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Preface

This book contains refereed and improved papers presented at the 8th IAPR
Workshop on Graphics Recognition (GREC 2009), held in La Rochelle, France,
July 22–23, 2009. The GREC workshops provide an excellent opportunity for
researchers and practitioners at all levels of experience to meet colleagues and to
share new ideas and knowledge about graphics recognition methods. Graphics
recognition is a subfield of document image analysis that deals with graphical
entities in engineering drawings, sketches, maps, architectural plans, musical
scores, mathematical notation, tables, diagrams, etc. GREC 2009 continued the
tradition of past workshops held in the Penn State University, USA (GREC
1995, LNCS Volume 1072, Springer Verlag, 1996); Nancy, France (GREC 1997,
LNCS Volume 1389, Springer Verlag, 1998); Jaipur, India (GREC 1999, LNCS
Volume 1941, Springer Verlag, 2000); Kingston, Canada (GREC 2001, LNCS
Volume 2390, Springer Verlag, 2002); Barcelona, Spain (GREC 2003, LNCS
Volume 3088, Springer Verlag, 2004); Hong Kong, China (GREC 2005, LNCS
Volume 3926, Springer Verlag, 2006); and (GREC 2007, LNCS Volume 5046,
Springer Verlag, 2008).

The program of GREC 2009 was organized in a single-track 2-day workshop.
It comprised several sessions dedicated to specific topics. For each session, there
was an invited presentation describing the state of the art and stating the open
questions for the session’s topic, followed by a number of short presentations
that contributed by proposing solutions to some of the questions or by presenting
results of the speaker’s work. Each session was then concluded by a panel discus-
sion. Session topics included structural approaches for recognition and indexing,
techniques towards vectorization, sketching interfaces, on-line processing, sym-
bol and shape segmentation, description and recognition, historical documents
analysis, indexing, spotting, and performance evaluation and ground truthing.
In addition, a panel discussion on the state of the art and new challenges was
organized as the concluding session of GREC 2009.

Continuing with the tradition of past GREC workshops, the program of
GREC 2009 included graphics recognition contests. In particular, two contests
were held: an arc segmentation contest, organized by Hasan S.M. Al-Khaffaf and
Abdullah Zawawi Talib, and a symbol recognition contest, organized by Philippe
Dosch, Ernest Valveny and Mathieu Delalandre. In these contests, for each con-
testant, test images and ground truths were prepared in order to have objective
performance evaluation conclusions on their methods.

After the workshop, all the authors were invited to submit enhanced versions
of their papers for this edited volume. The authors were encouraged to include
ideas and suggestions that arose in the panel discussions of the workshop. Every
paper was evaluated by two or three reviewers. At least one reviewer was assigned
from the workshop attendees. Papers appearing in this volume were selected, and
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most of them were thoroughly revised and improved, based on the reviewers’
comments. The structure of this volume is organized in seven sections, reflecting
the workshop session topics.

We want to thank all paper authors and reviewers, contest organizers and
participants, and workshop attendees for their contributions to the workshop and
this volume. In particular, we gratefully acknowledge Karl Tombre for leading
the panel discussion and the group of the University of La Rochelle for their
great help in the local arrangements of the workshop.

The 9th IAPR Workshop on Graphics Recognition (GREC 2011) is planned
to be held at Seoul, Korea.

April 2010 Jean-Marc Ogier
Liu Wenyin

Josep Lladós
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Use of Perceptive Vision for Ruling Recognition
in Ancient Documents

Aurélie Lemaitre1, Bertrand Coüasnon2, and Jean Camillerapp2

1 Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes
2 INSA, Avenue des Buttes de Coësmes, F-35043 Rennes

UMR IRISA, Campus de Beaulieu, F-35042 Rennes
Université Européenne de Bretagne, France

Abstract. Rulings are graphical primitives that are essential for docu-
ment structure recognition. However in the case of ancient documents,
bad printing techniques or bad conditions of conservation induce prob-
lems for their efficient recognition. Consequently, usual line segment ex-
tractors are not powerful enough to properly extract all the rulings of
a heterogeneous document. In this paper, we propose a new method for
ruling recognition, based on perceptive vision: we show that combining
several levels of vision improves ruling recognition. Thus, it is possible to
put forward hypothesis on the nature of the rulings at a given resolution,
and to confirm or infirm their presence and find their exact position at
higher resolutions.

We propose an original strategy of cooperation between resolutions
and present tools to set up a correspondence between the elements ex-
tracted at each resolution. We validate this approach on images of ancient
newspaper pages (dated between 1848 and 1944). We also propose to use
the extracted rulings for the structure analysis of newspaper pages. We
show that using more reliable extracted rulings simplifies and improves
document structure recognition.

1 Introduction

Rulings are a base for the analysis of strongly structured documents like forms,
tables or newspapers [3]. However, in the case of ancient or damaged documents,
the recognition of rulings is complex: old printing techniques may produce irreg-
ular, speckled or dashed lines; bad method of conservation causes smearing ink
and folding of the paper; the digitalization step can cause skew and curvature.
Some examples of rulings that are difficult to detect in ancient documents are
presented on figure 1.

The classical methods of the literature, based on projection or Hough trans-
form are not always convenient: for example they do not easily deal with curva-
ture and skew, and they use global parameters for a whole page. Consequently,
other methods have been proposed in the literature. Gatos et al. present in [2]
a specific process for the extraction of lines, based on gray scale transformation
of the binary image. However, they require an a priori known length and width
in order to determine the pixels that belong to the final ruling. Hadjar et al.

J.-M. Ogier, W. Liu, and J. Lladós (Eds.): GREC 2009, LNCS 6020, pp. 1–11, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 A. Lemaitre, B. Coüasnon, and J. Camillerapp

(a) Speckled thick ruling

(b) Overlapping double rulings

(c) Dashed ruling (d) Line due to a tear

Fig. 1. Examples of rulings that are difficult to detect in ancient documents

in [4] try to detect discontinuous rulings, with an approach based on connected
components. Nevertheless, they need to know a maximum distance to group
components into a single ruling. A threshold is also required in the work of Liu
et al. presented in [8]. In all these methods dedicated to damaged documents, a
strong a priori knowledge is used to answer the problem of the variation of the
thickness of the rulings in the same document, and to deal with over segmented
rulings. Xi et al. [9] propose a method based on curvelets, using different resolu-
tions of an image. However, their method is not able to deal with curvature or
with slope bigger than 2 degrees, that frequently occurs in digitized documents.

Hori and Doerman present in [5] a multi-level analysis for form recognition. We
follow this idea in order to solve more generally the problem of ruling recognition.
We propose a new approach based on a mechanism used by the human eye: the
perceptive vision. Indeed, in order to understand a document, our brain combines
the visions at various levels of perception. In the case of rulings, we show that
combining the analysis at various levels of resolution makes more accurate their
extraction. Moreover, this method is able to extract rulings whatever their thick-
ness, and even if they are damaged, without dedicated knowledge on their nature.

In this paper, we first present intuitively how using several levels of perception
of an image can improve ruling recognition. It enables to deduce the perceptive
mechanism that we implemented for ruling recognition. In section 4, we show
the interest of the perceptive vision for ruling recognition with experiments on
old newspapers. At last, thanks to the good obtained results, we propose an
application for newspaper structure recognition.

2 Intuitive Approach

For the perceptive vision of rulings, we choose to combine three levels of percep-
tion. Indeed, we have experimentally noticed that using three levels of perception
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enables to obtain differences between visions that are significant but not too im-
portant. Thus, we build a multiresolution pyramid, by recursive low-pass filtering
and sub-sampling. It recursively divides the dimensions of the images by 4.

On the three obtained resolutions, we apply an efficient line segment extractor,
based on Kalman filtering [7]. Since our visual perception of the document varies,
the detected line segments can differ depending on the resolution.

High resolution (initial image, ex: 300 dpi). When watching a document
with a detailed local vision, that is to say at high resolution, we can see:
pieces of double rulings (figure 1(b)), pieces of thin rulings (figure 1(c)) and
elements due to noise. Thick rulings may not be perceptible because the
white speckle takes too much importance.

Medium resolution (image divided by 4, ex: 75 dpi). When watching this
document at medium resolution, we can see: pieces of double rulings (figure
1(b)), pieces of thin rulings (figure 1(c)), pieces of thick rulings (figure 1(a)),
elements due to noise (figure 1(d)), and straight parts of capital letters.

Low resolution (image divided by 16, ex: 20 dpi). When watching this
document with a global vision, that is to say at low resolution, we can see:
thick rulings (figure 1(a)) that are dark enough, double rulings that appear
as a single ruling (figure 1(b)), and some bold text lines that also appear as
line segments. Thin rulings are too bright to appear at this level.

These different perceptions are gathered in table 1. We distinguish two kinds
of rulings: the ”true” rulings that are real structural elements (thick, thin, and
double ruling) and the ”false” ones that are text lines, pieces of characters and
more globally noise.

Table 1. Perception of line segments at each resolution

Resolution Low Medium High
Thin ruling No Yes Yes
Thick ruling Yes Yes No
Double ruling Yes Yes Yes
Text lines Yes No No
Characters No Yes No
Noise No No Yes

The table 1 shows that the perception of each element at the three resolutions
can determine the kind of studied ruling. Thus, we deduce a strategy of analysis
to recognize each kind of ruling. We now present this mechanism in details.

3 Principles of Implementation of the Perceptive Vision
of Rulings

In this part, we present the elements that are required to implement a perceptive
method of rulling. We present our strategy for combining the line segments that
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are detected at different resolutions. Then, we explain how we have treated two
essential points that are the correspondance between resolutions, and the precise
adjustment of the position of the rulings.

3.1 Strategy of Perceptive Cooperation

The perceptive strategy consists in putting forward hypothesis on the presence
of a ruling, based on the perception at lower resolutions. This hypothesis may
be confirmed or infirmed by the presence of elements on upper resolutions. This
strategy is presented on figure 2.

Fig. 2. Strategy for the combination of visions

The full analysis is realized in three stages: first the study of low resolution
lines and their presence at highest resolutions (medium and high), then the study
of the remaining medium resolution lines and their presence at high resolution,
and at last the remaining line segments at high resolution.

First, we select a line segment at low resolution. If it has not any correspond-
ing element at medium resolution, it may be a text line. Else, the presence of
corresponding elements at high resolution makes it possible to confirm the hy-
pothesis of a thick or a multiple line. We apply the same kind of mechanism to
recognize the thin lines that must have corresponding elements at both medium
and high resolutions. This strategy enables to eliminate line segments that are
detected only at medium or high resolution.

It is important to see that the position of the line segment at the lowest
resolution determines the localization of the search zone at the other resolutions.
Moreover, the vision at the lowest resolution gives knowledge on the studied line:
curvature, skew, length, thickness, that are used to determine how to gather the
pixels at the highest resolution and to constitute the final ruling.
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3.2 Correspondence between Resolutions

The strategy of perceptive cooperation requires to compare some line segments
extracted at various resolutions. In order to easily realize this comparison, we use
a single coordinate system for all the elements of each resolutions of the image.
Thus, the figure 3 represents the three sets of line segments that are extracted
at three resolutions, but that are stored in the same coordinate system.

Fig. 3. Pyramid of images and associated extracted line segments stored in the same
coordinate system

3.3 Adjustment of Position

Using a single coordinate system is necessary but not sufficient to find the exact
position of a ruling. Indeed, the difference of scale between resolutions may cause
errors of quantification. An example is presented on figure 4: a line segment
has been detected at low resolution (figure 4(a)); if we directly transpose it in
the upper resolution (figure 4(b)), its position does not exactly match with the
present black pixels of the image.

In order to solve this problem, we propose to introduce a new concept, the
abstract line, and a new tool of positioning. The abstract line is a polygonal

(a) Line segment at low
resolution

(b) Transposition at high resolution: quantification error

Fig. 4. Example of quantification error
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approximation of a line segment. Thus, it can be manipulated independently of
any resolution. This abstract line is mainly used by the positioning tool that
aims at adjusting precisely the position of a line, according to the presence of
black pixels.

An example of use is presented on figure 5, and enables to treat the quantifi-
cation error presented on figure 4. First, the abstract line is used to define a zone
of interest (figure 5(b)). Indeed, at this step, even if the position of the abstract
line need to be precised, it contains interesting information about the thickness,
the slope and the curvature of the searched ruling, provided by the perception
at lower resolutions. The definition of a zone of interest enables to select a set of
relevant black pixels (figure 5(c)). Then, the role of the positioning tool consists
in adjusting the position of the abstract line according to the present black pixels
(figure 5(d)).

(a) In black, line segment provided by a
lower resolution: quantification error

(b) Definition of a zone of interest around
the abstract line

(c) Selection of black pixels in the search
zone

(d) Adjustment of the polygonal approx-
imation according to present black pixels

Fig. 5. Principle of positioning tool

To sum up, this positioning tool enables to correct small quantification errors
and to provide a precise localization of the abstract lines. It is one of the key
elements that enables to progressively adjust the position of the ruling, taking
into account the different levels of resolution.

4 Evaluation of the Interest of Perceptive Vision

In order to show the interest of the perceptive vision, we apply our method for
ruling recognition in ancient newspapers. More precisely, we propose to compare
our perceptive approach with a monoresolution method.

4.1 Base of Evaluation

We applied our method for the recognition of heterogeneous rulings in pages
of old newspapers, dated between 1848 and 1944, provided by the Archives
Départementales des Yvelines. Some examples of studied images are presented
on figure 6. We manually labeled a ground truth of 4967 rulings in 157 pages of
newspapers

The studied images have an initial size of 5400*8000 pixels. The medium
resolution images have a size of 1350*2000 pixels. The low resolution images
have a size of 330*500 pixels.
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(a) 1875 (b) 1888 (c) 1905

Fig. 6. Examples of studied old newspaper pages

4.2 Metric

In order to evaluate the recognition rate, we have to make a correspondence, for
each image, between the expected rulings of the ground truth, and the rulings
found by the method. We classify the results according to four categories:

– total recognition is the number of expected rulings that have been properly
recognized,

– partial recognition is the number of expected rulings that have been partially
recognized, that is to say the recognized ruling is too short or too long,

– omission is the number of rulings of the ground truth that have not been
detected,

– noise is the number or recognized ruling that does not correspond to any
ruling of the ground truth.

4.3 Using Only One Resolution

Our first experiment consists in extracting the rulings using only one resolution of
the image. Thus, we apply our line segment extractor at this given resolution and
try to gather them into rulings, without using dedicated thresholds. We propose
to compare the obtained results for three different resolutions. This experiment
is illustrated on figure 7. The obtained results are presented on table 2.

Thanks to high resolution (figure 7(a)), we obtain 69.1% of complete recogni-
tion of rulings. Thus, this resolution enables the recognition of many rulings but
is not able to deal with discontinuities: many rulings are only partially recog-
nized, some thick speckled lines are forgotten. On the opposite, the low resolution
(figure 7(c)) enables to detect completely thick rullings but omits all the thin
rulings. The medium resolution (figure 7(b)) presents intermediate results but
that are not better: only 52.6% recognition.

As a conclusion, the obtained results show that, if we have to deal with only
one resolution, the best recognition is obtained with the initial image. Now, we
will compare this results with our perceptive method.
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Table 2. Comparison of three monoresolution approaches on 4967 rulings extracted
from 157 newspaper pages

Method Monoresolution Monoresolution Monoresolution
Resolution High Medium Low

Total recognition 69.1% 52.6% 5.6%
Partial recognition 21.2% 8.5% 2.4%

Omission 9.7% 38.8% 92.0 %
Noise 93.9% 16.6% 2.5 %

Time per image 10.9 sec 3.3 sec 2.6 sec

(a) Rulings built with the single high resolution: over-splitting (circled)

(b) Rulings built with the single medium resolution: over-splitting (cir-
cled)

(c) Rulings built with the single low resolution: omission of many thin
rulings

(d) Rulings built thanks to perceptive approach: good recognition

Fig. 7. Comparison of rulings built with different methods: interest of the perceptive
approach

4.4 Using Perceptive Vision

The figure 7(d) shows the good recognition of rulings thanks to the perceptive
vision. The table 3 present the results obtained with our perceptive method,
faced with the best results obtained in monoresolution, ie with high resolution.

The results show the significant interest of our perceptive method for rul-
ing recognition. Thus, with the perceptive approach, 94.4% rulings are entirely
recognized, againts 69.1% in monoresolution.
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Table 3. Comparison of monoresolution approach with our perceptive method, on
4967 rulings extracted from 157 newspaper pages

Method Monoresolution (high) Perceptive vision
Total recognition 69.1% 94.4%

Partial recognition 21.2% 3.0%
Omission 9.7% 2.6%

Noise 93.9% 31.1%
Time per image 10.9 sec 15.4 sec

The computing time is bigger for the perceptive method, due to the need to
apply the line segment extractor at three resolutions. However, the large increase
of recognition rate compensates for the longer running time.

The weak omission rates with perceptive method (2.6% vs 9.7%) is due to the
better recognition of thick rulings and speckled rulings that are well perceived
thanks to the use of low resolution.

The small partial recognition rate for perceptive approach ( 3.0% vs 21.2% )
shows the interest to be guided by hypotheses that are emitted at low resolution,
in order to combine line segments at high resolution and to form a single ruling.

The smaller noise rate with perceptive method (31.1% vs 93.9%) is due to
the prediction/verification strategy that enables to validate the presence of a
ruling only if it has been perceived at last on two resolutions. The remaining
noise is mainly due to vertical line segments in capital letters of the title. The
introduction of more precise knowledge about newspaper pages will enable to
take this into account.

5 Application to a Real Problem

The obtained results show that a perceptive approach enable to detect more
reliable rulings. These rulings can be used as a base for document structure
recognition.

As an example of application, we introduces our perceptive ruling extractor
into a generic method for document structure recognition, DMOS-P [1] [6]. Thus,
we realized a grammatical description of the structure of newspaper pages, and
its decomposition into boxes. The terminals of this grammar are the rulings.
Thanks to this description in DMOS-P method, we obtain a system that is able
to segment newspaper pages into boxes (figure 8).

We evaluate this method on newspaper pages dated between 1859 and 1944,
provided by the Archives Départementales des Yvelines. More precisely, we no-
ticed that some of the pages were more complicated than other. Thus, in first
pages of the newspapers (figure 8(a)), the rulings have a regular thickness,
whereas the last pages (figure 8(c)) contains advertisement with varied kinds
of rulings. Consequently, we have created two bases of evaluation: one base of
179 first pages, in which we have built a ground-truth of 4148 boxes, and a
second base of 79 last pages with 3480 boxes.
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(a) Example of
first page

(b) Extracted
boxes

(c) Example of
last page

(d) Extracted
boxes

Fig. 8. Segmentation of a newspaper page using rulings detected with perceptive vision

Table 4. Extracting rulings on 179 first pages (good quality rulings)

Version Boxes Over-segmentation Under-segmentation
Monoresolution 4148 10.5% 10.7%

Perceptive approach 4148 10.2% 7.9%
Improvement 33%

Table 5. Extracting rulings on 79 last pages (difficult rulings)

Version Boxes Over-segmentation Under-segmentation
Monoresolution 3480 17.1% 11.3%

Perceptive approach 3480 13.7% 6.2%
Improvement 20% 45%

On these two bases, we propose to compare the segmentation into boxes when
the rulings are obtained in monoresolution, and when the rulings are obtained
with perceptive vision. The obtained results on the two bases are presented on
tables 4 and 5.

The results show that using the perceptive vision for ruling detection improves
structure analysis. The improvement are more significant on the last pages. In-
deed, on these pages, the rulings are particularly difficult to recognize. On these
base, thanks to the rulings extracted with perceptive vision, under-segmentation
decreases by 45% while over-segmentation decreases by 20%.

6 Conclusion

In this paper, we have presented a new method for rulings recognition in ancient
or damaged documents. This method is generic and does not require specific a
priori knowledge on dimensions of the rulings, contrary to the approaches found
in the literature.
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We have shown that the combination of different points of view is necessary in
heterogeneous documents because thick or double rulings are not well perceived
at high resolution, whereas thin rulings are not detected at low resolution. Conse-
quently, we proposed a prediction/verification strategy to combine the different
perceptions. This works leads to the development of a new positioning tool that
enables to set up a correspondence between line segments obtained at different
resolutions, and to deal with quantification errors.

The obtained results show the interest of each resolution for a good ruling
recognition. The perceptive strategy enables a large increase of rulings recogni-
tion. At last, we have also demonstrated that using more reliable detected rulings
improve the analysis of more complex structures.

Thanks to the interesting results, this method has led to an industrial transfer
to Evodia company, who has treated more than 45,000 newspaper pages thanks
to our perceptive method.
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Abstract. The motivation behind our work is to present a new methodology for
symbol recognition. The proposed method employs a structural approach for rep-
resenting visual associations in symbols and a statistical classifier for recognition.
We vectorize a graphic symbol, encode its topological and geometrical informa-
tion by an attributed relational graph and compute a signature from this structural
graph. We have addressed the sensitivity of structural representations to noise,
by using data adapted fuzzy intervals. The joint probability distribution of signa-
tures is encoded by a Bayesian network, which serves as a mechanism for pruning
irrelevant features and choosing a subset of interesting features from structural
signatures of underlying symbol set. The Bayesian network is deployed in a su-
pervised learning scenario for recognizing query symbols. The method has been
evaluated for robustness against degradations & deformations on pre-segmented
2D linear architectural & electronic symbols from GREC databases, and for its
recognition abilities on symbols with context noise i.e. cropped symbols.

Keywords: symbol recognition, overlapping fuzzy interval, structural signature,
Bayesian network.

1 Introduction

Graphics recognition deals with graphic entities in document images and is a subfield of
document image analysis. These graphic entities could correspond to symbols, math-
ematical formulas, musical scores, silhouettes, logos etc., depending on the applica-
tion domain. Llados & Sanchez [1] have very correctly pointed out that the documents
from electronics, engineering, music, architecture and various other fields use domain-
dependent graphic notations which are based on particular alphabets of symbols. These
industries have a rich heritage of hand-drawn documents and because of high demands
of application domains, overtime symbol recognition is becoming core goal of auto-
matic image analysis and understanding systems. Hand-drawn based user interfaces,
backward conversion from raster images to CAD, content based retrieval from graphic
document databases and browsing of graphic documents are some of the typical ap-
plications of symbol recognition. Detailed discussion on the application domains of
symbol recognition has been provided by Chhabra [2] and Llados et al. [3].
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The research surveys by Chhabra [2], Llados et al. [3], Cordella & Vento [4] and
Tombre et al. [5] provide a detailed and state of the art historical review of work done
in the field of symbol recognition over last two decades. Graphic symbol recognition
is generally approached by syntactic, structural, statistical or hybrid methods of pattern
recognition. Syntactic approaches involve the use of grammars and syntactical parsing
[6] and are usually considered as a special case of structural approaches [3]. Structural
and statistical approaches are normally differentiated by the data structures that they
employ for pattern representation. Structural approaches use symbolic data structures
such as strings, trees and graphs, whereas, the statistical approaches are characterized
by the use of feature vectors for representing patterns [6].

