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Preface

This volume contains the papers presented at SWAT 2010, the 12th Scandinavian
Symposium on Algorithm Theory. Since 1988 SWAT has been held biennially
in the Nordic countries; it has a loose association with WADS (Workshop on
Algorithms and Data Structures) that is held on odd-numbered years in North
America. This 12th SWAT was held during June 21–23, at the University of
Bergen in Norway.

The conference focuses on algorithms and data structures. The call for pa-
pers invited contributions in all areas of algorithms and data structures, includ-
ing approximation algorithms, computational biology, computational geometry,
distributed algorithms, external-memory algorithms, graph algorithms, online al-
gorithms, optimization algorithms, parallel algorithms, randomized algorithms,
string algorithms and algorithmic game theory. A total of 78 papers were submit-
ted, out of which the Program Committee selected 36 for presentation at the sym-
posium. In addition, invited lectures were given by Sanjeev Arora from Princeton
University, Prabhakar Raghavan from Yahoo! Research Labs, and Dana Randall
from Georgia Institute of Technology.

We would like to thank all the people who contributed to making SWAT 2010
a success. In particular, we thank the Program Committee and all of our many
colleagues who helped the committee evaluate the submissions. We also thank
the Norwegian Research Council and the University of Bergen for their support.

April 2010 Haim Kaplan
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Optimal Exploration of Terrains with Obstacles

Jurek Czyzowicz1,�, David Ilcinkas2,��,
Arnaud Labourel2,��,���, and Andrzej Pelc1,†

1 Département d’informatique, Université du Québec en Outaouais,
Gatineau, Québec J8X 3X7, Canada

jurek@uqo.ca, pelc@uqo.ca
2 LaBRI, CNRS & Université de Bordeaux, 33405 Talence, France

david.ilcinkas@labri.fr, labourel.arnaud@gmail.com

Abstract. A mobile robot represented by a point moving in the plane
has to explore an unknown flat terrain with impassable obstacles. Both
the terrain and the obstacles are modeled as arbitrary polygons. We
consider two scenarios: the unlimited vision, when the robot situated
at a point p of the terrain explores (sees) all points q of the terrain
for which the segment pq belongs to the terrain, and the limited vision,
when we require additionally that the distance between p and q be at
most 1. All points of the terrain (except obstacles) have to be explored
and the performance of an exploration algorithm, called its complexity,
is measured by the length of the trajectory of the robot.

For unlimited vision we show an exploration algorithm with complex-
ity O(P +D

√
k), where P is the total perimeter of the terrain (including

perimeters of obstacles), D is the diameter of the convex hull of the ter-
rain, and k is the number of obstacles. We do not assume knowledge
of these parameters. We also prove a matching lower bound showing
that the above complexity is optimal, even if the terrain is known to
the robot. For limited vision we show exploration algorithms with com-
plexity O(P + A +

√
Ak), where A is the area of the terrain (excluding

obstacles). Our algorithms work either for arbitrary terrains, if one of
the parameters A or k is known, or for c-fat terrains, where c is any con-
stant (unknown to the robot) and no additional knowledge is assumed.
(A terrain T with obstacles is c-fat if R/r ≤ c, where R is the radius
of the smallest disc containing T and r is the radius of the largest disc
contained in T .) We also prove a matching lower bound Ω(P +A+

√
Ak)

on the complexity of exploration for limited vision, even if the terrain is
known to the robot.

Keywords: Mobile robot, exploration, polygon, obstacle.
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H. Kaplan (Ed.): SWAT 2010, LNCS 6139, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 J. Czyzowicz et al.

1 Introduction

The background and the problem. Exploring unknown terrains by mobile
robots has important applications when the environment is dangerous or of dif-
ficult access for humans. Such is the situation when operating in nuclear plants
or cleaning toxic wastes, as well as in the case of underwater or extra-terrestrial
operations. In many cases a robot must inspect an unknown terrain and come
back to its starting point. Due to energy and cost saving requirements, the length
of the robot’s trajectory should be minimized.

We model the exploration problem as follows. The terrain is represented by
an arbitrary polygon P0 with pairwise disjoint polygonal obstacles P1, ...,Pk, in-
cluded in P0, i.e., the terrain is T = P0\(P1∪· · ·∪Pk). We assume that borders of
all polygonsPi belong to the terrain. The robot is modeled as a point moving along
a polygonal line inside the terrain. It should be noted that the restriction to poly-
gons is only to simplify the description, and all our results hold in the more general
case where polygons are replaced by bounded subsets of the plane homeotopic with
a disc (i.e., connected and without holes) and regular enough to have well-defined
area and boundary length. Every point of the trajectory of the robot is called vis-
ited. We consider two scenarios: the unlimited vision, when the robot visiting a
point p of the terrain T explores (sees) all points q for which the segment pq is
entirely contained in T , and the limited vision, when we require additionally that
the distance between p and q be at most 1. In both cases the task is to explore all
points of the terrain T . The cost of an exploration algorithm is the length of the
trajectory of the robot, which should be as small as possible. The complexity of an
algorithm is the order of magnitude of its cost. We assume that the robot does not
know the terrain before starting the exploration, but it has unbounded memory
and can record the portion of the terrain seen so far and the already visited portion
of its trajectory.

Our results. For unlimited vision we show an exploration algorithm with com-
plexity O(P + D

√
k), where P is the total perimeter of the terrain (including

perimeters of obstacles), D is the diameter of the convex hull of the terrain,
and k is the number of obstacles. We do not assume knowledge of these param-
eters. We also prove a matching lower bound for exploration of some terrains
(even if the terrain is known to the robot), showing that the above complexity
is worst-case optimal.

For limited vision we show exploration algorithms with complexity O(P +
A +

√
Ak), where A is the area of the terrain1. Our algorithms work either for

arbitrary terrains, if one of the parameters A or k is known, or for c-fat terrains,
where c is any constant larger than 1 (unknown to the robot) and no additional
knowledge is assumed. (A terrain T is c-fat if R/r ≤ c, where R is the radius of

1 Since parameters D, P, A are positive reals that may be arbitrarily small, it is
important to stress that complexity O(P + A +

√
Ak) means that the trajectory

of the robot is at most c(P + A +
√

Ak), for some constant c and sufficiently large
values of P and A. Similarly for O(P +D

√
k). This permits to include, e.g., additive

constants in the complexity, in spite of arbitrarily small parameter values.
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the smallest disc containing T and r is the radius of the largest disc contained in
T .) We also prove a matching lower bound Ω(P + A +

√
Ak) on the complexity

of exploration, even if the terrain is known to the robot.
The main open problem resulting from our research is whether exploration

with asymptotically optimal cost O(P +A+
√

Ak) can be performed in arbitrary
terrains without any a priori knowledge. Another interesting open problem is
whether such worst-case performance can be obtained by an O(k)-competitive
algorithm. (Our algorithms are a priori not competitive).

Related work. Exploration of unknown environments by mobile robots was
extensively studied both for the unlimited and for the limited vision. Most of
the research in this domain concerns the competitive framework, where the tra-
jectory of the robot not knowing the environment is compared to that of the
optimal exploration algorithm having full knowledge.

One of the most important works for unlimited vision is [8]. The authors
gave a 2-competitive algorithm for rectilinear polygon exploration without ob-
stacles. The case of non-rectilinear polygons (without obstacles) was also studied
in [7,15,12] and competitive algorithms were given.

For polygonal environments with an arbitrary number of polygonal obstacles,
it was shown in [8] that no competitive strategy exists, even if all obstacles are
parallelograms. Later, this result was improved in [1] by giving a lower bound
in Ω(

√
k) for the competitive ratio of any on-line algorithm exploring a polygon

with k obstacles. This bound remains true even for rectangular obstacles. On
the other hand, there exists an algorithm with competitive ratio in O(k) [7,15].
Moreover, for particular shapes of obstacles (convex and with bounded aspect
ratio) the optimal competitive ratio Θ(

√
k) has been proven in [15].

Exploration of polygons by a robot with limited vision has been studied,
e.g., in [9,10,11,13,14,16]. In [9] the authors described an on-line algorithm with
competitive ratio 1+3(ΠS/A), where Π is a quantity depending on the perimeter
of the polygon, S is the area seen by the robot, and A is the area of the polygon.
The exploration in [9,10] fails on a certain type of polygons, such as those with
narrow corridors. In [11], the authors consider exploration in discrete steps. The
robot can only explore the environment when it is motionless, and the cost of the
exploration algorithm is measured by the number of stops during the exploration.
In [13,14], the complexity of exploration is measured by the trajectory length,
but only terrains composed of identical squares are considered. In [16] the author
studied off-line exploration of the boundary of a terrain with limited vision.

An experimental approach was used in [2] to show the performance of a greedy
heuristic for exploration in which the robot always moves to the frontier between
explored and unexplored area. Practical exploration of the environment by an
actual robot was studied, e.g., in [6,19]. In [19], a technique is described to deal
with obstacles that are not in the plane of the sensor. In [6] landmarks are used
during exploration to construct the skeleton of the environment.

Navigation is a closely related task which consists in finding a path between
two given points in a terrain with unknown obstacles. Navigation in a n × n
square containing rectangular obstacles aligned with sides of the square was
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considered in [3,4,5,18]. It was shown in [3] that the navigation from a corner to
the center of a room can be performed with a competitive ratio O(log n), only
using tactile information (i.e., the robot modeled as a point sees an obstacle only
when it touches it). No deterministic algorithm can achieve better competitive
ratio, even with unlimited vision [3]. For navigation between any pair of points,
there is a deterministic algorithm achieving a competitive ratio of O(

√
n) [5].

No deterministic algorithm can achieve a better competitive ratio [18]. However,
there is a randomized approach performing navigation with a competitive ratio
of O(n

4
9 log n) [4]. Navigation with little information was considered in [20]. In

this model, the robot cannot perform localization nor measure any distances or
angles. Nevertheless, the robot is able to learn the critical information contained
in the classical shortest-path roadmap and perform locally optimal navigation.

2 Unlimited Vision

Let S be a smallest square in which the terrain T is included. Our algorithm
constructs a quadtree decomposition of S. A quadtree is a rooted tree with each
non-terminal node having four children. Each node of the quadtree corresponds
to a square. The children of any non-terminal node v correspond to four identical
squares obtained by partitioning the square of v using its horizontal and vertical
symmetry axes. This implies that the squares of the terminal nodes form a
partition of the root2. More precisely,

1. {S} is a quadtree decomposition of S
2. If {S1, S2, . . . , Sj} is a quadtree decomposition of S, then
{S1, S2, . . . , Si−1, Si1 , Si2 , Si3 , Si4 , Si+1, . . . , Sj}, where Si1 , Si2 , Si3 , Si4 form
a partition of Si using its vertical and horizontal symmetry axes, is a quadtree
decomposition of S

The trajectory of the robot exploring T will be composed of parts which will
follow the boundaries of Pi, for 0 ≤ i ≤ k, and of straight-line segments, called
approaching segments, joining the boundaries of Pi, 0 ≤ i ≤ k. Obviously, the
end points of an approaching segment must be visible from each other. The
quadtree decomposition will be dynamically constructed in a top-down manner
during the exploration of T . At each moment of the exploration we consider the
set QS of all squares of the current quadtree and the set QT of squares being
the terminal nodes of the current quadtree. We will also construct dynamically
a bijection f : {P0,P1, . . . ,Pk} −→ QS \ QT .

When a robot moves along the boundary of some polygon Pi, it may be in
one of two possible modes: the recognition mode - when it goes around the en-
tire boundary of a polygon without any deviation, or in the exploration mode -
when, while moving around the boundary, it tries to detect (and approach) new
obstacles. When the decision to approach a new obstacle is made at some point

2 In order to have an exact partition we assume that each square of the quadtree
partition contains its East and South edges but not its West and North edges.
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r of the boundary of Pi the robot moves along an approaching segment to reach
the obstacle, processes it by a recursive call, and (usually much later), return-
ing from the recursive call, it moves again along this segment in the opposite
direction in order to return to point r and to continue the exploration of Pi.
However, some newly detected obstacles may not be immediately approached.
We say that, when the robot is in position r, an obstacle Pj is approachable, if
there exists a point q ∈ Pj , belonging to a square St ∈ QT of diameter D(St)
such that |rq| ≤ 2D(St). It is important to state that if exactly one obstacle be-
comes approachable at moment t, then it is approached immediately and if more
than one obstacle become approachable at a moment t, then one of them (chosen
arbitrarily) is approached immediately and the others are approached later, pos-
sibly from different points of the trajectory. Each time a new obstacle is visited
by the robot (i.e., all the points of its boundary are visited in the recognition
mode) the terminal square of the current quadtree containing the first visited
point of the new obstacle is partitioned. This square is then associated to this
obstacle by function f . The trajectory of the robot is composed of three types
of sections: recognition sections, exploration sections and approaching sections.
The boundary of each polygon will be traversed twice: first time contiguously
during a recognition section and second time through exploration sections, which
may be interrupted several times in order to approach and visit newly detected
obstacles. We say that an obstacle is completely explored, if each point on the
boundary of this obstacle has been traversed by an exploration section. We will
prove that the sum of the lengths of the approaching sections is O(D

√
k).

Algorithm. ExpTrav (polygon R, starting point r∗ on the boundary of R)
1 Make a recognition traversal of the boundary of R
2 Partition square St ∈ QT containing r∗ into four identical squares
3 f(R) := St

4 repeat
5 Traverse the boundary of R until, for the current position r, there exists

a visible point q of a new obstacle Q belonging to square St ∈ QT ,
such that |rq| ≤ 2D(St)

6 Traverse the segment rq
7 ExpTrav(Q, q)
8 Traverse the segment qr
9 until R is completely explored

Before the initial call of ExpTrav, the robot reaches a position r0 at the boundary
of the polygon P0. This is done as follows. At its initial position v, the robot
chooses an arbitrary half-line α which it follows as far as possible. When it hits
the boundary of a polygon P , it traverses the entire boundary of P . Then, it
computes the point u which is the farthest point from v in P ∩α. It goes around
P until reaching u again and progresses on α, if possible. If this is impossible,
the robot recognizes that it went around the boundary of P0 and it is positioned
on this boundary. It initialises the quadtree decomposition to a smallest square
S containing P0. This square is of size O(D(P0)). The length of the above walk
is less than 3P .
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Lemma 1. Algorithm ExpTrav visits all boundary points of all obstacles of the
terrain T .

Lemma 2. Function f is a bijection from {P0,P1, . . . ,Pk} to QS \ QT , where
QS and QT correspond to the final quadtree decomposition produced by Algorithm
ExpTrav.

Lemma 3. For any quadtree T , rooted at a square of diameter D and having x
non-terminal nodes, the sum σ(T ) of diameters of these nodes is at most 2D

√
x.

Theorem 1. Algorithm ExpTrav explores the terrain T of perimeter P and
convex hull diameter D with k obstacles in time O(P + D

√
k).

Proof. Take an arbitrary point p inside T and a ray outgoing from p in an
arbitrary direction. This ray reaches the boundary of T at some point q. Since,
by Lemma 1 point q was visited by the robot, p was visible from q during the
robot’s traversal, and hence p was explored.

To prove the complexity of the algorithm, observe that the robot traverses
twice the boundary of each polygon of T , once during its recognition in step 1
and the second time during the iterations of step 5. Hence the sum of lengths of
the recognition and exploration sections is 2P . The only other portions of the
trajectory are produced in steps 6 and 8, when the obstacles are approached and
returned from. According to the condition from step 5, an approaching segment
is traversed in step 6 only if its length is shorter than twice the diameter of the
associated square. If k = 0 then the sum of lengths of all approaching segments is
0, due to the fact that exploration starts at the external boundary of the terrain.
In this case the length of the trajectory is at most 5P (since the length of at
most 3P was traversed before the initial call). Hence we may assume that k > 0.
By Lemma 2 each obstacle is associated with a different non-terminal node of
the quadtree and the number x of non-terminal nodes of the quadtree equals
k + 1. Hence the sum of lengths of all approaching segments is at most 2σ(T ).
By Lemma 3 we have σ(T ) ≤ 2D

√
x = 2D

√
k + 1, hence the sum of lengths of

approaching segments is at most 2σ(T ) ≤ 4D
√

k + 1 ≤ 4D
√

2k ≤ 6D
√

k. Each
segment is traversed twice, so the total length of this part of the trajectory is
at most 12D

√
k. It follows that the total length of the trajectory is at most

5P + 12D
√

k. �

Theorem 2. Any algorithm for a robot with unlimited visibility, exploring polyg-
onal terrains with k obstacles, having total perimeter P and the convex hull di-
ameter D, produces trajectories in Ω(P + D

√
k) in some terrains, even if the

terrain is known to the robot.

Proof. In order to prove the lower bound, we show two families of terrains: one
for which P ∈ Θ(D) (P cannot be smaller), D and k are unbounded and still
the exploration cost is Ω(D

√
k), and the other in which P is unbounded, D

is arbitrarily small, k = 0 and still the exploration cost is Ω(P ). Consider the
terrain from Figure 1(a) where k identical tiny obstacles are distributed evenly at
the

√
k×

√
k grid positions inside a square of diameter D. The distance between
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(a) (b)

Fig. 1. Lower bound for unlimited visiblity

obstacles is at least D
√

2
2(

√
k+1)

− ε where ε > 0 may be as small as necessary by
choosing obstacles sufficiently small. The obstacles are such that to explore the
small area inside the convex hull of the obstacle the robot must enter this convex
hull. Since each such area must be explored, the trajectory of the robot must be
of size at least (k− 1)

(
D
√

2
2(

√
k+1)

− ε
)
, which is clearly in Ω(D

√
k). Note that the

perimeter P is in Θ(D).
The terrain from Fig. 1(b) is a polygon of arbitrarily small diameter (with-

out obstacles), whose exploration requires a trajectory of size Ω(P ), where P
is unbounded (as the number of “corridors” can be unbounded). Indeed, each
”corridor” must be traversed almost completely to explore points at its end. The
two families of polygons from Fig. 1 lead to the Ω(P + D

√
k) lower bound. �

3 Limited Vision

In this section we assume that the vision of the robot has range 1. The following
algorithm is at the root of all our positive results on exploration with limited
vision. The idea of the algorithm is to partition the environment into small parts
called cells (of diameter at most 1) and to visit them using a depth-first traversal.
The local exploration of cells can be performed using Algorithm ExpTrav, since
the vision inside each cell is not limited by the range 1 of the vision of the robot.
The main novelty of our exploration algorithm is that the robot completely
explores any terrain. This should be contrasted with previous algorithms with
limited visibility, e.g. [9,10,13,14] in which only a particular class of terrains
with obstacles is explored, e.g., terrains without narrow corridors or terrains
composed of complete identical squares. This can be done at cost O(A). Our
lower bound shows that exploration complexity of arbitrary terrains depends on
the perimeter and the number of obstacles as well. The complete exploration of
arbitrary terrains achieved by our algorithm significantly complicates both the
exploration process and its analysis.

Our algorithms LETA and LETk, and the tourist algorithm described in [15]
share a similar approach to exploration, i.e., using several square decompositions
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of the terrain with different side lengths to figure out the characteristics of the
terrain and achieve efficient exploration. However, our algorithms differ from
the tourist algorithm in two important ways : (1) the exploration of the inside
of each square is done with an optimal algorithm (See section 2) instead of
a greedy one and (2) the limited visibility forces an upper bound on the side
of the square (significantly complicating LETk). More importantly, due to the
numerous differences between our model and the one of [15], the analyses of the
complexities of the algorithms are unrelated.

Algorithm. LimExpTrav (LET , for short)
INPUT: A point s inside the terrain T and a positive real F ≤

√
2/2.

OUTPUT: An exploration trajectory of T , starting and ending at s.
Tile the area with squares of side F , such that s is on the boundary of a square.
The connected regions obtained as intersections of T with each tile are called
cells. For each tile S, maintain a quadtree decomposition QS initially set to {S}.
Then, arbitrarily choose one of the cells containing s to be the starting cell C
and call ExpCell(C, s).

Procedure ExpCell(current cell C, starting point r∗ ∈ C)
1 Record C as visited
2 ExpTrav(C,r∗) using the quadtree decomposition QS; S is the tile s.t. C ⊆ S
3 repeat
4 Traverse the boundary of C until the current position r belongs to

an unvisited cell U
5 ExpCell(U , r)

(if r is in several unvisited cells, choose arbitrarily one to be processed)
6 until the boundary of C is completely traversed

It is worth to note that, at the beginning of the exploration of the first cell
belonging to a tile S, the quadtree of this tile is set to a single node. However, at
the beginning of explorations of subsequent cells belonging to S, the quadtree of
S may be different. So the top-down construction of this quadtree may be spread
over the exploration of many cells which will be visited at different points in time.

Consider a tile T and a cell C ⊆ T . Let AC be the area of C and BC the
length of its boundary. Let PC be the length of the part of the boundary of
C included in the boundary of the terrain T , and let RC be the length of the
remaining part of the boundary of C, i.e., RC = BC − PC .

Lemma 4. There is a positive constant c, such that RC ≤ c(AC/F + PC), for
any cell C.

The following is the key lemma for all upper bounds proved in this section. Let
S = {T1, T2, . . . , Tn} be the set of tiles with non-empty intersection with T and
C = {C1, C2, · · · , Cm} be the set of cells that are intersections of tiles from S
with T . For each T ∈ S, let kT be the number of obstacles of T entirely contained
in T .

Lemma 5. For any F ≤
√

2/2, Algorithm LET explores the terrain T of area
A and perimeter P , using a trajectory of length O(P + A/F + F

∑n
i=1

√
kTi).
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Proof. First, we show that Algorithm LET explores the terrain T . Consider
the graph G whose vertex set is C and edges are the pairs {C, C′} such that C
and C′ have a common point at their boundaries. The graph G is connected,
since T is connected. Note that for any cell C and point r on the boundary of
C, ExpTrav on C and r and thus ExpCell on C and r starts and ends on r.
Therefore, Algorithm LET performs a depth first traversal of graph G, since
during the execution of ExpCell(C, . . . ), procedure ExpCell(U, · · · ) is called for
each unvisited cell U adjacent to C. Hence, ExpCell(C, . . . ) is called for each
cell C ∈ C, since G is connected. During the execution of ExpCell(C, r), C is
completely explored by ExpTrav(C,r) by the same argument as in the proof of
Lemma 1, since the convex hull diameter of C is less than one.

It remains to show that the length of the LET trajectory is O(P + A/F +
F

∑n
i=1

√
kTi). For each j = 1, . . . , m, the part of the LET trajectory in-

side the cell Cj is produced by the execution of ExpCell(Cj , . . . ). In step 2
of ExpCell(Cj , . . . ), the robot executes ExpTrav with D =

√
2F and P =

PCj + RCj . The sum of lengths of recognition and exploration sections of the
trajectory in Cj is at most 2(PCj + RCj). The sum of lengths of approaching
sections of the trajectory in Ti is at most 6

√
2F

√
kTi and each approaching sec-

tion is traversed twice (cf. proof of Theorem 1). In step 3 of ExpCell(Cj , . . . ),
the robot only makes the tour of the cell Cj , hence the distance traveled by the
robot is at most PCj + RCj . It follows that:

|LET | ≤ 3
m∑

j=1

(PCj + RCj ) + 12
√

2F
n∑

i=1

√
kTi

≤ 3
m∑

j=1

((1 + c)PCj + cACj /F ) + 12
√

2F

n∑
i=1

√
kTi by Lemma 4

≤ 3(c + 1)P + 3cA/F + 12
√

2F

n∑
i=1

√
kTi . �

In view of Lemma 5, exploration of a particular class of terrains can be done at
a cost which will be later proved optimal.

Theorem 3. Let c > 1 be any constant. Exploration of a c-fat terrain of area A,
perimeter P and with k obstacles can be performed using a trajectory of length
O(P + A +

√
Ak) (without any a priori knowledge).

Proof. The robot executes Algorithm LET with F =
√

2/2. By Lemma 5, the
total cost is O(P +A+

∑n
i=1

√
kTi). Recall that n is the number of tiles that have

non-empty intersection with the terrain. We have
∑n

i=1

√
kTi ≤

∑n
i=1

√
k
n =

√
nk. Hence, it remains to show that n = O(A) to prove that the cost is O(P +

A+
√

Ak). By definition of a c-fat terrain, there is a disk D1 of radius r included
in the terrain and a disk D2 of radius R that contains the terrain, such that
R
r ≤ c. There are Θ(r2) tiles entirely included in D1 and hence in the terrain.
So, we have A = Ω(r2). Θ(R2) tiles are sufficient to cover D2 and hence the
terrain. So n = O(R2). Hence, we obtain n = O(A) in view of R ≤ cr. �
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Consider any terrain T of area A, perimeter P and with k obstacles. We now
turn attention to the exploration problem if some knowledge about the terrain
is available a priori. Notice that if A and k are known before the exploration,
Lemma 5 implies that Algorithm LET executed for F = min{

√
A/k,

√
2/2}

explores any terrain at cost O(A + P +
√

Ak). (Indeed, if F =
√

A/k then
A/F =

√
Ak and kF =

√
Ak, while F =

√
2/2 implies A/F = Θ(A) and

kF = O(A).) This cost will be later proved optimal. It turns out that a much
more subtle use of Algorithm LET can guarantee the same complexity assuming
only knowledge of A or k. We present two different algorithms depending on
which value, A or k, is known to the robot. Both algorithms rely on the same
idea. The robot executes Algorithm LET with some initial value of F until either
the terrain is completely explored, or a certain stopping condition, depending on
the algorithm, is satisfied. This execution constitutes the first stage of the two
algorithms. If exploration was interrupted because of the stopping condition,
then the robot proceeds to a new stage by executing Algorithm LET with a
new value of F . Values of F decrease in the first algorithm and increase in the
second one. The exploration terminates at the stage when the terrain becomes
completely explored, while the stopping condition is never satisfied. In each stage
the robot is oblivious of the previous stages, except for the computation of the
new value of F that depends on the previous stage. This means that in each
stage exploration is done “from scratch”, without recording what was explored
in previous stages. In order to test the stopping condition in a given stage, the
robot maintains the following three values: the sum A∗ of areas of explored
cells, updated after the execution of ExpTrav in each cell; the length P ∗ of the
boundary traversed by the robot, continuously updated when the robot moves
along a boundary for the first time (i.e., in the recognition mode); and the
number k∗ of obstacles approached by the robot, updated when an obstacle is
approached. The values of A∗, P ∗ and k∗ at the end of the i-th stage are denoted
by Ai, Pi and ki, respectively. Let Fi be the value of F used by Algorithm LET
in the i-th stage. Now, we are ready to describe the stopping conditions and the
values Fi in both algorithms.

Algorithm LETA, for A known before exploration
The value of F used in Algorithm LET for the first stage is F1 =

√
2/2.

The value of F for subsequent stages is given by Fi+1 = A
kiFi

. The stopping
condition is {k∗Fi ≥ 2A/Fi and k∗Fi ≥ P ∗ + 1}.

Algorithm LETk, for k known before exploration
The value of F used in Algorithm LET for the first stage is F1 = 1

k+
√

2
.

The value of F for subsequent stages is given by Fi+1 = min
{

Ai

kFi
,
√

2
2

}
. The

stopping condition is {A∗/Fi ≥ 2kFi and A∗/Fi ≥ P ∗ + 1 and Fi <
√

2/2}.
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Consider a moment t during the execution of Algorithm LET . Let Ct be the
set of cells recorded as visited by Algorithm LET at moment t, and let Ot be
the set of obstacles approached by the robot until time t. For each C ∈ Ct, let
BC be the length of the intersection of the exterior boundary of cell C with the
boundary of the terrain. For each O ∈ Ot, let |O| be the perimeter of obstacle
O and let kt = |Ot|. The following proposition is proved similarly as Lemma 5.

Proposition 1. There is a positive constant d such that the length of the tra-
jectory of the robot until any time t, during the execution of Algorithm LET , is
at most d(

∑
C∈Ct

(BC + AC/F ) + (kt + 1) · F +
∑

O∈Ot
|O|).

The following lemma establishes the complexity of exploration if either the area
of the terrain or the number of obstacles is known a priori.

Lemma 6. Algorithm LETA (resp. LETk) explores a terrain T of area A, perime-
ter P and with k obstacles, using a trajectory of length O(P + A +

√
Ak), if A

(resp. k) is known before exploration.

The following theorem shows that the lengths of trajectories in Lemma 6 and in
Theorem 3 are asymptotically optimal.

Theorem 4. Any algorithm for a robot with limited visibility, exploring polyg-
onal terrains of area A, perimeter P and with k obstacles, produces trajectories
of length Ω(P + A +

√
Ak) in some terrains, even if the terrain is known to the

robot.

Lemma 6 and Theorem 4 imply

Theorem 5. Consider terrains of area A, perimeter P and with k obstacles. If
either A or k is known before the exploration, then the exploration of any such
terrain can be performed using a trajectory of length Θ(P + A +

√
Ak), which is

asymptotically optimal.

Notice that in order to explore a terrain at cost O(P +A+
√

Ak), it is enough to
know the parameter A or k up to a multiplicative constant, rather than the exact
value. This can be proved by a carefull modification of the proof of Lemma 6.
For the sake of clarity, we stated and proved the weaker version of Lemma 6,
with knowledge of the exact value.

Suppose now that no a priori knowledge of any parameters of the terrain is
available. We iterate Algorithm LETA or LETk for A (resp. k) equal 1, 2, 4, 8, . . .
interrupting the iteration and doubling the parameter as soon as the explored
area (resp. the number of obstacles seen) exceeds the current parameter value.
The algorithm stops when the entire terrain is explored (which happens at the
first probe exceeding the actual unknown value of A, resp. k). We get an ex-
ploration algorithm using a trajectory of length O((P + A +

√
Ak) log A), resp.

O((P +A+
√

Ak) log k). By interleaving the two procedures we get the minimum
of the two costs. Thus we have the following corollary.

Corollary 1. Consider terrains of area A, perimeter P and with k obstacles.
Exploration of any such terrain can be performed without any a priori knowledge
at cost differing from the worst-case optimal cost with full knowledge only by a
factor O(min{log A, log k}).
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Reconstructing a Simple Polygon from Its Angles
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Abstract. We study the problem of reconstructing a simple polygon
from angles measured at the vertices of the polygon. We assume that
at each vertex, a sensing device returns the sequence of angles between
each pair of vertices that are visible. We prove that the sequence of
angle measurements at all vertices of a simple polygon in cyclic order
uniquely determines the polygon up to similarity. Furthermore, we pro-
pose an algorithm that reconstructs the polygon from this information
in polynomial time.

1 Introduction

The reconstruction of geometric objects from measurement data has attracted
considerable attention over the last decade [7,11,13]. In particular, many vari-
ants of the problem of reconstructing a polygon with certain properties have
been studied. For different sets of data this polygon reconstruction problem has
been shown to be NP-hard [4,8,10]. Recently, data from rather novel sensing
devices like range-finding scanners has been considered, and most of the recon-
struction problems that such devices naturally induce have been shown to be
NP-hard as well, while a few others are polynomial time solvable [1]. We study
the reconstruction problem induced by sensors that measure a sequence of angles.
Specifically, we assume that at each vertex v of a simple polygon, the sequence
of vertices visible from v is perceived in counterclockwise (ccw) order as seen
around v, starting at the ccw neighbor vertex of v on the polygon boundary. As
usual, we call two polygon vertices (mutually) visible, if the straight line segment
connecting them lies entirely in the polygon. In addition to seeing visible vertices
the angle sensor measures angles between adjacent rays from v to the vertices
it sees, and it returns the ccw sequence of these measured angles (cf. Figure 1).
Note that such an angle measurement indirectly also yields the angles between
any pair of rays to visible vertices (not only adjacent pairs). Our polygon re-
construction problem takes as input a ccw sequence of angle measurements, one
measurement at each vertex of a simple polygon, and asks for a simple polygon
that fits the measured angles; we call this problem the polygon reconstruction
problem from angles (cf. Figure 2).

Our contribution. We propose an algorithm that solves the polygon reconstruc-
tion problem from angles in polynomial time, and we show that the solution is
unique (up to similarity). More precisely, we focus on the visibility graph, i.e.,

H. Kaplan (Ed.): SWAT 2010, LNCS 6139, pp. 13–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Illustration of an angle measurement: the sensor returns the vector
(32◦, 66◦, 34◦)

Fig. 2. Given a sequence of angle measurements in ccw order along the boundary (left);
the goal is to find a polygon that fits these angles (right)

the graph with a node for every vertex of the polygon and an edge between two
nodes if the corresponding vertices see each other. It is sufficient to reconstruct
the visibility graph of a polygon, as, together with the angle data, it is then easy
to infer the shape of the polygon up to similarity.1 We show that only the visibil-
ity graph of the original polygon P is compatible with the information contained
in the angle data measured in P . Our algorithm finds this unique visibility graph
in polynomial time and thus reconstructs the original polygon up to similarity
in polynomial time. Note that if only the set of angle measurements is given,
i.e. the order of the vertices along the boundary is not known, it is impossible
to uniquely reconstruct the visibility graph of a polygon in general.2 While we
assume that the measured angles come from a simple polygon, our algorithm as
a side effect is also capable of detecting false inputs, i.e., measurements that do
not fit any simple polygon.

1 The shape of the polygon can be obtained in linear time from the visibility graph and
angle data. We can achieve this by first computing a triangulation and then fixing
the length of one edge. All other lengths in the triangulation can then be computed
in linear time.

2 To see this, consider a square and “attach” to every corner of it a triangle. Make the
shapes of the triangles all different and such that the vertices of a triangle that are
not at the corner of the square only see the corner vertices of the square they are
attached to (plus the vertices of the triangle of course). Now any permutation of the
triangles results in the same set of angle measurements but in different polygons.
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The key difficulty of the reconstruction of the visibility graph lies in the fact
that vertices in our setting have no recognizable labels, i.e., an angle measure-
ment at a vertex returns angles between distant vertices but does not identify
these distant vertices globally. Instead, our algorithm needs to identify these
vertices in a consistent way across the whole input. In this sense, our problem
has a similar flavor as the turnpike reconstruction problem (also known as one
dimensional partial digest problem), whose complexity is still open [12].

Related Work. For our purposes, the combinatorial nature of a polygon is en-
coded in its visibility graph. Solving the visibility graph reconstruction problem
for certain data may be a step towards understanding visibility graphs in gen-
eral. Their characterization has been an open problem for many years that has
attracted considerable attention [5,6].

A question closely related to the offline reconstruction of the visibility graph
of a polygon appears in the area of robotic exploration, namely what sensory
and motion capabilities enable simple robots inside a polygon to reconstruct
the visibility graph [2,14]. The idea to reconstruct it from angle data was first
mentioned in this context [2], but was also discussed earlier [9]. In all these
models a simple robot is assumed to sense visible vertices in ccw order (but
does not sense the global identity of visible vertices). In [2], the problem of
reconstructing the visibility graph of a polygon was solved for simple robots
that can measure angles and additionally are equipped with a compass. In the
case of robots that can only distinguish between angles smaller and larger than
π, it was shown in the same study that adding the capability of retracing their
movements empowers the robots to reconstruct the visibility graph (even if they
do not know n, the number of vertices of the unknown polygon). In both cases
a polynomial-time algorithm was given. Recently, it was shown that the ability
to retrace their movements alone already enables simple robots to reconstruct
the visibility graph (when at least an upper bound on the number of vertices of
the polygon is given), even though only an exponential algorithm was given [3].
Our result implies that measuring angles alone is also already sufficient. On the
other hand, it is known that the inner angles (the angles along the boundary)
of the polygon do not contain sufficient information to uniquely reconstruct the
visibility graph, even when combined with certain combinatorial information [2].

The general problem of reconstructing polygons from measurement data has
mainly been studied in two variants. The first variant asks to find some polygon
P� that is consistent with the data measured in the original polygon P . For
example, it was studied how a polygon P� compatible with the information
obtained from “stabbing” P or compatible with the set of intersection points of
P with some lines can be constructed [7,11]. The problem we consider falls in the
second variant in which generally the problem is to reconstruct P itself uniquely
from data measured in P , i.e., we have to show that only P is compatible with
the data. A previous study in this area shows that the inner angles of P together
with the cross-ratios of its triangulation uniquely determine P [13].
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Outline. We introduce the visibility graph reconstruction problem in detail in
Section 2. In Section 3 we show that there is a unique solution to the problem,
and give an algorithm that finds the unique solution in polynomial time.

2 The Visibility Graph Reconstruction Problem

Let P be a simple polygon with visibility graph Gvis = (V, Evis), where V de-
notes the set of vertices of P and n = |V |. We fix a vertex v0 ∈ V and denote the
other vertices of P by v1, v2, . . . , vn−1 in ccw order along the boundary starting
at v0’s ccw neighbor. For ease of presentation only, we assume polygons to be in
general position, i.e. no three vertices are allowed to lie on a line. All definitions
and results can be adapted to be valid even without this assumption (note that
our definition of visible vertices implies that the line segment connecting two
mutually visible vertices can have more than two points on the boundary of the
polygon in this case). The degree of a vertex vi ∈ V in Gvis is denoted by d(vi)
and the sequence vis(vi) =

(
vi, u1, u2, . . . , ud(vi)

)
is defined to enumerate the

vertices visible to vi ordered in ccw order along the boundary starting with vi

itself. We write vis0(vi) to denote vi itself and visk(vi) , 1 ≤ k ≤ d(vi) to de-
note uk. For two distinct vertices vi, vj ∈ V , chain(vi, vj) denotes the sequence
(vi, vi+1, . . . , vj) of the vertices between vi and vj along the boundary in ccw
order. Similarly, chainv(vi, vj) denotes the subsequence of chain(vi, vj) that con-
tains only the vertices that are visible to v. Note that here and in the following
all indices are understood modulo n.

We define the visibility segments of v to be the segments vu1, vu2 . . . , vud(v)
in this order. Similarly, we define the visibility angles of v to be the ordered
sequence of angles between successive visibility segments, such that the i-th
visibility angle is the angle between vui and vui+1, for all 1 ≤ i ≤ d(v)− 1.

Let v, vi, vj ∈ V . We write �v(vi, vj) to denote the angle between the lines
vvi and vvj (in that order) even if v, vi, vj do not mutually see each other. Let
1 ≤ l < r ≤ d(v). We write ∠v(l, r) to denote �v(visl(v) , visr(v)). We will
need the notion of the approximation �↑

v(vi, vj) of the angle �v(vi, vj), which is
defined as follows (cf. Figure 3): Let vi′ be the last vertex in chainv(vi+1, vi) and
vj′ be the first vertex in chainv(vj , vj−1). We then define �↑

v(vi, vj) = �v(vi′ , vj′).
Observe that if {v, vi}, {v, vj} ∈ Evis, we have �↑

v(vi, vj) = �v(vi, vj). Also note
that knowing the visibility angles of a vertex v is equivalent to knowing ∠v(lv, rv)
for all 1 ≤ lv < rv ≤ d(v).

In terms of the above definitions, the goal of the visibility graph reconstruction
problem is to find Evis when we are given n, V , d(v) for all v ∈ V , and ∠v(lv, uv)
for all v ∈ V and all 1 ≤ lv < uv ≤ d(v), as well as the (ccw) order in which the
vertices appear along the boundary.

3 Triangle Witness Algorithm

The key question when trying to reconstruct the visibility graph of a polygon is
how to identify a vertex u visible to some known vertex v. Knowing all angles at
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Fig. 3. Illustration of the approximation �↑
v(vi, vj) = �v(vi′ , vj′) of the angle �v(vi, vj)

every vertex may seem to be far too much information and the reconstruction
problem may thus seem easily solvable by some greedy algorithm. Before we
actually present the triangle witness algorithm that solves the reconstruction
problem, we show that some natural greedy algorithms do not work in general.

Greedy Approach. It is a natural idea to first orient all angles w.r.t. a single,
global orientation (e.g. the line vn−1v0) by summing angles around the polygon
boundary. Then, if a vertex v sees some other vertex u under a certain global
angle α, u must see v under the inverse angle α + π, as the line uv has a single
orientation. A simple greedy approach to identify the vertex u in the view from
v could be to walk from v along the boundary and find the first vertex that sees
some other vertex under the global angle α + π. The example in Fig. 4 however
shows that this approach does not work in general.

A similar but somewhat stronger approach is to allow global angles to go
beyond [0, 2π) while summing up around the polygon boundary, cf. Figure 4
(there, for instance, vertex v1 sees the second visible vertex in ccw order under
the angle α − π which is less than 0). This would prevent the pairing of vertex
v0 with vertex v1 in that example. Nevertheless, there are still examples where
this strategy fails and in fact it is not possible to greedily match angles:3 inspect
Figure 5 for an example of two polygons for which no matter how a greedy
algorithm chooses to pair vertices, it has to fail for one of the two.

Triangle Witness Algorithm. We now give an algorithm for the reconstruction
of the visibility graph from the visibility angles of all vertices. Note that from
now on we map all angles to the range [0, 2π). Our algorithm considers all ver-
tices at once and gradually identifies edges connecting vertices that lie further
and further apart along the boundary. Intuitively, once we know all vertices in
{vi+1, vi+2, . . . , vk−1} that are visible to vi, there is only one candidate vertex
which might be vk, namely the next unidentified vertex in vis(vi). Our algorithm
thus only needs to decide whether vi sees vk. The key ingredient here is the use of
a triangle witness vertex that indicates whether two other vertices see each other.
Because any polygon can be triangulated, we know that for every two vertices
{vi, vj} ∈ Evis with vj 
= vi+1, there is a “witness” vertex vl ∈ chain(vi+1, vj−1)

3 We do not aim, however, to give complete proof or to fully characterize all failing
greedy algorithms based on the idea of angle matching.
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Fig. 4. Illustration of the idea behind the greedy pairing algorithm for a single angle
α and starting vertex v0. If we map angles to the range [0, 2π), we allow v0 and v1 to
be paired which is obviously impossible.

Fig. 5. An example in which only one visibility graph can correctly be reconstructed
by any greedy pairing algorithm

that they both see, such that vi, vl, vj form a triangle (of angle sum π). We now
extend this notion to the case where {vi, vj} /∈ Evis.

Definition 1. Let vi, vj ∈ V be two different vertices and vj 
= vi+1. Let further
vl ∈ chain(vi+1, vj−1) with {vi, vl}, {vj , vl} ∈ Evis. Then we say vl is a triangle
witness of (vi, vj), if it fulfills the generalized angle-sum condition

�↑
vi

(vl, vj) + �↑
vj

(vi, vl) + �vl
(vj , vi) = π.

In the following we motivate the definition of a triangle witness (cf. Figure 6).
As before, we know that if two vertices vi, vj ∈ V, vj 
= vi+1 see each other, there
must be a vertex vl ∈ chain(vi+1, vj−1) which sees both of them. For any choice
of vl, the condition �vi(vl, vj) + �vj (vi, vl) + �vl

(vj , vi) = π is trivially fulfilled.
In the case that vi does not see vj , the only difference from vi’s perspective is
that for any choice of vl, �vi(vl, vj) does not appear in its visibility angles. We
want to modify the condition to capture this difference. The idea is to replace vj

in �vi(vl, vj) by an expression that happens to be vj , if and only if vi sees vj . We
choose “the first vertex in chainvi(vj , vj−1)”, which is vj , exactly if vi sees vj . If,
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similarly, we also replace vi in �vj (vi, vl) by “the last vertex in chainvj (vi+1, vi)”,
we obtain the generalized angle-sum condition of Definition 1. We will later see
(stated as Lemma 4) that there is a triangle witness for a pair (vi, vj), if and
only if {vi, vj} ∈ Evis.

We can now describe the triangle witness algorithm. It iterates through in-
creasing number of steps k along the boundary, focusing at step k on all edges
of the form {vi, vi+k}. Throughout it maintains two maps F , B that store for
every vertex all the edges identified so far that go at most k steps forward or
backward along the boundary, respectively. We write F [vi] [vj ] = s, if {vi, vj} is
the s-th edge incident to vi in ccw order, and B[vi] [vj ] = s, if {vi, vj} is the s-th
edge incident to vi in ccw order. Note that B[vi] is filled in cw order during the
algorithm, i.e. its first entry will be B[vi] [vi−1] = d(vi). Whenever convenient,
we use F [vi] and B[vi] like a set, e.g. we write vl ∈ F [vi] to denote that there is
an entry vl in F [vi] and write |F [vi]| to denote the number of entries in F [vi].
Observe also that |F [vi]| + 1 is the index of the first vertex (in ccw order) in
vis(vi) that is not yet identified. It is clear that once we completed the maps for
k up to

⌈
n
2

⌉
, we essentially have computed Evis.

The initialization of the maps for k = 1 is simple as every vertex sees its
neighbors on the boundary. In later iterations for every vertex vi there is always
exactly one candidate vertex for vi+k, namely the (|F [vi]|+ 1)-th vertex visible
to vi. We decide whether vi and vi+k see each other by going over all vertices
between vi and vi+k in ccw order along the boundary and checking whether there
is a triangle witness vl ∈ chain(vi+1, vi+k−1). If and only if this is the case, we
update Evis, F, B with the edge {vi, vi+k}. For a listing of the triangle witness
algorithm see Algorithm 1.

In the following we prove the correctness of the triangle witness algorithm.
For this we mainly have to show that having a triangle witness is necessary and
sufficient for a pair of vertices to see each other. To show this, we will need the
notion of blockers and shortest paths in polygons.

Fig. 6. Illustration of the generalized angle sum condition of Definition 1. On the left
{vi, vj} ∈ Evis and the angles αi, αj and αl of the condition sum up to π. On the right,
{vi, vj} /∈ Evis and the sum of the angles is strictly less than π.



20 Y. Disser, M. Mihalák, and P. Widmayer

Algorithm 1. Triangle witness algorithm
input: n, d(·), ∠·(·, ·)
output: Evis

1. F ← [array of n empty maps], B ← [array of n empty maps], Evis ← ∅
2. for i ← 0, . . . , n − 1
3. Evis ← Evis ∪ {vi, vi+1}
4. F [vi] [vi+1] ← 1
5. B[vi+1] [vi] ← d(vi)
6. for k ← 2, . . . ,

⌈
n
2

⌉
7. for i ← 0, . . . , n − 1
8. j ← i + k
9. for l ← i + 1, . . . j − 1

10. if vl ∈ F [vi] ∧ vl ∈ B[vj ]
11. αi ← ∠vi(F [vi] [vl] , |F [vi]| + 1) (= �↑

vi
(vl, vj) , cf. proof of Th. 1)

12. αj ← ∠vj (d(vj) − |B[vj ]| , B[vj ] [vl]) (= �↑
vj

(vi, vl) , cf. proof of Th. 1)
13. αl ← ∠vl (F [vl] [vj ] , B[vl] [vi]) (= �vl(vj , vi) , cf. proof of Th. 1)
14. if αi + αj + αl = π
15. Evis ← Evis ∪ {vi, vj}
16. F [vi] [vj ] = |F [vi]| + 1
17. B[vj ] [vi] = d(j) − |B[vj ]|
18. abort innermost loop

Definition 2. Let vi, vj ∈ V . We say vb ∈ chain(vi+1, vj−1) is a blocker of
(vi, vj), if for all u ∈ chain(vi, vb−1) , v ∈ chain(vb+1, vj) we have {u, v} /∈ Evis
(cf. Figure 7 (left)).

Note that if vb is a blocker of (vi, vj), vb also is a blocker of (u, v) for all u ∈
chain(vi, vb−1), v ∈ chain(vb+1, vj).

A path between two vertices a, b ∈ V of a polygon P is defined to be a curve
that lies entirely in P and has a and b as its endpoints. A shortest path between
a and b is a path of minimum Euclidean length among all the paths between the
two vertices.

Lemma 1 (Lemmas 3.2.3 and 3.2.5. in [5]). Let vi, vj ∈ V . The shortest
path between vi and vj is unique and is a chain of straight line segments that
connect at vertices.

We can therefore write (a, u0, u1, . . . , b) to denote a shortest path, where we refer
to the ui’s as the path’s interior vertices. The following statements motivate the
term ’blocker’.

Lemma 2. Let vi, vj ∈ V with {vi, vj} /∈ Evis. Every interior vertex of the
shortest path from vi to vj is a blocker of either (vi, vj) or (vj , vi).

Proof. Consult Figure 7 (right) along with the proof. For the sake of con-
tradiction assume that vb ∈ V is an interior vertex of the shortest path pij

from vi to vj that is not a blocker of either (vi, vj) or (vj , vi). W.l.o.g. assume
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Fig. 7. Left: a pair of vertices can have blockers on both sides. Right: illustration of
the objects in the proof of Lemma 2.

vb ∈ chain(vi+1, vj−1). As vb is not a blocker of (vi, vj), there are two ver-
tices u ∈ chain(vi+1, vb−1) , w ∈ chain(vb+1, vj−1) with {u, w} ∈ Evis. Thus, the
segment uw is entirely in the polygon and separates it in two parts, one part
containing vb and the other containing both vi and vj . As pij visits vb, it must
cross uw at least twice. Let x, y be the first and last intersection points of uw
with pij . Consider the curve C that follows pij until x, then follows uw until y
and finally follows pij until vj . Because of the triangle inequality, C is strictly
shorter than pij which is a contradiction with the assumption that pij is a short-
est path. ��

Corollary 1. Let vi, vj ∈ V . If {vi, vj} /∈ Evis, there is either a blocker of
(vi, vj) or of (vj , vi).

We now relate the definition of a blocker to the geometry of the polygon.

Lemma 3. Let vi, vj ∈ V with i = j + 2, {vi, vj} /∈ Evis. If w := vj+1 = vi−1 is
convex (inner angle < π), then vi′ = argminvb∈chainvi

(vi+1,vj−1) �vi(vb, w) and
vj′ = argminvb∈chainvj

(vi+1,vj−1) �vj (w, vb) are blockers of (vi, vj) that lie left of
the oriented line vivj.

Proof. As w is convex, the shortest path pij from vi to vj only contains vertices
of chain(vi, vj). As pij only makes right turns (i.e. any three consecutive vertices
on pij form a ccw triangle), all interior vertices of pij lie left of the oriented line
vivj . Furthermore vi′ and vj′ are the first and the last interior vertices of pij

respectively. By Lemma 2 we thus know that both vi′ and vj′ are blockers of
(vi, vj). From before we also know that they both lie left of the oriented line
vivj . ��

We now get to the central lemma that essentially states that the existence of a
triangle witness is necessary and sufficient for a pair of vertices to see each other.

Lemma 4. Let vi, vj ∈ V with |chain(vi, vj)| > 2. There is a triangle witness vl

for (vi, vj), if and only if {vi, vj} ∈ Evis.
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Fig. 8. Sketch of the definitions in the proof of Lemma 4

Proof. If {vi, vj} ∈ Evis, because any polygon can be triangulated, there must
be a vertex vl ∈ chain(vi+1, vj−1) for which both edges {vi, vl} and {vl, vj} are in
Evis. For this vertex we have �↑

vi
(vl, vj)+�↑

vj
(vi, vl)+�vl

(vj , vi) = �vi(vl, vj)+
�vj (vi, vl) + �vl

(vj , vi) = π as all three relevant edges are in Evis and the sum
over the angles of any triangle is π.

For the converse implication assume there is a triangle witness vl of (vi, vj).
For the sake of contradiction, assume {vi, vj} /∈ Evis.

Consider the polygon P ′ induced by the vertices vi, vl, vj , chain(vj+1, vi−1),
cf. Figure 8. As {vi, vl}, {vl, vj} ∈ Evis, P ′ is simple and well defined. In P ′,
vl is a convex vertex, as it fulfills the generalized angle-sum condition of Def-
inition 1 and thus �vl

(vj , vi) < π, because all angles are positive. We can
therefore apply Lemma 3 (on vj , vi) w.r.t. P ′ and conclude that both vj′ and
vi′ block (vj , vi), where vj′ = argminvb∈chainvi

(vj+1,vi−1) �vi(vl, vb) and vi′ =
argminvb∈chainvj

(vj+1,vi−1) �vj (vb, vl). This is then also true in our original poly-
gon P and thus vi′ ∈ chain(vj , vj′) as otherwise vj′ would block (vj , vi′) and
vi′ would block (vj′ , vi) contradicting the definition of vj′ and vi′ , respectively.
Observe that vi′ is the last vertex in chain(vi+1, vi) visible to vj and vj′ is the
first vertex in chain(vj , vj−1) visible to vi.

By applying Lemma 3 to P ′, we know that both vj′ and vi′ are left of
the oriented line vjvi. This means �↑

vi
(vl, vj) = �vi(vl, vj′ ) < �vi(vl, vj) and

�↑
vj

(vi, vl) = �vj (vi′ , vl) < �vj (vi, vl) and thus �↑
vi

(vl, vj)+�↑
vj

(vi, vl)+�vl
(vj , vi)

< �vi(vl, vj) + �vj (vi, vl) + �vl
(vj , vi) = π, which is a contradiction with our

assumption that vl is a triangle witness of (vi, vj). ��

Theorem 1. The triangle witness algorithm is correct, computes a unique so-
lution, and can be implemented with a running time of O

(
n3 log n

)
.

Proof. As the edges in Evis are the same as the edges stored in F and the same as
the edges stored in B throughout the algorithm, it is sufficient to show that after
step k of the iteration both F and B contain exactly the edges between vertices
that are at most k steps apart along the boundary. As no two vertices can be
further apart than

⌈
n
2

⌉
steps along the boundary, this immediately implies that
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Evis eventually contains exactly the edges of the visibility graph. More precisely,
we inductively show that after step k of the iteration, F [vi] contains the vertices
of chainvi(vi+1, vi+k) and B[vi] contains the vertices of chainvi(vi−k, vi−1) for
all vi ∈ V . For sake sake of simplicity we write F [vi] = chainvi(vi+1, vi+k) and
B[vi] = chainvi(vi−k, vi−1).

The discussion for k = 1 is trivial as every vertex has an edge to both its
neighbors. The algorithm initializes F and B to consist of these edges. It remains
to show for all 0 ≤ i < n that assuming F [vi] = chainvi(vi+1, vi+k−1) and
B[vi] = chainvi(vi−k+1, vi−1) after step k−1, we have F [vi] = chainvi(vi+1, vi+k)
and B[vi] = chainvi(vi−k, vi−1) after step k.

The algorithm adds an edge between two vertices vi and vi+k, if and only if
there is a vertex vl ∈ chain(vi+1, vi+k−1) with vl ∈ F [vi] ∧ vl ∈ B[vi+k] for which
αi +αj +αl = π, where αi, αj , αl are defined as in Algorithm 1. As vi and vl are
less than k steps apart on the boundary, the induction assumption implies that
F [vi] = chainvi(vi+1, vi+k−1) and B[vi+k] = chainvi+k

(vi+1, vi+k−1). Thus, vl ∈
F [vi] ∧ vl ∈ B[vi+k] is equivalent to {vi, vl}, {vi+k, vl} ∈ Evis and by Lemma 4 it
suffices to show that αi = �↑

vi
(vl, vi+k) , αj = �↑

vi+k
(vi, vl) , αl = �vl

(vi+k, vi) for
all vl ∈ F [vi]∩B[vi+k]. Again by induction F [vi] = chainvi(vi+1, vi+k−1) and thus
visF [vi][vl](vi) = vl and vis|F [vi]|+1(vi) = argminvb∈chainvi

(vi+k,vi−1) �vi(vi+1, vb)
and we thus get αi = ∠vi(F [vi] [vl] , |F [vi]|+ 1) = �↑

vi
(vl, vi+k). Similarly as vl

and vi+k are less than k steps apart on the boundary, we get αj = �↑
vi+k

(vi, vl).
Further, with the induction assumption we also have visF [vl][vi+k](vl) = vi+k and
visB[vl][vi](vl) = vi and thus αl = ∠vl

(F [vl] [vj ] , B[vl] [vi]) = �vl
(vi+k, vi).

The uniqueness of the algorithm’s solution follows immediately from the fact
that the existence of a triangle witness is necessary and sufficient for two vertices
to see each other.

For every vertex vi and every k = 1, 2, . . . ,
⌈

n
2

⌉
, the algorithm has to iterate

over all candidates vl ∈ chain(vi+1, vi+k−1) of a triangle witness of (vi, vi+k). In
total at most O

(
n3

)
such combinations have to be examined. In order to decide

whether a particular vl is a triangle witness of (vi, vi+k), first the algorithm has
to decide whether vl is visible to both vi and vi+k. If we use a self-balancing
tree data structure for F [vi] and B[vi+k] for all choices of i and k, this decision
requires O(log n) time. Summing the corresponding angles and comparing the
result to π takes constant time. Hence the total running time is O

(
n3 log n

)
. ��

Note that as the triangle witness algorithm computes a unique solution, it
provides an immediate way of identifying inconsistent input, i.e. angle data
that does not belong to any polygon. If upon termination of the algorithm
|F [vi] ∪B[vi]| 
= d(vi) for some vertex vi, the input must be inconsistent. Other-
wise, we can compute a triangulation of the visibility graph and infer the shape
of it in the plane. Then the input was consistent if and only if the computed
shape is valid (i.e., if this gives a simple polygon that is consistent with the input
sequence of angle measurements).
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Abstract. We introduce a new number system that we call the strictly-
regular system, which efficiently supports the operations: digit-increment,
digit-decrement, cut, concatenate, and add. Compared to other number
systems, the strictly-regular system has distinguishable properties. It is
superior to the regular system for its efficient support to decrements, and
superior to the extended-regular system for being more compact by us-
ing three symbols instead of four. To demonstrate the applicability of the
new number system, we modify Brodal’s meldable priority queues making
deletion require at most 2 lg n+O(1) element comparisons (improving the
bound from 7 lg n+O(1)) while maintaining the efficiency and the asymp-
totic time bounds for all operations.

1 Introduction

Number systems are powerful tools of the trade when designing worst-case-
efficient data structures. As far as we know, their usage was first discussed in
the seminar notes by Clancy and Knuth [1]. Early examples of data structures
relying on number systems include finger search trees [2] and binomial queues
[3]. For a survey, see [4, Chapter 9]. The problem with the normal binary number
representation is that a single increment or decrement may change all the digits
in the original representation. In the corresponding data structure, this may give
rise to many changes that would result in weak worst-case performance.

The characteristics of a positional number system N are determined by the
constraints imposed on the digits and the weights corresponding to them. Let
rep(d,N ) = 〈d0, d1, . . . , dr−1〉 be the sequence of digits representing a positive
integer d in N . (An empty sequence can be used to represent zero.) By conven-
tion, d0 is the least-significant digit and dr−1 
= 0 is the most-significant digit.
The value of d in N is val(d,N ) =

∑r−1
i=0 di · wi, where wi is the weight cor-

responding to di. As a shorthand, we write rep(d) for rep(d,N ) and val(d) for
val(d,N ). In a redundant number system, it is possible to have val(d) = val(d′)
while rep(d) 
= rep(d′). In a b-ary number system, wi = bi.
� The work of the authors was partially supported by the Danish Natural Sci-

ence Research Council under contract 09-060411 (project “Generic programming—
algorithms and tools”). A. Elmasry was supported by the Alexander von Humboldt
Foundation and the VELUX Foundation.
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A sequence of digits is said to be valid in N if all the constraints imposed by
N are satisfied. Let d and d′ be two numbers where rep(d) = 〈d0, d1, . . . , dr−1〉
and rep(d′) =

〈
d′0, d

′
1, . . . , d

′
r′−1

〉
are valid. The following operations are defined.

increment(d, i): Assert that i ∈ {0, 1, . . . , r}. Perform ++di resulting in d′, i.e.
val(d′) = val(d) + wi. Make d′ valid without changing its value.

decrement(d, i): Assert that i ∈ {0, 1, . . . , r − 1}. Perform --di resulting in d′,
i.e. val(d′) = val(d)− wi. Make d′ valid without changing its value.

cut(d, i): Cut rep(d) into two valid sequences having the same value as the
numbers corresponding to 〈d0, d1, . . . , di−1〉 and 〈di, di+1, . . . , dr−1〉.

concatenate(d, d′): Concatenate rep(d) and rep(d′) into one valid sequence that
has the same value as

〈
d0, d1, . . . , dr−1, d

′
0, d

′
1, . . . , d

′
r′−1

〉
.

add(d, d′): Construct a valid sequence d′′ such that val(d′′) = val(d) + val(d′).

One should think that a corresponding data structure contains di components of
rank i, where the meaning of rank is application specific. A component of rank
i has size si ≤ wi. If si = wi, we see the component as perfect. In general, the
size of a structure corresponding to a sequence of digits need not be unique.

The regular system [1], called the segmented system in [4], comprises the digits
{0, 1, 2} with the constraint that every 2 is preceded by a 0 possibly having any
number of 1’s in between. Using the syntax for regular expressions (see, for
example, [5, Section 3.3]), every regular sequence is of the form

(
0 | 1 | 01∗2

)∗.
The regular system allows for the increment of any digit with O(1) digit changes
[1,6], a fact that can be used to modify binomial queues to accomplish insert at
O(1) worst-case cost. Brodal [7] used a zeroless variant of the regular system,
comprising the digits {1, 2, 3}, to ensure that the sizes of his trees are exponential
with respect to their ranks. For further examples of structures that use the
regular system, see [8,9]. To be able to perform decrements with O(1) digit
changes, an extension was proposed in [1,6]. Such an extended-regular system
comprises the digits {0, 1, 2, 3}with the constraint that every 3 is preceded by a 0
or 1 possibly having any number of 2’s in between, and that every 0 is preceded
by a 2 or 3 possibly having any number of 1’s in between. For examples of
structures that use the extended-regular system, see [6,10,11].

In this paper, we introduce a number system that we call the strictly-regular
system. It uses the digits {0, 1, 2} and allows for both increments and decrements
with O(1) digit changes. The strictly-regular system contains less redundancy
and is more compact, achieving better constant factors while supporting a larger
repertoire of operations. We expect the new system to be useful in several other
contexts in addition to the applications we mention here.

Utilizing the strictly-regular system, we introduce the strictly-regular trees.
Such trees provide efficient support for adding a new subtree to the root, detach-
ing an existing one, cutting and concatenating lists of children. We show that
the number of children of any node in a strictly-regular tree is bounded by lg n,
where n is the number of descendants of such node.

A priority queue is a fundamental data structure which stores a dynamic col-
lection of elements and efficiently supports the operations find-min, insert , and
delete. A meldable priority queue also supports the operation meld efficiently. As
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Table 1. Known results on the worst-case comparison complexity of priority-queue
operations when decrease is not considered and find -min has O(1) cost. Here n and m
denote the sizes of priority queues.

Source insert delete meld

[12] O(1) lg n + O(1) –

[11] O(1) lg n + O(lg lg n) O(lg(min {n, m}))
[7] (see Section 3.1) O(1) 7 lg n + O(1) O(1)

[13] O(1) 3 lg n + O(1) O(1)
this paper O(1) 2 lg n + O(1) O(1)

a principal application of our number system, we implement an efficient meld-
able priority queue. Our best upper bound is 2 lg n + O(1) element comparisons
per delete, which is achieved by modifying the priority queue described in [7].
Table 1 summarizes the related known results.

The paper is organized as follows. We introduce the number system in Section
2, study the application to meldable priority queues in Section 3, and discuss
the applicability of the number system to other data structures in Section 4.

2 The Number System

Similar to the redundant binary system, in our system any digit di must be 0,
1, or 2. We call 0 and 2 extreme digits. We say that the representation is strictly
regular if the sequence from the least-significant to the most-significant digit is of
the form

(
1+ | 01∗2

)∗(
ε | 01+

)
. In other words, such a sequence is a combination

of zero or more interleaved 1+ and 01∗2 blocks, which may be followed by at
most one 01+ block. We use wi = 2i, implying that the weighted value of a 2 at
position i is equivalent to that of a 1 at position i + 1.

2.1 Properties

An important property that distinguishes our number system from other systems
is what we call the compactness property, which is defined in the next lemma.

Lemma 1. For any strictly-regular sequence,
∑r−1

i=0 di is either r − 1 or r.

Proof. The sum of the digits in a 01∗2 block or a 1∗ block equals the number of
digits in the block, and the sum of the digits in the possibly trailing 01+ block
is one less than the number of digits in that block. ��

Note that the sum of digits
∑r−1

i=0 di for a positive integer in the regular system
is between 1 and r; in the zeroless system, where di ∈ {1, 2, . . .h}, the sum of
digits is between r and h · r; and in the zeroless regular representation, where
di ∈ {1, 2, 3} [7], the sum of digits is between r and 2r.
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An important property, essential for designing data structures with expo-
nential size in terms of their rank, is what we call the exponentiality property.
Assume si ≥ θi/c and s0 = 1, for fixed real constants θ > 1 and c > 0. A number
system has such property if for each valid sequence

∑r−1
i=0 di ·si ≥ θr/c−1 holds.

Lemma 2. For the strictly-regular system, the exponentiality property holds by
setting θ = c = Φ, where Φ is the golden ratio.

Proof. Consider a sequence of digits in a strictly-regular representation, and
think about di = 2 as two 1’s at position i. It is straightforward to verify that
there exists a distinct 1 whose position is at least i, for every i from 0 to r − 2.
In other words, we have

∑r−1
i=0 di ·si ≥

∑r−2
i=0 si. Substituting with si ≥ Φi−1 and

s0 = 1, we obtain
∑r−1

i=0 di · si ≥ 1 +
∑r−3

i=0 Φi ≥ Φr−1 − 1. ��

The exponentiality property holds for any zeroless system by setting θ = 2 and
c = 1. The property also holds for any θ when dr−1 ≥ θ; this idea was used in
[8], by imposing dr−1 ≥ 2, to ensure that the size of a tree of rank r is at least
2r. On the other hand, the property does not hold for the regular system.

2.2 Operations

It is convenient to use the following subroutines that change two digits but not
the value of the underlying number.

fix -carry(d, i): Assert that di ≥ 2. Perform di ← di − 2 and di+1 ← di+1 + 1.
fix -borrow(d, i): Assert that di ≤ 1. Perform di+1 ← di+1 − 1 and di ← di + 2.

Temporarily, a digit can become a 3 due to ++di or fix -borrow , but we always
eliminate such a violation before completing the operations. We demonstrate in
Algorithm increment (decrement) how to implement the operation in question
with at most one fix -carry (fix -borrow ), which implies Theorem 1. The correct-
ness of the algorithms follows from the case analysis of Table 2.

Theorem 1. Given a strictly-regular representation of d, increment(d, i) and
decrement(d, i) incur at most three digit changes.

Algorithm increment(d, i)

1: ++di

2: Let db be the first extreme digit before di, db ∈ {0, 2, undefined}
3: Let da be the first extreme digit after di, da ∈ {0, 2, undefined}
4: if di = 3 or (di = 2 and db 	= 0)
5: fix -carry(d, i)
6: else if da = 2
7: fix -carry(d, a)
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Algorithm decrement(d, i)

1: Let db be the first extreme digit before di, db ∈ {0, 2, undefined}
2: Let da be the first extreme digit after di, da ∈ {0, 2, undefined}
3: if di = 0 or (di = 1 and db = 0 and i 	= r − 1)
4: fix -borrow (d, i)
5: else if da = 0
6: fix -borrow (d, a)
7: --di

By maintaining pointers to all extreme digits in a circular doubly-linked list, the
extreme digits are readily available when increments and decrements are carried
out at either end of a sequence.

Corollary 1. Let 〈d0, d1, . . . , dr−1〉 be a strictly-regular representation of d. If
such sequence is implemented as two circular doubly-linked lists, one storing all
the digits and another all extreme digits, any of the operations increment(d, 0),
increment(d, r − 1), increment(d, r), decrement(d, 0), and decrement(d, r − 1)
can be executed at O(1) worst-case cost.

Theorem 2. Let 〈d0, d1, . . . , dr−1〉 and
〈
d′0, d

′
1, . . . , d

′
r′−1

〉
be strictly-regular rep-

resentations of d and d′. The operations cut(d, i) and concatenate(d, d′) can be
executed with O(1) digit changes. Assuming without loss of generality that r ≤ r′,
add(d, d′) can be executed at O(r) worst-case cost including at most r carries.

Proof. Consider the two sequences resulting from a cut. The first sequence is
strictly regular and requires no changes. The second sequence may have a pre-
ceding 1∗2 block followed by a strictly-regular subsequence. In such case, we
perform a fix -carry on the 2 ending such block to reestablish strict regularity.
A catenation requires a fix only if rep(d) ends with a 01+ block and rep(d′) is
not equal to 1+. In such case, we perform a fix -borrow on the first 0 of rep(d′).
An addition is implemented by adding the digits of one sequence to the other
starting from the least-significant digit, simultaneously updating the pointers
to the extreme digits in the other sequence, while maintaining strict regularity.
Since each increment propagates at most one fix -carry , the bounds follow. ��

2.3 Strictly-Regular Trees

We recursively define a strictly-regular tree such that every subtree is as well a
strictly-regular tree. For every node x in such a tree

– the rank, in brief rank(x), is equal to the number of the children of x;
– the cardinality sequence, in which entry i records the number of children of

rank i, is strictly regular.

The next lemma directly follows from the definitions and Lemma 1.

Lemma 3. Let 〈d0, d1, . . .dr−1〉 be the cardinality sequence of anodex in a strictly-
regular tree. If the last block of this sequence is a 01+ block, then rank(x) = r − 1;
otherwise, rank(x) = r.
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Table 2. di is displayed in bold. da is the first extreme digit after di, k is a positive
integer, α denotes any combination of 1+ and 01∗2 blocks, and ω any combination of
1+ and 01∗2 blocks followed by at most one 01+ block.

Initial configuration Action Final configuration
α01∗2 di ← 3; fix -carry(d, i) α01∗11

α01∗21kω di ← 3; fix -carry(d, i) α01∗121k−1ω

α01∗201∗2ω di ← 3; fix -carry(d, i) α01∗111∗2ω

α01∗201k di ← 3; fix -carry(d, i) α01∗111k

α1 di ← 2; fix -carry(d, i) α01
α11kω di ← 2; fix -carry(d, i) α021k−1ω

α101∗2ω di ← 2; fix -carry(d, i) α011∗2ω

α101k di ← 2; fix -carry(d, i) α011k

α01∗11∗2 di ← 2; fix -carry(d, a) α01∗21∗01
α01∗11∗21kω di ← 2; fix -carry(d, a) α01∗21∗021k−1ω

α01∗11∗201∗2ω di ← 2; fix -carry(d, a) α01∗21∗011∗2ω

α01∗11∗201k di ← 2; fix -carry(d, a) α01∗21∗011k

α01∗2 di ← 1; fix -carry(d, a) α11∗01
α01∗21kω di ← 1; fix -carry(d, a) α11∗021k−1ω

α01∗201∗2ω di ← 1; fix -carry(d, a) α11∗011∗2ω

α01∗201k di ← 1; fix -carry(d, a) α11∗011k

α01∗11∗ di ← 2 α01∗21∗

ω0 di ← 1 ω1

α01k di ← 1 α11k

(a) Case analysis for increment(d, i).

Initial configuration Action Final configuration
α02ω fix -borrow (d, i); di ← 1 α11ω

α01k2ω fix -borrow (d, i); di ← 1 α101k−12ω

α01k fix -borrow (d, i); di ← 1 α101k−1

α01∗12ω fix -borrow (d, i); di ← 2 α01∗21ω

α01∗11k2ω fix -borrow (d, i); di ← 2 α01∗201k−12ω

α01∗11k fix -borrow (d, i); di ← 2 α01∗201k−1

α11∗02ω fix -borrow (d, a); di ← 0 α01∗21ω

α11∗01k2ω fix -borrow (d, a); di ← 0 α01∗201k−12ω

α11∗01k fix -borrow (d, a); di ← 0 α01∗201k−1

α01∗21∗02ω fix -borrow (d, a); di ← 1 α01∗11∗21ω

α01∗21∗01k2ω fix -borrow (d, a); di ← 1 α01∗11∗201k−12ω

α01∗21∗01k fix -borrow (d, a) ; di ← 1 α01∗11∗201k−1

α11∗ di ← 0 α01∗

α01∗1 di ← 0 α01∗

α01∗21∗ di ← 1 α01∗11∗

(b) Case analysis for decrement(d, i).
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The next lemma illustrates the exponentiality property for such trees.

Lemma 4. A strictly-regular tree of rank r has at least 2r nodes.

Proof. The proof is by induction. The claim is clearly true for nodes of rank
0. Assume the hypothesis is true for all the subtrees of a node x with rank r.
Let y be the child of x with the largest rank. From Lemma 3, if the last block
of the cardinality sequence of x is a 01+ block, then rank(x) = rank(y). Using
induction, the number of nodes of y’s subtree is at least 2r, and the lemma
follows. Otherwise, the cardinality sequence of x only contains 01∗2 and 1+

blocks. We conclude that there exists a distinct subtree of x whose rank is at
least i, for every i from 0 to r − 1. Again using induction, the size of the tree
rooted at x must be at least 1 +

∑r−1
i=0 2i = 2r. ��

The operations that we would like to efficiently support include: adding a subtree
whose root has rank at most r to the children of x; detaching a subtree from
the children of x; splitting the sequence of the children of x, those having the
highest ranks and the others; and concatenating a strictly-regular subsequence
of trees, whose smallest rank equals r, to the children of x.

In accordance, we need to support implementations corresponding to the sub-
routines fix -carry and fix -borrow . For these, we use link and unlink .

link(T1, T2): Assert that the roots of T1 and T2 have the same rank. Make one
root the child of the other, and increase the rank of the surviving root by 1.

unlink(T ): Detach a child with the largest rank from the root of tree T . If T has
rank r, the resulting two trees will have ranks either r− 1, r− 1 or r− 1, r.

Subroutine fix -carry(d, i), which converts two consecutive digits di = 2 anddi+1 =
q to 0, q + 1 is realizable by subroutine link . Subroutine fix -borrow (d, i), which
converts two consecutive digits di = 0 and di+1 = q to 2, q − 1 is realizable by
subroutine unlink that results in two trees of equal rank. However, unlinking a tree
of rank r may result in one tree of rank r− 1 and another of rank r. In such case, a
fix -borrow corresponds to converting the two digits 0, q to 1, q. For this scenario,
as for Table 2(b), it is also easy to show that all the cases following a decrement
lead to a strictly-regular sequence. We leave the details for the reader to verify.

3 Application: Meldable Priority Queues

Our motivation is to investigate the worst-case bound for the number of element
comparisons performed by delete under the assumption that find-min, insert ,
and meld have O(1) worst-case cost. From the comparison-based lower bound
for sorting, we know that if find-min and insert only involve O(1) element com-
parisons, delete has to perform at least lg n−O(1) element comparisons, where
n is the number of elements stored prior to the operation.

3.1 Brodal’s Meldable Priority Queues

Our development is based on the priority queue presented in [7]. In this section,
we describe this data structure. We also analyse the constant factor in the bound
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on the number of element comparisons performed by delete, since the original
analysis was only asymptotic.

The construction in [7] is based on two key ideas. First, insert is supported
at O(1) worst-case cost. Second, meld is reduced to insert by allowing a priority
queue to store other priority queues inside it. To make this possible, the whole
data structure is a tree having two types of nodes: �-nodes (read: square or
type-I nodes) and �-nodes (read: circle or type-II nodes). Each node stores a
locator to an element, which is a representative of the descendants of the node;
the representative has the smallest element among those of its descendants.

Each node has a non-negative integer rank. A node of rank 0 has no �-children.
For an integer r > 0, the �-children of a node of rank r have ranks from 0 to
r−1. Each node can have at most one �-child and that child can be of arbitrary
rank. The number of �-children is restricted to be at least one and at most three
per rank. More precisely, the regularity constraint posed is that the cardinality
sequence is of the form

(
1 | 2 | 12∗3

)∗. This regular number system allows for
increasing the least significant digit at O(1) worst-case cost. In addition, because
of the zeroless property, the size of a subtree of rank r is at least 2r and the
number of children of its root is at most 2r. The rank of the root is required to
be zero. So, if the tree holds more than one element, the other elements are held
in the subtree rooted at the �-child of the root.

To represent such multi-way tree, the standard child-sibling representation
can be used. Each node stores its rank as an integer, its type as a Boolean, a
pointer to its parent, a pointer to its sibling, and a pointer to its �-child having
the highest rank. The children of a node are kept in a circular singly-linked
list containing the �-children in rank order and the �-child after the �-child
of the highest rank; the �-child is further connected to the �-child of rank 0.
Additionally, each node stores a pointer to a linked list, which holds pointers
to the first �-node in every group of three consecutive nodes of the same rank
corresponding to a 3 in the cardinality sequence.

A basic subroutine used in the manipulation of these trees is link . For node u,
let element(u) denote the element associated with u. Let u and v be two nodes of
the same rank such that element(u) ≤ element(v). Now, link makes v a �-child
of u. This increases the rank of u by one. Note that link has O(1) worst-case
cost and performs one element comparison.

The minimum element is readily found by accessing the root of the tree, so
find-min is easily accomplished at O(1) worst-case cost.

When inserting a new element, a node is created. The new element and those
associated with the root and its �-child are compared; the two smallest among
the three are associated with the root and its �-child, and the largest is asso-
ciated with the created node. Hereafter, the new node is added as a �-child of
rank 0 to the �-child of the root. Since the cardinality sequence of that node
was regular before the insertion, only O(1) structural changes are necessary to
restore the regularity constraint. That is, insert has O(1) worst-case cost.

To meld two trees, the elements associated with the root and its �-child are
taken from both trees and these four elements are sorted. The largest element is
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associated with a �-child of the root of one tree. Let T be that tree, and let S
be the other tree. The two smallest elements are then associated with the root
of S and its �-child. Accordingly, the other two elements are associated with
the root of T and its �-child. Subsequently, T is added as a rank-0 �-child to
the �-child of the root of S. So, also meld has O(1) worst-case cost.

When deleting an element, the corresponding node is located and made the
current node. If the current node is the root, the element associated with the �-
child of the root is swapped with that associated with the root, and the �-child
of the root is made the current node. On the other hand, if the current node
is a �-node, the elements associated with the current node and its parent are
swapped until a �-node is reached. Therefore, both cases reduce to a situation
where a �-node is to be removed.

Assume that we are removing a �-node z. The actual removal involves finding
a node that holds the smallest element among the elements associated with the
children of z (call this node x), and finding a node that has the highest rank
among the children of x and z (call this node y). To reestablish the regularity
constraint, z is removed, x is promoted into its place, y is detached from its
children, and all the children previously under x and y, plus y itself, are moved
under x. This is done by performing repeated linkings until the number of nodes
of the same rank is one or two. The rank of x is updated accordingly.

In the whole deletion process O(lg n) nodes are handled and O(1) work is
done per node, so the total cost of delete is O(lg n). To analyse the number
of element comparisons performed, we point out that a node with rank r can
have up to 2r �-children (not 3r as stated in [7]). Hence, finding the smallest
element associated with a node requires up to 2 lg n+O(1) element comparisons,
and reducing the number of children from 6 lg n + O(1) to lg n + O(1) involves
5 lg n + O(1) element comparisons (each link requires one). To see that this
bound is possible, consider the addition of four numbers 1, 1232k, 2222k, and
1232k (where the least significant digits are listed first), which gives 1211k+12.

Our discussion so far can be summarized as follows.

Theorem 3. Brodal’s meldable priority queue, as described in [7], supports find-
min, insert, and meld at O(1) worst-case cost, and delete at O(lg n) worst-case
cost including at most 7 lg n + O(1) element comparisons.

3.2 Our Improvement

Consider a simple mixed scheme, in which the number system used for the
children of �-nodes is perfect, following the pattern 1∗, and that used for the
children of �-nodes is regular. This implies that the �-nodes form binomial trees
[3]. After this modification, the bounds for insert and meld remain the same if
we rely on the delayed melding strategy. However, since each node has at most
lg n + O(1) children, the bound for delete would be better than that reported
in Theorem 3. Such an implementation of delete has three bottlenecks: finding
the minimum, executing a delayed meld , and adding the �-children of a �-node
to another node. In this mixed system, each of these three procedures requires
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at most lg n + O(1) element comparisons. Accordingly, delete involves at most
3 lg n + O(1) element comparisons. Still, the question is how to do better!

The major change we make is to use the strictly-regular system instead of
the zeroless regular system. We carry out find-min, insert , and meld similar to
[7]. We use subroutine merge to combine two trees. Let y and y′ be the roots
of these trees, and let r and r′ be their respective ranks where r ≤ r′. We
show how to merge the two trees at O(r) worst-case cost using O(1) element
comparisons. For this, we have to locate the nodes representing the extreme
digits closest to r in the cardinality sequence of y′. Consequently, by Theorems
1 and 2, a cut or an increment at that rank is done at O(1) worst-case cost. If
element(y′) ≤ element(y), add y as a �-child of y′, update the rank of y′ and
stop. Otherwise, cut the �-children of y′ at r. Let the two resulting sublists be
C and D, C containing the nodes of lower rank. Then, concatenate the lists
representing the sequence of the �-children of y and the sequence D. We regard
y′ together with the �-children in C and y′’s earlier �-child as one tree whose
root y′ is a �-node. Finally, place this tree under y and update the rank of y.

Now we show how to improve delete. If the node to be deleted is the root, we
swap the elements associated with the root and its �-child, and let that �-node
be the node z to be deleted. If the node to be deleted is a �-node, we repeatedly
swap the elements associated with this node and its parent until the current
node is a �-node (Case 1) or the rank of the current node is the same as that of
its parent (Case 2). When the process stops, the current node z is to be deleted.

Case 1: z is a �-node. Let x denote the node that contains the smallest element
among the children of z (if any). We remove z, lift x into its place, and make
x into a �-node. Next, we move all the other �-children of z under x by
performing an addition operation, and update the rank of x. Since z and x
may each have had a �-child, there may be two �-children around. In such
case, merge such two subtrees and make the root of the resulting tree the
�-child of x.

Case 2: z is a �-node. Let p be the parent of z. We remove z and move its
�-children to p by performing an addition operation. As rank(p) = rank(z)
before the addition, rank(p) = rank(z) or rank(z) + 1 after the addition. If
rank(p) = rank(z) + 1, to ensure that rank(p) remains the same as before
the operation, we detach the child of p that has the highest rank and merge
the subtree rooted at it with the subtrees rooted at the �-children of p and z
(there could be up to two such subtrees), and make the root of the resulting
tree the �-child of p.

Let r be the maximum rank of a node in the tree under consideration. Climbing
up the tree to locate a node z has O(r) cost, since after every step the new
current node has a larger rank. In Case 1, a �-node is deleted at O(r) cost
involving at most r element comparisons when finding its smallest child. In Cases
1 and 2, the addition of the �-children of two nodes has O(r) cost and requires
at most r element comparisons. Additionally, applying the merge operation on
two trees (Case 1) or three trees (Case 2) has O(r) cost and requires O(1)
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element comparisons. Thus, the total cost is O(r) and at most 2r+O(1) element
comparisons are performed. Using Lemma 4, r ≤ lg n, and the claim follows.

In summary, our data structure improves the original data structure in two
ways. First, by Lemma 4, the new system reduces the maximum number of
children a node can have from 2 lg n to lg n. Second, the new system breaks the
bottleneck resulting from delayed melding, since two subtrees can be merged with
O(1) element comparisons. The above discussion implies the following theorem.

Theorem 4. Let n denote the number of elements stored in the data structure
prior to a deletion. There exists a priority queue that supports find-min, insert,
and meld at O(1) worst-case cost, and delete at O(lg n) worst-case cost including
at most 2 lg n + O(1) element comparisons.

4 Other Applications

Historically, it is interesting to note that in early papers a number system sup-
porting increments and decrements of an arbitrary digit was constructed by
putting two regular systems back to back, i.e. di ∈ {0, 1, 2, 3, 4, 5}. It is rel-
atively easy to prove the correctness of this system. This approach was used
in [14] for constructing catenable deques, in [9] for constructing catenable fin-
ger search trees, and in [8] for constructing meldable priority queues. (In [8],
di ∈ {2, 3, 4, 5, 6, 7} is imposed, since an extra constraint that di ≥ 2 was required
to facilitate the violation reductions and to guarantee the exponentiality prop-
erty.) Later on, it was realized that the extended-regular system, di ∈ {0, 1, 2, 3},
could be utilized for the same purpose (see, for example, [6]). The strictly-regular
system may be employed in applications where these more extensive number sys-
tems have been used earlier. This replacement, when possible, would have two
important consequences:

1. The underlying data structures become simpler.
2. The operations supported may become a constant factor faster.

While surveying papers that presented potential applications to the new number
system, we found that, even though our number system may be applied, there
were situations where other approaches would be more favourable. For example,
the relaxed heap described in [11] relies on the zeroless extended-regular system
to support increments and decrements. Naturally, the strictly-regular system
could be used instead, and this would reduce the number of trees that have to
be maintained. However, the approach of using a two-tier structure as described
in [11] makes the reduction in the number of trees insignificant since the amount
of work done is proportional to the logarithm of the number of trees. Also, a
fat heap [6] uses the extended-regular binary system for keeping track of the
potential violation nodes and the extended-regular ternary system for keeping
track of the trees in the structure. However, we discovered that a priority queue
with the same functionality and efficiency can be implemented with simpler tools
without using number systems at all. The reader is warned: number systems are
powerful tools but they should not be applied haphazardly.
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Up till now we have ignored the cost of accessing the extreme digits in the
vicinity of a given digit. When dealing with the regular or the extended-regular
systems this can be done at O(1) cost by using the guides described in [8]. In
contrary, for our number system, accessing the extreme digits in the vicinity of
any digit does not seem to be doable at O(1) cost. However, the special case of
accessing the first and last extreme digits is soluble at O(1) cost.

In some applications, like fat heaps [6] and the priority queues described in [8],
the underlying number system is ternary. We have not found a satisfactory solu-
tion to extend the strictly-regular system to handle ternary numbers efficiently;
it is an open question whether such an extension exists.
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Abstract. We present the zipper tree, an O(log log n)-competitive on-
line binary search tree that performs each access in O(log n) worst-case
time. This shows that for binary search trees, optimal worst-case ac-
cess time and near-optimal amortized access time can be guaranteed
simultaneously.

1 Introduction

A dictionary is a basic data structure for storing and retrieving information.
The binary search tree (BST) is a well-known and widely used dictionary imple-
mentation which combines efficiency with flexibility and adaptability to a large
number of purposes. It constitutes one of the fundamental data structures of
computer science.

In the past decades, many BST schemes have been developed which perform
element accesses (and indeed many other operations) in O(log n) time, where
n is the number of elements in the tree. This is the optimal single-operation
worst-case access time in a comparison based model. Turning to sequences of
accesses, it is easy to realize that for specific access sequences, there may be
BST algorithms which serve m accesses in less than Θ(m log n) time. A common
way to evaluate how well the performance of a given BST algorithm adapts to
individual sequences, is competitive analysis : For an access sequence X , define
OPT(X) to be the minimum time needed by any BST algorithm to serve it.
A given BST algorithm A is then said to be f(n)-competitive if it performs
X in O(f(n)OPT(X)) time for all X . To make this precise, a more formal
definition of a BST model and of the sequences X considered is needed—standard
in the area is to use the binary search tree model (BST model) defined by
Wilber [12], in which the only existing non-trivial lower bounds on OPT(X)
have been proven [3,12].

In 1985, Sleator and Tarjan [10] developed a BST called splay trees, which
they conjectured to be O(1)-competitive. Much of the research on the efficiency
of BSTs on individual input sequences has grown out of this conjecture. However,
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despite decades of research, the conjecture is still open. More generally, it is
unknown if there exist asymptotically optimal BST data structures. In fact,
for many years the best known competitive ratio for any BST structure was
O(log n), which is achieved by a plain static balanced tree.

This situation was recently improved by Demaine et al., who in a seminal
paper [3] developed an O(log log n)-competitive BST structure, called the tango
tree. This was the first improvement in competitive ratio for BSTs over the
trivial O(log n) upper bound. Being O(log log n)-competitive, tango trees are
always at most a factor O(log log n) worse than OPT(X). On the other hand,
they may actually pay this multiplicative overhead at each access, implying that
they have Θ(log log n log n) worst-case access time, and use Θ(m log log n log n)
time on some access sequences of length m. In comparison, any balanced BST
(even static) has O(log n) worst-case access time and spends O(m log n) on every
access sequence.

The problem we consider in this paper is whether it is possible to combine
the best of these bounds—that is, whether an O(log log n)-competitive BST algo-
rithms that performs each access in optimal O(log n) worst-case time exists. We
answer it affirmatively by presenting a data structure achieving these complexi-
ties. It is based on the overall framework of tango trees—however, where tango
trees use red-black trees [6] for storing what is called preferred paths, we develop
a specialized BST representation of the preferred paths, tuned to the purpose.
This representation is the main technical contribution, and its description takes
up the bulk of the paper.

In the journal version of their seminal paper on tango trees, Demaine et al. sug-
gested that such a structure exists. Specifically, in the further work section, the
authors gave a short sketch of a possible solution. Their suggested approach, how-
ever, relies on the existence of a BST supporting dynamic finger, split and merge
in O(log r) worst-case time where r is the rank difference between the accessed
element and the previously accessed element. Such a BST could indeed be used
for the auxiliary tree representation of preferred paths. However, the existence of
such a structure (in the BST-model) is an open problem. Consequently, since the
publication of their work, the authors have revised their stance and consider the
problem solved in this paper to be an open problem [7]. Recently, Woo [13] made
some progress concerning the existence of a BST having the dynamic finger prop-
erty in worst-case. He developed a BST algorithm satisfying, based on empirical
evidence, the dynamic finger property in worst-case. Unfortunately this BST algo-
rithm does not allow insertion/deletion or split/merge operations, thus it cannot
be used to maintain the preferred paths in a tango tree.

After the publication of the tango tree paper, two other O(log log n)-
competitive BSTs have been introduced by Derryberry et al. [4,11] and Geor-
gakopoulos [5]. The multi-splay trees [4] are based on tango trees, but instead
of using red-black trees as auxiliary trees, they use splay trees [10]. As a con-
sequence, multi-splay trees can be shown [4,11] to satisfy additional properties,
including the scanning and working-set bounds of splay trees, while maintaining
O(log log n)-competitiveness. Georgakopoulos uses the interleave lower bound of
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Demaine et al. to develop a variation of splay trees called chain-splay trees that
achieves O(log log n)-competitiveness while not maintaining any balance condi-
tion explicitly. However, neither of these two structures achieves a worst-case
single access time of O(log n). A data structure achieving the same running time
as tango trees alongside O(log n) worst-case single access time was developed
by Kujala and Elomaa [8], but this data structure does not adhere to the BST
model (in which the lower bounds on OPT(X) are proved).

The rest of this paper is organized as follows: In Section 2, we formally define
the model of BSTs and the access sequences considered. We state the lower bound
on OPT(X) developed in [3,12] for analyzing the competitive ratio of BSTs.
We also describe the central ideas of tango trees. In Section 3, we introduce a
preliminary data structure called hybrid trees, which does not fit the BST model
proper, but which is helpful in giving the main ideas of our new BST structure.
Finally in Section 4, we develop this structure further to fit the BST model.
This final structure, called zipper trees, is a BST achieving the optimal worst-
case access time while maintaining the O(log log n)-competitiveness property.

2 Preliminaries

2.1 BST Model

In this paper we use the binary search tree model (BST model) defined by
Wilber [12], which is standard in the area. Each node stores a key from a totally
ordered universe, and the keys obey in-order: at any node, all of the keys in its
left subtree are less than the key stored in the node, and all of the keys in its
right subtree are greater (we assume no duplicate keys appear). Each node has
three pointers, pointing to its left child, right child, and parent. Each node may
keep a constant1 amount of additional information, but no further pointers may
be used.

To perform an access, we are given a pointer initialized to the root. An access
consists of moving this pointer from a node to one of its adjacent nodes (through
the parent pointer or one of the children pointers) until it reaches the desired
element. Along the way, we are allowed to update the fields and pointers in
any nodes that the pointer touches. The access cost is the number of nodes
touched by the pointer. As is standard in the area, we only consider sequences
consisting of element accesses on a fixed set S of n elements. In particular, neither
unsuccessful searches nor updates take place.

2.2 Interleave Lower Bound

The interleave bound is a lower bound on the time taken by any binary search
tree in the BST model to perform an access sequence X = {x1, x2, . . . , xm}. The
interleave bound was developed by Demaine et al. [3] and was derived from a
previous bound of Wilber [12].

1 According to standard conventions, O(log2 n) bits are considered as constant.
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Let P be a static binary search tree of minimum height, built on the set
of keys S. We call P the reference tree. For each node y in P , we consider the
accesses of X that are to keys in nodes in the subtree of P rooted at y (including
y). Each access of this subsequence is then labelled “left” or “right”, depending
on whether the accessed node is in the left subtree of y (including y), or in its
right subtree, respectively. The amount of interleaving through y is the number
of alternations between left and right labels in this subsequence. The interleave
bound IB(X) is the sum of these interleaving amounts over all nodes y in P .
The exact statement of the lower bound from [3] is as follows:

Theorem 1 (From [3]). For any access sequence X, IB(X)/2 − n is a lower
bound on OPT(X).

2.3 Tango Trees

We outline the main ideas of tango trees [3]. As in the previous subsection,
denote by the reference tree P a static binary search tree of height O(log n)
built on a set of keys S. At a given point in time, the preferred child of an
internal node y in P is defined as its left or right child depending on whether
the last access to a node in the subtree rooted at y (including y) was in the left
subtree of y (including y) or in its right subtree respectively. We call a maximal
chain of preferred children a preferred path. The set of preferred paths partitions
P into disjoint parts of size O(log n). Remember that P is a static tree, only the
preferred paths may evolve over time (namely, after each access).

The ingenious idea of tango trees is to represent the nodes on a preferred path
as a balanced tree of height O(log log n), called an auxiliary tree. The tango
tree can be seen as a collection of auxiliary trees linked together. The leaves of
an auxiliary tree representing a preferred path p link to the roots of auxiliary
trees representing the paths immediately below p in P , with the links uniquely
determined by the inorder ordering. The auxiliary tree containing the root of P
constitutes the top-part of the tango tree. In order to distinguish auxiliary trees
within the tango tree, the root of each auxiliary tree is marked (using one bit).

Note that the reference tree P is not an explicit part of the structure, it just
helps to explain and understand the concept of tango trees. When an access
is performed, the preferred paths of P may change. This change is actually
a combination of several cut and concatenation operations involving subpaths.
Auxiliary trees in tango tree are implemented as red-black trees [6], and [3] show
how to implement these cut and concatenation operations using standard split
and join operations on red-black tree. Here are the main two operations used to
maintain tango trees:

CUT-TANGO(A, d) – divide the red-black tree A into two red-black trees, one
storing all nodes in the preferred path having depth at most d in P , and another
storing all nodes having depth greater than d.
CONCATENATE-TANGO(A, B) – merge two red-black trees that store two disjoint
paths for which in P the bottom of one path (stored in A) is the parent of the
top of the other path (stored in B). I.e., in the tango tree, the root of B is
attached to a leaf of A.
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These operations can be implemented by splits and joins in O(log k) time
for trees of size k, if adding extra information in nodes: Besides the key value
and the depth in P , each node also stores the minimum and maximum depth
over the nodes in its subtree within its auxiliary tree. This additional data is
easily maintained in red-black trees. As the trees store paths in P , we have
k = O(log n). Hence, if an access passes i different preferred paths in P , the
necessary change in the tango tree will be O(i) cut and concatenation operations,
which is performed in O(i log log n) time. Over any access sequence X the total
number of cut and concatenation operations performed in P corresponds to the
interleave bound IB(X), thus tango trees serve X in O(log log n IB(X)) time,
which by Thm. 1 makes them O(log log n)-competitive.

3 Hybrid Trees

In this section, we introduce a data structure called hybrid trees, which has the
right running time, but which does not fit the BST model proper. However,
it is helpful intermediate step which contains the main ideas of our final BST
structure.

3.1 Path Representation

For all preferred paths in P , we keep the top Θ(log log n) nodes exactly as they
appear on the path. We call this the top path. The remaining nodes (if any) of
the path we store as a red-black tree, called the bottom tree, which we attach
below the top path. Since a preferred path has size O(log n), this bottom tree has
height O(log log n). More precisely, we will maintain the invariant that a top path
has length in [log log n, 3 log log n], unless no bottom tree appears, in which case
the constraint is [0, 3 log log n]. (This latter case, where no bottom tree appears,
will induce simple and obvious variants of the algorithms in the remainder of
the paper, variants which we for clarity of exposition will not mention further.)

A hybrid tree consists of all the preferred paths of P , represented as above,
linked together to form one large tree, analogous to tango trees. The required
worst-case search complexity of hybrid trees is captured by the following lemma.

Lemma 1. A hybrid tree T satisfies the following property: dT (x) =
O(dP (x)) ∀x ∈ S, where dT (x) and dP (x) is defined as the depth of the node
x in the tree T and in the reference tree P , respectively. In particular, T has
O(log n) height.

Proof. Consider a preferred path p in P and its representation tree h. The dis-
tance in h, in terms of number of edges to follow, from the root of h to one of
its nodes or leaves x is no more than a constant times the distance in p between
x and the root of p. Indeed, if x is part of the top path, then the distance to the
root of the path by construction is the same in h and p. Otherwise, this distance
increases by at most a constant factor, since h has a height of O(log log n) and the
distance in p is already Ω(log log n). To reach a node x in the reference tree P ,
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we have to traverse (parts of) several preferred paths. As the above argument
holds for all paths, the first statement dT (x) = O(dP (x)) of the lemma follows
by summing over the paths traversed. Finally, since the depth of any node in P
is O(log n), this implies that T has height O(log n). ��

3.2 Maintaining Hybrid Trees under Accesses

The path p traversed in P to reach a desired node may pass through several
preferred paths. During this access the preferred paths in P must change such
that p becomes the new preferred path containing the root. This entails cut and
concatenate operations on the preferred paths passed by p: When p leaves a
preferred path, the path must be cut at the depth in P of the point of leave, and
the top part cut out must be concatenated with the next preferred path to be
traversed.

We note that one may as well perform only the cutting while traversing p,
producing a sequence of cut out parts hanging below each other, which can then
be concatenated in one go at the end of the access, producing the new preferred
path starting at the root. We will use this version below.

In this subsection, we will show how to maintain the hybrid tree representation
of the preferred paths after an access. Our main goal is to to give methods for
performing the operations cut and concatenate on our path representations in
the following complexities: When the search passes only the top path of a path
representation (Case 1 cut), the cut operation takes O(k) time, where k is the
number of nodes traversed in the top path. When the search passes the entire
top path and ends up in the bottom tree (Case 2 cut), the cut operation takes
O(log log n) time. The concatenation operation, which glues together all the cut
out path representation parts at the end of the access, is bounded by the time
used by the search and the cut operations performed during the access.

Assuming these running times, it follows, by the invariant that all top
paths (with bottom trees below them) have length Θ(log log n), that the
time of an access involving i cut operations in P is bounded both by the
number of nodes on the search path p, and by i log log n. By Lemma 1, this is
O(min{log n, i log log n}) time. Hence, we by Thm. 1 will have achieved optimal
worst-case access time while maintaining O(log log n)-competitiveness.

Cut: Case 1: We only traverse the top path of a path representation. Let k be
the number of nodes traversed in this top path and let x be the last traversed
node. The cut operation marks the node succeeding x on the top path as the
new root of the path representation, and unmarks the other child of x (to make
the cut out part join the pieces that after the final concatenation will constitute
the new preferred path induced by the search).

The cut operation now has removed k nodes from the top path of the path
representation. This implies that we possibly have to update the representation,
since the Θ(log log n) bound on the size of its top path has to be maintained.
Specifically, if the size of the top path drops below 2 log log n, we will move some
nodes from the bottom tree to the top path. The nodes should be those from the
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bottom tree having smallest depth (in P ), i.e., the next nodes on the preferred
path in P . It is for small k (smaller than log log n) not clear how to extract the
next k nodes from the bottom tree in O(k) time. Instead, we use an extraction
process, described below, which extracts the next log log n nodes from the bottom
tree in O(log log n) steps and run this process incrementally: Whenever i nodes
are cut from the top path, the extraction process is advanced by Θ(i) steps, and
then the process is stopped until the next cut at this path occurs. Thus, the
work of the extraction process is spread over several Case 1 cuts (if not stopped
before by a Case 2 cut, see below). The speed of the process is chosen such that
the extraction of log log n nodes is completed before that number of nodes have
been cut away from the top path, hence it will raise the size of the top path to
at least 2 log log n again. In general, we maintain the additional invariant that
the top path has size at least 2 log log n, unless an extraction process is ongoing.

Case 2: We traverse the entire top path of path representation A, and enter
the bottom tree. Let x be the last traversed node in A and let y be the marked
child of x that is the root of the next path representation on the search path.
First, we finish any pending extraction process in A, so that its bottom tree
becomes a valid red-black tree. Then we rebuild the top path into a red-black
tree in linear time (see details under the description of concatenate below), and
we join it with the bottom tree using CONCATENATE-TANGO. Then we perform
CUT-TANGO(A′, d) where A′ is the combined red-black tree, and d = dP (y)− 1.
After this operation, all nodes of depth greater than d are removed from the
path representation A to form a new red-black tree B attached to A (the root
of B is marked in the process). To make the tree B a valid path representation,
we perform an extraction process twice, which extracts 2 log log n nodes from
it to form a top path. Finally we unmark y. This takes O(log log n) time in total.

Concatenate: What is cut out during an access is a sequence of top paths (Case 1
cuts) and red-black trees (Case 2 cuts) hanging below each other. We have to
concatenate this sequence into a single path representation. We first rebuild each
consecutive sequence of top paths (which can be found as maximum sequences
of nodes which have one marked child) into valid red-black trees, in time linear
in the number of nodes in each sequence (details below). This leaves a sequence
of at most 2j + 1 valid red-black trees hanging below each other where j is the
number of Case 2 cuts performed during the access. Then we iteratively perform
CONCATENATE-TANGO(A,B), where A is the current highest red-black tree and
B is the tree hanging below A, until there is one remaining red-black tree (this
is done in O(j log log n) time, which we have already spent on the Case 2 cuts).
Finally we extract 2 log log n nodes from the obtained red-black tree to construct
the top path of the path representation. The time used for concatenate is bounded
by the time used already during the search and cut part of the access.

To convert a path of length k into a red-black tree in O(k) time, we can
simply traverse the path downwards, inserting the nodes one by one into
a growing (and initially empty) red-black tree. During each insertion, the
remaining path will be considered a leaf of the tree. Since the next node to be
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inserted will become either the successor or the predecessor of the node just
inserted, and since the amount of rebalancing in red-black trees is amortized
O(1) per update, the entire process is linear in the number of nodes inserted.

Extract: We now show how to perform the central process of our structure,
namely extracting the next part of a top path from a bottom tree. Specifically,
we will extract a subpath of log log n nodes of minimum depth (in P ) from the
bottom tree A′ of a given path representation A, using O(log log n) time.

Let x be the deepest node on the top path of A, such that the unmarked child
of x corresponds to the root of the bottom tree A′. The extraction process will
separate the nodes of depth (in P ) smaller than d = dP (x) + log log n from the
bottom tree A′. Let a zig segment of a preferred path p be a maximal sequence
of nodes such that each node in the sequence is linked to its right child in p. A
zag segment is defined similarly such that each node on the segment is linked to
its left child (see Fig. 1).

The key observation we exploit is the following: the sequence of all zig seg-
ments, ordered by their depth in the path, followed by the sequence of all reversed
zag segments, ordered reversely by their depth in the path, is equal to the order-
ing of the nodes in key space (see Fig. 1). This implies that to extract the nodes
of depth smaller than d (in P ) from a bottom tree, we can cut the extreme ends
(in key space) of the tree, linearize them to two lists, and then combine them
by a binary merge procedure using depth in P as the ordering. This forms the
core of the extract operation. We have to do this using rotations, while main-
taining a tree at all times. We now give the details of how to do this, with Fig. 3
illustrating the process.

Using extra fields in each node storing the minimum and maximum depth
value (in P ) of nodes inside its subtree, we can find the node �′ of minimum key
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value that has a depth greater than d in O(log log n) time, by starting at the
root of A′ and repeatedly walking to the leftmost child whose subtree has a node
of depth greater than d. Then define � as the predecessor of �′. Symmetrically,
we can find the node r′ of maximum key value that has depth greater than d
and define r as the successor of r′.

First we split A′ at � to obtain two subtrees B and C linked to the new root �
where B contains a first sequence of nodes at depth smaller than d. Then we
split C at r to obtain the subtrees D and E where E contains a second sequence
of nodes at depth smaller than d.

In O(log log n) time we convert the subtrees B and E into paths as shown in
Fig. 3. To do so we perform a left rotation at the root of B until its right subtree is
a leaf (i.e., when its right child is a marked node). Then we repeat the following:
if the left child of the root has no right child the we perform a right rotation at
the root of B (adding one more node to right spine, which will constitute the final
path). Otherwisewe perform a left rotation at the left child of the root of B, moving
its right subtree into the left spine. The entire process takes time linear in the size
of B, since each node is involved in a rotation at most 3 times (once a node enters
the left spine, it can only leave it by being added to the right spine). A symmetric
process is performed to convert the subtree E into a path.

The last operation, called a zip, merges (based on depths in P ) the two paths
B and E, in order to form the next part of the top path. We repeatedly select
the root of B or E that has the smallest depth in the tree P . The selected root is
brought to the bottom of the top path using O(1) rotations. The zip operation
stops when the subtrees B and E are both empty. Eventually, we perform a
left rotation at the node � if needed, i.e., if r has a smaller depth in P than
�. The time taken is linear in the extracted number of nodes, i.e., O(log log n).
The process consists of a series of rotations, hence can stopped and resumed
without problems. Therefore, the discussion presented in this section allows us
to conclude with the following theorem.
Theorem 2. Our hybrid tree data structure is O(log log n)-competitive and per-
forms each access in O(log n) worst-case time.

3.3 Hybrid Trees and the BST Model

We specify in the description of the cut operation (more precisely, in Case 1) that
the extraction process is executed incrementally, i.e., the work is spread over sev-
eral cut operations. In order to efficiently revive an extraction process which has
been stopped at some point in the past, we have to return to the position where its
next rotation should take place. This location is always somewhere in the bottom
tree, so traversing the top path to reach the bottom tree would be too costly for the
analysis of Case 1. Instead, we store in the marked node (the first node of the top
path) appropriate information on the state of the process. Additionally, we store
an extra pointer pointing to the node where the next rotation in the process should
take place. This allows us to revive an extraction process in constant time. Unfor-
tunately, the structure so obtained is not in the BST model (see Section 2.1), due
to the extra pointer. In the next section we show how to further develop the idea
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Fig. 3. (a) Tree A′. (b) Split A′ at �. (c) Split C at r. (d) Convert the subtrees B and
E into paths. (e) Zip the paths B and E.

from this section into a data structure fitting the BST model. Still, we note that
the structure of this section can be implemented in the comparison based model on
a pointer machine, with access sequences X being served in O(log log n OPT(X))
time, and each access taking O(log n) time worst-case.

4 Zipper Trees

The data structure described in the previous section is a BST, except that each
marked node has an extra pointer facilitating constant time access to the point
in the path representation where an extraction process should be revived. In
this section, we show how to get rid of this extra pointer and obtain a data
structure with the same complexity bounds, but now fitting the BST model
described in Section 2.1. To do so, we develop a more involved version of the
representation of preferred paths and the operations on them. The goal of this
new path representation is to ensure that all rotations of an extraction process
are located within distance O(1) of the root of the tree of the representation.
The two main ideas involved are: 1) storing the top path as lists, hanging to
the sides of the root, from which the top path can be generated incrementally
by merging as it is traversed during access, and 2) using a version of the split
operation that only does rotations near the root. The time complexity analysis
follows that of hybrid trees, and will not be repeated.

4.1 Path Representation

For all preferred paths in P we decompose its highest part into two sequences, con-
taining its zig and its zag segments, respectively. These are stored as two paths of
nodes, of increasing and decreasing key values, respectively. As seen in Section 3.2
(cf. Fig. 1), both will be ordered by their depth in P . Let � and r be the lowest
(in terms of depth in P ) node in the zig and zag sequence respectively. The node
� will be the root of the auxiliary tree (the marked node). The remainder of the
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zig sequence is the left subtree of �, r is its right child, and the remainder of the
zag sequence is the right subtree of r. We call this upper part of the tree a zipper.
We repeat this decomposition once again for the next part of the path to obtain
another zipper which is the left subtree of r. Finally the remaining of the nodes on
the path are stored as a red-black tree of height O(log log n), hanging below the
lowest zipper. Fig. 2 illustrates the construction. The two zippers constitute the
top path, and the red-black tree the bottom tree. Note that the root of the bottom
tree is reachable in O(1) time from the root of the path representation. We will
maintain the invariant that individually, the two zippers contain at most log log n
nodes each, while (if the bottom tree is non-empty) they combined contain at least
(log log n)/2 nodes. A zipper tree consists of all the preferred paths of P , repre-
sented as above, linked together to form one large tree.

4.2 Maintaining Zipper Trees under Accesses

We give the differences, relative to Section 3.2, of the operations during an access.

Cut: When searching a path representation, we incrementally perform a zip
operation (i.e., a merge based on depth order) on the top zipper, until it outputs
either the node searched for, or a node that leads to the next path representation.
If the top zipper gets exhausted, the lower zipper becomes the upper zipper, and
an incremental creation of a new lower zipper by an extraction operation on the
bottom tree is initiated (during which the lower zipper is defined to have size
zero). Each time one more node from the top zipper is being output (during the
current access, or during a later access passing through this path representation),
the extraction advances Θ(1) steps. The speed of the extraction process is chosen
such that it finishes with log log n nodes extracted before (log log n)/2 nodes
have been output from the top zipper. The new nodes will make up a fresh lower
zipper, thereby maintaining the invariant.

If the access through a path representation overlaps (in time) at most one
extraction process (either initiated by itself or by a previous access), it is defined
as a Case 1 cut. No further actions takes place, besides the proper remarkings
of roots of path representations, as in Section 3.2. If a second extraction process
is about to be initiated during an access, we know that Θ(log log n) nodes have
been passed in this path representation, and we define it as a Case 2 cut. Like in
Section 3.2 this now ends by converting the path representation to a red-black
tree, cutting it like in tango trees, and then converting the red-black tree
remaining into a valid path representation (as defined in the current section),
all in Θ(log log n) time.

Concatenate: There is no change from Section 3.2, except that the final path
representation produced is as defined in the current section.

Extract: The change from Section 3.2 is that the final zip operation is not
performed (the process stops at step (d) in Fig. 3), and that we use a split
operation on red-black trees where all structural changes consist of rotations a
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distance O(1) from the root (of the bottom tree, which is itself at a distance O(1)
from the root of the zipper tree). In the full version of this paper [1], we describe
such a split operation. Searching for the splitting point takes place incrementally
as part of this operation.

5 Conclusion

The main goal in this area of research is to improve on the currently best com-
petitive ratio of O(log log n). Here we have been able to tighten other bounds,
namely the worst-case search time, thereby broadening our understanding of
competitive BSTs. One natural question is to what extent competitiveness is
compatible with optimal balance maintenance. We have given a positive an-
swer for O(log log n)-competitiveness. On the other hand, splay-trees [10] and
GreedyFuture trees [2,9], the two BSTs conjectured to be dynamically optimal,
do not guarantee optimal worst-case search time. Thus, even if dynamically op-
timal trees should be proven to exist, the present result could still be a relevant
alternative with optimal worst-case performance.
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Abstract. A spanner graph on a set of points in R
d provides shortest paths be-

tween any pair of points with lengths at most a constant factor of their Euclidean
distance. A spanner with a sparse set of edges is thus a good candidate for net-
work backbones, as in transportation networks and peer-to-peer network overlays.
In this paper we investigate new models and aim to interpret why good spanners
‘emerge’ in reality, when they are clearly built in pieces by agents with their
own interests and the construction is not coordinated. Our main result is to show
that the following algorithm generates a (1 + ε)-spanner with a linear number of
edges. In our algorithm, the points build edges at an arbitrary order. A point p will
only build an edge pq if there is no existing edge p′q′ with p′ and q′ at distances
no more than 1

4(1+1/ε)
· |pq| from p, q respectively. Eventually when all points

finish checking edges to all other points, the resulted collection of edges forms a
sparse spanner as desired. As a side product, the spanner construction implies a
greedy algorithm for constructing linear-size well-separated pair decompositions
that may be of interest on its own.

Keywords: Spanner, Well-separated pair decomposition, Greedy algorithm.

1 Introduction

A geometric graph G defined on a set of points P ⊆ R
d with all edges as straight line

segments of weight equal to the length is called a Euclidean spanner, if for any two
points p, q ∈ P the shortest path in G has length at most s · |pq| where |pq| is the
Euclidean distance. The factor s is called the stretch factor of G and the graph G is
called an s-spanner. Spanners with a sparse set of edges provide good approximations
for the pairwise Euclidean distances and are good candidates for network backbones.
Thus, there has been a lot of work on the construction of sparse Euclidean spanners in
both the centralized [19,33] and distributed settings [34].

In this paper we are interested in the emergence of good Euclidean spanners formed
by uncoordinated agents. Many real-world networks, such as the transportation network
and the Internet backbone network, are good spanners — one can typically drive from
any city to any other city in the U.S. with the total travel distance at most a small
constant times their straight line distance. The same thing happens with the Internet
backbone graph as well. However, these large networks are not owned or built by any
single authority. They are often assembled with pieces built by different governments
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or different ISPs, at different points in time. Nevertheless altogether they provide a
convenient sparse spanner. The work in this paper is motivated by this observation of
the lack of coordination in reality and we would like to interpret why a good Euclidean
spanner is able to ‘emerge’ from these agents incrementally.

Prior work that attempt to remove centralized coordination has been done, as in the
network creation game [21,15,26,4,31], first introduced by Fabrikant et al. [21] to un-
derstand the evolution of network topologies maintained by selfish agents. A cost func-
tion is assigned to each agent, capturing the cost paid to build connections to others
minus the benefit received due to the resulting network topology. The agents play a
game by minimizing their individual costs and one is interested in the existence and
the price of anarchy of Nash equilibria. Though being theoretically intriguing, there
are two major open questions along this direction. First, the choice of cost functions is
heuristic. Almost all past literatures use a unit cost for each edge and they deviate in
how the benefit of ‘being connected to others’ is modeled. There is little understanding
on what cost function best captures the reality yet small variation in the cost function
may result in big changes in the network topologies at Nash equilibria. There is also not
much understanding of the topologies at Nash equilibria, some of them are simplistic
topologies such as trees or complete graphs, that do not show up often in the real world.
It remains open whether there is a natural cost model with which the Nash equilibrium
is a sparse spanner.

The game theoretic model also has limitations capturing the reality: selfish agents
may face deadlines and have to decide on building an edge or not immediately; once
an edge is built, it probably does not make sense to remove it (as in the case of road
networks); an agent may not have the strategies of all other agents making the evalu-
ation of the cost function difficult. In this paper, we take a different approach and ask
whether there is any simple rule, with which each agent can determine on its own, and
collectively build and maintain a sparse spanner topology without any necessity of co-
ordination or negotiation. The simple rule serves as a ‘certificate’ of the sparse spanner
property that warrants easy spanner maintenance under edge dynamics and node inser-
tion. We believe such models and good algorithms under these models worth further
exploration and this paper makes a first step along this line.

Our contribution. We consider in this paper the following model that abstracts the
scenarios explained earlier. There are n points in the plane. Each point represents a sep-
arate agent and may consider to build edges from itself to other points. These decisions
can happen at different points in time. When an agent p plans on an edge pq, p will
only build it if whether there does not exist a ‘nearby’ edge p′q′ in the network, where
|pp′| and |qq′| are within 1

4(1+1/ε) · |p′q′| from p and q respectively. This strategy is very
intuitive — if there is already a cross-country highway from Washington D.C. to San
Francisco, it does not make economical sense to build a highway from New York to Los
Angeles. We assume that each agent will eventually check on each possible edge from
itself to all other points, but the order on who checks which edge can be completely
arbitrary. With this strategy, the agents only make decisions with limited information
and no agent has full control over how and what graph will be constructed. It is not
obvious that this strategy will lead to a sparse spanner. It is not clear that the graph is
even connected.
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The main result in this paper is to prove that with the above strategy executed in any
arbitrary order, the graph built at the end of the process is a sparse spanner:

– The stretch factor of the spanner is 1 + ε.
– The number of edges is O(n).
– The total edge length of the spanner is O(|MST| · logα), where α is the aspect

ratio, i.e., the ratio of the distance between the furthest pair and the closest pair,
and |MST| is the total edge length of the minimum spanning tree of the point set.

– The degree of each point is O(logα) in the worst case and O(1) on average.

To explain how this result is proved, we first obtain as a side product the following
greedy algorithm for computing a well-separated pair decomposition. A pair of two
sets of points, (A, B), is called s-well-separated if the smallest distance between any
two points in A, B is at least s times greater than the diameters of A and B. An s-
well-separated pair decomposition (s-WSPD for short) for P is a collection of s-well-
separated pairsW = {(Ai, Bi)} such that for any pair of points p, q ∈ P there is a pair
(A, B) ∈ W with p ∈ A and q ∈ B. The size of an s-WSPD is the number of point set
pairs in W . Well-separated pair decomposition (WSPD) was first introduced by Calla-
han and Kosaraju [12] and they developed algorithms for computing an s-WSPD with
linear size for points in R

d. Since then WSPD has found many applications in comput-
ing k-nearest neighbors, n-body potential fields, geometric spanners and approximate
minimum spanning trees [9,10,12,11,6,5,32,29,24,20].

So far there are two algorithms for computing optimal size WSPD, one in the original
paper [12] and one in a later paper [22]. Both of them use a hierarchical organization of
the points (e.g., the fair split tree in [12] and the discrete center hierarchy in [22]) and
output the well-separated pairs in a recursive way. In this paper we show the following
simple greedy algorithm also outputs an s-WSPD with linear size. We take an arbitrary
pair of points p, q that is not yet covered in any existing well-separated pair, and consider
the pair of subsets (Br(p), Br(q)) with r = |pq|/(2s + 2) and Br(p) (Br(q)) as the
set of points of P within distance r from p (q). Clearly (Br(p), Br(q)) is an s-well-
separated pair and all the pairs of points (p′, q′) with p′ ∈ Br(p) and q′ ∈ Br(q)
are covered. The algorithm continues until all pairs of points are covered. We show
that, no matter in which order the pairs are selected, the greedy algorithm will always
output a linear number of well-separated pairs. Similarly, this greedy algorithm can
be executed in an environment when coordination is not present, while the previous
algorithms (in [12,22]) cannot.

WSPD is deeply connected to geometric spanners. Any WSPD will generate a span-
ner if one puts an edge between an arbitrary pair of points p, q from each well-separated
pair (A, B) ∈ W [6,5,32,29]. The number of edges in the spanner equals the size of
W . In the other direction, the deformable spanner proposed in [22] implies a WSPD of
linear size. The connection is further witnessed in this paper: our spanner emergence
algorithm implies a WSPD generated in a greedy manner. Thus the well-separated pairs
and spanner edges are one-to-one correspondence.

Last, this paper focuses on the Euclidean case when the points are distributed in
the plane. The basic idea extends naturally to points in higher dimensions as well as
metrics with constant doubling dimensions [25] (thus making the results applicable in
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non-Euclidean settings), as the main technique involves essentially various forms of
geometric packing arguments.

Applications. The results can be applied in maintaining nice network overlay topolo-
gies for P2P file sharing applications [30]. Such P2P overlay networks are often con-
structed in a distributed manner without centralized control, to achieve robustness,
reliability and scalability. One important issue is reducing routing delay by making
the overlay topology aware of the underlying network topology [14,35,28,39,40]. But
all these work are heuristics without any guarantee. A spanner graph would be a good
solution for the overlay construction, yet there is no centralized authority in the P2P
network that supervises the spanner construction and the peers may join or leave the
network frequently. The work in this paper initiates the study of the emergence of good
spanners in the setting when there is little coordination between the peers and the users
only need a modest amount of incomplete information of the current overlay topology.

We show that the spanner can be constructed under a proper model such that only
O(n logα) messages need to be delivered. The spanner topology is implicitly stored
on the nodes with each node’s storage cost bounded by O(logα). With such partial
information stored at each node, there is a local distributed algorithm that finds a (1+ε)-
stretch path between any two nodes.

We remark that the idea of the greedy spanner resembles, on an abstract level, the
‘highway hierarchy’ in transportation networks. It has been shown that to find a shortest
path to a destination, one only needs to search for a ‘highway entrance’ within certain
radius, and search only on the highways beyond that. This turns out to substantially re-
duce the time to find shortest paths on such graphs [8,36]. Our work provides a possible
explanation of how the road system evolved to the way it is today. We propose to verify
this in our future work.

Related work. In the vast amount of prior literature on geometric spanners, there are
three main ideas: Θ-graphs, the greedy spanners, and the WSPD-induced spanners [33].
Please refer to the book for a nice survey [33]. We will review two spanner construction
ideas that are most related to our approach. The first idea is the path-greedy spanner
construction [13,16,17,18]. All pairwise edges are ordered with non-decreasing lengths
and checked in that order. An edge is included in the spanner if the shortest path in the
current graph is longer than s times the Euclidean distance, and is discarded otherwise.
Variants of this idea generate spanners with constant degree and total weight O(|MST|).
This idea cannot be applied in our setting as edges constructed in practice may not be in
non-decreasing order of their lengths. The second idea is to use the gap property [13] —
the sources and sinks of any two edges in an edge set are separated by a distance at
least proportional to the length of the shorter of the two edges and their directions are
differed no more than a given angle. The gap-greedy algorithm [7] considers pairs of
points, again, in order of non-decreasing distances, and includes an edge in the spanner
if and only if it does not violate the gap property. The spanner generated this way has
constant degree and total weight O(|MST|). Compared with our algorithm, our strategy
is a relaxation of the gap property in the way that the edges in our spanner may have one
of their endpoints arbitrarily close (or at the same points) and we have no restriction on
the direction of the edges and the ordering of the edges to be considered. The proof for
the gap greedy algorithm requires heavily plane geometry tools and our proof technique
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only uses packing argument and can be extended to the general metric setting as long as
a similar packing argument holds. To get these benefit our algorithm has slightly worse
upper bounds on the spanner weight by a logarithmic factor.

Prior work on compact routing [37,23,3,27,2] usually implies a (1 + ε)-spanner ex-
plicitly or implicitly. Again, these spanners are constructed in a coordinated setting.

2 Uncoordinated Spanner Construction Algorithm

Given n points in R
d, each point p will check whether an edge pq should be built. p

builds pq only if there does not exist an edge p′q′ such that p and q are within distance
|p′q′|

2(s+1) from p′, q′ respectively.
This incremental construction of edges is executed by different agents in a com-

pletely uncoordinated manner. We assume that no two agents perform the above strategy
at exactly the same time. Thus when any agent conducts the above process, the decision
is based on the current network already constructed. The algorithm terminates when all
agents finish checking the edges from themselves to all other points. We first examine
the properties of the constructed graph G by these uncoordinated behaviors. We will
discuss in Section 4 a proper complexity model for the uncoordinated construction in a
distributed environment and also bound the computing cost of this spanner.

Before we proceed, we first realize the following invariant is maintained by the graph
G. The proof follows immediately from the construction of G.

Lemma 1. 1. For any edge pq that is not in G, there is another edge p′q′ in G such
that |pp′| ≤ |p′q′|/(2s + 2), |qq′| ≤ |p′q′|/(2s+ 2).

2. For any two edges pq, p′q′ in the constructed graph G, suppose that pq is built
before p′q′, then one of the following is true: |pp′| > |pq|/(2s + 2) or |qq′| >
|pq|/(2s + 2).

To show that the algorithm eventually outputs a good spanner, we first show the con-
nection of G with the notion of well-separated pair decomposition.

Definition 1 (Well-separated pair). Let t > 0 be a constant, and a pair of sets
of points A, B are well-separated with respect to t (or t-separated), if d(A, B) ≥
t · max(diam(A), diam(B)), where diam(A) is the diameter of the point set A, and
d(A, B) = min

p∈A,q∈B
|pq|.

Definition 2 (Well-separated pair decomposition). Let t > 0 be a constant,and P be
a point set. A well-separated pair decomposition (WSPD) with respect to t of P is a set
of pairsW = {{A1, B1}, . . . , {Am, Bm}}, such that

1. Ai, Bi ⊆ P , and the pair sets Ai and Bi are t-separated for every i.
2. For any pair of points p, q ∈ P , there is at least one pair (Ai, Bi) such that p ∈ Ai

and q ∈ Bi.

Here m is called the size of the WSPD.

It is not hard to see that the uncoordinated spanner is equivalent to the following greedy
algorithm that computes an s-WSPD.
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1. Choose an arbitrary pair (p, q), not yet covered by existing pairs inW .
2. Include the pair of point sets Br(p) and Br(q) in the WSPDW , with r = |pq|/(2+

2s), where Br(p) is the collection of points within distance r from point p.
3. Label the point pair (pi, qi) with pi ∈ Br(p) and qi ∈ Br(q) as being covered.
4. Repeat the above steps until every pair of points is covered.

Clearly the above algorithm produces a WSPD, as each pair (Br(p), Br(q)) is well-
separated and all pairs of points are covered. The spanner edge (p, q) is one-to-one
correspondence to the well-separated pair (Br(p), Br(q)) in the above algorithm —
the rule in Lemma 1 prevented two edges from the same well-separated pair inW to be
constructed. Thus the number of edges in the spanner G is the same as the size of the
greedy WSPD. It is already known that for any well-separated pair decomposition, if
one edge is taken from each well-separated pair, then the edges will become a spanner
on the original point set [6,5,32,29]. For our specific greedy s-WSPD, we are able to
get a slightly better stretch. The proof is omitted due to space constraint.

Theorem 1. From the greedy s-WSPD, one build a graph G that includes each pair
(p, q) when it is selected by the greedy algorithm. Thus G is a spanner with stretch
factor (s + 1)/(s− 1).

To make the stretch factor as 1+ε, we just take s = 1+2/ε in our spanner construction.
Next, we show that the greedy WSPD algorithm will output a linear number of well-
separated pairs.

3 A Greedy Algorithm for Well-Separated Pair Decomposition

We show the connection of the greedy WSPD with a specific WSPD constructed by
the deformable spanner [22], in the way that at most a constant number of pairs in
W is mapped to each well-separated pair constructed by the deformable spanner. To
be consistent, the greedy WSPD is denoted by W and the WSPD constructed by the
deformable spanner is denoted by Ŵ .

Deformable spanner. Given a set of points P in the plane, a set of discrete centers with
radius r is defined to be the maximal set S ⊆ P that satisfies the covering property and
the separation property: any point p ∈ P is within distance r to some point p′ ∈ S; and
every two points in S are of distance at least r away from each other. In other words, all
the points in P can be covered by balls with radius r, whose centers are exactly those
points in the discrete center set S. And these balls do not cover other discrete centers.

We now define a hierarchy of discrete centers in an recursive way. S0 is the original
point set P . Si is the discrete center set of Si−1 with radius 2i. Without loss of gener-
ality we assume that the closest pair has distance 1 (as we can scale the point set and
do not change the combinatorial structure of the discrete center hierarchy). Thus the
number of levels of the discrete center hierarchy is logα, where α is the aspect ratio of
the point set P , defined as the ratio of the maximum pairwise distance to the minimum
pairwise distance, that is, α = max

u,v∈P
|uv|/ min

u,v∈P
|uv|. Since a point p may stay in multi-

ple consecutive levels and correspond to multiple nodes in the discrete center hierarchy,
we denote by p(i) the existence of p at level i. For each point p(i−1) ∈ Si−1 on level
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i, it is within distance 2i from at least one other point on level i + 1. Thus we assign
to p(i−1) a parent q(i) in Si such that |p(i−1)q(i)| ≤ 2i. When there are multiple points
in Si that cover p(i−1), we choose one as its parent arbitrarily. We denote by P (p(i−1))
the parent of p(i−1) on level i. We denote by P (i)(p) = P (P (i−1)(p)) the ancestor of
p at level i.

The deformable spanner is based on the hierarchy, with all edges between two points
u and v in Si if |uv| ≤ c · 2i, where c is a constant equal to 4 + 16/ε. We restate some
important properties of the deformable spanner below.

Lemma 2 (Packing Lemma [22]). In a point set S ⊆ Rd , if every two points are at
least distance r away from each other, then there can be at most (2R/r + 1)d points in
S within any ball with radius R.

Lemma 3 (Deformable spanner properties [22]). For a set of n points in Rd with
aspect ration α,

1. For any point p ∈ S0, its ancestor P (i)(p) ∈ Si is of distance at most 2i+1 away
from p.

2. Any point p ∈ Si has at most (1 + 2c)d − 1 edges with other points of Si.
3. The deformable spanner Ĝ is a (1 + ε)-spanner G with O(n/εd) edges.
4. Ĝ has total weight O(|MST| · lgα/εd+1), where |MST| is the weight of the minimal

spanning tree of the point set S.

As shown in [22], the deformable spanner implies a well-separated pair decomposition
Ŵ by taking all the ‘cousin pairs’. Specifically, for a node p(i) on level i, we denote
by Pi the collection of points that are descent of p(i) (including p(i) itself), called the
decedents. Now we take the pair (Pi, Qi), the sets of decedents of a cousin pair p(i)

and q(i), i.e., p(i) and q(i) are not neighbors in level i but their parents are neighbors in
level i + 1. This collection of pairs constitutes a 4

ε -well-separated pair decomposition.

The size of Ŵ is bounded by the number of cousin pairs and is O(n/εd).

Size of greedy WSPD. The basic idea is to map the pairs in the greedy WSPD W to
the pairs in Ŵ and show that at most a constant number of pairs inW map to the same
pair in Ŵ .

Theorem 2. The greedy s-WSPDW has size O(nsd).

