3.1 Texture Component Descriptor (TCD)

Considering the properties of the texton spaces we can state that similar blobs
are placed on different unidimensional varieties such as lines, rings or arcs. To
group blobs of similar shapes and colors we use a clustering method that groups
data with these points distributions and, at the same time, makes it possible to
combine spaces with different characteristics, specifically color and shape. The
clustering algorithm which has these properties is the Normalized Cut (N-cut)
[9], that obtains the clusters by partitioning a graph. In the graph the nodes are
the points of the feature space and the edges between the nodes have a weight
equal to the similarity between nodes. To determine the similarity between nodes
we need to define a distance. Since the shape space has been designed to be
uniform and the HSI color space is almost uniform, it is reasonable to use the
Euclidean distance.

The N-Cut clustering algorithm can be defined as

NCUT ([U(Bsha), HSI(Bcol)],Ω) = {B̂1, B̂2, . . . , B̂k} (4)

where, Ω is the weight matrix, and its elements define the similarity between two
nodes through the calculation of the distance in each one of the texton spaces
(shape and color) in an independent way. These weights are defined as,

ωpq = e
−‖U(Bsha)p−U(Bsha)q‖2

2
σ2

sha · e
−‖HSI(Bcol)p−HSI(Bcol)q‖2

2
σ2

col (5)

This weight represents the similarity between blob p and blob q that depends
on the similarity of its shape features and the similarity of its color features.
U(Bsha)p and HSI(Bcol)p are the p-th row of the matrices U(Bsha) and
HSI(Bcol) respectively. As in [9], σsha and σcol are defined as a percentage

Fig. 3. Stages of TCD Computation
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of the total range of each feature distance function, the first one in the shape
space and the second one in the color space.

The result of the clustering obtained by the N-cut algorithm is represented by
B̂i, ∀i = 1, ..., k (where k is the total number of clusters). The prototype of each
cluster i becomes our Texture Component Descriptor (TCDi). This is computed
by estimating the median of all the blob attributes in the i cluster, [B̂i

shaB̂
i
col]. This

give a 6-dimensional description for each cluster or Texture Component (TC):

TCDi = (ri, zi, φi, hi, si, ii) (6)

In this way the descriptors of an image are the shape (3D) and color attributes
(3D) of its TC. In figure 3 we show the over all scheme to obtain the TCD.

4 Experiment

This experiment evaluates the performance of our TCD descriptor in an image
retrieval application. In order to compute the similarity between two textures
we need to define an adequate measure which considers that the TCD of images
can have different number of texture components. For a given image, the number
of texture components in its TCD depends on the complexity of the texture
content. A metric presenting this property is the Earth Mover’s Distance [8]. In
our case this distance adapts perfectly because our feature spaces are bounded
independently of the image content. Shape space has the limits of blob attributes
and color space is bounded by the maximum luminance. Therefore we define the
ground distance between two TCD and the weighting parameters as

d(TCDi, TCDj) = α · dshape(TCDi, TCDj) + β · dcolor(TCDi, TCDj) (7)

where dshape and dcolour are Euclidean distances in the shape space and color
space, respectively. The shape space has been built taking into account percep-
tual considerations allowing it to be considered as a uniform space, therefore
distances are correctly estimated. This is not the case in the HSI color space
that is not real uniform space, therefore the distances are not accurate. The
parameters α and β are the weights of these two distances.

To perform this experiment we have used three different datasets, these are
Texture images from the Corel stock photography collection1: Textures (137000),
Various Textures I (593000) and Textures II (404000). In the experiment we
refer to them as Corel, Corel1 and Corel2 respectively. Each Corel group has 100
textures (768 x 512 pixels) and every texture is divided into 6 subimages, then
the total number of images is 6x100 = 600 for each Corel dataset. In figure 4 we
show some textures of the three Corel datasets.

We use the Recall measure [10] to evaluate the performance of the retrieval
and the precision-recall curves. The results have been computed by using all the
images in each dataset as query images. In the ideal case of the retrieval, the
top 6 retrieved images would be from the same original texture.
1 Corel data are distributed through http://www.emsps.com/photocd/corelcds.htm
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(a) Corel

(b) Corel1

(c) Corel2

Fig. 4. Corel datasets
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Fig. 5. (a) Retrieval performance of TCD with different weights on the Corel dataset.

(b) Precision-Recall curves of TCD, MPEG-7 and LBP descriptors for different

datasets.

We find that using similar weights in the combination of shape and color
descriptors to compute the distance (α, β in equation 7) do not have a rele-
vant influence on the average recall measure. This is because color and texture
information are already integrated at the blob level, before building the descrip-
tor TCD. This fact is illustrated in Fig.5.(a) for Corel datasets. Best results in all



3D Texton Spaces for Color-Texture Retrieval 361

Table 1. Average Recall Rates

Descriptor Corel Corel1 Corel2

TCD 73.25% 86.25% 79.11%
MPEG-7 (SCD+HTD) 67.33% 85.94% 76.11%

LBP8,1RGB 61.89% 77.53% 72.5%

TCD(Only Color) 60.89% 78.56% 69.25%

TCD(Only Shape) 48.92% 49.33% 49.33%

MPEG-7 (SCD) 48.5% 64.56% 61.58%

MPEG-7 (HTD) 55.56% 74.22% 63.64%

datasets are obtained when both color and shape are combined (when using only
color or shape the average rate substantially decreases).

For comparing purposes, in table 1 we show the Recall rates for the 3 datasets
using our TCD and two different descriptors that combine color and texture in
different ways. These two descriptors are the standard MPEG-7 descriptors [7]
(HTD and SCD as they are combined in [2]) and the color extension of the
LBP descriptor proposed in [6]. The computed Average Retrieval rate shows
how our TCD overcomes both the LBP8,1RGB descriptor and the MPEG-7
descriptors for the three Corel datasets. The LBP parameters we have chosen
are those that produce the best results over the Corel datasets. In Fig.5.(b) there
are the precision-recall curves that confirms the previous results. The last four
rows of Table 1 show the retrieval rates using either color or texture for TCD
and MPEG-7 descriptors respectively, showing the contribution of each separate
feature on the discrimination experiment.

The best results of the TCD are achieved with Corel1 dataset because it has
more homogeneous textures than the other Corel datasets. That is, any subimage
of the given texture preserves the same appearance of the texture. The TCD is
a good descriptor to model the repetitive properties of textures.

5 Conclusions

This paper proposes a perceptual integration of color and texture in an unified
descriptor. To this end, we propose a computation procedure to implement the
original definition of texton given in the Julesz’s perceptual theory [4]. It is done
by using two spaces to represent shape and color attributes of the image blobs.
Both spaces show two important properties, they are low-dimensional and have
perceptual transformations over the axes in order to easily derive similarities
from distances.

Although blobs are initially computed separately in the channels of an oppo-
nent color space, they are fused with a winner-take-all mechanism over differ-
ent spatially coincident responses. The shape attributes of these winner blobs
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(aspect-ratio, area and orientation) that we call perceptual blobs are uniformly
transformed in the shape space and their median color is represented in a per-
ceptual HSI space. Similarities in these two spaces are combined a posteriori to
obtain a final similarity between blobs which is the input of a clustering algo-
rithm. Clusters of blobs are coping with the inherent repetitive property of the
image texture. Therefore, the fusion of texture and color is done at the level of
their attributes independently of their spatial location.

By combining previous spaces we propose a high level color-texture descriptor,
the Texture Component Descriptor (TCD), that arises from the decomposition of
the image in its textural components, which are the clusters of the blob attributes.
Each cluster is defined by a 6-dimensional vector and our TCD will be a list of
these vectors, depending on the inherent complexity of the texture. To sum up,
the TCD is compact, low-dimensional and it inherits the semantic derived from
the blob attributes.

In order to test the efficiency of the proposed descriptor we have performed
a retrieval experiment on a highly diverse dataset of Corel Texture images. We
compared our descriptor with a late combination of two MPEG-7 descriptors [7]
(HTD and SCD) and an early combinations with the LBP RGB [6] descriptor in
a retrieval experiment. Our descriptor overcomes both in the three Corel datasets
of textures analysed.
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Abstract. Due to improvements in image acquisition and storage tech-

nology, terabyte-sized databases of images are nowadays common. This

abundance of data leads us to two basic problems: how to exploit images

(image mining)? Or how to make it accessible to human beings (image

retrieval)? The specificity of image mining/retrieval among other simi-

lar topics (object recognition, machine vision, computer vision, etc.) is

precisely that their techniques operate on the whole collection of im-

ages, not a single one. Under these circumstances, it is obvious that the

time complexity of related algorithms plays an important role. In this

paper, we suggest a novel general approach applicable to image min-

ing and retrieval, using only compact geometric structures which can be

pre-computed from a database.

1 Introduction

In recent years, the amount of “non-standard” or multimedia data (in con-
trast with standard alphanumeric data) has greatly increased. Terabyte-sized
databases of images are now available for various purposes: medicine, astronomy,
physics, etc. but also digital photography: monitoring, online photo albums or
entertainment.

In general, the problem of extracting implicit relevant information has already
been studied for decades by researchers from data mining. However, and as
described in [1], data mining techniques are not sufficient or fully appropriate
for image databases. Singularities of information in images make necessary the
design specific techniques and tools. These are being developed in the young
area of image mining [2,3].

The other way to deal with such large collections of images is to make them
easily accessible to human beings. To tackle this problem of image retrieval, one
must provide a user interface to make the collection browsable, and a relevant
method for specifying search queries. In addition, the image collection has to
be ordered (indexing) in such way the system can quickly compute database
matches with user queries. Finally, the user should be able to give feedback on
the relevance of the results so the searching engine can possibly improve its

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 364–373, 2010.
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performance aftewards. Content-Based Image Retrieval systems [4,5] i.e. cbir
systems are the realization of these ideas.

Image mining and image retrieval share the fact they both operate on whole
collections of images, in contrast to fields of object recognition, machine vision,
computer vision, etc. which analyse a single image, try to recognize a single scene.
Consequently, the time complexity of image mining/retrieval-related algorithms
must be taken into account, as well as the size of intermediate representation.

Until now, many indexing techniques have been reported in the literature [6,7].
Thanks to an indexing schema, it is possible to filter the complete list of elements
in the database, in order to reduce the actual number of considered images.

In this paper, we suggest a general approach for working with image collec-
tions, which can be seen as an alternative or a complement to indexing. It offers
the possibility to reduce the dataset by converting images to sets of points. This
compact representation along with a pre-computation step might speed-up de-
tection of spatial patterns in image mining or retrieval techniques. We present
a geometric data structure, variant of the Voronoi diagram, for recording in ad-
vance locations of empty shapes (i.e. spatial patterns) and thus saving time on
later treatments.

The next section deals with the “feature extraction step” for converting raw
image data to geometric data. Section 3 introduces the notations used through-
out the paper. A particular shape representation is presented in section 4. Then,
in section 5, we define the new geometric structure based on shapes. We out-
line computation and present some results in section 6. Finally, we conclude by
describing future work and other possible applications in the last section.

2 Image Analysis and Computational Geometry

Recently in image analysis, some research has been done in order to detect
so-called interest points in images. Interest points are sometimes called Spatial
Interest Pixels, [8]. Intuitively, an interest point corresponds to a pixel that has
stronger interest in strength than most of pixels in an image. Interest point
detection is often a particular form of edge/corner detection, but it can also
concern search methods in the color space [9]. For a list and evaluation of interest
point detectors, see [10]. This method constitutes a fast pre-processing step and
allows to work on more compact representations. A remarquable advantage is
that it can be combined easily with other tools of image analysis (histograms for
instance, as demonstrated in [11]) or computer science.

In connection with point sets, computational geometry (or cg) is a field de-
voted to the study of algorithms which can be stated in terms of geometry.
The algorithms and data structures (e.g. the Voronoi decomposition) of cg are
designed for efficiency and have found numerous applications in various fields
of computer science, in particular: image processing [12], analysis, indexing [9],
retrieval [4].

In this paper, we present a novel data structure, based on points and geometric
shapes, suitable for image mining/retrieval tasks. This structure works with
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specified models of shape, but these models could be learned on labelled images
as well.

Let us first consider the abstract problem and the structure in general before
showing its application to the field of Image Analysis. Let S be a set of points in
the plane. Being given a plane geometric shape, (that is, an open bounded region
of IR2) is it possible to translate and rescale the shape in such way it has at least
one point of S on its boundary, while remaining empty? More generally what
is the set of solutions to the problem? i.e. how to locate all the free spaces for
fitting a particular shape into the set of points? The shape representation and
geometric structure introduced in the following bring an answer to this question.
The structure can be seen as a variant of the Voronoi diagram.

3 Notations and Basic Terminology

In this work, we use the following notations:

– pq: the euclidean distance between p and q
– [pq]: the segment of extremities p and q
– b(x, r): the open disc of radius r centered on x. Its boundary is a circle, we

note it ∂b(x, r). Mathematically:

b(x, r) =
{
y ∈ IR

∣∣ yx < r
}

∂b(x, r) =
{
y ∈ IR

∣∣ yx = r
}

– R(p): the Voronoi region of a point p of S, S being a given set of points.
Mathematically, we have:

R(p) = {x ∈ IR2 | px ≤ qx, ∀q ∈ S}

– L = (l1, . . . , ln) denotes a n-tuple (i.e. a sequence) of objects, where l1 is the
first one, l2 the second one, etc.

Moreover, we introduce the following terms:

– Given a set of points S, an open bounded region A is said to be empty if and
only if A ∩ S = ∅.

– We call weighted point a pair constituted by a point and a real positive
number, formally: w = (p, r) where p ∈ IR2, r ∈ IR and r > 0.

4 Shape Representation

For convenience, in this section we shall abuse language slightly: Given a tuple
T of weighted points, a disc of T refers to an open disc b(c, r) where (c, r) is an
object of T .

Definition 1 requires two preliminary concepts introduced below. Given T =(
(c1, r1), (c2, r2), . . . , (cm, rm)

)
a m-tuple of weighted points, it is accepted that:
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– Two discs b(ci, ri), b(cj , rj) of T are said to be adjacent discs iff: the
smallest has its center on the boundary of the biggest, i.e.{

cj ∈ ∂b(ci, ri) if rj ≤ ri

ci ∈ ∂b(cj, rj) otherwise

– Let V = {c1, . . . , cm} be the set of all the points listed in T . Let E be the set
of segments [cicj ] such that the discs b(ci, ri) and b(cj , rj) of T are adjacent
discs. The resulting straight-line graph (V, E) is the adjacency graph of
T . An example of an adjacency graph is shown on Fig. 1.

Fig. 1. Representation of a shape-parameter list and its adjacency graph (dashed line)

Definition 1. A shape-parameter list C =
(
(c1, r1), (c2, r2), . . . , (cm, rm)

)
is

an m-tuple of weighted points which satisfies the three conditions:

1. The two first discs of C are adjacent discs
2. The adjacency graph of C is connected
3. Let C′ be the list of the k first discs of C, where 1 < k < m. The adjacency

graph of C′ is also connected.

Definition 2. Given a shape-parameter list C = ((c1, r1), . . . , (cm, rm)), we de-
fine the shape-model pm(C) as being the open bounded region obtained by the
union of all the discs of C:

pm(C) =
m⋃

i=1

b(ci, ri)

The centers of the two first discs of C (i.e. the points c1, c2) are called reference
points of the shape-model pm(C).

An example of a simple shape-model is shown on Fig. 2a (its shape-parameter
list is represented on Fig. 2b).

As we will see in section 6, that representation allows us to create complex
shape-models and even good approximations of real objects silhouettes. Some
examples are given on Fig. 3.
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Fig. 2. Concepts for shape representation

Fig. 3. Sophisticated shape-models, approximating real-world 2d pictures
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Definition 3. Given a shape-model pm(C), we call instance of pm(C) located
at x and of size λ the region of the plane defined by:

pm(C, x, λ) =
m⋃

i=1

b(c′i, r
′
i)

Where c′i, r
′
i are given by:

– c′1 = x, and r′1 = λ
– c′i = x + α(ci − c1), and r′i = αri for 2 ≤ i ≤ m
– α is the rescaling factor: α = λ

r1
, and λ the resulting size.

For short, in the following we shall use the term instance for refering to: in-
stance of a shape-model located at a certain point and of a new size.

An illustration of this concept is shown on Fig. 2c.

Interpretation: Given a shape-model M1 = pm(C), its instance is a new shape-
model M2 = pm(C, x, λ), which has x and x+α(c2−c1) for reference points while
being similar to M1 (similar: there exists an affine transformation that takes M2

to M1).

Interpretation of the Calculi: The coordinates c′i and numbers r′i are defined
in order to perform an affine transformation which combines: translation and
homothety (no rotation). This transformation is fully parameterized by x, λ.

5 Regions of Expanded Empty Shape-Models

We have defined shape-models precisely. Thanks to this preliminary work, given
a shape-model, new instances can be computed. An instance is parameterized by
a point and a real number, and the original shape parameters are known. Thus
all the geometric information (boundary, disc overlap, etc.) is computable. We
can determine wether a particular instance is empty or not, has a point on its
boundary or not, etc.

Definition 4. Given S a set of points of the plane, and pm(C) a m-disc shape-
model, we call region of expanded empty shape-model associated to p ∈ S
(rees of p ∈ S for short) the region defined such that:

RC(p) =
{
x ∈ IR2 | pm(C, x, px) ∩ S = ∅

}
Fig. 4 illustrates this definition with few simple shape-models and associated
regions.

Intuitively, RC(p) represents the locations x ∈ IR where the shape-model p(C)
can be translated (ie. its first center becomes x) and expanded until it has p on
its boundary, while remaining empty of S.
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Fig. 4. Trivial shape-models and associated regions for a 3-point set. The regions are

the set of points where the shape-model can be translated then rescaled until it has a

site on its boundary, while remaining empty.

6 Practical Results

Shape-models as presented in this paper can be build from 2d silhouettes as
shown on Fig. 5. Actually, that disc-based shape representation has already
been introduced in previous work. Despite of the fact the representation has
been slightly modified and reformulated since then, the construction of approx-
imations from silhouette remains identical. For details on this process, see [13].

(a) input: 2d silhouette (b) output: a shape-model

Fig. 5. Building process of a shape-model for approximating a given silhouette as well

as possible (notably using the so-called medial axis or topological skeleton)

In the section 2, several methods for interest points detection, along with the
possibility to used it as a pre-processing and combine it with other tools, were
mentionned.
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Accordingly, we can use our geometric structure with images. After choosing
a suitable method for interest points detection (‘suitable“ would be application-
specific), a whole image collection used for data mining/retrieval can be con-
verted in advance into a collection of point-sets.

Firstly we have implemented the well-known Harris detector [14] and ran the
algorithm on grayscale images in order to find mostly spatial pixels of interest.
Some results are shown on Fig. 6. Note that by pre-computing point sets for
each image in a database, it is possible to save space and the structure proposed
previously can still work on these points sets for detecting spatial pattern (empty
of points).

Fig. 6. Computation of pixels of interest using the Harris detector on grayscale images,

in order to convert images to simple point sets

Having computed both point sets and shape-models from silhouettes, the com-
putation of rees can be made. The definition mentionned in previous sections
being equivalent to a system of inequalities (to test the emptiness of the shape
is to test the distances between centers of discs constituting the shape-model
and points/sites), the calculation boils down to approximating each region using
linear algebra and algebraic methods, like the resultants. Thus each elements of
the system is simply considered as the part of a two variable polynomial.

The result of such regions computation is shown on Fig. 7.
For application to cbir systems, geometric models could be specified in ad-

vance and the user would select one and indicate its approximate location in
the picture he is searching. We have chosen this scenario but other possibilities
are offered by the geometric structure. Two facts are worth of interest with this
approach:

– The computation of regions is still a part of the pre-computation (before any
user query)

– The classic matching step is replaced by a simple point in polygon algorithm
(rees being approximated by polygons).

Therefore good performances are expected but this cannot be strictly demon-
strated yet.



372 T. Iwaszko, M. Melkemi, and L. Idoumghar

p1

p2

p3

p4

p5

p6

p7

p8

p9

Fig. 7. rees and an empty instance. The triangle represents the location of the in-

stance’s reference point. According to the definition, it is know the whole shape-model

is empty of points iff its reference point is located inside a region RC(p).

Similarly, at this point of our work it was not possible to make comparisons
with other cbir methods as a whole framework integrating all steps is required
(image to point sets conversion, shape-models construction and computation of
regions). However in this section we have presented meaningful results already
obtained for each separate step.

7 Conclusion

This paper presented a theoretical structure and explained in what way it could
be used for image mining and retrieval. The actual computation of this structure
relies on algebraic calculus. Indeed, the introduced rees can be decomposed into
simpler regions (just like the Voronoi diagram can be decomposed in halfplanes).
Each simpler subregion can then be expressed with an inequation. All in all, the
computation boils down to algebraic system of inequations solving.

Currently we use the computational software Mathematica for this task. Our
implementation produced the illustations presented in this paper and scales up
well, up to hundreds of discs and points.