Cordella & Vento [4] have provided a detailed listing of methods employing
different structural, statistical or hybrid approaches for graphic symbol recognition. The
symbolic data structures are very powerful in their representational capabilities. How-
ever, the structural approaches lack in the availability of efficient tools for matching
and comparison [6]. On the other hand, the use of feature vectors by many statisti-
cal approaches limits their representational capabilities but the availability of a much
richer repository of mathematical tools in statistical domain [6] and the associated com-
putational advantages, makes them a more favorable choice in certain cases. The use
of light weight feature vectors and computationally powerful statistical classifiers al-
lows to design fast and efficient systems which are sufficiently scalable and domain
independent.

Several research works have been undertaken to combine structural and statistical
approaches, with the aim to utilize their strengths and avoid the weaknesses. Delalan-
dre et al. [7] employ a statistical technique for extracting the components (that compose
the symbol) and the loops formed by these components. Afterwards, they construct
graphs from these loops and deploy an inexact graph matching algorithm for recogni-
tion. Hse et al. [8] have used Zernike descriptor with various statistical classifiers for
sketched symbol recognition. Barrat et al. [9] have used various shape descriptors with
naive Bayes classifier for symbol recognition. Among the hybrid approaches, specially
over last decade, the vectorial signatures (also referred as structural signatures) (2.1)
have gained considerable attention [10]. The vectorial signatures encode the geometric
and topologic relations between elementary vectorial primitives. Many recognition and
spotting systems have been developed around these signatures [11,12,13,14,15,16].

The rest of paper is organized as follows: §2 gives a general description of our
method, §3 is devoted to detailed description of each part of the proposed system, ex-
perimental results are presented in §4 and the paper is concluded with some future
directions of work in §5.

2 The Proposed Method and Related Works

In this section we outline our proposed method and highlight its placement with past
works (that employ a similar methodology). The method is a hybrid of structural and
statistical pattern recognition approaches; we exploit representational power of struc-
tural approaches and employ computational efficiency of statistical classifiers.
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2.1 Vectorial Signatures (or Structural Signatures)

Ventura & Schettini [17] were the first to introduce the concept of vectorial signa-
tures for symbol recognition, back in 1994. They extract thin and thick elementary
structures (in terms of geometric constraints between line primitives) from symbol, de-
scribe them by local features and create a signature for symbol. Finally, they deploy
a hypothesis-and-test paradigm for detecting occurrences of symbols in line drawings.
A recent overview of past works using structural signatures is given by Rusinol [10].
These works include [11,12,13,14,15]. Coustaty et al. [15] have applied structural sig-
nature for symbol recognition. They extract segments from the symbol in image by
Hough transform, describe their spatial organization by a topological graph and com-
pute a structural signature. They have deployed a Galois Lattice as classifier and have
shown the robustness of their method against high levels of degradation. Dosch et al.
[14] (originally proposed for symbol spotting) and its improvement by Rusinol et al.
[13] (for both recognition and spotting), work on a vectorial representation. They ex-
tract spatial relationships between pairs of segments and hierarchically organize them
into basic shapes. Their signature is comprised of the cardinalities of occurrences of
spatial relations between segments in a shape. Zhang et al. [12] work on a vectorial
representation, and use circle and arcs as well, in addition to line primitives. They de-
fine a structural signature in terms of relations between these primitives and employ a
brute force comparison for recognizing a query signature. Qureshi et al. [11] vector-
ize a graphic symbol, construct its Attributed Relational Graph (ARG) and compute
a structural signature for it (the G-Signature). For classification of query symbol they
use nearest neighbors rule with Euclidean distance as measure of dissimilarity. Their
G-Signature is discriminant in case of hand-drawn deformations and has been shown
invariant of rotation and scaling.

These works show the invariance of structural features to transformations and il-
lustrates their representational capabilities. However, we argue that the sensitivity of
structural signatures to noise (degradations & deformations) limits these systems to be
used for real-life applications, and to scale to large number of symbol models. In this
work, we propose to take structural signatures to the domain of fuzzy sets, to enable
them to cope with uncertainties, and extend our previous work [16], which in fact takes
forward the work of [11]. We have selected Bayesian networks for dealing with uncer-
tainty in symbol signatures during learning and recognition phases, and propose to use
(overlapping) fuzzy intervals instead of rigid boundaries [16] for features in signature.
Our motivation behind these choices are the previous works involving Bayesian frame-
work [18] and fuzzy sets [19], that have shown the significance of these methodologies
in improving robustness against uncertainties in data. We have increased the scalability
capabilities of structural signatures by employing uncertainty-management during sig-
nature design, learning and classification phases. The signature is given in Fig.2 and it
is discussed in §3.2.

2.2 Bayesian Networks

Bayesian networks are probabilistic graphical models and are represented by their struc-
ture and parameters. Structure is given by a directed acyclic graph and it encodes the
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dependency relationships between domain variables whereas parameters of the net-
work are conditional probability distributions associated with (each of) its nodes. A
Bayesian network, like other probabilistic graphical models, encodes the joint proba-
bility distribution of a set of random variables, and could be used to answer all possible
inference queries on these variables. A humble introduction to Bayesian networks is
in [20,21].

Bayesian networks have already been applied successfully to a large number of prob-
lems in machine learning and pattern recognition and are well known for their power
and potential of making valid predictions under uncertain situations. But in our knowl-
edge there are only a few methods which use Bayesian networks for graphic symbol
recognition. Recently Barrat et al. [9] have used the naive Bayes classifier in a ‘pure’
statistical manner for graphic symbol recognition. Their system uses three shape de-
scriptors: Generic Fourier Descriptor, Zernike descriptor & R-Signature 1D, and applies
dimensionality reduction for extracting the most relevant and discriminating features to
formulate a feature vector. This reduces the length of their feature vector and eventually
the number of variables (nodes) in Bayesian network. The naive Bayes classifier is a
powerful Bayesian classifier but it assumes a strong independence relationship among
attributes given the class variable. We believe that the power of Bayesian networks is
not fully explored; as instead of using predefined dependency relationships, if we find
dependencies between all variable pairs from underlying data we can obtain a more
powerful Bayesian network classifier. This will also help to ignore irrelevant variables
and exploit the variables that are interesting for discriminating symbols in underlying
symbol set (§3.3 and §3.4).

2.3 Originality of Our Approach

Our method is an original adaptation of Bayesian network learning for the problem
of graphic symbol recognition. For symbol representation, we use a structural signa-
ture. The signature is computed from the ARG of symbol and is composed of geomet-
ric & topologic characteristics of the structure of symbol. We use (overlapping) fuzzy
intervals for computing noise sensitive features in signature. This increases the abil-
ity of our signature to resist against irregularities [19] that may be introduced in the
shape of symbol by deformations & degradations. For symbol recognition, we employ
a Bayesian network. This network is learned from underlying training data by using
the quite recently proposed genetic algorithms by Delaplace et al. [22]. A query sym-
bol is classified by using Bayesian probabilistic inference (on encoded joint probabil-
ity distribution). We have selected the features in signature very carefully to best suit
them to linear graphic symbols and to restrict their number to minimum; as Bayesian
network algorithms are known to perform better for a smaller number of nodes. Our
structural signature makes the proposed system robust & independent of application
domains and it could be used for all types of 2D linear graphic symbols. Also, rela-
tively basic computations are involved for recognizing a query symbol which enables
our system to respond in real time and it could be used, for instance, as a preprocessing
step of a traditional symbol recognition method or for indexation & browsing of graphic
documents.
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3 Detailed Description

In this section we describe the representation, description, learning and classification
phases of our system. These phases have been outlined by Cordella & Vento [4] in
their research survey on symbol recognition. The authors have remarked that almost
all graphics recognition systems could be looked upon as operating in representation,
description and classification phases.

3.1 Representation Phase

This important & basic phase of our system concerns the formation of an Attributed
Relational Graph (ARG) data structure, as proposed by Qureshi et al. [11], and is sum-
marized in Fig.1. The topological and geometric details about structure of symbol are
extracted and are represented by an ARG. In first step, the symbol is vectorized and
is represented by a set of primitives (labels 1, 2, 3, 4 in Fig.1). In next step, these
primitives become nodes and topological relations between them become arcs in ARG.
Nodes have ‘relative length’ (normalized between 0 and 1) and ‘primitive-type’ (Vec-
tor for filled regions of shape and Quadrilateral for thin regions) as attributes; whereas
arcs of the graph have ‘connection-type’ (L, X, T, P, S) and ‘relative angle’ (normalized
between 0◦ and 90◦) as attributes.

Fig. 1. The representation phase

3.2 Description Phase (Fuzziness of Signature)

This phase concerns the extraction of features and computation of structural signature,
from ARG of an underlying symbol. In order to increase the robustness of our signature
and to enable it to resist the irregularities & uncertainties introduced in shape of symbol
as result of noise (degradations & deformations), we introduce (overlapping) fuzzy
intervals to our previous work [16]. Fig.2 presents our proposed structural signature for
a symbol. Our motivation behind choosing structural features is to exploit their ability
to identify symbols in context [13].

Group-1 & Group-2 (of features in structural signature) encode the size of symbol
and arrangement of its primitive components, respectively. These features discriminate
between symbols of different sizes and also between symbols of same size but with
a different arrangement of primitives. Group-3 encodes the density of connections for
nodes. This group discriminates between symbols that have similar number of primi-
tives with a similar arrangement but different density of connections at nodes. Group-4
& Group-5 exploits the attributes of primitives and encodes details of length & angle
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Fig. 2. Structural signature for graphic symbol

attributes. These groups complement the criteria (of Groups-1, Group-2 & Group-3) for
outlining boundaries, between symbol classes, in feature space.

The computation of features in Group-1 & Group-2 is straightforward and is achieved
by counting the relevant information in ARG of graphic symbol. For features in Group-
3, we first compute a list of connection-density counts of all nodes of all ARG of symbols
in underlying symbol set. And then use this list of connection-density counts for finding
connection-density intervals for computing feature in Group-3 of structural signature.
We use a histogram based binning technique from [23] for this purpose. The technique is
originally proposed for discretization of continuous data and is based on use of Akaike
Information Criterion (AIC) [24]. It starts with an initial m-bin histogram of data and
finds optimal number of bins for underlying data. Two adjacent bins are merged by using
an AIC-based cost function as criterion; until the difference between AIC-before-merge
and AIC-after-merge becomes negative. We arrange these bins in overlapping fashion
(fuzzy approach) and use them as intervals for computing number of nodes lying in
different connection-density intervals. This gives us a distribution of nodes in structural
ARG with low, medium and high density of connections, which we use as features of
our signature.

Group-4 (and Group-5) is computed by dividing relative length (and relative angle)
in three overlapping intervals, as shown in Fig.3 (and Fig.4). The overlapping intervals
(fuzzy approach) handle the irregularities caused by distortions and degradations, and
ensure that these irregularities do not affect the signature.

Fig. 3. Intervals for computing number
of small, medium and full length prim-
itives

Fig. 4. Intervals for computing number
of small, medium and full angle con-
nections
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3.3 Learning Phase

After representing the symbols in learning set by ARG and describing them by struc-
tural signatures, we proceed to learning of a Bayesian network. The signatures are first
discretized [23]. We discretize each feature variable (of signature) separately and inde-
pendently of others. The class labels are chosen intelligently in order to avoid the need
of any discretization for them. The discretization of ‘number of nodes’ and ‘number of
arcs’ achieves a comparison of similarity of symbols (instead of strict comparison of
exact feature values). This discretization step also ensures that the features in signature
of query symbol will look for symbols whose number of nodes and arcs lie in same
intervals as that of the query symbol.

The Bayesian network is learned in two steps. First we learn the structure of the
network by genetic algorithms proposed by Delaplace et al. [22]. These are evolution-
ary algorithms, but in our case they have provided stable results (for a given dataset
multiple invocations always returned identical network structures). Each feature in sig-
nature becomes a node of network. The goal of structure learning stage is to find the
best network structure from underlying data which contains all possible dependency re-
lationships between all variable pairs. The structure of the learned network depicts the
dependency relationships between different features in signature. Fig.5 shows one of
the learned structures from our experiments. The second step is learning of parameters
of network; which are conditional probability distributions Pr(nodei|parentsi) associ-
ated to nodes of the network and which quantify the dependency relationships between
nodes. The network parameters are obtained by maximum likelihood estimation (MLE);
which is a robust parameter estimation technique and assigns the most likely parameter
values to best describe a given distribution of data. We avoid null probabilities by us-
ing Dirichlet priors with MLE. The learned Bayesian network encodes joint probability
distribution of the symbol signatures.

Fig. 5. A Bayesian network structure after learning; each node corresponds to a feature variable

The conditional independence property of Bayesian networks helps us to ignore ir-
relevant features in structural signature for an underlying symbol set. This property
states that a node is conditionally independent of its non-descendants given its imme-
diate parents [20]. Conditional independence of a node in Bayesian network is fully
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exploited during probabilistic inference (see §3.4) and thus helps us to ignore irrele-
vant features for an underlying symbol set while computing posterior probabilities for
different symbol classes (see §3.4).

3.4 Classification Phase (Graphic Symbol Recognition)

For recognizing a query symbol we use Bayesian probabilistic inference on the encoded
joint probability distribution. This is achieved by using junction tree inference engine
which is the most popular exact inference engine for Bayesian probabilistic inference
and is implemented in [23]. The inference engine propagates the evidence (signature
of query symbol) in network and computes posterior probability for each symbol class.
Equation 1 gives Bayes rule for our system. It states that posterior probability or prob-
ability of a symbol class ci given a query signature ‘evidence e’ is computed from
likelihood (probability of e given ci), prior probability of ci and marginal likelihood
(prior probability of e). The marginal likelihood (Equation 3) is to normalize the pos-
terior probability; it ensures that the probabilities fall between 0 and 1.

Pr(ci|e) =
Pr(e, ci)
Pr(e)

=
Pr(e|ci) × Pr(ci)

Pr(e)
(1)

where,

e = f1, f2, f3, ..., f16 (2)

Pr(e) =
k∑

i=1

Pr(e, ci) =
k∑

i=1

Pr(e|ci) × Pr(ci) (3)

The posterior probabilities are computed for all ‘ k’ symbol classes and the query sym-
bol is then assigned to class which maximizes the posterior probability i.e. which has
highest posterior probability for the given query symbol.

4 Experimentation

The organization of four international symbol recognition contests over last decade
[25,26,27,28], has provided our community an important test bed for evaluation of
methods over a standard dataset. These contests were organized to evaluate and test the
symbol recognition methods for their scalability and robustness against binary degra-
dation and vectorial deformations. The contests were run on pre-segmented linear sym-
bols from architectural and electronic drawings, as these symbols are representative of a
wide range of shapes [26]. GREC2005 [27] & GREC2007 [28] databases are composed
of the same set of models, whereas GREC2003 [26] database is a subset of GREC2005.

4.1 Symbols with Vectorial and Binary Noise

We experimented with synthetically generated 2D symbols of models collected from
database of GREC2005 [27,31]. In order to get a true picture of the performance of our
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Model Level-1 Level-2 Level-3

Fig. 6. Model symbol with deformations; used
for simulating hand-drawn symbols and applied
using an application from project Epeires [27]

Model GREC’05 Degrade-1

Fig. 7. Model symbol with degraded
example; used to simulate photocopy-
ing / printing / scanning and ap-
plied using ImageMagick [29] & QGar
package [30]

proposed method on this database, we have experimented with 20, 50, 75, 100, 125 &
150 symbol classes. We generated our own learning & test sets (based on deformations
& degradations of GREC2005) for our experiments. For each class the perfect symbol
(the model) along with its 36 rotated and 12 scaled examples was used for learning;
as the features have already been shown invariant to scaling & rotation [11,16] and
because of the fact that generally Bayesian network learning algorithms perform better
on datasets with large number of examples. The system has been tested for its scalability
on clean symbols (rotated & scaled), various levels of vectorial deformations and for
binary degradations of GREC symbol recognition contest (Fig.6 and Fig.7). Each test
dataset was composed of 10 query symbols for each class.

Table 1. Results of symbol recognition experiments

Number of classes (models) 20 50 75 100 125 150
Clean symbols (rotated & scaled) 100% 100% 100% 100% 100% 99%

Hand-drawn deformation
Level-1 99% 96% 93% 92% 90% 89%
Level-2 98% 95% 92% 90% 89% 87%
Level-3 95% 77% 73% 70% 69% 67%

Binary degrade 98% 96% 93% 92% 89% 89%

Table 1 summarizes the experimental results. A 100% recognition rate for clean sym-
bols illustrates the invariance of our method to rotation & scaling. Our method outper-
forms all GREC participants (available results from GREC2003 [26] and GREC2005
[27] competetions) in scalability tests and is comparable to contest participants for low
levels of deformation & degradations. The recognition rates decrease with level of de-
formation and drop drastically for high binary degradations. This is an expected be-
haviour and is a result of the irregularities produced in symbol signature; which is a
direct outcome of the noise sensitivity of vectorization step, as also pointed out by [3].
We used only clean symbols for learning and (thus) the recognition rates truely illus-
trate the robustness of our system against vectorial and binary noise. Fig.8 compares
our results with [11] (The system proposed in [11] presents recognition rates only for
20 models).
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Fig. 8. Comparison of recognition rates

4.2 Symbols with Contextual Noise

A second set of experimentation was performed on a synthetically generated corpus, of
symbols cropped from complete documents [32]. These experiments focused on eval-
uating the robustness of the proposed system against context noise i.e. the structural
noise introduced in symbols when they are cropped from documents. We believe that
this type of noise gets very important when we are dealing with symbols in context in
complete documents and to the best of our knowledge; no results have yet been pub-
lished for this type of noise. We have performed these experiments on two subsets of
symbols: consisting of 16 models from floor plans and 21 models from electronic di-
agrams. The models are derived from GREC2005 database [27,31] and are given in
Fig.9 and Fig.10. For each class the perfect symbol (model), along with its 36 rotated
and 12 scaled examples was used for learning. The examples of models, for learning,
were generated using ImageMagick [29] and the test sets were generated synthetically
[32] with different levels of context-noise (Fig.11) in order to simulate the cropping of
symbols from documents. Test symbols were randomly rotated & scaled and multiple
query symbols were included for each class. The test datasets are available at [33].

Table 2 summarizes the results of experiments for context noise. We have not used
any sophisticated de-noising or pretreatment and our method derives its ability to resist
against context noise, directly from underlying vectorization technique, the fuzzy ap-
proach used for computing structural signature and the capabilities of Bayesian

Fig. 9. Model symbols from electronic
drawings

Fig. 10. Model symbols from
floor plans
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Model = Level-1 = = Level-2 = = Level-3 =

Fig. 11. An arm chair with different levels of context noise

networks to cope with uncertainties. The models for electronic diagrams contain sym-
bols consisting of complex arrangement of lines & arcs, which affects the features in
structural signature as the employed vectorization technique is not able to cope with
arcs & circles; as is depicted by the recognition rates for these symbols. But keeping in
view the fact that we have used only clean symbols for learning and noisy symbols for
testing, we believe that the results show the ability of our signature to exploit the suf-
ficient structural details of symbols and it could be used to discriminate and recognize
symbols with context noise.

Table 2. Results of symbol recognition experiments for context noise

Noise
Model
symbol
(classes)

Query symbol
(each class)

Recognition rate

(match with

topmost result)

Recognition rate

(a match in

top-3 results)

Floor plans
Level-1 16 100 84% 95 %
Level-2 16 100 79% 90 %
Level-3 16 100 76% 87 %

Average recog. rate 80% 91%

Electronic diagrams
Level-1 21 100 69% 89%
Level-2 21 100 66% 88%
Level-3 21 100 61% 85%

Average recog. rate 65% 87%

5 Conclusion

Structural methods are the strongest methods for graphics representation and statisti-
cal classifiers provide efficient recognition techniques. By designing a mechanism to
convert a structural representation to feature vector, the whole range of statistical tools
(classifiers) are opened for that structural representation. First, we have presented an
overlapping fuzzy interval based methodology to convert an ARG based representa-
tion of graphic symbol to a feature vector. Our signature exploits the structural details
of symbols. And second, an original adaptation of Bayesian network learning for the
problem of graphic symbol recognition, has been presented. We represent symbols by
signatures and encode their joint probability distribution by a Bayesian network. We
then use Bayesian probabilistic inference on this network to classify query symbols.
Experimental results show an improvement in recognition rates and scalability of the
old system.
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Our system does not use any sophisticated de-noising or pretreatment and it drives
its power to resist against deformations and degradations, directly from representation,
description, learning and classification phases. We have addressed the issue of sensi-
tivity of structural representations to noise and deformations; by introducing overlap-
ping fuzzy intervals for computing structural signature. The features in signature are
affected by the small quadrilaterals that are produced during vectorization (in case of
noisy symbols), which produce irregularities in signature. The use of fuzzy approach for
computing structural signature and probabilistic inference of Bayesian networks gives
our system a certain level of resistance against these irregularities.

We believe that the recognition rates will be improved for real learning sets which
include deformed and degraded examples as well. The system is extensible to new mod-
els. The signature is invariant to rotation & scaling and robust against deformations &
degradations. It is adapted to underlying symbol set and has a resistance against context
noise. The proposed system has the capability to generate its learning set from models
and could be used for 2D linear symbols from a wide range of application domains.
The use of lightweight signature and statistical classifier makes our method efficient
(could be used for real time queries) and scalable to a large number of symbol classes.
In future we plan to use this method, as quick graphic symbol discrimination technique,
for designing a system for symbol spotting and indexation of line drawing documents.
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Abstract. Two hundred web tables from ten sites were imported into Excel. 
The tables were edited as needed, then converted into layout independent Wang 
Notation using the Table Abstraction Tool (TAT). The output generated by 
TAT consists of XML files to be used for constructing narrow-domain ontolo-
gies. On an average each table required 104 seconds for editing. Augmentations 
like aggregates, footnotes, table titles, captions, units and notes were also ex-
tracted in an average time of 93 seconds. Every user intervention was logged 
and audited. The logged interactions were analyzed to determine the relative in-
fluence of factors like table size, number of categories and various types of 
augmentations on the processing time. The analysis suggests which aspects of 
interactive table processing can be automated in the near term, and how much 
time such automation would save. The correlation coefficient between predicted 
and actual processing time was 0.66.   