Proof. Choose c = 4(s + 1) (or, s = c/4 − 1) in the deformable spanner DS. The
size of Ŵ is O(nsd). Now we will construct a map from W to Ŵ . Each pair {P, Q}
in W is created by considering the points inside the balls Br(p), Br(q) with radius
r = |pq|/(2 + 2s) around p, q. Now we consider the ancestors of p, q in the spanner
DS respectively. There is a unique level i such that the ancestor ui = P (i)(p) and
vi = P (i)(q) do not have a spanner edge in between but the ancestor ui+1 = P (i+1)(p)
and vi+1 = P (i+1)(q) have an edge in between. The pair ui, vi is a cousin pair by
definition and thus the decedents of them correspond to an s-well-separated pair in Ŵ .
We say that the pair (Br(p), Br(q)) ∈ W maps to the descendant pair (Pi, Qi) ∈ Ŵ .

By the discrete center hierarchy (Lemma 3), we show that,

|pq| ≥ |uivi| − |pui| − |qvi| ≥ |uivi| − 2 · 2i+1 ≥ (c− 4) · 2i.
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The last inequality follows from that fact that ui, vi do not have an edge in the spanner
and |uivi| > c · 2i. On the other hand,

|pq| ≤ |pui+1|+ |ui+1vi+1|+ |qvi+1| ≤ 2 · 2i+2 + c · 2i+1 = 2(c + 4) · 2i.

The last inequality follows from the fact that ui+1, vi+1 have an edge in the spanner
and |ui+1vi+1| ≤ c · 2i+1. Similarly, we have

c · 2i < |uivi| ≤ |uiui+1|+ |ui+1vi+1|+ |vivi+1| ≤ 2 · 2i+1 + c · 2i+1 = 2(c+2) · 2i.

Therefore the distance between p and q is c′ · |uivi|, where (c − 4)/(2c + 4) ≤ c′ ≤
(2c + 8)/c.

Now suppose two pair (Br1(p1), Br1(q1)), (Br2(p2), Br2(q2)) in W map to the
same pair ui and vi by the above process. Without loss of generality suppose that p1, q1
are selected before p2, q2 in our greedy algorithm. Here is the observation:

1. |p1q1| = c′1 · |uivi|, |p2q2| = c′2 · |uivi|, r1 = |p1q1|/(2+2s) = c′1 · |uivi|/(2+2s),
r2 = c′2 · |uivi|/(2 + 2s), where (c − 4)/(2c + 4) ≤ c′1, c

′
2 ≤ (2c + 8)/c, and r1,

r2 are the radius of the balls for the two pairs respectively.
2. The reason that (p2, q2) can be selected in our greedy algorithm is that at least one

of p2 or q2 is outside the balls B(p1), B(q1), by Lemma 1. This says that at least
one of p2 or q2 is of distance r1 away from p1, q1.

Now we look at all the pairs (p�, q�) that are mapped to the same ancestor pair (ui, vi).
The pairs are ordered in the same order as they are constructed, i.e., p1, q1 is the first
pair selected in the greedy WSPD algorithm. Suppose rmin is the minimum among all
radius ri. rmin ≥ c/(2c+8) · |uivi|/(2+ 2s) = |uivi|/(4s+8). We group these pairs
in the following way. The first group H1 contains (p1, q1) and all the pairs (p�, q�) that
have p� within distance rmin/2 from p1. We say that (p1, q1) is the representative pair
in H1 and the other pairs in H1 are close to the pair (p1, q1). The second group H2
contains, among all remaining pairs, the pair that was selected in the greedy algorithm
the earliest, and all the pairs that are close to it. We repeat this process to group all the
pairs into k groups, H1, H2, · · · , Hk. For all the pairs in each group Hj , we have one
representative pair, denoted by (pj , qj) and the rest of the pairs in this group are close
to it.

We first bound the number of pairs belonging to each group by a constant with a pack
argument. With our group criteria and the above observations, all p� in the group Hj are
within radius rmin away from each other. This means that the q�’s must be far away —
the q�’s must be at least distance rmin away from each other, by Lemma 1. On the other
hand, all the q�’s are descendant of the node vi, so |viq�| ≤ 2i+1 by Theorem 3. That is,
all the q�’s are within a ball of radius 2i+1 centered at vi. By the packing Lemma 2, the
number of such q�’s is at most (2 · 2i+1/rmin +1)d ≤ (2 · 2i+1(4s+8)/|uivi|+1)d ≤
(4(s + 2)/(s + 1) + 1)d. This is also the bound on the number of pairs inside each
group.

Now we bound the number of different groups, i.e., the value k. For the repre-
sentative pairs of the k groups, (p1, q1), (p2, q2), · · · , (pk, qk), all the pi’s must be at
least distance rmin/2 away from each other. Again these pi’s are all descendant of ui
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and thus are within distance 2i+1 from ui. By a similar packing argument, the num-
ber of such pi’s is bounded by (4 · 2i+1/rmin + 1)d ≤ (8(s + 2)/(s + 1) + 1)d.
So the total number of pairs mapped to the same ancestor pair in Ŵ will be at most
(4(s + 2)/(s + 1) + 1)d · (8(s + 2)/(s + 1) + 1)d = (O(1 + 1/s))d. Thus the total
number of pairs in W is at most O(nsd). This finishes the proof.

With the connection of the greedy WSPD with the uncoordinated spanner construction
in Section 2, we immediately get the following theorem (with proofs omitted).

Theorem 3. The uncoordinated spanner with parameter s is a spanner with stretch
factor (s+1)/(s−1) and has O(nsd) number of edges, a maximal degree of O(lg α·sd),
average degree O(sd), and total weight O(lg α · |MST| · sd+1).

4 Spanner Construction and Applications

The uncoordinated spanner construction can be applied for peer-to-peer system design,
to allow users to maintain a spanner in a distributed manner. For that, we will first
extend our spanner results to a metric with constant doubling dimension. The doubling
dimension of a metric space (X, d) is the smallest value γ such that each ball of radius
R can be covered by at most 2γ balls of radius R/2 [25].

Theorem 4. For n points and a metric space defined on them with constant doubling
dimension γ, the uncoordinated spanner construction outputs a spanner G with stretch
factor (s+1)/(s− 1), has total weight O(γ2 · lgα · |MST | · sO(γ)) and has O(γ2 ·n ·
sO(γ)) number of edges. Also it has a maximal degree of O(γ · lgα ·sO(γ)) and average
degree O(γ · sO(γ)).

Distributed construction. Now we would like to discuss the model of computing for
P2P overlay design as well as the construction cost of the uncoordinated spanner. We
assume that there is already a mechanism maintained in the system such that any node
x can obtain the distance to any node y in O(1) time. For example, this can be done
by a TRACEROUTE command executed by x to the node y. We also assume that there
is a service answering near neighbor queries: given a node p and a distance r, return
the neighbors within distance r from p. Such an oracle is often maintained in a dis-
tributed file sharing system. Various structured P2P system support such function with
low cost [30]. Even in unstructured system such as BitTorrent, the Ono plugin is effec-
tive at locating nearby peers, with vanishingly small overheads [1].

The spanner edges are recorded in a distributed fashion so that no node has the entire
picture of the spanner topology. After each edge pq is constructed, the peers p, q will
inform their neighboring nodes (those in Br(p) and Br(q) with r = |pq|/(2s + 2))
that such an edge pq exists so that they will not try to connect to one another. We
assume that these messages are delivered immediately so that when any newly built
edge is informed to nodes of relevance. The number of messages for this operation is
bounded by |Br(p)|+ |Br(q)|. The amount of storage at each node x is proportional to
the number of well-separated pairs that include x. The following theorem bounds the
total number of such messages during the execution of the algorithm and the amount of
storage at each node.



The Emergence of Sparse Spanners and Greedy Well-Separated Pair Decomposition 59

Theorem 5. For the uncoordinated spanner G and the corresponding greedy WSPD
W = {(Pi, Qi)} with size m, each node x is included in at most O(sd lgα) well-
separated pairs in W . Thus,

∑m
i=1(|Pi|+ |Qi|) = O(nsd · lgα).

Distributed routing. Although the spanner topology is implicitly stored on the nodes
with each node only knows some piece of it, we are actually able to do a distributed
and local routing on the spanner with only information available at the nodes such that
the path discovered has maximum stretch (s+1)/(s− 1). In particular, for any node p
who has a message to send to node q, it is guaranteed that (p, q) is covered by a well-
separated pair (Br(p′), Br(q′)) with p ∈ Br(p′) and q ∈ Br(q′). By the construction
algorithm, the edge p′q′, after constructed, is informed to all nodes in Br(p′) ∪Br(q′),
including p. Thus p includes in the packet a partial route with {p � p′, p′q′, q′ � q}.
The notation p � p′ means that p will need to first find out the low-stretch path from
p to the node p′ (inductively), from where the edge p′q′ can be taken, such that with
another low-stretch path to be found out from q′ to q, the message can be delivered to q.
This way of routing with partial routing information stored with the packet is similar to
the idea of source routing [38] except that we do not include the full routing path at the
source node. By the same induction as used in the proof of spanner stretch (Theorem 1),
the final path is going to have stretch at most (s + 1)/(s− 1).

Nearest neighbor search. We remark that with the spanner each node can easily find
its nearest neighbor. Recall that each point x keeps all the pairs (p, q) that create a
‘dumb-bell’ pair set covering x. Then we claim, among all these p, one of them must
be the nearest neighbor of x. Otherwise, suppose y is the nearest neighbor of x, and y is
not one of p. But in the WSPD, (x, y) will belong to one of the pair set (Pi, Qi), which
correspond to a pair (p′, q′). Then there is a contradiction, as |xp′| < |xy| implies that
y is not the nearest neighbor of x. Thus one’s nearest neighbor is locally stored at this
node already. According to Theorem 5, x will belong to at most O(sd lgα) different
pair sets. So the nearest neighbor search can be finished in O(sd lgα) time by using
just the local information.
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Abstract. We first propose a new method, called “bottom-up method”,
that, informally, “propagates” improvement of the worst-case complexity
for “sparse” instances to “denser” ones and we show an easy though non-
trivial application of it to the min set cover problem. We then tackle
max independent set. Following the bottom-up method we propagate
improvements of worst-case complexity from graphs of average degree d
to graphs of average degree greater than d. Indeed, using algorithms for
max independent set in graphs of average degree 3, we tackle max
independent set in graphs of average degree 4, 5 and 6. Then, we com-
bine the bottom-up technique with measure and conquer techniques to
get improved running times for graphs of maximum degree 4, 5 and 6
but also for general graphs. The best computation bounds obtained for
max independent set are O∗(1.1571n), O∗(1.1918n) and O∗(1.2071n),
for graphs of maximum (or more generally average) degree 4, 5 and 6
respectively, and O∗(1.2127n) for general graphs. These results improve
upon the best known polynomial space results for these cases.

Keywords: Bottom-Up Method, Max Independent Set, Exact
Algorithms.

1 Introduction

Very active research has been recently conducted around the development of
exact algorithms for NP-hard problems with non-trivial worst-case complexity
(see the seminal paper [10] for a survey on both methods used and results ob-
tained). Among the problems studied in this field, max independent set (and
particular versions of it) is one of those that have received a very particular
attention and mobilized numerous researchers.

Here, we propose in Section 2 a generic method that propagates improvements
of worst-case complexity from “sparse” instances to “denser” (less sparse) ones,
where the density of an instance is proper to the problem handled and refers
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to the average value of some parameter of its instance. We call this method
“bottom-up method”. The basic idea here has two ingredients: (i) the choice of
the recursive measure of the instance and (ii) a way to ensure that on “denser”
instances, a good branching (wrt. the chosen measure) occurs.

We then illustrate our method to min set cover. Given a finite ground set U
and a set-system S over U , min set cover consists of determining a minimum-
size subsystem S′ covering U . Here, the density of an instance is defined to be the
average cardinality of the sets in the set-system S. Application of the method to
min set cover is rather direct but it produces quite interesting results. As we
show in Section 2 it outperforms the results of [9] in instances with average-set
sizes 6, 7, 8, . . . Note that we are not aware of results better than those given
here.

We next handle the max independent set problem. Given a graph G =
(V, E), max independent set consists of finding a maximum-size subset V ′ ⊆
V such that for any (vi, vj) ∈ V ′×V ′, (vi, vj) /∈ E. For this problem, [4] proposes
an algorithm with worst-case complexity bound O∗(1.2201n)1. All the results
we present here are polynomial space algorithms. We also quote the O(1.2108n)
time bound in [7] using exponential space (claimed to be improved down to
O(1.1889n) in the technical report [8], still using exponential space). Dealing
with max independent set in graphs of maximum degree 3, faster and faster
algorithms have been devised for optimally solving this problem. Let us quote the
recent O∗(1.0892n) time algorithm in [6], and the O∗(1.0854n) time algorithm
by the authors of the article at hand [3]. For max independent set density
of a graph is measured by its average degree. So, the bottom-up method here
extends improvements of the worst-case complexity in graphs of average degree d
to graphs of average degree greater than d.

In order to informally sketch our bottom-up method in the case of max in-
dependent set, suppose that one knows how to solve the problem on graphs
with average degree d in time O∗(γn

d ). Solving the problem on graphs with av-
erage degree d′ > d is based upon two ideas: we first look for a running time
expression of the form αmβn, where α and β depend both on the input graph
(namely on its average degree), and on the value γd (see Section 2). In other
words, the form of the running time we seek is parameterized by what we al-
ready know on graphs with smaller average degrees. Next, according to this
form, we identify particular values di (not necessarily integer) on the average
degree that ensure that a “good” branching occurs. This allows us to determine
a good running time for increasing values of the average degree. Note also that
a particular interest of this method lies in the fact that any improvement on
the worst-case complexity on graphs of average degree 3 immediately yields im-
provements for higher average degrees. A direct application of this method leads
for instance for max independent set in graphs with average degree 4 to an
upper complexity bound that already slightly outperforms the best known time

1 In a very recent article [5] a O∗(1.2132n) time algorithm for max independent set
is proposed. Plugging this new result allows to further improve our results. We give
the corresponding bounds at the end of Section 4.
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bound of O∗(1.1713n) of [1] (Section 2). This result is further improved down
to O∗(1.1571n) (Section 3) with a more refined case analysis. We also provide
bounds for (connected) graphs with average degree at most 5 and 6.

In section 4, we combine measure and conquer with bottom-up to show that
max independent set can be optimally solved in time O∗(1.2127n) in gen-
eral graphs, thus improving the O∗(1.2201n) bound [4]. Furthermore, in graphs
of maximum degree at most 5 and 6, we provide time bounds of O∗(1.1918n)
and O∗(1.2071n), respectively, that improve upon the respective O∗(1.2023n)
and O∗(1.2172n) time bounds of [4]2.

We give the results obtained using the O∗(1.0854n) time bound of [3] for
graphs of degree 3. Note that using previously known bounds for solving max
independent set in graphs of degree 3 (worse than O∗(1.0854n)), the bottom-
up method would also lead to improved results (with respect to those known in
the literature). We illustrate this point in Table 1.

Table 1. max independent set results for graphs of degree 4, 5, 6 and general graphs
with starting points several complexity bounds for graphs of degree 3

Degree 3 Degree 4 Degree 5 Degree 6 General graphs
1.08537 1.1571 1.1918 1.2071 1.2127
1.0892 [6] 1.1594 1.1932 1.2082 1.2135
1.0977 [2] 1.1655 1.198 1.213 1.217

Maybe more interesting than the improvements themselves is the fact that
they are obtained via an original method that, once some, possibly long, case
analysis has been performed on instances of small density, it is directly applicable
for getting results higher density instances, even for general ones. We think that
this method deserves further attention and insight, since it might be used to
solve also other problems.

Throughout this paper, we will denote by N(u) and N [u] the neighborhood
and the closed neighborhood of u, respectively (N(u) = {v ∈ V : (u, v) ∈ E}
and N [u] = N(u) ∪ {u}).

2 The Bottom-Up Method

In this section we present the method that relies on the following two stepping
stones: (i) the choice of the recursive complexity measure, applied in a very sim-
ple way in Section 2.1 to the min set cover to get non trivial time bounds
for instances of bounded average set-cardinalities, and (ii) a way to ensure that
on instances of density greater that d, a good branching (wrt. the chosen com-
plexity measure) occurs. This second point is illustrated in Section 2.2 for max
independent set.
2 The bound in graphs of degree at most d is obtained as O∗(1.2201nwd ), where wd

is the weight associated to vertices of degree d in the measure and conquer analysis
in [4]; better bounds could maybe be achieved with this method, but this is not
straightforward, since reduction rules may create vertices of arbitrarily large degree.
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2.1 The Importance of Recursive Complexity Measure: The Case
of min set cover

Let us consider the min set cover problem with ground set U = {x1, · · · , xn}
and set system S = {S1, · · · , Sm}. We show that the bottom-up method easily
applies to get algorithm with improved time bounds for instance with sets of
average (or maximum) size d, for any d ≥ 5. In what follows p =

∑m
i=1 |Si|.

Lemma 1. The algorithm in [9] solves min set cover in time resp. O∗(1.55m),
O∗(1.63m), O∗(1.71m), O∗(1.79m) in instances with sets of average size 5, 6, 7
and 8.

Proof. Denoting by ni the number of sets of size i and mj the number of elements
of frequency j, [9] gives an algorithm working in time O∗(1.2302k(I)) where
k(I) =

∑
i≥1 wini+

∑
j≥1 vjmj. Here wi is the weight associated to a set of size i,

and vj is the weight associated to an element of frequency j. It is easy to see
that, by convexity3, if the average size of sets is an integer d, then

∑
i≥1 wini ≤

mwd. Moreover, note that vj/j ≤ v3/3 for all j ≥ 14, hence
∑

j≥1 vjmj ≤
v3/3

∑
j≥1 jmj = dmv3/3. We get k(I) ≤ m(wd + v3d/3) (this bound being

tight if all sets have size d and all elements have frequency 3). ��

Let us consider an instance with p > dm. The bottom-up method assumes that
we know how to solve the problem in instances with sets of average size d in
time O∗(γm

d ). It seeks a complexity of the form O∗(γm
d yp−dm); indeed, it is

valid by hypothesis for p = dm, ie. on instances with sets of average size d.
Let us consider a set S of size s ≥ d + 1. We branch on S. If we do not take
it, we remove one set and s ≥ d + 1 edges; if we take it, suppose that each
element in S has frequency at least 3. Then we remove 1 set and (at least)
3s ≥ 3(d+1) edges. Hence, for the complexity to be valid we have to choose y such
that γm

d yp−dm ≥ γm−1
d yp−(d+1)−d(m−1)+γm−1

d yp−3(d+1)−d(m−1), or equivalently
1 ≥ γ−1

d y−1 + γ−1
d y−(2d+3).

Taking for instance γ5 = 1.55 (Lemma 1), this is true for y = 1.043. Let us
check the other cases:

– If there is an element j of frequency 1 in S, we have to take S and we remove
one set and s ≥ d + 1 edges. This does not create any problem as long as
γm−1

d y(p−d−1)−d(m−1) ≤ γm
d yp−dm, i.e., y ≤ γd.

– Otherwise, if there is an element j of frequency 2 which is in S and S′,
then either we take S and remove 1 set and at least 2(d + 1) edges, or we
remove S and take S′, and we remove 2 sets and at least d + 2 edges. So
we have to check that the value of y computed in the general case verifies
1 ≥ γ−1

d y−(d+2) + γ−2
d y−2+d.

Then if sets have average size d + 1, since p = (d + 1)m, the complexity is
O∗(γm

d+1) with γd+1 = γd × y. Starting from γ5 = 1.55, the recurrences give
γ6 = 1.61, γ7 = 1.66 (with y = 1.031) and γ8 = 1.70 (with y = 1.024).
3 wi’s are (0,0.3755,0.7509,0.9058,0.9720,0.9982) for i = 1, · · · , 6 and 1 for i ≥ 7.
4 vj ’s are (0, 0.2195, 0.6714, 0.8766, 0.9569, 0.9882) for i = 1, · · · , 6 and 1 for i ≥ 7.
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Theorem 1. min set cover is solvable in times O∗(1.61m), O∗(1.66m) and
O∗(1.70m) in instances with sets of average size 6, 7 and 8, respectively.

Interestingly enough, the time bound of O∗(1.2302m(wd+v3d/3)) obtained in Lem-
ma 1 is bigger than 2m for d ≥ 11 while using the previous method, it can be
shown that γd < 2 for any d (for instance γ100 < 1.98). Of course, the analysis
conducted in [9] is not oriented towards the bounded size case, so better results
might be obtained; we will say a few fords in conclusion on the links between
this complexity measure and the one of measure and conquer.

2.2 Making a Good Branching: The Case of max independent set

In order to use efficiently the previous complexity measure for max indepen-
dent set, we prove that, in a graph whose average degree is bounded from
below by some constant (possibly not an integer), we are sure that there ex-
ists a rather dense local configuration we can branch on. More precisely, if the
average degree is greater than d, this implies that we can find a vertex v with
at least f(d) edges incident to some neighbor of v, for some increasing func-
tion f . Let us give an example. In the independent set problem, there are two
well known reductions rules that allow to remove without branching vertices of
degree at most 25. In the following we will assume that these reductions rules
has been performed, i.e., the graph does not contain any vertex of degree at most
2. Then, trivially, if the graph has average degree greater than d ∈ N, we know
there exists a vertex v of degree at least d + 1. If we assume that no vertex is
dominated6, then there exist at least f(d) = 2(d+1)+�(d+1)/2� edges incident
to some neighbor of v. Indeed, there exist d+ 1 edges incident to v, d+ 1 edges
between a neighbor of v and a vertex not neighbor of v (one for each neighbor
of v, to avoid domination) and, since each vertex has degree at least 3, at least
�(3(d+1)− 2(d+1))/2� = �(d+1)/2� other edges. Note that such relationships
may be established even if d is non integer. For instance, we will see that if
d > 24/7, then there exists a vertex of degree 5 or two adjacent vertices having
degree 4, leading to f(d) = 11. This property linking the average degree to the
quality of the branching is given in Lemma 2.

Then, for a given d, either the average degree is greater than d, and we can
make an efficient branching (i.e., a branching that induces a recurrence relation
leading to a lower time-bound), or it is not and we can use an algorithm tailored
for low-degree graphs. Thus, Lemma 2 fixes a set of critical degrees (di) and
we define step-by-step (from the smallest to the highest) algorithms STABLE(di),
that work on graphs of average degree di or less. With this lemma, we analyse
the running time of these algorithms thanks to a measure allowing to fruitfully
use the existence of the dense local configurations mentioned above. As for min
5 A vertex of degree at most 1 should be taken in the solution. If a vertex v has two

neigbors u1 and u2, take v if u1 and u2 are adjacent, otherwise remove v, u1, u2 from
the graph and add a new vertex u12 whose neighborhood is N(u1) ∪ N(u2) \ {v}
(this reduction is called vertex folding, see for instance [4]).

6 u dominates v if N [u] ⊆ N [v]. In this case, it is never interesting to take v.



A Bottom-Up Method and Fast Algorithms for max independent set 67

set cover, if we know how to solve the problem in time O∗(γn
d ) in graphs

with average degree d, and that when the average degree is greater than d a
good branching occurs, then we seek a complexity of the form O∗(γn

d y2m−dn).
This complexity measure is chosen because it is by hypothesis valid in graphs
with average degree d. The recurrences given by the branching will give the best
possible value for y. This bottom-up analysis (from smaller to higher average
degree) is detailed in Proposition 1.

At the end of the section, we mention some results obtained by a direct ap-
plication of this method for graphs of average degree 4, 5 and 6.

Lemma 2. There exists a specific sequence (εi,j , fi,j)i≥4,j≤i−2 such that, if the
input graph has average degree more than i−1+εi,j, then the following branching
is possible: either remove 1 vertex and i edges, or i + 1 vertices and (at least)
fi,j edges. For any i, εi,0 = 0. The following table gives the beginning of the
sequence (εi,j , fi,j):

(εi,j , fi,j) j = 0 j = 1 j = 2 j = 3 j = 4
i = 4 (0, 10) (3/7, 11) (3/5, 12)
i = 5 (0, 15) (4/9, 16) (4/7, 17) (4/5, 18)
i = 6 (0, 20) (5/23, 21) (5/11, 22) (20/37, 23) (5/7, 24)

Before giving the proof of the lemma, let us give an example, with i = 5 and
j = 2. This lemma states that if the average degree is greater than 4 + ε5,2 =
4 + 4/7, then we can branch on a vertex v and either remove this vertex and 5
edges, or 6 vertices and (at least) 17 edges.

Proof. Fix some vertex v0 of maximum degree d, such that, for any other ver-
tex v of degree d in the graph,

∑
w∈N(v) d(w) ≤

∑
w∈N(v0) d(w), and set δ =∑

w∈N(v0) d(w).
For k ≤ d, let nk be the number of vertices of degree k and mkd be the number

of edges (u, v) such that d(u) = k and d(v) = d. For k ≤ d− 1, set αk = mkd/nd

and αd = 2mdd/nd. In other words, αk is the average number of vertices of
degree k that are adjacent to a vertex of degree d. Since folding or reduction
rules remove vertices of degree at most 2, we fix αk = 0 for k ≤ 2. Summing up
inequalities on any vertex of degree d, we get (details are omitted):∑

k≤d

kαk ≤ δ (1)

∑
k≤d

αk = d (2)

Fix now ε = 2m/n − (d − 1) ∈]0, 1[. Then, ε =
∑

k≤d(k+1−d)nk∑
k≤d nk

. This function
is decreasing with nk, ∀k < d. Use some straightforward properties: nk ≥ mkd

k ,
∀k < d and dnd =

∑
k<d mkd + 2mdd. This leads to:

ε ≤
nd −

∑
k<d(d− 1− k)mkd/k

nd +
∑

k<d mkd/k
=

1−
∑

k<d(d− 1− k)αk/k

1 +
∑

k<d αk/k
(3)
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Clearly, when we discard v0, we remove from the graph one vertex and d edges;
when we add it, d+1 vertices are deleted. Now, let μ2 be the minimal number of
edges we delete when we add v0 to the solution. Since there are at least 2d(v0)
edges between N(v0) and the remaining of the graph, and thanks to inequali-
ties (1) and (2), we get:

μ2 ≥ 2d +
⌈

δ − 2d
2

⌉
≥ 2d +

⌈∑
k≤d(k − 2)αk

2

⌉
. (4)

For 0 ≤ j ≤ i − 2, we now consider the following programs (Pi,j): max(ε)
under constraints (1),(2),(3),(4) and μ2 ≤ fi,j − 1. In other words, we look for
the maximal value εi,j for ε such that it is possible that any vertex in the graph
verifies μ2 ≤ fi,j−1. Equivalently, if the graph has degree higher than i−1+εi,j,
we remove at least fi,j edges (when taking some well chosen vertex). ��

Let di,j = i− 1 + εi,j . Now we use Lemma 2 to recursively define an algorithm
STABLE(di,j) solving max independent set in a graph of average degree at
most di,j . STABLE(di,j) performs the usual preprocessing (described above at the
beginning of the section) and branches on a vertex that maximizes the number of
edges incident to its neighborhood. It repeats this step until the average degree
is at most di,j−1, then it applies algorithm STABLE(di,j−1)7.

Suppose that STABLE(di,j−1) has a running time bounded by γn
i,j−1. Let ν1 =

1, μ1 = i, ν2 = i + 1 and μ2 = fi,j−1.

Proposition 1. STABLE(di,j) runs in time T (m, n) = O∗
(
γn

i,j−1y
2m−di,j−1n
i,j

)
,

where yi,j is the smallest solution of the inequality:

1 ≥ γ−ν1
i,j−1y

−2μ1+di,j−1ν1 + γ−ν2
i,j−1y

−2μ2+di,j−1ν2

In particular, T (m, n) = O∗(γn
i,j) where γi,j = γi,j−1y

εi,j−εi,j−1
i,j .

Proof. The running time claimed is valid for graphs of average degree di,j−1. If
the graph has average degree greater than di,j−1, thanks to Lemma 2 we branch
on a vertex where we remove either ν1 vertices and μ1 edges or ν2 vertices
and (at least) μ2 edges. Then the running time is valid as long as y is such that
T (m, n) ≥ T (m−μ1, n−ν1)+T (m−μ2, n−ν2)+p(m, n) (for some polynomial p).
This gives the recurrence relation claimed by proposition’s statement.

Since 2m ≤ di,jn in a graph of average degree at most di,j , the running
time O∗(yn

i,j) follows. Of course, we need to initialize the recurrence, for example
with γ4,0 = 1.0854 in graphs of average degree d4,0 = 3 (i.e., with the basis of
the running time in [3]).

For completeness, we need to pay attention to the fact that, once the branching
has been performed, reduction rules might be applied in order to remove vertices
of degree at most 2 in the remaining graph. For instance, if a separated tree on ν
vertices is created, reduction rules will remove this tree hence, in all, ν vertices
7 If j = 0 of course we use STABLE(di−1,i−3) in graphs of average degree at most

di−1,i−3 and the same result as in Proposition 1 holds.
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and ν− 1 edges. Note that all reduction rules remove ν ≥ 1 vertices and at least
ν − 1 edges. We have to check that these operations do not increase T (m, n),
i.e., T (m, n) ≥ T (m− ν + 1, n− ν), or ydi,j−1−2+2/ν ≤ γi,j−1. ��

To conclude this section, let us note that as direct applications of Proposition 1
we obtain (details are omitted) an algorithm running in time O∗(1.1707n) for
graphs of average degree 4 (slightly outperforming the bound of O∗(1.1713n)
by [1]), and algorithms running in times O∗(1.2000n) and O∗(1.2114n) for graphs
of average degrees 5 and 6, respectively (based upon the algorithm in time
O∗(1.1571n) for graphs of average degree 4 of Theorem 1). It is worth noticing
that these results are obtained by a direct application of the method proposed;
they will be further improved in the rest of the paper, using more involved case
analysis or techniques, but already outperform the best known bounds so far.

3 Refined Case Analysis for Graphs of Average Degree 4

In Lemma 2 we have shown the existence of local dense configurations when
the graph has average degree more than 3. For instance, we have seen that if
it has average degree at least 4 + 4/7, then we can branch on a vertex v and
either remove this vertex and 5 edges, or 6 vertices and (at least) 15 edges. In
this section, we apply a similar method, by performing a deeper analysis, to
compute the running time of an algorithm for graphs of average degree 4, in
order to prove the following theorem.

Theorem 1. It is possible to solve max independent set on graphs with max-
imum (or even average) degree 4 with running time O∗(1.1571n).

Proof (Sketch). Based upon what has been discussed in Section 2, we seek a
complexity of the form O∗(γny2m−3n), where γ = 1.0854, valid for graphs of
average degree 3. We assume that our graph has m > 3n/2 edges. In particular,
there is a vertex of degree at least 4.

Assume that we perform a branching that reduces the graph by either ν1
vertices and μ1 edges, or by ν2 vertices and μ2 edges. Then, by recurrence, our
complexity formula is valid for y being the largest root of the following equality:
1 = γ−ν1y−2μ1+3ν1 + γ−ν2y−2μ2+3ν2 . Then, either there exists a vertex of degree
at least 5, or the maximum degree is 4. In the former case, we reduce the graph
either by ν1 = 1 vertex and μ1 = 5 edges, or by ν2 = 6 vertices and μ2 ≥ 13
edges, leading to y = 1.0596.

In what follows, we consider the latter case, i.e., the graph has maximum degree
4, and we denote u1, u2 u3 and u4 the four neighbors of some vertex v. We call
inner edge an edge between two vertices in N(v), and outer edge an edge (ui, x)
where x 
∈ {v}∪N(v). We study 4 cases, depending on the configuration of N(v).
Here, we consider that no trees are created while branching (the case of trees is
not detailed here due to lack of space).
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Case 1. All the neighbors of v have degree 4.
This case is easy. Indeed, if there are at least 13 edges incident to vertices

in N(v), by branching on v we get ν1 = 1, μ1 = 4, ν2 = 5 and μ2 ≥ 13. This
gives y = 1.0658.

But there is only one possibility with no domination and only 12 edges incident
to vertices in N(v): when u1, u2, u3, u4 is a 4-cycle. In this case, we can reduce
the graph before branching. Any optimal solution cannot contain more than two
vertices from the cycle. If it contains only one vertex, then replacing it by v does
not change its size. Finally, there exist only three disjoint possibilities: keep u1
and u3, keep u2 and u4 or keep only v. Hence, we can replace N(v) ∪ {v} by
only two adjacent vertices u1u3 and u2u4, such that u is adjacent to u1u3 (resp.,
u2u4) if and only if u is adjacent to u1 or to u3 (resp., to u2 or to u4).

Case 2. All the neighbors of v have at least 2 outer edges.
If one of them has degree 4, then there are at least 13 edges removed when

taking v, and we get again ν1 = 1, μ1 = 4, ν2 = 5 and μ2 ≥ 13.
Otherwise, once v is removed, any ui now has degree 2. Note that when folding

a vertex of degree 2, we reduce the graph by 2 vertices and 2 edges (if the vertex
dominates another one, this is even better). Since any two vertices ui cannot
be adjacent to each other, we can remove 8 vertices and at least 8 edges by
folding u1, u2, u3, u4. Indeed, if for instance, u1 dominates its neighbors (its two
neighbors being adjacent), we remove 3 vertices and at least 5 edges which is
even better. Removing 8 vertices and at least 8 edges is very interesting since it
leads to ν1 = 9, μ1 = 12, ν2 = 5, μ2 = 12, and y = 1.0420.

Case 3. u1 has degree 3 and only one outer edge.
u1 has one inner edge, say (u1, u2). Let y be the third neighbor of u1. We

branch on y. Suppose first that u2 has degree 3. If we take y we remove 4
vertices and (at least) 8 edges (there is at most one inner edge in N(y)); if we
don’t take y, then we remove also v and we remove globally 2 vertices and 7 edges.

Obviously, this is not sufficient. There is an easily improvable case, when a
neighbor of y has degree 4 (or when y itself has degree 4), or when the neighbors
of y are not adjacent to each other. Indeed, in this case, there are at least 9 edges
in N(y), and we get ν1 = 4, μ1 = 9, ν2 = 2 and μ2 ≥ 7, leading to y = 1.0661.
Now, we can assume that y has degree 3, its three neighbors have also degree 3,
and that the same holds for z, the neighbor of u2. Furthermore, we assume that
they are both part of a triangle.

We reason with respect to the quantity |N(y) ∩N(z)|. If |N(y) ∩N(z)| = 2,
then either some neighbor of y has degree 4, or else v is a separator of size 1.
If |N(y) ∩ N(z)| = 1, then their common neighbor has degree 4. Finally, if
|N(y)∩N(z)| = 0, then at least a neighbor of, say, z is neither u3 nor u4. Hence,
when discarding y, we take u1, so remove u2 and then add z to the solution. We
get ν1 = 4, μ1 = 8, ν2 = 7 and μ2 ≥ 13, leading to y = 1.0581.

Suppose now that u2 has degree 4. Then, when we don’t take y, since we don’t
take v, u1 has degree 1. Then, we can take it and remove u2 and its incident
edges. Then, when we don’t take y, we remove in all 4 vertices and 10 edges. In
other words, ν1 = 4, μ1 = 8, ν2 = 4 and μ2 ≥ 10. This gives y = 1.0642.



A Bottom-Up Method and Fast Algorithms for max independent set 71

Case 4. u1 has degree 4 and only one outer edge.
Since Case 1 does not occur, we can assume that there is a vertex (say u4)

of degree 3. Since Case 3 does not occur, u4 has no inner edge. Hence, u1 is
adjacent to both u2 and u3. Then, there are only two possibilities. If there are
no other inner edges, since Case 3 does not occur, u2 and u3 have two outer
edges, and we have in all 13 edges. This gives once again ν1 = 1, μ1 = 4, ν2 = 5
and μ2 ≥ 13. Otherwise, there is an edge between u2 and u3. Then, v, u1, u2, u3
form a 4-clique. We branch on u4. If we take u4, we delete ν1 = 4 vertices and (at
least) μ1 = 9 edges (v has degree 4 and is not adjacent to other neighbors of u4).
If we discard u4 then, by domination, we take v, and delete ν2 = 5 vertices and
at least μ2 = 12 edges. So, y = 1.0451 and Case 4 is concluded.

The remaining part of the proof (not given here) has to deal with the case
when some trees are created while branching and to verify that performing a
reduction rule (such as a vertex folding) does not increase the measure. ��

4 When Bottom-Up Meets Measure and Conquer: Final
Improvements and an Algorithm in General Graphs

In this section we devise algorithms for graphs of maximum degree 5, 6 and
general graphs. The algorithms follow the same line as the one devised in [4].
There, a branching is performed on a vertex of maximum degree, and a measure
and conquer technique is used to analyse the running time: vertices of degree
d receive a weight wd ≥ 0 which is non-decreasing with d (with wd = 1 for
d ≥ 7 and w1 = w2 = 0). The running time of the algorithm is measured as a
function of the total weight of the graph (initially smaller than n). In other words,
running times are expressed as T (n) = O∗(c

∑
i∈V wi), where

∑
i∈V wi ≤ n. When

a branching on a vertex of degree d is done, the decreasing δd of the total weight
of the graph is measured. Weights are then optimized in such a way that δd

leads to the same complexity (neglecting polynomial terms) for any d. Weights
are subject to some constraints, such as, for example, the fact that reduction
rules must not increase the total weight of the graph.

Here, we modify the algorithm above and its analysis in two ways in order to
improve the running time for max independent set. First, we incorporate the
fact that we have efficient algorithms able to solve max independent set in
graphs of maximum degree 3 and 4. We will use these algorithms when the input
graph has degree at most 4, modifying the set of constraints in the measure and
conquer analysis (see Proposition 2) and leading to a better running time. Then
we improve the analysis of measure and conquer in graphs of maximum degree 5,
by taking into account that creating a vertex of high degree by vertex folding
may decrease the total weight. As a final result, we combine the two previous
ideas to get a general algorithm in time O∗(1.2127n) in Theorem 3.
Proposition 2. max independent set can be solved in time O∗(1.2135n).

Proof. According to former sections, we know that it is possible to compute max
independent set on graphs of maximum degree Δ with running time bounded
above by O∗(γn

Δ), where γ3 = 1.0854 and γ4 = 1.1571.
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Our algorithm works as follows: while Δ ≥ 5, run the preprocessing (in par-
ticular, fold appropriate vertices and reduce mirrors) described in [4] and branch
on any vertex of maximum degree. Once Δ ≤ 4, run the algorithms described
in [3] (case of degree 3) and in Section 3 (case of degree 4).

We analyse the running time of this algorithm with the same measure and
conquer techniques as in [4] modified as follows. First, we do not need to consider
branching on vertices of degree 3 or 4, and this allows of course to choose much
more efficient weights. On the other hand, we have to consider two additional
constraints. Indeed, the bound on effective running time of the algorithm we use
for degree 3 and 4 must be lower than the complexity we claim. Since we provided
in Theorem 1 an algorithm in O∗(γn

3 (γ4/γ3)2m−3n), we have to verify that for any
graph of maximum degree 4 or less and average degree d = 3 + n4/n (note that

n3+n4 = n) γn
3

(
γ4
γ3

)(d−3)n
≤ γw3n3+w4n4 , or equivalently log γ3+(d−3)(log γ4−

log γ3) ≤ log γ((4−d)w3+(d−3)w4). Notice that 4−d and d−3 are nonnegative,
thus this inequality is a consequence of w3 ≥ log γ3

log γ and w4 ≥ log γ4
log γ . The best

values we have found are w3 = 0.493, w4 = 0.765, w5 = 0.914, w6 = 0.9777,
satisfying all the constraints and leading to γ = 1.2135. ��

As consequences we get running times of O∗(1.1935n) and O∗(1.2083n) in graphs
of maximum degree 5 and 6 (by the fact that

∑
v∈V w(v) ≤ wΔn). Moreover, as

mentioned before, it is possible to improve them slightly.

Theorem 2. On graphs of maximum degree 5, max independent set can be
solved with running time O∗(1.1918n).

Proof. In graphs of maximum degree Δ, inequalities wd ≤ 1 for any d > Δ
are not relevant anymore (since initially

∑
v∈V w(v) ≤ n as soon as wd ≤ 1

for d ≤ Δ). However, the values wd must respect the constraint that folding
does not increase the total weight of the graph. If we use weights w5

3 = 0.52161,
w5

4 = 0.83161, w5
5 = 1 and w5

6 = 1.16839 and w5
d = 1.33678 for d > 6, all the

constraints are satisfied and we get γ5 = 1.1918. ��

Theorem 3. It is possible to solve max independent set in time O∗(1.2127n).

Proof. As discussed above, max independent set is solvable on graphs of
maximum degree Δ in time O∗(γn

Δ), where γ3 = 1.0854, γ4 = 1.1571 and γ5 =
1.1918. Our algorithm works as follows: while Δ ≥ 6, run the same algorithm
as in [4]. Once Δ ≤ 5, run algorithm described in Theorem 2 based upon our
improvements for Δ ≤ 5. The additional constraint is now γ

w5
3n3+w5

4n4+n5
5 ≤

γw3n3+w4n4+w5n5 , which is a consequence of wi ≥ w5
i

log γ5
log γ , ∀i ≤ 5. The weights:

w3 = 0.47459, w4 = 0.75665, w5 = 0.90986, w6 = 0.9757, w7 = 0.9994 and
wd = 1 for d ≥ 8 satisfy all the constraints and lead to γ = 1.2127. ��

As a consequence of the proof of Theorem 3, we solve max independent set
in graphs of degree at most 6 in time O∗(1.2127w6n) = O∗(1.2071n).

As mentioned in the introduction, a recent article provides an algorithm solv-
ing max independent set in time O∗(1.2132n). Considering this new result
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instead of the bound of [4], we obtain the following time bounds: O∗(1.1895n),
O∗(1.2050n) and O∗(1.2114n) for respectively graphs of maximum degree 5, 6,
and for general graphs.

5 Conclusion

The complexity measure of the method proposed in the paper may appear, at
least for the two problems considered, as an adaptation of measure and conquer
for bounded degree instances. Indeed, for example, γm

d y2m−dn can be easily
written as 2

∑
i wini where ni is the number of vertices of degree i. However,

first, the way we seek the complexity in the bottom up method actually specifies
the strong links that have to be verified between weights in order to use as
efficiently as possible an algorithm for lower degree graphs (or, more generally
for low density instances). The second point is to exhibit and to fruitfully use
the link between density and branching. A recursive application of the method
then allows to take into account situations where a good branching necessarily
occurs to derive good complexity bounds.

Though the precise links between bottom-up and measure and conquer is
not very clear yet, at least these two points seem not to be considered in a
usual measure and conquer analysis. Furthermore, the results obtained for max
independent set by using it, the best known until now, are interesting per se.
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Abstract. In this paper we consider the CAPACITATED DOMINATING SET prob-
lem — a generalisation of the DOMINATING SET problem where each vertex v is
additionally equipped with a number c(v), which is the number of other vertices
this vertex can dominate. We provide an algorithm that solves CAPACITATED

DOMINATING SET exactly in O(1.89n) time and polynomial space. Despite the
fact that the CAPACITATED DOMINATING SET problem is quite similar to the
DOMINATING SET problem, we are not aware of any published algorithms solv-
ing this problem faster than the straightforward O∗(2n)1 solution prior to this
paper. This was stated as an open problem at Dagstuhl seminar 08431 in 2008
and IWPEC 2008.

We also provide an exponential approximation scheme for CAPACITATED

DOMINATING SET which is a trade-off between the time complexity and the
approximation ratio of the algorithm.

1 Introduction

The field of exact exponential-time algorithms for NP-hard problems has attracted a
lot of attention in recent years (see Woeginger’s survey [1]). Many difficult problems
can be solved much faster than by the obvious brute-force algorithm; examples in-
clude INDEPENDENT SET [2], DOMINATING SET [2,3] , CHROMATIC NUMBER [4]
and BANDWIDTH [5,6]. A few powerful techniques have been developed, including
Measure & Conquer [2] and inclusion/exclusion principle applications [4,7,8]. How-
ever, there is still a bunch of problems for which no faster solution than the obvious one
is known. These include SUBGRAPH ISOMORPHISM and CHROMATIC INDEX which
are mentioned as open problems in [9,10].

In order to define the CAPACITATED DOMINATING SET problem let us introduce
some basic notions. Let G = (V, E) be an undirected graph. Given F ⊂ E we write
V (F ) to denote the set of all endpoints of the edges in F . Given W ⊂ V by G[W ] we
denote the subgraph induced by W . We say a vertex v ∈ V dominates u ∈ V if u = v
or uv ∈ E, i.e. a vertex dominates itself and all its neighbours. By N [v] = {v} ∪ {u :
uv ∈ E} we denote the set of vertices dominated by v. We extend this notation to any

� This work was partially supported by the Polish Ministry of Science grants N206 491038 and
N206 491238.

1 By O∗ we denote standard big O notation but omitting polynomial factors.

H. Kaplan (Ed.): SWAT 2010, LNCS 6139, pp. 74–80, 2010.
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subset W ⊂ V by putting N [W ] =
⋃

v∈W N [v]. We say that a set W dominates a
vertex u if u ∈ N [W ]. The set N [W ] is called the closed neighbourhood of W .

The DOMINATING SET problem asks for the smallest set that dominates the whole
V . In the CAPACITATED DOMINATING SET problem each vertex v is additionally
equipped with a number c(v), which is the number of other vertices this vertex can
dominate. Formally, we say that a set S ⊂ V is a capacitated dominating set if there
exists fS : V \ S → S such that fS(v) is a neighbour of v for each v ∈ V \ S and
|f−1

S (v)| ≤ c(v) for each v ∈ S. The function fS is called a dominating function for the
set S. The CAPACITATED DOMINATING SET problem asks for the smallest possible
size of a capacitated dominating set. Note that for a given set S checking whether it is
a capacitated dominating set is a polynomial–time problem which can be solved using
max–flow or maximum matching techniques.

Finding an algorithm faster than O∗(2n) for DOMINATING SET was an open prob-
lem until 2004. Currently the fastest algorithm by van Rooij et al. runs in O(1.5048n)
time [3]. The problem of solving CAPACITATED DOMINATING SET faster than the
check-all-subsets O∗(2n) time algorithm was posted by van Rooij in 2008 at Dagstuhl
seminar [10] and on IWPEC 2008 open problem list. In this paper we present an algo-
rithm providing the positive answer to this question.

Note that at first glance breaking O∗(2n) barrier for the CAPACITATED DOMINAT-
ING SET problem seems a hard task, since even the brute-force O∗(2n) time algorithm
involves matching or max–flow techniques. A standard approach to improving expo-
nential time algorithms is through fixed parameter tractability (see eg. [11]). However
from the parameterized point of view, Dom et al. [12] showed that this problem is
W [1]-hard when parameterized by both treewidth and solution size, and Bodlaender et
al. [13] showed that even the planar version parameterized by the solution size is also
W [1]-hard.

Superpolynomial approximation was recently considered as a way of coping with
hardness of approximation of different NP-hard problems. Results in this field include
a subexponential approximation algorithm for BANDWIDTH on trees [14] and expo-
nential approximation schemes for CHROMATIC NUMBER [15,16] or BANDWIDTH on
arbitrary graphs [17,18].

Our results. In Section 2 we provide an algorithm which solves the CAPACITATED

DOMINATING SET problem in O(1.89n). The algorithm constructs O∗(
(

n
n/3

)
) =

O(1.89n) reductions of the input graph into a CONSTRAINED CAPACITATED DOMI-
NATING SET problem instance (defined in Section 2.1), each solvable in polynomial
time. Section 2.3 tackles the exponential approximation of CAPACITATED DOMI-
NATING SET. More precisely, we provide an approximation algorithm that for a given
c ∈ (0, 1

3 ), in time

O∗
((

n

cn

))
= O∗

((
1/

(
cc (1− c)1−c

))n)
,

computes a ( 1
4c + c)-approximation in the case of c < 1

4 or a (2 − 3c)-approximation
in the case of 1

4 ≤ c < 1
3 . This result should be compared to the trivial approximation

scheme that works in O∗(
(

n
cn

)
) time too: iterate over all subsets of V that have size at

most cn or at least (1 − c)n and return the smallest feasible solution found. However,
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this algorithm has an approximation factor of 1
c−1, which is between 2× and 4×worse

than our ratio. All algorithms in this paper require polynomial space.
Our algorithm for CAPACITATED DOMINATING SET is somewhat similar to one

of the first algorithms to break O∗(2n) for the classical DOMINATING SET problem,
namely the algorithm of Randerath and Schiermeyer [19]. Their algorithm also involves
matching arguments and our algorithm, applied to DOMINATING SET, can be viewed
as a simplification of their algorithm. However we do not know whether their algorithm
could be used to solve the CAPACITATED DOMINATING SET problem.

2 CAPACITATED DOMINATING SET

2.1 CONSTRAINED CAPACITATED DOMINATING SET

In this section we introduce a constrained version of the CAPACITATED DOMINATING

SET problem, namely the CONSTRAINED CAPACITATED DOMINATING SET problem,
which can be solved in polynomial time.

The input of CONSTRAINED CAPACITATED DOMINATING SET is an undirected
graph G = (V, E), a set U ⊆ V and a capacity function c : V → {0, . . . , n − 1}.
We ask for a smallest capacitated dominating set S ⊆ V containing U such that each
vertex outside U dominates at most one other vertex. Formally we ask for a dominating
function fS satisfying

|f−1
S (v)| ≤ 1 for each v ∈ S \ U

|f−1
S (v)| ≤ c(v) for each v ∈ U (1)

Let G = (V, E) with U ⊆ V and a capacity function c : V → {0, . . . , n − 1} be
a CONSTRAINED CAPACITATED DOMINATING SET instance. Consider the following
graph G′ = (V ′, E′):

– for any v ∈ V \ U we have v ∈ V ′;
– for any v ∈ U we have c(v) copies v1, v2, . . . , vc(v) of v in V ′;
– for any v ∈ V \ U and u ∈ U the edge uiv ∈ E′ for all i iff uv ∈ E;
– for v, w ∈ V \ U we have vw ∈ E′ iff vw ∈ E and c(v) + c(w) > 0;
– there are no edges of the form viwj or vivj for v, w ∈ U .

We show a correspondence between feasible solutions of CONSTRAINED CAPACI-
TATED DOMINATING SET in G and matchings in G′.

Lemma 1. Let S be a capacitated dominating set in G with a dominating function fS

satisfying condition 1. Then one may construct in polynomial time a matching φ(S, fS)
in G′ satisfying |φ(S, fS)| = |V | − |S|.

Proof. Let us define the matching φ(S, fS) as follows:

– for each v /∈ S such that fS(v) /∈ U add vfS(v) to φ(S, fS);
– for each v /∈ S such that u = fS(v) ∈ U add vui to φ(S, fS), where ui is a copy of

u in G′ and different copies ui are chosen for different vertices v with fS(v) = u
(note that |f−1

S (u)| ≤ c(u), so there are enough vertices ui).
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(D,2)(E,0) (F,0)

(A,2)(H,0) (B,3) (C,2)

(K,0)

(M,0) (L,1)

U={A,B,C}

H’ E’ D’ F’ K’ M’ L’

A′
1 A′

2 B′
1 B′

2 B′
3 C′

1 C′
2

Fig. 1. From the constrained capacitated dominating set {A, B, C, D, L} (where U =
{A, B, C}) to a matching. By a pair (X, i) we denote a vertex X with its capacity c(X) = i.

Note that every vertex v ∈ V \ S is an endvertex of an edge in the matching φ(S, fS).
The second endvertex is fS(v) (in the case fS(v) /∈ U ) or a copy of fS(v) in G′ (in the
case fS(v) ∈ U ). Note that by condition 1, every vertex w ∈ S \ U is an endvertex of
at most one chosen edge, thus φ(S, fS) is indeed a matching. Moreover, every edge in
φ(S, fS) has exactly one endpoint in V \ S. Therefore |φ(S, fS)| = |V | − |S|. ��

Lemma 2. Let M be a matching in G′. Then one may construct in polynomial time
a feasible solution ψ(M) to the CONSTRAINED CAPACITATED DOMINATING SET

problem with dominating function fψ(M) satisfying |ψ(M)| = |V | − |M |.

Proof. Consider the following capacitated dominating set ψ(M) with dominating func-
tion fψ(M):

– U ⊆ ψ(M);
– for u ∈ U and for each i such that uiv ∈ M , we take fψ(M)(v) = u;
– for any edge vw ∈ M , where v, w 
∈ U one of the endpoints (say v) has to satisfy

c(v) > 0, we add v to ψ(M) and set fψ(M)(w) = v;
– for any v 
∈ U which is not an endpoint of any edge in M we add v to ψ(M).

It is easy to verify that the above procedure does indeed give a feasible solution to
CONSTRAINED CAPACITATED DOMINATING SET. We have |ψ(M)| = |V | − |M |
since for each edge in M , exactly one of its endpoints does not belong to ψ(M). ��

We conclude this section with the following theorem.

Theorem 1. The CONSTRAINED CAPACITATED DOMINATING SET problem can be
solved in polynomial time.
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Proof. By Lemmas 1 and 2, to find the solution of the CONSTRAINED CAPACITATED

DOMINATING SET problem it is enough to find any maximum matching in G′, which
can be done in polynomial time (see e.g. [20]).

2.2 From CONSTRAINED CAPACITATED DOMINATING SET to CAPACITATED

DOMINATING SET

Let us start with the following simple observation. Let S be any capacitated dominating
set and let fS be a dominating function for S. Let

US = {v ∈ S : |f−1
S (v)| ≥ 2}.

We have ∑
v∈S

1 + |f−1
S (v)| = |S|+

∑
v∈S

|f−1
S (v)| = n,

thus in particular |US | ≤ n/3. Moreover, S with the function fS is a feasible solution
for the CONSTRAINED CAPACITATED DOMINATING SET instance with the graph G
and the set US . Therefore the following algorithm solves CAPACITATED DOMINATING

SET:

1. For each U ⊆ V satisfying |U | ≤ n/3 solve the CONSTRAINED CAPACITATED

DOMINATING SET instance with graph G and subset U .
2. Return the smallest capacitated dominating set from the constructed CON-

STRAINED CAPACITATED DOMINATING SET instances.

The CONSTRAINED CAPACITATED DOMINATING SET problem can be solved in poly-
nomial time and there are

�n/3	∑
k=0

(
n

k

)
= O∗

((
n

�n/3�

))
= O(1.89n)

possible sets U (i.e. sets of cardinality at most n/3), thus the whole algorithm works in
O(1.89n) time.

2.3 Approximating CAPACITATED DOMINATING SET

It is known that DOMINATING SET is as hard to approximate as SET COVER and since
CAPACITATED DOMINATING SET generalizes DOMINATING SET it is hard to approx-
imate it as well. Thus there probably does not exists a polynomial time algorithm solv-
ing CAPACITATED DOMINATING SET with a constant approximation ratio. If we do
not have enough time to obtain an exact solution for the CAPACITATED DOMINATING

SET problem we can use the following constant approximation scheme. Instead of in-
vestigating all subsets U ⊆ V satisfying |U | ≤ n/3 we can check only smaller sets,
namely |U | ≤ cn for some constant c ∈ (0, 1

3 ). Thus the approximation algorithm has
the following form:

1. For each U ⊆ V satisfying |U | ≤ cn solve the CONSTRAINED CAPACITATED

DOMINATING SET instance with graph G and subset U .
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2. Return the smallest capacitated dominating set from the constructed CON-
STRAINED CAPACITATED DOMINATING SET instances.

Theorem 2. For any fixed constant c ∈ (0, 1
3 ) the described algorithm runs in

O∗
((

n

cn

))
= O∗

((
1/

(
cc (1− c)1−c

))n)
time and polynomial space. For c ≤ 1/4 the approximation ratio is at most ( 1

4c + c)
and for c ≥ 1/4 the approximation ratio is at most 2− 3c.

Proof. For each subset U ⊆ V the algorithm uses polynomial time only, thus the time
bound follows directly from the Stirling formula which can be used to bound the number
of subsets

(
n
cn

)
.

To calculate the approximation ratio let us consider some optimal solution OPT ⊆
V together with a function fOPT : V \ OPT → OPT . By OPT0, OPT1 and OPT2
let us denote subsets of OPT containing vertices which dominate exactly zero, exactly
one and at least two vertices from V \ OPT , according to fOPT , respectively. By
m, m0, m1, m2 we denote the cardinalities of sets OPT , OPT0, OPT1 and OPT2
respectively.

We may assume that m2 > cn since otherwise our algorithm finds the optimal solu-
tion. By s let us denote the average number of vertices from V \ OPT which a vertex
from OPT2 dominates, i.e. s = (n − m − m1)/m2. Since our algorithm checks all
subsets U ⊆ V satisfying |U | ≤ cn it obviously considers the subset U0 ⊆ OPT2,
|U0| ≤ cn containing vertices which dominate the largest number of vertices from
V \ OPT . For this particular subset U0 note that there exists a feasible solution to
CONSTRAINED CAPACITATED DOMINATING SET of size m + (m2 − cn)(s − 1):
we take OPT and for each vertex v ∈ OPT2 \ U0 we take all but one vertices from
f−1

OPT (v) since then each vertex outside U0 dominates at most one other vertex.
Thus the approximation ratio can be bounded by α = 1+(m2−cn)(s−1)/m. Note

that if we keep m2 fixed and increase m0 and m1, the approximation ratio decreases
— we increase m and decrease s — therefore w.l.o.g. we may assume m0 = m1 = 0.
Denoting x = n/m2, we obtain α ≤ 1 + (1 − cx)(x − 2) for 3 ≤ x ≤ 1

c . The bound
for α is a concave function of x with maximum at x0 = 1

2c + 1. However when c ≥ 1
4

we have x0 ≤ 3. This gives α ≤ 1
4c + c for c ≤ 1

4 and α ≤ 2− 3c for 1
4 ≤ c ≤ 1

3 . ��

In Table 1 we gather a few examples of obtained approximation ratios and running
times. We compare the running times of our approximation scheme with the running

Table 1. Sample c values, approximation ratios and running times of the algorithm described in
Theorem 2 and running times of the trivial approximation algorithm with the same approximation
ratio

c 1/3 1/4 1/6 1/10 0.02506 . . .

ratio 1 (exact) 5/4 5/3 13/5 10
time O(1.89n) O(1.76n) O(1.57n) O(1.39n) O(1.13n)
trivial time O�(2n) O(1.99n) O(1.94n) O(1.81n) O(1.36n)
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times of the trivial approximation algorithm needed to obtain the same approximation
ratio. This algorithm iterates over all subsets of V that have size at most cn or at least
(1− c)n and returns the smallest feasible solution found.
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Abstract. This paper presents an O(n2) algorithm for deciding isomor-
phism of graphs that have bounded feedback vertex set number. This
number is defined as the minimum number of vertex deletions required
to obtain a forest. Our result implies that Graph Isomorphism is fixed-
parameter tractable with respect to the feedback vertex set number.
Central to the algorithm is a new technique consisting of an applica-
tion of reduction rules that produce an isomorphism-invariant outcome,
interleaved with the creation of increasingly large partial isomorphisms.

1 Introduction

The Graph Isomorphism problem is among the few problems in NP for which
the complexity is still unknown: Up to now, neither an NP-hardness proof nor
an algorithm with provably polynomial running time has appeared. Given two
finite graphs G1 and G2, the Graph Isomorphism problem (GI) asks whether
these graphs are structurally equivalent, i.e., whether there exists a bijection
from V (G1), the vertices of G1, to V (G2), the vertices of G2, that preserves
the adjacency relationship. Being one of the open problems from Garey and
Johnson’s list of problems with yet unsettled complexity status [14], the Graph

Isomorphism problem has been studied extensively throughout the last three
decades. During that time, a subexponential-time algorithm for the general prob-
lem has been developed by Babai [2]. His algorithm uses a degree reduction
method by Zemlyachenko (see [2]) as well as Luks’ polynomial-time algorithm
for graphs of bounded degree [18]. Schöning’s lowness proof [23] showed that
Graph Isomorphism is not NP-hard, unless the polynomial hierarchy collapses.

Research on Graph Isomorphism for restricted graph classes has led to a
number of polynomial-time algorithms as well as hardness results. Let us review
the known results for classes defined by bounded values of some graph param-
eter, e.g., graphs of degree bounded by k, from a parameterized point of view.
Depending on the parameter GI becomes polynomial-time solvable or it remains
GI-complete (i.e., polynomial-time equivalent to GI) even when the parameter
is bounded by a constant. The latter is known for bounded chromatic number
and bounded chordal deletion number (i.e., number of vertex deletions needed
to obtain a chordal graph), since Graph Isomorphism is GI-complete for the
class of bipartite graphs and the class of chordal graphs (see [27]).

The polynomial results can be split into runtimes of the form O(f(k)nc)
and O(nf(k)); both are polynomial for bounded k but for the latter the degree
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Table 1. Upper bounds on the time required to compute some graph parameters as
well as running times of the parameterized Graph Isomorphism problem. (∗) FPT if
the colored H-free isomorphism problem can be solved in polynomial time.

Parameter Comp. of the parameter Upper bound for GI

Chromatic number 3-col. is NP-hard [14] GI-hard for χ(G) = 2
Chordal deletion number O(f(k)nc) [19] GI-hard for cvd(G) = 0

Max degree O(m) O(nck) [4]
Genus O(f(k)m) [16] O(nck) [12,20]
Treewidth O(f(k)n) [6] O(nk+4.5) [5]

Rooted tree distance width O(kn2) [28] O(f(k)n3) [28]
H-free deletion number O(dknd) [7] FPT if (∗) [Sec. 2]
Feedback vertex set number O(5kkn2) [8] O((2k + 4k log k)kkn2) [Sec. 3]

of the polynomial grows with k. Parameterized complexity (see [9]) studies these
function classes in a multivariate analysis of algorithms, motivated by the much
better scalability of O(f(k)nc) algorithms, so-called fixed-parameter tractable al-
gorithms. In the case of Graph Isomorphism for a large number of parameters
only O(nf(k)) algorithms are known. Such algorithms exist for the parameters
degree [18], eigenvalue multiplicity [3], color class size [13], and treewidth [5].
Furthermore, this running time has been shown for the parameter genus [12,20]
(extending polynomial-time algorithms for planar graphs [15,24]) and, more gen-
eral, for the size of an excluded minor [21]. Algorithms of runtime O(f(k)nc)
are known for the parameters color multiplicity [13], eigenvalue multiplicity [11],
rooted tree distance width [28]. For chordal graphs, there is an fpt-algorithm
with respect to the size of the simplicial components [26]. The fixed-parameter
tractable algorithm for the parameter color multiplicity has recently been ex-
tended to hypergraphs [1]. Table 1 summarizes some results for parameterized
Graph Isomorphism as well as the complexity of computing the parameters.

We develop an O(f(k)nc) algorithm for Graph Isomorphism parameterized
by the feedback vertex set number. The feedback vertex set number of a graph G,
denoted by fvs(G), is the size of a smallest subset of vertices S, whose removal
leads to a graph that does not contain cycles, i.e., for which G − S, the graph
induced by the set of vertices V (G)\S, is a forest. Our result, a fixed-parameter
tractable algorithm, has a running time of O(f(k)n2), i.e., it runs in O(n2) for
graphs of bounded feedback vertex set number.

For a selection of graph parameters, Figure 1 shows the partial order given by
the relation stating that a parameter k′ is larger than another parameter k, if k
can be bounded by a function g of k′. From this it is immediate that if a problem
is fixed-parameter tractable (FPT) with respect to some parameter then it is also
FPT with respect to any larger (in Figure 1 higher) parameter: time O(f(k)nc)
with respect to k implies time O(f(g(k′))nc) with respect to k′ (likewise for
runtimes of the form O(nf(k))). The feedback vertex set number, which has been
extensively studied in various contexts [8,10,14,22,25], lies above other interesting
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Fig. 1. For various graph parameters, the figure depicts the partial order given by the
relation that defines a parameter to be lower than another parameter, if the former
can be bounded by a function of the latter. The parameters are: bandwidth (bw),
pathwidth (pw), treewidth (tw), size of a minimum vertex cover (vc), size of a min-
imum feedback vertex set (fvs), vertex deletion distance from chordal graphs (cvd),
maximum degree (Δ), and chromatic number (χ).

parameters: As mentioned GI remains hard on graphs of bounded chromatic
number, while being polynomially solvable for bounded treewidth. As the rooted
tree distance width the feedback vertex set number is a measure for how far a
graph is from being a forest. However, these two parameters are incomparable,
i.e., neither is bounded by a function of the other.

Our contribution is based on two new techniques: The first makes use of the
interplay between deletion sets and small forbidden structures. This is illustrated
in Section 2 on the simplified situation where the parameter is the vertex dele-
tion distance to a class of graphs that is characterized by finitely many forbidden
induced subgraphs. When we consider the feedback vertex set number in Sec-
tion 3, the forbidden substructures are cycles, which may be of arbitrary length.
The second technique addresses this obstacle by using reduction rules that guar-
antee short cycles. For the choice of these rules, however, it is crucial that they
are compatible with isomorphisms.

2 H-Free Deletion Number

In this section, illustrating the usefulness of deletion sets in the context of Graph

Isomorphism, we briefly consider the parameter H-free deletion number. For a
class C of graphs we say that a graph G has vertex deletion distance at most k
from C if there is a deletion set S of at most k vertices, for which G − S ∈ C,
i.e., by deleting a most k vertices we obtain a graph in C.

Definition 1. A class C of graphs is characterized by finitely many forbidden
induced subgraphs, if there is a finite set of graphs H = {H1, . . . , H�}, such that
a graph G is in C if and only if G does not contain Hi as an induced subgraph
for any i ∈ {1, . . . , }. The class C is called the class of H-free graphs.

It is known that computing the H-free deletion number k and a corresponding
set S of vertices to be removed is FPT with respect to k: There is an algorithm
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Algorithm 1. IsomorphismINDC
Input: (G1, G2, k): An integer k and two colored graphs G1, G2 of distance at most k

to a fixed class C that is characterized by a finite set of forbidden induced subgraphs.
Output: An isomorphism φ of G1 and G2 or false if no such isomorphism exists.

if exactly one of G1 and G2 contains a forbidden subgraph return false
if G1 and G2 contain no forbidden subgraphs then

use an algorithm for colored graph isomorphism for the class C on G1 and G2

return an isomorphism or false if none exists
5: end if

if k = 0 return false
find a forbidden induced subgraph H in G2

find a set S of at most k vertices such that G1 − S ∈ C
for all (v1, v2) ∈ S × V (H) do

10: if v1 and v2 are colored with the same color then
result ← IsomorphismINDC(G1 � v1, G2 � v2, k − 1)
if result 	= false return result

end if
end for

15: return false

with runtime O(dknd) where d is the number of vertices of the largest forbidden
induced subgraph, following a more general result due to Cai [7].

For an FPT-algorithm that solves Graph Isomorphism parameterized by
the H-free deletion number, we require a method of consistently removing ver-
tices from the graph: Let G be a colored graph, c a vertex coloring of G (not
necessarily a proper coloring), and v a vertex of G. We define G � v to be the
colored graph induced by the vertex set V (G) \ {v} with the coloring given
by (τ(v, v′), c(v′)) for all v′ ∈ V (G) \ {v}, where the edge characteristic func-
tion τ(v, v′) is 1 if v and v′ are adjacent and 0 otherwise. Intuitively, the new
coloring encodes at the same time whether in the original graph a vertex is
adjacent to v as well as its previous color. In particular, we get the following
observation: Suppose that G1 and G2 are colored graphs and that v1 and v2
are equally colored vertices of G1 and G2 respectively, then there is an isomor-
phism φ with φ(v1) = v2 if and only if G1 � v1 and G2 � v2 are isomorphic as
colored graphs (where isomorphisms must respect colors).

Theorem 1. Let some graph class C be characterized by forbidden induced sub-
graphs H1, . . . , H�. If the colored graph isomorphism problem for graphs from C
is in P, then the colored graph isomorphism problem, parameterized by the vertex
deletion distance from C, is fixed-parameter tractable.

Proof. W.l.o.g., both input graphs G1 and G2 have distance of at most k from C.
Algorithm 1 repeatedly generates a set of candidate pairs of vertices P =
S×V (H) ⊆ V (G1)×V (G2), where S is a minimum deletion set of G1 and V (H) is
the vertex set of a forbidden induced subgraph H in G2. For any isomorphism φ,
this ensures that P contains a pair (v1, v2) with φ(v1) = v2. Indeed, the im-
age φ(S) is a deletion set of G2, thereby also intersecting H . The algorithm then
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makes a recursive call for each choice of (v1, v2) ∈ P , removing the vertices v1
and v2 from the graphs and correctly coloring the remaining vertices. In the
base case, when G1, G2 ∈ C, isomorphism is decided using the polynomial-time
algorithm for the class C.

Observe that P has size at most dk where d is the size of the largest graph
in {H1, . . . , H�}. Thus there are O((dk)k) recursive calls, since k decreases with
each call and k = 0 terminates a branch. Together with the polynomial-time
algorithm for the base case and the FPT-algorithm for distance from C [7] this
gives an O(f(k)nc) runtime, proving fixed-parameter tractability. ��

3 Feedback Vertex Set Number

In this section we consider the Graph Isomorphism problem parameterized by
the feedback vertex set number. Similarly to Section 2 we compute a set that
intersects all forbidden structures of the first graph (in our case a feedback vertex
set). The image of that set under any isomorphism must intersect every forbidden
structure of the second graph (i.e., it must intersect every cycle). To efficiently
use this fact, we choose a shortest cycle in the second graph. However, since
in general shortest cycles may be of logarithmic size, we perform a sequence
of reductions to shorten the cycles. The reduction rules delete all vertices of
degree at most one as well as those in a specified set S, and contract vertices of
degree two; these are standard reductions for computing feedback vertex sets.
Additionally, there is a new rule resulting in the deletion of all components
containing at most one cycle. This rule allows us to prove the crucial fact, that
exhaustive reduction of graphs behaves well with respect to isomorphism. In
order to make this precise, we first show that the result of exhaustively applying
the reduction rules is independent of the order in which they are applied.

Lemma 1. Let G be a graph and let S be a set. Exhaustive application of the
following reduction rules in any order has a well-defined result RS(G), which is
a specific graph on a subset of V (G).

1. Delete a vertex of degree at most one.
2. Delete a vertex in a connected component containing at most one cycle.
3. Delete a vertex that is contained in S.
4. Contract a vertex of degree two that is not contained in S, i.e., replace the

vertex by an edge between its former neighbors; this may create multi-edges
and loops.

Proof. For any graph G and any set S let LS(G) denote the maximum number
of reduction steps that can be applied to G (using S for Rules 3 and 4).

We assume for contradiction that there is a counterexample consisting of a
graph G and a set S with minimum value of LS(G). Let R1 and R2 be two max-
imal sequences of reduction steps for G that yield different results. For i ∈ {1, 2}
let vi be the first vertex reduced by Ri and let Gi be the result of that first step.
Observe that LS(G1) < LS(G) and LS(G2) < LS(G), implying that RS(G1)
and RS(G2) are well-defined, by our choice of G.
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It suffices for us to show that we can reduce v2 in G1 and v1 in G2 such
that we obtain the same graph G′ on the same subset of V (G): Indeed since
any further exhaustive reduction has the same outcome, this implies RS(G1) =
RS(G′) = RS(G2) since the result of any maximal sequence of reductions on
either G1 and G2 is well-defined, and yields the desired contradiction.

The deletion rules (Rules 1–3) are such that a vertex that may be deleted in a
graph G may also be deleted in any subgraph of G. Therefore, if both vertices are
deleted from G, then v2 can be deleted from G1 and v1 can be deleted from G2;
we obtain G′ = G− {v1, v2}.

Otherwise w.l.o.g. v1 is contracted in G; there are three cases:

1. If v2 is not adjacent to v1 then the reductions are independent and re-
ducing v1 in G2 and v2 in G1 yields the same graph G′ on the vertex
set V (G) \ {v1, v2}.

2. If v2 is contracted and adjacent to v1, then there is a path (u, v1, v2, w) and
contracting v1 and v2 in any order is equivalent to replacing the path by
an edge {u, w}, reducing both graphs to the same graph G′ on the vertex
set V (G) \ {v1, v2}.

3. If v2 is deleted and adjacent to v1, then the degree of v2 in G1 is the same
as in G, therefore it can still be deleted. In G2 the vertex v1 has degree at
most 1, implying that it can be deleted by Rule 1. Both reductions lead to
the same graph G′ = G− {v1, v2}. ��

We observe that, for any graph G and any set S, the graph RS(G) has minimum
degree at least three and fvs(RS(G)) ≤ fvs(G). Concerning the latter, it suffices
to observe that vertex deletions do not increase the feedback vertex set number,
and that any degree-2-vertex of a feedback vertex set may be replaced by either
neighbor while preserving the property of being a feedback vertex set. We denote
by R(G) := R{}(G) the special case that S is the empty set. Since the result is
independent of the order in which the rules are applied, the vertices from the
set S may be removed first, i.e., RS(G) = R(G− S).

As a corollary we conclude that the reduction R maintains isomorphisms.

Corollary 1. Let φ be an isomorphism of graphs G1 and G2 and let S ⊆ V (G1).
Then RS(G1) and Rφ(S)(G2) are isomorphic and φ restricted to V (RS(G1)) is
an isomorphism from RS(G1) to Rφ(S)(G2).

The reduction rule that allows vertex deletion in unicyclic components, which is
necessary to obtain Corollary 1, has the effect that the set S does not need to be
a feedback vertex set, in order for the reduced graph RS(G) to become empty.
As a consequence, removal of such a set S does not necessarily leave a forest,
but a graph that may contain a cycle in every component.

Definition 2. An OC graph is a graph in which every component contains at
most one cycle.

The OC graphs are precisely the graphs which are reduced to the empty graph
by repeated application of the reduction rules:
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Lemma 2. A graph G is an OC graph if and only if R(G) is the empty graph.

Proof. To show that for an arbitrary OC graph G the reduced graph R(G) is the
empty graph we assume, w.l.o.g., that the graph is connected. Thus G contains
at most one cycle. We claim that after repeatedly removing all vertices of degree
at most 1, the graph is empty, or is a cycle: Indeed, suppose v is a vertex in V (G)
not contained in a cycle, and v is not removed by the reductions, then in the
reduced graph v has degree at least 2, and the longest path through v in the
reduced graph ends on one side with a vertex of degree 1, a contradiction. Finally
by induction every cycle reduces to the empty graph.

Conversely, to show that a graph which reduces to the empty graph is an
OC graph, it suffices to show that any graph which contains two cycles in one
component does not reduce to the empty graph. The minimal connected graphs
that contain two cycles are the dumbells (i.e., two cycles joined by a path) and
the Theta graphs (i.e., two vertices connected by three vertex disjoint paths).
By induction they do not reduce to the empty graph, and the lemma follows. ��

For reduced graphs, we can use a nice structural result by Raman et al. [22],
stating that graphs of minimum degree at least three must have a large feedback
vertex set number or a cycle of length at most six. Thus, in contrast to the general
bound of logn on the girth of a graph, there are few choices for the image of any
feedback vertex under an isomorphism between two reduced graphs.

Theorem 2 ([22]). Let G be a graph on n vertices with minimum degree at
least three and of feedback vertex set number at most k. If n > 2k2 then G has
a cycle of length at most six.

The algorithm that we present later branches on possible partial isomorphisms;
using Theorem 2 and our reductions the number of choices is reasonably small.
On termination there are pairs of vertices that the isomorphism shall respect and
removal of those vertices followed by reduction yields two empty graphs. Hence,
deletion of the vertices yields two OC graphs. This leaves us with the task of
deciding isomorphism for OC graphs, with the restriction that adjacencies with
the deleted vertices must be correct. For that purpose we first define OC+k
graphs and corresponding isomorphisms.

Definition 3. A graph with at most one cycle per component plus k distin-
guished vertices (OC+k graph) consists of a graph and a k-tuple of its vertices
with the property that deletion of those distinguished vertices yields an OC graph.

An isomorphism of two OC+k graphs is an ordinary isomorphism that maps
the k distinguished vertices of one graph to those of the other respecting the
order. If the graph is (vertex) colored, then as usual the isomorphism has to
respect these colors.

The restriction on the mapping of the distinguished vertices allows efficient iso-
morphism testing, mainly requiring an isomorphism test of colored OC graphs.

Theorem 3. Graph Isomorphism for colored OC+k graphs can be solved
in O(n2) time.
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Proof. We first reduce the problem to colored OC graphs. It suffices to reduce
the problem for k ≥ 1 to the isomorphism problem of OC+(k−1) graphs in O(n)
time. Let G and G′ be two given colored OC+k graphs with last distinguished
vertex vk and v′k respectively. If vk and v′k are not equally colored, then the
graphs are not isomorphic. Otherwise, as argued in the previous section, the
graphs G1�vk and G2�v′k are isomorphic, if and only if G1 and G2 are isomorphic.
The recoloring and the vertex deletion of the reduction require O(n) time.

We are left with determining the isomorphism of colored OC graphs G1
and G2. We assign every vertex v, neighboring a leaf and contained in a compo-
nent with at least 3 vertices, a color that depends on the multiset of colors of leaf
neighbors of the vertex v. We then delete all leaves in these components. Again,
the obtained graphs are isomorphic if and only if they were isomorphic prior to
the reduction. After this, we rename (in both graphs consistently) the new colors
with unused integers in {1, . . . , n} by sorting. By repeated application we obtain
graphs in which every component is a cycle or contains at most 2 vertices. This
step can be performed in an amortized time of O(n log(n)), charging the sorting
to the removed leaves.

Counting for each isomorphism type the number of components with at most
two vertices, it suffices now to determine the isomorphism of disjoint unions
of colored cycles. There are at most n such cycles in an OC graph. We solve
this task using a string matching algorithm: A colored cycle 〈c1, c2, . . . , cn〉 is
isomorphic to 〈c′1, c′2, . . . , c′n′〉 if and only if n = n′ and the string c′1c

′
2 . . . c′n or its

inverse c′nc′n−1 . . . c′1 is contained as a substring in the string c1c2 . . . cnc1c2 . . . cn.
We repeatedly search two color-isomorphic cycles from each graph and remove
them. By employing a linear time string matching algorithm, like the Knuth-
Morris-Pratt algorithm [17], we obtain a total running time of O(n2). ��

Knowing how to efficiently decide isomorphism of OC+k graphs, we work to-
wards an algorithm that creates sets of pairs of distinguished vertices, such that
each isomorphism of the given graphs must respect one of the sets. To that end
we show that one can easily compute a set of candidate pairs such that for any
isomorphism φ of G1 and G2 one of the pairs (v1, v2) satisfies φ(v1) = v2.

Lemma 3. Let G1 and G2 be two graphs of feedback vertex set number at
most k and minimum degree at least three. In time O(5kkn2) one can com-
pute a set P ⊆ V (G1) × V (G2) of size at most 2k + 4k log k such that (if G1
and G2 are isomorphic) for any isomorphism φ there is a pair (v1, v2) ∈ P such
that φ(v1) = v2 and v1 is contained in a minimum feedback vertex set of G1.

Proof. We choose P as S×V (C) where S is a minimum feedback vertex set of G1
and C is a shortest cycle of G2. The time for this computation is dominated
by O(5kkn2) for computing a k-feedback vertex set of G1.

If |V (C)| ≤ 6 then P has size at most 6k. Otherwise, by Theorem 2, G2 has
at most 2k2 vertices. Since the girth of any graph with minimum degree 3 is at
most 2 logn, the cycle C has length at most 2 log(2k2) = 2 + 4 log k. Thus P
contains at most 2k + 4k log k pairs. Note that k ≥ 2 for graphs with minimum
degree 3 and that 6k ≤ 2k + 4k log k for k ≥ 2.
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Algorithm 2. IsomorphismFVS
Input: (G1, G2, k, FP): Two graphs G1, G2, a potential partial isomorphism given by

pairs of vertices in FP ⊆ V (G1) × V (G2), and an integer k such that the feedback
vertex set number of G1 − S1 is at most k, where S1 is the set of first components
of the pairs in FP.

Output: An isomorphism φ of G1 and G2 that respects FP or false if none exists.

let (v11, v21), . . . , (v1r, v2r) denote the pairs in FP
G′

1 ← R(G1 − {v11, . . . , v1r})
G′

2 ← R(G2 − {v21, . . . , v2r})
if if exactly one of G′

1 and G′
2 is empty return false

5: if G′
1 and G′

2 are empty then
use the algorithm from Theorem 3 on (G1, (v11, . . . , v1r)) and (G2, (v21, . . . , v2r))
return an isomorphism φ that respects FP or false if none exists

end if
if k = 0 return false

10: compute a set P of candidate pairs according to Lemma 3 for G′
1, G′

2, and k
for (v1, v2) ∈ P do

result ← IsomorphismFVS(G1, G2, k − 1, FP∪{(v1, v2)})
if result 	= false return result

end for
15: return false

For any isomorphism φ from G1 to G2 the image φ(S) must intersect C
since φ(S) is a feedback vertex set of G2. Hence P contains a pair (v1, v2)
with φ(v1) = v2 as claimed. ��

We now design an FPT-algorithm that solves Graph Isomorphism parameter-
ized with the feedback vertex set number. Algorithm 2 performs this task in the
following way: Given two graphs of feedback vertex set number at most k, it recur-
sively computes an increasingly large partial isomorphism, given by a set of pairs
of vertices FP ⊆ V (G1)× V (G2). This set indicates that, should an isomorphism
exist, there is an isomorphism that maps the first vertex of each pair in FP to the
corresponding second vertex. The first components are chosen as to be part of a
minimal feedback vertex set in the first graph. At the latest when the set FP has
reached size k, removal of the vertices in each graphwill result in anOCgraph each.
Isomorphism can then be decided with the algorithm described in Theorem 3.

Definition 4. We say that an an isomorphism φ : V (G1) → V (G2) respects a
set of pairs of vertices FP ⊆ V (G1)× V (G2), if φ(v1) = v2 for all (v1, v2) ∈ FP.

Given two isomorphic graphs, Algorithm 2 computes an isomorphism:

Lemma 4. Let G1 and G2 be two isomorphic graphs. Suppose FP ⊆ V (G1) ×
V (G2) with |FP | = r. Further suppose that there is an isomorphism φ from G1
to G2 that respects FP and that the feedback vertex set number of R(G1 − S1)
is at most k, where S1 is the set of first components of the pairs in FP. Then
the call IsomorphismFVS(G1, G2, k,FP) will compute an isomorphism from G1
to G2 that respects FP.
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Proof. With FP = {(v11, v21), . . . , (v1r, v2r)} we define S1 = {v11, . . . , v1r} as
well as S2 = {v21, . . . , v2r}. Let G′

1 = R(G1 − S1) and let G′
2 = R(G2 − S2).

Since φ respects FP, it can be restricted to an isomorphism from G1−S1 to G2−
S2. These graphs are therefore isomorphic and, by Corollary 1, the reduced
graphs G′

1 and G′
2 are isomorphic, under the restriction of φ to V (G′

1).
We show the lemma by induction on k: If k = 0, the base case, then G′

1 =
R(G1−S1) is empty since it has feedback vertex set number k = 0. The isomor-
phic graph G′

2 is also empty. The graphs G1−S1 and G2−S2 are OC graphs by
Lemma 2. Therefore the graphs (G1, (v11, . . . , v1r)) and (G2, (v21, . . . , v2r)) are
OC+r graphs and φ is an isomorphism of OC+r graphs. Thus the call to the
algorithm from Theorem 3 will return an isomorphism that respects FP.

If k > 0, we distinguish two cases: Either both G′
1 and G′

2 are empty, in which
case we argue as in the base case, or the algorithm computes P for G′

1, G′
2, and k

according to Lemma 3. In the set P , since G′
1 and G′

2 are isomorphic (and non-
empty), by Lemma 3, there must be a pair (v1, v2) ∈ P such that φ(v1) = v2.
Lemma 3 additionally guarantees that there must be a feedback vertex set of G′

1
of size at most k that contains v1, implying that the feedback vertex set number
of R(G′

1 − v1) is at most k − 1; by Lemma 1 this extends to RS1∪{v1}(G1) =
R{v1}(G

′
1) = R(G′

1 − v1).
Thus the call IsomorphismFVS(G1, G2, k − 1,FP∪{(v1, v2)}) has the prop-

erty that the isomorphism φ respects FP∪{(v1, v2)} and fvs(R(G1 − (S1 ∪
{v1}))) ≤ k − 1. Hence, by induction, it returns an isomorphism φ′ that re-
spects FP∪{(v1, v2)}. Thus the call IsomorphismFVS(G1, G2, k,FP) returns an
isomorphism that respects FP, as claimed. ��

The fact that the isomorphism tests for the OC+k graphs are performed in the
original input graphs ensures that, even though the reduction R may alter non-
isomorphic graphs to be isomorphic (e.g., non-isomorphic trees are reduced to
empty graphs), false positives are detected. For this purpose, the partial isomor-
phism map, encoded by the set FP, has to be maintained by the algorithm, for
which Corollary 1 guarantees that it can be lifted into the original graphs and
extended to an isomorphism, should it initially arise from an isomorphism.

Theorem 4. Graph Isomorphism(fvs) is fixed-parameter tractable.

Proof. Let G1 and G2 be two graphs of feedback vertex set number at most k.
We show that IsomorphismFVS(G1, G2, k, ∅) correctly determines whether G1
and G2 are isomorphic and takes O((2k + 4k log k)kkn2) time.

The algorithm of Theorem 3 will only return valid isomorphisms. Further-
more, IsomorphismFVS will always find an isomorphism if the given graphs are
isomorphic, by Lemma 4. It thus suffices to show that the algorithm terminates
in the stated time independent of the outcome.

The call IsomorphismFVS(G1, G2, k, ∅) leads to a recursive computation of
depth at most k. The number of recursive calls is limited by the size of P , com-
puted according to Lemma 3, which is bounded by 2k+4k log k. The computation
at each internal node of the branching tree is dominated by the time necessary
for generating P , i.e., by O(5kkn2). The calls to the algorithm of Theorem 3
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take time O(n2). This gives the runtime recurrence T (k) ≤ (2k+4k log k)T (k−
1) +O(5kkn2), which gives a bound of O((2k + 4k log k)kkn2).

We conclude that IsomorphismFVS, called as IsomorphismFVS(G1, G2, k, ∅),
is an FPT-algorithm that decides whether G1 and G2 are isomorphic. ��

Algorithm 2 is also an FPT-algorithm for colored graphs with parameter the
minimum size of a FVS. For this observe that while Lemma 4 is stated for
uncolored graphs it guarantees that for any isomorphism the algorithm finds a
corresponding set FP. The algorithm of Theorem 3 will then guarantee that the
computed isomorphism respects the colors.

4 Conclusion and Open Problems

We have shown that Graph Isomorphism is fixed-parameter tractable with re-
spect to the feedback vertex set number. The feedback vertex set number resides
above parameters such as the chromatic and the chordal deletion number, with
respect to which Graph Isomorphism is not fixed-parameter tractable, unless it
may be solved in polynomial time in general. The feedback vertex set number also
resides above the parameter treewidth, with respect to which fixed-parameter
tractability remains a challenging open problem. In that direction the parame-
ters pathwidth or bandwith are possible further steps to show fixed-parameter
tractability of GI with respect to treewidth. Note, that a limited bandwidth
simultaneously benefits from a limited treewidth and a limited maximum de-
gree. However even with respect to bandwidth GI might not be fixed-parameter
tractable. Showing this, may require a notion of hardness that replaces W[1]-
hardness for the not necessarily NP-hard problem Graph Isomorphism (W[1]
is a parameterized analogue of NP). The reason for this is that prevalent lower
bounds from parameterized complexity, such as W[1]-hardness of GI with respect
to some parameter, imply that GI is not in P unless FPT=W[1].
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Abstract. We study the parameterized complexity of the feedback

vertex set problem (fvs) on undirected graphs. We approach the prob-
lem by considering a variation of it, the disjoint feedback vertex set

problem (disjoint-fvs), which finds a disjoint feedback vertex set of size
k when a feedback vertex set of a graph is given. We show that disjoint-

fvs admits a small kernel, and can be solved in polynomial time when
the graph has a special structure that is closely related to the maximum
genus of the graph. We then propose a simple branch-and-search process
on disjoint-fvs, and introduce a new branch-and-search measure. The
branch-and-search process effectively reduces a given graph to a graph
with the special structure, and the new measure more precisely evalu-
ates the efficiency of the branch-and-search process. These algorithmic,
combinatorial, and topological structural studies enable us to develop an
O(3.83kkn2) time parameterized algorithm for the general fvs problem,
improving the previous best algorithm of time O(5kkn2) for the problem.

1 Introduction

All graphs in our discussion are supposed to be undirected. A feedback vertex set
(FVS) F in G is a set of vertices in G whose removal results in an acyclic graph.
The problem of finding a minimum feedback vertex set in a graph is one of the
classical NP-complete problems [16]. The history of the problem can be traced
back to early ’60s. For several decades, many different algorithmic approaches
were tried on this problem, including approximation algorithms, linear program-
ming, local search, polyhedral combinatorics, and probabilistic algorithms (see
the survey [10]). There are also exact algorithms finding a minimum FVS in a
graph of n vertices in time O(1.9053n) [21] and in time O(1.7548n) [11].

An important application of the FVS problem is deadlock recovery in operating
systems [23], in which a deadlock is presented by a cycle in a system resource-
allocation graph G. Thus, to recover from deadlocks, we need to abort a set of
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processes in the system, i.e., to remove a set of vertices in the graph G, so that
all cycles in G are broken. Equivalently, we need to find an FVS in G.

In a practical system resource-allocation graph G, it can be expected that the
size k of the minimum FVS in G, i.e., the number of vertices in the FVS, is fairly
small. This motivated the study of the parameterized version of the problem,
which we will name fvs: given a graph G and a parameter k, either construct an
FVS of size bounded by k in G or report no such an FVS exists. Parameterized
algorithms for the fvs problem have been extensively investigated that find an
FVS of k vertices in a graph of n vertices in time f(k)nO(1) for a fixed function
f (thus, the algorithms become practically efficient when the value k is small).
The first group of parameterized algorithms for fvs was given by Bodlaender [2]
and by Downey and Fellows [8]. Since then a chain of dramatic improvements
was obtained by different researchers (see Figure 1).

Authors Complexity Year

Bodlaender[2]
Downey and Fellows [8] O(17(k4)!nO(1)) 1994
Downey and Fellows [9] O((2k + 1)kn2) 1999
Raman et al.[20] O(max{12k, (4 log k)k}n2.376) 2002
Kanj et al.[15] O((2 log k + 2 log log k + 18)kn2) 2004
Raman et al.[19] O((12 log k/ log log k + 6)kn2.376) 2006
Guo et al.[14] O((37.7)kn2) 2006
Dehne et al.[7] O((10.6)kn3) 2005
Chen et al.[5] O(5kkn2) 2008
This paper O(3.83kkn2) 2010

Fig. 1. The history of parameterized algorithms for the unweighted FVS problem

Randomized parameterized algorithms have also been studied for the problem.
The best randomized parameterized algorithm for the problems is due to Becker
et al. [1], which runs in time O(4kkn2).

The main result of the current paper is an algorithm that solves the fvs

problem. The running time of our algorithm is O(3.83kkn2). This improves a
long chain of results in parameterized algorithms for the problem. We remark
that the running time of our (deterministic) algorithm is even faster than that
of the previous best randomized algorithm for the problem as given in [1].

Our approach, as some of the previous ones, is to study a variation of the fvs

problem, the disjoint feedback vertex set problem (disjoint-fvs), which
finds a disjoint feedback vertex set of size k in a graph G when a feedback vertex
set of G is given. Our significant contribution to this research includes:

1. A new technique that produces a kernel of size 3k for the disjoint-fvs

problem, and improves the previous best kernel of size 4k for the problem [7].
The new kernelization technique is based on a branch and search algorithm
for the problem, which is, to our best knowledge, the first time used in the
literature of kernelization;
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2. A polynomial time algorithm that solves the disjoint-fvs problem when
the input graph has a special structure;

3. A branch and search process that effectively reduces an input instance of
disjoint-fvs to an instance of the special structure as given in 2;

4. A new measure that more precisely evaluates the efficiency of the branch
and search process in 3;

5. A new algorithm for the fvs problem that significantly improves previous
algorithms for the problem.

Due to space limitations, we omit some proofs and refer interested readers to
the extended version of the current paper [3].

2 disjoint-fvs and Its kernel

We start with a precise definition of our problem.

disjoint-fvs. Given a graph G = (V, E), an FVS F in G, and a param-
eter k, either construct an FVS F ′ of size k in G such that F ′ ⊆ V \ F ,
or report that no such an FVS exists.

Let V1 = V \ F . Since F is an FVS, the subgraph induced by V1 must be
a forest. Moreover, if the subgraph induced by F is not a forest, then it is
impossible to have an FVS F ′ in G such that F ′ ⊆ V \F . Therefore, an instance
of disjoint-fvs can be written as (G;V1, V2; k), and consists of a partition
(V1, V2) of the vertex set of the graph G and a parameter k such that both V1
and V2 induce forests (where V2 = F ). We will call an FVS entirely contained
in V1 a V1-FVS. Thus, the instance (G;V1, V2; k) of disjoint-fvs is looking for
a V1-FVS of size k in the graph G.

Given an instance (G;V1, V2; k) of disjoint-fvs, we apply the following rules:

Rule 1. Remove all degree-0 vertices; and remove all degree-1 vertices;
Rule 2. For a degree-2 vertex v in V1,
• if both neighbors of v are in the same connected component of G[V2],

then include v into the objective V1-FVS, G = G \ v, and k = k − 1;
• otherwise, move v from V1 to V2: V1 = V1 \ {v}, V2 = V2 ∪ {v}.

Our kernelization algorithm is based on an algorithm proposed in [5], which can
be described as follows: on a given instance (G;V1, V2; k) of disjoint-fvs, keep
all vertices in V1 of degree at least 3 (whenever a vertices in V1 becomes degree
less than 3, applying Rules 1-2 on the vertex), and repeatedly branch on a leaf
in the induced subgraph G[V1]. In particular, if the graph G has a V1-FVS of size
bounded by k, then at least one P of the computational paths in the branching
program will return a V1-FVS F of size bounded by k. The computational path
P can be described by the algorithm in Figure 2.

Lemma 1. If none of Rule 1 and Rule 2 is applicable on an instance (G;V1, V2; k)
of disjoint-fvs, and |V1| > 2k + l − τ , then there is no V1-FVS of size bounded
by k in G, where l is the number of connected components in G[V2] and τ is the
number of connected components in G[V1].
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Algorithm FindingFVS(G,V1, V2, k)
input: an instance (G; V1, V2; k) of disjoint-fvs.
output: a V1-FVS F of size bounded by k in G.
1 F = ∅;
2 while |V1| > 0 do
3 pick a leaf w in G[V1];
4 case 1: \\ w is in the objective V1-FVS F .
5 add w to F and remove w from V1; k = k − 1;
6 if the neighbor u of w in G[V1] becomes degree-2

then apply Rule 2 on u;
7 case 2: \\ w is not in the objective V1-FVS F .
8 move w from V1 to V2.

Fig. 2. The computational path P that finds the V1-FVS F of size bounded by k

Note that for those disjoint-fvs instances we will meet in Section 4, we
always have |V2| = k + 1, which is exactly the characteristic of the iterative
compression technique. Also by the simple fact that l ≤ |V2| and τ > 0, we have
2k + l − τ ≤ 3k, so the kernel size is also bounded by 3k. With more careful
analysis, we can further improve the kernel size to 3k− τ −ρ(V1), where ρ(V1) is
the size of a maximum matching of the subgraph induced by the vertex set V ′

1
that consists of all vertices in V1 of degree larger than 3. The detailed analysis
for this fact is given in a complete version of the current paper.

3 A Polynomial Time Solvable Case for disjoint-fvs

In this section we consider a special class of instances for the disjoint-fvs

problem. This approach is closely related to the classical study on graph max-
imum genus embeddings [4,12]. However, the study on graph maximum genus
embeddings that is related to our approach is based on general spanning trees
of a graph, while our approach must be restricted to only spanning trees that
are constrained by the vertex partition (V1, V2) of an instance (G;V1, V2; k) of
disjoint-fvs. We start with the following simple lemma.

Lemma 2. Let G be a connected graph and let S be a subset of vertices in G
such that the induced subgraph G[S] is a forest. Then there is a spanning tree
in G that contains the entire induced subgraph G[S], and can be constructed in
time O(mα(n)), where α(n) is the inverse of Ackermann function [6].

Let (G;V1, V2; k) be an instance for the disjoint-fvs problem, recall that (V1, V2)
is a partition of the vertex set of the graph G such that both induced subgraphs
G[V1] and G[V2] are forests. By Lemma 2, there is a spanning tree T of the graph
G that contains the entire induced subgraph G[V2]. Call a spanning tree that con-
tains the induced subgraph G[V2] a TG[V2]-tree.
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Let T be a TG[V2]-tree of the graph G. By the construction, every edge in
G − T has at least one end in V1. Two edges in G − T are V1-adjacent if they
have a common end in V1. A V1-adjacency matching in G − T is a partition
of the edges in G − T into groups of one or two edges, called 1-groups and 2-
groups, respectively, such that two edges in the same 2-group are V1-adjacent. A
maximum V1-adjacency matching in G−T is a V1-adjacency matching in G−T
that maximizes the number of 2-groups.

Definition 1. Let (G;V1, V2; k) be an instance of disjoint-fvs. The V1-adjacen-
cy matching number μ(G, T ) of a TG[V2]-tree T in G is the number of 2-groups in a
maximum V1-adjacency matching in G − T . The V1-adjacency matching number
μ(G) of the graph G is the largest μ(G, T ) over all TG[V2]-trees T in G.

An instance (G;V1, V2; k) of disjoint-fvs is 3-regularV1 if every vertex in the
vertex set V1 has degree exactly 3. Let fV1(G) be the size of a minimum V1-FVS
for G. Let β(G) be the Betti number of the graph G that is the total number
of edges in G − T for any spanning tree T in G (or equivalently, β(G) is the
number of fundamental cycles in G) [12]. The following lemma is a nontrivial
generalization of a result in [17] (the result in [17] is a special case for Lemma 3
in which all vertices in the set V2 have degree 2).

Lemma 3. For any 3-regularV1 instance (G;V1, V2; k) of disjoint-fvs, fV1(G)
= β(G)−μ(G). Moreover, a minimum V1-FVS can be constructed in linear time
from a TG[V2]-tree whose V1-adjacency matching number is μ(G).

By Lemma 3, in order to construct a minimum V1-FVS for a 3-regularV1 in-
stance (G;V1, V2, k) of disjoint-fvs, we only need to construct a TG[V2]-tree in
the graph G whose V1-adjacency matching number is μ(G). The construction
of an unconstrained maximum adjacency matching in terms of general span-
ning trees has been considered by Furst, Gross and McGeoch in their study of
graph maximum genus embeddings [12]. We follow a similar approach, based on
cographic matroid parity, to construct a TG[V2]-tree in G whose V1-adjacency
matching number is μ(G). We start with a quick review on the related concepts
in matroid theory. Detailed discussion on matroid theory can be found in [18].

A matroid is a pair (E,�), where E is a finite set and � is a collection of
subsets of E that satisfies: (1) If A ∈ � and B ⊆ A, then B ∈ �; (2) If A, B ∈ �
and |A| > |B|, then there is an element a ∈ A−B such that B ∪ {a} ∈ �.

The matroid parity problem is stated as follows: given a matroid (E,�) and a
perfect pairing {[a1, a1], [a2, a2], . . . , [an, an]} of the elements in the set E, find
a largest subset P in � such that for all i, 1 ≤ i ≤ n, either both ai and ai are
in P , or neither of ai and ai is in P .

Each connected graph G is associated with a cographic matroid (EG,�G),
where EG is the edge set of G, and an edge set S is in �G if and only if G−S is
connected. It is well-known that matroid parity problem for cographic matroids
can be solved in polynomial time [18]. The fastest known algorithm for cographic
matroid parity problem runs in time O(mn log6 n) [13].
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In the following, we explain how to reduce our problem to the cographic ma-
troid parity problem. Let (G;V1, V2; k) be a 3-regularV1 instance of the disjoint-

fvs problem. Without loss of generality, we make the following assumptions: (1)
the graph G is connected (otherwise, we simply work on each connected com-
ponent of G); and (2) for each vertex v in V1, there is at most one edge from v
to a connected component in G[V2] (otherwise, we can directly include v in the
objective V1-FVS).

Recall that two edges are V1-adjacent if they share a common end in V1. For
an edge e in G, denote by dV1(e) the number of edges in G that are V1-adjacent
to e (note that an edge can be V1-adjacent to the edge e from either end of e).

We construct a labeled subdivision G2 of the graph G as follows.

1. shrink each connected component of G[V2] into a single vertex; let the re-
sulting graph be G1;

2. assign each edge in G1 a distinguished label;
3. for each edge labeled e0 in G1, suppose that the edges V1-adjacent to e0

are labeled by e1, e2, . . ., ed (the order is arbitrary), where d = dV1(e0);
subdivide e0 into d segment edges by inserting d− 1 degree-2 vertices in e0,
and label the segment edges by (e0e1), (e0e2), . . ., (e0ed). Let the resulting
graph be G2. The segment edges (e0e1), (e0e2), . . ., (e0ed) in G2 are said to
be from the edge e0 in G1.

There are a number of interesting properties for the graphs constructed above.
First, each of the edges in the graph G1 corresponds uniquely to an edge in G
that has at least one end in V1. Thus, without creating any confusion, we will
simply say that the edge is in the graph G or in the graph G1. Second, because
of the assumptions we made on the graph G, the graph G1 is a simple and
connected graph. In consequence, the graph G2 is also a simple and connected
graph. Finally, because each edge in G1 corresponds to an edge in G that has at
least one end in V1, and because each vertex in V1 has degree 3, every edge in
G1 is subdivided into at least two segment edges in G2.

Now in the labeled subdivision graph G2, pair the segment edge labeled (e0ei)
with the segment edge labeled (eie0) for all segment edges (note that (e0ei) is a
segment edge from the edge e0 in G1 and that (eie0) is a segment edge from the
edge ei in G1). By the above remarks, this is a perfect pairing P of the edges
in G2. Now with this edge pairing P in G2, and with the cographic matroid
(EG2 ,�G2) for the graph G2, we call Gabow and Stallmann’s algorithm [13] for
the cographic matroid parity problem. The algorithm produces a maximum edge
subset P in �G2 that, for each segment edge (e0ei) in G2, either contains both
(e0ei) and (eie0), or contains neither of (e0ei) and (eie0).

Lemma 4. From the edge subset P in �G2 constructed above, a TG[V2]-tree for
the graph G whose V1-adjacency matching number is μ(G) can be constructed in
time O(mα(n)), where n and m are the number of vertices and the number of
edges, respectively, of the graph G.

Now we can solve the 3-regularV1 instance as follows: first shrinking each con-
nected component of G[V2] into a single vertex; then constructing the labeled
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subdivision graph G2 of G, and apply Gabow and Stallmann’s algorithm [13] on
it to get the edge subset P in �G2 ; finally, building the V1-adjacency matching
M from P , and the V1-FVS from M . This gives our main result in this section.

Theorem 1. There is an O(n2 log6 n) time algorithm that on a 3-regularV1 in-
stance (G;V1, V2; k) of the disjoint-fvs problem, either constructs a V1-FVS of
size bounded by k, if such a V1-FVS exists, or reports correctly that no such a
V1-FVS exists.

Combining Theorem 1 and Rule 2, we have

Corollary 1. There is anO(n2 log6 n) time algorithm that on an instance (G;V1,
V2; k) of disjoint-fvs where all vertices in V1 have degree bounded by 3, either
constructs a V1-FVS of size bounded by k, if such an FVS exists, or reports correctly
that no such a V1-FVS exists.

4 An Improved Algorithm for disjoint-fvs

Now we are ready for the general disjoint-fvs problem. Let (G;V1, V2; k) be
an instance of disjoint-fvs, for which we are looking for a V1-FVS of size k.
Observe that certain structures in the input graph G can be easily processed
and then removed from G. For example,the graph G cannot contain self-loops
(i.e., edges whose both ends are on the same vertices) because by definition, both
induced subgraphs G[V1] and G[V2] are forests. Moreover, if two vertices v and
w are connected by multiple edges, then exactly one of v and w is in V1 and
the other is in V2 (this is again because the induced subgraphs G[V1] and G[V2]
are forests). Thus, in this case, we can directly include the vertex in V1 in the
objective V1-FVS. Therefore, for a given input graph G, we always first apply
a preprocessing that applies the above operations and remove all self-loops and
multiple edges in the graph G. In consequence, we can assume, without loss of
generality., that the input graph G contains neither self-loops nor multiple edges.

A vertex v ∈ V1 is a nice V1-vertex if v is of degree 3 in G and all its neighbours
are in V2. Let p be the number of nice V1-vertices in G, and let l be the number of
connected components in the induced subgraph G[V2]. The measure m = k+ l

2−p
will be used in the analysis of our algorithm.

Lemma 5. If the measure m is bounded by 0, then there is no V1-FVS of size
bounded by k in G. If all vertices in V1 are nice V1-vertices, then a minimum
V1-FVS in G can be constructed in polynomial time.

Proof. Suppose that m = k + l
2 − p ≤ 0, and that there is a V1-FVS F of size

of k′ ≤ k. Let S be the set of any p− k′ nice V1-vertices that are not in F . The
subgraph G′ induced by V2 ∪ S must be a forest because F is an FVS and is
disjoint with V2 ∪ S. On the other hand, the subgraph G′ can be constructed
from the induced subgraph G[V2] and the p−k′ discrete vertices in S, by adding
the 3(p− k′) edges that are incident to the vertices in S. Since k′ ≤ k, we have
p − k′ ≥ p − k ≥ l

2 . This gives 3(p − k′) = 2(p − k′) + (p − k′) ≥ l + (p − k′).
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This contradicts the fact that G′ is a forest – in order to keep G′ a forest, we can
add at most l + (p− k′) − 1 edges to the structure that consists of the induced
subgraph G[V2] of l connected components and the p− k′ discrete vertices in S.
This contradiction proves the first part of the lemma.

To prove the second part of the lemma, observe that when all vertices in V1
are nice V1-vertices, (G;V1, V2; k) is a 3-regularV1 instance for disjoint-fvs. By
Theorem 1, there is a polynomial time algorithm that constructs a minimum
V1-FVS in G for 3-regularV1 instances of disjoint-fvs. ��

The algorithm Feedback(G, V1, V2, k), for the disjoint-fvs problem is given
in Figure 3. We first discuss the correctness of the algorithm. The correctness of
step 1 and step 2 of the algorithm is obvious. By lemma 5, step 3 is correct. Step
4 is correct by Rule 1 in section 2. After step 4, each vertex in V1 has degree at
least 2 in G.

If the vertex w has two neighbors in V2 that belong to the same tree T in
the induced subgraph G[V2], then the tree T plus the vertex w contains at least
one cycle. Since we are searching for a V1-FVS, the only way to break the cycles
in T ∪ {w} is to include the vertex w in the objective V1-FVS. Moreover, the
objective V1-FVS of size at most k exists in G if and only if the remaining graph
G−w has a V1-FVS of size at most k− 1 in the subset V1 \ {w}. Therefore, step
5 correctly handles this case. After this step, all vertices in V1 has at most one
neighbor in a tree in G[V2].

Because of step 5, a degree-2 vertex at step 6 cannot have both its neighbors
in the same tree in G[V2]. By Rule 2, step 6 correctly handles this case. After
step 6, all vertices in V1 have degree at least 3.

A vertex w ∈ V1 is either in or not in the objective V1-FVS. If w is in the
objective V1-FVS, then we should be able to find a V1-FVS F1 in the graph G−w
such that |F1| ≤ k − 1 and F1 ⊆ V1 \ {w}. On the other hand, if w is not in the
objective V1-FVS, then the objective V1-FVS for G must be contained in the
subset V1 \{w}. Also note that in this case, the induced subgraph G[V2∪{w}] is
still a forest since no two neighbors of w in V2 belong to the same tree in G[V2].
Therefore, step 7 handles this case correctly. After step 7, every leaf w in G[V1]
that is not a nice V1-vertex has exactly two neighbors in V2.

The vertex y in step 8 is either in or not in the objective V1-FVS . If y is in
the objective V1-FVS, then we should be able to find a V1-FVS F1 in the graph
G−y such that |F1| ≤ k−1 and F1 ⊆ V1 \{w}. After removing y from the graph
G, the vertex w becomes degree-2 and both of its neighbors are in V2 (note that
step 7 is not applicable to w). Therefore, by Rule 2, the vertex w can be moved
from V1 to V2 (again note that G[V2 ∪ {w}] is a forest). On the other hand, if y
is not in the objective V1-FVS, then the objective FVS for G must be contained
in the subset V1 \ {y}. Also note that in this case, the subgraph G[V2 ∪ {y}]
is a forest since no two neighbors of y in V2 belong to the same tree in G[V2].
Therefore, step 8 handles this case correctly. Thus, the following conditions hold
after step 8:
1. k > 0 and G is not a forest (by steps 1 and 2);
2. p ≤ k + l

2 and not all vertices of V1 are nice vertices (by step 3);
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Algorithm Feedback(G,V1, V2, k)
input: an instance (G; V1, V2; k) of disjoint-fvs.
output: a V1-FVS F of size bounded by k in G if such a V1-FVS exists.
1 if (k < 0) or (k = 0 and G is not a forest) then return ‘No’;
2 if k ≥ 0 and G is a forest then return ∅;

let l be the number of connected components in G[V2],
and let p be the number of nice V1-vertices;

3 if p > k + l
2

then return ‘No’;
if p = |V1| then solve the problem in polynomial time;

4 if a vertex w ∈ V1 has degree not larger than 1 then
return Feedback(G− w, V1 \ {w}, V2, k);

5 if a vertex w ∈ V1 has two neighbors in the same tree in G[V2] then
F1 = Feedback(G− w, V1 \ {w}, V2, k − 1);
if F1=‘No’ then return ‘No’ else return F1 ∪ {w}

6 if a vertex w ∈ V1 has degree 2 then
return Feedback(G,V1 \ {w}, V2 ∪ {w}, k);

7 if a leaf w in G[V1] is not a nice V1-vertex and has ≥ 3 neighbors in V2

F1 = Feedback(G− w, V1 − {w}, V2, k − 1);
7.1 if F1 	= ‘No’ then return F1 ∪ {w}
7.2 else return Feedback(G,V1 \ {w}, V2 ∪ {w}, k);
8 if the neighbor y ∈ V1 of a leaf w in G[V1] has at least one neighbor in V2

F1 = Feedback(G− y, V1 \ {w, y}, V2 ∪ {w}, k − 1);
8.1 if F1 	=‘No’ then return F1 ∪ {y}
8.2 else return Feedback(G,V1 \ {y}, V2 ∪ {y}, k);
9 pick a lowest leaf w1 in any tree T in G[V1];

let w1, · · · , wt be the children of w in T ;
F1 = Feedback(G− w, V1 \ {w, w1}], V2 ∪ {w1}, k − 1);

9.1 if F1 	=‘No’ then return F1 ∪ {w}
9.2 else return Feedback(G,V1 \ {w}, V2 ∪ {w}, k).

Fig. 3. Algorithm for disjoint-fvs

3. any vertex in V1 has degree at least 3 in G (by steps 4-6);
4. any leaf in G[V1] is either a nice V1-vertex, or has exactly two neighbors in

V2 (by step 7); and
5. for any leaf w in G[V1], the neighbor y ∈ V1 of w has no neighbors in V2 (by

step 8).

By condition 4, any tree of single vertex in G[V1] is a nice V1-vertex. By condition
5, there is no tree of two vertices in G[V1]. For a tree T with at least three vertices
in G[V1], fix any internal vertex of T as the root. Then we can find a lowest leaf
w1 of T in polynomial time. Since the tree T has at least three vertices, the
vertex w1 must have a parent w in T which is in G[V1].

Vertex w is either in or not in the objective V1-FVS. If w is in the objective V1-
FVS, then we should find a V1-FVS F1 in the graph G−w such that F1 ⊆ V1\{w}
and |F1| ≤ k−1. Note that after removing w, the leaf w1 becomes degree-2, and
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by Rule 2, it is valid to move w1 from V1 to V2 since the two neighbors of w1
in V2 are not in the same tree in G[V2]. On the other hand, if w is not in the
objective V1-FVS, then the objective V1-FVS must be in V1 \ {w}. In summary,
step 9 handles this case correctly.

Theorem 2. ThealgorithmFeedback(G, V1 , V2, k) correctly solves thedisjoint-

fvs problem. The running time of the algorithm isO(2k+l/2n2), where n is the num-
ber of vertices in G, and l is the number of connected components in the induced
subgraph G[V2].

Proof. The correctness of the algorithm has been verified by the above discus-
sion. Now we consider the complexity of the algorithm. The recursive execution
of the algorithm can be described as a search tree T . We first count the number
of leaves in the search tree T . Note that only steps 7, 8 and 9 of the algorithm
correspond to branches in the search tree T . Let T (m) be the number of leaves in
the search tree T for the algorithm Feedback(G, V1 , V2, k) when m = k+l/2−p,
where l is the number of connected components (i.e., trees) in the forest G[V2],
and p is the number of nice V1-vertices.

The branch of step 7.1 has that k′ = k − 1, l′ = l and p′ ≥ p. Thus we have
m′ = k′ + l′/2− p′ ≤ k − 1 + l/2− p = m− 1. The branch of step 7.2 has that
k′′ = k, l′′ ≤ l − 2 and p′′ = p. Thus we have m′′ = k′′ + l′′/2 − p′′ ≤ m − 1.
Thus, for step 7, the recurrence is T (m) ≤ 2T (m− 1).

The branch of step 8.1 has that k′ = k − 1, l′ = l − 1 and p′ ≥ p. Thus
we have m′ = k′ + l′/2 − p′ ≤ k − 1 + (l − 1)/2 − p = m − 1.5. The branch
of step 8.2 has that k′′ = k, l′′ = l and p′′ = p + 1. Thus we have m′′ =
k′′ + l′′/2 − p′′ = k + l/2− (p + 1) = m − 1. Thus, for step 8, the recurrence is
T (m) ≤ T (m− 1.5) + T (m− 1).

The branch of step 9.1 has that k′ = k−1, l′ = l−1 and p′ ≥ p. Thus we have
m′ = k′+l′/2−p′ ≤ k−1+(l−1)/2−p = m−1.5. the branch of step 9.2 has that
k′′ = k, l′′ = l+1 because of w, and p′′ ≥ p+2 because w has at least two children
which are leaves. Thus we have m′′ = k′′ + l′′/2− p′′ ≤ k + (l+1)/2− (p+2) =
m− 1.5. Thus, for step 8, the recurrence is T (m) ≤ 2T (m− 1.5).

The worst case happens at step 7. From the recurrence of step 7, we have
T (m) ≤ 2m. Moreover, steps 1-3 just return an answer; step 4 does not increase
measure m since vertex w is not a nice vertex; and step 5 also does not increase
m since k decreases by 1 and p decreases by at most 1. Step 6 may increase
measure m by 0.5 since l may increase by 1. However, we can simply just bypass
vertex w in step 6, instead of putting it into V2. If we bypass w, then measure m
does not change. In Rule 2, we did not bypass w because it is easier to analyze
the kernel in section 2 by putting w into V2. Since m = k+ l/2−p ≤ k+ l/2, and
it is easy to verify that the computation time along each path in the search tree
T is bounded by O(n2), we conclude that the algorithm Feedback(G, V1, V2, k)
solves the disjoint fvs problem in time O(2k+l/2n2). ��
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5 Concluding Result: An Improved Algorithm for fvs

The results presented in previous sections lead to an improved algorithm for the
general fvs problem. Following the idea of iterative compression proposed by
Reed et al. [22], we formulate the following problem:

fvs reduction: given a graph G and an FVS F of size k + 1 for G,
either construct an FVS of size at most k for G, or report that no such
an FVS exists.

Lemma 6. The fvs reduction problem on an n-vertex graph G can be solved
in time O(3.83kn2).

Proof. The proof goes similar to that for Lemma 2 in [3]. Let G be a graph and
let Fk+1 be an FVS of size k+1 in G. For each j, 0 ≤ j ≤ k, we enumerate each
subset Fk−j of k − j vertices in Fk+1, and assume that Fk−j is the intersection
of Fk+1 and the objective FVS Fk. Therefore, constructing the FVS Fk of size k
in the graph G is equivalent to constructing the FVS Fk − Fk−j of size j in the
graph G−Fk−j , which, by Theorem 2 (note that l ≤ j+1), can be constructed in
time O(2j+(j+1)/2n2) = O(2.83jn2). Applying this procedure for every integer
j (0 ≤ j ≤ k) and all subsets of size k − j in Fk+1 will successfully find an
FVS of size k in the graph G, if such an FVS exists. This algorithm solves fvs

reduction in time
∑k

j=0

(
k+1
k−j

)
· O(2.83jn2) = O(3.83kn2). ��

Finally, by combining Lemma 6 with iterative compression [5], we obtain the
main result of this paper.

Theorem 3. The fvs problem on an undirected graph of n vertices is solvable
in time O(3.83kkn2).

The proof of Theorem 3 is exactly similar to that of Theorem 3 in [5], with the
complexity O(5kn2) for solving the fvs reduction problem being replaced by
O(3.83kn2), as given in Lemma 6.

References

1. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset
problem. J. Artif. Intell. Res. 12, 219–234 (2000)

2. Bodlaender, H.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68 (1994)
3. Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set New Measure and New Struc-

tures (manuscript, 2010)
4. Chen, J.: Minimum and maximum imbeddings. In: Gross, J., Yellen, J. (eds.) The

Handbook of Graph Theory, pp. 625–641. CRC Press, Boca Raton (2003)
5. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for

the feedback vertex set problems. Journal of Computer and System Sciences 74,
1188–1198 (2008)

6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd
edn. The MIT Press and McGraw-Hill Book Company (2001)



104 Y. Cao, J. Chen, and Y. Liu

7. Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An O(2O(k)n3)
fpt algorithm for the undirected feedback vertex set problem. In: Wang, L. (ed.)
COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)

8. Downey, R., Fellows, M.: Fixed parameter tractability and completeness. In: Com-
plexity Theory: Current Research, pp. 191–225. Cambridge University Press, Cam-
bridge (1992)

9. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
10. Festa, P., Pardalos, P., Resende, M.: Feedback set problems. In: Handbook of Com-

binatorial Optimization, vol. A(suppl.), pp. 209–258. Kluwer Acad. Publ., Dor-
drecht (1999)

11. Fomin, F., Gaspers, S., Pyatkin, A.: Finding a minimum feedback vertex set in
time O(1.7548n). In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS,
vol. 4169, pp. 184–191. Springer, Heidelberg (2006)

12. Furst, M., Gross, J., McGeoch, L.: Finding a maximum-genus graph imbedding.
Journal of the ACM 35(3), 523–534 (1988)

13. Gabow, H., Stallmann, M.: Efficient algorithms for graphic matroid intersection
and parity. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 210–220.
Springer, Heidelberg (1985)
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Abstract. In FOCS 2002, Even et al. showed that any set of n discs in
the plane can be Conflict-Free colored with a total of at most O(log n)
colors. That is, it can be colored with O(log n) colors such that for any
(covered) point p there is some disc whose color is distinct from all other
colors of discs containing p. They also showed that this bound is asymp-
totically tight. In this paper we prove the following stronger results:
(i) Any set of n discs in the plane can be colored with a total of at

most O(k log n) colors such that (a) for any point p that is covered
by at least k discs, there are at least k distinct discs each of which is
colored by a color distinct from all other discs containing p and (b)
for any point p covered by at most k discs, all discs covering p are
colored distinctively. We call such a coloring a k-Strong Conflict-Free
coloring. We extend this result to pseudo-discs and arbitrary regions
with linear union-complexity.

(ii) More generally, for families of n simple closed Jordan regions with
union-complexity bounded by O(n1+α), we prove that there exists a
k-Strong Conflict-Free coloring with at most O(knα) colors.

(iii) We prove that any set of n axis-parallel rectangles can be k-Strong
Conflict-Free colored with at most O(k log2 n) colors.

(iv) We provide a general framework for k-Strong Conflict-Free coloring
arbitrary hypergraphs. This framework relates the notion of k-Strong
Conflict-Free coloring and the recently studied notion of k-colorful
coloring.

All of our proofs are constructive. That is, there exist polynomial time
algorithms for computing such colorings.

KeyWords: Conflict-Free Colorings, Geometric hypergraphs, Wireless
networks, Discrete geometry.

1 Introduction and Preliminaries

Motivated by modeling frequency assignment to cellular antennae, Even et al.
[17] introduced the notion of Conflict-Free colorings. A Conflict-Free coloring
(CF in short) of a hypergraph H = (V, E) is a coloring of the vertices V such
that for any non-empty hyperedge e ∈ E there is some vertex v ∈ e whose color
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is distinct from all other colors of vertices in e. For a hypergraph H , one seeks
the least number of colors l such that there exists an l-coloring of H which is
Conflict-Free. It is easily seen that CF-coloring of a hypergraph H coincides
with the notion of classical graph coloring in the case when H is a graph (i.e.,
all hyperedges are of cardinality two). Thus it can be viewed as a generalization
of graph coloring. There are two well known generalizations of graph coloring
to hypergraph coloring in the literature (see, e.g., [9]). The first generalization
requires “less” than the CF requirement and this is the non-monochromatic
requirement where each hyperedge in E of cardinality at least two should be non-
monochromatic: The chromatic number of a hypergraph H , denoted χ(H), is the
least number l such that H admits an l-coloring which is a non-monochromatic
coloring. The second generalization requires “more” than the CF requirement
and this is the colorful requirement where each hyperedge should be colorful
(i.e., all of its vertices should have distinct colors). For instance, consider the
following hypergraph H = (V, E): Let V = {1, 2, . . . , n} and let E consist of all
subsets of V consisting of consecutive numbers of V . That is, E consists of all
discrete intervals of V . It is easily seen that one can color the elements of V
with two colors in order to obtain a non-monochromatic coloring of H . Color
the elements of V alternately with ‘black’ and ‘white’. On the other extreme, one
needs n colors in any colorful coloring of H . Indeed V itself is also a hyperedge
in this hypergraph (an ‘interval’ containing all elements of V ) so all colors must
be distinct. However, it is an easy exercise to see that there exists a CF-coloring
of H with �logn�+ 1 colors. In fact, for an integer k > 0, if V consist of 2k − 1
elements then k colors suffice and are necessary for CF-coloring H .

Let R be a finite collection of regions in R
d, d ≥ 1. For a point p ∈ R

d, define
r(p) = {R ∈ R : p ∈ R}. The hypergraph (R, {r(p)}p∈Rd), denoted H(R),
is called the hypergraph induced by R. Such hypergraphs are referred to as
geometrically induced hypergraphs. Informally these are the Venn diagrams of
the underlying regions.

In general, dealing with CF coloring for arbitrary hypergraphs is not easier
than graph coloring. The paper [17] focused on hypergraphs that are induced by
geometric objects such as discs, squares etc. Their motivation was a modeling
of frequency assignment to cellular antennae in a manner that reduces the spec-
trum of frequencies used by a network of antennae. Suppose that antennae are
represented by discs in the plane and that every client (holding a cell-phone) is
represented by a point. Antennae are assigned frequencies (this is the coloring).
A client is served provided that there is at least one antenna ‘covering’ the client
for which the assigned frequency is “unique” and therefore has no “conflict” (in-
terference) with other frequencies used by nearby antennae. When R is a finite
family of n discs in the plane R

2, Even et al. [17] proved that finding an opti-
mal CF-coloring for R is NP-hard. However, they showed that there is always a
CF-coloring of H(R) with O(log n) colors and that this bound is asymptotically
tight. That is, for every n there is a family of n discs which requires Ω(log n)
colors in any CF-coloring. See [17] for further discussion of this model and the
motivation.
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CF-coloring finds application also in activation protocols for RFID networks.
Radio frequency identification (RFID) is a technology where a reader device can
sense the presence of a nearby object by reading a tag device attached to the
object. To improve coverage, multiple RFID readers can be deployed in the given
region. However, two readers trying to access a tagged device simultaneously
might cause mutual interference. One may want to design scheduled access of
RFID tags in a multiple reader environment. Assume that we have t time slots
and we would like to ‘color’ each reader with a time slot in {1, . . . , t} such that
the reader will try to read all nearby tags in its given time slot. In particular,
we would like to read all the tags and minimize the total time slots t. It is
easily seen that if we CF-color the family R of readers then in this coloring
every possible tag will have a time slot and a single reader trying to access
it in that time slot [18]. The notion of CF-coloring has caught much scientific
attention in recent years both from the algorithmic and combinatorial point of
view [3,4,6,7,8,11,12,13,16,19,20,22,23,26].

Our Contribution: In this paper we study the notion of k-Strong-Conflict-Free
(abbreviated, kSCF ) colorings of hypergraphs. This notion extends the notion
of CF -colorings of hypergraphs. Informally, in the case of coloring discs, rather
than having at least one unique color at every covered point p, we require at
least k distinct colors to some k discs such that each of these colors is unique
among the discs covering p. The motivation for studying kSCF -coloring is rather
straightforward in the context of wireless antennae. Having, say k > 1 unique
frequencies in any given location allows us to serve k clients at that location
rather than only one client. In the context of RFID networks, a kSCF coloring
will correspond to an activation protocol which is fault-tolerant. That is, every
tag can be read even if some k − 1 readers are broken.

Definition 1 (k-Strong Conflict-Free coloring:). Let H = (V, E) be a hy-
pergraph and let k ∈ N be some fixed integer. A coloring of V is called k-Strong-
Conflict-Free for H if
(i) for every hyperedge e ∈ E with |e| ≥ k there exists at least k vertices in e,
whose colors are unique among the colors assigned to the vertices of e, and
(ii) for each hyperedge e ∈ E with |e| < k all vertices in e get distinct colors.

Let fH(k) denote the least integer l such that H admits a kSCF -coloring with
l colors.

Note that a CF -coloring of a hypergraph H is kSCF -coloring of H for k = 1.
Abellanas et al. [2] were the first to study kSCF-coloring1. They focused on

the special case where V is a finite set of points in the plane and E consist of
all subsets of V which can be realized as an intersection of V with a disc. They
showed that in this case the hypergraph admits a kSCF-coloring with O( log n

log ck
ck−1

)

(= O(k logn)) colors, for some absolute constant c. See also [1].

1 They referred to such a coloring as k-Conflict-Free coloring.
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The following notion of k-colorful colorings was recently introduced and stud-
ied by Aloupis et al. [5] for the special case of hypergraphs induced by discs.

Definition 2. Let H = (V, E) be a hypergraph, and let ϕ be a coloring of H. A
hyperedge e ∈ E is said to be k-colorful with respect to ϕ if there exist k vertices
in e that are colored distinctively under ϕ. The coloring ϕ is called k-colorful if
every hyperedge e ∈ E is min{|e|, k}-colorful. Let cH(k) denote the least integer
l such that H admits a k-colorful coloring with l colors.

Aloupis et al. were motivated by a problem related to battery lifetime in sen-
sor networks. See [5,10,24] for additional details on the motivation and related
problems.

Remark: Every kSCF -coloring of a hypergraph H is a k-colorful coloring of H .
However, the opposite claim is not necessarily true. A k-colorful coloring assures
us that every hyperedge of cardinality at least k has at least k distinct colors
present in it. However, these k colors are not necessarily unique since each may
appear with multiplicity.

A k-colorful coloring can be viewed as a type of coloring which is “in between”
non-monochromatic coloring and colorful coloring. A 2-colorful coloring of H
is exactly the classical non-monochromatic coloring, so χ(H) = cH(2). If H is
a hypergraph with n vertices, then an n-colorful coloring of H is the classical
colorful coloring of H . Consider the hypergraph H , consisting of all discrete
intervals on V = {1, . . . , n} mentioned earlier. It is easily seen that for any i,
an i-colorful coloring with i colors is obtained by coloring V in increasing order
with 1, 2, . . . , i, 1, 2, . . . , i, 1, 2 . . . with repetition.

In this paper, we study a connection between k-colorful coloring and Strong-
Conflict-Free coloring of hypergraphs. We show that if a hypergraph H admits
a k-colorful coloring with a “small” number of colors (hereditarily) then it also
admits a (k−1)SCF-coloring with a “small” number of colors. The interrelation
between the quoted terms is provided in Theorems 1 and 2 below.

Let H = (V, E) be a hypergraph and let V ′ ⊂ V . We write H [V ′] to denote the
sub-hypergraph of H induced by V ′, i.e., H [V ′] = (V ′, E ′) and E ′ = {e ∩ V ′|e ∈
E}. We write n(H) to denote the number of vertices of H .

Theorem 1. Let H = (V, E) be a hypergraph with n vertices, and let k,  ∈ N be
fixed integers, k ≥ 2. If every induced sub-hypergraph H ′ ⊆ H satisfies cH′ (k) ≤
, then fH(k − 1) ≤ log1+ 1

�−1
n = O(l logn).

Theorem 2. Let H = (V, E) be a hypergraph with n vertices, let k ≥ 2 be a
fixed integer, and let 0 < α ≤ 1 be a fixed real. If every induced sub-hypergraph
H ′ ⊆ H satisfies cH′(k) = O(kn(H ′)α), then fH(k − 1) = O(kn(H ′)α).

Consider the hypergraph of “discrete intervals” with n vertices. As mentioned
earlier, it has a (k + 1)-colorful coloring with k + 1 colors and this holds for
every induced sub-hypergraph. Thus, Theorem 1 implies that it also admits a
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kSCF -coloring with at most log1+ 1
k

n = O(k logn) colors. In Section 3.1, we
provide an upper bound on the number of colors required by kSCF -coloring of
geometrically induced hypergraphs as a function of the union-complexity of the
regions that induce the hypergraphs. Below we describe the relations between
the union-complexity of the regions, k-colorful and (k − 1)SCF coloring of the
underlying hypergraph. First, we need to define the notion of union-complexity.

Definition 3. For a family R of n simple closed Jordan regions in the plane, let
∂R denote the boundary of the union of the regions in R. The union-complexity
of R is the number of intersection points, of a pair of boundaries of regions in
R, that belong to ∂R.