If fully described and developed, this new structure might have numerous
applications, like the classic Voronoi diagram, because problems involving prox-
imity informations are general, and found in many of areas of science. New
shape-based algorithms for image mining and retrieval could be designed. The
presented structure could also be worth of interest for robotics path planning
problems.
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As future work, we aim at: achieving the rees computation and coding in
a stand-alone application. It would let us studying precise time complexity for
both region construction and point query. The most interesting future prospect
is the setting of a whole cbir framework (using together all the steps presented
in the previous section) in order to test the structure in practice and notably
compare it to existing techniques.
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Abstract. We introduce SIA, a framework for annotating images auto-

matically using ontologies. An ontology is constructed holding character-

istics from multiple information sources including text descriptions and

low-level image features. Image annotation is implemented as a retrieval

process by comparing an input (query) image with representative images

of all classes. Handling uncertainty in class descriptions is a distinctive

feature of SIA. Average Retrieval Rank (AVR) is applied to compute

the likelihood of the input image to belong to each one of the ontology

classes. Evaluation results of the method are realized using images of

30 dog breeds collected from the Web. The results demonstrated that

almost 89% of the test images are correctly annotated (i.e., the method

identified their class correctly).

1 Introduction

Image annotation is the process of assigning a class or description to an unknown
image. The goal of automatic image annotation in particular is to produce coher-
ent image descriptions which are as good as human authored annotations. This
will not only permit faster and better understanding of the contents of image
collections but also, can be viewed as a tool for enhancing the performance of
image retrievals by content.

In large image collections and the Web [1] images are typically indexed or
retrieved by keywords or text descriptions which are automatically extracted or
assigned to them manually by human experts. This approach has been adopted
by general purpose image search engines such as Google Image Search1 as well as
by systems providing specific services to users ranging from simple photo sharing
in the spirit of Flickr2 to unauthorized use of images and licensing in the spirit
of Corbis3.

Image annotations are compact consisting of a few meaningful words of
phrases summarizing image contents. Human-based image annotation can lead

1 http://images.google.com
2 http://www.flickr.com
3 http://www.corbisimages.com

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 374–383, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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to more comprehensive image descriptions and allow for more effective Web
browsing and retrieval. However, the effectiveness of annotations provided by
humans for general purpose retrievals is questionable due to the specificity and
subjectivity of image content interpretations. Also, image annotation by humans
is slow and costly and therefore does not scale-up easily for the entire range of
image types and for large data collections such the Web. A popular approach
relates to extracting image annotations from text. This approach is particularly
useful in applications where images co-exist with text. For example, images on
the Web are described by surrounding text or attributes associated with images
in html tags (e.g., filename, caption, alternate text etc.). Google Image Search
is an example system of this category.

Overcoming problems related to uncertainty and scalability calls for auto-
matic image annotation methods [2]. Automatic annotation is based on feature
extraction and on associating low-level features (such as histograms, color, tex-
ture measurements, shape properties etc.) with semantic meanings (concepts) in
an ontology [3,4,5]. Automatic annotation can be fast and cheap however, gen-
eral purpose image analysis approaches for extracting meaningful and reliable
descriptions for all image types are not yet available. An additional problem
relates to imprecise mapping of image features to high level concepts, referred
to as the “semantic gap” problem. To handle issues relating to domain depen-
dence, diversity of image content and achieve high quality results, automatic
image annotation methods need to be geared towards specific image types.

Recent examples of image annotation methods include work by Schreiber
et.al. [4] who introduced a photo annotation ontology providing the description
template for image annotation along with a domain specific ontology for animal
images. Their solution is not fully automatic, it is in fact a tool for assisting
manual annotation and aims primarily at alleviating the burden of human an-
notators. Park et. al. [5] use MPEG-7 visual descriptors in conjunction with
domain ontologies. Annotation in this case is based on semantic inference rules.
Along the same lines, Mezaris et.al. [6] focus on object ontologies (i.e., ontolo-
gies defined for image regions or objects). Visual features of segmented regions
are mapped to human-readable descriptor values (e.g., “small”, “black” etc.).
Lacking semantics, the above derived descriptors can’t be easily associated with
high-level ontology concepts. Also, the performance of the method is constraint
by the performance of image segmentation.

SIA (Semantic Image Annotation) is motivated by these ideas and handles
most of these issues. To deal with domain dependence of image feature extrac-
tion we choose the problem of annotating images of dog breeds as a case study
for the evaluation of the proposed methodology. High-level concept descriptions
together with low-level information are efficiently stored in an ontology model for
animals (dog breeds). This ontology denotes concept descriptions, natural lan-
guage (text) descriptions, possible associations between classes and associations
between image classes and class properties (e.g., part-of, functional associations).
Descriptions in terms of low-level color and texture features are also assigned
to each image class. These class descriptions are not fixed but are augmented
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with features pertaining to virtually any image variant of each particular class.
Image annotation is implemented as a retrieval process. Average Retrieval Rank
(AVR) [7] is used to compute the likelihood of the query image to belong to an
ontology class. Evaluation results of the method are realized on images of 30
dog breeds collected from the Web. The results demonstrated that almost 89%
of the test images are annotated correctly.

The method is discussed in detail in Sec. 2. The discussion includes SIA
resources and processes in detail, namely the ontology, image analysis, image
similarity and image annotation. Evaluation results are presented in Sec. 3 and
the work is concluded in Sec. 4.

2 Proposed Method

SIA is a complete prototype system for image annotation. Given a query image
as input, SIA computes its description consisting of a class name and the de-
scription of this class. This description may be augmented by class (ontology)
properties depicting its shape, size, color, texture (e.g., “has long hair”, “small
size” etc.). The system consists of several modules. The most important of them
are discussed in the following.

2.1 Ontology

The image ontology has two main components namely, the class hierarchy of the
image domain and the descriptions hierarchy [5]. Various associations between
concepts or features between the two parts are also defined:

Class Hierarchy: The class hierarchy of the image domain is generated based
on the respective nouns hierarchy of Wordnet4. In this work, a class hierarchy for
dog breeds is constructed (e.g., dog, working group, Alsatian). The leaf classes in
the hierarchy represent the different semantic categories of the ontology (i.e., the
dog breeds). Also a leaf class (i.e., a dog breed) may be represented by several
image instances for handling variations in scaling and posing. For example, in
SIA leaf class “Labrador” has 6 instances.

Descriptions hierarchy: Descriptions are distinguished into high-level and
low-level descriptions. High-level descriptions are further divided into concept
descriptions (corresponding to the “glosses” of Wordnet categories) and visual
text descriptions (high-level narrative information). The later, are actually de-
scriptions that humans would give to images and are further specialized based
on animal shape and size properties (i.e., “small”, “medium” and “big”) respec-
tively. The low-level descriptions hierarchy represents features extracted by 7
image descriptors (see Sec. 2.3). Because an image class is represented by more
than one image instances (6 in this work), each class is represented by a set
of 7 features for each image instance. An association between image instances
and low-level features is also defined denoting the existence of such features (e.g.,
“hasColorLayout”, “hasCEDD”). Fig. 1 illustrates part of the SIA ontology (not
all classes and class properties are shown).
4 http://wordnet.princeton.edu
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Fig. 1. Part of the SIA ontology

2.2 ROI Selection

The input image may contain several regions from which some may be more
relevant to the application than others. In this work, dog’s head is chosen as
the most representative part of a dog image for further analysis. This task is
implemented by manual Region of Interest (ROI) placement (the user drags
a rectangle around a region) followed by background substraction by applying
GrabCut [8] and noise reduction. Fig. 2 illustrates an original image and its
corresponding ROI.

Fig. 2. Original image and Region Of Interest (ROI)

2.3 Image Feature Extraction

Automatic image annotation requires that content descriptions be extracted
from images and used to represent image content. The focus of this work is
not on novel image feature extraction but on showing how to enhance the ac-
curacy of automatic annotation for a given and well established set of features.
Images of dog breeds are mainly characterized by the spatial distribution of color
intensities. This information is mostly captured by the following 7 descriptors
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(the first 4 descriptors are included in MPEG-7 [7]). The implementations are
from LIRE [9].

Scalable Color Descriptor (SCD): This is a 256-bin color histogram in
the HSV color space encoded by a Haar transformation. Histogram values are
mapped to a 4-bit representation, giving higher significance to the small values
with higher probability. The matching function is the L1 metric.

Color Structure Descriptor (CSD): A color histogram in the HMMD
color space that captures both color content and information about the structure
of this content (position of color). First, a non-uniform quantification is applied
on the HMMD color space resulting to an 256-bin histogram. Then, a 8x8 pixel
structure element is applied on the image for counting the CSD bins for colors
found in the respective location. Its purpose is to avoid the loss of structure
information as in typical histograms. The matching function is the L1 metric.

Color Layout Descriptor (CLD): Captures the spatial layout of the repre-
sentative colors in an image. The image is partitioned into 8x8 blocks. For each
block, representative colors are selected and expressed in YCbCr color space.
DCT (Discrete Cosine Transform) is applied on each one of the three compo-
nents (Y, Cb and Cr). The resulting DCT coefficients are zigzag-scanned and
the first few coefficients are non-linearly quantized to form the descriptor. The
default matching function is a weighted sum of squared differences between the
corresponding descriptor components (Y, Cb and Cr).

Edge Histograms Descriptor (EHD): Represents the spatial distribution
of edges in an image. A gray-intensity image is divided in 4 × 4 regions. A 5-
bin histogram is computed to each region. These 5 bins correspond to the 5
edge types: vertical, horizontal, 45�diagonal, 135�diagonal, and isotropic. The
final histogram contains a total of 80 bins (16 regions times 5 bins each). The
matching function is the L1 metric.

Color and Edge Directivity Descriptor (CEDD): A hybrid feature
combing color and texture information in one histogram with 144 bins. The
histogram is a result of a fuzzy system providing information about color in
the HSV color space, and a second fuzzy system providing information about 5
types of edges in the same spirit as EHD. Matching is based on the Tanimoto
coefficient.

Fuzzy Color and Texture Histogram (FCTH): Similar to CEDD but de-
spite CEDD it applies texture information extraction and results in a histogram
with 192 bins. Matching is based on the Tanimoto coefficient.

Tamura Descriptor: This is a vector of 6 features representing texture
(coarseness, contrast, directionality, line-likeness, regularity, roughness). The
matching function is the L1 metric.

2.4 Image Retrieval

Given a query image, the problem of image annotation is transformed into an
image retrieval one. The input image is compared with the representative images
of each class. The SIA ontology holds information for 30 classes (dog breeds) and
each class is represented by 6 instances. Therefore, the query is compared with
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180 images. The output consists of the same 180 images ordered by similarity
with the query. Image similarity between any two images A and B is computed
as a weighted sum of differences on all features:

D(A, B) =
7∑

i=1

widi(A, B), (1)

where i indexes features from 1 through 7, di(A, B) is the distance between the
two images for feature i and wi represents the relative importance of feature i.
All distances di(A, B) are normalized in [0, 1] by Gaussian normalization

di(A, B) =
1
2
(1 +

di(A, B) − μ

3σ
), (2)

where μ is the mean value computed over all di(A, B) and σ is the standard
deviation. The advantage of Gaussian normalization is that the presence of a
few large or small values does not bias the importance of a feature in computing
the similarity.

Notice that not all features are equally important. Instead of manually select-
ing weights this is left to machine learning to decide algorithmically. Appropriate
weights for all features are computed by a decision tree: The training set consists
of 1,415 image pairs collected from the Web (559 pairs of similar images and 856
pairs of dissimilar images). For each image pair a 6-dimensional vector is formed.
The attributes of this vector are computed as the Gaussian normalized feature
distances. The decision tree accepts pairs of images and classifies them into sim-
ilar or not (i.e., a yes/no answer). The decision tree was pruned with confidence
value 0.1 and achieved 80.15% classification accuracy. The evaluation method is
stratified cross validation. Appropriate weights are computed from the decision
tree as follows:

wi =
∑

nodes of feature i

maxdepth + 1 − depth(featurei)∑all nodes
j=1 maxdepth + 1 − depth(nodej)

, (3)

where i indexes features from 1 through 7, j indexes tree nodes (nodej is the
j-th node of the decision tree), depth(featurei) is the depth of feature i and
maxdepth is the maximum depth of the decision tree. The summation is taken
over all nodes of feature i (there may exist more than nodes for feature i in the
tree). This formula suggests that the higher a feature is in the decision tree and
the more frequently it appears, the higher its weight will be.

2.5 Image Annotation

The input image is compared with the 180 ontology images (30 classes with 6
instances each) by applying Eq. 1. The answer is sorted by decreasing similarity.
The class description of the input image can be computed by any of the following
methods:
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Best Match: Selects the class of the most similar instance.
Max Occurrence: Selects the class that has the maximum number of instances

in the first n answers (in this work n is set to 15). If more than one classes
have the same number of instances within the first n answers then Best
Match is applied.

Average Retrieval Rank (AVR) [7]: Selects the description of the class
with the higher AVR (Best Match is applied if more than one). Assum-
ing that there are NG(q) images similar to the input image q (ground truth)
in the top n answers and rank(i) is the rank of the i-th ground truth image
in the results list, AVR is computed as:

AV R(q) =
NG(q)∑

i=1

rank(i)
NG(q)

(4)

2.6 Semantic Web - MPEG-7 Interoperability

SIA outputs annotation results in OWL5, the description language of the Seman-
tic Web. MPEG-76 provides a rich set of standardized tools to describe multime-
dia content and is often the preferred data format for accessing image and video
content and descriptions (meta-data). To ensure interoperabiltiy between OWL
and MPEG-7 applications, as a last (optional) step, SIA incorporates a two-way
transformation between the two formats: Tsinaraki et. al. [10] proved that OWL
ontologies can be transformed to MPEG-7 abstract semantic entity hierarchies.
Fig. 3 illustrates that SIA image annotations can be described in either format
and also shows the correspondences between the two representations. MPEG-7
annotations depict not only the class hierarchy that an image belongs to but

Fig. 3. Mapping OWL to MPEG-7

5 http://www.w3.org/TR/owl-features
6 http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
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also, high level information obtained from object properties thus making the
annotation the richest possible.

3 Experimental Evaluation

We conducted two different experiments. The purpose of the first experiment
is to demonstrate that retrievals using the combination of descriptors in Eq. 1
indeed performs betters than any descriptor alone. Fig. 4 illustrates precision
and recall values for retrievals using Eq. 1 and retrieval using each one of the 7
descriptors in Sec. 2.3. Each method is represented by a precision-recall curve.
For the evaluations, 30 test images are used as queries and each one retrieves
the best 15 answers (the precision/recall plot of each method contains exactly 15
points). The k-th (for k = 1, . . . 15) point represents the average (over 30 queries)
precision-recall for answer sets with the best k answers. A method is better than
another if it achieves better precision and recall. Obviously, retrievals by Eq. 1
outperform retrievals by any individual descriptor alone. In addition, Eq. 1 with
weights computed by machine learning achieves at least 15% better precision
and 25% better recall than retrieval with equal weights.

The purpose of the second experiment is to demonstrate the annotation ef-
ficiency of SIA. All the 30 query images of the previous experiment are given
as input to SIA. Table 1 illustrates the accuracy of the Best Match, Max. Oc-
currence and AVR methods of Sec. 2.5. All measurements are average over 30
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test images. The image ranked first has always higher probability of providing
the correct annotation. There are cases where the correct annotation is provided
by the image ranked second or third. AVR outperforms all other methods: The
image ranked first in correctly annotated in 63% of the images tested. Overall,
the correct annotation is provided by any of the top 3 ranked images in 89% of
the images tested.

Table 1. Annotation results corresponding to Best Match, Max. occurrence and AVR

Annotation Result Best Match Max. Occurrence AVR

Ranked 1st 53% 60% 63%

Ranked 2nd 10% 12% 20%

Ranked 3rd 7% 10% 6%

Fig. 5 illustrates the annotation for the image of a Collie (shown on the left).
The images on its right are the 10 top ranked images by AVR (most of them are
Collies).

Fig. 5. Examples of annotation for test image “Collie”

4 Conclusion

We introduce SIA, a framework for annotating images automatically using in-
formation from ontologies and image analysis. Handling uncertainty in class
descriptions is a distinctive feature of SIA and is achieved by combining infor-
mation from multiple information sources for representing ontology classes. The
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results indicate that it is possible for the method to approximate algorithmically
the human notion of image description reaching up to 89% accuracy (89% of the
test images are correctly annotated). Extending SIA for handling more image
categories and incorporating more elaborate image analysis (e.g., for handling
different poses of animal heads) and classification methods are promising issues
for further research.
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Abstract. In this paper we show how the Fisher-Rao metric can be

used to compute the similarity of fields of surface normals, under the

assumption of a von-Mises Fisher (vMF) distribution. We use the sim-

ilarity measure to analyse differences in facial shape due to gender and

expression. Finally, we show the results achieved using BU-3DFEDB and

Max Planck datasets.
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1 Introduction

Over the past decade there has been a considerable growth in interest in the
statistical theory of shape [4],[16]. This field of study has been the result of a
synthesis of ideas from a number of different areas including statistics, computer
vision, pattern recognition and machine learning, and the realization that the
areas share a considerable common ground [2]. One recent and powerful devel-
opment in this area has been to explore the use of techniques motivated by
information theory, and in particular to use the Fisher-Rao metric to measure
the similarities of statistical shape models and construct shape-spaces. In the
literature Maybank [9] shows how to use Fisher information for line detection,
Mio et al. [11] apply non-parametric Fisher-Rao metrics for image segmentation
and Peter [14] has presented a unified framework for shape representation and
deformation.

In this paper we are particularly interested in the use of these ideas to rep-
resent variations in facial shape, and to determine the modes of variation due
to factors such as gender and expression. The reported work is motivated in
part by the fact that faces have multiple shape properties, which can be used to
categorize them according to different levels of specificity. Examples include gen-
der, ethnicity, age, expression, identity, attractiveness and distinctiveness [20].
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In particular, we are interested in how such shape variations manifest themselves
in terms of changes in the field of surface normals. The reason for this is that we
aim to fit statistical models of shape to 2D facial images, and from these images
recover information concerning 3D shape. One natural way of doing this that
captures features of the human vision system is to employ shape from shading
to recover surface shape from variations in brightness. Here it is more natural
to represent the facial surface using fields of surface normals rather than surface
height information, since the former are more directly linked to the physical
process of light reflectance.

As a result surface normal models are more suitable for the purposes of fit-
ting to image data. However, due to their non-Cartesian nature the statistical
modeling of variations in surface normal direction is more difficult than that for
landmark positions. Fields of surface normals can be viewed as distributions of
points residing on a unit sphere and may be specified in terms of the elevation
and azimuth angles. It is natural to parameterise such statistical variations in di-
rection sing the von-Mises Fisher (vMF) distribution, which is specified in terms
of a mean surface normal direction and a concentration parameter. Our goal in
this paper is to explore how to use the vMF distribution for shape representa-
tion, and in particular to recognise variations in facial shape due to expression
and gender difference.

Working in the surface normal domain, we show how to use the vMF dis-
tribution to represent unstructured surface normal data without landmarks. To
measure the similarity between two fields of surface normals parameterized us-
ing the vMF distribution we make use of the Fisher-Rao metric. In this way
facial similarity is measured by the geodesic distance between the shapes on a
statistical manifold.

The remainder of the paper is organized as follows. Section 2 describes how
the Fisher-Rao metric can be used to measure the similarity of facial needle-
maps. Section 3 discusses how multidimensional scaling can be used to em-
bed faces into a low-dimensional pattern space based on the Fisher-Rao metric.
Section 4 provides some experiments on gender discrimination and facial ex-
pression analysis using the BU-3DFEDB database and Max Planck dataset. Fi-
nally, Section 5 offers some conclusions and suggests some directions for future
research.

2 Geodesic Distances between Fields of Surface Normals
using the Fisher-Rao Metric

The aim in this paper is to explore whether the Fisher-Rao metric can be used
to measure different facets of facial shape estimated from fields of surface nor-
mals using the von-Mises Fisher (vMF) distribution. In particular we aim to
characterise the shape changes due to differences in gender and due to different
facial expressions. We make use of the vMF distribution since we are dealing
with surface normal data over the sphere 	2.
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2.1 The von-Mises Fisher Distribution (vMF)

We choose to work with the von-Mises Fisher distribution because it is the
natural probability distribution for high-dimensional directional data. The space
of vMF distributions forms a differentiable manifold, which can be considered to
be embedded in a higher dimensional space [17]. The embedding space induces
a metric on the manifold that allows for an intrinsic way to measure distances
on the manifold. A Riemannian manifold is a smooth manifold supplied with a
Riemannian metric [5],[12].

The vMF distribution for multivariate directional data is

fp(x, μ, κ) =
κ

p
2−1

(2π)
p
2 I p

2−1(κ)
exp(κμT x) (1)

where x is a p dimensional vector residing on the hyper-sphere Sp−1 submersed
in 	p, μ is the mean direction on the hyper-sphere and κ is the concentration
parameter and Il(κ) is the modified Bessel function of the first kind of order
l. The concentration parameter κ, quantifies how tightly the distribution func-
tion is distributed around the mean direction μ, and plays a role analogous to
variance. The distribution is unimodal and rotationally symmetric around the
direction μ. Finally, the distribution is uniform over the hyper-sphere for κ = 0.

The maximum likelihood estimators for the two parameters are obtained as
follows. Suppose we have m samples of x, i.e. x1, ....xm. The estimator of the
mean direction is given by

μ =
∑m

i=1 xi

||
∑m

i=1 xi||
There is no closed form estimator of concentration parameter κ̂. Instead it is the
solution of the transcendental equation

I p
2
(κ̂)

I p
2−1(κ̂)

=
1
m

||
m∑

i=1

xi||

In practice we solve this equation using the Newton-Raphson method [3]. It
is worth noting that Jupp and Mardia [7] have developed some non-iterative
approximations which apply under small and large values of κ.

For p=3, the distribution is referred to as the vMF distribution. In the next
subsection, we use the Fisher-Rao Riemannian metric to compute the geodesic
between vMF distributions.