Keywords: Document Understanding, Interactive Table Interpretation,  
Performance Evaluation, Ontology Construction, Table Abstraction Tool. 

1   Introduction 

Our objective is to harvest web tables in order to assist our parent project, TANGO, to 
construct, with as little human intervention as possible, an ontology in the relatively 
narrow domain of geopolitics [1]. Since web tables can be readily imported into 
spreadsheet programs like MS-Excel which provide a natural coordinate system for 
tables, we developed the Table Abstraction Tool (TAT) to convert Excel tables into 
Wang Notation [2]. TAT was coded in Visual Basic for Applications (VBA) for ease 
of access to internal Excel formatting variables. If a table exhibits features that cannot 
be handled by TAT, then the operator uses Excel commands to change the table into a 
TAT- admissible format. After verifying the validity of the edited table, TAT creates 
a category notation which preserves the relationship of the header hierarchies to the 
content cells. TAT also processes augmentations like aggregates and footnotes tagged 
by the operator. The Augmented Wang Notation (AWN), which contains both the 
category information and the augmentations, is embedded into an XML file for port-
ability. The edits can be visually verified by highlighting the relationship between 
designated headers and content cells. This proofing method was developed in an ear-
lier tool, WNT, which imported web tables into MATLAB rather than Excel [3]. 
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Although we have conducted (and reported elsewhere) experiments on partial auto-
mation of data extraction from web tables, we believe that interactive processing will 
be necessary for some tables for the foreseeable future and that the properties of ta-
bles that preclude complete automation are worthy of careful study. 

Comprehensive reviews of two decades of research on table processing appear in 
[4, 5]. Algorithms were first developed for specifying cell location in terms of rulings 
or, in the case of unruled tables, the geometric alignment and typographic similarity 
of cell content (e.g.,  [6,7,8,9] ). A recent proposal for an end-to-end system divides 
the task into table detection, segmentation, function analysis, structural analysis and 
interpretation, but was not implemented and does not define which tables can and 
cannot be processed [10]. None of the methods that address web tables (e.g. [11]) 
carry the analysis to the layout-independent multi-category level. Some of the reasons 
why we do not expect table recognition to be fully automated in the near future were 
presented at GREC 1999 [12]. Our model of table processing consists of six interre-
lated tasks: 

 

Task 1. Table Recognition: Detection of tables within a larger document or cor-
pus, and determination of their exact locations and extents. This is not trivial with 
unruled Web tables [13]. 

Task 2. Geometric Structure Extraction: Recognition of the geometric grid 
structure that characterizes all tables and associated text within the table frame 
from grid coordinates. Most classical table processing research, especially on 
scanned tables, addressed this task (e.g. [14]).  

Task 3. Table Interpretation: Associating content cells with the heading struc-
ture and describing their relationship independently of the geometric layout of the 
table. This step targets the underlying logical table. We have recently developed a 
formalism to link Task 3 with Task 2 [15]. 

Task 4. Table Understanding: Determining the conceptual relationships (is-a, 
part-of, owns, quantifies, describes) of the table entries to the contents of other ta-
bles, databases, or ontologies. This step, which we call table understanding [16], 
calls for external knowledge from either the vicinity of the table or extraneous 
sources. It is necessary for conflating tabular data from diverse sources. 

Task 5. Metadata Extraction: Extracting and encoding table attributes that do 
not cleanly fit into either the geometric or the logical views but appear within or 
adjacent to the table. Examples are table title, caption, aggregates, footnotes, and 
units. They have been largely ignored in the table processing literature.  

Task 6. Adaptation: Recalling and exploiting the errors and interventions re-
corded in processing earlier tables to modify the automated aspects of processing 
the current table. The objective is to develop a system that improves with use, i.e., 
an evolutionary system that decreases the need for human intervention. Some re-
searchers call this task learning. 

 

Here, we present an experimental investigation focused on Tasks 3 and 5. In this 
experiment 200 tables were randomly chosen from ten large web sites and were proc-
essed by one operator.  
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In Section 2, we list the novel aspects of our interactive procedure. In Section 3, we 
describe an experimental protocol designed to evaluate the various factors that affect 
interactive table processing. Section 4 presents the analysis of operator interaction 
time throughout the processing of the 200 web tables. Section 5 summarizes our ob-
servations and offers some projections about what aspects of table processing could 
be automated in the short term. 

2   Novel Aspects 

Our work differs from earlier work with respect to 
 

1. Focusing on end-to-end processing of tables from large web sites;  

2. Making use of commercial software to import web tables into a 
spreadsheet and using familiar spreadsheet operations to edit the tables as 
necessary; 

3. Facilitating content analysis by extracting the relationship of headers to 
content cells rather than only the geometric cell structure; 

4. Making provisions for augmentations. 

5. Timing, logging, and analyzing all operator interactions. 

2.1   Excel Tables 

Although several algorithms have been published for finding the cell structure of web 
tables, with the passage of time this has become a non-issue in research. Excel has 
built-in provisions for parsing the hypertext and allocating its content to cells. For 
most sites, it is sufficient to select the table, copy it, and paste into a worksheet. Al-
ternatively, after selection one may use the Excel import menu command. This proc-
ess is not foolproof. Sometimes the contents of a multi-line table cell are distributed 
over several worksheet cells, or separate table cells are merged into one worksheet 
cell. Excel also tries to interpret the data, for instance turning hyphenated numerals 
into a calendar date. Gratuitous data conversions can be prevented by pre-formatting 
the target worksheet as text. Any errors in conversion must be corrected by the opera-
tor. These corrections can be interleaved with the edits necessary to render the table 
admissible for algorithmic processing by TAT. In the experiments reported below, the 
interaction time is included under editing. In spite of the occasional conversion prob-
lems, letting Excel do the heavy lifting has allowed us to concentrate on the more 
subtle issues. 

2.2   Wang Notation 

Xinxin Wang in her 1996 dissertation [17] proposed an abstract “table” data type 
where each logical dimension is defined by a category tree of labeled domains. 
Consider the tables of Fig. 1. The data cell containing “5.0” (a delta cell in Wang 
terminology), is specified by a path through each of the three category trees: 
DEMOGRAPHICS IMMIGRANT, YEAR 1990, and COUNTRY CANADA. 
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DEMOGRAPHICS 

NATIVE IMMIGRANT 
YEAR 

POPULATION IN 
MILLIONS 

1990 2000 1990 2000 

CANADA 22.7 25.4 5.0 5.6 
 

COUNTRY USA 221 249.9 27.4 31.5 

(a) 

DEMOGRAPHICS 

 NATIVE IMMIGRANT 

COUNTRY YEAR   

1990 22.7 5.0 

CANADA 2000 25.4 5.6 

1990 221.3 27.4 

USA 2000 249.9 31.5 

(b) 

Fig. 1. (a) A three-category table;  (b) another table with the same Wang Notation 

There are several conventions for laying out hierarchical table headings. As row 
and column headers are conceptually similar, geometric symmetry would suggest that 
the roles of horizontal and vertical orientations are interchangeable in the layout of 
table headers (Wang Notation does not distinguish them). However, row headings 
above row subheadings are common in English tables, as in Fig. 1b. 

 
DEMOGRAPHICS 

  NATIVE IMMIGRANT 
COUNTRY  YEAR     

1990 22.7 5 
  CANADA  2000 25.4 5.6 

1980 221.3 27.4 
 USA 2000 249.9 31.5 

(a)         

DEMOGRAPHICS 
 NATIVE IMMIGRANT 

COUNTRY YEAR   
1990 22.7 5 

CANADA 2000 25.4 5.6 
2000 221.3 27.4 

USA 2000 249.9 31.5 

(b) 

Fig. 2. (a) A well-formed table (WFT) with two categories; (b) not a WFT 
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A table is well formed if it can be represented in Wang Notation. A necessary con-
dition for a well formed table (WFT) is that any combination of paths, one through 
each category tree, must specify a unique delta cell.  Equivalently, the cardinality of 
the Cartesian product of the unique paths through the category trees must be equal to 
the number of delta cells (which is eight in all of the above tables).The table on top in 
Fig. 2 is not a 3-D table, because there is no delta cell that can be specified by the path 
COUNTRY CANADA,DEMOGRAPHICS IMMIGRANT, and YEAR 1980. It 
is, however, a 2-D WFT, with the category trees of Fig. 3. The table below is not a 
WFT because the paths COUNTRY USA, DEMOGRAPHICS IMMIGRANT, 
and YEAR 2000 lead to either “27.4” or “31.5”. 

TAT checks whether a table is TAT-admissible before it extracts its Wang category 
notation. Tables are TAT-admissible even if the roots of some category trees are 
missing. If the header DEMOGRAPHICS were missing in the table of Fig. 1, TAT 
would simply generate a unique virtual header VH xxxxxxxxxx (Virtual Header with 
the x’s indicating the date-time at which the header was generated in the format: 
mmdd hhmmss) as the parent of subcategories NATIVE and IMMIGRANT. 

 
 
Category 1  (four unique paths)   Category 2  (two unique paths) 

 COUNTRY 
 CANADA    DEMOGRAPHICS 

   YEAR     
       NATIVE 
    1990    
       IMMIGRANT 
    2000 
 USA 

   YEAR  
    1980 

2000 

 
Fig. 3. Category trees of the table of Fig. 2a, shown in TAT’s internal indented notation 

2.3   Augmentations 

An augmentation is information appearing in a table that is not part of the header-to-
content cell mappings. An augmentation may apply to the entire table (e.g., Table 
Title, Table Caption, Notes), to one or more rows or columns (Unit), or to a single cell 
of the table (Footnote). The most interesting augmentation is the aggregate. For in-
stance, NORTH AMERICA could appear in Fig. 1 instead of COUNTRY (Fig. 4). If 
no population is listed for NORTH AMERICA, then it is just a header. But if the 
totals for Canada and USA are listed in that row, then the corresponding paths will be 
NORTH AMERICA NORTH AMERICA, NORTH AMERICA CANADA, 
NORTH AMERICA USA. Therefore this aggregate functions both as a category 
root and as a category leaf cell. Aggregates must be annotated by the operator because 
TAT cannot yet identify them automatically.  
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DEMOGRAPHICS 

NATIVE IMMIGRANT 

YEAR 

POPULATION IN 
MILLIONS 

1990 2000 1990 2000 
NORTH AMERICA 244.0 275.3 32.4 37.1 

CANADA 22.7 25.4 5.0 5.6 
USA 221.3 249.9 27.4 31.5 

Fig. 4. The header NORTH AMERICA is both a category root and an aggregate, and must be 
so tagged in the XML output file 

3   Experimental Protocol 

We sought to determine the main factors that affect the conversion time of web tables 
using TAT. We used the collection of rare and unusual tables from Lopresti and Nagy 
[18] as a guide for selecting tables to evaluate TAT. In particular, we excluded tables 
that were not well-formed or had any of the following characteristics: 

 

1. Non-rectilinear structure.  

2. Text in languages other than English.  

3. Cells containing graphic symbols or figures. 

4. Recursive structure, i.e., a table with a table as one of its content cells. 

5. Concatenation (tables formed by concatenating two or more tables). 

6. Sources other than the World Wide Web and formats other than HTML, 
Microsoft Excel or CSV. 

7. Domains other than Geopolitical or Scientific Research data. 

8. For convenience, we also excluded tables that span more than one HTML 
page or Excel sheet.  

 

The experimental protocol was developed in a pilot study. The pilot study was used to 
determine the final format of the analysis table, which would contain all of the ex-
perimental data to be collected. A bug in TAT that limited the size of the tables to 100 
rows was also found and fixed. The tables used in the pilot study were excluded from 
the evaluation reported below. 

We collected and processed 200 Excel and HTML tables from ten non-profit web-
sites (Table 1). Importing an HTML file into Excel takes negligible time and hence 
both Excel and HTML tables were treated as one. By "collect", we mean: 

 

1. Browse the websites and save the selected files of tables  

2. Store separately the set of 12 tables that we looked at but rejected.   

3. Number serially all the accepted tables for subsequent reference and pseudo-
randomization.   
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Table 1. URLs of table sources 

Site # Table Source 
1 http://www.statcan.gc.ca/ 
2 http://www.sciencedirect.com/  
3 http://www.worldbank.org/ 
4 http://www.ssb.no/english/ 
5 http://www.ojp.usdoj.gov 
6 http://www.geohive.com/ 
7 http://www1.lanic.utexas.edu/la/region/aid/aid98/ 
8 http://eia.doe.gov/ 
9 http://ies.ed.gov/ 
10 http://www.census.gov/population/www/socdemo/voting/cps2006.html 

4   Experimental Results and Discussion 

The main experiment was conducted in 15 sessions. Processing a table required three 
consecutive steps:  

 

1. Editing the table, i.e., transforming it using Excel operations into TAT-
admissible form;  

2. Annotating the table: this requires clicking on the corner cells of the header and 
delta cell regions, and on cells containing the table title, caption, aggregates, 
footnote citations, footnotes, units, and other notes.  

3. Post-processing, which consists of checking TAT’s category assignments by 
highlighting selected header and delta cells, and either initiating a correction 
cycle or starting the XML generation algorithm. 

 

Seven tables in the list could not be processed either because they were poorly con-
structed or because Excel could not interpret their content correctly. Two of these 
actually failed to match our criteria: they were collected by mistake. One of them was 
too large (~85000 cells). 

The total processing time increases with the number of cells (Table 2) for two rea-
sons: Larger tables typically have more augmentations and require scrolling to edit 
them into TAT-compatible format. The total processing time includes checking the 
category assignments by highlighting header and delta cells to display their relation-
ship. It also includes generating the XML output file, which is typically a few seconds. 

Table 2. Effect of table size (# of cells in the table) on Total Processing Time  

Number of 
Cells (RxC) 

Number 
of Tables 

Avg. Total  
Processing Time 

(sec) 
 < 201 78 134.2 

201-400 44 212.3 
401-600 25 242.6 
601-800 13 430.3 

>800 33 394.8 
All tables 193 230.5 
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On an average, 3-D tables take just 27 seconds more than 2-D tables to process 
(Table 3). Our data set had too few tables of lower or higher dimensionality for reli-
able estimates of processing times. 

Table 3. Effect of Wang Dimensionality on Total Processing Time 

Wang  
Dimensionality 

Number 
of Tables 

Avg. Total  
Processing Time 

(sec) 
1 2 150.5 
2 140 224.3 
3 49 251.0 
4 2 247.0 

All tables 193 230.5 

 
Table 4 shows that the editing time more than doubles for tables with more than 

two aggregates compared to tables without aggregates. This does not mean that all the 
tables with aggregates are not TAT-admissible. But to derive the correct Wang nota-
tion/XML, we must transform the table into a form which preserves the category trees 
(Fig. 4). Tables with aggregates also take much longer to annotate than tables without 
aggregates. The maximum number of aggregates was 43 in a single table. As illus-
trated in Fig. 4, aggregates often also serve as top-level row headers. Detecting them 
requires lexical as well as structural analysis.  

Table 5 shows that the presence of footnotes also significantly increases annotation 
time, but has relatively little effect on editing time. The highest number of footnote 
cells encountered in a single table was 214. The current implementation requires the 
user to select each of those cells and annotate it. However, the format of the footnotes 
below the tables and the corresponding footnote references within the table is uniform 
enough to allow hope for automated footnote annotation. 

The number of cells, the Wang dimensionality, and the prevalence of aggregates 
and footnotes provide a measure of the amount of operator interaction required to 
process the table. We predicted the total processing time and the global correlation 
coefficient by multilinear regression on these four “features.” The correlation coeffi-
cients between the actual and predicted processing times are shown in Table 6. 
Sources 6 and 7 contained some poorly constructed/unconventional tables. This re-
sulted in large processing times compared to well-constructed tables with similar 
features. The global correlation coefficient for all tables without regard to their source 
was 0.66. The weighted source correlation coefficient was 0.72 

Table 4.  Effect of aggregates on Editing and Annotation times 

Number of  
Aggregates 

Number 
of Tables 

Avg. Editing 
Time (sec) 

Avg. Annotation 
Time (sec) 

0 106 77.8 60.3 
1 44 120.2 118.9 
2 15 106.5 100.7 

>2 28 177.2 171.6 
All tables 193 104.1 93.0 
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Table 5. Effect of footnotes on Editing and Annotation times 

Number of  
Footnotes 

Number of 
Tables 

Avg. Editing 
Time (sec) 

Avg. Annotation 
Time (sec) 

0 120 99.9 71.4 
1 21 89.8 74.8 
2 17 124.3 138.1 

>2 35 117.4 155.9 
All tables 193 104.1 93.0 

Table 6. Source-specific correlation coefficients 

Source 
 

Number 
of Tables 

Source-specific 
correlation  
coefficient 

1 20 0.78 
2 15 0.85 
3 18 0.97 
4 21 0.62 
5 24 0.79 
6 26 0.40 
7 15 0.42 
8 24 0.87 
9 23 0.72 

10 7 0.99 
Total    193      0.72 

Table 7. Preparation and Action times for each user intervention 

Action 
Preparation or 

Idle Time (Tp) 

Action 

Time (Ta) 

Ratio 

(Tp/Ta) 
Editing into TAT-
admissible form 6.7 97.4 0.1 
Annotation 39.6 52.4 0.8 

Select Title 3.4 2.5 1.4 
Select Caption 0.7 0.9 0.8 
Augmentations 5.0 2.6 1.9 
Footnotes 3.5 14.6 0.2 
Notes 1.8 3.7 0.5 
Aggregates 3.2 7.0 0.5 
Units 0.7 0.6 1.2 
Delta Cell Selection 

& WFT check 10.4 11.8 0.9 
Category Selection 10.9 8.7 1.3 

Post-processing 16.1 19.0 0.8 
Highlighting  

(category check) 14.7 11.1 1.3 
Generate XML 1.4 7.9 0.2 

TOTAL 62.4 168.8 0.4 
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The time elapsed between the completion of an action and the initiation of the next 
action was interpreted as the preparation time for the next action. The preparation and 
action times are shown for each activity in Table 7. As seen earlier, the presence of 
many aggregates and footnotes significantly increases processing time, and most 
tables have some of these augmentations. Overall they account for almost 15% of the 
total processing time, but still 30% less than the fundamental operations of marking 
category headers and delta cells. Checking the categories assigned by TAT takes 
significant time (~26 seconds on average). The action time for XML file generation is 
actually machine time. 

5   Summary 

TAT was evaluated by a single operator in 15 sessions that took a total of 24.7 hours. 
The samples were collected from ten web sites which contain thousands of tables 
relevant to the geopolitical domain. Two hundred tables according to prescribed crite-
ria were processed in a pseudo-random order using TAT. Each selected sample was 
edited if necessary, and every editing operation was time-stamped and recorded. The 
time required for editing the table into the desired format along with the interaction to 
process title, caption, footnotes, units, and aggregates was logged. The Wang Nota-
tion for seven of the two hundred tables could not be determined. After processing a 
table, the operator verified its Wang Notation visually through the TAT functionality 
which highlights the categories and subcategories associated with the selected delta 
cell. 

Tables with Wang dimensionality 3, which is where layout-independence becomes 
really significant, took approximately 27 seconds more than tables with Wang dimen-
sionality 2. As expected, there was a strong positive correlation between the process-
ing time and table features (size, dimensionality, aggregates and footnotes). The time 
distributions have significant positive skew because of a few difficult tables.  

Tables with aggregates took much more time than tables without them. Aggregates 
often result in repeated cells in a header column, which is not TAT-admissible. This 
requires that the table be modified using Excel commands. The current implementa-
tion of selecting and annotating the aggregate cells and footnotes in TAT becomes 
cumbersome in tables with many aggregates. In the geopolitical domain, it is common 
to have hundreds of cells with footnote references. Manually selecting these cells is a 
human intensive, time consuming and error prone task. Thus, there is a great need to 
automate the identification and annotation of aggregates and footnotes, a task that 
appears quite feasible. Spanning cells containing units should also be relatively easy 
to detect automatically. 

Only a few of the sample tables were processed by TAT without some preliminary 
editing. The greatest potential savings in time is to make TAT accept a larger variety 
of table formats. More specifically, it should save the edit sequences applied by op-
erator, generalize them to an arbitrary number of rows and columns, and apply them 
to new tables in previously seen formats. We are currently working on algorithms to 
accomplish this [19]. 

We are also developing methods to automatically determine the delta-cell and 
header regions, which would save by itself over 15% of the interaction time. We are 
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exploring the problem of table segmentation using visual cues in the table. The pro-
posed method relies on visual distinctions (typeface, type size, capitalization, align-
ment) between cells of a table, many of which have been explored in earlier studies 
by others. The cell’s features can be captured in a feature vector with both numerical 
and categorical attributes. By comparing the feature vectors of adjacent cells using a 
comparison function, a difference table can be formed and used to perform orientation 
analysis, category-delta space segmentation and identification of aggregates and foot-
notes. Automating this phase would pave the way for faster processing and conver-
sion to a layout independent format that would complement the “learning” approach 
outlined in the previous paragraph. 

To determine inter-operator variability in processing time, we are currently plan-
ning another experiment with multiple operators on the same corpus of tables. If there 
is little variability between operators then we can construct an operator-independent 
formula for predicting processing time as a function of table features.  

Conversion of multiple tables from large web sites to Augmented Wang Notation 
is only the first step towards extracting the intra- and inter-table relationships that are 
the essential constituents of a domain-specific ontology of semi-structured data. 
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Abstract. In this paper we evaluate four graph distance measures. The
analysis is performed for document retrieval tasks. For this aim, different
kind of documents are used including line drawings (symbols), ancient
documents (ornamental letters), shapes and trademark-logos. The exper-
imental results show that the performance of each graph distance mea-
sure depends on the kind of data and the graph representation technique.
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1 Introduction

In document retrieval applications, it is necessary to define some description of
the document based on a set of features. These descriptions are then used to
search and to determine which documents satisfy the query selection criteria.
The effectiveness of a document retrieval system ultimately depends on the type
of representation used to describe it. In pattern recognition, the document rep-
resentation can be broadly divided into statistical and structural methods [6]. In
the former, the document is represented by a feature vector, and in the latter, a
data structure (e.g. graphs or trees) is used to describe objects and their relation-
ships in the document. The classical retrieval systems are often limited to work
with a statistical representation due to the need of computing distances between
documents (feature vectors) or finding a representative cluster of documents.
However, when a numerical feature vector is used to represent the document,
all structural information is discarded although the structural representation is
more powerful in terms of its representational abilities [6]. In the last decades,
many structural approaches have been proposed. These approaches deal, espe-
cially, with graph-based representations. Nevertheless, dealing with graphs suf-
fers, on the one hand from the high complexity of the graph matching problem
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which is a problem of computing distances between graphs, and on the other
hand from the robustness to structural noise which is a problem related to the
capability to cope with structural variations and differences in the size of the
graph. In order to overcome this problem, several approximate graph matching
methods have been proposed [11,15,19,21]. In this paper, our attention is fo-
cused on the comparison of different graph similarity measures in the context of
document retrieval.