For a set R of n simple closed planar Jordan regions, let UR : N → N be a
function such that UR(m) is the maximum union-complexity of any subset of k
regions in R over all k ≤ m, for 1 ≤ m ≤ n. We abuse the definition slightly and
assume that the union-complexity of any set of n regions is at least n. When
dealing with geometrically induced hypergraphs, we consider k-colorful coloring
and kSCF -coloring of hypergraphs that are induced by simple closed Jordan
regions having union-complexity at most O(n1+α), for some fixed parameter
0 ≤ α ≤ 1. The value α = 0 corresponds to regions with linear union-complexity
such as discs or pseudo-discs (see, e.g., [21]). The value α = 1 corresponds to
regions with quadratic union-complexity. See [14,15] for additional families with
sub-quadratic union-complexity.

In the following theorem we provide an upper bound on the number of colors
required by a k-colorful coloring of a geometrically induced hypergraph as a
function of k and of the union-complexity of the underlying regions inducing the
hypergraph:

Theorem 3. Let k ≥ 2, let 0 ≤ α ≤ 1, and let c be a fixed constant. Let R be a
set of n simple closed Jordan regions such that UR(m) ≤ cm1+α, for 1 ≤ m ≤ n,
and let H = H(R). Then cH(k) = O(knα).

Combining Theorem 1 with Theorem 3 (for α = 0) and Theorem 2 with Theo-
rem 3 (for 0 < α < 1) yields the following result:

Theorem 4. Let k ≥ 2, let 0 ≤ α ≤ 1, and let c be a constant. Let R be a set
of n simple closed Jordan regions such that UR(m) = cm1+α, for 1 ≤ m ≤ n.
Let H = H(R). Then:

fH(k − 1) =
{

O(k logn), α = 0,
O(knα), 0 < α ≤ 1.

In Section 3.2 we consider kSCF -colorings of hypergraphs induced by axis-
parallel rectangles in the plane. It is easy to see that axis-parallel rectangles
might have quadratic union-complexity, for example, by considering a grid-like
construction of n/2 disjoint (horizontally narrow) rectangles and n/2 disjoint
(vertically narrow) rectangles. For a hypergraph H induced by axis-parallel



110 E. Horev, R. Krakovski, and S. Smorodinsky

rectangles, Theorem 4 states that fH(k−1) = O(kn). This bound is meaningless,
since the bound fH(k−1) ≤ n is trivial. Nevertheless, we provide a near-optimal
upper bound for this case in the following theorem:

Theorem 5. Let k ≥ 2. Let R be a set of n axis-parallel rectangles, and let
H = H(R). Then fH(k − 1) = O(k log2 n).

In order to obtain Theorem 5 we prove the following theorem:

Theorem 6. Let H = H(R) be the hypergraph induced by a family R of n axis-
parallel rectangles in the plane, and let k ∈ N be an integer, k ≥ 2. For every
induced sub-hypergraph H ′ ⊆ H we have: cH′(k) ≤ k logn.

Theorem 5 is therefore an easy corollary of Theorem 6 combined with Theorem 1.
Har-Peled and Smorodinsky [19] proved that any family R of n axis-parallel

rectangles admits a CF-coloring with O(log2 n) colors. Their proof uses the
probabilistic method. They also provide a randomized algorithm for obtaining
CF-coloring with at most O(log2 n) colors. Later, Smorodinsky [26] provided a
deterministic polynomial-time algorithm that produces a CF-coloring for n axis-
parallel rectangles with O(log2 n) colors. Theorem 5 thus generalizes the results
of [19] and [26].

All of our proofs are constructive. In other words, there exist determinis-
tic polynomial-time algorithms to obtain the required kSCF coloring with the
promised bounds. In this paper, we omit the technical details of the underlying
algorithms and we do not make an effort to optimize their running time.

The result of Ali-Abam et al.[1] implies that the upper bounds provided in
Theorem 4 for α = 0 and Theorem 5 are optimal. Specifically, they provide
matching lower bounds on the number of colors required by any kSCF -coloring
of hypergraphs induced by (unit) discs and axis-parallel squares in the plane by a
simple analysis of such coloring for the discrete intervals hypergraph mentioned
earlier.

Organization. In Section 2 we prove Theorems 1 and 2. In Section 3.1 we prove
Theorems 3 and 4. Finally, in Section 3.2 we prove Theorems 5 and 6.

2 A Framework for Strong-Conflict-Free Coloring

In this section, we prove Theorems 1 and 2. To that end we devise a framework
for obtaining an upper bound on the number of colors required by a Strong-
Conflict-Free coloring of a hypergraph. Specifically, we show that if there exist
fixed integers k and l such that an n-vertex hypergraph H admits the heredi-
tary property that every vertex-induced sub-hypergraph H ′ of H admits a k-
colorful coloring with at most l colors, then H admits a (k − 1)SCF -coloring
with O(l logn) colors. For the case when l is replaced with the function kn(H ′)α

we get a better bound without the logn factor.



Conflict-Free Coloring Made Stronger 111

Framework A:
Input: A hypergraph H satisfying the conditions of Theorems 1 and 2.
Output: A (k − 1)SCF -coloring of H .
1: i ← 1 {i denotes an unused color.}
2: while V 
= ∅ do
3: Auxiliary Coloring: Let ϕ : V → [] be a k-colorful coloring of H [V ]

with at most  colors.
4: Let V ′ be a color class of ϕ of maximum cardinality.
5: Color: Set χ(u) = i for every vertex u ∈ V ′.
6: Discard: V ← V \ V ′.
7: Increment: i← i + 1.
8: end while
9: Return χ.

Proof of Theorems 1 and 2. We show that the coloring produced by Frame-
work A is a (k − 1)SCF-coloring of H with a total number of colors as specified
in Theorems 1 and 2.

Let χ denote the coloring obtained by the application of framework A on H .
The number of colors used by χ is the number of iterations performed by A. By
the pigeon-hole principle, at least |V |/ vertices are removed in each iteration
(where V is the set of vertices remained after the last iteration). Therefore, the
total number of iterations performed by A is bounded by log1+ 1

�−1
n. Thus, the

coloring χ uses at most log1+ 1
�−1

n colors. If in step 3 of the framework, l is
replaced with the function k|V |α (for a fixed parameter 0 < α < 1), then by the
pigeon-hole principle at least |V |1−α

k vertices of H are discarded in step 6 of that
iteration. It is easily seen that the number of iterations performed in this case is
bounded by O(knα) where n = n(H).

Next, we prove that the coloring χ is indeed a (k−1)SCF -coloring of H . The
colors of χ are the indices of iterations of A. Let e ∈ E be a hyperedge of H . If
|e| ≤ k then it is easily seen that all colors of vertices of e are distinct. Indeed, by
the property of the auxiliary coloring ϕ in step 3 of the framework, every vertex
of e is colored distinctively and in each such iteration, at most one vertex from
e is colored by χ so χ colors all vertices of e in distinct iterations. Next, assume
that |e| > k. We prove that e contains at least k − 1 vertices that are assigned
unique colors in χ. For an integer r, let {α1, . . . , αr} denote the r largest colors
in decreasing order that are assigned to some vertices of e. That is, the color α1
is the largest color assigned to a vertex of e, the color α2 is the second largest
color and so on. In what follows, we prove a stronger assertion that for every
1 ≤ j ≤ k − 1 the color αj exists and is unique in e. The proof is by induction
on j. α1 exists in e by definition. For the base of the induction we prove that
α1 is unique in e. Suppose that the color α1 is assigned to at least two vertices
u, v ∈ e, and consider iteration α1 of A. Let H ′ = H [{x ∈ V : χ(x) ≥ α1}],
and let ϕ be the k-colorful coloring obtained for H ′ in step 3 of iteration α1.
Put e′ = {x ∈ e : χ(x) ≥ α1}. e′ ⊂ e is a hyperedge in H ′. Since u, v ∈ e′

then |e| ≥ 2. ϕ is k-colorful for H ′ so e′ contains at least two vertices that are
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colored distinctively in ϕ. In iteration α1, the vertices of one color class of ϕ are
removed from e′. Since e′ contains vertices from two color classes of ϕ, it follows
that after iteration α1 at least one vertex of e′ remains. Thus, at least one vertex
of e′ is colored in a later iteration than α1, a contradiction to the maximality of
α1. The induction hypothesis is that in χ the colors α1, . . . , αj−1, 1 < j ≤ k− 1,
all exist and are unique in the hyperedge e. Consider the color αj . There exists
a vertex u ∈ e such that χ(u) = αj ; for otherwise it follows from the induction
hypothesis that |e| < k − 1 since the colors α1, . . . , αj−1 are all unique in e and
j− 1 < k− 1. We prove that the color αj is unique in e. Assume to the contrary
that αj is not unique at e, and that in χ the color αj is assigned to at least two
vertices u, v ∈ e. Put H ′′ = H [{u ∈ V : χ(u) ≥ αj}], and let ϕ′′ be the k-colorful
coloring obtained for H ′′ in step 3 of iteration αj . Put e′′ = {u ∈ e : χ(u) ≥ αj}.
e′′ is a hyperedge of H ′′. By the induction hypothesis and the definition of the
colors α1, . . . , αj−1, after iteration αj a set U ⊂ e′′ of exactly j−1 vertices of e′′

remains. In addition, u, v ∈ e′′ and U ∩ {u, v} = ∅. Consequently, |e′′| ≥ j + 1.
Since ϕ′′ is k-colorful then e′′ contains vertices from min{k, j + 1} color classes
of ϕ′′. j ≤ k−1 so min{k, j+1} = j+1. Since in iteration αj the vertices of one
color class of ϕ′′ are removed from e′′, it follows that after iteration αj at least
j vertices of e′′ remain. This is a contradiction to the induction hypothesis.

Remark. Given a k-colorful coloring of H , the framework A obtains a Strong
Conflict-Free coloring of H in a constructive manner. As mentioned above, in
this paper, computational efficiency is not of main interest. However, it can be
seen that for certain families of geometrically induced hypergraphs, framework
A produces an efficient algorithm. In particular, for hypergraphs induced by
discs or axis-parallel rectangles, framework A produces an algorithm with a low
degree polynomial running time. Colorful-colorings of such hypergraphs can be
computed once the arrangement of the discs is computed together with the depth
of every face (see, e.g., [25]). Due to space limitation we omit the technical details
involving the description of these algorithms for computing k-colorful coloring
for those hypergraphs.

3 k-Strong-Conflict-Free Coloring of Geometrically
Induced Hypergraphs

Theorems 1 and 2 assert that in order to attain upper bounds on fH(k), for a
hypergraph H , one may concentrate on attaining an upper bound on cH(k+1).
In this section we concentrate on colorful colorings.

3.1 k-Strong-Conflict-Free Coloring and Union Complexity

In this section, we prove Theorems 3 and 4. Before proceeding with a proof of
Theorem 3, we need several related definitions and theorems. A simple finite graph
G is called k-degenerate if every vertex-induced sub-graph of G contains a vertex
of degree at most k. For a finite set R of simple closed planar Jordan regions and
a fixed integer k, let Gk(R) denote the graph with vertex set R and two regions
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r, s ∈ R are adjacent in Gk(R) if there exists a point p ∈ R
2 such that (i) p ∈ r∩s,

and (ii) there exists at most k regions in R \ {r, s} that contain p.

Theorem 7. Let R be a finite set of simple closed planar Jordan regions, let
H = H(R), and let k be a fixed integer. If Gk(R) is l-degenerate then cH(k) ≤
l + 1.

Theorem 7 can be proved in a manner similar to that of Aloupis et al. (see [5])
who proved Theorem 7 in the special case when R is a family of discs. Due to
space limitations, we omit a proof of this theorem.

In light of Theorem 7, in order to prove Theorem 3 it is sufficient to prove
that for a family of regions satisfying the conditions of Theorem 3 and a fixed
integer k, the graph Gk(R) is O(knα)-degenerate, where α is as in Theorem 3.

Lemma 1. Let k ≥ 0, let 0 ≤ α ≤ 1, and let c be a fixed constant. Let R be a
set of n simple closed Jordan regions such that UR(m) ≤ cm1+α, for 1 ≤ m ≤ n.
Then Gk(R) is O(knα)-degenerate.

Our approach to proving Lemma 1 requires several steps. These steps are de-
scribed in the following lemmas. We shall provide an upper bound on the average
degree of every vertex-induced subgraph of Gk(R) by providing an upper bound
on the number of its edges. We need the following lemma:

Lemma 2. ([26]) Let R be a set of n simple closed planar Jordan regions and
let U : N → N be a function such that U(m) is the maximum union-complexity
of any k regions in R over all k ≤ m. Then the average degree of G0(R) is
O(U(n)

n ).

For a graph G, we write E(G) to denote the set of edges of G. We use Lemma 2
to obtain the following easy lemma.

Lemma 3. Let 0 ≤ α ≤ 1 and let c be a fixed constant. Let R be a set of n
simple closed Jordan regions such that UR(m) ≤ cm1+α, for 1 ≤ m ≤ n. Then
there exists a constant d such that |E(G0(R))| ≤ dn1+α

2 .

Proof: By Lemma 2, it follows that there exists a constant d′ such that

2|E(G0(R))|
n

=

∑
x∈V (G0(R)) degG0(R)(x)

n
≤ d′cn1+α

n
.

Set d = d′c and the claim follows.

For a set R of n simple closed planar Jordan regions, define I(R) to denote the
graph whose vertex set is R and two regions r, s ∈ R are adjacent if r ∩ s 
= ∅.
The graph I(R) is called the intersection graph of R. Note that for any integer
k E(Gk(R)) ⊆ E(I(R)). Let E ⊆ E(I(R)) be an arbitrary subset of the edges
of I(R). For every edge e = (a, b) ∈ E, pick a point pe ∈ a ∩ b. Note that for
distinct edges e and e′ in E it is possible that pe = pe′ . Put XE,R = {(pe, r) :
e = (a, b) ∈ E and r ∈ R \ {a, b} contains pe}. In the following two lemmas we
obtain a lower bound on |XE,R| in terms of |E| and |R|.
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Lemma 4. Let 0 ≤ α ≤ 1 and let c and d be the constants of Lemma 3. Let
R be a set of n simple closed Jordan regions such that UR(m) ≤ cm1+α, for
1 ≤ m ≤ n. Let E ⊆ E(I(R)). Then |XE,R| ≥ |E| − dn1+α

2 .

Proof: Apply induction on the value |E| − dn1+α

2 . Let PE = {pe : e ∈ E}. One
may assume that |E| − dn1+α ≥ 0 for otherwise the claim follows trivially since
|XE,R| ≥ 0. Suppose |E| − dn1+α

2 = 1. Since |E| > dn1+α

2 , then by Lemma 3
there exists an edge e = (a, b) ∈ E \ E(G0(R)). Since e /∈ E(G0(R)), it follows
that for every point p ∈ a ∩ b there exists a region r ∈ R \ {a, b} such that
p ∈ r. Consequently, there exists a region r ∈ R \ {a, b} such that pe ∈ r.
Hence, (pe, r) ∈ XE,R and thus |XE,R| ≥ 1. Assume that the claim holds for
|E| − dn1+α

2 = i, where i > 1, and consider the case that |E| − dn1+α

2 = i + 1.
Let e = (a, b) ∈ E be an edge such that there exists a region r ∈ R \ {a, b} with
pe ∈ r. Define E′ = E \ {e}. Note that PE′ ⊂ PE and |E′| − dn1+α

2 = i. By
the induction hypothesis it follows that |XE′,R| ≥ |E′| − dn1+α

2 . Observe that
XE′,R ⊂ XE,R and that |XE,R| ≥ |XE′,R|+ 1. It follows that

|XE,R| ≥ |XE′,R|+ 1 ≥ |E′| − dn1+α

2
+ 1 = i + 1 = |E| − dn1+α

2
.

Observation 8. Let 0 ≤ α ≤ 1 and let X be a binomial random variable with
parameters n and p. Then

E
[
X1+α

]
≤ E[Xnα] = nαE[X ] = n1+αp.

Lemma 5. Let 0 ≤ α ≤ 1 and let c and d be the constants of Lemma 3. Let
R be a set of n simple closed Jordan regions such that UR(m) ≤ cm1+α for
1 ≤ m ≤ n. Let E ⊆ E(I(R)) such that |E| > dn1+α and let {pe|e ∈ E} and
XE,R be as before. Then |XE,R| ≥ |E|2

2dn1+α .

Proof: Let R′ ⊆ R be a subset of regions of R chosen randomly and indepen-
dently such that for every region r ∈ R, Pr[r ∈ R′] = p for p = dn1+α

|E| (note that
p < 1). Let E′ ⊆ E be the subset of edges that is defined by the intersections
of regions in R′. Let PE′ = {pe : e ∈ E′}. PE′ ⊆ PE and thus XE′,R′ ⊆ XE,R.
Each of |R′|, |E′|, and |XE′,R′ | is a random variable.

By Lemma 4 and by linearity of expectation, it follows that E[|XE′,R′ |] ≥
E[|E′|]−E

[
d
2 |R′|1+α

]
.

By Observation 8,E
[

d
2 |R′|1+α

]
≤ d

2n1+αp. Hence, it follows thatE[|XE′,R′ |] ≥
E[|E′|] − d

2n1+αp. For an edge e = (a, b) ∈ E, Pr[e ∈ E′] = Pr[a, b ∈ R′] = p2

so E[|E′|] = p2|E|. In addition, for an edge e = (a, b) and a region r ∈ R \ {a, b}
Pr[(pe, r) ∈ XE′,R′ ] = Pr[a, b, r ∈ R′] = p3. Thus, E[|XE′,R′ |] = p3|XE,R|. It
follows that |XE,R| ≥ |E|

p − dn1+α

2p2 . Substituting the value of p in the latter in-
equality completes the proof of the lemma.

Next, a proof of Lemma 1 is presented.
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Proof of Lemma 1. Let d be the constant from Lemma 3. Let V ⊆ V (Gk(R))
be a subset of of m vertices and let G be the subgraph of Gk(R) induced by
V . Define E = E(G). Observe that E ⊆ E(I(R)). There are two cases: Either
|E| ≤ dm1+α or |E| > dm1+α. In the former case, the average degree of a
vertex in G is at most 2dmα. In the latter case, it follows from Lemma 5 that
|XE,V | ≥ |E|2

2dm1+α . On the other hand, since E ⊆ E(Gk(R)) then by definition, for
every edge e ∈ E the chosen point pe can belong to at most k other regions of R.
Thus |XE,V | ≤ k|E|. Combining these two inequalities we have: |E| ≤ 2dkm1+α

and thus the average degree of G in this case is at most 4dkmα. Hence, in G
there exists a vertex whose degree is at most max{2dmα, 4dkmα} = 4dkmα.

As mentioned in the introduction, Theorem 4 is a corollary of a combination of
Theorems 1, 2, and Theorem 3.

3.2 k-Strong Conflict-Free Coloring of Axis-Parallel Rectangles

In this section, we consider kSCF -colorings of axis-parallel rectangles and prove
Theorems 5 and 6. As mentioned in the introduction, a proof of Theorem 5
can be derived from a combination of Theorem 1 and Theorem 6. Consequently,
we concentrate on a proof of Theorem 6. To that end we require the following
lemma.

Lemma 6. Let k ≥ 2. Let R be a set of n axis-parallel rectangles such that all
rectangles in R intersect a common vertical line , and let H = H(R). Then
cH(k) = O(k).

Proof: Assume, without loss of generality, that the rectangles are in general po-
sition (that is, no three rectangles’ boundaries intersect at a common point). Ac-
cording to Theorem 3, it is sufficient to prove that for every subset of rectangles
R′ ⊆ R, the union-complexity of R′ is at most O(|R′|). Let R′ ⊆ R and con-
sider the boundary of the union of the rectangles of R′ that is to the right of the
line . Let ∂rR′ denote this boundary. An intersection point on ∂rR′ results from
the intersection of a horizontal side of a rectangle and a vertical side of another
rectangle. Each horizontal side of a rectangle in R′ may contribute at most one
intersection point to ∂rR′. Indeed, let s be a horizontal rectangle side. Let p be
the right-most intersection point on s to the right of the line  and let q be any
other intersection point on s to the right of . Let r be the rectangle whose ver-
tical side defines p on s. Since r intersects , the point p lies on the right vertical
side of r. Hence, q ∈ r; for otherwise either r does not intersect  or q is to the left
of , in which case q does not lie on ∂rR′. It follows that every horizontal side s
of some rectangle contributes at most one point to ∂rR′. As there are 2|R′| such
sides then ∂rR′ contains at most 2|R′| points. A symmetric argument holds for
the boundary of ∂R′ that lies to the left of . Hence, the union-complexity of R′

is at most O(|R′|). By Theorem 3, the claim follows.

Next, we prove Theorem 6.
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Proof of Theorem 6. Let  be a vertical line such that at most n/2 rectangles
lie fully to its right and to its left, respectively. Let R′ and R′′ be the sets of
rectangles that lie entirely to the right and entirely to the left of , respectively.
Let R� denote the set of rectangles in R that intersect , and let c(n) denote
the least number of colors required by a colorful coloring of any n axis-parallel
rectangles. By Lemma 6, the set of rectangles R� can be colored using O(k)
colors. In order to obtain a k-colorful coloring of R, we color R� using a set
D of O(k) colors. We then color R′ and R′′ recursively by using the same set
of colors D′ such that D ∩ D′ = ∅. The function c(n) satisfies the recurrence
c(n) ≤ O(k) + c(n/2). Thus, c(n) = O(k logn). Let ϕ be the resulting coloring
of the above coloring procedure. It remains to prove that ϕ is a valid k-colorful
coloring of R. The proof is by induction on the cardinality of R. Suppose R′ and
R′′ are colored correctly under ϕ, and consider a point p ∈

⋃
r∈R r. If r(p) ⊂ R�

or r(p) ⊂ R′ or r(p) ⊂ R′′ then by Lemma 6 and the induction hypothesis,
r(p) is colored correctly under ϕ. It is not possible that both r(p) ∩ R′ 
= ∅
and r(p) ∩ R′′ 
= ∅. Hence, it remains to consider points p for which either
r(p) ⊂ R� ∪ R′ or r(p) ⊂ R� ∪ R′′. Consider a point p which is, w.l.o.g, of
the former type. Let i = |r(p) ∩ R�| and j = |r(p) ∩ R′|. If either i ≥ k or
j ≥ k, then either by Lemma 6 or by the inductive hypothesis the hyperedge
r(p) is k-colorful. It remains to consider the case that i+ j ≥ k and i, j < k. Let
ϕ� and ϕR′ be the colorings of R� and R′ induced by ϕ, respectively. By the
inductive hypothesis, the rectangles in the set r(p)∩R′ are colored distinctively
using j colors under ϕR′ . In addition, by Lemma 6, the rectangles in r(p) ∩R�

are colored using i distinct colors under ϕ�. Moreover, the colors used in ϕ� are
distinct from the ones used in ϕR′ . Hence, r(p) is min{|r(p)|, k}-colorful. This
completes the proof of the lemma.
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Abstract. We prove that for every integer k, every finite set of points in
the plane can be k-colored so that every half-plane that contains at least
2k − 1 points, also contains at least one point from every color class. We
also show that the bound 2k − 1 is best possible. This improves the best
previously known lower and upper bounds of 4

3
k and 4k−1 respectively.

As a corollary, we also show that every finite set of half-planes can be
k colored so that if a point p belongs to a subset Hp of at least 4k − 3
of the half-planes then Hp contains a half-plane from every color class.
This improves the best previously known upper bound of 8k−3. Another
corollary of our first result is a new proof of the existence of small size
ε-nets for points in the plane with respect to half-planes.

Keywords: Geometric Hypergraphs, Discrete Geometry, Polychromatic
Coloring, ε-Nets.

1 Introduction

In this contribution, we are interested in coloring finite sets of points in R
2 so

that any half-plane that contains at least some fixed number of points, also
contains at least one point from each of the color classes.

Before stating our result, we introduce the following definitions:
A range space (or hypergraph) is a pair (V, E) where V is a set (called the

ground set) and E is a set of subsets of V .
A coloring of a hypergraph is an assignment of colors to the elements of the

ground set. A k-coloring is a coloring that uses exactly k colors. More formally,
a k-coloring is a function χ : V → {1, . . . , k}. A hyperedge S ∈ E is said to
be polychromatic with respect to some k-coloring χ if it contains a point from
each of the k color classes. That is for every i ∈ {1, . . . , k} S ∩ χ−1(i) 
= ∅. We
are interested in hypergraphs induced by an infinite family of geometric regions.
Let R be a family of regions in R

d (such as all balls, all axis-parallel boxes, all
half-spaces, etc.)

Consider the following two functions defined for R (notations are taken
from [3]):
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1. Let f = fR(k) denote the minimum number such that any finite point set
P ⊂ R

d can be k-colored so that every range R ∈ R containing at least f
points of P is polychromatic.

2. Let f̄ = f̄R(k) denote the minimum number such that any finite sub-family
R′ ⊂ R can be k-colored so that for every point p ∈ R

d, for which the subset
R′

p ⊂ R′ of regions containing p is of size at least f̄ , R′
p is polychromatic.

We note that the functions fR(k) and f̄R(k) need not necessarily exist, that is
fR(k) might not be bounded even for k = 2. Indeed, suppose R is the family
of all convex sets in the plane and P is a set of more than 2f points in convex
position. Note that any subset of P can be cut-off by some range in R. By the
pigeon-hole principle, any 2 coloring of P contains a monochromatic subset of at
least f points, thus illustrating that fR(2) does not exist in that case. Also note
that fR(k) and f̄R(k) are monotone non-decreasing, since any upper bound for
fR(k) would imply an upper-bound for fR(k − 1) by merging color classes. We
sometimes abuse the notation and write f(k) when the family of ranges under
consideration is clear from the context.

The functions defined above are related to the so-called cover-decomposable
problems or the decomposition of c-fold coverings in the plane. It is a major
open problem to classify for which families R those functions are bounded and
in those cases to provide sharp bounds on fR(k) and f̄R(k). Pach [10] conjectured
that f̄T (2) exists whenever T is a family of all translates of some fixed compact
convex set. These functions have been the focus of many recent research papers
and some special cases are resolved. See, e.g., [1,2,6,11,12,13,15,16,17]. We refer
the reader to the introduction of [3] for more details on this and related problems.

Application to Battery Consumption in Sensor Networks. Let R be a collection
of sensors, each of which monitors the area within a given shape A. Assume
further that each sensor has a battery life of one time unit. The goal is to monitor
the region A for as long as possible. If we activate all sensors inR simultaneously,
A will be monitored for only one time unit. This can be improved if R can be
partitioned into c pairwise disjoint subsets, each of which covers A. Each subset
can be used in turn, allowing us to monitor A for c units of time. Obviously if
there is a point in A covered by only c sensors then we cannot partition R into
more than c families. Therefore it makes sense to ask the following question:
what is the minimum number f̄(k) for which we know that if every point in A is
covered by f̄(k) sensors then we can partition R into k pairwise disjoint covering
subsets? This is exactly the type of problem that we described. For more on the
relation between these partitioning problems and sensor networks, see the paper
of Buchsbaum et al. [4].

Our results. For the family H of all half-planes, Pach and Tóth showed in [13]
that fH(k) = O(k2). Aloupis et al. [3] showed that 4k

3 ≤ fH(k) ≤ 4k − 1. In
this paper, we settle the case of half-planes by showing that the exact value of
fH(k) is 2k − 1. Keszegh [8] showed that f̄H(2) ≤ 4 and Fulek [5] showed that
f̄H(2) = 3. Aloupis et al. [3] showed that f̄H(k) ≤ 8k − 3. As a corollary of our
improved bound for fH(k) we also get the improved bound f̄H(k) ≤ 4k − 3.
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An Application to ε-Nets for Half-Planes. Let H = (V, E) be a hypergraph where
V is a finite set. Let ε ∈ [0, 1] be a real number. A subset N ⊆ V is called an
ε-net if for every hyperedge S ∈ E such that |S| ≥ ε|V | we have also S ∩N 
= ∅.
In other words, N is a hitting set for all “large” hyperedges. Haussler and Welzl
[7] proved the following fundamental theorem regarding the existence of small
ε-nets for hypergraphs with a small VC-dimension.

Theorem 1 (ε-net theorem). Let H = (V, E) be a hypergraph with VC-
dimension d. For every ε ∈ (0, 1], there exists an ε-net N ⊂ V with cardinality

at most O

(
d

ε
log

1
ε

)
.

The proof of Haussler and Welzl for the ε-net theorem uses a clever probabilistic
argument, and in fact it can be shown that a random sample of size O(d

ε log
1
ε )

is an ε-net for H with a positive constant probability. The notion of ε-nets is
central in several mathematical fields, such as computational learning theory,
computational geometry, discrete geometry and discrepancy theory.

Most hypergraphs studied in discrete and computational geometry have a
finite VC-dimension. Thus, by the above-mentioned theorem, these hypergraphs
admit small size ε-nets. Kómlos et al. [9] proved that the bound O(d

ε log
1
ε )

on the size of an ε-net for hypergraphs with VC-dimension d is best possible,
namely, for a constant d they construct a hypergraph H with VC-dimension d
such that any ε-net for H must have a size of at least Ω(1

ε log
1
ε ). However, their

construction is random and seems far from being a “nice” geometric hypergraph.
It is believed that for most hypergraphs with VC-dimension d that arise in the
geometric context, one can improve on the bound O(d

ε log
1
ε ).

Consider a hypergraph H = (P, E) where P is a set of n points in the plane
and

E = {P ∩ h : h is a half-plane}.
For this special case, Woeginger [18] showed that for any ε > 0 there exists an
ε-net for H of size at most 2

ε − 1 (see also, [14]).
As a corollary of Theorem 2, we obtain yet another proof for this fact.

2 Half-Planes

Let H denote the family of all half-planes in R
2. In this section we prove our

main result by finding the exact value of fH(k) for the familyH of all half-planes.

Theorem 2. fH(k) = 2k − 1.

We start by proving the lower bound fH(k) ≥ 2k − 1. Our lower bound con-
struction is simple and is inspired by a lower bound construction for ε-nets with
respect to half-planes given in [18]. We need to show that there exists a finite set
P in R

2 such that for every k-coloring of P there is a half-plane that contains
2k−2 points and is not polychromatic. In fact, we show a stronger construction.
For every n ≥ 2k − 1 there is such a set P with |P | = n. We construct P as



Polychromatic Coloring for Half-Planes 121

follows: We place 2k− 1 points on a concave curve γ (e.g., the parabola y = x2,
−1 < x < 1). Let p1, p2, .., p2k−1 be the points ordered from left to right along
their x-coordinates. Notice that for every point pi on γ there is an open posi-
tive half-plane hi that does not contain pi and contains the rest of the 2k − 2
points that are on γ. Namely, hi ∩ {p1, ..., p2k−1} = {p1, ...pi−1, pi+1, ..., p2k−1}.
We choose h1, h2, ..., h2k−1 in such a way that ∩2k−1

i=1 hi 
= ∅ where hi is the com-
plement of hi. We place n− (2k−1) points in ∩2k−1

i=1 hi. Let χ : P → {1, ..., k} be
some k-coloring of P . There exists a color c that appears at most once among
the points on γ (for otherwise we would have at least 2k points). If no point
on γ is colored with c then a (positive) half-plane bounded by a line separating
the parabola from the rest of the points is not polychromatic. Let pj be the
point colored with c. As mentioned, the open half-plane hj contains all the other
points on γ (and only them), so hj contains 2k − 2 points and misses the color
c. Hence, it is not polychromatic. Thus fH(k) > 2k − 2 and this completes the
lower bound construction. See Figure 1 for an illustration.

p1 p5

Fig. 1. A construction showing that f(k) > 2k − 2 for n = 10 and k = 3

Next, we prove the upper-bound fH(k) ≤ 2k− 1. In what follows, we assume
without loss of generality that the set of points P under consideration is in
general position, namely, that no three points of P lie on a common line. Indeed,
we can slightly perturb the point set to obtain a set P ′ of points in general
position. The perturbation is done in such a way that for any subset of the
points of the form h ∩ P where h is a half-plane, there is another half-plane h′

such that h ∩ P = h′ ∩ P ′. Thus any valid polychromatic k-coloring for P ′ also
serves as a valid polychromatic k-coloring for P .

For the proof of the upper bound we need the following lemma:

Lemma 1. Let P be a finite point set in the plane in general position and let
t ≥ 3 be some fixed integer. Let H ′ = (P, E ′) be a hypergraph where E ′ = {P ∩h :
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h ∈ H, |P ∩h| = t}. Let P ′ ⊆ P be the set of extreme points of P (i.e., the subset
of points in P that lie on the boundary of the convex-hull CH(P ) of P ). Let
N ⊆ P ′ be a (containment) minimal hitting set for H ′. Then for every E ∈ E ′
we have |N ∩ E| ≤ 2.

Proof. First notice that such a hitting set N ⊂ P ′ for H ′ indeed exists since P ′

is a hitting set.
Assume to the contrary that there exists a hyperedge E ∈ E ′ such that |N ∩

E| ≥ 3. Let h be a half-plane such that h∩P = E and let l be the line bounding
h. Assume, without loss of generality, that l is parallel to the x-axis and that
the points of E are below l. If l does not intersect the convex hull CH(P ) or
is tangent to CH(P ) then h contains P and |P | = t. Thus any minimal hitting
set N contains exactly one point of P , a contradiction. Hence, the line l must
intersect the boundary of CH(P ) in two points.

Let q, q′ be the left and right points of l ∩ ∂CH(P ) respectively. Let p, r, u
be three points in N ∩ E ordered according to their counter-clockwise order
on ∂CH(P ). By the minimality property, there is a half-plane hr such that
hr ∩P ∈ E ′ and such that N ∩ hr = {r}, for otherwise, N \ {r} is also a hitting-
set for E ′ contradicting the minimality of N . See Figure 2 for an illustration.

Denote the line bounding hr by lr and denote by h̄r the complement half-plane
of hr. Notice that lr can not intersect the line l in the interior of the segment qq′.
Indeed assume to the contrary that lr intersects the segment qq′ in some point
x. Then, by convexity, the open segment rx lies in hr. However, the segment rx
must intersect the segment pu. This is impossible since both p and u lie in h̄r

and therefore, by convexity also the segment pu lies in h̄r. Thus the segment pu
and the segment rx are disjoint.

Next, suppose without loss of generality that the line lr intersects l to the right
of the segment qq′. Let q′′ denote the point l∩ lr. We have that |hr ∩P | = t and
also |E| = |h ∩ P | = t, therefore there is at least one point r′ that is contained
in hr ∩ P and is not contained in h, hence it lies above the line l. The segment
rr′ must intersect the line l to the right of the point q′′. Also, by convexity, the
segment rr′ is contained in CH(P ). This implies that the line l must intersect
∂CH(P ) to the right of q′, i.e intersects ∂CH(P ) in three points, a contradiction.

We are ready to prove the second part of Theorem 2: Recall that for a given
finite planar set P ⊂ R

2 and an integer k, we need to show that there is a k-
coloring for P such that every half-plane that contains at least 2k − 1 points is
polychromatic.

For k = 1 the theorem is obvious. For k = 2, put t = 3 and let N be a hitting
set as in lemma 1. We assign the points of N the color 2 and assign the points of
P \N the color 1. Let h be a half-plane such that |h ∩ P | ≥ 3. Assume without
loss of generality that h is a negative half-plane. Let l denote the line bounding
h. Translate l downwards to obtain a line l′, such that for the negative half-plane
h′ bounded by l′, we have h′ ∩ P ⊆ h ∩ P and |h′ ∩ P | = 3. We can assume
without loss of generality that no line parallel to l passes through two points
of P . Indeed, this can be achieved by rotating l slightly. Obviously h′ ∩N 
= ∅.
Moreover, by lemma 1 we have that h′ ∩ (P \N) 
= ∅. Hence, h′ contains both a
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h

lr

hr

p

r

l q q′ q′′
r′

u

Fig. 2. The line l intersects the boundary of CH(P ) in two points

point colored with 1 and a point colored with 2, i.e., h′ is polychromatic. Thus
h is also polychromatic.

We prove the theorem by induction on the number of colors k. The induction
hypothesis is that the theorem holds for all values i < k. Let k > 2 be an integer.
Put t = 2k − 1 and let N be a minimal hitting set as in Lemma 1. We assign
all points in N the color k. Put P ′ = P \ N . By the induction hypothesis, we
can color the points of P ′ with k − 1 colors, such that for every half-plane h with
|h∩P ′| ≥ 2k−3, h is polychromatic, i.e., h contains representative points from all
the k−1 color classes. We claim that this coloring together with the color class N
forms a valid k-coloring for P . Consider a half-plane h such that |h∩P | ≥ 2k− 1.
As before, let h′ be a half-plane such that h′ ∩ P ⊆ h ∩ P and |h′ ∩ P | = 2k − 1.
It is enough to show that h′ is polychromatic. By lemma 1 we know that 1 ≤
|h′ ∩N | ≤ 2, therefore we can find a half-plane h′′ such that h′′ ∩P ⊆ h′ ∩P and
|h′′ ∩ (P \N)| = 2k − 3. By the induction hypothesis, h′′ contain representative
points from all the initial k−1 colors. Thus h′ contain a point fromN (i.e., colored
with k) and a point from each of the initial k−1 colors. Hence h′ is polychromatic
and so is h. This completes the proof of the theorem.

Remark: The above theorem also provides a recursive algorithm to obtain a
valid k-coloring for a given finite set P of points. See Algorithm 1. Here, we
do not care about the running time of the algorithm. Assume that we have a
“black-box” that finds a hitting set N as in lemma 1 in time bounded by some
function f(n, t).

Note that a trivial bound on the total running time of the algorithm is∑k
i=1 f(n, 2i− 1).

Coloring half-planes. Keszegh [8] investigated the value of f̄H(2) and proved
that f̄H(2) ≤ 4. Recently Fulek [5] showed that in fact f̄H(2) = 3. For the
general case, Aloupis et al. proved in [3] that f̄H(k) ≤ 8k − 3. As a corollary of
Theorem 2, we also obtain the following improved bound on f̄H(k):

Theorem 3. f̄H(k) ≤ 4k − 3

Theorem 3 is a direct corollary of Theorem 2 and uses the same reduction as in
[3]. For the sake of completeness we describe it in detail:
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Algorithm 1. Algorithm for polychromatic k-coloring
Input: A finite set P ⊂ R

2 and an integer k ≥ 1
Output: A polychromatic k-coloring χ : P → {1, ..., k}
begin

if k=1 then
Color all points of P with color 1.

end
else

Find a minimal hitting set N as in lemma 1 for all the half-planes of
size 2k − 1.
Color the points in N with color k.
Set P = P \ N and k = k − 1. Recursively color P with k colors.

end

end

Proof. Let H ⊆ H be a finite set of half-planes. We partition H into two disjoint
sets H+ and H− where H+ ⊂ H (respectively H− ⊂ H) is the set of all
positive half-planes (respectively negative half-planes). It is no loss of generality
to assume that all lines bounding the half-planes in H are distinct. Indeed, by a
slight perturbation of the lines, one can only obtain a superset of hyperedges in
the corresponding hypergraph (i.e, a superset of cells in the arrangement of the
bounding lines). Let L+ (respectively L−) be the sets of lines bounding the half-
planes in H+ (respectively H−). Next, we use a standard (incidence-preserving)
dualization to transform the set of lines L+ (respectively L−) to a set of points
L+∗ (respectively L−∗). It has the property that a point p is above (respectively
incident or below) a line l if and only if the dual line p∗ is above (respectively
incident or below) the point l∗. See Figure 3 for an illustration.

p∗

l−2
∗

l−3
∗

l−4
∗

l−5
∗

l+1
∗

l+2
∗

l+3
∗

l+4
∗

l+5
∗

l−1
∗

Fig. 3. An illustration of the dualization. In the primal, the point p is contained in
the half-planes bounded by the lines l−1 , l−2 , l+4 and l+5 .

We then color the sets L+∗ and L−∗ independently. We color each of them
with k-colors so that every half-plane containing 2k − 1 points of a given set,
is also polychromatic. Obviously, by Theorem 2, such a coloring can be found.
This coloring induces the final coloring for the set H = H+∪H−. To prove that
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this coloring is indeed valid, consider a point p in the plane. Let H ′ ⊆ H be
the set of half-planes containing p. We claim that if |H ′| ≥ 4k − 3 then H ′ is
polychromatic. Indeed, if |H ′| ≥ 4k−3 then, by the pigeon-hole principle, either
|H ′∩H+| ≥ 2k−1 or |H ′∩H−| ≥ 2k−1. Suppose without loss of generality that
|H ′ ∩H+| ≥ 2k − 1. Let L+

H′ ⊆ L+ be the set of lines bounding the half-planes
in H ′ ∩H+. In the dual, the points in L+

H′
∗
are in the half-plane below the line

p∗. Since |L+
H′

∗| ≥ 2k− 1, we also have that L+
H′

∗
is polychromatic, thus the set

of half-planes H ′∩H+ is polychromatic and so is the set H ′. This completes the
proof of the theorem.

Remark: Obviously, the result of Fulek [5] implies that the bound 4k− 3 is not
tight already for k = 2. It would be interesting to find the exact value of f̄H(k)
for every integer k.

3 Small Epsilon-Nets for Half-Planes

Consider a hypergraph H = (P, E) where P is a set of n points in the plane and
E = {P ∩ h : h ∈ H}. As mentioned in the introduction Woeginger [18] showed
that for any 1 ≥ ε > 0 there exists an ε-net for H of size at most 2

ε − 1.
As a corollary of Theorem 2, we obtain yet another proof for this fact. Recall

that for any integer k ≥ 1 we have fH(k) ≤ 2k − 1. Let ε > 0 be a fixed real
number. Put k = � εn+1

2 �. Let χ be a k-coloring as in Theorem 2. Notice that
every half-plane containing at least εn points contains at least 2k − 1 points of
P . Indeed such a half-pane must contain at least �εn� = �2( εn+1

2 )− 1� = 2k− 1.
Such a half-plane is polychromatic with respect to χ. Thus, every color class of χ
is an ε-net for H . Moreover, by the pigeon-hole principle one of the color classes
has size at most n

k ≤
2n

εn+1 < 2
ε . Thus such a set contains at most 2

ε − 1 points
as asserted.

The arguments above are general and, in fact, we have the following theorem:

Theorem 4. Let R be a family of regions such that fR(k) ≤ ck for some abso-
lute constant c and every integer k. Then for any ε and any finite set P there
exists an ε-net for P with respect to R of size at most c

ε − 1.

Applying the above theorem for the dual range space defined by a set of n half-
planes with respect to points and plugging Theorem 3 we conclude that there
exists an ε-net for such a range-space of size at most 4

ε − 1. However, using a
more clever analysis one can, in fact, show that there is an ε-net of size at most
2
ε for such a range-space. We omit the details here.

Acknowledgments. We wish to thank Panagiotis Cheilaris and Ilan Karpas
for helpful discussions concerning the problem studied in this paper.
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Abstract. As an important extension of the classical traveling salesman
problem (TSP), the multiple depot multiple traveling salesman problem
(MDMTSP) is to minimize the total length of a collection of tours for
multiple vehicles to serve all the customers, where each vehicle must start
or stay at its distinct depot. Due to the gap between the existing best
approximation ratios for the TSP and for the MDMTSP in literature,
which are 3/2 and 2, respectively, it is an open question whether or not a
3/2-approximation algorithm exists for the MDMTSP. We have partially
addressed this question by developing a 3/2-approximation algorithm,
which runs in polynomial time when the number of depots is a constant.

Keywords: Approximation algorithm, multiple depots, vehicle routing.

1 Introduction

The multiple depot multiple traveling salesman problem (MDMTSP) is an exten-
sion of the classical traveling salesman problem (TSP), where multiple vehicles
located at distinct depots are used to serve customers with the total length of
their tours minimized. It has many applications in industry. In the liner shipping
industry, for example, vessels based at different ports need to be routed to pick
up cargos from various origins and deliver them to various destinations.

The problem an be modeled as follows. Given a complete graph G = (V, E)
with a vertex set V , and an edge set E, and a depot set D ⊆ V , take the
vertices which are not depots to be customers given by I = V \ D, each of
which has a unique location. Assuming each vehicle must start or stay at a
distinct depot, and since tours for vehicles from the same depot can always be
combined to form a tour for one vehicle, the number of depots k ≥ 1 can be
taken to be equal to the number of vehicles, i.e., |D| = k. Each edge e ∈ E has
a non-negative length �(e) which represents the distance between corresponding
locations. We assume distances between locations form a metric, which satisfies
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the triangle inequality, since vehicles can always travel the shortest path between
any locations. The objective in the model, which we call a multiple depot multiple
TSP with k depots or k-MDMTSP for short, seeks to minimize the total length
of a collection of tours for vehicles to visit each customer in I exactly once, where
each tour must begin at a depot and return to it. In the remainder of this paper,
we will use (G, D) to represent an instance of the k-MDMTSP.

Since when k = 1 the problem is the TSP, the k-MDMTSP is NP-hard for k ≥
1 [5]. We are thus motivated to develop approximation algorithms which can give
good solutions of practical relevance. A number of researchers have developed
approximation algorithms with constant approximation ratios for the TSP [2,15]
and other single-depot vehicle routing problems [3,4]. These are typically based
on two methods: a tree algorithm [15,9] and a heuristic given by Christofides [2],
which achieve approximation ratios of 2 and 3/2 respectively.

In contrast with single-depot vehicle routing problems, most previous work on
multiple-depot vehicle routing problems do not provide worst-case analysis, e.g.,
[6], [14], [7]. Only [12] and [8] provide 2-approximation algorithms, based on the
tree algorithm, for the k-MDMTSP and its variant where only p ≤ k vehicles can
be selected to serve customers. However, since the best approximation ratio 3/2
is obtained using the Christofides heuristic, the best ratio that can be expected
for the k-MDMTSP is 3/2 unless the TSP has an approximation algorithm
superior to the Christofides heuristic. [13] has recently extended Christofides
heuristic to obtain a 3/2-approximation algorithm for a 2-depot Hamiltonian
path problem, which is to determine paths instead of tours for salesmen. Analysis
of the approximation ratio in this work is more tractable, because it only needs
to bound the length of a partial matching for a 2-depot case. Therefore, it is
still an open question whether or not such a polynomial time 3/2-approximation
algorithm exists for the k-MDMTSP for any k ≥ 2 [8,12,1]1.

This work contributes to the literature by partially addressing the open ques-
tion above. We do this by developing a framework in Section 2, which extends
Christofides heuristic for the k-MDMTSP. The approximation solution gener-
ated by the extended heuristic uses a special spanning forest, to be defined as a
depot-rooted spanning forest. By enumerating a number of such spanning forests,
and applying the extended heuristic on them to select the shortest solution ob-
tained, we have devised a 3/2-approximation algorithm for the k-MDMTSP in
Section 3, which runs in polynomial time when k is a constant. Due to the lack
of space, some proofs will omitted from this extended abstract but available in
its full article from the authors.

1 Two recent technical reports, “5/3-Approximation Algorithm for a Multiple De-
pot, Terminal Hamiltonian Path Problem” and “3/2-Approximation Algorithm for
a Generalized, Multiple Depot, Hamiltonian Path Problem”, authored by S. Rathi-
nam and R. Sengupta [11,10], claim to achieve approximation ratios better than 2
for two multiple depot Hamiltonian path problems. However, we note the proofs for
Lemma VI.1 in the first report and for Proposition II.3 in the second are incorrect
since they assume that any concave-convex function f of vectors π and x must satisfy
f(π∗, x∗) = maxπ f(π, x∗) for all (π∗, x∗) with f(π∗, x∗) = maxπ minx f(π, x), which
is not always correct, in particular for the (π∗, x∗) constructed in the two reports.
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2 The Extended Christofides Heuristic (ECH)

Given an instance (G, D) of the k-MDMTSP, a tour partition of V is defined as
a set of routes such that the vertex sets of tours in it forms a partition of V .
A tour partition of V is a feasible solution of the k-MDMTSP if each tour in
it contains exactly one depot. Thus, a feasible solution with the shortest length
is the optimal solution. For a graph H , V (H) and E(H) will denote the vertex
and edge set of H , respectively. If E(H) is a multiset, i.e., there is a multiplicity
mapping of its elements into the positive integers, then H is a multigraph. For
a subgraph H ′ and an edge subset E of H , we use H ′ \ E, H ′ ∪ E, and H ′ ∩ E
to denote subgraphs on the vertex set V (H ′) with edge subsets E(H ′) \ E,
E(H ′) ∪ E, and E(H ′) ∩ E, respectively.

We next introduce the definition of a depot-rooted spanning forest.

Definition 1. Given an instance (G, D) of the k-MDMTSP, a depot-rooted
spanning forest (DRSF) wrt (G, D) is a set of k trees that are disjoint and
include every vertex of G, with each tree in the set containing exactly one depot
in D at which it is rooted.

To adapt the Christofides heuristic to solve the k-MDMTSP for (G, D), it is
natural to first compute a DRSF F wrt (G, D). This is since, for every tour in
an optimal solution, either deleting an edge from an optimal solution if the edge
exists, or otherwise leaving it unchanged, results in a DRSF. Given a DRSF F ,
the Chrostofides heuristic can be extended in Algorithm 1:

Algorithm 1. ECH(F )
Input : an instance (G, D) of the k-MDMTSP, and a DRSF F wrt (G, D)
Output : a feasible solution to the k-MDMTSP on (G, D)
1: Create an Eulerian multigraph, by adding to F all edges of M∗(F ), where

M∗(F ) is a minimum perfect matching for the subset Odd(F ) of vertices
with odd degrees in F . (Notice that the Eulerian multigraph obtained may
not be connected but each vertex has an even degree.)

2: Find Eulerian tours for all connected components of the Eulerian multigraph,
delete repeated vertices and redundant depots of each tour by shortcuts
(using the triangle inequality), and return the collection of resulting tours
which constitutes a tour partition of V , and denote this by C(F ). ��

Since the number of vertices with odd degrees in F is always even, there must
exist a minimum perfect matching M∗(F ) in Step 1. By adding edges of M∗(F )
to F , we obtain an Eulerian multigraph, each connected component of which is
Eulerian and must contain an Eulerian tour [9]. Notice F contains all vertices and
has exactly k trees rooted at distinct depots of D. Thus, the Eulerian multigraph
obtained in Step 1 has at most k connected components with each having at least
one depot. Hence, C(F ) returned by Step 2 constitutes a tour partition of V .
Since each tree of F contains exactly one depot, each tour in C(F ) must also
contain exactly one depot after the shortcuts. This implies C(F ) is feasible for
the k-MDMTSP. Since the Eulerian tours obtained in Step 2 visit every edge
of the Eulerian multigraph exactly once, the total length of these tours equals
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the total length of F and M∗(F ), which is not shorter than C(F ), obtained by
shortcuts in Step 2. Thus, the following fact is established:

Theorem 1. Given a DRSF F wrt (G, D), where G = (V, E) and D ⊆ V , the
tour partition C(F ) of V obtained by ECH(F ) in Algorithm 1 is a feasible solution
for the k-MDMTSP on (G, D), and satisfies �(C(F )) ≤ �(F ) + �(M∗(F )).

Algorithm 1 is a general framework, because with different F it returns different
feasible C(F ). By Theorem 1, to bound �(C(F )) it suffices to bound �(F ) and
�(M∗(F )). Therefore bounding �(M∗(F )) and choosing F are key to finding good
solutions.

In the remainder of this section, we develop a general upper bound on the
length of the minimum perfect matching M∗(F ) for Odd(F ) of the ECH in
Algorithm 1, where F is a given DRSF wrt (G, D), where G = (V, E) and D ⊆ V .
Using this upper bound on �(M∗(F )), the length of the heuristic solution C(F )
returned by the ECH can be bounded.

Consider any DRSF F wrt (G, D). For each tour C of G, let Odd(F, C) denote
the subset of the vertices in C with odd degrees in F , so Odd(F, C) for all C
constitutes a partition of Odd(F ). We then introduce the notion of a contracted
graph, denoted by G

[C]
S , for any edge subset S of G, and for any tour partition

C of V . In G
[C]
S , every tour of C is represented by a unique and distinct vertex,

and vertices representing two different tours of C are incident with an edge if
and only they are connected by an edge in S. Thus, G

[C]
S is a multigraph, which

must be a subgraph of G
[C]
E .

Consider the contracted graph G
[C]
E(F ). For each vertex ν of G

[C]
E(F ), we refer to

ν as an odd vertex (or even vertex), and define the parity of ν to be odd (or even),
iff ν represents a tour C ∈ C with an odd (or even) cardinality of Odd(F, C).
With this, we define an auxiliary edge subset of F as follows in Definition 2.

Definition 2. An edge subset A of F is an auxiliary edge subset of F wrt C,
if (i) each edge of A connects a pair of two different tours of C; (ii) different
edges of A connect different pairs of tours of C; (iii) the contracted graph G

[C]
A

is a spanning forest of G
[C]
E(F ); and (iv) each tree of G

[C]
A has an even number of

odd vertices of G
[C]
E(F ). An auxiliary edge subset A of F wrt C is minimal if no

proper subset of A is an auxiliary edge subset of F wrt C.

The following Lemma 1 implies that an auxiliary edge subset A of F wrt C
always exists, and can be obtained from a maximal spanning forest of G

[C]
E(F ).

The proof is omitted due to the lack of space.

Lemma 1. Given a DRSF F wrt (G, D), and a tour partition C of V , let A
denote an edge subset of F such that every edge of A connects a pair of two
different tours of C and different edges of A connect different pairs of tours of
C. If G

[C]
A is a maximal spanning forest of G

[C]
E(F ), then A is an auxiliary edge

subset of F wrt C.



A 3/2-Approximation Algorithm for MDMTSP 131

This now allows us to prove the following lemma, which shows that given any
auxiliary edge subset A of a DRSF F wrt a feasible solution C, it is possible
to construct another DRSF by replacing an edge in A with an edge in C. This
property will be useful in bounding the length of edges in A, by taking F equal
to the minimum DRSF, which we do in Section 3. The proof is omitted due to
the lack of space.

Lemma 2. Given any DRSF F wrt (G, D), and any feasible solution C, let A
denote an auxiliary edge subset A of F wrt C. Then, for each edge (u, v) of A,
where u is the parent of v in F , there exists an edge e in the unique tour Cv ∈ C
containing v such that such that (F \ {(u, v)}) ∪ {e} is a DRSF wrt (G, D).

Thus, Theorem 2 can be established to provide a general upper bound on
�(M∗(F )) by using an auxiliary edge subset A of F wrt C. The proof is omitted
due to the lack of space.

Theorem 2. Given any DRSF F wrt (G, D), and any tour partition C of V ,
let A denote an auxiliary edge subset A of F wrt C. Then, there exists a perfect
matching M for Odd(F ), which satisfies:

�(M∗(F )) ≤ �(M) ≤ 1
2
�(C) + �(A). (1)

3 3/2-Approximation Algorithm

For the choice of F for the ECH in Algorithm 1, it is natural to compute in
Step 1 a DRSF of minimum length, or minimum DRSF wrt (G, D) and denoted
by F ∗. As shown by [8], finding F ∗ is computationally tractable, because one
can transform it equivalently to the minimum spanning tree problem by con-
tracting multiple depots into a single one. Therefore, ECH(F ∗) can be solved in
polynomial time. However, ECH(F ∗) alone cannot achieve the ratio of 3/2.

We thus introduce a variant of the ECH in Algorithm 2, which generates
multiple solutions C(F ) by applying the ECH (in Algorithm 1) on multiple F ,
where each F is a DRSF wrt (G, D) constructed from F ∗ by replacing edges in
E− of F ∗ with edges in E∗, where E− is a subset of E(F ∗), and E+ is a subset
of E \ E(F ∗), with |E−| = |E+| ≤ max{k − 2, 0}. The algorithm then returns
the shortest tour from all C(F ).

Algorithm 2. (ECH with multiple DRSF’s)
Input : an instance (G, D) of the k-MDMTSP
Output : a solution to the k-MDMTSP on (G, D)
1: Obtain a minimum DRSF F ∗ wrt (G, D).
2: For each pair of edge subsets (E+, E−), with E− ⊆ E(F ∗), E+ ⊆ E\E(F ∗),

and |E−| = |E+| ≤ max{k−2, 0}, if replacing edges in E− of F ∗ with edges
in E+ constitutes a DRSF F wrt (G, D), apply the ECH in Algorithm 1 on
F to obtain a heuristic solution C(F ).

3: Return the shortest tour from all C(F ) obtained. ��
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3.1 Performance Analysis

The following theorem implies that Algorithm 2 achieves an approximation ratio
of 3/2, and has a polynomial time complexity when k is a constant.

Theorem 3. Given any constant k ≥ 1, Algorithm 2 achieves an approximation
ratio of 3/2 in polynomial time for the k-MDMTSP.

To prove the approximation ratio of Algorithm 2, we first need the following
Lemma 3, which is proved in Section 3.2.

Lemma 3. Consider a minimum DRSF F ∗ wrt (G, D). There always exist dis-
joint edge subsets, E+ ⊆ E \ E(F ∗) and E− ⊆ E(F ∗) with |E+| = |E−| ≤
max{k−2, 0}, such that F = (F ∗ \E−)∪E+, which replaces edges of E− in F ∗

with edges of E+, constitutes a DRSF wrt (G, D) that satisfies

(i) �(F ) ≤ �(C∗)− �(emax(C∗)), and
(ii) There exists an auxiliary edge subset A of F wrt C∗ with �(A) ≤ �(emax(C∗)).

We can now prove Theorem 3.

Proof of Theorem 3. First, ECH(F ) in Step 2 of Algorithm 2 runs in polynomial
time. When k is a constant, since the total number of choices of E+ and E− in
Step 2 is not greater than

( |F∗|
max{k−2,0}

)
·
( |E|
max{k−2,0}

)
, which is not greater than

a |V |3max{k−2,0}, we obtain that Algorithm 2 runs in polynomial time.
From Lemma 3, there must exist disjoint edge subsets, E+ ⊆ E \ E(F ∗) and

E− ⊆ E(F ∗), such that F = (F ∗ \ E−) ∪ E+ is a DRSF F wrt (G, D), and
satisfies conditions (i) and (ii) of Lemma 3, where |E+| = |E−| ≤ max{k−2, 0},
implying that (E+, E−) must be enumerated in Step 2 of Algorithm 2. According
to Theorem 2 and Theorem 1, and by conditions (i) and (ii) of Lemma 3, we
obtain �(C(F )) ≤ �(C∗) − �(emax(C∗)) + 1

2�(C∗) + �(emax(C∗)) ≤ 3
2�(C∗). Thus

Algorithm 2 achieves an approximation ratio of 3/2. ��

3.2 The Proof of Lemma 3

We prove the existence of (E+, E−) for Lemma 3, by introducing a matroid
structure in Lemma 4, and then using an inductive construction in Lemma 5.

First, for any two disjoint edge subsets E+ and E− of G, define an (E+, E−)-
DRSF wrt (G, D) to be a DRSF that contains all edges in E+ but no edges in
E−. Thus, a minimum (E+, E−)-DRSF is the one of the shortest length if it
exists. Notice that if F = (F ∗ \E−)∪E+ is a DRSF wrt (G, D), then F must be
an (E+, E−)-DRSF. We can prove Lemma 3 by using properties of the (E+, E−)-
DRSF. As shown in the following Lemma 4, under some mild conditions for E+

and E−, a minimum (E+, E−)-DRSF wrt (G, D) relates to a matroid on graphs
and a sufficient and necessary condition of its optimality can be found. The the
proof is omitted due to the lack of space.

Lemma 4. Given a pair of disjoint edge subsets (E+, E−) of E, let E′ = E \
E− \E+. Consider the family S of subsets of E′ to be such that for any S ∈ S,



A 3/2-Approximation Algorithm for MDMTSP 133

the subgraph (V, E+ ∪ S) contains no paths between depots of D and contains
no cycles. If ∅ ∈ S and each connected component of the subgraph (V, E \ E−)
contains at least one depot of D, then:

(i) system (E′,S) is a matroid;
(ii) for each maximal independent set X of system (E′,S), the subgraph (V, X∪

E+) is an (E+, E−)-DRSF wrt (G, D);
(iii) for each (E+, E−)-DRSF F wrt (G, D), the edge set E(F ) \E+ is a max-

imal independent set of system (E′,S);
(iv) for each (E+, E−)-DRSF F wrt (G, D), F is minimum if and only if there

exists no edge pair (e, e′), for e ∈ E(F ) \E+ and e′ ∈ E′ with �(e′) < �(e),
such that (F \ {e}) ∪ {e′} is an (E+, E−)-DRSF wrt (G, D).

Consider any minimum DRSF F ∗ wrt (G, D). Let A∗ denote a minimal auxiliary
edge subset of F ∗ wrt C∗, where nA denotes the number of edges in A∗, and edges
in A∗ are denoted by e1, e2, ..., enA . For 0 ≤ i ≤ nA, let Ai = {et : 1 ≤ t ≤ i}
denote the subset of the edges of A∗ with i smallest indices, and let A′

i = A∗\Ai.
Using Lemma 4, we can next establish the following.

Lemma 5. For each i where 0 ≤ i ≤ nA, there must exist a pair of disjoint
subsets (E+

i , E−
i ) of E which satisfy the following constraints (i)–(v), where Fi =

(F ∗ \Ai) ∪ E+
i replaces edges of Ai in F ∗ with edges of E+

i .

(i) E+
i ⊆ E(C∗) with |E+

i | = i and E+
i ∩ E(F ∗) = ∅;

(ii) E−
i ∩ E(C) = ∅ for each tour C ∈ C∗, and Ai ⊆ E−

i ;
(iii) Fi is a minimum (E+

i , E−
i )-DRSF wrt (G, D);

(iv) �(Fi) ≤ [�(C∗)−
∑

C∈C∗ �(emax(C))];
(v) A′

i is a minimal auxiliary edge subset of Fi wrt C∗, with �(A′
i) ≤ (nA −

i)�(emax(C∗)).

We prove Lemma 5 by induction on i = 0, 1, ..., nA as follows. Set E+
0 = E−

0 = ∅
and F0 = F ∗, which satisfies constraints (i)–(v) for i = 0. For each 1 ≤ t ≤
nA, suppose we have obtained (E+

t−1, E
−
t−1) which satisfies constraints (i)–(v) of

Lemma 5 for i = t− 1.
Consider the edge et = (a, b) of A∗, where a and b are the endpoints of et,

and a is the parent of b in F ∗. Since et ∈ A′
t−1 and A′

t−1 is an auxiliary edge
subset of Ft−1 wrt C∗ (due to constraint (v) of Lemma 5 for i = t−1), vertices a
and b are in the same tree T of Ft−1 but in different tours of C∗. Thus, T \ {et}
has exactly two trees, denoted by Ta and Tb, which contain a and b respectively;
and et /∈ E(C∗), which implies et /∈ E+

t−1 because E+
t−1 ⊆ E(C∗).

Since A′
t−1 contains et and is an auxiliary edge subset of Ft−1 wrt C∗, Lemma 2

guarantees the existence of such an edge e′t on tours in C∗ that (Ft−1\{et})∪{e′t}
constitutes a DRSF wrt (G, D). If there are more than one such edges, take the
shortest one as e′t.

Consider the following (E+
t , E−

t ) and Ft = (F ∗ \ At) ∪ E+
t . Let E(V (Tb))

denote the set of edges of G with one endpoint in V (Tb) and one endpoint not
in V (Tb). We have E(Ft−1) ∩E(V (Tb)) = {et}. Since a is the parent of b in F ∗,
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and since (Ft−1 \ {et}) ∪ {e′t} constitutes a DRSF wrt (G, D), edge e′t must be
in E(V (Tb)). Let us define:

E+
t = E+

t−1 ∪ {e′t}, (2)

E−
t = [E−

t−1 ∪ E(V (Tb))] \ E(C∗). (3)

Hence, from et ∈ E(V (Tb)) and et /∈ E(C∗) we have et ∈ E−
t . Since et /∈ E+

t−1,

Ft = (F ∗ \At) ∪ E+
t = (F ∗ \A′

t−1 \ {et}) ∪ E+
t−1 ∪ {e′t}

= (Ft−1 \ {et}) ∪ {e′t}. (4)

Thus, Ft is a DRSF wrt (G, D). Moreover, we can show that Ft is an (E+
t , E−

t )-
DRSF wrt (G, D) by the following Lemma 6.

Lemma 6. Ft is an (E+
t , E−

t )-DRSF wrt (G, D), where E+
t , E−

t and Ft defined
in (2)–(4).

Proof. Since E(C∗) contains e′t but not et, it can be seen that e′t and et are
different. Thus from (2) and (3) we have et /∈ E+

t and e′t /∈ E−
t . Since E(Ft−1)∩

E(V (Tb)) = {et} and e′t ∈ E(V (Tb)), e′t /∈ E(Ft−1). By (ii) of Lemma 5 for
i = t− 1 and e′t ∈ E(C∗), we have e′t /∈ E−

t−1 and e′t /∈ E−
t . By (iii) of Lemma 5

for i = t − 1 and e′t /∈ E(Ft−1), we obtain e′t /∈ E+
t−1. Thus, due to et /∈ E+

t ,
(iii) of Lemma 5 for i = t − 1, (4) and (2), Ft includes all edges of E+

t . Since
E(Ft−1)∩E(V (Tb)) = {et}, by (iii) of Lemma 5 for i = t−1 and (3), (Ft−1\{et})
includes no edges of E−

t . Due to the fact e′t /∈ E−
t and (4), Ft contains no edges

of E−
t . Hence, by definition Ft is an (E+

t , E−
t )-DRSF wrt (G, D). ��

We are now going to establish Lemmas 7–11 to show that (E+
t , E−

t ) and Ft =
(F ∗ \ At) ∪ E+

t satisfy (i)–(v) of Lemma 5, which completes the induction for
the proof of Lemma 5.

Lemma 7. E+
t defined in (2) satisfies (i) of Lemma 5 for i = t, i.e., E+

t ⊆
E(C∗) with |E+

t | = t and E+
t ∩ E(F ∗) = ∅.

Proof. Since e′t ∈ E(C∗) and E+
t−1 satisfies (i) of Lemma 5 for i = t−1, we know

E+
t ⊆ E(C∗). Since e′t /∈ E+

t−1, |E+
t | = |E+

t−1|+ 1 = i. Since E−
t−1 satisfies (ii) of

Lemma 5 for i = t−1, we know that (E(F ∗)\E−
t−1) is a subset of (E(F ∗)\A−

t−1).
Since Ft−1 satisfies (iii) of Lemma 5 for i = t−1, we have that (E(F ∗)\E−

t−1) is
an edge subset of Ft−1. Thus, e′t /∈ E(F ∗) because e′t /∈ E−

t−1 and e′t /∈ E(Ft−1).
By (2), since E+

t−1 is disjoint with E(F ∗), we obtain E+
t is disjoint with E(F ∗).

Therefore, E+
t satisfies (i) of Lemma 5 for i = t. ��

From the proofs of Lemma 6 and Lemma 7, we can summarize that et and e′t
satisfy the following properties.

– et is in A′
t−1 ∩ A∗ ∩ E(F ∗) ∩ E(Ft−1) ∩ E(V (Tb)) ∩ At ∩ E−

t but not in
E(C∗) ∪ E+

t−1 ∪E+
t ;

– e′t is in E(C∗)∩E(V (Tb))∩E+
t ∩Ft but not in E(Ft−1)∪E+

t−1∪E−
t ∪E(F ∗).
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Such properties of et and e′t can help us derive Lemmas 8–11 as follows.

Lemma 8. E−
t defined in (3) satisfies (ii) of Lemma 5 for i = t, i.e., E−

t ∩
E(C) = ∅ for each tour C ∈ C∗, and At ⊆ E−

t ;

Proof. From (3) it is easy to see that E−
t and E(C∗) are disjoint. Since et /∈ E(C∗)

and et ∈ E(V (Tb)), and E−
t−1 satisfies (ii) of Lemma 5 i = t−1, by (3) we obtain

A−
t ⊆ E−

t . ��

Lemma 9. E+
t , E−

t and Ft defined in (2)–(4) satisfy (iii) of Lemma 5 for i = t,
i.e., Ft is a minimum (E+

t , E−
t )-DRSF wrt (G, D).

Proof. Since we have already proved that Ft is an (E+
t , E−

t )-DRSF wrt (G, D),
we only need to show that Ft is minimum. Consider the system (E′,S) as defined
in Lemma 4 for the pair (E+

t , E−
t ), where E′ = E \ E−

t \ E+
t . Since Ft contains

all edges of E+
t but no edges of E−

t , subgraph (V, E+
t ) contains no path between

depots and contains no cycle, and each connected component of subgraph (V, E\
E−

t ) contains at least one depot of D. Therefore, the four statements in Lemma 4
are all true for (E+

t , E−
t ).

According to statement (iv) of Lemma 4, to prove Ft is minimum, we only
need to prove that there exists no edge pair (e, e′), for e ∈ E(Ft) \ E+

t and
e′ ∈ E \E−

t \E+
t with �(e′) < �(e), such that F ′

t , defined as (Ft \ {e}) ∪ {e′}, is
an (E+

t , E−
t )-DRSF wrt (G, D). Supposing there exists such an edge pair (e, e′),

we can derive a contradiction as follows.
Let Q = (Ft−1∪{e′t})\{e} and W = (Ft−1∪{e′})\{e} denote two subgraphs

of G that replace e in Ft−1 with e′t and e′ respectively. Since �(e′) < �(e), W
is always shorter than �(Ft−1), we now show that at least one of Q and W
is an (E+

t−1, E
−
t−1)-DRSF wrt (G, D) with length shorter than �(Ft−1), which

contradicts to the fact that Ft−1 satisfies (iii) of Lemma 5 for i = t− 1.
To do this, we first prove edges e, e′, et, and e′t are all different from each

other. Since e /∈ E+
t and e′t ∈ E+

t , e and e′t are different. Since et ∈ E−
t and

e′ /∈ E−
t , e′ and et are different. Since both Ft and (Ft \ {e})∪ {e′} are DRSFs,

and since e is in Ft, e′ is not in E(Ft). Notice both e′t and e are in E(Ft), but
neither et nor e′ is in E(Ft). Edges e, e′, et, and e′t are all different. By e′t ∈ E(Ft)
and e′t /∈ E(Ft−1), we obtain:

Q = (Ft−1 ∪ {e′t}) \ {e} = [(Ft \ {e′t}) ∪ {et, e
′
t}] \ {e}

= (Ft \ {e} ∪ {e′}) ∪ {et} \ {e′}
= (F ′

t ∪ {et}) \ {e′} (5)
W = (Ft−1 ∪ {e′}) \ {e} = [(Ft \ {e′t}) ∪ {et, e

′}] \ {e}
= [(Ft ∪ {e′}) \ {e, e′t}] ∪ {et}
= (F ′

t \ {e′t}) ∪ {et} = (F ′
t ∪ {et}) \ {e′t} (6)

F ′
t = [(Ft \ {e}) ∪ {e′}] (7)
= [(Ft−1 ∪ {e′t}) \ {et, e}] ∪ {e′} = (Ft−1 \ {et, e}) ∪ {e′t, e′}

F ′
t \ {e′t} = (Ft−1 \ {et, e}) ∪ {e′} (8)
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We next prove that both E(Q) and E(W ) include E+
t−1 but are disjoint with

E−
t−1. On one hand, from e ∈ E(Ft) \ E+

t and E+
t−1 ⊆ E+

t we know e /∈ E+
t−1.

From E+
t−1 ⊆ E(Ft−1) and Q = (Ft−1 ∪ {e′t}) \ {e} we obtain E+

t−1 ⊆ E(Q).
Since E+

t−1 ⊆ E(Ft−1) and e /∈ E+
t−1, which implies E+

t−1 ⊆ E(Ft−1) \ {e}, we
obtain E+

t−1 ⊆ W . On the other hand, since E(Ft−1) is disjoint with E−
t−1 and

e′t /∈ E−
t−1, we have E(Q) is disjoint with E−

t−1. Since E−
t−1 is disjoint with E(C∗),

by (3) we have E−
t−1 ⊆ E−

t , which implies e′ /∈ E−
t−1 because e′ /∈ E−

t . Notice
E(Ft−1) is disjoint with E−

t−1. Thus W , which is a subset of E(Ft−1)∪{e′}, must
be disjoint with E−

t−1.
It is now possible to prove that at least one of Q and W is an (E+

t−1, E
−
t−1)-

DRSF wrt (G, D) with length shorter than �(Ft−1). From (2) and (3), it can be
seen that E+

t−1 ⊆ E+
t and E−

t−1 ⊆ E−
t . Thus both Ft and F ′

t are (E+
t−1, E

−
t−1)-

DRSFs wrt (G, D). From (4), since E(Ft−1) contains et but not e′t, we obtain
Ft−1 = Ft\{e′t}∪{et}. Since both F ′

t and Ft−1 are (E+
t−1, E

−
t−1)-DRSFs, by state-

ments (ii) and (iii) of Lemma 4 and by Proposition 2.5 of [16], there must exist
an edge x ∈ [E(F ′

t )\(E(Ft)\{e′t})], such that (F ′
t \{x})∪{et} is an (E+

t−1, E
−
t−1)-

DRSFs. From (7), it is easily verified that [E(F ′
t ) \ (E(Ft) \ {e′t})] ⊆ {e′t, e′}. By

(5) and (6), we conclude that at least one of Q and W is an (E+
t−1, E

−
t−1)-DRSF.

If W is an (E+
t−1, E

−
t−1)-DRSF, then we have already shown �(W ) < �(Ft−1).

Consider the case when W is not, but Q is, an (E+
t−1, E

−
t−1)-DRSF. We now

show e′ ∈ E(V (Tb)) by contradiction. Suppose e′ is not in E(V (Tb)). Then, since
E(Ft−1) ∩ E(V (Tb)) = {et}, by (8) we know E(F ′

t ) \ {e′t} has no intersection
with E(V (Tb)). Notice et ∈ E(V (Tb)) and Tb contains no depot. Since F ′

t is
an (E+

t−1, E
−
t−1)-DRSF, by (6), W must be an (E+

t−1, E
−
t−1)-DRSF, leading to a

contradiction. Hence, e′ ∈ E(V (Tb)).
Thus, since E(Ft−1)\ {et} has no intersection with E(V (Tb)) and Tb contains

no depot, (Ft−1 \ {et})∪{e′} must be an (E+
t−1, E

−
t−1)-DRSF wrt (G, D). More-

over, from e′ /∈ E−
t and (3) we know e′ ∈ E(C∗). Since e′ is different from et, we

know e′ /∈ E(Ft−1), implying �(e′t) ≤ �(e′) by definition of e′t. Since �(e′) < �(e),
we obtain �(e′t) < �(e). Notice Q = (Ft−1 ∪ {e′t}) \ {e}. Thus �(Q) < �(Ft−1).

By the argument above, Ft−1 cannot be a minimum (E+
t−1, E

−
t−1)-DRSF,

which contradicts to the fact that Ft−1 satisfies constraint (iii) of Lemma 5
for i = t− 1. Therefore, Ft is a minimum (E+

t , E−
t )-DRSF wrt (G, D), and sat-

isfies (iii) of Lemma 5 for i = t. ��

Lemma 10. Ft defined in (4) satisfies (iv) of Lemma 5 for i = t, i.e., �(Ft) ≤
[�(C∗)−

∑
C∈C∗ �(emax(C))].

Proof. Notice that E+
t ⊆ E(C∗) and E−

t ∩ E(C∗) is empty by Lemma 7 and
Lemma 8. Thus, deleting emax(C) from each tour C of C∗ constitutes an (E+

t , E−
t )

-DRSF wrt (G, D), which has a length not longer than �(Ft) due to Lemma 9.
Hence, Ft is not longer than [�(C∗)−

∑
C∈C∗ �(emax(C))]. ��

Lemma 11. Ft defined in (4) satisfies (v) of Lemma 5 for i = t, i.e., A′
t is a

minimal auxiliary edge subset of Ft wrt C∗, with �(A′
t) ≤ (nA − t)�(emax(C∗)).
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Proof. To prove that A′
t is a minimal auxiliary edge subset of Ft wrt C∗, notice

that A′
t = A′

t−1\{et} and that A′
t−1 and Ft−1 satisfy (v) of Lemma 5 for i = t−1.

For the edge et = (a, b), its endpoints a and b must belong to two different
tours of C∗, which are denoted by Ca and Cb containing a and b respectively.
Since et ∈ A′

t−1, vertices representing Ca and Cb must belong to the same
connected component denoted by U of G

[C∗]
A′

t−1
. Therefore, G

[C∗]
A′

t−1\{et} splits U

into two connected components Ua and Ub, which contain vertices representing
Ca and Cb respectively. Since A′

t−1 is minimal, et is not redundant. Thus, both
Ua and Ub contain an odd number of odd vertices of G

[C∗]
E(Ft−1). Since deleting

et = (a, b) from Ft−1 changes parities of degrees of vertices a and b only, both Ua

and Ub contain an even number of odd vertices of G
[C∗]
E(Ft−1)\{et}. Therefore, A′

t is
an auxiliary edge subset of Ft−1 \ {et} wrt C∗. Since e′t belongs to a tour of C∗,
vertices of G[C∗] have the same parities in G

[C∗]
E(Ft)

as they have in G
[C∗]
E(Ft−1)\{et}.

Thus, A′
t is also an auxiliary edge subset of Ft wrt C∗.

Moreover, by the argument above, vertices representing Ca and Cb are the
only vertices that have different parities in G

[C∗]
E(Ft−1) and in G

[C∗]
E(Ft)

. Since they

are not connected by any path in G
[C∗]
E(Ft)

, and since A′
t−1 is minimal, A′

t must
be a minimal auxiliary forest of Ft wrt C∗.

To prove �(A′
i) ≤ (nA − i)�(emax(C∗)), consider every edge e = (u, v) of A∗,

where u is the parent of v in F ∗. By Lemma 2, the optimal solution C∗ has a
unique tour Cv that contains v, and Cv has an edge e′ such that (F ∗ \{(u, v)})∪
{e′} is a DRSF wrt (G, D) with length not shorter than �(F ∗), which implies
�(u, v) ≤ �(e′). Therefore,

�(u, v) ≤ �(emax(Cv)) ≤ �(emax(C∗)). (9)

Since A′
i is a subset of A∗ and |A′

i| = nA − i, for 0 ≤ i ≤ nA, we obtain
�(A′

i) ≤ (nA − i)�(emax(C∗)). Thus Ft satisfies (v) of Lemma 5 for i = t. ��

As Lemmas 7–11 complete the induction, Lemma 5 is proved. Using Lemma 5,
Lemma 3 now follows:

Proof of Lemma 3. Consider a minimal auxiliary edge subset A∗ of F ∗ wrt
C∗. If A∗ is empty, F ∗ satisfies conditions (i) and (ii) in Lemma 3 , and so
Lemma 3 is proved. Otherwise, A∗ is not empty. By definition of A∗, since C∗
contains exactly k tours, we know |A∗| ≤ k − 1. Adopting notation defined in
Lemma 5, since A∗ is not empty, 2 ≤ k and 1 ≤ nA. By Lemma 5, there exists
a pair of disjoint edge subsets (E+

nA−1, E
−
nA−1) satisfying constraints (i)–(v) of

Lemma 5 for i = nA−1. Taking E+ = E+
nA−1, E− = AnA−1, F = FnA−1, and

A = A′
nA−1, we can verify Lemma 3 as follows. By constraint (i) of Lemma 5,

|E+| = nA − 1 ≤ |A∗| − 1 ≤ k − 2 and E+ ⊆ E \ F ∗. By definition of AnA−1,
we know E− ⊆ F ∗ and |E−| ≤ k − 1. Due to constraints (iii) and (iv) of
Lemma 5, F = (F ∗ \ E−) ∪ E+ is a DRSF wrt (G, D) with length not longer
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than [�(C∗) − �(emax(C∗))]. By constraint (v) of Lemma 5, A′
nA−1 is a minimal

auxiliary edge subset of FnA−1 wrt C∗ with length not longer than �(emax(C∗)).
Thus, F satisfies conditions (i) and (ii) in Lemma 3, and so, Lemma 3 is true. ��
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Abstract. A neat 1972 result of Pohl asserts that �3n/2� − 2 com-
parisons are sufficient, and also necessary in the worst case, for finding
both the minimum and the maximum of an n-element totally ordered
set. The set is accessed via an oracle for pairwise comparisons. More re-
cently, the problem has been studied in the context of the Rényi–Ulam
liar games, where the oracle may give up to k false answers. For large
k, an upper bound due to Aigner shows that (k + O(

√
k))n compar-

isons suffice. We improve on this by providing an algorithm with at most
(k+1+C)n+O(k3) comparisons for some constant C. The known lower
bounds are of the form (k + 1 + ck)n − D, for some constant D, where
c0 = 0.5, c1 = 23

32
= 0.71875, and ck = Ω(2−5k/4) as k → ∞.

1 Introduction

We consider an n-element set X with an unknown total ordering≤. The ordering
can be accessed via an oracle that, given two elements x, y ∈ X , tells us whether
x < y or x > y. It is easily seen that the minimum element of X can be found
using n−1 comparisons. This is optimal in the sense that n−2 comparisons are
not enough to find the minimum element in the worst case.

One of the nice little surprises in computer science is that if we want to find
both the minimum and the maximum, we can do significantly better than finding
the minimum and the maximum separately. Pohl [8] proved that �3n/2� − 2 is
the optimal number of comparisons for this problem (n ≥ 2). The algorithm first
partitions the elements of X into pairs and makes a comparison in each pair.
The minimum can then be found among the “losers” of these comparisons, while
the maximum is found among the “winners.”

Here we consider the problem of determining both the minimum and the max-
imum in the case where the oracle is not completely reliable: it may sometimes
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give a false answer, but only at most k times during the whole computation,
where k is a given parameter.

We refer to this model as computation against k lies. Let us stress that we
admit repeating the same query to the oracle several times, and each false an-
swer counts as a lie. This seems to be the most sensible definition—if repeated
queries were not allowed, or if the oracle could always give the wrong answer to
a particular query, then the minimum cannot be determined.

So, for example, if we repeat a given query 2k + 1 times, we always get the
correct answer by majority vote. Thus, we can simulate any algorithm with a
reliable oracle, asking every question 2k+1 times, but for the problems considered
here, this is not a very efficient way, as we will see.

The problem of finding both the minimum and the maximum against k lies
was investigated by Aigner [1], who proved that (k + O(

√
k))n comparisons

always suffice.1 We improve on this as follows.

Theorem 1. There is an algorithm that finds both the minimum and the max-
imum among n elements against k lies using at most (k + 1 + C)n + O(k3)
comparisons, where C is a constant.

Our proof yields the constant C reasonably small (below 10, say, at least if k is
assumed to be sufficiently large), but we do not try to optimize it.

Lower Bounds. The best known lower bounds for the number of comparisons
necessary to determine both the minimum and the maximum against k lies have
the form (k+1+ck)n−D, where D is a small constant and the ck are as follows:

– c0 = 0.5, and this is the best possible. This is the result of Pohl [8] for a
truthful oracle mentioned above.

– c1 = 23
32 = 0.71875, and this is again tight. This follows from a recent work

by Gerbner, Pálvölgyi, Patkós, and Wiener [5] who determined the optimum
number of comparisons for k = 1 up to a small additive constant: it lies
between � 87

32n� − 3 and � 87
32n�+ 12. This proves a conjecture of Aigner [1].

– ck = Ω(2−5k/4) for all k, as was shown by Aigner [1].

The optimal constant c1 = 23
32 indicates that obtaining precise answers for k > 1

may be difficult.

Related Work. The problem of determining the minimum alone against k
lies was resolved by Ravikumar, Ganesan, and Lakshmanan [9], who proved
that finding the minimum against k lies can be performed by using at most
(k + 1)n− 1 comparisons, and this is optimal in the worst case.

The problem considered in this paper belongs to the area of searching problems
against lies and, in a wider context, it is an example of “computation in the
presence of errors.” This field has a rich history and beautiful results. A prototype
problem, still far from completely solved, is the Rényi–Ulam liar game from the
1960s, where one wants to determine an unknown integer x between 1 and n,
1 Here and in the sequel, O(.) and Ω(.) hide only absolute constants, independent of

both n and k.
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an oracle provides comparisons of x with specified numbers, and it may give at
most k false answers. We refer to the surveys by Pelc [7] and by Deppe [2] for
more information.

2 A Simple Algorithm

Before proving Theorem 1, we explain a simpler algorithm, which illustrates the
main ideas but yields a weaker bound. We begin with formulating a generic
algorithm, with some steps left unspecified. Both the simple algorithm in this
section and an improved algorithm in the next sections are instances of the
generic algorithm.

The generic algorithm

1. For a suitable integer parameter s = s(k), we arbitrarily partition the
considered n-element set X into n/s groups X1, . . . , Xn/s of size s each.a

2. In each group Xi, we find the minimum mi and the maximum Mi. The
method for doing this is left unspecified in the generic algorithm.

3. We find the minimum of {m1, . . . , mn/s} against k lies, and indepen-
dently, we find the maximum of {M1, M2, . . . , Mn/s} against k lies.

a If n is not divisible by s, we can form an extra group smaller than s and treat
it separately, say—we will not bore the reader with the details.

The correctness of the generic algorithm is clear, provided that Step 2 is im-
plemented correctly. Eventually, we set s := k in the simple and in the improved
algorithm. However, we keep s as a separate parameter, because the choice s := k
is in a sense accidental.

In the simple algorithm we implement Step 2 as follows.

Step 2 in the simple algorithm

2.1. (Sorting.) We sort the elements of Xi by an asymptotically optimal sort-
ing algorithm, say mergesort, using O(s log s) comparisons, and ignoring
the possibility of lies. Thus, we obtain an ordering x1, x2, . . . , xs of the
elements of Xi such that if all queries during the sorting have been
answered correctly, then x1 < x2 < · · · < xs. If there was at least one
false answer, we make no assumptions, except that the sorting algorithm
does not crash and outputs some ordering.

2.2. (Verifying the minimum and maximum.) For each j = 2, 3, . . . , s, we
query the oracle k+1 times with the pair xj−1, xj . If any of these queries
returns the answer xj−1 > xj , we restart : We go back to Step 2.1 and
repeat the computation for the group Xi from scratch. Otherwise, if all
the answers are xj−1 < xj , we proceed with the next step.

2.3. We set mi := x1 and Mi := xs.
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Lemma 1 (Correctness). The simple algorithm always correctly computes the
minimum and the maximum against k lies.

Proof. We note that once the processing of the group Xi in the above algorithm
reaches Step 2.3, then mi = x1 has to be the minimum. Indeed, for every other
element xj , j ≥ 2, the oracle has answered k+1 times that xj > xj−1, and hence
xj cannot be the minimum. Similarly, Mi has to be the maximum, and thus the
algorithm is always correct. ��

Actually, at Step 2.3 we can be sure that x1, . . . , xs is the sorted order of Xi,
but in the improved algorithm in the next section the situation will be more
subtle. The next lemma shows, that the simple algorithm already provides an
improvement of Aigner’s bound of (k +O(

√
k))n.

Lemma 2 (Complexity). The number of comparisons of the simple algorithm
for s = k on an n-element set is (k +O(log k))n +O(k3).

Proof. For processing the group Xi in Step 2, we need O(s log s)+(k+1)(s−1) =
k2 + O(k log k) comparisons, provided that no restart is required. But since
restarts may occur only if the the oracle lies at least once, and the total number
of lies is at most k, there are no more than k restarts for all groups together.
These restarts may account for at most k(k2+O(k log k)) = O(k3) comparisons.
Thus, the total number of comparisons in Step 2 is n

s (k
2+O(k log k))+O(k3) =

(k +O(log k))n +O(k3).
As we mentioned in the introduction, the minimum (or maximum) of an n-

element set against k lies can be found using (k + 1)n − 1 comparisons, and so
Step 3 needs no more than 2(k+1)(n/s) = O(n) comparisons. (We do not really
need the optimal algorithm for finding the minimum; any O((k+1)n) algorithm
would do.) The claimed bound on the total number of comparisons follows. ��

3 The Improved Algorithm: Proof of Theorem 1

In order to certify that x1 is indeed the minimum of Xi, we want that for every
xj , j 
= 1, the oracle declares xj larger than some other element k +1 times. (In
the simple algorithm, these k+1 comparisons were all made with xj−1, but any
other smaller elements will do.) This in itself requires (k + 1)(s− 1) queries per
group, or (k + 1)(n − n/s) in total, which is already close to our target upper
bound in Theorem 1 (we note that s has to be at least of order k, for otherwise,
Step 3 of the generic algorithm would be too costly).

Similarly, every xj , j 
= s, should be compared with smaller elements k +
1 times, which again needs (k + 1)(n − n/s) comparisons, so all but O(n)
comparisons in the whole algorithm should better be used for both of these
purposes.
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In the simple algorithm, the comparisons used for sorting the groups in
Step 2.1 are, in this sense, wasted. The remedy is to use most of them also
for verifying the minimum and maximum in Step 2.2. For example, if the sorting
algorithm has already made comparisons of x17 with 23 larger elements, in the
verification step it suffices to compare x17 with k + 1− 23 larger elements.

One immediate problem with this appears if the sorting algorithm compares
x17 with some b > k + 1 larger elements, the extra b − (k + 1) comparisons are
wasted. However, for us, this will not be an issue, because we will have s = k,
and thus each element can be compared to at most k − 1 others (assuming, as
we may, that the sorting algorithm does not repeat any comparison).

Another problem is somewhat more subtle. In order to explain it, let us rep-
resent the comparisons made in the sorting algorithm by edges of an ordered
graph. The vertices are 1, 2, . . . , s, representing the elements x1, . . . , xs of Xi

in sorted order, and the edges correspond to the comparisons made during the
sorting, see the figure below on the left.

1 2 3 s. . .

In the verification step, we need to make additional comparisons so that every
xj , j 
= 1, has at least k + 1 comparisons with smaller elements and every xj ,
j 
= s, has at least k + 1 comparisons with larger elements. This corresponds to
adding suitable extra edges in the graph, as in the right drawing above (where
k = 2, and the added edges are drawn on the bottom side).

As the picture illustrates, sometimes we cannot avoid comparing some element
with more than k + 1 larger ones or k + 1 smaller ones (and thus some of the
comparisons will be “half-wasted”). For example, no matter how we add the
extra edges, the elements x1, x2, x3 together must participate in at least 3 half-
wasted comparisons. Indeed, x2 and x3 together require 6 comparisons to the
left (i.e. with a smaller element). These comparisons can be “provided” only by
x1 and x2, which together want only 6 comparisons to the right—but 3 of these
comparisons to the right were already made with elements larger than x3 (these
are the arcs intersecting the dotted vertical line in the picture).

The next lemma shows that this kind of argument is the only source of wasted
comparisons. For an ordered multigraph H on the vertex set {1, 2, . . . , s} as
above, let us define t(H), the thickness of H , as max{t(j) : j = 2, 3, . . . , s− 1},
where t(j) := |{{a, b} ∈ E(H) : a < j < b}| is the number of edges going “over”
the vertex j.

Lemma 3. Let H be an undirected multigraph without loops on {1, 2, . . . , s}
such that for every vertex j = 1, 2, . . . , s,
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dleft
H (j) := |{{i, j} ∈ E(H) : i < j}| ≤ k + 1 ,

dright
H (j) := |{{i, j} ∈ E(H) : i > j}| ≤ k + 1 .

Then H can be extended to a multigraph H by adding edges, so that

(i) every vertex j 
= 1 has at least k + 1 left neighbors and every vertex j 
= s
has at least k + 1 right neighbors; and

(ii) the total number of edges in H is at most (k + 1)(s− 1) + t(H).

The proof is a network flow argument and therefore constructive. We postpone
it to the end of this section.

For a comparison-based sorting algorithm A, we define the thickness tA(s)
in the natural way: It is the maximum, over all s-element input sequences, of
the thickness t(H) of the corresponding ordered graph H (the vertices of H are
ordered as in the output of the algorithm and each comparison contributes to
an edge between its corresponding vertices). As the above lemma shows, the
number of comparisons used for the sorting but not for the verification can be
bounded by the thickness of the sorting algorithm.

Lemma 4. There exists a (deterministic) sorting algorithm A with thickness
tA(s) = O(s).

Proof. The algorithm is based on Quicksort, but in order to control the thickness,
we want to partition the elements into two groups of equal size in each recursive
step.

We thus begin with computing the median of the given elements. This can be
done using O(s) comparisons (see, e.g., Knuth [6]; the current best deterministic
algorithm due to Dor and Zwick [3] uses no more than 2.95s + o(s) compar-
isons). These algorithms also divide the remaining elements into two groups,
those smaller than the median and those larger than the median. To obtain a
sorting algorithm, we simply recurse on each of these groups.

The thickness of this algorithm obeys the recursion tA(s) ≤ O(s)+tA(�s/2�)),
and thus it is bounded by O(s). ��

We are going to use the algorithm A from the lemma in the setting where some
of the answers of the oracle may be wrong. Then the median selection algorithm
is not guaranteed to partition the current set into two groups of the same size
and it is not sure that the running time does not change. However, we can check
if the groups have the right size and if the running time does not increase too
much. If some test goes wrong, we restart the computation (similar to the simple
algorithm).

Now we can describe the improved algorithm, again by specifying Step 2 of
the generic algorithm.
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Step 2 in the improved algorithm

2.1′. (Sorting.) We sort the elements of Xi by the algorithm A with thickness
O(s) as in Lemma 4. If an inconsistency is detected (as discussed above),
we restart the computation for the group Xi from scratch.

2.2′. (Verifying the minimum and maximum.) We create the ordered graph
H corresponding to the comparisons made by A, and we extend it to
a multigraph H according to Lemma 3. We perform the comparisons
corresponding to the added edges. If we encounter an inconsistency, then
we restart: We go back to Step 2.1′ and repeat the computation for the
group Xi from scratch. Otherwise, we proceed with the next step.

2.3′. We set mi := x1 and Mi := xs.

Proof (of Theorem 1). The correctness of the improved algorithm follows in the
same way as for the simple algorithm. In Step 2.2′, the oracle has declared every
element xj , j 
= 1, larger than some other element k+1 times, and so xj cannot
be the minimum. A similar argument applies for the maximum.

It remains to bound the number of comparisons. From the discussion above,
the number of comparisons is at most ((k+1)(s−1)+ tA(s))(n

s +k)+2(k+1)n
s ,

with tA(s) = O(s). For s = k, we thus get that the number of comparisons at
most (k + 1 + C)n +O(k3) for some constant C, as claimed. ��
Proof (of Lemma 3). We will proceed in two steps. First, we construct a multi-
graph H∗ from H by adding a maximum number of (multi)edges such that the
left and right degree of every vertex are still bounded above by k + 1. Second,
we extend H∗ to H by adding an appropriate number of edges to each vertex so
that condition (i) holds.

For an ordered multigraph H ′ on {1, 2, . . . , s} with left and right degrees upper
bounded by k + 1, let us define the defect Δ(H ′) as

Δ(H ′) :=
s−1∑
j=1

(k + 1− dright
H′ (j)) +

s∑
j=2

(k + 1− dleft
H′ (j)) .

We have Δ(H ′) = 2(k + 1)(s− 1)− 2e(H ′), where e(H ′) is the number of edges
of H ′.

By a network flow argument, we will show that by adding suitable m∗ :=
(k + 1)(s − 1) − e(H) − t(H) edges to H , one can obtain a multigraph H∗

in which all left and right degrees are still bounded by k + 1 and such that
Δ(H∗) = 2t(H). The desired graph H as in the lemma will then be obtained
by adding Δ(H∗) more edges: For example, for every vertex j ≥ 2 of H∗ with
dleft

H∗ (j) < k+1, we add k+1− dleft
H∗(j) edges connecting j to 1, and similarly we

fix the deficient right degrees by adding edges going to the vertex s.
It remains to construct H∗ as above. To this end, we define an auxiliary

directed graph G, where each directed edge e is also assigned an integral capacity
c(e); see Fig. 1(a).
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1+ 2+ 3+ 4+

1− 2− 3− 4−

k + 1− dleft(i)

∞

a

b

k + 1− dright(i)

(a) The graph G with capacities.

1+ 2+ 3+ 4+

1− 2− 3− 4−

a

b

S2

(b) The cut S2 in G.

Fig. 1. The directed graph G constructed in the proof of Lemma 3

The vertex set of G consists of a vertex j− for every j ∈ {1, 2, . . . , s}, a
vertex j+ for every j ∈ {1, 2, . . . , s}, and two special vertices a and b. There is
a directed edge in G from a to every vertex j+ and the capacity of this edge is
k+1− dright

H (j). Similarly, there is a directed edge in G from every vertex j− to
b, and the capacity of this edge is k + 1 − dleft

H (j). Moreover, for every i, j with
1 ≤ i < j ≤ s, we put the directed edge (i+, j−) in G, and the capacity of this
edge is ∞ (i.e., a sufficiently large number).

We will check that there is an integral a-b flow in G with value m∗ in G. By
the max-flow min-cut theorem [4], it suffices to show that every a-b cut in G has
capacity at least m∗ and there is an a-b cut in G with capacity m∗.

Let S ⊆ V (G) be a minimum a-b cut. Let i be the smallest integer such that
i+ ∈ S. Since the minimum cut cannot use an edge of unbounded capacity, we
have j− ∈ S for all j > i.

We may assume without loss of generality that j+ ∈ S for all j > i and j− 
∈ S
for all j ≤ i (the capacity of the cut does not decrease by doing otherwise).
Therefore it suffices to consider a-b cuts of the form

Si := {a} ∪ {x+ : x ≥ i} ∪ {x− : x > i}

for i = 1, . . . , s. The capacity of Si, see Fig. 1(b), equals∑
j<i

c(a, j+) +
∑
j>i

c(j−, b) = (s− 1)(k + 1)−
∑
j<i

dright
H (j)−

∑
j>i

dleft
H (j) .

Now let us look at the quantity
∑

j<i dright(j)+
∑

j>i dleft(j), and see how much
an edge {j, j′} (j < j′) of H contributes to it: For j < i < j′, the contribution
is 2, while all other edges contribute 1. Hence the capacity of the cut Si is
(k + 1)(s − 1) − e(H) − t(i), and the minimum capacity of an a-b-cut is (k +
1)(s− 1)− e(H)− t(H) = m∗ as required.
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Thus, there is an integral flow f with value m∗ as announced above. We now
select the edges to be added to H as follows: For every directed edge (i+, j−)
of G, we add f(i+, j−) copies of the edge {i, j}, which yields the multigraph
H∗. The number of added edges is m∗, the value of the flow f , and the capacity
constraints guarantee that all left and right degrees in H∗ are bounded by k+1.
Moreover, the defect of H∗ is at most 2t(H). ��

4 Concluding Remarks

We can cast the algorithm when k = 0 sketched in the introduction into the
framework of our generic algorithm. Namely, if we set s = 2 and in Step 2 we
just compare the two elements in each group, then we obtain that algorithm.
The main feature of our algorithm is that every restart only spoils one group.
This allows us to keep the effect of lies local.

In order to improve the upper bound of Theorem 1 by the method of this
paper, we would need a sorting algorithm with thickness o(s). (Moreover, to
make use of the sublinear thickness, we would need to choose s superlinear in k,
and thus the sorting algorithm would be allowed to compare every element with
only o(s) others.) The following proposition shows, however, that such a sorting
algorithm does not exist. Thus, we need a different idea to improve Theorem 1.

Proposition 1. Every (randomized) algorithm to sort an s-element set has
thickness Ω(s) in expectation.

Proof. By Yao’s principle [10], it is enough to show that every deterministic
sorting algorithm A has expected thickness Ω(s) for a random input. In our
case, we assume that the unknown linear ordering of X is chosen uniformly at
random among all the s! possibilities.

In each step, the algorithm A compares some two elements x, y ∈ X . Let us
say that an element x ∈ X is virgin at the beginning of some step if it hasn’t
been involved in any previous comparison, and elements that are not virgin are
tainted. A comparison is fresh if it involves at least one virgin element.

For notational convenience, we assume that s is divisible by 8. Let L ⊂ X
consist of the first s/2 elements in the (random) input order (which is also the
order of the output of the algorithm), and let R := X \ L. Let Ei be the event
that the ith fresh comparison is an LR-comparison, i.e., a comparison in which
one of the two compared elements x, y lies in L and the other in R. We claim
that for each i = 1, 2, . . . , s/8, the probability of Ei is at least 1

3 .
To this end, let us fix (arbitrarily) the outcomes of all comparisons made by

A before the ith fresh comparison, which determines the set of tainted elements,
and let us also fix the positions of the tainted elements in the input ordering.
We now consider the probability of Ei conditioned on these choices. The key
observation is that the virgin elements in the input ordering are still randomly
distributed among the remaining positions (those not occupied by the tainted
elements).
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Let � be the number of virgin elements in L and r the number of virgin
elements in R; we have s/4 ≤ �, r ≤ s/2.

We distinguish two cases. First, let only one of the elements x, y compared in
the ith fresh comparison be virgin. Say that x is tainted and lies in L. Then the
probability of Ei equals r/(� + r) ≥ 1

3 .
Second, let both of x and y be virgin. Then the probability of Ei is 2�r/((�+

r)(� + r − 1)), and since s/4 ≤ �, r ≤ s/2, this probability exceeds 4
9 .

Thus, the probability of Ei conditioned on every choice of the outcomes of
the initial comparisons and positions of the tainted elements is at least 1

3 , and
so the probability of Ei for a random input is at least 1

3 as claimed. Thus, the
expected number of LR-comparisons made by A is Ω(s).

Let a be the largest element of L, i.e., the (s/2)th element of X , and let b
be the smallest element of R, i.e., the (s/2 + 1)st element of X . Since we may
assume that A doesn’t repeat any comparison, there is at most one comparison
of a with b. Every other LR-comparison compares elements that have a or b (or
both) between them. Thus, the expected thickness of A is at least half of the
expected number of LR-comparisons, which is Ω(s). ��

Note that the only thing which we needed in the proposition above was that the
corresponding ordered graph is simple and has minimum degree at least 1.
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Abstract. In this paper we describe an algorithm to approximately solve a class
of semidefinite programs called covering semidefinite programs. This class in-
cludes many semidefinite programs that arise in the context of developing algo-
rithms for important optimization problems such as Undirected SPARSEST CUT,
wireless multicasting, and pattern classification. We give algorithms for covering
SDPs whose dependence on ε is ε−1. These algorithms, therefore, have a better
dependence on ε than other combinatorial approaches, with a tradeoff of a some-
what worse dependence on the other parameters. For many reasons, including
numerical stability and a variety of implementation concerns, the dependence on
ε is critical, and the algorithms in this paper may be preferable to those of the
previous work. Our algorithms exploit the structural similarity between packing
and covering semidefinite programs and packing and covering linear programs.

1 Introduction

Semidefinite programming (SDP) is a powerful tool for designing approximation algo-
rithms for NP-hard problems. For example, SDP relaxations are used in the algorithms
for the Undirected SPARSEST CUT, c-BALANCED SEPARATOR, and GRAPH CONDUC-
TANCE [3]. SDP-relaxations are also used in a variety of important applications such as
multicast beam-forming [18] and pattern classification [19].

Solving SDPs remains a significant theoretical and practical challenge. Interior point
algorithms compute an approximate solution for an SDP with n × n decision matri-
ces with an absolute error ε in O(

√
n(m3 + n6)) · log(ε−1)) time, where m is the

number of constraints [16]. These algorithms have a very low dependence on ε, but
a high dependence on the other parameters; for example, interior point algorithms re-
quire O(n9.5 · log(ε−1)) time to solve the SDPs that arise in Undirected SPARSEST

CUT. Thus, interior point algorithms have some drawbacks, and there has been signifi-
cant work on designing faster algorithms to approximately solve the SDPs that arise in
important applications.
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One general class of SDPs with efficient solutions are known as packing SDPs.
(Packing SDPs are analogous to packing linear programs, see [9] for a precise defi-
nition). Examples of packing SDPs include those used to solve MAXCUT, COLORING,
Shannon capacity and sparse principal component analysis. For these problems there are
essentially three known solution methods, each with its own advantages and drawbacks.
The first method is specialized interior point methods which have a good dependence on
ε, but a poor dependence on the other parameters. A second method, due to Klein and
Lu [11], extends ideas of, among others, Plotkin, Shmoys and Tardos [17] for packing
linear programs to give algorithms for MAXCUT and coloring that have running times
ofO(nm log2(n) · ε−2 log(ε−1)) andO(nm log3(n) · ε−4) respectively on graphs with
n nodes and m edges. The drawback of these algorithms is the dependence on ε of at
least ε−2; this bound is inherent in these methods [12] and a significant bottleneck in
practice on these types of problems [8,4,9]. A third approach, due to Iyengar, Phillips
and Stein[9] also extends ideas from packing linear programs, but starts from the more
recent work of Bienstock and Iyengar [5] who build on techniques of Nesterov [14].
Nesterov [15] has also adapted his method to solve the associated saddle point problem
with general SDP, although his method does not find feasible solutions. These results
for packing SDPs have a dependence of only ε−1, but slightly larger dependence on the
other parameters than the algorithms of Klein and Lu. The work in [9] is also signifi-
cant in that it explicitly defines and approximately solves all packing SDPs in a unified
manner.

A related approach for a more general class of SDPs is known as the “multiplicative
weights method,” which appears in several papers [1,2] and generalizes techniques used
in packing and covering linear programs, e.g. [6,7]. The work of Arora and Kale [2]
gives faster algorithms for solving SDPs (in terms of the problem size), and also extends
results to more applications, including Undirected SPARSEST CUT. Their running times
achieve a better dependence on n and m than the previous combinatorial algorithms do,
but the dependence on ε grows to ε−6 for Undirected SPARSEST CUT. Moreover, they
only satisfy each constraint to within an additive error ε, and thus, do not necessarily
find a feasible solution to the SDP. Their algorithms incorporate a rounding step for
each SDP so that finding a feasible solution is not required.

We are not aware of any other work that efficiently finds approximate solutions to
large classes of SDPs.

1.1 New Results

In this work, we first define a new class of SDPs that we call covering SDPs. Analo-
gous to covering linear programs which require that all variables be non-negative and
all the constraints are of the form a�x ≥ 1, with a ≥ 0; in a covering SDP the vari-
able matrix X is positive semidefinite, and all constraints are of the form 〈A,X〉 ≥ 1
for positive semidefinite A. We show that several SDPs, including those used in di-
verse applications such as Undirected SPARSEST CUT, Beamforming, and k-nearest
neighbors can be expressed as covering SDPs. We then describe an algorithm for com-
puting a feasible solution to a covering SDP with objective value at most (1 + ε) times
the optimal objective value. We call such a solution a relative ε-optimal solution. (We
use the term absolute approximation to refer to an additive approximation bound.) Our
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Table 1. Running time comparison. n = matrix dimension, E = number of edges, R = number
of receivers, T = number of inputs. We use Õ to suppress logk(n) factors and all but the highest
dependence on ε.

Problem m This paper Previous work
Undirected SPARSEST CUT O(n3) Õ(n4 · ε−1) Õ(min{E2 · ε−4, n2 · ε−6}) [2]
Beamforming O(R) Õ((n4 + nR) · ε−1) Õ((R + n2)3.5 · log(ε−1)) [18]
k-Nearest Neighbor O(T 2) Õ((T 2n3 + T 4) · ε−1) Õ((n7 + nT 6) · log(ε−1)) [19]

algorithm has an ε−1 dependence, and the dependence on other parameters depends on
the specific application. The running times of our algorithm and previous works, ap-
plied to three applications, are listed in Table 1. To obtain these results, we first give
new SDP formulations of each problem, showing that they are examples of covering
SPD. We then apply our main theorem (see Theorem 1 below).

Our algorithm for covering SDP is not a simple extension of that for packing SDPs
[9]. Several steps that were easy for packing SPDs are not so for covering SDPs and
give rise to new technical challenges.

– Computing feasible solutions for covering SDPs is non-trivial; and previous work
does not compute true feasible solutions to the SDPs. For packing SDPs a fea-
sible solution can be constructed by simply scaling the solution of a Lagrangian
relaxation; whereas in covering SDPs, both scaling and shifting by a known strictly
feasible point is required.

– In both packing and covering, the SDP is solved by solving a Lagrangian relax-
ation. In packing, it is sufficient to solve a single Lagrangian relaxation; whereas in
covering, we need to solve a sequence of Lagrangian relaxations. The convergence
analysis of this scheme is non-trivial.

– Our algorithms use quadratic prox functions as opposed to the more usual loga-
rithmic functions [2,9]. Quadratic prox functions avoid the need to compute matrix
exponentials and are numerically more stable. The quadratic prox function was
motivated by the numerical results in [9].

For Beamforming and k-Nearest Neighbor, our algorithm has an increased dependence
on ε from O(log(1

ε )) to O(1
ε ) in order to receive a considerable improvement in run-

time with respect to the other problem parameters. For Undirected SPARSEST CUT, our
algorithm reduces the dependence on ε at the expense of an increase in some of the
other terms in the running time.

Background and notation. A semidefinite program(SDP) is an optimization problem
of the form min{〈C,X〉 : 〈Ai,X〉 ≥ bi, i = 1, . . . , m,X � 0} where C ∈ IRn×n and
Ai ∈ IRn×n, i = 1, . . . , m, decision variable X ∈ IRn×n and 〈., .〉 denotes the usual

Frobenius inner product 〈A,B〉 = Tr(A�B) =
n∑

j=1

n∑
i=1

AijBij . The constraint X � 0

indicates that the symmetric matrix X is positive semidefinite, i.e. X has nonnegative
eigenvalues. We use Sn and Sn

+ to denote the space of n × n symmetric and positive
semidefinite matrices, respectively, and omit the superscript n when the dimension is
clear. For a matrix X ∈ Sn, we let λmax(X) denote the largest eigenvalue of X.
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2 The Covering SDP

We define the covering SDP as follows:

ν∗ = min 〈C,X〉
s. t. 〈Ai,X〉 ≥ 1, i = 1, . . . , m

X ⊆ X := {X : X � 0,Tr(X) ≤ τ}

(1)

where Ai � 0, i = 1, . . . , m, C � 0 and the X ⊂ S+ is a set over which linear
optimization is “easy”. We refer to the constraints of the form 〈A,X〉 ≥ 1 for A � 0
as cover constraints. We assume the following about the covering SDP (1):

(a) We can compute Y ∈ X such that min1≤i≤m{〈Ai,Y〉} ≥ 1 + 1
q(n,m) for some

positive function q(n, m), i.e. Y is strictly feasible with the margin of feasibility at
least 1

q(n,m) .
(b) We can compute a lower bound νL ∈ IR for (1) such that νU := 〈C,Y〉 ≤ νL ·

p(n, m) for some positive function p(n, m), i.e. the relative error of Y can be
bounded above by p(n, m).

Each appliction we consider satisfies these assumptions. Our main result is that we can
find ε-optimal solutions to covering SDPs efficiently.

Theorem 1. Suppose a covering SDP (1) satisfies Assumptions (a) and (b). Then a

relative ε-optimal solution can be found in O
(
τq(n, m)(TG + κ(m)) ‖A‖ ρ · 1

ε

)
time

where ‖A‖ = max1≤i≤m λmax(Ai), ρ = log(p(n, m)1
ε )
√
ln(m) are the logarithmic

factors, TG denotes the running time for computing the negative eigenvalues and the
corresponding eigenvectors for a matrix of the form C −

∑m
i=1 viAi, v ∈ IRn, and

κ(m) the running time to calculate 〈Ai,Z〉 for all i and any Z ∈ X .

We prove this theorem to Section 3.3. For the results in Table 1 we set TG = n3 and
calculate κ(m) as described in their individual sections. In the remainder of this section,
we describe how to formulate our applications as covering SDPs.

2.1 Undirected SPARSEST CUT

Let G = (V , E) denote a connected undirected graph with n = |V| nodes and E = |E|
edges. Let L denote the Laplacian of G, K = nI − J denote the Laplacian of the
complete graph with unit edge weights and Kij denote the Laplacian of the graph with
a single undirected edge (i, j).

As in [3], we assume that G is unweighted and connected. In [10] we show that the
ARV formulation of [3] is equivalent to the following new covering SDP formulation.

USC ARV Formulation

min 〈L,X〉
s.t. 〈K,X〉 = 1
∀i, j, k 〈Kij + Kjk −Kik,X〉 ≥ 0

X � 0.

USC Covering SDP Formulation

min 〈L,X〉
s.t. 〈K,X〉 ≥ 1

n
4 〈Kij + Kjk −Kik + 2I,X〉 ≥ 1, ∀i, j, k
X ∈ X =

{
Y : Y � 0,Tr(Y) ≤ 2

n

}
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Both formulations have m = O(n3) constraints. To obtain the covering SDP formula-
tion we relax the first set of constraints, add a trace constraint Tr(X) ≤ 2

n , and then
shift the second set of linear constraints. Although a trace bound of 1

n is sufficient for
equivalence, we need the bound to be 2

n in order to construct a feasible solution that
satisfies Assumption (a).

We now show that Assumption (a) is satisfied. Let Y = 2
n2(n−1)K � 0. Then

Tr(Y) = 2
n2(n−1) (n(n− 1)) = 2

n , thus, Y ∈ X . For all i, j, k,

n

4
〈Kij + Kjk −Kik + 2I,Y〉 = 1

2n(n− 1)
〈Kij + Kjk −Kik,K〉+1 =

1
n− 1

+1.

Also, 〈K,Y〉 = 2 > 1 + 1
n . Thus, Y satisfies Assumption (a) with q(n, m) = n.

Since G is unweighted, the upper bound νU = 〈L,Y〉 = 〈L,K〉 = 2. It was shown
in [3] that the ARV formulation has a lower bound of 1√

log(n)
, i.e., νL = 1√

log(n)
; thus,

p(m, n) = 2
√
log(n). Finally, note that ‖A‖ = λmax(K) = n. Then, since τ = 2

n ,
Theorem 1 implies the following result.

Corollary 1. An ε-optimal solution to the Undirected SPARSEST CUT SDP can be

found in O
(
n4

√
ln(n) · 1

ε

)
time.

2.2 Beamforming

Sidiropoulos et al [18] consider a wireless multicast scenario with a single transmit-
ter with n antenna elements and R receivers each with a single antenna. Let hi ∈ Cn

denote the complex vector that models the propagation loss and the phase shift from
each transmit antenna to the receiving antenna of user i = 1, . . . , R. Let w∗ ∈ Cn

denote the beamforming weight vector applied to the n antenna elements. Suppose the
transmit signal is zero-mean white noise with unit power and the noise at receiver i is
zero-mean with variance σ2

i . Then the received signal to noise ratio ( SNR) at receiver i

is |w∗hi|2 /σ2
i . Let ρi denote the minimum SNR required at receiver i. Then the prob-

lem of designing a beamforming vector w∗ that minimizes the transmit power subject
to constraints on the received SNR of each user can be formulated as the optimization
problem, min{‖w‖22 : |w∗hi|2 ≥ ρiσ

2
i , i = 1, . . . , R}. In [18], the authors show that

this optimization problem is NP-hard and formulate the following SDP relaxation and
its dual.

min 〈I,X〉 ,
(B) s.t. 〈Qi,X〉 ≥ 1, i = 1, . . . , R,

X � 0,

max
∑R

i=1 vi,

s.t.
∑R

i=1 viQi � I,
v ≥ 0.

where Qi := γ
ρiσ2

i

(
gig�

i + ḡiḡ�
i

)
, gi = (Re(hi)� Im(hi)�)�,

ḡi = (Im(hi)� Re(−hi)�)�, X ∈ S2n, and γ is such that min1≤i≤R Tr(Qi) = 1.
Arguments similar to Undirected SPARSEST CUT (see [10]) show that τ = 2n,

q(R, n) = O(1), νL = 2n, κ(R) = R, and p(n, R) = n. Thus, Theorem 1 implies the
following result.
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Corollary 2. A relative ε-optimal feasible solution for the beamforming SDP (B) can

be computed in Õ
(
n(n3 + R) · 1

ε

)
time.

2.3 k-Nearest Neighbor Classification

Weinberger et al [19] consider the following model for pattern classification. Let G =
(V , E) be a graph where T = |V| and each node i ∈ V has an input, (vi, yi), i =
1, . . . , T , where vi ∈ IRn and yi are labels from a finite discrete set. For each i, there
are a constant k adjacent nodes in G, i.e., G is k-regular, and if (i, j) ∈ E , then i and j
are “near” with respect to some distance function on vi and vj . The goal is to use the
T inputs to derive a linear transformation, H ∈ IRn×n, so that for input i, Hvi is still
near its k nearest neighbors but “far” away from inputs j that do not share the same
label, i.e., yi 
= yj . Let F = {(i, j, �) : (i, j) ∈ E , yi 
= y�}. Let L denote the Laplacian

associated with G and C =
(

L 0
0 cI

)
where 0 denotes an appropriately sized matrix

of all zeros and c > 0 is a given constant. Also, let Âij� denote that diagonal block
matrix with Ki�−Kij (the edge Laplacians to (i, j) and (i, �) respectively). Finally, let
Aij� = Âij� + Î where Î denotes the block diagonal matrix with I in the upper n× n
block and zeros everywhere else. In [10], we show that the following two formulations
are equivalent.

kNN WBS Formulation

min 〈C,X〉
s.t.

〈
Âij�,X

〉
≥ 1 (i, j, �) ∈ ED

X � 0

kNN Covering SDP Formulation

min 〈C,X〉
s.t. 〈Aij�,X〉 ≥ 1 (i, j, �) ∈ ED

Tr(X) ≤ kn
X � 0.

The WBS formulation is due to Weinberger, Blitzer and Saul [19]. To obtain the cov-
ering SDP formulation, we add the trace constraint trace constraint Tr(X) ≤ kT and
shift the second set of constraints as we did in Undirected SPARSEST CUT. Note the
number of constraints is m = kT 2 = O(T 2) Arguments similar to those used to con-
struct covering SDP formulations for Undirected SPARSEST CUT show that νL = 1,
νU = p(n, m) = q(n, m) = O(T ) (see [10]). Thus, we have the following corrollary
to Theorem 1.

Corollary 3. An ε-optimal solution to the k-Nearest Neighbors covering SDP can be
found in O(T 2(n3 + T 2)

√
log(T ) · 1

ε ) time.

3 Computing a Relative ε-Optimal Solution for a Covering SDP

In this section we describe the steps of our solution algorithm SOLVECOVERSDP (See
Figure 1).

– We start with the Lagrangian relaxation of (1)

ν∗
ω = min

X∈X
max
v∈V

{〈
C − ω

m∑
i=1

viAi,X

〉
+ ω

m∑
i=1

vi

}
, (2)



156 G. Iyengar, D.J. Phillips, and C. Stein

where V = {v : v ≥ 0,
∑n

i=1 vi ≤ 1} and penalty multiplier ω controls the
magnitude of the dual variables. Lagrange duality implies that we need ω → ∞ to
ensure strict feasibility.

– In Section 3.2 we show that an adaptation of an algorithm due to Nesterov [14]
allows us to compute an ε-saddle-point, i.e. (v̂, X̂) such that

max
v∈V

{〈
C−ω

m∑
i=1

viAi, X̂
〉

+ω
m∑

i=1

vi

}
−min

X∈X

{〈
C−ω

m∑
i=1

v̂iAi,X
〉

+ω
m∑

i=1

v̂i

}
≤ ε,

in Õ(‖A‖ωτ
ε ) iterations of a Nesterov non-smooth optimization algorithm [14],

where ‖A‖ = max1≤i≤m λmax(Ai); thus, large ω leads to larger running times.
– In Section 3.1 we show that an ε-saddle-point can be converted into a relative ε-

optimal solution provided ω ≥ 1
g(Y) ·

(
νU−νL

νL

)
, where νU (resp. νL) is an upper

(resp. lower) bound on the optimal value ν∗ of the covering SDP (1), and g(Y) =
min1≤i≤m〈Ai,Y〉− 1 denotes the feasibility margin for any strictly feasible point
Y. Assumptions (a) and (b) guarantee that νU−νL

νL
≤ p(n, m) and that there exists a

feasible Y with g(Y) ≥ 1
q(n,m) . Thus, it follows that one can compute an ε-optimal

solution in Õ
(p(n,m)q(n,m)‖A‖

ε

)
iterations.

– In Section 3.3 we show that by solving a sequence of covering SDPs we can reduce
the overall number of iterations to Õ

( q(n,m)‖A‖
ε

)
, i.e. reduce it by a factor p(n, m).

The running time per iteration is dominated by an eigenvalue computation and the so-
lution of an optimization problem via an active set method.

3.1 Rounding the Lagrangian Saddle Point Problem

Let g(Y) = mini=1,...,m

{
〈Ai,Y〉 − bi

}
denote the feasibility margin with respect to

the covering constraint in (1) . Then Y ∈ X is strictly feasible for (1) if, and only if,
g(Y) > 0.

Lemma 1. Let Y ∈ X be a strictly feasible solution to (1), so g(Y) > 0. Define
ω̄ := 〈C,Y〉−ν∗

g(Y) , and assume ω̄ > 0. Choose ω ≥ ω̄, and suppose (X̂, v̂) is a δ-saddle-
point for (2) i.e.

max
v∈V

{〈
Ĉ − ω

m∑
i=1

viAi, X̂
〉

+ ω
m∑

i=1

vi

}
− min

X∈X

{〈
Ĉ − ω

m∑
i=1

viAi, X
〉

+ ω
m∑

i=1

v̂i

}
≤ δ.

Then X = X̂+β(X̂)Y
1+β(X̂)

, where β(X̂) = g(X̂)−/g(Y), is feasible and absolute δ-optimal

for (1).

Proof. We first show that X is feasible to (1). Since X is a convex combination of X̂
and Y, X ∈ X . The definition of β(X̂) together with the concavity of g implies

g(X) ≥ 1
1 + β(X̂)

· g(X̂) +
β(X̂)

1 + β(X̂)
· g(Y) =

1
1 + β(X̂)

(
g(X̂) + g(X̂)−

)
≥ 0.
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Thus, X is feasible for (1). All that remains is to show that
〈
Ĉ,X

〉
≤ ν∗ + δ. First,

we show that if the penalty ω ≥ ω̄, then ν∗
ω = ν∗. Since g(X)− = 0 for all X feasible

for (1) it follows that ν∗
ω ≤ ν∗; therefore, we must show that ν∗

ω ≥ ν∗ when ω ≥ ω̄. Fix
X ∈ X and let Xβ = (X+β(X)Y)/(1+β(X)), which means X =

(
1+β(X)

)
Xβ−

β(X)Y. Then, by the previous argument, g(Xβ) ≥ 0 so
〈
Ĉ,Xβ

〉
≥ ν∗. Also,

〈
Ĉ,X

〉
+ ωg(X)− − ν∗ = (1 + β(X))

(〈
Ĉ, Xβ

〉
− ν∗︸ ︷︷ ︸

≥0

)
+ (ω − ω̄︸ ︷︷ ︸

≥0

)g(X)−. (3)

Thus, if ω ≥ ω̄ then ν∗
ω = ν∗.

We can now show that an X is δ-optimal for (1) when ω ≥ ω̄. Since X̂ is a δ-saddle-
point, it follows that

max
v∈V

{〈
Ĉ − ω

m∑
i=1

viAi, X̂

〉
+ ω

m∑
i=1

vi

}
=

〈
Ĉ, X̂

〉
+ ωg(X̂)− ≤ ν∗

ω + δ = ν∗ + δ.

Thus, the same argument used in (3) indicates that

δ ≥
〈
Ĉ, X̂

〉
+ ωg(X̂)− − ν∗ = (1 + β(X̂))

(〈
Ĉ,X

〉
− ν∗

)
+ (ω − ω̄)g(X̂)−

Since ω ≥ ω̄ and g(X̂)− ≥ 0, it follows that
〈
Ĉ,X

〉
− ν∗ ≤ δ

1+β(X̂)
≤ δ. ��

A version of Lemma 1 was established independently by Lu and Monteiro [13].

3.2 Solving the Saddle Point Problems

In this section we describe how to use a variant of the Nesterov non-smooth opti-
mization algorithm [14] to compute δ-optimal saddle-points for the minimax prob-
lem (2). We assume some familiarity with the Nesterov algorithm [14]. Let f(v) de-
note the dual function (or, equivalently the objective function of the v-player): f(v) =
m∑

i=1
vi + ωτ min

X∈X̄

{〈
C −

m∑
i=1

viAi,X
〉}

, where X̄ = {X ∈ Sn
+ : Tr(X) ≤ 1}. We

wish to compute an approximate solution for maxv∈V f(v).
In order to use the Nesterov algorithm we need to smooth the non-smooth function

f using a strongly convex prox function. We smooth f using the spectral quadratic prox
function

∑n
i=1 λ2

i (X), where {λi(X) : i = 1, . . . , n} denotes the eigenvalues of X.
Let

fα(v) :=
m∑

i=1

vi + ωτ min
X∈X̄

{〈
C −

m∑
i=1

viAi,X
〉

+
α

2

n∑
i=1

λ2
i (X)

}
, (4)

The Nesterov algorithm requires that α = δ
Dx

, where Dx = maxX∈X̄
1
2λ2

i (X) = 1
2 .

To optimize fα(v) the Nesterov algorithm uses a particular regularized gradient de-
scent method where each step involves solving a problem of the form

max
v∈V

{
ḡ�v − L

ε
· d(v,v)

}
, (5)
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where ḡ is either a gradient computed at the current iterate (y(k) computation (see [10])
or a convex combination of gradients of fα computed at all the previous iterates (z(k)

computation, and d(v,v) denotes the Bregman distance associated with a strongly con-
vex function φ(v). We use d(v,v) =

∑n
i=1 vi ln(vi/v̄i). Using results from [14], it is

easy to show that for this choice of the Bregman distance, the constant L = ω2τ2 ‖A‖2,
where ‖A‖ = max1≤i≤m λmax(Ai) and (5) can be solved in closed form inO(m) op-
erations.

Let X∗ = argminX∈X̄
{〈

Ĉ−
∑m

i=1 viAi,X
〉
+ α

2 λ2
i (X)

}
. Then ∇fα(v)� =

1� + τω
(
〈A1,X∗〉 . . . 〈Am,X∗〉

)�
by the envelope theorem. We show below how

to compute X∗.
Let X =

∑n
i=1 λiuiu�

i and Ĉ −
∑m

i=1 viAi =
∑n

i=1 θiwiw�
i denote the eigen-

decompositions of X and C −
∑m

i=1 viAi, respectively. Suppose we fix the eigen-
values {λi} of X and optimize over the choice of eigenvectors {ui}. Then it is easy

to show that minU:UT U=I

{〈
Ĉ −

∑m
i=1 viAi,X

〉}
=

∑n
i=1 λ(i)θ[i], where λ(i) de-

notes the i-th smallest eigenvalue of X and θ[i] denotes the i-th largest eigenvalue of

Ĉ−
∑m

i=1 viAi, and the minimum is achieved by setting eigenvector u(i) correspond-
ing to λ(i) equal to the eigenvector w[i] corresponding to θ[i]. Since the prox-function
1
2

∑n
i=1 λ2

i (X) is invariant with respect to the eigenvectors of X, it follows that, by
suitably relabeling indices, the expression for the function fα simplifies to

fα(v) =
m∑

i=1

vi + ωτ min

{
n∑

i=1

θiλi +
α

2

n∑
i=1

λ2
i :

n∑
i=1

λi ≤ 1, λi ≥ 0

}
, (6)

and X∗ =
∑n

i=1 λ∗
i wiwT

i , where l∗ achieves the minimum in (6). As shown in [10],
there is an active set method that solves (6) inO(n logn) time. Thus, the computational
effort in calculating∇fα is the dominated by the effort required to compute the eigen-
decomposition (νi,ui). However, we only have to compute the negative eigenvalues the

corresponding eigenvectors. Since Tr(A�
k X∗) =

n∑
i=1

λ∗
i (u

∗
i )

�Aku∗
i , it follows that in

order to compute the gradient, we only need to compute the product (u∗
i )

�Aku∗
i . If the

constraint matrices Ak are sparse we can compute the product Aku∗
i in O(sk) time,

where sk denotes the number of non-zero elements in Ak and the product (u∗
i )

�Aku∗
i

can be computed in O(n + sk) time. Thus, the k-th component of the gradient can be

computed inO(n(sk +n)) time, and all the m terms inO(m(n+n2)+n
m∑

k=1
sk) time.

When a constraint matrix is the Laplacian of a completely connected graph, i.e.
Ak = K, as in Undirected SPARSEST CUT, although there is no sparsity to exploit,
we can exploit the fact that K = nI− J, where J is the all ones matrix. We then have

that Tr(K�X∗) =
n∑

i=1
l∗i Tr((nI− J)u∗

i )(u
∗
i )

�). Since Ju∗
i is a vector with identical

entries (each the sum of the components of u∗
i ), the computational cost is O(n) addi-

tions. Also, Iu∗
i = u∗

i , so the total cost of computing each of the n summand’s trace
is O(n) additions and multiplies (by the term n) plus O(n) additional multiplies and
additions to scale and add the main diagonal terms. Thus, the total cost is O(n2).
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Theorem 2 (Theorem 3 in [14]). The Nesterov non-smooth optimization procedure
computes an δ-saddle-point in O

(
ωτ(TG + κ(m)) ‖A‖

√
ln(m) · 1

δ

)
time, where ω the

saddle-point penalty multiplier, ‖A‖ = max1≤i≤m λmax(Ai), TG denotes the running
time for of computing the gradient∇fα and κ(m) denotes the running time to compute
〈Ai,Z〉 for i = 1, . . . , m and Z ∈ X .

Note that TG is typically dominated by the complexity of computing the negative eigen-
values and the corresponding eigenvectors, and is, in the worst case, O(n3).

Since νL ≤ ν∗ ≤ νU = 〈C,Y〉, Lemma 1 implies that ω = 〈C,Y〉−νL

g(Y) suffices.
Since an absolute (ενL)-optimal solution is a relative ε-optimal solution, Assump-

tions (a) and (b) imply that ω
νL

=
(

νU−νL

νL

)
· 1

g(Y) ≤ p(n, m)q(n, m). Thus, Theorem 2

implies that a relative ε-optimal solution can be computed inO
(
τq(n, m)p(n, m)(TG+

m) ‖A‖
√
ln(m) · 1

ε

)
time. In the next section, we show that bisection can help us im-

prove the overall running time by a factor p(n, m).

3.3 Bisection on the Gap Improves Running Time

Let Y ∈ X denote the strictly point specified in Assumption (a), i.e. g(Y) ≥ 1+ 1
q(n,m) .