2.2 Fisher Information Matrix

The Fisher information matrix is a Riemannian metric which can be defined on a
smooth statistical manifold, i.e. a smooth manifold whose points are probability
measures defined on a common probability space [8],[13],[11].

Let I = [0,1] and p: I × 	k → 	+, (x,θ) �→ p(x;θ), a k-dimensional family
of positive probability density functions parameterized by the vector of param-
eters θ = (θ1, ...., θk)T ∈ 	k. In classical information geometry the Riemannian
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structure of the parameter space 	k defined by the Fisher information matrix
with elements

gij(θ) =
∫

p(x|θ) ∂

∂θi
log p(x|θ) ∂

∂θj
log p(x|θ)dx (2)

The notation ∂θi is used for the partial derivative with respect to the component
θi of θ, where θ is a vector of parameters associated with the density p. The
Fisher-Rao metric tensor (2) is an intrinsic measure, allowing us to analyze a
finite, k-dimensional statistical manifold M without considering how M resides
in an R2k+1 space. In our case, we have 4 parameters and θ = (.κ, μ1, μ2, μ3)T .
where μ = (μ1, μ2, μ3)T density parameter vector

In practice we divide each field of surface normals into windows whose size is
determined by the overall image size. In our experiments, the window size is 4x4.
This provides sufficient statistics to make stable estimates of the mean direction
and concentration parameter.

For simplicity, we concatenate the components of the mean surface normal μ

and write θ = (κ, μT )T . We perform vector-differentiation with respect to μ to
simplify our calculations.

We commence by computing

gκ,κ =
∫

fp(x, κ, μ)
∂

∂κ
log fp(x, κ, μ)

∂

∂κ
log fp(x, κ, μ)dx (3)

Substituting for the vMF distribution, we have

gκ,κ =
1
κ2

(
κ2 <cosαμ >2 +2

(p
2 −1)I p

2−1(κ)− κ
2

(
I p

2−2(κ)+I p
2 (κ)

)
I p

2−1(κ)
κ<cosαμ >

)

+
( (p

2 − 1)I p
2−1(κ) − κ

2

(
I p

2−2(κ) + I p
2 (κ)

)
I p

2−1(κ)

2)
(4)

where cosαμ = μT x. Using the change of variables y = κμT x, we have <
cosαμ >=

∫
yeydy = ey(y − 1). With the substitution, we have

gκ,κ =
1
κ2

(
κ2(eκμT x((κμT x) − 1)2) + 2

(p
2 − 1)I p

2−1(κ) − κ
2

(
I p

2−2(κ) + I p
2 (κ)

)
I p

2−1(κ)

× κ(eκμT x((κμT x) − 1))
)

+
( (p

2 − 1)I p
2−1(κ) − κ

2

(
I p

2−2(κ) + I p
2 (κ)

)
I p

2−1(κ)

2)
(5)

In the above we can set p = 3 since we are dealing with a vMF distribution over
a 2D field of surface normals.

Next, we compute

gκ,μ =
∫

fp(x, κ, μ)
∂

∂κ
log fp(x, κ, μ)

∂

∂μ
log fp(x, κ, μ)dx (6)
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Again, substituting for the vMF distribution, and making use of the rules of
vector differentiation we have

gκ,μ =

∫ (2π)
p
2 I p

2 −1(κ)

κ
p
2 −1

e−κμtx

[
∂

∂κ

(
κ

p
2 −1

(2π)
p
2 I p

2 −1(κ)
eκμtx

)][
∂

∂μ

(
κ

p
2 −1

(2π)
p
2 I p

2 −1(κ)
eκμtx

)]
dx

(7)
On simplification this becomes

gκ,μ =
[2

(
p
2 − 1

)
I p

2−1(κ) − κ
(
I p

2−2(κ) − I p
2 (κ)

)
2(I p

2−1(κ))2

]
μ (8)

which is a 3-vector and concatenates the derivatives with respect to each com-
ponent of μ.

Finally, we compute

gμ,μ =
∫

fp(x, κ, μ)
∂

∂μ
log fp(x, κ, μ)

∂

∂μ
log fp(x, κ, μ)dx (9)

Substituting for the vMF distribution, we have

gμ,μ =

∫
(2π)

p
2 I p

2−1(κ)

κ
p
2 −1

e−κμtx

(
κ

p
2 −1

(2π)
p
2 I p

2 −1(κ)

)2{
∂

∂μ
(eκμtx

)

}{
∂

∂μ
(eκμtx

)

}T

dx

(10)
On simplification

gμ,μ =
κ

p
2−1

(2π)
p
2 I p

2−1(κ)
κ2μμT (11)

which is a 3x3 matrix.
We make use of the Fisher-Rao metric to compute the geodesic distance

between the two parametric densities. Consider two corresponding 4x4 image
regions for which the estimated parameter vectors are θak = (κak

, μ
ak

)T and
θbk = (κbk

, μ
bk

)T . Let κ̂ = 1
2 (κak

+κbk
) and μ̂ = 1

2 (μak
+μbk

). For small changes
in parameters the geodesic distance between parameter vectors is

ds2
ak,bk

= gκ̂,κ̂(κak
− κbk

)2 + 2(gκ̂,μ̂)T (κak
− κbk

)(μ
ak

− μ
bk

) (12)

+ (μ
ak

− μ
bk

)T gμ̂,μ̂(μ
ak

− μ
bk

)

To compute the total facial dissimilarity, we sum the geodesic distances over all
4x4 non-overlapping image blocks. The total dissimilarity is given by D2

a,b =∑
k ds2

ak,bk
.

3 Embedding Techniques

To visualise the distribution of geodesic distances we use a number of manifold
embedding techniques to embed the facial shapes into a two-dimensional pattern
space. The method studied is multi-dimensional scaling (MDS) [6].
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MDS is a family of methods that maps measurements of similarity or dissim-
ilarity among pairs of feature items, into distances between feature points with
given coordinates in a low-dimensional space. The first step is to compute the
squared distance matrix DS = [D2

a,b)]a, b = 1, ..., n. This matrix is subjected to
the eigendecomposition DS = ΦDΛΦT

D where ΛD is the diagonal eigenvalue ma-
trix with the eigenvalues ordered in decreasing size along the leading diagonal.
The embedding co-ordinate matrix YD =

√
ΛDΦT

D has the vectors of embedding
co-ordinates of the n data-points as columns.

4 Experimental Results

Our experiments are concerned with assessing shape variation in fields of surface
normals due to both facial expression and gender difference. In the case of facial
expression we aim to explore the changes in facial shape due to subjects pulling
seven different expressions namely, happiness, sadness, surprise, fear, anger, dis-
gust and neutral. We also aim to explore if the techniques outlined in this paper
can be used to distinguish the gender of different subjects.

The procedure adopted is as follows. We commence with a range of image faces
captured using a Cyberware 3030 full-head scanner. From the range of images,
we estimate fields of surface normals by computing the derivatives of the height
data, and projecting these onto a fronto-parallel plane. We refer to the fields of
surface normals obtained as facial needle maps. We align the needle maps obtained
from the different range of images to give the maximum overlap (correlation). Each
field of surface normals is tessellated into non-overlapping 4x4 blocks. For each
pair of block we estimate the mean surface normal direction and the concentration
parameter. For each pair of facial needle maps be compute the Fisher-Rao metric
on a block-by-block basis, and then compute the dissimilarity by summing over the
blocks. For the set of n faces under consideration we construct a n×n dissimilarity
matrix. We then apply embedding technique (MDS) to the dissimilarity matrix to
obtain embedding co-ordinates for the n faces.

We assess the quality of the resulting low-dimensional data representation by
evaluating to what extent the local structure of the data is retained. The evalua-
tion is performed by measuring the generalization error of a 1-nearest neighbour
(1-NN) classifier that is trained on the low-dimensional data representation. Here
an object is simply assigned to the class of its nearest neighbour [1],[18].

In addition, we use the Rand Index to assess the degree of agreement between
two partitions of the same set of objects. Based on extensive empirical compar-
ison of several such measures, (Milligan and Coooper, 1986) recommended the
Rand Index as the measure of agreement even when comparing partitions having
different numbers of clusters [10],[15],[19].

4.1 Gender Discrimination

Our first experiment concerns gender discrimination. The data used here con-
sists of 200 facial needle-maps extracted from range images in the Max Planck
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Fig. 1. Gender difference

dataset1. There are 100 females and 100 males, annotated with ground truth
gender information.

Figure 1, shows the MDS embedding of the pattern of distances into a 2-
dimensional space. The blue markers are used to denote male subjects, and
the red ones female subjects. We can draw the following conclusions from this
plot. Firstly, turning our attention to the embeddings, using the Fisher-Rao
metric the distribution of male and female markers are concentrated differently.
In particular the female markers are more densely concentrated. This would
suggest that probabilistic separation may be feasible, and the unambiguous male
subjects are separated from the female ones. Secondly, by it is worth noting that
attempting to discriminate male and females faces on the basis of shape alone
is a difficult task, and human observers make numerous additional cues such as
hair-style.

In Table 1, we observe that the performance from the 1-NN classifier gives us
the best result.

Table 1. Generalization errors of 1-NN and Rand Index classifier trained

Rand Index 1-NN

Gender 0.1450 0.0455

4.2 Face Expressions

The second experiment explores the ability of the Fisher-Rao metric to distin-
guish the same face when presented in a different expression. We use 6 different
sets of data from the BU-3DFEDB database2. Again, we work with surface nor-
mals estimated from range-images.
1 The Database is available at http://vdb.kyb.tuebingen.mpg.de/
2 The database is available at

http://www-users.cs.york.ac.uk/ nep/tomh/3DFaceDatabase.html
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Fig. 2. In the first row, the left-hand embedding consists of 7 different faces each of

which appears in 7 different facial expressions for each embedding and the right-hand

embedding consists of 10 different faces each of which appears in 7 different facial

expressions for each embedding. In the second row, the left-hand embedding consists

of 15 different faces each of which appears in 7 different facial expressions for each

embedding and the right-hand embedding consists of 20 different faces each of which

appears in 7 different facial expressions for each embedding. In the third row, the

left-hand embedding consists f 6 different faces each of which appears in 7 different

facial expressions for each embedding, where there are only male faces and the right-

hand embedding consists of 6 different faces each of which appears in 7 different facial

expressions for each embedding, where there are only female faces.
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Table 2. Generalization errors of 1-NN and Rand Index classifier trained

Face Expressions/DataBase Rand Index 1-NN

7 Faces 7 Expressions 0.2041 0.1633

10 Faces 7 Expressions 0.2571 0.2857

15 Faces 7 Expressions 0.3163 0.3429

20 Faces 7 Expressions 0.4662 0.4429

6 Faces 7 Expressions (Male Expressions) 0.1190 0.1905

6 Faces 7 Expressions (Female Expressions) 0.1667 0.2619

The results of our analysis are shown in Fig. 2. In our embedding visualizations
(MDS) we show the different expressions for the same subject with the same
symbol. We have 6 different databases. The first four databases contain male
and female subjects. The first database contains 7 faces with 7 expressions, the
second database has 10 faces with 7 expressions, the third contains 15 faces with
7 expressions and the fourth contains 20 faces with 7 expressions. The final two
databases, respectively,contain 7 expressions for 6 males and 6 females.

We observe that the performance from the MDS embedding and the classifier
trained are similar (see Fig. 2 and Table 1). For a small number of faces in the
data-set, achieves good separation of different faces under varying expression.
However, as the number of faces increases the overlap becomes significant. Also,
for data sets with the same gender the results achieved a better performance.

Globally, the difference between the results of the experiments using the 1-NN
and the Rand Index classifier trained are: for database with mixture of male and
female the best results, generally, is using 1-NN and for database where we have
only one subject, female or male, the best classifier trained is Rand Index.

5 Final Remarks

In this paper we are able to show a notion of distance, using Fisher-Rao metric,
between fields of surface normals on a shape manifold. The immediate next step
is to construct individual shape-spaces for each class of object. Another line
of investigation will be to revisit the problem of computing geodesic distance
between needle-maps, in a way that explicitly accounts for the shape of manifold
on which they reside.
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Abstract. The Scale Invariant Feature Transform (SIFT) is an algo-

rithm used to detect and describe scale-, translation- and rotation-inva-

riant local features in images. The original SIFT algorithm has been

successfully applied in general object detection and recognition tasks,

panorama stitching and others. One of its more recent uses also includes

face recognition, where it was shown to deliver encouraging results. SIFT-

based face recognition techniques found in the literature rely heavily on

the so-called keypoint detector, which locates interest points in the given

image that are ultimately used to compute the SIFT descriptors. While

these descriptors are known to be among others (partially) invariant

to illumination changes, the keypoint detector is not. Since varying il-

lumination is one of the main issues affecting the performance of face

recognition systems, the keypoint detector represents the main source

of errors in face recognition systems relying on SIFT features. To over-

come the presented shortcoming of SIFT-based methods, we present in

this paper a novel face recognition technique that computes the SIFT de-

scriptors at predefined (fixed) locations learned during the training stage.

By doing so, it eliminates the need for keypoint detection on the test im-

ages and renders our approach more robust to illumination changes than

related approaches from the literature. Experiments, performed on the

Extended Yale B face database, show that the proposed technique com-

pares favorably with several popular techniques from the literature in

terms of performance.

Keywords: SIFT, keypoint detector, SIFT descriptor, face recognition.

1 Introduction

Face recognition is extensively used in a wide range of commercial and law
enforcement applications. Over the past years many algorithms have been pro-
posed for facial recognition systems. These algorithms include two basic aspects:
holistic, e.g. PCA (Principal Component Analysis [1]) and LDA (Linear Discrim-
inant Analysis [2]), and feature-based, e.g., Gabor- and Scale Invariant Feature
Transform-based (or SIFT-based) methods [3], [4]. Holistic approaches use the
entire face region for the task of feature extraction and, therefore, avoid diffi-
culties in the detection of specific facial landmarks. Feature-based approaches,

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 394–404, 2010.
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on the other hand, extract local features from specific feature points of the
face. Generally, holistic approaches obtain better results on images captured
in controlled conditions, while feature-based approaches exhibit robustness to
variations caused by expression or pose changes.

One of the more recent additions to the group of feature-based face recog-
nition techniques is the Scale Invariant Feature Transform (SIFT) proposed by
Lowe in [4]. The SIFT technique and its corresponding SIFT features have many
properties that make them suitable for matching different images of an object
or a scene. The features are invariant to image scaling and rotation, (partial)
occlusion and to a certain extent also to changes in illumination and 3D camera
view point. The SIFT technique works by first detecting a number of interest
points (called keypoints) in the given image and then computing local image
descriptors at these keypoints. When performing recognition (or classification),
each keypoint descriptor from the given image is matched independently against
all descriptors extracted from the training images, and based on the outcome of
the matching procedure, the image is assigned to a class featured in the database.

Event though the SIFT technique represent one of the state-of-the-art ap-
proaches to object detection/recognition, it has some deficiencies when applied
to the problem of face recognition. Compared to general objects, there are less
structures with high contrast or high-edge responses in facial images. Since key-
points along edges and low-contrast keypoints are removed by the original SIFT
algorithm, interest points representing distinctive facial features can also be re-
moved. Therefore, it is of paramount importance to properly adjust the thresh-
olds governing the process of unstable keypoint removal, when applying the
SIFT technique for the task of face recognition. In any case, the adjustment
of the keypoint-removal-threshold represents a trial and error procedure that
inevitably leads to suboptimal recognition performance.

Another thing to be considered, when using the SIFT technique for face recog-
nition, are false matched keypoints. The majority of SIFT-based approaches
employed for face recognition use different partitioning schemes to determine a
number of subregions on the facial image and then compare the SIFT descrip-
tors only between corresponding subregions. Due to the ”local” matching, wrong
matches between spatially inconsistent SIFT descriptors are partially eliminated.
However, variable illumination still has significant influence on the detection of
keypoints, since the keypoint detector intrinsic to the SIFT technique is not
invariant to illumination.

To overcome the presented shortcomings of the original SIFT technique (for
face recognition), we propose in this paper a novel SIFT-based approach to face
recognition, where the SIFT descriptors are computed at fixed predefined image
locations learned during the training stage. By fixing the keypoints to predefined
spatial locations, we eliminate the need for threshold optimization and face image
partitioning, while the developed approach gains greater illumination invariance
than other SIFT adaptations found in the literature.

The proposed method, called Fixed-keypoint-SIFT (FSIFT), was compared to
several other approaches found in the literature. Experimental results obtained



396 J. Križaj, V. Štruc, and N. Pavešić

on the Extended Yale B face database show, that, under severe illumination con-
ditions, consistently better results can be achieved with the proposed approach
than with popular face recognition methods, such as PCA and LDA or other
SIFT-based approaches from the literature.

2 The Scale-Invariant Feature Transform

This section reviews the basics of the SIFT algorithm, which according to [4]
consists of four computational stages: (i) scale-space extrema detection, (ii)
removal of unreliable keypoints, (iii) orientation assignment, and (iv) keypoint
descriptor calculation.

2.1 Scale-Space Extrema Detection

In the first stage, interest points called keypoints, are identified in the scale-
space by looking for image locations that represent maxima or minima of the
difference-of-Gaussian function. The scale space of an image is defined as a func-
tion L(x, y, σ), that is produced from the convolution of a variable-scale Gaus-
sian, G(x, y, σ), with the input image, I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (1)

with
G(x, y, σ) =

1
2πσ2

e−(x2+y2)/2σ2
, (2)

where σ denotes the standard deviation of the Gaussian G(x, y, σ).
The difference-of-Gaussian function D(x, y, σ) can be computed from the dif-

ference of Gaussians of two scales that are separated by a factor k:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ) − L(x, y, σ) (3)

Local maxima and minima of D(x, y, σ) are computed based on the comparison
of the sample point and its eight neighbors in the current image as well as
the nine neighbors in the scale above and below. If the pixel represents a local
maximum or minimum, it is selected as a candidate keypoint.

2.2 Removal of Unreliable Keypoints

The final keypoints are selected based on measures of their stability. During
this stage low contrast points (sensitive to noise) and poorly localized points
along edges (unstable) are discarded. Two criteria are used for the detection
of unreliable keypoints. The first criterion evaluates the value of |D(x, y, σ)| at
each candidate keypoint. If the value is below some threshold, which means that
the structure has low contrast, the keypoint is removed. The second criterion
evaluates the ratio of principal curvatures of each candidate keypoint to search
for poorly defined peaks in the Difference-of-Gaussian function. For keypoints
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with high edge responses, the principal curvature across the edge will be much
larger than the principal curvature along it. Hence, to remove unstable edge
keypoints based on the second criterion, the ratio of principal curvatures of each
candidate keypoint is checked. If the ratio is below some threshold, the keypoint
is kept, otherwise it is removed.

2.3 Orientation Assignment

An orientation is assigned to each keypoint by building a histogram of gradient
orientations θ(x, y) weighted by the gradient magnitudes m(x, y) from the key-
point’s neighborhood:

m(x, y) =
√

(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2, (4)

θ(x, y) = tanh (L(x, y + 1) − L(x, y − 1))/(L(x + 1, y) − L(x − 1, y)), (5)

where L is a Gaussian smoothed image with a closest scale to that of a keypoint.
By assigning a consistent orientation to each keypoint, the keypoint descriptor
can be represented relative to this orientation and, therefore, invariance to image
rotation is achieved.

2.4 Keypoint Descriptor Calculation

The keypoint descriptor is created by first computing the gradient magnitude
and orientation at each image point of the 16×16 keypoint neighborhood (left
side of Fig. 1). This neighborhood is weighted by a Gaussian window and then
accumulated into orientation histograms summarizing the contents over subre-
gions of the neighborhood of size 4 × 4 (see the right side of Fig. 1), with the
length of each arrow in Fig. 1(right) corresponding to the sum of the gradient
magnitudes near that direction within the region [4]. Each histogram contains 8
bins, therefore each keypoint descriptor features 4 × 4 × 8 = 128 elements. The
coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation to achieve orientation invariance and the descriptor
is normalized to enhance invariance to changes in illumination.

Fig. 1. In this figure the 2 × 2 subregions are computed from an 8 × 8 neighborhood,

whereas in the experiments we use a 16× 16 neighborhood and subregions of size 4× 4
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2.5 Matching

When using the SIFT algorithm for object recognition, each keypoint descrip-
tor extracted from the query (or test) image is matched independently to the
database of descriptors extracted from all training images. The best match for
each descriptor is found by identifying its nearest neighbor (closest descriptor)
in the database of keypoint descriptors from the training images. Generally,
many features from a test image do not have any correct match in the training
database, because they were either not detected in the training image or they
arose from background clutter. To discard keypoints whose descriptors do not
have any good match in the training database, a subsequent threshold is used,
which rejects matches that are too ambiguous. If the distance ratio between the
closest neighbor and the second-closest neighbor, (i.e., the closest neighbor that
is known to come from a different object than the first) is below some threshold,
than the match is kept, otherwise the match is rejected and the keypoint is re-
moved. The object in the database with the largest number of matching points
is considered the matched object, and is used for the classification of the object
in the test image.

3 SIFT-Based Face Recognition

Over the past few years there have been some studies (from the early studies,
e.g., [5], [6] to more recent ones, such as [12]) assessing the feasibility of the
SIFT approach for face recognition. The progress of the SIFT technique for face
recognition can be summarized as follows:

One of the first attempts to use the SIFT algorithm for face recognition was
presented in [5]. The algorithm used here, differs from original SIFT algorithm
in the implementation of the matching stage. Each SIFT descriptor in the test
image is matched with every descriptor in each training image. Matching is done
using a distance based criterion. A descriptor from the test image is said to match
a descriptor from the training image, if the distance between the 2 descriptors is
less than a specific fraction of the distance to the next nearest descriptor. The
problem with this method is that it is very time consuming. Matching between
two images has a computational complexity of O(n2), where n is the average
number of SIFT descriptors in each image.