Graph similarity measures use different techniques to minimize the complexity
and to optimize the robustness to structural noise. Robles-Kelly and al. [21]
propose a spectral seriation approach to reduce the graph matching to a string
edit distance in a probabilistic framework. Jouili and al. [11] simplify the problem
to a bipartite graph matching by making use of node signatures. Lopresti and
al. [15] use a probe technique to reduce the graph matching to distance between
vectors. Papadopoulos and al. [19] introduce an histogram-based technique.

In this paper, we present an evaluation of these four graph distance measures
on four different document data sets. We use the well-known GREC [20] data
base which consists of graphs representing symbols from architectural and elec-
tronic drawings. Here the ending points (ie corners, intersections and circles) are
represented by nodes which are connected by undirected edges and labeled as
lines or arcs. We have also performed a retrieval evaluation on an ornamental let-
ters data set which contains lettrine (graphical object) extracted from digitized
ancient document 1. Since one lettrine contains a lot of information (i.e. texture,
decorated background, letters), the graphs are extracted from a region-based
segmentation [9] of the lettrine with a user-based parameterization technique.
The nodes of the graph are represented by the regions and the edges describe
their adjacency relationships. We have also evaluated the graph similarity mea-
sures on a shape data set [23] in which the graph is extracted by making use
of a skeletonizing algorithm and a delaunay triangulation of detected endpoints.
Finally, the graph similarity measures are evaluated on a set of trademark-logos
in which the graph is extracted by making use of an interest points detector [10]
and the delaunay triangulation.

The performance evaluation is performed using the Precision-Recall curves.
Through this evaluation, we will examine the robustness of each graph similarity
distance and this will allow us to investigate the applicability of each measure
to the problem of retrieval for different kinds of documents.

2 Graph-Based Representations

Region-Based approaches have been one of the most important research issues
in content-based image retrieval. Representing images at the region level cap-
tures not only the local variations of regions but also their spatial organizations.
Graph-based representations are widely used in region-based segmentation. To

1 Provided by the CESR - University of Tours on the context of the ANR Navidomass
project http://l3iexp.univ-lr.fr/navidomass/

http://l3iexp.univ-lr.fr/navidomass/
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incorporate both region attributes and adjacent relationship an image is usually
represented as an attributed graph. Classical image representations such as colors
histograms, texture descriptors, or shape descriptions do not take into account
the regions localization in the document.

Graph-based representations are used in many applications, for instance, to rep-
resent circuit diagrams [4], for shape recognition [8], image matching [14,2], or old
document analysis [12]. Other works on graph-based representation [1,3,18,17], use
different methods to incorporate features of the document image. The
methods vary according to the characteristics of the data and the aims of the repre-
sentation (i.e. matching or retrieval). Bunke [4] illustrates an example of convert-
ing a circuit diagram to a graph by representing the lines in the circuit diagram;
each graph node represents a line endpoint, corner or intersection point, and node
attributes record the image coordinates (x,y) of this feature. In [12] the authors
manipulate initial letters from old documents. They proceed by segmenting the
initial letter into different information layers to obtain ”Information layers of ho-
mogeneous zones”. Then, each homogeneous zone of the initial letter is converted
to a node of graph with two attributes: size and shape descriptions, and each edge
contains two attributes: angle and distance. Baeza-Yates and al. [2] also represent
images as attributed graphs and adopt the graph edit distance to calculate the im-
age distance. In another way using graphs in image analysis, Pan and al. [18] in-
troduce a graph-based automatic image annotation. The authors propose a graph-
based method to assign automatically keywords to an image. The main idea of this
work is to represent all the images, as well as their attributes (caption words and
regions) as nodes and link them according to their known association into a graph.
For the task of image annotation, they use a ”3-layer” graph, with one layer for im-
age nodes, one layer for annotation term nodes, and one layer for the image regions.

In this section, we have seen that graphs can be widely used as a data
structure-model in the pattern recognition domain. Moreover, most of the previ-
ous graph-based representations aim to measure some similarity between objects
for recognition or retrieval tasks. This leads to the development of several simi-
larity measures for graphs.

3 Graph Matching Measures

An important step in structural pattern recognition is the representation of doc-
uments by a graph data structure. This structural representation should provide
a description of the characteristics of the images efficiently for the task under
consideration (e.g. retrieval). The retrieval problem can then be addressed in the
corresponding graph space without addressing the original images. The process
of comparing graphs is generally referred as graph matching. Generally, given
two graphs G1=(V1,E1) and G2=(V2,E2), the graph matching methods are di-
vided into two broad categories: the first one contains exact matching methods
called graph isomorphism that requires to find a one-to-one mapping f :V1 �→ V2
such that (u,v) ∈ E1 if (f(u),f(v)) ∈ E2 with |V1|=|V2|. The second category con-
tains inexact matching methods, where a strict correspondence among the nodes



40 S. Jouili, S. Tabbone, and E. Valveny

or the edges of the two graphs can not be found. Therefore, in these cases no iso-
morphism can be expected between both graphs, and the graph matching does
not consist in finding the exact matching but the best matching between them.
To perform such a structural matching, various formalisms have been proposed,
using error-tolerant methods based on continuous optimization [16], quadratic
programming, and spectral decomposition of graph matrices [21]. Other methods
try to characterize the properties of graphs using a vector-based representation
in order to profit from the existing vector measures[15,11,19]. Most of the inexact
graph matching measures are based on some sort of edit operations. The basic
idea is to define the similarity of graphs based on the effort needed to make the
graphs identical. This is an extension of the well known string edit distance [13]
to the graph edit distance (GED) [22]. For a review of graph similarity measures
we refer the readers to [7,5].

The matching methods selected for our evaluation belong to different for-
malisms. The spectral technique proposed by the Robles-Kelly’s method [21]
has proven to obtain good performance results. The graph matching based on
node signature [11] uses a local decomposition of graphs and an assignment
method to carry out an optimum node-to-node correspondence. Papadopoulos
and al. [19] provide a histogram-based representation for graphs to compute the
edit distance between graphs as a sequence of three different primitive opera-
tions. Finally, using the new concept of probe, Lopresti [15] introduces the graph
probing which is characterized by its rapidity.

3.1 Graph Edit Distance from Spectral Seriation

Robles-Kelly and al. [21] use a spectral method to represent graphs by strings,
and then the similarity of graphs is measured according to the edit distance
of strings in a probabilistic framework. The graph edit distance is the cost of
the shortest edit path in an edit lattice for transforming the data graph into
the model. The rows and columns of edit lattice are indexed by two strings
Y={y1,y2,,y|VD |} for data graph GD=(VD,ED) and X={x1,x2,,x|VM |} for the
model graph GM=(VM ,EM ), with null symbol ε, and VD and ED being the point
set and the edge set of the data graph. The problem of computing the edit dis-
tance is posed as that of finding the least expensive path Γ ∗ = 〈γ1, γ2, ..., γk, , γL〉
from (y1,x1) to (y|VD |,x|VM |) through the edit lattice based on the Levenshtein
distance. Each state γk ∈ (VD ∪ε)× (VM ∪ε) of the edit path is a Cartesian pair.
Then cost functions are defined for elementary matches, according to the cost
edit path Γ ∗ (i.e., graph edit distance) computed using the following equation:

d(X, Y ) = C(Γ ∗) =
∑

γk∈Γ

η(γk → γk+1) (1)

where η(γk → γk+1) = −(lnP (γk|φ∗
X(xi), φ∗

Y (yj)) + lnP (γk+1|φ∗
X(xi+1),

φ∗
Y (yj+1)) + lnRk,k+1), and the edge compatibility coefficient Rk,k+1 is
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Rk,k+1=

P (γk|γk+1)
P (γk)P (γk+1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρMρD

if γk → γk+1 is a diagonal transition on the edit lattice
ρM

if γk → γk+1 is a vertical transition on the edit lattice
ρD

if γk → γk+1 is a horizontal transition on the edit lattice
1

if yj = ε or xi = ε and yj+1 = ε or xi+1 = ε

P (γk|φ∗
X(xi), φ∗

Y (yj)) =

⎧⎪⎪⎨
⎪⎪⎩

1√
2πσ

exp{− 1
2σ2 (φ∗

X(xi) − φ∗
Y (yj))2}

if yj �= ε and xi �= ε
α

if yj = ε and xi �= ε

where ρM and ρD are respectively the edge densities of the graphs GM and GD

(ρM = |VM |2
EM

) and φ∗
X and φ∗

Y are, respectively, the leading eigenvectors of the
adjacency matrices for the graph GM and GD. In the remainder, we denote this
graph matching technique by GEDSS.

3.2 Graph Matching Based on Node Signatures

Jouili and al. [11] propose a new algorithm for matching and computing the
distance between graphs. This approach is based on node signatures notion. In
order to construct a signature for a node in an attributed graph, all available
information into the graph and related to this node is used. The collection of
these informations should be refined into an adequate structure which can pro-
vides distances between different node signatures. In this perspective, the node
signature is defined as a set composed by four subsets which represent the node
attribute, the node degree and the attributes of its adjacent edges and the degrees
of the nodes on which these edges are connected. Given a graph G=(V,E,α,β),
the node signature of ni ∈ V is defined as follows:

γ(ni) =
{

αi, θ(ni), {θ(nj)}∀ij∈E , {βij}∀ij∈E

}
where

– αi the attribute of the node ni.
– θ(ni) the degree of ni.
– {θ(nj)}∀ij∈E the degrees set of the nodes adjacent to ni.
– {βij}∀ij∈E the attributes set of the incident edges to ni.

Then, to compute a distance between node signatures, the Heterogeneous Eu-
clidean Overlap Metric (HEOM) is used. The HEOM uses the overlap met-
ric for symbolic attributes and the normalized Euclidean distance for numeric
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attributes. Next the similarities between the graphs is computed: firstly, a defi-
nition of the distance between two sets of node signatures is given. Subsequently,
a matching distance between two graphs is defined based on the node signatures
sets. Let Sγ be a collection of local descriptions, the set of node signatures Sγ of
a graph g=(V,E,α,β) is defined as :

Sγ( g ) =
{

γ(ni) | ∀ni ∈ V
}

Let A=(Va,Ea) and B=(Vb,Eb) be two graphs. And assume that φ : Sγ(A) →
Sγ(B) is a function. The distance d between A and B is given by ϕ which is the
distance between Sγ(A) and Sγ(B)

d(A, B) = ϕ(Sγ(A), Sγ(B)) = min
φ

∑
γ(ni)∈Sγ(A)

dnd(γ(ni), φ(γ(ni)))

The calculation of the function ϕ(Sγ(A), Sγ(B)) is equivalent to solve an as-
signment problem, which is one of the fundamental combinatorial optimization
problems. It consists of finding a maximum weight matching in a weighted bi-
partite graph. This assignment problem can be solved by the Hungarian method.
The permutation matrix P, obtained by applying the Hungarian method to the
cost matrix, defines the optimum matching between two given graphs. In the
remainder, we denote this graph matching technique by GMNS.

3.3 Graph Probing Approach

Lopresti and al. [15] introduce the paradigm of graph probing. This technique
consist on using a probe into the graphs to determine some particular informa-
tion. The measure of similarity between two graphs is an L1 norm distance of
the two corresponding vectors. For the construction of vectors, Lopresti present
three classes of construction each one led by a question, Class 0: ”How many
vertices with degree n are present in graph G = (V,E)?”, Class 1: ”How many
vertices with in-degree m and out-degree n are present in G?”, Class2 : ”How
many vertices labeled as att are present in G?”. The use of such class depends
on the type of graph.

Therefore, for each graph, a representative vector is computed and the corre-
sponding graph distance. Concretely, let G = (V,E) be an undirected graph, the
vector associated to G is: PR(G)≡(n0,n1,n2, ...) where ni=|{ v in V | deg(v)=i}|.
So the distance between two graphs is L1(PR1,PR2). In the remainder, we denote
the graph probing technique by GP.

3.4 Graph Histogram Approach

Papadopoulos and al. [19] present a similarity measure for graphs, which is based
on the concept of edit operations. They propose three different primitive opera-
tions, which are vertex insertion, vertex deletion and vertex update. While vertex
insertions or deletions have a trivial meaning, the update operation is needed to
insert or delete edges incident to a vertex. Additionally they introduce the degree
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sequence of a graph, i.e. the non-increasing sequence of the degrees of vertices in
a graph. The similarity distance between two graphs is defined as the minimum
number of primitive operations which are required so that the two graphs have
the same degree sequence. To calculate the similarity measure, the sorted graph
histogram is introduced, which is a histogram of the degrees of the vertices in a
graph. Papadopoulos and al. show also that the L1-distance between two sorted
graph histograms defines their similarity distance. Additionally it is proven that
the similarity distance satisfies the metric properties. In some cases, the sorted
degree histograms of the graphs in a database are of different dimensionality if
not all graphs are of the same order. To allow the use of index structures for
vector spaces, the authors introduce a histogram folding technique to achieve a
constant dimensionality of the histograms for all graphs. In the remainder, we
denote this method by GH.

Table 1 provides a description of the selected graph similarity measures. In
this table, we show the capability of each graph similarity measure to deal with
labeled or unlabeled graphs and it provides a node-to-node matching.

Table 1. A summarization of the selected graph similarity measures

Handle labeled
graphs

Handle unlabeled
graphs

Explicit node-to-
node matching

Robles-Kelly [21] no yes no
Jouili [11] yes yes yes
Lopresti [15] yes yes no
Papadopoulos [19] no yes no

4 Experimental Results

In this section, we provide a performance comparison of the graph similarity mea-
sures described above. In addition, even if the statistical/structural approaches
comparison is not the aim of this paper, we also use the generic Fourier de-
scriptor (GFD) well known for its good performance [24] to show the general
behavior of structural approaches vs a statistical one. In GFD, feature vectors
are created from images by extracting information in the frequency domain. This
statistical descriptor is invariant to rotation and scaling. In our experiments, we
use the Euclidean distance to compute the distance between images represented
by GFD feature vectors. Four graphic databases have been used to perform the
comparison study. The precision/recall curves are used to measure retrieval per-
formances. The leave-one-out protocol is used to provide precision/recall curves.

4.1 Data Sets

The graph retrieval tasks considered in this paper includes the retrieval of
line drawings (symbols), ancient documents (ornamental letters), the set of
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(a) (b) (c) (d)

Fig. 1. Samples from: (a) GREC database, (b) Ornamental letters database, (c) Shape
database, (d) Logo database

trademark-logos and LEMS shape database. Figure 1 represents samples for
each database used.

– GREC database: The GREC database [20] (see figure 1(a)) consists of
graphs representing symbols from architectural and electronic drawings. Here,
the ending points (ie corners, intersections and circles) are represented by
nodes which are connected by undirected edges and labeled as lines or arcs.
The graph database used in our experiments has of 528 graphs, 24 classes and
22 graphs per class.

– Ornamental letters database: The ornamental letters database (see figure
1(b)) contains lettrine (graphical objects) extracted from digitized ancient
document 2. Since one lettrine contains a lot of information (i.e. texture, dec-
orated background, letters), the graphs are extracted from a region-based
segmentation [9] of the lettrine with a user-based parameterization tech-
nique. The nodes of the graph are represented by the regions and the edges
describe their adjacency relationships. The graph database used in our ex-
periments consists of 280 graphs, 4 classes and 70 graphs per class.

– Shape database: We use the shapes provided by the LEMS laboratory of
the Brown University [23] (see figure 1(c)). The graphs are extracted from
the shapes by skeletonizing and applying a polygonal approximation to the
skeleton to obtain straight line segments. For each line segment, we locate
endpoints and the graphs are based on the Delaunay triangulations of these
endpoints. The graph database used in our experiments has 216 graphs, 18
classes and 12 graphs per class.

– Logo database: This database (see figure 1(d)) consists of graphs repre-
senting binary images of trademark-logos. Here, graphs are extracted by the
delaunay triangulations on the detecting points of interest using Harris al-
gorithm [10]. The graph database used in our experiments consists of 80
graphs, with 10 classes and 8 graphs per class.

Table 2 provides a description of the characteristics of the used graph data sets.
Each graph data set is described by the maximum number and the average of
nodes and edges (max nodes/edges and φ nodes/edges). Let us recall that all
the graphs used in this paper are weighted graphs. That is, there is no labels
attached to the nodes, but each edge is weighted by a unique numeric label.
2 Provided by the CESR - University of Tours on the context of the ANR Navidomass

project http://l3iexp.univ-lr.fr/navidomass/

http://l3iexp.univ-lr.fr/navidomass/
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Table 2. Description of the four graph data sets

max nodes max edges φ nodes φ edges
GREC 24 29 11.54 11.6

Ornamental Letter 178 4314 97.6 1779.6
Shape 73 2592 29.1 471.8
Logo 292 802 102.5 264.9

4.2 Results Analysis

The results of our experiments for these four databases with the four graph
matching measures are presented in figure 2.

From the precision-recall curves, we can remark that the performance of the
graph matching methods depend on the databases and more particularly the de-
scription we put in the graph. For the GREC database, the matching measures
(GP, GH and GMNS) that use simple structural modification perform similarly
and better than the GEDSS method which use a string representation for graphs.
We realize that for graphs with low edge and node densities (as the case of the
GREC database) the string-based representation is not discriminant. In addition,
the GMNS method provides a performance peak for low recall values, and it joins
the performance of the GP and GH methods for high recall values. The discrimi-
nation of the node signatures provides a good robustness for this kind of database.

From the results provided on the Lettrine database, we see that all the dis-
tance measures provide similar results with a little less performance for the GP
technique. This may be explained by the fact that the different methods pro-
duce a quite similar response to the structural errors between the graphs used
to represent the ornamental letters. In the other way, one can conclude that this
kind of graph representation (region adjacency graph) of the ornamental letter
is more or less robust to different graph matching methods.

In the case of the shape database, the performance of the graph probing fails
clearly in comparison with other distance measures. It seems that the probe of
the node degree is not a good discriminating feature for this database which
presents important structural errors between graphs in different classes. Fur-
ther, the GEDSS method which has shown previously good results for similar
databases (see [21]), provides the better retrieval results.

For the logo database, all the distance measures provide similar behaviors.
Here, the graph probing keeps the leader position among the other distances.
In addition, the provided results of all the distance measures are particularly
better in comparison with the other databases. This may be due to the suit-
able graph representation used for this database. We can think that the graph
representation approaches used for other databases is not necessary the most
suitable. In addition, different distance measures provide quite similar results
for a given graph representation as the case of the Ornamental letters database.
From all these results, we can remark that the GP and GEDSS methods are
more sensitive to the representation we put in the graph.
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Fig. 2. Precision-Recall curves on: (a) GREC database, (b) Ornamental letters
database, (c) Logo database, (d) Shape database
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In addition, the GFD descriptor outperforms the results of all the graph sim-
ilarity measures for the Shape database. However, for the Ornamental letters
and the Logo databases in which the structural information is more important
we remark that the structural approaches provide better results.

5 Conclusion and Perspectives

In this paper we have compared the performance of four graph matching meth-
ods for graph retrieval with different kind of document databases. The evalu-
ation is performed using Precision rate against Recall rate. Our experimental
results show that the performance of each graph distance measure depends on
the databases and the approaches are also more and less robust to the variabil-
ity of the representation. That is to say, a given graph distance can provide a
good performance for one database and poor performance for an other database.
Moreover, for a good graph representation we can remark that the performances
of different graph matching methods are quite similar. In future works we want
to study the behavior of these methods against the representation we put in the
graph and the type of database.
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Abstract. In this paper we present a method to robustly detect circular
arcs in a line drawing image. The method is fast, robust and very reli-
able, and is capable of assessing the quality of its detection. It is based on
Random Sample Consensus minimization, and uses techniques that are
inspired from object tracking in image sequences. It is based on simple
initial guesses, either based on connected line segments, or on elementary
mainstream arc detection algorithms. Our method consists of gradually
deforming these circular arc candidates as to precisely fit onto the image
strokes, or to reject them if the fitting is not possible, this virtually elim-
inates spurious detections on the one hand, and avoiding non-detections
on the other hand.

1 Introduction

Finding circular arcs is one the recurring problems in graphical document inter-
pretation or symbol recognition. The main difficulty with the existing approaches
is that they often are of considerable complexity (e.g. Hough-like [1] or feature
grouping approaches [2]) sensitive to image quality, line thickness, or rely on
a number of user defined parameters or thresholds that make them extremely
difficult to apply to generic problems or on heterogeneous document sets.

The approach developed in this paper reduces the set of needed parameters
to a minimal set of very elementary and visually significant values and can be
applied without prior knowledge of the document set, regardless of line widths,
connectedness or complexity. It relies on elementary (3,4)-distance transform
skeletonization [3] and segment detection [4]. Unlike extremely efficient methods
like [5], ours does not require reasonable segmentation of arcs. This work is
tightly related to [6].

The following section establishes how to determine if a single circular arc
is present, provided we have a rough initial guess of its position, and how to
robustly detect and locate it using RANSAC (Random Sample Consensus [7]).
Section 3 then explains how to generalize to detecting and localizing any number
of circles, without a priori knowledge of their position. The last two sections
conclude by eliminating spurious detections and by establishing the limits of the
approach.

J.-M. Ogier, W. Liu, and J. Lladós (Eds.): GREC 2009, LNCS 6020, pp. 49–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Determining the Presence of a Circular Arc

In this section we address the problem of detecting a circular arc, given an initial
estimate of its center (xc, yc), its radius σ, and its two endpoints pl and pr

1. This
estimate, as we shall see further, can be very approximate. The main goal, in
this first stage, is to detect whether or not, an arc is present in the image, near
the vicinity of the given parameters.

2.1 General Algorithm

We are mainly exploiting the algorithm described in [6], with one major adjunc-
tion. The cited method has been developed to identify and locate full circles, and
therefore only needs to consider adapting to two variables: the center (xc, yc),
and the radius σ. This is not the case anymore for detecting arcs, since two
parameters are added: pl and pr, the left and right endpoints.