In this section, we will assume that q(n, m) ≥ 8. Let Δ = νU − νL. We initialize the
algorithm with ν0

L = νL, and ν0
U = νU . Let ν

(t)
L and ν

(t)
U denote lower and upper

bounds on the optimal value ν∗ of (1) and let ε(t) = Δ(t)

ν
(t)
L

denote the relative error at the

beginning of the iteration t of SOLVECOVERSDP. Note that Assumption (b) implies
ε(0) = O(p(n, m)). In iteration t we approximately solve the SDP

ν(t) = min
〈

1

ν
(t)
L

C,X

〉
s.t.

〈
Āi,X

〉
≥ q(n, m) + γ(t),

X ∈ X

(7)

where γ(t) = min{αt, ε(t)} for some 5
6 < α < 1 and Āi = q(n, m)Ai. Thus,∥∥Ā∥∥ = q(n, m) ‖A‖.

Since the right hand sides of the cover constraints in (7) are not all equal to 1, it is not
a covering SDP. However, since (7) can be converted into a covering SDP by rescaling,
we refer to (7) as a covering SDP. In in each iteration we solve (7) with slightly different
right hand sides, therefore, we find it more convenient to work with the unscaled version

of the problem. Let g(t)(X) Δ= min
i=1,...,m

{〈
Āi,X

〉
− q(n, m)

}
−γ(t) denote the margin

of feasibility of X with respect to the cover constraints in (7). In this section, we let
g(X) = min

i=1,...,m

{〈
Āi,X

〉
− q(n, m)

}
; thus, g(t)(X) = g(X)− γ(t).

Lemma 2 ([10]). For k ≥ 0, let X̂(t) ∈ X denote an absolute ε(t)

3 -optimal solution,

i.e.
〈
C, X̂(t)

〉
≤ ν(t) + 1

3Δ(t). Update (ν(t+1)
L , ν

(t+1)
U ) as follows:

(ν(t+1)
L , ν

(t+1)
U ) =

⎧⎪⎨
⎪⎩

(
ν

(t)
L , ν

(t)
L + 2

3Δ(t)
)
, if

〈
C, X̂(t)

〉
≤ ν

(t)
L + 2

3Δ(t),(
ν
(t)
L + 1

3 Δ(t)

1+γ(t) Δ(t)

ν
(t)
L

, ν
(t)
U

)
, otherwise.
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SOLVECOVERSDP

Inputs: C,AK ,X(0), ε, ν
(0)
U , ν

(0)
L , δt

Outputs: X∗

Set t ← 0 ε(t) ← ν
(t)
U

−ν
(t)
L

ν
(t)
L

while (ε(t) > ε)
do

Compute Y(t),
(

ε(t)

3

)
-optimal solution to ν(t) using NESTEROV PROCEDURE

Set (ν(t+1)
L , ν

(t+1)
U ) ←

⎧⎪⎨
⎪⎩

(ν(t)
L , ν

(t)
L + 2

3
Δ(t)), if

〈
C,Y(t)

〉
≤ ν

(t)
L + 2

3
Δ(t)

(
ν
(t)
L

+Δ(t)/3

1+ε(t)ν
(t)
L

/Δ(t)
, ν

(t)
U ) otherwise

t ← t + 1, ε(t) = ν
(t)
U

−ν
(t)
L

ν
(t)
L

return X(t)

Fig. 1. Our algorithm for solving the covering SDP

Then, for all k ≥ 0,

(i) Δ(t+1)

ν
(t+1)
L

≤
( 5

6

)t+1
(

Δ0

ν0
L

)
, i.e. the gap converges geometrically to 0.

(ii) X̂(t) is feasible to ν(t+1), and g(t+1)(X̂(t)) ≥ (1− α)γ(t) ≥ (1− α)αt.

We can now prove our main result.

Theorem 3. For ε ∈ (0, 1), SOLVECOVERSDP computes a relative ε-optimal solu-

tion for the Cover SDP (1) in O
(
τq(n, m) log(p(n, m)1

ε )(TG + m) ‖A‖
√
ln(m) · 1

ε

)
time, where q(n, m) is the polynomial that satisfies Assumption (a), and TG denotes the
running time for computing the gradient∇fα in the Nesterov procedure.

Proof. From Lemma 2 (i) it follows that SOLVECOVERSDP terminates after at most

T =
⌈

log( ε(0)
ε )

log( 6
5 )

⌉
= O(log(p(n, m)1

ε )) iterations. From the analysis in the previous

sections, we know that the run time for computing an absolute 1
3ε(t)-optimal solution

is Õ
(

ε(t)

g(t)(X̂(t))
· 3

ε(t)

)
= Õ

(
1

γ(t−1)

)
, where we have ignored polynomial factors. Since

1 > α > 5
6 , Lemma 2 implies γ(t+1) ≤ γ(t), so the overall running time of SOLVE-

COVERSDP is Õ(T · 1
γ(T ) ). Thus, all that remains to show is thatO(1/γ(T )) = O(1/ε).

Recall γ(t) = min{ε(t), αt} and let Tγ = inf{t : ε(0)(5
6 )

t < αt}, i.e., the first
iteration where γ(t) = ε(t). Then, the runtime is bound by O(max{T, Tγ} 1

ε ). Then the
theorem follows since

Tγ =
⌈

log(ε(0))
log(6α/5)

⌉
= O(log(p(n, m))). ��
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G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 320–327. Springer, Heidelberg (1999)

13. Lu, Z., Monteiro, R., Yuan, M.: Convex optimization methods for dimension reduction
and coefficient estimation in multivariate linear regression, Arxiv preprint arXiv:0904.0691
(2009)

14. Nesterov, Y.: Smooth minimization of nonsmooth functions. Mathematical Program-
ming 103, 127–152 (2005)

15. Nesterov, Y.: Smoothing technique and its applications in semidefinite optimization. Mathe-
matical Programming 110, 245–259 (2007)



162 G. Iyengar, D.J. Phillips, and C. Stein

16. Nesterov, Y., Nemirovski, A.: Interior-point polynomial algorithms in convex programming.
SIAM Studies in Applied Mathematics, vol. 13. Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia (1994)

17. Plotkin, S., Shmoys, D.B., Tardos, E.: Fast approximation algorithms for fractional packing
and covering problems. Mathematics of Operations Research 20, 257–301 (1995)

18. Sidiropoulos, N., Davidson, T., Luo, Z.: Transmit beamforming for physical-layer multicas-
ting. IEEE Transactions on Signal Processing 54, 2239 (2006)

19. Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor classi-
fication. The Journal of Machine Learning Research 10, 207–244 (2009)



The Quantitative Analysis of User Behavior
Online – Data, Models and Algorithms

Prabhakar Raghavan

Yahoo! research
pragh@yahoo-inc.com

By blending principles from mechanism design, algorithms, machine learning
and massive distributed computing, the search industry has become good at
optimizing monetization on sound scientific principles. This represents a suc-
cessful and growing partnership between computer science and microeconomics.
When it comes to understanding how online users respond to the content and
experiences presented to them, we have more of a lacuna in the collaboration
between computer science and certain social sciences. We will use a concrete
technical example from image search results presentation, developing in the pro-
cess some algorithmic and machine learning problems of interest in their own
right. We then use this example to motivate the kinds of studies that need to
grow between computer science and the social sciences; a critical element of this
is the need to blend large-scale data analysis with smaller-scale eye-tracking and
“individualized” lab studies.

H. Kaplan (Ed.): SWAT 2010, LNCS 6139, p. 163, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Systems of Linear Equations over F2 and
Problems Parameterized above Average

Robert Crowston1, Gregory Gutin1, Mark Jones1,
Eun Jung Kim1, and Imre Z. Ruzsa2

1 Department of Computer Science
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK
{robert,gutin,markj,eunjung}@cs.rhul.ac.uk
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Abstract. In the problem Max Lin, we are given a system Az = b of
m linear equations with n variables over F2 in which each equation is
assigned a positive weight and we wish to find an assignment of values
to the variables that maximizes the excess, which is the total weight of
satisfied equations minus the total weight of falsified equations. Using an
algebraic approach, we obtain a lower bound for the maximum excess.

Max Lin Above Average (Max Lin AA) is a parameterized version of
Max Lin introduced by Mahajan et al. (Proc. IWPEC’06 and J. Comput.
Syst. Sci. 75, 2009). In Max Lin AA all weights are integral and we are
to decide whether the maximum excess is at least k, where k is the
parameter.

It is not hard to see that we may assume that no two equations in
Az = b have the same left-hand side and n = rankA. Using our maxi-
mum excess results, we prove that, under these assumptions, Max Lin
AA is fixed-parameter tractable for a wide special case: m ≤ 2p(n) for
an arbitrary fixed function p(n) = o(n). This result generalizes earlier
results by Crowston et al. (arXiv:0911.5384) and Gutin et al. (Proc. IW-
PEC’09). We also prove that Max Lin AA is polynomial-time solvable
for every fixed k and, moreover, Max Lin AA is in the parameterized
complexity class W[P].

Max r-Lin AA is a special case of Max Lin AA, where each equation
has at most r variables. In Max Exact r-SAT AA we are given a multiset
of m clauses on n variables such that each clause has r variables and asked
whether there is a truth assignment to the n variables that satisfies at
least (1 − 2−r)m + k2−r clauses. Using our maximum excess results, we
prove that for each fixed r ≥ 2, Max r-Lin AA and Max Exact r-SAT AA
can be solved in time 2O(k log k) + mO(1). This improves 2O(k2) + mO(1)-
time algorithms for the two problems obtained by Gutin et al. (IWPEC
2009) and Alon et al. (SODA 2010), respectively.

It is easy to see that maximization of arbitrary pseudo-boolean func-
tions, i.e., functions f : {−1, +1}n → R, represented by their Fourier
expansions is equivalent to solving Max Lin. Using our main maximum
excess result, we obtain a tight lower bound on the maxima of pseudo-
boolean functions.

H. Kaplan (Ed.): SWAT 2010, LNCS 6139, pp. 164–175, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1 Introduction

In the problem Max Lin, we are given a system Az = b of m linear equations
in n variables over F2 in which each equation is assigned a positive weight and
we wish to find an assignment of values to the variables in order to maximize
the total weight of satisfied equations. A special case of Max Lin when each
equation has at most r variables is called Max r-Lin.

Various algorithmic aspects of Max Lin have been well-studied (cf. [2,10,11]).
Perhaps, the best known result on Max Lin is the following inapproximability
theorem of H̊astad [10]: unless P=NP, for each ε > 0 there is no polynomial
time algorithm for distinguishing instances of Max 3-Lin in which at least
(1 − ε)m equations can be simultaneously satisfied from instances in which less
than (1/2 + ε)m equations can be simultaneously satisfied.

Notice that maximizing the total weight of satisfied equations is equivalent
to maximizing the excess, which is the total weight of satisfied equations minus
the total weight of falsified equations. In Section 2, we investigate lower bounds
for the maximum excess. Using an algebraic approach, we prove the following
main result: Let Az = b be a Max Lin system such that rankA = n and no pair
of equations has the same left-hand side, let wmin be the minimum weight of an
equation in Az = b, and let k ≥ 2. If k ≤ m ≤ 2n/(k−1) − 2, then the maximum
excess of Az = b is at least k · wmin. Moreover, we can find an assignment that
achieves an excess of at least k · wmin in time mO(1).

Using this and other results of Section 2 we prove parameterized complexity
results of Section 3. To describe these results we need the following notions, most
of which can be found in monographs [6,7,15].

A parameterized problem is a subset L ⊆ Σ∗ × N over a finite alphabet Σ.
L is fixed-parameter tractable (FPT) if the membership of an instance (x, k) in
Σ∗ ×N can be decided in time f(k)|x|O(1), where f is a computable function of
the parameter k. When the decision time is replaced by the much more powerful
|x|O(f(k)), we obtain the class XP, where each problem is polynomial-time solv-
able for any fixed value of k. There is an infinite number of parameterized com-
plexity classes between FPT and XP (for each integer t ≥ 1, there is a class W[t])
and they form the following tower: FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ XP.
Here W[P] is the class of all parameterized problems (x, k) that can be decided
in f(k)|x|O(1) time by a nondeterministic Turing machine that makes at most
f(k) log |x| nondeterministic steps for some computable function f . For the def-
inition of the classes W[t], see, e.g., [7] (we do not use these classes in the rest
of the paper).

Given a pair L, L′ of parameterized problems, a bikernelization from L to L′ is
a polynomial-time algorithm that maps an instance (x, k) to an instance (x′, k′)
(the bikernel) such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L′, (ii) k′ ≤
f(k), and (iii) |x′| ≤ g(k) for some functions f and g. The function g(k) is
called the size of the bikernel. The notion of a bikernelization was introduced
in [1], where it was observed that a parameterized problem L is fixed-parameter
tractable if and only if it is decidable and admits a bikernelization from itself
to a parameterized problem L′. A kernelization of a parameterized problem L
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is simply a bikernelization from L to itself; the bikernel is the kernel, and g(k)
is the size of the kernel. Due to applications, low degree polynomial size kernels
are of main interest.

Note that W/2 is a tight lower bound on the maximum weight of satisfiable
equations in a Max Lin system Az = b. Indeed, W/2 is the average weight of
satisfied equations (as the probability of each equation to be satisfied is 1/2)
and, thus, is a lower bound; to see the tightness consider a system of pairs of
equations of the form

∑
i∈I zi = 0,

∑
i∈I zi = 1 of weight 1. Mahajan et al.

[13,14] parameterized Max Lin as follows: given a Max Lin system Az = b,
decide whether the total weight of satisfied equations minus W/2 is at least k′,
where W is the total weight of all equations and k′ is the parameter. This is
equivalent to asking whether the maximum excess is at least k, where k = 2k′

is the parameter. (Note that since k = 2k′, these two questions are equivalent
from the complexity point of view.) Since W/2 is the average weight of satisfied
equations, we will call the parameterized Max Lin problem Max Lin Above

Average or Max Lin AA. Since the parameter k is more convenient for us to
use, in what follows we use the version of Max Lin AA parameterized by k.

Mahajan et al. [13,14] raised the question of determining the parameterized
complexity of Max Lin AA. It is not hard to see (we explain it in detail in
Section 2) that we may assume that no two equations in Az = b have the same
left-hand side and n = rankA. Using our maximum excess results, we prove
that, under these assumptions, (a) Max Lin AA is fixed-parameter tractable if
m ≤ 2p(n) for an arbitrary fixed function p(n) = o(n), and (b) Max Lin AA has
a polynomial-size kernel if m ≤ 2na

for an arbitrary a < 1. We conjecture that
under the two assumptions if m < 2an for some constant a > 0, then Max Lin

AA is W[1]-hard, i.e., result (a) is best possible in a sense. In addition, we prove
that Max Lin AA is in XP (thus, Max Lin AA is polynomial-time solvable
for every fixed k), and, moreover, it is in W[P].

Recall that Max r-Lin AA is a special case of Max Lin AA, where each
equation has at most r variables. In Max Exact r-SAT AA we are given a
multiset of m clauses on n variables such that each clause has r variables and
asked whether there is a truth assignment to the n variables that satisfies at
least (1 − 2−r)m + k2−r clauses. Using our maximum excess results, we prove
that for each fixed r ≥ 2 Max r-Lin AA has a kernel with O(k log k) variables
and, thus, it can be solved in time 2O(k log k) + mO(1). This improves a kernel
with O(k2) variables for Max r-Lin AA obtained by Gutin et al. [8]. Similarly, we
prove that for each r ≥ 2 Max Exact r-SAT AA has a kernel with O(k log k)
variables and it can be solved in time 2O(k log k) +mO(1) improving a kernel with
O(k2) variables for Max Exact r-SAT AA obtained by Alon et al. [1]. Note
that while the kernels with O(k2) variables were obtained using a probabilistic
approach, our results are obtained using an algebraic approach. Using a graph-
theoretical approach Alon et al. [1] obtained a kernel of Max Exact 2-SAT

AA with O(k) variables, but it is unlikely that their approach can be extended
beyond r = 2.
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Fourier analysis of pseudo-boolean functions, i.e., functions f : {−1,+1}n →
R, has been used in many areas of computer science(cf. [1,16,17]). In Fourier
analysis, the Boolean domain is often assumed to be {−1,+1}n rather than
more usual {0, 1}n and we will follow this assumption in our paper. Here we
use the following well-known and easy to prove fact [16] that each function
f : {−1,+1}n → R can be uniquely written as

f(x) =
∑

S⊆[n]

cS

∏
i∈S

xi, (1)

where [n] = {1, 2, . . . , n} and each cS is a real. Formula (1) is the Fourier expan-
sion f , cS are the Fourier coefficients of f , and the monomials

∏
i∈S xi form an

orthogonal basis of (1) (thus, the monomials are often written as χS(x) but we
will use only

∏
i∈S xi as it is more transparent).

Optimization of pseudo-boolean functions is useful in many areas including
computer science, discrete mathematics, operations research, statistical mechan-
ics and manufacturing; for many results and applications of pseudo-boolean func-
tion optimization, see a well-cited survey [3]. In classical analysis, there is a
large number of lower bounds on the maxima of trigonometric Fourier expan-
sions, cf. [4]. In Section 3, we prove a sharp lower bound on the maximum of a
pseudo-boolean function using its Fourier expansion. The bound can be used in
algorithmics, e.g., for approximation algorithms.

2 Results on Maximum Excess

Consider two reduction rules for Max Lin introduced in [8] for Max Lin AA.
These rules are of interest due to Lemma 1.

Reduction Rule 1. Let t = rankA and let columns ai1 , . . . , ait of A be linearly
independent. Then delete all variables not in {zi1 , . . . , zit} from the equations of
Az = b.

Reduction Rule 2. If we have, for a subset S of [n], an equation
∑

i∈S zi = b′

with weight w′, and an equation
∑

i∈S zi = b′′ with weight w′′, then we replace
this pair by one of these equations with weight w′+w′′ if b′ = b′′ and, otherwise,
by the equation whose weight is bigger, modifying its new weight to be the dif-
ference of the two old ones. If the resulting weight is 0, we delete the equation
from the system.

Lemma 1. Let A′z′ = b′ be obtained from Az = b by Rule 1 or 2. Then the max-
imum excess of A′z′ = b′ is equal to the maximum excess of Az = b. Moreover,
A′z′ = b′ can be obtained from Az = b in time polynomial in n and m.

To see the validity of Rule 1, consider an independent set I of columns of A
of cardinality rankA and a column aj 
∈ I. Observe that aj =

∑
i∈I′ ai, where

I ′ ⊆ I. Consider an assignment z = z0. If z0
j = 1 then for each i ∈ I ′ ∪ {j}

replace z0
i by z0

i + 1. The new assignment satisfies exactly the same equations
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as the initial assignment. Thus, we may assume that zj = 0 and remove zj from
the system. For a different proof, see [8]. If we cannot change a weighted system
Az = b using Rules 1 and 2, we call it irreducible.

Consider the following algorithm that tries to maximize the total weight of
satisfied equations of Az = b. We assume that, in the beginning, no equation or
variable in Az = b is marked.

Algorithm H
While the system Az = b is nonempty do the following:

1. Choose an arbitrary equation
∑

i∈S zi = b and mark zl, where l =
min{i : i ∈ S}.

2. Mark this equation and delete it from the system.
3. Replace every equation

∑
i∈S′ zi = b′ in the system containing zl

by
∑

i∈S zi +
∑

i∈S′ zi = b + b′. (The weight of the equation is un-
changed.)

4. Apply Reduction Rule 2 to the system.

Note that algorithm H replaces Az = b with an equivalent system under the
assumption that the marked equations are satisfied; that is, for every assignment
of values to the variables z1, . . . , zn that satisfies the marked equations, both
systems have the same excess.

The maximum H-excess of Az = b is the maximum possible total weight of
equations marked by H for Az = b taken over all possible choices in Step 1 of H.

Lemma 2. The maximum excess of Az = b equals its maximum H-excess.

Proof. We first prove that the maximum excess of Az = b is not smaller than
its maximum H-excess.

Let K be the set of equations marked by H. A method first described in [5]
can find an assignment of values to the variables such that the equations in K
are satisfied and, in the remainder of the system, the total weight of satisfied
equations is not smaller than the total weight of falsified equations.

For the sake of completeness, we repeat the description here. By construction,
for any assignment that satisfies all the marked equations, exactly half of the non-
marked equations are satisfied. Therefore it suffices to find an assignment to the
variables such that all marked equations are satisfied. This is possible if we find
an assignment that satisfies the last marked equation, then find an assignment
satisfying the equation marked before the last, etc. Indeed, the equation marked
before the last contains a (marked) variable zl not appearing in the last equation,
etc. This proves the first part of our lemma.

Now we prove that the maximum H-excess of Az = b is not smaller than
its maximum excess. Let z = (z1, . . . , zn) be an assignment that achieves the
maximum excess, t. Observe that if at each iteration of H we mark an equation
that is satisfied by z, then H will mark equations of total weight t. ��



Systems of Linear Equations 169

Remark 1. It follows from Lemma 2 that the maximum excess of a (nonempty)
irreducible system Az = b with smallest weight wmin is at least wmin. If all
weights are integral, then the maximum excess of Az = b is at least 1.

Clearly, the total weight of equations marked by H depends on the choice of
equations to mark in Step 1. Below we consider one such choice based on the
following theorem. The theorem allows us to find a set of equations such that
we can mark each equation in the set in successive iterations of H. This means
we can run H a guaranteed number of times, which we can use to get a lower
bound on the H-excess.

Theorem 1. Let M be a set in F
n
2 such that M contains a basis of F

n
2 , the zero

vector is in M and |M | < 2n. If k is a positive integer and k + 1 ≤ |M | ≤ 2n/k

then, in time |M |O(1), we can find a subset K of M of k + 1 vectors such that
no sum of two or more vectors of K is in M .

Proof. We first consider the case when k = 1. Since |M | < 2n and the zero
vector is in M , there is a non-zero vector v 
∈ M . Since M contains a basis for
F

n
2 , v can be written as a sum of vectors in M and consider such a sum with the

minimum number of summands: v = u1 + · · ·+u�, � ≥ 2. Since u1 +u2 
∈M , we
may set K = {u1, u2}. We can find such a set K in polynomial time by looking
at every pair in M ×M .

We now assume that k > 1. Since k + 1 ≤ |M | ≤ 2n/k we have n ≥ k + 1.
We proceed with a greedy algorithm that tries to find K. Suppose we have a set

L = {a1, . . . , al} of vectors in M , l ≤ k, such that no sum of two or more elements
of L is in M . We can extend this set to a basis, so a1 = (1, 0, 0, . . . , 0), a2 =
(0, 1, 0, . . . , 0) and so on. For every a ∈M\L we check whether M\{a1, . . . , al, a}
has an element that agrees with a in all co-ordinates l + 1, . . . , n. If no such
element exists, then we add a to the set L, as no element in M can be expressed
as a sum of a and a subset of L.

If our greedy algorithm finds a set L of size at least k + 1, we are done
and L is our set K. Otherwise, we have stopped at l ≤ k. In this case, we do
the next iteration as follows. Recall that L is part of a basis of M such that
a1 = (1, 0, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0), . . . . We create a new set M ′ in F

n′
2 ,

where n′ = n− l. We do this1 by removing the first l co-ordinates from M , and
then identifying together any vectors that agree in the remaining n′ co-ordinates.
We are in effect identifying together any vectors that only differ by a sum of some
elements in L. It follows that every element of M ′ was created by identifying
together at least two elements of M , since otherwise we would have had an
element in M\L that should have been added to L by our greedy algorithm.
Therefore it follows that |M ′| ≤ |M |/2 ≤ 2n/k−1. ¿From this inequality and the
fact that n′ ≥ n− k, we get that |M ′| ≤ 2n′/k. It also follows by construction of
M ′ that M ′ has a basis for F

n′
2 , and that the zero vector is in M ′. (Thus, we have

1 For the reader familiar with vector space terminology: F
n′
2 is F

n
2 modulo span(L),

the subspace of F
n
2 spanned by L, and M ′ is the image of M in F

n′
2 .
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|M ′| ≥ n′+1.) If n′ ≥ k+1 we complete this iteration by running the algorithm
on the set M ′ as in the first iteration. Otherwise (n′ ≤ k), the algorithm stops.

Since each iteration of the algorithm decreases n′, the algorithm terminates.
Now we prove that at some iteration, the algorithm will actually find a set K of
k+1 vectors. To show this it suffices to prove that we will never reach the point
when n′ ≤ k. Suppose this is not true and we obtained n′ ≤ k. Observe that
n′ ≥ 1 (before that we had n′ ≥ k + 1 and we decreased n′ by at most k) and
|M ′| ≥ n′ + 1. Since |M ′| ≤ 2n′/k, we have n′ + 1 ≤ 2n′/k, which is impossible
due to n′ ≤ k unless n′ = 1 and k = 1, a contradiction with the assumption that
k > 1.

It is easy to check that the running time of the algorithm is polynomial in |M |.
��

Remark 2. It is much easier to prove a non-constructive version of the above
result. In fact we can give a non-constructive proof that k+1 ≤ |M | ≤ 2n/k can
be replaced by 2k < |M | < 2n/k((k−1)!)1/k. We will extend our proof above for
the case k = 1. We may assume that k ≥ 2. Observe that the number of vectors
of F

n
2 that can be expressed as the sum of at most k vectors of M is at most(
|M |
k

)
+

(
|M |
k − 1

)
+ · · ·+

(
|M |
1

)
+ 1 ≤ |M |k/(k − 1)! for |M | > 2k.

Since |M | < 2n/k((k−1)!)1/k we have |Fn
2 | > |M |k/(k − 1)! and, thus, at least for

one vector a of F
n
2 we have a = m1+· · ·+m�, where � is minimum and � > k. Note

that, by the minimality of �, no sum of two or more summands of the sum for a
is in M and all summands are distinct. Thus, we can set K = {m1, . . . , mk+1}.

Theorem 2. Let Az = b be an irreducible system, let wmin be the minimum
weight of an equation in Az = b, and let k ≥ 2. If k ≤ m ≤ 2n/(k−1) − 2, then
the maximum excess of Az = b is at least k · wmin. Moreover, we can find an
assignment that achieves an excess of at least k · wmin in time mO(1).

Proof. Consider a set M of vectors in F
n
2 corresponding to equations in Az = b

as follows: for each
∑

i∈S zi = bS in Az = b, the vector v = (v1, . . . , vn) ∈ M ,
where vi = 1 if i ∈ S and vi = 0, otherwise. Add the zero vector to M . As
Az = b is reduced by Rule 1 and k ≤ m ≤ 2n/(k−1)−2, we have that M contains
a basis for F

n
2 and k ≤ |M | ≤ 2n/(k−1) − 1. Therefore, using Theorem 1 we can

find a set K of k vectors such that no sum of two or more vectors in K belongs
to M.

Now run Algorithm H choosing at each Step 1 an equation of Az = b cor-
responding to a member of K, then equations picked at random until the algo-
rithm terminates. Algorithm H will run at least k iterations as no equation
corresponding to a vector in K will be deleted before it has been marked.
Indeed, suppose that this is not true. Then there are vectors w ∈ K and
v ∈ M and a pair of nonintersecting subsets K ′ and K ′′ of K \ {v, w} such
that w+

∑
u∈K′ u = v+

∑
u∈K′′ u. Thus, v = w+

∑
u∈K′∪K′′ u, a contradiction

with the definition of K.
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In fact, the above argument shows that no equation of Az = b corresponding
to a member of K will change its weight during the first k iterations of H. Thus,
by Lemma 2, the maximum excess of Az = b is at least k · wmin. It remains to
observe that we can once again use the algorithm given in the proof of Lemma
2 to find an assignment that gives an excess of at least k · wmin. ��

We now provide a useful association between weighted systems of linear equa-
tions on F

n
2 and Fourier expansions of functions f : {−1,+1} → R. Let us

rewrite (1), the Fourier expansion of such a function, as

f(x) = c∅ +
∑
S∈F

cS

∏
i∈S

xi, (2)

where F = {∅ 
= S ⊆ [n] : cS 
= 0}.
Now associate the polynomial

∑
S∈F cS

∏
i∈S xi in (2) with a weighted system

Az = b of linear equations on F
n
2 : for each S ∈ F , we have an equation

∑
i∈S zi =

bS with weight |cS |, where bS = 0 if cS is positive and bS = 1, otherwise.
Conversely, suppose we have a system Az = b of linear equations on F

n
2 in which

each equation
∑

i∈S zi = bS is assigned a weight wS > 0 and no pair of equations
have the same left-hand side. This system can be associated with the polynomial∑

S∈F cS

∏
i∈S xi, where cS = wS , if bS = 0, and cS = −wS , otherwise. The

above associations provide a bijection between Fourier expansions of functions
f : {−1,+1} → R with c∅ = 0 and weighted systems of linear equations on F

n
2 .

This bijection is of interest due to the following:

Proposition 1. An assignment z(0) = (z(0)
1 , . . . , z

(0)
n ) of values to the variables

of Az = b maximizes the total weight of satisfied equations of Az = b if and only if
x(0) = ((−1)z

(0)
1 , . . . , (−1)z(0)

n ) maximizes f(x). Moreover, maxx∈{−1,+1}n f(x)−
c∅ equals the maximum excess of Az = b.

Proof. The claims of this lemma easily follow from the fact that an equation∑
i∈S zi = 0 is satisfied if and only if

∏
i∈S xi > 0, where xi = (−1)zi . ��

3 Corollaries

This section contains a collection of corollaries of Theorem 2 establishing param-
eterized complexity of special cases of Max Lin AA, of Max Exact r-SAT,
and of a wide class of constraint satisfaction problems. In addition, we will prove
that Max Lin AA is in X[P] and obtain a sharp lower bound on the maximum
of a pseudo-boolean function.

3.1 Parameterized Complexity of Max Lin AA

Corollary 1. Let p(n) be a fixed function such that p(n) = o(n). If m ≤ 2p(n)

then Max Lin AA is fixed-parameter tractable. Moreover, a satisfying assign-
ment can be found in time g(k)mO(1) for some computable function g.
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Proof. We may assume that m ≥ n > k > 1. Observe that m ≤ 2n/k implies
m ≤ 2n/(k−1) − 2. Thus, by Theorem 2, if p(n) ≤ n/k, the answer to Max Lin

AA is yes, and there is a polynomial algorithm to find a suitable assignment.
Otherwise, n ≤ f(k) for some function dependent on k only and Max Lin AA

can be solved in time 2f(k)mO(1) by checking every possible assignment. ��

Let ρi be the number of equations in Az = b containing zi, i = 1, . . . , n. Let
ρ = maxi∈[n] ρi and let r be the maximum number of variables in an equation
of Az = b. Crowston et al. [5] proved that Max Lin AA is fixed-parameter
tractable if either r ≤ r(n) for some fixed function r(n) = o(n) or ρ ≤ ρ(m) for
some fixed function ρ(m) = o(m).

For a given r = r(n), we have m ≤
∑r

i=1

(
n
i

)
. By Corollary 23.6 in [9],

m ≤ 2nH(r/n), where H(y) = −y log2 y− (1− y) log2(1− y), the entropy of y. It
is easy to see that if y = o(n)/n, then H(y) = o(n)/n. Hence, if r(n) = o(n), then
m ≤ 2o(n). By Corollary 23.5 in [9] (this result was first proved by Kleitman et
al. [12]), for a given ρ = ρ(m) we have m ≤ 2nH(ρ/m). Therefore, if ρ(m) = o(m)
then m ≤ 2n·o(m)/m and, thus, m ≤ 2o(n) (as n ≤ m, if n →∞ then m →∞ and
o(m)/m → 0). Thus, both results of Crowston et al. [5] follow from corollary 1.

Similarly to Corollary 1 it is easy to prove the following:

Corollary 2. Let 0 < a < 1 be a constant. If m < 2O(na) then Max Lin AA

has a kernel with O(k1/(1−a)) variables.

By Corollary 1 it is easy to show that Max Lin AA is in XP.

Proposition 2. Max Lin AA can be solved in time O(mk+O(1)).

Proof. We may again assume m ≥ n > k > 1. As in the proof of Corollary 1, if
m ≤ 2n/k then the answer to Max Lin AA is yes and a solution can be found
in time mO(1). Otherwise, 2n < mk and Max Lin AA can be solved in time
O(mk+2). ��

In fact, it is possible to improve this result, as the next theorem shows. We will
not give its proof due to the page limit.

Theorem 3. Max Lin AA is in W[P].

3.2 Max r-Lin AA, Max Exact r-SAT AA and Max r-CSP AA

Using Theorem 2 we can prove the following two results.

Corollary 3. Let r ≥ 2 be a fixed integer. Then Max r-Lin AA has a kernel
with O(k log k) variables and can be solved in time 2O(k log k) + mO(1).

Proof. Observe that m ≤ nr and nr ≤ 2n/(k−1) − 2 if n ≥ c(r)k log2 k provided
c(r) is large enough (c(r) depends only on r). Thus, by Theorem 2, if n ≥
c(r)k log2 k then the answer to Max r-Lin AA is yes. Hence, we obtain a
problem kernel with at most c(r)k log2 k = O(k log k) variables and, therefore,
can solve Max r-Lin AA in time 2O(k log k) + mO(1). ��
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Corollary 4. Let r ≥ 2 be a fixed integer. Then there is a bikernel from Max

Exact r-SAT to Max r-Lin AA with O(k log k) variables. Moreover, Max

Exact r-SAT has a kernel with O(k log k) variables and can be solved in time
2O(k log k) + mO(1).

Proof. Let F be an r-CNF formula with clauses C1, . . . , Cm in the variables
x1, x2, . . . , xn. We may assume that xi ∈ {−1, 1}, where −1 corresponds to
true. For F , following [1] consider

g(x) =
∑
C∈F

[1−
∏

xi∈var(C)

(1 + εixi)],

where var(C) is the set of variables of C, εi ∈ {−1, 1} and εi = 1 if and only if
xi is in C. It is shown in [1] that the answer to Max Exact r-SAT is yes if
and only if there is a truth assignment x0 such that g(x0) ≥ k.

Algebraic simplification of g(x) will lead us to Fourier expansion of g(x):

g(x) =
∑
S∈F

cS

∏
i∈S

xi, (3)

where F = {∅ 
= S ⊆ [n] : cS 
= 0, |S| ≤ r}. Thus, |F| ≤ nr. By Proposition 1,∑
S∈F cS

∏
i∈S xi can be viewed as an instance of Max r-Lin and, thus, we can

reduce Max Exact r-SAT into Max r-Lin in polynomial time (the algebraic
simplification can be done in polynomial time as r is fixed). By Corollary 3, Max

r-Lin has a kernel with O(k log k) variables. This kernel is a bikernel from Max

Exact r-SAT to Max r-Lin. Using this bikernel, we can solve Max Exact

r-SAT in time 2O(k log k) + mO(1).
It remains to use the transformation described in [1] of a bikernel from Max

Exact r-SAT to Max r-Lin into a kernel of Max Exact r-SAT. This trans-
formation gives us a kernel with O(k log k) variables. ��

In the Boolean Max-r-Constraint Satisfaction Problem (Max-r-CSP), we are
given a collection of Boolean functions, each involving at most r variables, and
asked to find a truth assignment that satisfies as many functions as possible. We
will consider the following parameterized version of Max-r-CSP. We are given
a set Φ of Boolean functions, each involving at most r variables, and a collection
F of m Boolean functions, each f ∈ F being a member of Φ, and each acting
on some subset of the n Boolean variables x1, x2, . . . , xn (each xi ∈ {−1, 1}).
We are to decide whether there is a truth assignment to the n variables such
that the total number of satisfied functions is at least E + k2−r, where E is the
average value of the number of satisfied functions.

Corollary 5. Let r ≥ 2 be a fixed integer. Then there is a bikernel from Max

r-CSP to Max r-Lin AA with O(k log k) variables. Max r-CSP can be solved
in time 2O(k log k) + mO(1).

Proof. Following [2] for a boolean function f of r(f) ≤ r boolean variables
xi1 , . . . , xir(f) , introduce a polynomial hf (x), x = (x1, x2, . . . , xn) as follows. Let
Vf ⊂ {−1, 1}r(f) denote the set of all satisfying assignments of f . Then
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hf (x) = 2r−r(f)
∑

(v1,...,vr(f))∈Vf

[
r(f)∏
j=1

(1 + xij vj)− 1].

Let h(x) =
∑

f∈F hf (x). It is easy to see (cf. [1]) that the value of h(x) at x0 is
precisely 2r(s−E), where s is the number of the functions satisfied by the truth
assignment x0, and E is the average value of the number of satisfied functions.
Thus, the answer to Max-r-CSP is yes if and only if there is a truth assignment
x0 such that h(x0) ≥ k. The rest of the proof is similar to that of Corollary 4. ��

3.3 Lower Bound on Maxima of Pseudo-boolean Functions

Corollary 6. maxx∈{−1,+1}n f(x) ≥ c∅ + (1 + � rankA
log2(|F|+2)�) ·minS∈F |cS |.

Proof. Consider the system Az = b associated with the Fourier expansion of
f according to the bijection described before Proposition 1. We may assume
that the weighted system Az = b has been simplified using Rule 1 and, thus,
its number n′ of variables equals rankA. Note that n′ ≤ m, where m is the
number of equations in Az = b. By Theorem 2, Proposition 1 and the fact that
minS∈F |cS | = minj wj , it follows that if k ≤ m ≤ 2n′/(k−1) − 2 then

max
x∈{−1,+1}n

f(x)− c∅ ≥ k min
S∈F

|cS |.

To complete the proof, recall that n′ = rankA, m = |F| and observe that the
maximum possible (integral) value of k satisfying m ≤ 2n′/(k−1) − 2 is 1 +
� rankA

log2(|F|+2)� and thus, the above inequality remains valid after substituting k

with 1 + � rankA
log2(|F|+2)�. ��

This bound is tight. Indeed, consider the function f(x) = −
∑

∅�=S⊆[n]
∏

i∈S xi.

Observe that n = rankA, |F| = 2n − 1 and, thus, maxx∈{−1,+1}n f(x) ≥ 1 +
� rankA

log2(|F|+2)� = 1. If x = (1, 1, . . . , 1) then f(x) = −|F| and if we set some
xi = −1 then after canceling out of monomials we see that f(x) = 1. Therefore,
maxx∈{−1,+1}n f(x) = 1, and, thus, the bound of corollary 6 is tight. It is easy
to see that the bound remains tight if we delete one monomial from f(x). A
sightly more complicated function showing that the bound is tight is as follows:
g(x) = −

∑
∅�=S⊆[n1]

∏
i∈S xi −

∑
S∈G

∏
i∈S xi, where n1 < n and G = {S : ∅ 
=

S ⊆ [n], [n1] ∩ S = ∅}.
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Capacitated max-Batching with Interval Graph
Compatibilities
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Abstract. We consider the problem of partitioning interval graphs into
cliques of bounded size. Each interval has a weight, and the weight of a
clique is the maximum weight of any interval in the clique. This natural
graph problem can be interpreted as a batch scheduling problem. Solving
a long-standing open problem, we show NP-hardness, even if the bound
on the clique sizes is constant. Moreover, we give a PTAS based on a
novel dynamic programming technique for this case.

1 Introduction

We consider the problem of partitioning interval graphs into cliques of bounded
size. Each interval has a weight, and the cost of a clique is the maximum weight
of any interval in the clique. Specifically, let J denote the intervals/vertices of
the graph, where each interval I ∈ J has a weight wI ∈ R

+, and let then
wC := maxI∈C wI be the weight of a clique C ⊆ J . Moreover, let k be the
bound on the clique size. The objective is hence to find a partition σ of J into
cliques of at most size k such that cost(σ) :=

∑
C∈σ wC is minimized. We refer

to this problem as CBk.
We can think of an interval as a job and of a clique as a batch of jobs which

satisfy the compatibility constraint implied by the interval graph structure. Thus,
CBk can be interpreted as a capacitated batch scheduling problem, where the
maximum weight of a job in a batch is the time needed to process this batch [8,5],
called max-batching [10], and the objective function given above is hence the
completion time of a partition/schedule σ. This problem can be generalized to
arbitrary graphs instead of interval graphs, as done in [9,8,6]. In this case, the
problem is clearly NP-hard, since it contains graph coloring [12]. We will mostly
use the terms batch and schedule instead of clique and partition throughout this
paper, respectively.

Previous work. Finke et al. [8] showed that CBk can be solved via dynamic
programming in polynomial time for k =∞. A similar result was independently
obtained by Becchetti et al. [3] in the context of data aggregation. Moreover, this
result was extended by Gijswijt, Jost, and Queyranne [9] to value-polymatroidal
� Supported by DFG research program No 1103 Embedded Microsystems. Parts of this

work were done while the author was visiting the IBM T.J. Watson Research Center.
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cost functions, a subset of the well-known submodular cost functions. Using this
result as a relaxation, Correa et al. [6] recently presented a 2-approximation
algorithm for CBk for arbitrary k. However, it was raised as an open problem
in [8,5,6] whether the case k < ∞ is NP-hard or not.

If all interval weights are identical, then CBk simplifies to finding a clique
partition of minimum cardinality [4]. We can also think of this problem as a
hitting set problem with uniform capacity k, where we want to stab intervals
with vertical lines corresponding the batches. Since the natural greedy algorithm
solves this problem in polynomial time [8], Even et al. [7] addressed the more
complicated case of non-uniform capacities. They presented a polynomial time
algorithm based on a general dynamic programming approach introduced by
Baptiste [2] for the problem of scheduling jobs such that the number of gaps is
minimized.

Contributions. First, we settle the complexity of CBk for k < ∞ with the
following theorem.

Theorem 1. CBk is strongly NP-hard, even for k = 3 and two different interval
lengths.

Note that this hardness result is tight, since CBk can be solved in polynomial
time for k = 2 by using an algorithm for weighted matching. Unfortunately, due
to space limitations, we have to defer a proof of this theorem to the full version
of this paper. On the other hand, we obtain the following positive result.

Theorem 2. There is a PTAS for CBk for any constant k.

This paper mostly deals with a high-level description of this PTAS in Section 3,
which is based on a quite sophisticated dynamic program. It is worth mentioning
that this dynamic program differs significantly from the dynamic programs intro-
duced before for the related problems discussed above [3,6,7,2]. Instead, the way
we decompose an instance is more related to the hierarchical quadtree decom-
position used by Arora [1] to obtain a PTAS for the travelling salesman problem
in the plane. Another important ingredient is the observation in Section 2 that
we may assume that the number of different interval weights is constant.

Related work. Also the complementary problem, called max-coloring, where
we want to partition a graph into independent sets instead of cliques, has raised
a considerable amount of attention [14,13]. Pemmaraju, Raman, and Varadara-
jan [14] showed that this complementary problem is NP-hard for k = ∞, even
for interval graphs. Moreover, Pemmaraju and Raman [13] showed that a graph
class admits a 4c-approximation algorithm if there is a c-approximation algo-
rithm for the simpler coloring problem. Finally, note that our results for CBk

can be applied to this complementary problem for the graph class of co-interval
graphs and constant k.
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2 Preliminaries

To distinguish the intervals in J from other intervals, we refer to these intervals
as due intervals. Let then n be the number of due intervals, and assume that
all endpoints of due intervals are elements in the range {1, . . . , T} for T := 2n.
Motivated by the interpretation of a due interval as a temporal constraint in [3],
we refer to an element in {1, . . . , T} as a period. Assume then w.l.o.g. that all
endpoints of due intervals are distinct, which is possible since T = 2n. Moreover,
assume w.l.o.g. that n and T are powers of 2, and that all due intervals contain
at least two periods. Finally, let OPT := cost(σ∗) denote the cost of an optimal
schedule σ∗ for all due intervals.

Consider a schedule σ. For each batch C ∈ σ, there is a period tC such that
tC ∈ I for each due interval I ∈ C. If tC is non-unique, simply choose tC to be
the smallest such period. Thus, we can also think of a schedule σ as a function
σ : J → {1, . . . , T} that assigns each due interval I to the period σ(I) = tC ,
where C ∈ σ is the batch with I ∈ C.

Let J1, J2, . . . , Jm with m ≤ n be a partition of the due intervals such that (1)
wI = wI′ for each due interval pair I, I ′ ∈ Ji, and (2) wI < wI′ for I ∈ Ji and
I ′ ∈ Ji′ with i < i′. Motivated by the application as a data aggregation problem
in [3], we refer to the indices 1, 2, . . . , m as nodes, and we call iI := i the release
node of a due interval I ∈ Ji. Analogously to wC , define then iC := maxI∈C iI
for a batch C.

2.1 Geometric Interpretation

If we interpret the release node iI of each due interval I as a vertical height,
then we can also think of a batch C as a vertical line with x-coordinate tC
starting at y-coordinate iC and ending at y-coordinate 0. Thus, we say that
each due interval contained in C is stabbed by this batch. We illustrate this
geometric interpretation with an example instance containing five due intervals
in Figure 1. For k = 3, the vertical dashed lines represent of schedule σ containing
two batches C and C′ with tC = 3, iC = 3, tC′ = 7, and iC′ = 3. The fat dots
indicate which due intervals are stabbed by which batches. Note that batch C′

does not fully exploit its capacity.

1
2
3

1 2 3 4 5 6 7 8

periods

9 10

nodes
C C′

Fig. 1. Geometric interpretation

This geometric nature makes CBk a natural target for dynamic programming
techniques. Indeed, many algorithms for related problems are dynamic program-
ming based [7,3,6,8,2]. However, none of these approaches seems to apply to CBk.
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2.2 Trading Nodes for Accuracy

The following lemma allows us to trade the number of nodes for accuracy such
that we may even assume that m is constant. However, even if we additionally
assume that k is constant, this does not seem to straightforward result in a
PTAS. Instead, we require a sequence of additional arguments in Section 3.

Lemma 1. For any ε > 0, by losing an (1+ε)-factor in the approximation ratio,
we may assume that the number of nodes m is constant.

Proof. We only sketch the proof. First, for some arbitrary small α > 1, do a
geometric rounding step by rounding each due interval weight up to the next
power of α. Afterwards, use the shifting technique of Hochbaum and Maas [11] to
decompose the input instance J into a sequence of subinstances, each requiring
only a constant number of nodes. Use then properties of the geometric series with
base α to show that combining schedules for these subinstances to a schedule
for J adds only an (1 + ε)-factor to the approximation ratio. ��

3 A PTAS for Constant k and m

In this section, we present a PTAS for constant k and m. To this end, we need sev-
eral independent ingredients. First, we introduce the notion of an easy instance in
Subsection 3.1. Such that instance provides some additional information about an
optimal schedule that allows us to apply a hierarchical decomposition.
Moreover, we introduce the notion of a normal schedule in Subsection 3.2, which
allows us to restrict the search space by using a simple swapping argument about
the assignment of due intervals to periods. Using this, we show then in Subsec-
tion 3.3 that there is a dynamic programming based quasipolynomial time algo-
rithm for easy instances, and we extend this dynamic program to a QPTAS for
general instances in Subsection 3.4.We obtain this extension by trading the size of
the search space for accuracy. On the other hand, we extend this dynamic program
to a PTAS for easy instances in Subsection 3.5. This extension is again obtained
by trading the search space for accuracy. Combining both extensions allows us to
finally prove Theorem 2 in Subsection 3.5.

3.1 Easy Instances

Let R be an ordered complete binary tree with T leaves. In what follows, a vertex
will always be a vertex in R (this contrast to a node, which represents a class of
due interval weight as defined in Section 2). Let ←−u and −→u denote the left and
right child of a non-leaf vertex u, respectively. Moreover, let û denote the parent
of a non-root vertex u. For a vertex pair v, u, we write v

←− u and v
−→ u if and only

if ←−v and −→v is an ancestor of u, respectively. We use here that u is an ancestor
of itself, and hence v

←− ←−v and v
−→ −→v . Additionally, we write v  u if and only if

v
←− u or v

−→ u. Thus, v  u implies that v 
= u. Finally, let du denote the depth
of a vertex u in R, where the root of R has depth 0.
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Each vertex u corresponds naturally to the leaves of the subtree rooted at
u, which form a subrange of periods Pu ⊆ {1, . . . , T} with |Pu| = T/2du. More
specifically, let u1, u2, . . . , uT be the natural ordering of the leaves of R. For each
period t, define then Put := {t}, and, for each non-leaf vertex u, inductively
define Pu := P←−u ∪ P−→u . Note that Pu = {1, . . . , T} for the root u.

For each non-leaf vertex u, let pu be an arbitrary element with maxP←−u <
pu < minP−→u , and, for each node i, let then

Ri
u := {I | iI = i and pu ∈ I ⊆ [minPu,maxPu]}

Additionally, for each node i and leaf u, define Ri
u := ∅. Since we assume that

each due interval contains at least two periods, we have that the due interval
sets Ri

u are a pairwise disjoint partition of all due intervals.
Let A always denote a tuple of due interval sets with Ai

u ⊆ Ri
u for each vertex

u and node i, and if we say that such a tuple is u-based, then Ai
v is only defined

for all vertices v  u. Since m is constant and T = 2n, note that the dimension
of a tuple A is m|R| = m(2T −1) = O(n), but if A is u-based, then its dimension
is at most m logT = O(log n), where the dimension of a tuple is the size of its
index set. In what follows, we will sometimes require that a tuple is u-based to
ensure that its dimension is logarithmic.

Moreover, we say that a schedule σ satisfies a tuple A if, for each vertex u
and node i, it holds for each due interval I ∈ Ri

u assigned by σ that

σ(I)

{
< pu if I ∈ Ai

u,
> pu otherwise.

Now we are ready to define the central notion of an easy instance. We say that
the input instance J is easy if we additionally know a tuple A such that there is
an optimal schedule σ∗ which satisfies A. Clearly, in general, we cannot assume
that we know such a tuple A. However, for each vertex u and node i, knowing
such a tuple allows us to ‘decompose’ J at pu such that all intervals in Ai

u can
be assigned ‘to the left’, and all due intervals in Ri

u\Ai
u can be assigned ‘to the

right’.

3.2 Normal Schedules

Consider a fixed tuple A as described in Subsection 3.1, vertex pair v
←− u, and

node i, and let I1, I2, . . . , It be an ordering of the due intervals Ai
v according to

their left endpoints such that, for each 1 ≤ z ≤ t − 1, the left endpoint of Iz is
strictly smaller than the left endpoint of Iz+1. Recall that we assume that all
endpoints are distinct. Let then

Ai
vu := {Ir, Ir+1, . . . , Is} (1)
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be the the consecutive subsequence of due intervals in Ai
v whose left endpoints

are in Pu, and define

Ai
vu(z) :=

⎧⎪⎨
⎪⎩
∅ for 0 ≤ z < r,

{Ir, Ir+1, . . . , Iz} for r ≤ z ≤ s,

Ai
vu for s < z ≤ n.

Note that we can analogously define Ai
vu and Ai

vu(z) for v
−→ u, but in this case,

we use Ri
v\Ai

v instead of Ai
v and switch sides, i.e., we use an ordering I1, I2, . . . , It

of the due intervals Ri
v\Ai

v according to their right endpoints such that, for each
1 ≤ z ≤ t− 1, the right endpoint of Iz is strictly larger than the right endpoint
of Iz+1. Define then Ai

vu := {Ir, Ir+1, . . . , Is} to be the consecutive subsequence
of due intervals in Ri

v\Ai
v whose right endpoints are in Pu, and finally Ai

vu(z) as
above. Note that the definition of Ai

vu(z) hence includes both cases, v
←− u and

v
−→ u.
Let a always denote an integer tuple with 0 ≤ ai

vu ≤ n for each vertex pair
v  u and node i. Given such an integer tuple a and a tuple A, we abbreviate
Aai

vu = Ai
vu(a

i
vu). We will always have that ai

vu = n for v = û, which implies that

Aai
vu =

{
Ai

v if u =←−v ,

Ri
v\Ai

v if u = −→v .
(2)

Moreover, if we say that a is u-based, then ai
vu is only defined for all vertices

v  u.
Consider now a schedule σ, and note that there is obviously some tuple A

that is satisfied by σ. Specifically, for each vertex v and node i, simply define
Ai

v := {I ∈ Ri
v | σ(I) < pv}. Using this, we say that σ is normal if there is

an integer tuple a such that, for each vertex pair v  u and node i, σ assigns
a due interval I ∈ Ai

vu to a period in Pu if and only if I ∈ Aai
vu. We then also

say that σ satisfies a. The following lemma, which can be proven via a simple
swapping argument, motivates this definition, since it says that we may restrict
our attention to normal schedules.

Lemma 2. For any schedule σ′, there is a normal schedule σ assigning the same
due intervals with cost(σ) = cost(σ′).

We finally need the following simple structural lemma.

Lemma 3. Let σ be a normal schedule that satisfies a tuple a. Then, for each
vertex pair v  u where u is not a leaf and node i, we may assume that

Aai
v←−u

{
⊆ Aai

vu ∩Ai
v←−u if v

←− u,
= Aai

vu ∩Ai
v←−u if v

−→ u,

Aai
v−→u

{
⊆ Aai

vu ∩Ai
v−→u if v

−→ u,
= Aai

vu ∩Ai
v−→u if v

←− u,

and it is possible that the inclusions are not tight.
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3.3 A Quasipolynomial Time Algorithm for Easy Instances

In this subsection, we present a dynamic programming based quasipolynomial
time algorithm for easy instances. Recall that if the input instance J is easy,
then we know a tuple A such that there is an optimal schedule σ∗ that satisfies
A. Hence, we can think of A as a given global variable. We will show in Subsec-
tion 3.4 how to get rid of this assumption. Let x always denote an integer tuple
with 0 ≤ xi ≤ n for each node i.

Let Π be the dynamic programming array, which, for each vertex u, integer
tuple x, and u-based integer tuple a includes an entry Π(u, x, a, A) that contains
the cost of an optimal normal schedule σ assigning the due intervals

Φ(u, x, a, A) := J [Pu] ∪ P x
u ∪

m⋃
i=1

⋃
v∈R:v�u

Aai
vu

to periods in Pu subject to the constraint that σ satisfies A, where the first
part J [Pu] := {I | I ⊆ [minPu,maxPu]} is the set of all due intervals that are
contained in [minPu,maxPu]. Moreover, the second part P x

u stands for a set
of due intervals that, for each node i, contains exactly xi many due intervals I
with release node i and Pu ⊆ I . Note that such a due interval can be assigned
to any period in Pu. Hence, since we consider an optimal schedule σ assigning
due intervals only to periods in Pu, we do not need to further specify these due
intervals. Indeed, we will only count the number of such intervals with x when
filling array Π . Finally, the due intervals in the third part have the property
that exactly one endpoint is contained in Pu. Recall that Lemma 2 implies that
taking a normal schedule σ is no restriction.

Since m is constant, R has 2T − 1 = O(n) many vertices, and a has at most
m logT = O(log n) many dimensions, we conclude that the size of Π is at most

(2T − 1) · nm · nm log T = nO(log n), (3)

which gives quasipolynomial running time if we can somehow inductively fill this
array.

To fill array Π , for each non-leaf vertex u, use the recurrence relation

Π(u, x, a, A) = min←−x ,−→x ,←−a ,−→a
{Π(←−u ,←−x ,←−a , A) + Π(−→u ,−→x ,−→a , A)} , (4)

where, for each node i, we have the constraints

←−a i
v←−u ∈ {0, . . . , n} for v  u s.t. A

←−a i
v←−u

{
⊆ Aai

vu ∩Ai
v←−u if v

←− u,
= Aai

vu ∩Ai
v←−u if v

−→ u,
(5)

−→a i
v−→u ∈ {0, . . . , n} for v  u s.t. A

−→a i
v−→u

{
⊆ Aai

vu ∩Ai
v−→u if v

−→ u,
= Aai

vu ∩Ai
v−→u if v

←− u,

and

←−y i ∈ {0, . . . , n} and −→y i ∈ {0, . . . , n} s.t. xi =←−y i +−→y i, (6)
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and

←−x i =
∑

v∈R:v−→�u

|(Aai
vu ∩Ai

v−→u )\A
−→a i
v−→u |+

←−y i, (7)

−→x i =
∑

v∈R:v←−�u

|(Aai
vu ∩Ai

v←−u )\A
←−a i
v←−u |+

−→y i.

Consider an optimal normal schedule σ assigning the due intervals Φ(u, x, a, A)
to periods in Pu subject to the constraint that σ satisfies A. To show correctness,
we need to argue that Recurrence Relation (4) defines a valid decomposition of
σ. Since a is u-based, this integer tuple is only defined for all vertex pairs v  u.
However, by the definition of Φ(u, x, a, A), we have that σ satisfies a at these
vertex pairs, i.e., for each vertex v  u and node i, σ assigns a due interval
I ∈ Ai

vu to a period in Pu if and only if I ∈ Aai
vu. Moreover, since σ is normal,

we can extend a to all vertex pairs v  ←−u and v  −→u such that σ also satisfies
a at these vertex pairs.

Each due interval in P x
u needs to be assigned to either a period in P←−u or

P−→u . However, since such a due interval may be assigned to any period in Pu =
P←−u ∪P−→u , using Constraints (6), we simply split the number of such due intervals
xi with release node i into two parts, namely ←−y i and −→y i. These parts are
then added to ←−x i and −→x i in Constraints (7), respectively. However, we further
increase ←−x i and −→x i with a sum, which is due to the fact that the inclusions in
Constraints (5) are not necessarily tight. We discuss this in the next paragraph.

We need to argue that we can find two integer tuples ←−a and −→a such that
Constraints (5) are satisfied. However, we only consider←−a , since the same argu-
ments work for −→a as well. Recall that ←−a is ←−u -based, i.e., ←−a is only defined for
all vertex pairs v  ←−u . However, recall that we require ←−a i

u←−u = n for each node
i per definition of such tuples. This is indeed necessary, since σ satisfies A, and
hence, for each node i, all due intervals Ai

u are assigned to a period in P←−u . But
since ←−a i

u←−u = n, we obtain with Equation (2) that A
←−a i
u←−u = Ai

u. Thus, we only
need to consider the vertex pairs v  ←−u with v  u. To this end, recall that we
extended a to all vertex pairs v  ←−u above. Hence, simply set ←−a i

v←−u := ai
v←−u for

each vertex v  u and node i. Because of Lemma 3, this setting of ←−a satisfies
Constraints (5). However, for example, consider now a fixed vertex pair v

←− u.
If we have that A

←−a i
v←−u ⊂ Aai

vu ∩ Ai
v←−u , i.e., this inclusion is not tight, then there

are some due intervals in Aai
vu ∩ Ai

v←−u which are assigned by σ to a period in
P−→u . However, it is easy to see that any such due interval contains all periods
in P−→u , and hence we only need to increase −→x i by one with the additional sum
in Constraints (7) to represent each such due interval. This shows that Recur-
rence Relation (4) defines a valid decomposition of σ into two parts. For the
sake of exposition, we avoid a formal induction, since the provided arguments
are sufficient to verify correctness.

Finally, to initiate array Π , recall that Pu contains only a single period if u
is a leaf, say t. Hence, in this case, it is easy to see how an optimal schedule
σ assigning the due intervals Φ(u, x, a, A) to t looks like, and what its cost is.
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This can be done by using a similar top-down decomposition as used by Correa
et al. [6]. Therefore, we can easily fill all entries Π(u, x, a, A) where u is a leaf.

This completes the definition of the dynamic program. Note that, in contrast
to the initialization of Π , we treat all nodes independently during Recurrence
Relation (4). Specifically, we have a separate set of constraints for each node.

Combining all arguments in this subsection gives the correctness of this ap-
proach, since it implies that, if u is the root and x the integer tuple that contains
only 0’s, then Π(u, x, a, A) contains the cost of an optimal schedule σ subject to
the constraint that σ satisfies A. Recall here that an u-based integer tuple a is
empty if u is the root. Moreover, recall the assumption that there is an optimal
schedule σ∗ satisfying A, and hence cost(σ) = cost(σ∗) = OPT.

3.4 A QPTAS

In this subsection, we extend the dynamic program for easy instances from Sub-
section 3.3 to general instances. We first need some additional definitions.

Let K always denote a tuple of sets of due interval sets with Ki
v ⊆ P(Ri

v)
for each vertex v and node i, where P(Ri

v) denotes the power set of Ri
v. Define

|K| := maxv,i |Ki
v|. For a tuple A, we write A ∈ K if Ai

v ∈ Ki
v for each vertex v

and node i. Analogously, for a u-based tuple A, we write A ∈ K if this property
holds for each vertex v  u, and we say that a schedule σ satisfies a K-extension
of A if we can extend A to all other vertices v 
 u such that still A ∈ K and
moreover σ satisfies A.

Now recall that the dynamic program in Subsection 3.3 requires that the input
instance J is easy, which implies that we know a tuple A such that there is an
optimal schedule σ∗ that satisfies A. However, in general, we do not know such a
tuple A. We could enumerate all such tuples, but this is not feasible in general,
since there are too many ways to select a subset Ai

v ⊆ Ri
v, even for a single vertex

v and node i. However, the following lemma, whose proof is deferred to the full
version of this paper, allows us to trade the number of tuples A for accuracy.
This lemma requires that k is constant.

Lemma 4. For any ε > 0, we can compute a tuple K with |K| ≤ c for some
constant c in polynomial time such that there is a tuple A ∈ K and a schedule
σ that satisfies A with cost(σ) ≤ (1 + ε)OPT.

Lemma 4 basically says that by losing an (1+ ε)-factor we only have to consider
a constant number of subsets Ai

v ⊆ Ri
v for each vertex v and node i, namely

only the at most c many subsets in Ki
v. In combination with the fact that R has

logarithmic depth logT = O(logn), this allows us to incorporate an enumeration
of sufficiently many tuples A in the dynamic program.

More specifically, assume that we are given a tuple K as described in Lemma 4,
and hence, instead of a global variable A as in Subsection 3.3, we have a global
variable K. We extend array Π such that, for each vertex u, integer tuple x,
u-based integer tuple a, and u-based tuple A ∈ K, Π(u, x, a, A) contains the
cost of an optimal normal schedule σ assigning the due intervals Φ(u, x, a, A)
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to periods in Pu subject to the constraint that σ satisfies a K-extension of A.
Because |K| ≤ c and A has at most m logT = O(log n) dimensions, we find that
the size of Π listed in (3) only increases by the polynomial factor cm log T = nO(1),
and hence array Π has still quasipolynomial size.

To fill the extended array Π , instead of Recurrence Relation (4), we use the
extended recurrence relation

Π(u, x, a, A) = min
←−x ,−→x ,←−a ,−→a ,A

{
Π(←−u ,←−x ,←−a , A) + Π(−→u ,−→x ,−→a , A)

}
subject to Constraints (5), (6) and (7), but we have the additional constraints
that, for each node i,

A
i

v

{
∈ Ki

u for v = u,
= Ai

v for v  u.
(8)

Note that A is now a parameter in the array Π instead of a global variable. The
new Constraints (8) are used to restrict the parameter A with respect to A and
K. More specifically, A extends A at node u using K. Note that A is a ←−u - and
−→u -based tuple.

The correctness of this extension can be straightforward proven by extending
the arguments in Subsection 3.3. Therefore, if u is the root and x the tuple
that contains only 0’s, then Π(u, x, a, A) contains now the cost of an optimal
schedule σ subject to the constraint that σ satisfies a K-extension of A. Note
that a u-based tuple A is empty if u is the root, and hence this K-extension can
be any tuple A ∈ K. Because we choose K according to Lemma 4, this shows
that the extension of the dynamic program introduced in this subsection yields
a QPTAS.

3.5 A PTAS for Easy Instances

In this subsection, we extend the dynamic program for easy instances described
in Subsection 3.3 to a PTAS for easy instances. Recall that if the input instance
J is easy, then we know a tuple A such that there is an optimal schedule σ∗ that
satisfies A. However, we have already shown in Subsection 3.4 how to get rid of
this assumption, but, for the sake of exposition, we assume in this subsection
again that J is easy.

Observe that the base n of the quasipolynomial size listed in (3) is due to
the fact that we only have the bound 0 ≤ ai

vu ≤ n on the entries of an integer
tuple a. But if we even had a bound 0 ≤ ai

vu ≤ c for some constant c, then we
would immediately obtain an array Π of polynomial size, and hence polynomial
running time. However, restricting the search space in this way does clearly not
yield an approximation scheme. A more general way to restrict the search space
is to only restrict the number of different values each entry of a may take. To
this end, we say that an integer tuple a is c-restricted for some positive integer
c if, for each vertex pair v  u and node i, it satisfies

ai
vu ∈ Bci

vu := {y ∈ zN | r − z ≤ y ≤ s + z},



186 T. Nonner

where z is the smallest power of 2 such that |Ai
vu|/z ≤ 2c, and the integers 0 ≤

r ≤ s ≤ n are such that {Ir, Ir+1, . . . , Is} = Ai
vu as given in (1). We additionally

require that ai
vu = maxBci

vu if v = û, which ensures that Equation (2) holds
as well for c-restricted integer tuples. On the other hand, note that if ai

vu =
minBci

vu, then Aai
vu = ∅. The following lemma, whose proof is deferred to the full

version of this paper, states that c-restricted integer tuples yield an arbitrary
good approximation. Hence, it allows us to trade the number of integer tuples a
for accuracy. This lemma also requires that k is constant.

Lemma 5. For any ε > 0, there is a constant c such that there is a c-restricted
integer tuple a and a schedule σ satisfying A and a with cost(σ) ≤ (1 + ε)OPT.

We can restrict the dynamic program to c-restricted integer tuples by adding
the constraints that, for each node i,

←−a i
v←−u ∈ Bci

v←−u for v  u, (9)
−→a i

v−→u ∈ Bci
v−→u for v  u.

In this case, since each entry ai
vu of a c-restricted integer tuple a may take at

most 2c + 2 many different values, in contrast to (3), we obtain an array Π of
polynomial size

(2T − 1) · nm · (2c + 2)m log T = nO(1).

However, we need to argue that adding the new Constraints (9) is indeed correct.
To this end, consider some fixed vertex pair v  u and node i. Since |Ai

vu| ≥
|Ai

v←−u | and |A
i
vu| ≥ |Ai

v−→u |, we have that Bci
vu ⊆ Bci

v←−u ∪ Bci
v−→u . Using this, it is

easy to see that Lemma 3 holds as well for a schedule σ satisfying a c-restricted
integer tuple a. Therefore, by extending the arguments in Subsection 3.3, we can
straightforward prove that, if u is the root and x the tuple that contains only
0’s, then Π(u, x, a, A) contains now the cost of an optimal schedule σ subject to
the constraint that σ satisfies A and a c-restricted integer tuple. Together with
Lemma 5, this shows that the extension of the dynamic program introduced in
this subsection yields a PTAS for easy instances. Moreover, in combination with
the extension introduced in Subsection 3.4, this proves Theorem 2.

4 Conclusion

It is worth mentioning that the presented dynamic program is quite flexible with
respect to the used objective function, e.g. it is also possible to incorporate the
penalization of gaps as in [2]. Indeed, we think that it is a promising general
technique to deal with interval stabbing type problems. To obtain the PTAS,
we first showed that we may assume that the number of nodes m is constant,
and then we gave a PTAS for this special case. However, it is not clear whether
this special case is still NP-hard or admits a polynomial time algorithm. Finally,
our PTAS requires that k is constant. On the other hand, a 2-approximation
algorithm for arbitrary k is known [6], but it is an open problem whether this
case admits a PTAS as well. We think that the methods developed in this paper
are limited to constant k.
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Abstract. We consider the problem of partitioning the set of vertices
of a given unit disk graph (UDG) into a minimum number of cliques.
The problem is NP-hard and various constant factor approximations are
known, with the best known ratio of 3. Our main result is a weakly robust
polynomial time approximation scheme (PTAS) for UDGs expressed with
edge-lengths and ε > 0 that either (i) computes a clique partition, or
(ii) produces a certificate proving that the graph is not a UDG; if the
graph is a UDG, then our partition is guaranteed to be within (1 + ε)
ratio of the optimum; however, if the graph is not a UDG, it either
computes a clique partition, or detects that the graph is not a UDG.
Noting that recognition of UDG’s is NP-hard even with edge lengths,
this is a significant weakening of the input model.

We consider a weighted version of the problem on vertex weighted
UDGs that generalizes the problem. We note some key distinctions with
the unweighted version, where ideas crucial in obtaining a PTAS break-
down. Nevertheless, the weighted version admits a (2+ε)-approximation
algorithm even when the graph is expressed, say, as an adjacency ma-
trix. This is an improvement on the best known 8-approximation for the
unweighted case for UDGs expressed in standard form.

1 Introduction

A standard network model for homogeneous networks is the unit disk graph
(UDG). A graph G = (V, E) is a UDG if there is a mapping f : V !→ R

2 such
that ‖f(u)− f(v)‖2 ≤ 1⇔ {u, v} ∈ E; f(u)1 models the position of the node u
while the unit disk centered at f(u) models the range of radio communication.
Two nodes u and v are said to be able to directly communicate if they lie in the
unit disks placed at each others’ centers. There is a vast collection of literature
on algorithmic problems studied on UDGs. See the survey [2].
� The authors were supported by Alberta Ingenuity. Work of the second author was

additionally supported by a grant from NSERC.
�� Several details are left out and proofs omitted due to space constraints. For a full

version of the paper, please see [11].
1 f(.) is called a realization of G. Note that G may not come with a realization.
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Clustering of a set of points is an important subroutine in many algorithmic
and practical applications and there are many kinds of clusterings depending
upon the application. A typical objective in clustering is to minimize the num-
ber of “groups” such that each “group” (cluster) satisfies a set of criteria. Mutual
proximity of points in a cluster is one such criterion, where points in a cluster
forming a clique in the underlying network is an extreme form of mutual proxim-
ity. We study an optimization problem related to clustering, called the minimum
clique partition problem on UDGs.

Minimum clique partition on unit disk graphs (MCP): Given a unit disk
graph, G = (V, E), partition V into a smallest number of cliques.

Besides being theoretically interesting, MCP has been used as a black-box for
a number of recent papers, for example [9].

On general graphs, the clique-partition problem is equivalent to the minimum
graph coloring on the complement graph which is not approximable within n1−ε,
for any ε > 0, unless P=NP [12]. MCP has been studied for special graph
classes. It is shown to be MaxSNP-hard for cubic graphs and NP-complete for
planar cubic graphs [4]; they also give a 5/4-approximation algorithm for graphs
with maximum degree at most 3. MCP is NP-hard for a subclass of UDGs,
called unit coin graphs, where the interiors of the associated disks are pairwise
disjoint [5]. Good approximations, however, are possible on UDGs. The best
known approximation is due to [5] who give a 3-approximation via partitioning
the vertices into co-comparability graphs, and solving the problem exactly on
them. They give a 2-approximation algorithm for coin graphs. MCP has also been
studied on UDGs expressed in standard form. For UDGs expressed in standard
form [10] give an 8-approximation algorithm.

Our Results and Techniques: Our main result is a weakly-robust (defined
below) PTAS for MCP on a given UDG. For ease of exposition, first we show this
(in Section 2.1) when the UDG is given with a realization, f(.). The holy-grail
is a PTAS when the UDG is expressed in standard form, say, as an adjacency
matrix. However, falling short of proving this, we show (in Section 2.2) how
to get a PTAS when the input UDG is expressed in standard form along with
associated edge-lengths corresponding to some (unknown) realization. Note that
an algorithm is called robust if it either computes an answer or declares that the
input is not from the restricted domain; if the algorithm computes an answer
then it is correct and has the guaranteed properties. Our algorithm is weakly-
robust in the sense that it either (i) computes a clique partition of the input
graph or (ii) gives a certificate that the input graph is not a UDG. If the input
is indeed a UDG then the algorithm returns a clique partition (case (i)) which is
a (1+ ε)-approximation (for a given ε > 0). However, if the input is not a UDG,
the algorithm either computes a clique partition but with no guarantee on the
quality of the solution or returns that it is not a UDG. Therefore, this algorithm
should be seen as a weakly-robust PTAS.

The generation of a polynomial-sized certificate which proves why the input
graph is not a UDG should be seen in the context of the negative result of [1]
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which says that even if edge lengths are given, UDG recognition is NP-hard. Due
to space constraints, we assume that the input graph is a-priori known to be a
UDG. The full version of the paper does not make this assumption [11].

In Section 3 we explore a weighted version of MCP where we are given a
vertex weighted UDG. In this formulation, the weight of a clique is the weight
of a heaviest vertex in it, and the weight of a clique partition is the sum of the
weights of the cliques in it. We note some key distinctions between the weighted
and the unweighted versions of the problem and show that the ideas that help
in obtaining a PTAS do not help in the weighted case. Nevertheless, we show
that the problem admits a (2 + ε)-approximation algorithm for the weighted
case using only adjacency. This result should be contrasted with the unweighted
case where it is not clear as to how to remove the dependence on the use of
edge-lengths, which was crucially exploited in deriving a PTAS.

Throughout, we use OPT to denote an optimum clique partition and opt to
denote its size (or, in Section 3, weight); n and m denote the number of points
(i.e. nodes of G = (V, E)) and the number of edges, respectively. Due to space
constraints, all proofs appear in a full version of this paper [11].

2 A PTAS for Unweighted Unit Disk Graphs

For simplicity, we first describe an algorithm when the input is given with a
geometric realization, and a parameter ε > 0.

2.1 A PTAS for UDGs with a Geometric Realization

We assume the input UDG is expressed with geometry. Using a randomly shifted
grid whose cell size is k × k (for k = k(ε)) we partition the plane. Since the
diameter of the convex hull of each clique is at most 1, for large values of k, a
fixed clique is cut by this grid with probability at most 2

k . Therefore, if we could
efficiently compute an optimal clique partition in each k×k cell, then taking the
union of these cliques yields a solution whose expected size is at most (1+ε)opt.
We call the algorithm MinCP1. Therefore, the main portion of the algorithm is
to solve the problem optimally for a bounded diameter region (i.e. a k× k cell).

Optimal Clique Partition of a UDG in a k × k Square. Unlike opti-
mization problems such as maximum (weighted) independent set and minimum
dominating set, where one can “guess” only a small-sized subset of points to ob-
tain an optimal solution, the combinatorial complexity of any single clique in an
optimal solution can be high. Therefore, it is unclear as to how to “guess” even
few cliques, each of which may be large. A result of Capoyleas et al. [3] comes to
our aid; a version of their result says that there exists an optimal clique partition
where the convex hulls of the cliques are pair-wise non-overlapping. This phe-
nomenon of separability of an optimal partition, coupled with the fact that the
size of an optimal partition in a small region is small, allows us to circumvent
the above difficulty. The following simple lemma bounds the size of an optimal
solution of an instance of bounded diameter.
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Lemma 1. Any set of UDG vertices P in a k × k square has a clique partition
of size O(k2).

We state a variant of a result by Capoyleas et al. [3] which says that there is an
optimal clique partition with cliques having non-overlapping convex hulls.2

k

k

Cj

Ci

x

y

Ci

Cj

lij

l′ij

x

y

(a) (b)

Fig. 1. (a) An optimal clique partition of UDG points in a bounded region; each light
convex shape corresponds to a clique in the clique partition. The heavy line-segments
represent segments of the corresponding separators. (b) A close-up view of Ci and Cj .
A separator line, lij is shown which separates Ci and Cj , corresponding to the segment
in (a). Note that l′ij is also a separator for Ci and Cj and l′ij is passing through points
x and y in Ci.

Theorem 1 (Separation Theorem [3]). There is an optimal clique partition
in which the convex hulls of the cliques are pairwise non-overlapping, i.e., there
is a straight line lij that separates a pair of cliques Ci, Cj such that all vertices
of Ci are on one side of lij , and all the vertices of Cj are on the other side of
lij. (see Figure 1). Such a separable clique partition can be computed efficiently.

The general structure of the algorithm for computing optimal solution of a k×k
cell is as follows. In order to reduce the search space for separator lines, one
can find a characterization of the separator lines with some extra properties.
Let Ci, Cj be a pair of cliques each having at least two points. Let Lij be the
(infinite) set of distinct separator lines. Since Ci and Cj are convex, there exists
at least one line in Lij that goes through two points of Ci (or Cj) (see Figure
1(b)). Therefore, given two cliques Ci and Cj in a clique partition (with pairwise
non-overlapping parts) there is a separator line lij that goes through two vertices
of one of them, say u, v ∈ Ci such that all the vertices of Cj are on one side of this
line and all the vertices of Ci are on the other side or on the line. Since there are
O(k2) cliques in an optimal partition of k×k cell, there are O(k4) pairs of cliques
in the partition and their convex hulls are pairwise non-overlapping. In fact, a
more careful analysis shows that the dual graph of the regions is planar (see
2 We gave a proof of this theorem [11] before it was brought to our attention that

Capoyleas, Rote, and Woeginger [3] proved this much earlier in a different context.
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Figure 1(a)); thus there are O(k2) distinct straight lines, each of which separate
a pair of cliques in our optimal solution3. For every clique Ci, the separator lines
lij (for all values of j) define a convex region that contains clique Ci. So once
we guess this set of O(k2) lines, these convex regions define the cliques. We will
try all possible (non-equivalent) sets of O(k2) separator lines and check if each
of the convex regions indeed defines a clique and if we obtain a clique partition.
This can be performed in nO(k2) time (see [3] for more details). Thus,

Theorem 2. MinCP1 returns a clique partition of size at most (1+ε)opt w.h.p.

2.2 A PTAS for UDGs with Edge-Lengths Only

Here, we assume only edge-lengths are known with respect to a feasible (un-
known) realization of the UDG. We prove that,

Theorem 3. Given a UDG G with associated (rational) edge-lengths and ε > 0,
there is a polynomial time algorithm which computes a clique partition of G
whose size is a (1 + ε)-approximation of the optimum clique partition.

The high level idea of the algorithm is as follows. As in the geometric case,
we first decompose the graph into bounded diameter regions and show that if
we can compute the optimum clique partition of each region then the union of
these clique partitions is within (1 + ε) fraction of the optimum. There are two
main difficulties here for which we need new ideas. The first major difference
is that we cannot use the random shift argument as in the geometric case. To
overcome this, we use a ball growing technique that yields bounded diameter
regions. This is inspired by [8] who give local PTAS for weighted independent
set, and minimum dominating set for UDGs without geometry. The second major
difference is that, even if we have the set of points belonging to a bounded region
(a ball) it is unclear as to how to use the separation theorem to obtain an optimal
solution for this instance. We show how to compute an optimal clique partition
when the diameter of the input is bounded.

Let Br(v) = {u : d(u, v) ≤ r}, where by d(u, v) we mean the number of edges
on a shortest path from u to v. So, Br(v) can be computed using a breadth-
first search (BFS) tree rooted at v. We describe our decomposition algorithm
which partitions the graph into bounded diameter subgraphs in Algorithm 1. We
will describe a procedure, called OPT-CP which, given a graph induced by the
vertices of Br(v) and a parameter � = poly(r), runs in time |Br(v)|O(�2) ≤ nO(�2)

and computes an optimal clique partition of Br(v). We only call this procedure
for “small” values of r = r(ε).

Clearly, C on “Step 8” is a clique partition. Let us assume that each ball
Br(v) we consider, OPT-CP returns an optimal clique partition Cr(v). We show
that then, |C| ≤ (1 + ε)opt. We also show that for any iteration of the outer
“while–loop”, “Step 4” of MinCP2 is executed in time polynomial in n, by using
edge-lengths instead of Euclidean coordinates.

3 The fact that there are O(k2) separable lines was independently observed by [6].
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Algorithm 1. MinCP2(G, ε)
1: C ← ∅; β ← �c0

1
ε

log 1
ε
�; � ← c1β

2.
{where c0 is the constant in Lemma 5, and c1 is the constant in inequality (1).}

2: while V 	= ∅ do
3: Pick an arbitrary vertex v ∈ V ; r ← 0

{Let Cr(v) denote a clique partition of Br(v) computed by calling OPT-CP}
4: while |Cr+2(v)| > (1 + ε)· |Cr(v)| do
5: r ← r + 1
6: C ← C ∪ Cr+2(v)
7: V ← V \ Br+2(v)
8: return C as our clique partition

For an iteration i of the outer loop, let vi be the vertex chosen in “Step 3” and
let r∗i be the value of r for which the “while-loop” on “Step 4” terminates, that
is, |Cr∗

i +2(vi)| ≤ (1+ε) · |Cr∗
i
(vi)|. Let k be the maximum number of iterations of

the outer loop. The following lemma states that two distinct balls grown around
vertices are far from each other.

Lemma 2. Every two vertices v ∈ Br∗
i
(vi) and u ∈ Br∗

j
(vj) are non-adjacent.

Using the above lemma, one can bound opt from below in the following,

Lemma 3. opt ≥
k∑

i=1

|Cr∗
i
(vi)|

We can now relate the cost of our solution to opt as follows,

Lemma 4. If for each i, |Cr∗
i +2(vi)| ≤ (1+ ε)· |Cr∗

i
(vi)|, then

k∑
i=1

∣∣Cr∗
i +2(vi)

∣∣ ≤
(1 + ε)· opt

Finally, we show that the inner “while-loop” terminates in Õ(1
ε ), so r∗i ∈ Õ(1

ε ).
Obviously, the “while-loop” on “Step 4” terminates eventually, so r∗i exists. By
definition of r∗i , for all smaller values of r < r∗i : |Cr(vi)| > (1 + ε)· |Cr−2(vi)|.
Since the diameter of Br(vi) is O(r), if Br(v) is a UDG, there is a realization of
it in which all the points fit into a 2r× 2r square. Thus, |Cr(vi)| ∈ O(r2). So for
some α ∈ O(1):

α· r2 > |Cr(vi)| > (1 + ε)· |Cr−2(vi)| > . . . > (1 + ε)
r
2 · |C0(vi)| = Θ(

(√
1 + ε

)r
),

when r is even (for odd values of r we obtain |Cr(vi)| > (1 + ε)
r−1
2 · |C1(vi)| ≥

Θ(
(√

1 + ε
)r−1

). Therefore we have:

Lemma 5. There is a constant c0 > 0 such that for each i: r∗i ≤ c0/ε· log 1/ε.

In the next subsection, we show that the algorithm OPT-CP, given Br(v) and an
upper bound � on |Cr(v)|, computes an optimal clique partition. The algorithm
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runs in time nO(�2). By the above arguments, there is a constant c1 > 0 such
that:

|Cr(v)| = O(r∗i
2) ≤ c1 ·

c2
0

ε2 log2 1
ε
. (1)

Let � = �c1
c2
0

ε2 log2 1
ε� for any call to OPT-CP as an upper bound, where c1 is

the constant in O((r∗i )
2). So, the running time of the algorithm is nÕ(1/ε4).

2.3 An Optimal Clique Partition for Br(v)

Here we present the algorithm OPT-CP that given Br(v) (henceforth referred to
as G′) and an upper bound � on the size of an optimal solution for G′, computes
an optimal clique partition of it. The algorithm runs in time nO(�2). Since, by
Lemma 5, � is independent of n in each call to this algorithm, the running time of
OPT-CP is polynomial in n. Our algorithm is based on the separation theorem
[3]. Even though we do not have a realization of the nodes on the plane, we
show how to apply the separation theorem [3] as in the geometric setting. We
use node/point to refer to a vertex of G′ and/or its corresponding point on the
plane for some realization of G′.

Lemma 6. Suppose we have four mutually adjacent nodes p, a, b, r and their
pairwise distances with respect to some realization on the Euclidean plane. Then
there is a poly-time procedure that can decide if p and r are on the same side of
the line that goes through a and b or are on different sides.

Say that G′ has an optimum clique partition of size α ≤ �. The cliques fall in two
categories: small (with at most 2α − 2 points), and large (with at least 2α − 1
points). We focus only on finding the large cliques since we can guess all the
small cliques. Suppose for each pair Ci, Cj ∈ OPT of large cliques, we guess
their respective representative nodes, ci and cj , through which no separating
lines pass. Also, suppose that we guess a separating line lij correctly which goes
through points uij and vij . For a point p adjacent to ci or cj we want to efficiently
test if p is on the the same side of line lij as ci (the positive side), or on cj ’s side
(the negative side), using only edge-lengths. Without loss of generality, let both
uij and vij belong to clique Ci. For each p different from the representatives:

– Suppose p is adjacent to all of ci, uij , vij , cj . Observe that we also have the
edges ciuij and civij . Given the edge-lengths of all the six edges among the
four vertices ci, uij , vij , p using Lemma 6 we can decide if in a realization of
these four points, the line going through uij , vij separates the two points p
and ci or not. If p and ci are on the same side, we say p is on the positive
side of lij for Ci. Else, it is on the positive side of lij for Cj .

– Suppose p is adjacent to ci (and also to uij and vij) but not to cj . Given the
edge-lengths of all the six edges among the four vertices ci, uij , vij , p using
Lemma 6 we can decide if in a realization of these four points, the line going
through uij , vij separates the two points p and ci or not. If p and ci are on
the same side, we say p is on the positive side of lij for Ci. Else, it is on the
positive side of lij for Cj .
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For each Ci and all the lines lij , consider the set of nodes that are on the
positive side of all these lines with respect to Ci; we place these nodes in Ci.
After obtaining the large and the small cliques, we obtain sets C1, . . . , Cα. At
the end we check if each Ci forms a clique and if their union covers all the points.
The number of guesses for representatives is nO(α) and the number of guesses for
the separator lines is nO(α2). So there are a total of nO(α2) configurations that
we consider. Clearly, some set of guesses is a correct one, allowing us to obtain
an optimum clique partition.

3 Weighted Clique Partition Using Only Adjacency

Wenow consider a generalization of theminimum clique partition onUDGs, which
we callminimum weighted clique partition (MWCP). Given a node-weighted graph
G = (V, E) with vertex weight wt (v), the weight of a clique C is defined as the
weight of the heaviest vertex in it. For a clique partition C = {C1, C2, . . . , Ct},
the weight of C is defined as sum of the weights of the cliques in C, i.e. wt (C) =∑t

i=1 wt (Ci). The problem is, givenG in standard form, say, as an adjacency ma-
trix, construct a clique partition C = {C1, C2, . . . , Ct} while minimizing wt (C).
The weighted version of the problem as it is defined above has also been studied
in different contexts. See [7], for example.

MWCP distinguishes itself from MCP in two important ways: (i) The sep-
arability property which was crucially used earlier to devise a PTAS does not
hold in the weighted case (Figure 2(a)), and (ii) the number of cliques in an
optimal solution for a UDG in a region of bounded radius is not bounded by the
diameter of the region (Figure 2(b)). To the best of our knowledge, MWCP has
not been investigated before on UDGs. We, however, note that a modification to
the algorithm by [10] also yields a factor-8 approximation to the weighted case,
a generalization which they do not consider. Here, we give an algorithm which
runs in time O(npoly(1/ε)) for a given ε > 0 and computes a (2+ε)-approximation
to MWCP for UDGs expressed in standard form, for example, as an adjacency
matrix. The algorithm returns a clique partition which is a (2+ε)-approximation.

Theorem 4. Given a UDG G expressed in standard form, and ε > 0, there is
a polynomial time algorithm which computes a clique partition whose weight is
a (2 + ε)-approximation of the minimum weighted clique partition.

We will employ a similar ball growing technique (as in Section 2) that will give us
bounded diameter regions. We then show that we can compute a clique partition
whose weight is within a factor (2 + ε) of the optimal. For the case of bounded
diameter region, although the optimum solution may have a large number of
cliques, we can show that there is a clique partition with few cliques whose cost
is within (1+ ε)-factor of optimum. First we describe the main algorithm. Then
in Subsection 3.1 we show that for each subgraph Br(v) (of bounded diameter)
there is a near optimal clique partition with Õ(r2) cliques. Then in Subsection
3.2 we discuss a near 2-approx for such a near optimal clique partition.
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Fig. 2. (a) Two overlapping weighted cliques, A = {a1, . . . , ak} and B = {b1, . . . , bk}
are shown, ai, bi are independent for all i. The heavy polygon has vertices weighted k
while the dashed ones are weighted 1. opt = k + 1 while any separable partition must
pay a cost of at least 2k. (b) A UDG for which OPT contains t cliques. The weight is
less than 2·α.

Our decomposition algorithm (Algorithm 2) is similar to Algorithm 1 and
partitions the graph into bounded diameter subgraphs. The procedure CP, given
a UDG induced by the vertices of Br(v) and a parameter � = poly(r), runs in
time nO(�2) and computes a clique partition of Br(v) whose weight is within a
factor (2 + ε) of the optimum. We only call this procedure for constant values
of r. In the following, let 0 < γ ≤

√
9+4ε−3

2 be a rational number. Let k be the
maximum number of iterations of the outer “while-loop”. The following lemma
states that distinct balls are far from each other.

Algorithm 2. MinCP3(G, γ)
1: C ← ∅; β ← �c0

1
γ

log 1
γ
�; � ← c1β

2.
{where c0 is the constant in Lemma 10, and c1 is the constant in inequality (2).}

2: while V 	= ∅ do
3: v ← arg maxu{wt (u)}; r ← 0

{Let Cr(v) denote a factor-(2 + γ) partition of Br(v) computed by calling CP}
4: while wt (Cr+2(v)) > (1 + γ)·wt (Cr(v)) do
5: r ← r + 1
6: C ← C ∪ Cr+2(v)
7: V ← V \ Br+2(v)
8: return C as our clique partition

Lemma 7. Every two vertices v ∈ Br∗
i
(vi) and u ∈ Br∗

j
(vj) are non-adjacent.

The above lemma can be used to bound opt from below, in the following,

Lemma 8. (2 + γ)· opt ≥
k∑

i=1

wt
(
Cr∗

i
(vi)

)
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We can now relate the cost of our clique partition to opt as follows.

Lemma 9. If for each i, wt
(
Cr∗

i +2(vi)
)
≤ (1 + γ)wt

(
Cr∗

i
(vi)

)
, then

∑k
i=1

wt
(
Cr∗

i +2(vi)
)
≤ (2 + ε)opt

Next, we show that the inner “while-loop” terminates in Õ( 1
γ ), that is each r∗i is

bounded by Õ( 1
γ ). This is similar to Lemma 5. Since the while loop terminates, r∗i

exists and by definition of r∗i , it must be the case that for all smaller values of r <
r∗i , wt (Cr(vi)) > (1+γ)·wt (Cr−2(vi)). Because the diameter of Br(vi) is O(r),
there is a realization of it in which all the points fit into a r× r grid. Also, since
vi is a heaviest vertex in the (residual) graph, there is a clique partition whose
weight is at most α·wt (vi) · r2, for some constant α. Therefore, wt (Cr(vi)) <
α·wt (vi) · r2 So:

α·wt (vi) · r2 > wt (Cr(vi)) > (1 + γ)·wt (Cr−2(vi)) > . . .

> (1 + γ)
r
2 ·wt (C0(vi)) = wt (vi) ·

(√
1 + γ

)r

,

which implies α· r2 >
(√

1 + γ
)r, for the case that r is even. If r is odd we obtain

α· r2 >
(√

1 + γ
)r−1. Thus, the following lemma easily follows:

Lemma 10. There is a constant c0 > 0 such that for each i: r∗i ≤ c0/γ· log 1/γ.

In Subsection 3.2, we discuss the algorithm CP that given Br(v) and an upper
bound � on |Cr(v)|, computes a clique partition having weight within a factor
(2+ γ) of opt; the algorithm runs in time nO(�2). By the above arguments, there
is a constant c1 > 0 such that:

|Cr(v)| = O(r∗i
2) ≤ c1·

c2
0

γ2 log2 1
γ

(2)

Let � = �c1
c2
0

γ2 log2 1
γ � for any call to CP as an upper bound, where c1 is the

constant in O(r∗i
2). So, the running time of the algorithm is nÕ(1/ε4).

3.1 Existence of a Small Clique Partition of Br(v) Having
Near-Optimal Weight

Unlike the unweighted case, an optimal weighted clique partition in a small re-
gion may contain a large number of cliques. Yet, there exists a partition whose
weight is within a factor (1 + γ

2 ) of the minimum weight which contains few
cliques (where by “few” we mean � as in Algorithm 2). The existence of a light
and small partition allows us to enumerate them in the same manner in the
algorithm of subsection 2.3, yielding a (2 + γ)-approximation for the problem
instance in a ball of small radius. In the following, let r ∈ Õ( 1

γ ); we focus on
the subproblem that lies in some Br(v). Recall that any ball of radius r can be
partitioned into O(r2) cliques (Lemma 1). We begin with a simple lemma which
says that for any clique partition C, if the vertices can be be covered by another
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clique partition C′ containing x cliques then the sum of the weights of the x
cliques in C′ is not significantly more than the weight of the heaviest clique in C.
Lemma 11. For any collection of disjoint cliques C = {C1, C2, . . . , Ct} having
weights such that wt (C1) ≥ wt (C2) ≥ . . . ≥ wt (Ct) suppose the vertices of C can
be partitioned into x cliques C′ = {C′

1, C
′
2, . . . , C

′
x}. Then wt (C′) ≤ x·wt (C1)

Also, for any clique, Ci, in an optimal partition of a ball of radius r, the sum of
the weights of the lighter cliques is not significantly more than wt (Ci).

Lemma 12. Let C = {C1, C2, . . . , Ct} be OPT and let wt (C1) ≥ wt (C2) ≥
. . . ≥ wt (Ct). Suppose there is another clique partition C′ = {C′

1, . . . , C
′
x} of the

vertices of C. Then, for every 1 ≤ i < t: (x− 1)·wt (Ci) ≥
∑t

l=i+1 wt (Cl).

We now are ready to state the main result of this section which says that for
any optimal weighted clique partition of a ball of radius r, there exists another
clique partition whose weight is arbitrarily close to the weight of the optimal
partition, but has O(r2) cliques in it. Since the radius of the ball within which
the subproblem lies is small, r ∈ Õ( 1

γ ), this means that if we were to enumerate
all the clique partitions of the subproblem up to O(r2), we will see one whose
weight is arbitrarily close to the weight of an optimal clique. Choosing a lightest
one from amongst all such cliques guarantees that we will choose a one whose
weight is arbitrarily close to the optimal weight.

Lemma 13. Let γ > 0 and r ∈ Õ(1/γ) be two constants. Let C = {C1, C2, . . . ,
Ct} be an optimal weighted clique partition of Br(v) and let C′ = {C′

1, . . . , C
′
x} be

another clique partition of vertices of C with x ∈ O(r2). Let wt (C1) ≥ wt (C2) ≥
. . . ≥ wt (Ct). Then, there is a partition of vertices of C into at most j+x cliques
for some constant j = j(γ), with cost at most (1 + γ

2 )opt.

3.2 (2 + γ)-Approximation for MWCP in Br(v)

Lemma 13 shows that there exists a clique partition of Br(v) that has Õ(1/γ)
cliques, whose weight is at most (1 + γ

2 ) of an optimal clique partition of Br(v).
Thus, if an efficient algorithm can cover each of the Õ(1/γ) cliques with at most
two cliques, then this will yield a (2+γ)-approximation for MWCP in Br(v). We
employ ideas from [10] to efficiently find such a cover. Due to space constraints,
we leave the details out, but refer the reader to a full version of the paper [11].

4 Concluding Remarks

Our PTAS applies to the planar case; it does not extend even to three dimen-
sions. It is an open question as to how to obtain a PTAS in higher, but fixed,
dimensions. It is also unclear how to obtain a PTAS for the weighted, planar
case with geometry. The main technical challenges are to show some exploitable
properties, as we exploited separability in Section 2, that allows us to find the
few cliques efficiently. It will be interesting to see how to obtain a PTAS when the
(unweighted) UDG is expressed in standard form. We leave these as interesting
open questions for the future.
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Abstract. We study the problems of (approximately) representing a
functional curve in 2-D by a set of curves with fewer peaks. Let f be an
input nonnegative piecewise linear functional curve of size n. We consider
the following problems. (1) Uphill-downhill pair representation (UDPR):
Find two nonnegative piecewise linear curves, one nondecreasing and
one nonincreasing, such that their sum approximately represents f . (2)
Unimodal representation (UR): Find a set of k nonnegative unimodal
(single-peak) curves such that their sum approximately represents f . (3)
Fewer-peak representation (FPR): Find a nonnegative piecewise linear
curve with at most k peaks that approximately represents f . For each
problem, we consider two versions. For UDPR, we study the feasibility
version and the min-ε version. For each of the UR and FPR problems,
we study the min-k version and the min-ε version. Little work has been
done previously on these problems. We solve all problems (except the UR
min-ε) in optimal O(n) time, and the UR min-ε version in O(n+m log m)
time, where m < n is the number of peaks of f . Our algorithms are based
on new geometric observations and interesting techniques.

1 Introduction

In this paper, we study the problems of approximately representing a 2-D func-
tional curve by a set of curves with fewer peaks. Let f be an arbitrary input
piecewise linear functional curve of size n. In general, when representing f by
one or more structurally simpler curves, g(1),g(2), . . . ,g(k) (k ≥ 1), we are inter-
ested in the following aspects of the representation: (1) the representation mode,
which defines the types of and constraints on the simpler curves used, (2) the
representation complexity, which is the number of simpler curves involved in the
representation, and (3) the representation error, which is the vertical distance
between f and the sum of the simpler curves in the representation, i.e.,

∑k
i=1 g(i).
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For simplicity, we describe the input piecewise linear curve f by (f1, f2, . . . , fn),
where fi = f(xi) is the value of f at the i-th x-coordinate xi (xi < xi+1 for each
i). Without loss of generality (WLOG), the xi’s are all omitted in our discus-
sion. For the consistency of our algorithmic manipulation and analysis, we need
to define carefully the peaks of f = (f1, f2, . . . , fn), with a little subtlety. Clearly,
a peak is at a local maximal height. If multiple consecutive vertices of f all have
the same local maximal height and if this group of vertices does not include the
last vertex of f , then we define the peak for this group of vertices as only the first
vertex of the group. However, if the group includes the last vertex of f , then we
define the peak as the last vertex of the group (and of f). Fig. 1 (a) shows an exam-
ple. The precise definition of peaks is as follows: we call fi a peak of f if (1) i = 1
and there is a j with 1 < j ≤ n such that f1 = · · · = fj−1 > fj, or (2) 1 < i < n,
fi−1 < fi and there is a j with i < j ≤ n such that fi = · · · = fj−1 > fj, or (3)
i = n and there is a j with 1 ≤ j ≤ n− 1 such that fj < fj+1 = · · · = fn.

Specifically, we consider three modes of representation in this paper. (1)
Uphill-downhill pair representation (UDPR): Represent f by two curves,
one nondecreasing (uphill) and one nonincreasing (downhill). (2) Unimodal
representation (UR): Represent f by a set of unimodal curves. A functional
curve g is unimodal (or single-peak) if there is only one peak on g. (3) Fewer-
peak representation (FPR): Represent f by a functional curve with at most
a given number k of peaks. It is interesting to note that a nondecreasing curve
and a nonincreasing curve of size n each can sum up to form a functional curve
f with O(n) peaks (e.g., see Fig. 1 (b)). The error measure we use is the uniform
error metric, also known as the L∞ metric.

We consider several problem versions. For UDPR, its representation complex-
ity (i.e., the number of curves in the representation) is always 2. We consider:
(1) the feasibility version, which seeks to decide whether an uphill-downhill pair
representation is feasible subject to a given bound ε on the representation error,
and (2) the min-ε version, which aims to minimize the representation error ε∗

among all feasible uphill-downhill pair representations. For UR, the represen-
tation complexity is the number of unimodal curves in the representation. For
FPR, the representation complexity is the number of peaks on the sought curve.
For each of the UR and FPR problems, we consider: (1) the min-k version, which
minimizes the representation complexity k∗ subject to a given error bound ε, and
(2) the min-ε version, which minimizes the representation error ε∗ subject to a
given bound k on the representation complexity. For these problems, we require
that f and all the simpler functional curves involved be nonnegative (i.e., on or
above the x-axis), which is justified by real applications discussed later. Note
that this actually makes the problems more theoretically interesting. Without
the nonnegativeness constraint, some problems become much easier to solve.

Based on nontrivial and interesting geometric observations, we develop effi-
cient algorithms for these problems. For the UDPR problem, we give O(n) time
algorithms for both its feasibility version and min-ε version. For the UR problem,
we present an O(n) time algorithm for its min-k version, and an O(n+m logm)
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time algorithm for its min-ε version, where m < n is the number of peaks on f .
For the FPR problem, our min-k and min-ε algorithms both take O(n) time.

1.1 Motivations and Related Work

Motivated by applications in data mining [5,6], Chun et al. gave a linear time
algorithm [2] for approximating a piecewise linear curve by a single unimodal
curve, under the L2 error measure. In [3], Chun et al. studied an extended case
in which the approximating function has k peaks, for a given number k, under
the Lp error measure. This problem is similar to our FPR min-ε problem except
that our error measure is different. The algorithm in [3] computes an optimal
solution in O(km2 + nm logn) time, where m is the number of peaks on the
input curve. In addition, an O(n logn) time algorithm for computing an optimal
unimodal function to approximate a piecewise linear curve under the Lp error
measure is also given [3]. As shown in [2,3], the algorithms above are applicable
to certain data mining problems. Motivated by applications in statistics, Stout
[10] considered the unimodal regression problem, aiming to approximate a set
of n points by a unimodal step function. He gave three algorithms with time
bounds O(n logn), O(n), and O(n) for the problem under the L1, L2, and L∞
error measures, respectively.

Our studies are also motivated by a dose decomposition problem in intensity-
modulated radiation therapy (IMRT). IMRT is a modern cancer treatment tech-
nique aiming to deliver a prescribed conformal radiation dose to a target tumor
while sparing the surrounding normal tissue and critical structures [13]. A pre-
scribed dose function f is always nonnegative and normally takes a piecewise
linear form (defined on a grid domain). In the rotational delivery approach [12]
(also called dynamic IMRT), a prescribed dose function f is delivered by repeat-
edly rotating the radiation source around the patient. In each rotation (called a
path), a portion of the prescribed dose f is delivered in a continuous manner. It
has been observed that a unimodal dose function can be delivered by a path more
smoothly and accurately than an arbitrary dose function. Thus, for a fast and
accurate delivery of the prescribed dose, it is desirable to represent exactly or
approximately a nonnegative (arbitrary) dose curve f by the sum of a minimum
set of unimodal curves.

Additionally, various curve approximation problems have been studied exten-
sively. Most of them seek to simplify a given curve by other “simpler” curves
(e.g., with fewer line segments) under certain error criteria (e.g., see [1,8,9,11]
and their references). For the general curve representation problems studied in
this paper, we are not aware of any previous efficient algorithms.

Due to the space limit, in the following paper the proofs of some lemmas and
the algorithms for FPR problem are omitted but can be found in our full paper.

2 The Uphill-Downhill Pair Representation (UDPR)

The UDPR problem is defined as follows. Given f = (f1, f2, . . . , fn) (n ≥ 2)
and ε ≥ 0, find a pair of piecewise linear curves y = (y1, y2, . . . , yn) and z =
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(a) (b)
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Fig. 1. (a) The peaks (the black points) on a piecewise linear curve; (b) an uphill curve
y and a downhill curve z of size n each can sum up to form a functional curve f with
O(n) peaks; (c) the profile curves I(f) and D(f) of the curve f ; (d) the skeleton curve
SK(f) (the dashed curve) of f (the solid curve)

(z1, z2, . . . , zn), such that (1) |yi + zi − fi| ≤ ε for every 1 ≤ i ≤ n, (2) y1 ≤
y2 ≤ · · · ≤ yn, (3) z1 ≥ z2 ≥ · · · ≥ zn, and (4) y and z are both nonnegative. If
constraint (4) is removed, i.e., the sought curves need not be nonnegative, then
we call it the relaxed UDPR problem. Interestingly, our solutions for the UDPR
problems are used as a subroutine for solving the UR problems in Section 3.

We first define some notations. Given f = (f1, f2, . . . , fn), we define a nonde-
creasing (uphill) piecewise linear functional curve I(f) = (I(f1), I(f2), . . . , I(fn))
and a nonincreasing (downhill) curve D(f) = (D(f1), D(f2), . . . , D(fn)) as fol-
lows: I(f1) = 0, I(fi) = I(fi−1) + max{fi − fi−1, 0} for 2 ≤ i ≤ n; D(f1) = f1,
D(fi) = D(fi−1)−max{fi−1− fi, 0} for 2 ≤ i ≤ n. Fig. 1 (c) shows an example.
We call these two curves I(f) and D(f) the profile curves of f . Observe that
since fi = I(fi) + D(fi) for each i, the profile curves of f form a solution for
the relaxed UDPR problem of f with any error ε ≥ 0. In Fig. 1 (b), the curves
y and z form a feasible solution for the relaxed UDPR problem on f and ε = 0,
but not for the UDPR problem if the x-axis passes the point b instead of a.

For f = (f1, f2, . . . , fn), similar to the peak definition, we call fi a valley if
(1) i = 1 and there is a j with 1 < j ≤ n such that f1 = · · · = fj−1 < fj ,
or (2) 1 < i < n, fi−1 > fi and there is a j with i < j ≤ n such that fi =
· · · = fj−1 < fj, or (3) i = n and there is a j with 1 ≤ j ≤ n − 1 such that
fj > fj+1 = · · · = fn. Clearly, there is exactly one valley (resp., peak) between
any two consecutive peaks (resp., valleys) on a curve. Given f , define its skeleton
SK(f) by connecting each peak (resp., valley) to its right side consecutive valley
(resp., peak) with a line segment (see Fig. 1 (d)). A curve f ′ is called a skeleton
curve if each f ′

i is either a peak or a valley and a general curve otherwise.
Given a skeleton curve f = (f1, f2, . . . , fn) and ε ≥ 0, the characteristic curve

of f and ε, denoted by R(f , ε), is defined as R(f , ε) = (R1, R2, . . . , Rn), where
R1 = f1 + ε, Ri is equal to fi − ε if Ri−1 < fi − ε, Ri is fi + ε if Ri−1 > fi + ε,
and Ri = Ri−1 otherwise (see Fig. 2 (a)).

2.1 The Feasibility of the UDPR Problem

For ε ≥ 0, we say a curve f = (f1, f2, . . . , fn) is ε-UDP-representable if the UDPR
problem on f and ε is feasible. We first discuss the UDPR feasibility algorithm
for a skeleton curve and then deal with the general curve.
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ε
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Fig. 2. (a) The characteristic curve R(f , ε) (the dashed one); (b) an allied pair (Ri, Rj)
(black points) on R(f , ε) (the dashed curve); (c) M(ε) is a step function; (d) ε′i =
(fi − fk′)/2 for the peak fi

Lemma 1. Given a skeleton curve f = (f1, f2, . . . , fn) and ε > 0, suppose
R(f , ε) is its characteristic curve. Then f is ε-UDP-representable if and only
if D(Rn) ≥ 0. Moreover, if f is ε-UDP-representable, then the profile curves of
R(f , ε) form a UDPR solution.

Given a skeleton curve f and ε ≥ 0, since R(f , ε) and its profile curves can all be
computed in linear time, by Lemma 1, we have the following result.

Lemma 2. The UDPR feasibility problem on a skeleton curve f and ε ≥ 0 is
solvable in O(n) time.

The problem on a general curve can be handled by the next lemma.

Lemma 3. Given ε ≥ 0, f is ε-UDP-representable if and only if SK(f) is ε-
UDP-representable. Furthermore, given a feasible solution for SK(f) (resp., f),
a feasible solution for f (resp., SK(f)) can be obtained in O(n) time.

In light of Lemmas 2 and 3, we have the following theorem.

Theorem 1. The UDPR feasibility problem on a general piecewise linear func-
tional curve f of size n and ε ≥ 0 is solvable in O(n) time.

2.2 The min-ε Version of the UDPR Problem

In this section, we consider the min-ε version, seeking the minimum possible
error ε∗ for f to be ε∗-UDP-representable. By Lemma 3, we only need to develop
an algorithm for the skeleton of f .

Before giving the algorithm, we first discuss some geometric observations.
Given a skeleton curve f = (f1, f2, . . . , fn) and ε ≥ 0, by Lemma 1, f is ε-UDP-
representable if and only if D(Rn) ≥ 0. By the definition of the profile curves,
we have D(Rn) = R1 −

∑n
i=2 max{0, Ri−1 −Ri} and R1 = f1 + ε. For a general

functional curve h = (h1, h2, . . . , hn), we define H(h) to be
∑n

i=2 max{0, hi−1−
hi}. Geometrically, the value of H(h) is the sum of the “height drops” of all the
“downhill” portions of the curve h. Then we have D(Rn) = f1 + ε−H(R(f , ε)).

On R(f , ε) = (R1, R2, . . . , Rn), we call Ri an R-peak if Ri is a peak on R(f , ε)
with 1 < i < n. Thus R1 and Rn cannot be R-peaks. For each R-peak Ri, we
define its allied R-valley to be Rj , where Rj is the first valley on R(f , ε) to the
right of Ri, i.e., j = min{t | t > i and Rt is a valley}. An R-peak Ri and its
allied R-valley Rj form an allied pair (Ri, Rj) (see Fig. 2 (b)).
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Observation 1. For any ε ≥ 0, if Ri is an R-peak on R(f , ε), then Ri = fi − ε
and fi is a peak on f ; if Rj is the allied R-valley of the R-peak Ri on R(f , ε),
then Rj = fj + ε and fj is a valley on f .

We name the sequence of the allied pairs of R(f , ε) (from left to right) the topology
of R(f , ε).

Lemma 4. Given a skeleton curve f and an error ε ≥ 0, if both R(f , ε) and
R(f , ε + Δε) has the same topology for a value Δε, then H(R(f , ε + Δε)) =
H(R(f , ε))− 2Δε · α, where α is the number of allied pairs on R(f , ε).

The above lemma implies that if the topology of R(f , ε) does not change for
ε ∈ [ε1, ε2], then H(R(f , ε)) is a continuous decreasing linear function in that
interval. Denote by M(ε) the number of allied pairs on R(f , ε). Thus M(0) is
the number of allied pairs on f (when ε = 0, R(f , ε) = f). Note that as ε increases
from 0 to ∞, at some values of ε, the topology of R(f , ε) will change and the
value ofM(ε) will decrease by some integer t ≥ 1. When ε is large enough,M(ε)
becomes zero and never decreases any more. Thus,M(ε) is a nonincreasing step
function (see Fig. 2 (c)), and the number of steps is at mostM(0). Suppose the
i-th “step” of M(ε) is defined on the interval [εi, εi+1); then we call εi a critical
error if i ≥ 1 (ε1 = 0 is not considered to be a critical error). Formally, ε′ is a
critical error if and only if M(L(ε′)) −M(ε′) > 0, where L(ε′) is a value less
than ε′ but infinitely close to it. We use a multi-set E to denote the set of all
critical errors: For each critical error ε′, if M(L(ε′)) −M(ε′) = t ≥ 1, then E
contains t copies of ε′. Thus |E| is exactly equal to M(0).

From a geometric point of view, R(f , ε) changes its topology only when a peak
of the curve f−ε “touches” some point of a horizontal segment of R(f , ε) starting
at a valley of f + ε. When a peak fi − ε of f − ε touches a horizontal segment
starting at a valley fj + ε of f + ε, we have fi − ε = fj + ε, implying ε = |fi−fj |

2 .
Let E′ = {|fi − fj |/2 | for any peak fi and valley fj on f}. Clearly, the critical
error set E is a subset of E′. Thus we have the following lemma.

Lemma 5. Given a skeleton curve f , the function G(ε) = f1 + ε − H(R(f , ε))
(i.e., G(ε) = D(Rn)) is a continuous increasing piecewise linear function for
ε ≥ 0. More specifically, the interval [0,+∞) for ε can be partitioned into |E′|+1
sub-intervals by the elements in E′, such that in each such sub-interval, G(ε) is
an increasing linear function of ε.

The Algorithm. The idea of our linear-time algorithm is to first determine the
multi-set E explicitly and then compute ε∗. Suppose we already have the set E
explicitly; then ε∗ can be computed by the following lemma.

Lemma 6. After E is obtained, ε∗ can be computed in O(|E|) time.

Proof. Assume that the elements in E are ε1 ≤ ε2 ≤ · · · ≤ εM , where M =
|E| =M(0) (this assumption is only for analysis since we do not sort them in the
algorithm). By Lemma 5, the function G(ε) = f1+ε−H(R(f , ε)) is increasing, and
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thus ε∗ is the unique value with G(ε∗) = 0. By Lemma 4, G(0) = f1−H(R(f , 0)),
G(ε1) = G(0)+ ε1+2M · ε1, and G(ε2) = G(0)+ ε2+2M · ε1+2(M −1) · (ε2− ε1).
Generally, if we let ε0 = 0, then for 1 ≤ i ≤ M , G(εi) = G(0) + εi +2

∑i−1
t=0(M −

t)(εt+1 − εt). Thus, geometrically, G(ε) is a piecewise linear concave increasing
function whose slope, when ε ∈ [εi, εi+1), is 1 + 2(M − i) for any 0 ≤ i ≤ M
(let εM+1 be ∞). Note that if the elements in E are already sorted, then it is
easy to compute ε∗ in linear time since each G(εi) can be obtained from G(εi−1)
in O(1) time and G(ε) is an increasing function. However, as we show below,
we can still compute ε∗ in linear time without sorting the elements in E. Define
h(i, j) =

∑j−1
t=i (M − t)(εt+1− εt). Then G(εi) = G(0)+ εi +2h(0, i). By a simple

deduction, we can get h(i, j) =
∑j−1

t=i+1 εt + (M − j + 1)εj − (M − i)εi. Thus,
we can compute the value of h(i, j) in O(j − i) time if we know all the values
εi, εi+1, . . . , εj . Further, G(0) can be easily computed in linear time.

To obtain ε∗, we do the following: (1) Search in E for the two elements ε′ and
ε′′ such that ε′ is the largest element in E with G(ε′) ≤ 0 and ε′′ is the smallest one
with G(ε′′) > 0; (2) compute the smallest value ε∗ ∈ [ε′, ε′′] such that G(ε∗) = 0.
In step (1), to find ε′, a straightforward way is to first sort all elements in E,
and then from the smallest element to the largest one, check the value of G(εi)
for each εi. But that takes O(M logM) time. An O(M) time algorithm, based
on prune and search, works as follows. We first use the selection algorithm [4]
to find the median εM/2 in E and compute G(εM/2), for which we need to spend
O(M

2 ) time to compute h(0, M
2 ). If G(εM/2) = 0, then the algorithm stops with

ε∗ = εM/2. Otherwise, let E1 = {εi | i < M
2 } and E2 = {εi | i > M

2 }. If
G(εM/2) < 0, then we continue the same procedure on E2. Since we already
have the value of h(0, M

2 ), when computing h(0, j) for j > M
2 , we only need

to compute h(M
2 + 1, j) because h(0, j) = h(0, M

2 ) + h(M
2 + 1, j), which takes

O(j − M
2 ) time. If G(εM/2) > 0, then we continue the same procedure on E1.

Thus the total time for computing ε′ is O(M). To obtain ε′′, note that ε′′ is the
smallest element in E that is larger than ε′, and thus ε′′ can be found in linear
time. Step (2) takes O(1) time since when ε ∈ [ε′, ε′′], G(ε) is a linear function.

It remains to compute the multi-set E. Let P (f) denote the set of indices of
all peaks on f except f1 and fn. When ε = 0, since R(f , ε) is the same as f ,
Ri is an R-peak on R(f , ε) if and only if i ∈ P (f). Thus |P (f)| = M(0). For
each i ∈ P (f), let i′ = min{t | i < t ≤ n + 1, ft > fi} (with fn+1 = +∞); in
other words, fi′ is the leftmost peak to the right of fi that is larger than fi, or
i′ = n + 1 if there is no such peak on f . Let i′′ = max{t | 0 ≤ t < i, ft ≥ fi}
(with f0 = +∞), i.e., fi′′ is the rightmost peak to the left of fi that is larger
than or equal to fi, or i′′ = 0 if there is no such peak (see Fig. 2 (d)). For each
i ∈ P (f), let fk′ = min{ft | i < t < i′}, fk′′ = min{ft | i′′ < t < i}, and
ε′i = (fi − max{fk′ , fk′′})/2. Fig. 2 (d) shows an example. The next lemma is
crucial for computing E.

Lemma 7. For any ε ≥ 0, 1 < i < n, Ri is an R-peak on R(f , ε) if and only if
i ∈ P (f) and ε < ε′i.

Consequently, the multi-set E can be obtained by the following lemma.
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Lemma 8. E = {ε′i | for each i ∈ P (f)} and E can be computed in O(n) time.

Theorem 2. The UDPR min-ε problem on f can be solved in O(n) time.

3 The Unimodal Representation Problem (UR)

In this section, we study the UR problem. Since we require all unimodal curves
be nonnegative, in the following, a unimodal curve means a nonnegative one.

For two integers i′ < i′′, denote by [i′ . . . i′′] the sequence of integers between i′

and i′′, i.e., [i′ . . . i′′] = {i′, i′+1, . . . , i′′}. For a curve f = (f1, f2, . . . , fn), denote
by f [i′ . . . i′′] the portion of f restricted to the indices in {i′, i′ + 1, . . . , i′′}. The
two lemmas below outlines the underlying geometric structures.

Lemma 9. Let h(1),h(2), . . . ,h(k) be k ≥ 1 unimodal functional curves defined
on [1 . . . n]. Assume that for each j, h(j) peaks at i∗j , with 1 ≤ i∗1 ≤ i∗2 ≤ · · · ≤
i∗k ≤ n. Then the curve h =

∑k
j=1 h(j) satisfies: (1) h is nonnegative and non-

decreasing on [1 . . . i∗1], (2) h is 0-UDP-representable on [i∗j . . . i∗j+1] for each
j = 1, 2, . . . , k − 1, and (3) h is nonnegative and nonincreasing on [i∗k . . . n].

Proof. Since every h(j) is nondecreasing on [1 . . . i∗1] and nonincreasing on [i∗k . . .
n], (1) and (3) of the lemma follow. (2) of the lemma holds due to the fact that on
[i∗j . . . i∗j+1], h

(1),h(2), . . . ,h(j) are all nonincreasing, and h(j+1),h(j+2), . . . ,h(k)

are all nondecreasing. Thus for each j, the portion of the curve h on [i∗j . . . i∗j+1]
is equal to the sum of a nondecreasing curve y(j) =

∑k
t=j+1 h(t) and a nonin-

creasing curve z(j) =
∑j

t=1 h(t).

Lemma 10. Given a curve h defined on [1 . . . n], if there exist k ≥ 1 integers
i∗1 ≤ i∗2 ≤ · · · ≤ i∗k in [1 . . . n] such that (1) h is nonnegative and nondecreasing on
[1 . . . i∗1], (2) h is 0-UDP-representable on [i∗j . . . i∗j+1] for each j = 1, 2, . . . , k −
1, and (3) h is nonnegative and nonincreasing on [i∗k . . . n], then there exist k

unimodal curves h(1),h(2), . . . ,h(k) defined on [1 . . . n] such that h =
∑k

j=1 h(j).

3.1 The min-k Version of the Unimodal Representation Problem

Lemmas 9 and 10 imply that the min-k version of the UR problem on f and ε is
equivalent to finding the minimum number of intermediate points i∗1 ≤ i∗2 ≤ · · · ≤
i∗k in [1 . . . n], such that (1) f [1 . . . i∗1] (resp., f [i∗k . . . n]) can be represented by a
nonnegative nondecreasing (resp., nonincreasing) curve with an error no more
than ε, (2) for each j with 1 ≤ j ≤ k − 1, f [i∗j . . . i∗j+1] is ε-UDP-representable.

The following lemma follows a similar spirit as the UDPR feasibility problem.

Lemma 11. Given f = (f1, f2, . . . , fn) and ε ≥ 0, f can be represented by a
nonnegative nondecreasing (resp., nonincreasing) curve with an error no bigger
than ε if and only if fj − ε ≤ fi + ε (resp., fj + ε ≥ fi − ε) holds for all
1 ≤ j < i ≤ n. Moreover, if the problem is feasible, then it always has a solution
y defined by yi = max{0,maxi

j=1{fj − ε}} (resp., yi = mini
j=1{fj + ε}), which

can be computed in O(n) time.
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Given f = (f1, f2, . . . , fn) and ε ≥ 0, our UR min-k algorithm works in a greedy
fashion: (1) Find the largest index i∗1 such that f [1 . . . i∗1] can be represented by a
nonnegative nondecreasing curve with an error ≤ ε; (2) find the smallest index c,
such that f can be represented by a nonnegative nonincreasing curve on [c . . . n]
with an error ≤ ε; (3) if i∗1 ≥ c, then we are done; otherwise, by a linear scan
from i∗1, find the largest index i∗2 such that f [i∗1 . . . i∗2] is ε-UDP-representable;
the same procedure continues until i∗k ≥ c. When the algorithm stops, k is the
minimum number of unimodal curves needed to represent f . By Theorem 1 and
Lemma 11, the above min-k algorithm takes O(n) time.

Theorem 3. The UR min-k problem on f and ε ≥ 0 is solvable in O(n) time.

Additionally, we have the following result which will be useful for our UR min-ε
algorithm given in the next section.

Lemma 12. Given a curve f = (f1, f2, . . . , fn) and ε ≥ 0, f can be represented
by k unimodal curves if and only if SK(f) can be represented by k unimodal
curves. Furthermore, given a feasible solution for SK(f) (resp., f), a feasible
solution for f (resp., SK(f)) can be obtained in O(n) time.

3.2 The min-ε Version of the Unimodal Representation Problem

The UR min-ε problem is: Given f = (f1, f2, . . . , fn) and k > 0, find the smallest
error ε∗ such that f can be represented by at most k unimodal curves.

Given a curve f , denote by K(ε) the minimum number of unimodal curves for
representing f with an error ≤ ε. Clearly, K(ε) changes in a monotone fashion
with respect to ε. To solve the min-ε we use our min-k algorithm as a procedure,
and perform a search for the optimal error ε∗. The structures of the unimodal
representations specified in Lemmas 9 and 10 imply that we only need to con-
sider those ε values that may cause a feasibility change to one of the following
representations: (1) representing f [i′ . . . i′′] (1 ≤ i′ < i′′ ≤ n) by a pair of non-
decreasing and nonincreasing curves with an error ≤ ε, (2) representing f [1 . . . i]
(1 ≤ i ≤ n) by a nondecreasing curve with an error ≤ ε, or (3) representing
f [j . . . n] (1 ≤ j ≤ n) by a nonincreasing curve with an error ≤ ε.

Given a curve f = (f1, f2, . . . , fn), by Lemma 12, it suffices to consider the
UR min-ε algorithm for its SK(f) curve. After obtaining the minimum error ε∗

for SK(f), we need O(n) additional time to produce the solution curves for f .
The next algorithm focuses on SK(f) although it works for any general curve.
In the following, we assume SK(f) = g = (g1, g2, . . . , gm) (i.e., |SK(f)| = m).

Given k > 0, our UR min-ε algorithm has two steps. (1) Search in S =
{0}∪{|gi−gj|/2 | 1 ≤ i, j ≤ m} for ε′, ε′′ ∈ S, such that ε′ is the largest element
in S with K(ε′) > k and ε′′ is the smallest element in S with K(ε′′) ≤ k. (2) With
ε′ and ε′′, find the smallest value ε∗ ∈ [ε′, ε′′] with K(ε∗) ≤ k. In the following,
we focus on showing an efficient implementation of these two steps.

Our algorithm involves a search technique, called binary search on sorted
arrays, which is shown in the following lemma.
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g ε      R(   [i’...i"],   ’)

      R(    ,   ’)g ε
i’ i’’

(a)

g ε      R(   [i’...i"],   ’)

      R(    ,   ’)g ε
i’ i’’

(b)

Fig. 3. The two cases for computing the representability of R(g[i′ . . . i′′], ε′): (a)
R(g[i′ . . . i′′], ε′) merges into R(g, ε′); (b) R(g[i′ . . . i′′], ε′) does not merge into R(g, ε′)

Lemma 13. Given M arrays Ai, 1 ≤ i ≤ M , each containing O(N) elements
in sorted order, a sought element δ in A = ∪M

i=1Ai can be determined in O((M +
T ) log(NM)) time, where O(T ) is the time of a procedure to report whether a ≤ δ
or a > δ for any given value a.

For Step (1), note that K(ε) is monotone with respect to ε; further, the set S
can be represented implicitly as O(m) sorted arrays of size O(m) each. Thus,
this step clearly takes O(m logm) time based on Lemma 13, using our UR min-k
algorithm as a procedure.

For Step (2), note that ε′ and ε′′ are two consecutive elements in S in the
sense that for any ε̂ ∈ S, either ε̂ ≤ ε′ or ε̂ ≥ ε′′. Thus, by Lemma 11, changing
the error ε from ε′ to ε′′ does not cause a feasibility change on representing
g[1 . . . i] (resp., g[j . . . n]) by an uphill (resp., downhill) curve. Therefore, when ε
changes from ε′ to ε′′, the decreasing of the function K(ε) is due to the feasibility
change of the uphill-downhill pair representations of some g[i′ . . . i′′]’s, for 1 ≤
i′ < i′′ ≤ m. Denote by ε[i′, i′′] the minimum error ε such that g[i′ . . . i′′] is ε-
UDP-representable, and define S′ = {ε[i′, i′′] | 1 ≤ i′ < i′′ ≤ m}. Thus, S′ must
contain ε∗. Step (2) can be carried out by performing a similar search as in Step
(1) on S′ for ε∗ ∈ [ε′, ε′′]. Further, since ε∗ ∈ [ε′, ε′′], we only need to consider
those elements of S′ which are in [ε′, ε′′]. The key to this to compute efficiently,
for any 1 ≤ i′ < i′′ ≤ m, the value ε[i′, i′′] (if it is in [ε′, ε′′]).

We design a data structure such that, after O(m) time preprocessing, for
any query q(i′, i′′), 1 ≤ i′ < i′′ ≤ m, the following can be determined in O(1)
time: Whether ε[i′, i′′] ∈ [ε′, ε′′]; if it is, report the value of ε[i′, i′′]; otherwise,
report whether ε[i′, i′′] < ε′ or ε[i′, i′′] > ε′′. Define G(ε,g[i′ . . . i′′]) to be gi′ + ε−
H(R(g[i′ . . . i′′], ε)). If we replace G(ε) in Lemma 5 by G(ε,g[i′ . . . i′′]), by the defi-
nition of ε′ and ε′′, when ε ∈ [ε′, ε′′], G(ε,g[i′ . . . i′′]) is a linear function and ε[i′, i′′]
is the unique error ε̂ such that G(ε̂,g[i′ . . . i′′]) = 0. If ε[i′, i′′] ∈ [ε′, ε′′], then once
G(ε′,g[i′ . . . i′′]) and G(ε′′,g[i′ . . . i′′]) are available, ε[i′, i′′] can be obtained in
O(1) time. Further, ε[i′, i′′] < ε′ if and only if G(ε′,g[i′ . . . i′′]) > 0, and ε[i′, i′′] >
ε′′ if and only if G(ε′′,g[i′ . . . i′′]) < 0. Thus, to answer each query q(i′, i′′)
in O(1) time, it suffices to compute the two values H(R(g[i′ . . . i′′], ε′)) and
H(R(g[i′ . . . i′′], ε′′)) (and consequently, G(ε′,g[i′ . . . i′′]) and G(ε′′,g[i′ . . . i′′])) in
O(1) time. This is made possible by our O(m) time preprocessing algorithm
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given below. We only show the preprocessing algorithm for H(R(g[i′ . . . i′′], ε′))
(the case for H(R(g[i′ . . . i′′], ε′′)) is handled similarly).

The main idea is to use the geometric relations between the two characteristic
curves R(g, ε′) and R(g[i′ . . . i′′], ε′). Specifically, we use the value H(R(g, ε′)) to
help compute H(R(g[i′ . . . i′′], ε′)). As part of the preprocessing, we compute,
in O(m) time, the value H(R(g, ε′)), and further, keep all the prefix values
H(R(g[1 . . . i], ε′)) for 1 ≤ i ≤ n. Considering the relations between R(g, ε′)
and R(g[i′, i′′], ε′), there are two possible cases: (I) R(g[i′ . . . i′′], ε′) “merges” into
R(g, ε′) (Fig. 3(a)); (II) R(g[i′ . . . i′′], ε′) does not merge into R(g, ε′) (Fig. 3(b)).
To deal with Case (I), after R(g, ε′) is computed, with O(m) time preprocessing
(in Lemma 14), we can store the merge point i′ for every i′ in [1 . . .m] (this
merge point does not depend on i′′), as well as the total amount of “downhill
drops” from i′ to its i′ (denote this amount by C(i′)). In this way, the value of
H(R(g[i′ . . . i′′], ε′)) is equal to C(i′) +H(R(g[1 . . . i′′], ε′)) −H(R(g[1 . . . i′], ε′))
(see Fig. 3(a)), which can be obtained in O(1) time from the prefix values
H(R(g[1 . . . i′′], ε′)) and H(R(g[1 . . . i′], ε′)). Note that the merge point i′ of i′

also allows us to decide in O(1) time which of the two cases holds for a query
q(i′, i′′). For Case (II), the key observation is that the value ofH(R(g[i′ . . . i′′], ε′))
is gi′ − h[i′, i′′], where h[i′, i′′] is the minimum value of g on [i′ . . . i′′]. With a
range minima data structure [7] (which can be constructed in linear time), we
can report h[i′, i′′], and consequently H(R(g[i′ . . . i′′], ε′)), in O(1) time.

Lemma 14. All merge points i’s for i ∈ [1 · · ·m] can be obtained in O(m) time.

Proof. We first compute the two curves g + ε′ and g − ε′, and then R(g, ε′).
In the region R bounded between g + ε′ and R(g, ε′), we perform a rightwards
horizontal trapezoidal decomposition from the vertices of g + ε′, which can be
done in linear time. This produces a set L of horizontal line segments in R.
We then connect these segments to R(g, ε′) by following downhill paths along
L ∪ (g + ε′), until reaching some points on R(g, ε′) (if a point on R(g, ε′) is
reachable). Note that for each segment l ∈ L, such a downhill path connecting l
to R(g, ε′) (if any) is unique. This process creates a forest, with the whole curve
R(g, ε′) being the root of one of the trees, T . For each vertex v of g + ε′ in R,
we then find the first point on R(g, ε′) along T , denoted by v (if v is not in the
tree T containing R(g, ε′), then v = +∞). Clearly, these structures can all be
built in O(m) time. Thus, in O(m) time, we can compute all merge points.