In [6], the original SIFT algorithm is rendered more robust by following one
of two strategies that aim at imposing local constraints on the matching pro-
cedure: the first matches only SIFT descriptors extracted from image-windows
corresponding to the mouth and the two eyes, while the second relies on grid-
based matching, Local matching, i.e. within a grid or a cluster, constrains the
SIFT features to match features from nearby areas only. Local matching also
reduces the computational complexity linearly. The computational complexity
required for matching a pair of images by a local method is O(n2/s), where s
is the number of grids or clusters. As seen from Fig. 2, where the basic SIFT
algorithm from [4] was used to match the SIFT descriptors, there are some
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Fig. 2. Match results for one of the test images (bottom image) with a set of training

faces (top) using the basic SIFT algorithm

keypoints matched, that do not represent the same characteristic of the face. Al-
though we would expect the distance between such keypoints to be high, since
they correspond to different regions of the faces, this is clearly not the case.
Therefore better results are achieved, if certain subsets of SIFT keypoints are
used for matching and only (spatially) corresponding subsets of SIFT descriptors
are matched (as is [6] and later in [7], [9], [10] and [11]).

Both local and global information for face recognition are used in [7]. Instead
of using a grid based approach, the SIFT features are clustered into 5 clusters
using kmeans clustering (2 clusters for the eyes, one for the nose, and 2 clusters at
the edges of the mouth). Only the SIFT descriptors between two corresponding
clusters are matched. This ensures that matching is done locally. As a global
matching criterion, the total number of descriptor matches (as in [4]) is used.

In [8] SIFT features are extracted from the frontal and half left and right
profiles. An augmented set of SIFT features is then formed from the fusion of
features from the frontal and side profiles of an individual, after removing feature
redundancy. SIFT feature sets from the database and query images are matched
using the Euclidean distance and Point pattern matching techniques.

In [9] a Graph Matching Technique is employed on the SIFT descriptors to
to deal with false pair assignment and reduce the number of SIFT features. In
[10] SIFT features are ranked according to a discriminative criterion based on
Fisher’s Discriminant Analysis (similar as in [2]), so that the chosen features have
the minimum within-class variation and maximum variation between classes. In
[11] both global and local matching strategies are used. In order to reduce the
identification errors, the Dempster-Shafer decision theory is applied to fuse the
two matching techniques.

In [12] an approach called Keypoints-Preserving-SIFT (KPSIFT) is proposed.
The KPSIFT approach keeps all the initial keypoints for SIFT descriptor calcu-
lation. This procedure greatly differs from the basic SIFT approach, where un-
reliable keypoints are removed as explained in section 2. However, this removal
can eliminate some keypoints and discard potentially useful discriminative infor-
mation for face recognition. With the basic SIFT procedure intrinsic properties
of the face images have to be considered (recall that facial images contain only
a few structures with high contrast or high-edge responses, which often leads to
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the removal of useful keypoints), when setting the threshold values governing the
process of keypoint removal. As shown in [12], recognition rates improve when
adjusting thresholds on low-contrast and edge keypoints in order to accept more
keypoints. Fig. 3 shows three different adjustments of the (keypoint-removal)
thresholds. Here, the threshold denoted as EdgeThreshold controls the removal
of poorly localized keypoints along edges, while the threshold denoted as Thresh-
old controls the removal of low contrast keypoints (see Section 2.2 for details).
The experiments in [12] show that the best recognition results are achieved with
the thresholds resulting in the left image of Fig. 3.

EdgeThreshold = 25
Threshold = 0.002

EdgeThreshold = 10
Threshold = 0.010

EdgeThreshold = 9
Threshold = 0.027

Fig. 3. Keypoints detected in a sample face image with respect to the (keypoint-

removal) threshold values: Result improving values (left), common values (middle),

high-elimination threshold values (right)

While the presented techniques try to compensate the imperfections of the
keypoint detector by imposing local matching constraints, by relaying on sub-
windows of the images, by deploying graph-matching techniques, etc., we present
in the remainder a simple procedure, which completely eliminates the need for
the keypoint detector (in the test stage). With the proposed procedure, most
shortcomings of the detector, such as susceptibility to illumination, influence of
the (keypoint-removal) thresholds and false keypoint detections are solved.

4 The Fixed Keypoint SIFT Algorithm

4.1 Fixing the Keypoints

Our method, the Fixed Keypoint SIFT Algorithm or FSIFT for short, is based
on the supposition that each face was preliminary localized. Thus, each image
consists only of a properly registered face region of a certain person.

We assume that for the training procedure only ”good” quality images are
available. This assumption is reasonable, since in most operating face recogni-
tion systems the enrollment stage and with it the acquisition of training images
is supervised. During training we apply the original SIFT technique and its ac-
companying keypoint detector (with the (keypoint-removal) threshold adjusted
- Fig. 3 left) to our training images and obtain a number of candidate keypoints
for each image in the set of training images (first three images of Fig. 4). Next, we
apply a clustering procedure to the set of candidate keypoints to obtain k = 100
centroids, which serve as the fixed keypoints for the computation of the SIFT
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Fig. 4. Training procedure for learning the keypoint locations: sample images processed

with the original keypoint detector (images one through three), the learned keypoint

locations (fourth image)

Fig. 5. SIFT keypoints detected on the differently illuminated images of the same

person: by the original keypoint detector (first two images from the left), and by the

proposed method (third and fourth image)

descriptors. We can see in the fourth image of Fig. 4 that most of these centroids
correspond to distinctive facial landmarks, such as the eyes, nose or the mouth.

Fig. 5 illustrates the advantages gained by the proposed approach. Here, the
first image (from the left) depicts the keypoints locations found by original key-
point detector, while the second image presents the location of keypoints in the
image of the same person captured in different illumination conditions. Not only
the number of detected keypoints in the second image is smaller than in the
first image, many of the keypoints are detected in different locations than in the
first image and therefore a reduction of keypoint matches is expected. If SIFT
descriptors are computed at fixed predefined locations (third and fourth image
of Fig. 5) a greater robustness to illumination variations can be achieved.

4.2 Matching

As the number of descriptors for each image is the same (it equals the number
of centroids k), the sum of the Euclidean distances between equally located de-
scriptors of the two images to be compared is used as the matching criterion.
By doing so, computational complexity for matching between two images is also
reduced to O(2k). Let us denote the sets of SIFT descriptors from the train-
ing images as Sj = {Si,j(xi, yi); i = 1, 2, ..., k}, where j = 1, 2, ..., n denotes the
training image index, n stands for the total number of training images, i rep-
resents the descriptor index, k denotes the number of fixed keypoint locations
(i.e., centroids), and (xi, yi) denote the image location for the i-th SIFT descrip-
tor. Let us further assume that the n training images correspond to N different
classes (i.e., subjects) with corresponding class labels ω1, ω2, ..., ωN . Then, the
matching procedure can formally be written as follows:
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δSL2(Sg, St) = min
j

δSL2(Sj , St)→ St ∈ ωg, (6)

where St stands for the set of SIFT descriptor extracted from the test image
at the k predefined image locations, and the matching function is defined as
δSL2(Sp, Sr) =

∑
i δL2(Si,p, Si,r).

The above expression postulates that a given test image is assigned to the
class ωg, if the sum of the Euclidian distances between spatially corresponding
descriptors of the test image and one of the training images of the g-th class is
the smallest among the computed distances to all n SIFT descriptor sets of the
training images.

5 Experiments and Results

The experiments were done on the Extended Yale B (EYB) face database [15].
The database contains 38 subjects and each subject has approximately 64 frontal
view images taken under different illuminations conditions. For the experiments
the images were partitioned into five subsets. In the first image subset (S1 in the
remainder), there are images captured in relatively good illumination conditions,
while for the image subsets labeled S2 to S5, the lighting conditions get more
extreme. S1 is used as the training set, while images in the other subsets are used
as test images. It should be noted that the numbers in the brackets next to the
subset label in Table 1 represent the number of images in each subset. All algo-
rithms were implemented in Matlab relying partially on existing code available

Table 1. Rank one recognition rates (in %) obtained on the EYB database

Method S2 (456) S3 (455) S4 (488) S5 (752)

PCA 93.6 55.0 16.7 22.0

LDA 100 99.8 56.3 51. 0

SIFT 100 45.7 25.7 11.2

SIFT CLUSTER 100 100 66.8 64.9

FSIFT 100 100 83.2 82.8
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from [13] and [14]. The performance of the proposed approach was compared to
the performance of some other face recognition techniques such as PCA, LDA,
and to several different modifications of the SIFT algorithm. Table 1 presents
the performance of the listed methods in form of rank one recognition rates
for changeable illumination conditions. The recognition rates of PCA and LDA
are shown in the first and second row, respectively. The original SIFT method
is shown in the third row. The fourth row presents the results of the method
from [7], which relies on clustering of the SIFT keypoints. With our method,
denoted as FSIFT in the last row, better results are achieved in comparison
with the recognition performance of the remaining techniques assessed in our
experiments.

In Fig. 6, the results are presented as cumulative match curves (CMC) for
subsets three through five. It should be noted that the CMCs are not shown
for subset two, as all tested techniques achieve a perfect recognition rate of
100% for all ranks. From the results we can see that the FSIFT approach clearly
outperformed all other techniques assessed in the comparison.

6 Conclusion and Future Work

In this paper an adaptation of the SIFT algorithm for face recognition was
presented. Using the EYB database, we have shown that the performance of
the proposed method is significantly better than the performance of popular
techniques such as PCA or LDA and different SIFT-based recognition techniques
from the literature. To be able to cope with possible pose variations, we plan to
augment the proposed FSIFT technique with a pose detector and, consequently,
extend it to a multi-pose version.
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Abstract. This paper introduces a novel approach to facial expression

recognition in video sequences. Low cost contour features are introduced

to effectively describe the salient features of the face. Temporalboost is

used to build classifiers which allow temporal information to be utilized

for more robust recognition. Weak classifiers are formed by assembling

edge fragments with chamfer scores. Detection is efficient as weak clas-

sifiers are evaluated using an efficient look up to a chamfer image. An

ensemble framework is presented with all-pairs binary classifiers. An er-

ror correcting support vector machine (SVM) is utilized for final classi-

fication. The results of this research is a 6 class classifier (joy, surprise,
fear, sadness, anger and disgust ) with recognition results of up to 95%.

Extensive experiments on the Cohn-kanade database illustrate that this

approach is effective for facial exression analysis.

1 Introduction

The objective of this work is to exploit temporal information to build boosted
classifiers for frontal facial expression recognition in video sequences. Facial ex-
pression recognition is a difficult task due to the natural variation in appearance
of subjects. Such variation include ethnicity, age, facial hair, occlusion, pose
and lighting. Many fields benefit from accurate facial expression recognition in-
cluding behavioral science, security, communication and education. This paper
presents an approach that relies on temporal boosted discriminatory classifiers
based upon contour information. Contours are largely invariant to lighting and
as will be shown, provide efficient classifiers using chamfer matching.

Cross cultural studies in Psychology signify a correlation between base emo-
tions and facial expressions [8]. Current facial expression recognition systems
highlight this observation by classifying a set of prototypical emotions such as
joy, surprise, fear, sadness, anger and disgust [16,13]. Two common approaches
for feature extraction for facial expression recognition are geometric based and
appearance based methods [20]. Geometric features exploit shape and location
information of facial components. Appearance based features capture the ap-
pearance change of the face (including wrinkles, bulges and furrows) and are
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extracted by image filters applied to the face or sub regions of the face. Geo-
metric features are sensitive to noise and usually require reliable and accurate
facial feature detection and tracking. However, appearance based features are
less reliant on initialization, do not suffer from tracking errors and can encode
changes in skin texture that are important for facial expression recognition. This
paper investigates appearance based features based upon contour information.
Humans have the ability to recognize facial expressions from a simplified line
drawing or cartoon of the face. Sufficient information must therefore be present
in this simplified representation for a computer to recognize facial expressions.
Using only contour information provides important advantages as it offers some
invariance to lighting and reduces the complexity of the problem.

Temporal information is incorporated by using a boosting framework [18] with
the potential to develop weak classifiers by utilizing previous frames response in
evaluating the current frame. This algorithm also incorporates temporal consis-
tency of the data to facilitate recognition. We investigate the use of an ensemble
classifier design to improve recognition. For final classification an error correcting
SVM is used.

This rest of this paper is organized as follows. Related work is presented in
section 2. Section 3 explains the methodology of this research. Section 4 outlines
the data and experiments used to evaluate this research. Finally conclusions are
presented in section 5.

2 Related Work

Facial expression recognition can be performed by using features from one image
or by considering information from a image sequence. Research in psychology
shows image sequences provide more accurate information than single frames.
Bassili [2] conducted experiments showing that human facial expression recogni-
tion is superior when dynamic images are available. Some faces are often falsely
read as expressing a particular emotion, even if their expression is neutral, be-
cause their proportions are naturally similar to those that another face would
temporarily assume when emoting. Temporal information can overcome this
problem by modeling the motion of the face. Utilizing temporal information
can translate to more robust and accurate classification when compared with
static classifiers.

Hidden Markov Models (HMM) are frequently applied to spatio temporal fa-
cial expression recognition as they model the dynamics of expressions. Oliver
et al. introduce two dimensional blob features to track mouth motion and uses
HMMs to classify facial expressions [14]. Cohen et al. [5] proposed a multilevel
HMM that uses the state sequence of independent HMMs to segment and recog-
nize facial expressions. However flow estimates are easily disturbed by changes
in illumination and non rigid motion.

Another way to capture temporal information is to map images to low dimen-
sional manifolds for different expressions. Chang et al. [4] created a manifold
from sparse 2d points. Shan et al. [16] used local binary pattern features for the
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whole face to create manifolds of facial expressions and used a bayesian temporal
model for facial expression recognition.

Zhao and Pietikainen introduced a novel approach for recognizing dynamic
texture for classifying facial expressions [21]. Dynamic texture is an extension of
texture into the temporal domain. Volume local binary patterns were proposed
to capture appearance and motion. Petridis and Pantic investigated audio and
visual temporal features for laughter detection [15]. Features were extracted for
each frame in a temporal window. Mean, standard deviation and polynomials
were calculated over the temporal window. Sheerman-Chase et al. [17] used sim-
ilar temporal features for detection of non verbal facial displays. Yang et al. [19]
introduces dynamic binary patterns based on harr like features to represent the
dynamics of facial expressions.

Moore and Bowden [13] introduced edge and chamfer features for static facial
expression recognition. Adaboost was used to learn discriminatory features and
competitive results were obtained. In this research we apply the same features
in a temporal framework for facial expression recognition in video sequences.
Boosting techniques rarely utilize temporal information for classification. Re-
cently Smith et al. introduced temporalboost which introduced temporal con-
sistency in a boosting framework [18]. The algorithm averages weak classifiers
from previous frames while the classification error decreases. In this research we
investigate how temporal information in facial expressions can be utilized using
temporalboost.

3 Methodology

3.1 Overview

The following section introduces how our facial expression classifier works, illus-
trated in figure 1. Images are annotated (two eyes and the tip of the nose) to
allow features to be transformed to a reference co-ordinate system. The canny
edge algorithm is used to create edge maps of all images. From each edge map,
coherent edge fragments are extracted from the area in and around the face.
A classifier bank is built containing all the edge fragments. Weak classifiers
are created by combining edge fragments with a chamfer score. Temporalboost
learns the optimal subset of features from the classifier bank and forms a strong
classifier. Previous studies have shown a performance increase when ensemble
classifiers are used [13], we adopt a similar approach resulting in 15 binary clas-
sifiers. These binary classifiers are used as input to a error correcting SVM for
final classification.

3.2 Feature Extraction

Images are manually annotated to identify the two eyes and the tip of the nose,
to form a 3-point basis. A 3-point basis is sufficient to align examples as only
frontal faces are considered. Most approaches to frontal facial expression recog-
nition only consider a 2 point basis (the two eyes), however head movements
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Fig. 1. Overview of Facial Expression Recognition System

are influenced by our emotions [12] so a 3 point basis as a reference co-ordinate
frame is more tolerant to variations in head pose. The distance between the eyes
is approximately half the width of the face and one third of the height. This
identifies the region of interest (ROI) from which contours will be considered.

The canny edge detection algorithm is used to extract edges [3]. In face im-
ages, edges characterize the boundaries of salient facial features as well as facial
deformation due to facial expressions. First the detector smooths the image to
eliminate noise. Next the sobel operator performs spatial gradient measurement
on an image. The image is then scanned along the image gradient direction and
if pixels are not part of the local maxima they are set to zero. This subdues
image information that is not part of local maxima and is called non maximum
suppression. A threshold is then used to evaluate if the magnitudes are sufficient
to be classified as an edge e. E = {e}, where E is the edge map of an image. This
threshold is selected manually for the dataset so salient features of the face are
visually coherent in the edge maps. Following edge detection, connected compo-
nent analysis is performed. From each edge component, short edge fragments T
are extracted with variable lengths (based on heuristics of the face).

3.3 Chamfer Image

To measure support for any single edge feature over a training set we need some
method for measuring the edge strength along that feature in a image. This
can be computed efficiently using Chamfer matching. Chamfer matching was
first introduced by Barrow et al. [1]. It is a registration technique whereby a
drawing consisting of a binary set of features (contour segments) is matched
to an image. A distance transform converts a binary image, which consists of
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feature and non-feature pixels, into an image where each pixel value denotes the
distance to the nearest feature pixel. Thus similarity between two shapes can
be measured using their chamfer distance. The matching of a template with the
chamfer image rather than the original edge image gives an advantage, as the
resulting measure will be smoother as a function of the template transformation
parameters [10].

All images in the training set undergo edge detection with the canny edge
detector to produce an edge map E. Then a chamfer image is produced DTE

using a distance transform. Each pixel value q, is proportional to the distance
to its nearest edge point in E :

DTE(q) = mine∈E ‖q − e‖2 (1)

A chamfer score is evaluated for each contour fragment T, where T = {t}:

d
(T )
cham(DTE) =

1
N

∑
t∈T

DTE(t) (2)

where N is the number of edge points in T. This gives the Chamfer score as
a mean distance between feature T and the chamfer image DTE . The function
d
(T )
cham(DTE) is an efficient lookup to the chamfer image for all classifiers. An

example of a chamfer image is shown in figure 1.

3.4 Temporalboost

Boosting is a machine learning algorithm that produces a very accurate strong
classifier, by combining weak classifiers in linear combination. Adaboost was
introduced by Freund and Schapire [9] and has been successfully applied to static
facial expression recognition [13]. Smith et al. [18] introduced Temporalboost,
a boosting algorithm that introduces temporal consistency, by averaging weak
classifiers sequentially. This allows weak classifiers to utilize information from
previous frame when evaluating the current frame.

Temporalboost is an extension of adaboost. Like adaboost, a distribution of
weights are maintained and associated with training examples. At each itera-
tion, a weak classifier which minimizes the weighted error rate is selected, and
the distribution is updated to increase the weights of the misclassified samples
and reduce the weights of correctly classified examples. However, temporalboost
modifies adaboost by allowing the best weak classifier to use previous frames
responses if the overall classification error is decreased. This is achieved by using
an OR operation and an AND operation for the previous t responses. The OR
operation will respond positively if any of the previous t frames were classified as
positive. This can allow for more true positives at the cost of false positives [18].
The AND operation will respond positively if all the previous t frames were
classified as positive. This operation will decrease the number of false positives
at the cost of true positives [18]. For example, if a feature classifies an event
correctly for the previous t frames, but missclassifies the current frame, then
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temporalboost allows the current frame to be classified correctly by using the
previous t responses if the overall classification error is decreased. Both oper-
ations are performed for each iteration and the operation with the minimum
classification error is selected. These operations allow temporal smoothing to
be part of the boosting framework. The temporal window t starts at 0 and is
expanded as long as the overall classification error for the current weights is
decreased. The temporalboost algorithm tries to separate training examples by
selecting the best weak classifier hj(x) that distinguishes between the positive
and negative training examples. A weak classifier thus consists of a feature (fj),
a threshold θj and a parity (pj) indicating the direction of the inequality sign.

hj(x) =
{

1 if pjfj < pjθj

0 otherwise

}
(3)

Where
fj = d

(T )
cham(DTE) (4)

θj is the weak classifier threshold. Setting a fixed threshold requires a priori
knowledge of the feature space, an optimal θj is found through an exhaustive
search for each weak classifier. This allows the learning algorithm to select a set
of weak classifiers with low thresholds that are extremely precise allowing little
deviation. Also, weak classifiers with high thresholds, which allows consistent
deformation of the facial features can be selected. This increases the performance,
but as will be seen, does not result in over fitting of the data. An image can have
up to 500 features. Thus, over the training set, many hundreds of thousands of
features are evaluated during the learning algorithm.

3.5 Ensemble Architecture

Dietterich argued that ensemble methods can often perform better than a single
classifier [7]. Temporalboost is a binary classifier. There are several ways to
partition the classification task into binary decisions. The simplest way is to
train 1 against all. Another approach is to train all possible combinations of
classes (1:1). [13] showed an all pairs ensemble (1:1) outperformed the 1 against
all method. We adopt an all pairs ensemble framework, which for n classes can
be broken into n(n−1)

2 binary classifiers respectively. This allows each expression
to be exclusively boosted against every other expression.