The general approach we develop consists of taking the set P = {pi} of all
pixels pi lying on the discrete circular arc A0 defined by (xc, yc), σ, pl and pr.
As in, [6], we define, for each of these pixels pi, the discrete line Δi, starting
at (xc, yc), and passing through pi. Let qi be the pixel on Δi that is the closest
black pixel to pi. Let Q0

a = {qi}. Q0
a therefore is the set of all black pixels closest

to the initial estimate A0 in the direction of the circle radius.
Figure 1 gives an illustration of this estimation. Initial guesses are drawn in

blue. For each conjectured circle, green pixels are those found at the correct
distance from the center, while red ones lie on the radius and are closest to the
circle.

Now, let C1 be the best fitting circle over Q0
a (any criterion can be used, but

we are using the Least Median of Squares – cf. section 2.2), and let us generalize
the previous step, such that Qt

c contains the set of all black pixels closest to the
theoretical circle Ct in the direction of the circle radius (and similarly for Qt

a).
By construction, Qt

a ⊂ Qt
c, and while this new set of points allows for a re-

estimation of (xc, yc), σ, the other parameters pl and pr need to be re-evaluated
as well. The approach is the following:

Let τ t be the error measure between At and Qt
a. i.e. τ t represents the fitness

between the model At and its corresponding data Qt
a. Let At

< ⊂ At a smaller
circular arc2 than At such that τ t

< > τ t and that

∀At�|At
< ⊂ At� ⊂ At : τ t� < τ t. (1)

1 In this document we shall conveniently ignore the fact that there is a small ambiguity
with defining an arc by the center of its corresponding circle, the radius and the
endpoints: one also has at least the orientation of the arc to consider as to know
what part of the circle between the two endpoints is belonging to the arc, and which
part isn’t.

2 “smaller” meaning having the same center and radius, but having a smaller aperture
while being fully included in the “larger” one.
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Fig. 1. Example of circle hypotheses: in blue, the initial guess; in green, points correctly
lying on the conjectured circle; in red, point closest to the circle

In other terms, At
< is a smaller arc that fits the dataset better than At and all

intermediate arcs fit less. This means that At
< is the largest sub-arc fitting the

data better than At.
We do a similar search by increasing the arc size thus obtaining At ⊂ At

> a
larger circular arc than At such that τ t

> > τ t and that

∀At�|At ⊂ At� ⊂ At
< : τ t� < τ t, (2)

At
> thus being the smallest super-arc fitting the data better than At.
We can then define At+1 as being the argmaxτ {At

<,At,At
>}. Continuing this

iteration until At = At+1 will yield the best estimate of the arc (if any) closest
to the initial A0.

In the following sections we detail the different steps of this general approach.

2.2 Using RANSAC and LMedS

Since there is no guarantee that any At or Qt may effectively contain points
that form a circle, it may be extremely hazardous to use global minimization
approaches (like Least Squares, for instance) [8]. It is known that these estimators
are very sensitive to outliers or spurious data that does not conform to the
required model [9]. Using these functions would invariably lead to degenerate
convergence.

RANSAC [7] is much better suited for fitting very noisy data – especially data
containing measures that do not belong to the model that is to be estimated –
The approach consists of selecting the strict minimum of data points required
for estimating an instance of the model (e.g. three points for estimating a circle)
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and then computing the residual error of the other data points to this model.
This is done a number of times, and the final model is the one with the lowest
residual error.

More formally: let Qt be the set of model points. Qt supposedly, and in the
worst case, contains a ratio of τ outliers. Let qn, q′n and q′′n be three random points
belonging to Qt, and let Cn be the circle defined by and passing through qn, q′n
and q′′n. Let δ (C, p) be the distance of a point p to a circle C, and let Medτ (S)
be the τ -quantile median value of the set S. We then define the residual error of
a set of model points Qt to a circle Cn as

RsdErr
(Qt, Cn

)
= Medτ

({
δ (Cn, p) |p ∈ Qt

})
. (3)

RsdErr gives the maximum distance of a set of points to a circle, discarding a
proportion of τ outliers.

With RANSAC we choose R random subsets of 3 points within Qt, each
giving rise to the computation of a circle Cn. For each subset, we compute the
corresponding RsdErr (Qt, Cn), thus obtaining

Ct+1 = argmin
Cn,n∈[1...R]

(
RsdErr

(Qt, Cn

))
. (4)

The number of required subsets can be formally deduced from both the quality
of the data (expected rate of outliers τ), the dimensionality of the problem (here
6, since we need three points for estimating a circle, each point having two
dimensions) and the required confidence in the result [7].

3 Robust Arc Detection

The previously presented method does a very good job of robustly determining
whether there is a circular arc close to a given center and radius (xc, yc) and
σ. However, it needs some initial guess on where to search. The method we are
developing here proceeds in three main phases:

1. Generate a high number of possible arc candidates, without consideration of
uniqueness, overlapping or exact localization.

2. Verify the quality of each candidate using the approach described in section 2.
The output of this verification is a list A of genuine arcs, correctly fitted on
the image data.

3. Detect and merge multiple and/or partial detections of the same curves as
to obtain a set of unique, disjoint arcs.

3.1 Arc Candidate Generation

In order to obtain the largest possible set of arc candidates, we automatically
segment the image using a basic Rosin & West line segment vectorization [4]. We
then simply enumerate all connected pairs of segments. Each pair gives us three
points, which is exactly the amount of data that allows for getting an initial
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guess for a circular arc: (p1, p2, p3). These points define a unique circle on the
one hand, and furthermore, since they are ordered – p2 being in the middle –
they define the left and right extrema for the definition of an arc.

This approach is combined with direct arc detection from [4] as to produce
the largest possible set of arc candidates to bootstrap our localization method
(cf. section 2).

3.2 Merging of Multiple Detections

Since the method is based on unfiltered hypothesis generation, it has a clear ten-
dency toward over-segmentation, as shown in Figure 2. The main idea behind
being tolerant towards this over-segmentation is to be confident that (almost) all
image pixels belonging to an arc are covered by at least one initial arc candidate.
Merging arcs should therefore result in a full coverage of each arc of the image by
one unique, genuine arc. Merging arc candidates representing the same circular
arc in the image requires two distinct operations: merging estimates covering the
same pixels and merging arc candidates not sharing the same pixels but being
partial estimates of a same wider arc. These two operations can be performed
by first increasing the aperture of the arcs (cf. section 3.2.1), thus making hy-
pothetical arcs share pixels, and, secondly, merging the arc candidates sharing

Fig. 2. GREC 2007 contest images: original image (left) – final segmentation (right)
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Fig. 3. GREC 2009 contest images: original image (left) – final segmentation (right)

pixels (cf. section 3.2.3). For merging arcs, we do not use the full circle image,
but the image skeleton [6].

3.2.1 Increasing Aperture
To increase the aperture of an arc, we first set a threshold to the maximum
distance between a point from the discrete hypothetical arc and the closest pixel,
as shown in Figure 4, where the distance is measured on the line going through
the center of the hypothetical arc and a point on the hypothetical arc.

The increase of the aperture of an arc is done by starting from the endpoints
of the candidate arc pl and pr and then increasing the aperture pixel-wise, as
long as the distance to the closest pixel remains below the threshold.

Fig. 4. Distance between a point of the hypothetical arc and the closest pixel: in blue
the hypothetical arc; in Grey, image pixels; in green, distance between a point on the
hypothetical arc and the closest pixel; in red, threshold
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3.2.2 Finding Which Arcs to Merge
Once the set of maximal arc candidates obtained, overlapping ones or those lying
on the same image curve need to respond to the following criteria in order to be
merged:

1. A non-empty intersection between two arcs means that these two arcs are
likely part of a same covering arc. However two arcs having common closest
pixels are not necessarily sub-arcs of a same arc as shown in Figure 5.

2. Arcs having comparable radii are merge candidates. This is checked through
a radius ratio with the formula:

|r1 − r2|
max (r1, r2)

< RatioRadiusError. (5)

Checking the center of the circle is less robust since small changes in curva-
ture may be visually insignificant, but generate large differences in the center
position.

3. Arcs having opposed normal vectors (cf. Figure 5) are not eligible for merg-
ing, even though they may overlap. This criterion is verified by choosing a
point I from the overlapping part of two arcs, and constructing a vector−−→
IO1 that originates from I and finishes at O1 the center of the first arc, and
defining similarly a vector

−−→
IO2. We then compute the scalar product of these

vectors: −−→
IO1 · −−→IO2 = |−−→IO1||−−→IO2| cos θ (6)

If the sign of the product is positive, we consider that the two arcs stem
from the same covering one.

Once these criteria are verified, three different configurations may occur for merg-
ing. They are depicted in Figure 6. In configuration A the two arcs are “adjacent”
sharing some pixels, in configuration B one arc includes another and in configura-
tion C the two arcs are “explementary”. The covering arc is formed by considering
that the two arcs belong to the same circle. Therefore the resulting arc is the
union of the two arcs as if they had the same center and the same radius, in
other words, the computation of the arc’s angle and aperture is based on the
angles and apertures of the two arcs.

O1O2 I

Fig. 5. Intersection of arcs with opposed curvature signs or with significantly different
radii



56 B. Lamiroy and Y. Guebbas

Fig. 6. Intersection configurations (top) and corresponding covering arcs (bottom).
Configurations are labeled from left to right: A,B and C.

3.2.3 Merging Arcs
The last phase consists of creating the final, genuine arcs by merging the selected
candidates corresponding to the previously described criteria. The method de-
veloped here tries to find the three points of the equilateral triangle which is
circumscribed by the merged arc circle. This increases the odds of having the
best fitting circle as with this method we avoid choosing either noisy or numer-
ically instable points. This procedure begins by choosing either the arc 1 or 2,
and then computes the edge length of the circumscribed equilateral triangle

edgeLength = 2ri sin
π

3
, (7)

where ri is the radius of the circle.
Now, let Ri be the subset of image curve points (Q) which are close to the

arc candidate Ci

R = {p ∈ Q|δ (C, p) < RsdErr (Q, C)} . (8)

We can then define a partitioning of the points (D1 and D2) belonging to the
two arc candidates, as well as their intersection I

I = R1 ∩R2,D1 = R1\R2,D2 = R2\R1. (9)

We then define p3 and p1 such that

p3p1 = min
pi∈I,pj∈D2

|edgeLength − pipj| (10)

and find p2 such that

p2p3 + p2p1 = max
pi∈D2

(pip3 + pip1). (11)

If we consider that the initial arcs belong effectively to the same circle, this
method constructs the equilateral triangle and gives three points of a same circle.
The more the three points are distant from each other, the more accurate the
construction of the new circle is.

In fact, we are likely to find a better distributed set of three points over a
circle if instead of using D1 and D2 we use R1 and R2.
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4 Experiments

In collaboration with E. Barney Smith [10] we have been conducting an exhaus-
tive survey of the influence of all possible internal parameters and external noise
variations on the quality of the arc detection. Full analysis and report of this
work is beyond the scope of this paper and will be published separately. Fig 7
shows some samples of used synthetic data for assessing the quality and precision
of our approach.

Fig. 7. Various Degraded Synthetic Circles and Selected Zooms

The overall precision in circle detection is extremely high. Precision was mea-
sured using three different metrics:

Circle Center Precision is obtained by measuring the euclidian distance of
the detected arc circle to the theoretical circle center.

Circle Radius Precision is obtained by measuring the absolute difference be-
tween the detected radius an the theoretical radius.

Overlapping is a metric correlating the two previous ones, and expresses the
overlapping surface ratio of both circles. It is normalized to [0, 1], where 1
signifies perfectly identical circles, and 0 perfectly disjoint circles.

Tested over a wide range of parameters (τ outlier quantile, required coverage
rates – cf. next section – ...) our method gives the following results:

Worst Case Best Case
Avg. Center Precision Error (pixels) 0.67 0.38
St.Dev. Center Precision Error 0.71 0.52
Avg. Radius Precision Error (pixels) 0.11 0.01
St.Dev. Radius Precision Error 0.37 0.12
Avg. Overlapping (%) 98.2 99.2
St.Dev. Overlapping (%) 6.0 2.3

This translates into estimation errors upto a pixel for center and radius. Coverage
standard deviation might seem high for the announced detection precisions, but
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comes from situations where we tested on small circles (radius 8 pixels) where a
single pixel shift accounts for a significant proportion of non overlapping.

Figures 2 to 3 show results on the GREC 2007 and 2009 contest images. The
initial images are in black, while detected arcs are in Grey (right column).

4.1 Parameters and Their Influence

All parameters mentioned here are either direct transpositions of the algorithm
described in this paper, or are direct call parameters of the software available
for download (cf. note below).

One parameter that has an influence on determining whether two arcs are
partial estimates of a same global arc is RatioRadiusError (cf. section 3.2.2).
To compare the radii of two arcs, experiments show that a value of 64% for
RatioRadiusErrormakes the merge possible for most arcs having common black
pixels and avoids merging arcs with significantly different radii as shown in
Figure 8. For the image in Figure 8 65% was too high and resulted in a loss of
precision as shown within the rectangle.

The filterCoverage parameter is used to keep only those arc candidates that
have a sufficient percentage of pixels effectively lying on pixels of the image. This
process uses the original image instead of the skeleton image.The coverage percent-
age of filterCoverage is set to 89% to ensure keeping only accurate estimates.

preFilterCoverage checks if the percentage of pixels of the discrete estimate
of the given arc lying effectively on black pixels of the original image, oversteps
a cover percentage and returns a boolean. This process uses the original image
instead of the skeleton image. The cover percentage of preFilterCoverage can
be lower than the cover percentage defined for filterCoverage, as some inter-
mediate arcs that do not withstand the cover percentage of filterCoverage
might be merged with another arc resulting in an arc that does withstand the
cover percentage of filterCoverage. The percentage 89% proved to be a good
value for the cover percentage of preFilterCoverage, while 90% removed some
good circles. This is often due to the fact that in reality, the images have slight
deformations, an percieved circles are actually ellipses.

The merging algorithm can be improved by increasing the aperture of the
arcs “virtually’. In other words, each arc has two angles and two apertures. The

Fig. 8. RatioRadiusError tuning;the original image;64% filter; 65% filter
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“virtual” angle and aperture are those which are increased and used to check if
two arcs have to be merged. The actual angle and aperture are not changed. In
fact, while increasing the actual aperture, the discrete arc of an estimate might
no longer withstand the preFilterCoverage processing, as it is likely to have
more pixels that are not black. Thus by keeping the initial angle and aperture
unchanged we maintain arcs that were not merged. Moreover when performing
the merge, the points used to construct the new arc are from the closest points
of the actual arc, which is more accurate especially if we choose the points from
those who belong as well to the black pixels of the image. The “virtual” increase
uses the threshold defined in 3.2.1, namely a value of 3.

5 Conclusion and Further Work

In this paper we have presented a highly efficient and complete arc detection
algorithm that needs extremely few parameters or contextual knowledge to op-
erate. We have validated it on quite difficult images, coming from the GREC 2007
and 2009 contest. Further work will include stroke width integration in order to
obtain a more precise localization of the arcs, as well as a more quantitative
assessment of the positioning and localization of the detected arcs.
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Automatic Palette Identification of Colored
Graphics
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Abstract. The median-shift, a new clustering algorithm, is proposed
to automatically identify the palette of colored graphics, a pre-requisite
for graphics vectorization. The median-shift is an iterative process which
shifts each data point to the “median” point of its neighborhood defined
thanks to a distance measure and a maximum radius, the only parameter
of the method. The process is viewed as a graph transformation which
converges to a set of clusters made of one or several connected vertices.
As the palette identification depends on color perception, the clustering
is performed in the L*a*b* feature space. As pixels located on edges
are made of mixed colors not expected to be part of the palette, they
are removed from the initial data set by an automatic pre-processing.
Results are shown on scanned maps and on the Macbeth color chart and
compared to well established methods.

Keywords: palette extraction, clustering, mean-shift.

1 Introduction

The first step of color graphic vectorization is the identification of its palette.
According to a recent study [1], approximately 13.5 million images are vectorized
in the United States every years, consuming more than 7 million man hours.
These images are made of photos, artworks, logos, etc. Commercial vectorisation
software 1 exist but do not provide satisfying results in a full automated mode [2].

Despite this demand, there has been limited research done on colored image
vectorisation except from a specific application: scanned maps [3], [4], [5] for
which the vectorisation is performed on each colored layer, thus after the color
extraction process.

Color palette reduction — when the final number of classes is a power of
two the process is also known as “color image quantization” — such as kmeans,
fuzzy-kmeans, median-cut, and octrees or any clustering method (also called
unsupervised classification) could be considered for palette identification. For a
comparison of color image quantization methods see [6], for a list and discussion
on unsupervised classification see [7].

� This study is funded by the Belgian Ministry of Defense.
1 see http://en.wikipedia.org/wiki/

Comparison of raster to vector conversion software

J.-M. Ogier, W. Liu, and J. Lladós (Eds.): GREC 2009, LNCS 6020, pp. 61–68, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this paper we propose the “median-shift”, a new clustering method, so
called by analogy with the mean-shift 2 [8], an iterative procedure that shifts
each data point towards the “median” of data points of its neighborhood. The
method is used to identify the palette of some scanned maps and other graphics.

The aim of any clustering method — and in particular of palette extraction
— is to find a small set of representative of the whole data set. Many authors
have suggested that clustering methods applied to multi-variate images should
make use of the spatial information as neighboring pixels are likely to belong to
the same cluster (see [9]). The spatial information is introduced either before,
during or after the clustering. For example, a common pre-processing is made
by regularization or pixel grouping. Markov Random Fields [10] are examples
of methods including spatial constraints into their process. The authors of the
mean-shift, by adding the spatial coordinates to the feature space, also intro-
duce spatial constraints into the clustering process. Finally, voting schemes are
examples of post-processing methods. In this article, the spatial information is
first used in pre-processing by filtering out edges of the luminance image, as they
are most probably mixed pixels.

The full pre-processing is described in section 2. Section 3 presents the median-
shift while section 4 explains how the algorithm is implemented for palette ex-
traction and addresses the case of scanned maps. Section 5 shows the results
of the procedure on several maps and on the Macbeth color chart in compar-
ison to well established methods. Section 6 provides summary, discussion and
conclusions.

2 Pre-processing

The aim of the pre-processing is twofold: removing potential mixed pixels and
finding a space providing a better cluster separation.

Apart from the noise generating unexpected colors, problems for automatic
palette identification come from the superposition of colors and from edge pix-
els generating disturbing colors. In order to remove part of these outliers, an
automatic thresholding on the norm of the gradient of the luminance is per-
formed, as according to Koschan [11] 90% of all edges are in the intensity image.
This operation may however delete pixels located on lines; the latter are then
brought back by a fully automatic ridge extraction process [12] on the luminance
image.

A colored pixel is represented in a 3D space. As our aim is to identify some
“target colors” such that each present color could be replaced by its closest
target, the space and the distance are of prime importance. The uniform L*a*b*
space (noted “Lab” in this paper), in which the Euclidean distance reflects the
perceived distance, has thus been chosen for a better color separation. The data
set is then made of filtered pixels described by their Lab coordinates.

2 There exist many variants of the mean-shift, but according to the author’s knowl-
edge, none is using the median instead of the mean.
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3 Clustering

Let the data be a set of points x embedded in a n-dimensional feature space:
x = (x1, ..., xn) and let d(x,y) be a distance defined in this space. The neigh-
borhood of x, VR(x), is defined as the set of y’s such that d(x,y) < R. In this
framework, a point is isolated if the cardinal of its neighborhood is one, and
connected otherwise. The “median point” x of VR(x) is defined as the point
x = (x1, ..., xn) such that xi is the median of the ith component of all points in
VR(x).

The median-shift algorithm is an iterative process which shifts each data point
x at time t to x; it can be seen as a graph transformation. Each vertex v(x, w)
of the graph G is characterized by a vector x = (x1, ..., xn), corresponding to a
point of the data set, and a weight w initially set to 1. The vertices of G are
connected if the points are neighbors. A cluster CR(x) is defined as the connected
component of G containing the vertex x.

At time t the graph G is transformed into G′ (initially empty) according to
the following rule: for each vertex v(x, w) of G the median point x is computed;
if the corresponding vertex already exists in G′, its weight is incremented by
w, otherwise it is created with a weight equal to w. The edges of G′ are then
updated before the operation is repeated at t = t + 1 with G = G′.

At t = 0, the graph G is a set of one or several clusters. The convergence of
G is thus related to the convergence of each connected component. Except in
very few cases depending on the distance definition and the distance between
clusters, disconnected clusters will remain disconnected.

These exceptions set aside, any cluster made of isolated vertex will remain
stable. If a cluster is made of two or more points all connected to each other,
the cluster will collapse in one point, would it be a new or an existing one, thus
converging.
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For a more complex cluster Gn characterized by n vertices, several scenarios
may take place: (i) it is stable (ii) some vertices vanish thus leading to a graph
G′

n−i (iii) it splits into several clusters G1
n−i, ..., G

m
n−k, with a total number of

vertices lower or equal to n (iv) it is transformed into G′
n. In this list of scenarios,

only the last one could be problematic with respect to convergence, as in all other
non stable cases, the total number of vertices is decreasing. However, though the
number of vertices remains the same in (iv), the distances between them decrease,
and at some distance below a threshold, the points could be considered as being
at the same location, leading to G′

n−1. Figure 1 shows several scenarios for a 4
vertices graph in a 2D feature space. In practice convergence to complex clusters
(i.e. made of several vertices) occurs when the radius is too big compared to the
variations of the density.

The final result is thus a graph made of clusters containing one or several
vertices, each cluster being separated from each other by at least a distance R.
Note that the mean-shift may also be viewed as a graph transformation and its
converging graph has the same property.

4 Implementation

The authors of the mean-shift [8] suggest to label a data point according to
the cluster it converges to. In the palette extraction process however, this might
result in assigning a point to a very different color. The following strategy is
thus suggested. The median-shift algorithm is used to find the most important
colors. The too small clusters (< T ) are ignored. For each remaining cluster, the
pixels are put aside if their distance to the cluster vertices is larger than R/2. If
the set of all these outsiders is significant (> PC% of the initial set), the set is
used again in a median-shift procedure providing additional clusters. The most
important clusters are accepted until the number of ignored pixels is below the
threshold.