Since we are only concerned with those error values in [ε′, ε′′], for a query q(i′, i′′),
if ε[i′, i′′] > ε′′, we simply set ε[i′, i′′] = +∞. Likewise, if ε[i′, i′′] < ε′, we
set ε[i′, i′′] = −∞. With this value-setting, for any [j′ . . . j′′] ⊆ [i′ . . . i′′], we
have ε[j′, j′′] ≤ ε[i′, i′′]. Thus, the set S′ can be viewed as consisting of O(m)
sorted arrays of size O(m) each. Precisely, for each 1 ≤ i′ ≤ m − 1, let array
Ai = {ε[i′, i′′] | i′′ = i′ + 1, . . . , m}. Further, S′ can be represented implicitly
as discussed above and any element of S′ can be obtained in O(1) time (after
an O(m) time preprocessing). Therefore, by using the searching technique in
Lemma 13, we can find the error ε∗ ∈ S′ in O(m logm) time.
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Theorem 4. Given an integer k > 0, the UR min-ε problem on a curve f =
(f1, f2, . . . , fn) is solvable in O(n+m logm) time, where m is the size of SK(f).
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Abstract. The Bregman k-median problem is defined as follows. Given
a Bregman divergence Dφ and a finite set P ⊆ IRd of size n, our goal
is to find a set C of size k such that the sum of errors cost(P, C) =∑

p∈P minc∈C Dφ(p, c) is minimized. The Bregman k-median problem
plays an important role in many applications, e.g., information theory,
statistics, text classification, and speech processing. We study a general-
ization of the kmeans++ seeding of Arthur and Vassilvitskii (SODA ’07).
We prove for an almost arbitrary Bregman divergence that if the input
set consists of k well separated clusters, then with probability 2−O(k) this
seeding step alone finds an O(1)-approximate solution. Thereby, we gen-
eralize an earlier result of Ostrovsky et al. (FOCS ’06) from the case of
the Euclidean k-means problem to the Bregman k-median problem. Ad-
ditionally, this result leads to a constant factor approximation algorithm
for the Bregman k-median problem using at most 2O(k)n arithmetic op-
erations, including evaluations of Bregman divergence Dφ.

1 Introduction

Clustering is the problem of grouping a set of objects into subsets (known as
clusters) such that similar objects are grouped together. The quality of a cluster-
ing is often measured using a well defined cost function involving a dissimilarity
measure that bears meaning for the given application. A cost function that has
been proved useful in the past decades is the k-median cost function. Here the
objective is to partition a set of objects into k clusters, each with a given cluster
representative (known as cluster center) such that the sum of distances from
each object to their representative is minimized.

Many approximation algorithms and techniques for this minimization prob-
lem have been developed when the dissimilarity measure used is a metric such as
the Euclidean distance (known as the Euclidean k-median problem) [1,2,3,4,5,6],
or when the squared Euclidean distance is used (known as the Euclidean k-
means problem) [7,4,8,9,10,11]. However, until recently, for non-metric dissimi-
larity measures almost no approximation algorithms were known. This stands in
sharp contrast to the fact that many non-metric dissimilarity measures are used
in various applications. To name just a few examples, the Mahalanobis divergence
is used in statistics, the Itakura-Saito divergence is used in speech processing,
and the Kullback-Leibler divergence is used in machine learning, data mining,
� Research supported by Deutsche Forschungsgemeinschaft (DFG), grant BL-314/6-1.
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and information theory. These examples are instance of a broader class of dis-
similarity measures that has only recently attained considerable attention: the
class of Bregman divergences. Although a PTAS has been given for this broader
class of problems [12,13], it suffers from impractically huge constants that are
involved in the running time. Hence, in this paper, we focus on the statement
and analysis of an efficient and practical sampling scheme to obtain a constant
factor approximate solution for the Bregman k-median problem.

Related work. One particular algorithm for the Euclidean k-means problem that
has appealed to practitioners during the past decades is Lloyd’s k-means algo-
rithm [14]. Starting with an arbitrary set of k center points c1, c2, . . . , ck, Lloyd’s
local improvement strategy iterates between two steps: First, each input point
is assigned to its closest center point to build a partition P1, P2, . . . , Pk of the
input points. Then, for each set Pi the center point ci is recomputed as the cen-
troid (center of mass) of Pi. These steps are repeated until the partition and the
center points become stable. It can easily be seen that after a finite number of
steps Lloyd’s algorithm terminates with a locally optimal clustering. In addition,
a single Lloyd iteration can be implemented to run quite fast in practice.

However, it is known that the speed of convergence as well as the quality of
the local optimum computed depends considerably on the choice of initial center
points. While it has been shown recently that the expected number of iterations
is polynomial in n, k, and d in the smoothed complexity model [15], in the worst
case, an exponential number of 2Ω(n) iterations are necessary, even in the plane
[16]. Furthermore, there are simple examples of input sets such that a poor choice
of initial centers leads to arbitrarily bad clusterings (i.e., the approximation ratio
is unbounded). To deal with these problems in practice, the initial center points
are usually chosen uniformly at random among the input points. However, no
non-trivial approximation guarantees are known for uniform seeding. Recently,
Arthur and Vassilvitskii proposed a new non-uniform initial seeding procedure
for the Euclidean k-means problem [17], known as kmeans++ seeding. It has been
shown that this seeding step alone computes an O(log k)-approximate set of cen-
ters. Any subsequent Lloyd iteration only improves this solution. Independently,
a different analysis of essentially the same seeding procedure has been given by
Ostrovsky et al. [18]. In this analysis it has been shown, that for certain well sepa-
rated input instances with probability 2−O(k) the non-uniform seeding step gives
an O(1)-approximate set of centers. Recently, it has been shown that kmeans++
seeding of O(k) centers gives a constant factor bi-criteria approximation [19].

It has been observed that Lloyd’s algorithm is also applicable to whole class
of Bregman divergences [20]. Moreover, it has been shown that under some mild
continuity assumption the class of Bregman divergences is exactly the the class
of dissimilarity measures for which Lloyd’s algorithm is applicable [21]. Results
on the worst-case and smoothed number of iterations have also been generalized
to the Bregman k-median problem [22]. Furthermore, kmeans++ seeding has
been adapted to the case of Bregman divergences independently in at least three
different publications [23,24,13]. We call this generalization bregmeans++ seeding.
In detail, it has been shown that in the case of μ-similar Bregman divergences
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(i.e., Bregman divergences that feature O(1/μ)-approximate metric properties
for some constant 0 < μ ≤ 1), this seeding step alone computes an O(μ−2 log k)-
approximate set of centers [13].

Our contribution. In this paper, we give an analysis of bregmeans++ seeding
when restricted to certain input sets known as separable input instances. This
restriction is assumed for the following reason. When using solutions of the
Bregman k-median problem in real-world applications, we implicitly assume that
these center points provide a meaningful representation of the input data. That
is, we expect the input set to consist of k well separated clusters, and that each
of the k-medians distinctively characterizes one of these clusters. If this is not
the case then, obviously, a different number of clusters should be considered.

This motivates the notion of separable input sets: A k-median input instance
is called (k, α)-separable if no clustering of a cost within a factor of 1/α of the op-
timal k-median cost can be achieved by using only k−1 or fewer centers, where α
is some small positive constant. This models the situation where we have agreed
on a small number of k such that the centers are a meaningful representation of
the input points, while fewer clusters would lead to an unreasonable rise of the
cost function. The notion of separable input instances has been used before to
analyze clustering algorithms [25,9,18].

Another notion frequently used to describe meaningful k-clustering is the
notion of stable clusterings [26]. Here a clustering is assumed to be stable if
a small perturbation of the input points leads to essentially the same optimal
partition of the input set into clusters (i.e., the symmetric difference of perturbed
and unperturbed optimal clusters is small). However, in [18] it is shown that the
notions of separable inputs and stable clusterings are equivalent. Hence, in this
paper, we concentrate on the notion of separable input instances.

We analyse bregmeans++ seeding for a Bregman divergence from the large
subclass of μ-similar Bregman divergences. We prove that in case of separable in-
put instances with constant probability the non-uniform seeding of bregmeans++
yields a constant factor approximation. Stated in detail, our main result is as
follows.

Theorem 1. Let 0 < μ ≤ 1 be constant, let Dφ be a μ-similar Bregman diver-
gence on domain X ⊆ IRd, and let P ⊆ X be a (k, μ/8)-separable input set. Then
with probability at least 2−O(k)μk, bregmeans++ seeding computes an O(1/μ)-
approximate solution of the Bregman k-median problem with respect to Dφ and
input instance P .

Earlier, it has been shown that a non-uniform seeding very similar to kmeans++
seeding provides a constant factor approximate solution for separable instances
in the context of the Euclidean k-means problem [18]. Unfortunately, this result
relies crucially on the metric properties of the Euclidean distance. Our result
can be seen as a generalization of the result from [18] to the class of Bregman
divergences, which includes even asymmetric dissimilarity measures. In partic-
ular, we obtain our result by a somewhat simplified proof that focuses on the
combinatorial and statistical properties of the Bregman k-median problem.
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An immediate consequence of Theorem 1 is that we can compute a constant
factor approximation to the k-median problem of separable input instance P of
size |P | = n with arbitrary high probability by computing the bregmeans++ seed-
ing 2O(k) times independently and choosing the best set of centers obtained this
way. This leads to a constant factor approximation algorithm for the Bregman
k-median problem using at most 2O(k)n arithmetic operations, including evalu-
ations of Dφ. Note that a small number of Lloyd iterations can still significantly
improve the quality of this solution. However, no approximation guarantee for
this improvement is known, and the theoretically provable approximation factor
already applies to the solution computed by the seeding step.

2 Preliminaries

Bregman k-median clustering. The dissimilarity measures known as Bregman
divergences were introduced in 1967 by Lev M. Bregman [27]. Intuitively, a
Bregman divergence can be seen as the error when approximating a convex
function by a tangent hyperplane. We use the following formal definition.

Definition 2. Let X ⊆ IRd be convex. For any strictly convex, differentiable
function φ : X → IR we define the Bregman divergence with respect to φ as

Dφ(p, q) = φ(p)− φ(q)−∇φ(q)�(p− q)

for p, q ∈ X. Here ∇φ(q) denotes the gradient of φ at point q.

Bregman divergences include many prominent dissimilarity measures like the
squared Euclidean distance D�22

(p, q) = ‖p − q‖22 (with φ�22
(t) = ‖t‖22), the

generalized Kullback-Leibler divergence DKL(p, q) =
∑

pi ln pi

qi
−

∑
(pi − qi)

(with φKL(t) =
∑

ti ln ti − ti), and the Itakura-Saito divergence DIS(p, q) =∑
(pi

qi
− ln pi

qi
− 1) (with φIS(t) = −

∑
ln ti). We point out that, in general,

Bregman divergences are asymmetric and do not satisfy the triangle inequality.
Furthermore, Dφ may possess singularities, i.e., there may exist points p, q ∈ X

such that Dφ(p, q) =∞.
For p ∈ X and any set C ⊆ X we also write Dφ(p, C) = minc∈C Dφ(p, c) to

denote the minimal dissimilarity from point p towards any point from set C. For
any finite point set P ⊆ X and C ⊆ X of size |C| = k we denote the k-median
cost of input set P towards the centers from C by cost(P, C) =

∑
p∈P Dφ(p, C).

The goal of the k-median problem with respect to Bregman divergence Dφ and
input instance P ⊆ X is to find a set C ⊆ X of size k such that cost(P, C)
is minimized. We denote the cost of such an optimal solution by optk(P ). The
elements of an optimal C are called k-medians of P .

Furthermore, it is an important observation that all Bregman divergences
satisfy the following central identity.

Lemma 3 ([20], proof of Proposition 1). Let Dφ be a Bregman divergence on
domain X ⊆ IRd, and let cP = 1

|P |
∑

p∈P p denote the centroid (center of mass)
of point set P . For all q ∈ X we have cost(P, q) = opt1(P ) + |P |Dφ(cP , q).



216 M.R. Ackermann and J. Blömer

As an immediate consequence of Lemma 3 and of the non-negativity of Dφ,
we find that that for all Bregman divergences the centroid cP is the optimal
1-median of P .

μ-similarity. One particular class of dissimilarity measures stands out among
the class of Bregman divergences: Mahalanobis distances. For any symmetric
positive definite matrix U ∈ IRd×d the Mahalanobis distance with respect to U
is defined as DU (p, q) = (p−q)�U (p−q) for p, q ∈ IRd. The Mahalanobis distance
was introduced in 1936 by P. C. Mahalanobis [28] based on the inverse of the
covariance matrix of two random variables. It is a Bregman divergence given by
the generating function φU (t) = t�U t. Unlike all other Bregman divergences,
Mahalanobis distances are symmetric. Furthermore, they satisfy the following
double triangle inequality.

Lemma 4 ([13], Lemma 2.1). Let DU be a Mahalanobis distance on domain
IRd. For all p, q, r ∈ IRd we have DU (p, q) ≤ 2

(
DU (p, r) + DU (r, q)

)
.

To some extent, Mahalanobis distances are prototypical for many Bregman diver-
gences that are used in practice. This observation is formalized in the following
notion of μ-similarity.

Definition 5. A Bregman divergence Dφ on domain X ⊆ IRd is called μ-similar
for constant 0 < μ ≤ 1 if there exists a symmetric positive definite matrix U
such that for Mahalanobis distance DU and for each p, q ∈ X we have

μDU (p, q) ≤ Dφ(p, q) ≤ DU (p, q).

It can be shown that all Bregman divergences Dφ that are used in practice
are μ-similar when restricted to a domain X that avoids the singularities of Dφ

(cf. [29], where also an overview of some μ-similar Bregman divergences can be
found). It easily follows from Lemma 4 that μ-similar Bergman divergences are
approximately symmetric and approximately satisfy the triangle inequality, both
within a factor of O(1/μ).

3 Sampling Methods for μ-Similar Bregman Divergences

Uniform sampling. It has been shown that in the case of μ-similar Bregman
divergences, the 1-median of input set P can be well approximated by taking a
sample set S ⊆ P of constant size and solving the 1-median problem S exactly
[12]. Considering a single sample point, a straightforward corollary of Lemma
3.4 from [12] can be stated as follows.

Lemma 6. Let Dφ be μ-similar Bregman divergence on domain X and let P ⊆
X. Then with probability at least 1

2 a uniformly sampled point s ∈ P satisfies

cost(P, s) ≤
(
1 + 2

μ

)
opt1(P ).

Hence, if a cluster Pi of the optimal k-median clustering of P is known then an
O(1/μ)-approximate center can be obtain by sampling a single point uniformly
at random from Pi. Of course, if our goal is to solve the k-median problem with
k ≥ 2 then the optimal clusters of P are not known in advance.
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Non-uniform sampling. The non-uniform sampling scheme which we call breg-
means++ is a random sampling scheme as follows. The first of k approximate
medians is chosen uniformly at random from input instance P . After that, as-
sume that we have already chosen approximate medians Aj = {a1, a2, . . . , aj}.
The next approximate median aj+1 is chosen from P with probability propor-
tional to Dφ

(
aj+1, Aj

)
, that is, for all p ∈ P we have

Pr
[
p = aj+1

∣∣∣ Aj = {a1, a2, . . . , aj} already chosen
]
=

Dφ(p, Aj)
cost(P, Aj)

.

This sampling scheme is repeated until we have chosen k points. In this case, we
say the set A = {a1, a2, . . . , ak} is chosen at random according to Dφ. Assum-
ing that random sampling of a single element according to a given probability
distribution can be achieved in constant time, it is easy to see that sampling
of k points according to Dφ can be achieved using at most O(k |P |) arithmetic
operations, including evaluations of Bregman divergence Dφ.

This sampling scheme has been originally proposed in the context of Euclidean
k-means clustering, as well as for the k-median problem using a t-th power of
the Euclidean distance [17]. The following theorem can be proven the same way
as Theorem 3.1 from [17], using the O(1/μ)-approximate metric properties of
the μ-similar Bregman divergence Dφ.

Theorem 7 ([13], Theorem A.1). If Dφ is a μ-similar Bregman divergence
on domain X and A ⊆ X with |A| = k is chosen at random according to Dφ,
then we have E [cost(P, A)] ≤ 8

μ2 (2 + ln k) optk(P ).

From Markov’s inequality it follows that with high probability bregmeans++
seeding yields a factor O(μ−2 log k) approximation of optk(P ).

4 Analysis on Separable Input Instances

In our analysis, we concentrate on the case of input instances for which the
optimal k-medians indeed give a meaningful representation of the input set,
that is, the case of separable input instances. The motivation behind this notion
is discussed in Section 1. We use the following formal definition.

Definition 8. Let 0 < α < 1. An input instance P ⊆ X is called (k, α)-
separable if optk(P ) ≤ α optk−1(P ).

We show that for (k, α)-separable instance P , where α < μ/8, with constant
probability sampling according to Dφ computes a factor O(1/μ)-approximate
solution to the μ-similar Bregman k-median problem. This implies that on such
instances, bregmeans++ seeding has in fact a better approximation guarantee
than is suggested by the result from Theorem 7. In detail, below we prove that
a set A of k points chosen at random according to Dφ satisfies

Pr
[
cost(P, A) ≤

(
1 +

2
μ

)
optk(P )

]
≥ 1

2

( μ

20

)k−1
. (1)

Theorem 1 is an immediate consequence of inequality (1).
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Proof of Theorem 1. Let P1, P2, . . . , Pk denote the clusters of an optimal k-
median clustering of P and let C = {c1, c2, . . . , ck} be the corresponding optimal
k-medians, i.e., we have cost(P, C) = optk(P ) and cost(Pi, ci) = opt1(Pi) for all
1 ≤ i ≤ k. Furthermore, for all 1 ≤ i ≤ k we define

Xi =
{

x ∈ Pi Dφ(ci, x) ≤
2

μ|Pi|
opt1(Pi)

}
,

and Yi = Pi \Xi. Note that in the definition of Xi the optimal median ci is used
as the first argument of Bregman divergence Dφ. From the central identity of
Lemma 3 we know that the elements x ∈ Xi are exactly the points from Pi that
are (1 + 2/μ)-approximate medians of Pi since

cost(Pi, x) = opt1(Pi) + |Pi|Dφ(ci, x) ≤
(
1 +

2
μ

)
opt1(Pi) .

Analogously, we know that the elements y ∈ Yi are exactly the points from Pi

that fail to be (1 + 2/μ)-approximate medians of Pi.
Let A = {a1, a2, . . . , ak} be the set of points chosen iteratively at random

according to Dφ. Our strategy to prove Theorem 1 is to show that for separable
input instance P with probability at least 2−O(k)μk, set A consists of one point
from each set X1, X2, . . . , Xk and no point from any set Yi. In that case, assuming
ai ∈ Xi for all 1 ≤ i ≤ k, we conclude

cost(P, A) ≤
k∑

i=1

cost(Pi, ai) ≤
(
1+

2
μ

) k∑
i=1

opt1(Pi) =
(
1+

2
μ

)
optk(P ) . (2)

We start by noting that each set Xi is indeed a large subset of Pi. This obser-
vation is an immediate consequence of Lemma 6.

Lemma 9. For all 1 ≤ i ≤ k we have |Xi| ≥ 1
2 |Pi| ≥ |Yi|.

Hence, let us consider the first, uniformly chosen point a1. In the sequel, let
P[i,j] denote the union

⋃j
t=i Pt, and X[i,j] the union

⋃j
t=i Xt. Using Lemma 9 we

immediately obtain the following lemma.

Lemma 10. Pr
[
a1 ∈ X[1,k]

]
≥ 1

2 .

Now, let us assume that we have already sampled set Aj = {a1, a2, . . . , aj} with
1 ≤ j ≤ k − 1 and ai ∈ Xi for all 1 ≤ i ≤ j. Our goal is to show that with
significant probability the next sampled point aj+1 is chosen from X[j+1,k]. In a
first step towards this goal, the following lemma states that with high probability
point aj+1 is chosen from P[j+1,k].

Lemma 11. Pr
[
aj+1 ∈ P[j+1,k] a1 ∈ X1, . . . , aj ∈ Xj

]
≥ 1− 3α

μ .

Proof. For (k, α)-separable P we have

cost(P, Aj) ≥ optj(P ) ≥ 1
α

optk(P ) =
1
α

k∑
i=1

opt1(Pi) . (3)
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From a1 ∈ X1, . . . , aj ∈ Xj we know that for all 1 ≤ i ≤ j we find

cost(Pi, ai) ≤
(
1 +

2
μ

)
opt1(Pi) ≤

3
μ

opt1(Pi) (4)

since 1 + 2
μ ≤

3
μ for μ ≤ 1. Using (3) and (4) we obtain

cost(P, Aj) ≥
1
α

j∑
i=1

opt1(Pi) ≥
μ

3α

j∑
i=1

cost(Pi, ai) ≥
μ

3α
cost(P[1,j], Aj) . (5)

Hence, using (5) we conclude cost(P[1,j],Aj)
cost(P,Aj)

≤ 3α
μ . The lemma follows. ��

Next, we show that if ai ∈ Xi for all 1 ≤ i ≤ j and we have that aj+1 ∈ P[j+1,k],
it follows that with significant probability aj+1 is chosen from X[j+1,k].

Lemma 12. Pr
[
aj+1∈X[j+1,k] a1∈X1, . . . , ai∈Xj , aj+1∈P[j+1,k]

]
≥ μ

5

(
1− 4α

μ

)
Proof. We start by noting that for a separable instance P the set Aj ⊆ X[1,j]
is indeed a poor choice as approximate medians for Pj+1, Pj+2, . . . , Pk. More
precisely, for (k, α)-separable P from inequalities (3) and (5) we know

cost(P, Aj) ≥
1
α

j∑
i=1

opt1(Pi) +
1
α

k∑
i=j+1

opt1(Pi)

≥ μ

3α

j∑
i=1

cost(Pi, ai) +
1
α

k∑
i=j+1

cost(Pi, ci) .

Using α ≤ μ
8 we have μ

3α > 1, and we obtain

cost(P, Aj) ≥
j∑

i=1

cost(Pi, ai) +
1
α

k∑
i=j+1

cost(Pi, ci) .

Hence,

cost(P[j+1,k], Aj) ≥
1
α

k∑
i=j+1

cost(Pi, ci) . (6)

Now, we make use of bound (6) to show that the cost of X[j+1,k] towards Aj

is at least a significant fraction of the cost of P[j+1,k] towards Aj . To this end,
fix an index i > j. Let DU be a Mahalanobis distance such that μDU (p, q) ≤
Dφ(p, q) ≤ DU (p, q) for all p, q ∈ X, and let a∗

x = argmina∈Aj Dφ(x, a) for
any x ∈ Xi. Obviousely, Dφ(y, Aj) ≤ Dφ(y, a∗

x) ≤ DU (y, a∗
x). Using the double

triangle inequality of DU (Lemma 4) we deduce that for all x ∈ Xi and all y ∈ Yi

we have

Dφ(y, Aj) ≤ 4
(
DU (y, ci) + DU (x, ci) + DU (x, a∗

x)
)

≤ 4
μ

(
Dφ(y, ci) + Dφ(x, ci) + Dφ(x, Aj)

)
. (7)
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Due to Lemma 9 we know that |Xi| ≥ |Yi|. Hence, there exists an injective
mapping σ : Yi → Xi such that inequality (7) can be applied to each y ∈ Yi

using a different intermediate point σ(y) ∈ Xi. Therefore, by summing up over
all y ∈ Yi we obtain

cost(Yi, Aj) ≤
4
μ

(
cost(Yi, ci) + cost

(
σ(Yi), ci

)
+ cost

(
σ(Yi), Aj

))
≤ 4

μ

(
cost(Yi, ci) + cost(Xi, ci) + cost(Xi, Aj)

)
=

4
μ
cost(Pi, ci) +

4
μ
cost(Xi, Aj) .

Hence,

cost(Pi, Aj) ≤
4
μ
cost(Pi, ci) +

(
4
μ
+ 1

)
cost(Xi, Aj)

≤ 4
μ
cost(Pi, ci) +

5
μ
cost(Xi, Aj)

since 4
μ +1 ≤ 5

μ for μ ≤ 1. Summing up over all indices i > j and using (6) leads
to

cost(P[j+1,k], Aj) ≤
4
μ

k∑
i=j+1

cost(Pi, ci) +
5
μ
cost(X[j+1,k], Aj)

≤ 4α
μ

cost(P[j+1,k], Aj) +
5
μ
cost(X[j+1,k], Aj) .

Thus, (
1− 4α

μ

)
cost(P[j+1,k], Aj) ≤

5
μ
cost(X[j+1,k], Aj) . (8)

Using (8) we conclude cost(X[j+1,k],Aj)
cost(P[j+1,k],Aj)

≥ μ
5

(
1− 4α

μ

)
, and the lemma follows. ��

Finally, we use Lemmas 10–12 to prove that with probability at least 2−O(k)μk,
set A obtained by sampling according to Dφ contains exactly one point from
each set X1, X2, . . . , Xk. Lemma 13 together with inequality (2) concludes the
proof of Theorem 1.

Lemma 13. Pr [ ∀ 1 ≤ i ≤ k : A ∩Xi 
= ∅ ] ≥ 1
2

(
μ
20

)k−1
.

Proof. In the following, let νj = |{i Aj ∩Xi 
= ∅}| denote the number of sets Xi

that have been considered by the first j sampled points Aj = {a1, a2, . . . , aj}.
We prove this lemma inductively by showing that for all 1 ≤ j ≤ k we have

Pr
[
νj = j

]
≥ 1

2

( μ

20

)j−1
. (9)
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From Lemma 10 we know that with probability at least 1
2 we have a1 ∈ X[1,k].

Since the Xi form a partition of X[1,k], in this case we have ν1 = 1. This proves
the inductive base case of j = 1.

Now, assume that inequality (9) holds for j with 1 ≤ j < k. That is, with
probability at least 1

2

(
μ
20

)j−1 and without loss of generality we may assume
ai ∈ Xi for all 1 ≤ i ≤ j. In this case, by using Lemma 11 and Lemma 12 we
deduce

Pr
[
νj+1 = j + 1 νj = j

]
≥ Pr

[
aj+1 ∈ X[j+1,k] a1 ∈ X1, . . . , aj ∈ Xj

]
≥ Pr

[
aj+1 ∈ X[j+1,k] a1 ∈ X1, . . . , aj ∈ Xj , aj+1 ∈ P[j+1,k]

]
· Pr

[
aj+1 ∈ P[j+1,k] a1 ∈ X1, . . . , aj ∈ Xj

]
≥ μ

5

(
1 − 3α

μ

)(
1 − 4α

μ

)
≥ μ

20
(10)

since 3α
μ ≤ 4α

μ ≤ 1
2 for α ≤ μ

8 . Hence, by using induction hypothesis (9) and
inequality (10) we conclude

Pr
[
νj+1 = j + 1

]
≥ Pr

[
νj+1 = j + 1 νj = j

]
· Pr

[
νj = j

]
≥ 1

2

( μ

20

)j

. ��

5 Discussion

In this paper we have introduced and analyzed a practical approximation al-
gorithm applicable to the μ-similar Bregman k-median problem. The sampling
technique presented in this paper is easy to implement and runs quite fast in
practice, i.e., it has an asymptotic running time of O(kn) and there are no large
hidden constants involved in this running time. In [17] some experiments on real-
world input instances for the Euclidean k-means problem have been conducted.
It turns out that using the kmeans++ seeding outperforms the standard imple-
mentation of Lloyd’s algorithm using uniform seeding both in terms of speed of
convergence and cost of the clustering. In fact, if the data set consists of k well
separated clusters, experiments on synthetic data sets indicate that the quality
of the clustering is improved by up to several orders of magnitude.

As for Theorem 1, in contrast to the analysis of [18] our analysis emphasizes
the combinatorial and statistical structure of the Bregman k-median problem.
However, the approximate triangle inequality and the approximate symmetry of
the μ-similar Bregman divergence Dφ is needed in a single argument in the proof
of Lemma 12. It remains an open problem to find a proof of the approximation
guarantee that relies purely on the combinatorial properties of the Bregman
k-median problem. Moreover, it is still unknown whether it is possible to give
high quality clustering algorithms (say, constant factor approximations) for the
Bregman k-median problem that do not rely on assumptions such as μ-similarity.

Acknowledgments. The authors are very grateful to the anonymous reviewers
for their detailed and helpful comments.
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Abstract. Consider a sequence of bit strings of length d, such that
each string differs from the next in a constant number of bits. We call
this sequence a quasi-Gray code. We examine the problem of efficiently
generating such codes, by considering the number of bits read and written
at each generating step, the average number of bits read while generating
the entire code, and the number of strings generated in the code. Our
results give a trade-off between these constraints, and present algorithms
that do less work on average than previous results, and that increase the
number of bit strings generated.
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1 Introduction

We are interested in efficiently generating a sequence of bit strings. The class of
bit strings we wish to generate are cyclic quasi-Gray codes. A Gray code [3] is
a sequence of bit strings, such that any two consecutive strings differ in exactly
one bit. We use the term quasi-Gray code [2] to refer to a sequence of bit strings
where any two consecutive strings differ in at most c bits, where c is a constant
defined for the code. A Gray code (quasi-Gray code) is called cyclic if the first
and last generated bit strings also differ in at most 1 bit (c bits).

We say a bit string that contains d bits has dimension d, and are interested in
efficient algorithms to generate a sequence of bit strings that form a quasi-Gray
code of dimension d. After generating a bit string, we say the algorithm’s data
structure corresponds exactly to the generated bit string, and it’s state is the
bit string itself. In this way, we restrict an algorithm’s data structure to using
exactly d bits. At each step, the input to the algorithm will be the previously
generated bit string, which is the algorithm’s previous state. The output will be
a new bit string that corresponds to the state of the algorithm’s data structure.

The number of consecutive unique bit strings generated is equal to the number
of consecutive unique states for the generating data structure, and we call this
value L, the length of the generated code. Clearly L ≤ 2d. We define the space
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efficiency of an algorithm as the ratio L/2d, that is, the fraction of bit strings
generated out of all possible bit strings given the dimension of the strings. When
the space efficiency is 1 we call the data structure space-optimal, as it generates
all possible bit strings. When L < 2d the structure is non-space-optimal.

We are concerned with the efficiency of our algorithms in the following ways.
First, we would like to know how many bits the algorithm must read in the worst
case in order to make the appropriate changes in the input string and generate
the next bit string in the code. Second, we would like to know how many bits
must change in the worst case to reach the successor string in the code, which
must be a constant value to be considered a quasi-Gray code. Third, we examine
the average number of bits read at each generating step. And last, we would like
our algorithms to be as space efficient as possible, ideally generating as many
bit strings as their dimension allows, with L = 2d. Our results give a trade-off
between these different goals.

Our decision to limit the algorithm’s data structure to exactly d bits differs
from previous work, where the data structure could use more bits than the strings
it generated [2,5]. To compare previous results to our own, we consider the extra
bits in their data structure to be a part of their generated bit strings. This gives
a more precise view of the space efficiency of an algorithm.

Each generated bit string of dimension d has a distinct totally ordered rank
in the generated code. Given a string of rank k in a code of length L, where
0 ≤ k < L, we want to generate the bit string of rank (k + 1) mod L.

We work within the bit probe model [4,5], counting the average-case and the
worst-case number of bits read and written for each bit string generated. We
use the Decision Assignment Tree (DAT) model [2] to construct algorithms for
generating quasi-Gray codes and describe the algorithms’ behaviour, as well as
to discuss upper and lower bounds.

We use a notation for the iterated log function of the form log(c) n where
c is a non-negative whole number, and is always surrounded by brackets to
differentiate it from an exponent. The value of the function is defined as follows.
When c = 0, log(c) n = n. If c > 0, then log(c)(n) = log(c−1)(log(n)). We define
the function log∗ n to be equal to the smallest non-negative value of c such that
log(c) n ≤ 1. Throughout, the base of the log function is assumed to be 2 unless
stated otherwise.

1.1 Results Summary

Our results, as well as previous results, are summarized in Table 1.
First, we present some space-optimal algorithms. Although our space-optimal

algorithms read a small number of bits in the average case, they all read d bits
in the worst case. In Section 3.1, we describe the Recursive Partition Gray Code
(RPGC) algorithm, which generates a Gray code of dimension d while reading
on average no more than O(log d) bits. This improves the average number of bits
read for a space-optimal Gray code from d to O(log d). In Section 3.2, we use
the RPGC to construct a DAT that generates a quasi-Gray code while reducing
the average number of bits read. We then apply this technique iteratively in
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Table 1. Summary of results. When “Worst-Case Bits Written” is a constant then the
resulting code is a quasi-Gray code, and when it is 1, the code is a Gray code. c ∈ Z

and t are constants greater than 0.

Space Bits Read Bits Written

Dimension Efficiency Average Worst-Case Worst-Case Reference

d 1 2 − 21−d d d folklore

d 1 d d 1 [2,3]

d 1 O(log d) d 1 Theorem 2

d 1 O(log(2c−1) d) d c Theorem 3

d 1 17 d O(log∗ d) Corollary 1

n + 1 1/2 O(1) log n + 4 4 [5]

n + log n O(n−1) 3 log n + 1 log n + 1 [6]

n + log n + 1 1/2 + O(n−1) 4 log n + 1 log n + 1 [1]

n + O(t log n) 1 − O(n−t) O(1) O(t log n) O(t log n) Theorem 4

n + O(t log n) 1 − O(n−t) O(t log n) O(t log n) 3 Theorem 5

n + O(t log n) 1 − O(n−t) O(log(2c) n) O(t log n) 2c + 1 Theorem 6

Section 3.3 to create a d-dimensional DAT that reads on average O(log(2c−1) d)
bits, and writes at most c bits, for any constant c ≥ 1. In section 3.4 we create
a d-dimensional space-optimal DAT that reads at most 17 bits on average, and
writes at most O(log∗ d) bits. This reduces the average number of bits read to
O(1) for a space-optimal code, but increases the number of bits written to be
slightly more than a constant.

Next, we consider quasi-Gray codes that are not space-optimal, but achieve
space efficiency arbitrarily close to 1, and that read O(log d) bits in the worst
case. In Section 3.5 we construct a DAT of dimension d = n + O(t log n) that
reads and writes O(t log n) bits in the worst case, O(1) on average, and has space
efficiency 1 − O(n−t), for a constant t > 0. This improves the space efficiency
dramatically of previous results where the worst-case number of bits written
is O(log n). By combining a Gray code with this result, we produce a DAT of
dimension d = n + O(t logn) that reads O(t logn) bits on average and in the
worst case, but writes at most 3 bits. This reduces the worst-case number of
bits written from O(log n) to O(1). We then combine results from Section 3.3 to
produce a DAT of dimension d = n+O(t logn) that reads on average O(log(2c) n)
bits, and writes at most 2c + 1 bits, for any constant c ≥ 1. This reduces the
average number of bits read from O(t log d) to O(log log d) when writing the same
number of bits, and for each extra bits written, the average is further reduced
by a logarithmic factor.
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2 Decision Assignment Trees

In the Decision Assignment Tree (DAT) model, an algorithm is described as a
binary tree. We use the DAT model to analyze algorithms for generating bit
strings in a quasi-Gray code. We say that a DAT which reads and generates bit
strings of length d has dimension d. Further, we refer to the bit string that the
DAT reads and modifies as the state of the DAT between executions. Generally
the initial state for a DAT will be the bit string 000...0.

Let T be a DAT of dimension d. Each internal node of T is labeled with a value
0 ≤ i ≤ d− 1 that represents reading bit i of the input bit string. The algorithm
starts at the root of T , and reads the bit with which that node is labeled. Then
it moves to a left or right child of that node, depending on whether the bit read
was a 0 or a 1, respectively. This repeats recursively until a leaf node in the tree
is reached. Each leaf node of T represents a subset of states where the bits read
along the path to the leaf are in a fixed state. Each leaf node contains rules that
describe which bits to update to generate the next bit string in the code. And
each rule must set a single fixed bit directly to 0 or 1.

Under this model, we can measure the number of bits read to generate a bit
string by the depth of the tree’s leaves. We may use the average depth, weighted
by the number of states in the generated code that reach each leaf, to describe
the average number of bits read, and the tree’s height to measure the worst-case
number of bits read. The number of bits written can be measured by counting
the rules in each leaf of the tree. Average and worst-case values for these can be
found similarly. A trivial DAT, such as iterating through the standard binary
representations of 0 to 2d− 1, in the worst case, will require reading and writing
all d bits to generate the next bit string, but it may also read and write as few
as one bit when the least-significant bit changes. On average, it reads and writes
2 − 21−d bits. Meanwhile, it is possible to create a DAT [2] that generates the
Binary Reflected Gray Code [3]. This DAT would always write exactly one bit,
but requires reading all d bits to generate the next bit string. This is because
the least-siginificant bit is flipped if and only if the parity is even, which can
only be determined by reading all d bits.

To generate a Gray code of dimension d with length L = 2d, Fredman [2] shows
that any DAT will require reading Ω(log d) bits for some bit string. Fredman
conjectures that for a Gray code of dimension d with L = 2d, any DAT must
read all d bits to generate at least one bit string in the code. That is, any DAT
generating the code must have height d. This remains an open problem.1

3 Efficient Generation of Quasi-gray Codes

In this section we will address how to efficiently generate cyclic quasi-Gray codes
of dimension d. First we present DATs that read up to d bits in the worst case,
but read fewer bits on average. Then we present our lazy counters that read at
1 In [5] the authors claim to have proven this conjecture true for “small” d by exhaus-

tive search.
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most O(log d) bits in the worst case and also read fewer bits on average, but
with slightly reduced space-efficiency.

3.1 Recursive Partition Gray Code (RPGC)

We show a method for generating a cyclic Gray code of dimension d that requires
reading an average of 6 log d bits to generate each successive bit string. First,
assume that d is a power of two for simplicity. We use both an increment and
decrement operation to generate the gray code, where these operations generate
the next and previous bit strings in the code, respectively. Both increment and
decrement operations are defined recursively, and they make use of each other.
Pseudocode for these operations is provided in Algorithm 1 and 2.

Algorithm 1. RecurIncrement
Input: b[], an array of n bits
if n = 1 then1

if b[0] = 1 then b[0] ←− 0;2

else b[0] ←− 1;3

else4

Let A = b[0...n/2 − 1];5

Let B = b[n/2...n − 1];6

if A = B then7

RecurDecrement(B);8

else9

RecurIncrement(A);10

end11

end12

Algorithm 2. RecurDecrement
Input: b[], an array of n bits
if n = 1 then1

if b[0] = 1 then b[0] ←− 0;2

else b[0] ←− 1;3

else4

Let A = b[0...n/2 − 1];5

Let B = b[n/2...n − 1];6

if A = B + 1 then7

RecurIncrement(B);8

else9

RecurDecrement(A);10

end11

end12

To perform an increment, we partition the bit string of dimension d into two
substrings, A and B, each of dimension d/2. We then recursively increment A
unless A = B, that is, unless the bits in A are in the same state as the bits in
B, at which point we recursively decrement B.

To perform a decrement, we again partition a bit string of dimension d into
two substrings, A and B, each of dimension d/2. We then recursively decrement
A unless A = B + 1, that is, the bits of A are in the same state as the bits of B
would be after they were incremented, at which time we recursively increment
B instead.

Theorem 1. Let d ≥ 2 be a power of two. There exists a space-optimal DAT
that generates a Gray code of dimension d, where generating the next bit string
requires reading on average no more than 4 log d bits. In the worst case, d bits
are read, and only 1 bit is written.

Proof. The length L of the code is equal to the number of steps it takes to
reach the initial state again. Because B is decremented if and only if A = B,
then for each decrement of B, A will always be incremented 2d/2 − 1 times in
order to reach the state A = B again. Thus the total number of states is the
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number of times B is decremented, plus the number of times A is incremented
and L = 2d/2 + (2d/2)(2d/2 − 1) = 2d. After L steps, the algorithm will output
the bit string that was its initial input, creating a cyclic Gray code.

Since the RPGC has length L = 2d, it is space-optimal, and the algorithm
will be executed once for each possible bit string of dimension d. As such, we
bound the average number of bits read by studying the expected number of bits
read given a random bit string of dimension d. The proof is by induction on d.
For the base case d = 2, in the worst case we read at most 2 bits, so the average
bits read is at most 2 ≤ 4 log d. Then we assume it is true for all random bit
strings X ∈ {0, 1}d/2.

We define |X | to denote the dimension of the bit string X . Let C(A, B) be
the number of bits read to determine whether or not A = B, where A and B are
bit strings and |A| = |B|. Let I(X) be the number of bits read to increment the
bit string X . Let D(X) be the number of bits read to decrement the bit string
X . Note that since we are working in the DAT model, we read any bit at most
one time, and D(X) ≤ |X |.

To finish the proof, we need to show that E[I(X)] ≤ 4 log d, when X ∈ {0, 1}d

is a random bit strings. We can determine the expected value of C(A, B) as
follows. C(A, B) must read two bits at a time, one from each of A and B,
and compare them, only until it finds a pair that differs. Given two random
bit strings, the probability that bit i is the first bit that differs between the two
strings is 1/2i. If the two strings differ in bit i, then the function will read exactly
i bits in each string. If |A| = |B| = n, then the expected value of C(A, B) is
E[C(A, B)] = 2

∑n
i=1 i/2i = (2n+1 − n− 2)/2n−1 = 4− (n + 2)/2n−1.

Let X = AB, and |A| = |B| = d/2. Then |X | = d. For a predicate P , we
define 1P to be the indicator random variable whose value is 1 when P is true,
and 0 otherwise. Note that I(A) is independent of 1A=B and 1A �=B. This is
because the relation between A and B has no effect on the distribution of A
(which remains uniform over {0, 1}d/2).

The RecurIncrement operation only performs one increment or decrement
action, depending on the condition A = B, thus the expected number of bits
read by I(X) is E[I(X)] = E[C(A, B)]+E[1A=BD(B)]+E[1A �=BI(A)] ≤ 4−(n+
2)/2n−1 + (1/2d/2)(d/2)+ (1− 1/2d/2)E[I(A)] ≤ 4− (d/2+ 4)/2d/2 +4 log(d/2)
≤ 4 log d, as required.

The RPGC algorithm must be modified slightly to handle cases where d is not
a power of two. We prove the following result in the full version of this paper.

Theorem 2. Let d ≥ 2. There exists a space-optimal DAT that generates a
Gray code of dimension d, where generating the next bit string requires reading
on average no more than 6 log d bits. In the worst case, d bits are read, and only
1 bit is written.

3.2 Composite Quasi-gray Code Construction

Lemma 1. Let d ≥ 1, r ≥ 3, w ≥ 1 be integers. Assume we have a space-optimal
DAT for a quasi-Gray code of dimension d such that the following holds: Given
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a bit string of length d, generating the next bit string in the quasi-Gray code
requires reading no more than r bits on average, and writing at most w bits in
the worst case.

Then there is a space-optimal DAT for a quasi-Gray code of dimension d +
�log r�, where generating each bit string requires reading at most 6 log�log r�+3
bits on average, and writing at most w + 1 bits. That is, the average number of
bits read decreases from r to O(log log r), while the worst-case number of bits
written increases by 1.

Proof. We are given a DAT A that generates a quasi-Gray code of dimension d.
We construct a DAT B for the RPGC of dimension d′, as described in Section
3.1. B will read O(log d′) bits on average, and writes only 1 bit in the worst case.

We construct a new DAT using A and B. The combined DAT generates bit
strings of dimension d+d′. The last d′ bits of the combined code, when updated,
will cycle through the quasi-Gray code generated by B. The first d bits, when
updated, will cycle through the code generated by A.

The DAT initially moves the last d′ bits through 2d′
states according to the

rules of B. When it leaves this final state, to generate the initial bit string of B
again, the DAT also moves the first d bits to their next state according to the
rules of A. During each generating step, the last d′ bits are read and moved to
their next state in the code generated by the rules of B, and checked to see if
they have reached their initial position, which requires 6 log d′+2 bits to be read
on average and 1 bit to be written. However, the first d bits are only read and
written when the last d′ bits cycle back to their initial state - once for every 2d′

bit strings generated by the combined DAT.
If we let d′ = �log r�, then the RPGC B has dimension at least 2. Let r′ be

the average number of bits read by the d′-code. Then the average number of
bits read by the combined quasi-Gray code is no more than r′ + 2 + r/2d′ ≤
6 log d′ + 2 + r/2�log r	 ≤ 6 log�log r�+ 3.

The number of bits written, in the worst case, is the number of bits written
in DAT A and in DAT B together, which is at most w + 1.

3.3 RPGC-Composite Quasi-gray Code

We are able to use the RPGC from Theorem 2 with our Composite quasi-Gray
code from Lemma 1 to construct a space-optimal DAT that generates a quasi-
Gray code. By applying Lemma 1 to the RPGC, and then repeatedly applying
it c − 1 more times to the resulting DAT, we create a DAT that generates a
quasi-Gray code while reading on average no more than 6 log(2c−1) d + 14 bits,
and writing at most c bits to generate each bit string, for any constant c ≥ 1.

Theorem 3. Given integers d and c ≥ 1, such that log(2c−1) d ≥ 14. There
exists a DAT of dimension d that generates a quasi-Gray code of length L = 2d,
where generating the next bit string requires reading on average no more than
6 log(2c−1) d + 14 bits and writing in the worst case at most c bits.
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3.4 Reading a Constant Average Number of Bits

From Theorem 3, by taking c to be O(log∗ d), it immediately follows that we can
create a space-optimal DAT that reads a constant number of bits on average.
This is a trade off, as the DAT requires writing at most O(log∗ d) in the worst
case, meaning the code generated by this DAT is no longer a quasi-Gray code.

Corollary 1. For any integer d > 24 + 216, there exists a space-optimal DAT
of dimension d that reads at most 17 bits on average, and writes no more than
�(log∗ d + 3)/2� bits in the worst case.

Proof. Let d > 216, and c = �(log∗ d−3)/2�. Then c ≥ 1 and log(2c−1) d ≥ 14 and
it follows from Theorem 3 that there exists a space-optimal DAT of dimension d
that reads on average at most 6 log(log∗ d−4) d+14 ≤ 6 · 216 +14 bits, and writes
at most �(log∗ d− 1)/2� bits.

Let d > 19 + 216, and m = d − 19 > 216 Use the DAT from our previous
statement with Lemma 1, setting r = 6 ·216+14 and w = �(log∗ d−1)/2�. Then
there exists a DAT of dimension m+�log r� = m+19 = d, that reads on average
at most 6 log�log r�+3 ≤ 29 bits and writes no more than �(log∗ d+1)/2� bits.

If we apply this same technique again,we create aDAT of dimension d > 24+216

that reads on average atmost 17 bits and writes no more than �(log∗ d+3)/2� bits.

3.5 Lazy Counters

A lazy counter is a structure for generating a sequence of bit strings. In the first
n bits, it counts through the standard binary representations of 0 to 2n − 1.
However, this can require updating up to n bits, so an additional data structure
is added to slow down these updates, making it so that each successive state
requires fewer bit changes to be reached. We present a few known lazy counters,
and then improve upon them, using our results to generate quasi-Gray codes.

Frandsen et al. [6] describe a lazy counter of dimension d that reads and writes
at most O(log n) ≤ O(log d) bits for an increment operation. The algorithm uses
d = n + logn bits, where the first n are referred to as b, and the last log n are
referred to as i. A state in this counter is the concatenation of b and i, thus each
state generates a bit string of dimension d. In the initial state, all bits in b and
i are set to 0. The counter then moves through 2n+1 − 2 states before cycling
back to the initial state, generating a cyclic code.

The bits of b move through the standard binary numbers. However, moving
from one such number to the next may require writing as many as n bits. The
value in i is a pointer into b. For a standard binary encoding, the algorithm
to move from one number to the next is as follows: starting at the right-most
(least significant) bit, for each 1 bit, flip it to a 0 and move left. When a 0 bit is
found, flip it to a 1 and stop. Thus the number of bit flips required to reach the
next standard binary number is equal to one plus the position of the right-most
0. This counter simply uses i as a pointer into b such that it can flip a single
1 to a 0 each increment step until i points to a 0, at which point it flips the 0 to a
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1, resets i to 0, and b has then reached the next standard binary number. The
pseudocode is given in Algorithm 3.

Algorithm 3. LazyIncrement [6]
Input: b[]: an array of n bits; i: an integer of log n bits
if b[i] = 1 then1

b[i] ← 0;2

i ← i + 1;3

else4

b[i] ← 1;5

i ← 0;6

end7

Lemma 2. [6] There exists a DAT of dimension d = n + logn, using the
LazyIncrement algorithm, that generates 2n− 1 of a possible n2n−1 bit strings,
where in the limit n → ∞ the space efficiency drops to 0. The DAT reads and
writes in the worst case log n+1 bits to generate each successive bit string, and
on average reads and writes 3 bits.

An observation by Brodal [1] leads to a dramatic improvement in space efficiency
over the previous algorithm by adding a single bit to the counter. This extra bit
allows for the logn bits in i to spin through all their possible values, thus making
better use of the bits and generating more bit strings with them. The variables
b and i are unchanged from the counter in Lemma 2, and k is a single bit,
making the counter have dimension d = n + logn + 1. The pseudocode is given
in Algorithm 4.

Algorithm 4. SpinIncrement [1]
Input: b[]: an array of n bits; i: an integer of log n bits; k: a single bit
if k = 0 then1

i ← i + 1 ; // spin i2

if i = 0 then k ← 1 ; // the value of i has rolled over3

else4

LazyIncrement(b[], i) ; // really increment the counter5

if i = 0 then k ← 0;6

end7

Lemma 3. [1] There exists a DAT of dimension d = n + logn + 1, using the
SpinIncrement algorithm, that generates (n + 1)(2n − 1) of a possible 2n2n bit
strings, where in the limit n → ∞ the space efficiency converges to 1/2. The
DAT reads and writes in the worst case log n+2 bits to generate each successive
bit string, and on average reads at most 4 bits.

By generalizing the dimension of k, we are able to make the counter even more
space efficient while keeping its O(log n) = O(log d) worst-case bound for bits
written and read. Let k be a bit array of dimension g, where 1 ≤ g ≤ t logn and
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t > 0. Then for a counter of dimension d = n + logn + g, the new algorithm is
given by Algorithm 5.

Algorithm 5. DoubleSpinIncrement
Input: b[]: an array of n bits; i: an integer of log n bits; k: an integer of g bits
if k < 2g − 1 then1

i ← i + 1 ; // happens in (2g − 1)/2g of the cases2

if i = 0 then k ← k + 1;3

else4

LazyIncrement(b[], i) ; // do a real increment5

if i = 0 then k ← 0;6

end7

Theorem 4. There exists a DAT of dimension d = n + logn + g, where 1 ≤
g ≤ t logn and t > 0, with space efficiency 1 − O(2−g). The DAT, using the
DoubleSpinIncrement algorithm, reads and writes in the worst case g + logn+1
bits to generate each successive bit string, and on average reads and writes O(1)
bits.

Proof. This counter generates an additional 2g − 1 states for each time it spins
through the possible values of i. Thus the number of bit strings generated is
(2g − 1)n(2n − 1) + 2n − 1. Given the dimension of the counter, the possible
number of bit strings generated is n2n2g. When g = 1, we have exactly the same
counter as given by Lemma 3. If g > O(log n), the worst-case number of bits
read would increase. When g = t logn, the space efficiency of this counter is
(nt+1 − n)(2n − 1) + 2n − 1

nt+12n
= 1 − O(n−t). Thus as n gets large, this counter

becomes more space efficient, and is space-optimal as n →∞.
In the worst case, this counter reads and writes every bit in i and k, and

a single bit in b, thus g + logn + 1 ≤ (t + 1) logn + 1 bits. On average, the
counter now reads and writes O(1) bits. This follows from a similar argument
to that made for Lemma 3, where each line modified in the algorithm still reads
on average O(1) bits.

Rahman and Munro [5] present a counter that reads at most logn + 4 bits and
writes at most 4 bits to perform an increment or decrement operation. The
counter uses n + 1 bits to count through 2n states, and has space efficiency
2n/2n+1 = 1/2. Compared to DoubleSpinIncrement, their counter writes fewer
bits per generating step, but is less space efficient. By modifying our lazy counter
to use Gray codes internally, the worst-case number of bits read remains asymp-
totically equivalent to the counter by Rahman and Munro, and the average num-
ber of bits we read increases. We are able to write a smaller constant number of
bits per increment and retain a space efficiency arbitrarily close to 1.

We modify our counter in Theorem 4 to make i and k hold a cyclic Gray
code instead of a standard binary number. The BRGC is a suitable Gray code
for this purpose. Let rank(j) be a function that returns the rank of the bit
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string j in the BRGC, and next(j) be a function that returns a bit string k
where rank(k) = rank(j)+ 1. Algorithm 6 provides a lazy counter of dimension
d = n + logn + g, where 1 ≤ g ≤ t logn and t > 0, that writes at most 3 bits,
reads at most g+logn+1 bits to generate the next state, and has space efficiency
arbitrarily close to 1.

Algorithm 6. WineIncrement2

Input: b[]: an array of n bits; i: a Gray code of log n bits; k: a Gray code of g
bits

if k 	= 100...00 then1

i ← next(i) ; // happens in (2g − 1)/2g of the cases2

if i = 0 then k ← next(k);3

else4

if b[rank(i)] = 1 then5

b[rank(i)] ← 0;6

i ← next(i);7

if i = 0 then k ← 0 ; // wraps around to the initial state8

else9

b[rank(i)] ← 1;10

k ← 0 ; // resets k to 011

end12

end13

Theorem 5. There exists a DAT of dimension d = n + logn + g, where 1 ≤
g ≤ t logn and t > 0, with space efficiency 1 − O(2−g). The DAT, using the
WineIncrement algorithm, reads in the worst case g + logn + 1 bits and writes
in the worst case 3 bits to generate each successive bit string, and on average
reads at most O(log n + g) bits.

While the previous counter reads at most g+ logn+1 bits in the worst case, its
average number of bits read is also O(log n). Using the quasi-Gray code counter
from Theorem 3, we are able to bring the average number of bits read down as
well. The worst case number of bits read remains g + log n + 1, but on average,
we only read at most 12 log(2c) n + O(1) bits, for any c ≥ 1.

The algorithm does not need to change from its fourth iteration for these
modifications. We simply make i a quasi-Gray code from Theorem 3 of dimension
logn and k a similar quasi-Gray code of dimension g ≤ t logn, for a t > 0.

Theorem 6. Let n be such that log(2c) n ≥ 14 and g be such that log(2c−1) g ≥
14, for 1 ≤ g ≤ t logn and t > 0. Then for any c ≥ 1, there exists a DAT of
2 The name WineIncrement comes from the Caribbean dance known as Wineing, a

dance that is centered on rotating your hips with the music. The dance is pervasive
in Caribbean culture, and has been popularized elsewhere through songs and music
videos such as Alison Hinds’ “Roll It Gal”, Destra Garcia’s “I Dare You”, and Fay-
Ann Lyons’ “Start Wineing”.
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dimension d = n+logn+g bits, using the WineIncrement algorithm, with space
efficiency 1 − O(2−g), that reads in the worst case g + logn + 1 bits, writes in
the worst case 2c+1 bits, and reads on average no more than 12 log(2c) n+O(1)
bits.

4 Conclusion

We have shown in this paper how to generate a Gray code, while reading sig-
inificantly fewer bits on average than previously known algorithms, and how to
efficiently generate a quasi-Gray code with the same worst-case performance and
improved space efficiency. Our results give a tradeoff between space-optimality,
and the worst-case number of bits written. This trade-off highlights the initial
problem which motivated this work: a lower bound on the number of bits read
in the worst case, for a space-optimal Gray code. After many hours and months
spent on this problem, we are yet to find a tighter result than the Ω(log d) bound
shown by Fredman [2] (when d is more than a small constant). Our Recursive
Partition Gray Code does provide a counter-example to any efforts to show a
best-case bound of more than Ω(log d), and our hope is that this work will con-
tribute to a better understanding of the problem, and eventually, a tighter lower
bound in the case of generating a space-optimal Gray code.

Acknowledgment. The fifth author would like to thank Peter Bro Miltersen
for introducing us to this class of problems.
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Abstract. Symmetric disk graphs are often used to model wireless com-
munication networks. Given a set S of n points in R

d (representing n
transceivers) and a transmission range assignment r : S → R, the sym-
metric disk graph of S (denoted SDG(S)) is the undirected graph over
S whose set of edges is E = {(u, v) | r(u) ≥ |uv| and r(v) ≥ |uv|}, where
|uv| denotes the Euclidean distance between points u and v. We prove
that the weight of the MST of any connected symmetric disk graph over
a set S of n points in the plane, is only O(log n) times the weight of the
MST of the complete Euclidean graph over S. We then show that this
bound is tight, even for points on a line.

Next, we prove that if the number of different ranges assigned to the
points of S is only k, k << n, then the weight of the MST of SDG(S)
is at most 2k times the weight of the MST of the complete Euclidean
graph. Moreover, in this case, the MST of SDG(S) can be computed
efficiently in time O(kn log n).

We also present two applications of our main theorem, including an al-
ternative and simpler proof of the Gap Theorem, and a result concerning
range assignment in wireless networks.

Finally, we show that in the non-symmetric model (where E = {(u, v) |
r(u) ≥ |uv|}), the weight of a minimum spanning subgraph might be as
big as Ω(n) times the weight of the MST of the complete Euclidean
graph.

1 Introduction

Symmetric disk graphs are often used to model wireless communication net-
works. Given a set S of n points in R

d (representing n transceivers) and a trans-
mission range assignment r : S → R, the symmetric disk graph of S (denoted
SDG(S)) is the undirected graph over S whose set of edges is E = {(u, v) | r(u) ≥
|uv| and r(v) ≥ |uv|}, where |uv| denotes the Euclidean distance between points
u and v. If r(u) ≥ diam(S), for each u ∈ S, then SDG(S) is simply the com-
plete Euclidean graph over S. However, usually, the transmission ranges are
much shorter than diam(S).
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The Minimum Spanning Tree (MST) of a connected Euclidean graph G is an
extremely important substructure of G. In the context of wireless networks, the
MST is especially important. Besides its role in various routing protocols, it is
also used to obtain good approximations when the problem being considered is
NP-hard; see, e.g., the power assignment problem.

It is usually impossible to use the Euclidean MST of S (denoted MST (S)),
under the symmetric disk graph model, simply because some of the edges of
MST (S) are not present in SDG(S). Instead, it is natural to use the MST of
SDG(S) (denoted MSTSDG(S)). However, it is still desirable to (tightly) bound
the approximation ratio also with respect to the weight of MST (S) (and not
only with respect to the weight of MSTSDG(S)). The main result of this paper
makes this possible. We prove the following, somewhat surprising, theorem. For
any set S of points in the plane and for any assignment of ranges to the points of
S, such that SDG(S) is connected, the weight (i.e., the sum of the edge lengths)
of MSTSDG(S) is O(log n) times the weight of MST (S).

Disk graphs and especially unit disk graphs have received much attention,
especially in the context of wireless networks. Notice that the unit disk graph
of S is the symmetric disk graph of S that is obtained when r(u) = 1, for each
point u ∈ S. The disk graph of S, on the other hand, is a directed graph, where
there is an arc from u to v if r(u) ≥ |uv|. Despite their importance, symmetric
disk graphs have not received as much attention as (unit) disk graphs. Before
describing our results concerning the MST of symmetric disk graphs, we mention
two applications of our main result (stated above).

The Gap Theorem. The proof of our main result is based on a cute property of
MSTSDG(S) (see Lemma 1). This property also allows us to obtain an alternative
and simpler proof of the, so called, Gap Theorem, stated and proved by Chandra
et al. [4]. The gap theorem is used to show that the weight of the greedy spanner
is O(log n) times the weight of MST (S) [1,8].

Range assignment. A range assignment is an assignment of transmission ranges
to each of the nodes of a network, so that the induced communication graph is
connected and the total power consumption is minimized. The power consumed
by a node v is r(v)α, where r(v) is the range assigned to v and α ≥ 1 is some
constant. The range assignment problem was first studied by Kirousis et al. [7],
who did not impose any restriction on the potential transmission range of a
node. They proved that the problem is NP-hard in three-dimensional space,
assuming α = 2. Subsequently, Clementi et al. [5] proved that the problem
remains NP-hard in two-dimensional space. Kirousis et al. [7] also presented a
simple 2-approximation algorithm, based on MST (S).

It is more realistic to study the range assignment problem under the sym-
metric disk graph model. That is, the potential transmission range of a node
u is bounded by some maximum range r(u), and two nodes u, v can directly
communicate with each other if and only if v lies within the range assigned to
u and vise versa. The range assignment problem under this model was studied
in [3,2]. Blough et al. [2] show that this version of the problem is also NP-hard
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in 2-dimensional and in 3-dimensional space. Our main theorem enables us, as-
suming α = 1, to bound the weight of an optimal range assignment with limits
on the ranges with respect to an optimal range assignment without such limits.

1.1 Our Results

In this paper, we prove several results concerning the minimum spanning tree
of symmetric disk graphs. In Section 2, we prove that the weight of the MST of
any connected symmetric disk graph SDG(S) is bounded by O(log n) times
the weight of MST (S). Or, in our notation, wt(MSTSDG(S)) = O(log n) ·
wt(MST (S)). We also show that this bound is tight, in the sense that there exists
a symmetric disk graph, such that wt(MSTSDG(S)) = Ω(log n) ·wt(MST (S)). If
the ratio between the maximum range and minimum range is bounded by some
constant, then we show that wt(MSTSDG(S)) = O(wt(MST (S))). In Section 3,
we consider the common case where the number of different ranges is only k,
for k << n. We prove that in this case wt(MSTSDG(S)) ≤ 2k · wt(MST (S)).
Moreover, we present an algorithm for computing MSTSDG(S) in this case in
time O(kn log n). In Section 4, we discuss the two applications mentioned above.
In particular, we provide an alternative and simpler proof of the Gap Theorem.
In Section 5, we consider disk graphs. We prove that the weight of a minimum
spanning subgraph of a disk graph is bounded by O(n) times the weight of
MST (S), and give an example where this bound is tight.

2 Symmetric Disk Graphs

Given a set S of n points in the plane and a function r : S → R, the symmetric
disk graph of S, denoted SDG(S), is the undirected graph over S whose set
of edges is E = {(u, v) | r(u) ≥ |uv| and r(v) ≥ |uv|}, where |uv| denotes the
Euclidean distance between points u and v. The weight, wt(e), of an edge e =
(u, v) ∈ E is |uv|, and the weight, wt(E′), of E′ ⊆ E is

∑
e∈E′ wt(e).

We denote by MSTSDG(S) the minimum spanning tree of SDG(S). In this sec-
tion, we show that wt(MSTSDG(S)) = Θ(log n) · wt(MST (S)), where MST (S)
is the Euclidean minimum spanning tree of S (i.e., the minimum spanning tree of
the complete Euclidean graph over S). More precisely, we show that if SDG(S)
is connected, then wt(MSTSDG(S)) = O(log n) · wt(MST (S)), and there exists
a connected symmetric disk graph (over some set of points S) whose weight is
Ω(log n) · wt(MST (S)).

Lemma 1. Let SDG(S) = (S, E) be a symmetric disk graph over S. Let (a, b),
(c, d) ∈ E(MSTSDG(S)) be two edges of MSTSDG(S) that do not share an end-
point, such that 0 < |ab| ≤ |cd|. Then at most one edge from the set A =
{(a, c), (b, c), (a, d), (b, d)} is shorter than (a, b).

Proof. Assume that there are two edges e′, e′′ ∈ A that are shorter than (a, b).
Since e′ is shorter than (a, b) (and therefore also from (c, d)), it belongs to
SDG(S). Similarly, e′′ belongs to SDG(S). Therefore the edges e′, e′′ together



The MST of Symmetric Disk Graphs Is Light 239

α

r1e1

e2

l1

r2

l2 r′1

Fig. 1. Proof of Lemma 2

with (a, b), (c, d) form a cycle in SDG(S), implying that (a, b) or (c, d) is not in
E(MSTSDG(S)) — a contradiction.

Lemma 2. Let e1 = (l1, r1), e2 = (l2, r2) be two edges of MSTSDG(S), where ri

is to the right of li, i = 1, 2, such that (i) 1 ≤ |e2|
|e1| ≤

5
4 , and (ii) the difference α

between the orientations of e1 and e2 is in the range [0, π
9 ]. Then |l1l2| ≥ 1

2 |e1|.

Proof. Assume that e1 and e2 do not share an endpoint. If they do, then the
proof becomes much easier. Assume that |l1l2| < 1

2 |e1|. Let r′1 be the point
to the right of l2, such that (l1, r1) and (l2, r′1) are parallel to each other and
|l1r1| = |l2r′1|; see Figure 1. By the triangle inequality,

|l1l2|+ |r′1r2| = |r1r
′
1|+ |r′1r2| ≥ |r1r2| .

Since |e1| ≤ |e2| and |l1l2| < |e1|, we know, by Lemma 1, that |r1r2| ≥ |e1|.
Thus, we get that

|r′1r2| ≥ |e1| − |l1l2| > |e1| −
1
2
|e1| =

1
2
|e1| .

By the law of cosines,

|r′1r2|2 = |e1|2 + |e2|2 − 2|e1||e2| cos(α)

and therefore
|e1|2 + |e2|2 − 2|e1||e2| cos(α) >

1
4
|e1|2

or
3
4
+
|e2|2
|e1|2

− 2
|e2|
|e1|

cos(α) > 0 . (1)

We now show that this is impossible. Substituting |e2|
|e1| with x in (1), we get

x2− 2 cos(α)x+3/4 > 0. The solutions of the equation x2− 2 cos(α)x+3/4 = 0

are x1,2 = cos(α) ±
√
cos2(α)− 3

4 . Notice that since 0 < α ≤ π
9 , we have

cos(α) > 37/40, and therefore x1 > 5/4 and x2 < 1. Thus, for any x in the
interval [1, 5

4 ], the left side of inequality (1) is non-positive. But this contradicts
the assumption that 1 ≤ |e2|

|e1| ≤ 5/4. We conclude that |l1l2| ≥ 1
2 |e1|.
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We are ready to prove our main theorem.

Theorem 1. (SDG theorem)

1. The weight of the minimum spanning tree of a connected symmetric disk
graph over a set S of n points in the plane is O(log n) ·wt(MST (S)), where
MST (S) is the Euclidean minimum spanning tree of S.

2. There exists a set S of n points on a line, such that wt(MSTSDG(S)) =
Ω(log n) · wt(MST (S)).

We prove the first part (i.e., the upper bound) in Section 2.1, and the second
part (i.e., the lower bound) in Section 2.2.

2.1 Upper Bound

Let SDG(S) = (S, E) be a connected symmetric disk graph over a set S of n
points in the plane. We prove that wt(MSTSDG(S)) = O(log n) · wt(MST (S)),
where MST (S) is the Euclidean minimum spanning tree of S.

We partition the edge set of MSTSDG(S) into two subsets. Let E′ = {e ∈
MSTSDG(S) | |e| > wt(MST (S))/n} and let E′′ = {e ∈ MSTSDG(S) | |e| ≤
wt(MST (S))/n}. Since MSTSDG(S) has n− 1 edges,

wt(E′′) =
∑

e∈E′′
|e| ≤ (n− 1) · wt(MST (S))

n
< wt(MST (S)) .

In order to bound wt(E′), we divide the edges of E′ into k ≥ 9 classes {C1,. . . ,Ck},
according to their orientation (which is an angle in the range (−π/2, π/2]).
Within each class we divide the edges into O(log n) buckets, according to their
length. For 1 ≤ i ≤ k and 1 ≤ j ≤ logp n, where p = 5/4, let

Bi,j =
{

e ∈ E′ ∩Ci | |e| ∈
(

wt(MST (S))
n

· pj−1,
wt(MST (S))

n
· pj

]}
.

(Notice that for each e ∈ E′, |e| ≤ diam(S) ≤ wt(MST (S)).) Finally, let Si,j =
{s ∈ S | (s, t) ∈ Bi,j}.

Let s, s′ ∈ Si,j , and let t, t′ ∈ S such that e = (s, t) and e′ = (s′, t′) are
edges in Bi,j . Since e, e′ belong to the same class, the difference between their
orientations is less than π

9 , and since they also belong to the same bucket, we
may apply Lemma 2 and obtain that |s, s′| ≥ 1

2 ·min{|e|, |e′|}.
We now show that wt(Bi,j) = O(wt(MST (S)). First notice that

wt(MST (Si,j)) ≥ (|Si,j | − 1) · min
e∈MST (Si,j)

{|e|} ≥ (|Si,j | − 1)
2

· min
e∈Bi,j

{|e|} ,

and since for any e1, e2 ∈ Bi,j , min{|e1|, |e2|} ≥ 1
p ·max{|e1|, |e2|} we get that

wt(MST (Si,j)) ≥
(|Si,j | − 1)

2p
· max

e∈Bi,j

{|e|} ≥ 1
2p
· (wt(Bi,j)− max

e∈Bi,j

{|e|}) .
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Rearranging,

wt(Bi,j) ≤ 2p · wt(MST (Si,j))+ max
e∈Bi,j

{|e|}≤2p · wt(MST (Si,j))+p · min
e∈Bi,j

{|e|}

≤ 2p · wt(MST (Si,j)) + 2p · max
e∈MST (Si,j)

{|e|} ≤ 2p · wt(MST (Si,j))

+ 2p · wt(MST (Si,j))
≤ 4p · wt(MST (Si,j)) .

Referring to S \Si,j as Steiner points we get wt(MST (Si,j)) ≤ 2 ·wt(MST (S)),
and therefore wt(Bi,j) ≤ 8p · wt(MST (S)).

It follows that

wt(E′) =
k∑

i=1

logp n∑
j=1

wt(Bi,j) ≤ 8pk logp n · wt(MST (S)) , and

wt(E) = wt(E′) + wt(E′′) ≤ 8pk logp n · wt(MST (S)) + wt(MST (S)
= O(log n) · wt(MST (S)).

A more delicate upper bound. We showed that the weight of the minimum
spanning tree of a connected symmetric disk graph is bounded by O(log n) ·
wt(MST (S)), whereas the weight of the minimum spanning tree of a connected
unit disk graph (UDG) is known to be O(wt(MST (S))). A more delicate bound
that depends also on rmax and rmin, the maximum and minimum ranges, bridges
between the two upper bounds.

This bound is obtained by changing the proof of Theorem 1 in the following
manner. Let l1 = max{rmin, wt(MST (S))/n} and l2=min{rmax, wt(MST (S))}.
Define E′′ = {e ∈ MSTSDG(S) | |e| ≤ l1}, and E′ = {e ∈ MSTSDG(S) | |e| >
l1}. Now, if l1 = rmin, then we get that E′′ ⊆ E(MST (S)) and therefore
wt(E′′) ≤ wt(MST (S)), and if l1 = wt(MST (S))/n, then we get that wt(E′′) ≤
(n − 1) · wt(MST (S))/n < wt(MST (S)). Thus, in both cases we get that
wt(E′′) ≤ wt(MST (S)).

Concerning E′, we slightly modify the division into buckets, so that Bi,j =
{e ∈ E′ ∩ Ci | |e| ∈ (l1pj−1, l1p

j ]}. Since the weight of any edge in MSTSDG(S)
is at most l2, we get that the number of buckets is logp(l2/l1). The asymptotic
weight of each bucket remains O(wt(MST (S))) (as before).

Therefore, the new bound on the weight of MSTSDG(S) is O(log(l2/l1) + 1) ·
wt(MST (S)). The following theorem summarize our result.

Theorem 2

wt(MSTSDG(S)) = O(log
(

min{rmax, wt(MST (S))}
max{rmin, wt(MST (S))/n}

)
+ 1) · wt(MST (S)) ,

where rmax and rmin are the maximum and minimum ranges, respectively. In
particular, if (rmax/rmin) is bounded by some constant, then wt(MSTSDG(S)) =
O(wt(MST (S))).
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2.2 Lower Bound

Consider the following set of n + 1 points S = (v0, v1, . . . , vn) on a line, where
n = 2k for some positive integer k. The distance between two adjacent points
vi and vi+1 is 1 + iε, where ε = O(1/n), for i = 0, . . . , n− 1. We assign a range
r(vi) to each of the points vi ∈ S; see Figure 2.

8+28ε

4 + 6ε 4+38ε

2+25ε2+17ε2 + ε 2 + 9ε

16 + 120ε

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

Fig. 2. Theorem 1 — the lower bound

Set
r(v0) = n +

(n− 1)n
2

ε .

That is, v0’s range is the distance between the two extreme points v0 and vn.
For i 
= 0, let m = 2l be the largest power of two that divides i. Set

r(vi) = m +
m(2i−m− 1)

2
ε .

Consider the induced symmetric disk graph, SDG(S), depicted in Figure 2.
SDG(S) is a tree and therefore MSTSDG(S) is simply SDG(S).

wt(MSTSDG(S)) >
n

2
· 1 + n

4
· 2 + n

8
· 4 + · · ·+ n

n
· n

2
=

n

2
· logn = Ω(n logn) .

On the other hand, MST (S) is simply the path v0, v1, . . . , vn, and therefore

wt(MST (S)) = n +
n−1∑
i=1

iε = n +
(n− 1)n

2
ε = O(n) .

Therefore, in this example, wt(MSTSDG(S)) = Ω(logn) · wt(MST (S)).

3 k-Range Symmetric Disk Graphs

In this section we consider the common case where the number of different ranges
assigned to the points of S is only k, for k << n. That is, the function r : S → R

assumes only k different values, denoted r1 < r2 < · · · < rk. We first prove that
in this case the weight of the minimum spanning tree of SDG(S) is at most 2k ·
wt(MST (S)). Next, we present an efficient O(kn log n) algorithm for computing
this minimum spanning tree. Thus, assuming k is some constant, we get that
wt(MSTSDG(S)) = O(wt(MST (S))) and MSTSDG(S) can be constructed in
time O(n log n).
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3.1 The Weight of the Minimum Spanning Tree

Let SDG(S) be a k-range symmetric disk graph. Let MSTSDG(S) be the mini-
mum spanning tree of SDG(S), and let E be the set of edges of MSTSDG(S). We
divide the edges of E into k subsets according to their length. Notice that, by
definition, the length of the longest edge in E is at most rk. Put r0 = 0, and let
Ei = {e ∈ E | ri−1 < |e| ≤ ri}, for i = 1, . . . , k. Also, let Si = {v ∈ S | ri ≤ r(v)},
for i = 1, . . . , k. Then, S = S1 ⊇ S2 ⊇ · · · ⊇ Sk.

Claim. Ei ⊆ E(MST (Si)), for i = 1, . . . , k.

Proof. Let e = (u, v) ∈ Ei. We first observe that u, v ∈ Si. Indeed, since e ∈
E(SDG(S)), we know that r(u) ≥ |e| and r(v) ≥ |e|. Now, since |e| > ri−1, it
follows that r(u) ≥ ri and r(v) ≥ ri and therefore u, v ∈ Si.

Let u′, v′ be any two vertices in Si, such that |u′v′| < |e|. Then, e′ = (u′, v′) ∈
E(SDG(S)) (since r(u′) ≥ ri ≥ |e| > |e′| and r(v′) ≥ ri ≥ |e| > |e′|). Thus, in
the construction of MSTSDG(S) by Kruskal’s algorithm (see [6]), the edge e′, as
well as all other edges of SDG(S) with both endpoints in Si and shorter than
e, were considered before e. Nevertheless, e was selected, since there was still no
path between u and v. Therefore, in the construction of MST (Si), when e is
considered, there is still no path between its endpoints, and it is selected, i.e.,
e ∈ E(MST (Si)).

Theorem 3. wt(MSTSDG(S)) ≤ 2k · wt(MST (S)).

Proof. For each 1 ≤ i ≤ k, Ei ⊆ MST (Si) (by the claim above), and there-
fore wt(Ei) ≤ wt(MST (Si)). Referring to S \ Si as Steiner points, we get
that wt(Ei) ≤ 2 · wt(MST (S)). Thus, wt(MSTSDG(S)) =

∑k
i=1 wt(Ei) ≤∑k

i=1 2 · wt(MST (S)) = 2k · wt(MST (S)).

3.2 Constructing the Minimum Spanning Tree

We describe below an O(kn log n) algorithm for computing the minimum span-
ning tree of a k-range symmetric disk graph. The algorithm applies Kruskal’s
minimum spanning tree algorithm to a subset of the edges of SDG(S) (see [6]).
We then prove that the subset E of edges that were selected by Kruskal’s algo-
rithm is E(MSTSDG(S)).

Lemma 3. E = E(MSTSDG(S)).

Proof. We prove that E(MSTSDG(S)) ⊆ E, and since the algorithm assures that
E does not contain any cycle (line 9), we conclude that E(MSTSDG(S)) = E.

Let e = (u, v) ∈ E(MSTSDG(S)) and let i, 1 ≤ i ≤ k, such that ri−1 < |e| ≤ ri.
(Recall that r0 = 0.) Since e is an edge of SDG(S), we have that r(u) ≥ |e| and
r(v) ≥ |e|, implying that r(u), r(v) ≥ ri and therefore u, v ∈ Si.

We show that e ∈ E(MST (Si)). Assume that e /∈ E(MST (Si)), then
E(MST (Si)) ∪ {e} contains a cycle C. For each e′ ∈ C, e′ 
= e, we have that
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Algorithm 1. Computing the MST of a k-range symmetric disk graph
Input: S; r1 < r2 < · · · < rk; r : S → {r1, . . . , rk}
Output: MSTSDG(S)

1: E ← ∅
2: for i = 1 to k do
3: Si ← ∅; Ei ← ∅
4: for each s ∈ S such that r(s) ≥ ri do
5: Si ← Si ∪ {s}
6: DT (Si) ←Delaunay triangulation of Si

7: for each e ∈ DT (Si) such that ri−1 < |e| ≤ ri do
8: Ei ← Ei ∪ {e}
9: E ← Kruskal(

⋃k
i=1 Ei)

10: return E

|e′| < |e| ≤ ri. That is, e′ is an edge of SDG(Si), and therefore also an edge of
SDG(S). Now, assume we apply Kruskal’s minimum spanning tree algorithm to
SDG(S). Then, since each of the edges of C − {e} is considered before e, e is
not selected as an edge of MSTSDG(S) — a contradiction.

Since E(MST (Si)) ⊆ E(DT (Si)), e also belongs to E(DT (Si)), and there-
fore (since ri−1 < |e| ≤ ri) e ∈ Ei. To complete the proof, notice that Ei ⊆
E(SDG(S)), for i = 1, . . . , k, and since, by assumption, e ∈ E(MSTSDG(S)), we
conclude that e ∈ Kruskal(

⋃k
i=1 Ei) = E.

Theorem 4. The minimum spanning tree of a k-range symmetric disk graph of
n points can be computed in time O(kn logn).

Proof. In each of the k iterations of the main loop, we compute the Delaunay
triangulation of a subset of S. This can be done in O(n log n) time. Finally, we
apply Kruskal’s algorithm to a set of size O(kn). Thus, the total running time
is O(kn log n).

4 Applications

4.1 An Alternative Proof of the Gap Theorem

Let w ≥ 0 be a real number, and let E be a set of directed edges in R
d. We say

that E has the w-gap property if for any two distinct edges (p, q) and (r, s) ∈ E,
we have |pr| > w ·min{|pq|, |rs|} . The gap property was introduced by Chandra
et al.[4], who also proved the Gap Theorem; see below. The gap theorem bounds
the weight of any set of edges that satisfies the gap property.

Theorem 5. (Gap Theorem) Let w > 0, let S be a set of n points in R
d, and

let E ⊆ S × S be a set of directed edges that satisfies the w-gap property. Then
wt(E) = O(log n) · wt(MST (S)).

Chandra et al. use in their proof a shortest traveling salesperson tour TSP (S) of
S. They charge the lengths of the edges in E to portions of TSP (S), and prove
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that wt(E) < (1+2/w) logn·wt(MST (S)). We give an alternative, simpler, proof
of the gap theorem, which is similar to the proof of the first part of Theorem 1.

We now present our proof. Let E′ = {e ∈ E |wt(e) > wt(MST (S))/n} and
let E′′ = {e ∈ E |wt(e) ≤ wt(MST (S))/n}. Since w > 0, each point of S is the
source of at most one edge of E, which implies that there are at most n edges
in E. Therefore,

wt(E′′) =
∑

e∈E′′
w(e) ≤ n · wt(MST (S))

n
= wt(MST (S)) .

As for wt(E′), notice that for each e ∈ E′, wt(e) ≤ diam(S) ≤ wt(MST (S)).
We divide the edges of E′ into logn buckets according to their size. For 1 ≤
i ≤ logn, let Bi = {e ∈ E′ |wt(e) ∈ (wt(MST (S))

n · 2i−1, wt(MST (S))
n · 2i]} and let

Si = {s ∈ S | (s, t) ∈ Bi}.
Let s, s′ ∈ Si, and let t, t′ ∈ S such that e = (s, t) and e′ = (s′, t′) are

edges in Bi. By the w-gap property, wt(s, s′) > w · min{wt(s, t), wt(s′, t′)} ≥
w
2 ·max{wt(s, t), wt(s′, t′)}. We now show that wt(Bi) ≤ 8

w · wt(MST (S)). We
omit the details; however, this claim is very similar to the analogous claim in
the proof of the first part of the SDG Theorem.

It follows that

wt(E′) =
log n∑
i=1

wt(Bi) ≤
8
w

logn · wt(MST (S)) , and therefore

wt(E) ≤ 8
w

logn · wt(MST (S)) + wt(MST (S)) = O(log n) · wt(MST (S)) .

4.2 Range Assignment

Let S be a set of n points in the plane (representing transceivers). For each
vi ∈ S, let ri be the maximum transmission range of vi, and put r = (r1, . . . , rn).
The following problem is known as The Range Assignment Problem. Assign a
transmission range di, di ≤ ri, to each of the points vi of S, such that (i)
the induced symmetric disk graph (using the ranges d1, . . . , dn) is connected,
and (ii)

∑n
i=1 di is minimized. Below, we compute a range assignment, such

that the sum of ranges of the assignment is bounded by O(log n) times the
sum of ranges of an optimal assignment, computed under the assumption that
r1 = · · · = rn = diam(S).

Let SDG(S) be the symmetric disk graph of S. We first compute MSTSDG(S).
Next, for each vi ∈ S, let di be the weight of the heaviest edge incident to
vi in MSTSDG(S). Notice that the induced symmetric disk graph (using the
ranges d1, . . . , dn) is connected, since it contains E(MSTSDG(S)). It remains to
bound the sum of ranges of the assignment with respect to wt(MST (S)), where
MST (S) is the Euclidean minimum spanning tree of S. Let OPT (S) denote an
optimal range assignment with respect to the complete Euclidean graph of S. It
is easy to see that wt(MST (S)) < wt(OPT (S)) < 2 ·wt(MST (S)) (see Kirousis
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et al. [7]). Thus,
∑n

i=1 di < 2 · wt(MSTSDG(S)) = O(log n) · wt(MST (S)) =
O(log n)·wt(OPT (S)). (Of course, we also know that

∑n
i=1 di < 2·wt(OPTr(S)),

where OPTr(S) is an optimal range assignment with respect to SDG(S).)

5 Disk Graphs

Given a set S of n points in R
d and a function r : S → R, the Disk Graph

of S, denoted DG(S), is a directed graph over S whose set of edges is E =
{(u, v) | r(u) ≥ |uv|}. In this section we show that, unlike symmetric disk graphs,
the weight of a minimum spanning subgraph of a disk graph might be much
bigger than that of MST (S).

Notice that if the corresponding symmetric disk graph SDG(S) is connected,
then the weight of a minimum spanning subgraph ofDG(S) (denoted MSTDG(S))
is bounded by wt(MSTDG(S)) ≤ 2 · wt(MSTSDG(S)) = O(log n) · wt(MST (S)).

We now state the main theorem of this section.

Theorem 6. Let DG(S) be a strongly connected disk graph over a set S of n
points in R

d. Then, (i) wt(MSTDG(S)) = O(n) ·wt(MST (S)), and (ii) there ex-
ists a set of n points in the plane, such that wt(MSTDG(S)) = Ω(n)·wt(MST (S)).

Proof. We first prove part (i), the upper bound, and then part (ii), the lower
bound.

Upper bound. Since maxe∈E(DG(S)){wt(e)} ≤ wt(MST (S)) and since the
number of edges in MSTDG(S) is less than 2n,

wt(MSTDG(S))<2n· max
e∈E(DG(S))

{wt(e)}≤2n·wt(MST (S))=O(n)·wt(MST (S)) .

Lower bound. Consider the following set S of n+1 points in the plane, where
n = 3k for some positive integer k. We place 2

3n+1 points on the line y = 0, such
that the distance between any two adjacent points is 1− ε, where 0 < ε < 1/2,
and we place 1

3n points on the line y = 1, such that the distance between any
two adjacent points is 2− 2ε; see Figure 3. For each point u on the top line, set
r(u) = 1, and for each point v on the bottom line, except for the rightmost point
s, set r(v) = 1− ε. Set r(s) so that it reaches all points on the top line.

1− ε 1− ε 1− ε 1− ε 1− ε 1− ε 1− ε 1− ε 1− ε 1− ε

11111

s

Fig. 3. Theorem 6 — the lower bound
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We show that wt(MSTDG(S)) = Ω(n) · wt(MST (S)). First notice that the
Euclidean minimum spanning tree of S has the shape of a comb, and therefore

wt(MST (S)) =
2
3
n · (1 − ε) +

1
3
n · 1 < n = O(n) .

Next notice that for each point u on the top line, the minimum spanning sub-
graph of DG(S) must include the edge (s, u), since this is the only edge that
enters u. The total weight of these n/3 edges is at least 2+4+· · ·+2n/3 = Ω(n2).
Therefore, wt(MSTDG(S)) = Ω(n2) = Ω(n) · wt(MST (S)) .
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Abstract. We consider a variant of bin packing called multiple-choice
vector bin packing. In this problem we are given a set of n items, where
each item can be selected in one of several D-dimensional incarnations.
We are also given T bin types, each with its own cost and D-dimensional
size. Our goal is to pack the items in a set of bins of minimum overall cost.
The problem is motivated by scheduling in networks with guaranteed
quality of service (QoS), but due to its general formulation it has many
other applications as well. We present an approximation algorithm that
is guaranteed to produce a solution whose cost is about ln D times the
optimum. For the running time to be polynomial we require D = O(1)
and T = O(log n). This extends previous results for vector bin packing, in
which each item has a single incarnation and there is only one bin type.
To obtain our result we also present a PTAS for the multiple-choice
version of multidimensional knapsack, where we are given only one bin
and the goal is to pack a maximum weight set of (incarnations of) items
in that bin.

1 Introduction

Bin packing, where one needs to pack a given set of items using the least num-
ber of limited-space containers (called bins), is one of the fundamental problems
of combinatorial optimization (see, e.g., [1]). In the multidimensional flavor of
bin packing, each item has sizes in several dimensions, and the bins have lim-
ited size in each dimension [2]. In this paper we consider a natural generaliza-
tion of multidimensional bin packing that occurs frequently in practice, namely
multiple-choice multidimensional bin packing. In this variant, items and space
are multidimensional, and in addition, each item may be selected in one of a
few incarnations, each with possibly different sizes in the different dimensions.
Similarly, bins can be selected from a set of types, each bin type with its own
size cap in each dimension, and possibly different cost. The problem is to select
incarnations of the items and to assign them to bins so that the overall cost of
bins is minimized.
� Research supported in part by the Next Generation Video Consortium, Israel.

�� Supported in part by the Israel Science Foundation, Grant 664/05.

H. Kaplan (Ed.): SWAT 2010, LNCS 6139, pp. 248–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Vector Bin Packing with Multiple-Choice 249

Multidimensionality models the case where the objects to pack have costs
in several incomparable budgets. For example, consider a distribution network
(e.g., a cable-TV operator), which needs to decide which data streams to provide.
Streams typically have prescribed bandwidth requirements, monetary costs, pro-
cessing requirements etc., while the system typically has limited available band-
width, a bound on the amount of funds dedicated to buying content, bounded
processing power etc. The multiple-choice variant models, for example, the case
where digital objects (such as video streams) may be taken in one of a variety
of formats with different characteristics (e.g., bandwidth and processing require-
ments), and similarly, digital bins (e.g., server racks) may be configured in more
than one way. The multiple-choice multidimensional variant is useful in many
scheduling applications such as communication under Quality of Service (QoS)
constraints, and including work-plans for nursing personnel in hospitals [3].

Specifically, in this paper we consider the problem of multiple-choice vector bin
packing (abbreviated mvbp, see Section 2 for a formal definition). The input to
the problem is a set of n items and a set of T bin types. Each item is represented
by at most m incarnations, where each incarnation is characterized by a D-
dimensional vector representing the size of the incarnation in each dimension.
Each bin type is also characterized by a D-dimensional vector representing the
capacity of that bin type in each dimension. We are required to pack all items
in the minimal possible number of bins, i.e., we need to select an incarnation
for each item, select a number of required bins from each type, and give an
assignment of item incarnations to bins so that no bin exceeds its capacity in
any dimension. In the weighted version of this problem each bin type has an
associated cost, and the goal is to pack item incarnations into a set of bins of
minimum cost.

Before stating our results, we note that näıve reductions to the single-choice
model do not work. For example, consider the case where n/2 items can be
packed together in a single type-1 bin but require n/2 type-2 bins, while the
other n/2 items fit together in a single type-2 bin but require n/2 type-1 bins. If
one uses only one bin type, the cost is dramatically larger than the optimum—
even with one incarnation per item. Regarding the choice of item incarnation,
one may try to use only a cost-effective incarnation for each item (using some
natural definition). However, it is not difficult to see that this approach results
in approximation ratio Ω(D) even when there is only one bin type.

Our results. We present a polynomial-time approximation algorithm for the
multiple-choice vector bin packing problem in the case where D (the number
of dimensions) is a constant. The approximation ratio for the general weighted
version is ln 2D + 3, assuming that T (the number of bin types) satisfies T =
O(log n). For the unweighted case, the approximation ratio can be improved to
ln 2D+1+ε, for any constant ε > 0, if T = O(1) as well. Without any assumption
on T , we can guarantee, in the unweighted case, cost of (ln(2D)+1)opt+T +1,
where opt denotes the optimal cost. To the best of our knowledge, this is the
first approximation algorithm for the problem with multiple choice, and it is as
good as the best solution for single-choice vector bin packing (see below).
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As an aside, to facilitate our algorithm we consider the multiple-choice multi-
dimensional knapsack problem (abbreviated mmk), where we are given a single
bin and the goal is to load it with the maximum weight set of (incarnations of)
items. We present a polynomial-time approximation scheme (PTAS) for mmk

for the case where the dimension D is constant. The PTAS for mmk is used as
a subroutine in our algorithm for mvbp.

Related work. Classical bin packing (bp) (single dimension, single choice) ad-
mits an asymptotic PTAS [4] and an asymptotic fully polynomial-time approx-
imation scheme (asymptotic FPTAS) [5]. Friesen and Langston [6] presented
constant factor approximation algorithms for a more general version of bp in
which a fixed collection of bin sizes is allowed, and the cost of a solution is the
sum of sizes of used bins. For more details about this version of bp see [7] and
references therein. Correa and Epstein [8] considered bp with controllable item
sizes. In this version of bp each item has a list of pairs associated with it. Each
pair consists of an allowed size for this item, and a nonnegative penalty. The goal
is to select a pair for each item so that the number of bins needed to pack the
sizes plus the sum of penalties is minimized. Correa and Epstein [8] presented
an asymptotic PTAS that uses bins of size slightly larger than 1.

Regarding multidimensionality, it has been long known that vector bin packing
(vbp, for short) can be approximated to within a factor of O(D) [9,4]. More re-
cently, Chekuri and Khanna [10] presented an O(logD)-approximation algorithm
for vbp, for the case where D is constant. They also showed that approximating
vbp for arbitrary dimension is as hard as graph coloring, implying that it is un-
likely that vbp admits approximation factor smaller than

√
D. The best known

approximation ratio for vbp is due to Bansal, Caprara and Sviridenko [11], who
gave a polynomial-time approximation algorithm for constant dimension D with
approximation ratio arbitrarily close to lnD + 1. Our algorithm for mvbp is
based on their ideas.

Knapsack admits an FPTAS [12,13]. Frieze and Clarke [14] presented a PTAS
for the (single-choice) multidimensional variant of knapsack, but obtaining an
FPTAS for multidimensional knapsack is NP-hard [15]. Shachnai and Tamir [16]
use the approach of [14] to obtain a PTAS for a special case of 2-dimensional
multiple-choice knapsack. Our algorithm for mmk extends their technique to the
general case. mmk was studied extensively by practitioners. There are many spe-
cialized heuristics for mmk, see, e.g., [17,18,19,20]. Branch and bound techniques
for mmk are studied in [21,22]. From the algorithmic viewpoint, the first rele-
vant result is by Chandra et al. [23], who present a PTAS for single-dimension,
multiple-choice knapsack. The reader is referred to [24] for a comprehensive
treatment of knapsack problems.

Paper organization. The remainder of this paper is organized as follows.
In Section 2 we formalize the problems. Our approximation algorithm for the
mvbp problem is given in Section 3. This algorithm uses the PTAS for the mmk

problem that is presented in Section 4.
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2 Problem Statements

We now formalize the optimization problems we deal with. For a natural number
n, let [n] def= {1, 2, . . . , n} (we use this notation throughout the paper).

Multiple-Choice Multidimensional Knapsack problem (mmk).

Instance: A set of n items, where each item is a set of m or fewer D-dimensional
incarnations. Incarnation j of item i has size aij ∈ (R+)D, in which the dth
dimension is a real number aijd ≥ 0.
In the weighted version, each incarnation j of item i has weight wij ≥ 0.

Solution: A set of incarnations, at most one of each item, such that the total
size of the incarnations in each dimension d is at most 1.

Goal: Maximize the number (total weight) of incarnations in a solution.

When D = m = 1, this is the classical Knapsack problem (knapsack).

Multiple-Choice Vector Bin Packing (mvbp).

Instance: Same as for unweighted mmk, with the addition of T bin types, where
each bin type t is characterized by a vector bt ∈ (R+)D. The dth coordinate
of bt is called the capacity of type t in dimension d, and denoted by btd.
In the weighted version, each bin type t has a weight wt ≥ 0.

Solution: A set of bins, each assigned a bin type and a set of item incarnations,
such that exactly one incarnation of each item is assigned to any bin, and
such that the total size of incarnations assigned to a bin does not exceed its
capacity in any dimension

Goal: Minimize number (total weight) of assigned bins.

When m = 1 we get vbp, and the special case where D = m = 1 is the classical
bin packing problem (bp).

3 Multiple-Choice Vector Bin Packing

It is possible to obtain approximation ratio of O(lnD) for mvbp by extending
the technique of [10], under the assumption that bin types are of unit weight
and that both D and T are constants. In this section we present a stronger
result, namely an O(logD)-approximation algorithm for mvbp, assuming that
D = O(1) and T = O(log n). Our algorithm is based on and extends the work
of [11].

The general idea is as follows. We first encode mvbp using a covering linear
program with exponentially many variables, but polynomially many constraints.
We find a near optimal fractional solution to this (implicit) program using a
separation oracle of the dual program. (The oracle is implemented by the mmk

algorithm from Section 4.) We assign some incarnations to bins using a greedy
rule based on some “well behaved” dual solution (the number of greedy assign-
ments depends on the value of the solution to the primal program). Then we
are left with a set of unassigned items, but due to our greedy rule we can assign
these remaining items to a relatively small number of bins.
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3.1 Covering Formulation

We start with the transformation of mvbp to weighted Set Cover (sc). An in-
stance of sc is a family of sets C = {C1, C2, . . .} and a cost wC ≥ 0 for each
C ∈ C. We call

⋃
C∈C C the ground set of the instance, and usually denote it by

I. The goal in sc is to choose sets from C whose union is I and whose overall
cost is minimal. Clearly, sc is equivalent to the following integer program:

min
∑

C∈C wC · xC

s.t.
∑

C�i xC ≥ 1 ∀i ∈ I

xC ∈ {0, 1} ∀C ∈ C
(P)

where xC indicates whether the set C is in the cover. A linear program relax-
ation is obtained by replacing the integrality constraints of (P) by positivity
constraints xC ≥ 0 for every C ∈ C. The above formulation is very general. We
shall henceforth call problems whose instances can be formulated as in (P) for
some C and wC values, (P)-problems.

In particular, mvbp is a (P)-problem, as the following reduction shows. Let I
be an instance of mvbp. Construct an instance C of sc as follows. The ground
set of C is the set of items in I, and sets in C are the subsets of items that
can be assigned to some bin. Formally, a set C of items is called compatible if
and only if there exists a bin type t and an incarnation mapping f : C → [m]
such that

∑
i∈C aif(i)d ≤ btd for every dimension d, i.e., if there is a way to

accommodate all members of C is the same bin. In the instance of sc, we let C
be the collection of all compatible item sets. Note that a solution to set cover
does not immediately solve mvbp, because selecting incarnations and bin-types
is an NP-hard problem in its own right. To deal with this issue we have one
variable for each possible assignment of incarnations and bin type. Namely, we
may have more than one variable for a compatible item subset.

3.2 Dual Oblivious Algorithms

We shall be concerned with approximation algorithms for (P)-problems which
have a special property with respect to the dual program. First, we define the
dual to the LP-relaxation of (P):

max
∑

i∈I yi

s.t.
∑

i∈C yi ≤ wC ∀C ∈ C
yi ≥ 0 ∀i ∈ I

(D)

Next, for an instance C of set cover and a set S, we define the restriction of C to
S by C|S def= {C ∩ S | C ∈ C}, namely we project out all elements not in S. Note
that for any S, a solution to C is also a solution to C|S : we may only discard
some of the constraints in (P). We now arrive at our central concept.
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Definition 1 (Dual Obliviousness). Let Π be a (P)-problem. An algorithm
A for Π is called ρ-dual oblivious if there exists a constant δ such that for every
instance C ∈ Π there exists a dual solution y ∈ R

n to (D) satisfying, for all
S ⊆ I, that

A(C|S) ≤ ρ ·
∑
i∈S

yi + δ .

Let us show that the First-Fit (ff) heuristic for bp is dual oblivious (we use
this property later). In ff, the algorithm scans the items in arbitrary order and
places each item in the left most bin which has enough space to accommodate
it, possibly opening a new bin if necessary. A newly open bin is placed to the
right of rightmost open bin.

Observation 1. First-Fit is a 2-dual oblivious algorithm for bin packing.

Proof. In any solution produced by ff, all non-empty bins except perhaps one
are more than half-full. Furthermore, this property holds throughout the execu-
tion of ff, and regardless of the order in which items are scanned. It follows that
if we let yi = ai, where ai is the size of the ith item, then for every S ⊆ I we
have ff(S) ≤ max{2

∑
i∈S yi, 1} ≤ 2

∑
i∈S yi +1, and hence ff is dual oblivious

for bp with ρ = 2 and δ = 1. ��

The usefulness of dual obliviousness is expressed in the following result. Let Π
be a (P)-problem, and suppose that appr is a ρ-dual oblivious algorithm for Π .
Suppose further that we can efficiently find the dual solution y promised by dual
obliviousness. Under these assumptions, Algorithm 1 below solves any instance
C of Π .

Algorithm 1
1: Find an optimal solution x∗ to (P). Let opt

∗ denote its value.
2: Let C+ = {C : x∗

C > 0}. Let G ← ∅, S ← I .
3: while

∑
C∈G

wc < ln ρ · opt
∗ do

4: Find C ∈ C+ for which
1

wC

∑
i∈S\C

yi is maximized;

5: G ← G ∪ {C}, S ← S \ C.
6: end while
7: Apply appr to the residual instance S, obtaining solution A.
8: return G ∪ A.

We bound the weight of the solution G ∪A that is computed by Algorithm 1.

Theorem 1. Let Π be a (P)-problem. Then for any instance of Π with optimal
fractional solution opt

∗, Algorithm 1 outputs G ∪ A satisfying

w(G ∪ A) ≤ (ln ρ + 1)opt
∗ + δ + wmax ,

where wmax = maxt wt.
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Proof. Clearly, w(G) < ln ρ ·opt
∗ +wmax. It remains to bound the weight of A.

Let S′ be the set of items not covered by G. We prove that
∑

i∈S′ yi ≤ 1
ρ

∑
i∈I yi,

which implies

w(A) ≤ ρ
∑

i∈S′ yi + δ ≤ ρe− ln ρ
∑n

i=1 yi + δ ≤ opt
∗ + δ ,

proving the theorem.
Let Ck ∈ C+ denote the kth subset added to G during the greedy phase, and

let Sk ⊆ I be the set of items not covered after the kth subset was chosen. Define
S0 = I. We prove, by induction on |G|, that for every k,

∑
i∈Sk

yi ≤
k∏

q=1

(
1−

wCq

opt
∗

)
·
∑
i∈I

yi (1)

For the base case we have trivially
∑

i∈S0
yi ≤

∑
i∈I yi. For the inductive step,

assume that ∑
i∈Sk−1

yi ≤
k−1∏
q=1

(
1−

wCq

opt
∗

)
·
∑
i∈I

yi .

By the greedy rule and the pigeonhole principle, we have that
1

wCk

∑
i∈Sk−1∩Ck

yi ≥
1

opt
∗

∑
i∈Sk−1

yi .

It follows that∑
i∈Sk

yi =
∑

i∈Sk−1

yi−
∑

i∈Sk−1∩Ck

yi ≤ (1− wCk

opt
∗ )

∑
i∈Sk−1

yi ≤
k∏

q=1

(
1−

wCq

opt
∗

)
·
∑
i∈I

yi ,

completing the inductive argument. The theorem follows, since by (1) we have∑
i∈S′ yi ≤ (1− ln ρ/k)k ·

∑
i∈I yi ≤ e− ln ρ

∑
i∈I yi ,

as required. ��
Note that if x∗ can be found in polynomial time, and if appr is a polynomial-
time algorithm, then Algorithm 1 runs in polynomial time. Also observe that
Theorem 1 holds even if x∗ is not an optimal solution of (P), but rather a
(1 + ε)-approximation. We use this fact later.

In this section we defined the notion of dual obliviousness of an algorithm.
We note that Bansal et al. [11] defined a more general property of algorithms
called subset obliviousness. (For example, a subset oblivious algorithm is asso-
ciated with several dual solutions.) Furthermore, Bansal et al. showed that the
asymptotic PTAS for bp from [4] with minor modifications is subset oblivious
and used it to obtain a subset oblivious (D + ε)-approximation algorithm for
mvbp. This paved the way to an algorithm for vbp, whose approximation guar-
antee is arbitrarily close to lnD + 1. However, in the case of mvbp, using the
above APTAS for bp (at least in a straightforward manner) would lead to a
subset oblivious algorithm whose approximation guarantee is (DT + ε). In the
next section we present a 2D-dual oblivious algorithm for weighted mvbp that
is based on First-Fit.
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3.3 Algorithm for Multiple-Choice Vector Bin Packing

We now apply the framework of Theorem 1 to derive an approximation algorithm
for mvbp. There are several gaps we need to fill.

First, we need to solve (P) for mvbp, which consists of a polynomial number
of constraints (one for each item), but an exponential number of variables. We
circumvent this difficulty as follows. Consider the dual of (P). The separation
problem of the dual program in our case is to find (if it exists) a subset C with∑

i∈C yi > wC for given item profits y1, . . . , yn. The separation problem can
therefore be solved by testing, for each bin type, whether the optimum is greater
than wt, which in turn is simply an mmk instance, for which we present a PTAS
in Section 4. In other words, the separation problem of the dual (D) has a PTAS,
and hence there exists a PTAS for the LP-relaxation of (P) [25,26].

Second, we need to construct a dual oblivious algorithm for mvbp. To do
that, we introduce the following notation. For every item i ∈ I, incarnation j,
dimension d, and bin type t we define the load of incarnation j of i on the dth
dimension of bins of type by �ijtd = aijd/btd. For every item i ∈ I we define the
effective load of i as

�̄i = min
1≤j≤m,1≤t≤T

{
wt ·max

d
�ijtd

}
.

Also, let t(i) denote the bin type that can contain the most (fractional) copies of
some incarnation of item i, where j(i) and d(i) are the incarnation and dimension
that determine this bound. Formally:

j(i) = argmin
j

min
t
{wt ·max

d
�ijtd}

t(i) = argmin
t
{wt ·max

d
�ij(i)td}

d(i) = argmax
d

�ij(i)t(i)d .

Assume that j(i), t(i) and d(i) are the choices of j, t and d that are taken in the
definition of �̄i.

Our dual oblivious algorithm appr for mvbp is as follows:

1. Divide the item set I into T subsets by letting It
def= {i : t(i) = t}.

2. Pack each subset It in bins of type t using ff, where the size of each item i
is aij(i)d(i).

Observe that the size of incarnation j(i) of item i in dimension d(i) is the largest
among all other sizes of this incarnation. Hence, the solution computed by ff is
feasible for It.

We now show that this algorithm is 2D-dual oblivious.

Lemma 2. Algorithm appr above is a polynomial time 2D-dual oblivious algo-
rithm for mvbp.



256 B. Patt-Shamir and D. Rawitz

Proof. Consider an instance of mvbp with item set I, and let the corresponding
set cover problem instance be C. We show that there exists a dual solution
y ∈ R

n such that for any S ⊆ I, appr(C|S) ≤ 2D ·
∑

i∈S yi +
∑T

t=1 wt. Define
yi = �̄i/D for every i. We claim that y is a feasible solution to (D). Let C ∈ C
be a compatible item set. C induces some bin type t, and an incarnation j′(i)
for each i ∈ C. Let d′(i) = argmaxd

{
aij′(i)d/btd

}
, i.e., d′(i) is a dimension of bin

type t that receives maximum load from (incarnation j′(i) of) item i. Then

∑
i∈C

yi =
D∑

d=1

∑
i∈C

i:d′(i)=d

�̄i

D
≤ 1

D

D∑
d=1

∑
i∈C

i:d′(i)=d

wt · �ij′(i)td

=
wt

D

D∑
d=1

∑
i∈C

i:d′(i)=d

aij′(i)d

btd
≤ wt

D

D∑
d=1

1
btd
· btd = wt ,

where the last inequality follows from the compatibility of C.
Now, since ff computes bin assignments that occupy at most twice the sum

of bin sizes, we have that ff(It) ≤ wt ·max{2
∑

i∈It
�̄i/wt, 1} ≤ 2

∑
i∈It

�̄i + wt.
Hence, for every instance I of mvbp we have

appr(I) =
T∑

t=1

ff(It) ≤
T∑

t=1

(
2
∑
i∈It

�̄i + wt

)
= 2

∑
i∈I

�̄i +
T∑

t=1

wt

= 2D
∑
i∈I

yi +
T∑

t=1

wt ≤ 2D · opt
∗ +

T∑
t=1

wt .

Furthermore, for every S ⊆ I we have

appr(C|S) =
T∑

t=1

ff(S ∩ It) ≤ 2
∑
i∈S

�̄i +
T∑

t=1

wt = 2D
∑
i∈S

yi +
T∑

t=1

wt ,

and we are done. ��

Based on Theorem 1 and Lemma 2 we obtain our main result.

Theorem 2. If D = O(1), then there exists a polynomial time algorithm for
mvbp with T bin types that computes a solution whose size is at most

(ln 2D + 1)opt
∗ +

T∑
t=1

wt + wmax .

Note that while the approximation ratio is logarithmic in D, the running time
of the algorithm is exponential in D.

Theorem 2 implies the following result for unweighted mvbp:
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Corollary 1. If D = O(1), then there exists a polynomial time algorithm for
unweighted mvbp that computes a solution whose size is at most (ln 2D +
1)opt

∗ + T + 1. Furthermore, if T = O(1), then there exists a polynomial time
(ln 2D + 1+ ε)-approximation algorithm for unweighted mvbp, for every ε > 0.

We also have the following for weighted mvbp.

Corollary 2. If D = O(1) and T = O(log n), then there exists a polynomial
time (ln 2D + 3)-approximation algorithm for mvbp.

Proof. The result follows from the fact that as we show, we may assume that∑
t wt ≤ opt. In this case, due to Theorem 2 we have that the cost of the

computed solution is at most

(ln 2D + 1)opt
∗ +

∑T
t=1 wt + wmax ≤ (ln 2D + 3)opt .

The above assumption is fulfilled by the following wrapper for our algorithm:
Guess which bin types are used in some optimal solution. Iterate through all
2T − 1 guesses, and for each guess, compute a solution for the instance that
contains only the bin types in the guess. Output the best solution. Since our
algorithm computes a (ln 2D + 3)-approximate solution for the right guess, the
best solution is also a (ln 2D + 3)-approximation. ��

4 Multiple-Choice Multidimensional Knapsack

In this section we present a PTAS for weighted mmk for the case where D is a
constant. Our construction extends the algorithms of Frieze and Clarke [14] and
of Shachnai and Tamir [16].

We first present a linear program of mmk, where the variables xij indicate
whether the jth incarnation of the ith item is selected.

max
∑n

i=1
∑m

j=1 wijxij

s.t.
∑n

i=1
∑m

j=1 aijdxij ≤ 1 ∀d ∈ [D]∑m
j=1 xij ≤ 1 ∀i ∈ [n]

xij ≥ 0 ∀i ∈ [n], j ∈ [m]

(MMK)

The first type of constraints make sure that the load on the knapsack in each
dimension is bounded by 1; the second type of constraints ensures that at most
one copy of each element is taken into the solution. Constraints of the third type
indicate the relaxation: the integer program for mmk requires that xij ∈ {0, 1}.

Our PTAS for mmk is based on the linear program (MMK). Let ε > 0.
Suppose we somehow guess the heaviest q incarnations that are packed in the
knapsack by some optimal solution, for q = min {n, �D/ε�}. Formally, assume
we are given a set G ⊆ [n] of at most q items and a function g : G → [m] that
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selects incarnations of items in G. In this case we can assign values to some
variables of (MMK) as follows:

xij =

⎧⎪⎨
⎪⎩
1 , if i ∈ G and j = g(i)
0 , if i ∈ G and j �= g(i)
0 , if i �∈ G and wij > min{w�g(�) | � ∈ G}

That is, if we guess that incarnation j of item i is in the optimal solution, then
xij = 1 and xij′ = 0 for j′ �= j; also, if the jth incarnation of item i weighs more
than some incarnation in our guess, then xij = 0 . Denote the resulting linear
program MMK(G, g).

Let x∗(G, g) be an optimal (fractional) solution of MMK(G, g). The idea of
Algorithm 2 below is to simply round down the values of x∗(G, g). We show
that if G and g are indeed the heaviest incarnations in the knapsack, then the
rounded-down solution is very close to the optimum. Therefore, in the algorithm
we loop over all possible assignments of G and g and output the best solution.

Algorithm 2
1: for all G ⊆ [n] such that |G| ≤ q and g : G → [m] do
2: bd(G, g) ← 1 −

∑
i∈G aig(i)d for every d ∈ [D]

3: if bd(G, g) ≥ 0 for every d then
4: Compute an optimal basic solution x∗(G, g) of MMK(G, g)
5: xij(G, g) ←

⌊
x∗

ij(G, g)
⌋

for every i and j
6: end if
7: x ← argmaxx(G,g) w · x(G, g)
8: end for
9: return x

The proof of the next theorem is omitted for lack of space.

Theorem 3. If D = O(1), then Algorithm 2 is a PTAS for mmk.
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Abstract. As Bin Packing is NP-hard already for k = 2 bins, it is
unlikely to be solvable in polynomial time even if the number of bins
is a fixed constant. However, if the sizes of the items are polynomially
bounded integers, then the problem can be solved in time nO(k) for an in-
put of length n by dynamic programming. We show, by proving the W[1]-
hardness of Unary Bin Packing (where the sizes are given in unary
encoding), that this running time cannot be improved to f(k) · nO(1)

for any function f(k) (under standard complexity assumptions). On the
other hand, we provide an algorithm for Bin Packing that obtains in
time 2O(k log2 k)+O(n) a solution with additive error at most 1, i.e., either
finds a packing into k + 1 bins or decides that k bins do not suffice.

1 Introduction

The aim of this paper is to clarify the exact complexity of Bin Packing for
a small fixed number of bins. An instance of Bin Packing consists of a set of
rational item sizes, and the task is to partition the items into a minimum number
of bins with capacity 1. Equivalently, we can define the problem such that the
sizes are integers and the input contains an integer B, the capacity of the bins.

Complexity investigations usually distinguish two versions of Bin Packing.
In the general version, the item sizes are arbitrary integers encoded in binary,
thus they can be exponentially large in the size n of the input. In the unary
version of the problem, the sizes are bounded by a polynomial of the input size;
formally, this version requires that the sizes are given in unary encoding.

In the general (not unary) case, a reduction from Partition shows that
Bin Packing is NP-hard [7]. Thus it is hard to decide whether a given set of
items can be packed into exactly two bins. Apart from NP-hardness, this has a
number of other known implications. First of all, unless P = NP, it is impossible
to achieve a better polynomial-time approximation ratio than 3/2, matching the
best known algorithm [16].
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In contrast, however, there are much better approximation results when the
optimum number of bins is larger [4,12]. De la Vega and Lueker [4] found an
asymptotic polynomial-time approximation scheme (APTAS) for Bin Packing

with ratio (1 + ε)OPT (I) + 1 and running time O(n) + f(1/ε) (if the items
are sorted). To bound the function f , one has to consider the integer linear
program (ILP) used implicitly in [4]. This ILP has 2O(1/ε log(1/ε)) variables and
length 2O(1/ε log(1/ε)) logn. Using the algorithm by Lenstra [13] or Kannan [11],
this ILP can be solved within time 22O(1/ε log(1/ε))

O(log n) ≤ 22O(1/ε log(1/ε))
+

O(log2 n). Thus, the algorithm of [4] can be implemented such that the ad-
ditive term f(1/ε) in the running time is double exponential in 1/ε. Setting
ε = 1

OPT (I)+1 , this algorithm computes a packing into at most OPT (I) + 1 bins

in time O(n) + 22OP T (I) log(OP T (I))
.

Using ideas in [6,10], the algorithm of de la Vega and Lueker can be improved
to run in time O(n) + 2O(1/ε3 log(1/ε)). Setting again ε = 1

OPT (I)+1 , we obtain an

additive 1-approximation that runs in O(n) + 2O(OPT (I)3 log(OPT (I))) time.
Karmarkar and Karp [12] gave an asymptotic fully polynomial-time approxi-

mation scheme (AFPTAS) that packs the items into (1 + ε)OPT (I) + O(1/ε2)
bins. The AFPTAS runs in time polynomial in n and 1/ε, but has a larger ad-
ditive term O(1/ε2). Plotkin, Shmoys and Tardos [14] achieved a running time
of O(n log(1/ε) + ε−6) log6(1/ε)) and a smaller additive term O(1/ε log(1/ε)).

Bin Packing remains NP-hard in the unary case as well [7]. However, for
every fixed k, Unary Bin Packing can be solved in polynomial time: a standard
dynamic programming approach gives an nO(k) time algorithm. Although the
running time of this algorithm is polynomial for every fixed value of k, it is
practically useless even for, say, k = 10, as an n10 time algorithm is usually
not considered efficient. Our first result is an algorithm with significantly better
running time that approximates the optimum within an additive constant of 1:

Theorem 1. There is an algorithm for Bin Packing which computes for each
instance I of length n a packing into at most OPT (I) + 1 bins in time

2O(OPT (I) log2 OPT (I)) + O(n).

Note that the algorithm works not only for the unary version, but also for the
general Bin Packing as well, where the item sizes can be exponentially large.

It is an obvious question whether the algorithm of Theorem 1 can be improved
to an exact algorithm with a similar running time. As the general version of
Bin Packing is NP-hard for k = 2, the question makes sense only for the
unary version of the problem. By proving that Unary Bin Packing is W[1]-
hard parameterized by the number k of bins, we show that there is no exact
algorithm with running time f(k) · nO(1) for any function f(k) (assuming the
standard complexity hypothesis FPT �= W[1]).

Theorem 2. Unary Bin Packing is W[1]-hard, parameterized by the number
of bins.

Thus no significant improvement over the nO(k) dynamic programming algorithm
is possible for Unary Bin Packing. From the perspective of parameterized
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complexity, the general (not unary) Bin Packing is not even known to be
contained in the class XP, when parameterized by the number of bins.

Finally, let us mention that the existence of a polynomial-time algorithm
with additive error of 1 (or any other constant) is a fundamental open problem,
discussed for example in [5, Section 2.2.9]. Such a polynomial-time algorithm
would be a significant breakthrough even in the unary case. Our algorithm shows
that obtaining such an approximation is easy in the unary case for fixed number
of bins. Thus an important consequence of our result is that any hardness proof
ruling out the possibility of constant additive error approximation for the unary
version has to consider instances with an unbounded number of bins.

For proofs omitted due to lack of space, marked by a �, see the full paper.

2 Additive 1-Approximation for Bin Packing in FPT
Time

This section deals with the following version of Bin Packing: given an integer K
and a set I of items with rational item sizes (encoded in binary), and the task is
to pack the items into K bins of capacity 1. We prove Theorem 1 by describing
an algorithm for this problem which uses at most K+1 bins for each I, provided
that OPT (I) = K, where OPT (I) is the minimum number of bins needed for I.

Our algorithm computes a packing into K or K +1 bins. We suppose K ≥ 2;
otherwise we pack all items into a single bin. We divide the instance I into three
groups:

Ilarge = {a ∈ I | size(a) > 1
2x

1
log(K)},

Imedium = {a ∈ I | 1
y

1
K ≤ size(a) ≤ 1

2x
1

log(K)},
Ismall = {a ∈ I | size(a) < 1

y
1
K },

where x, y are constants specified later. In the first phase of our algorithm we
consider the large items. Since each bin has at most �2x log(K)� large items
and OPT (I) = K, the total number of large items in I is at most K�2x log(K)�.
Suppose that Ilarge = {a1, . . . , a�} where � ≤ K�2x log(K)�. We can assign large
items to bins via a mapping f : {1, . . . , �} → {1, . . . , K}. A mapping f is feasible,
if and only if

∑
i|f(i)=j size(ai) ≤ 1 for all j = 1, . . . , K. The total number of

feasible mappings or assignments of large items to bins is at most KK�2x log(K)� =
2O(K log2(K)). Each feasible mapping f generates a pre-assignment preass(bj) ∈
[0, 1] for the bins bj ∈ {b1, . . . , bK}; i.e. preass(bj) =

∑
i|f(i)=j size(ai) ≤ 1.

Notice that at least one of the 2O(K log2(K)) mappings corresponds to a packing
of the large items in an optimum solution.

In the second phase we use a geometric rounding for the medium items. This
method was introduced by Karmarkar and Karp [12] for the Bin Packing prob-
lem. Let Ir be the set of all items from Imedium whose sizes lie in (2−(r+1), 2−r]
where 2r > x log(K) or equivalently 1

x
1

log(K) > 1
2r (see Fig. 1(a) for an example Ir

where we have divided the set Ir into groups of size � 2r

x log(K)�). Let r(0) be the
smallest integer r such that 2r > x log(K). Then, 2r(0)−1 ≤ x log(K) and 2r(0) >
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≤ g = g = g

(a) The original instance Ir grouped
into groups of size g = � 2r

x log(K)
�.

Jr J ′
r

(b) The rounded instance Jr and J ′
r.

Fig. 1. The original and the rounded instances for the interval (2−(r+1), 2−r]

x log(K). This implies that the interval with the smallest index r(0) contains
items of size in (1/2r(0)+1, 1/2r(0)] and that 1

2x
1

log(K) ∈ (1/2r(0)+1, 1/2r(0)].
For each r ≥ r(0) let Jr and J ′

r be the instances obtained by applying lin-
ear grouping with group size g = � 2r

x log(K)� to Ir . To do this we divide each
instance Ir into groups Gr,1, Gr,2, . . . , Gr,qr such that Gr,1 contains the g largest
items in Ir , Gr,2 contains the next g largest items and so on (see Fig. 1(a)).
Each group of items is rounded up to the largest size within the group (see also
Fig. 1). Let G′

r,i be the multi-set of items obtained by rounding the size of each
item in Gr,i. Then, Jr =

⋃
i≥2 G′

r,i and J ′
r = G′

r,1.
Furthermore, let J =

⋃
Jr and J ′ =

⋃
J ′

r. Then, Jr ≤ Ir ≤ Jr∪J ′
r where ≤ is

the partial order on Bin Packing instances with the interpretation that IA ≤ IB

if there exists a one-to-one function h : IA → IB such that size(x) ≤ size(h(x))
for all items x ∈ IA. Furthermore, J ′

r consists of one group of items with the
largest medium items in (2−(r+1), 2−r]. The cardinality of each group (with ex-
ception of maybe the smallest group in Ir) is equal to � 2r

x log(K)�.

Lemma 1. For K ≥ 2 and x ≥ 4, we have size(J ′) ≤ log(yK)
x log(K) .

Proof. Each non-empty set J ′
r contains at most � 2r

x log(K)� items each of size at

most 1/2r. Hence size(J ′
r) ≤ ( 2r

x log(K) + 1) 1
2r = 1

x log(K) +
1
2r . This implies that

the total size size(J ′) =
∑

r≥r(0) size(J ′
r) ≤

∑
r≥r(0)(

1
x log(K) +

1
2r ). Let r(1) be

the index with 1
yK ∈ (2−(r(1)+1), 2−r(1)]. This implies that r(1) ≤ �log(yK)�.

Then, the number of indices r ∈ {r(0), . . . , r(1)} is equal to the number of inter-
vals (2−(r+1), 2−r] which may contain a medium item. Since 1

x log(K) > 1/2r(0)

and K ≥ 2, we have 2r(0) > x log(K) ≥ x or equivalently r(0) > log(x log(K)) ≥
log(x). For x ≥ 4 we obtain r(0) ≥ 3.

Thus, the number of such intervals is r(1)−r(0)+1 ≤ r(1)−2 ≤ �log(yK)�−2.
Using 1

2r(0) < 1
x log(K) and

∑
r≥r(0) 1/2

r ≤ 1/2r(0)−1, we get

size(J ′) ≤ (�log(yK)� − 2) 1
x log(K) +

∑
r≥r(0)

1
2r

≤ log(yK)−2
x log(K) + 1

2r(0)−1 ≤ log(yK)−2
x log(K) + 2

x log(K) ≤
log(yK)
x log(K) . ��
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1 2 3 K...

(5 × , 4 × ) ∈ V3

Fig. 2. The dynamic program for rounded medium items J = ∪jJr

The lemma above implies OPT (J ′) = 1 for x ≥ 4, K ≥ 2 and log(y) ≤ (x− 1),
since these items have total size at most 1. A possible choice is x = 4 and y ≤ 8.

By
⋃

r≥r(0) Jr ≤ Imedium ≤
⋃

r≥r(0)(Jr ∪ J ′
r) and J ′ =

⋃
r≥r(0) J ′

r, we obtain:

Lemma 2

OPT (Ilarge ∪
⋃

r≥r(0)

Jr ∪ Ismall) ≤ OPT (Ilarge ∪ Imedium ∪ Ismall)

OPT (Ilarge ∪ Imedium ∪ Ismall) ≤ OPT (Ilarge ∪
⋃

r≥r(0)

Jr ∪ Ismall) + 1.

Lemma 3. There are at most O(K log(K)) different rounded sizes for medium
items for x ≥ 1 and K ≥ 2.

Proof. Let n(Ir) be the number of medium items in Ir , and let m(Ir) be the
number of groups (or rounded sizes) generated by the linear grouping for Ir .
Then, size(Ir) ≥ 1

2r+1 n(Ir) ≥ 1
2r+1 [(m(Ir)−1)

⌈
2r

x log(K)

⌉
]. Notice that one group

may have less than � 2r

x log(K)� items. This implies that

m(Ir)− 1 ≤ 2r+1size(Ir)
� 2r

x log(K)�
.

Using �a� ≥ a for a ≥ 0, m(Ir) ≤ 2x log(K)size(Ir)+1. For x ≥ 1 and K ≥ 2, we
have r(0) > log(x) ≥ 0 and, therefore, r(0) ≥ 1. Since the number of intervals for
the medium items is at most r(1)−r(0)+1 ≤ r(1) ≤ �log(yK)�, the total number
of rounded medium sizes

∑
r≥r(0) m(Ir) ≤

∑
r≥r(0)(2x log(K)size(Ir) + 1) ≤

2x log(K)
∑

r≥r(0) size(Ir) + log(yK). Since all medium items fit into K bins
and x, y are constants, size(Imedium) =

∑
r≥r(0) size(Ir) ≤ K and

∑
r≥r(0)

m(Ir) ≤ 2xK log(K) + log(yK) ≤ O(K log(K)).
��

Now we describe the third phase of our algorithm. The rounded medium item
sizes lie in the interval [ 1

yK , 1
2x log(K) ] and there are at most R ≤ O(K log(K))

many different rounded item sizes. For each j = 1, . . . , R let kj be the number
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of items for each rounded item size xj . Since xj ≥ 1
yK and OPT (I) = K, the

number kj ≤ K/xj ≤ K2y for each item size xj . To describe a packing for
one bin b we use a mapping p : {1, . . . , R} → {0, . . . , yK} where p(j) gives the
number of items of size xj in b. A mapping p is feasible, if and only if

∑
j p(j)xj+

preass(b) ≤ 1 where preass(b) is the total size of large items assigned to b in
the first phase of the algorithm. The total number of feasible mappings for one
bin is at most (yK + 1)O(K log(K)) = 2O(K log2(K)). Using a dynamic program
we go over the bins from b1 up to bK . For each A = 1, . . . , K, we compute a
set VA of vectors (a1, . . . , aR) where aj gives the number of items of size xj used
for the bins b1, . . . , bA (see also Fig. 2). The cardinality of each set VA is at
most (K2y + 1)O(K log(K)) = 2O(K log2(K)). The update step from one bin to the
next (computing the next set VA+1) can be implemented in time

2O(K log2(K)) · 2O(K log2(K)) · poly(K) ≤ 2O(K log2(K)).

If there is a solution for our Bin Packing instance I into K bins, then the
set VK contains the vector (n1, . . . , nR) that corresponds to the number of
rounded medium item sizes in

⋃
r≥r(0) Jr. Notice that the other set

⋃
r≥r(0) J ′

r

will be placed into the additional bin bK+1. We can also compute a packing
of the medium items into the bins as follows. First, we compute all vector
sets VA for A = 1, . . . , K. If for two vectors a = (a1, . . . , aK) ∈ VA and a′ =
(a′

1, . . . , a
′
K) ∈ VA+1 the medium items given by the difference a′ − a and the

preassigned large items fit into bin bA+1, we store the corresponding pair (a, a′)
in a set SA+1. By using a directed acyclic graph D = (V, E) with vertex
set V = {[a, A]|a ∈ VA, A = 1, . . . , K} and E = {([a, A], [a′, A + 1])|(a, a′) ∈
SA+1, A = 1, . . . , K−1}, we may compute a feasible packing of large and medium
rounded items into the bins b1, . . . , bK . This can be done via depth first search
starting with the vector (n1, . . . , nR) ∈ VK that corresponds to the number of
rounded medium item sizes. The algorithm to compute the directed acyclic graph
and the backtracking algorithm can be implemented in time

2O(K log2(K)).

In the last phase of our algorithm we add the small items via a greedy algo-
rithm to the bins. Consider a process which starts with a given packing of the
original large and medium items into the bins b1, . . . , bK+1. We insert the small
items of size at most 1

yK with the greedy algorithm Next Fit (NF) into the
bins b1, . . . , bK+1. The correctness of this step is proved in the next lemma. No-
tice that NF can be implemented in linear time with at most O(n) operations.

Lemma 4. If OPT (I) = K, K ≥ 2, and y ≥ 2, then our algorithm packs all
items into at most K + 1 bins.

Proof. Assume by contradiction that we use more than K +1 bins for the small
items. In this case, the total size of the items packed into the bins is more than
(K+1)(1− 1

yK ) = K+1−K+1
yK . Note that K+1

yK ≤ K+1
2K < 1 by y ≥ 2 and K ≥ 2.

Thus, the total size of the items is larger than K, yielding OPT (I) > K. ��
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The algorithm for Bin Packing for OPT (I) = K works as follows:

(1) Set x = 4, y = 2 and divide I into three groups Ilarge, Imedium, and Ismall.
(2) Assign the large items to K bins considering all feasible pre-assignments.
(3) Use geometric rounding on the sizes of the medium items; for each inter-

val (2−(r+1), 2−r] apply linear grouping with group size � 2r

x log(K)� to the
item set Ir and compute rounded item sets Jr and J ′

r.
(4) For each pre-assignment apply the dynamic program to assign the medium

items in
⋃

Jr to the bins b1, . . . , bK , and place the set
⋃

j J ′
r into bK+1.

(5) Take a feasible packing into K + 1 bins for one pre-assignment (there
is one by OPT (I) = K), replace the rounded items by their original
sizes and afterwards assign the small items via a greedy algorithm to the
bins b1, . . . , bK+1.

3 Parameterized Hardness of Bin Packing

The aim of this section is to prove that Unary Bin Packing is W[1]-hard,
parameterized by the number k of bins. In this version of Bin Packing, we are
given a set of integer item sizes encoded in unary, and two integers b and k. The
task is to decide whether the items can be packed into k bins of capacity b.

To prove the W[1]-hardness of this problem when parameterized by the num-
ber of bins, we use the hardness of an intermediate problem, a variant of Unary

Bin Packing involving vectors of constant length c and bins of varying sizes.
Let [c] = {1, . . . , c} for any c ∈ N, and let N

c be the set of vectors with c coor-
dinates, each in N. We use boldface letters for vectors. Given vectors v,w ∈ N

c,
we write v ≤ w, if vj ≤ wj for each j ∈ [c], where vj is the j-th coordinate of v.

For a fixed c, we will call the following problem c-Unary Vector Bin Pack-

ing. We are given a set of n items having sizes s1, s2, . . . , sn with each si ∈ N
c

encoded in unary, and k vectors B1,B2, . . . ,Bk from N
c representing bin sizes.