An error correcting SVM is used for final classification. An SVM classifier is
adopted here since it is a well understood classification technique that has been
demonstrated to be effective in facial expression recognition. An SVM takes a
feature vector as input in an n-dimensional space and constructs a separating
hyperplane in that space, one which will maximize the margin between the posi-
tive and negative sets. The better the hyperplane, the larger the distance to the
neighboring points from both classes. SVMs are usually binary classifiers, here
we used a multi class SVM [6] which uses a one against all approach to solve the
6-class problem. The output from the temporalboost classifiers forms the input
vector for the SVM. The SVM is trained using noisy training data by randomly
perturbing the 3 point basis for each sequence.
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4 Expression Classification

The Cohn-kanade facial expression database [11] was used in the following exper-
iments. Subjects consisted of 100 university students ranging in age from 18 - 30.
65% were female, 15% were African American, and three percent were Asian or
Latino. The camera was located directly in front of the subject. The expressions
were captured as 640 x 480 png images. In each sequence, the subject started
with a neutral expression and the sequence ends with the peak of the expression.
In total 365 video sequences were chosen from the database (over 4,000 images).
The only criteria was that the video sequence represented one of the prototypical
expressions. This database is encoded using the Facial Action Coding System
(FACS). A movement of one or more muscles of the face is called an action unit
(AU) and all expressions can be described by a combination of one or more of
46 AU’s. Each image has a FACS code and from this code, images are grouped
into different expression categories.

Experiments were carried out using 5-fold cross validation with training and
test sets divided 80-20. Due to the large number of features and training images
we limited the number of boosting iterations to 500. In general about 20-30%
of the weak classifiers selected have temporal paramters. Of the temporal weak
classifiers selected, the majority use the OR operation. This reflects the fact
that the data is not very temporally consisent and thus features using the AND
operation don’t minimize the classification error. Due to space restrictions the
following discussion will focus on the joy ensemble classifiers (similar observation
as discussed below are present for other expressions). Figure 2 shows the receiver
operating characteristic (ROC) curves for all the joy ensemble classifiers. The
more accurate classifiers are joy against surprise and joy against anger. This is
as expected as the facial deformation due to the joy expression is very distinct
from expressions surprise and anger. The worst performance is achieved with the
joy against disgust classifier. This is due to the close proximity of the distinctive
features (deformation around the cheek area) for these expressions.

Figure 3 visualizes the features which contribute to the classification of ex-
pressions. In general we can see that the contour around the edge of the mouth
and the contour around the cheek are used to classify the joy expression. How-
ever as can be seen, depending on the negative expression different areas of the
mouth and cheek contribute more to classification. For example in figure 3 pic-
tures A,C and E show features from the corners of the mouth and the cheeks are
prominent. Expressions surprise, sad and anger deform the face very differently
to joy and thus all the deformation of the joy expression is captured in these
classifiers. While pictures B and D show the importance of the corners of the
mouth and not the deformation around the cheek. This is because the expres-
sions fear and disgust deform the area around the cheek in a similar fashion to
the joy expression. Another interesting observation in image B is the amount
of noise. This finding can be explained by the fact that the expressions joy and
fear are often difficult to disambiguate.

Table 1 shows the confusion matrix for 5 fold cross validation on the Cohn-
kanade database. An overall recognition rate of 86.1% is achieved. From the
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Fig. 2. Roc curves for joy ensemble classifiers

Fig. 3. Visualization of weak classifiers which contributed to classification. From left

to right images represent: A) joy against surprise, B) joy against fear, C) joy against

sad, D) joy against disgust and E) joy against anger.

results it is apparent that the more subtle expressions (anger, fear and sad) are
outperformed by expressions with a large deformation (joy, surprise,disgust).
Subtle changes in appearance are difficult to distinguish when using one reference
co-ordinate frame due to the variability across subjects. Also it must be noted
that the combination of contour and chamfer matching is varient to scale and
rotation. Thus subtle expression are harder to disambiguate using these features.

The lowest recognition rate was for the fear classifier. Most confusion occurs
between expressions disgust and anger due to similar deformation around the
eyebrows. Also confusion occurs between fear and sad and between sad and
anger classes respectively. In particular sad and anger expressions have little
deformation when compared to expressions surprise or joy. This in itself could
contribute to the confusion as a lack of distinct features makes the learning of
strong classifiers more difficult. Also when posing a sad expression subjects can



Facial Expression Recognition 413

Table 1. Confusion matrix for 5-fold cross validation on Cohn-kanade database

Joy Surprise Fear Sad Disgust Anger

Joy 93.92 0 2.94 1.67 1.47 0

Surprise 0 95.09 0 1.79 3.12 0

Fear 5.63 0 75.55 9.34 3.71 5.77

Sad 0 0 6.28 85.36 0 8.36

Disgust 0 0 2.78 0 91.32 5.9

Anger 0 0 0 9.32 15.1 75.58

exaggerate the expression and the mouth can have a similar appearance to the
fear expression.

5 Conclusions

This paper presents a novel approach to frontal facial expression recognition in
video sequences. Unlike other popular methods like Gabor wavelets, we present
a fast efficient system that yields a recognition rate of 86.1%. Recognition is
achieved on a frame by frame basis but classifiers use feature responces from
previous frames to evaluate the current frame. An ensemble framework is pre-
sented which includes an all pairs architecture with an error correcting SVM
for final classification. Competitive results were achieved on the Cohn-kanade
database for 6 basic expressions. Expression with large deformation of the face
achieved the best results with surpise achieving over 95% accuracy.
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Abstract. Face-to-face communications between humans involve emo-

tions, which often are unconsciously conveyed by facial expressions and

body gestures. Intelligent human-machine interfaces, for example in cog-

nitive robotics, need to recognize emotions. This paper addresses fa-

cial expressions and their neural correlates on the basis of a model of

the visual cortex: the multi-scale line and edge coding. The recognition

model links the cortical representation with Paul Ekman’s Action Units

which are related to the different facial muscles. The model applies a

top-down categorization with trends and magnitudes of displacements

of the mouth and eyebrows based on expected displacements relative to

a neutral expression. The happy vs. not-happy categorization yielded a

correct recognition rate of 91%, whereas final recognition of the six ex-

pressions happy, anger, disgust, fear, sadness and surprise resulted in a

rate of 78%.

1 Introduction

Currently, one of the most investigated topics of image analysis is face detec-
tion and recognition [23,11]. There are several reasons for this trend, such as
the wide range of commercial vigilance and law-enforcement applications. Al-
though state-of-the-art recognition systems have reached a certain level of ma-
turity, their accuracy is still limited when imposed conditions are not perfect: all
possible combinations of illumination changes, pose, beards, different facial ex-
pressions, etc. Solving the problem of facial expression recognition by using the
same approach as used for face recognition [18] will solve part of the problem:
the detected expression can be morphed to a neutral one for more robust face
recognition.

Furthermore, intelligent interaction between humans and computers is an
emerging research area related to interfaces and robots. Since face-to-face com-
munications between humans involve emotions and what they convey [15], facial
expressions are also important in advanced human-machine interfaces. The Fa-
cial Action Coding System or FACS [4] is probably the most well-known study
about the coding of facial actions. FACS measures the behavior of the facial
activity, and facial expressions are described by 44 Action Units (AUs), of which
30 are related to the contraction of muscles, 12 in the upper part of the face and
18 in the lower part.

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 415–424, 2010.
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Pantic and Rothkrantz [16] used color images with frontal as well as profile
views of faces. By detecting 10 positions of the profile views and 19 of the frontal
views, describing 32 AUs, they obtained a correct recognition rate of emotions
of 86%. Barlett et al. [14] created a system which detects 20 AUs in frontal
views of persons in realtime video sequences. Each frame was decomposed using
Gabor filters, an AdaBoost classifier was used to extract relevant AUs, and a
SVM classifier yielded a recognition rate of 93%. Feitosa et al. [21] used the
same database that we will use in this paper, i.e., well-framed images in order
to simplify face detection. They extracted emotion features using PCA and with
neural networks they achieved a recognition rate of almost 72%. Gama [7] applied
the Haar transform in a cascaded classifier to segregate facial images. Using
Bayesian classifiers, she achieved a recognition rate of 80% in the case of happy
vs. not happy, and 55% in the case of five different expressions: anger, happy,
neutral, sadness and surprise. Kumano et al. [22] proposed a method for pose-
invariant expression recognition in video sequences. By using a variable-intensity
template for describing different expressions, they achieved a rate of over 90%
for vertical faces with a rotation range of ±40 degrees from the frontal view.

In this paper we present an approach which, like the one of Barlett et al. [14],
employs Gabor filters. However, our goal is to develop more advanced models
of the visual cortex. In cortical area V1 there are simple and complex cells,
which are tuned to different spatial frequencies (scales) and orientations, but also
disparity (depth) because of the neighboring left-right hypercolumns [9]. These
cells provide input for grouping cells which code line and edge information and
which probably attribute depth information to these. In V1 there also are end-
stopped cells which, with complex inhibition processes, allow to extract keypoints
(singularities, vertices and points of high curvature). Recently, models of simple,
complex and end-stopped cells have been developed, e.g. [5], providing input
for keypoint detection [5,19] and line/edge detection [8,20], including disparity
extraction [6,17]. On the basis of these models and neural processing schemes,
it is now possible to create a cortical architecture for figure-ground segregation,
Focus-of-Attention, including object and face categorization and recognition [20].

In this paper we focus on a cortical model for the recognition of facial expres-
sions. This model only employs the multi-scale line/edge representation based
on simple and complex cells. The line and edge coding is explained in Section 2.
Section 3 deals with the model devoted to facial expressions, i.e., the extraction
of cortical AUs, expression classification and the cortical architecture. In Sec-
tion 4 experimental results are presented and we conclude with a discussion in
Section 5.

2 Multi-scale Line and Edge Coding

In order to explain the model for facial expressions in relation to the model for
face recognition [18], it is necessary to explain briefly how our visual system
can reconstruct, more or less, the input image. Image reconstruction can be
based on one lowpass filter plus a complete set of bandpass filters, such that the
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frequency domain is evenly covered. This concept is the basis of many image
coding schemes; it could also be used in the visual cortex because simple cells in
V1 are often modeled by complex Gabor wavelets. These are bandpass filters [5],
and lowpass information is available through special retinal ganglion cells with
photoreceptive dendrites [2]. Activities of all cells could be combined by summing
these in one cell layer that would provide a reconstruction or brightness map.
But then there is a problem: it is necessary to create yet another observer of
this map in our brain.

The solution is simple: instead of summing all cell activities, we can assume
that the visual system extracts lines and edges from simple- and complex-cell
responses, which is necessary for object recognition, and that responding “line
cells” and “edge cells” are interpreted symbolically. For example, responding line
cells along a bar signal that there is a line with a certain position, orientation,
amplitude and scale, the latter being interpreted by a Gaussian cross-profile
which is coupled to the scale of the underlying simple and complex cells. The
same way a responding edge cell is interpreted, but with a bipolar, Gaussian-
truncated, error-function profile; for more details and illustrations see [18,20].

Responses of even and odd simple cells, corresponding to the real and imag-
inary parts of a Gabor filter, are denoted by RE

s,i(x, y) and RO
s,i(x, y), i being

the orientation (we use 8 orientations). The scale s is given by λ, the wave-
length of the Gabor filters, in pixels. We use 10 ≤ λ ≤ 27 with Δλ = 1. Re-
sponses of complex cells are modeled by the modulus Cs,i(x, y) = [{RE

s,i(x, y)}2+
{RO

s,i(x, y)}2]1/2.
The basic scheme for line and edge detection is based on responses of simple

cells: a positive (negative) line is detected where RE shows a local maximum
(minimum) and RO shows a zero crossing. In the case of edges the even and odd
responses are swapped. This gives four possibilities for positive and negative
events. An improved scheme [20] consists of combining responses of simple and
complex cells, i.e., simple cells serve to detect positions and event types, whereas
complex cells are used to increase the confidence. Lateral and cross-orientation
inhibition are used to suppress spurious cell responses beyond line and edge
terminations, and assemblies of grouping cells serve to improve event continuity
in the case of curved events.

Figure 1 (top row) shows one person of the JAFFE database [10] that we used
in our experiments with, from left to right, anger, disgust, fear, happy, sadness
and surprise. The middle row shows the neutral expression and its line and edge
coding at five scales: λ = {10, 14, 18, 23, 26}. Different levels of grey, from white
to black, show detected events: positive/negative lines and positive/negative
edges, respectively. As can be seen, at fine scales many small events have been
detected, whereas at coarser scales more global structures remain that convey
a “sketchy” impression. The bottom row in Fig. 1 shows detected events of
the non-neutral expressions (top row) at λ = 16 after applying a multi-scale
stability criterion; see [20] for details. Stabilization leads to the elimination of
events which are not stable over neighboring scales, and therefore to less but
more reliable events.
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Fig. 1. Top (left to right): anger, disgust, fear, happy, sadness and surprise. Middle:

neutral expression with its line/edge coding at fine (left) to coarse (right) scales; λ =

{10, 14, 18, 23, 26}. Bottom: results at scale λ = 16, after multi-scale stabilization, for

each expression on the top row.

3 Cortical Facial Expression Classification Model

Because of the multi-scale line/edge representation with deformations at coarse
scales (Fig. 1) it is necessary to introduce new AUs to classify each facial ex-
pression. Therefore, three regions of interest (ROI) are defined, two covering
the eyebrows and one covering the mouth. These ROIs actually correspond to
the Focus-of-Attention regions as used in face recognition [18], but here we use
rectangular ROIs to simplify the analysis.

Knowing the AUs involved in the different expressions [24], it is possible to
estimate the positions of the line/edge events in each ROI relative to those of
the neutral expression. Figure 2 (top) shows the expected movements, where +
and − represent inclinations and 0 is the same as the neutral expression. The
square indicates an open mouth and the arrows global trends of the events. In
the bottom part of Fig. 2, the open/solid dots represent up/down trends and
the number of dots the magnitudes.

3.1 Extraction of Cortical AUs

All face images in the JAFFE database are already normalized. For dealing with
unnormalized face images, a cortical normalization scheme based on keypoints
(end-stopped cells) can be applied [3]. The three ROIs are defined using the line/
edge maps of the neutral faces. In the analysis of facial expressions, the same pro-
cessing is applied as in the human visual system [13]: information at coarse scales
is used for a first estimation of the expression, after which information at increas-
ingly finer scales is added to confirm or correct the result. The basic approach is
illustrated in Fig. 3: keypoints (yellow) detected at the corners of the mouth and
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Fig. 2. Top: movements of line/edge events relative to those of a neutral expression; left

to right: anger, disgust, fear, happy, sadness and surprise. Bottom: table of movements

and their magnitudes in the ROIs.

Fig. 3. Left: expressions neutral and surprise. Third image: keypoints (yellow crosses)

at corners of mouth and eyebrows in the neutral face activate clusters of grouping cells

(in red) which detect line or edge events in the non-neutral face (right image).

eyebrows in the neutral face (third image) activate clusters of grouping cells (red)
which combine line or edge events in the non-neutral face (at right).

Positive and negative line events at any scale consist of excitated L+ and L−

cells at positions (x, y) with output one (cell is active) or zero (cell is not active).
Likewise, outputs of edge cells E+ and E− are also binary. Outputs of clusters of
such cells are combined (summed) by grouping cells with specific dendritic fields,
the outputs of which therefore correspond to the number of active cells in their
fields. In the ROI of the mouth, coarse scales are screened for a negative line
matching a closed mouth and for a positive line matching an open mouth; see
the left two columns of Fig. 4. This is achieved by defining grouping cells S+ and
S− with horizontal and very elongated (linear, elliptical) fields at neighboring
vertical (yi) positions. The two cells S+(y1) and S−(y2) with maximum output
are selected using non-maximum suppression, and of these two the one with the
largest response yields the state of the mouth: open (S+) or closed (S−). This
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Fig. 4. First two columns: coarse scale λ = 23 (top) and fine scale λ = 10 (bottom) of

a person with closed and open mouth. Third an fourth column: the ROI of the mouth

with all events at scale λ = 12 (top) and only edges (bottom). Fifth column: the same

as the previous two columns, but the ROI of an eyebrow and only negative lines at the

bottom.

processing is applied at six coarse scales and at least four scales must yield the
same result for defining the state of the mouth. If the result is not convincing,
medium and fine scales are added.

At medium and fine scales, see Fig. 4 (bottom, first two columns) the edges of
the lips, i.e., the transitions between lips and skin, are relevant. The figure shows
in detail (3rd and 4th column) an open and a closed mouth at scale λ = 10. The
analysis as described above is applied using only edge cells E+ and E−, and
grouping cells S± at yi, with horizontal elliptical dendritic fields, which combine
both edge polarities. The outputs of the cells S± are thresholded and the two
cells at the lowest and highest position y in the mouth’s ROI yield the size of
the mouth (magnitude of opening) as well as the vertical position of the mouth.

In each of both ROIs of the eyebrows, the processing is similar to the one
for detecting the size of the mouth, but there are in each ROI two clusters of
grouping cells in order to determine the inclination angle: one vertical cluster
at the left and another vertical cluster at the right of the ROI. Figure 4 (last
column) shows a detail image. Here we need to analyse a finer scale (λ = 10) be-
cause of the relatively thin eyebrows and only responses of L− cells are summed.
In each cluster of grouping cells the cell with maximum response is selected by
non-maximum suppression, and the two selected cells on both sides of the ROI
code the inclination angle as well as the eyebrow’s vertical position.

In summary, the ROI of the mouth produces the state of the mouth, open or
closed, and the vertical position on the mouth. The ROI of each eyebrow yields
the inclination angle plus the vertical position.

3.2 Classification Schemes

Two classification schemes were tested: (1) a direct classification of the six groups
anger,disgust, fear, happy, sadness and surprise [24], plus two group combinations;
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Fig. 5. Examples of images from the JAFFE [10] database

and (2) a classificationwith pre-categorization levels as previously applied to other,
non-face objects [1,20]. The pre-categorizations consisted of the following levels.
The first level discriminates happy and not-happy. At the second level, the not-
happy group is further divided into anger, sadness and fear, whereas the happy
group is split into happy and surprise. At the last classification level, the fear group
is split into fear and surprise, and the anger group into anger and disgust. Please
note that surprise is classified twice, in opposite groups,because this expression can
have two contexts. The above group divisions are based on previous work by other
authors. Gama [7] proposed a separation of expressions into two groups, happy and
not-happy. Kumano et al. [22] proposed four groups: anger, sadness, surprise and
happy. Our own scheme is slightly different because we also added the group fear
which the other authors, apart from Zhang [24], left out.

4 Experimental Results

As mentioned above we used the JAFFE database [10] and selected seven ex-
pressions (neutral plus anger, disgust, fear, happy, sadness and surprise) of 10
women; see Fig. 5. The extracted facial features were processed using a Bayes
minimum-distance classifier, i.e., without more advanced statistical methods like
PCA, because this is a first test of the developed multi-scale method. Apart from
the schemes described in the previous sub-section, we tested three feature combi-
nations (C1–C3), taking into account that all features are relative to the features
of the same woman with a neutral expression: (C1) the agreement of the trends
of the features when compared to Fig. 2 (bottom); (C2) comparing only the
magnitudes of the trends; and (C3) the combination of both.

Table 1 presents the results of our experiments, without pre-categorizations,
i.e., direct classification of the groups of expressions, and with the three catego-
rization levels, all with feature combinations C1, C2 and C3.

Results without and with pre-categorization into happy and not-happy are
obviously equal and quite good: 91% using C1 (only trends), 84% using C2 (only
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Table 1. Overview of all results. Notes: a – happy also includes surprise; b – anger

also includes disgust; c – fear also includes surprise.

recognition rates (%)

without with

categorizations categorizations

groups images C1 C2 C3 C1 C2 C3

happy 20a 80 60 60 80 60 60

not happy 50 96 94 100 96 94 100

total 70 91 84 89 91 84 89

happy 20a 80 60 60 95 95 100

anger 20b 86 55 80 85 55 80

sadness 10 60 70 50 60 70 50

fear 20c 65 80 80 75 85 80

total 70 74 66 70 81 77 81

happy 10 80 40 60 80 80 70

surprise 10 50 30 40 90 60 70

anger 10 20 60 50 60 70 80

disgust 10 70 10 30 100 20 50

sadness 10 60 70 50 60 70 50

fear 10 80 30 60 80 40 70

total 60 60 40 48 78 57 65

magnitudes), and 89% using C3 (both). This means that one can and should
use generic information at coarse scales [13]. In the categorization happy-anger-
sadness-fear the results are similar, which indicates that we need more detailed
information at finer scales, but the use of the first pre-categorization level (happy
vs. not-happy) leads to better results if compared to direct classification: 74,
66 and 70% against 81, 77 and 81%. The same trend can be seen after final
recognition of all six expressions anger, disgust, fear, happy, sadness and surprise:
60, 40 and 48% against 78, 57 and 65%. Remarkable is the fact that in almost
all cases the use of only binary trends (C1) yields better results than using only
magnitudes (C2) and even the combination of both (C3), which requires further
analysis in order to optimize the results, i.e., the relative weighting of binary
and non-binary features. Comparing our first results with those of other groups
who used the JAFFE database, Feitosa et al. [21] achieved a best rate of 73%
for the same six facial expressions, where our method achieved 78%. Zhang and
Ji [24], who used another database with the same six expressions, achieved only
72% (see Introduction). Clearly, results can and must be improved by finetuning
the algorithms.