Several distances can be used but for the current application the euclidean
distance in the Lab color space is convenient. Several radii could also be used, but
a radius between 14 and 18 seems optimal to separate colors of most graphics. As
the radius represents the maximum distance between two clusters, it means that
colors of a given cluster are not further than a distance between 7 and 9 from
their center; knowing that under the unity (in the Lab space) human cannot
discriminates colors, this range seems reasonable.

A typical map is about 64 cm by 40 cm. Recommended scan resolution varies
between 300 to 600 samples per inch, so that a scan map can be as large as
10078 pixels by 6299 pixels. A 512 by 512 sample could be too small to have the
chance to get all pixel colors, while a 1024 by 1024 would seem reasonable. The
following strategy is thus proposed for extracting the palette of large images.

A medium-size image (1024 by 1024) is extracted, pre-processed and divided
in small images (512 by 512) on which the median-shifted is run. A new median-
shift may be used for combining all clusters assigning to each cluster vertex a
weight equal to the number of pixels no more distant than R/2.
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5 Results

The procedure has been used to identify the colors of six maps and a pho-
tographic chart. The pre-processing involves a Gaussian gradient computation
(σ = 0.7) used for the edge and ridge outputs. The mean of all non-zero edges me

and non-zero bright and dark ridges, mb and md respectively, are used as thresh-
old to derive the mask of selected pixels. So far an image cut of size 512 × 512
has been considered in each map. Two distances have been used: Euclidean and
maximum component difference (“box distance”) with R = 18 (Euclidean dis-
tance) and R = 15 (box distance), T = 100, PC = 4. The computation time
is highly dependent on the image content: 32, 36, 47, 64, 83 and 208 sec (box
distance) and 30, 35, 43, 62, 78, and 210 sec (Euclidean distance) is needed for
the median-shift computation. Results on four maps are shown on Figure 2. In
order to better judge the quality of the palette extraction a labeling (i.e. as-
signing a color palette to all pixels) is performed. The palette is compared to
the ones extracted by Vector-magic (http://vectormagic.com/home), and sev-
eral color reduction algorithms provided by the VPmap-Pro software: median
cut, kmeans, minimum distance and octree. For the latter, no pre-processing
could be performed. Due to the bad quality of the results obtained with the
octree method, these results are not reported. The first column shows the origi-
nal images and in their lower right corner, a partial zoom. In order to judge the
quality of the clusters extracted, the second column shows images labeled thanks
to the median-shift algorithm (box distance) in which each pixel is assigned to
the nearest vertex or to “undefined” if the box distance is larger than 3R/2. The
last column shows all extracted palettes; from left to right: median-shift box
distance R = 15, median-shift Euclidian distance R = 18, minimum distance
(VPmap-Pro), Vector Magic, median-cut(VPmap-Pro), kmeans (VPmap-Pro).

All extracted palettes are displayed in the last column. For Vector-Magic the
best number of classes has been chosen manually. VPmap fully automatic color
reduction requires a minimum color classes of 12, value which has been chosen
for all images.

The algorithm has also been tested on the photo of the Macbeth color chart
used in [13] and compared to other algorithms: the implementation of the kmeans
proposed in [13] and the mixture of Gaussians [14]. Figure 3 shows the Macbeth
color chart in (a), the results of the median-shift in Lab space using Euclidian
distance with R = 14 in (b), of the kmeans in RGB in (c) and in Lab space with
25 classes in (d), and finally of a mixture of Gaussians in RGB with 25 classes in
(f). An “x” inside a square means that the square received a wrong label, while
a “y” means the class has been correctly identified but the cluster is not a good
visual representative of the class.

The median-shift parameter has been initially set to 18, as in previous ex-
periments but at R = 18, two complex clusters are generated, suggesting to
use a smaller R. At R = 17, all colors are separated but the three light grays
are assigned to the same cluster and would thus have a “4x” score. A further
separation occurs at R = 14, still keeping the two light grays in one class and
the two dark grays with the background (3x); this is somehow expected as the
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Fig. 2. Palette extraction on various maps (see text)



Automatic Palette Identification of Colored Graphics 67

distance between the two light grays is about 7, and the background lies between
the two darkest grays at a distance of about 9, both distances being lower than
R. Note that the original Macbeth color chart has slightly different values; in
particular each grey is separated from its neighbour by a distance of 15 (or 14
for the darkest).

The median-shift applied in Lab space is thus excellent for colors (no “x”
and no “y” in colored squares); in particular, it is the only algorithm able to
discriminate the deep blues (distance about 24) and the yellows (distance about
21) but is less good in discriminating shades of gray (3x). Other distances [15]
like CIE1994, CIE2000, or CMC may provide better results.

The results of kmean depends on its initialization. Palus [13] proposed two
initialization schemes; in this experiment both provided the same number of “x”
and “y”. In the RGB space three yellows and one green-yellow are merged into
a unique yellow, two pairs of blues and one pair of pinks are merged, making a
total of 6x. The algorithms is slightly better in the Lab space (5x, 1y).

The mixture of Gaussians gives the worse results in this experiment (8x,3y).
This algorithm may also discover the best number of classes, 40 in this case, re-
sulting in over-segmentation without resolving the difficult pairs of blues, yellows
and grays.
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Fig. 3. Comparison of palette extraction on the Macbeth color chart. Upper row:
pseudo colors; lower row: true colors. (a) Original Macbeth chart; (b) Median-shift
(R = 14); (c) kmeans in RGB (25 classes); (d) kmeans in Lab (25 classes); (e) mixture
of Gaussians in RGB space (25 classes); “x” and “y” denotes wrong class assignment,
and visually not acceptable cluster value respectively.

6 Summary and Conclusions

A strategy to identify the palette of scanned graphics has been proposed. A first
pre-processing transforms the data into the Lab space and removes pixels with
a less well defined color, for a better cluster separation.

The remaining pixels are clustered thanks to the median-shift, a new clustering
algorithm which requires one parameter R related to the expected cluster radius
in the feature space associated to a distance. As far as palette extraction is
concerned, the Lab feature space with Euclidian distance and R between 14 and
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18 (or smaller in case of complex clusters) seems suitable for many applications.
The procedure is applied on scanned graphics such as maps and a photographic
chart showing improvement compared to well-established methods. In particular,
the algorithm shows excellent discriminative power on saturated colors, but is
slightly less efficient when dealing with low saturated ones.
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Abstract. This paper presents a new technique for detection of digital circles
and circular arcs using chord property and sagitta property. It is shown how a
variant of the chord property of an Euclidean circle can be used to detect a digital
circle or a circular arc. Based on this property, digital circular arcs are first ex-
tracted and then using the sagitta property, their centers and radii are computed.
Several arcs are merged together to form a complete digital circle or a larger arc.
Finally, a technique based on Hough transform is used to improve the accuracy
of computing the centers and radii. Experimental results have been furnished to
demonstrate the efficiency of the proposed method.

Keywords: Circle detection; Chord property; Digital geometry; Sagitta prop-
erty; Hough transform.

1 Introduction

Fast and accurate recognition of circles or circular arcs in a digital image is a challeng-
ing problem with practical relevance. There exist several algorithms, most of which are
based on Hough transform or its variants [2,3,4,5,8,13,9,17]. In particular, circle detec-
tion is important in computer vision applications as well as in medical imaging. Hough
transform (HT) has been widely used to extract digital primitives, such as straight lines,
circles, etc. Though HT is robust against noises, clutters, object defects, and shape dis-
tortions, it often requires intensive computation and a large amount of memory.

Several researchers have developed modified HT methods for detecting circles in
digital images. In one such method, the parameter space is decomposed into several
lower dimension parameter spaces [18]. Gradient information of each edge pixel is used
in another method to reduce the computing time or the memory requirement [5,10]. A
third variety uses the geometric properties of circles to improve the performance [7].
However, these methods mainly focus on the robustness and accuracy of detection.

Kim et al. [9] have proposed a two-step circle detection algorithm, given a pair of
intersecting chords, in which the first step is to compute the center of the circle. In the
second step, the radius histogram is used to identify the circle. Xu et al. [17] presented
a randomized HT, which reduces the storage requirement and computational time sig-
nificantly compared to other methods based on the conventional HT. Chen et al. [2]

J.-M. Ogier, W. Liu, and J. Lladós (Eds.): GREC 2009, LNCS 6020, pp. 69–80, 2010.
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proposed an efficient randomized algorithm (RCD) for detecting circles that does not
use HT. The underlying concept in RCD is to first select four edge pixels randomly
in the image and then to use a distance criterion to determine whether there might ex-
ist a possible circle, and finally to collect further evidence for determining whether or
not, it is indeed a circle. Chiu et al. [3] proposed an effective voting method for circle
detection, which also does not use the HT.

In this work, we propose a novel technique of recognizing digital circles as well as
circular arcs, based on the chord property and the sagitta property [16]. First, all the
arc segments are extracted and then using the chord property, the circularity of each arc
segment is verified and the circular segments are identified. Then the sagitta property
is applied to determine the radii of the circular arc segments, and in turn, the corre-
sponding centers. Finally, two arc segments with closest radii and centers are merged
iteratively to obtain a complete circle or a larger circular arc segment. To improve the
accuracy of computing the centers and radii, a technique based on restricted Hough
transform (RHT) is used.

2 Proposed Work

Most of the earlier methods are suitable for identifying only an isolated digital circle
or digital circular arc. If a digital circle or a circular arc intersects other circular arcs
or digital straight line segments, then these methods may not be applicable. To handle
such cases, first we need to detect the digital circular segments separately and then
merge them efficiently to form a complete digital circle or a larger circular arc segment.
This will enhance the scope of circle detection algorithms.

Since in a digital image, the contour may be given as thick curve segments, we use
thinning [6] as preprocessing before applying the algorithm. The subsequent steps may
be briefed as follows.

2.1 Finding the Intersection Points

In order to detect each segment separately, first of all we detect all the points of inter-
section (among the digital curve segments) and end points (for open digital curves), and
store them in a list P . As we detect circular segments first and then merge them to form
a complete circle or a larger circular segment, we have to do some special treatment for
a free/isolated closed curve. Consider S to be a free and closed digital curve segment.
We put two virtual points of intersection, say, p1 ∈ S and p2 ∈ S, such that, if S1 and
S2 be the two resultant segments (S1 ∪ S2 = S) whose (virtual) end points are p1 and
p2, then the lengths of S1 and S2 differ by at most unity.

2.2 Storing the Curve Segments

A thin digital curve segment is a set of pixels having two end pixels and a minimal list
of pixels that establish connectivity between the end pixels using 8-neighbor rule [6].
For each point pi ∈ P , the corresponding segment(s) incident at pi is/are extracted. If
pi is an end point of a digital curve segment S, then there is only one segment, i.e., S,
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of curve points

Fig. 1. The data structure L that stores the information for each detected curve segment

incident at pi. If pi is a virtual point of intersection created for a free and closed digital
curve, namely S = S1 ∪S2, then there are two segments, i.e., S1 and S2, incident at pi.
And number of digital curve segments incident at pi is three or more if and only if pi is
an actual point of intersection between two or more digital curve segments.

To discard the spurious segments, we consider the length of (i.e., number of digital
points constituting) each segment incident at each pi ∈ P . If a segment is negligibly
small (10 pixels or less), then it is discarded; otherwise, it is stored in a list of seg-
ments, L, whose node structure is shown in Figure 1. To identify the circular arc seg-
ments, we need to first remove the digital straight line segments from the list L. It may
be mentioned here that there are several techniques to determine digital straightness
[1,11,12,14]. We have used the concept of area deviation [15], which is realizable in
purely integer domain using a few primitive operations only. The method is as follows.

Let S := 〈a = c1, c2, . . . , ck = b〉 be a digital curve segment with end points a and
b. Let ci (2 ≤ i ≤ k − 1) be any point on the segment S other than a and b. Let hi be
the distance of the point ci from the real straight line segment ab. Then S is considered
to be a single digital straight line segment starting from a and ending at b, provided

max
2�i�k−1

|� (a, ci, b)| ≤ τhd	 (a, b) . (1)

Here, |� (a, ci, b)| denotes twice the magnitude of area of the triangle with vertices a :=
(x1, y1), ci := (xi, yi), and b := (xk, yk), and d	(a, b) := max(|x1 − xk|, |y1 − yk|)
is the maximum isothetic distance between a and b, and τh = 2 in our experiments.

2.3 Deviations of Chord Property

Let θm be the angle subtended by (chord) ab at the midpoint m of a segment S ∈ L
with end points a and b. Let θc be the angle subtended by ab at an arbitrary point
c ∈ S � {a, b}. Then, according to the chord property, θc = θm if the segment S is a
part of the Euclidean (real) circle. But this is not exactly true for a digital circle. Hence,
we use a variant of this useful chord property (Fig. 2). If θc ∈ [θm − ε, θm + ε] for
all c ∈ S excepting a few points near its two ends, ε being a small positive quantity
(Fig. 2), then the digital curve S is circular.

Let CR(o, r) be the real circle centered at o(0, 0) and having radius r ∈ Z+. Let
AR(α, β) be an arc of CR(o, r) having end points α(xα, yα) ∈ CR(o, r) and β(xβ , yβ) ∈
CR(o, r), such that xα, xβ ∈ Z. Let γ(xγ , yγ) ∈ R2 be an arbitrary point in AR(α, β)�

{α, β}. Let the chord αβ subtends an angle φγ at γ. Let a, b, c ∈ Z2 be the respective
points in the digital circle CZ(o, r) corresponding to α, β, γ, and the angle subtended
by the line segment ab at c be φc.

Now, consider that AR(α, β) is an arc of CR(o, r) in Octant 1, which corresponds
to the digital (circular) arc AZ(a, b). Since a(xa, ya), b(xb, yb), and c(xc, yc) are the
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θα

θb

θβ

γ′

c′
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a
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b′

CR(o, r)

x = xc

x = xa

Fig. 2. Deviation of the chord property. Points in R
2 (α, β, . . .) or in the real circle CR(o, r)

are shown in black, and points shown as larger gray blobs (a, b, c) belong to the digital circle,
CZ(o, r). AR(α, β) is an arc of CR(o, r) in Octant 1, which corresponds to the given digital
(circular) arc AZ(a, b). As c changes its place along AZ(a, b) such that yγ − 1

2
< yc < yγ + 1

2
,

the angle φc(= θa + θb + π/2) gets deviated by ±ε.

respective points of CZ(o, r) corresponding to α(xα, yα), β(xβ , yβ), and γ(xγ , yγ) of
CR(o, r), we have xα = xa ∈ Z, xβ = xb ∈ Z, and xγ = xc ∈ Z (Fig. 2). Further,
owing to the digitization scheme, we have

yα − 1
2 < ya < yα + 1

2 , yβ − 1
2 < yb < yβ + 1

2 , yγ − 1
2 < yc < yγ + 1

2 . (2)

Let c′ and γ′ be the respective feet of perpendiculars dropped from c and γ to the
vertical line x = xa, and b′ and β′ be those from b and β to the vertical line x = xc.
Let θa, θα, θb, and θβ be the acute angles subtended at c and γ by the corresponding
perpendiculars. Then, φc = θa + θb + π/2 and φγ = θα + θβ + π/2. Clearly, for
c ∈ AZ(a, b), we have

max (φc)= max (θa + θb) + π/2 ≤ max (θa) + max (θb) + π/2, (3)

min (φc)= min (θa + θb) + π/2 ≥ min (θa) + min (θb) + π/2. (4)

or, φc ∈ [min (θa) + min (θb) + π/2, max (θa) + max (θb) + π/2] . (5)

Let δyac = ya − yc, δxca = xc −xa, and δyαγ = yα − yγ . Then the deviation of θa from
θα is given by

δθaα= θa − θα = tan−1 ya − yc

xc − xa
− tan−1 yα − yγ

xγ − xα
(6)

= tan−1 δyac

δxca

− tan−1 δyαγ

δxca

(since xa = xα and xc = xγ)

= tan−1

((
δyac − δyαγ

)
δxca

δ2
xca

+ δyacδyαγ

)
< tan−1

(
δxca

δ2
xca

+ δyacδyαγ

)
(Eqn. 2) (7)

≈ tan−1
(

δxca

δ2
xca

+ δ2
yac

)
= tan−1 1

|ca| (with δyac ≈ δyαγ ). (8)
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Thus, the deviation of θa from θα is at most tan−1(1/ca), and higher the distance of
a from c, lesser is the deviation. Similar deviation, namely δθbβ

, also comes into play
while considering θb, and as the distance of c from b increases, the deviation becomes
insignificant. Hence, if m be the middle pixel (one of two, if there are two such) of
AZ(a, b), then the maximum possible deviation of φm from φγ is given by

τφ = 2 tan−1 1
|am| = 2 tan−1 2∣∣ab

∣∣ . (9)

For practical cases, the distance of c or m from a or b is quite low, and hence such
deviations have to be considered for proper results. Our algorithm possesses this feature,
resulting to its satisfactory performance in terms of both precision and robustness.

2.4 Verifying the Circularity

The list L contains segments which are not digitally straight, as explained in Sec. 2.2.
That is, each segment S in L is made of at least one circular segment with or without
one or many intervening straight pieces. So, for each segment S, we check its circularity
using the chord property as explained in Sec. 2.3. If the segment S consists of both
circular and straight components, then we extract its circular part(s) only from S, store
these circular segment(s) in the list L with necessary updates, and remove the original
segment S from L.

We start checking the circularity of S := 〈a = c1, c2, . . . , ck = b〉 starting from
the end point, a. We consider an appropriately small prefix of S, namely Sj := 〈a =
c1, c2, . . . , cj〉, where j = min(τs, k), and verify the circularity for one-third of the
points lying in the central region of Sj , namely

S
(m)
j :=

〈
c
j/3�, c
j/3�+1, . . . , cm−1, cm, cm+1, . . . , c2
j/3�−1, c2
j/3�

〉
.

In our experiments, we have considered τs = 15. Two-third points (one-third from
either end) of S are discounted from circularity test as they are prone to excessive
deviations of chord property, as explained in Sec. 2.3. Hence, if cm (m = �j/2�) be
the midpoint of Sj and the angle subtended by the chord acj at m is estimated to be
φm, then Sj is considered to be satisfying the chord property, provided the angles φc

subtended by acj at all points c ∈ S
(m)
j � {a, cj} satisfy the following equation.

max
c∈S

(m)
j

{|φc − φm|} ≤ τφ (10)

If Sj is found to be circular, then we augment it to Sj′ := 〈a = c1, c2, . . . , cj′〉, where
j′ = min(j +

⌊1
3τs

⌋
, k), in order to include the next

⌊1
3τs

⌋
pixels from S, and again

verify the chord property for S
(m′)
j′ with m′ = �j′/2�. The process is continued until

all points in S are verified or the chord property fails for some prefix Sj (or Sj′ ) of S.

2.5 Combining the Arcs

If S is a circular arc with end points a and b, then its sagitta is the straight line segment
drawn perpendicular to the chord ab, which connects the midpoint μ of ab with S. The



74 S. Bera, P. Bhowmick, and B.B. Bhattacharya

(a) (b)

(c) (d)

(e) (f)

(Continued to next page.)
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(g) (h)

(i) (j)

Fig. 3. Step-wise snapshots of the algorithm on 6.pbm: (a) input; (b) after thinning;
(c) intersection points and end points in L, removing small arcs; (d) detected circular arcs by
chord property; (e) after combining adjacent arcs; (f) centers detected by sagitta property; (g) after
merging circular arcs; (h) after applying RHT; (i) final result; (j) ground-truth;

sagitta property is as follows: If the perpendicular to ab at μ intersects S at s, then the
radius of the circle whose arc is S, is given by

r =
d2(a, b)
8d(μ, s)

+
d(μ, s)

2
(11)

where, d(a, b) denotes the Euclidean distance between the points a and b.
The radius, and hence the center, of each circular arc S ∈ L are computed using the

sagitta property, and stored in the node corresponding to S (Fig. 1). While combining
the circular arcs, necessary care has to be taken for the inevitable error that creeps in
owing to the usage of sagitta property, which is a property of real circles only. Since we
deal with digital curve segments, the cumulative error of the effective radius computed
for a combined/growing circular arc using the aforesaid sagitta property is very likely
to increase with an increase in the number of segments constituting that arc. Hence, to
enhance accuracy, we merge two digital circular segments S and S′ into S′′ := S ∪ S′,
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if (i) S and S′ have a common end point in P and (ii) S′′ satisfies the chord property.
Since the node corresponding to each segment in the list L contains end points, center,
radius, and a pointer to the list of curve points, the attributes of the segment S are
updated by those of S′′, and the data structure P is updated accordingly.

2.6 Finalizing the Centers and Radii

In spite of the treatments to reduce discretizations error while employing chord property
to detect circular arcs and while employing sagitta property to combine two or more cir-
cular arcs and compute the effective radius and center, some error may still be present
in the estimated values of the radii and the center. To remove such errors, we apply a
restricted Hough transform (RHT) on each circular arc S ∈ L with a small parame-
ter space [2]. Let q(xq, yq) and r be the respective center and radius of S estimated
using the sagitta property (Sec. 2.5). Then the restricted parameter space is taken as
[xq − δ, xq + δ]× [yq − δ, yq + δ]× [r− δ, r+ δ], such that δ = τHr, where 0 < τH < 1
(τH = 1

8 in our experiments). A 3D integer array, H , is taken corresponding to this
parameter space, each of whose entry is initialized to zero. For every three distinct and
non-collinear points c, c′, and c′′ from S, we estimate the center q′(x′, y′) and the ra-
dius r′ of the (real) circle passing through c, c′, and c′′. If each of rd(x′), rd(y′), and
rd(r′) lies within the corresponding bounds of H , then the entry in H corresponding
to rd(x′, y′, r′) is incremented (rd(x′) =

⌊
x′ + 1

2

⌋
, etc.). Finally, the entry in H corre-

sponding to the maximum frequency provides the final center and radius of S.

3 Demonstration of the Proposed Method

A demonstration of the proposed method on a sample image (6.pbm) is shown in
Fig. 3. All the digital curve segments in the image are extracted and stored in the
list L. At first, the straight line segments are removed from L with a small compu-
tation time. For example, L(f(304, 45), o(304, 94)), L((304, 94), (303, 155)), etc. are
some of the straight line segments that are removed1. Then using the chord property,
the circular segments are detected with necessary updates in the list L. For example,
the digital curve segment from d(174, 174) to b(199, 293) consists of two circular
segments. Those two circular segments are extracted; one segment from d(174, 174)
to c(199, 249) is stored in the node of the original segment and the other one from
c(199, 250) to b(199, 293) is stored in a newly created node and inserted in the list L.
Similarly, the segment from m(223, 174) to (307, 349) consists of a circular arc and a
straight line segment. From this segment, we extract the circular part and remove the
straight part. Necessary updates in L and P are made. The circular segments in the list
L are shown in Fig. 3(d) by different colors and are enumerated in Table 1.