The task is to decide whether [n] can be partitioned into k sets J1, J2, . . . , Jk

such that
∑

h∈Ji
sh ≤ Bi for each i ∈ [k].

Lemma 5 shows that Theorem 2 follows from the W[1]-hardness of c-Unary

Vector Bin Packing, for any fixed c. In Section 3.1, we introduce two con-
cepts, k-non-averaging and k-sumfree sets, that will be useful tools in the hard-
ness proof. The reduction itself appears in Section 3.2.

Lemma 5 (�). For every fixed integer c ≥ 1, there is a parameterized reduction
from c-Unary Vector Bin Packing to Unary Bin Packing, where both
problems are parameterized by the number of bins.

3.1 Non-averaging and Sumfree Sets

Given an integer k, we are going to construct a set A containing n non-negative
integers with the following property: for any k elements a1, a2, . . . , ak in A it
holds that their arithmetical mean 1

k

∑k
i=1 ai can only be contained in A if all of
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them are equal, i.e. a1 = a2 · · · = ak. Sets having this property will be called k-
non-averaging. Such sets have already been studied by several researchers [1,3].
Although, up to our knowledge, the construction presented here does not appear
in the literature in this form, it applies only standard techniques1.

First, let us fix an arbitrary integer d. (In fact, it will suffice to assume d = 2,
but for completeness, we present the case for an arbitrary d.) Depending on d, let
us choose m to be the smallest integer for which md ≥ n, i.e. let m = �n1/d�. We
construct a set X containing each vector (x1, x2, . . . , xd, y) where 0 ≤ xi ≤ m−1
for all i ∈ [d] and

∑d
i=1 x2

i = y. Clearly, |X | = md, so in particular, |X | ≥ n.
Lemmas 6 and 7 show that we can easily construct a non-averaging set A

from X , having n elements. Setting d = 2, we get that the maximal element
in A is smaller than 25k2n2 = O(k2n2). Also, A can be constructed in O(k2n3)
time.

Lemma 6 (�). If u1,u2, . . . ,uk and v are elements of X and v = 1
k

∑k
i=1 ui,

then u1 = u2 = · · · = uk = v.

Lemma 7 (�). If b = k(m− 1) + 1, then the set A = {v1 + v2b+ · · ·+ vcbc−1 |
v ∈ X} is k-non-averaging. Moreover, the largest element N in A is smaller
than 4d(2k)dn1+2/d, and A can be constructed in time linear in O(2dnN).

A set F is k-sumfree, if for any two sets S1, S2 ⊆ F of the same size k′ ≤ k,∑
x∈S1

x =
∑

x∈S2
x holds if and only if S1 = S2. Such sets have been studied

extensively in the literature, also under the name Bk-sequences [8,9,15].
It is easy to verify that the set S = {(k + 1)i | 0 ≤ i < n} is a k-sumfree set

of size n. The maximal element in such a set is of course (k +1)n−1. Intuitively,
the elements of S are the (k + 1)-base representations of those 0-1 vectors VS

in N
n that have exactly one coordinate of value 1. Since no vector in N

n can
be obtained in more than one different ways as the sum of at most k vectors
from VS , an easy argument shows that S is k-sumfree.

Although this will be sufficient for our purposes, we mention that a con-
struction due to Bose and Chowla [2] shows that a k-sumfree set of size n with
maximum element at most (2n)k can also be found (see also [9], Chapter II). If k
is relatively small compared to n, the bound (2n)k is a considerable reduction
on the bound (k + 1)n−1 of the construction above.

Lemma 8 ([2]). For any integers n and k, there exists a k-sumfree set having n
elements, with the maximum element being at most (2n)k.

3.2 Hardness of the Vector Problem

The following lemma contains the main part of the hardness proof. By Lemma 5,
it immediately implies Theorem 2.

Lemma 9. 10-Unary Vector Bin Packing is W[1]-hard.

1 We thank Imre Ruzsa for explaining us these techniques.
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Proof. We present an FPT reduction from the W[1]-hard Clique parameterized
by the size of the desired clique. Let G = (V, E) and k be the input graph and
the parameter given for Clique. We assume V = [n] and |E| = m, and we write
xhyh for the h-th edge of G according to some arbitrary ordering. We construct
an instance I of 10-Unary Vector Bin Packing with

(
k
2

)
+ k + 1 bins.

Item sizes. The sizes of the items in I will be contained in S ∪ T , where S =⋃
(i,j)∈([k]

2 ) Si,j , T = T = ∪ T < ∪ T >, T = =
⋃

i∈[k] Ti,i, T < =
⋃

(i,j)∈([k]
2 ) Ti,j ,

and T > =
⋃

(j,i)∈([k]
2 ) Ti,j; here we use

([k]
2

)
= {(i, j) | 1 ≤ i < j ≤ k}. For each

possible pair of i and j, |Si,j | = m and |Ti,j | = n will hold.
To determine the item sizes, we first construct a k-non-averaging set A of

size n, using Lemma 7. Let A contain the elements a1 ≤ a2 ≤ · · · ≤ an. By
Lemma 7, we know an = O(k2n2). Let A =

∑
h∈[n] ah, clearly A = O(k2n3).

We also construct a k-sumfree set F containing k2 elements, using Lemma 8.
Let us index the elements of F by pairs of the form (i, j) ∈ [k]2, so let F = {fi,j |
(i, j) ∈ [k]2}. We also assume that fi1,j1 < fi2,j2 holds if and only if (i1, j1) is
lexicographically smaller than (i2, j2). By Lemma 8, we know fk,k = O(k2k).
Again, we let F =

∑
f∈F f , so F = O(k2k+2).

For some 1 ≤ i < j ≤ k, let Si,j =
⋃m

h=1 si,j(h), and for some 1 ≤ i, j ≤ k
let Ti,j =

⋃n
h=1 ti,j(h). The exact values of si,j(h) and ti,j(h) are as follows:

si,j(h) = (ik + j, 1, 0, 0, 0, 0, 0, 0, axh
, ayh

) if (i, j) ∈
([k]

2

)
, h ∈ [m],

ti,i(h) = (0, 0, fi,i, 1, 0, 0, 0, 0, (k− i)ah, (i− 1)ah) if i ∈ [k], h ∈ [n],

ti,j(h) = (0, 0, 0, 0, fi,j, 1, 0, 0, ah, 0) if (i, j) ∈
([k]

2

)
, h ∈ [n],

ti,j(h) = (0, 0, 0, 0, 0, 0, fi,j, 1, 0, ah) if (j, i) ∈
([k]

2

)
, h ∈ [n].

Bin capacities. We define
(
k
2

)
+ k + 1 bins as follows: we introduce bins pi,j

for each (i, j) ∈
([k]

2

)
, bins qi for each i ∈ [k], and one additional bin r. The

capacities of the bins pi,j and qi are given below (depending on i and j). To
define qi, we let F<

i =
∑

i<j≤k fi,j and F>
i =

∑
1≤j<i fi,j for each i ∈ [k].

Finally, we set the capacity of r in a way that the total size of the bins equals
the total size of the items. Hence, any solution must completely fill all bins.

pi,j = (ik + j, 1, 0, 0, (n− 1)fi,j , n− 1, (n− 1)fj,i, n− 1, A, A)
qi = (0, 0, (n− 1)fi,i, n− 1, F<

i , k − i, F>
i , i− 1, (k − i)A, (i− 1)A)

It is easy to see that r ∈ N
10. Observe that |S ∪ T | = m

(
k
2

)
+ nk2, the unary

encoding of the item sizes in S needs a total of at most O(mk4+nk2A) bits, and
the unary encoding of the item sizes in T needs a total of at most O(nF + k3A)
bits. By the bounds on A and F , the reduction given is indeed an FPT reduction.

Main idea. At a high-level abstraction, we think of the constructed instance as
follows. First, a bin qi requires n− 1 items from Ti,i, which means that we need
all items from Ti,i, except for some item ti,i(h). Choosing an index h ∈ [n] for
each i will correspond to choosing k vertices from G. Next, we have to fill up
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the bin qi, by taking altogether k− 1 items from T < and T > in a way such that
the sum of their last two coordinates equals the last two coordinates of ti,i(h).
The sumfreeness of F and the non-averaging property of A will imply that the
chosen items must be of the form ti,j(h) and tj,i(h) for some j.

This can be thought of as “copying” the information about the chosen vertices,
since as a result, each bin pi,j will miss only those items from Ti,j and from Tj,i

that correspond to the i-th and j-th chosen vertex in G. Suppose pi,j contains
all items from Ti,j and Tj,i except for the items, say, ti,j(ha) and tj,i(hb). Then,
we must fill up the last two coordinates of pi,j exactly by choosing one item
from Si,j . But choosing the item sj,i(e) will only do if the edge corresponding
to e ∈ [m] connects the vertices corresponding to ha and hb, ensuring that the
chosen vertices form a clique.

Correctness. Now, let us show formally that I is solvable if and only if G has a
clique of size k. Clearly, I is solvable if and only if each of the bins can be filled
exactly. Thus, a solution for I means that the items in S ∪T can be partitioned
into sets {Pi,j | (i, j) ∈

([k]
2

)
}, {Qi | i ∈ [k]}, and R such that

pi,j =
∑

v∈Pi,j

v for each (i, j) ∈
([k]

2

)
, (1)

qi =
∑
v∈Qi

v for each i ∈ [k], and (2)

r =
∑
v∈R

v. (3)

Direction ⇒. First, we argue that if G has a clique of size k, then I is solv-
able. Suppose that c1, c2, . . . , ck form a clique in G. Let di,j be the number for
which cicj is the di,j-th edge of G. Using this, we set Pi,j for each (i, j) ∈

([k]
2

)
and Qi for each i ∈ [k] as follows, letting R include all the remaining items.

Pi,j = {ti,j(h) | h �= ci} ∪ {tj,i(h) | h �= cj} ∪ {si,h(di,j)}. (4)
Qi = {ti,j(ci) | j �= i} ∪ {ti,i(h) | h �= ci}. (5)

It is easy to see that the sets Pi,j for some (i, j) ∈
([k]

2

)
and the sets Qi for

some i ∈ [k] are all pairwise disjoint. Thus, in order to verify that this indeed
yields a solution, it suffices to check that (1) and (2) hold, since in that case, (3)
follows from the way r is defined. For any (i, j) ∈

([k]
2

)
, using∑

h �=ci

ti,j(h) =
∑
h �=ci

(0, 0, 0, 0, fi,j, 1, 0, 0, ah, 0)

= (0, 0, 0, 0, (n− 1)fi,j , n− 1, 0, 0, A− aci , 0),∑
h �=cj

tj,i(h) =
∑
h �=cj

(0, 0, 0, 0, 0, 0, fj,i, 1, 0, ah)

= (0, 0, 0, 0, 0, 0, (n− 1)fi,j , n− 1, 0, A− acj),
si,h(di,j) = (ik + j, 1, 0, 0, 0, 0, 0, 0, aci, acj ),
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we get (1) by the definition of Pi,j . To see (2), we only have to use the definition
of Qi, and sum up the equations below:

∑
i<j≤k

ti,j(ci) =
∑

i<j≤k

(0, 0, 0, 0, fi,j, 1, 0, 0, aci, 0)

= (0, 0, 0, 0, F<
i , k − i, 0, 0, (k − i)aci , 0),∑

1≤j<i

ti,j(ci) =
∑

1≤j<i

(0, 0, 0, 0, 0, 0, fi,j, 1, 0, aci)

= (0, 0, 0, 0, 0, 0, F>
i , i− 1, 0, (i− 1)aci),∑

h �=ci

ti,i(h) =
∑
h �=ci

(0, 0, fi,i, 1, 0, 0, 0, 0, (k− i)ah, (i− 1)ah)

= (0, 0, (n− 1)fi,i, n− 1, 0, 0, 0, 0, (k− i)(A− aci), (i− 1)(A− aci)).

Direction ⇐. To prove the other direction, suppose that a solution exists,
meaning that some sets {Pi,j | (i, j) ∈

([k]
2

)
}, {Qi | i ∈ [k]} and R fulfill the

conditions of (1), (2), and (3). We show that this implies a clique of size k in G.
Let X denote the set of items that are contained in some particular bin x.

Observing the second, fourth, sixth, and eighth coordinates of the items in S∪T
and the bin x, we can immediately count the number of items from S, T =, T <,
and T > that are contained in X . The following table shows the information
obtained by this argument for each possible X .

|X ∩ S| |X ∩ T =| |X ∩ T <| |X ∩ T >|
X = Pi,j for some (i, j) 1 0 n− 1 n− 1
X = Qi for some i 0 n− 1 k − i i− 1
X = R (m− 1)

(
k
2

)
k 0 0

Next, observe that r3 =
∑

i∈[k] fi,i. This means that R contains exactly k

vectors from
⋃

i∈[k] Ti,i such that the third coordinate of their sum is
∑

i∈[k] fi,i.
But since F is k-sumfree, this can only happen if R contains exactly one vector
from each of T1,1, T2,2, . . . , Tk,k. Let these vectors be {ti,i(ci) | i ∈ [k]}. We claim
that the vertices {ci | i ∈ [k]} form a clique in G.

Using q3
i = (n− 1)fi,i, the table above, and f1,1 < f2,2 < · · · < fk,k we obtain

that Qi must contain every item in Ti,i \ {ti,i(ci)}, for each i ∈ [k]. Also, we
know that Qi must contain k − i items from T < and i − 1 from T >, so from
the values of q5

i and q7
i and the fact that F is k-sumfree, we also obtain that Qi

must contain exactly one item from each of the sets Ti,j where j �= i. Note that
apart from these (n− 1) + (k − 1) vectors, Qi cannot contain any other items.

Now, note that the last two coordinates of the sum
∑

h �=ci
ti,i(h) are (k −

i)(A− aci) and (i− 1)(A− aci). Since the last two coordinates of qi are (k− i)A
and (i−1)A, we get that

∑
v∈Qi\Ti,i

v must have (k− i)aci and (i−1)aci at the
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last two coordinates. As argued above, Qi \ Ti,i contains exactly one item from
each of the sets Ti,j where j �= i. Fixing some i and letting Ti,j ∩Qi = {ti,i(hj)},
this implies

∑
i<j≤k ahj = (k − i)aci and

∑
1≤j<i ahj = (i − 1)aci . But as A

is k-non-averaging, this yields hj = ci for each j �= i. This means that (5) holds.
Next, let us consider the set Pi,j for some (i, j) ∈

([k]
2

)
. First, the first two

coodinates of pi,j imply that Pi,j must contain exactly one element of Si,j . Let
us define di,j such that Pi,j ∩ Si,j = si,j(di,j). Furthermore, the table above and
the result (5) shows that Pi,j must contain (n−1) items from both of the sets T <

and T >. Recall that {ti,j(ci) | (i, j) ∈ [k]2} ⊆
⋃

i∈[k] Qi. Using p5
i,j = (n− 1)fi,j

and p7
i,j = (n−1)fj,i, and taking into account the ordering of the elements of F ,

it follows that (4) holds.
Finally, let us focus on the last two coordinates of the sum

∑
v∈Pi,j

v. Clearly,
if i < j then the sum of the vectors in Ti,j \{ti,j(ci)} has A−aci and 0 as the last
two coordinates, and similarly, the sum of the vectors in Tj,i \ {tj,i(cj)} has 0
and A− acj in the last two coordinates. From this, (4) and the definition of pi,j

yield that si,j(di,j) must contain aci and acj in the last two coordinates. But by
the definition of Si,j , this can only hold if (ci, cj) is an edge in G. This proves
the second direction of the correctness of the reduction. ��
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Abstract. Cops & Robber is a classical pursuit-evasion game on undi-
rected graphs, where the task is to identify the minimum number of cops
sufficient to catch the robber. In this work, we consider a natural variant
of this game, where every cop can make at most f steps, and prove that
for each f ≥ 2, it is PSPACE-complete to decide whether k cops can
capture the robber.

1 Introduction

The study of pursuit-evasion games is driven by many real-world applications
where a team of agents/robots must reach a moving target. The mathemati-
cal study of such games has a long history, tracing back to the work of Pierre
Bouguer, who in 1732 studied the problem of a pirate ship pursuing a flee-
ing merchant vessel. In 1960s the study of pursuit-evasion games, mostly moti-
vated by military applications like missile interception, gave a rise to the theory
of Differential Games [10]. Besides the original military motivations, pursuit-
evasion games have found many applications reaching from law enforcement to
video games and thus were studied within different disciplines and from different
perspectives. The necessity of algorithms for pursuit tasks occur in many real-
world domains. In the Artificial Intelligence literature many heuristic algorithms
for variations of the problem like Moving Target Search have been studied ex-
tensively [7,11,12,16,17]. In computer games, for instance, computer-controlled
agents often pursue human-controlled players and making a good strategy for
pursuers is definitely a challenge [14]. The algorithmic study of pursuit-evasion
games is also an active area in Robotics [9,21] and Graph Algorithms [15,5].

One of the classical pursuit-evasion problems is the Man and Lion problem
attributed to Rado by Littlewood in [13]: A lion (pursuer) and a man (evader)
in a closed arena have equal maximum speeds. What tactics should the lion
employ to be sure of his meal? See also for more recent results on this problem
[3,20]. The discrete version of the Man and Lion problem on graphs was intro-
duced by Winkler and Nowakowski [18] and Quilliot [19]. Aigner and Fromme
[1] initiated the study of the problem with several pursuers. This game, named
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Cops & Robber, is played by two players: cop and robber on an undirected
graph. The cop-player has a team of cops who attempt to capture the robber.
At the beginning of the game cop-player selects vertices and puts cops on these
vertices. Then the robber player puts the robber on a vertex. The players take
turns starting with the cop-player. At every move each of the cops can be either
moved to an adjacent vertex or kept on the same vertex. Similarly, the robber
player responds by moving the robber to an adjacent vertex or keeping him on
the same vertex. The cop-player wins if at some step of the game he succeeds to
catch the robber, i.e. to put one of his cops on a vertex occupied by the robber.
The game was studied intensively and there is an extensive literature on this
problem. We refer to surveys [2,5] for references on different pursuit-evasion and
search games on graphs.

In the game of Cops & Robber there are no restrictions on the number of moves
the players can make. Such model is not realistic for most of the applications: No
lion can pursuit a man without taking a nap and no robot can move permanently
without recharging batteries. In this work, we introduce a more realistic scenario
of Cops & Robber, the model capturing the fact that each of the cops has a
limited amount of power or fuel.

We also find the Cops & Robber problem with restricted power interesting
from combinatorial point of view because it generalizes the Minimum Dominat-
ing Set problem, one of the fundamental problems in Graph Theory and Graph
Algorithms. Indeed, with fuel limit 1 every cop can make at most one move,
then k cops can win on a graph G if and only if G has a dominating set of
size k. Thus two classical problems— Minimum Dominating Set (fuel limit is 1)
and Cops & Robber (unlimited fuel) are the extreme cases of our problem. It
would be natural to guess that if the amount of fuel the cops possess is some
fixed integer f , then the problem is related to distance f domination. Indeed,
for some graph classes (e.g. for trees), the problems coincide. Surprisingly, the
intuition that Cops & Robber and Minimum f -Dominating Set (the classical
NP -complete problem) should be similar from the computational complexity
point of view is wrong. The main result of this paper is that the problem de-
ciding if k cops can win on an undirected graph is PSPACE-complete even for
f = 2. Another motivation for our work is the long time open question on the
computational complexity of the Cops & Robber problem (without power con-
strains) on undirected graphs. In 1995, Goldstein and Reingold [8] have shown
that the classical Cops & Robber game is EXPTIME-hard on directed graphs
and conjectured that similar holds for undirected graphs. However, even NP-
hardness of the problem was not known until very recently [4]. By our results,
in the game on an n-vertex undirected graph if the number of steps each cop is
allowed to make is at most some polynomial of k, then deciding if k cops can
win is PSPACE-complete.

2 Basic Definitions and Preliminaries

We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V (G) and its edge set by E(G), or simply by
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V and E if this does not create confusion. If U ⊆ V (G) then the subgraph of
G induced by U is denoted by G[U ]. For a vertex v, the set of vertices which
are adjacent to v is called the (open) neighborhood of v and denoted by NG(v).
The closed neighborhood of v is the set NG[v] = NG(v)∪ {v}. If U ⊆ V (G) then
NG[U ] =

⋃
v∈U

NG[v]. The distance distG(u, v) between a pair of vertices u and v

in a connected graph G is the number of edges in a shortest u, v-path in G. For
a positive integer r, N r

G[v] = {u ∈ V (G) : distG(u, v) ≤ r}. Whenever there is no
ambiguity we omit the subscripts.

The Cops & Robber game can be defined as follows. Let G be a graph, and
let f > 0 be an integer. The game is played by two players: the cop-player C and
the robber player R, which make moves alternately. The cop-player C has a team
of k cops who attempt to capture the robber. At the beginning of the game this
player selects vertices and put cops on these vertices. Then R puts the robber
on a vertex. The players take turns starting with C. At every turn each of the
cops can be either moved to an adjacent vertex or kept on the same vertex, and
during the whole game each of the cops can be moved from a vertex to another
vertex at most f times in total. In other words, each of the cops has an amount
of fuel which allows him to make at most f steps. Let us note that several cops
can occupy the same vertex at some move. Similarly, R responds by moving the
robber to an adjacent vertex or keeping him on same vertex. It is said that a
cop catches (or captures) the robber at some move if at that move they occupy
the same vertex. Notice that even if a cop cannot move to adjacent vertex (run
out of fuel), he is still active and the robber cannot move to the vertex occupied
by the cop without being caught. The cop-player wins if one of his cops catches
the robber. Player R wins if he can avoid such a situation, or equivalently, to
survive for kf +1 moves, since it can be assumed that at least one cop is moved
at each step (otherwise the robber can either keep his position or improve it).
For an integer f and a graph G, we denote by cf (G) the minimum number k of
cops sufficient for C to win on graph G.

We define the position of a cop as a pair (v, s) where v ∈ V (G) and s is an
integer, 0 ≤ s ≤ f . Here v is the vertex occupied by the cop, and s is the number
of moves along edges (amount of fuel) which the cop can do. The position of a
team of k cops (or position of cops) is a multiset ((v1, s1), . . . , (vk, sk)), where
(vi, si) is the position of the i-th cop. For the initial position, all si = f . The
position of the robber is a vertex of the graph occupied by him.

We consider the following Cops and Robber decision problem:

Input: A connected graph G and two positive integers k, f .
Question: Is cf (G) ≤ k?

Let us finish the section on preliminaries with the proof of relations between Cops
& Robber and r-domination announced in Introduction. The Cops & Robber
problem with restricted power is closely related to domination problems. Let r
be a positive integer. A set of vertices S ⊂ V (G) of a graph G is called an r-
dominating set if for any v ∈ V (G), there is u ∈ S such that dist(u, v) ≤ r. The
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r-domination number γr(G) is the minimum k such that there is an r-dominating
set with at most k vertices. Then γ1(G) is the domination number of G.

The proof of the following observation is straightforward.

Observation 1. For any connected graph G, c1(G) = γ1(G).

For f > 1, the values cf (G) and γf (G) can differ arbitrarily. Consider, for
example, the graph G which is the union of k complete graphs Kk with one
additional vertex joined with all vertices of these copies of complete graphs by
paths of length f . It can be easily seen that γf (G) = 1 but cf(g) = k. Still,
for some graph classes (e.g. for trees) these numbers are equal. Recall, that the
girth of a graph G, denoted by g(G), is the length of a shortest cycle in G (if G
is acyclic then g(G) =∞).

Theorem 1. Let f > 0 be an integer and let G be a connected graph of girth at
least 4f − 1. Then cf (G) = γf (G).

Proof. The proof of γf (G) ≤ cf (G) is trivial. To prove that cf (G) ≤ γf (G),
we give a winning strategy of γf (G) cops. Suppose that S is an f -dominating
set in G of size γf (G). The cops are placed on the vertices of S. Suppose that
the robber occupies a vertex u. Then the cops from vertices of S ∩N2f−1

G move
towards the vertex occupied by the robber at the current moment along the
shortest paths. We claim that the robber is captured after at most f moves of
the cops. Notice that the robber can move at distance at most f−1 from u before
the cops make f moves. Because g(G) ≥ 4f − 1, the paths along which the cops
move are unique. Suppose that the robber is not captured after f − 1 moves of
the cop-player, and the robber occupies a vertex w after his f−1 moves. Since S
is an f -dominating set, there is a vertex z ∈ S such that distG(w, z) ≤ f . Using
the fact that g(G) ≥ 4f − 1, and since the robber was not captured before, we
observe that the cop from z moved to w along the shortest path between z and
w and by his f -th move he has to enter w and capture the robber.

3 PSPACE-Completeness

It immediately follows from Observation 1 that it is NP-complete to decide
whether c1(G) ≤ k. Here we prove that for any f ≥ 2, the problem is much more
difficult.

Theorem 2. For any f ≥ 2, the Cops and Robber problem is PSPACE-
complete.

Proof. We reduce the PSPACE-complete Quantified Boolean Formula in

Conjunctive Normal Form (QBF) problem [6]. For a set of Boolean variables
x1, x2, . . . , xn and a Boolean formula F = C1∧C2∧· · ·∧Cm, where Cj is a clause,
the QBF problem asks whether the expression φ = Q1x1Q2x2 · · ·QnxnF is true,
where for every i, Qi is either ∀ or ∃. For simplicity, we describe the reduction
for the case f = 2. For f > 2, the proof uses the same ideas, but the construction
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is slightly more involved. We provide more details for the case f > 2 right after
we finish the proof of Lemma 5.

Given a quantified Boolean formula φ, we construct an instance G, k of our
problem in several steps. We first construct a graph G(1) and show that if the
considered strategies are restricted to some specific conditions, then φ is true if
and only if the cop-player can win on G(1) with a a specific number of cops.

Constructing G(1). For every Qixi we introduce a gadget graph Gi. For Qi = ∀,
we define the graph Gi(∀) with vertex set

{ui−1, ui, xi, xi, yi, yi, zi}

and edge set

{ui−1yi, yiui, ui−1yi, yiui, zixi, xiyi, zixi, xiyi}.

For Qi = ∃, we define Gi(∃) as the graph with vertex set

{ui−1, ui, xi, xi, yi, zi}

and edge set
{ui−1yi, yiui, zixi, xiyi, zixi, xiyi, xixi}.

The graphs Gi(∀) and Gi(∃) are shown in Fig 1. Observe that the vertex ui

appears both in the gadget graph Gi and in the gadget Gi+1 for i ∈ {1, 2, . . . , n−
1}. Let Ui = {u0, . . . , ui}, Yi = {y1, . . . , yi} and Y i = {yj |1 ≤ j ≤ i} for
1 ≤ i ≤ n. The graph G(1) also has vertices C1, C2, . . . , Cm corresponding to
clauses. The vertex xi is joined with Cj by an edge if Cj contains the literal
xi, and xi is joined with Cj if Cj contains the literal xi. The vertex un is
connected with all vertices C1, C2, . . . , Cm by edges. An example of G(1) for
φ = ∃x1∀x2 (x1 ∨ x2) ∧ (x1 ∨ x2) is shown in Fig 1.

xi

yi

ui ui

zi

xi

yi

ui−1

zi

xi

yiui−1 u0 u1

xi

u2

C1 C2

x1
x2

x1

x2

Fig. 1. Graphs Gi(∀), Gi(∃) and G(1)

We proceed to prove several properties of G(1).

Lemma 1. Suppose that the robber can use only strategies with the following
properties:

– he starts from u0,
– he cannot remain in vertices u0, . . . , un,
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– he moves along edges ui−1yi, yiui, ui−1yi, yiui only in the direction induced
by this ordering, i.e. these edges are “directed” for him.

Assume also that n cops on G(1) use strategy with the following restrictions:

– they start from vertices z1, . . . , zn,
– the cop on zi cannot move until the robber reaches vertices yi or yi.

Then φ = true if and only if n cops have a winning strategy on G(1).

Proof. Assume that φ = true. We describe a winning strategy for the cop-
player. The cops start by occupying vertices z1, . . . , zn. Suppose that at some
point during the game the robber moves to vertex ui−1. Since he cannot stay in
this vertex, we have that he has to move to yi or yi. If the robber moves to yi

from ui−1 of Gi(∀), then the cop occupying zi moves to xi and the corresponding
variable xi is set to true. If the robber moves to yi, then the cop moves to xi

and we set xi = false. It means that for a quantified variable ∀xi, the robber
chooses the value of xi. Notice that the robber cannot stay on yi or yi because
a cop which still has fuel occupies an adjacent vertex. Therefore he has to move
to ui. If the robber moves to yi of Gi(∃) from ui−1, then the cop player replies
by moving a cop from zi to xi or xi, and this represents the value of the variable
xi. Hence for a quantified variable ∃xi, the cops choose the value of xi. Then the
robber is forced to move to ui—it is senseless for him to move to xi or xi or stay
in yi. Since φ = true, we have that the cops in Gi(∃) gadgets can move in such
a way that when the robber occupies the vertex un, every vertex Cj has at least
one neighbor occupied by a cop. If the robber moves to some vertex Cj then a
cop moves to Cj and the robber is captured. Thus the cops win in this case.

Suppose that φ = false. We describe a winning strategy for the robber-
player against cops occupying vertices z1 . . . , zn. The robber starts moving from
u0 toward the vertex un along some path in G(1). Every time the robber steps on
a vertex yi of Gi(∀), there should be a cop responding to this move by moving
to xi from si. Otherwise the robber can stay in this vertex, and since cops from
z1, . . . , zi−1 do not have enough fuel to reach yi and the cops from zi+1, . . . , zn

cannot move because of our restrictions, the robber-player wins in this case. By
the same arguments, if the robber occupies yi, then the cop from zi has to move
to xi. It means that in the same way as above the robber chooses the value of the
variable xi. Similarly, if the robber occupies the vertex yi in Gi(∃), then a cop
is forced to move from zi to xi or xi, and this cop can choose which vertex from
xi and xi to occupy, and now the cop-player chooses the value of the variable
xi. Since φ = false, we have that the robber can choose between yi and yi in
gadgets Gi(∀) such that no matter how the cop-player chooses to place the cops
on xi or xi in gadgets Gi(∃), when the robber arrives at un at least one vertex
Cj is within distance two from vertices xi and xi which were occupied by cops
when the robbers visited yi or yi. Therefore, cops cannot reach this vertex. Then
the robber moves to Cj and remains there.

Now we are going to introduce gadgets that force the players to follow the
constraints on moves described in Lemma 1. Then we gradually eliminate all
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constraints. At first, we construct a gadget F which forces a cop to occupy a
given vertex and forbids him to leave it until some moment.

Constructing F (W, t). Let W be a set of vertices, and let t /∈ W be a vertex
(we use these vertices to attach F (W, t) to other parts of our constructions). We
introduce four vertices a, b, c, d, join a and b with t and the vertices of W by
edges, and join c and d with t by paths of length two (see Fig 2).

b

a
t

c

d

W

Fig. 2. Graph F (W, t)

Properties of F (W, t) are summarized in the following lemma.

Lemma 2. Let H be a graph such that V (H)∩ V (F (W, t)) = W ∪ {t}. For any
winning strategy for the cops on the graph H ′ = H ∪ F (W, t), at least one cop
have to be placed on vertices V (F (W, t)) \ (W ∪ {a, b}) in the initial position,
and if exactly one cop is placed there then he has to occupy t. Moreover, if one
cop is placed on vertices V (F (W, t)) \ (W ∪ {a, b}) and there are no other cops
at distance two from a, b, then the cop cannot leave t while the robber is on one
of the vertices of W .

Proof. The first claim follows from the observation that at least one cop should
be placed at distance at most two from c and d. Otherwise the robber can occupy
one of these vertices, and he cannot be captured. To prove the second claim, note
that only the cop from t can visit vertices a and b. If the cop leaves t then at
least one of these vertices is not occupied by cops, and the robber can move
there from vertices of W . After that he wins since no cop can reach this vertex.

Our next step is to force restrictions on strategies of the cop-player.

Constructing G(2). We consider the graph G(1). For each 1 ≤ i ≤ n, the gadget
F (Ui−1∪Yi−1∪Y i−1, zi) is added. Denote the obtained graph by G(2) (see Fig 3).

u0 u2

u1

z1 z2

Fig. 3. Graph G(2) for φ = ∃x1∀x2 (x1 ∨ x2) ∧ (x1 ∨ x2)
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Lemma 3. Suppose that the robber can use only strategies with the following
properties:

– he starts from u0 if cops are placed on z1, . . . , zn,
– he cannot remain in vertices u0, . . . , un,
– he moves along edges ui−1yi, yiui, ui−1yi, yiui only in the direction induced

by this ordering, i.e. these edges are “directed” for him.

Then φ = true if and only if n cops have a winning strategy on G(2).

Proof. If φ = true then n cops can use exactly the same winning strategy as
in the proof of Lemma 3. We should only note that it makes no sense for the
robber to move to vertices a and b of gadgets F since he would be immediately
captured. Suppose that φ = false. If the cops are not placed on z1, . . . , zn, then
by Lemma 2 the robber wins by staying in one of the pendent vertices of gadgets
F . If cops occupy vertices z1, . . . , zn, then we can use the same winning strategy
for the robber as the proof of Lemma 3. Indeed, by Lemma 2, the cop on zi

cannot move until the robber reaches vertices yi or yi.

In the next stage we add a gadget that forces the robber to occupy u0 in the
beginning of the game.

Constructing G(3). We construct G(2). Then we add vertices p, q, w1, w2 and
edges w1w2, w2u0, and then join p and q with w1 by paths of length two. Finally,
we make w1 to be adjacent to vertices u1, . . . , un and C1, . . . , Cm. Denote the
obtained graph by G(3) (see Fig 4).

u0 u2

u1

z1 z2

q

p

w1

w2

Fig. 4. Graph G(3) for φ = ∃x1∀x2 (x1 ∨ x2) ∧ (x1 ∨ x2)

Lemma 4. Suppose that the robber can use only strategies with the following
properties:

– he cannot remain in vertices u1, . . . , un,
– he moves along edges ui−1yi, yiui, ui−1yi, yiui only in the direction induced

by this ordering, i.e. these edges are “directed” for him.

Then φ = true if and only if n + 1 cops have a winning strategy on G(3).
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Proof. Suppose that φ = true. We place n+ 1 cops on vertices w1, z1, . . . , zn. If
the robber chooses vertices of NG(3) [{w1, z1, . . . , zn}], then he can be captured
right the next step. If he occupies vertices p, q or pendent vertices of gadgets F ,
then he can be clearly captured in at most two steps. Suppose that the robber
is placed on some vertex yi or yi. If he tries to move to ui−1 or ui, then he is
captured by the cop from the vertex w1. If he moves to some vertex a or b of
gadget F attached to a vertex zj, j > i, then he is captured by the cop from
zj. Otherwise he is captured by the cop from the vertex zi in at most two steps.
Thus the only remaining possibility for the robber to avoid the capture is to
occupy u0. In this case the robber from w1 moves to w2. Then the robber should
leave the vertex u0, and the cop-player can use the same strategy as before (see
Lemma 3). Finally, the robber cannot move to w1 from vertices u1, . . . , un and
C1, . . . , Cm, since he would be captured by the cop standing in w2.

Suppose that φ = false. By Lemma 2 and by construction of G(3), we can
assume that the cops are placed on w1, z1, . . . , zn (otherwise the robber wins
by choosing a pendent vertex within distance at least three from the cops).
We describe a winning strategy for the robber-player against the cops occupying
these vertices. The robber is placed on u0. Then he waits until some cop is moved
to an adjacent vertex. If the cop from w1 is moved to some vertex different from
w2, then the robber responds by moving to w2, and he wins by staying in this
vertex. Suppose that a cop stays in the vertex w1 and another cop, say the cop
from zi, moves to an adjacent vertex. The robber responds by moving to one
of the vertices a or b of the gadget F attached to zi and not occupied by cops.
Then only the cop from w1 can try to capture him by moving to some vertex
uj, j < i, but in this case the robber can return to u0 and stay there. It remains
to consider the case when a cop moves from w1 to w2, but now the robber can
use the same winning strategy described before in Lemma 3.

Finally, we attach gadgets to force the remaining restrictions on actions of the
robber.

Constructing G(4). We consider G(3). For each 1 ≤ i ≤ n, we add vertices fi, gi

and the edge figi. Then fi is joined by edges with ui, yi and yi (if it exists).
Finally, we add the gadget F (Ui−1 ∪ Yi ∪ Y i, gi). The construction is shown in
Fig 5.

u1u0 u2

G(3)

f1
g1

f2
g2

Fig. 5. Graph G(4) for φ = ∃x1∀x2 (x1 ∨ x2) ∧ (x1 ∨ x2)
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Now we are in the position to prove the SPACE-hardness result.

Lemma 5. For the constructed graph G(4), we have φ = true if and only if
2n + 1 cops have a winning strategy on G(4).

Proof. Suppose that φ = true. The cops are placed on the vertices w1, z1, . . . , zn,
g1, . . . , gn. The winning strategy for the cop-player is constructed as in Lemma 4
with one addition: if the robber reaches the vertex ui, then a cop is moved from
gi to fi. Then the robber cannot stay in ui or move to yi or to yi. Notice also
that if the robber is on yi or yi then he cannot move to ui−1 because he would
be captured in one step by the cop from fi−1 or w2 if i = 1.

Let φ = false. We can assume that the cops are occupying w1, z1, . . . , zn,
g1, . . . , gn because otherwise the robber wins by selecting one of the pendent
vertices at distance 2 from one of the cop-free vertices. By Lemma 2, no cop can
leave gi for 1 ≤ i ≤ n, before the robber reaches the vertex ui. But then the
robber wins by using exactly same strategy we described in Lemma 4.

This concludes the proof of the PSPACE-hardness for f = 2. For f > 2, the
proof is very similar and here we sketch only the most important differences.
In particular, the graph G(1) should be modified in the following way: for each
1 ≤ i ≤ n, we add a vertex z′i and join it with the vertex zi by a path of
length f −2. For this graph, it is possible to prove the claim similar to Lemma 1
with the difference that the cops should start from vertices z′1 . . . , z′n and with
additional condition that the robber cannot leave u0 until some cop enters one
of the vertices z0, . . . , zn, and then to “enforce” special strategies for the players.

To complete the proof of the theorem, it remains to show that our problem is
in PSPACE.

Lemma 6. For every integers f, k ≥ 1 and an n-vertex graph G, it is possible
to decide whether cf (G) ≤ k by making use of space O(kfnO(1)).

Proof. The proof is constructive. We describe a recursive algorithm which solves
the problem. Note that we can consider only strategies of the cop-player such
that at least one cop is moved to an adjacent vertex. Otherwise, if all cops are
staying in old positions, the robber can only improve his position.

Our algorithm uses a recursive procedure W (P, u, l), which for a non negative
integer l, position of the cops P = ((v1, s1), . . . , (vk, sk)) such that l = s1 + . . .+
sk, and a vertex u ∈ V (G), returns true if k cops can win starting from the
position P against the robber which starts from the vertex u, and the procedure
returns false otherwise. Clearly, k cops can capture the robber on G if and only
if there is an initial position P0 such that for any u ∈ V (G), W (P0, u, l) = true
for l = kf .

If l = 0 then W (P, u, l) = true if and only if u = vi for some 1 ≤ i ≤ k.
Suppose that l > 0. Then W (P, u, l) = true in the following cases:

– u = vi for some 1 ≤ i ≤ k,
– u ∈ NG(vi) and si > 0 for some 1 ≤ i ≤ k,
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– there is a position P ′ = ((v′1, s
′
1), . . . , (v

′
k, s′k)) such that the cops can go

from P to P ′ in one step, and for any u′ ∈ NG[u], W (P ′, u′, l′) = true where
l′ = s′1 + . . . + s′k < l.

Since all positions can be listed (without storing them) by using polynomial
space, the number of possible moves of the robber is at most n, and the depth
of the recursion is at most kf , the algorithm uses space O(kfnO(1)).

Now the proof of the theorem follows from Lemmata 5 and 6.

Notice that the PSPACE-hardness proof also holds for the case when f is a part
of the input. However, our proof only shows that the problem is in PSPACE
only for f = nO(1).

4 Conclusion

In this paper we introduced the variant of the Cops & Robber game with re-
stricted resources and have shown that the problem is PSPACE-complete for
every f > 1. In fact, our proof also shows that the problem is PSPACE-complete
even when f is at most some polynomial of the numer of cops. One of the long
standing open questions in Cops & Robber games, is the computational complex-
ity of the classical variant of the game on undirected graphs without restrictions
on the power of cops. In 1995, Goldstein and Reingold [8] conjectured that this
problem is EXPTIME-hard. On the other hand, we do not know any example,
where to win cops are required to make exponential number of steps (or fuel).
This lead to a very natural question: How many steps along edges each cop needs
in the Cops & Robber game without fuel restrictions?
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Abstract. Motivated from drawing route sketches, we consider the fol-
lowing path schematization problem. We are given a simple embedded
polygonal path P = (v1, . . . , vn) and a set C of admissible edge orienta-
tions including the coordinate axes. The problem is to redraw P schemat-
ically such that all edges are drawn as line segments that are parallel to
one of the specified orientations. We also require that the path preserves
the orthogonal order and that it remains intersection-free. Finally, we
want the drawing to maximize the number of edges having their pre-
ferred edge direction and to minimize the path length.

In this paper we first present an efficient two-step approach for schema-
tizing monotone paths. It consists of an O(n2)-time algorithm to assign
edge directions optimally and a subsequent linear program to minimize
the path length. In order to schematize non-monotone paths we pro-
pose a heuristic that first splits the input into k monotone subpaths and
then combines the optimal embeddings of the monotone subpaths into a
single, intersection-free embedding of the initial path in O(k2 + n) time.

1 Introduction

Simplification and schematization of map objects are well-known operators in
cartographic generalization, i. e., the process to adapt map content to its scale
and use. Simplification usually reduces unnecessary complexity, e. g., by remov-
ing extraneous vertices of a polygonal line while still maintaining its overall
appearance. Schematization, however, may abstract more drastically from geo-
graphic reality as long as the intended map use allows for it. Public transport
maps are good examples of schematization, where edge orientations are limited
to a small number of slopes and edge lengths are no longer drawn to scale [10].
In spite of all distortions, such maps usually work well.

In this paper we consider a path schematization problem that is motivated
from visualizing routes in road networks. Routes typically begin and end in
residential or commercial areas, where roads are mostly used only for short
distances of a few meters up to a few hundred meters. As soon as the route leaves
the city limits, however, country roads and highways tend to be used for distances
� Supported by grant NO 899/1-1 of the German Research Foundation (DFG).
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(a) Bing Maps (b) Hand-drawn sketch

B1

B2

B3

(c) Our algorithm

Fig. 1. Comparison of different methods for drawing a route

ranging from a few up to hundreds of kilometers. Moreover, optimal routes tend
to follow a general driving direction and deviations from this direction are rare.

Commercial route planners typically present driving directions for such routes
as a graphical overview of the route highlighted in a traditional road map (see
Fig. 1a) in combination with a textual step-by-step description. The overview
map is good for giving a general idea of the route, but due to its small scale it
often does not succeed in showing details of the route, in particular for short
roads in the vicinity of start and destination and off the main highways. Textual
descriptions are accurate when used at the right moment but there is a high
risk of loss of context. On the other hand, a manually drawn route sketch often
shows the whole route in a single picture, where each part of the route has
its own appropriate scale: important turning points along the route and short
residential roads are enlarged while long stretches of highways and country roads
are shortened. Edges are often aligned with a small set of orientations rather
than being geographically accurate [12]. Figure 1b gives an example. In spite of
the cartographic error, such route sketches are often easier to read than textual
descriptions and traditional road maps—at least if the user’s mental or cognitive
map, i. e., a rough idea of the geographic reality, is preserved [8,11].

We formalize the application problem of drawing route sketches as a geometric
path schematization problem. Given a plane embedding of a path P , the goal
is to find a short schematic embedding of P that is as similar to the input
embedding as possible but uses only a restricted set C of edge orientations. We
call such an embedding C-oriented. For our application of route sketches, the
path P is given by n important points along the route. These important points
can be turns, important junctions, highway ramps, etc.

Related Work. Similar path schematization problems have been studied be-
fore. Neyer [9] proposed an algorithm to solve the C-oriented line simplification
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problem, where a C-oriented simplification Q of a polygonal path P is to be
computed that uses a minimum number of edges. Furthermore, Q must have
Fréchet distance at most ε from P . For a constant-size set C the algorithm has a
running time of O(kn2 logn), where n is the number of vertices of P and k is the
number of vertices of Q. Merrick and Gudmundsson [7] studied a slightly relaxed
version of the same problem and gave an O(n2|C|3)-time algorithm to compute
a C-oriented simplification of P that is within Hausdorff distance at most ε of P .
Agrawala and Stolte [1] designed a system called LineDrive that uses heuristic
methods based on simulated annealing in order to render route maps similar to
hand-drawn sketches. While their system allows distortion of edge lengths and
angles, the resulting paths are neither C-oriented nor can hard quality guaran-
tees be given. They did, however, implement and evaluate the system in a study
that showed that users generally preferred LineDrive route maps over traditional
route maps. Brandes and Pampel [2] studied the path schematization problem in
the presence of orthogonal order constraints [8] in order to preserve the mental
map. They showed that deciding whether a rectilinear schematization of a path
P exists that preserves the orthogonal order of P is NP-hard. They also showed
that schematizing a path using arbitrarily oriented unit-length edges is NP-hard.

Our Contribution. Due to the NP-hardness of rectilinear path schematiza-
tion [2], we cannot hope for an algorithm that solves the general C-oriented path
schematization problem efficiently. Rather, we present an efficient algorithm to
solve the corresponding monotone path schematization problem, in which the
input is restricted to x- or y-monotone paths (Section 3). The algorithm consists
of two steps: First, we compute in quadratic time a C-oriented schematization of
the input path that preserves the orthogonal order of the input and has minimum
schematization cost (to be defined). Next, we use a linear program to minimize
the total path length such that the schematization cost remains minimum.

In order to use this algorithm to generate route sketches for non-monotone
input paths, we present a three-step heuristic approach (Section 4): We first split
the path in linear time into a minimum number k of monotone subpaths, then we
use the previous algorithm to optimally schematize each subpath, and finally we
combine the k schematized subpaths into a single intersection-free route sketch
for the non-monotone input path in O(k2+n) time. Note that routes in practice
tend to follow a general direction given by the straight line connecting start and
destination. Thus if a path is not monotone itself, then it usually consists of
a very small number of monotone subpaths (see the example in Fig. 1c, which
decomposes into three monotone subpaths).

For omitted proofs and details we refer to the full version of this paper [4].

2 Preliminaries

Let P = (v1, . . . , vn) be a path with edges vivi+1 for 1 ≤ i ≤ n−1. For a vertex v
and an edge e of P we say v ∈ P and e ∈ P . A plane embedding π : P → R

2 maps
each vertex vi ∈ P to a point π(vi) = (xπ(vi), yπ(vi)) and each edge uv ∈ P to
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the line segment π(uv) = π(u)π(v) such that π is a simple polygonal path with
vertex set {π(v1), . . . , π(vn)}. We denote the length of an edge e in π as |π(e)|. An
embedded path is a pair (P, π) of a path P and a plane embedding π of P . Let C =
{γ1, . . . , γk} be a set of angles w. r. t. the x-axis that represents the admissible
edge orientations. We require that {0◦, 90◦, 180◦, 270◦} ⊆ C. Reasonable sets
of edge directions for route sketches are, e. g., multiples of 30 or 45 degrees. A
plane embedding π of a path is called C-oriented if the direction of each edge in
π corresponds to an angle in C. For an embedding π of P and an edge e ∈ P we
denote by απ(e) the angle of π(e) w. r. t. the x-axis. For the input embedding π,
we similarly denote by ωC(e) the preferred angle γ ∈ C, i. e., the angle in C that
is closest to απ(e). For a C-oriented embedding ρ of P and an edge e ∈ P the
direction cost cρ(e) captures by how much the angle αρ(e) deviates from ωC(e).
Then, we define the schematization cost c(ρ) as c(ρ) =

∑
e∈P cρ(e).

Following Misue et al. [8], we say that an embedding ρ of a path P preserves
the orthogonal order of another embedding π of P if for any two vertices vi and
vj ∈ P we have xπ(vi) ≤ xπ(vj) if and only if xρ(vi) ≤ xρ(vj) and yπ(vi) ≤ yπ(vj)
if and only if yρ(vi) ≤ yρ(vj). In other words, any two vertices keep their above-
below and left-right relationship.

3 Monotone Path Schematization

In this section, we solve the monotone C-oriented path schematization problem:

Problem 1. Given an embedded x- or y-monotone path (P, π), a set C of edge
orientations and a minimum length �min(e) for each edge e ∈ P , find a plane
C-oriented embedding ρ of P that

(i) preserves the orthogonal order of the input embedding π,
(ii) minimizes the schematization cost c(ρ),
(iii) respects the individual minimum edge lengths |ρ(e)| ≥ �min(e), and
(iv) minimizes the total path length

∑
e∈P |ρ(e)|.

Note that schematization cost and total path length are two potentially conflict-
ing optimization criteria. Primarily, we want to find an embedding that mini-
mizes the schematization cost (see Section 3.1). In a second step, we minimize the
total path length of that embedding without changing the previously assigned
edge directions (see Section 3.2). The rationale for preserving the orthogonal
order of the input is to maintain the user’s mental map [5,2,8].

3.1 Minimizing the Schematization Cost

The goal in the first step of our algorithm is to find an embedding with minimum
schematization cost. Here we assume that the input path (P, π) is x-monotone;
y-monotone paths are schematized analogously. We assign the preferred angle
ωC(e) = γ to each edge e ∈ P , where γ ∈ C is the angle closest to απ(e). This
takes constant time per edge. It could, however, result in the following conflict.
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Consider two subsequent edges e1, e2 with {ωC(e1), (ωC(e2)} = {90◦, 270◦}. As-
signing such preferred angles would result in an overlap of e1 and e2. In this
case, we either set ωC(e1) or ωC(e2) to its next best value, depending on which
edge is closer to it. This neither changes the solution nor creates new conflicts
since in a plane embedding not both edges can have their preferred direction.

The output embedding ρ must be x-monotone, too, as it preserves the or-
thogonal order of π. So we can assume that P = (v1, . . . , vn) is ordered from left
to right in both embeddings. Let ρ′ be any orthogonal-order preserving embed-
ding of P . We start with the observation that in ρ′ every edge e = vivi+1 with
ωC(e) �= 0◦ and yρ′(vi) �= yρ′(vi+1) can be embedded with its preferred direction
αρ′(e) = ωC(e). This is achieved by horizontally shifting the whole embedding
ρ′ right of xρ′(vi+1) (including vi+1) to the left or to the right until the slope
of e satisfies αρ′(e) = ωC(e). Due to the x-monotonicity of P no other edges are
affected by this shift. We now group all edges e = uv of P into four categories:

1. if ωC(e) = 0◦ and yπ(u) �= yπ(v) then e is called horizontal edge (or h-edge);
2. if yπ(u) = yπ(v) then e is called strictly horizontal edge (or sh-edge);
3. if ωC(e) �= 0◦ and xπ(u) �= xπ(v) then e is called vertical edge (or v-edge);
4. if xπ(u) = xπ(v) then e is called strictly vertical edge (or sv-edge).

Using these categories, we define the direction cost as follows. All edges e with
αρ(e) = ωC(e) are drawn according to their preferred angle and we assign the
cost cρ(e) = 0. For all edges e with αρ(e) �= ωC(e) we assign the cost cρ(e) = 1.
An exception are the sh- and sv-edges, which must be assigned their preferred
angle due to the orthogonal ordering constraints. Consequently, we set cρ(e) =∞
for any sh- or sv-edge e with αρ(e) �= ωC(e). Using the above horizontal shifting
argument, the cost cρ(e) of any edge e depends only on the vertical distance
between its endpoints. So, the schematization cost of an x-monotone embedding
ρ is already fully determined by assigning y-coordinates yρ(v) to all v of P .

In order to determine an embedding with minimum schematization cost we
define m ≤ n − 1 closed and vertically bounded horizontal strips s1, . . . , sm

induced by the set {y = yπ(vi) | 1 ≤ i ≤ n} of horizontal lines through the
vertices of (P, π). Let these strips be ordered from top to bottom as shown in
Fig. 2a. Furthermore we define a dummy strip s0 above s1 that is unbounded
on its upper side. We say that an edge e = uv crosses a strip si and conversely
that si affects e if π(u) and π(v) lie on opposite sides of si. In fact, to determine
the cost of an embedding ρ it is enough to know for each strip whether it has a
positive height or not. Our algorithm will assign a symbolic height h(si) ∈ {0, 1}
to each strip si such that the schematization cost is minimum. Note that sh-edges
do not cross any strip but rather coincide with some strip boundary. Hence all
sh-edges are automatically drawn horizontally and have no direction costs. We
can therefore assume that there are no sh-edges in (P, π).

Let S[i, j] =
⋃j

k=i sk be the union of the strips si, . . . , sj and let I(i, j) be
the subinstance of the path schematization problem containing all edges that lie
completely within S[i, j]. Note that I(1, m) corresponds to the original instance
(P, π), whereas in general I(i, j) is no longer a connected path but a collection
of edges. The following lemma is a key to our algorithm.
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Lemma 1. Let I(i, j) be a subinstance of the path schematization problem and
let sk ⊆ S[i, j] be a strip for some i ≤ k ≤ j. If we assign h(sk) = 1 then I(i, j)
decomposes into the two independent subinstances I(i, k−1) and I(k+1, j). The
direction costs of all edges affected by sk are determined by setting h(sk) = 1.

Proof. We first show that the cost of any edge e = uv that crosses sk is deter-
mined by setting h(sk) = 1. Since u and v lie on opposite sides of sk we know
that yρ(u) �= yρ(v). So if e is a v- or sv-edge it can be drawn with its preferred
angle and cρ(e) = 0 regardless of the height of any other strip crossed by e.
Conversely, if e is an h-edge it is impossible to draw e horizontally regardless of
the height of any other strip crossed by e and cρ(e) = 1. Recall that sh-edges do
not cross any strips. Assume that k = 2 in Fig. 2a and we set h(s2) = 1; then
edges v3v4 and v5v6 cross strip s2 and none of them can be drawn horizontally.

The remaining edges of I(i, j) do not cross sk and are either completely
contained in S[i, k−1] or in S[k+1, j]. Since the costs of all edges affected by sk

are independent of the heights of the remaining strips in S[i, j] \ {sk}, we solve
the two subinstances I(i, k − 1) and I(k + 1, j) independently, see Fig. 2a. ��

Our Algorithm. We can now describe our algorithm for assigning symbolic
heights to all strips s1, . . . , sm such that the induced embedding ρ has minimum
schematization cost. The main idea is to recursively compute an optimal solution
for each instance I(1, i) by finding the best k ≤ i such that h(sk) = 1 and
h(sj) = 0 for j = k + 1, . . . , i. By using dynamic programming we can compute
an optimal solution for I(1, m) = (P, π) in O(n2) time.

Let C(k, i) for 1 ≤ k ≤ i denote the schematization cost of all edges in the
instance I(1, i) that either cross sk or have both endpoints in S[k+1, i] if we set
h(sk) = 1 and h(sj) = 0 for j = k+1, . . . , i. Let C(0, i) denote the schematization
cost of all edges in the instance I(1, i) if h(sj) = 0 for all j = 1, . . . , i. We use
an array T of size m + 2 to store the minimum schematization cost T [i] of the
instance I(1, i). Then T [i] is recursively defined as follows

T [i] =

{
min0≤k≤i(T [k − 1] + C(k, i)) if 1 ≤ i ≤ m

0 if i = 0 or i = −1.
(1)

Together with T [i] we store the index k that achieves the minimum value in the
recursive definition of T [i] as k[i] = k. This allows us to compute the actual strip

v1

v2

v3

v4

v5

v6 v7

v8

s1
s2
s3
s4
s5

s0

} S[3, 5]

S[1, 1]}

(a) Horizontal strips for (P, π)
v1

v2

v3

v4 v5

v6 v7

v8

h(s2) = 1
h(s3) = 1

h(s5) = 1

h(s1) = 0

h(s4) = 0

(b) Strip height assignment

Fig. 2. Example of (a) an x-monotone embedded input path (P, π) and (b) a C-oriented
(multiples of 45◦) orthogonal-order preserving output path (P, ρ)
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heights using backtracking. Note that T [m] < ∞ since, e. g., the solution that
assigns height 1 to every strip induces cost 0 for all sv-edges. Obviously, we need
O(m) time to compute each entry in T assuming that the schematization cost
C(k, i) is available in O(1) time. This yields a total running time of O(m2).

The next step is to precompute the schematization cost C(k, i) for any 0 ≤ k ≤
i ≤ m. This cost is composed of two parts. The first part is the schematization
cost of all edges that are affected by sk. As observed in Lemma 1, all v- and
sv-edges crossing sk have no cost. On the other hand, every h-edge that crosses
sk has cost 1. So we need to count all h-edges in I(1, i) that cross sk. The second
part is the cost of all edges that are completely contained in S[k + 1, i]. Since
h(sk+1) = . . . = h(si) = 0 we observe that any h-edge in S[k + 1, i] is drawn
horizontally at no cost. In contrast, no v- or sv-edge e in S[k + 1, i] attains its
preferred angle ωC(e) �= 0◦. Hence every v-edge in S[k+1, i] has cost 1 and every
sv-edge has cost ∞. So we need to check whether there is an sv-edge contained
in S[k +1, i] and if this is not the case count all v-edges contained in S[k +1, i].

In order to efficiently compute the values C(k, i) we assign to each strip si

three sets of edges. Let H(i) (resp. V (i) or SV (i)) be the set of all h-edges
(resp. v-edges or sv-edges) whose lower endpoint lies on the lower boundary of
si. We can compute H(i), V (i), and SV (i) in O(n) time for all strips si. Then
for k ≤ i the number of h-edges in H(i) that cross sk is denoted by σH(k, i)
and the number of v-edges in V (i) that do not cross sk is denoted by σV (k, i).
Finally, let σSV (k, i) be the number of sv-edges in SV (i) that do not cross sk.
This allows us to recursively compute the values C(k, i), 0 ≤ k ≤ i ≤ m:

C(k, i) =

⎧⎪⎨
⎪⎩
∞ if σSV (k, i) ≥ 1
C(k, i− 1) + σH(k, i) + σV (k, i) if k ≤ i− 1
σH(k, k) if k = i.

(2)

Since each edge appears in exactly one of the sets H(i), V (i), or SV (i) for some i
it is counted towards at most m values σH(·, i), σV (·, i), or σSV (·, i), respectively.
Thus for computing all these values we need O(nm) time. The values C(k, i) can
be precomputed in O(m2) time and require a table of size O(m2). This can be
reduced, however, to O(m) space as follows. We compute and store the values
T [i] in the order i = 1, . . . , m. For computing the entry T [i] we use only the
values C(·, i). To compute the next entry T [i + 1] we first compute the values
C(·, i + 1) from C(·, i) and then discard all C(·, i). This reduces the required
space to O(m). Since m ≤ n we obtain

Theorem 1. Our algorithm to compute the array T of path schematization costs
requires O(n2) time and O(n) space.

It remains to determine the strip height assignments corresponding to the schema-
tization cost in T [m] and show the optimality of that solution. We initialize all
heights h(si) = 0 for i = 1, . . . , m. Recall that k[i] equals the index k that mini-
mized the value T [i] in (1). To find all strips with height 1 we initially set j = m.
If k[j] = 0 we stop; otherwise we assign h(sk[j]) = 1, update j = k[j] − 1, and
continue with the next index k[j] until we hit k[j] = 0 for some j encountered
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in this process. Let ρ be the C-oriented embedding of P induced by this strip
height assignment, see Fig. 2b. We now show the optimality of ρ in terms of the
schematization cost.

Theorem 2. Given an x-monotone embedded path (P, π) and a set C of edge
orientations, our algorithm computes a plane C-oriented embedding ρ of P that
preserves the orthogonal order of π and has minimum schematization cost c(ρ).

Proof. Since the path is x-monotone and by construction there are no two ad-
jacent edges with preferred angles 90◦ and 270◦ the embedding ρ is plane. By
construction, ρ is C-oriented and it also preserves the orthogonal order of π since
the x- and y-ordering of the vertices of P is not altered.

We show that ρ has minimum schematization cost by structural induction. For
an instance with a single strip s there are only two possible solutions of which our
algorithm chooses the better one. The induction hypothesis is that our algorithm
finds an optimal solution for any instance with at most m strips. So let’s consider
an instance with m + 1 strips and let ρ′ be any optimal plane C-oriented and
orthogonal-order preserving solution for this instance. If all strips s in ρ′ have
height h(s) = 0 then by (1) it holds that c(ρ) = T [m+1] ≤ C(0, m+1) = c(ρ′).
Otherwise, let k be the largest index for which h(sk) = 1 in ρ′. When computing
T [m+1] our algorithm also considers the case where sk is the bottommost strip
of height 1, which has a cost of T [k− 1] +C(k, m+1). If h(sk) = 1 we can split
the instance into two independent subinstances to both sides of sk by Lemma 1.
The schematization cost C(k, m+1) contains the cost for all edges that cross sk

and this cost is obviously the same as in ρ′ since h(sk) = 1 in both embeddings.
Furthermore, C(k, m+1) contains the cost of all edges in the subinstance below
sk, for which we have by definition h(sk+1) = . . . = h(sm+1) = 0. Since k is
the largest index with h(sk) = 1 in ρ′ this is also exactly the same cost that
this subinstance has in ρ′. Finally, the independent subinstance above sk has at
most m strips and hence T [k − 1] is the minimum cost for this subinstance by
induction. It follows that c(ρ) = T [m+1] ≤ T [k− 1]+C(k, m+1) ≤ c(ρ′). This
concludes the proof. ��

3.2 Minimizing the Path Length

In the first step of our algorithm we obtained a C-oriented and orthogonal-order
preserving embedding ρ with minimum schematization cost for an embedded
input path (P, π). The strip heights assigned in that step are either 0 or 1, but
this does not yet take into account the actual edge lengths induced by ρ. So in
the second step, we adjust ρ such that the total path length is minimized and
|ρ(e)| ≥ �min(e) for all e ∈ P . We make sure, however, that the orthogonal order
and all angles αρ(e) remain unchanged.

Note that we can immediately assign the minimum length �min(e) to every
horizontal edge e in the input (P, ρ) by horizontally shifting the subpaths on both
sides of e. For any non-horizontal edge e = uv the length |ρ(e)| depends only
on the vertical distance Δy(e) = |yρ(u) − yρ(v)| of its endpoints and the angle
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αρ(e). In fact, |ρ(e)| = Δy(e)/ sinαρ(e). So in order to minimize the path length
we need to find y-coordinates for all strip boundaries such that

∑
e∈P |ρ(e)|

is minimized. These y-coordinates together with the given angles for all edges
e ∈ P induce the corresponding x-coordinates of all vertices of P .

So for each strip si (i = 0, . . . , m) let yi denote the y-coordinate of its lower
boundary. For every edge e ∈ P let t(e) and b(e) denote the index of the top- and
bottommost strip, respectively, that is crossed by e. Then Δy(e) = yt(e)−1−yb(e).
We propose the following linear program (LP) to minimize the path length of a
given C-oriented embedded path (P, ρ).

Minimize
∑

e∈P, αρ(e) �=0◦

[ 1
sinαρ(e)

· (yt(e)−1 − yb(e))
]

subject to yt(e)−1 − yb(e) ≥ sinαρ(e) · �min(e) ∀e ∈ P, αρ(e) �= 0◦

yi−1 − yi ≥ 0 ∀si with h(si) = 1
yi−1 − yi = 0 ∀si with h(si) = 0

We assign to all vertices their corresponding y-coordinates from the solution
of the LP. In a left-to-right pass over P we compute the correct x-coordinates
of each vertex vi from the vertical distance to its predecessor vertex vi−1 and
the angle αρ(vi−1vi). This yields a modified embedding ρ′ that satisfies all our
requirements: the path length is minimized; the orthogonal order is preserved
due to the x-monotonicity of P and the constraints in the LP to maintain the
y-order; by construction the directions of all edges are the same in ρ and ρ′; no
edge e is shorter than its minimum length �min(e). Hence, ρ′ solves Problem 1
and together with Theorems 1 and 2 we obtain

Theorem 3. The monotone C-oriented path schematization problem (Problem
1) for a monotone input path of length n can be solved by an O(n2)-time algo-
rithm to compute an embedding ρ of minimum schematization cost followed by
solving a linear program to minimize the path length of ρ.

Note that linear programs can be solved efficiently in O(n3.5L) time [6], where
n is the number of variables and L is the number of input bits.

4 Extension to General Simple Paths

In the last section, we showed how to schematize a monotone path. Unfortu-
nately, some routes in road networks are neither x- nor y-monotone, however,
they can be decomposed into a (very) limited number of x- and y- monotone
subpaths. So, we propose the following three-step heuristic to schematize general
simple paths: We first split the input path (P, π) into a minimum number of x-
or y-monotone subpaths (Pi, πi), where πi equals π restricted to the subpath Pi.
We embed each (Pi, πi) separately according to Section 3. Then, we concatenate
the subpaths such that the resulting path (P ′, ξ) is a simple C-oriented path.
Note that this heuristic does not guarantee to preserve the orthogonal order
between node pairs of different subpaths.
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Splitting an embedded simple path P = (v1, . . . , vn) into the minimal num-
ber k of subpaths Pi, 1 ≤ i ≤ k with the property that each Pi is an x- or
y-monotone path can be done in straightforward greedy fashion, starting from
v1. We traverse P until we find the last vertices v′ and v′′ which are not violat-
ing the x- and y-monotonicity, respectively. If v′ appears later than v′′ on P , we
set P1 = (v1, . . . , v

′), otherwise P1 = (v1, . . . , v
′′). We continue this procedure

until we reach the end of P . This algorithm runs in O(n) time and returns the
minimal number k of x- or y-monotone subpaths.

After splitting the input path, we schematize each subpath (Pi, πi) according
to Section 3. We obtain a C-oriented and orthogonal-order preserving embedding
ρi with minimum schematization cost and minimum path length for each (Pi, πi).
For concatenating these subpaths, we must solve the following problem.

Problem 2. Given a sequence of k embedded x- or y-monotone paths (Pi, ρi)
with 1 ≤ i ≤ k, find an embedding ξ of P ′ = P1⊕ · · · ⊕Pk, where ⊕ denotes the
concatenation of paths, such that

(i) for each subpath (Pi, ξi), the embedding ξi is a translation of ρi and
(ii) (P ′, ξ) is a simple C-oriented path.

Our approach is based on iteratively embedding the subpaths P1, . . . , Pk. We
ensure that in each iteration i the embedding of P1 ⊕ . . .⊕ Pi remains conflict-
free, i. e., it has no self-intersections. We achieve this by adding up to three
new path-link edges between any two adjacent subpaths Pi and Pi+1. For each
1 ≤ i ≤ k let Bi denote the bounding box of (Pi, ρi). A key operation of the
algorithm is shifting a subpath Pi (or equivalently a bounding box Bi) by an
offset Δ = (Δx, Δy) ∈ R

2. This is done by defining the lower left corner of each
bounding box Bi as its origin oi and storing the coordinates of Pi relative to oi,
i. e., ξ(v) = oi +ρi(v). Note that shifting preserves all local properties of (Pi, ρi),
i. e., the orthogonal order as well as edge lengths and orientations.

Each iteration of our algorithm consists of two steps. First, we attach the
subpath Pi to its predecessor Pi−1. To that end, we initially place (Pi, ξi) such
that the last vertex u of Pi−1 and the first vertex v of Pi coincide. Then we
add either two path-link edges (if the monotonicity directions of Pi−1 and Pi

are orthogonal) or three path-link edges (if Pi−1 runs in the opposite direction
of Pi) between u and v and shift Bi by finding appropriate lengths for the new
edges such that Bi−1∩Bi = ∅. Paths Pi−1 and Pi are now conflict-free, but there
may still exist conflicts between Pi and paths Pj(j < i− 1). These are resolved
in a second step that “pushes” any conflicting bounding boxes away from Bi by
stretching some of the path-link edges.

Attaching a Subpath. Without loss of generality, we restrict ourselves to the
case that Pi−1 is an x-monotone path from left to right. Let u be the last vertex of
Pi−1 and v be the first vertex of Pi. If Pi is y-monotone we add a horizontal edge
e1 = uu′ with αξ(e1) = 0◦ connecting u to a new vertex u′. Then we also add a
vertical edge e2 = u′v with αξ(e1) = 90◦ if Pi is upward directed and αξ(e1) =
270◦ if it is a downward path. Otherwise, if Pi is x-monotone from right to left,
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Pi−1
e1

Pi

v

e2
u

(a) Paths with orthogonal directions

Pi−1

Pi

e3

e2

e1

v

u

(b) Oppositely directed paths

Fig. 3. Two examples for attaching Pi to Pi−1 by inserting path-link edges

we add two vertices u′ and u′′ and three path-link edges e1 = uu′, e2 = u′u′′, and
e3 = u′′v with αξ(e1) = 0◦, αξ(e2) = 90◦ if Pi is above Pi−1 in π or αξ(e2) = 270◦

otherwise, and αξ(e3) = 180◦. Note that we treat each path-link edge as having its
own bounding box with zero width or height. It remains to set the lengths of the
path-link edges such that Bi ∩ Bj = ∅ by computing the vertical and horizontal
overlap of Bi−1 and Bi. Figure 3 illustrates both situations.

Resolving Conflicts. After adding Pi we have Bi−1 ∩ Bi = ∅. However, there
may still exist conflicts with any Bj , 1 ≤ j < i−1. In order to free up the space re-
quired to actually place Bi without overlapping any other bounding box, we push
away all conflicting boxes in three steps. For illustration, let Pi be x-monotone
from left to right, and let v be the first vertex of Pi. Each bounding box B is
defined by its lower left corner ll(B) = (llx(B), lly(B)) and its upper right cor-
ner ur(B) = (urx(B), ury(B)). In the first step we identify the leftmost box B′

(if any) that is intersected by a line segment that extends from ξ(v) to the right
with length equal to the width of Bi. For this box B′ we have lly(B′) ≤ yξ(v) ≤
ury(B′) and llx(Bi) ≤ llx(B′) ≤ urx(Bi). If there is such a B′ let the offset be
Δx = urx(Bi) − llx(B′). Now we shift all bounding boxes B that lie completely
to the right of llx(B′) to the right by Δx. All horizontal path-link edges (which
are also considered bounding boxes by themselves) that connect a shifted with a
non-shifted path are stretched by Δx to keep the two paths connected. Note that
there is always a horizontal path-link edge between any two subsequent paths.
Next, we inflate Bi, which is currently a horizontal line segment, downwards: we
first determine the topmost conflicting box B′′ (if any) below a horizontal line
through ξ(v), i. e., a box B′′ whose x-range intersects the x-range of Bi and for
which lly(Bi) ≤ ury(B′′) ≤ yξ(v). If we find such a B′′ we define the vertical offset
Δy1 = ury(B′′) − lly(Bi). We shift all bounding boxes B that lie completely be-
low ury(B′′) downwards byΔy1. All vertical path-link edges that connect a shifted
with a non-shifted box are stretched by Δy1 in order to keep the two boxes con-
nected. Again, there is always a vertical path-link edge between any two subse-
quent paths. Finally, we inflate Bi upwards, which is analogous to the downward
inflation. Figure 4 shows an example and Theorem 4 sums up the insights gained
in this section. The proof and more details can be found in the full paper [4].

Theorem 4. Our algorithm computes a solution (P ′, ξ) to Problem 2 by adding
at most 3(k − 1) path-link edges to P in O(k2 + n) time.
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(a) Before resolving the conflict

Δy2
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B2

v

Δy1

Δy1

Δx
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B2

(b) After resolving the conflict

Fig. 4. Example for iteratively resolving conflicts induced by attaching Pi
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Abstract. Inspired by air traffic control and other applications where
moving objects have to be labeled, we consider the following (static)
point labeling problem: given a set P of n points in the plane and labels
that are unit squares, place a label with each point in P in such a way
that the number of free labels (labels not intersecting any other label)
is maximized. We develop efficient constant-factor approximation algo-
rithms for this problem, as well as PTASs, for various label-placement
models.

1 Introduction

Air traffic controllers have the important job of monitoring airplanes and warning
pilots to change course on any potential collision. They do this using computer
screens that show each airplane as a moving point with an associated textual
label. The labels hold important information (such as altitude and velocity) that
needs to remain readable. As the airplanes move, however, labels may start to
intersect. Currently this means air traffic controllers spend a lot of their time
moving labels around by hand. We are interested in developing algorithms to
automate this process.

Label models. A good labeling for a point set has legible labels, and an unambigu-
ous association between the labels and the points. The latter puts restrictions
on the shape of labels and the way they can be placed in relation to points.
Various such label models have been proposed, most often with labels assumed
to be axis-aligned rectangles slightly larger than the text they contain.

In the fixed-position models, every point has a finite number of label candidates
(often 4 or 8), each being a rectangle having the point on its boundary. In
particular, in the 1-position (1P) model one designated corner of the label must
coincide with the point, in the 2-position (2PH, 2PV) models there is a choice
between two adjacent corners, and the 4-position (4P) model allows any corner
of the label to coincide with the point (see the upper-left 2x2 block in Figure 1).
The slider models, introduced by Van Kreveld et al. [11] generalize this. In the
1-slider (1SH, 1SV) models one side of the label is designated, but the label may
contain the point anywhere on this side. In the 2-slider (2SH, 2SV) models there

H. Kaplan (Ed.): SWAT 2010, LNCS 6139, pp. 297–308, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1P 2PH 1MH, kPH 1SH

2PV 4P 2MH 2SH

1MV, kPV 2MV 4M

1SV 2SV 4S

1 2 k ∞

1

2

k

∞

x
y

optimal

1/6-approx.

1/6-approx.

1/4-approx.

1/6-approx.

1/16-approx.

1/16-approx.

1/16-approx.

1/6-approx.

1/16-approx.

1/32-approx.

1/32-approx.

1/4-approx.

1/16-approx.

1/32-approx.

1/24-approx.

Fig. 1. The fixed-position and slider models, and our constant-factor approximation re-
sults for them for the free-label-maximization problem (assumingunit-square labels).The
x-axis (y-axis) indicates the number of allowed horizontal (vertical) positions for a label.

is a choice between two opposite sides of the label, and in the 4-slider (4S) model
the label can have the point anywhere on its boundary (see the fourth row and
column in Figure 1). Erlebach et al. [6] introduced terminology analogous to the
slider models for fixed-position models with a non-constant number of positions
(1MH, 1MV, 2MH, 2MV, 4M; see the third row and column in Figure 1).

Previous work. A lot of research has gone into labeling static points (as well as
polylines and polygons) on cartographic maps. See for instance the on-line Map
Labeling Bibliography [15], which currently contains 371 references. This re-
search has focused mostly on two optimization problems. The size-maximization
problem asks for a labeling of all points with pairwise non-intersecting labels by
scaling down all labels uniformly by the least possible amount. This problem is
apx-hard (except in the 1P model), even for unit-square labels [7]. Constant-
factor approximation algorithms exist for various label models [7,10]. The more
widely studied number-maximization problem asks for a maximum-cardinality
subset of the n points to be labeled with pairwise non-intersecting labels of
given dimensions. Even if all labels are unit squares, this problem is known to be
strongly NP-hard for the 1P [8], 4P [7,12], and 4S models [11]. A generalization
of this problem concerns weighted points [13] and asks for a maximum-weight
subset of the points to be labeled so that, for example, a big city will more likely
get a label than a small town. For unit-height rectangular labels this problem
admits a polynomial-time approximation scheme (PTAS) for static points in all
fixed-position and slider models, both in the unweighted [3,11] and the weighted
case [6, 13]. For arbitrary rectangles in the unweighted case an O(1/ log log n)-
approximation algorithm is known for the fixed-position models [2], but the
slider models, the weighted case, and the (non-)existence of a PTAS remain
open problems.

Despite the large body of work on labeling static points, virtually no re-
sults have been published on labeling moving points. Been et al. [1] studied the
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unweighted number-maximization problem for static points under continuous
zooming in and out by the viewer, which can be seen as points moving on a
very specific kind of trajectories. Rostamabadi and Ghodsi [14] studied how to
quickly flip and scale the labels of static points to avoid one moving point.

Free-label maximization. As just discussed, previous work has focused on the
size-maximization and number-maximization versions of the label-placement
problem. By either shrinking the labels, or removing some of them, a label-
ing is produced without any intersections. However, European air traffic safety
regulations require all airplanes to be labeled at all times, with labels of fixed
sizes [4]. Thus we must allow label intersections, and naturally want as few of
them as possible.

The decision problem of determining whether a labeling without intersections
exists for a static point set is strongly np-complete [7, 12], even if all labels are
unit squares. This immediately implies that finding a labeling with the least
number of intersecting labels admits no polynomial-time approximation algo-
rithm unless p = np. Thus we instead seek a labeling with the greatest number
of labels that are not intersected, and we call such labels free. As this free-label-
maximization problem had not been previously studied, we have first investigated
it for static points, leaving the case of moving points to future research.

Our results. As a first step towards the automatic labeling of moving points
in air traffic control we have studied the free-label-maximization problem for
static points. For unit-square labels we have developed a simple O(n log n)-time,
O(n)-space constant-factor approximation algorithm, as well as a PTAS. (In
fact, our algorithms work if all labels are translates of a fixed rectangle, since a
suitable scaling can transform this case to the case of unit-square labels.) This
makes free-label maximization easier than size maximization, as the latter is apx-
hard even for unit-square labels. In contrast, techniques used for (approximate)
number maximization for unit-square labels easily extend to unit-height labels
of differing widths, which seems not to be the case for free-label maximization.
Thus the complexity of free-label maximization seems to fall in between that of
the size- and number-maximization problems.

We present our constant-factor approximation algorithm in Section 2, and
our PTAS in Section 3. The former’s approximation guarantees for the various
label models are listed in Figure 1. We will only discuss the 2PH, 4P, 1SH,
2SH, and 4S label models; the algorithms and proofs for the other models are
analogous. Throughout the paper we assume that no two points have the same x-
or y-coordinate, and that labels are open sets (their boundaries may intersect).
Neither assumption is essential, but they make our exposition simpler.

2 Constant-Factor Approximations for Unit Squares

Consider the algorithm GreedySweep, which works as follows. Going through
the points from left to right, we label them one-by-one. We call a label candidate
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� for a point being processed freeable if none of the previously placed labels
intersect �, and every point still to be labeled has at least one label candidate that
does not intersect � or any previously placed freeable label. We always choose a
freeable label candidate if possible, and then also call the resulting label freeable.
If a point has no freeable label candidate we pick a non-freeable label candidate
that does not intersect any previously placed freeable label (which is always
possible by the definition of freeable). In case of ties, we pick the label candidate
farthest to the left. (Further ties between equally leftmost label candidates can
be broken arbitrarily.)

Lemma 1. For the free-label-maximization problem with unit-square labels, al-
gorithm GreedySweep gives a 1/4-approximation for the 1SH model and a
1/6-approximation for the 2PH model, and both ratios are tight.

Proof. Let opt be some optimal solution, and let alg be the solution computed
by GreedySweep. Now suppose a point p is labeled with a free label �opt

p

in opt, but that the label candidate �opt

p was not freeable when p was being
processed by GreedySweep. Call a label candidate for a point rightmost if it
is farthest to the right of all label candidates for that point, and define leftmost
analogously. Since p and all points that already have a label lie to the left of every
unprocessed point p′, their labels cannot intersect the rightmost label candidate
for p′ without intersecting all other label candidates for p′ as well. Thus all
unprocessed points can be labeled with their rightmost label candidate without
intersecting �opt

p . Hence, �opt

p not being freeable must be caused by a label �alg

p′

(either freeable or not) that was placed earlier. We note that �alg

p′ cannot be
leftmost. (If the leftmost label candidate for a point p′ left of p intersects �opt

p ,
then all other label candidates for p′ do as well, contradicting that �opt

p is free
in opt.) That �alg

p′ is not leftmost can mean two things. Either �alg

p′ is freeable,
in which case we charge �opt

p to �alg

p′ , or making �alg

p′ leftmost will cause it to
intersect some freeable label �alg

p′′ , in which case we charge �opt

p to �alg

p′′ .
Note that in both cases we charge �opt

p to a free label in alg that lies relatively
close to p. A packing argument therefore shows that any free label in alg is
charged O(1) times. With a more careful analysis, one can argue that at most
four free labels of opt get charged to a single freeable label of alg by the above
scheme for the 1SH model (see Figure 3(c)), and at most six for the 2PH model
(see Figure 3(a)). Figure 2 shows that the resulting ratio is tight.

We still need to consider the case where a point p has a free label �opt

p in opt

that is also a freeable label candidate when p is being processed by Greedy-

Sweep. Then �alg

p must also be a free label, and we charge �opt

p to �alg

p . The
label �alg

p can at most be as far to the right as �opt

p , otherwise GreedySweep

would have picked �opt

p over �alg

p . Thus if any label candidate � for a point p′ to
the right of p intersects �alg

p , then � will also intersect �opt

p . One can argue that
this implies �alg

p will only be charged once. ��

Already for the 4P model, GreedySweep can be as bad as an O(1/
√

n)-
approximation. We instead take the best solution over running GreedySweep
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Fig. 2. A labeling computed by GreedySweep for the 2PH model, where the k + 1
labels marked �alg

p′′ are free. In the optimal solution the 6k labels marked �opt

p are free.
Thus the 1/6-approximation is tight for the 2PH model, and a similar example shows
the 1/4-approximation for the 1SH model is also tight.
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Fig. 3. (b) If every �opt

p charged to �alg

p′′ is intersected by labels placed later, �alg

p′′ is
charged at most twice. If every �opt

p charged to �alg

p′′ is intersected by labels placed
earlier, �alg

p′′ is charged (a) at most six times for the 2PH, 4P, and 2SH models, and (c)
at most four times for the 1SH and 4S models.

several times with different sweep directions. For the 4P model we do one left-
to-right sweep (as before) and one right-to-left sweep (preferring rightmost label
candidates). For the 2SH model we do one top-to-bottom sweep (preferring top-
most label candidates) and one bottom-to-top sweep (preferring bottommost
label candidates). For the 4S model we sweep in all four of these directions. This
always yields a constant-factor approximation:

Theorem 1. There are O(n log n)-time and O(n)-space algorithms for free-label
maximization on n points with unit-square labels, having the following approx-
imation ratios: 1/4 (tight) for the 1SH model, 1/6 (tight) for the 2PH model,
1/16 for the 4P and 2SH models, and 1/24 for the 4S model.

Proof. We will prove the approximation ratio for the 4P model; the proofs for
the 2SH and 4S models are similar, and the ratio for the 2PH and 1SH models
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was proved in Lemma 1. Let opt be an optimal solution for the 4P model, and
consider the solution alg computed in the left-to-right sweep. We can assume
that at least half of the labels in opt are placed in one of the two rightmost
positions. (If not, at least half must be placed in one of the two leftmost positions
and we can instead consider the right-to-left sweep in a completely symmetric
way.) We will argue that the rightmost free labels in opt can be charged to
free labels of alg so that no label receives more than eight charges, yielding the
stated 1/16-approximation.

Suppose p is a point with a rightmost free label �opt

p in opt, but with a non-
free label �alg

p in alg. At the time p was being processed, the label candidate
�opt

p must not have been freeable, either because some unprocessed point would
inevitably get a label intersecting �opt

p , or because some processed point already
had a label intersecting �opt

p . We consider these two cases separately.

– Suppose every label candidate of some unprocessed point p′ intersects either
�opt

p or some previously placed freeable label. (This cannot occur in the
2PH and 1SH models.) Of the rightmost label candidates for p′ one must
be topmost, say �ne

p′ , and one must be bottommost, say �se

p′ . Since p and all
points that already have a label lie to the left of p′, if �opt

p or a freeable
label intersects a rightmost label candidate for p′, then it also intersects the
label candidate(s) for p′ with the same y-coordinate but lying more to the
left. So if all rightmost label candidates for p′ are intersected by previously
placed freeable labels, then all label candidates for p′ are intersected by
previously placed freeable labels, meaning that at least one of them was in
fact not freeable. Thus �opt

p must intersect some rightmost label candidate
of p′. This implies that �opt

p does not intersect the horizontal line through p′,
for otherwise �opt

p would contain p′. Thus �opt

p intersects either �ne

p′ or �se

p′ but
not both, so there must be a freeable label �alg

p′′ in alg which intersects �se

p′

if �opt

p intersects �ne

p′ , or vice versa. Charge �opt

p to �alg

p′′ . One can argue that
any freeable label can be charged at most twice this way (see Figure 3(b)).

– Suppose some already processed point p′ has a label �alg

p′ (either freeable or
not) that intersects �opt

p . Because �opt

p is rightmost, �alg

p′ cannot be leftmost.
So either �alg

p′ is freeable, and we charge �opt

p to �alg

p′ , or making �alg

p′ leftmost
will cause it to intersect some freeable label �alg

p′′ , and we charge �opt

p to �alg

p′′ .
One can argue that any freeable label can be charged at most six times this
way for the 4P model (see Figure 3(a)).

Combining the charges of these two cases yields at most eight charges per free
label for the 4P model, and we argued that at least one half the free labels in
opt could be charged, yielding the claimed 1/16-approximation. We have not
yet charged free labels in opt which label points that also have a free label in
alg. One can argue that charging such labels does not cost us extra charges, as
one of the charges to �alg

p′′ in Figure 3(b) must disappear if �opt

p′′ is free.
The proofs for the 2SH and 4S models are similar, but each free label is only

charged at most six times for the 4S model (see Figure 3(b)–(c)). In the 2SH
model every free label in opt is either topmost or bottommost so that we can
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again charge at least half of them, but in the 4S model a label can also be
leftmost or rightmost so that we can charge only one fourth.

With some clever use of standard data structures, similar to the 1/2-approxi-
mation algorithm for number maximization by Van Kreveld et al. [11], Greedy-

Sweep can be implemented to run in O(n log n) time and O(n) space. We omit
the details. ��

3 PTASs for Unit Squares

We can obtain a PTAS for the case of unit-square labels by applying the “shifting
technique” of Hochbaum and Maass [9]. Imagine a grid of unit squares overlaying
the plane such that no point is on a grid line and call this the 1-grid. If, for some
integer k > 4 to be specified later, we leave out all but every kth horizontal and
vertical grid line this forms a coarser k-grid. By varying the offsets at which
we start counting the lines, we can form k2 different k-grids G1, . . . , Gk2 out of
the 1-grid. Consider one of them, say Gi. For any k × k square cell c ∈ Gi, let
c ⊂ c be the smaller (k − 4) × (k − 4) square with the same midpoint as c

(see Figure 4(a)). We call c the inner cell of c. For a given set P of n points,
let Pc := c ∩ P , Pc := c ∩ P , and Pin(Gi) :=

⋃
c∈Gi

Pc. We call a labeling L
for P inner-optimal with respect to Gi if L maximizes the number of points
in Pin(Gi) that get a free label. Note that if c,c′ ∈ Gi are distinct cells, then
a point p ∈ c can never have a label intersecting the label for a point p′ ∈ c

′

(see Figure 4(a)). Hence an inner-optimal labeling for P can be obtained by
computing an inner-optimal labeling on Pc independently for each cell c ∈ Gi.
We will show below how to do this in time polynomial in n (but exponential in
k). By itself this does not help us, as any particular k-grid Gi may have many
points that lie outside of inner cells. We claim, however, that computing an
inner-optimal labeling for all k-grids G1, . . . , Gk2 and then taking the best one
still yields a (1 − ε)-approximation for suitably chosen k:

Lemma 2. For all fixed position and slider models, the best inner-optimal la-
beling for P with respect to all k2 different k-grids G1, . . . , Gk2 yields a (1− ε)-
approximation to free-label maximization with unit-square labels if k � 8/ε.

Proof. Let opt be some optimal solution, and let F ⊆ P be the set of points
with a free label in opt. In any k-grid the inner cells are separated from each
other by horizontal and vertical strips with a width of four 1-grid cells (see
Figure 4(a)). Thus any point in F lies in an inner cell for (k − 4)2 of the k2

different k-grids. By the pigeon-hole principle, there must be a k-grid Gi for
which |F ∩ Pin(Gi)| � (k − 4)2/k2 · |F | = (1 − 4/k)2 · |F |. An inner-optimal
labeling for P with respect to Gi will have at least |F ∩ Pin(Gi)| free labels.
Hence we get a (1 − ε)-approximation if (1− 4/k)2 = 1 − 8/k + 4/k2 � 1 − ε,
which is satisfied if k � 8/ε. ��

To complete the PTAS we need to show how to compute an inner-optimal label-
ing for the set Pc of points inside a k× k cell c. We say that a subset F ⊂ Pc is
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Fig. 4. (a) The cells (bold lines) and inner cells (dashed bold lines) of a k-grid. The
underlying 1-grid is shown in thin gray lines. (b) Any two points q, q′ with intersecting
labels must lie in a region Bq of 20 cells of the 1-grid.

freeable if we can label the points in Pc such that all points in F get a free label.
The key insight is that, by a packing argument, not too many of the points P

c

in the inner cell c can get a free label. Thus there is a limited number of freeable
subsets. We first bound the number of potentially freeable subsets that we need
to consider, and then show how to test each one for feasibility.

In many applications, there will not be too many points that are very close
together (with respect to the label sizes). To take this into account, we will not
just use the total number of points (n) in our analysis, but also their “density”
(Δ). More precisely, let Δ � n denote the maximum number of points in P
contained in any unit square. If Δ = 1 then labeling every point with its topleft
label candidate, say, yields a solution where all labels are free. So assume Δ � 2.

Lemma 3. Let c be a cell in a k-grid, and let Pc be the set of points inside c.
Then there is a collection F of subsets of Pc such that for any freeable subset
F ⊆ Pc we have F ∈ F . We can compute F in O(

∑
F∈F |F |) time, and have

– |F| � Δ2(k−4)2 for the 2PH and 1SH models, and
– |F| � Δ4(k−4)2 for the 4P, 2SH, and 4S models.

Proof. A 1-grid cell contains at most Δ points, and c consists of (k − 4)2 cells of
the 1-grid. In the 2PH and 1SH models, no more than two points from the same
1-grid cell can be simultaneously labeled with non-intersecting labels. Thus any
freeable subset F ⊆ P

c
can be constructed by taking at most two points from

each 1-grid cell. Hence, there are at most((
Δ
0

)
+

(
Δ
1

)
+

(
Δ
2

))(k−4)2

� Δ2(k−4)2

potentially freeable subsets F , where the inequality follows from the assumption
that Δ � 2. Similarly, no more than four points from the same 1-grid cell can
be simultaneously labeled with non-intersecting labels in the 4P, 2SH, and 4S
models, leading to at most
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((
Δ
0

)
+

(
Δ
1

)
+

(
Δ
2

)
+

(
Δ
3

)
+

(
Δ
4

))(k−4)2

� Δ4(k−4)2

potentially freeable subsets F . ��
Lemma 4. Given the set Pc of all nc � Δk2 points contained in a k-grid cell c,
and a subset F ⊆ P

c
of those points, we can decide in O(nc log nc) time for the

2PH and 1SH models whether there exists a labeling L for Pc where all points
in F have a free label, and if so produce L.
Proof. Go through the points from left to right and label them one-by-one. For
every point p ∈ F we pick the leftmost label candidate that does not intersect a
previously placed label, and for every point p ∈ Pc \F we pick the leftmost label
candidate that does not intersect a previously placed label for a point in F . If
we can process all points in Pc in this way then clearly we have found a suitable
labeling L. If we instead encounter a point p for which no label candidate can be
chosen, then we report that no such labeling L exists. This is correct, because
the partial labeling constructed by this algorithm has all labels at least as far to
the left as L would have, so p cannot be correctly labeled in L either. The above
is simply a somewhat simplified version of the GreedySweep algorithm from
Section 2, and can be implemented to run in O(nc log nc) time. ��
Lemma 5. Given the set Pc of all nc � Δk2 points contained in a k-grid cell c,
and a subset F ⊆ Pc of f of those points, we can decide in O((nc − f)4f) time
for the 4P model whether there exists a labeling L for Pc where all points in F
have a free label, and if so produce L.
Proof. Enumerate all 4f labelings of the points in F , and check for each such
labeling L′ whether it can be extended into a labeling L for all points in Pc.
This entails checking whether each point p ∈ Pc \ F has a label candidate that
does not intersect any label of L′. For this we only need to look at labels for
points p′ ∈ F that lie in the 3 × 3 square of 1-grid cells centered at the 1-grid
cell containing p. Since each 1-grid cell contains at most four points of F , this
check can be done in O(1) time for each of the nc − f points in Pc \ F . ��

For the 2SH models we can neither use the greedy labeling of F (as for the 2PH
and 1SH models), nor try all labelings (as for the 4P model). Instead we proceed
as follows. Try all 2f ways of restricting the labels for the points in F to be
either topmost or bottommost. The problem is then to decide whether F can be
labeled with free labels in the 1SH model, while labeling Pc\F with (free and/or
non-free) labels in the 2SH model. The position of a label along a 1-slider can
be modeled as a number between 0 and 1, making the configuration space C of
possible labelings for F the f -dimensional unit hypercube. Let Cnonint ⊆ C be
the subspace of labelings for F where the labels of the points in F are disjoint,
and for any point p ∈ Pc \ F let Cp ⊆ C be the subspace of labelings L′ ∈ Cp
where p can still get a label without intersecting labels in L′. We then need to
decide whether Cfree := Cnonint ∩

⋂
p∈Pc\F Cp is non-empty, and if so construct a

feasible labeling L′ ∈ Cfree for F and extend it into a labeling L for Pc. We will
show how this can be done using an arrangement of O(nc) hyperplanes in C.
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Lemma 6. Given the set Pc of all nc � Δk2 points contained in a k-grid cell c,
and a subset F ⊆ Pc of f of those points, we can decide in O(nc)

f time for the
2SH and 4S models whether there exists a labeling L for Pc where all points in
F have a free label, and if so produce L.

Proof. We discuss only the 2SH model; the proof for the 4S model is analogous.
If two points q, q′ ∈ F have intersecting labels, then they must be fairly close.
Specifically, there is a 4×5 rectangle Bq around q, consisting of 20 cells of the 1-
grid, such that Bq contains q′ (see Figure 4(b)). Preventing q and q′ from having
intersecting labels introduces a linear constraint on the slider coordinates of q
and q′. Since F has at most four points in any 1-grid cell, Bq contains at most
80 points of F (including q itself). Hence Cnonint is the intersection of at most
f · (80− 1) · 1/2 = 79f/2 half-spaces.

For any point p ∈ Pc \ F , let Ctop
p ⊆ C be the subspace of labelings for F which

still allow p to get a topmost label. Now consider a labeling for F that is not in
Ctop

p . Thus any topmost label for p will intersect at least one label for a point in
F . We claim (and will argue later) that then there exists a subset F ′ ⊆ F with
|F ′| � 2 such that any topmost label of p intersects a label of a point in F ′. Hence,
Ctop

p can be constructed as Ctop
p =

⋂
F ′⊆F,|F ′|�2 Ctop

p (F ′), where Ctop
p (F ′) is the

subspace of labelings for F where p has at least one topmost label candidate not
intersecting the labels for F ′. Since we can assume that F ′ ⊆ Bp, there are at most(80

1

)
+

(80
2

)
= 3240 sets F ′ to be considered. For any q ∈ F , the subspace Ctop

p ({q})
is defined by a linear constraint on q’s slider coordinate, giving it a minimum or
maximum value. For any q, q′ ∈ F , with q left of p and q′ right of p, the subspace
Ctop

p ({q, q′}) is definedby the linear constraint that the horizontal distance between
the labels of q and q′ should be at least 1 (and if q and q′ are on the same side of p,
then Ctop

p ({q, q′}) = Ctop
p ({q})∪Ctop

p ({q′})). Hence, Ctop
p can be constructed as the

intersection of at most 3240 half-spaces. The same is true for Cbottom
p , the subspace

of labelings forF whichallowp to get abottommost label. SinceCp = Ctop
p ∪Cbottom

p ,
we can find Cfree = Cnonint ∩

⋂
p∈Pc\F Cp as the union of some of the cells in an

arrangement of (at most) h := 79f/2 + 2 · 3240nc = O(nc) hyperplanes. We can
construct this arrangement in O(hf ) time [5], and in the same time test whether
Cfree is non-empty and if so construct a labelingL′ ∈ Cfree forF . Greedily extending
this into a labeling L for Pc does not increase the running time.

To substantiate the claim that we can ignore sets F ′ with three or more ele-
ments, consider a labeling L′ for F which intersects all topmost label candidates
for p. Let � be the rightmost label in L′ that intersects p’s top-leftmost label
candidate, and let �′ be the leftmost label in L′ that intersects p’s top-rightmost
label candidate (possibly with �′ = �). Then � and �′ together must intersect
all topmost label candidates for p, otherwise p would have a free topmost label
candidates horizontally between � and �′. ��
Putting together the above lemmas yields the following result:

Theorem 2. For any fixed ε > 0, and for each of the fixed-position and slider
models, there exists a polynomial-time algorithm that computes a (1−ε)-approx-
imation to free-label maximization with unit-square labels.
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Proof. Compute a 1-grid in O(n log n) time [9]. Let k = �8/ε� and generate all k2

possible k-grids G1, . . . , Gk2 out of the 1-grid. For each k-grid Gi, we compute
an inner-optimal labeling for the (at most n) cells containing points. This is
done for a cell c ∈ Gi by enumerating the potentially freeable subsets F of P

c

(Lemma 3), and checking for each subset F whether Pc can be labeled so that
all points in F have a free label (Lemmas 4, 5, and 6). The best out of these k2

solutions is a (1 − ε)-approximation (Lemma 2). The resulting running time is

O(n log n)+nk2 ·

⎧⎪⎨
⎪⎩

Δ2(k−4)2 ·O
(
Δk2 log(Δk)

)
for the 2PH and 1SH models,

Δ4(k−4)2 ·O
(
Δk24(k−3)2

)
for the 4P model,

Δ4(k−4)2 ·O
(
Δk2

)(k−3)2 for the 2SH and 4S models. ��

4 Conclusion

Air traffic controllers monitor airplanes on computer screens as moving points
with associated textual labels, and warn pilots to change course on potential col-
lisions. Currently they spend a lot of their time moving labels around by hand
to prevent labels from intersecting one another and becoming unreadable. Algo-
rithms from the cartographic map labeling literature do not apply, as these solve
a different problem. To this end we have introduced the free-label-maximization
problem as a new variant of the labeling problem, and have studied it for static
points as a first step. In free-label maximization we must label all points with
labels of fixed dimensions and seek to maximize the number of free labels (la-
bels that do not intersect other labels). We have presented a simple and efficient
constant-factor approximation algorithm, as well as a PTAS, for free-label max-
imization under the commonly assumed model that labels are directly attached
to their points. In air traffic control, however, labels are usually connected to
their point by means of a short line segment (a leader). Our constant-factor
approximation can be extended to this case, and we believe the same may be
true for our PTAS.

Our algorithms work if all labels are unit squares (or, equivalently, all labels are
translates of a fixed rectangle). The cases of labels being unit-height rectangles or
arbitrary rectangles are still open. For the number-maximization problem these
cases allow, respectively, a PTAS [3] and an O(1/ log log n)-approximation [2]. The
former achieves a (1−1/k)-approximation to numbermaximization in onlyO(n log
n + nΔk−1) time, while the running time of our PTAS for free-label maximization
is completely impractical. It would be interesting to see if these results for number
maximization can be matched for free-label maximization. If not, then free-label
maximization is strictly harder than number maximization, while easier than size
maximization. The weighted version of the free-label-maximization problem is an-
other interesting direction for future research.

The most important area for future research, however, is the labeling of
moving points. Even outside of air traffic control applications, we believe that
free-label maximization is a better model for this than the size- and number-
maximization problems. Continuously scaling labels under size maximization
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would be hard to read, and the (dis)appearance of a label under number maxi-
mization is an inherently discrete event which can be disturbing for the viewer.
It is fairly simple to kinetically maintain the labeling of our constant-factor ap-
proximation algorithm as the points move. This is not enough to obtain a good
result, however, as labels will sometimes “jump” from place to place. We would
prefer to “smooth out” the label trajectories so that labels move continuously
at finite speeds, but it is not yet clear how to do this.
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Sampling algorithms based on Markov chains arise in many areas of comput-
ing, engineering and science. The idea is to perform a random walk among the
elements of a large state space so that samples chosen from the stationary distri-
bution are useful for the application. In order to get reliable results, we require
the chain to be rapidly mixing, or quickly converging to equilibrium. For ex-
ample, to sample independent sets in a given graph G, the so-called hard-core
lattice gas model, we can start at any independent set and repeatedly add or
remove a single vertex (if allowed). By defining the transition probabilities of
these moves appropriately, we can ensure that the chain will converge to a use-
ful distribution over the state space Ω. For instance, the Gibbs (or Boltzmann)
distribution, parameterized by Λ > 0, is defined so that p(Λ) = π(I) = Λ|I|/Z,
where Z =

∑
J∈Ω Λ|J| is the normalizing constant known as the partition func-

tion. An interesting phenomenon occurs as Λ is varied. For small values of Λ,
local Markov chains converge quickly to stationarity, while for large values, they
are prohibitively slow. To see why, imagine the underlying graph G is a region of
the Cartesian lattice. Large independent sets will dominate the stationary distri-
bution π when Λ is sufficiently large, and yet it will take a very long time to move
from an independent set lying mostly on the odd sublattice to one that is mostly
even. This phenomenon is well known in the statistical physics community, and
characterizes by a phase transition in the underlying model.

In general, phase transitions occur in models where a small microscopic change
to some parameter suddenly causes a macroscopic change to the system. This
phenomenon is pervasive in physical systems, but often lacks rigorous analy-
sis. Colloids, which are mixtures of two disparate substances in suspension, are
an interesting example. At low enough density the two types of particles will
be uniformly interspersed, but at sufficiently high density the particles of each
substance will cluster together, effectively separating. Unlike seemingly related
models where the clustering occurs because like particles are drawn together by
enthalpic forces, such as the ferromagnetic Ising model, the behavior of colloids
is purely entropic – the particles separate because because the overwhelming
majority of configurations in the stationary distribution exhibit such a separa-
tion. In this talk I will give an overview of some techniques used to prove the
existence of two distinct phases in various sampling algorithms and the underly-
ing physical models. Finally, I will suggest some potential approaches for using
our understanding of these two phases to inform the design of more efficient
algorithms.
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Abstract. Kernelization is a powerful tool to obtain fixed-parameter
tractable algorithms. Recent breakthroughs show that many graph prob-
lems admit small polynomial kernels when restricted to sparse graph
classes such as planar graphs, bounded-genus graphs or H-minor-free
graphs. We consider the intersection graphs of (unit) disks in the plane,
which can be arbitrarily dense but do exhibit some geometric structure.
We give the first kernelization results on these dense graph classes. Con-

nected Vertex Cover has a kernel with 12k vertices on unit-disk
graphs and with 3k2 + 7k vertices on disk graphs with arbitrary radii.
Red-Blue Dominating Set parameterized by the size of the smallest
color class has a linear-vertex kernel on planar graphs, a quadratic-vertex
kernel on unit-disk graphs and a quartic-vertex kernel on disk graphs. Fi-
nally we prove that H-Matching on unit-disk graphs has a linear-vertex
kernel for every fixed graph H .

1 Introduction

Motivation. The theory of parameterized complexity [1] has made it possible
to analyze the strength of preprocessing schemes through the concept of kernel-
ization [2]. An instance of a parameterized problem is a tuple (x, k) where x is
an encoding of the classical input (for example a graph) and k is a non-negative
integer that measures some structural property of x (such as the desired solu-
tion size). A kernelization algorithm (or kernel) for a parameterized problem is
a mapping that transforms an instance (x, k) into an equivalent instance (x′, k′)
in time p(|x| + k) for some polynomial p, such that |x′|, k′ ≤ f(k) for a com-
putable function f and the answer to the decision problem is preserved. The
function f is the size of the kernel, and much effort has been invested in finding
kernels of polynomial size. A rich theoretical framework is in development, yield-
ing both positive and negative results regarding the limits of kernelization. A
celebrated result by Bodlaender et al. [3] states that there are problems in FPT
that cannot have kernels of polynomial size, unless some unlikely complexity-
theoretic collapse occurs. Recent results also show that all problems that satisfy
certain compactness and distance properties admit polynomial kernels on re-
stricted graph classes such as planar graphs [4], graphs of bounded genus [5]
� This work was supported by the Netherlands Organisation for Scientific Research

(NWO), project “KERNELS: Combinatorial Analysis of Data Reduction”.
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and H-minor-free graphs [6]. The common theme in these frameworks is that
they yield kernels for problems on sparse graphs, in which the number of edges
is bounded linearly in the number of vertices.

Our work focuses on graph classes that exhibit some geometric structure but
can be arbitrarily dense: the intersection graphs of disks in the plane (“disk
graphs”). Each vertex is represented by a disk, and two vertices are adjacent if
and only if their disks intersect. Disks that touch eachother but do not overlap are
also said to be intersecting. It is a well-known consequence of the Koebe-Andreev-
Thurston theorem that planar graphs are a strict subclass of disk graphs [7, Sec-
tion 3.2]. If all the disks have the same radius then by a scaling argument we may
assume that this radius is 1: the intersection graphs of such systems are there-
fore called unit-disk graphs. It is easy to see that (unit)disk graphs may contain
arbitrarily large cliques. Many classical graph problems remain NP-complete
when restricted to unit-disk graphs [8], and the natural parameterizations of
several important problems such as Independent Set and Dominating Set

remain W [1]-hard [9,10] for unit-disk graphs. In this paper we will show how the
structure of disk graphs graphs may be exploited to obtain polynomial kernels.

Previous Work. Hardly any work has been done on kernelization for disk
graphs: only a single result in this direction is known to us. Alber and Fiala [11]
use the concept of a geometric problem kernel as in their work on Indepen-

dent Set: they obtain a reduced instance in which the area of the union of
all disks is bounded in k. This geometric kernel leads to subexponential exact
algorithms, and to an FPT algorithm by applying restrictions that bound the
maximum degree of the graph. In the context of kernels for dense graph classes
it is interesting to point out the work of Philip et al. [12] who recently obtained
polynomial kernels for Dominating Set on graph classes that exclude Ki,j as a
subgraph for some i, j ≥ 1; these graphs can have a superlinear number of edges.

Our Results. We believe we are the first to present polynomial problem ker-
nels on dense disk graph classes. We show that the Connected Vertex Cover

problem has a trivial 12k-vertex kernel on unit-disk graphs, and obtain a more
complex kernel with 3k2 + 7k vertices for disk graphs with arbitrary radii. We
prove that Red-Blue Dominating Set parameterized by the size of the small-
est color class admits a kernel of linear size on planar graphs, of quadratic size
on unit-disk graphs and of quartic size on disk graphs with arbitrary radii.
Note that neither of these two problems admit polynomial kernels on general
graphs unless the polynomial hierarchy collapses [13]. We also present a linear
kernel for the H-Matching problem on unit-disk graphs, which asks whether a
unit-disk graph G contains at least k vertex-disjoint copies of a fixed connected
graph H . In the conclusion we identify a property of graph classes that implies
the existence of polynomial kernels for Connected Vertex Cover and Red-

Blue Dominating Set, and show that not only (unit)disk graphs but also
Ki,j-subgraph-free graphs have this property - thereby showing how some of our
results carry over to Ki,j-subgraph-free graphs.
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2 Preliminaries

All graphs are undirected, finite and simple unless explicitly stated otherwise.
Let G = (V, E) be a graph. For v ∈ V we denote the open (resp. closed) neighbor-
hoods of v by NG(v) and NG[v]. The degree of a vertex v in graph G is denoted
by degG(v). We write G′ ⊆ G if G′ is a subgraph of G. For X ⊆ V we denote
by G[X ] the subgraph of G that is induced by the vertices in X . We identify
the set of connected components of G by Comp(G). We treat geometric objects
as closed sets of points in the Euclidean plane. If v is a vertex of a geometric
intersection graph, then we use D(v) to denote the geometric representation of v;
usually this is just a disk. We will write D(V ′) for V ′ ⊆ V to denote the union
of the geometric objects representing the vertices V ′. Throughout this paper
we parameterize problems by the desired solution size k unless explicitly stated
otherwise. Some proofs had to be omitted due to space restrictions.

Lemma 1. Let G = (X ∪ Y, E) be a planar bipartite graph. If for all dis-
tinct v, v′ ∈ Y it holds that NG(v) �⊆ NG(v′) then |Y | ≤ 5|X |. ��

Lemma 2 (Compare to Lemma 3.4 of [14]). If v is a vertex in a unit-disk
graph G then there must be a clique of size at least �degG(v)/6� in G[NG(v)]. ��

3 Connected Vertex Cover

The Connected Vertex Cover problem asks for a given connected graph
G = (V, E) and integer k whether there is a subset S ⊆ V with |S| ≤ k such
that every edge in G has at least one endpoint in S, and such that G[S] is con-
nected. Guo and Niedermeier gave a kernel with 14k vertices for this problem [4]
restricted to planar graphs. More recently it was shown that Connected Ver-

tex Cover on general graphs does not admit a polynomial kernel unless the
polynomial hierarchy collapses [13]; this situation is in sharp contrast with the
regular Vertex Cover problem, which has a kernel with 2k vertices [2]. It is
not hard to prove that a vertex cover for a connected unit-disk graph on n ver-
tices must have size at least n/12 [15, Theorem 2] which yields a trivial linear
kernel.

Observation 1. Connected Vertex Cover has a kernel with 12k vertices
on unit-disk graphs.

The situation becomes more interesting when we consider disk graphs with ar-
bitrary radii, where we show the existence of a quadratic kernel. To simplify the
exposition we start by giving a kernel for an annotated version of the problem.
Afterwards we argue that the annotation can be undone to yield a kernel for the
original problem. An instance of the problem Annotated Connected Ver-

tex Cover is a tuple 〈G, k, C〉 where G is the intersection graph of a set of
disks in the plane, k is a positive integer and C ⊆ V (G) is a subset of vertices.
The question is whether there is a connected vertex cover S ⊆ V (G) of cardi-
nality at most k such that C ⊆ S. We introduce some notation to facilitate the
description of the reduction rules.
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Definition 1. Let 〈G, k, C〉 be an instance of Annotated Connected Ver-

tex Cover. A vertex v ∈ C is marked; vertices in V (G)\C are unmarked. For
unmarked vertices we distinguish between two types: an unmarked vertex is dead
if all its neighbors are marked, and it is live if it has an unmarked neighbor.
We call an edge covered if it is incident on a marked vertex, and uncovered
otherwise.

Observe that all edges incident on dead unmarked vertices will be covered by the
marked vertices in any solution. Therefore the dead vertices can only be useful
in a solution to ensure connectivity. The live unmarked vertices may be needed
to cover additional edges.

Reduction Rule 1. If there is an unmarked vertex v with more than k neigh-
bors, then add v to C (i.e. mark v).

This is an annotated analogue of Buss’ rule for the Vertex Cover problem. It
is easy to see that v must be part of any solution of size at most k; for if v is not
taken in a vertex cover then all its > k neighbors must be taken - note that this
also holds if some neighbors of v are already marked. We give a new definition
that will simplify the exposition of the next reduction rule.

Definition 2. We define the component graph that corresponds to the instance
〈G, k, C〉 with dead vertices D to be the bipartite graph GC := (Comp(G[C]) ∪
D, E) where there is an edge between a connected component X ∈ Comp(G[C])
and a dead vertex d ∈ D if and only if NG(d) ∩ V (X) �= ∅, i.e. if d is adjacent
in G to a vertex in the connected component X.

Reduction Rule 2. If there are two distinct dead vertices u and v such that
NGC (u) ⊆ NGC(v) then delete u.

For the correctness of this rule observe that if S is a solution containing u,
then (S \ {u}) ∪ {v} is also a solution: since all neighbors of u are marked, the
removal of u does not cause edges to become uncovered. Removal of u cannot
cause the vertex cover to become disconnected because all components of G[C]
that were connected through u remain connected through v.

Lemma 3. Let 〈G, k, C〉 be a reduced instance of Annotated Connected

Vertex Cover for a disk graph G, and let D denote the set of dead vertices.
There is a vertex set R and a bipartite graph G∗ = (R∪D, E∗) with the following
properties:

(i) The graph G∗ is planar.
(ii) If NG∗(d) ⊆ NG∗(d′) for d, d′ ∈ D then NGC (d) ⊆ NGC (d′).
(iii) The number of vertices in R is at most |C|.

Proof. Assume the conditions stated in the lemma hold. Fix some realization
of G by intersecting disks in the plane. The vertex set R corresponds to disjoint
regions that are subsets of the maximally connected regions in D(C). We define
the regions R in two parts by setting R := R1 ∪R2.
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(a) Subgraph induced
by D and C. Disks of
dead vertices are drawn
with broken lines.

(b) Regions R1 colored
grey, R2 colored black.

(c) Embedding of bipar-
tite graph G∗.

Fig. 1. Construction of the planar bipartite graph G∗ from an instance 〈G, k, C〉 with
dead vertices D

– For every pair consisting of a component X ∈ Comp(G[C]) and dead ver-
tex d ∈ D such that D(V (X)) ⊆ D(d) we let D(V (X)) be a region in R1.

– The set R2 consists of the maximally connected regions of the plane that are
obtained by taking the union of all disks of vertices in C, and subtracting
the interior of all disks of vertices in D. Observe that a region D(V (X))
for X ∈ Comp(G[C]) may be split into multiple regions by subtracting the
interiors of D(D); see Figure 1(b).

Since the constructed regions R are subsets of the maximally connected re-
gions induced by D(C), we know that for each r ∈ R there is a unique X ∈
Comp(G[C]) such that r ⊆ D(V (X)). Define the parent π(r) of r to be the com-
ponent X for which this holds, and define the parent of a set of regions R′ ⊆ R
to be the union

⋃
r∈R′{π(r)}. Let d ∈ D be a dead vertex and consider the

regions of R intersected by D(d). It is not difficult to verify that by construc-
tion of R, the disk D(d) intersects at least one region in R for every compo-
nent X ∈ Comp(G[C]) that d is adjacent to in G. Since the regions of R are
subsets of D(C), the disk D(d) can only intersect a region r ∈ R if d is adjacent
in GC to π(r). Hence we establish that if R′ is the set of regions in R intersected
by D(d), then π(R′) = NGC (d). We will refer to this as the parent property.

We define the bipartite graph G∗ with partite sets D and R as the intersection
graph of D and R: there is an edge between a vertex d ∈ D and a vertex
corresponding to a region r ∈ R if and only if D(d) intersects region r. We
will show that G∗ is planar by embedding it in the geometric model of the disk
graph G. The planarity of G∗ can be derived from the following observations:

(a) If some region intersects only one region in the other partite set, then it will
become a degree-1 vertex in G∗ and it will never violate planarity. So we
only need to consider regions that intersect at least two regions in the other
partite set.

(b) Every region r ∈ R1 is completely contained within some D(d) for d ∈ D and
hence r only intersects one region in D since disks of dead vertices are disjoint;
therefore we can ignore the regions in R1 by the previous observation.
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(c) For every disk D(d) for d ∈ D the interior of the disk is not intersected
by any other region in D ∪ R2, by construction of R2. Similarly, for every
region r ∈ R2 the interior of that region is not intersected by any other
region in D ∪R2.

We show how to create an embedding in the plane of the intersection graph
of D ∪ R2, which sufficies to prove that G∗ is planar by observation (b). For
every region in D ∪ R2 we select a location for the corresponding vertex in the
interior of that region. Since the interior of every region is connected, we can
draw edges from these points to all intersected neighboring regions. Since no
three regions have a common intersection we can draw these edges in the plane
without crossings - see Figure 1(c). This proves that G∗ is planar and establishes
(i). The parent property of the regions R establishes (ii), since the neighborhood
of a dead vertex in G∗ corresponds to the set of regions of R it intersects. Hence
if two vertices d, d′ ∈ D satisfy NG∗(d) ⊆ NG∗(d′) then π(NG∗(d)) ⊆ π(NG∗(d′))
and therefore NGC (d) ⊆ NGC (d′).

As the last part of the proof we establish that |R| ≤ |C| by showing that we
can charge every region in r to a vertex of C such that no vertex is charged
twice. A region r ∈ R1 corresponds to a component X ∈ Comp(G[C]) such
that D(V (X)) is contained in D(d) for some d ∈ D; for every such connected
component X there is exactly one region in R1, and we can charge the cost of
vertex r to one vertex in the connected component X . For the regions in R2
the situation is slightly more involved. Consider some vertex v ∈ C. It is not
hard to see that if we start with the region D(v) and subtract the interiors of
mutually disjoint disks from that region, then the result must be either an empty
region or a connected region. This implies that for every vertex v ∈ C, there is
at most one region r ∈ R2 that has a non-empty intersection with D(v). Since
every region of R2 is a subset of D(C), every region r ∈ R2 intersects D(v) for
at least one v ∈ C, and by the previous argument r is the only region of R2
for which this holds. Therefore we can charge the region r to such a vertex v
and we can be sure that we never charge to a vertex of C twice; this proves
that |R| = |R1|+ |R2| ≤ |C|, which establishes (iii) and completes the proof. ��

Theorem 1. Annotated Connected Vertex Cover has a kernel with 2k2+
6k vertices on disk graphs with arbitrary radii.

Proof. Given an instance 〈G, k, C〉 we first exhaustively apply the reduction
rules; it is not hard to verify that this can be done in polynomial time. Let
〈G′, k′, C′〉 be the resulting reduced instance. Since the reduction rules do not
change the value of k we have k′ = k. If the reduced instance contains more
than k2 uncovered edges then the answer to the decision problem must be no

and we can output a trivial no-instance: all uncovered edges need to be covered
by an unmarked vertex, and any unmarked vertex may cover at most k edges
since it has degree at most k by Rule [1] - therefore any vertex cover must consist
of more than k unmarked vertices if there are more than k2 uncovered edges. If
the number of uncovered edges is at most k2 then the number of live vertices is
at most 2k2 since every live vertex is incident on at least one uncovered edge.
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If the number of marked vertices C exceeds k then clearly there is no solution
set containing C of size at most k, and we output a no instance. Otherwise
the number of marked vertices is at most k. Consider the dead vertices D in
the reduced instance, and the bipartite planar graph G∗ = (R ∪ D, E∗) whose
existence is guaranteed by Lemma 3. By Rule [2] we know that NGC (d) �⊆
NGC (d′) for distinct vertices d, d′ ∈ D, and by (ii) of the lemma this implies
that NG∗(d) �⊆ NG∗(d′). Therefore we may apply Lemma 1 to graph G∗ where R
plays the role of X , and D plays the role of Y , to conclude that |D| ≤ 5|R|. Using
condition (iii) of Lemma 3 gives |D| ≤ 5|C| ≤ 5k, which is the final ingredient
of the size bound.

In summary there are at most k marked vertices, at most 2k2 live vertices
and at most 5k dead vertices which shows that |V (G′)| ≤ 2k2 + 6k. Therefore
we can output the reduced instance 〈G′, k′, C′〉 as the result of the kernelization;
by the safety of the reduction rules we know that 〈G, k, C〉 is a yes-instance if
and only if 〈G′, k′, C′〉 is. ��

It is not hard to undo the annotation to obtain a kernel for the original problem:
for every marked vertex we arbitrarily re-add some of its deleted dead-vertex
neighbors, until every marked vertex has degree more than k.

Theorem 2. Connected Vertex Cover has a kernel with 3k2 + 7k vertices
on disk graphs with arbitrary radii. ��

The resulting kernel can be lifted to more general geometric graph classes. For
ease of presentation we have presented the kernel for the intersection graphs of
disks, but the stated results should easily generalize to intersection graphs of
connected geometric objects in pseudo-disk relation [16].

4 H-Matching

The H-Matching problem asks whether a given graph G contains at least k
vertex-disjoint subgraphs that are isomorphic to some fixed connected graph H .
For ease of notation we define |H | as short-hand for |V (H)|. Subgraph match-
ing problems have received considerable attention from the FPT community,
resulting in O(k) vertex kernels for H-Matching on sparse graphs [5,6] and a
kernel with O(k|H|−1) vertices on general graphs [17]. The restriction to unit-
disk graphs has been considered in the context of approximation algorithms [18].
For every fixed H we give a linear-vertex kernel for H-Matching in the case
that G is required to be a unit-disk graph.

Reduction Rule 3. Delete all vertices that are not contained in a H-subgraph
of G.

This rule is clearly correct. We can obtain a reduced graph by trying all |V (G)||H|

possible ordered vertex sets of size |H | and marking the vertices for which the
guessed set forms a H-subgraph. Afterwards we delete all vertices that were not
marked. Since we assume H to be fixed, this can be done in polynomial time.
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Theorem 3. Let G be a reduced unit-disk instance of H-Matching. If there
is a maximal H-matching in G that consists of k∗ copies of H, then |V (G)| ∈
O(k∗).

Proof. Let G be a reduced graph and consider a maximal H-matching in G
consisting of k∗ copies. Let S be the vertices that occur in a matched copy of H .
Since the selected copies are vertex-disjoint we have |S| = k∗|H |. Let W :=
V (G) \S be the vertices not used in a copy of H in the matching. We will prove
that the size of W is bounded in |S|.

Define δG(u, v) as the number of edges on a shortest path between u and v
in G, or +∞ if u and v are not connected in G. Let dH be the diameter of the
graph H , i.e. dH := maxu,v∈V (H) δH(u, v). Since we assume H to be connected
we have dH ≤ |H |. We measure the distance of a vertex v ∈ V (G) to the
closest vertex in S by δG(v, S) := minu∈S δG(u, v). Now suppose that there is
some w ∈ W with δG(w, S) > dH . By Rule [3] the vertex w must be contained
in some subgraph G′ ⊆ G that is isomorphic to H . All vertices v ∈ V (G′)
involved in this subgraph have a distance to w in G′ (and therefore in G) of at
most dH by the definition of diameter. Since δG(w, S) > dH none of the vertices
in V (G′) are in S. But that means that we can add G′ as an extra copy of H
to the matching, contradicting the assumption that we started from a maximal
H-matching. Therefore we may conclude that δG(w, S) ≤ dH for all w ∈ W .

For the next step in the analysis we show that any vertex has a bounded
number of neighbors in W . If v ∈ V (G) has more than 6(|H | − 1) neighbors
in W , then by Lemma 2 there is a clique of size |H | in G[NG(v) ∩ W ]. This
clique must contain a subgraph isomorphic to H and hence it can be added
to the H-matching, again contradicting the assumption that we started with a
maximal matching. Therefore every vertex in G has at most 6(|H |−1) neighbors
in W . Since there are exactly k∗|H | vertices in S this shows that there are at
most k∗|H |·6(|H |−1) vertices w ∈W for which δG(w, S) = 1. Now observe that a
vertex v with δG(v, S) = 2 must be adjacent to some vertex u with δG(u, S) = 1.
Since all such vertices u have a bounded number of neighbors in W , we find that
there are at most k∗|H | ·(6(|H |−1))2 vertices w ∈W for which δG(w, S) = 2. By
generalizing this step we obtain a bound of k∗|H | · (6(|H | − 1))r on the number
of vertices v that have δG(v, S) = r. Since we established δG(w, S) ≤ dH for
all w ∈W we can conclude that |W | ≤

∑dH

i=1 k∗|H | · (6(|H | − 1))i which implies
that |W | ∈ O(k∗(6|H |)dH ). Now we can bound the size of the instance G by
noting that |V (G)| = |S|+ |W | and therefore |V (G)| ∈ O(k∗(6|H |)dH ). Since the
diameter dH of H is at most |H | this completes the proof: for every fixed H the
term (6|H |)dH ≤ (6|H |)|H| is constant and hence |V (G)| ∈ O(k∗). ��

Theorem 3 leads to a linear-vertex kernel for H-Matching since we can find a
maximal H-matching in polynomial time for fixed H . If the maximal matching
has size k∗ ≥ k we have solved the problem; if not then there is a maximal
matching of size k∗ < k and the size of the instance is bounded.

Corollary 1. H-Matching in unit-disk graphs has a kernel with O(k) vertices
for every fixed H. ��
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5 Red-Blue Dominating Set

In the Red-Blue Dominating Set problem we are given a graph G = (V, E),
a positive integer k and a partition of the vertices into red and blue color
classes R, B such that V = R ∪ B and R ∩ B = ∅; the goal is to determine
whether there is a set S ⊆ R consisting of at most k red vertices such that every
blue vertex in B has at least one neighbor in S. In the literature it is often
assumed that G is bipartite with the red and blue classes as the partite sets;
we explicitly do not require this here since bipartite disk graphs are planar [19,
Lemma 3.4]. Under these assumptions the Red-Blue Dominating Set prob-
lem on disk graphs graphs is not easier than Dominating Set on those graphs
when parameterized by the size of the solution set, since we can reduce from the
regular Dominating Set problem by making two copies of every vertex, mark-
ing one of them as red and the other as blue: hence Red-Blue Dominating

Set is W [1]-hard on unit-disk graphs when parameterized by k [10]. The situa-
tion changes when we parameterize by |R| or by |B|, which causes the problem
to become fixed parameter tractable on general graphs. Dom et al. [13] have
shown that the Red-Blue Dominating Set problem parameterized by |R|+k
or |B| + k does not have a polynomial kernel on general graphs, unless the
polynomial hierarchy collapses. We show that the situation is different for disk
graphs by proving that Red-Blue Dominating Set when parameterized by
the size of the smallest color class has polynomial kernels on planar graphs and
(unit)disk graphs. We use the same reduction rules for all three graph classes.

Reduction Rule 4. If there are distinct red vertices u, v ∈ R such that NG(u)∩
B ⊆ NG(v) ∩B then delete u.

It is easy to see that this rule is correct: the red vertex v can dominate all
blue vertices that can be dominated by u, and hence there is always a smallest
dominating set that does not contain u. The following rule is similar in spirit,
but works on the other vertex set.

Reduction Rule 5. If there are distinct blue verticesu, v ∈ B such that NG(u)∩
R ⊆ NG(v) ∩R then delete v.

In this case we may delete v because whenever u is dominated by some red x ∈
NG(u), the vertex v must be dominated as well since x ∈ NG(v). These reduc-
tion rules immediately lead to a kernel with O(min(|R|, |B|)) vertices on planar
graphs by invoking Lemma 1. For unit-disk graphs and disk graphs with arbi-
trary radii we need the following structural results.

Theorem 4. Let G = (V, E) be a unit-disk graph whose vertex set is partitioned
into red and blue color classes by V = R ∪ B with R ∩ B = ∅. If for all dis-
tinct u, v ∈ R it holds that NG(u) ∩B �⊆ NG(v) ∩B then |R| ∈ O(|B|2). ��

The proof of Theorem 4 relates the maximum number of red disks to the com-
plexity of the arrangement of the blue disk in the plane. A well-known construc-
tion from the area of computational geometry (see [20, Section 5.2]) shows that
the bound is asymptotically tight.
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Fig. 2. Four circles and the bisector curves for all pairs

Theorem 5. Let G = (V, E) be a disk graph with arbitrary radii whose vertex
set is partitioned into red and blue color classes by V = R∪B with R∩B = ∅. If
for all distinct u, v ∈ R it holds that NG(u)∩B �⊆ NG(v)∩B then |R| ∈ O(|B|4).

Proof. Assume the conditions stated in the theorem hold, and fix a realization
of the disk graph G that specifies a disk for every vertex. For a pair of blue
disksD(b1),D(b2) we consider all points for which the distances to the boundaries
of D(b1) and D(b2) are the same, i.e. the points that are equidistant to the
boundaries of D(b1) and D(b2). If the disks do not completely coincide then
this set of points forms a curve in the plane. The type of curve depends on the
relative orientation of the two disks. If the two disks have equal radius then the
curve is a line. If the radii differ then the curve is an ellipse if one disk completely
contains the other, and otherwise the curve is a branch of a hyperbola. Consider
the arrangement in the plane that is induced by the set of all possible

(|B|
2

)
bisector curves for pairs of blue disks, and let F be a face of this arrangement
(see Figure 2).

Suppose we choose a point p in the face F and grow a disk around p by grad-
ually increasing its radius. If the disk grows large enough then it will intersect
some of the blue disks. Once it intersects a blue disk D(b) at a certain radius,
then naturally it will keep intersecting D(b) as its radius increases. Observe that
the order in which the blue disks are encountered as the radius increases does
not depend on where we place p within face F : the relative order in which two
blue disks D(b1) and D(b2) are encountered is determined by the relative posi-
tion of point p to the bisector curve of D(b1) and D(b2). Since F is a face in the
arrangement of all bisector curves, this relative position will be the same for all
points p ∈ F , and therefore all choices of a point p in F yield the same order in
which blue vertices are encountered. Now observe that for every possible order
of encountering the blue disks there can be at most one red vertex: if two red
vertices are placed on positions that yield the same order, then the neighborhood
of one must be a subset of the neighborhood of the other - which is not possible
by the assumption in the statement of the theorem. Therefore F can contain
at most one center of a red disk. The same argument shows that every edge or
vertex in the arrangement induced by the bisector curves can contain at most
one red vertex. Hence we can bound the number of red vertices by bounding the
total number of vertices, edges and faces of the arrangement (i.e. the complexity
of the arrangement).
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The arrangement of curves consists of lines, branches of hyperbolas and el-
lipses. It is not hard to verify that each pair of these objects can intersect at
most a constant number of times. In the area of computational geometry it is a
well-known fact [21] that the complexity of an arrangement of n curves is O(n2)
if the number of intersections between each pair of curves is bounded by a con-
stant. In our case we find that there are |B|2 objects and hence the complexity
is O(|B|4). Since we have at most one red vertex per element in the arrangement,
the claim follows. ��

By combining the structure of the graph after the reduction rules with the results
of Theorem 4 and Theorem 5 we obtain the following corollary.

Corollary 2. The Red-Blue Dominating Set problem admits a kernel with
O(min(|R|, |B|)) vertices on planar graphs, with O(min(|R|, |B|)2) vertices on
unit-disk graphs and with O(min(|R|, |B|)4) vertices on disk graphs with arbitrary
radii.