5 Discussion

The scheme for expression recognition will be part of an integrated architecture
for object and face recognition with two data streams, one devoted to general
objects which can be arbitrarily rotated in 3D, and the other devoted to faces
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which are normally seen upright and with near frontal view. In case of general ob-
jects, the multi-scale line/edge and keypoint representations of canonical views
are stored as templates in memory, keypoints are used to route dynamically
keypoints of an input object to a template in memory, and the same routing is
applied to lines and edges for object recognition. Dynamic routing is necessary
for position, size and rotation invariance, and coarse-to-fine-scale processing is
applied for successive (pre-)categorizations until final recognition; see [20]. In
case of faces, the same processing is applied for face detection and normalization
using keypoints [3], after which faces can be recognized together with their ex-
pression using the line/edge codes. It is likely that expression is extracted before
recognition, i.e., if face normalization using keypoints at eyes, nose and mouth
also normalizes the expression to neutral. This is subject of ongoing research.

The framework for expressions presented in this paper is based on their neu-
ral correlates relative to the line/edge coding of neutral faces. To this purpose
new AUs were defined because of the multi-scale representation with coarse-to-
fine-scale processing, which allows us to apply a few categorization levels for re-
fining the analysis. Multi-scale stabilization of the line and edge features proved
to be important, because the most reliable features are used whereas other ones
caused by minor variations are discarded. As expected, the positions and polarities
of the lines and edges in the ROIs, combined with the AUs as proposed by Mat-
sumoto and Ekman [12] (Fig. 2), yielded encouraging results. The use of mainly
coarse-scale information in the first two-group categorization, which is very stable
by definition, yielded a recognition rate of 91%. Using additional information in
the subsequent four-group categorization yielded 81%, and final six-group recog-
nition still 78%. Ongoing research addresses a detailed analysis of the data and
refinement of the method, i.e., a systematic use of scales by starting with coarse
scales only and then adding successively finer scales [1,20]. In addition, tests with a
database of Caucasian faces are conducted, with the possibility of creating generic
templates with a neutral expression, both Japanese and Caucasian.
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Abstract. Much research presented recently supports the idea that the human 
perception of attractiveness is data-driven and largely irrespective of the per-
ceiver.  This suggests using pattern analysis techniques for beauty analysis. 
Several scientific papers on this subject are appearing in image processing, 
computer vision and pattern analysis contexts, or use techniques of these areas. 
In this paper, we will survey the recent studies on automatic analysis of facial 
beauty, and discuss research lines and practical applications.  

Keywords: Face image analysis, facial landmarks, attractiveness. 

1   Introduction 

Analyzing 2D or 3D images of humans is a main area of research in pattern analysis 
and computer vision. The human face is by far the part of the body which conveys 
more information to human beings, and thus potentially to computer systems [2].  
Such information span identity, intentions, emotional and health states, attractiveness, 
age, gender, ethnicity, attention, etc. At present, the most studied application of  
face image analysis is identity recognition [1], which is essentially an engineering 
deformable object recognition problem. Other face image analysis applications are 
multidisciplinary and related to human sciences and medicine. They are essentially 1) 
analyzing human expressions, and 2) analyzing face attractiveness.  

The first is by far the most studied problem, particularly to capture human expres-
sion for animating the faces of virtual characters. A much more challenging problem 
is interpreting facial expressions, that is mapping expressions onto emotional states 
[2], [3]. The results presented are not yet convincing, since tracing backward the path 
from expressions (effects) to the emotions (causes), requires a shared and coherent 
model of the human emotions and of their effects on facial features, which psycho-
physiology has not yet supplied [3]. The second multidisciplinary problem, that is the 
analysis of human beauty and its measure, has been widely debated for centuries in 
human science, and, more recently, in plastic surgery and orthodontics. In the last 
decades, several thousands of papers on this subject have been published in these 
areas. The human science researchers involved in these studies are: social and devel-
opmental psychologists, cognitive psychologists and neuroscientists and evolutionary 
psychologists and biologists. Applying pattern analysis and computer vision tech-
niques for analyzing beauty is a relatively new research field. The purpose of this 
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paper is to survey rationale, techniques, results, applications and open problems in 
this emerging area.  

2   Beauty in Human Sciences and Medicine 

Social importance of attractiveness. What is beauty? Philosopher, scientists and art-
ists debated the problem for centuries. A controversial long lasting question is 
whether beauty is objective or subjective, or if “Beauty is in the eye of the beholder”, 
according to a sentence of the writer Margaret Wolfe Hungerford (1878). Important 
personages, as David Hume (1741), have supported this thesis or, as Immanuel Kant 
(1790), the opposite. Coming to our times, a number of recent behavioural, social and 
psychological studies, as well as everyday common experience, show that face and 
body harmony is extremely important in general social life. Looking unpleasant or 
different seriously affects self-esteem and can result in social isolation, depression 
and serious psychological disorders [35]. Thus, is not surprising that, according to a 
recent estimate, in the US more money is spent annually on beauty related items or 
services than on both education and social services [5]. 
 

Classic Beauty canons. Since ancient times, the supporters of beauty as an objective 
and measurable property attempted to state ideal proportions, or beauty canons, for 
the human body and its parts. The Greek sculptor Polykleitos was the first to define 
aesthetics in mathematical terms in his “Kanon” treatise. Marcus Vitruvius, a Roman 
architect, introduced the idea of facial trisection, or facial thirds, largely used in medi-
cine and anthropometry (Fig. 1). 

 

Fig. 1. Facial trisection, as originally described by Vitruvius 

Renaissance artists, as Leonardo da Vinci, Leon Battista Alberti, Albrecht Duerer 
and Piero della Francesca, reformulated and documented the classic canons. Descrip-
tions of the classic canons can be found in [6]. These canons have been used for cen-
turies in art by sculptors, painters, and are a rough working guide for plastic surgeons.  

From the classic concept of ideal proportions also stems the debate about the rele-
vance of the golden ratio in beautiful faces. The golden ratio is an irrational number, 
approximately 1.618, obtained by dividing a segment into two parts, a and b, such 
that  a/b = (a+b)/a. Since ancient times, the golden ratio has been used explicitly, or 
claimed later to have been used, by a score of sculptors, painters, architects and even 
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composers. Today, some papers in plastic surgery and orthodontics contexts support 
the idea of an universal standard of beauty based on the golden ratio [31], [32]. How-
ever, several experimental studies found a little correlation between the asserted ideal 
proportions and the beauty scores received by human raters [33], [34].  

 

Fig. 2. The divine proportions of the face and the golden ratio 

The objective nature of facial beauty. In this subsection we present the empirical 
results supporting the idea that facial beauty has an objective nature: brain activity 
patterns; cross-cultural consistency of beauty ratings; infant’s preference for attrac-
tive faces. 

Brain activity patterns. Psychophysiology and neuropsychology have detected the 
brain areas where the assessment of facial beauty is processed. Activity patterns re-
lated to explicit attractiveness judgement of 2D face images have been measured with 
MRI and NIRS techniques and correlated with the beauty score of the faces. Brain 
patterns showed greater response to highly attractive and unattractive faces [23], [47]. 
These results could lead to practical “ground truth” beauty assessing techniques. 

Cross-cultural consistency of attractiveness ratings. Many experimental researches 
based on various groups of human raters have been performed.  For instance, consis-
tency of attractiveness ratings (correlation greater than 0.9) was reported in [9] for 
groups of Asian, Hispanic, Black and White Americans, male and female, both as 
subject and judges. In [10] it was reported that English, Asian, and Oriental female 
raters showed very close agreement in assessing the attractiveness of a selection of 
Greek man. Other experiments used synthetic faces [8]. 

Several studies compared the ratings of different professional groups, as for  
instance clinicians specialized in orthodontics and normal hospital clerks [11]. Attrac-
tiveness self-ratings and third-party ratings have also been compared too [41]. More-
over, most papers aimed at automatically rating beauty of previously rated images by 
human observers, validated the human “ground truth” ratings by checking their  
consistency, for instance correlating the scores of different groups.  

The conclusion is that a substantial beauty rating congruence exists over ethnicity, 
social class, age, and sex. Rating congruence is particularly strong for very unattrac-
tive and very beautiful faces [8], which appears in agreement with the analysis of 
brain activity patterns. 
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Infant preference for attractive faces. Babies as young as three/six months were found 
to be able to distinguish between faces previously rated as attractive or unattractive by 
adult raters. This conclusion was obtained observing the time spent by the babies in 
looking at each face. Since very young babies should not be affected by cultural stan-
dards about beauty, these studies seem to indicate that appreciating beauty is an innate 
human capability [28], [39]. 

Concluding, even if the problem of which are the objective elements of beauty is 
still much debated, we can conclude that there is strong evidence that these objective 
elements exist, are relatively stable in time and space, and they could be measured.  

3   Applications of Machine Beauty Analysis 

Clearly, a fundamental application area of machine beauty analysis is supporting 
human sciences research. However, automatically ranking, or suggesting ways for 
improving attractiveness, could result in many applications in other scientific, profes-
sional and end user areas. Beauty ranking programs could be used for preparing pro-
fessional carnet, screening applicants for jobs where attractiveness is a basic require-
ment, in social network contexts. Potentially very popular end user or professional 
applications could be constructed for supporting and suggesting make-up styles. A 
related application, automatic photo retouch, will be discussed in the following [14]. 

Another important application area is plastic surgery. Some computer tools have 
been proposed for supporting surgery planning. These tools present images of the 
possible effects of the surgery based on 2D images [29], or 3D scans [30], morphed 
with manual interfaces. How to manipulate faces, as well as the evaluation of the 
results, is currently left to the surgeon's judgement. Beauty scoring programs, able to 
evaluate the various possible surgery outcomes, or also to suggest how to enhance 
attractiveness would be of great help. 

4   Computer-Based Beauty Analysis 

In this section, we survey the papers recently appeared on the automatic analysis of 
beauty, and of its elements. Observe that the general approaches for most face image 
processing applications, including beauty analysis, are similar, and can be roughly 
divided into holistic, as PCA, LDA, and feature based. Holistic techniques perform an 
automatic extraction of significant data based on a number of face samples. The pre-
cise meaning of the data obtained, complex combination of the original 2D or 3D 
data, is often difficult to state. In the feature based approach the features significant 
for a given problem are selected a priori. Their meaning is clear, but elements rele-
vant to the particular problem could have been overlooked.  
 
Shape and texture. The relative relevance to attractiveness of face shape and colour 
texture has been experimentally investigated. In [24], different skin textures obtained 
from photographs of 170 women were applied to a common 3D face model and ren-
dered with the same illumination. Experiments showed a high correlation between the 
beauty scores of the original face images and of the 3D model textured with them. 
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Several other results support the importance of skin colour texture for attractiveness 
[27], [25], especially in intersex evaluation, a thesis also supported by Darwin [26].  

               

Fig. 3. Effects of symmetry: original face, left and right symmetries 

 

Fig. 4. Averaging faces improves (female) attractiveness 

Symmetry and averageness. Several researches dealt with the role of symmetry and 
averageness in attractiveness. A pioneer in these studies was Sir Francis Galton, 
which in 1879 created photographs where the images of different faces were superim-
posed [40]. Today researchers use image processing techniques for finding the sagittal 
(symmetry) plane, locating facial landmarks, measuring asymmetry, and creating 
artificial symmetrical, morphed and average faces.  

The effects of asymmetry on attractiveness perception have been investigated in 
several experiments [8], [12], [13]. Male and female images have been rated, and the 
ratings related with the asymmetry of the original faces and with the ratings of the 
faces made symmetric with left and right symmetries. The results are rather contro-
versial. Low degrees of asymmetries do not seem to affect attractiveness. Some re-
search even found a negative correlation between symmetry and attractiveness [13]. 

The effect of averageness on attractiveness perception is a related problem. Ac-
cording to evolutionary biology, evolutionary pressure operates against the extremes 
of the population, and average facial prototypes should be preferred by conspecifics 
[36]. Composite or average 2D face images, created by normalizing eyes and mouth 
position and averaging their pixel values, have been rated and their ranks compared 
with those of the original faces [12], [7]. Even in this case the results are controver-
sial. For female faces, the ratings of composite faces were better than those of the 
original faces (see Fig. 4). However, composites are more symmetrical and rather free 
of facial blemishes. For male faces, composites were found less attractive than normal 
faces [7], possibly since attractive male faces show strong features perceived as 

+

+ =

=
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dominance indicators and resistance to parasites [37]. According to [8], average faces 
are attractive, but very attractive faces are not average, as shown by the preference 
given to warped faces obtained by increasing the distance of facial landmarks from 
the average landmark position. A 3D analysis of the influence on attractiveness of 
averageness both of 3D shape and 2D texture is described in [19]. The 3D database 
included 100 young adult males and females. The 3D shapes and the 2D textures were 
separately averaged, and artificial face images were created in two different ways, 
first by morphing individual texture maps onto the average 3D head, and then the 
average texture onto the individual heads, using corresponding feature points. The 
original, texture-normalized and shape-normalized images were rated by a 36 people 
panel on a 5 level scale. The results show that attractiveness scores are larger for 
texture normalized and even more for shape-normalized images. 
 
Enhancing beauty. An automatic system for enhancing facial attractiveness of frontal 
colour photographs has been presented in [14]. It is aimed at professional retouching, 
and requires a database of faces rated beautiful. Each face is triangulated, starting 
from 84 landmarks, and 234 lengths, normalized by the square root of the face area, 
make a representative vector. The vector of the face to beautify is compared using 
various techniques with the vectors of the beautiful faces. Finally, the triangulation of 
the original face is warped toward those of the beautiful faces more similar to the 
original.  

A system for planning rhinoplastic surgery has been presented in [38]. In the case 
of rhinoplasty, the profile is the most relevant feature, and the system is based on a 
data-base of profiles of faces rated beautiful or at least regular. In general there is not 
a unique prototype of a beautiful facial feature (nose in this case), but different shapes 
could be more or less attractive, depending on the general harmony and integration 
with the rest of the face [30]. The system looks in the database for the most similar 
profile, excluding the nose. Then, it applies the nose profile of the selected face to the 
profile to improve, providing an effective suggestion for the plastic surgeon.  
 

Assessing beauty. Several papers are aimed at automatically measuring face attrac-
tiveness. Most of these papers use the feature approach. The general idea is to look, in 
some particular face space, for the nearest samples of a training set of rated faces and 
construct a vote depending in some way on their scores.  

A preliminary automatic facial beauty scoring system was described in [15]. A few 
face landmarks are manually determined on frontal monochromatic images, and a 
vector of eight ratios between landmarks distances is used to describe a face. A panel 
of 12 judges scored 40 training images on a four point scale. For scoring a new image, 
its characteristic vector is first computed. Then, the scores of the 10 nearest faces in 
the face space are averaged.  

A similar approach is reported in [16] and [17]. Also in these cases 2D frontal im-
ages are used. 215 female images were rated on a 10 level scale from 48 human refe-
rees [16].  Standard deviation of scores for each training, showed rather compact 
distributions around the average vote. Smaller variances were found for very high 
(beautiful) and very low (unpleasant) scores. Automatically detected landmarks were 
used for constructing a representative vector of 13 distances ratios. Several classifiers 
were experimented, obtaining, on the average, score rather close to those of human 
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referees. Investigations on the classification results in relation with age, ethnicity, 
gender of the referees, and with some classical beauty canons are presented in [18]. 

In [20], 91 color frontal images of young Caucasian female were rated on a 7 point 
scale by 27 raters. To validate ranks, raters were divided several times at random into 
2 groups, and the ratings compared, finding 0.92 as mean correlation. For each face 
image, 84 feature points were automatically extracted, and a feature vector was con-
structed containing 3486 normalized distances between them and 3486 slopes of the 
distance segments. These data were reduced to 90 using PCA, and integrated with a 
measure of asymmetry and samples of skin colour and smoothness in selected face 
areas, resulting in a 98 dimension representative vector. Several rating experiments 
were performed with real and artificial face images, comparing human and automatic 
ratings, and analyzing also the relevance of the various features used. A 0.82 Pearson 
correlation with human ratings was found, more significant than that found in [21], 
owing to the larger feature vector. 

A regression analysis has been used in [22] to determine the relevance to beauty of 
three attractiveness predictors: neoclassic canons, feature symmetry and golden ratio. 
The database included 420 frontal expressionless gray scale Caucasian faces selected 
in the FERET database, and 32 pictures of movie actors. The raters were 36, and the 
scores were given on a ten levels scale. Several measures were extracted from the 
position of 29 landmarks. The results show that several of the rules specified by these 
beauty predictors have actually little relation with the beauty score.  
In [46], the significance to attractiveness of 17 geometric facial measures was investi-
gated using Artificial Neural Networks. The features were classified for their relative 
contribution to attractiveness. Some feature dimension, as lower lip thickness, were 
found to be positively associated with attractiveness, other, as nose area, negatively. It 
has been found that the more significant are mouth width, nose width and distance 
between pupils, the less significant eye sizes. 

Landmarks based and holistic approaches have been compared in [21].  Two data 
sets, each with 92 frontal images of young Caucasian American and Israeli females, 
were rated by 28 raters on a seven level scale, and consistency of ratings was verified.  
37 normalized facial feature distances and data related to hair colour, facial symmetry 
and smoothness were inserted in the feature vector. PCA was used for decorrelating 
the geometric data. The holistic approach applied PCA on images normalized using 
centers of eyes and mouth. The eigenfaces most correlated with the human attractive-
ness ratings were selected. An interesting result is that such eigenfaces did not corre-
spond to the highest eigenvalues, and contain clearer details of facial features like 
nose, eyes and lips rather than general description of hairs and face contours. For 
assessing attractiveness, both K-nearest neighbours and support vector machines were 
used, and correlation between machine and human scores was given as a function of 
the dimension of the feature vector. Several results are interesting. Feature based 
beauty prediction performed better than holistic: a top Pearson correlation of almost 
0.6 versus 0.45 is reported. Probably, this is due to, the normalization of eyes and 
mouth position, which changes some landmark distances' ratios that are related to the 
general harmony of the face. A better prediction was simply obtained combining 
linearly the two predictions. 

An automated scoring system for learning the personal preferences of individual 
users from example images has been presented in [42]. 70.000 web collected 2D  
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images were used. The images were labelled for 3D pose (yaw, pitch, and roll) and 
for 2D positions of 6 landmarks [43]. 1000 male and 1000 female almost frontal im-
ages were selected. 8 raters were asked to state their preferences toward images of the 
opposite sex on a 4 points scale. For training a SVM regressor, eigenfaces, Gabor 
filters, edge orientation histograms, and geometric feature were used. The best aver-
age Pearson correlation with human scores (0.28) was obtained with Gabor filters, 
whose correlation with individual preferences was higher (up to 0.45). Some experi-
ment was also reported for relating smile, detected through Facial Action Coding 
System (FACS) [4], and attractiveness. 

Another large Web face database was used in [44]. From the website hotornot.com 
over 30.000 attractiveness rated images were downloaded, and the best 4000 images, 
almost evenly divided between the two genders, were selected and rectified with an 
affine transformation. Gaussian RBF kernel and a ridge regression were experimented 
for various textural features. The female dataset showed better prediction, and cheeks 
and mouth proved to be more effective predictors than eyes. A particular kernel  
regression technique was experimented in [45] on the same face images set. 

5   Open Problems and Areas of Research 

Although some interesting results are emerging, much further work is possible. In 
particular, the main question, which are the objective elements of facial beauty, is far 
from being answered. Several elements of beauty have been investigated, but not yet 
combined in an overall framework. 

Most results have been obtained analyzing 2D images, often monochromatic, me-
dium quality and frontal. There is little doubt that in this way much valuable informa-
tion relevant to attractiveness is lost. Important applications, as supporting plastic 
surgery, are essentially 3D and require 3D face scans. A problem for further 3D 
beauty research, as  well as for 3D identity recognition, is that only a few 3D face data 
bases exist, containing a relatively small number of face scans. In addition, selecting 
beautiful faces in these data bases strongly reduces the number of samples useful for 
attractiveness studies. Then, for carrying on further studies on attractiveness, 3D data-
bases containing also beautiful faces should be constructed.  

Another open problem concerns the density of sampling of the face and beautiful 
face spaces. In fact, several approaches for measuring attractiveness, or suggesting 
ways for improving attractiveness are based on finding the nearest face samples in 
some face space. To be effective this approach requires a dense sampling of the face 
space, or of the space of the beautiful faces only. This raises the question: how many 
samples are required for an adequate sampling of the face space, from the point of 
view of attractiveness, or of the sub-manifold of the beautiful faces?  

Most papers on analyzing and assessing beauty are based on facial landmarks for 
constructing some representative geometric feature vector. This technique appears 
convenient for capturing the general harmony of face, but small details and facial 
texture, important elements of beauty, are essentially lost. Holistic techniques appear 
more suited to capture the texture. Small shape details of particularly important areas, 
such as mouth and eyes, are not efficiently captured neither by 2D or 3D landmarks 
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nor by holistic techniques. A local detailed analysis could substantially improve the 
capture of relevant features. Then, mixed techniques could be effective. 

Up to now, the matter of attractiveness research has been expressionless images. 
However, expressions are relevant to attractiveness: it is a common everyday experi-
ence that smiling can light a plain nondescript face. Up to now, no research has been 
reported aimed at extending attractiveness analysis to facial expressions. 

Finally, other areas of research could concern: body attractiveness (actually limited 
to simple body shape indices), feasible shape or texture changes able to enhance  
attractiveness, and the study of dynamic beauty, or “grace”, or “elegance”, of  
movements. 
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Abstract. While facial expressions and phoneme states are analyzed

and published very well, the dynamic deformation of a face is rarely

described or modeled. Recently dynamic facial expressions are analyzed.