Two or more smaller adjacent arcs are combined if they jointly satisfy the chord prop-
erty in order to get larger arcs for reducing the computational error in the next step of
applying the sagitta property (Sec. 2.5). After such combining/merging, the number of

1 Here we use L((x, y), (x′, y′)) to denote the digital straight line segment joining the points
(x, y) and (x′, y′).
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Table 1. Changes in L after successive stages on the image of Fig. 3

Seg.
No.

End point
1

End point
2

# curve
points Center Radius Curve points

(a) After detecting the circular arcs
1 f(303, 45) e(193, 107) 118 — — (303, 45), (302, 45), (301, 45), . . . , (193, 107)
2 f(305, 45) g(414, 109) 118 — — (305, 45), (306, 45), (307, 45), . . . , (414, 109)
3 o(304, 93) p(344, 243) 188 — — (304, 93), (305, 94), (306, 94), . . . , (344, 243)
4 e(192, 108) d(174, 172) 65 — — (192, 108), (191, 109), (191, 110), . . . , (174, 172)
5 g(415, 110) h(432, 174) 65 — — (415, 110), (416, 111), (417, 112), . . . , (432, 174)
6 n(236, 131) o(301, 94) 82 — — (236, 131), (236, 130), (236, 129) . . . , (304, 94)
7 n(235, 132) m(223, 172) 42 — — (235, 132), (234, 132), (233, 133), . . . , (223, 172)
8 d(174, 174) c(199, 249) 76 — — (174, 174), (174, 175), (174, 176), . . . , (199, 249)
9 m(223, 174) l(233, 213) 40 — — (223, 174), (223, 175), (223, 176), . . . , (233, 213)
10 h(432, 175) i(404, 255) 81 — — (432, 175), (432, 176), (432, 177, . . . , (404, 225)
11 c(199, 250) b(200, 293) 45 — — (199, 250), (200, 251), (201, 252), . . . , (200, 293)
12 b(199, 294) a(181, 303) 20 — — (199, 294), (199, 295), (198, 296), . . . , (181, 303)
13 j(426, 295) k(445, 304) 20 — — (426, 295), (427, 296), (428, 296), . . . , (445, 304)

(b) After combining adjacent arcs and detection of centers by sagitta property
1 o(304, 93) p(344, 243) 188 (302, 174) 81 (304, 93), (305, 94), (306, 94), . . . , (344, 243)
2 h(432, 174) d(174, 172) 366 (303, 174) 129 (432, 174), (432, 173), (432, 172), . . . , (174, 172)
3 d(174, 174) c(199, 249) 76 (294, 176) 120 (174, 174), (174, 175), (174, 176), . . . , (199, 249)
4 l(233, 213) o(301, 94) 164 (302, 173) 79 (233, 213), (233, 212), (232, 211), . . . , (301, 94)
5 h(432, 175) i(404, 255) 81 (319, 180) 113 (432, 175), (432, 176), (432, 177), . . . , (404, 255)
6 c(199, 250) a(181, 303) 65 (177, 272) 31 (199, 250), (200, 251), (201, 252), . . . , (181, 303)
7 j(426, 295) k(445, 304) 20 (446, 277) 27 (426, 295), (427, 296), (428, 296), . . . , (445, 304)

(c) After merging
1 l(233, 213) p(344, 243) 352 (302, 173) 80 (233, 213), (233, 212), (232, 211), . . . , (344, 243)
2 c(199, 249) i(404, 255) 523 (303, 174) 124 (199, 249), (198, 248), (197, 247), . . . , (404, 255)
3 c(199, 250) a(181, 303) 65 (177, 272) 31 (199, 250), (200, 251), (201, 252), . . . , (181, 303)
4 j(426, 295) k(445, 304) 20 (446, 277) 27 (426, 295), (427, 296), (428, 296), . . . , (445, 304)

(d) After RHT
1 l(233, 213) p(344, 243) 352 (303, 173) 80 (233, 213), (233, 212), (232, 211), . . . , (344, 243)
2 c(199, 249) i(404, 255) 523 (303, 174) 129 (199, 249), (198, 248), (197, 247), . . . , (404, 255)
3 c(199, 250) a(181, 303) 65 (177, 272) 31 (199, 250), (200, 251), (201, 252), . . . , (181, 303)
4 j(426, 295) k(445, 304) 20 (447, 276) 28 (426, 295), (427, 296), (428, 296), . . . , (445, 304)

Table 2. Results for some samples images

Image size in pixels Nc Ng Np Nfa Nfr Dr T

6.pbm 905 × 562 8321 2639 2673 82 (3.11%) 48 (1.82%) 98.18 0.075
7.pbm 907 × 779 14817 11435 11629 390 (3.41%) 196 (1.71%) 98.29 0.243

2007-1.tif 368 × 460 10215 – 5495 – – – 0.092
2007-2.tif 368 × 460 8569 – 3954 – – – 0.073

Nc : # curve pixels in the original image. Ng : # pixels on circular arcs in the ground-truth image. Np : # pixels

on circular arcs detected by the proposed algorithm. Nfa : false-acceptance
(

Nfa
Ng

× 100%
)

. Nfr : false-rejection(
Nfj
Ng

× 100%
)

. Dr : Detection rate =
(Np−Nfa)

Ng
× 100%. T : Total execution time (seconds).

circular segments gets reduced to almost 50%, as reflected in Table 1 and Fig. 3(e). Next,
the radius and the center of each arc in L are computed using the sagitta property and
stored in the node of the corresponding arc. Figure 3(f) shows the center of each circu-
lar arc as ’+’. The detailed information of the circular segments stored in the list L is
given in Table 1. The radius and center of the combined arc are estimated as the weighted
arithmetic means of the radii and centers of the constituent arcs, respectively; the weight is
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Step-wise snapshots of our experiment on 2007-1.tif: (a) input; (b) after thinning;
(c) intersection points and end points in L; (d) detected circular arcs by chord property; (e) after
combining adjacent arcs; (f) centers detected by sagitta property; (g) after merging circular arcs;
(h) after applying RHT; (i) final result
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taken as the number of points of the constituent arc. For example, some of the segments in
Table 1 are combined into segments 1 and 2 (Fig. 3g), with the updated information being
listed in Table 1. Next we apply RHT on each arc (Sec. 2.6). Resultant image is shown in
Fig. 3(h) and the arcs are detailed out in Table 1. Finally, we consider the detected circular
arcs in the original (i.e., input) image and for each pixel on a detected arc S, the object
pixels in its 8-neighborhood are iteratively marked as pixels of the corresponding thick
circular arc. Figure 3(i) shows the detected thick circular arcs of the input image.

4 Experimental Results

We have implemented the proposed algorithm in C on the openSUSETM OS Release
11.0 HP xw4600 Workstation with Intel R© CoreTM2 Duo, 3 GHz processor. We have
performed tests on several database images. The results of the algorithm on some of
these image files of thick digital curves are reported here. Fig. 4 shows the output of
the experiment for each step on the image 2007-1.tif, and Fig. 5 shows the results
for 7.tif, 2007-2.tif, and 2007-4.tif. On comparing with the ground-truth
images, it is evident that our algorithm has the desired efficiency and robustness (see
results on images 6.tif in Fig. 3 and 7.tif in Fig. 5). In Table 2, the number of
pixels on circular arcs in the ground-truth image and that in our output image are shown
in third and fourth columns, respectively. The numbers of pixels corresponding to false
acceptance and false rejection are listed in columns five and six, respectively. The exe-
cution time required in the proposed method is listed in the last column.

(a) input (b) output (c) ground-truth

(d) input (e) output (f) input (g) output

Fig. 5. Results for a few more images: (a–c) 7.tif; (d, e)2007-2.tif; (f, g)2007-4.tif
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5 Conclusion

In this paper, we have presented a new technique for identifying digital circles and
circular arcs from a binary image using chord property and sagitta property. We have
used a variant of the chord property of real circle to detect digital circles or circular arcs
in an image. Based on the chord property, circular arcs are extracted and then using
sagitta property centers and radii are computed. After merging the arcs of nearly equal
radius and center, a complete circle or a larger circular arc is obtained. We have used
restricted HT to improve the accuracy of centers and radii. Experimental results have
been presented in support of the proposed method. Since for each circle or circular arc
we have computed the center and radius before applying the HT, the size of Hough space
is very small. Hence, the amount of accumulator memory and required computation
time are reduced significantly. Estimation of the different parameter values for specific
types of images in order to improve the results as well as to enhance the robustness and
accuracy of the method may be studied as future research issues.
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Abstract. Understanding of graphic objects has become a problem of
pertinence in today’s context of digital documentation and document dig-
itization, since graphic information in a document image may be present
in several forms, such as engineering drawings, architectural plans, mu-
sical scores, tables, charts, extended objects, hand-drawn sketches, etc.
There exist quite a few approaches for segmentation of graphics from
text, and also a separate set of techniques for recognizing a graphics and
its characteristic features. This paper introduces a novel geometric algo-
rithm that performs the task of segmenting out all the graphic objects
in a document image and subsequently also works as a high-level tool to
classify various graphic types. Given a document image, it performs the
text-graphics segmentation by analyzing the geometric features of the
minimum-area isothetic polygonal covers of all the objects for varying
grid spacing, g. As the shape and size of a polygonal cover depends on
g, and each isothetic polygon is represented by an ordered sequence of
its vertices, the spatial relationship of the polygons corresponding to a
higher grid spacing with those corresponding to a lower spacing, is used
for graphics segmentation and subsequent classification. Experimental
results demonstrate its efficiency, elegance, and versatility.

1 Introduction

Graphics is a powerful form of expression as it can convey anoverall idea at a glance.
Expressions articulated from various graphic forms such as maps, architectural
plans, engineering drawings, art designs, etc., are very clear, self-explanatory, and
easily understandable in their way of representing their constituent elements and
their spatial relation. This, in turn, aids in a comprehensive understanding of the
underlying information directly without any ambiguity [16]. So, sometimes ideas
and information are better communicated via graphical expressions rather than
plain text. To do this, we need to have an easy exchange of graphical information
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between man and machine, and need to design an efficient mechanism for process-
ing of graphical documents by the machine. Currently, a system inputs the graphi-
cal information from the user via the mouse/keyboard or some shape list provided
in the toolbar. But a freehand drawing drawn using a mouse is not neat and the
predefined shape list is liable to be too long and cumbersome [14].

While the text in a document image is a sequence of characters taken from a
predefined alphabet, there is no limit to what can be labeled as graphics. Thus,
graphics segmentation is practically a challenging problem, given that graphical
information may be in the form of engineering drawings, architectural plans,
musical scores, tables, charts, extended objects, hand-drawn sketches, etc. [16].
Hence, it requires not only the segmentation of text from graphics in a given
document image but also the understanding of their different classes.

Most of the recent works that deal with the analysis and recognition of line
drawings are mainly focused on symbol recognition, with a very little emphasis
on the interpretation of various graphic images. These methods perform line or
curve recognition in one or two stages without any higher level processing. Either
they first perform a segmentation of the document image and then extract the
primitive graphic entities, or they directly perform symbol recognition on the
bitmap image in a single step [13]. In a more recent work [12], the authors have
attempted to obtain a higher level interpretation of the graphical image. To do
this, an intermediate stage is used in the graphical document analysis to provide a
detailed description of all the shapes present in the given image. This information
is then shared among the various specialist processes to interpret the graphical
image. In another approach [12], the simpler graphical entities are interpreted
first and then the complex entities are obtained in successive iterations for an
intelligent way of understanding line drawings in graphical images.

A comprehensive understanding of document images aids in the hierarchical
representation of their structure and content, which can be used for editing, brows-
ing, indexing, and filing of document images [6,15]. In such document understand-
ing systems, proper classification of the document into its various constituent parts
or zones (text and graphics) is of great importance. The zone classification tech-
nique plays a key role in a document understanding system, which includes text
extraction [17], OCR [9], math recognition [18], table understanding [7], logo de-
tection [3,11], image and diagram extraction [4,10], etc. Recently, a zone classifier
based on a decision tree and a hidden Markov model has been reported in [15]. An
overview of existing works in document image classifcation in recent times with
their performance evaluation is also presented in [15].

We present here a novel geometric algorithm for segmenting out all the graphic
objects in a document image and subsequently recognizing various graphic types.
Given a document image, our algorithm performs the text-graphics segmenta-
tion by analyzing the geometric features of the minimum-area isothetic polygonal
covers of all the objects for varying grid spacing, g. As the shape and size of a
polygonal cover depends on g, and each isothetic polygon is represented by an
ordered sequence of its vertices, the spatial relationship of the polygons cor-
responding to a higher grid spacing with those corresponding to a lower grid
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spacing, is performed using an efficient geometric technique. The novelty of our
algorithm lies in exploiting the features present in isothetic covers of elementary
geometric primitives, such as lines and circles, which are not seen in existing
works. For example, in [1], text-graphics classification was proposed using white
spaces in the form of tiles. On the contrary, in our algorithm, each isothetic
cover, being represented as a sequence of vertices and grid points whose internal
angles are only 900 (denoted by ‘1’), 1800 (‘2’), and 2700 (‘3’), provides a way
of analyzing the regularity properties, if any. Hence, a skewed straight piece is
easily recognized by its isothetic cover as the vertex sequence follows a periodic
pattern [8]. For example, ...222312223122231222... is digitally straight as the
‘2’s are uniformly spaced and separated by ‘31’. Apart from a few other useful
features, this idea is also used by us to recognize straight line segments, which
are usually found in architectural plans and engineering drawings but not in
hand-drawn sketches.

2 The Proposed Method

We consider an input document image, I, which may contain both graphics and
text components. Our method for understanding the type of graphics comprises
of two stages:
Stage 1: Segmenting out all graphics object(s) in I.
Stage 2: Analyzing the graphic object(s) identified in Stage 1 and performing its
(their) classification.

2.1 Algorithm for an Isothetic Cover

In order to separate out graphics from text, we construct isothetic (i.e., axis-
parallel) polygonal covers for the constituent objects in the input document
image I using the algorithm IsoPoly (modified from TIPS [2] after applying
the binarization [5]). Let Q1, Q2, Q3, and Q4 be the four square cells/quadrants
incident at a grid point p(i, j) (Fig. 1). To decide whether p is a vertex of some
isothetic polygon, we need to check the combinatorial arrangement of object
containment of the four quadrants incident at p. Depending on whether or not a
quadrant has object containment, there exist 24 = 16 different arrangements of
these four quadrants. These sixteen arrangements, in turn, can be reduced to five

p(i, j)

Q2 Q1

Q3 Q4

g

g

g

g

p

Q2 Q1

Q3 Q4

p

Q2 Q1

Q3 Q4

p

Q2 Q1

Q3 Q4

p

Q2 Q1

Q3 Q4

p

Q2 Q1

Q3 Q4

Case C0 Case C1 Case C2a Case C2b Case C3 Case C4

Fig. 1. Instances of five combinatorial cases to decide the vertex type of p(i, j)
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cases, where, a case Cq (q = 0, 1, . . . , 4) includes all the arrangements for which
exactly q square(s) has/have object containments, and the remaining (i.e., 4−q)
ones have not. If p befits Case C1 or C3, then p is always a vertex of an isothetic
polygon. If p befits C2, and the quadrants with object containment are diagonally
opposite, then p occurs twice as a vertex (Subcase C2a); otherwise, p is a non-
vertex grid point lying on some edge of a (isothetic) polygon (Subcase C2b). For
C0, p is just an ordinary grid point lying outside a polygon; whereas, for C4, p
is a grid point lying inside a polygon.

2.2 Segmenting out Graphics

The document image I is first provided as an input to the algorithm IsoPoly
with an appropriately large grid spacing, g = g1. The result is an output image,
I(g1)

out , with a set of isothetic polygonal covers, namely S(g1), which tightly en-
closes all major components in I. We then analyze the geometric nature of each
isothetic polygon Pi of S(g1) and classify Pi into one of the following two broad
categories depending on its shape:

Type 1: Isothetic polygons having rectilinear shapes.
Type 2: Isothetic polygons having irregular shapes.

The inference from the above classification is that an irregularly shaped iso-
thetic polygon (Type 2) is very unlikely to enclose some text material and hence
can be marked as a graphics-containing polygonal cover. Based on this broad
classification, nothing can be said in particular about the content of a Type 1
polygon, as it may contain either text or some graphic object(s) lying inside a
bounding box or a rectilinear region. Hence, to examine further, we again feed
the polygons of S(g1) to IsoPoly with a lower grid spacing, g2, and derive the
set of polygons, S

(g2,g1)
i , corresponding to I ∩ Pi for each polygon Pi of S(g1).

From S
(g2,g1)
i , we verify whether each Type 2 polygon of S(g1), already identi-

fied to enclose graphic components, now has tighter isothetic polygon(s). On the
contrary, if Pi ∈ S(g1) is of Type 1 and S

(g2,g1)
i has majority of its polygons with

small perimeters and arranged in a rectilinear fashion with a uniform spacing
between them, then Pi is identified as a text polygon; otherwise, Pi is a graphics
polygon. The frequency plot of polygon perimeters for g = g2 is used to decide
whether a polygon in S

(g2,g1)
i encloses a word.

Demonstration of the Segmentation. A demonstration is shown in Fig. 2.
First, the set of isothetic polygonal covers, S(12) = {P (12)

1 , P
(12)
2 , . . . , P

(12)
7 }

(Fig. 2b: numbered from top to bottom, left to right), is constructed using the
algorithm IsoPoly from the input document image (Fig. 2a) for the grid spac-
ing g1 = 12. We classify the polygons in S(12) into two types: Type 1 having a
rectilinear shape, and Type 2 with an irregular shape. As a result, we find that
only one polygon, namely P

(12)
4 , is classified as a Type 2 polygon while the re-

maining six polygons are classified as Type 1 polygons. As explained in Sec. 2.2,
it conforms to the idea that an irregularly shaped isothetic polygon (Type 2)



GOAL: Towards Understanding of Graphic Objects 85

is very unlikely to enclose some text material, which is usually laid in compact
blocks containing words in a linear fashion. Since we cannot make any prediction
about the contents of Type 1 at this stage, we again feed S(12) to IsoPoly with
a lower grid spacing, g2 = 2, and derive the set, S

(2,12)
i , corresponding to I ∩ Pi

for each Pi ∈ S(12). At this point, we find that the Type 2 polygon of S(12), i.e.,
P

(12)
4 , already identified to enclose graphic components, now has tighter isothetic

polygon(s), shown in dark gray in Fig. 2d. On the contrary, we find that for each
of the three Type 1 polygons, namely P

(12)
2 , P

(12)
3 , and P

(12)
5 , a large number of

small rectilinear polygons appear inside the polygon. Figure 2c shows a high fre-
quency of polygons having perimeters in [1, 400] and a low frequency of polygons
having perimeter greater than 400. So a polygon that has perimeter above 400
is labeled as a graphics component and that below 400 as a text component or
word(s). Thus, with the aid of the frequency plot we are able to decide whether
a polygon in S

(2,12)
i encloses (a set of) words or a graphic element. For example,
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’p01_09_2.txt’ (a) Input image.
(b) Set of isothetic polygons,
S(12) = {P (12)

1 , P
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2 , . . . , P

(12)
7 }

(numbered from top to bottom, left to
right), for grid spacing g = 12.
(c)Plot of frequency versus perimeter
of all the polygons for g = 2.

(Continued to next page.)
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(d) Four small polygons (shown white) inside P
(12)
4 throw false alarms as text polygons,

but are considered as graphic components as P
(12)
4 is a Type 2 polygon containing

several large (graphic) components (shown in dark gray). Similarly, three dark gray
polygons lying inside three Type 1 polygons (P (12)

1 , P
(12)
2 , and P

(12)
5 ) are also recognized

as false alarms because the predominant polygon types for g = g2(= 2) correspond to
text. In fact, the two false alarms in P

(12)
1 and P

(12)
5 are two horizontal lines, and that

in P
(12)
2 is a coalesced text.

Fig. 2. Segmentation of a graphic object in a document page
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Input
Document

P/n >
τp?

Yes

No

Yes

EO AP/ED

No
HDSA/n >

τa? HDS:hand-drawn sketch.
EO:Extended object.
AP/ED:Architectural
plan/Engineering drawing.

Fig. 3. The scheme of our algorithm (τa = 35, τp = 7 in our experiments)

the polygons with small perimeters in Fig. 2d (shown in white) are contained
within the respective Type 1 polygons shown in light gray. These small polygons
signify individual words or a few coalesced words, confirming that they are text.

2.3 Identifying Different Graphic Types

After doing the segmentation of graphics from the text for a given document
image, our method is set to identify the type of each graphic component present
in the document image. A brief schematic overview of our algorithm is given
in Fig 3. We have used the features A/n and P/n to classify a graphics, where
A and P denote the sum of areas and the sum of perimeters of all the poly-
gons in S

(g2,g1)
i , and n denote their total number of vertices. The graphic types

are determined by analyzing the shapes or/and arrangement of their enclosing
isothetic polygons, as explained next.

TabularStructures. Tables are graphic objects inwhich information is arranged
in a regular manner along rows and columns. These rows and columns usually con-
tain text or numerical data. Such a regularity in the arrangement of data in a table
is actually missing in most of the other graphic objects. Hence, a tabular structure
is distinguished from other graphic objects on the basis of its spatial arrangement
of isothetic polygons, when it is initially identified as a Type 2 polygon. Although
the contents (words or numbers) of a table are very much similar to those of a text
box, the arrangement of the contents of the former is distinguishably different from
that of the latter. Hence, when tables are contained within a bounding box and ini-
tially identified as a Type 1 polygon, then special care has to be taken to have it
identified as a table and not as an ordinary text box. If Pi ∈ S(g1) corresponds
to a table, then S

(g2,g1)
i contains mostly text polygons arranged along rows and

columns, a feature which is absent in text where words are arranged linearly from
left to right and top to bottom. Vertical or/and horizontal separators, if present,
are recognized easily as long and thin rectangles. Figure 4 shows an input image of
a table (Fig. 4a) followed by the intermediate output (Fig. 4b) segmenting it out
from text and then the final output (Fig. 4c) showing the nature of the isothetic
polygonal cover for a table.

Architectural Plans and Engineering Drawings. Architectural plans and
engineering drawings mostly consist of straight line segments and circular arcs
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(a) (b)

(a) Input image of a table. (b) Inter-
mediate output for g = 12 (Stage 1):
Type 1 polygon. (c) Final output for
g = 2 (Stage 2): Recognizing the tabu-
lar structure based on arrangement of
polygons along rows and columns.