6 Conclusion

We have shown that the geometric structure of dense (unit)disk graphs can be
exploited to obtain polynomial size problem kernels for several hard problems.
It would be interesting to see whether other hard graph problems allow polyno-
mial kernels on disk graphs; potential candidates are Edge Clique Cover and
Partition Into Cliques. We also leave it as an open problem to determine
whether the bound from Theorem 5 can be asymptotically improved.

Some of the ideas used in this paper to obtain polynomial kernels on disk
graphs can also be used to obtain polynomial kernels on other classes of graphs.
Let G = (V, E) be an undirected graph and let the sets R, B partition V . If
N := {NG(v)∩R | v ∈ B} is an antichain (i.e. no set in N is a subset of another
set in N) then R, B form an antichain partition of the graph G. If |B| ≤ |R|c
then we say that the antichain partition is c-balanced. If G is a class of undirected
graphs such that all antichain partitions of all graphs in G are c-balanced for a
fixed value c, then we say that G is c-antichain-balanced. If such a c-antichain-
balanced class of graphs G is closed under vertex deletions then Connected

Vertex Cover parameterized by k has a kernel with O(kmax(2,c)) vertices
and Red-Blue Dominating Set parameterized by the smallest color class has
a kernel with O(min(|R|, |B|)c) vertices, when these problems are restricted to
graphs of class G. Theorem 4 and Theorem 5 show that unit-disk graphs and disk-
graphs are 2- and 4-antichain-balanced respectively, which explains the existence
of some of the polynomial kernels we obtained. Now consider the class of Ki,j-
subgraph-free graphs for some fixed i ≤ j; an elementary combinatorial argument
shows this class is i-antichain-balanced and hence there are polynomial kernels
for the mentioned parameterizations of Connected Vertex Cover and Red-

Blue Dominating Set on Ki,j-subgraph-free graphs. It will be interesting to
see if the property of antichain-balance can be shown to be a sufficient condition
for the existence of polynomial kernels for other problems.
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1 Introduction

Robertson and Seymour asserted Wagner’s conjecture by showing that each
minor-closed graph property can be characterized by a finite set of forbidden
minors [14, 15]. Suppose that P is a property on graphs that is minor-closed,
that is, if a graph has this property then all its minors have it too. Graph Mi-
nors Theory implies that there is a finite set F of forbidden minors such that a
graph G has property P if and only if G does not have any of the graphs in F
as a minor. This result also has a strong impact on algorithms, since it implies
that testing for minor closed properties can be done in polynomial time, namely
by finitely many calls to an O(n3)-time algorithm (introduced in [14]) checking
whether the input graph G contains some fixed pattern H as a minor. As a
consequence, several graph problems have been shown to have polynomial-time
algorithms, some of which were previously not even known to be decidable [8].
However, these algorithmic results are non-constructive. This triggered an ongo-
ing quest in the Theory of Algorithms since then –next to the simplification of
the the 23-papers proof of the Graph Minors Theorem– for extracting construc-
tive algorithmic results out of Graph Minors (e.g., [4,5,2,12]) and for making its
algorithmic proofs practical. Minor containment is one of the important steps in
the technique of minor-closed property testing. Unfortunately the hidden con-
stants in the polynomial-time algorithm of [14] are immense even for very simple
patterns, which makes the algorithm absolutely impractical.

A basic algorithmic tool introduced in the Graph Minors series is branchwidth
that servers (together with its twin parameter of treewidth) as a measure of the
topological resemblance of a graph to the structure of a tree. The algorithmic im-
portance of branchwidth resides in Courcelle’s theorem [3] stating that all graph
problems expressible by some Monadic Second Order Logic (MSOL) formula φ
can be solved in f(bw(k), φ) · n steps (we denote by bw(G) the branchwidth of
the graph G). As minor checking (for fixed patterns) can be expressed in MSOL,
we obtain the existence of a f(k, h) · |V (G)| step algorithm for the following (pa-
rameterized) problem (throughout the paper, we let n = |V (G)|, m = |E(G)|,
and h = |V (H)|):

H-Minor Containment

Input: A graph G (the host graph).
Parameter: k = bw(G).
Question: Does G contain a minor isomorphic to H (the pattern graph)?

This fact is one of the basic subroutines required by the algorithm in [14], and ev-
ery attempt to improve its efficiency requires the improvement of the parameter
dependance f(k, h). A significant step in this direction was done by Hicks [11],
who provided an O(3k2 · (h + k − 1)! · m) step algorithm for H-Minor Con-

tainment, exploiting the ideas sketched by Robertson and Seymour in [14].
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Note that when H is not fixed, determining whether G contains H as a minor
is NP-complete even if G has bounded branchwidth [13].

The objective of this paper is to provide parameterized algorithms for the
H-Minor Containment problem with better parameter dependance.

Our results. We present an algorithm for H-Minor Containment with run-
ning time O(2(2k+1)·log k · h2k · 22h2 ·m), where k is the branchwidth of G, which
improves the bound that follows from [14] (explicitly described in [11]). When
we restrict the host graph to be embeddable in a fixed surface, we provide an
algorithm with running time 2O(k) · h2k · 2O(h) ·n. This is the first algorithm for
H-Minor Containment with single-exponential dependence on branchwidth.
Finally, we show how to modify our algorithm to explicitly find –within the same
time bounds– a model of H in G, as well as for solving some related problems,
like finding a model of smallest size, or solving the induced and contraction minor
containment problems.

Our techniques. We introduce a dynamic programming technique based on a
combinatorial object called rooted packing (defined in Subection 3.1). The idea
is that rooted packings capture how potential models of H (defined in Section 2)
are intersecting the separators that the algorithm is processing. We present the
algorithm for general host graphs in Subsection 3.2. When the host graph G
is embedded in a surface, this formulation with rooted packings allows us to
apply the framework introduced in [16] to obtain single-exponential algorithms
for H-Minor Containment. In this framework we use a new type of branch
decomposition, called surface cut decomposition, which generalizes sphere cut
decompositions for planar graphs introduced by Seymour and Thomas [17]. Our
algorithms are robust, in the sense that slight variations permit us to solve
several related problems within the same time bounds. Due to space constraints,
the details of the algorithm for graphs on surfaces and for the variations of the
minor containment problem are not included in this extended abstract, and can
be found in [1]. Finally, we present some lines for further research in Section 4.

2 Definitions

Graphs and minors. We use standard graph terminology, see for instance [6].
All the graphs considered in this article are simple and undirected. Given a graph
G, we denote the vertex set of G by V (G) and the edge set of G by E(G). A
graph F is a subgraph of a graph G, F ⊆ G, if V (F ) ⊆ V (G) and E(F ) ⊆ E(G).
For a subset X ⊆ V (G), we use G[X ] to denote the subgraph of G induced by
X , i.e. V (G[X ]) := X and E(G[X ]) := {{u, v} ⊆ X | {u, v} ∈ E(G)}. For
a subset Y ⊆ E(G) we let G[Y ] be the graph with V (G[Y ]) := {v ∈ V (G) |
v ∈ e for some e ∈ Y } and E(G[Y ]) := Y . Hypergraphs generalize graphs by
allowing edges to be arbitrary subsets of the vertex set. Let H be a hypergraph.
A path in H is a sequence v1, . . . , vn of vertices of H , such that for every two
consecutive vertices there exists a distinct hyperedge of H containing both. In
this way, the notions of connectivity, connected component, etc. are transferred
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from graphs to hypergraphs. Given a subset S ⊆ V (G), we define NG[S] to be
the set of vertices of V (G) at distance at most 1 from at least one vertex of S. If
S = {v}, we simply use the notation NG[v]. We also define NG(v) = NG[v] \ {v}
and EG(v) = {{v, u} | u ∈ NG(v)}. Let e = {x, y} ∈ E(G). Given G, let
G\e := (V (G), E(G) \ {e}), and let

G/e =(
(V (G)\{x, y}) ∪̇ {vx,y}, (E(G)\(EG(x)∪EG(y)))∪{{vxy, z} | z ∈ NG[{x, y}]}

)
,

where vxy �∈ V (G) is a new vertex, not contained in V (G). If H can be obtained
from a subgraph of G by a (possibly empty) sequence of edge contractions, we
say that H is a minor of G. If H can be obtained from an induced subgraph of G
(resp. the whole graph G) by a (possibly empty) sequence of edge contractions,
we say that H is an induced minor (resp. a contraction minor) of G.

Branch decompositions. A branch decomposition (T, μ) of a graph G consists
of a ternary tree T (i.e., all internal vertices are of degree three) and a bijection
μ : L → E(G) from the set L of leaves of T to the edge set of G. We define
for every edge e of T the middle set mid(e) ⊆ V (G) as follows: Let T1 and T2
be the two connected components of T \ {e}. Then let Gi be the graph induced
by the edge set {μ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The middle set is the
intersection of the vertex sets of G1 and G2, i.e., mid(e) = V (G1) ∩ V (G2).
Note that for each e ∈ E(T ), mid(e) is a separator of G (unless mid(e) = ∅).
The width of (T, μ) is the maximum order of the middle sets over all edges of T ,
i.e., width(T, μ) := max{|mid(e)| : e ∈ E(T )}. The branchwidth of G is defined
as bw(G) := min{width(T, μ) | (T, μ) branch decomposition of G}. Intuitively,
a graph G has small branchwidth, if G is close to being a tree.

In our algorithms, we need to root a branch decomposition (T, μ) of G. For
this, we pick an arbitrary edge e∗ ∈ E(T ), we subdivide it by adding a new
vertex vnew and then add a new vertex r and make it adjacent to vnew. We
extend μ by setting μ(r) = ∅ (thereby slightly extending the definition of a
branch decomposition). Now vertex r is the root. For each e ∈ E(T ) let Te be
the tree of the forest T \e that does not contain r as a leaf (i.e., the tree that is
“below” e in the rooted tree T ) and let Ee be the edges that are images, via μ,
of the leaves of T that are also leaves of Te. Let Ge := G[Ee] Observe that, if
er = {vnew, r}, then Ger = G unless G has isolated vertices.

Models and potential models. A model of H in G [14] is a mapping φ,
that assigns to every edge e ∈ E(H) an edge φ(e) ∈ E(G), and to every vertex
v ∈ V (H) a non-empty connected subgraph φ(v) ⊆ G, such that

(i) the graphs {φ(v) | v ∈ V (H)} are mutually vertex-disjoint and the edges
{φ(e) | e ∈ E(H)} are pairwise distinct,

(ii) for e = {u, v} ∈ E(H), φ(e) has one end-vertex in V (φ(u)) and the other in
V (φ(v)).

Thus, H is isomorphic to a minor of G if and only if there exists a model of H
in G.
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Remark 1. We can assume that for each vertex v ∈ V (H), the subgraph φ(v) ⊆
G is a tree. Indeed, if for some v ∈ V (H), φ(v) is not a tree, then by replacing
φ(v) with a spanning tree of φ(v) we obtain another model with the desired
property.

For each v ∈ V (H), we call the graph φ(v) a vertex-model of v. With slight abuse
of notation, the subgraph M ⊆ G defined by the union of {φ(v) | v ∈ V (H)}
and {φ(e) | e ∈ E(H)} is also called a model of H in G. For each edge e ∈ E(H),
the edge φ(e) ∈ E(G) is called a realization of e.

In the course of dynamic programming along a branch decomposition, we will
need to search for potential models of subgraphs of H in G, which we proceed
to define. For graphs H̄ and G, a set R ⊆ V (H̄), and a (possibly empty) set
X ⊆ E(H̄ [R]), an (R, X)-potential model of H̄ in G is a mapping φ, that assigns
to every edge e ∈ (E(H̄) \ E(H̄ [R])) ∪ X an edge φ(e) ∈ E(G), and to every
vertex v ∈ V (H̄) a non-empty subgraph φ(v) ⊆ G, such that

(i) the graphs {φ(v) | v ∈ V (H̄)} are mutually vertex-disjoint and the edges
{φ(e) | e ∈ E(H̄)} are pairwise distinct;

(ii) for every e = {u, v} ∈ (E(H̄) \ E(H̄ [R])) ∪X , the edge φ(e) has one end-
vertex in V (φ(u)) and the other in V (φ(v));

(iii) for every v ∈ V (H̄) \R the graph φ(v) is connected in G.

For the sake of intuition, we can think of an (R, X)-potential model of H̄ as a
candidate of becoming a model of H̄ in further steps of the dynamic program-
ming, if the missing edges (that is, those in E(H̄ [R]) \X) can be realized, and
if the graphs {φ(v) | v ∈ R} get eventually connected.

We say that φ is an R-potential model of H̄ in G, if φ is an (R, X)-potential
model of H̄ in G for some X ⊆ E(H̄ [R]), and we say that φ is a potential
model of H̄ in G, if φ is an R-potential model of H̄ in G for some R ⊆ V (H̄).
Note that a ∅-potential model of H̄ in G is a model of H̄ in G. Again slightly
abusing notation, we also say that the subgraph M ⊆ G defined by the union of
{φ(v) | v ∈ V (H̄)} and {φ(e) | e ∈ (E(H̄)\E(H̄ [R]))∪X} is an (R, X)-potential
model of H̄ in G.

3 Dynamic Programming for General Graphs

Roughly speaking, in each edge of the branch decomposition, the tables of our
dynamic programming algorithm store all the potential models of H in the graph
processed so far. While the vertex-models of H are required to be connected in
G, in potential models, they may have several connected components, and we
need to keep track of them. In order to do so, we introduce rooted packings of
the middle sets (defined in Subection 3.1). A rooted packing encodes the trace of
the components of a potential model in the middle set, together with a mapping
of the components to vertices of H . We denote the empty set by ∅ and the empty
function by ∅.
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3.1 Rooted Packings

Let S ⊆ V (H) be a subset of the vertices of the pattern H , and let R ⊆ S. Given
a middle set mid(e) corresponding to an edge e of a branch decomposition (T, μ)
of G, we define a rooted packing of mid(e) as a quintuple rp = (A, S, R, ψ, χ),
where A is a (possible empty) collection of mutually disjoint non-empty subsets
of mid(e) (that is, a packing of mid(e)), ψ : A → R is a surjective mapping
(the rooting) assigning vertices of R to the sets in A, and χ : R ×R→ {0, 1} is
a binary symmetric function between pairs of vertices in R.

The intended meaning of a rooting packing (A, S, R, ψ, χ) is as follows. In a
given middle set mid(e), a packingA represents the intersection of the connected
components of the potential model with mid(e). The subsets R, S ⊆ V (H) and
the function χ indicate that we are looking for an (R, {{u, v} | u, v ∈ R, χ(u, v) =
1})-potential model M of H [S] in Ge, Intuitively, the function χ captures which
edges of H [S] have been realized so far. Since we allow the vertex-models in-
tersecting mid(e) to be disconnected, we need to keep track of their connected
components. The subset R ⊆ S tells us which vertex-models intersect mid(e),
and the function ψ associates the sets in A to the vertices in R. We can think of
ψ as a coloring that colors the subsets in A with colors given by the vertices in
R. Note that several subsets in A can have the same color u ∈ R, which means
that the vertex-model of u in Ge is not connected yet, but it may get connected
in further steps of the dynamic programming, if the necessary edges appear from
other branches of the branch decomposition of G. Note that we distinguish be-
tween two types of edges of H [S], namely those with both end-vertices in R, and
the rest. The key observation is that if the desired R-potential model of H [S]
exists, then all the edges in E(H [S]) \E(H [R]) must have already been realized
in Ge. Indeed, as mid(e) is a separator of G and no vertex-model of a vertex in
S\R intersects mid(e), the edges in E(H [S])\E(H [R]) cannot appear in G\Ge.
Therefore, we make sure that the edges in E(H [S])\E(H [R]) have already been
realized, and we only need to keep track of the edges in E(H [R]). I.e., for two dis-
tinct vertices u, v ∈ R, we let χ(u, v) = 1 if and only if {u, v} ∈ E(H) and there
exist two subsets A, B ∈ A, with ψ(A) = u and ψ(B) = v, such that there is an
edge in the potential model M between a vertex in A and a vertex in B. In that
case, it means that we have a realization of the edge {u, v} ∈ E(H) in M ⊆ Ge.
A rooted packing rp = (A, S, R, ψ, χ) defines a unique subgraph Hrp of H , with
V (Hrp) = S and E(Hrp) = E(H [S])\E(H [R])∪{{u, v} | u, v ∈ R, χ(u, v) = 1}.
An example of the intended meaning of a rooted packing is illustrated in Fig. 1.

In the sequel, it will be convenient to think of a packing A of mid(e) as a
hypergraph G = (mid(e),A). Note that, by definition, A is a matching in G. We
use the notation

⋃
A :=

⋃
X∈A X .

Operations with rooted packings. Let rp1 = (A1, S1, R1, ψ1, χ1) and rp2 =
(A2, S2, R2, ψ2, χ2) be rooted packings of two middle sets mid(e1) and mid(e2),
such that e1 and e2 are the children edges of an edge e ∈ E(T ). We say that rp1
and rp2 are compatible if

(i) E(Hrp1
) ∩ E(Hrp2

) = ∅;
(ii) S1 ∩ S2 = R1 ∩R2;
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(v,w)=1χ

(a) (b)

{t,u}

t v

Fig. 1. (a) A pattern H and a subgraph Hrp ⊆ H associated to a rooted packing rp =
(A, S, R, ψ, χ). We have V (H) = {s, t, u, v, w, z}, S = {s, t, u, v, w}, and R = {u, v, w}.
The function χ is given by χ(u, v) = χ(v, w) = 1 and χ(u, w) = 0, which defines
the edges in Hrp. (b) An R-potential model M ⊆ Ge corresponding to the rooted
packing rp of mid(e). Full dots represent vertices in mid(e), and the ovals indicate
the subsets of the packing A = {A1, A2, A3, A4, A5, A6}. Above the ovals, the coloring
ψ is shown. The thick edges in M correspond to realizations of edges in E(Hrp), which
are explicitly labeled in the figure. Note that the vertex-models in M corresponding to
vertices s, t ∈ S \ R are connected, as required.

(iii) for any A1 ∈ A1 and A2 ∈ A2 such that A1 ∩ A2 �= ∅, we have ψ1(A1) =
ψ2(A2).

In other words, two rooted packings rp1 and rp2 are compatible if the edge-sets
of the corresponding subgraphs Hrp1

and Hrp2
are disjoint, if their intersection

is given by the intersection of R1 and R2, and if their colorings coincide in the
common part. Note that whether two rooted packings are compatible can be
easily checked in time linear on the sizes of the middle sets.

Given two hypergraphs H1 and H2 of H , we define H1∪H2 as the graph with
vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). Given two compatible
rooted packings rp1 = (A1, S1, R1, ψ1, χ1) and rp2 = (A2, S2, R2, ψ2, χ2), we
define rp1 ⊕ rp2 as the rooted packing (A, S, R, ψ, χ), where

• A is the packing of mid(e) defined by the connected components of the
hypergraph (mid(e1)∪mid(e2),A1∪A2). I.e., the sets of the packing A are
the vertex sets corresponding to the connected components of the hypergraph
(mid(e1) ∪mid(e2),A1 ∪A2);
• S = S1 ∪ S2;
• R = R1 ∪R2;
• for any subset A ∈ A, ψ(A) is defined as

ψ(A) =
{

ψ1(A1), if there exists A1 ∈ A1 such that A ∩A1 �= ∅.
ψ2(A2), if there exists A2 ∈ A2 such that A ∩A2 �= ∅.
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Note that the mapping ψ is well-defined. Indeed, if there exist both A1 ∈
A1 and A2 ∈ A2 intersecting a subset A, then by definition of A it holds
A1 ∩ A2 �= ∅, and therefore ψ1(A1) = ψ2(A2) because by assumption the
rooted packings rp1 and rp2 are compatible;
• for any two vertices u, v ∈ R, χ(u, v) is defined as

χ(u, v) =

⎧⎨
⎩

1, if either u, v ∈ R1 and χ1(u, v) = 1,
or u, v ∈ R2 and χ2(u, v) = 1.

0, otherwise.

Note that if rp1 and rp2 are two compatible rooted packings, then Hrp1⊕rp2
=

Hrp1
∪Hrp2

.
If (A, S, R, ψ, χ) is a rooted packing of a middle set mid(e) and B ⊆mid(e),

we define (A, S, R, ψ, χ)|B as the rooted packing (A′, S′, R′, ψ′, χ′) of B, where

• A′ = {X ∩B | X ∈ A} \ {∅};
• S′ = S;
• for a set X ∩B ∈ A′ with X ∈ A we let ψ′(X ∩B) = ψ(X);
• R′ is defined as the image of ψ′, that is, R′ = {ψ′(A) | A ∈ A′};
• χ′ is defined at the restriction of χ to R′ × R′, that is, for two vertices

u, v ∈ R′, χ′(u, v) = χ(u, v).

Note that the property of being a rooted packing is closed under the two oper-
ations defined above.

How to encode a potential model. Let Pe be the collection of all rooted
packings (A, S, R, ψ, χ) of mid(e). We use the notation C(F ) for the set of
connected components of a graph (or hypergraph) F . Given a rooted packing
(A, S, R, ψ, χ) ∈Pe we define the boolean variable mode(A, S, R, ψ, χ), saying
whether Ge contains a potential model with the conditions given by the rooted
packing. Namely, the variable is set to true if the required potential model exists,
and to false otherwise: mode(A, S, R, ψ, χ) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if there exist a subgraph M ⊆ Ge and a partition of
V (M) into |S| sets {Vu | u ∈ S} such that

(i) for every u ∈ S \R, |C(M [Vu])| = 1 and Vu ∩mid(e) = ∅;
(ii) for every u ∈ R,
{V (M ′) ∩mid(e) |M ′ ∈ C(M [Vu])} = ψ−1(u);

(iii) for every two vertices u, v ∈ S with {u, v} ∈ E(H)
and such that {u, v} �⊆ R, there exist u∗ ∈ Vu and
v∗ ∈ Vv such that {u∗, v∗} ∈ E(M);

(iv) for every two vertices u, v ∈ R, χ(u, v) = 1 if
and only if {u, v} ∈ E(H) and there exist
u∗ ∈ Vu and v∗ ∈ Vv such that {u∗, v∗} ∈ E(M).

false, otherwise.

Note that since A does not contain the empty set, in (ii) we implicitly require
every connected component of Vu to have a non-empty intersection with mid(e).

The following lemma follows immediately from the definitions.
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Lemma 1. Let G and H be graphs, let e be an edge in a rooted branch decom-
position of G.
1. If mode(A, S, R, ψ, χ) = true, then Ge contains an (R, {{u, v} | u, v ∈

R, χ(u, v) = 1})-potential model of H [S].
2. If Ge contains an R-potential model of H [S], then there exist A, ψ, and χ

such that mode(A, S, R, ψ, χ) = true.
3. G contains a minor isomorphic to H if and only if some middle set mid(e)

satisfies mode(∅, V (H), ∅, ∅, ∅) = true.

3.2 The Algorithm

Let us now see how the values of mode(A, S, R, ψ, χ) can be explicitly computed
using dynamic programming over a branch decomposition of G.

First, let e, e1, e2 be three edges of T that are incident to the same vertex
and such that e is closer to the root of T than the other two. The value of
mode(A, S, R, ψ, χ) is then given by: mode(A, S, R, ψ, χ) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if there exist two compatible rooted packings
rp1 = (A1, S1, R1, ψ1, χ1) and rp2 = (A2, S2, R2, ψ2, χ2)
of mid(e1) and mid(e2), such that
(i) mode1rp1 = mode2rp2 = true;
(ii)

⋃
A1 ∩ (mid(e1) ∩mid(e2)) =

⋃
A2 ∩ (mid(e1) ∩mid(e2)) ;

(iii) (A, S, R, ψ, χ) = rp1 ⊕ rp2|mid(e);
(iv) Let (A′, S, R′, ψ′, χ′) = rp1 ⊕ rp2.

Then, for each u ∈ (R1 ∪R2) \R, |ψ′−1(u)| = 1.

false, otherwise.

We have shown above how to compute mode(A, S, R, ψ, χ) for e being an inter-
nal edge of T . Finally, suppose that eleaf = {x, y} ∈ E(T ) is an edge such that
x is a leaf of T . Let μ(x) = {v1, v2} ∈ E(G), and let u and v be two arbitrary
distinct vertices of H . Then modeleaf(A, S, R, ψ, χ) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if A = {{v1, v2}}, S = R = {u},
ψ({v1, v2}) = u, and χ(u, u) = 0,

or A = {{vi}}, S = {u, v}, R = {u},
ψ({vi}) = u, and χ(u, u) = 0, for i ∈ {1, 2},

or A = {{vi}}, S = R = {u},
ψ({vi}) = u, and χ(u, u) = 0, for i ∈ {1, 2},

or A = {{v1}, {v2}}, S = R = {u, v},
ψ({v1}) = u, ψ({v2}) = v, χ(u, u) = χ(v, v) = 0,
and χ(u, v) = χ(v, u) = 1 only if {u, v} ∈ E(H),

or A = ∅, S = {u, v}, R = ∅ and ψ = χ = ∅,
or A = ∅, S = {u}, R = ∅ and ψ = χ = ∅,
or A = S = R = ∅ and ψ = χ = ∅.

false, otherwise.
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Correctness of the algorithm. By Lemma 1, G contains a minor isomorphic
to H if and only if for some middle set mid(e), mode(∅, V (H), ∅, ∅, ∅) = true.
Observe that if er = {vnew, r}, we can assume that A = R = ∅ and that
ψ = χ = ∅.

Given three edges e, e1, e2 as described above, we shall now see that the for-
mula to compute mode(A, S, R, ψ, χ) is correct. Indeed, condition (i) guarantees
that the required compatible models in Ge1 and Ge2 exist, while condition (ii)
assures that the packingsA1 and A2 contain the same vertices in the intersection
of both middle sets. Condition (iii) says that the rooted packing of mid(e) can be
obtained by first merging the two rooted packings of mid(e1) and mid(e2), and
then projecting the obtained rooted packing to mid(e). Finally, condition (iv)
imposes that each of the vertices in R1 ∪R2 that has been forgotten in mid(e)
induces a single connected component in the desired potential model. This is
indeed necessary, as the vertex-models of these forgotten vertices will not be
updated anymore, so it is necessary that they are already connected. For each
such vertex u ∈ (R1 ∪R2) \R, the connectivity of the vertex-model of u is cap-
tured by the number of subsets colored u in the packing obtained by merging
the packings A1 and A2. Indeed, the vertex-model of u is connected in M if and
only if there is a single connected component colored u in the merged packing.

Suppose that eleaf = {x, y} ∈ E(T ) is a leaf-edge. Then mid(eleaf) ⊆ {v1, v2}
and |S| ≤ 2. Let us discuss the formula to compute modeleaf(A, S, R, ψ, χ).
In the first case, A = {{v1, v2}}, so both v1 and v2 must be mapped to the
same vertex in S. The second and third case are similar, except that one of
the two vertices v1, v2 is either not present in mid(e) or we omit it. In the
forth case we have A = {{v1}, {v2}}, so each vertex in mid(e) corresponds to
a distinct vertex of H , say, to u and v, respectively. We must distinguish two
cases. Namely, if {u, v} ∈ E(H), then the edge {v1, v2} ∈ E(G) is a realization
of {u, v} ∈ E(H), so in this case we can set χ(u, v) = χ(v, u) = 1. Otherwise, we
set χ(u, v) = χ(v, u) = 0. Finally, in the cases A = ∅, we omit the whole middle
set, and we set R = ∅.

Running time. The size of the tables of the dynamic programming over a
branch decomposition of the input graph G determines the running time of our
algorithms. For e ∈ E(T ), let |mid(e)| ≤ k, and let h = |V (H)|. To bound
the size of the tables in e, namely |Pe|, we discuss each element appearing in a
rooted packing (A, S, R, ψ, χ) of mid(e) independently:

• Bound on the number of A’s: The number of ways a set of k elements can be
partitioned into non-empty subsets is well-known as the k-th Bell number [9],
and it is denoted by Bk. The number of packings of a set of k elements can
be expressed in terms of the Bell numbers as

k∑
i=0

(
k

i

)
Bk−i = Bk+1 ≤ 2k·log k ,

where the equality is a well-known recursive formula of the Bell numbers,
and the inequality follows from Bk ≤ ek−1

(log k)k · k! [9].
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• Bound on the number of S’s: the number of subsets of V (H) is 2|V (H)| = 2h.
• Bound on the number of R’s: for a fixed S ⊆ V (H), the number of subsets

of S is at most 2h.
• Bound on the number of ψ’s: ψ is a mapping from subsets of mid(e) to

vertices in R, so the number of such mappings for a fixed packing of mid(e)
is at most hk.
• Bound on the number of χ’s: χ is a symmetric function from R×R to {0, 1},

so for a fixed R with |R| ≤ h, the number of choices for χ is at most 2h2/2.

Summarizing, for each edge e ∈ E(T ), we have that

|Pe| ≤ 2k·log k · hk · 2h2/2 · 22h ≤ 2k·log k · hk · 2h2
.

At each edge e of the branch decomposition, in order to compute all the val-
ues mode(A, S, R, ψ, χ), we test all the possibilities of combining compatible
rooted packings of the two middle sets mid(e1) and mid(e2). The operations
(A1, S1, R1, ψ1, χ1)⊕ (A2, S2, R2, ψ2, χ2) and (A, S, R, ψ, χ)|B take O(|mid(e)|)
time, as well as testing whether two rooted packings are compatible. That is,
these operations just incur a multiplicative term O(k) = O(2log k) in the running
time. Hence, from the above discussion we conclude the following theorem.

Theorem 1. Given a general host graph G with |E(G)| = m, a pattern H with
|V (H)| = h, and a branch decomposition of G of width at most k, we can decide
whether G contains a minor isomorphic to H in O(2(2k+1)·log k · h2k · 22h2 ·m)
time.

4 Conclusions and Further Research

In this article we presented an algorithm to test whether an input host graph
G contains a fixed graph H as a minor. Parameterizing the problem by the
branchwidth of G (bw), we improved the best existing algorithm for general host
graphs, and we provided the first algorithm with running time single-exponential
on bw when the host graph can be embedded in a surface. Finally, we showed
how to modify our algorithm to solve some related problems, like induced or
contraction minor containment.

There are a number of interesting lines for further research concerning minor
containment problems. First of all, it may be possible to improve the dependence
on h = |V (H)| of our algorithms. At least when H belongs to some restricted
class, in the spirit of [7] for subgraph isomorphism. On the other hand, we believe
that the dependence on bw of our algorithm for general host graphs (that is,
2O(bw·log bw)) is best possible.

We also believe that the approach we have used to obtain single-exponential
algorithms when G is embedded in a surface (see [16, 1]) can be extended to
more general classes of graphs, like apex-minor-free graphs or general minor-
free graphs. In order to do so, a first step could be to generalize the framework
developed in [16] to minor-free graphs, which looks like a promising (but highly
non-trivial) direction.
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Finally, a challenging problem concerning minor containment is to provide
explicit and hopefully not too big constants depending on h in the polynomial-
time algorithm of Robertson and Seymour [14]. Of course these constants must
be superpolynomial on h unless P = NP, as when H is not fixed the problem of
deciding whether G contains H as a minor is NP-complete [10].
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13. Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Mathematics 108, 143–364 (1992)

14. Robertson, N., Seymour, P.: Graph Minors. XIII. The Disjoint Paths Problem.
Journal of Combinatorial Theory, Series B 63(1), 65–110 (1995)

15. Robertson, N., Seymour, P.D.: Graph Minors. XX. Wagner’s conjecture. J. Comb.
Theory, Ser. B 92(2), 325–357 (2004)
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Abstract. Given a permutation π of {1, . . . , n} and a positive integer
k, we give an algorithm with running time 2O(k2 log k)nO(1) that decides
whether π can be partitioned into at most k increasing or decreasing
subsequences. Thus we resolve affirmatively the open question of whether
the problem is fixed parameter tractable. This NP-complete problem is
equivalent to deciding whether the cochromatic number (the minimum
number of cliques and independent sets the vertices of the graph can be
partitioned into) of a given permutation graph on n vertices is at most
k. In fact, we give a more general result: within the mentioned running
time, one can decide whether the cochromatic number of a given perfect
graph on n vertices is at most k.

To obtain our result we use a combination of two well-known tech-
niques within parameterized algorithms, namely greedy localization and
iterative compression. We further demonstrate the power of this combi-
nation by giving a 2O(k2 log k)n log n time algorithm for deciding whether
a given set of n non-overlapping axis-parallel rectangles can be stabbed
by at most k of the given set of horizontal and vertical lines. Whether
such an algorithm exists was mentioned as an open question in several
papers.

1 Introduction

Given a permutation π on [n] = {1, . . . , n} and a positive integer k, a well known
partitioning problem asks whether we can partition π into at most k monotone
(increasing or decreasing) subsequences. This partition problem is NP-complete
[31] and can be solved in time nO(k) [3]. Using the famous Erdős-Szekeres theo-
rem [15] which states that every sequence of p·q+1 real numbers has a monotone
subsequence of length either p+1 or q+1, an algorithm with running time nO(k)
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implies a subexponential-time algorithm with running time nO(
√

n) for parti-
tioning π into the minimum number of monotone subsequences [3]. A natural
question which has been left open, and most recently stated at a 2008 Dagstuhl
Seminar [18], is whether the problem is fixed parameter tractable (FPT) when
parameterized by the number of monotone subsequences. I.e. is there an algo-
rithm with running time f(k) · nO(1) for partitioning a permutation π into at
most k monotone subsequences? We answer this question affirmatively by giving
an algorithm with running time 2O(k2 log k)nO(1).

Every permutation π on [n] corresponds to a permutation graph G(π) on n
vertices. This graph has a vertex for each number 1, 2, . . . , n and there is an edge
between any two numbers that are in reversed order in the permutation, that
is, we have an edge between i and j, i < j if π(i) > π(j). Hence, the above
mentioned partitioning problem is equivalent to deciding whether the vertices of
G(π) can be partitioned into at most k independent sets or cliques. This brings
us to the notion of cochromatic number of a graph. The cochromatic number
of a graph G = (V, E) is the minimum number of sets the vertex set V can
be partitioned into, such that each set is either an independent set or a clique.
Thus, the above mentioned partitioning problem is equivalent to finding the
Cochromatic Number of permutation graphs. Formally, the Cochromatic

Number problem is defined as follows.

Cochromatic Number

Input: A graph G on n vertices, and an integer k ≥ 1.
Parameter: k.
Question: Is the cochromatic number of G at most k?

Cochromatic Number, being a natural extension of chromatic number and
graph colorings has been well studied [13,14]. The Cochromatic Number prob-
lem is NP-complete even on permutation graphs [31]. Brandstädt [2] showed that
we can recognize in polynomial time whether the vertex set of a given undirected
graph can be partitioned into one or two independent sets and one or two cliques.
However, it remains NP-complete to check whether we can partition the given
graph into at most κ independent sets and at most � cliques if either κ ≥ 3 or
� ≥ 3. It is easy to show that testing whether the cochromatic number of a given
graph is at most 3 is NP-complete. Thus, we can not hope to solve Cochro-

matic Number on general graphs even in time nf(k) for any arbitrary function
f of k unless P=NP. We show that Cochromatic Number is fixed parame-
ter tractable on perfect graphs; a graph class that subsumes bipartite graphs,
chordal graphs and permutation graphs, to name a few.

A graph is perfect if the chromatic number is equal to the clique number
for each of its induced subgraphs. Perfect graphs were introduced by Berge in
the early 60’s, and is one of the well studied classes of graphs[4,16,22,28]. Per-
fect graphs have many nice algorithmic properties. They can be recognized in
polynomial time [7] and one can find a maximum independent set, minimum
coloring, maximum clique all in polynomial time [23]. Our algorithm solves
Cochromatic Number in 2O(k2 log k)nO(1) time on perfect graphs and cru-
cially uses several algorithmic properties of perfect graphs. To the best of our
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knowledge even an nO(k) algorithm solving this problem on perfect graphs was
not known before. The only known algorithmic results for the Cochromatic

Number problem are by Fomin et al. [19] who gave a factor 1.71 approximation
algorithm for Cochromatic Number on comparability (or cocomparability)
graphs, and a factor log n approximation algorithm on perfect graphs.

To show our result, we use a combination of two well-known techniques within
parameterized algorithms, namely, greedy localization and iterative compression.
This combination follows the well known iterative compression paradigm in pa-
rameterized complexity, but finds a small witness to branch and move towards
an optimal solution “for the compressed instance” at the compression step.

Using this new combination, we are also able to resolve another open question
[10,11], namely whether Disjoint Rectangle Stabbing is fixed parameter
tractable.

Disjoint Rectangle Stabbing

Input: A set R of n axis-parallel non-overlapping rectangles embedded
in a plane, a set L of vertical and horizontal lines embedded in the plane,
and an integer k ≥ 1.
Parameter: k.
Question: Is there a set L′ ⊆ L with |L′| ≤ k such that every rectangle
from R is stabbed by at least one line from L′?

Here we say that a rectangle is stabbed by a line if their intersection is nonempty.
Also two rectangles are said to be overlapping if there exists a vertical line v and
a horizontal line h such that both rectangles are stabbed by the lines v and h.
For example, non intersecting rectangles are always non overlapping.

The Rectangle Stabbing problem, the more general version of the Dis-

joint Rectangle Stabbing problem, where the rectangles can overlap is a
generic geometric covering problem having wide applicability [24]. A number of
polynomial-time approximation results for Rectangle Stabbing and its vari-
ants are known [8,32,26,24]. In [11], the authors prove a W[1]-hardness result for
a higher dimensional version of the Rectangle Stabbing problem and show
several restrictions of this two dimensional version fixed-parameter tractable.
Recently, Dom et al. [10] and Giannopoulos et al. [21] independently consid-
ered the general two dimensional version and showed it to be complete for the
parameterized complexity class W[1]. They also showed a restricted version of
Disjoint Rectangle Stabbing, b-Disjoint Square Stabbing fixed param-
eter tractable for a fixed b. All these papers leave the parameterized complexity
of the general Disjoint Rectangle Stabbing problem open.

Our paper is organized as follows. In Section 2 we give necessary definitions
and set up our notations. Section 3 gives an overview of the method we use
to solve the two problems we address. The fixed parameter tractable algorithm
for Cochromatic Number on perfect graphs is given in Section 4 and for
Disjoint Rectangle Stabbing in Section 5.
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2 Definitions and Notation

All graphs in this paper are simple, undirected, and unweighted. For a graph
G = (V, E), we denote the size of the vertex set V by n and the edge set E by
m. For a subset S of V , the subgraph of G induced by S is denoted by G[S]. The
complement of G = (V, E) is denoted by G, it has the same vertex set V , and
edge set {uv | u, v ∈ V and u �= v and uv /∈ E}.

A (proper) coloring of a graph is an assignment of colors to its vertices so
that adjacent vertices receive different colors. A coloring is minimum if it uses
the minimum number of colors. The chromatic number and the clique number of
G are, respectively, the number of colors in a minimum coloring of G, and the
size of a largest clique in G. A clique cover in a graph is a collection of cliques
such that every vertex is in one of the cliques of the collection. A graph is perfect
if the chromatic number is equal to the clique number for each of its induced
subgraphs. The cochromatic number of a graph G is the minimum number of
sets V can be partitioned into, such that each set is either an independent set
or a clique.

A parameterized problem L takes two values as input – an input x and an
integer parameter k, and is said to be fixed parameter tractable (FPT) if there
is an algorithm that decides whether the input (x, k) is in L in f(k)nO(1) time
where f is some function of k. We refer to [12,29,17] for more information on
fixed-parameter algorithms and parameterized complexity.

3 Methodology

Our method can be viewed as a combination of two well known methods in
obtaining fixed parameter tractable algorithms, that is, greedy localization and
iterative compression. The method of greedy localization is primarily used for
maximization problems. The idea is to start off by greedily computing a solution
to the problem at hand and showing that the optimal solution must in some sense
lie “close” to the current solution. For a concrete example consider the problem
of finding k vertex disjoint P3’s, paths on three vertices, in a given graph G. We
greedily compute a maximal collection of pairwise disjoint P3’s. If the number of
P3’s in our collection is at least k, we are done. Else, observe that any collection
of k pairwise disjoint P3’s must intersect with vertices of P3’s in our greedy
solution. We refer to [9,25] for applications of greedy localization.

Iterative Compression is a technique primarily used for minimization prob-
lems. Algorithms based on iterative compression apply polynomially many “com-
pression steps”. In a compression step, we are given an instance I of the problem,
a solution S′ to the problem, and the objective is to check whether there exists
a solution S for I such that |S| < |S′| in f(|S′|)|I|O(1) time. The idea is to
process the instance incrementally, maintaining a solution S to the intermedi-
ate instances. In each incremental step both the instance and the maintained
solution increase in size. Then the compression algorithm is run to decrease the
size of S again. Iterative Compression has proved very useful in the design of
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parameterized algorithms and is instrumental in the currently fastest param-
eterized algorithms for Odd Cycle Transversal [30], Feedback Vertex

Set [6] and Directed Feedback Vertex Set [5]. We refer to [29] for a more
thorough introduction to Iterative Compression.

We combine the two methods, applying iterative compression to incrementally
build the solution. In each compression step we search the solution space around
the given solution similar to how it is done in greedy localization.

4 Cochromatic Number of Perfect Graphs

In this section we give an algorithm for Cochromatic Number on perfect
graphs. We start by guessing the number α of cliques and the number β of
independent sets such that α+β = k, and for each of the k+1 guesses (of (α, β))
we will decide whether G can be partitioned into at most α cliques and at most
β independent sets. We order V into v1v2 . . . vn and define Vi = {v1, . . . , vi}
for every i. Notice that if V can be partitioned into at most α cliques and β
independent sets, then for every i, so can G[Vi]. Also, given such a partitioning
for G[Vi] we can easily make a partitioning of G[Vi+1] into α + 1 cliques and β
independent sets by letting vi+1 be a clique by itself. At this point we want to
use the current partitioning to decide whether there is a partitioning of G[Vi+1]
into α cliques and β independent sets. This naturally leads to the definition of
the compression version of the problem.

Compression Cochromatic Number (CCN)

Input: A perfect graph G = (V, E) on n vertices, a partition P =
(C1, . . . , Cα+1, I1, . . . , Iβ) of V , where Ci, 1 ≤ i ≤ α+1, are cliques, and
Ij , 1 ≤ j ≤ β, are independent sets.
Task: Find a partitioning of G into α cliques and β independent sets,
or conclude that no such partitioning exists.

We will give a 2O(αβ log(αβ))nO(1) time algorithm for CCN, which together with
the discussion above yields a 2O(αβ log(αβ))nO(1) time algorithm for Cochro-

matic Number. To do that we use the following classical results.

Lemma 1 ([23]). Let G be a perfect graph. Then there exist algorithms that
can compute in polynomial time: (a) a minimum coloring of G, (b) a maximum
independent set of G, and (c) a maximum clique of G.

Lemma 2 ([27]). G is a perfect graph if and only if G is a perfect graph.

Using Lemmata 1 and 2, we can prove the following preliminary lemma which
is integral to our algorithm.

Lemma 3. Given a perfect graph G = (V, E) and an integer �, there is a poly-
nomial time algorithm to output
(a) either a partition of V into at most � independent sets or a clique of size

� + 1, and
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(b) either a partition of V into at most � cliques or an independent set of size
� + 1.

Proof. We first give a proof for (a). We start by finding a minimum coloring of
G in polynomial time using Lemma 1. If the number of colors required is at most
�, then we have our required partitioning of V into at most � independent sets.
Otherwise since G is a perfect graph, the chromatic number of G is the same as
the clique number of G. Hence a maximum clique is of size at least � + 1. Now
we find a maximum clique using Lemma 1. Let C be such a clique. Now choose
an arbitrary subset C′ ⊆ C of size � + 1 and return C′ as the desired clique of
size � + 1. To prove part (b) we just need to observe that a clique in G is an
independent set in G. Now the proof follows by the proof of (a) and using the
fact that G is also a perfect graph (by Lemma 2). ��

We will now explain how the given partitioning P is useful in solving the com-
pression step. The main idea is that while the partitioning P ′ we search for may
differ significantly from P , only a few vertices that were covered by cliques in P
can be covered by independent sets in P ′ and vice versa. To formalize this idea
we introduce the notion of a bitstring BP of the partition P .

Given G = (V, E) with V = v1 . . . vn, and a partition P of V into cliques and
independent sets, let BP be the binary vector of length n in which position i
is 0 if vi belongs to a clique in P , and 1 if vi belongs to an independent set in
P . Given a n-vertex graph G and a bitstring B of length n, define XB to be
the set of vertices of G whose corresponding entry in B is 0, and YB = V \XB.
For two integers α and β we say that B is valid in G with respect to α and β if
there exists a partition P of V into at most α cliques and at most β independent
sets such that B = BP . Given two bitstrings B1 and B2 of equal length, the
hamming distance between B1 and B2 is the number of positions on which the
corresponding bits differ, and it is denoted by H(B1, B2).

First, in Lemma 4 we will show that for a perfect graph G a valid bitstring
B is sufficient to reconstruct a partition of G into α cliques and β independent
sets. Then, in Lemma 5 we will show that two valid bitstrings must be “similar”.

Lemma 4. There is a polynomial time algorithm that given a perfect graph
G = (V, E) on n vertices, a bitstring B of length n, and positive integers α
and β tests whether B is valid in G with respect to α and β. If B is valid the
algorithm outputs a partition P of V into α cliques and β independent sets. If
not, the algorithm either outputs an independent set of size α + 1 in G[XB] or
a clique of size β + 1 in G[YB ].

Proof. As G is perfect, G[XB] and G[YB] the induced subgraphs on XB and
YB respectively are perfect. The algorithm first uses Lemma 3 (b) to either find
a partitioning of G[XB] into α cliques or an independent set of size α + 1 in
G[XB]. Then it uses Lemma 3 (a) to either find a partitioning of G[YB] into β
independent sets or a clique set of size β + 1 in G[YB ]. ��

Lemma 5. Let G = (V, E) be a graph, P = (C1, C2, . . . , Cα, I1, . . . , Iβ) be a par-
tition of G into α cliques and β independent sets and Q=(C′

1, C
′
2, . . . , C

′
α′ , I ′1, . . . ,
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Algo-CCN(G, B, α, β, μ))
(Here G is a perfect graph, B is a bit vector, α, β and μ are integers. Algo-

CCN outputs a partition P ′ of G into α cliques and β independent sets such
that H(BP′ , B) ≤ μ if such a partition exists, or answers “NO” otherwise.)

1. If μ < 0 return “NO”.
2. Use Lemma 4 to either find a partition of P ′ of G into α cliques and β

independent sets with BP′ = B or find an independent set I ⊆ XB of size
α+1 or find a clique C ⊆ YB of size β +1. If a partition was found answer
“YES”.

3. If an independent set I was found in step 2: For each vertex v ∈ I , let
the bitvector B(v) be obtained from B by flipping v’s bit 0 to 1. For each
v ∈ I , recursively solve the subproblem Algo-CCN(G, B(v), α, β, μ − 1).
Return “YES” if any of the recursive calls returns “YES”, otherwise return
“NO”.

4. If a clique C was found in step 2: For each vertex v ∈ C, let the bitvector
B(v) be obtained from B by flipping v’s bit 1 to 0. For each v ∈ C,
recursively solve the subproblem Algo-CCN(G, B(v), α, β, μ−1). Return
“YES” if any of the recursive calls returns “YES”, otherwise return “NO”.

Fig. 1. Description of Algorithm Algo-CCN

I ′β′) be a partition of G into α′ cliques and β′ independent sets. Let BP and BQ
be the bitstrings associated P and Q respectively. Then H(BP , BQ) ≤ αβ′ +α′β.

Proof. Observe that an independent set and a clique can intersect in at most
one vertex. Hence∣∣∣∣
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This concludes the proof of the lemma. ��

We are now ready to present our algorithm for the compression step. Recall that
we are given a perfect graph G as input, together with integers α and β and a
partition P of G into α +1 cliques and β independent sets. The task is to find a
partition P ′ of G into α cliques and β independent sets, if such a partition exists.
Lemma 5 yields that it is sufficient to look for solutions with bitstrings ‘close to’
BP . Lemma 3 is used to pinpoint the “wrong” bits of BP . Formally, the algorithm
Algo-CCN takes as input a perfect graph G, a bitstring B and integers α, β
and μ. It outputs a partition P ′ of G into α cliques and β independent sets such
that H(BP′ , B) ≤ μ if such a partition exists, and answers “NO” otherwise.
To solve the problem CCN we call Algo-CCN(G, BP , α, β, 2αβ + β). A formal
description of the algorithm Algo-CCN is given in Figure 1.

Lemma 6. The call to Algo-CCN(G, BP , α, β, 2αβ + β) correctly solves the
CCN instance G,P,α,β in time (α + β)2αβ+βnO(1).
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Proof. We first argue about the correctness. By Lemma 5 it is sufficient to search
for partitions P ′ such that H(BP′ , BP) ≤ 2αβ + β. If the algorithm answers
“YES” it also outputs a partition P ′ of G into α cliques and β independent sets
such that BP′ was obtained from BP by flipping at most 2αβ + β bits. Thus it
remains to argue that if such a partition P ′ exists, the algorithm will find it. Let
B′ = BP′ .

In any recursive call, if there exists an independent set I of size α+1 in G[XB ]
then there is a vertex v ∈ I whose corresponding bit is 1 in B′. The algorithm
tries flipping the bit of each v in I, decreasing the hamming distance between B
and B′ by one in at least one recursive call. Similarly, if there exists a clique C
of size β + 1 in G[YB] then there is a vertex v ∈ C whose corresponding bit is 0
in B′. Again, the algorithm tries flipping the bit of each v in C, decreasing the
hamming distance between B and B′ by one in at least one recursive call, and
the correctness of the algorithm follows.

To argue the time bound, we consider a slight modification of the algorithm
that if either α = 0 or β = 0, applies Lemma 4 to solve the CCN instance in
polynomial time. Hence without loss of generality α+1 ≤ α+β and β+1 ≤ α+β.
Then every node in the branch tree has at most α + β children and the depth of
the tree is at most 2αβ + β and hence the number of nodes in the branch tree
is O((α + β)2αβ+β). Since the amount of work in each node is polynomial, the
time bound follows. ��

Now we are ready to prove the main theorem of this section.

Theorem 1. The Cochromatic Number problem can be solved in 2O(k2 log k)

nO(1) time on perfect graphs.

Proof. We apply iterative compression as described in the beginning of this
section. In particular, the algorithm guesses the value of α and β and decides
whether G can be partitioned into α cliques and β independent sets using n −
k− 1 compression steps. The i’th compression step is resolved by calling Algo-

CCN(G[Vi], BP , α, β, 2αβ + β) where P is the partition into α + 1 cliques and
β independent sets. The correctness and time bound follow from Lemma 6. ��

5 Disjoint Rectangle Stabbing

In this section we give a fixed parameter tractable algorithm for Disjoint Rect-

angle Stabbing. Recall that a rectangle is stabbed by a line if their intersection
is nonempty. In O(n log n) time we can sort the coordinates of the rectangles in
non-decreasing order, and make two lists containing all the rectangles, one with
the rectangles sorted in non-decreasing order by their x-coordinates and the other
where the rectangles are sorted in non-decreasing order by ther y-coordinates of
their top right corner. We also sort the set LH of horizontal lines in L by their
y-coordinates and the set LV of vertical lines in L by their x-coordinates. When-
ever we speak of a subset of R (the set of all rectangles) or L we will assume
that the corresponding sorted lists are given.
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For each of the k + 1 possible choices of non-negative integers α, β such that
α + β = k we will run an algorithm that decides whether the rectangles can be
stabbed by at most α horizontal and β vertical lines. In order to get an O(n log n)
time bound for fixed k, we apply a recursive compression scheme rather than
an iterative compression scheme. In particular, our algorithm partitions the n
rectangles into two groups R1 and R2 with at most �n/2� rectangles in each
group and runs recursively on the two groups. Now, if R can be stabbed by α
horizontal and β vertical lines then so can R1 and R2, so if either of the recursive
calls returns “NO” we return “NO” as well. Otherwise we combine the solutions
to R1 and R2 to a solution with at most 2α horizontal and at most 2β vertical
lines that stab R. We want to use this solution in order to decide whether R can
be stabbed by at most α horizontal and at most β vertical lines. This leads to
the definition of the compression version of Disjoint Rectangle Stabbing.

Compression Disjoint Rectangle Stabbing (CDRS)

Input: A set R of n axis-parallel non-overlapping rectangles embedded
in the plane, a set L = LH∪LV of horizontal and vertical lines embedded
in the plane, integers α and β and a set Z ⊆ L with at most 2α horizontal
and at most 2β vertical lines such that every rectangle from R is stabbed
by at least one line from Z.
Task: Find a set L′ ⊆ L with at most α horizontal and at most β
vertical lines such that every rectangle from R is stabbed by at least one
line from L′. If no such set exists, return “NO”.

The algorithm for CDRS has exactly the same structure as Algo-CCN, but
with the individual pieces tailored to fit the Disjoint Rectangle Stabbing

problem. We start by proving a lemma analogous to Lemma 3.

Lemma 7. Given a set R of axis-parallel rectangles in the plane, two sets LV , LH

of vertical and horizontal lines respectively, and an integer k, there is an O(n)
time algorithm that outputs

(a) either a set L′
H ⊆ LH of lines with |LH | ≤ k that stabs all rectangles in R or

a collection H of k + 1 rectangles such that each horizontal line in L stabs
at most one rectangle in H, and

(b) either a set L′
V ⊆ LV of lines with |LV | ≤ k that stabs all rectangles in R or

a collection V of k + 1 rectangles such that each vertical line in L stabs at
most one rectangle in V .

Proof. We only show (b) as the proof of (a) is identical. Initially V = ∅ and
L′

V = ∅. We process R sorted in non-decreasing order of the x-coordinate of the
top-right corner. At any step, if the considered rectangle r is not stabbed by any
line in L′

V , add r to V and add the rightmost vertical line in L stabbing r to L′
V

(to check whether r is not stabbed by any line in L′
V , we just keep track of the

right most line in L′
V and check whether it stabs r; to find the right most vertical

line in L that stabs r, we compute and keep this for every r in a preprocessing
step). If at any step |V | ≥ k + 1, output V otherwise all rectangles have been



Fixed-Parameter Algorithms for Cochromatic Number 343

considered, |L′
V | ≤ k and every rectangle is stabbed by some line in LV . Clearly

no vertical line in L can stab any two rectangles in V . The described algorithm
can easily be implemented to run in O(n) time. ��

Now we define the notion of a bitstring of a solution and prove lemmata anal-
ogous to Lemmata 4 and 5 for CDRS. Let L′ ⊆ L be a set of lines that stab
all the rectangles of R. We define the bitstring BL′ of L′ as follows. Let R be
ordered into r1, r2, . . . , rn. The i’th bit of BL′ is set to 0 if ri is stabbed by a
horizontal line in L′ and 1 otherwise. Observe that if ri is stabbed both by a
horizontal and by a vertical line of L′, the i’th bit of BL′ is 0. Given a collection
R of rectangles, a set L of horizontal and vertical lines, integers α and β and a
bitstring B of length n, we say that B is valid in R with respect to α and β if
there exists a set L′ ⊆ L of at most α horizontal lines and at most β vertical
lines stabbing all rectangles in R such that B = BL′ . Given R and B we define
XB to be the set of rectangles in R whose corresponding entry in B is 0, and
YB = R \XB.

Lemma 8. There is a O(n) time algorithm that given a collection R of n axis-
parallel rectangles, a collection L of horizontal and vertical lines, a bitstring B
of length n, and positive integers α and β, tests whether B is valid in R with
respect to α and β. If B is valid the algorithm outputs a set L′ ⊆ L of at most α
horizontal and at most β vertical lines such that every rectangle in R is stabbed
by a line in L′ and BL′ = B. If B is not valid, the algorithm either outputs a
set H ⊆ R of size α + 1 such that every horizontal line in L stabs at most 1
rectangle in H or a set V ⊆ R of size β + 1 such that every vertical line in L
stabs at most 1 rectangle in V .

Proof. Let XB be the set of rectangles in R whose bit in B is 0, and let YB =
R \XB. Apply the first part of Lemma 7 to XB and the second part of Lemma
7 to YB. ��

Now we are ready to show an analogue of Lemma 5 to the CDRS problem. To
that end, for a line l ∈ L let Sl be the set of rectangles in R stabbed by L. The
proof of Lemma 9 relies on the fact that the rectangles in R are non-overlapping.

Lemma 9. Let R be a collection of n non-overlapping axis-parallel rectangles,
L be a collection of horizontal and vertical lines, P ⊆ L and Q ⊆ L be sets of
lines so that every r ∈ R is stabbed by a line in P and a line in Q. Suppose
|P ∩ LH | ≤ α, |P ∩ LV | ≤ β, |Q ∩ LH | ≤ α′ and |Q ∩ LV | ≤ β′. Let BP be the
bitstring of P and BQ be the bitstring of Q. Then H(BP , BQ) ≤ αβ′ + α′β.

Proof. Notice that since the rectangles are non-overlapping, if lH ∈ LH and
lV ∈ LV then |SlH ∩ SlV )| ≤ 1. Hence

∣∣∣∣
⎛
⎝ ⋃

p∈P∩LH

Sp

⎞
⎠⋂

⎛
⎝ ⋃

q∈Q∩LV

Sq

⎞
⎠∣∣∣∣ ≤ αβ′ and

∣∣∣∣
⎛
⎝ ⋃

p∈P∩LV

Sp

⎞
⎠⋂

⎛
⎝ ⋃

q∈Q∩LH

Sq

⎞
⎠∣∣∣∣ ≤ α′β.

This concludes the proof of the lemma. ��
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Now we have given all the ingredients required to solve the compression step of
the disjoint rectangle stabbing problem. The proof of the following Lemma is
identical to the proof of Lemma 6 and is therefore omitted.

Lemma 10. There is an algorithm running in time O((α+β)4αβ+O(1)n) which
solves the Compression Disjoint Rectangle Stabbing problem.

Theorem 2. There is an algorithm solving the Disjoint Rectangle Stab-

bing problem that runs in time 2O(k2 log k)n log n.

Proof. The algorithm follows the recursive scheme described in the beginning of
this section and uses the algorithm of Lemma 10 to solve the compression step.
Correctness follows directly from Lemma 10, Let T (n, k) be the time required
to solve an instance with n rectangles and α + β = k. Then

T (n, k) ≤ 2T (n/2, k) + 2O(k2 log k)n

which solves to T (n, k) ≤ 2O(k2 log k)n log n by the Master’s Theorem. The O(k)
overhead of trying all possible values of α and β with α + β = k is subsumed in
the asymptotic notation. ��
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Abstract. We consider online, nonpreemptive scheduling of equal-length
jobs on parallel machines. Jobs have arbitrary release times and dead-
lines and a scheduler’s goal is to maximize the number of completed jobs
(Pm | rj , pj = p |

∑
1 − Uj). This problem has been previously studied

under two distinct models. In the first, a scheduler must provide im-
mediate notification to a released job as to whether it is accepted into
the system. In a stricter model, a scheduler must provide an immediate
decision for an accepted job, selecting both the time interval and ma-
chine on which it will run. We examine an intermediate model in which
a scheduler immediately dispatches an accepted job to a machine, but
without committing it to a specific time interval. We present a natural
algorithm that is optimally competitive for m = 2. For the special case
of unit-length jobs, it achieves competitive ratios for m ≥ 2 that are
strictly better than lower bounds for the immediate decision model.

1 Introduction

We consider a model in which a scheduler manages a pool of parallel machines.
Job requests arrive in an online fashion, and the scheduler receives credit for each
job that is completed by its deadline. We assume that jobs have equal length and
that the system is nonpreemptive. We examine a series of increasingly restrictive
conditions on the timing of a scheduler’s decisions.

unrestricted: In this most flexible model, all requests are pooled by a scheduler.
Decisions are made in real-time, with jobs dropped only when it is clear they
will not be completed on time.

immediate notification: In this model, the scheduler must decide whether a
job will be admitted to the system when it arrives. Once admitted, a job
must be completed on time. However, the scheduler retains flexibility by
centrally pooling admitted jobs until they are executed.

immediate dispatch: In this model, a central scheduler must immediately as-
sign an admitted job to a particular machine, but each machine retains
autonomy in determining the order in which to execute the jobs assigned to
it, provided they are completed on time.

H. Kaplan (Ed.): SWAT 2010, LNCS 6139, pp. 346–358, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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immediate decision: In this model, a central scheduler must fully commit an
admitted job to a particular machine and to a particular time interval for
execution on that machine.

The problem has been previously studied in the unrestricted, immediate notifica-
tion, and immediate decision models. Immediate dispatching is a natural model,
for example when distributing incoming requests to a server farm or computer
cluster to avoid a centralized queue [1,14]. Our work is the first to examine the
effect of immediate dispatching on throughput maximization.

We introduce a natural FirstFit algorithm for the immediate dispatch model.
In short, it fixes an ordering of the m machines M1, . . . , Mm, and assigns a
newly-arrived job to the lowest-indexed machine that can feasibly accept it (the
job is rejected if it is infeasible on all machines). We present the following two
results regarding the analysis of FirstFit. For m = 2, we prove that First-

Fit is 5
3 -competitive and that this is the best possible ratio for a deterministic

algorithm with immediate dispatch. This places the model strictly between the
immediate notification model (deterministic competitiveness 3

2 ) and the immedi-
ate decision model (deterministic competitiveness 9

5 ). For the case of unit-length
jobs, we show that FirstFit has competitiveness 1/

(
1−

(
m−1

m

)m) for m ≥ 1.
Again, the model lies strictly between the others; an EDF strategy gives an op-
timal solution in the immediate notification model, and our upper bound is less
than a comparable lower bound with immediate decision for any m (both tend
toward e

e−1 ≈ 1.582 as m→ ∞). In addition, we present a variety of determin-
istic and randomized lower bounds for both the immediate dispatch and unre-
stricted models. Most notably, we strengthen the deterministic lower bound for
the unrestricted and immediate notification models from 6

5 to 5
4 for the asymp-

totic case as m → ∞. A summary of results regarding the deterministic and

Table 1. A summary of deterministic lower and upper bounds on the achievable com-
petitiveness for various models. Entries in bold are new results presented in this paper.

m: 1 2 3 4 5 6 7 8 ∞
unit-length UB 1 (using EDF)
equal-length LB 2 1.5 1.4 1.333 1.333 1.3 1.294 1.308 1.25

equal-length UB 2 1.5
Unrestricted or Immediate Notification.

unit-length LB 1.143

unit-length UB 1.333 1.421 1.463 1.487 1.504 1.515 1.523 1.582

equal-length LB 1.667 1.5 1.5 1.429 1.444 1.4 1.417 1.333

equal-length UB 1.667

Immediate Dispatch.

unit-length LB 1.678 1.626 1.607 1.599 1.594 1.591 1.589 1.582
equal-length LB 1.8
equal-length UB 2 1.8 1.730 1.694 1.672 1.657 1.647 1.639 1.582
Immediate Decision.
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Table 2. A summary of randomized lower bounds for the problem with equal-length
jobs. Entries in bold are new results presented in this paper. The only non-trivial upper
bound using randomization is a 5

3
-competitive algorithm for the unrestricted model on

a single machine [5].

m: 1 2 3 4 5 6 7 8 ∞
Notification 1.333 1.263 1.256 1.255 1.25 1.252 1.251 1.251 1.25

Dispatch 1.333

Decision 1.333

randomized competitiveness of the models is given in Tables 1 and 2. Due to
space limitations, some proofs are omitted from this version of the paper.

Previous Work. Baruah et al. consider an unrestricted model for scheduling jobs
of varying length on a single machine to maximize the number of completed jobs,
or the time spent on successful jobs [2]. Among their results, they prove that any
reasonable nonpreemptive algorithm is 2-competitive with equal-length jobs, and
that this is the best deterministic competitiveness. Two-competitive algorithms
are known for the unrestricted model [9], the immediate notification model [10],
and the immediate decision model [6]. We note that for m = 1, the immediate
notification and immediate dispatch models are the same, as any accepted job
is trivially dispatched to the sole machine. Goldman et al. [9] show that any
randomized algorithm can be at best 4

3 -competitive, but no algorithm with this
ratio has (yet) been found. Chrobak et al. present a 5

3 -competitive randomized
algorithm that is barely random, as it uses a single bit to choose between two
deterministic strategies [5]. They also prove a lower bound of 3

2 for such barely
random algorithms.

For the two-machine version of the problem, Goldwasser and Pedigo [12],
and independently Ding and Zhang [7], present a 3

2 -competitive deterministic
algorithm in the immediate notification model, and a matching lower bound
that applies even for the unrestricted model. Ding and Zhang also present a
deterministic lower bound for m ≥ 3 that approaches 6

5 as m→∞.
The immediate decision model was first suggested by Ding and Zhang, and

formally studied by Ding et al. [6]. They provide an algorithm named BestFit,
defined briefly as follows. Jobs assigned to a given machine are committed to
being executed in FIFO order. A newly-released job is placed on the most heavily-
loaded machine that can feasibly complete it (or rejected, if none suffice). They
prove that BestFit is 1/

(
1− ( m

m+1 )m
)
-competitive for any m. This expression

equals 1.8 for m = 2 and approaches e
e−1 ≈ 1.582 as m → ∞. They show that

their analysis is tight for this algorithm, and they present a general lower bound
for m = 2 and p ≥ 4, showing that 1.8 is the best deterministic competitiveness
for the immediate decision model. For m ≥ 3, it is currently the best-known
algorithm, even for the unrestricted model. Finally, they adapt the 4

3 randomized
lower bound for the unrestricted, single-processor case to the immediate decision
model for m ≥ 1. In subsequent work, Ebenlendr and Sgall prove that as m→∞,
the 1.582 ratio of BestFit is the strongest possible for deterministic algorithms
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in the immediate decision model, even with unit-length jobs [8]. Specifically, they
provide a lower bound of

(
e

m−1
m

)
/
(
e

m−1
m − m

m−1

)
.

Motivated by buffer management, Chin et al. consider scheduling weighted
unit-length jobs to maximize the weighted throughput [4]. They give a random-
ized algorithm for a single processor that is 1.582-competitive. For multiproces-
sors, they give a 1/

(
1−

(
m−1

m

)m)-competitive deterministic algorithm for the
unrestricted model. This is precisely our bound for FirstFit in the unweighted
case with immediate dispatch, though the algorithms are not similar.

Although there is no previous work on maximizing throughput with immediate
dispatch, Avrahami and Azar compare immediate dispatch to the unrestricted
model for multiprocessor scheduling to minimize flow time or completion time [1].
For those objectives, once jobs are assigned to processors, each machine can
schedule its jobs in FIFO order (and thus immediately assign time intervals).

Model and Notations. A scheduler manages m ≥ 1 machines M1, . . . , Mm. Job
requests arrive, with job j specified by three nonnegative integer parameters:
its release time rj , its processing time pj , and its deadline dj . We assume all
processing times are equal, thus pj = p for a fixed constant p. We consider a
nonpreemptive model. To complete a job j, the scheduler must commit a machine
to it for p consecutive time units during the interval [rj , dj). The scheduler’s goal
is to maximize the number of jobs completed on time. We use competitive analy-
sis, considering the worst-case over all instances of the ratio between the optimal
throughput and that produced by an online policy [3,13,15]. We presume that
an online scheduler has no knowledge of a job request until the job is released.
Once released, all of a job’s parameters become known to the scheduler1. We
note the important distinction between having equal-length jobs and unit-length
jobs. With p > 1, the algorithm may start (nonpreemptively) executing one
job, and learn of another job that is released while the first is executing. In the
unit-length model (i.e., p = 1), such a scenario is impossible.

2 The FirstFit Algorithm

We define the FirstFit algorithm as follows. Each machine maintains a queue
of jobs that have been assigned to it but not yet completed. Let Qk(t) denote
FirstFit’s queue for Mk at the onset of time-step t (including any job that
is currently executing). We define FirstFit so that it considers each arrival
independently (i.e., the online-list model). To differentiate the changing state of
the queues, we let Qj

k(t) denote the queue as it exists when job j with rj = t

is considered. Note that Qj
k(t) ⊇ Qk(t) may contain newly-accepted jobs that

1 When jobs share a release time, there are two distinct models. FirstFit operates in
an online-list model in which those jobs arrive in arbitrary order and the scheduler
dispatches or rejects each job before learning of the next. All except the last of our
lower bounds apply in the more general online-time model, where a scheduler learns
about all jobs released at a given time before making decisions about any of them.
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were considered prior to j. For a job j arriving at time t, we dispatch it to the
minimal Mk for which Qj

k(t)∪{j} remains feasible, rejecting it if infeasible on all
machines. Unlike the BestFit algorithm for the immediate decision model [6],
FirstFit allows each machine to reorder its queue using the Earliest-Deadline-
First (EDF) rule each time it starts running a job from its queue (as an aside,
EDF is also used to perform the feasibility test of Qj

k(t)∪{j} when j is released).
In the remainder of this section, we prove two theorems about FirstFit. In

Section 2.1, we show that FirstFit is 5
3 -competitive for equal-length jobs on

two machines; this is the best-possible deterministic competitiveness, as later
shown in Theorem 5. In Section 2.2 we show, for the special case of unit-length
jobs, that FirstFit is 1/

(
1−

(
m−1

m

)m)-competitive for any m.

2.1 Optimal Competitiveness for Two Machines

We use an analysis style akin to that of [11,12]. We fix a finite instance I and
an optimal schedule Opt for that instance. Our analysis of the relative per-
formance of FirstFit versus Opt is based upon two potential functions ΦFF

and ΦOpt that measure the respective progress of the developing schedules over
time. We analyze the instance by partitioning time into consecutive regions of
the form [u, v) such that the increase in ΦFF during a region is guaranteed to
be at least that of ΦOpt. Starting with u = 0, we end each region with the first
time v > u at which the set Q1(v) can be feasibly scheduled on M1 starting at
time v + p (as opposed to simply v). Such a time is well defined, as the queue
eventually becomes empty and thus trivially feasible.

We introduce the following notations. We let SFF(t) and SOpt(t) denote the
sets of jobs started strictly before time t by FirstFit and Opt respectively. We
define DFF(t) = SOpt(t) ∩ SFF(∞) \ SFF(t) as the set of “delayed” jobs. These
are started prior to time t by Opt, yet on or after time t by FirstFit. We define
DOpt(t) = SFF(t) ∩ SOpt(∞) \ SOpt(t) analogously. Lastly, we define a special
set of “blocked” jobs for technical reasons that we will explain shortly. Formally,
we let BOpt(t) denote those jobs that were not started by either algorithm prior
to t, but are started by Opt while FirstFit is still executing a job of SFF(t).
Based on these sets, we define our potential functions as follows:

ΦFF(t) = 5 · |SFF(t)| + 2 · |DFF(t)|
ΦOpt(t) = 3 · |SOpt(t)| + 3 · |DOpt(t)|+ 2 · |BOpt(t)|

Intuitively, these functions represent payments for work done in the respective
schedules. In the end, we award 5 points to FirstFit for each job completed
and 3 points to Opt, thus giving a 5

3 competitive ratio. However, at intermediate
times we award some advance payment for accepted jobs that are not yet started.
For example, we award FirstFit an advanced credit of 2 points for a job in its
queue that Opt has already started. The algorithm gets the 3 other points when
it starts the delayed job. In contrast, we immediately award Opt its full 3 credits
for delayed jobs. We will show that Opt has limited opportunities to carry jobs
from one region to the next as delayed; we pay for those discrepancies in advance.
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The payment of 2 for jobs in BOpt(t) is a technical requirement related to our
division of time into regions. By definition, each job that FirstFit starts on M1
completes by the region’s end. However, a job started on M2 may execute past
the region’s end, possibly hurting it in the next region. We account for this by
prepaying Opt during the earlier region for progress made during the overhang.

Lemma 1. If FirstFit rejects job j, all machines are busy during [rj , dj − p).

Proof. If Mk for k ∈ {1, 2} were idle at a time t, its queue is empty. For t ∈
[rj , dj−p), this contradicts j’s rejection, as Qj

k(rj)∪{j} is feasible by scheduling
Qj

k(rj) during [rj , t) as done by the algorithm, and j from [t, t + p). ��

Lemma 2. Any job j started by FirstFit during a region [u, v) has dj < v+p,
with the possible exception of the job started by M1 at time u.

Proof. Consider j with dj ≥ v+p started during [u, v). The set Qj
1(rj)∪{j}must

be feasible on M1 at time rj ; this is demonstrated by using the algorithm’s actual
schedule for [rj , v), followed by j during [v, v + p), and, based on our definition
of v, set Q1(v) starting at v + p Therefore, such j must have been assigned to
M1 and started at some time u ≤ t ≤ v−p. We note that Q1(t) could be feasibly
scheduled starting at time t+p by using the algorithm’s schedule from [t+p, v),
running j from [v, v+p), and the remaining Q1(v) starting at time v+p. If t > u,
this feasibility of Q1(t) relative to time t + p contradicts our choice of v (rather
than t) as the region’s end. Therefore, j must be started on M1 at time u. ��

Lemma 3. For a region [u, v) in which M1 idles at time u for FirstFit,
ΦFF(u) ≥ ΦOpt(u) implies ΦFF(v) ≥ ΦOpt(v).

Proof. M1’s idleness implies that Q1(u) = Q1(u + 1) = ∅. Therefore, v = u + 1
by definition. Any job started by Opt at time u must have been earlier accepted
and completed on M1 by FirstFit, given its feasibility at a time when M1 idles.
We conclude that ΦFF(v) = ΦFF(u) and ΦOpt(v) = ΦOpt(u) ��

Lemma 4. For a region [u, v) in which M1 starts a job at time u for FirstFit,
ΦFF(u) ≥ ΦOpt(u) implies ΦFF(v) ≥ ΦOpt(v).

Proof (sketch). Let n1 ≥ 1 denote the number of jobs started by FirstFit on
M1 during the region, and n2 ≥ 0 denote the number of jobs started on M2.
Note that M1 never idles during the region, for such a time would contradict
our definition of v. Therefore, v − u = p · n1. We begin by considering possible
contributions to ΦOpt(v) − ΦOpt(u), partitioned as follows.

3 · d due to d ≥ 0 jobs that are newly added to DOpt(v). Such delayed jobs
must be started by FirstFit during the region, yet held by Opt for a later
region. By Lemma 2, there is at most one job started by FirstFit with
deadline of v+p or later, thus d ≤ 1.

3 · a due to a ≥ 0 jobs that are newly added to SOpt(v), not previously credited
as part of DOpt(u) or BOpt(u), and that were accepted by FirstFit upon
their release. Given that these jobs were accepted by FirstFit and had not
previously been started by Opt, they must either lie in SFF(v) or DFF(v).
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3 · r due to r ≥ 0 jobs that are newly added to SOpt(v), not previously credited
as part of BOpt(u), and that were rejected by FirstFit upon their release.

1 · bold due to bold ≥ 0 jobs that are newly added to SOpt(v) yet were previously
credited as part of BOpt(u).

2 · bnew due to bnew ≥ 0 jobs that newly qualify as blocked in BOpt(v). For such
jobs to exist, there must be a newly-started job by FirstFit on M2 whose
execution extends beyond v. Since jobs have equal length, Opt can run at
most one such blocked job per machine, thus bnew ≤ 2.

Based on these notations, we have that ΦOpt(v) − ΦOpt(u) = 3(d + a + r) +
bold + 2 · bnew. The remainder of our analysis depends upon the following two
inequalities that relate Opt’s progress to that of FirstFit.

2 · n1 ≥ (a + r + bold)
By definition, Opt must start the jobs denoted by a, r, and bold strictly
within the range [u, v). There can be at most 2 ·n1 such jobs, given that the
size of the region is known to be v − u = p · n1 and there are two machines.

2 · n2 ≥ (r + bnew)
We claim that jobs denoted by r and bnew must be started by Opt at times
when FirstFit is running one of the jobs denoted by n2 on M2, and thus
that r + bnew ≤ 2 · n2 since Opt may use two machines. Intuitively, this is
due to Lemma 1 for jobs of r, and by the definition of BOpt(t) for jobs of
bnew. The only technical issue is that if Opt starts a job when M2 is running
a job that started strictly before time u (but overhangs), the job of Opt

belongs to BOpt(u), and thus does not contribute to r or bnew.

To complete the proof, we consider ΦFF(v)−ΦFF(u). By our definitions, this is at
least 3(n1 + n2)+ 2(a + d), as jobs for a and d were not credited within DFF(u).
If n1−n2 ≥ d, these bounds suffice for proving the claim. If n1−n2 < d, it must
be that n1 = n2 and d = 1. Extra contributions toward ΦFF can be claimed by
a further case analysis depending on whether n1 = 1. Details are omitted. ��

Theorem 1. FirstFit is 5
3 -competitive for m = 2 and equal-length jobs.

Proof. Initially, ΦOpt(0) = ΦFF(0) = 0. Repeated applications of Lemma 3 or 4
for regions [u, v) imply ΦOpt(∞) ≤ ΦFF(∞), thus 3 · |SOpt(∞)| ≤ 5 · |SFF(∞)|.
We conclude that Opt

FF
≤ 5

3 . ��

2.2 Unit-Length Jobs

We consider a job j to be regular with respect to FirstFit if the machine to
which it is dispatched (if any) never idles during the interval [rj , dj). We consider
an instance I to be regular with respect to FirstFit if all jobs are regular.

Lemma 5. For p = 1, the worst case competitive ratio for FirstFit occurs on
a regular instance.
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Proof. Consider an irregular instance I, and let j on Mk be the last irregular job
started by FirstFit. Let sj denote the time at which j starts executing. The
idleness of Mk leading to j’s irregularity cannot occur while j is in the queue,
so it must occur within the interval [sj + 1, dj). We claim that j ∈ Qk(t) has
the largest deadline of jobs in the queue for any rj ≤ t ≤ sj . For the sake of
contradiction, assume jobs j and j′ are in the queue at such time, for a j′ coming
after j in EDF ordering. Job j′ must also be irregular, since we know there is
idleness within interval [sj + 1, dj) ⊆ [rj′ , dj′). Since j′ starts after j by EDF,
this contradicts our choice of j as the last irregular job to be started.

Next, we claim that FirstFit produces the exact schedule for I′ = I − {j}
as it does for I, except replacing j by an idle slot. In essence, we argue that j’s
existence never affects the treatment of other jobs. Since j always has a deadline
that is at least one greater than the cardinality of Qk while in the queue, it cannot
adversely affect a feasibility test when considering the dispatch of another job
to Mk. Also, since j has the largest deadline while in Qk, its omission does not
affect the choice of jobs that are started, other than by the time sj when it is
the EDF job, and therefore Qk(sj) = {j}. There are no other jobs to place in
the time slot previously used for j.

To conclude, since FirstFit completes one less job on I′ than I, and Opt

loses at most one job, the competitive ratio on I′ is at least as great as on I. ��

Theorem 2. For p = 1, algorithm FirstFit is
1

1−
(

m−1
m

)m -competitive.

Proof. By Lemma 5, we can prove the competitiveness of FirstFit by analyzing
an arbitrary regular instance. We rely on a charging scheme inspired by the
analysis of BestFit in the immediate decision model [6], but with a different
sequence of charges. We define Yk = (m−1)m−k ·mk−1 for 1 ≤ k ≤ m. Note that∑m

k=1 Yk = mm − (m− 1)m is a geometric sum with ratio m
m−1 . A job i started

at time t by Opt will distribute mm − (m − 1)m units of charge by assigning
Y1, Y2, . . . Yk respectively to the jobs j1, j2, . . . , jk run by FirstFit at time t
on machines M1, M2, . . . , Mk for some k. When k < m, the remaining charge
of
∑m

z=k+1 Yz is assigned to i itself; this is well-defined, as i must have been
accepted by FirstFit since there is an idle machine at time t when i is feasible.

We complete our proof by showing that each job j run by FirstFit collects at
most mm units of charge, thereby proving the competitiveness of mm

mm−(m−1)m =
1

1−(m−1
m )m . Consider a job j that is run by FirstFit on Mk. By our definition

of regularity, machine Mk (and hence machines M1 through Mk−1 by definition
of FirstFit) must be busy at a time when Opt starts j. Therefore, j receives
at most

∑m
z=k+1 Yz units of supplemental charge from itself. In addition, j may

collect up to m · Yk from the jobs that Opt runs at the time FirstFit runs j.
So j collects at most m ·Yk +

∑m
z=k+1 Yz = (m− 1) ·Yk +

∑m
z=k Yz . We prove by

induction on k that (m−1)·Yk+
∑m

z=k Yz = (m−1)·Y1+
∑m

z=1 Yz . This is trivially
so for k = 1. For k > 1, (m−1)·Yk = (m−1)m−(k−1) ·mk−1 = m·Yk−1. Therefore
(m−1)·Yk +

∑m
z=k Yz = m ·Yk−1 +

∑m
z=k Yz = (m−1)·Yk−1 +

∑m
z=k−1 Yk, which

by induction equals (m− 1) · Y1 +
∑m

z=1 Yz. Finally, we note that (m− 1) · Y1 =



354 D.P. Bunde and M.H. Goldwasser

(m − 1)m and
∑m

z=1 Yz = mm − (m − 1)m, thus each job j run by FirstFit

collects at most mm units of charge. ��

Our analysis of FirstFit is tight. Consider m +1 “waves” of jobs. For 1 ≤ w ≤
m, wave w has m · Ym+1−w jobs released at

∑w−1
z=1 Ym+1−z with deadline mm.

The last wave has m · (m − 1)m jobs released at time mm − (m − 1)m with
deadline mm. FirstFit dispatches wave i to machine Mi, using it until time mm.
FirstFit must reject the last m(m − 1)m jobs and runs only m ·

∑m
k=1 Yk =

m(mm − (m − 1)m) jobs. Opt runs all m ·mm jobs by distributing each wave
across all m machines, giving a competitive ratio of mm

mm−(m−1)m .

3 Lower Bounds

In this section, we provide lower bounds on the competitiveness of randomized
and deterministic algorithms for the immediate dispatch model, the unrestricted
model, and the special case of m = 2 and p = 1. In our constructions, we use
〈rj , dj〉 to denote a job with release time rj and deadline dj . Goldman et al.
provide a 4

3 -competitive lower bound for randomized algorithms on one machine
in the unrestricted model [9]. Their construction does not apply to multiple
machines in the unrestricted model, but Ding et al. use such a construction in
the immediate decision model to provide a randomized lower bound of 4

3 for any
m [6]. We first show that this bound applies to the immediate dispatch model.

Theorem 3. For the immediate dispatch model with p ≥ 2, every randomized
algorithm has a competitive ratio at least 4

3 against an oblivious adversary.

Proof. We apply Yao’s principle [3], bounding the expected performance of a
deterministic algorithm against a random distribution. In particular, we consider
two possible instances, both beginning with m jobs denoted by 〈0, 2p + 1〉. For
a given deterministic algorithm, let α be the number of machines, at time 0,
that start a job or have two jobs already assigned. Our first instance continues
with m jobs having parameters 〈p, 2p〉. The m− α machines that were assigned
less than two jobs and that idle at time 0 can run at most one job each. The
other α machines run at most 2 jobs each. Overall, the algorithm runs at most
2 ·α+(m−α) = m+α jobs, for a competitive ratio of at least 2m

m+α . Our second
instance continues with m jobs having parameters 〈1, p + 1〉. At least α of these
are rejected, since none can run on the α machines that are otherwise committed,
making the competitive ratio at least 2m

2m−α . On a uniform distribution over these
two instances, the deterministic algorithm has an expected competitive ratio of
at least 1

2

(
2m

m+α + 2m
2m−α

)
, which is minimized at 4

3 when α = m
2 . ��

We can prove slightly stronger bounds for deterministic algorithms, since an
adversary can apply the worse of two instances (rather than their average).

Theorem 4. For the immediate dispatch model with p ≥ 2 and m odd, no
deterministic algorithm has a competitive ratio strictly better than 4m

3m−1 .
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Proof (sketch). For the same two instances as in Theorem 3, max( 2m
m+α , 2m

m−α ) is
minimized at 4m

3m−1 with α = �m
2 � = m−1

2 or α = �m
2 � = m+1

2 . ��

Theorem 5. For the immediate dispatch model with p ≥ 3 and m even, no
deterministic algorithm has a competitive ratio strictly better than 4m+2

3m .

Proof (sketch). We adapt our construction, starting with one job 〈0, 4p + 1〉,
which we assume is started at time t by the algorithm. We next release m jobs
〈t + 1, t + 2p + 2〉, and let α denote the number of machines at time t+1 that are
either running a job or have two jobs already assigned. We release a final set of
m jobs, either all 〈t + p + 1, t + 2p + 1〉 or all 〈t + 2, t + p + 2〉. In the first case,
an algorithm gets at most m+α, and in the second at most 1+2m−α. The lower
bound of max(1+2m

m+α , 1+2m
1+2m−α ) is minimized at 4m+2

3m when α = � 1+m
2 � = m

2 . ��

Although the 4
3 -competitive lower bound construction for the single-machine

case has been adapted to the multiple machine case in the immediate decision
and immediate dispatch models, it does not directly apply to the less restrictive
model of immediate notification or the original unrestricted model. If facing the
construction used in Theorem 3, an optimal deterministic algorithm could accept
the initial m jobs with parameters 〈0, 2p + 1〉, starting m

3 of them at time 0 and
centrally queuing the other 2m

3 . If at time 1 it faces the arrival of m additional
jobs with parameters 〈1, p + 1〉, it can accept 2m

3 of them on idle machines, while
still completing the remaining initial jobs at time p + 1 on those machines. The
competitive ratio in this setting is 2m/(m+ 2m

3 ) = 6
5 . If no jobs arrive by time 1

for the given adversarial construction, it can commit another m
3 machines to

run initial jobs from [1, p + 1), with the final third of the initial jobs slated on
those same machines from [p + 1, 2p + 1). In that way, it retains room for 2m

3
jobs in a second wave during the interval [p, 2p], by using the idle machines and
the first third of the machines that will have completed their initial job, again
leading to a competitive ratio of 6

5 . Ding and Zhang [7] provide a slightly stronger
deterministic bound for fixed values of m, by releasing a single initial job with
larger deadline, followed by the classic construction (akin to our construction
from Theorem 5).

In our next series of results, we give a new construction that strengthens
the randomized and deterministic lower bounds for these models, showing that
competitiveness better than 5

4 is impossible in general. We do this by doubling
the size of the second wave in one of the two instances, thereby changing the
balancing point of the optimal behavior for the construction.

Theorem 6. For the unrestricted model with p ≥ 2, no randomized algorithm
has a competitive ratio strictly better than the following, with m given mod 5:

m ≡ 0 m ≡ 1 m ≡ 2 m ≡ 3 m ≡ 4
5
4

20m2

16m2−1
30m2

24m2−1
30m2

24m2−1
20m2

16m2−1

Proof (sketch). We use Yao’s principle with a distribution of two instances. Both
instances begin with m jobs 〈0, 2p + 1〉. For a fixed deterministic algorithm, let α
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be the number of machines that start a job at time 0. Our first instance continues
with 2m jobs 〈p, 3p〉. A machine that is not starting a job at time 0 can run at
most 2 jobs. Therefore, an online algorithm completes at most 3α+2 · (m−α) =
2m + α jobs, for a competitive ratio of at least 3m

2m+α on this instance. Our
second instance continues with m jobs 〈1, p + 1〉. An online algorithm runs at
most 2m − α jobs, as it must reject α of the jobs arriving at time 1. Thus,
its competitive ratio is at least 2m

2m−α on this instance. For m ≡ 0 (mod 5),
we select the first instance with probability 1

2 . The expected competitive ratio

of a deterministic algorithm for this distribution is at least 1
2

(
3m

2m+α + 2m
2m−α

)
,

minimized at 5
4 when α = 2m

5 . This completes the theorem for m ≡ 0 (mod 5).
For other modularities of m, an even stronger bound holds because the algorithm
cannot choose α = 2m

5 . ��

Our next theorem strengthens the bound for deterministic algorithms by first
releasing a single job with large deadline (similar to Theorem 5).

Theorem 7. For the unrestricted model with p ≥ 3, no deterministic algorithm
has a competitive ratio strictly better than the following, with m given mod 5:

m ≡ 0 m ≡ 1 m ≡ 2 m ≡ 3 m ≡ 4
5
4

(
1 + 1

3m

) 5
4

(
1 + 1

(4m+1)

)
5
4

(
1 + 3

(12m+1)

)
5
4

(
1 + 3

(8m+1)

)
5
4

(
1 + 1

(4m−1)

)
Proof (sketch). We release a job 〈0, 5p− 1〉, which we assume is started at time t
by the algorithm. Next, we release m′ jobs 〈t + 1, t + 2p + 2〉, where m′ = m−1 if
m = 4 (mod 5) and m′ = m otherwise. Let α be the number of jobs (including
the first) started on or before time t + 1. Our adversary continues in one of
two ways, releasing either 2m jobs with parameters 〈t + p + 1, t + 3p + 1〉 or m
jobs with parameters 〈t + 2, t + p + 2〉. These choices give competitive ratios of
at least 1+m′+2m

2m+α and 1+m′+m
1+m′+m−α respectively. The precise lower bounds come

from optimizing α for varying values of m. ��

The construction of Theorem 7 requires p ≥ 3, to leverage the introduction
of the job 〈0, 5p− 1〉. For p = 2, the following bound can be shown using the
construction from Theorem 6, and deterministic choice α = � 2m

5 � or α = � 2m
5 �.

Theorem 8. For the unrestricted model with p = 2, no deterministic algorithm
has a competitive ratio strictly better than the following:

m ≡ 0 m ≡ 1 m ≡ 2 m ≡ 3 m ≡ 4
5
4

15m
12m−2

10m
8m−1

15m
12m−1

5m
4m−1

Finally, we focus on the special case of p = 1 and m = 2. Our analysis in
Section 2.2 shows that FirstFit is precisely 4

3 -competitive in this setting. How-
ever, the 4

3 lower bounds from the previous theorems do not apply to p = 1; an
adversary cannot force the rejection of new jobs due to machines that are com-
mitted to other tasks. With the following theorems, we provide (weaker) lower
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bounds for unit-length jobs, drawing a distinction between the online-time and
online-list models, as defined in the introduction.

Theorem 9. For the immediate dispatch model with p = 1 and m = 2, a
deterministic online-time algorithm cannot be better than 9/8-competitive. A
deterministic online-list algorithm cannot be better than 8/7-competitive.

4 Conclusions

In this paper, we have introduced a study of the immediate dispatch model when
maximizing throughput with equal-length jobs. We demonstrate that this model
is strictly more difficult than the immediate notification model, and strictly easier
than the immediate decision model. The primary open problem is to develop
stronger algorithms for m ≥ 3 in any of these models.

Acknowledgments. We thank the referees for helpful comments. D.P. Bunde
was supported in part by Howard Hughes Medical Institute grant 52005130.
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jobs: Randomization and restarts help. SIAM Journal on Computing 36(6), 1709–
1728 (2007)

6. Ding, J., Ebenlendr, T., Sgall, J., Zhang, G.: Online scheduling of equal-length
jobs on parallel machines. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 427–438. Springer, Heidelberg (2007)

7. Ding, J., Zhang, G.: Online scheduling with hard deadlines on parallel machines.
In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 32–42.
Springer, Heidelberg (2006)

8. Ebenlendr, T., Sgall, J.: A lower bound for scheduling of unit jobs with immediate
decision on parallel machines. In: Bampis, E., Skutella, M. (eds.) WAOA 2008.
LNCS, vol. 5426, pp. 43–52. Springer, Heidelberg (2009)

9. Goldman, S., Parwatikar, J., Suri, S.: On-line scheduling with hard deadlines. J.
Algorithms 34(2), 370–389 (2000)

10. Goldwasser, M.H., Kerbikov, B.: Admission control with immediate notification.
J. Scheduling 6(3), 269–285 (2003)

11. Goldwasser, M.H., Misra, A.B.: A simpler competitive analysis for scheduling
equal-length jobs on one machine with restarts. Information Processing Let-
ters 107(6), 240–245 (2008)



358 D.P. Bunde and M.H. Goldwasser

12. Goldwasser, M.H., Pedigo, M.: Online nonpreemptive scheduling of equal-length
jobs on two identical machines. ACM Trans. on Algorithms 5(1), 18, Article 2
(2008)

13. Karlin, A., Manasse, M., Rudolph, L., Sleator, D.: Competitive snoopy paging.
Algorithmica 3(1), 70–119 (1988)

14. Pruhs, K.: Competitive online scheduling for server systems. SIGMETRICS Per-
form. Eval. Rev. 34(4), 52–58 (2007)

15. Sleator, D., Tarjan, R.: Amortized efficiency of list update and paging rules. Com-
munications of the ACM 28, 202–208 (1985)



Online Function Tracking
with Generalized Penalties�

Marcin Bienkowski1 and Stefan Schmid2

1 Institute of Computer Science, University of Wroc�law, Poland
2 Deutsche Telekom Laboratories / TU Berlin, Germany

Abstract. We attend to the classic setting where an observer needs to
inform a tracker about an arbitrary time varying function f : N0 → Z.
This is an optimization problem, where both wrong values at the tracker
and sending updates entail a certain cost. We consider an online variant
of this problem, i.e., at time t, the observer only knows f(t′) for all t′ ≤ t.
In this paper, we generalize existing cost models (with an emphasis on
concave and convex penalties) and present two online algorithms. Our
analysis shows that these algorithms perform well in a large class of
models, and are even optimal in some settings.

1 Introduction

Online function tracking has a wide range of applications. For instance, consider
a sensor network where a node measures physical properties (e.g., oxygen levels)
at a certain location, and needs to report this data to a sink node collecting the
measurements of multiple nodes in order to, e.g., raise an alarm if necessary.
There is a natural tradeoff between communication and energy costs (how often
is the sink informed?) and accuracy (how accurate is the information at the
sink?). Function tracking also finds applications in publish/subscribe systems or
organization theory where similar tradeoffs exist.

This paper attends to a two-party version of the problem where a node ob-
serving a certain function f informs a tracking node. Our main objective is to
devise online algorithms for the observing node, which guarantee that the over-
all cost (sum of update costs and penalties for inaccuracies) is competitive —
for any possible sequence of function changes — to the cost of an optimal offline
algorithm knowing all values of f in advance. This simple two-party instanti-
ation already requires non-trivial solutions [12]. In this paper, we consider an
arbitrary function f and different classes of penalty functions.

1.1 Model

We consider a situation where an observer node wants to keep a tracker node
informed about a certain function f : Time (N0) → Z evolving over time in
synchronous time steps (rounds). Let f(t) be the actual function value observed
� Supported by MNiSW grants number N N206 2573 35 and N N206 1723 33.
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at round t. Let Algt denote the value at the tracker at time t, specified by
an algorithm Alg; we say that the algorithm is in state Algt. Initially, at time
t = 0, Alg0 = f(0). When the time is clear from the context, we drop the time
index.

We study the design of algorithms that allow the observer to inform the tracker
about the current values of f(t). In each round t, the following happens:

1. The function f can assume a new arbitrary value f(t) ∈ Z.
2. The algorithm may change its state Algt to any integer paying fixed update

cost C; otherwise Algt = Algt−1.
3. The algorithm pays penalty Ψ(|Algt−f(t)|), where Ψ : N0 → N0 is a general

function that specifies the cost of a given inaccuracy (e.g., Ψ(x) = x).

For succinctness, we abuse notation and will sometimes write Ψ(x, y) meaning
Ψ(|x−y|). In this paper, we use the reasonable assumption that Ψ(x) grows mono-
tonically in x, i.e., the penalty cost never decreases for larger errors. Moreover,
without loss of generality, we assume that Ψ(0) = 0; otherwise, the competitive
ratio only improves.

Our main objective is to find an ideal trade-off between update cost (informing
the tracker about new values) and penalty cost (difference between f(t) and
Algt):

Cost = Costupdate + Costpenalty

= C ·
∑T

t=0
(Algt �= Algt+1) +

∑T

t=0
Ψ(Algt, f(t)) ,

(1)

where T is the total number of rounds (chosen by the adversary). In other
words, our cost function counts the number of updates made by an algorithm
and accumulates penalties at the tracker over time. For any input sequence (i.e.,
the sequence of function changes over time) σ and algorithm Alg, by Alg(σ)
we denote the cost of Alg on σ.

We assume that at time t, the algorithm only knows the function values f(t′)
for t′ ≤ t, but has no information about upcoming values. We are in the realm
of online algorithms and competitive analysis [3], i.e., we want to compare the
performance of an online algorithm Alg with an optimal offline algorithm Opt.
An algorithm is ρ-competitive if there exists a constant γ, such that for any
input σ, it holds that

Alg(σ) ≤ ρ ·Opt(σ) + γ . (2)

For a randomized algorithm, we replace the cost of Alg by its expected value
and we consider oblivious adversaries [3], which do not have access to random
bits of the algorithm. For succinctness, we will sometimes use the terminology
from the request-answer games [3], saying that in round t a request occurred
at f(t).

1.2 Related Work

The tradeoff between accuracy and update or transmission cost has challenged
researchers from various fields for many years. A classic example of this tradeoff
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is known as the TCP acknowledgement problem [6]. In the design of Internet
transfer protocols such as the TCP protocol, an important question concerns
the times when acknowledgments (ACKs) are sent from the receivers to a sender
(to inform about the successful reception of packets). In many protocols, a de-
lay algorithm is employed to acknowledge multiple ACK packets with a single
message. The main goal of these protocols is to save bandwidth (and other over-
head) while still guaranteeing small delays. Aggregating ACKs has similarities
with function tracking as in some sense, the number of to be acknowledged
packets can be regarded as the to be tracked function. Karlin et al. [8] gave
an optimal e/(e− 1)-competitive randomized online algorithm for a single link.
There are also many variations of the theme, e.g., where the goal is to minimize
the maximum delays of the packets [1], to minimize the total time elapsed while
packets are waiting at the leaf node [7], to meet fixed deadlines [2] or to find
schedules on tree topologies [9,11].

While our model is reminiscent of the TCP acknowledgment problem, there
are crucial differences. First of all, we track an arbitrary function f that can
both increase and decrease over time, whereas the number of ACKs can only
become larger if no message is sent, which means that the to be tracked function
is essentially monotonic. A more general aggregation function has already been
proposed in [11]; however as there the value at the tracker is updated with a delay,
the offline algorithm is unrealistically strong as it can always anticipate function
changes and update the values before observing them. We note however that
their offline solution, running in time quadratic in number of function changes,
works also in our model.

In the field of distributed tracking (e.g., [4,5]), a coordinator seeks to keep
track of the online inputs distributed over several sites. This problem can be
regarded as a generalization of the model studied here. However, these results
are still not applicable in our setting. For instance, [4] only considers monotonic
functions, and [5] only allows a site to send the current function values, which
is trivial in our case.

The closest work to ours is the SODA 2009 paper by Yi and Zhang [12]. In
our terminology, they consider a special case with update cost C = 1, and the
penalty function Ψ(x) = 0 for x ≤ Δ and ∞ otherwise (Δ is a fixed constant).
They present a deterministic algorithm, which achieves an asymptotically opti-
mal competitive ratio of Θ(log Δ). They also generalize their algorithms to the
multidimensional case, i.e., they are able to track functions whose values are
integer vectors.

1.3 Our Contributions and Paper Organization

We present a simple online algorithm Med that achieves good competitive ratios
for a large class of penalty functions (see Section 2.1). For example, our anal-
ysis shows that Med performs particularly well for concave penalty functions,
where it achieves a ratio of O(log C/ log log C). This bound is matched for linear
penalty functions, for which we show a lower bound of Ω(log C/ log log C) (see
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Section 3.1). The same lower bound also holds for randomized algorithms (even
against oblivious adversaries).

In Section 2.2, we propose an alternative algorithm Set which is O(log Δ)-
competitive for convex penalty functions, where Δ = min{x : Ψ(x) ≥ C} (see
Section 2.2). This is a generalization of the bound in [12]; in their paper, Ψ can
only assume values from {0,∞}. We prove that for certain classes of convex
functions, this bound is optimal (again, even for randomized algorithms).

Further, we observe that Med behaves well for a class of functions with
“bounded growth”. In particular, for polynomial penalty functions Ψ(x) = xα,
Med is O(4α · log C/ log log C)-competitive and Set is O(max{1, 1

α · log C})-
competitive. Thus, by choosing the better of the two algorithms Med and Set,
we get a competitive ratio of O(log C/ log log log C) for all choices of α, i.e., for
all polynomial penalty functions.

2 Algorithms

All our algorithms follow the accumulate-and-update paradigm: they wait until
the total penalty (since the last update) exceeds the threshold Θ(C) and then
they update the value. Henceforth, such a subsequence between two consecutive
updates is called a phase. In the simplest case, when f is non-decreasing, the
problem becomes a discrete variant of the TCP acknowledgement problem [6].

Observation 1. If f changes monotonically, then the algorithm which updates
the value at the end of the phase to the last observed value is 4-competitive.

The proof is similar to the one presented in [6] and is omitted. However, in the
general case, updating always to the last observed value is bad, as the adversary
can exploit this strategy.

One may see the choice of the new value as a pursuit of the optimal algorithm:
we imagine that both the online as well as the optimal offline algorithm Opt

are processing the input in parallel; then the algorithm wants to have a state as
close to Opt’s state as possible.

Where can Opt be found? A straightforward answer is that its state should
be close to the recent requests. Indeed, if the penalty function grows fast at
the beginning (e.g., it is concave), Opt has to be relatively close to the requests
(otherwise, it accrues a high cost). For such functions, we construct the algorithm
Med, which, roughly speaking, changes it state to the median of the recent
requests and in this way decreases the distance between its state and the state
of Opt. However, if the penalty function is relatively flat at the beginning (e.g.,
it is convex), then there are many states which are similarly well-suited for the
optimal algorithm. In this case, in the construction of our second algorithm,
Set, we use an approach which bears some resemblance to the work function
technique (see, e.g., [10]). Namely, we track a set of states with the property
that an algorithm which remains at such states pays little, i.e., the states are
potential candidates for Opt. By choosing our position in the middle of such
a set, in each phase the cardinality of the set decreases by a constant factor.

The intuitions above are formalized in the upcoming sections.
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2.1 Concave Penalties and the Median Strategy

In this section, we present an online algorithm Med pursuing a median strat-
egy and derive an upper bound on its competitive ratio on concave functions
and functions of bounded growth. Later, we prove that its competitive ratio is
asymptotically optimal for linear penalty functions.

Definition 1 (Growth). Let f : N0 → N0 be a monotonic function with f(0) =
0. The growth of f is defined as maxx≥1{f(2x)/f(x)}

For example, the growth of any concave function is at most 2. To give another
example, f(x) = c · xα has growth 2α.

Observation 2 (Triangle Inequality). Let Ψ be a penalty function of growth
at most β. For any three integers a, b, and c, it holds that Ψ(a, c) ≤ β · (Ψ(a, b)+
Ψ(b, c)), since max{|a− b|, |b − c|} ≥ |a− c|/2 and since Ψ is monotonic. Con-
sequently, Ψ(a, b) ≥ Ψ(a, c)/β − Ψ(b, c).

The online algorithm Med we introduce here is based on a median strategy.
Med partitions the input sequence into phases, each phase consisting of several
rounds; the first phase starts with the beginning of the input, i.e., f(0) = Med0.
A phase is defined as a period of time, in which Med does not update the
tracker but monitors the total penalty paid so far in this phase. Let t0 be the
first round of the current phase. If in one round t, the function f(t) changes
abruptly and is far away from Medt−1, i.e., Ψ(Medt−1, f(t)) > C, then Med

updates Medt := f(t). Otherwise, if the accumulated sum of differences up to the
current round would exceed or be equal to C, i.e.,

∑t
i=t0

Ψ(Medi, f(i)) ≥ C,
then Medt := x̃ where x̃ is the the median of of the function values in this
phase. (In case of two medians the tie is broken arbitrarily.) In either case, if
Med changes its state, the current phase ends and the new begins in the next
round.

First, we bound the cost of Med in any phase.

Lemma 1. Assume that the growth of the penalty function is bounded by β.
Consider a phase P and let σP be the input sequence of P . Then, Med(σP ) ≤
2 · (β + 1) · C.

Proof. By the definition of Med, its accumulated penalty in all rounds except
for the last one is at most C, and Med pays update cost C for changing its
state in the last round t. In the case that Med changes its state to the last
value f(t), the total cost is 2C as no additional penalty accrues. Otherwise,
Med updates to the median value x̃ and in the last round it pays Ψ(x̃, f(t)) ≤
β · (Ψ(Medt−1, x̃) + Ψ(Medt−1, f(t))). As the median is chosen among all the
requests in P and for any i ∈ P , Ψ(Medt−1, f(i)) ≤ C, the total cost in the last
round is at most 2β · C. ��

Next, we turn our attention to Opt. In the following, a phase in which Opt pays
less than α is called α-constrained. The main idea for proving the competitiveness
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of Med is as follows. Phases which are not O(C)-constrained — e.g., phases in
which Opt updates — are trivial, as Opt incurs a cost of Ω(C) in them. On the
other hand, in α-constrained phases with small α, the possible distance between
Opt and Med becomes smaller: the less Opt pays, the faster the Med’s state
converges to the state of Opt. We show next that if Opt tries to pay o(C) in
a single phase, then after a sequence of O(log C/ log log C) phases, Med’s state
becomes equal to Opt’s state, which entails a Opt cost Ω(C) in the next phase.
This idea is formalized in the two lemmas below.

Lemma 2. Assume that the growth of the penalty function is at most β. Fix
any α-constrained phase P , starting at round t0 and ending at t1, for a given
α < C/(3β). Assume that Opt is in state ξ throughout P . Then, it holds that
Ψ(Medt1 , ξ) ≤ 2C and

Ψ(Medt1 , ξ)
Ψ(Medt0 , ξ)

≤ 2 · α
C/β − α

.

Proof. First, we consider the case that Med updates its state to the last re-
quest in P , i.e., Medt1 = f(t1). By the definition, Ψ(ξ, f(t)) ≤ α for all t ∈
{t0, t0 + 1, ..., t1}. Then, by Observation 2, Ψ(Medt0 , ξ) ≥ Ψ(Medt0 , f(t1))/β −
Ψ(ξ, f(t1)) > C/β − α. Finally, Ψ(Medt1 , ξ) = Ψ(f(t1), ξ) ≤ α, and the lemma
holds.

Second, we consider the case that P ends with Med updating its state to the
median. Since all the requests are at distance at most C from Medt0 , initially
Ψ(Medt0 , ξ) ≤ 2C (as otherwise Opt would pay C for each request). Thus,
in the following, we show that Ψ(Medt1 , ξ)/Ψ(Medt0 , ξ) ≤ 2α/(C/β − α). As
2α/(C/β −α) ≤ 1, this implies both parts of the claim. Let n be the number of
rounds in P and let x̃ be the median of the corresponding n requests, denoted
by x1, x2, . . . , xn. By Observation 2, we obtain a lower bound for Ψ(Medt0 , ξ):

n · Ψ(Medt0 , ξ) ≥
n∑

i=1

(
1
β
· Ψ(Medt0 , xi)− Ψ(ξ − xi)

)

=
1
β
·

n∑
i=1

Ψ(Medt0 , xi)−
n∑

i=1

Ψ(ξ, xi)

≥ C/β − α .

Moreover, by the median definition, it follows that at least half of the requests
in P are further from ξ than the median is, and thus (n/2)·Ψ(ξ, x̃) ≤ Opt(σP ) ≤
α. This implies that Ψ(Medt1 , ξ) = Ψ(x̃, ξ) ≤ 2α/n. Comparing Ψ(Medt1 , ξ) to
Ψ(Medt0 , ξ) immediately yields the lemma:

Ψ(Medt1 , ξ)
Ψ(Medt0 , ξ)

≤ 2α/n

(C/β − α)/n
=

2α

C/β − α
. ��
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Lemma 3. Assume that the growth of the penalty function is at most β. There
exists � = Θ(log C/ log log C), such that in any subsequence τ consisting of con-
secutive 2� + 1 phases, Opt(τ) = Ω(C/β).

Proof. Fix any input sequence σ and any contiguous subsequence τ consisting
of 2� + 1 phases. (The exact value of � is discussed later.)

If Opt changes its state within τ , then the lemma follows trivially. Thus, in
the remainder of the proof, we assume that throughout τ , Opt is in state ξ.
We look at the prefix τ ′ of 2� phases of τ (i.e., ignoring the last phase). Let
B = 1

β ·C/
√

log C. We assume that C is sufficiently large, i.e., B ≤ C/(3β). We
consider three cases:

1. τ ′ contains a phase for which Opt pays at least 1
3 · C/β. In this case, the

claim follows trivially.
2. τ ′ contains � phases for which Opt pays at least B. Then, Opt(τ ′) ≥ � ·B =

Ω(C/β).
3. All phases of τ ′ are (1

3 ·C/β)-constrained and at least � + 1 of them are ad-
ditionally B-constrained. We show that this implies the existence of a phase
in τ ′, at the end of which Ψ(Med, ξ) = 0.

By Lemma 2, we can make three key observations for this case: (1) in
all phases of τ ′, the distance between Med and ξ does not increase; (2)
after the first phase of τ ′, the distance between Med and ξ becomes at most
2C; (3) in each of the next � B-constrained phases, Ψ(Med, ξ) decreases
by a factor of q := 2B/(C/β − B) = Θ(1/

√
log C). Let � = log1/q(4C) =

Θ(log C/ log log C). Thus, at the end of these � phases, Ψ(Med, ξ) decreases
to at most 1/2, i.e., it becomes 0.

We consider the next phase of τ , during which Ψ(Med, ξ) = 0 and we
denote the requests in this phase by x1, x2, . . . , xn. By Observation 2, the cost
of Opt in this phase is

∑n
i=1 Ψ(ξ, xi) ≥

∑n
i=1(Ψ(Med, xi)/β−Ψ(Med, ξ)) ≥

C/β (as by the construction of Med,
∑n

i=1 Ψ(Med, xi) ≥ C). ��

Theorem 3. Med is O(β2 · log C/ log log C)-competitive for penalty functions
Ψ of growth at most β.

Proof. Fix any input sequence σ and partition it into subsequences of length
2�+1 phases, where � is as in the proof of Lemma 3. Fix any such subsequence τ .
By Lemma 3, Opt(τ) = Ω(C/β) and by Lemma 1, Med(τ) ≤ (2�+1)·2(β+1)·C.
Summing over all the subsequences of σ, we obtain that the competitive ratio is

ρ = O
(

βC

C/β
· log C/ log log C

)
= O(β2 log C/ log log C) .

Finally, we observe that after partitioning σ, we might get a subsequence shorter
than 2� + 1 at the end. However, by Lemma 1, this contributes only a constant
term to the overall cost, and hence it does not influence the competitive ratio
(cf. Equation 2). ��
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2.2 Convex Penalties and the Set Strategy

In the previous section, we have observed that Med performs particularly well
for concave penalty functions. We now turn our attention to a different algorithm
Set which is inspired by [12]: there, it is shown that such a strategy performs well
under “0-or-∞” penalties, which is in some sense an extreme case of convexity.
Thus, we seek to generalize the approach of [12] to an entire class of penalty
functions, and provide a performance analysis.

The algorithm Set works as follows. First, on the basis of the penalty func-
tion Ψ , it computes a parameter Δ = min{x : Ψ(x) ≥ C}. We call this value the
C-gap of Ψ . This means that if an algorithm’s state is at distance Δ from the
request, then the algorithm pays at least C, and Δ is the smallest distance with
this property.

Set keeps track of a set S, centered at its current state, consisting of consecu-
tive integers. At the beginning, S = [Set0−Δ,Set0+Δ]∩Z, where Set0 = f(0).
Again, in one phase, Set remains in the same state. Similarly to the Med algo-
rithm, Set computes the penalties accumulated since the beginning of a phase.
If this cost exceeds C, then Set changes its state as described below and a new
phase starts.

For any point x ∈ S, Set computes the accumulated penalty of an algo-
rithm Ax which remains at x during the whole phase. Among all points x ∈ S,
we choose the leftmost (�) and the rightmost (r) point for which Ax ≤ C/2. Let
S′ be the set of all integers in [�, r]. Now Set distinguishes two cases. If S′ is
nonempty, then we set S := S′, otherwise we choose set S to contain all the
integers from range [z −Δ, z + Δ], where z is the latest request. In the second
case, we say that an epoch has ended and a new epoch starts with the next
phase. In either case, Set moves to the median of the new set S.

Below, we analyze the performance of the algorithm Set for convex penalty
functions. We start with a simple property of set S′ chosen at the end of each
phase.

Observation 4. Assume that the penalty function Ψ is convex. Let S′ = {�, �+
1, . . . , r} be the set computed by Set at the end of phase P . Then Ax(P ) ≤ C/2
for any x ∈ S′ (and not only for x ∈ {�, r}).

Proof. The function of the cumulative penalty over a fixed period is also convex
(as the sum of convex functions is convex). This function is bitonic (i.e., first
monotonically decreasing and then monotonically increasing), which implies the
observation. ��

In the lemmas below, we use the above observation, i.e., we assume that Ψ is a
convex function.

Lemma 4. In any phase, the cost of Set is at most 5C/2.

Proof. As in the proof of Lemma 1, the total penalty for all the requests but
the last one is at most C. The cost of changing state is also C. Thus, we have
to show that the penalty associated with the last request y is at most C/2. If
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set S′ is non-empty, then Set changes its state to a median of S′. Hence, by
Observation 4, the penalty associated with y is at most C/2. If S′ is empty, then
Set changes its state to y, in which case the penalty is zero. ��

Lemma 5. In any two consecutive epochs Ei−1 and Ei, the cost of Opt is at
least C/2.

Proof. The lemma follows trivially if Opt changes its state in these epochs, so
we assume it does not. Let Si be the set S of the algorithm Set at the beginning
of epoch Ei. If Opt’s state is in Si, then its cost is at least C/2 in at least one
phase of Ei. Otherwise, the Opt state is outside Si. Then, we consider the last
request of Ei−1, which, by the definition of Set is given at the center of Si, i.e.,
at a distance of at least Δ+1 from the state of Opt. Thus, the penalty for Opt

associated with this request is at least C. ��

Theorem 5. For any convex penalty Ψ with C-gap equal to Δ, Set is O(log Δ)-
competitive.

Proof. By Lemmas 4 and 5, it suffices to show that the number of phases in a
single epoch is at most O(log Δ). At the beginning of any epoch, span(S) (defined
as the distance between the rightmost and the leftmost point of S) is 2Δ. Fix
any phase that is not the last phase in an epoch. Then a set S′ chosen at the
end is non-empty. Let x be the state of Set at the beginning of this phase. Since
Ax ≥ C, S′ cannot contain x, i.e., the median of S. Thus, span(S′) ≤ span(S)/2,
which means that span(S) decreases at least by a factor of 2 in each phase. This
may happen only O(log Δ) times. ��

It follows from [12] that this result is asymptotically tight in the following sense:
for any Δ there exists a convex penalty function Ψ , so that the competitive ratio
of any online algorithm is Ω(log Δ). In Section 3, we will show that this lower
bound holds also for randomized algorithms. The function Ψ for which our lower
bound holds is any (possibly convex) function satisfying Ψ(x) = 0 for x < Δ
and Ψ(x) ≥ C otherwise.

Remark. Note that our results are also applicable to convex penalty func-
tions Ψ with the additional hard constraint that the difference between reported
and observed value must not exceed T . Convexity was used only to obtain the
property guaranteed in Observation 4; however, this property also holds for
a function Ψ(x) that is derived from a convex function Ψ ′ and a threshold T ,
such that Ψ(x) = Ψ ′(x) for x ≤ T and Ψ(x) =∞ for x > T .

3 Lower Bounds

Next, we show that our algorithms Med and Set are asymptotically optimal in
the classes of convex and concave functions, respectively. Note that we are not
claiming their optimality for every such function, but for a quite broad subset of
them. We emphasize that our lower bound holds even for randomized algorithms
against oblivious adversaries.
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3.1 Linear Penalties

We prove that our deterministic algorithm Med is asymptotically optimal for
linear penalty functions.

Theorem 6. For a given penalty function Ψ(x) = a · x (for any a > 0), the
competitive ratio of any randomized algorithm is at least Ω(log C/ log log C).

To prove this theorem, we employ a standard min-max approach. We fix an arbi-
trary deterministic online algorithm Det and generate a probability distribution
π over input sequences in such a way that if an input sequence σ is chosen ac-
cording to π, the following conditions hold:

1. Opt(σ) = O(C)
2. Eπ[Det(σ)] = Ω(C · log C/ log log C), where the expectation is taken over

the random choice of the input;

Our construction below can be repeated an arbitrary number of times. Along
with the second condition above, this ensures that the cost of the algorithm
cannot be hidden in the additive constant in the definition of the competitive
ratio (see Eq. 2). Then the lower bound for any randomized online algorithm
follows immediately by the Yao min-max principle [3].

We now describe how to randomly choose an input σ, that is, we will implic-
itly create a probability distribution π over input sequences. Let [a, b]N be the set
[a, b]∩N = {a, a+1, . . . , b}. Let s be the largest integer i for which (log C)i ≤ C;
clearly s = Θ(loglog C C) = Θ(log C/ log log C). First, we create a sequence
of s + 1 random sets: R0 ⊇ R1 ⊇ R2 ⊇ . . . ⊇ Rs. R0 = [0, (log C)s − 1]N.
The remaining sets are chosen iteratively in the following manner. We parti-
tion Ri into log C disjoint contiguous subsets of the same size; Ri+1 is chosen
uniformly at random among them. For example, R1 is chosen amongst the fol-
lowing sets: [0, (log C)s−1 − 1]N, [(log C)s−1, 2 · (log C)s−1 − 1]N, . . . , [(log C)s −
(log C)s−1, (log C)s − 1]N. Note that the construction implies that Rs contains
a single integer. The sequence σ associated with sets R0, R1, . . . , Rs consists of
s phases, numbered from 1. In phase i there are �C/(a · |Ri−1|)� requests given
at the leftmost integer from the set Ri.

Below, we present two lemmas, which directly imply the two conditions above,
and thus also Theorem 6.

Lemma 6. For any initial state of Opt and input σ generated in the way de-
scribed above, Opt(σ) = O(C).

Proof. Let R0 ⊇ R1 ⊇ . . . ⊇ Rs be the sequence of sets associated with σ. Let
x be the only element of the set Rs. The strategy for an offline (possibly not
optimal) algorithm Off is to change its state to x at the very beginning of σ
and remain there for the whole σ.

Clearly, the update cost is C. In phase i, the distance between x and the
requests is at most |Ri|, and thus the total penalty paid by Off is at most
O(a · |Ri| · �C/(a · |Ri−1|�) = O(C/ log C). Thus, the total cost in the entire
sequence is Off(σ) ≤ C + s · O(C/ log C) = O(C). As Opt(σ) ≤ Off(σ), the
lemma follows. ��
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Lemma 7. For any deterministic online algorithm Det and input σ generated
randomly in the way described above, Eπ[Det(σ)] = Ω(C · log C/ log log C).

Proof. Any sequence σ consists of s = Θ(log C/ log log C) phases. It is therefore
sufficient to show that the expected cost of Det in any phase is at least Ω(C).

We consider the moment at the very beginning of phase i, even before its
first request is presented to Det. At that moment, Det knows the set Ri−1
and is at some fixed state x (not necessarily but possibly from Ri−1). When the
first request from phase i is revealed to Det, it immediately learns Ri, but it is
already too late. For any fixed state x, the expected distance between x and the
leftmost point of Ri is at least Ω(|Ri−1|). Thus, Det has two choices. It may
change its state, paying C or it may remain at x paying in expectation the total
penalty of at least Ω(a · �C/(a · |Ri−1|)� · |Ri−1|) = Ω(C). ��

3.2 Convex Penalties

The following theorem shows the asymptotic optimality of the algorithm Set

in the class of convex functions. We note that the deterministic variant of this
theorem is already known (cf. Theorem 2.1 of [12]) and our proof can be viewed
as its adaptation.

Theorem 7. For any Δ, there exists a convex penalty function Ψ , whose C-gap
is Δ and the competitive ratio of any randomized algorithm is at least Ω(log Δ).

Proof. We consider the convex penalty function used in [12], i.e., Ψ(x) = 0 for
x ≤ Δ and Ψ(x) =∞ otherwise. In fact, for our proof to work, we require only
that Ψ(x) = 0 for x ≤ Δ and Ψ(x) = Ω(C) otherwise.

Our approach is similar in flavor to the proof of Theorem 6, so we just con-
centrate on the differences. Once again, we randomly construct a family of sets
R0, R1, . . . Rs. This time s = �log Δ� and R0 = [0, 2s − 1]N. To construct Ri out
of Ri−1, we divide Ri−1 into two equal contiguous halves and Ri is chosen ran-
domly among them. The sequence consists now of s rounds, numbered from 1. In
round i, the requests are given at xi, such that the distance between xi and any
point of Ri is at most Δ and the distance between xi and any point of Ri−1 \Ri

is greater than Δ.
Opt can serve the whole sequence without penalties changing its state to the

only integer of Rs at the beginning (paying C for the state change). On the other
hand, any deterministic algorithm Det at the beginning of round i knows set
Ri−1, but does not know which half will be chosen as Ri, and with probability
1/2 it is in “the wrong half”. Thus, with probability 1/2, when the request is
presented to Det, it either has to pay the penalty Ω(C) or change its state paying
C. Hence, the expected cost of Det on such a sequence is Ω(C ·s) = Ω(C log Δ),
i.e., the ratio of E[Det] divided by Opt is at least Ω(log Δ). Again, using the
Yao min-max principle, the same bound even holds for any randomized algorithm
(against an oblivious adversary). ��
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4 Conclusions

This paper studies generalized penalty functions for the problem of approximat-
ing a function f (that is revealed gradually) by a piecewise constant function g,
where the cost depends on the number of value changes of g plus the error cost
summed over the discrete sampling points.

We believe that our work opens several interesting directions for future re-
search. First, our results raise the question whether Med and Set can be com-
bined in order to have the advantages of both worlds in penalty functions beyond
concave and convex models. Another research direction is the study of different
penalty functions in multi-dimensional tracking f : N0 → Z

d and the analysis
of the gains that can be obtained with the line predictions of [12]. Finally, dis-
tributed settings remain to be explored where there are multiple observers at
different sites.
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Abstract. Unit Clustering is the problem of dividing a set of points
from a metric space into a minimal number of subsets such that the points
in each subset are enclosable by a unit ball. We continue work initiated
by Chan and Zarrabi-Zadeh on determining the competitive ratio of the
online version of this problem. For the one-dimensional case, we develop
a deterministic algorithm, improving the best known upper bound of 7/4
by Epstein and van Stee to 5/3. This narrows the gap to the best known
lower bound of 8/5 to only 1/15. Our algorithm automatically leads to
improvements in all higher dimensions as well. Finally, we strengthen the
deterministic lower bound in two dimensions and higher from 2 to 13/6.

1 Introduction

Unit Clustering is the problem of dividing a set of points from a metric space into
a minimal number of subsets such that the points in each subset are enclosable
by a unit ball. The subsets are also referred to as clusters. Clustering algorithms
have applications in for instance information retrieval, data mining, and facility
location.

In the online version, we must treat a sequence of points one at a time, i.e.,
a point must be treated without knowing the remaining sequence of points to
come, or even the length of this future sequence. When treating a point, we
always have the option of opening a new cluster for the point, i.e., increasing
the number of subsets by one new subset containing only the most recent point.
We may also have the option of including the new point in an existing cluster,
provided that the new point together with all other points already assigned to
that cluster are still enclosable in a unit ball.

Each point must be assigned to exactly one cluster and this decision is irrevo-
cable, i.e., we cannot at a later stage move a point from one cluster to another.
Note that this problem is different from online covering [2]. In online covering,
when a cluster is opened, a unit diameter is placed in a fixed location. In online
clustering, points are assigned to a cluster, but the exact location of the cluster
is not fixed. Another way to view this is that clusters open with size zero and
then gradually have their sizes increased as points are assigned to the clusters.

To measure the quality of an online algorithm for this problem, we follow
previous work on the same topic and use competitive analysis [6,8,7]. In unit
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clustering, the cost of an algorithm is the number of clusters that have been
opened. For the randomized results that we reference, the ratio is defined using
the expected cost E[A(I)] instead of the deterministic cost A(I), and the results
are with respect to an oblivious adversary.

We develop a deterministic algorithm for the one-dimensional Online Unit
Clustering problem. The work on this problem was initiated in [1] by Chan and
Zarrabi-Zadeh and the currently best known bounds are by Epstein and van
Stee [5]. An overview of previous results, our results, and lower bounds for 1-
dimensional unit cluster is given in Table 1. Thus, by this new upper bound of
5
3 , we narrow the gap to the best known lower bound of 8

5 to only 1
15 .

Table 1. New and previous results for 1-dimensional unit clustering

Paper Result Type

U
pp

er
B

ou
nd

s [1] 2 deterministic

[1] 15
8

= 1.875 randomized

[9] 11
6

≈ 1.833 randomized

[5] 7
4

= 1.75 deterministic

This 5
3

≈ 1.667 deterministic

L
ow

er
B

ou
nd

s [5] 8
5

= 1.6 deterministic

[5] 3
2

= 1.5 randomized

[1] 3
2

= 1.5 deterministic

[1] 4
3

≈ 1.333 randomized

In higher dimensions, using an idea from [1], our 1-dimensional result improves
the upper bound of 7

82d from [5] to 5
62d in d dimensions. As in the previous work,

this is with respect to the L∞ norm. Thus, the unit balls are really squares, cubes,
etc. In one dimension, a 2-competitive algorithm is almost immediate. There are
more than one easy formulation of such an algorithm. The greedy algorithm
which only opens a new cluster when forced to do so is one of them. Thus, given
a c-competitive algorithm for the 1-dimensional case, one can use that algorithm
in the first dimension and combine that with an additional factor 2 for each
additional dimension. So, in dimension d ≥ 2, a c2d−1-competitive algorithm
can be designed from the 1-dimensional case, and we obtain an algorithm with
competitive ratio 5

32d−1 = 5
62d.

Finally, we strengthen the deterministic lower bound in dimension 2 and
higher from two, obtained in [5], to 13

6 . The lower bound proof is carried out in
dimension 2. The lower bound holds in higher dimensions by simply giving the
corresponding points in a 2-dimensional subspace.

Many variants of online unit clustering have been studied by Epstein et al. [4].
This paper is an extended abstract of a 32 page full version [3]. It is not

possible here to account for the full proof of the 1-dimensional upper bound; or
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even the full algorithm. We have tried to include material that gives a feel for
the techniques involved. On the other hand, we have included the full proof of
the lower bound for dimension 2 and higher.

2 The Algorithm

In this section we describe a new algorithm for online unit clustering. We struc-
ture our algorithm around components consisting of 2–4 clusters that we refer
to as a groups with various characteristics. We then define behavior inside and
outside these groups. We start with terminology and a few definitions of groups
and other components.

We are working on the line, and define a cluster to be an interval with a
maximal length of one. For a cluster C, let rC denote the right endpoint of C
and let lC denote the left endpoint of C. For two points p1 and p2, we let d(p1, p2)
denote the distance between the two points.

We say that a cluster C can cover a point p, if max(d(p, rC), d(p, lC)) ≤ 1, i.e.,
if assigning p to C does not violate the restriction on the length of a cluster being
at most one unit (see Fig. 1). A cluster C is said to be able to reach another
cluster D, if C can cover all points on the line between C and D (see Fig. 2).

If, for some cluster D, there exist a cluster C to the left and a cluster E to the
right of D, then D is said to be underutilized if d(rC , lE) ≤ 1 (see Fig. 3). Two
clusters C and D are said to be a close pair if d(lC , lD) ≤ 1 and d(rC , rD) ≤ 1
(see Fig. 4). Two clusters C and D are said to be a far pair if d(lC , lD) > 1,
d(rC , rD) > 1, and d(rC , lD) ≤ 1 (see Fig. 5).

. . . . . . . . . . . . . . . .

C

�

p︸ ︷︷ ︸
≤ 1

Fig. 1. C can cover p

. . . . . . . . . . . . . . . . . . . . .

C D

︸ ︷︷ ︸
≤ 1

Fig. 2. C can reach D

. . . . . . . . . . . . . . . . . . . . . . . . . .

C D E

︸ ︷︷ ︸
≤ 1

Fig. 3. D underutilized

We now start discussing groups. In the algorithm to be presented, we will
ensure that groups satisfy certain specific criteria. However, satisfying these cri-
teria does not define a group. For instance, we do not want overlapping groups,
i.e., groups that share clusters. Thus, the definition of a group is a labelling issue,
in the sense that when the situation is right, we may decide that a collection of
clusters form a group.

We say that three consecutive clusters C, D, and E, none of which belong to
another group, form a potential regular group if the clusters are related in the
following way (see Fig. 6),
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. . . . . . . . . . . . . . . . . . . . .

C D

︸ ︷︷ ︸
≤ 1︸ ︷︷ ︸

≤ 1

Fig. 4. A close pair

. . . . . . . . . . . . . . . . . . . . . . . . . .

C D

︸ ︷︷ ︸
≤ 1︸ ︷︷ ︸

> 1

> 1︷ ︸︸ ︷

Fig. 5. A far pair

1. d(rC , lD) ≤ 1 and d(rD, lE) ≤ 1, and
2. d(rC , lE) > 1, and
3. d(lC , lD) > 1 or d(rD, rE) > 1, and
4. d(rC , rD) ≤ 1 or d(lD, lE) ≤ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C D E

≤ 1︷ ︸︸ ︷ ≤ 1︷ ︸︸ ︷

︸ ︷︷ ︸
> 1︸ ︷︷ ︸

≤ 1 ︸ ︷︷ ︸
≤ 1or

> 1︷ ︸︸ ︷ > 1︷ ︸︸ ︷
or��� ���

Fig. 6. A potential regular group

A regular group initially consists of three clusters. However, as the algorithm
progresses, a fourth cluster might be needed at some point. On the other hand,
the algorithm we develop ensures that a fifth cluster is never needed. We denote
C and E outermost clusters in a regular group or a potential regular group. D
and the possible fourth cluster are denoted middle clusters. We denote a regular
group with three clusters a regular 3-group and a regular group with four clusters
a regular 4-group. An outermost cluster in a regular group or a potential regular
group that satisfies the third requirement, is said to be a long cluster, e.g., if
d(lC , lD) > 1 in the above, then C is denoted a long cluster. Some regular groups
have undesirable properties and we refer to a regular group with the following
additional property as a bad regular group:

(d(rC , rD) > 1 and d(rD, rE) ≤ 1) or (d(lD, lE) > 1 and d(lC , lD) ≤ 1)

Regular groups that are not bad are referred to as good.
A tight group (see Fig. 7) initially consists of two clusters. However, as the

algorithm progresses, a third cluster might be needed at some point. We denote
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. . . . . . . . . . . . . . . . . . . . . . . . . . . .