We describe a capture system, processing steps and analysis results useful

for modeling facial deformations while speaking. The capture system

consists of a double mirror construction and a high speed camera, in

order to get fluid motion. Not only major face features as well as a high

accuracy of the tracked facial points, are required for such analysis. The

dynamic analysis results demonstrate the potential of a reduced phoneme

alphabet, because of similar 3D shape deformations. The separation of

asymmetric facial motion allows to setup a personalized deformation

model, besides the common symmetric deformation.

Keywords: motion, facial deformation, personalized.

1 Introduction

Different capture systems for the analysis of facial motions have been presented
in recent years. Although single or multi camera approaches have been addressed
with different configurations, mirrors are rarely used. One reason for this could
be the resolution of the capture unit, which is shared with all virtual views.

Many different techniques for the classification of facial expressions in still
images has been published. Recently also the methods for dynamic analysis of
facial expressions pushing forward and described by Cohen et al.[1], Hu et al.[2]
and Zhang et al.[3]. The dynamic deformation produced while speaking has not
been analyzed so far.

Since we target for the analysis of the dynamic behavior of facial motion, the
sampling rate, in which the motion states are recorded, is an important issue.
Important transitions from one state to another maybe get lost if only a video
frame rate of 25 fps is used and these details are not available for the natural
animation of 3D models.

We present our capture system based on a high speed camera and two surface
mirror. These three views are used to reconstruct a 3D model sequence of a
talking person’s face. This model sequence is used to compensate the rigid motion
and analyzing the facial deformation to a reference model. The analysis of the
dynamical performance of face while speaking phonemes is described as well.

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 436–444, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.hhi.fraunhofer.de


System and Analysis Used for a Dynamic Facial Speech Deformation Model 437

2 Capture Device

We have constructed a system with two mirrors which is shown in Fig. 1. Mirrors
are widely used within capture devices and described in several publications
[4,5,6], but no high speed camera was used so far as capture unit and not always
a 3D reconstruction was placed in the processing steps. The four flat lights are
used to illuminate the scene uniformly.

Fig. 1. High speed camera and mirror construction with two surface mirrors. Top Left

Corner: Schematic scheme of the construction.

By usingmirrors additional points have to be considered. The surface of the used
mirror is one important parameter, because these surface properties will be incor-
porated into the view calibration parameter. Other parameters are the reflection
properties in the sense of color, magnification and multiple reflections. Multiple
reflections appear because of the reflection on the glass and coating boundary. It is
very common to use not surface mirrors based on a glass body, but to use polished
metal mirrors instead. The stiffness of such metal mirror is much lower than a glass
body based mirror. Therefore, an additional fixation has to be considered in case
of metal based mirrors. We have used surface mirrors with a glass body.

2.1 Calibration

In order to get full benefit out of such system, the system has to be calibrated.
Taking one point in 3D world as reference and measuring the light ray distance
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Fig. 2. (left) Capture device with two mirrors and one camera. (right) Setup interpre-

tation used for calibration and 3D reconstruction.

from this point to each view (two mirror views and one direct view), leads us
to a system with two virtual cameras and one real camera. Fig. 2 shows this
representation, where the same point viewed by the virtual cameras appears
to be more far away than in reality. The distance between several 3D world
points should be therefore also closer, but there are not. They have the same
distance as seen by the real camera. The light ray distance can not be neglected
and therefore the virtual cameras has to be adjusted, in order to magnify these
views. Therefore, each view (camera) has is own position in 3D world.

Using point correspondences captured from a calibration cube and a non-
linear equation solver gives as the required intrinsic and extrinsic camera pa-
rameters. The back projection of the manual selected corner points used for
the calibration can be used to determine the calibration error, which is below
0.5pixel and therefore sufficient for the following analysis. The accuracy of the
calibration also allows the usage for depth map determination approaches, like
described in [7] et al.for a high density of feature points.

3 Principal Analysis

The performance of a face while speaking a specific set of words was captured
with 200 fps using blue tape markers and for each frame a 3D shape was re-
constructed by triangulation of the tracked marker points. The total amount of



System and Analysis Used for a Dynamic Facial Speech Deformation Model 439

43 words has been captured with an average duration of 217 frames. Each word
represents a specific British and American phoneme [8].

3.1 Motion Model

For the analysis of facial motion, we separate rigid body motion from deforma-
tions using a 3D sequence of facial points. The 3D model sequence is generated
by triangulation of markers, which are placed on a human face and captured by
a double mirror construction and a high speed camera. Rotation and translation
for all axes (6 DOFs) of the associated 3D model describe the rigid-body motion
and all other changes are regarded as deformation and noise.

4 Dynamic Comparison of Spoken Phonemes

While facial expressions and phoneme states are analyzed and published very
well, the dynamic deformation of a face is rarely described or modeled. The
amount of sampling points and the sampling frequency are the interesting mea-
surements for such analysis and therefore define the value of an appropriate
deformation model.

4.1 Dynamic Time Warping (DTW)

Is a very known method for the comparison and motion model description used
for dynamic data. Early works of Rabiner et al.[9] as well as Sakoe and Chiba
[10] use DTW for the comparison of audio signals of spoken words. Gestures
comparison as well as recognition are well described in representative publica-
tions of Corradini [11] or Li and Greenspan [12]. The recognition of hand writing
using DTW is described by Niels [13]. There are many more publications dealing
with DTW in various scenarios.

The main idea behind Dynamic Time Warping (DTW) is to map two sam-
pling sets independently from the sampling rate as well as sampling period.
Ratanamahatana and Keogh analyzed the behavior of DTW with different pre-
processing steps and constraints [14]. One suggestion is not equalize different
datasets before mapping, which was used for our analysis.

We use DTW to analyze dynamic 3D shape deformation. Actually, we just use
the weights for a specific set of eigenshapes in contrast to Angeles-Yreta and
Figueroa-Nazuno, who describe a measurement method for similarities of 3D ob-
jects in [15] by using distances within the 3D shapes. The eigenshapes are the same
for all phonemes and only the frame based weights are describing the difference
from one phoneme data set to another phoneme data set. With other words, this
could be used to compare data sets from different speakers while the sampling time
do not have to be the same through all data sets. In addition facial deformations for
phonemes can be correlated, in order to find an appropriate subset and therefore
to reduce the amount of phonemes for the same performed deformation.
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Fig. 3. Type I mapping function described by Rabiner and Juang [16]

The Eqn. 1 shows the reconstruction of a specific shape F for a defined range
of eigenshapes R after adding the average B̄ as well as the offset A(3N,0).

A(3N,F )
recon. = A(3N,0) + B̄ +

R∑
i=0

wi,F · Eigi (1)

While the main method for DTW is well described, the used type of map-
ping function is based on a best performance result and therefore no specific

Fig. 4. Distance matrix for the DTW mapping of two phonemes represented by the

words away and arm. The white colored line shows the mapping path with smallest

energy. The weights for the first eight eigenshapes are incorporated into the distance

matrix.
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Fig. 5. Mapping between the frame based weights with the first eigenshape used to

represent the words away and arm. Only the weights for the first eigenshape was

incorporated into the distance matrix.

formulation is defined. In the book of Rabiner and Juang [16] 7+1 types of path
specifications are described, but mostly type I is used and shown in Fig. 3. Be-
sides the type of path specification the incorporation of multidimensional data
can be used to change the performance of the mapping. Holt et al.[17] extending
the DTW algorithm to the multidimensional approach MD-DTW, where differ-
ent dimensions could be connected by a simple Euclidean distance for instance.
For the analysis of dynamic facial deformation based on weights, the weights
of several eigenshapes are included to the distance matrix by calculating the
Euclidean distance. The distance matrix of two different datasets using 8 eigen-
shapes and therefore also 8 weights as well as path type I is shown in Fig. 4.
The determined path is visualized with the white colored line. The mapping of
these two different datasets (different length) is used to specify the correlation
of the words away and arm, which represent two different visual dynamic de-
formations of a face during the pronunciation of these phonemes. Fig. 5 and
Fig. 6 show the mapping results by incorporating the weights for one and eight
eigenshapes to the distance matrix. Around frame 150 are difference between
these both mappings can be seen, which also lead to different results. Both data
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Fig. 6. Mapping between the frame based weights with the first eigenshape used to

represent the words away and arm. The weights for the first eight eigenshapes were

incorporated into the distance matrix.

sets have different length, but the mapping shows useful results, which supports
the suggestion of Ratanamahatana and Keogh [14].

4.2 Experimental Results

The idea is to analyze the dynamic behavior of facial deformation while speaking.
In order to find the right representation or subset of dynamic shape deforma-
tions, the smallest elements have to be compared. Phonemes already used to
model static facial deformation and therefore we compare the dynamic shape of
a phoneme alphabet. Each phoneme was compared to all other phonemes and the
result will be a distance matrix showing the Euclidean distances after the DTW
mapping of the to be compared data sets. We compared 52 data sets including
phonemes and facial deformations, which are are done by unattended motions,
like getting the lips wet. We incorporated only the first eight eigenshapes for the
common facial deformation representation and left the higher order eigenshapes
for asymmetric and therefore personalized deformation out. Fig. 7 shows the re-
sult of this experiment, which leads to the awareness that the recorded phoneme
examples show a high correlation and therefore this data set can be reduced.
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Fig. 7. Cross comparison of data sets including the dynamic facial deformation of

phonemes and unattended motions. The dialog line shows the highest comparison re-

sult, because of the comparison of identical data sets.

5 Conclusion

We have shown and described a system as well as analysis methods and results for
dynamic facial deformations, which can be observed during the pronunciation of
words. The system allows to capture the dynamic shape motions with up to 200
fps and the double mirrors provide us with the desired 3D shapes. Extracting the
rigid motion and the eigenshape representation of these observed deformations
are described as well. Dynamic Time warping (DTW) is used to compare different
data sets, where multidimensional data in the form of eigenshape weights are
incorporated into the data set mapping. The direct comparison of a set of 52
phoneme and unattended motions is provided in the form of a distance matrix.
This matrix allows the assumption, that further reduction can be applied without
losing major deformations.
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Abstract. The paper presents a novel feature extraction technique for

face recognition which uses sparse projection axes to compute a low-

dimensional representation of face images. The proposed techniquederives

the sparse axes by first recasting the problem of face recognition as a re-

gression problem and then solving the new (under-determined) regression

problem by computing the solution with minimum L1 norm. The devel-

oped technique, named Sparse Projection Analysis (SPA), is applied to

color as well as grey-scale images from the XM2VTS database and com-

pared to popular subspace projection techniques (with sparse and dense

projection axes) from the literature. The results of the experimental as-

sessment show that the proposed technique ensures promising results on

un-occluded as well occluded images from the XM2VTS database.

Keywords: Image processing, biometrics, face recognition, regression

problem, sparse projection axes.

1 Introduction

It is a well known fact that the existing face recognition techniques are sensitive
to external factors influencing the appearance of the human face in an image.
Among these factors, glasses, scarfs, hats or any other objects occluding the
facial region have an immense effect on the representation of the face image
in the given feature space and consequently on the performance of the face
recognition technique used [1].

The reason for this sensitivity can be linked to the way the face images are
usually transformed into the feature space. This transform commonly involves
computing a projection of the facial image onto a low-dimensional subspace. If
the image contains occlusions even on a very small part of the face, the feature
(or subspace) representation may differ significantly from the true feature rep-
resentation of the un-occluded face image. To derive a stable low-dimensional
representation and hence to overcome the sensitivity of the existing methods
to occlusions in images, robust techniques (e.g., [2]) and local approaches (e.g.,
[3]) have been proposed in the literature. By computing facial features in a ro-
bust manner or by considering only a small part of the image at a time (when

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 445–453, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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calculating the low-dimensional subspace representation) these approaches are
capable of improving upon the recognition performance of the holistic methods,
especially when parts of images are occluded or degraded in some way.

Recent advances in sparse signal recovery and compressed sensing opened up
new possibilities for the design of local techniques as well as new ways of tackling
the problem of occlusion in face recognition [4]. Based on these developments we
present in this paper a novel technique for facial feature extraction called Sparse
Projection Analysis (SPA). SPA derives a low-dimensional face representation
in the form of projection coefficients computed by projecting face images onto
a set of sparse projection axes. Different from other local appearance based
methods, such as, for example, independent component analysis (architecture I)
[3], the non-zero elements of the projection axes are not localized but are rather
distributed over the entire projection axis. Due to this property, the proposed
technique should exhibit even less sensitivity to image occlusions than traditional
local appearance based feature extraction techniques. It should be noted that
the proposed techniques exhibits similarities with established face recognition
methods such as independent component analysis [3] or non-negative matrix
factorization [5] (due to the sparse nature of the projection axes), while the
relation to the method presented in [4] is given only by the fact that SPA relies on
the L1 norm instead of the commonly used L2 norm. Hence, the work presented
in this paper is related more to the work presented in [3], [5] or [6], rather than [4].

The developed SPA technique is ultimately assessed in a series of face verifi-
cation experiments performed on the original images of the XM2VTS database
and on degraded images with an artificially added occlusion. The results of the
assessment and comparative evaluations with the popular principal component
analysis and independent component analysis show the effectiveness of the pro-
posed approach for face recognition.

2 The Sparse Projection Analysis

This section commences by formulating the problem of face recognition as a
regression problem and then, based on this formulation, develops the novel sparse
projection analysis (SPA) for face recognition.

2.1 Face Recognition as a Regression Problem

In its most basic form the problem of face recognition can be defined as a map-
ping f from the given face pattern vector x to a class label (or identity) ωi

associated with the i-th class Ci, where i ∈ {1, 2, ..., N} and N denotes the
number of identities enrolled in the recognition system. Formally, this can be
written as:

f : x �→ ωi, for i ∈ {1, 2, ..., N}. (1)

While the most natural way for humans is to associate identities with names, the
class labels are in general not restricted to textual descriptions, but can rather
take an arbitrary form which uniquely describes the class.
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To illustrate this concept let us assume that we have a set of three face
pattern vectors x1, x2, x3 each belonging to a different class C1, C2, C3. The
corresponding class labels could then be written as vectors of the following form:
ω1 = [1 0 0], ω2 = [0 1 0] and ω3 = [0 0 1]. From this example we can see that
the class labels can be chosen as an orthonormal basis of a vector space, whose
dimensionality is defined by the number of classes that need to be labeled.

Let us now consider a more general case and presume a set of n d-dimensional
face pattern vectors X = {xi ∈ R

d, i = 1, 2, ..., n} belonging to N classes C1, C2,
..., CN with associated class labels ω1, ω2, ..., ωN . If we arrange the face pattern
vectors in X into the n × d row data matrix X and use the same principle as
illustrated in the above example to construct our labels, then we can build the
n × N label matrix Y, whose rows represent labels of the pattern vectors in X.
In this case the label matrix Y takes the following form [7], [8], [9]:

Y =

⎡⎢⎢⎢⎣
1nC1

0nC1
· · · 0nC1

0nC2
1nC2

· · · 0nC2
...

...
. . .

...
0nCN

0nCN
· · · 1nCN

⎤⎥⎥⎥⎦ , (2)

where nCi represents the number of face pattern vectors corresponding to class
Ci, 1nC1

denotes a nCi ×1 vector of all ones and 0nCi
stands for a nCi ×1 vector

of all zeros.
Since we have encoded the class labels in the form of a (label) data matrix Y,

we can use this matrix to define the mapping f . We implement f using a simple
linear transformation of the pattern vectors in X as follows:

Y = XW, (3)

where W denotes the d × N transformation matrix.
Clearly, the above expression can be thought of as being a regression problem

with the goal of finding the regression matrix W capable of mapping the input
variables in X to the response variables in Y.

2.2 Computing the Projection Basis

While there are several ways to determine the regression matrix W (see, for
example, [8]), we present in this paper a method which results in the N d-
dimensional column vectors comprising the regression matrix W being sparse.

Let us first have a closer look at our problem defined by Eq. (3). It is easy to
notice that each of the columns in Y represents the projection coefficients of all
pattern vectors in the data matrix X on one of the N column vectors comprising
W. Hence, the problem of determining the regression matrix W can be broken
down into a set of N independent sub-problems of the following form:

yi = Xwi, for i = 1, 2, ..., N, (4)

where the n × 1 vector yi denotes the i-th column of the response matrix Y,
and similarly the d × 1 vector wi stands for the i-th column of W. It has to be
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noted that the vector yi does not correspond to an encoded label, but is rather
composed of the i-th elements of all encoded labels.

In the field of face recognition the dimensionality of the face pattern vectors in
X is usually much larger than the available number of training pattern vectors,
i.e., d  n. The equation defined by (4) is, therefore, under-determined and its
solution is not unique. We can, however, overcome this problem by selecting the
solution with minimum norm [4]. While usually the L2 norm is used for this
purpose, recent research in the field of compressed sensing suggests that, when
adopting the L1 norm rather than the L2 norm, the found solution exhibits a
number of desirable properties, e.g., sparseness. To solve Eq. (4) for wi, i.e., to
find the i-th projection axis, we therefore recast the problem as follows:

wi = arg min ‖w‖L1, subject to yi = Xw, (5)

where w denotes the (non-unique) solution of the above problem. As stated in
[4] the above problem can be solved in polynomial time using standard linear
programming techniques (see [10],[11]).

If we examine the projection matrix W more closely, we can notice that the
individual projection axes wi are not orthogonal and, hence, do not necessary
form a basis of our N -dimensional vector space. As the final processing step we,
therefore, orthogonalize the projection matrix and use the result as our final
mapping from X to Y, i.e.:

W = W(WT W)−0.5. (6)

Clearly, the orthogonalization procedure also influences the label data matrix
Y, which now turns into

Y′ = Y(WT W)−0.5. (7)

This matrix, i.e., Y′, is ultimately employed to construct client models, which are
then stored in the system’s database. Note that the client model (or template)
for the i-th subject is computed as the mean vector of all encoded class labels
(i.e., rows of Y′) corresponding to the subject labeled as ωi.

When a new query image arrives at the input of the face recognition system
it is simply projected into the sparse subspace using the orthogonalized version
of W.

As already indicated above, the exploited algorithm for finding the projection
basis results in the computed projection axes being sparse. This fact is especially
important for the feature extraction technique using this projection basis, since
sparse axes insure that only a few pixels affect the value of each feature com-
ponent. Such an approach should be robust to a number of image degradations
including occlusion. A visual example of the sparseness of the projection basis
is presented in Fig. 1, where a sample orthogonalized vector wi in image form
(Fig. 1 left) and its 3D surface plot (Fig. 1 right) are depicted.
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Fig. 1. A visual example of a sparse projection axis: in image form (left), as a surface

(right)

3 Experiments

The feasibility of the SPA technique was empirically assessed using the XM2VTS
database, which has long been the standard face-image database for evaluating
novel authentication algorithms [12]. The database comprises 2360 images of 295
distinct subjects of different gender, age and race. The images were recorded
in four separate sessions over a period of five months with the recording setup
featuring controlled conditions, i.e., uniform background, controlled illumination,
etc. Due to this recording setup, the variability in the images is induced mainly by
the temporal factor. Thus, images of the same subjects differ in appearance due
to changes in hairstyle, head-pose, presence or absence of make-up, glasses, etc.

For the experiments we followed the first configuration of the established
experimental protocol associated with the XM2VTS database [12]. The protocol,
known as the Lausanne protocol, partitions the subjects of the database into two
disjoint groups of clients (200 subjects) and impostors (95 subjects) and further
divides the images of these two groups into image sets used for: (i) training and
enrollment - images which are used to train feature extractors and build client
models/templates in form of mean feature vectors, (ii) evaluation - images which
are used to determine the operating point, i.e., the decision threshold, of the
face verification system and to define any potential parameters of the feature
extractor (e.g., number of features, selection of features, etc.), and (iii) testing -
images which are used to determine the verification error rates in real operating
conditions.

While the first image set features only images belonging to the client group,
the latter two image sets comprise images belonging to both the client and the
impostor groups. These images are used in our assessment to determine the
two error rates commonly exploited to quantify the performance of a given face
verification system, namely, the false rejection and false acceptance error rates
(FRR and FAR). These two error rates are defined as the relative frequency with
which a face verification system falsely rejects a legitimate- and falsely accepts
an impostor-identity-claim [7].

Unfortunately, both the FAR and the FRR depend on the value of the so-called
decision threshold Δ and, hence, selecting a threshold which ensures a small value
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Fig. 2. DET curves generated during the experiments on the evaluation image set

of FRR inevitably results in a high value of the FAR and vice versa, selecting a
threshold which ensures a small value of the FAR results in a high value of the
FRR. To compare the performance of two face verification systems an operating
point has to be determined or the error rates should be plotted against a number
of values of the decision threshold, thus generating a performance curve. Here we
choose the latter approach and present our verification results as performance
curves [7].

The employed protocol results in 600 client and 40000 impostor verification
attempts in the evaluation stage to determine the decision thresholds needed to
construct the performance curves, and 400 client and 112000 impostor verifica-
tion attempts in the test stage to determine the final performance of the assessed
techniques.

In all experiments we assume that the facial images are already localized and
scaled to a standard size of 64 × 64 pixels. To compensate for any potential
illumination induced appearance changes we further normalize the images by
applying histogram equalization followed by a zero mean and unit variance nor-
malization. The presented procedure is employed on all three color components
of the YIQ color space into which the images of the XM2VTS database are trans-
formed. It should be noted that the YIQ color space [13] rather than the RGB
color space is used in the experiments to reduce the correlations between the
individual color components and to make additional discriminatory information
not present in the commonly adopted grey-scale images available to the feature
extraction techniques. As a final step, we construct the SPA feature vector (of
size 1 × 3N) of each face image by simply concatenating the feature vectors of
the three color components. In addition to the experiments on the color images,
we also provide baseline comparisons with experiments performed on grey-scale
images.

The goal of our first series of verification experiments is to assess the perfor-
mance of the proposed SPA feature extraction technique on the evaluation image
sets and to compare the obtained error rates to that of some baseline feature
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extraction techniques. To this end, we implement the principal component anal-
ysis (PCA)[14] and independent component analysis (ICA - architecture I)[3]
face verification techniques and test them on the XM2VTS database. For all
assessed techniques we employ the nearest neighbor (to the mean) classifier in
conjunction with the cosine similarity measure for the matching stage. The clas-
sifier is chosen for the comparison, as it represents a non-parametric classifier
and hence does not introduce any classifier-dependant bias to the results.

From the DET curves in Fig. 21, which plot the false acceptance error rate
against the false rejection error rate at various values of the decision threshold,
we can find that the proposed technique significantly outperforms the PCA and
ICA methods on the grey scale images (Fig. 2 (left)), and performs better at the
lower values of the FAR on the color images (Fig. 2 (right)). The reason for the
good performance of the SPA technique can be found in the way the projection
axes are computed. As the label data matrix encodes the class membership
of the training face pattern vectors and all training samples from each class
are mapped to the same encoded label, the proposed technique compresses the
intra-class scatter similar to the popular linear discriminant analysis technique.

It was argued in [15] that DET curves cannot be used to effectively compare
two face recognition systems, since in real operating conditions an operational
threshold has to be set and the performance with this threshold on unseen data
might differ from the performance achieved when setting the threshold. To this
end, the so-called expected performance curves (EPC) were introduced in [15]. To
construct these curves two data sets of impostor and client images are needed.
The first, the evaluation data set, is used to set a decision threshold which
minimizes the following weighted error rate: αFAR(Δ)+(1−α)FRR(Δ), where
the parameter α controls the relative importance of the two error rates FAR and
FRR. This threshold is then used on the second, the test image set, to determine
the value of the half total error rate (HTER) defined as HTER = (FAR+FRR)/2.
When plotting the obtained HTER against a number of values of α, we obtain
an example of the EPC.

In our second series of experiments we produce EPC curves for all three tested
techniques. The generated curves are shown in the graphs labeled as Fig. 3(a)
and Fig. 3(b) for the grey-scale and color images, respectively. We can see that
as with the evaluation image set, the proposed technique performs the best,
followed by a similar performance of the remaining PCA and ICA techniques.
On the remaining two graphs of Fig. 3 (i.e., on the graphs labeled as Fig. 3(c)
and Fig. 3(d)) we present the results of the assessment on grey-scale and color
images, where the goal was to test the robustness of the two techniques to partial
occlusion of the facial region. Here, the facial images were occluded by setting
at most 30% of the pixels in each image to zero. The location and the size of the
occlusion were chosen randomly as shown in the examples presented in Fig. 4.

From the results we can see that the proposed technique results in much
better verification rates than the PCA technique, and even the ICA technique,

1 Note that the axis labels in Fig. 2 Miss probability and False Alarm Probability
correspond to the false acceptance and false rejection error rates, respectively.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
1
2
3
4
5
6
7
8
9

10
11

α

H
TE

R
 (

in
 %

)

 

 

PCA
ICA
SPA

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
1
2
3
4
5
6
7
8
9

10
11

α

H
TE

R
 (

in
 %

)

 

 

PCA
ICA
SPA

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
2
4
6
8

10
12
14
16
18
20
22
24
26

α

H
TE

R
 (

in
 %

)

 

 

PCA
ICA
SPA

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
2
4
6
8

10
12
14
16
18
20
22
24
26

α

H
TE

R
 (

in
 %

)

 

 

PCA
ICA
SPA

(d)

Fig. 3. EPC curves generated during the experiments: (a) on grey-scale images of the

original test set, (b) on color images of the original test set, (c) on grey-scale images

of the occluded test set, (d) on color images of the occluded test set

Fig. 4. Examples of occluded images

which, similarly as SPA, represents a local method. While all methods deteriorate
in their performance, the deterioration is more extreme for the PCA and ICA
techniques.

4 Conclusion

In the paper we have presented a novel feature extraction technique for face
recognition. The technique, which uses a sparse projection basis to reduce the
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dimensionality of the face pattern vectors, was assessed in a series of face verifi-
cation experiments performed on the XM2VTS database. In the experiments it
was shown to outperform the popular PCA and ICA techniques and to perform
reasonably well even if parts of the facial images are occluded.
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Abstract. Most face detection methods require high or medium resolution face
images to attain satisfactory results. However, in many surveillance applications,
where there is a need to image wide fields of view, faces cover just a few pixels,
which makes their detection difficult. Despite its importance, little work has been
aimed at providing reliable detection at these low resolutions. In this work, we
study the relationship between resolution and the automatic face detection rate
with the Modified Census Transform, one of the most successful algorithms for
face detection presented to date, and propose a new Color Census Transform
that provides significantly better results than the original when applied to low-
resolution color images.

1 Introduction

Face detection is an important first step in several computer vision applications, in-
cluding face recognition, tracking, and analysis of facial expressions, human-computer
interaction, tracking, object recognition and scene reconstruction. Face detection is a
difficult task, due to different factors such as varying sizes, orientations, poses, facial
expressions, occlusions and lighting conditions [1]. In recent years, numerous methods
for detecting faces working effectively under these various conditions have been pro-
posed [2,3,4,5,6]. These methods usually detect face images that contain at least 20×20
pixels, but provide poor results at lower resolutions.

However, in surveillance systems, the regions of interests are often impoverished or
blurred due to the large distance between the camera and the objects, or the low spatial
resolution of devices. Figure 1 illustrates an image collected from a surveillance video.
In this image, faces cover very small areas of the image (about 8 × 8 pixels), which
makes face recognition and analysis difficult. A few works address face detection in
lower resolution images [2,7], but the accuracies obtained are still low.

Torralba et al. [8] first studied psychologically the task of face detection in low-
resolution images by humans. They investigated how face detection changes as a func-
tion of available image resolution, whether the inclusion of local context in the form of
a local area surrounding the face improves face detection performance, and how con-
trast negation and image orientation changes affect face detection. Their results suggest
that in low-resolution the internal facial features become rather indistinct and lose their
effectiveness as good predictors of whether a pattern is a face or not, so that using
upper-body images is better than using only face images for human beings to recognize
faces images.

A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part I, LNCS 6111, pp. 454–463, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Faces in surveillance images

Kruppa and Schile [2] used the knowledge of Torralba’s experiment and applied a
local context detector, which is trained with instances that contain an entire head of one
person, neck and part of the upper body, for automatic face detection in low-resolution
images. They applied wavelet decomposition to capture most parts of the upper body’s
contours, as well as the collar of the shirt and the boundary between forehead and hair,
while the facial parts such as eyes and mouth are hardly discernible in the wavelet
transform of low-resolution images. In their experiments on two large data sets they
found that using local context could significantly improve the detection rate, particularly
in low resolution images.

Hayashi and Hasegawa [7] proposed a new face detector based on Haar features
along with the a conventional AdaBoost-based classifier for low-resolution images.
Their detector used four techniques to improve detection at low resolutions: using
upper-body images, expansion of input image, frequency-band limitation, and com-
bination of two detectors. This extensions allowed them to improved the face detection
rate from 39% to 71% for 6 × 6 pixel faces of MIT+CMU frontal face test set.

In this work, we study the relationship between resolution and the automatic face
detection rate with Modified Census Transform [3] and propose a new extended cen-
sus transform that works better than the original one in low-resolution color images
for object detection. We present experimental results showing the application of our
method with the Georgia Tech color frontal face database. The experiments show that
our method can attain better results than other methods using low-resolution color im-
ages as input.

2 Related Work

One of the milestones in face detection was the work of Rowley et al. who developed
a frontal face detection system that scanned every possible region and scale of an im-
age using a window of 20 × 20 pixels [9]. Each window is pre-processed to correct
for varying lighting, then, a retinally connected neural network is used to process the
pixel intensity levels of each window to determine if it contains a face. In later works,
they provided invariance to rotation perpendicular to the image plane by means of an-
other neural network that determined the rotation angle of a region, which was then be
rotated by the negative of that angle and then given to the original neural network for
classification [10].
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Convolution neural networks, which are highly modular multilayer feedforward neu-
ral networks that are invariant to certain transformations, were originally proposed by
[11] with the goal of performing handwritten character recognition. Years later Garcia
and Delakis propose a novel face detection approach based on a convolutional neural ar-
chitecture, to robustly detect highly variable face patterns in uncontrolled environments.
[12,5].

Schneiderman and Kanade detected faces and cars from different view points using
specialized detectors [13]. For faces, they used 3 specialized detectors for frontal, left
profile, and right profile views. For cars, they used 8 specialized detectors. Each spe-
cialized detector is based on histograms that represent the wavelet coefficients and the
position of the possible object, and then they used a statistical decision rule to eliminate
false negatives.

Jesorsky et al. based their face detection system on edge images [14]. They used a
coarse-to-fine detection using the Hausdorff distance between a hand-drawn model and
the edge image of a possible face. In [15], the face model used by Jesorsky et al. was
optimized using genetic algorithms, increasing slightly the correct detection rate.

Viola et al. [16] used Haar features in their face detection systems. They first intro-
duced the integral image to compute Haar features rapidly. They also proposed an effi-
cient modified version of the Adaboost algorithm that selects a small number of critical
visual features in face images of 24 × 24 pixels, and introduced a cascade of classifiers
to discard background regions of the image very quickly while spending more compu-
tation on regions of interest. Based on their work, we use a variation of the cascade of
strong classifiers with the modified census transform rather than Haar features.

Sung [17] first proposed a simple lighting model followed by histogram equalization.
Using a database of face window patterns and non-face window patterns, they construct
a distribution-based model of face patterns in a masked 19×19 dimensional normalized
image vector space. For each new window pattern to be classified, they compute a
vector of distances from the new window pattern to the window pattern prototypes
in the masked 19 × 19 pixel image feature space. Then based on the vector of distance
measurements to the window pattern prototypes, they train a multi-layer perceptron
(MLP) net to identify the new window as a face or non-face. Schneiderman [18] choose
a functional form of the posterior probability function that captures the joint statistics of
local appearance and position on the object as well as the statistics of local appearance
in the visual world at large. Viola [16] applied a simpler normalization to zero mean
and unit variance on the analysis window.

Wu et al. detected frontal and profile faces with arbitrary in-plane rotation and up
to 90-degree out-of-plane rotation [19]. They used Haar features and a look-up table
to develop strong classifiers. To create a cascade of strong classifiers they used Real
AdaBoost, an extension to the conventional AdaBoost. They built a specialized detector
for each of 60 different face poses. To simplify the training process, they took advantage
of the fact that Haar features can be efficiently rotated by 90 degrees or reversed, thus
they only needed to train 8 detectors, while the other 52 can be obtained by rotating or
inverting the Haar features.

Fröba and Ernst [3] used inherently illumination-invariant local structure features
for real-time face detection. They proposed the Modified Census Transform (MCT),
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which is a non-parametric local transform, for efficient computation. Using these local
structure features and an efficient four-stage classifier, they obtained results that were
comparable to the best systems presented to date.

Fig. 2. A randomly chosen subset of Local Structure Kernels

Also based on local structures, Dalal [20] introduced grids of locally normalized
Histograms of Oriented Gradients (HOG)as descriptors for object detection in static
images. The HOG descriptors are computed over dense and overlapping grids of spa-
tial blocks, with image gradient orientation features extracted at fixed resolution and
gathered into a high dimensional feature vector. They are designed to be robust to small
changes in image contour locations and directions, and significant changes in image
illumination and color, while remaining highly discriminative for overall visual form.

3 Image Features

3.1 The Modified Census Transform

The Modified Census Transform [3] is an extension of the Census Transform first in-
troduced by Zabih and Woodfill [21].

Let (r, c) be a pixel position in image I . Let N(r, c) be an ordered set containing the
pixels in the 3 × 3 neighborhood of pixel (r, c) in I . The MCT generates a string of
nine bits representing which pixels in N(r, c) have an intensity that is greater than the
average intensity in N(r, c).

N(r, c) = {(r′, c′)|r′ ∈ {r − 1, r, r + 1}, c′ ∈ {c − 1, c, c + 1}}

μI(N(r, c)) =

∑
(r′,c′)∈N(r,c) I(r′, c′)

9

MCTI(r, c) =
⊕

(r′,c′)∈N(r,c)

ξ(I(r′, c′), μI(N(r, c)))

where
⊕

denotes concatenation and ξ is and indicator function such that:

ξ(x, y) =
{

0 if x ≤ y
1 otherwise.



458 J. Zheng, G.A. Ramı́rez, and O. Fuentes

3.2 The Color Census Transform

The 9-bit modified census transform is defined for gray-scale images. It has been shown
to work very well when detecting faces of 24 × 24 pixels or above [3], but as resolution
is decreased performance rapidly degrades.

We propose an extended 12-bit Color Census Transform that takes advantage of color
information and yields accurate face detection even when resolution is low. We augment
the MCT with three additional bits to describe the color information of each pixel’s
neighborhood.

Let IC = 〈IR, IG, IB〉 be a color image, where IR, IG, and IB are the red, green
and blue channels of IC , and the intensity image I is given by I = (IR + IG + IB)/3.
Then:

μIR(N(r, c)) =

∑
(r′,c′)∈N(r,c) IR(r′, c′)

9

μIG(N(r, c)) =

∑
(r′,c′)∈N(r,c) IG(r′, c′)

9

μIB (N(r, c)) =

∑
(r′,c′)∈N(r,c) IB(r′, c′)

9
The additional three bits are given by:

bR(r, c) = ξ(μI(N(r, c)), μIR(N(r, c)))

bG(r, c) = ξ(μI(N(r, c)), μIG (N(r, c)))

bB(r, c) = ξ(μI(N(r, c)), μIB (N(r, c)))

where ξ is the indicator function as before.
Then the 12-bit Color Census Transform is given by:

CCTIC(r,c) = [MCTI(r, c), bR(r, c), bG(r, c), bB(r, c)]

3.3 Training of Classifiers

This section describes an algorithm for constructing a cascade of classifiers. We create
a cascade of strong classifiers using a variation of AdaBoost algorithm used by Viola et
al. [16], where we only use three stages in low resolution face detection as displayed in
Figure 3. Because of using modified census transform and less stages, our method is as
powerful as but more efficient than Viola’s.

Stages in the cascade are constructed by training classifiers using a version of boost-
ing algorithms similar to Fröba’s [3]. The pseudo-code of boosting is in Table 1. Boost-
ing terminates when the minimum detection rate and the maximum false positive rate
per stage in the cascade are attained. If the target false positive rate is achieved, the al-
gorithm ends. Otherwise, all negative examples correctly classified are eliminated and
the training set is balanced adding negative examples using bootstrapping. The pseudo-
code of bootstrapping is in Table 2. With the updated training set, all the weak classifiers
are retrained.
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Fig. 3. The cascade has three stages of increasing complexity. Each stage has the ability to reject
the current analysis window as background or pass it on to the next stage.

Table 1. Pseudo-code of boosting algorithm

• Given training examples (Ω1, l1), . . . , (Ωn, ln), where li = 0, 1
for negative and positive examples respectively.

• Initialize weights ω1,i = 1
2m

, 1
2l

for li = 0, 1 respectively,
where m and l are the number of negatives
and positives respectively

• For k = 1, . . . , K :

1. Normalize the weights,
ωk,i =

ωk,i∑n
i=1 ωk,j

2. Generate a weak classifier ck for a single feature k,
with error εk =

∑
i ωi|ck(Ωi) − li|

3. Compute αk = 1
2

ln(
1−εk

εk
)

4. Update the weights,

ωk+1,i = ωk,i ×
{

e−αk ck(Ωi) = li
1 otherwise

• The final strong classifier is:

C(Ω) =

{
1
∑K

k=1 αkck(Ω(k)) > 1
2

∑K
k=1 αk

0 otherwise
where K is the total number of features

A few weak classifiers are combined forming a final strong classifier. The weak
classifiers consist of histograms of gp

k and gn
k for the feature k. Each histogram holds

a weight for each feature. To build a weak classifier, we first count the kernel index
statistics at each position. The resulting histograms determine whether a single feature
belongs to a face or non-face. The single feature weak classifier at position k with
the lowest boosting error et is chosen in every boosting loop. The maximal number of
features on each stage is limited with regard to the resolution of analysis window. The
definition of histograms is as follows:{

gp
k(r) =

∑
i I(Ωi(k) = r)I(li = 1)

gn
k (r) =

∑
i I(Ωi(k) = r)I(li = 0) , k = 1, . . . , K, r = 1, . . . , R

where I(.) is the indicator function that takes 1 if the argument is true and 0 otherwise.
The weak classifier for feature k is:
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ck(Ωi) =
{

1 gp
k(Ωi(k)) > gn

k (Ωi(k))
0 otherwise

where Ωi(k) is the kth feature of the ith face image, ck is the weak classifier for the kth

feature. The final stage classifier C(Ω) is the sum of all weak classifiers for the chosen
features.

C(Ω) =
{

1
∑K

k=1 αkck(Ω(k)) > 1
2

∑K
k=1 αk

0 otherwise

where ck is the weak classifier, C(Ω) is the strong classifier, and αk = 1
2 ln(1−εk

εk
).

Table 2. Pseudo-code of bootstrapping algorithm

• Set the minimum true positive rate, Tmin, for each boosting iteration.
• Set the maximum detection error on the negative dataset, Ineg , for each

boost-strap iteration.
• P = set of positive training examples.
• N = set of negative training examples.
• K = the total number of features.
• While Ierr > Ineg

- While Ttpr < Tmin

◦ For k = 1 to K
Use P and N to train a classifier for a single feature.
Update the weights.

◦ Test the classifier with 10-fold cross validation to determine Ttpr.
- Evaluate the classifier on the negative set to determine Ierr and put any

false detections into the set N .

4 Experimental Results

The training data set consists of 6000 faces and 6000 randomly cropped non-faces. Both
the faces and non-faces are down-sampled to 24 × 24, 16 × 16, 8 × 8, and 6 × 6 pixels
for training detectors for different resolutions.

To test the detector, we use the Georgia Tech face database, which contains images
of 50 people. All people in the database are represented by 15 color JPEG images with
cluttered background taken at resolution 640 × 480 pixels. The average size of the
faces in these images is 150 × 150 pixels. The pictures show frontal and tilted faces
with different facial expressions, lighting conditions and scale.

We use a cascade of three strong classifiers using a variation of AdaBoost algorithm
used by Viola et al. The number of Boosting iterations is not fixed. The boosting process
continues until the detection rate reaches the minimum detection rate. For detecting
faces of 24 × 24 pixels, the analysis window is of size 22 × 22. The maximum number
of features for each stage is 20, 300, and 484 respectively. For detecting faces of 16 ×
16 pixels, the analysis window is of size 14 × 14. The maximum number of features
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Table 3. Face detection using Color Census Transform

Georgia tech face database
Modified census transform 12-bit MCT

Detection rate False alarms

Boosting

24 × 24 99.5% 1

16 × 16 97.2% 10

8 × 8 95.0% 136

6 × 6 80.0% 149

Table 4. Face detection using 9-bit modified census transform

Georgia tech face database
Modified census transform 9-bit MCT

Detection rate False alarms

Boosting

24 × 24 99.2% 296

16 × 16 98.4% 653

8 × 8 93.5% 697

6 × 6 68.8% 474

a) b)

Fig. 4. a) Sample detection results on 24× 24 pixel face images; b) Detection results on 16× 16

images

for each stage is 20, 150, and 196 respectively. For detecting faces of 8 × 8 pixels, the
analysis window is of size 6 × 6. The maximum number of features for each stage is
20, 30, and 36 respectively. For detecting faces of 6 × 6 pixels, the analysis window
is of size 4 × 4. The maximum number of features for each stage is 5, 10, and 16
respectively.

Tables 3 and 4 show the performance of the MCT and the CCT when applied to these
datasets. As expected, for both types of features, decreases in resolution lead to loss of
accuracy. From Table 3 and Table 4 we can conclude that, for every resolution used,
the Color Census Transform yields better results than the Modified Census Transform
in terms of detection rate and false detections. It can also be seen that the difference in
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performance between the two types of features increases as resolution decreases. This
leads to the conclusion that color information is more important in situations where
there is not enough information about structure to perform reliable detection, as is the
case with very low resolution face images.

In Figures 4 and 5 we show some representative results from the Georgia Tech face
database. The figures show results using face region sizes ranging from 6×6 to 24×24
pixels

a) b)

Fig. 5. a) Sample detection results on 8×8 pixel face images; b) Detection results on 6×6 images

5 Conclusion

In this paper, we presented a 12-bit Color Census Transform that works better than
the original 9-bit Modified Census Transform in low-resolution color images for ob-
ject detection. According to the experiments, our method, by taking advantage of color
information, can attain better results than the original 9-bit MCT detecting faces in
low-resolution color images.

For future work, we will apply our system in other object detection problems such
as car detection, road detection, and hand gesture detection. In addition, we plan to
perform experiments using other boosting algorithms such as Float- Boost and Real
AdaBoost to further improve the performance of our system in low-resolution object
detection. Finally, we will take advantage of the low computational requirements of our
methods and explore their hardware implementation in embedded low-power surveil-
lance systems.
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