> 1︷ ︸︸ ︷
︸ ︷︷ ︸

≤ 1︸ ︷︷ ︸
> 1

Fig. 7. A tight group

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group G1︷ ︸︸ ︷ Group G2︷ ︸︸ ︷
︸ ︷︷ ︸

≤ 1

Fig. 8. A close regular group

a tight group with two clusters a tight 2-group and a tight group with three
clusters a tight 3-group. The two initial clusters in a tight group are denoted
outermost clusters and the possible third cluster is denoted a middle cluster. A
tight group is really just a far pair with a different label.

Finally, a regular group G1 is said to be close to another group G2, if a middle
cluster from G1 can reach a cluster in G2; see Fig. 8.

We are now ready to define the algorithm. It is clear that if a new point falls
in an already opened cluster (between its left and right endpoints), then that
cluster covers the point. If the new point p falls inside a regular group, then
Algorithm 2 handles the point, if p falls inside a tight group, then Algorithm 3
handles the point, and otherwise we let Algorithm 1 handle the point.

Algorithm 1. Main
Require: p falls outside any group
1. if p can be covered by a group cluster then
2. Cover p by that cluster, avoid creating close regular groups if possible
3. else if covering p with some cluster creates a new good potential regular group

then
4. Cover p by the cluster and create a new regular group
5. else if opening a new cluster for p creates a new good potential regular group

then
6. if the new good potential regular group would be close to another group then
7. Cover p and create a tight group
8. else
9. Open a new cluster for p and create the new regular group

10. else if p can be covered by a cluster then
11. Cover p by a cluster, avoid creating a close pair if possible
12. else
13. Open a new cluster for p

Algorithm 2. Regular Group
Require: p falls inside a regular group
1. if an outermost cluster can cover p without underutilizing a middle cluster then
2. Cover p by that outermost cluster
3. else if p can be covered by a middle cluster and still reach an outermost cluster

then
4. Cover p by that middle cluster
5. else
6. Open a new middle cluster for p
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Algorithm 3. Tight Group
Require: p falls inside a tight group
1. if p can be covered by an outermost cluster then
2. Cover p by that outermost cluster
3. else if there is a middle cluster then
4. Cover p by the middle cluster
5. else
6. Open a new middle cluster for p

3 Analysis

We first establish some properties of the algorithm, starting with correctness.

Lemma 1. If two clusters are contained in a unit interval, then they are both
part of the same regular group.

Proof. Assume for the sake of contradiction that C1 and C2 are two clusters
contained in a unit interval, and that they are not part of the same regular group.
Assume without loss of generality that C1 was opened before C2. Consider the
point p on which C2 was opened. It is clear that C1 can cover p.

By Algorithm 1, p can either be opened in Line 9 or in Line 13. We consider
both choices and show that both lead to a contradiction, proving the lemma.

First, assume C2 was opened in Line 9. Since, by assumption, C1 and C2 are
not part of the same regular group, there must exist two other clusters, say C3
and C4, such that a new cluster for p can create a good regular group together
with C3 and C4. It follows that if opening C2 for p can create a good regular
group of C2, C3, and C4, then if C1 covers p, then C1, C3, and C4 would also be
a good regular group. Hence, by Line 4 in Algorithm 1, C1 would cover p and
we reach a contradiction.

Next, assume C2 was opened in Line 13 in Algorithm 1. Since, C1 can cover
p, we reach a contradiction, since p would have been covered in Line 11.

Lemma 2. Algorithm 1 is well-defined.

Proof. The only part which is not obviously well-defined is Line 7 in Algorithm 1.
However, it is clear that a close regular group has two clusters contained in a unit
interval. Hence, it follows from Lemma 1 that the new good potential regular
group was about to be created because one of these two clusters was about to
be opened. Thus, the other of these two clusters can cover the new point and
create a tight group.

The following is an example of the many properties that must be established:

Lemma 3. The middle cluster in a regular group cannot reach a non-group
cluster.
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3.1 Overall Proof Structure

The basic idea of the overall proof is to divide the clustering produced by our
algorithm into chunks, and show that if we process this division from left to right,
then the algorithm is 5

3 -competitive after each chunk. In order to keep track of
our status in this process, we introduce the notation

{
a
b

}
which means that after

possibly having discarded a number of chunks where the ratio of clusters used
by the online algorithm to clusters used by OPT is at least as good as 5

3 , we are
currently in a situation where the online algorithm has used a clusters and OPT
has used b clusters.

We define an ordering on pairs in the following way:{
a

b

}
�
{

c

d

}
⇐⇒ ∀x, y :

x + c

y + d
≤ 5

3
⇒ x + a

y + b
≤ 5

3
.

where the latter is equivalent to 5(b− d) ≥ 3(a− c).
From this we also define the relations ", ∼, ≺, and % in the straight forward

way, and addition of pairs as{
a

b

}
⊕
{

c

d

}
=
{

a + c

b + d

}
.

Note that
{

a+5
b+3

}
∼
{

a
b

}
and that

{1
1

}
%
{3

2

}
, for example, expresses that in the{1

1

}
scenario we are in a better situation with respect to obtaining the 5

3 bound
than if we were in the

{3
2

}
situation.

Observe that we can produce an OPT-clustering of a request sequence (offline,
that is), by processing the points from left to right, and clustering points greedily:
only open new clusters when the previously opened cluster cannot cover the next
point. Consider the situation after we have produced an OPT-clustering in this
manner (from left to right). Let a be the number of clusters used by our algorithm
so far, and let b be the number of OPT-clusters used in the processing of the
clusters from left to right. Consider the last opened OPT cluster, and the next
cluster opened by our algorithm with respect to the processing of the clusters.
We identify three states for the OPT cluster and associate a letter with each of
these states. The OPT cluster might not be able to cover points from the next
cluster opened by our algorithm. We use the letter N to denote this state. The
remaining two states represent different situations where the OPT cluster can
cover points from the next cluster opened by our algorithm. We use the letter A
to denote the state where the OPT cluster covered all of the last cluster opened
by our algorithm. Finally, we use the letter S to denote the state where the OPT
cluster covered some (but not all) from the last cluster opened by our algorithm.

We show that if we are in state N , then
{

a
b

}
�
{0

0

}
, if we are in state A,

then
{

a
b

}
�
{3

2

}
, and if we are in state S, then

{
a
b

}
�
{2

2

}
. With a slight abuse

of notation we also use N , A, and S to denote
{0

0

}
,
{3

2

}
, and

{2
2

}
, respectively.

Observe that S % A % N .
If we can show that the above is an invariant after each decision our algorithm

makes, then we have shown that our algorithm is 5
3 -competitive.
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In order to make the analysis easier to carry through, we mostly allow OPT
to not cover points that are not start- or endpoints of a cluster opened by the
algorithm. When we deviate from this, we explicitly discuss such a point and
argue why we still have the necessary properties.

We describe how we divide the clustering into chunks. First, observe that we
only need to consider sets of consecutive points where the distance between two
consecutive points is at most one, since no cluster opened by the algorithm or
by OPT can be shared between two such sets of points. In each set, each group
is a chunk and anything between two consecutive groups or at the end of a set
is a chunk. For each chunk and start state we analyze the chunk (in a worst
case manner) and identify the end state and the number of new clusters used
by our algorithm and OPT. If, for example, we are in state S before we process
a chunk, the online algorithm uses four clusters to process the chunk, the OPT-
clustering only needs to open two new clusters for the chunk, and the end state
is A. We are then faced with the inequality S ⊕

{4
2

}
� A, which is true since

S ⊕
{4

2

}
∼
{2

2

}
⊕
{4

2

}
∼
{6

4

}
∼
{1

1

}
%
{3

2

}
∼ A.

Based on the properties of the algorithm established in the above, we now
proceed to analyze groups and sequences of non-group clusters, based on the
state classification N , A, and S.

3.2 Groups

For groups, the analysis can be completely captured in a collection of figures.
We now describe how such figures should be read. Confer with Fig. 9 below as
an example. Above the dotted line, we show the figure that we are analyzing. We
do not know the placement of OPT’s clusters, but know that we can assume a
division of starting states according to the classification described above. Thus,
each possible OPT starting state is analyzed separately, using one line on each.
When this is not obvious from the distances given in the online configuration,
a reference to a lemma on top of an OPT cluster explaining why that cluster
cannot reach the next point, or why a given end state can be argued.

All the way to the right on an OPT line, we list a pair denoting how many new
online and OPT clusters, respectively, were used on that line. As an example, in
Fig. 9, in the second OPT line (start state A), the first OPT cluster in the line
has already been counted because we analyze from left to right and the cluster
shares a point with whatever online configuration is placed to the left of the
current. Thus, three new online and two new OPT clusters are used. In all cases,
we must verify (and have done so) that the start state plus the pair of clusters
used sum up to at least the end state, e.g., A⊕

{3
2

}
� A.

We analyze the groups at the time of creation (for regular 3-groups and tight 2-
groups), at the time when the fourth cluster is opened (for regular 4-groups), and
at the time when the third cluster is opened (for tight 3-groups). In addition, we
analyze the situation where a regular group is close to another group separately.
Hence, in the analysis of regular groups and tight groups, we can assume they
are not close to another group.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> 1︷ ︸︸ ︷
> 1︷ ︸︸ ︷

L. 3

L. 1

L. 3

N →

A →

S →

→ N :
{

3
2

}
→ A :

{
3
2

}
→ N :

{
3
1

}
Fig. 9. Regular 3-Group Case 1: Long cluster to the left

In this extended abstract, we have included only this one example from the
exhaustive case analysis of the different ¡group constructions. Analysis of non-
group sections has been omitted completely. In the full paper [3], we give all the
algorithmic details and the full proof of the main theorem:

Theorem 1. There exists a 5/3-competitive deterministic algorithm for one-
dimensional online unit clustering.

4 Two-Dimensional Lower Bound

In this section, we establish the 2-dimensional lower bound which all higher
dimensions inherit.

Theorem 2. No deterministic on-line algorithm can have a competitive ratio
less than 13

6 in two dimensions.

Proof. Observe that it is enough to consider on-line algorithms that never pro-
duce clusterings where a cluster is contained in another cluster. Consider any
such deterministic on-line algorithm A, and assume by contradiction that it has
a competitive ratio less than 13

6 .
First, four points arrive on the corners of a unit square. The algorithm A can

either assign them all to one cluster or assign them to two clusters. Otherwise,
since there exists a feasible solution using a single cluster, it has ratio of at least
three and the input stops.

If A assigns all points to a single cluster, then four additional points arrive
(see the first eight points of Fig. 10). The algorithm A must group at least one
of the new pairs in one cluster, since it is possible to group all existing points
with only two clusters. Otherwise, A would not stay below the 13

6 -bound.
If A groups the four points (points 5–8) in exactly two clusters, then eight

additional points arrive (see the first 16 points of Fig. 10). Since it is possible to
serve all these points with only four clusters, A must use at most five clusters to
group the new points.

If A groups all eight points using four clusters, then six additional points
arrive (see Fig. 10). The algorithm A must open six clusters for them and has
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Fig. 10. Lower bound
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Fig. 11. Lower bound

now used 13 clusters while an optimal solution requires only six clusters, which
is a contradiction.

If A groups the eight points using five clusters, then three additional points
arrive (see Fig. 11). The algorithm A must open three clusters for them and has
now used 11 clusters while an optimal solution requires only five clusters, which
is a contradiction.

If A groups the four points (points 5–8) using three clusters, then the following
sequences of points arrive (see Fig. 12).

Now give one additional point (point 9). Since the nine points can be grouped
using two clusters A must assign the new point to an already open cluster.

Next, four points arrive (points 10–13). Since the 13 points can be grouped
using three clusters A must group the new points into two clusters.

Now, six additional points arrive (points 14–19). Since the 18 points can be
grouped using five clusters A must group the new points using four clusters.
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Fig. 12. Lower bound
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Fig. 13. Lower bound

Finally, three points arrive (points 20–22). The algorithm A must open three
new clusters for them and has now used 13 clusters while an optimal solution
only requires six clusters, which is a contradiction.

If A groups the first four points given using two clusters, then the following
sequence of points arrive (see Fig. 13).

Now give one additional point (point 5). Since the five points can be grouped
using one cluster, A must assign the new point to an already open cluster.

Next, four points arrive (points 6–9). Since, the nine points can be grouped
using two clusters A must group the new points using two clusters.
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Now, six additional points arrive (points 10–15). Since the 15 points can be
grouped using four clusters, A must group the new points using four clusters.

Finally, three points arrive (points 16–18). The algorithm A must open three
new clusters for them and has now used 11 clusters while an optimal solution
only requires five clusters, which is a contradiction.

In all cases, we reach a contradiction, so ’s competitive ratio is at least 13
6 .
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Abstract. A t-interval is a union of at most t half-open intervals on
the real line. An interval is the special case where t = 1. Requests for
contiguous allocation of a linear resource can be modeled as a sequence
of t-intervals. We consider the problems of online selection of intervals
and t-intervals, which show up in Video-on-Demand services, high speed
networks and molecular biology, among others. We derive lower bounds
and (almost) matching upper bounds on the competitive ratios of ran-
domized algorithms for selecting intervals, 2-intervals and t-intervals, for
any t > 2. While offline t-interval selection has been studied before, the
online version is considered here for the first time.

1 Introduction

Interval scheduling is a form of a resource allocation problem, in which the
machines are the resource. As argued by Kolen et al. [11], operations management
has undergone a “transition in the last decennia from resource oriented logistics
(where the availability of resources has dictated the planning and completion
of jobs) to demand oriented logistics (where the jobs and their completion are
more or less fixed and the appropriate resources must be found).” They suggest
that this implies a move from traditional scheduling to interval scheduling.

Suppose you are running a resource online. Customers call and request to use
it from time to time, for up to t time periods, not necessarily of same length.
These requests must either be accepted or declined. If a request is accepted then
it occupies the resource for these periods of time. A request cannot be accepted
if one or more of its periods intersect a period of a previously accepted request.
The goal is to accept as many requests as possible.

This can be modeled as the following online t-interval selection ( t-Isp) prob-
lem. Let t be the maximum number of periods involved in any request. Each
request is represented by a t-interval, namely, a union of at most t half-open
intervals (referred to as segments) on the real line. The t-intervals arrive one
by one and need to be scheduled non-preemptively on a single machine. Two
t-intervals, I and J , are disjoint if none of their segments intersect, and intersect
if a segment of one intersects a segment of the other. Upon arrival of a t-interval,
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a b

c d

e f g

a b

d c

e f g

Fig. 1. A linear resource is requested by customers a, b, c, d, e, f and g in that
order, for two periods each. If b is accepted then each of the following requests must
be declined. An optimal selection consists of a, f and g.

the scheduler needs to decide whether it is accepted; if not, it is lost forever. The
goal is to select a subset (or “form a schedule”) of non-intersecting t-intervals
of maximum cardinality. The special case where t = 1 is known as the online
interval selection problem ( Isp). An example of an instance of online t-Isp is
given in Figure 1.

The performance of an online algorithm is measured in terms of its compet-
itive ratio. Formally, let OPT be an optimal offline algorithm for the problem.
The competitive ratio of A is defined as supσ

OPT (σ)
A(σ) , where σ is an input se-

quence, and OPT (σ), A(σ) are the number of t-intervals selected by OPT and A,
respectively. For randomized algorithms, we replace A(σ) with the expectation
E[A(σ)] and define the competitive ratio as ρA = supσ

OPT (σ)
E[A(σ)] . An algorithm

with competitive ratio of at most ρ is called ρ-competitive. Let n be the number
of intervals in the instance; also, denote by Δ the ratio between the longest and
shortest segment lengths.

1.1 Related Work

Selecting intervals and t-intervals: We can view t-Isp as the problem of
finding a maximum independent set (IS) in a t-interval graph. While for the
special case of interval graphs the problem is known to be polynomially solvable
(see, e.g., [10]), already for t = 2 the IS problem becomes APX-hard [4]. The
paper [4] presents a 2t-approximation algorithm for the offline weighted tISP.
Later works extended the study to the selection of t-intervals with demands,
where each interval is associated with a set of segments and a demand for machine
capacity [5], as well as the study of other optimization problems on t-interval
graphs (see, e.g., [6]).

There is a wide literature on the maximum independent set problem in various
classes of graphs. The online version of the IS problem was studied in [7], where a
Ω(n)-lower bound on the competitive ratios of randomized algorithms was given,
even for interval graphs (but not when the interval representation is given).
A survey of other works is given in [2]. Numerous natural applications of our
problems are described in [2] and [3].

Online interval selection: Lipton and Tomkins [12] considered an online in-
terval selection problem where the intervals have weights proportional to their
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length and the intervals arrive by time (i.e., in order of their left endpoints).
They showed that θ(log Δ)-competitive factor was optimal, when Δ is known,
and introduced a technique that gives a O(log1+ε Δ)-competitive factor when
Δ is unknown. Woeginger [14] considered a preemptive version of weighted Isp

and gave an optimal 4-competitive algorithm. Numerous results are known about
interval scheduling under the objective of minimizing the number of machines,
or alternatively, online coloring interval graphs. In particular, a 3-competitive
algorithm was given by Kierstead and Trotter [9]. The t-Isp problem bears a
resemblance to the JISP problem [13], where each job consists of several intervals
and the task is to complete as many jobs as possible. The difference is that in
JISP, it suffices to select only one of the possible segments of the job.

Call admission: Similar problems have been studied also in the area of call
admission. We note that Isp can be viewed as call admission on a line, where the
objective is to maximize the number of accepted calls. The paper [1] presents a
strongly �log N�-competitive algorithm for the problem, where N is the number
of nodes on the line. This yields an O(log Δ)-competitive algorithm for general
Isp instances when Δ is known a-priori. We give an algorithm that achieves
(almost) the same ratio for the case where Δ is unknown.

1.2 Our Results

We derive the first lower and upper bounds on the competitive ratios of online
algorithms for t-Isp and new or improved bounds for Isp. Table 1 summarizes
the results for various classes of instances of Isp, 2-Isp and t-Isp. All of the
results apply to randomized algorithms against oblivious adversary. In compari-
son, proving strong lower bounds for deterministic algorithms (including a lower
bound of Δ+1 for Isp) is straightforward. The upper bounds for general inputs
are for the case where Δ is unknown in advance.

Table 1. Results for randomized online interval and t-interval selection. Entries marked
with · follow by inference. Entries marked with † were known; the lower bound for Isp

follows from [1], while the upper bounds for unit lengths are trivial.

Isp 2-Isp t-Isp

u.b. l.b. u.b. l.b. u.b. l.b.

General inputs O(log1+ε Δ) Ω(log Δ)† O(log2+ε Δ) Ω(log Δ)† − ·
Two lengths 4 4 16 6 − ·
Unit length 2 † 2 4 † 3 2t † Ω(t)
Bounded depth s 3/2 (s = 2) 2 − 1/s − − − −

Due to space constraints, some of the results (or proofs) are omitted. The
detailed results appear in [3] (see also [2]).
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2 Technique: Stacking Construction

When deriving lower bounds for randomized algorithms for (t-)interval selection,
we use the following technique. The adversary can take advantage of the fact that
he can foresee the probability with which the algorithm selects any given action,
even if he doesn’t know the outcome. He presents intervals on top of each others,
or “stacks” them, until some interval is chosen with sufficiently low probability.
The adversary uses that to force a desirably poor outcome for the algorithm.
The general idea is similar to a lower bounding technique of Awerbuch et al. [1]
for call control.

Let R be an Isp-algorithm and let parameters q and x be given. A (q, x)-
stacking construction for R is a collection of intervals formed as follows, where
q is an upper bound on the number of intervals stacked and x is the extent
to which intervals can be shifted. Form q unit intervals I1, ..., Iq that mutually
overlap with left endpoints spaced x/q apart towards the left. Namely, Ii = [x(1−
i/q), 1 + x(1 − i/q)), for i = 1, . . . , q. Let pi be the (unconditional) probability
that R selects Ii. The adversary knows the values pi and forms its construction
accordingly. Namely, let m be the smallest value such that pm ≤ 1/q. Since∑

i pi ≤ 1, there must be at least one such value. The input sequence construction
consists of 〈I1, I2, . . . , Im, Jm〉, where Jm = [1 + x(1 − m/q), 2 + x(1 − m/q)).
This is illustrated in Fig. 2.

I1

...
Im−1

Im Jm

X

Fig. 2. (q, x)-stacking construction

Lemma 1. A (q, x)-stacking construction I has the following properties.

1. All intervals in I \ {Im} overlap the segment [1, 1 + x).
2. All intervals in I are contained within the interval [0, 2 + x).
3. The intervals in I \ {Im} have a common intersection of length x/q, given

by the segment X = Im−1 ∩ Jm = [1 + x(1 −m/q), 1 + x(1 − (m− 1)/q)).
4. ER[Im] = pm ≤ 1/q. Thus, ER[I] ≤ 1 + 1/q,
5. OPT (I) = 2. Thus, the performance ratio of R is at least 2/(1 + 1/q).

By taking q arbitrarily large, we obtain the following performance bound.

Theorem 1. Any randomized online algorithm for Isp with unit intervals has
competitive ratio at least 2.
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We can imitate the stacking construction with 2-intervals by repeating the con-
struction for both segments. We refer to this as a 2-interval (q, x)-stacking con-
struction.

We shall also use the stacking construction shifted by a displacement f , by
adding f to the starting point of each interval. We may also use intervals of
non-unit length.

3 Online Interval Selection

3.1 Unit Intervals and Depth

We give upper and lower bounds on the competitive ratios for Isp with unit
intervals. We parameterize the problem in terms of the depth of the interval
system, which is the maximum number of intervals that overlap a common point.
This corresponds to the clique number of the corresponding interval graph.

Theorem 2. The competitive ratio of any randomized algorithm for Isp of unit
intervals is at least 2− 1/s, where s is the depth of the instance.

Proof. We modify the (s, 1)-stacking construction slightly. Let pi be the probabil-
ity that the given algorithm R selects interval Ii. If p1 ≤ 1/(2−1/s) = s/(2s−1),
then we conclude with the unit sequence 〈I1〉. The performance ratio is then
at least 1/p1 ≥ 2 − 1/s. Otherwise we stop the sequence at Im, where m is
the smallest number such that pm ≤ 1/(2s − 1). This is well defined since
s/(2s − 1) +

∑s
i=2 1/(2s − 1) = 1. As before, this is followed by the interval

Jm intersecting only the first m − 1 intervals. The algorithm obtains expected
value at most 1 + pm ≤ 1 + 1/(2s− 1) = 2s/(2s− 1), versus 2 for the optimal
solution. The above procedure can be repeated arbitrarily often, ensuring that
the lower bound holds also in the asymptotic case.

We now describe a randomized algorithm that achieves the above ratio for s = 2.
Consider the algorithm RoG (Random or Greedy), which handles an arriving
interval as follows. If the interval does not overlap any previously presented
interval, select it with probability 2/3, else select the interval greedily.

Theorem 3. Algorithm RoG is 3/2-competitive for unit intervals with depth 2.

Proof. Assume that the instance is connected; otherwise, we can argue the bound
for each component separately.

The depth restriction means that each interval can intersect at most two other
intervals: one from the left and one from the right. The instance is therefore a
chain of unit intervals. We divide the intervals into three types, based on the
number of previous intervals the given interval intersects. A type-i interval, for
i = 0, 1, 2, intersects i previously presented intervals. Two type-2 intervals cannot
intersect, as otherwise the one that appears earlier will have degree 3, leading to
depth at least 3. Therefore, the instance consists of chains of type-0 and type-1
intervals attached together by type-2 intervals. Each chain is started by a type-0
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interval, followed by type-1 intervals. Let ni denote the number of intervals of
type i, then we have that

n0 ≥ n2 + 1. (1)

Consider now the unconditional probability that intervals of each type are se-
lected, i.e. the probability independent of other selections. The probability of
type-0 intervals being selected is 2/3. The probability of the selection of type-
1 intervals alternates between 1/3 and 2/3. The expected number of intervals
selected by the algorithm is then, using (1), bounded below by

2
3
n0 +

1
3
n1 ≥

1
3
(n0 + n1 + n2 + 1) =

n + 1
3

.

On the other hand, the number of intervals in an optimal solution is the indepen-
dence number of the path on n vertices, or

⌈
n
2

⌉
≤ n+1

2 . Hence, the competitive
ratio is at most 3/2.

3.2 ISP with Intervals of Two Lengths

Consider now Isp instances where the intervals can be of two different lengths, 1
and d. It is easy to argue a 4-competitive algorithm by the classic Classify-and-
Select approach: Flip a coin, choosing either the unit intervals or the length-d
intervals, and then greedily adding intervals of that length only.

We find that it is not possible to significantly improve on that very simple
approach (we omit the proof).

Theorem 4. Any randomized online algorithm for Isp with intervals of two
lengths 1 and d has performance ratio at least 4, asymptotically with d.

3.3 ISP with Parameter n

Isp is easily seen to be difficult for deterministic algorithm on instances without
constraints on the size of the intervals. The adversary keeps introducing dis-
joint intervals until the algorithm selects one of them, I; the remaining intervals
presented will then be contained in I. This leaves the algorithm with a single
interval, while the optimal solution contains the rest, for a ratio of n−1. It is less
obvious that a linear lower bound holds also for randomized algorithms against
oblivious adversary.

Theorem 5. Any randomized online algorithm for Isp has competitive ratio
Ω(n).

Proof. Let n > 1 be an integer. Let r1, r2, . . . , rn−1 be a sequence of uniformly
random bits. Let the sequence x1, x2, . . . , xn of points be defined inductively by
x1 = 0 and xi+1 = xi + ri · 2n−i. We construct a sequence In of n intervals
I1, . . . , In, where Ii = [xi, xi + 2n−i), for i = 1, . . . n.

The collection A = {Ii : ri = 1} ∪ {In} forms an independent set, informally
referred to as the “good” intervals. The set B = In \ A = {Ii : ri = 0} forms a
clique; informally, these are the “bad” intervals.
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Consider a randomized algorithm R and the sequence of intervals chosen by
R. The event that a chosen interval is good is a Bernoulli trial, and these events
are independent. Thus, the number of intervals chosen until a bad one is chosen
is a geometric random variable with a mean of 2. Even accounting for the last
interval, which is known to be good, the expected number of accepted intervals
E[(σ)] is at most 3.

On the other hand, the expected number of good intervals is (n − 1)/2 + 1,
and so the expected size of the optimal solution is n/2. By standard arguments,
this holds also with high probability, up to lower order terms. The competitive
ratio of R on In is therefore at least n/6.

Notice that in Theorem 5, the intervals are presented in order of increasing left
endpoints. Thus, the bound holds also for the scheduling-by-time model. The
adversary in Theorem 5 has also the property of being transparent [8] in the
sense that as soon as the algorithm has made its decision on an interval, the
adversary reveals his own choice.

4 Online 2-Interval Selection

4.1 Unit Segments

Theorem 6. Any randomized online algorithm for 2-Isp of unit intervals has
competitive ratio at least 3.

Proof. Consider any randomized online 2-Isp algorithm R. Let q be an even
number and let q′ = 3q/2.

We start with 2-interval (q′, 1)-stacking construction I for R. See the top
half of Fig. 3. Recall that the expected gain of R on interval Im is ER[Im] ≤
1/q′. Let p be the probability that R selects some interval in I ′ = I \ {Im} =
{I1, . . . , Im−1, Im+1}. If p < 2/3, then we stop the construction. The expected
solution size found by R is then ER[I] ≤ p + 1/q′, while the optimal solution is
of size 2, for a ratio of 2/(p + 1/q′) ≥ 2/(2/3 + 2/(3q)) = 3/(1 + 1/q).

Assume therefore that p ≥ 2/3. Let X1 be the common intersection of the
first segments of the 2-intervals in I′ , and X2 be the common intersection of
the second segments. Let fi denote the starting point of Xi, i = 1, 2. By Lemma
1, the length of each Xi is 1/q′.

We now form a (q, x)-stacking construction I1 of 2-intervals for R shifted by
f1, where x = |X1| = 1/q′. The first segments are positioned to overlap X1,
where x = |X1| = 1/q′; the second segments are immaterial as long as they do
not intersect any previous intervals. This is shown in the bottom left of Fig. 3.
We then do an identical construction I2 shifted by f2; again, the second segments
do not factor in. This completes the construction.

We can make the following observations about the combined construction
J = I ∪ I1 ∪ I2.
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Observation 1
1. All intervals in I1 overlap X1.
2. All intervals in I2 overlap X2.
3. OPT (J ) = 4, given by I2

m, J2
m, I3

m, I3
m.

4. ER[I1] ≤ (1− p)(1 + 1/q), by Lemma 1 (3) and part 1. of this observation.

It follows that

ER[J ]= ER[Im]+ER[I′]+ER[I1]+ER[I2] ≤ 1/q′+p+2(1−p)(1+1/q)= 2−p+(4/3−2p)q .

Since p ≥ 2/3, ER[J ] ≤ 2−p, and the performance ratio of R on J is OPT (J )/ER

[J ] ≥ 4/(4/3) = 3.

Im+1Im+1Im Im

Im−1 Im−1

...
...

I1 I1

X1 X2

...
...

I1
1 I2

1

I1
m1 J1

m1 I2
m2 J2

m2

Fig. 3. Construction of a lower bound of 3 for unit 2-Isp

4.2 Segments of Two Lengths

In this section, we give a 16-competitive algorithm for 2-Isp where the 2-interval
segments have lengths either 1 or d. A lower bound of 6 for d& 1 is omitted in
this version.

Consider the following algorithm Av, which either schedules (i.e., selects) a
given 2-interval, rejects it, or schedules it virtually.1 A virtually scheduled inter-
val does not occupy the resource but blocks other 2-intervals from being sched-
uled. The length of each segment is either short (1) or long (d). A 2-interval
is short-short (long-long) if both segments are short (long), respectively, and
short-long if one is short and the other long. In processing a 2-interval I, Av

applies the following rules, which depend on the availability of the resource.

1. I is short-short. Schedule I greedily (with probability 1).
2. A long segment of I intersects a virtually selected 2-interval. Do

nothing.
3. Otherwise, schedule I with probability 1/2 and schedule it virtually with

probability 1/2.

1 The term was used before, e.g., in [12].
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Our analysis of Av uses the following charging scheme. Let SOPT be an optimal
solution and SAv the set of 2-intervals selected by Av. For any I ∈ SAv and
J ∈ SOPT, we assign w(I, J) = 1/4 · t(I, J), where t(I, J) is the number of
endpoints of I that intersect with J . In particular, w(I, J) = 0 when I and J do
not overlap or if segments of I properly contain segments of J . Also, w(J, J) = 1.
Since each 2-interval has 4 endpoints, and the 2-intervals in SOPT are disjoint,
it follows that

∑
J∈SOPT

w(I, J) ≤ 1. Intuitively, we distribute the value that
Av receives for selecting I among the 2-intervals in SOPT that intersect it. Let
w(bucket(J)) =

∑
I∈SAv

w(I, J), for J ∈ SOPT. To show that Av is c-competitive
it suffices to prove that, for any J ∈ SOPT, E[w(bucket(J))] ≥ 1/c.

Theorem 7. Algorithm Av is 16-competitive for online 2-Isp with segments of
length 1 and d.

Proof. Consider an interval J ∈ SOPT. We shall show that E[w(bucket(J)] ≥
1/16, which yields the theorem. The argument is based on considering the various
possible configurations of intervals overlapping J that were presented before J .
In what follows, we shall say that an interval was addressed if it precedes J ,
overlaps J , and was either scheduled or virtually scheduled, i.e. was not blocked
when presented. We say that I dominates J if a short segment of J is properly
contained in a long segment of I.

We consider cases depending on the lengths of J ’s segments.

J is long-long. Consider the first interval addressed, I (which is possibly J
itself). Then w(I, J) ≥ 1/4 and I is scheduled with probability at least 1/2.
Hence, E[w(bucket(J))] ≥ 1/2 · 1/4 = 1/8.

J is short-long. Then, there is at most one interval in SAv that dominates J .
With probability at least 1/2, this interval is not selected (so, either virtually
selected or blocked). Some other interval I overlapping J (possibly J itself) is
then selected with probability at least 1/2, assigning a weight w(I, J) ≥ 1/4.
Thus, E[w(bucket(J))] ≥ 1/2 · 1/2 · 1/4 = 1/16.

J is short-short. At most two intervals are addressed that dominate J (if they
dominate the same segment of J , then the latter interval is blocked by the
former). With probability at least 1/4, neither of them are selected. With
probability 1, some other interval I intersecting J (possibly J itself) is se-
lected, since J is short-short. A weight of at least w(I, J) ≥ 1/4 is transferred.
Hence, E[w(bucket(J))] ≥ 1/4 · 1 · 1/4 = 1/16.

4.3 Segments of Arbitrary Lengths

Consider now more general instances of 2-Isp, in which the ratio between the
longest and shortest segment is Δ, for some Δ > 1. W.l.o.g. we may assume
that the short segment is of length 1. We partition the set of first segments to
K = �log Δ� groups, such that the segments in group i have lengths in [2i−1, 2i),
1 ≤ i ≤ K. Partition the second segments similarly into K groups. A 2-interval
whose first segment is of length in [2i−1, 2i), and whose second segment is of
length [2j−1, 2j), 1 ≤ i, j ≤ K, is in group (i, j).
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We now apply algorithm Av to 2-Isp instances where the length of the short
segment is in [1, 2) and the long segment in [d, 2d). Av makes scheduling decisions
as before, using the new definitions of ‘short’ and ‘long’ segments.

Theorem 8. Algorithm Av is 24-competitive for 2-Isp instances with segments
of two types: short with lengths in [1, 2), and long with lengths in [d, 2d).

Proof. Each interval I intersects now at most 6 intervals in SOPT that it does not
dominate. For instance, a long segment can now contain one long segment from
SOPT and properly overlap two other segments. Thus, we change the charging
scheme to w(I, J) = 1/6·t(I, J). The rest of the proof of Theorem 7 is unchanged.

Now, given a general instance of 2-Isp, suppose that Δ is known a-priori. Con-
sider algorithm Avg which applies Av on groups of 2-intervals. The instance is
partitioned to K2 = �log Δ�2 groups, depending on the lengths of the first and
second segments of each 2-interval. Avg selects uniformly at random a group
(i, j), 1 ≤ i, j,≤ K and considers scheduling only 2-intervals in this group. All
other 2-intervals are declined. The next result follows from Theorem 8.

Theorem 9. Avg is O(log2 Δ)-competitive for 2-Isp with intervals of various
lengths, where Δ is known in advance.

For the case where Δ is a priori unknown, consider algorithm Ãvg, which pro-
ceeds as follows.2 A presented 2-interval, I, is in the same group as a previously
presented 2-interval, I ′, if the ratio between the length of the first/second seg-
ment of I and I ′ is between 1 and 2. If not, I belongs to a new group. Thus,
each group has an index i ∈ {1, . . . , �log Δ�2}. The algorithm chooses randomly
at most one group and selects only 2-intervals from that group, using algorithm
Av. Define

ci =
1

ζ(1 + ε/2)i1+ε/2 , and pi =
ci

Πi−1
j=1(1− pj)

, (2)

where ζ(x) =
∑∞

i=1 i−x is the Riemann zeta function. Recall that ζ(x) <∞, for
x > 1.

If a given 2-interval belongs to a new group i, and none of the groups 1, 2, . . . ,
i− 1 has been selected, then group i is chosen with probability pi and rejected
with probability 1−pi. If a given 2-interval belongs to an already selected group
i, it is scheduled using algorithm Av; if the given 2-interval belongs to an already
rejected group then it is rejected. Note that by the definition of pi, as given in
(2), it follows that ci is the unconditional probability that Ãvg chooses the i-th
group.

In analyzing Ãvg we first show that the values pi form valid probabilities, and
that the ci values give a probability distribution.

Lemma 2.
∞∑

i=1

ci = 1. Also, pi ≤ 1, for all i ≥ 1.

2 W.l.o.g., we assume that Δ is an integral power of 2.
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Proof. Observe that
∑∞

i=1 ci = 1
ζ(1+ε/2)

∑∞
i=1

1
i1+ε/2 = 1, proving the first half

of the lemma. It follows that ci ≤ 1 −
∑i−1

j=1 cj . To prove the second half of the
lemma, it suffices then to prove the following claim that

pi =
ci

1−
∑i−1

j=1 cj

, (3)

for each i ≥ 1. We prove the claim by induction on i. The base case then holds
since p1 = c1. Suppose now that

pk−1 =
ck−1

1− c1 − c2 − ...− ck−2
(4)

then using (2) we have that

pk =
ck

ck−1
· pk−1

1− pk−1
.

Plugging in the value of pk−1 in (4) we get the claim.

Theorem 10. Ãvg is O(log2+ε Δ)-competitive for 2-Isp with intervals of vari-
ous lengths, where Δ is unknown in advance.

Proof. Let Si denote the set of 2-intervals in group i, 1 ≤ i ≤ log2 Δ.
The probability that Ãvg chooses any given group Si is at least clog2 Δ. After

selecting the group, Ãvg uses Av to schedule the 2-intervals in the group. For a
given group, Si, we have:

E[Ãvg(Si)] ≥ clog2 Δ · E[Av(Si)] ≥
1

ζ(1 + ε/2)(logΔ)2+ε
· 1
12
· E[OPT (Si)].

Thus, by linearity of expectation Ãvg is O(log2+ε Δ)-competitive.

5 Online t-Interval Selection

We show here that any online algorithm for t-Isp has competitive ratio Ω(t). This
is done by a reduction to a known problem; this is standard for offline problems
but rather unusual approach in the online case. We reduce the problem to the
online version of the independent set (IS) problem in graphs: given vertices one
by one, along with edges to previous vertices, determine for each vertex whether
to add it to a set of independent vertices.

Theorem 11. Any randomized online algorithm for t-Isp with unit segments
has competitive ratio Ω(t).

Proof. Let n be a positive integer. We show that any graph on n vertices,
presented vertex by vertex, can be converted on-the-fly to an n-interval rep-
resentation. Then, an f(t)-competitive online algorithm for t-Isp applied to the
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n-interval representation yields an f(n)-competitive algorithm for the indepen-
dent set problem. As shown in [7] (and follows also from Theorem 5), there is no
cn-competitive algorithm for the online IS problem, for some fixed c > 0. The
theorem then follows.

Let G = (V, E) be a graph on n vertices with vertex sequence 〈v1, v2, . . . , vn〉.
Given vertex vk and the induced subgraph G[〈v1, v2, . . . , vi〉], form the n-interval
Ii by

Ii =
⋃
j=1

Xij , where Xij =
{

[nj + i, nj + i + 1) if j < i and (i, j) ∈ E
[ni + j, ni + j + 1) otherwise.

Observe that Ii ∩ Ij �= ∅ iff (i, j) ∈ E. Hence, solutions to the t-Isp instance are
in one-one correspondence with independent sets in G.

A greedy selection of t-intervals yields a 2t-competitive algorithm for unit t-Isp,
implying that the bound above is tight.
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Abstract. We study large k-edge-colorable subgraphs of simple graphs
and multigraphs. We show that:

– every simple subcubic graph G has a 3-edge-colorable subgraph (3-
ECS) with at least 13

15
|E(G)| edges, unless G is isomorphic to K4

with one edge subdivided,
– every subcubic multigraph G has a 3-ECS with at least 7

9
|E(G)|

edges, unless G is isomorphic to K3 with one edge doubled,
– every simple graph G of maximum degree 4 has a 4-ECS with at

least 5
6
|E(G)| edges, unless G is isomorphic to K5.

We use these combinatorial results to design new approximation algo-
rithms for the Maximum k-Edge-Colorable Subgraph problem. In par-
ticular, for k = 3 we obtain a 13

15
-approximation for simple graphs and

a 7
9
-approximation for multigraphs; and for k = 4, we obtain a 9

11
-

approximation. We achieve this by presenting a general framework of
approximation algorithms that can be used for any value of k.

1 Introduction

A graph is said to be k-edge-colorable if there exists an assignment of colors from
the set {1, . . . , k} to the edges of the graph, such that every two edges sharing
a vertex receive different colors. For a graph G, let Δ(G) denote the maximum
degree of G. Clearly, we need at least Δ(G) colors to color all edges of graph G.
On the other hand, the celebrated Vizing’s Theorem [14] states that for simple
graphs Δ + 1 colors always suffice. However, if k < Δ + 1 it is an interesting
question how many edges of G can be colored in k colors. The maximum k-
edge-colorable subgraph of G (maximum k-ECS in short) is a k-edge-colorable
subgraph H of G with maximum number of edges. By γk(G) we denote the
ratio |E(H)|/|E(G)|. The Maximum k-Edge-Colorable Subgraph problem
(aka Maximum Edge k-coloring [6]) is to compute a maximum k-ECS of a given
graph. It is known to be APX-hard when k ≥ 2 [4,7,9,6].

The research on approximation algorithms for max k-ECS problem was ini-
tiated by Feige, Ofek and Wieder [6]. Among other results, they suggested the
� Supported by Polish Ministry of Science and Higher Education grant N206 355636.

H. Kaplan (Ed.): SWAT 2010, LNCS 6139, pp. 395–407, 2010.
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following simple strategy. Begin with a maximum k-matching F of the input
graph, i.e. a subgraph of maximum degree k which has maximum number of
edges. This can be done in polynomial time (see e.g. [12]). Since a k-ECS is a
k-matching itself, F has at least as many edges as the maximum k-ECS. Hence,
if we color ρ|E(F )| edges of F we get a ρ-approximation. It follows that studying
large k-edge-colorable subgraphs of graphs of maximum degree k is particularly
interesting.

1.1 Large k-Edge-Colorable Subgraphs of Maximum Degree k
Graphs

As observed in [6], if we have a simple G, Δ(G) = k, and we find its (k+1)-edge-
coloring by the algorithm which follows from the proof of Vizing’s Theorem, we
can simply choose the k largest color classes to k-color at least k

k+1 edges of G.
Can we do better? In general: no, and the tight examples are the graphs Kk+1,
for even values of k. Indeed, since each color class is a matching, it can cover
at most k

2 edges, so at most k2

2 out of
(
k+1
2

)
edges can be colored, which gives

γk(G) ≤ k2

2 /
(
k+1
2

)
= k

k+1 . For odd values of k the best upper bound we know is

for graphs Kk+1 with one edge subdivided and it is γk(G) ≤
(

k+1
2

)
/
((

k+1
2

)
+ 1

)
,

by a similar argument as above. This raises two natural questions.

Question 1. When k is odd, can we obtain a better lower bound than k
k+1 for

simple graphs?

Question 2. When k is even and G �= Kk+1, can we obtain a better lower bound
than k

k+1 for simple graphs?

Previous Work. Question 1 has been answered in affirmative for k = 3 by
Albertson and Haas [1], namely they showed that γ3(G) ≥ 26

31 for simple graphs.
They also showed that γ3(G) ≥ 13

15 when G is cubic (and not subcubic) simple
graph. Recently, Rizzi [10] showed that γ3(G) ≥ 6

7 when G is a simple subcubic
graph. The bound is tight by a K4 with an arbitrary edge subdivided (we denote
it by G5). Rizzi also showed that when G is a multigraph with no cycles of length
3, then γ3(G) ≥ 13

15 , which is tight by the Petersen graph. We are not aware of
any results for k bigger than 3.

Our Contribution. In the view of the result of Rizzi it is natural to ask
whether G5 is the only subcubic simple graph G with γ3(G) = 6

7 . We answer
this question in affirmative, namely we show that γ3(G) ≥ 13

15 when G is a simple
subcubic graph different from G5. This generalizes both the bound of Rizzi for
triangle-free graphs and the bound of Albertson and Haas [1] for cubic graphs.
For a subcubic multigraph, the bound γ3(G) ≥ 3

4 (Vizing’s Theorem holds for
subcubic multigraphs) is tight by the K3 with an arbitrary edge doubled (we
denote it by G3). Again, we show that G3 is the only tight example: γ3(G) ≥ 7

9
when G is a subcubic multigraph different from G3. In fact, for the above two
cases we show stronger statements: graph G can be 4-colored so that the largest
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Table 1. Best approximation ratios for the Maximum k-Edge-Colorable Subgraph
problem (μ is the maximum multiplicity of an edge)

k 2 3 4 ≥ 5
simple graphs 5

6
13
15

9
11

k
k+1

source Kosowski [8] this work this work Feige et al. [6]
multigraphs 10

13
7
9

2
3

max{ 2
3
, k

k+μ(G)
, ξ(k)}

source Feige et al. [6] this work Feige et al. [6] Feige et al. [6]

three color classes contain the relevant fraction of all edges. This can be viewed
as a strengthening of Vizing’s Theorem. Our main technical contribution is the
positive answer to Question 2 for k = 4. Namely, we show that γ4(G) ≥ 5

6 when
G is a simple graph of maximum degree 4 different from K5.

1.2 Approximation Algorithms for the Max k-ECS Problem

Previous work. As observed in [6], the k-matching technique mentioned in
the beginning of this section together with the bound γk(G) ≥ k

k+1 of Viz-
ing’s Theorem gives a k

k+1 -approximation algorithm for simple graphs and every
k ≥ 2. For multigraphs we use the same method and we get three different ap-
proximation ratios, depending on which algorithm is used for edge-coloring the
k-matching. Namely, we get a k

k+μ(G) -approximation by Vizing’s Theorem, a
2
3 -approximation by Shannon’s Theorem [13] and an algorithm with approxima-

tion ratio of ξ(k) = k/

⌈
k + 2 +

√
k + 1 +

√
9
2 (k + 2 +

√
k + 1)

⌉
by the recent

algorithm of Sanders and Steurer [11], which is the best known result for large
values of k (note that limk→∞ ξ(k) = 1). Nothing better is known for large values
of k, even for k ≥ 4. The most intensively studied case is k = 2. The research
of this basic variant was initiated by Feige et al. [6], who proposed an algo-
rithm for multigraphs based on an LP relaxation with an approximation ratio of
10
13 ≈ 0.7692. They also pointed out a simple 4

5 -approximation for simple graphs.
This was later improved several times [3,2]. The current best approximation al-
gorithm for 2-ECS problem in simple graphs, with the ratio of 5

6 ≈ 0.833, is due
to Kosowski [8] and is achieved by a very interesting extension of the k-matching
technique (see Section 3).

Kosowski [8] studied also the case of k = 3 and obtained a 4
5 -approximation

for simple graphs, which was later improved by a 6
7 -approximation resulting from

the mentioned result of Rizzi [10].

Our contribution. We generalize the technique that Kosowski used in his
algorithm for the max 2-ECS problem so that it may be applied for arbitrary
number of colors. Roughly, we deal with the situation when for a graph G of
maximum degree k one can find in polynomial time a k-edge colorable subgraph
H with at least α|E(G)| edges, unless G belongs to a family F of “exception
graphs”, i.e. γ(G) < α. As we have seen in the case of k = 3, 4 the set of exception
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graphs is small and in the case of k = 2 the exceptions form a very simple family
of graphs (odd cycles). The exception graphs are the only obstacles which prevent
us from obtaining an α-approximation algorithm (for general graphs) by using
the k-matching approach. In such situation we provide a general framework,
which allows for obtaining approximation algorithms with approximation ratio
better than minA∈F γk(A). See Theorem 3 for the precise description of our
general framework.

By combining the framework and our combinatorial results described in Sec-
tion 1.1 we get the following new results (see Table 1): a 7

9 -approximation of
the max-3-ECS problem for multigraphs, a 13

15 -approximation of the max-3-ECS
problem for simple graphs, and a 9

11 -approximation of the max-4-ECS problem
for simple graphs. Note that the last algorithm is the first result which breaks
the barrier of Vizing Theorem for k ≥ 4.

1.3 Notation

We use standard terminology; for notions not defined here, we refer the reader to
[5]. By N(x) we denote the set of neighbors of x. A graph with maximum degree
3 is called subcubic. Following [1], let ck(G) be the maximum number of edges
of a k-edge-colorable subgraph of G. We also denote ck(G) = |E(G)| − ck(G),
c(G) = cΔ(G)(G) and c(G) = cΔ(G)(G).

2 Combinatorial Results

In this section we will work with multigraphs (though for simplicity we will call
them graphs). We use a result on triangle-free graphs from Rizzi [10].

Lemma 1 (Implicit in Corollary 2 in [10]). Every subcubic, triangle-free
multigraph G has a 4-edge-coloring in which the union of the three largest color
classes has size at least 13

15 |E(G)|.

We need one more definition. Let G∗
5 be the graph on 5 vertices obtained from

the four-vertex cycle by doubling one edge and adding a vertex of degree two
adjacent to the two vertices of the cycle not incident with the double edge.

Theorem 1. Let G be a biconnected subcubic multigraph different from G3, G5
and G∗

5. There exists a 4-edge-coloring of G in which the union of the three
largest color classes has size at least 13

15 |E(G)|.

Proof. We will prove the theorem by induction on the number of vertices of the
graph. We introduce the operation of triangle contraction which is to contract
the three edges of a triangle (order of contracting is inessential) keeping multiple
edges that appear. Note that since G is biconnected and G �= G3, no triangle in G
has a double edge, so loops do not appear after the triangle contraction operation.
If a graph is subcubic, then it will be subcubic after a triangle contraction. Notice
that if a graph has at least five vertices, the operation of triangle contraction
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in subcubic graphs preserves biconnectivity. It is easy to verify the claim for all
subcubic graphs on at most 4 vertices, so in what follows we assume |V (G)| ≥ 5.
W.l.o.g. G has at least one triangle T for otherwise we just apply Lemma 1. Let
G′ be the graph obtained from G by contracting T . Then G′ is subcubic and
biconnected.

First, let us assume that G′ is not isomorphic to G3, G5, or G∗
5. G′ has less

vertices than G so by the induction hypothesis it has a 4-edge-coloring in which
the union of the three largest color classes has size at least 13

15 |E(G′)|. Notice
that it can always be extended to contain all three edges of T . Hence, G has a
4-edge-coloring in which the union of the three largest color classes has size at
least 13

15 |E(G′)|+ 3 ≥ 13
15 |E(G)|.

Now we consider the case when G′ is isomorphic to G3, G5 or G∗
5. In fact,

G′ cannot be isomorphic to G3, because then G would be G5 or G∗
5. There are

only three graphs from which G5 can be obtained after triangle contraction;
they all have 10 edges and a 3-edge-colorable subgraph with 9 > 13

15 · 10 edges.
Similarly, there are only three graphs from which G∗

5 can be obtained after
triangle contraction; they all have 10 edges and a 3-edge-colorable subgraph
with 9 > 13

15 · 10 edges. ��

Corollary 1. Let G be a subcubic multigraph not containing G3 as a subgraph
and different from G5 and G∗

5. There exists a 4-edge-coloring of G in which the
union of the three largest color classes has size at least 13

15 |E(G)|.

Proof. Suppose that the theorem is not true. Let G be a counter-example with
the smallest number of vertices. Clearly, G is connected.

It is easy to check that if every biconnected component of G has a 4-edge-
coloring in which the union of the three largest color classes contains at least 13

15
of its edges, then so does G (note that in a subcubic graph if two biconnected
components share a vertex then one of the components is a bridge). Thus, by
Theorem 1 we can assume that there exists a biconnected component C of G
which is isomorphic to G5 or G∗

5. Since C �= G, there is exactly one edge vw with
v ∈ V (C) and w �∈ V (C). If G− C is isomorphic to G5 or G∗

5 then G is a cubic
graph with 15 edges and has a a 4-edge-coloring in which the union of the three
largest color classes has size 13, a contradiction. Hence, by minimality of G,
G−C has a 4-edge-coloring in which the union of the three largest color classes
has size at least 13

15 |E(G − C)| = 13
15 (|E(G)| − 8). But then it is easy to extend

this coloring to G so that the union of the three largest color classes grows by 7
edges. Since 13

15 (|E(G)| − 8) + 7 > 13
15 |E(G)|, we get a contradiction. ��

Corollary 2. Every subcubic simple graph G different from G5 has a 4-edge-
coloring in which the union of the three largest color classes has size ≥ 13

15 |E(G)|.

Corollary 3. Every subcubic multigraph G different from G3 has a 4-edge-
coloring in which the union of the three largest color classes has size ≥ 7

9 |E(G)|.

Proof. Assume G is biconnected. If G is isomorphic to G5 or G∗
5, then it has

a 4-edge-coloring in which the union of the three largest color classes contains
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at least 6
7 |E(G)| ≥ 7

9 |E(G)| edges. Otherwise, we apply Theorem 1. Hence the
claim holds for biconnected graphs.

Let G be a counter-example with the smallest number of vertices. If every
biconnected component of G has a 4-edge-coloring in which the union of the three
largest color classes has size at least 7

9 of its edges, then so does G. Therefore,
one of the biconnected components C is isomorphic to G3. Then, there is exactly
one edge vw with v ∈ V (C) and w �∈ V (C). If G − C is isomorphic to G3, then
G has 9 edges and a 4-edge-coloring in which the union of the three largest
color classes has 7 edges, a contradiction. Hence, by the minimality of G, G−C
has a 4-edge-coloring in which the union of the three largest color classes has
size at least 7

9 (|E(G)| − 5). But then it is easy to extend this coloring to G
so that the union of the three largest color classes grows by 4 edges. Since
7
9 (|E(G)| − 5) + 4 > 7

9 |E(G)|, we get a contradiction. ��

Finally we state our result on large 4-edge-colorable subgraphs.

Theorem 2. A simple graph G with maximum degree 4 different from K5 has
a 4-colorable subgraph with at least 5

6 |E(G)| edges.

Our approach for proving Theorem 2 is as follows. We begin with an empty
partial coloring and extend it to a “better” partial coloring step by step. Of
course when a coloring c′ has more colored edges than a coloring c, we consider
c′ as better than c. It turns out that if the subgraph induced by uncolored edges
has a connected component of at least 3 edges, one can find a better coloring
in polynomial time. Hence we can focus on uncolored single edges and pairs of
incident edges. The goal is to find a highly structured partial coloring so that
in the neighborhood of each uncolored edge or pair of incident edges there are
many colored edges, which are not too close to other uncolored edges. It turns
out that if a pair of incident uncolored edges does not satisfy this property
then G is isomorphic to K5 or one can get a better coloring. Motivated by
this, we say that a coloring c′ is better than a coloring c also when they have
the same number of colored edges, but c′ has more pairs of incident uncolored
edges. Then, we infer that a single uncolored edge also has a few uncolored edges
nearby for otherwise one can perform some local recoloring and get a new pair
of uncolored incident edges, obtaining a better coloring. Since the number of the
partial coloring improvements is O(|E| · |V |), after polynomial time we get the
desired highly structured partial coloring. The space limitations force us to skip
the full proof in this extended abstract. It will appear in the journal version.

3 Approximation Algorithms

In this section we describe a meta-algorithm for the maximum k-edge-colorable
subgraph problem. It is inspired by a method of Kosowski [8] developed originally
for k = 2. In the end of the section we show that the meta-algorithm gives new
approximation algorithms for k = 3 in the case of multigraphs and for k = 3, 4
in the case of simple graphs.
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Throughout this section G = (V, E) is the input multigraph from a family
of graphs G (later on, we will use G as the family of all simple graphs or of all
multigraphs). We fix a maximum k-edge-colorable subgraph OPT of G.

As many previous algorithms, our method begins with finding a maximum
k-matching F of G in polynomial time. Clearly, |E(OPT)| ≤ |E(F )|. Now, if we
manage to color ρ|E(F )| edges of F , we get a ρ-approximation. Unfortunately
this way we can get a low upper bound on the approximation ratio. Consider
for instance the case of k = 3 and G being the family of multigraphs. Then,
if all connected components Q of F are isomorphic to G3, we get ρ = 3

4 . In
the view of Corollary 3 this is very annoying, since G3 is the only graph which
prevents us for obtaining the 7

9 ratio here. However, we can take a closer look
at the relation of a component Q isomorphic to G3 and OPT. Observe that if
OPT does not leave Q, i.e. OPT contains no edge with exactly one endpoint
in Q then |E(OPT)| = |E(OPT[V \ V (Q)])| + |E(OPT[V (Q)])|. Note also that
|E(OPT[V (Q)])| = 3, so if we take only three of the four edges of Q to our
solution we do not loose anything — locally our approximation ratio is 1. It
follows that if there are many components of this kind, the approximation ratio
is better than 3

4 . What can we do if there are many components isomorphic to
G3 with an incident edge of OPT? The problem is that we do not know OPT.
However, then there are many components isomorphic to G3 with an incident
edge of the input graph G. The idea is to add some of these edges in order to
form bigger components (possibly with maximum degree bigger than k) which
have larger k-colorable subgraphs than the original components.

In the general setting, we consider a family of graphs F ⊂ G such that for
every graph A ∈ F ,

(F1) Δ(A) = k and A has at most one vertex of degree smaller than k,
(F2) ck(A) = ck(K|V (A)|),
(F3) for every edge uv ∈ E(A), a maximum k-edge colorable subgraph of A or

A− uv can be found in polynomial time;
(F4) for a given graph B one can check whether A is isomorphic to B in poly-

nomial time,
(F5) A is 2-edge-connected,
(F6) for every edge uv ∈ A, we have c(A− uv) = c(A).

A family that satisfies the above properties will be called a k-normal family.
We assume there is a number α ∈ (0, 1] and a polynomial-time algorithm A
which for every k-matching H of a graph in G, such that H �∈ F finds its k-edge
colorable subgraph with at least α|E(H)| edges. Intuitively, F is a family of “bad
exceptions” meaning that for every graph A in F , there is c(A) < α|E(H)|, e.g.
in the above example of subcubic multigraphs F = {G3}. We note that the
family F needs not be finite, e.g. in the work [8] of Kosowski F contains all odd
cycles. Now we can state the main result of this section.

Theorem 3. Let G be a family of graphs and let F be a k-normal family of
graphs. Assume there is a polynomial-time algorithm which for every k-matching
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H of a graph in G, such that H �∈ F finds its k-edge colorable subgraph with at
least α|E(H)| edges. Moreover, let

β = inf
A,B∈F

A is not k-regular

ck(A) + ck(B) + 1
|E(A)|+ |E(B)| + 1

, γ = inf
A∈F

ck(A) + 1
|E(A)|+ 1

, and

δ = inf
A,B∈F

ck(A) + ck(B) + 2
|E(A)| + |E(B)|+ 1

.

Then, there is an approximation algorithm for the maximum k-ECS problem
with approximation ratio min{α, β, γ, δ}.

In what follows, we prove Theorem 3. Let Γ be the set of all connected compo-
nents of F that are isomorphic to a graph in F .

Observation 1. Without loss of generality, there is no edge xy ∈ E(G) such
that for some Q ∈ Γ , x ∈ V (Q), y �∈ V (Q) and deg(y) < k.

Proof. If such an edge exists, we replace in F any edge of Q incident with x
with the edge xy. The new F is still a maximum k-matching in G. By (F5) the
number of connected components of F increases, so the procedure eventually
stops with a k-matching satisfying the desired property. ��

When H is a subgraph of G we denote Γ (H) as the set of components Q in
Γ such that H contains an edge xy with x ∈ V (Q) and y �∈ V (Q). We denote
Γ (H) = Γ \Γ (H). The following lemma, a generalization of Lemma 2.1 from [8],
motivates the whole approach.

Lemma 2. |E(OPT)| ≤ |E(F )| −
∑

Q∈Γ (OPT)

ck(Q).

Proof. Since for every component Q ∈ Γ the graph OPT has no edges with
exactly one endpoint in Q,

|E(OPT)| = |E(OPT[V ′])|+
∑

Q∈Γ (OPT)

|E(OPT[V (Q)])|, (1)

where V ′ = V \
⋃

Q∈Γ (OPT) V (Q). Since obviously for every Q in Γ we have
ck(Q) ≤ |E(OPT[V (Q)])| ≤ ck(K|V (Q)|) and by (F2), ck(Q) = ck(K|V (Q)|), we
get

|E(OPT[V (Q)])| = ck(Q). (2)

Since OPT is k-edge-colorable, E(OPT[V ′]) is a k-matching. Since F is maximal,
|E(OPT[V ′])| ≤ |E(F [V ′])|. This, together with (1) and (2) gives the desired
inequality as follows.

|E(OPT)| ≤ |E(F [V ′])|+
∑

Q∈Γ (OPT)

ck(Q) = |E(F )| −
∑

Q∈Γ (OPT)

ck(Q). (3)

��
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The above lemma allows us to leave up to
∑

Q∈Γ (OPT) ck(Q) edges of compo-
nents in Γ uncolored for free, i.e. without obtaining approximation factor worse
than α. In what follows we “cure” some components in Γ by joining them with
other components by edges of G. We want to do it in such a way that the re-
maining, “ill”, components have a partial k-edge-coloring with no more than∑

Q∈Γ (OPT) ck(Q) uncolored edges. To this end, we find a k-matching R ⊆ G
which fulfills the following conditions:

(M1) for each edge xy ∈ R there is a component Q ∈ Γ such that x ∈ V (Q)
and y �∈ V (Q),

(M2) R maximizes
∑

Q∈Γ (R) c(Q),
(M3) R is inclusion-wise minimal k-matching subject to (M1) and (M2).

Lemma 3. R can be found in polynomial time.

Proof. We use a slightly modified algorithm from the proof of Proposition 2.2
in [8]. We define graph G′ = (V ′, E′) as follows. Let V ′ = V ∪{uQ, wQ : Q ∈ Γ}.
Then, for each Q ∈ Γ , the set E′ contains three types of edges:

– all edges xy ∈ E(G) such that x ∈ V (Q) and y �∈ V (Q),
– an edge vuQ for every vertex v ∈ V (Q), and
– an edge uQwQ.

Next we define functions f, g : V ′ → N as follows: for every v ∈
⋃

Q∈Γ V (Q) we
set f(v) = 1, g(v) = k; for every v ∈ V \

⋃
Q∈Γ V (Q) we set f(v) = 0, g(v) = k;

for every Q ∈ Γ we set f(uQ) = 0, g(uQ) = |V (Q)| and f(wQ) = 0, g(wQ) = 1.
Additionally, all edges uQwQ have weight c(Q) while all the other edges have
weight 0. Then we find a maximum weight [f, g]-factor R′ in G′, which can be
done in polynomial time (see e.g. [12]). It is easy to see that R = E(R′) ∩E(G)
fulfills (M1) and (M2). Next, as long as R contains an edge xy such that R− xy
still fulfills (M1) and (M2), we replace R by R− xy. ��

The following lemma shows why the k-matching R is useful.

Lemma 4.
∑

Q∈Γ (R)

ck(Q) ≤
∑

Q∈Γ (OPT)

ck(Q).

Proof. Let ROPT = {xy ∈ E(OPT) : for some Q ∈ Γ , x ∈ Q and y �∈ Q}. Since
OPT is k-edge-colorable, ROPT is a k-matching. By (M2) it follows that∑

Q∈Γ (R)

ck(Q) ≥(M2)
∑

Q∈Γ (ROPT)

ck(Q) =
∑

Q∈Γ (OPT)

ck(Q), (4)

and next ∑
Q∈Γ (R)

ck(Q) =
∑
Q∈Γ

ck(Q)−
∑

Q∈Γ (R)

ck(Q) ≤(4)

∑
Q∈Γ

ck(Q)−
∑

Q∈Γ (OPT)

ck(Q) =
∑

Q∈Γ (OPT)

ck(Q).

��
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The following observation is immediate from the minimality of R, i.e. from con-
dition (M3).

Observation 2. Let HF be a graph with vertex set {Q : Q is a connected com-
ponent of F} and the edge set {PQ : there is an edge xy ∈ R incident with both
P and Q}. Then HF is a forest, and every connected component of HF is a star.

In what follows, the components of F corresponding to leafs in HF are called
leaf components. Now we proceed with finding a k-edge-colorable subgraph S of
G together with its coloring, using the algorithm described below. In the course
of the algorithm, we maintain the following invariants:

Invariant 1. For every v ∈ V , degR(v) ≤ degF (v).

Invariant 2. If F contains a connected component Q isomorphic to a graph in
F , then Q ∈ Γ , in other words a new component isomorphic to a graph in F
cannot appear.

By Observation 2, each edge of R connects a vertex x of a leaf component
and a vertex y of another component. Hence degR(x) = 1 ≤ degF (x). By Ob-
servation 1, initially degF (y) = k, so also degR(y) ≤ degF (y). It follows that
Invariant 1 holds at the beginning, as well as Invariant 2, the latter being trivial.
Now we describe the coloring algorithm.

Step 1: Begin with the empty subgraph S = (V, ∅).
Step 2: As long as F contains a leaf component Q ∈ Γ and a component P ,

such that
– there is an edge xy ∈ R with x ∈ Q and y ∈ P ,
– there is an edge yz ∈ E(P ) such that no connected component of

P − e is isomorphic to a graph in F ,
then we remove xy from R and both Q and yz from F . Notice that if
z was incident with an edge zw ∈ R then by Observation 2, w belongs
to another leaf component Q′. Then we also remove zw from R and Q′

from F . It follows that Invariants 1 and 2 hold.
Step 3: As long as there is a leaf component Q ∈ Γ (R) we do the following.

Let P be the component of F such that there is an edge xy ∈ R with
x ∈ Q and y ∈ P . Then, by Step 2, for each edge yz ∈ E(P ) in graph
P − yz there is a connected component isomorphic to a graph in F . In
particular, by (F1) every edge yz ∈ E(P ) is a bridge in P . Let yz be
any any edge incident with z in P , which exists by Invariant 1. Note
that if P − yz has a connected component C isomorphic to a graph in
F and containing y then every edge of C incident with y is a bridge in
C, a contradiction with (F5). Hence P − yz has exactly one connected
component, call it Pyz, isomorphic to a graph in F and V (Pyz) contains
z. By the same argument, Pyz is not incident with an edge of R. Then
we remove Q, yz and Pyz from F and xy from R. The above discussion
shows that Invariants 1 and 2 hold.
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Step 4: Process each of the remaining components Q of F , depending on its
kind.
(a) If Q ∈ Γ , it means that Q ∈ Γ (R), because otherwise there are

leaf components in Γ (R), which contradicts Step 3. Then we find a
maximum k-edge-colorable-subgraph SQ ⊆ Q, which is possible in
polynomial time by (F3), and add it to S with the relevant k-edge-
coloring.

(b) If Q �∈ Γ we use the algorithm A to color at least α|E(Q)| edges of
Q and we add the colored edges to S.

(c) For every Q, yz and Pyz deleted in Step 3, we find the maximum edge
colorable subgraph Q∗ of Q and P ∗ of Pyz . Note that the coloring
of P ∗ can be extended to P ∗ + yz since degP∗(z) < k. Next we add
Q∗, P ∗ and yz to S (clearly we can rename the colors of P ∗ + yz
so that we avoid conflicts with the already colored edges incident to
y). To sum up, we added ck(Q) + ck(Pyz) + 1 edges to S, which is
ck(Q)+ck(Pyz)+1
|E(Q)|+|E(Pyz)|+1 ≥ β of the edges of F deleted in Step 3.

(d) For every xy and Q deleted in Step 2, let zw be any edge of Q
incident with x and then we find the maximum k-edge-colorable
subgraph Q∗ of Q − zw using the algorithm guaranteed by (F3).
Next we add Q∗ and xy to S (similarly as before, we can rename
the colors of Q∗ + xy so that we avoid conflicts with the already
colored edges incident to y). By (F6), ck(Q − zw) = ck(Q). Recall
that in Step 2 two cases might happen: either we deleted only Q and
yz from F , or we deleted Q, yz and Q′. In the former case we add
ck(Q) + 1 edges to S, which is ck(Q)+1

|E(Q)|+1 ≥ γ of the edges removed
from F . In the latter case we add ck(Q) + ck(Q′) + 2 edges to S,
which is ck(Q)+ck(Q′)+2

|E(Q)|+|E(Q′)|+1 ≥ δ of the edges removed from F .

Proposition 1. Our algorithm has approximation ratio of min{α, β, γ, δ}.

Proof. Let ρ = min{α, β, γ, δ}.

|S| ≥ ρ(|E(F )| −
∑

Q∈Γ (R)

|E(Q)|) +
∑

Q∈Γ (R)

ck(Q) ≥

ρ(|E(F )| −
∑

Q∈Γ (R)

|E(Q)|+
∑

Q∈Γ (R)

ck(Q)) =

ρ(|E(F ) −
∑

Q∈Γ (R)

ck(Q)) ≥(Lemma 4)

ρ(|E(F ) −
∑

Q∈Γ (OPT)

ck(Q)) ≥(Lemma 2) ρ|E(OPT )|.

��

This finishes the proof of Theorem 3. Now we apply it to particular cases.
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Theorem 4. The maximum 3-ECS problem has a 7
9 -approximation algorithm

for multigraphs.

Proof. Let F = {G3}. It is easy to check that F is 3-normal. Now we give the
values of parameters α, β, γ and δ from Theorem 3. By Corollary 3, α = 7

9 .
Notice that c3(G3) = 3 and |E(G3)| = 4. Hence, β = 7

9 , γ = 4
5 and δ = 8

9 . By
Theorem 3 the claim follows. ��

Theorem 5. The maximum 3-ECS problem has a 13
15 -approximation algorithm

for simple graphs.

Proof. Let F = {G5}. It is easy to check that F is 3-normal. Now we give the
values of parameters α, β, γ and δ from Theorem 3. By Corollary 1, α = 13

15 .
Notice that c3(G5) = 6 and |E(G5)| = 7. Hence, β = 13

15 , γ = 7
8 and δ = 14

15 . By
Theorem 3 the claim follows. ��

Theorem 6. The maximum 4-ECS problem has a 9
11 -approximation algorithm

for simple graphs.

Proof. Let F = {K5}. It is easy to check that F is 4-normal. Now we give
the values of parameters α, β, γ and δ from Theorem 3. By Theorem 2, α = 5

6 .
Observe that β = ∞, since F contains only K5 which is 4-regular. Notice that
c4(K5) = 8 and |E(K5)| = 10. Hence, γ = 9

11 and δ = 18
21 . By Theorem 3 the

claim follows. ��
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Abstract. We consider the Degree-Bounded Survivable Network Design Prob-
lem: the objective is to find a minimum cost subgraph satisfying the given con-
nectivity requirements as well as the degree bounds on the vertices. If we denote
the upper bound on the degree of a vertex v by b(v), then we present an algorithm
that finds a solution whose cost is at most twice the cost of the optimal solution
while the degree of a degree constrained vertex v is at most 2b(v) + 2. This im-
proves upon the results of Lau and Singh [13] and Lau, Naor, Salavatipour and
Singh [12].

1 Introduction

The degree-bounded survivable network design problem. In the Survivable Network
Design Problem (SNDP), the input is an undirected graph G = (V, E), connectivity
requirements ρ(u, v) for all pairs of vertices u, v, and a function u : E → ��0 ∪ {∞}
stating an upper bound on the number of copies of e we are allowed to use (if u(e) = ∞,
then there is no upper bound for edge e ). The goal is to select a multiset of edges from E
such that there are ρ(u, v) edge disjoint paths between every u, v ∈ V. In addition, if each
edge has an associated cost given by c : E → R�0, then the goal is to find the minimum
cost solution satisfying the connectivity requirements (each copy of edge e used for
this construction will cost c(e)). Interest in this problem derives from its applications
in algorithm design, networking, graph theory and operations research. This problem
is NP-hard and the best approximation algorithm is, a 2-approximation, due to Jain
[8]. In this paper we will consider the degree bounded variant of the SNDP. Here, in
addition we are given degree constraints b : W0 → ��0 on a subset of vertices W0. The
goal is to find a network of minimum cost satisfying the connectivity requirements and,
in addition, ensuring that every vertex in W0 has degree at most b(v). This problem is
referred to as Minimum Degree-Bounded Survivable Network Design Problem (Deg-
SNDP).

The iterative rounding approach. Jain’s approach for SNDP starts off by writing a nat-
ural linear programming relaxation for it, with a variable for each edge, and considering
an optimal solution to it. In fact, the key to his approach is to consider a vertex optimal
solution to his LP and derive enough structural information from this solution to prove

H. Kaplan (Ed.): SWAT 2010, LNCS 6139, pp. 408–419, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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that it has a variable of value at least 1/2.1 Then, picking this edge and noticing that the
residual problem is also an instance of a (slight generalization) of SNDP, one could
iterate and obtain a solution with cost at most 2 times the cost of the optimal solution.
Fleischer et. al [4] have generalized this to the element connectivity SNDP problem.

For Deg-SNDP, one can easily augment Jain’s LP with degree constraints on the
vertices. It is no longer clear that a vertex optimal solution to this LP should have a
variable of value at least 1/2. It was proved by Lau, Naor, Salavatipour and Singh [12]
that in any vertex optimal solution to this degree-constrained LP, either there is an edge
whose variable has value at least 1/2 or there is a degree constrained vertex such that at
most 4 edges are incident to it in this solution. Using this iteratively2, they obtain an
algorithm which outputs a solution of cost at most 2 times the optimal and such that the
degree of every vertex in this solution is at most 2b(v) + 3.

Necessity of degree bound violations? Improving the 2 in the approximation factor
would result in improving the approximation for the SNDP problem itself and it seems
out of bound. We study to what extent can the 2b(v) + 3 be improved. As shown by
Lau et al. [12], the issue with degree constraints here is that there are instances such
that this LP may be feasible even when there may be no feasible integral solution to
the problem: consider a 3-regular, 3-edge-connected graph without a Hamiltonian Path.
Let W0 = V, b(v) = 1 for all v ∈ V and ρ(u, v) = 1 for all u � v ∈ V. It can be seen
that xe = 1/3 is a feasible solution to this LP. On the other hand, it is easy to observe
that there is no integral solution even when one relaxes the degree bound function from
b(v) = 1 to 2b(v) = 2 for every v ∈ V. This is because such a feasible integral solution
would correspond to a Hamiltonian Path. Hence, in any feasible integral solution, there
must be a vertex v of degree at least 2b(v) + 1 (or b(v) + 2). Further, Lau and Singh
[13] show a family of instances which have a feasible fractional solution but every
integral solution to an instance from their family has a degree constrained vertex v
with degree b(v) + Ω(maxu,v∈V ρ(u, v)). Hence, the best we can hope for, in general,
is an approximation algorithm based on this LP which outputs a solution of cost at
most 2 times that of the optimal of this LP and though it satisfies all the connectivity
requirements, it satisfies the relaxed degree constraints: for every vertex, the degree in
solution obtained is at most 2b(v) + 1.

Our result. We improve the result of [12,13] for Deg-SNDP to 2b(v)+2.More precisely,
we present an algorithm that finds a solution whose cost is at most twice the cost of the
optimal solution while the degree of a degree constrained vertex v is at most 2b(v) + 2.

An important special case of the Deg-SNDP problem is the Minimum Bounded
Degree Spanning Tree Problem. The breakthrough work of Goemans [6] was followed
up by Singh and Lau [17] to provide an optimal, in terms of the degree violations,
LP-based result for this problem. For Deg-SNDP, proving the exact limits of the LP-
based approach has been significantly more challenging as is evident from the work of
[12,13]. This paper leaves us just one step away from this goal.

1 This is not guaranteed at a non-vertex optimal solution.
2 Since intermediate instances arising in their algorithms could have semi-integral degree

bounds, they need to consider a more general input where the degree bounds could be half-
integral.
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Overview and technique. We follow the iterative rounding approach of Jain. We start
with the LP augmented with degree constraints on a set of vertices W0 given as input.
Initially b(v) is an integer for all v ∈ W0. Since in an intermediate iteration we may be
forced to pick an edge of value 1/2, we will have to work with the degree constraint
function b which is half-integral. The instance at any intermediate iteration consists of
the edges which have neither been picked in or dropped from any previous iteration
along with the suitably modified connectivity requirement function and, the set of ver-
tices with degree constraints is a subset of W0. The latter are vertices from which the
degree constraint has not been removed in any previous iteration.

As is usual, during any iteration, we first find a vertex optimal solution x� to the
current instance. One way to prove our result would have been to tighten the Lau et al.
result to show that in any intermediate iteration we can either find an edge e such that
x�e � 1/2 or that there is some degree constrained vertex with at most 3 edges in x� with
value strictly bigger than 0. Unfortunately, we do not know how to prove that. Instead,
we are able to prove the following which suffices to prove our result. Let E>0 denote
those edges with x�e > 0 and let W denote the current set of degree constrained vertices
and b be the degree constraint function on them. Then, one of the following holds:

– there is an edge e such that x�e = 0,
– or there is an edge e such that x�e = 1,
– or there is an edge e = {u, v} such that 1/2 � x�e < 1, and if u ∈ W, then b(u) > 1,

and if v ∈ W, then b(v) > 1,
– or there is a vertex v ∈ W such that degE>0

(v) � 2b(v) + 2.

When we find an edge of value at least 1/2 but strictly less than 1, and we decide to pick
it, we need to reduce the degree of its endpoint(s) if they are constrained. To maintain
feasibility, one can only reduce these degree constraints by at most the value of the edge
picked. Since, we know that this is at least 1/2, we instead choose to reduce the degree
constraint by exactly 1/2. Our invariant allows us to make sure that for any such edge
we find, its endpoints, if degree constrained, never drop below 1. Hence, b(v) never
becomes less than 1. This is not guaranteed by the invariant of Lau et al. Moreover,
we remove the degree constraint from a degree constrained vertex v when degE>0(v)
falls below 2b(v) + 2. The invariant along with this iterative relaxation of constraints
are crucial to the analysis of the algorithm. The main task then becomes to prove this
invariant. This is done by a new token distribution argument the details of which, due
to their highly technical nature, are left to a later section.

Other related work. Network design problems with degree constraints have been exten-
sively studied by researchers in the computer science and operations research commu-
nity. A well known problem is the Minimum Bounded Degree Spanning Tree (MBDST)
problem where the objective is to minimize the cost of the spanning tree while satisfying
the degree constraints on the vertices. This problem is NP-hard as solving an instance
of this problem having degree bound of 2 for each vertex would be equivalent to solving
the Hamilton Path problem on that graph. This problem had been studied extensively
in [5,6,17,3]. The best known algorithm is due to Singh and Lau [17] which returns a
solution of cost atmost the cost of OPT and degree of a degree bounded vertex is at
most 1 more than its degree bound (see [17]).
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The technique of iterative rounding was first introduced by Jain [8] and has been
used subsequently in deriving several other important results such as [9,12,13,1,15].
The special case of SNDP with metric costs has been studied in [7,2]. Other related
network design problems have been studied in [10,11,5]. For a detailed review of itera-
tive rounding, the reader is referred to [14,16].

Organization. We start with formal definitions, the LP relaxation for Deg-SNDP in
Section 2. We present our main theorem and our algorithm in Section 3. In this section
we prove how the main theorem is implied by our main lemma about the vertex optimal
solution. Section 4 is devoted to the proof of the main lemma.

2 Preliminaries

Given an undirected graph G = (V, E) with |V | = n, a subset of vertices W0, a cost func-
tion on the edges c : E → ��0, a edge-multiplicity function u : E → ��0, a connectivity
requirement function ρ : V × V → ��0, and a degree bound function b : W0 → ��0,
the goal in the Minimum Bounded Degree Survival Network Design Problem (Deg-
SNDP) is to find a (multiset) subset of edges H of G of minimum cost such that, at
most u(e) copies of edge e ∈ E are present in H, for every u, v ∈ V, there are ρ(u, v)
edge-disjoint paths connecting u and v in the graph on edges in H and the degree of

every v ∈ W0 in H is at most b(v). Here, cost(H)
def
=
∑

e∈H c(e). For a set S ⊆ V,

let R(S )
def
= maxu∈S ,v∈S̄ ρ(u, v). The function R is weakly super-modular3, and in gen-

eral we will assume the weaker property that the function R is weakly super-modular,
rather than derived from some connectivity function ρ. Hence, we will often denote an
instance of Deg-SNDP by a tuple by (G(V, E),W0, c, u,R, b) where R is any weakly
super-modular function from 2[V] to ��0.

For an instance I = (G(V, E),W0, c, u,R, b) of Deg-SNDP, let opt(I) denote the cost
of the optimal solution. Let lp(I) denote the value of the LP of Figure 1 for I.

lp(I)
def
= minimize

∑
e∈E c(e)xe

subject to
∀S ⊆ V, x(δE(S )) � R(S )
∀v ∈ W0, x(δE(v)) � b(v)
∀e ∈ E, u(e) � xe � 0

Fig. 1. The LP for Deg-SNDP Problem

3 A function f : 2[V] 	→ ��0 is said to be weakly super-modular if f (V) = 0, and for every two
sets S ,T ⊆ V, at least one of the following conditions holds:

– f (S ) + f (T ) � f (S \T )+ f (T\S )
– f (S ) + f (T ) � f (S ∩ T ) + f (S ∪ T ).
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Here x(δ(S ))
def
=
∑

e∈δE (S ) xe where for a set S ⊂ V, and a collection of edges F on
V, δF(S ) denotes the subset of edges of F with one endpoint in S and the other in its
complement. Also, for a set S ⊆ V, let χS ∈ {0, 1}E be the vector such that χS (e =
{i, j}) = 1 if |{i, j} ∩ S | = 1 and χS (e) = 0 otherwise. It is easily seen that this LP is a
relaxation to Deg-SNDP. Also, it is known (see [8]) that this LP has a polynomial time
separation oracle.

We call an algorithm a (α, β, γ)-approximation for Deg-SNDP if on every instance
I of it, the algorithm outputs a collection of edges which have cost at most α · opt(I),
satisfy the R constraints, and the degree of every vertex in v ∈ W is at most β · b(v) + γ.
As mentioned before, the best result known for this problem is due to [12,13] who
gave a (2, 2, 3)-approximation. In this paper we give a new iterative rounding algorithm
which results in a (2, 2, 2)-approximation algorithm for Deg-SNDP. We leave open the
possibility of a (2, 2, 1)-approximation algorithm.

3 Main Theorem and the Algorithm

In this section we prove our main theorem.

Theorem 1 (Main Theorem). There is a polynomial time (2, 2, 2)-approximation al-
gorithm for Deg-SNDP.

The algorithm used appears in Figure 2. We assume that R is weakly super-modular.
A vertex optimal solution of a LP is an optimal solution which cannot be written as a
non-trivial convex combination of two or more feasible solutions to the LP.

It follows from a result of Jain that each iteration of this algorithm can be imple-
mented in polynomial time. It remains to be proved that the algorithm is correct. We
first state the main lemma of the paper and then show how it implies the main theorem.
The proof of the main lemma is the technical core of the paper and appears in Section 4.

Lemma 1 (Main Lemma). Given an instance I = (G(V, E),W, c, u,R, b), where R ∈
��0 is weakly-super-modular, b ∈ ��0 ∪ {� + 1/2}�0 (i.e. b is semi-integral), let (xe)e∈E
be a vertex optimal solution to the LP of Figure 1 for this instance. Let E>0 denote those
edges with xe > 0. Then one of the following holds:

– there is an edge e∗ such that xe∗ = 0,
– or there is an edge e∗ such that xe∗ � 1,
– or there is an edge e∗ = {u, v} ∈ E such that 1 > xe∗ � 1/2, and if u ∈ W, then

b(u) > 1, and if v ∈ W, then b(v) > 1,
– or there is a vertex v ∈ W such that degE>0

(v) � 2b(v) + 2.

Now we see how this lemma implies Theorem 1.

Proof. (of Main Theorem) Lemma 1 implies that each iteration of the algorithm is suc-
cessful. Further, note that the set of edges F satisfies the connectivity requirement func-
tion R of instance I. Hence, when the algorithm ends, since it only picked edges with
value at least 1/2, by a standard argument, the cost of the solution produced by the al-
gorithm is at most 2 · lp(I) � 2 · opt(I). Hence, the only thing left to prove is that for
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1. Given an instance I = (G(V,E),W0, c, u,R, b), initialize
(a) F := ∅, W′ := W0, E′ := E, R′(S ) := R(S ) for all S ⊆ V, b′(v) := b(v) for all v ∈ W′,

u′(e) = u(e) for all e ∈ E
2. While F is not a feasible solution for G satisfying the connectivity function R do

(a) Compute a vertex optimal solution (xe)e∈E to the LP of Figure 1 for the instance
(G(V, E′),W′ , c, u′,R′, b′). Let H := {e ∈ E′ : xe > 0}.

(b) For every edge e with xe = 0, let E′ := E′\{e}.
(c) For every edge e = {u, v} with xe � 1,

i. add �xe� copies of e to F
ii. u′(e) = u′(e) − �xe�

iii. If u ∈ W′,
A. if b′(u) � 3/2 then b′(u) := b′(u) − �xe�,
B. else if b′(u) = 3/2 then b′(u) := 1,

iv. If v ∈ W′,
A. if b′(v) � 3/2 then b′(v) := b′(v) − 1,
B. else if b′(v) = 3/2 then b′(v) := 1,

(d) For every edge e = {u, v} such that 1/2 � xe < 1 and if u ∈ W′, then b′(u) > 1, and if
v ∈ W′, then b′(v) > 1, let

i. F := F ∪ {e},
ii. u′(e) = u′(e) − 1

iii. If u ∈ W′, b′(u) := b′(u) − 1/2,
iv. If v ∈ W′, b′(v) := b′(v) − 1/2.

(e) For every degree constrained vertex v ∈ W′ such that degH(v) � 2b′(v) + 2, let W′ :=
W′\{v}.

(f) For every S ⊆ V, let R′(S ) := R(S ) − |δF (S )|.

Fig. 2. An Iterative Rounding based algorithm for Deg-SNDP
Note that for a vertex u ∈ W′ , if b′(u) = 3/2 then we set b′(u) = 1 on picking an edge adjacent to
u. We do this because our analysis crucially depends on the fact that b′(u) � 1 ∀u ∈ W′ .

every v ∈ W0, its degree in the final integral solution produced by the algorithm is at
most 2b(v) + 2.

Consider v ∈ W0 with degree bound b(v). Suppose that in all the iterations of the
algorithm, we picked n1 edges adjacent to v with value 1, and n1/2 edges with value in
[1/2, 1) adjacent to v. In case we picked a 1-edge adjacent to v when b′(v) was 3/2, then
we had decreased b′(v) by 1/2 and not by 1. Hence, we will count this edge in n1/2 and
not in n1.
There are two cases:

– If at the point when the algorithm terminated vwas still a degree constrained vertex,
then its degree in the solution produced by the algorithm would be n1+n1/2 < 2b(v)
as we decreased the degree bound by at least 1/2 every time we picked an edge
adjacent to v and b′(v) > 0 at the point of termination of the algorithm.
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– If v ∈ W0 was not a degree constrained vertex when the algorithm terminated,
then at some iteration the degree constraint on it had been removed. This happened
when in the set of edges H in that iteration degH(v) � 2b′(v) + 2. Since v had a
degree constraint in that iteration, by a similar argument as above we also get that
n1 + n1/2 � 2(b(v) − b′(v)). Now, degF (v) � n1 + n1/2 + 2b′(v) + 2 � 2b(v) + 2.

This completes the proof of Theorem 1.

4 Proof of Main Lemma

In this section we prove Lemma 1. Consider a vertex optimal solution (xe)e∈E to the LP

for an instance I = (G(V, E),W, c, u,R, b). Let E>0
def
= {e : xe>0}. To prove the lemma

we will assume on the contrary all of the following:

1. 0 < xe < 1 for each e ∈ E>0.
2. If there is an edge e = {u, v} such that 1 > xe � 1/2, and if u ∈ W then b(u) � 1, or if
v ∈ W then b(v) � 1.

3. For every v ∈ W, degE>0
(v) � (2b(v) + 2) + 1 � 5.

The proof of this lemma starts with a well known characterization of the vertex optimal
solution. The following is standard notation in this setting. A family of sets L ⊆ 2[V]

is said to be laminar if for any two sets S , T ∈ L, either one of them is contained in
the other or they are disjoint. In a laminar family, a set S is said to be child of T if T is
the smallest set containing S . (T is called the parent of S .) Thus, a laminar family can
be represented by a forest where the nodes are sets and there is an edge between two
sets S and T if one is the child of the other. Let C(S ) denote the set of children of S .
The maximal elements of the laminar family are referred to as the roots. The following
lemma shows how to derive a laminar family of sets from a vertex optimal solution to
the LP of Figure 1.

Lemma 2. Given an instance I = (G(V, E),W, c, u,R, b), where R is weakly-super-
modular, b ∈ ��0 ∪ {� + 1/2}�0, let (xe)e∈E be a vertex optimal solution to the LP of
Figure 1 for this instance. Then, there exists a laminar family of sets L which partitions
into S andV such that

1. For every v ∈ V ⊆ W, x(δE(v)) = b(v) � 1 and every S ∈ S, x(δE(S )) = R(S ) � 1.
2. |L| = |E>0|.
3. The vectors χS , for S ∈ L, are linearly independent over the reals.

Proof. The proof follows from the uncrossing method, see [12] and [13].

Notation. Before we continue with the proof of Lemma 1, we need some notation. Let
L be the laminar family associated to the vertex solution (xe)e∈E as promised by Lemma
2. We will refer to a member of S as a set and to a member of V as a tight vertex. An
edge e is said to be heavy is 1 > xe � 1/2 and light if 0 < xe < 1/2. We define the
corequirement (coreq) of an edge e as 1/2 − xe if e is light and 1− xe if it is heavy. For a
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set S, coreq(S ) =
∑

e∈δ(S ) coreq(e). We will say that a set S is odd if coreq(S ) = a+ 1/2,
where a ∈ ��0, and that it is even if coreq(S ) ∈ ��0.

We say that a set owns an endpoint u of an edge e = {u, v} if S is the smallest set in L
containing u. For a set S let c(S ) denote the number of children of S , l(S ) the number
of endpoints of light edges owned by it, h(S ) the number of endpoints of heavy edges
owned by it, l′(S ) the number of light edges in δ(S ) and h′(S ) denote the number of
heavy edges in δ(S ). Note that l′(S ) + h′(S ) = |δ(S )| .

We say that an edge e is incident on a set S if e ∈ δ(S ). The degree of a set S is

defined as the number of edges incident on it, i.e., degree(S )
def
= |δ(S )|. The following

fact is easy to see now.

Fact 2 . A set S has semi-integral corequirement only if l′(S ) is odd.

Proof. coreq(S ) =
∑

e∈δ(S ) coreq(e) =
∑

e∈δ(S ) and e is light(1/2−xe)+
∑

e∈δ(S ) and e is heavy(1−
xe) = l′(S )/2 + h′(S ) − f (S ). All the three terms l′(S ), h′(S ), f (S ) ∈ ��0. Therefore, S is
semi-integral only if l′(S ) is odd.

Proof. (of Main Lemma) We will prove Lemma 1 using a counting argument. Initially,
we will assign two tokens to each edge. We will redistribute the tokens in such a manner
that each member of L gets at least 2 tokens while the roots get at least 3 tokens. This
will give us a contradiction to the fact that |L| = |E>0| of Lemma 2.

Token distribution scheme. Initially, we will assign two tokens to each edge. If e = {u, v}
is a light edge then one of the two tokens assigned to e goes to the smallest set containing
u and the other to the smallest set containing v. If e is a heavy edge, then w.l.o.g. assume
that u ∈ W, b(u) = 1. In this case assign both tokens of e to the smallest set containing v.

Claim 3 . [Token Redistribution] Consider a tree T in L rooted at S . The tokens owned
by T can be redistributed in such a way that S gets at least 3 tokens, and each of its
descendants gets at least 2 tokens. Moreover, if coreq(S ) � 1/2, then S gets at least 4
tokens.

Proof. We will prove this claim by induction on the height of T .We start with the base
case.

1. If S is a leaf set and it has no heavy edges incident on it then, since f (S ) =
∑

e∈δ(S ) xe � 1 and ∀e ∈ δ(S ) : xe < 1/2, therefore S has at least 3 edges incident on
it and, hence, will collect at least 3 tokens. It will collect exactly 3 tokens when its
degree is 3 in which case coreq(S ) =

∑
e∈δ(S )(1/2− xe) = 3/2−

∑
e∈δ(S ) xe = 3/2− f (S );

since f (S ) ∈ �+ and coreq(S ) > 0 therefore coreq(S ) = 1/2. Hence, by the induc-
tive hypothesis it suffices for S to collect only 3 tokens.

2. In the case when S has a heavy edge, say e1, incident on it, it will still have at
least 1 other edge incident on it as f (S ) =

∑
e∈δ(S ) xe is a positive integer and ∀e ∈

δ(S ), xe < 1. Recall that, by our assumption a heavy edge must have a tight vertex
with degree bound equal to 1 as one of its end points. Since S is a leaf set, the tight
vertex cannot be contained in S . Therefore, the tight vertex must be that end point
of the heavy edge which is not in S . By our token distribution scheme, S would
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get both the tokens from the heavy edge and at least one token from the other edge.
Hence, it will get at least 3 tokens. S will get exactly 3 only when it has only one
other light edge, say e2, incident on it. In such a case coreq(S ) =

∑
e∈δ(S ) coreq(e) =

(1 − xe1) + (1/2 − xe2 ) = 3/2 − f (S ); since f (S ) ∈ �>0 and coreq(S ) > 0, therefore
coreq(S ) = 1/2. Hence, by the inductive hypothesis it suffices for S to collect only
3 tokens.

3. In the case of a tight vertex v, by our assumption it has degree 5 and, hence, will
collect at least 5 tokens unless it has a heavy edge incident on it, in which case it
might have to give both tokens to the smallest set containing the other endpoint but
will still be able to collect at least 4 tokens.

This proves the base case. Now, we move on to the general case. Let us consider the
case when S is not a leaf in L. If a set has collected t tokens, we will say that it has a
surplus of t − 2. There are four cases:

1. If S has 4 children (either sets or vertices), then S can collect 1 token from each
one of its children, as from the inductive hypothesis each one of its children has a
surplus of at least 1. Thus, S can collect 4 tokens for itself.

2. If S has 3 children (either sets or vertices) and if at least one of them has surplus
2, then S can collect 4 tokens for itself. If S owns any end points then again it can
collect at least 4 tokens: 1 from each its children and at least 1 from the end point(s)
it owns. If all children have a surplus of exactly 1 then S is still able to collect at
least 3 tokens and moreover, by the induction hypothesis, all the children of S must
have a corequirement of 1/2 . Furthermore, if S owns no endpoints then, using Claim
4, we get that S also has a corequirement of 1/2. Hence, by the induction hypothesis
it suffices for S to collect 3 tokens only.

3. If S has 2 children (either sets or vertices) and both of the children have surplus at
least 2 then S can collect 4 tokens from them. If one of them, say S 1 has surplus
exactly 1, then by the induction hypothesis coreq(S 1) = 1/2. In such a case, by using
Claim 6, it must own at least 1 end point and, hence, can collect at least 3 tokens. It
will collect exactly 3 tokens when both the children have a surplus of exactly one
(and, hence, both have a corequirement of 1/2) and S owns exactly one end point
(in which case l(S ) + 2h(S ) = 1). In such a case, by Claim 4, it suffices for S to
collect 3 tokens only.

4. If S has exactly one child, two cases arise:
– If the child is a set then, by Claim 5, S must own at least 2 end points and,

hence, it can collect at least 3 tokens: at least one from the surplus of the child
and at least 2 from end points it owns. S will collect exactly 3 tokens if its
child has a surplus of exactly 1 (which can happen only when the child has
a coreqirement of 1/2) and S owns exactly 2 end points (in which case l(S ) +
2h(S ) = 2). In such a case, by Claim 4, it suffices for S to collect 3 tokens only.

– If the child is a tight vertex v then again 2 cases arise:
• v has an integral degree constraint: this case can be handled akin to case

when the child is a set.
• v has semi-integral degree constraint : In this case b(v) � 3/2 as our algo-

rithm maintains the invariant that b′(v) ∈ �+∪{�++1/2}. By our assumption
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degree(v) � 2b(v) + 3 � 6. Hence, {v} will be able to collect 6 tokens. By
the induction hypothesis it requires only 2 tokens for itself and, hence, can
give 4 tokens to S .

Hence, we have proved Lemma 1.

Now we present the proofs of the claims used in this proof.

Claim 4 . Let S ∈ S and suppose c(S ) + l(S ) + 2h(S ) = 3. Furthermore, assume that
each child of S , if any, has a corequirement of 1/2. Then coreq(S ) = 1/2.

Proof. For a light edge e, coreq(e) = 1/2 − xe < 1/2. For a heavy edge e, coreq(e) =
1 − xe � 1/2 as xe � 1/2.

An argument similar to one used in Exercise 23.3 of [18] can be used to show that S is
also odd. Using Fact 2, coreq(S ) is semi-integral. Now, coreq(S ) �

∑
C∈C(S ) coreq(C)+

∑
e coreq(e) where the second summation is over all those edges whose 1 endpoint is

owned by S . Every term in the first summation is 1/2 and every term in the second
summation is at most 1/2 (by definition of corequirement, coreq(e) � 1/2 ∀e ∈ E).
Note that coreq(S ) is a sum of at most 3 terms each of which is at most 1/2. Therefore,
coreq(S ) � 3/2. Hence, proving that coreq(S ) < 3/2 suffices. We do this next.

A term in the second summation will be exactly equal to 1/2 if the edge corresponding
to it is a heavy edge, i.e. h(S ) = 1. Hence, from the premises of this claim we get
that c(S ) + l(S ) = 1. This means that there can be either 1 light edge or 1 child or
S contributing to the summation. Either of them will contribute at most half to the
summation and, therefore, coreq(S ) � 1. Considering the case when every term in the
second summation is strictly less than 1/2, coreq(S ) < 3/2 and, hence, coreq(S ) = 1/2.
Now the second summation cannot be empty as then the set of edges incident on S
would be exactly all the edges incident on its children. This would contradict the linear
independence of the vectors χ(δ(S )) ∪ {χ(δ(C)}C∈C(S ).

Claim 5 . If a set S has only 1 child which is a set, then S owns at least two end points.

Proof. Let S 1 be a set which is the only child of S . If S owned no end point, that would
contradict the linear independence of χ(δ(S )) and χ(δ(S 1)). Therefore, S owns at least
one endpoint. If S owned exactly one end point (associated with an edge, say e) then
x(δ(S )) and x(δ(S 1)) would differ by a xe, a fraction, which would contradict the fact
that S and S 1 are tight sets having integral connectivity requirements. Hence, S owns
at least two endpoints, which proves this claim.

Claim 6 . If S has two children (either sets or vertices), one of which has a corequire-
ment of 1/2, then S must own at least one end point.

Proof. Let C1 and C2 be the children of S with coreq(C1) = 1/2. If C1 were a tight
vertex, say v, then coreq(v) = 1/2 is equal to (|δ(v)|/2− b(v)) if v has no tight edge incident
on it and is equal to (|δ(v)|/2 + 1/2 − b(v)) if it has a tight edge incident on it. In either
case, |δ(v)| � 2b(v) + 1 and, hence, we would have removed the degree constraint from
v. Therefore, C1 cannot be a tight vertex and, hence, has to be a tight set.
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Suppose S does not own any end point. Let f1
def
=
∑

e∈δ(S )∩δ(C1 ) coreq(e), f2
def
=
∑

e∈δ(C1)∩δ(C2)

coreq(e) and f3
def
=
∑

e∈δ(S )∩δ(C2 ) coreq(e). By definition, f1, f2, f3 � 0. Since χδ(S ), χδ(C1)

and χδ(C2) are linearly independent, there has to be at least one edge incident on C1 and
C2, i.e., |δ(C1) ∩ δ(C2)| � 1. Therefore, f2 > 0. f1 + f2 = coreq(C1) = 1/2. Now, since
coreq(C1) is semi-integral and that C1 is a set, l(C1) must be odd by Fact 2.

Further, l′(S ) = l′(C1)+l′(C2)−2l′(δ(C1)∩δ(C2)). Therefore, if l′(C2) is odd then l′(S )
will be even and if l′(C2) is even then l′(S ) will be odd. l′(C2) and l′(S ) having different
parities implies that S and C2 have different corequirements: one of them being integral
and one being semi-integral. Now, coreq(S )−coreq(C2) = ( f1+ f3)−( f2+ f3) = f1− f2.
But f1, f2 � 0, f1+ f2 = 1/2 and f2 > 0 and, hence, −1/2 < f1− f2 < 1/2, which implies that
coreq(S ) and coreq(C2) (both being half-integral and differing by less than 1/2) must
be equal, which contradicts the fact S and C2 have different corequirements. Hence, it
cannot be the case that S owns no end point.

This completes the proofs.

Extensions. Our techniques trivially extend to the case when there is a lower bound
l(v) on the degree of each vertex v ∈ V . Any degree lower bound constraint can be
considered as a connectivity constraint R(v) = l(v) (for the cut ({v},V\{v})). It can be
easily verified that the augmented connectivity function R still remains weakly super-
modular. Therefore, any feasible solution to LP of Figure 1 with the augmented R will
satisfy all degree lower bounds implicitly.
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Abstract. We study the problem of minimizing the diameter of a graph
by adding k shortcut edges, for speeding up communication in an existing
network design. We develop constant-factor approximation algorithms
for different variations of this problem. We also show how to improve the
approximation ratios using resource augmentation to allow more than
k shortcut edges. We observe a close relation between the single-source
version of the problem, where we want to minimize the largest distance
from a given source vertex, and the well-known k-median problem. First
we show that our constant-factor approximation algorithms for the gen-
eral case solve the single-source problem within a constant factor. Then,
using a linear-programming formulation for the single-source version, we
find a (1 + ε)-approximation using O(k log n) shortcut edges. To show
the tightness of our result, we prove that any ( 3

2
− ε)-approximation for

the single-source version must use Ω(k log n) shortcut edges assuming
P 	= NP.

Keywords: Approximation algorithms, network design, network repair.

1 Introduction

Diameter is an important metric of network performance, measuring the worst-
case cost of routing a point-to-point message or a broadcast. Such communi-
cation operations are ubiquitous in a variety of networks, such as information
networks, data networks, telephone networks, multicore networks, and trans-
portations networks. In information networks, search engines need to access all
nodes (or sometimes just “important” nodes) in the shortest possible time; nodes
might represent webpages and edges links. We can also see this problem as the
information diffusion time in information networks [8,9]. In transportation net-
works, passengers want short commutes. In telephone networks, we want to
reduce the length of the paths between the nodes to reduce connection lag. In
multicore processors, we want to build an underlying network to have short paths
between different cores [2]; in many cases, the bottleneck in running time is the
time spent on communication between cores.

Each of these applications has several constraints on the network design, from
existing infrastructure to connectivity or fault tolerance. Minimizing diameter
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may be at odds with some of these constraints, yet small diameter remains
important. Thus we consider the problem of augmenting an existing network
design with a limited number of additional edges to reduce the diameter as
much as possible.

Many variations are also of interest. We might want to reduce the shortest-
path distances among the nodes in a just special subset of the nodes. In a
telephone or transportation network, a company might only care about distances
among their own nodes (e.g., phone numbers or airports), though doing so might
require adding edges (e.g., cables or flights) anywhere in the network. In an
information network, we might ignore all spam pages.

In the single-source version of the problem, a node wants to construct edges
in order to minimize its distances from the other nodes. This problem has been
considered in selfish agent networks [1,4,5,6], where every node simultaneously
tries to solve the single-source problem. Agents have high incentive to join social
networks with low diameter because messages spread in short time with small
delays. Because the budget of these selfish agents is limited in many applications
[10], they can not add more than a few edges, and they want to minimize their
distances to the other nodes.

Model. In all these applications, we can assume that we are given a weighted
undirected graph G = (V, E, �), a positive integer k, and a nonnegative real
number δ. The length of edge e is represented by �(e). Our goal is to add k
shortcut edges of length δ in order to minimize the diameter of the resulting
graph. Recall that the diameter of a graph is the maximum distance between
two nodes, and the distance between two nodes is the length of the shortest
path between them. In most applications, including [11], δ is a small constant
compared to the diameter of the graph.

Related Work. Meyerson and Tagiku [11] considered the problem of minimizing
the average distance between the nodes instead of the maximum distance. This
is the only work that considers the problem with a hard limit on the budget (the
number of edges we can add). They obtained several constant-factor approxima-
tions using the k-median with penalties problem. They also improved the best
known approximation ratio for metric k-median with penalties, to get better
approximation factors for the other problems they consider. If α denotes the
best approximation known for metric k-median with penalties, they presented
an α-approximation for the single-source average-shortest-path problem, and a
2α-approximation for the general average shortest-path problem.

Our Results. We start with a simple clustering algorithm, and find a lower
bound on the diameter of optimum solution. In Section 2, we find a (4 + ε)-
approximation algorithm (using at most k shortcut edges).

Next we study approximation algorithms with resource augmentation: by al-
lowing the algorithm to add more than k edges, but still comparing to the optimal
solution with just k edges, we can decrease the approximation ratio. To do so,
we study the structure of the optimum solutions in more detail to get a better
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lower bound. In Section 3, we obtain a (2 + ε)-approximation using at most 2k
shortcut edges for small values of δ. Previous work assumes that δ is zero for
simplicity [11], and in most of the applications, it is negligible comparing to the
diameter of the graph.

In Section 4, we study the single-source version of the problem in which we
want to minimize the maximum distance of all nodes from a specified node, called
the source, by adding k shortcut edges. We prove that any α-approximation
algorithm for the original problem (minimizing diameter of the whole graph)
can be seen as a 2α-approximation for the single-source version of the prob-
lem. We present linear-programming approaches to get better approximations
for the single-source version with resource augmentation. We obtain a (1 + ε)-
approximation for the single-source problem using O(k log n) shortcut edges. Our
linear program is similar to that for the k-median problem studied in [3]. To show
the optimality of our algorithm, we prove that any (3

2−ε)-approximation for the
single-source problem uses at least Ω(k log n) shortcut edges assuming P �= NP.

In Section 5, we consider the multicast version of our problems in which only
a given subset of nodes is important, and we want to reduce the maximum
distance between the nodes in the given subset. This problem also has a single-
source variant in which we want to minimize the maximum distance of the nodes
in the subset from a given source node. We show that all of our results apply
just as well to these multicast variations.

2 (4 + ε)-Approximation Using k Shortcut Edges

Let D be the diameter of the current graph G (without any shortcut edges). The
diameter of the optimum solution is a value D′ ≤ D. In fact, there exists a set
of at most k edges S such that the diameter of graph G = (V, E ∪ S) is D′. We
want to find and add k shortcut edges, such that the new graph after adding
our edges has diameter at most a constant times D′.

At first, we estimate the value of D′ with an iterative process as follows. We
need to find a lower bound and an upper bound for D′. We know that D′ is not
more than D. So D can be seen as an upper bound. Let a be the minimum length
of the edges in G. We know that D′ can not be less than min{a, δ} because every
path between any pair of vertices should use at least either one of the current
edges in G or one of the shortcut edges. We can also assume that a is not zero
otherwise we can contract the zero edges, and solve the problem for the graph
after these contractions. If δ is also nonzero, we can use min{a, δ} as a nonzero
lower bound for D′. Otherwise if k is at least n− 1, we can add n− 1 shortcut
zero edges to build a spanning tree with only zero edges. This way, the diameter
of graph would be zero. So the problem is solved. Otherwise we can not reduce
the diameter to δ = 0, and the distance between some pairs of vertices would be
at least a after adding k < n − 1 shortcut edges. So in all cases, we can find a
positive lower bound for D′ which is either min{a, δ} or a. Define L to be this
lower bound. So we can assume that 0 < L ≤ D′ ≤ D.

Choose an arbitrary small ε > 0. There exists an 0 ≤ i ≤ log1+ε (D/L) such
that D/(1 + ε)(i+1) < D′ ≤ D/(1 + ε)i.
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Clustering algorithm. This algorithm receives an input parameter x ≥ 0. We
partition the vertices of our graph into clusters of diameter at most 2x as follows.
At first we pick a subset of vertices S as the centers of our clusters. This set
should satisfy the following properties. The distance between any pair of vertices
of set S in graph G should be greater than 2x− δ. For every vertex u /∈ S, there
should be a vertex v in S whose distance to v is at most 2x − δ. We find a set
S with above properties as follows. Choose an arbitrary vertex from G like v
and put it in S. While there exists a vertex like u outside S whose distance to
every vertex in S is greater than 2x − δ, we add u to S. Clearly this iterative
process finishes in at most n iterations because there are n vertices in G. For
every vertex u outside S, there exists a vertex v in S such that dist(u, v) is at
most 2x−δ where dist(u, v) is the distance between u and v. Otherwise we would
add u to S. Let k′ be |S|, and v1, v2, . . . , vk′ be the vertices in S.

If we add k′ − 1 shortcut edges from v1 to all other center vertices in set S
(v2, v3, . . . , vk′), the diameter of the new graph is at most 2[2x − δ] + 2δ = 4x.
Consider two vertices u and w in the new graph. There are two vertices in vi and
vj in S such that dist(vi, u) ≤ 2x−δ and dist(vj , w) ≤ 2x−δ. We also know that
the distance between vi and vj is at most 2δ in the new graph because they are
both connected to v1 using two shortcut edges. We conclude that we can reduce
the diameter of G to a value at most 4x using k′ − 1 edges. Following we show
how to use this clustering algorithm to solve our problem. Note that D′ is the
diameter of the optimum solution. We show that without using at least k′ − 1
edges, the diameter of graph can not be reduced to x or less. So the number of
edges used in the optimum solution, which is k, should be at least k′− 1 if D′ is
at most x.

Lemma 1. If D′ is at most x, the number of edges used in the optimum solution
is at least k′ − 1, and therefore k is at least k′ − 1.

Proof. Assume that there are less than k′−1 edges used in the optimum solution.
Let G′ be the new graph after addition of shortcut edges of the optimum solution.
Consider a shortest path tree T from vertex v1 in G′. The shortest path tree T
is a tree that contains a shortest path from v1 to every other vertex of graph G′,
i.e., the result of the Dijkstra’s algorithm in graph G′ from source v1. Note that
the distance between v1 and vi in G is greater than 2x− δ because they are both
in S. Their distance in G′ is at most D′. Note that x ≥ D′, and δ can not be
greater than D′ otherwise addition of some edges with length δ does not reduce
the diameter of the graph to some value less than D′. So 2x− δ is at least D′,
and therefore the distance between vi and v1 is reduced during addition of the
new edges. So there exists at least one shortcut edge in the new shortest path
from vi to v1. Let ei be the first shortcut edge in the shortest path from vi to v1
in T ′. For each 2 ≤ i ≤ k′, we have a shortcut edge ei. But there are less than
k′ − 1 shortcut edges in the whole graph. So some of these edges must be the
same.

Suppose ei and ej are the same edge (u′, w′). Let Pi and Pj be the shortest
paths from vi and vj to v1 that both use the edge (u′, w′). Without loss of
generality, assume that the distance from u′ to v1 is less than the distance from
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w′ to v1 in graph G′. So both paths Pi and Pj should use this edge in direction
u′ to w′. Let Qi and Qj be the first parts of the paths Pi and Pj that connects
vi and vj to u′ respectively. So Qi and Qj are two paths that do not use any
shortcut edge (note that we picked the first shortcut edge in each path). Because
the length of Pi and Pj are both at most D′, and they both use at least one
shortcut edge, the lengths of paths Qi and Qj are at most D′ − δ. Because Qi

and Qj are two paths from vi and vj to the same destination u′, and they do not
use any shortcut edge, the length of the shortest path between vi and vj in graph
G is at most the sum of the lengths of Qi and Qj which is 2(D′ − δ) ≤ 2x− 2δ.
This is a contradiction because dist(vi, vj) should be greater than 2x − δ. This
contradiction shows that the number of shortcut edges in the optimum solution
is at least k′ − 1. ��

Now we can use the clustering algorithm iteratively to find a (4 + ε)-
approximation algorithm. Recall that an instance of the problem consists of a
graph G and two parameters k and δ. We should use k shortcut edges of length
δ to minimize the diameter of the graph.

Theorem 1. For any ε′ > 0, there exists a polynomial-time (4 + ε′)-
approximation algorithm that uses at most k shortcut edges.

Proof. We choose an arbitrary small ε > 0. There exists an 0 ≤ i ≤ log1+ε (D/L)
such that D/(1 + ε)(i+1) < D′ ≤ D/(1 + ε)i. We can run the clustering algo-
rithm with x = D/(1 + ε)j for different values of 0 ≤ j ≤ log1+ε (D/L), so for
one of these values, the above inequality holds, and we can estimate D′ with
multiplicative error ε. If the number of clusters k′ is at most k +1, we can find a
solution with diameter 4x by adding k′ − 1 ≤ k edges. If the number of clusters
is more than k + 1, using Lemma 1, we know that D′ > x.

Let x = D/(1+ε)j′ be the smallest value of x for which the number of clusters
is at most x. We can find a solution with diameter 4x = 4D/(1+ε)j′ in this case.
On the other hand, we know that the number of clusters for x = D/(1+ε)j′+1 is
more than k+1, so D/(1+ε)j′+1 is less than D′. We conclude that the diameter
of our solution is at most 4D/(1 + ε)j′ ≤ 4(1 + ε)D′. By choosing ε = ε′/4, we
find a (4 + ε′)-approximation. ��

3 Improving the Approximation Ratio Using 2k Edges

In this section, we show how to use the clustering algorithm to find a solution
with at most 2k additional edges having diameter at most (2 + ε)D′ + 2δ, where
D′ is the diameter of the optimum solution using k additional edges.

We change our clustering algorithm slightly as follows. We pick the vertices
of S such that their distance is greater than 2x instead of 2x − δ. Like before,
we iteratively add a vertex u to S if its distance to all vertices in S is more than
2x. We stop when we can not insert anything to S. Again we run the clustering
algorithm with x = D/(1 + ε)j for different values of 0 ≤ j ≤ log1+ε (D/L). We
prove that this time the number of clusters is not more than 2k when x is at
least D′/2 as follows.
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Lemma 2. If x is at least D′/2, the number of clusters in our algorithm is not
more than 2k + 1.

Proof. Here we show why our algorithm acts like a clustering algorithm. Let
v1, v2, . . . , vk′ be the k′ centers we pick in our algorithm. Partition the vertices of
graph G into k′ clusters as follows. Put v1, v2, . . . , vk′ in clusters C1, C2, . . . , Ck′

respectively. For every other vertex u, find the center vi (1 ≤ i ≤ k′) with
minimum distance dist(vi, u), and put u in cluster Ci (remember dist(vi, u) is
the distance between vi and u in graph G). This distance is at most 2x for every
vertex u by definition of our algorithm (otherwise we could add u to S in the
clustering algorithm). The distance between each pair of the k′ centers is greater
than 2x. We conclude that all vertices in graph G whose distance to vi is at
most x are in cluster Ci for each 1 ≤ i ≤ k′. We can prove this by contradiction.
Assume vertex u whose distance to vi is at most x in in another cluster Cj . It
means that center vj is the closest center to u so the distance between u and vj

is also at most x. Therefore vertex u has distance at most x from both centers
vi and vj . So the distance between two centers vi and vj is at most x + x = 2x
which is a contradiction. We conclude that each cluster contains the vertices
around its own center with radius x (and probably some other vertices as well).

Now consider the optimum solution that uses at most k edges. If the number
of clusters k′ is at most 2k + 1, the claim is proved. Otherwise there exists at
least two clusters like Ci and Cj such that the additional edges are not incident
to the vertices of Ci ∪ Cj . Because every additional edge has two endpoints,
therefore it can be incident to at most two clusters. So the number of clusters
that are incident to some additional edges is not more than twice the number
of additional edges. Because we have at least 2k + 2 clusters, there exists two
clusters like Ci and Cj whose vertices are not incident to any additional edge.

Let G′ be the new graph after adding additional edges in the optimum solu-
tion. The distance between vi and vj should be at most D′ in G′. Their distance
is greater than 2x ≥ D′ in graph G. This means that the shortest path between
vi and vj in G′ should use at least one of the additional edges. Let P be this
shortest path between vi and vj in G′. Suppose vi = u1, u2, u3, . . . , ul = vj are
the vertices of this path. Assume that edge (ua, ua+1) is the first additional edge
in this path, and edge (ub, ub+1) is the last additional edge in this path where
a ≤ b. Let P1 be the first part of the path P before the first additional edge, i.e.,
P1 = (vi = u1, u2, . . . , ua). And let P2 be the last part of the path P after the
last additional edge, i.e., P2 = (ub+1, ub+2, . . . , ul = vj).

The paths P1 and P2 are two shortest paths in graph G′ and G between
pairs of vertices (vi, ua) and (ub+1, vj). Vertices ua and ub+1 are outside clusters
Ci and Cj because these two clusters are not incident to any additional edge,
but vertices ua and ub+1 are both incident to some additional edges. So the
distance between ua and vi is greater than x otherwise ua would be in cluster
Ci (as proved above). So the length of path P1 is more than x. With the same
proof, the length of path P2 is also more than x. So the length of P is greater
than x+x+δ ≥ 2x ≥ D′. This is a contradiction because the distance between vi
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and vj should be at most D′ in the new graph G′. This shows that the number
of clusters k′ is at most 2k + 1. ��

Now if we add k′− 1 from v1 to all other centers, the diameter of the new graph
would be at most 2x+ 2δ. If we choose x such that D′/2 ≤ x ≤ D′(1 + ε)/2, the
number of additional edges in our solution would not be more than 2k, and the
diameter of our graph would be at most (2 + ε) times the optimum solution.

Theorem 2. There is a polynomial-time algorithm which finds a solution with
diameter at most (2 + ε)D′ + 2δ using at most 2k edges.

Proof. Similar to our previous approach, we know that there exists an 0 ≤
i ≤ log1+ε (D/L) such that D/(1 + ε)(i+1) < D′ ≤ D/(1 + ε)i. We can run
our clustering algorithm with x = D/(1 + ε)j for different values of 0 ≤ j ≤
log1+ε (D/L). This way we can find x such that D′/2 ≤ x ≤ D′(1 + ε)/2 in one
of our runs. In that run, we find the desired solution. ��

4 Single-Source Version

In this section, we study the problem of adding k shortcut edges in order to
minimize the maximum distance of all vertices from a given source s. Let e(s)
denote the maximum distance of vertex s from all other vertices, known as the
eccentricity of vertex s.

At first we show that constant-factor approximations for the diameter-
minimization problem can be converted to constant-factor approximations for
the single-source version.

Lemma 3. If there exists an α-approximation for diameter minimization prob-
lem, then there also exists a 2α-approximation for the single-source version.

Proof. Consider a graph G. Let D′ be the minimum possible diameter of G after
adding k shortcut edges. Let rs be the minimum possible e(s) after adding k
shortcut edges. We show that D′/2 ≤ rs ≤ D′. If we add the k edges to reduce
the diameter of G to D′, the eccentricity of s would be also at most D′. So rs

can not be greater than D′. On the other hand, if we add the k edges such that
the distance of every vertex to s is at most rs, the distance between any pair of
vertices can not be greater than rs + rs = 2rs using the triangle inequality. So
the diameter of this graph is at most 2rs. We conclude that D′ ≤ 2rs.

So if we use the α-approximation to minimize diameter, we get a graph with
diameter at most αD′. The eccentricity of s is also at most αD′ which is at most
2αrs. So using the same algorithm we get a 2α-approximation for the single-
source version of the problem. ��

In the remainder of this section, we show how to obtain a (1+ ε)-approximation
algorithms using more additional edges. We use a linear-programming formu-
lation similar to the linear-programming formulations of facility location and
k-median problems. Then we show how the single-source version of the problem
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can solve the set-cover problem. We conclude that any (3
2 − ε)-approximation

for the single-source version should use at least Ω(k log n) edges. This shows the
optimality of our linear-programming algorithm.

We need the following lemma in our algorithm.

Lemma 4. There exists an optimal solution for the single-source version in
which all k shortcut edges are incident to the given source s.

Proof. The proof is similar to the proof of Lemma 1 in [11]. ��

First we solve a decision problem using linear programming. The decision prob-
lem is the following: can we add k shortcut edges to reduce the eccentricity of
vertex s to some value at most x where x is a given value in the input graph?
In the other words, is rs at most x? If rs is at most x, then the following linear
program has a feasible integral solution.

Let v1, v2, . . . , vn be the vertices of the input graph G. Without loss of gen-
erality assume that s is v1. For every vertex vi put a variable yi in the linear
program where 2 ≤ i ≤ n. For every pair of vertices vi and vj put a variable xi,j

where 2 ≤ i, j ≤ n. All these variables are between 0 and 1. If we assume the
integer programming version of this linear program. The variable yi is equal to 1
if there is a shortcut edge from vi to s = v1, and it is zero when there is no such
an edge. We add the constraint

∑n
i=2 yi ≤ k because we know that the number

of shortcut edges is at most k in the optimum solution. Variable xi,j is equal
to 1 if the shortest path from vertex vj to s in the optimum solution uses the
shortcut edge vi to v1. If xi,j is 1, there should be an edge from vi to s. So we
add the constraint xi,j ≥ yi for any 2 ≤ i, j ≤ n. On the other hand, vertex vj

can not use shortcut edge (vi, s) if the distance between vj and vi is more than
x− δ. So we define the variable xi,j only for a pair of vertices (vi, vj) such that
dist(vi, vj) is at most x − δ. If the distance between s and vj is at most x, the
vertex vj does not need to use any shortcut edge to reach s. But if dist(vj , s) is
greater than x, it has to use one of this edges, so we have

dist(vj , s) > x :
∑

i:dist(vi,vj)≤x−δ

xi,j = 1 for 1 ≤ j ≤ n.

Here is the whole formulation of our linear program, or more precisely, our linear
feasibility problem, as we do not want to minimize or maximize anything.

n∑
i=2

yi ≤ k,

xi,j ≤ yi for 2 ≤ i, j ≤ n,∑
i:dist(vi,vj)≤x−δ

xi,j = 1 for 1 ≤ j ≤ n with dist(vj , s) > x.

As described above, if x is at least the optimum solution rs, then the above
linear program has a feasible solution. Next we show how to solve our problem
using this linear program, and then show how to find the best x.
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Lemma 5. If there exists a feasible solution to the above linear program, then
there exists a polynomial-time algorithm that finds O(k log n) shortcut edges
whose addition reduces the eccentricity of vertex s to some value at most x.

Proof. The algorithm proceeds as follows. Solve the linear program and find a
feasible solution. While there exists some vertex in graph whose distance to s is
greater than x, do the following. Add a shortcut edge (vi, s) to the graph with
probability yi for each 2 ≤ i ≤ n. After adding these edges, if there still exist
a set of vertices whose distance to s is greater than x, do the same. Iteratively
add edges to the graph until the distances of all vertices to s are at most x.

When this algorithm stops, the eccentricity of s is at most x. Now we show
that the algorithm does not add a lot of edges compared to the optimum solution.
The expected number of edges we add in each phase is

∑n
i=2 yi, which is at most

k. So we do not add more than k edges in each iteration in expectation. We now
prove that the number of iterations is at most O(log n) with high probability
(probability 1− 1/nc for arbitrary constant c).

Consider a vertex vj whose distance to s is greater than x. Let {va1 , va2 , . . .,
val
} be the set of vertices whose distance to vj is at most x − δ. We know that∑l
i=1 xai,j is equal to 1. On the other hand, we have that yai is at least xai,j .

So
∑l

i=1 yai is at least 1. If we add a shortcut edge from one of these l vertices
to s, the distance of vj to s reduces to at most x. So if its distance to s is still
greater than x after one iteration, it means that we did not add any of these
edges in this iteration.

The probability of the event that we do not add any edge from these k edges
to s in one iteration is

∏k
i=1(1−yai) which is at most [1−(

∑l
i=1 yai/l)]l. Because∑l

i=1 yai is at least 1. This probability is at most (1−1/l)l which is at most 1/e.
So the probability of not choosing any of these edges in p iterations is at most
1/ep. If we do this iterative process for (c + 1) ln (n) times, the distance of vj to
s is greater than x with probability at most 1/e(c+1) ln (n) = 1/n(c+1). Using the
union bound, we can prove that there exists a vertex with distance greater than
x from s with probability at most n · (1/n(c+1)) = 1/nc. So with high probability
(at least 1 − 1/nc) all distances from s are at most x, and the algorithm stops
after (c + 1) ln (n) iterations. ��
Theorem 3. For any ε > 0, there exists a polynomial-time algorithm that adds
O(k log n) edges to reduce the eccentricity of s to at most 1+ε times the optimum
eccentricity rs for k shortcut edges.

Proof. Let r be the eccentricity of the source in the input graph G. The optimum
eccentricity rs is at most r. We also know that rs can not be less than δ. So rs is in
range [δ, r]. Run the above algorithm for x = r/(1+ε)i for 0 ≤ i ≤ log(1+ε) (r/δ).
Consider the smallest x for which the linear program has a feasible solution, and
return the result of the above algorithm in that case. There exists a j for which
rs is in range [r/(1+ε)j+1, r/(1+ε)j]. The linear program has a feasible solution
for x = r/(1 + ε)j because r/(1 + ε)j is at least rs. So we can find a solution
with eccentricity x which is at most (1 + ε)rs using O(k log n) shortcut edges.

��
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Now we reduce the set-cover problem to our single-source problem in order to
show that using o(k log n) shortcut edges, we can not get an approximation ratio
of better than 3

2 .

Theorem 4. Any polynomial-time (3
2 − ε)-approximation algorithm for the

single-source version of our problem needs Ω(k log n) shortcut edges assuming
P �= NP.

Proof. Consider an instance of set cover. There are m sets S1, S2, . . . , Sm, and
we want to find the smallest collection of these sets whose union is equal to the
union of all these m sets. Suppose there are n items in the union of these m sets.
Construct a graph as follows. Let v1, v2, . . . , vn be the items. Put a vertex for
each of these n items. For each set Sj , put a vertex uj. Connect uj and vi for
each 1 ≤ i ≤ n, and 1 ≤ j ≤ m if item vi is in set Sj . Add two other vertices s
and s′. Vertex s is the source of our instance, and is only connected to s′. The
vertex s′ has also m edges to all vertices u1, u2, . . . , um. Set the length of all
edges, and δ to be equal to 1. Now the problem is to add k shortcut edges in
order to minimize the eccentricity of source s in this graph.

The eccentricity of s is now equal to 3. We prove that there exists a set of k
shortcut edges whose addition reduces the eccentricity of s to at most 2 if and
only if there is a solution for set-cover instance with size at most k. Assume that
the set-cover instance has a solution with size at most k. We can add k edges
from s to the vertices associated with these k sets (k subsets in the solution
of the set-cover instance). This way the eccentricity of s would be at most 2.
We now prove that if we can reduce the eccentricity of s using only k edges,
the set-cover instance has a solution of size k. Note that the only vertices whose
distance to s is more than 2 are v1, v2, . . . , vn. Using Lemma 4, we know that the
k edges are all incident to s. We prove that there is an optimal solution in which
all edges are between s and the vertices u1, u2, . . . , um. Assume that there is an
additional edge from s to vi. Any path from s to vj (j �= i) that uses this edge,
has length at least 3. So the only usage of this edge is reducing the distance of
vi to s from 3 to 1. There exists a vertex ul such that there is an edge from vi

to ul (the item vi is in some set Sl). We can add an edge from ul to s instead
of an edge from vi to s. The eccentricity of s would be still at most 2. So we
can assume that all edges are from s to vertices u1, u2, . . . , um. The distances
of all vertices v1, v2, . . . , vn are also at most 2. So for each vi there exists an
additional edge (s, ul) such that item vi is in set Sl. So the k additional edges
form a solution of size k for the set-cover instance.

Assume that there exists a (3
2 − ε)-approximation algorithm A for the single-

source problem. For any k, if there is a solution of size at most k for the set-
cover instance, the eccentricity of s in the optimum solution of the single-source
instance is at most 2. So the eccentricity of s in the solution of algorithm A
can not be 3 or more. Because algorithm A is a (3

2 − ε)-approximation, so it
has to find a solution with eccentricity at most 2 · (3

2 − ε) < 3. The fact that
the eccentricity can only take integer values shows that the result of algorithm
A also has eccentricity at most 2. The result of algorithm A can be converted
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to a solution for the set-cover instance. We also know that there is no o(log n)-
approximation for set-cover problem [7], so algorithm A uses at least O(k log n)
in its solution. This completes the proof. ��

5 Multicast Version

In this section we show that our results and techniques are all applicable in the
multicast version of the problem in which we just care about a subset of the
nodes. Formally we are given an undirected weighted graph G = (V, E, �), and
a subset of vertices V ′ ⊆ V . We want to add k shortcut edges (of a fixed given
length δ) in order to minimize the maximum distance between the nodes in set
V ′. In previous parts, we showed how to solve this problem when V ′ is equal
to V . In the single-source version of the multicast problem, we are also given a
source node s, and we want to minimize the maximum distance of nodes in V ′

from source s.
For our clustering algorithm, we just need to pick centers from vertex set V ′.

So we do not select any vertex outside V ′ as a center in our algorithm. We stop
when we can not select any vertex of set V ′. We get the same approximation
ratio by this method, and all proofs and claims work similarly in this case as
well.

For the linear-programming approach, we have to write the constraint∑
i:dist(vi,vj)≤x−δ xi,j = 1 for vertex vj if vj is in set V ′, and its distance from s

is greater than x, i.e., dist(vj , s) > x. Because the distances of vertices outside
V ′ from s are not important for us. Again all claims can be proved in the same
way in this case as well. To make it more clear, the new linear-programming
formulation is the following:

n∑
i=2

yi ≤ k,

xi,j ≤ yi for 2 ≤ i, j ≤ n,∑
i:dist(vi,vj)≤x−δ

xi,j = 1 for j ∈ V ′ with dist(vj , s) > x.
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