(c)

Fig. 4. Identifying a tabular structure

(and occasionally, smooth curves), usually bounding empty spaces. Hence, they
can be distinguished from other graphic objects, e.g., a table, from its empty
space content. Again, hand-drawn sketches may also have a lot of free or empty
spaces but the lines contained in hand-drawn sketches are usually not regular
(i.e., straight/circular) in nature (Sec. 2.3). Hence, plans and drawings can be
very well distinguished from other graphic types using their characteristic fea-
tures of low A/n and high P/n. Figure 5a shows an input document image I
containing architectural plan and some text. Given the input image I, we first
segment out the graphic object from the text. The intermediate output in Fig. 5b
shows the set S(12) of isothetic polygonal covers. So, if an isothetic polygon Pi

encloses an architectural plan, then the outer and the inner polygons of S
(2,12)
i

have long straight edges in frequent succession enclosing empty spaces, which is
evident in Fig. 5c. Similar results on engineering drawing are shown in Fig. 6.

Extended Objects. Extended objects are probably the easiest of the graphic
types to be identified. As the name suggests, they are graphical objects that
cover large areas of the canvas. They actually have the highest area-to-vertex
(A/n) ratio of their isothetic polygonal covers compared to all other graphic
objects, e.g., tables, architectural plans, hand-drawn sketches, etc. They may
have isothetic polygonal covers of all kinds of possible shapes but these covers
enclose very little or no empty space. As a result, when the algorithm IsoPoly
is run on the extended object for a lower grid spacing g2, there is no significant
change in the number of isothetic polygonal covers appearing for the grid spacing



GOAL: Towards Understanding of Graphic Objects 89

(a)

(b)

(c)

Fig. 5. Identifying architectural plans in a document image. (a) Input document having
an architectural plan. (b) Intermediate output for g = 12 (Stage 1): Segmenting out
graphics from text. (c) Final output for g = 2 (Stage 2): Recognizing architectural plans
based on long straight edges in succession enclosing empty spaces. (Images rotated by
900 �.)
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Fig. 6. Results for two engineering drawings. Left: Input. Middle: Intermediate output
for g = 12. Right: Final output for g = 2 (Stage 2).

(a) (b) (c)

Fig. 7. Recognizing an extended graphic object (leaf)

g2 compared to that for the higher grid spacing, g1. This unique property easily
differentiates it from all other graphic types. Figure 7 depicts the fact that
extended objects are characterized by their high area-to-vertex ratio irrespective
of the grid spacing, g.

Hand-drawn Sketches. The act of recognizing a hand-drawn sketch is prob-
ably the most complex task out of all graphic classification, since hand-drawn
sketches usually possess lines/curves of varying thickness and length. These lines
are of all kinds of shapes and sizes ranging from very long and thick ones to very
short and thin ones. But they are all a bit wavering or irregular in nature and
oriented in a nonuniform fashion. These irregular lines contained in a hand-
drawn sketch act as its characteristic property using which we distinguish it
from other graphic types. Due to the long and thin nature of a hand-drawn line,
the resultant isothetic polygonal cover is also long and thin in shape, and hence



GOAL: Towards Understanding of Graphic Objects 91

(a) (b) (c)

Fig. 8. Identifying a hand-drawn sketch. (a) Input image. (b) Intermediate output for
g = 12. (c) Final output for g = 2.

characterized by its large number of vertices and small area (i.e., low A/n and
P/n). Figure 8 shows a hand-drawn image and its respective output.

3 Experimental Results

We have implemented the algorithm in C on an Intel(R) Core(TM)2 Duo CPU
E4500 2.20GHz machine, the OS being Mandriva Linux Release 2008. We have
tested the algorithm on University of Washington’s document image database
(UW1 and UW2) and http://www.iupr.org/arcseg2007. As explained in Sec. 2.3,
various graphic types are successfully recognized from different document sets
as evident in our experimental results, some of which are presented in this paper
(Figs. 4, 5, 7, 2). Table 1 shows the performance measures (explained in [15])
of our algorithm on various graphic images taken from the above-mentioned
databases.

Table 1. Performance of the proposed algorithm

HDS EO T AP/ED CR(%) MR(%)

HDS 22 0 0 1 95.45 4.55
EO 3 26 0 0 89.66 10.34
T 0 0 18 6 75.00 25.00

AP/ED 2 0 3 8 61.53 38.46

FR(%) 9.62 0 5.36 10.61 — —

Acronyms [15]: HDS: hand-drawn
sketch. EO: Extended object. T: Table.
AP/ED:Architectural plan/Engineering
drawing. CR: Correctness rate. MR: Miss
rate. FR:False alarm rate.
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4 Future Works and Conclusion

This paper shows how certain simple-yet-efficient geometric properties of iso-
thetic covers can be used for segmentation of graphics from text in a document
image. The geometric relation among these covers for appropriate grid spacings
can be exploited to determine the type of graphic elements ranging from tabular
structures to hand-drawn sketches. There are ample possibilities to explore vari-
ous ways of characterizing the isothetic covers corresponding to different graphic
types. We are presently working on designing efficient algorithms (with theoreti-
cal guarantees) to recognize different real-world graphic entities, reports of which
will be presented in near future.
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Abstract. Raster maps are an important source of road information.
Because of the overlapping map features (e.g., roads and text labels)
and the varying image quality, extracting road vector data from raster
maps usually requires significant user input to achieve accurate results.
In this paper, we present an accurate road vectorization technique that
minimizes user input by combining our previous work on extracting road
pixels and road-intersection templates to extract accurate road vector
data from raster maps. Our approach enables GIS applications to exploit
the road information in raster maps for the areas where the road vector
data are otherwise not easily accessible, such as the countries of the
Middle East. We show that our approach requires minimal user input
and achieves an average of 93.2% completeness and 95.6% correctness in
an experiment using raster maps from various sources.

Keywords: GIS, raster maps, road vectorization, map processing.

1 Introduction

Humans have a long history of using maps. In particular, paper maps have
been widely used since the early years for documenting geospatial information.
Because of the availability of low cost and high-resolution scanners and the
Internet, we can now obtain a huge number of scanned maps in raster format
from various sources. Since maps commonly contain road networks, raster maps
are an important source of road vector data for areas where road vector data are
not readily available. Moreover, we can use the road vector data as features to
register maps to other geospatial data, such as imagery, and create an integrated
view of heterogeneous geospatial data sets [3].

Extracting road vector data from raster maps is a challenging task. First, the
extraction of road pixels is difficult since raster maps very often contain noise
from image compression and scanning processes and roads often overlap with
other map features. Further, for converting the road pixels to vector format,
the previous work commonly uses the thinning operator [11] or line grouping
and parallel-line matching techniques [1] to identify the road centerlines. The
thinning operator can produce distorted lines around intersections and hence
the extracted road vector data are not accurate without manual adjustment [1].
The line grouping and parallel-line matching techniques require manual settings

J.-M. Ogier, W. Liu, and J. Lladós (Eds.): GREC 2009, LNCS 6020, pp. 93–105, 2010.
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on various parameters to identify the accurate centerlines, such as the maximum
difference between the slopes of two line segments to be merged [11] .

In this paper, we present a general technique that requires minimal user in-
put for extracting accurate road vector data from raster maps with varying map
complexity (e.g., overlapping features) and image quality. We exploit our previ-
ous work on extracting road pixels from raster maps [5] and utilize the thinning
operator to determine the road centerlines. We then automatically correct the
distortions near road intersections caused by the thinning operator using our pre-
vious techniques on extracting accurate road-intersection templates from raster
maps [4; 6] to extract accurate road vector data. We tested our road vectorization
technique on a variety of maps including scanned and digital maps from different
sources and compared our results to a commercial map-digitizing product.

The remainder of this paper is organized as follows. Section 2 discusses related
work on road extraction from maps. Section 3 presents our approach to extract
the road pixels from raster maps. Section 4 describes our approach to generate
the road vector data from the extracted road pixels. Section 5 reports on our
experimental results, and Section 6 presents the conclusion and future work.

2 Related Work

Much research work has been performed in the field of extracting road infor-
mation from raster maps, such as separating lines from text [2; 14], detecting
road intersections [8], and extracting road vector data [1; 11] from raster maps.
In the previous work on text/graphics separation from raster maps, Cao and
Tan [2] and Li et al. [14] utilize preset grayscale thresholds to remove the back-
ground pixels from raster maps and then detect text labels from the remaining
foreground layers of the maps. The road pixels are the by-product (i.e., only the
road pixels are extracted) after the text pixels are identified. Since in their work,
the main goal is to recognize the text labels, they do not process the raster maps
further to extract the road vector data.

Some of the previous work assumes a simpler type of raster maps for their
algorithms. Habib et al. [8] extract road intersections from raster maps that con-
tain road lines only. Itonaga et al. [11] employ a stochastic relaxation approach
to first extract the road areas from digitally-generated maps (i.e., not scanned
maps) and then apply the thinning operator to extract the road vector data.
The distorted lines around the road intersections are corrected based on the
straightness of the roads, which is determined using user specified constraints,
such as the road width. In comparison, our approach can process a variety of
raster maps including scanned maps, and we avoid the distortion with no pa-
rameter settings. Bin et al. [1] work on scanned maps to extract the road vector
data. Instead of using the thinning operator, as in [1], the medial lines of par-
allel road lines are first produced and then linked to generate the road vector
data. In general, the vectorization results of utilizing the medial lines of parallel
road lines can be very accurate for the lines around the intersections, but the ex-
traction processes require more manually specified parameters than the thinning
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operator, such as the thresholds to group medial-line segments and to produce
the road intersections.

In addition to the research work, a commercial product called R2V from Able
Software is an automated raster-to-vector conversion software package special-
ized for digitizing raster maps. To vectorize roads in raster maps using R2V,
the user needs to first manually provide samples of road pixels or select a set of
color threshold to identify the road pixels. The manual work of providing sam-
ples of road pixels can be laborious, especially for scanned maps with numerous
colors, and the color thresholding function does not work if one set of threshold
cannot separate all of the road pixels from the other pixels. In comparison, our
approach automatically identifies road colors from a few user labels for extract-
ing the road pixels. After the road pixels are extracted, R2V can automatically
trace the centerlines of the extracted road pixels and generate the road vector
data. Our approach detects the road format and road width automatically and
uses the detected road information to extract accurate road vector data. In our
experiments, we tested R2V using our test maps and show that our automatic
technique generates better results.

3 Extracting Road Pixels

Distinct colors commonly represent different layers (i.e., a set of pixels represent-
ing a particular geographic feature) in a raster map, such as roads, contour lines,
and text labels. By identifying the colors that represent roads in a raster map, we
can extract the road pixels from the map. However, raster maps usually contain
numerous colors due to scanning and/or compression processes and the poor con-
dition of the original documents (e.g., color variation from aging, shadows from
folding lines, etc.). For example, Figure 1(a) shows a 200x200-pixels tile cropped
from a scanned map. The tile has 20,822 distinct colors, which makes it difficult
to select the road colors manually. To overcome this difficulty, many techniques
have been developed to first group the colors of individual feature layers into
clusters based on the assumption that the color variation within a feature layer
is smaller than the variation between feature layers [5; 10; 12; 13]. Therefore,
the feature layers can be extracted by selecting specific clusters. In this paper,
we utilize our supervised map decomposition technique in [5] to extract the road
pixels, which requires minimal user input and is capable of handling various
types of raster maps, especially scanned maps.

The supervised map decomposition technique first employs two color quanti-
zation techniques to reduce the number of colors in the raster map. To preserve
object edges while clustering the colors in a raster map, we first employ the
Mean-shift algorithm [7], which merges two colors into one by considering their
distance in the color space (we use a color distance of 25 in the red, blue, and
green color space) as well as in the image space (we use a spatial distance of 3
pixels). The Mean-shift algorithm reduces the number of colors in Figure 1(a)
by 72% as shown in Figure 1(b). To further merge similar colors in the raster
maps for reducing the user input to select the road colors, we apply the K-means
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(a) An example tile (b) The Mean-shift result

(c) The K-means result, K=8 (d) The K-means result, K=16

Fig. 1. An example map tile and the color quantization results with color cubes

(a) User labels centered at road lines (b) Extracted road pixels

Fig. 2. Extracting road pixels using road color identified by analyzing user labels

algorithm with a user specified K to generate a quantized map image with at
most K colors. The K-means algorithm can significantly reduce the number of
colors in a raster map by maximizing the inter-cluster color variance; however,
since the K-means algorithm considers only the color space, it is very likely that
the resulting map has merged features with a small K. For example, Figure 1(c)
shows the quantized map with K as 8 and the text labels have the same color as
the road edges. Therefore, the user would need to select a larger K to separate
different features, such as in the quantized map in Figure 1(d) with K as 16.

With the quantized map, the user provides labels of road areas such as the
two user labels shown in Figure 2(a), and the map decomposition technique then
exploits the fact that a user label is required to be centered at a road line or a
road intersection to identify the road colors. Using this approach, the user only
has to provide enough user labels to cover each road color in the raster map,
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such as one for the white roads and one for the yellow roads in Figure 2(a).
Figure 2(b) shows the extracted road pixels by using the road colors identified
using these two user labels.

4 Vectorizing Road Pixels

Once we have the road pixels, we generate the road vector data by first deter-
mine the road centerlines and then vectorize the centerlines. Figure 3(a) and
Figure 3(b) show an example map tile from a scanned map and the road pixels
extracted from the map using the approach described in the previous section.
The extracted road pixels contain objects other than roads since they are drawn
using the same color as roads. In addition, some of the road lines in the extracted
road layer are broken since the missing pixels also belong to the text labels and
grid lines (i.e., overlapping features) and these pixels are not drawn using the
road colors. To separate the non-road features from the road pixels, we exploit
the distinctive geometric properties of road lines such as road lines are linear ob-
jects and are connected, to remove solid areas and small connected-components.
Next, we apply the closing operator to reconnect one-pixel wide gaps and fill
small holes. The closing operator first expands the foreground areas by one pixel
(i.e., one iteration of the dilation operation) and then expands the background
areas by one pixel (i.e., one iteration of the erosion operation). Figure 3(c) shows
the results after we apply the closing operator, where the red circles show that
some of the missing road pixels are filled if the missing parts are small, especially
in the places where the text labels overlap with roads.

In order to reconnect broken lines with larger gaps automatically, we expand
the areas of road pixels by utilizing the binary dilation operator as shown in
Figure 3(e). We determine the number of iterations of the dilation operator
(i.e., how far the foreground region should expend) using the road width and
road format (i.e., double-line and single-line roads) identified automatically by
the Parallel-Pattern Tracing algorithm [6]. In a road layer where road lines are
drawn as single lines (i.e., single-line format) as the example shown in Figure 3,
the detected road width is the thickness of the majority of the road lines in the
road layer as the dashed lines shown in Figure 3(d). If a road line is drawn using
two parallel lines (i.e., double-line format), the road width is the pixel distance
between corresponding road pixels on the parallel lines. During the thickening
process, we also merge parallel lines into thick single lines if the road layer is in
double-line format.

To generate the centerline representation of the thickened road lines, we apply
the binary erosion operator and the thinning operator as shown in Figure 3(f)
and Figure 3(g). We use the erosion operator to shrink the road areas before
we apply the thinning operator because the thinning operator distorts lines near
the intersections and the extent of the distortion depends on the thickness of
the lines before the thinning operator is applied. Although the binary erosion
operator helps to minimize the extent of the distortion caused by the thinning
operator, the road geometry near the intersections is still not accurate, especially
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(a) An example map (b) Extracted road pixels (c) Results of applying the
closing operation

(d) Road width (e) Thickened roads (f) Eroded roads

(g) Thinned roads with distortion around intersections (h) Distorted results

(i) Intersection candidates
and actual intersections

(j) Marking distortions
and tracing roads

(k) Accurate results

(l) Straight-line patterns (m) Extracted road vector
data

Fig. 3. Extracting road vector data from an example map



Extracting Road Vector Data from Raster Maps 99

Fig. 4. Pseudo code for tracing line pixels

near T-shape intersections. Figure 3(g) shows the distorted examples of the road
geometry around a T-shape intersection and Figure 3(h) shows the inaccurate
results if the distorted lines are traced to generate the road vector data.

For correcting the distortion around the intersection points and generating ac-
curate road vector data from the thinned-line image (Figure 3(g)), we first detect
intersections of the thinned lines to mark potential distorted lines. We utilize the
corner detector [15] to detect intersection candidates and then use the connectiv-
ity of the candidates to determine actual road intersections [6]. Figure 3(i) shows
the intersection candidates in blue circles and the actual intersections with cross
marks. Since the extent of the distortion around each intersection is determined
by the thickness of the thickened lines (which is decided by the road width and
the dilation operator), we can mark potential distorted thinned-lines near an in-
tersection point using a gray box with the size as the thickness of the thickened
lines as shown in Figure 3(j). We then trace the lines outside the gray boxes to
generate accurate road orientations and update the positions of the road intersec-
tions based on the intersecting roads and their orientations. Figure 3(k) shows a
portion of example extraction results. The road lines around the intersections are
accurate despite the distortion of the thinned lines shown in Figure 3(g).

With the accurate positions of the road intersections and the knowledge of
potential distorted areas, we start to trace the road pixels on the thinned-line
image to generate the road vector data. The thinned-line image contains three
types of pixels: the non-distorted road pixels, distorted road pixels, and back-
ground pixels, (as shown in Figure 3(j), they are the black pixels not covered by
the gray boxes, black pixels in the gray boxes, and white pixels, respectively). We
create a list of connecting nodes (CNs) of the road vector data. A CN is a point
where two lines meet at different angles. We first add the detected road intersec-
tions into the CN list. Then, we identify the CNs among the non-distorted road
pixels using a 3x3-pixels window to check if the pixel has any of the straight-line
patterns shown in Figure 3(l). We add the pixel to the CN list if we do not detect
a straight-line pattern since the road pixel is not on a straight line.



100 Y.-Y. Chiang and C.A. Knoblock

To determine the connectivity between the CNs, we trace the road pixels
using an eight-connectivity flood-fill algorithm shown in Figure 4. The flood-fill
algorithm starts from a CN, travels through the road pixels (both non-distorted
and distorted ones), and stops at another CN. Finally, for the CNs that are
road intersections, we use the previously updated road intersection positions
as the CNs’ positions. The CN list and their connectivity are the results of
our extracted road vector data. Figure 3(m) shows the extracted road vector
data. The road vector data around the road intersections are accurate since the
distorted lines are not traced by the flood-fill algorithm and the intersection
positions are updated using accurate road orientations.

5 Experiments

We evaluated our road vectorization approach using three raster maps produced
from different sources. Two maps are scanned maps (350dpi) covering the city of
Bagdad, Iraq published by Gecko Maps and International Travel Maps (ITM).
We cropped and tested 10 map tiles (800x600 pixels each) from each of the
scanned map. The paper maps have been folded, and the fold lines cause in-
evitable shadows and color differences between areas in the scanned maps, which
enriches our test data since the cropped tiles from the same map have various
color usage and image quality. In addition to the scanned maps, we tested a
digitally generated map covering Afghanistan published by the United Nations
(UN).1 The digital map (3300x2550 pixels) shows the main and secondary roads,
cities, political boundaries, airports, and railroads of the nation. We tested the
digital map as a single tile in our experiments. For comparison, we also tested
the automatic road vectorization function in R2V from Able Software.

We first applied our supervised map decomposition technique described in
Section 2 to extract the road pixels from the test maps. We pre-processed the
scanned map tiles using the Mean-shift and K-means algorithms with K as 8,
16, 24, and 32 to generate four quantized images for each map tile. The user
started the user-labeling task from the quantized image containing eight colors.
If the user cannot distinguish the road pixels from other map features (e.g., back-
ground) in the quantized image, the user will then select an image containing
more colors (a higher K) for user labeling. We did not apply the color segmen-
tation algorithms on the digital map before user labeling. This is because the
digital map contains a smaller number of colors (i.e., 90 unique colors) and there
is only one color representing both the major and secondary roads in the map.
Table 1 shows the numbers of colors in the images used for user labeling and
the numbers of user labels used for extracting the road pixels. The user-labeling
task is the only process that requires user input in our experiments, and for all
of the scanned map tiles, only two to four labels were needed.

We testedR2Von extracting the roadpixels fromthe testmaps. Since the scanned
maps contain numerous colors, we need more than one set of color thresholds to ex-
tract the road pixels (R2V only allows one) or significant user effort to manually
1 http://unama.unmissions.org/
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Table 1. The number of colors in the image for user labeling of each tested map and
the number of user labels for extracting the road pixels

ITM Map Gecko Map
UN Map

Tile Number 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Colors 8 16 8 16 16 16 16 16 16 8 8 8 16 16 16 8 16 16 16 8 90
User Labels 4 3 3 4 3 2 4 3 3 2 2 2 2 2 2 2 3 3 3 2 1

Table 2. Numeric results of the extracted road vector data from the scanned Gecko
and ITM maps (four-pixel-wide buffer) using our approach

ITM Gecko ITM Gecko ITM Gecko ITM Gecko ITM Gecko

Tile Completeness Correctness Quality Redundancy RMS Diff.

1 98.7% 97.8% 96.7% 85.8% 95.5% 84.1% 0.07% 0% 2.34 1.69
2 99.3% 97.4% 93.6% 97.5% 92.9% 95% 0% 0% 1.23 3.51
3 98.1% 93.3% 75.8% 97.8% 74.7% 91.4% 0% 6.7% 1.52 2.46
4 91.7% 97.2% 96.0% 98.7% 88.3% 96% 0% 1.73% 2.57 1.61
5 92.0% 98.9% 94.7% 97.9% 87.5% 96.8% 0% 0% 2.79 1.32
6 92.7% 88.6% 99.0% 90.2% 91.9% 80.1% 0% 0.41% 2.50 3.2
7 97.5% 97.3% 99.2% 98% 96.7% 95.4% 3.34% 6.52% 1.81 1.65
8 95.1% 93.4% 97.1% 94% 92.5% 88.2% 0% 0% 2.02 2.56
9 93.7% 99.0% 94.6% 83.3% 88.9% 82.6% 0% 0% 2.21 1.54
10 97.1% 98.7% 85.9% 94% 83.7% 92.9% 0.7% 1.7% 2.20 1.47

Avg. 95.6% 96.2% 93.3% 93.7% 89.3% 90.3% 0.6% 1.7% 2.12 2.1

specify sample pixels for each of the road colors. Therefore, we did not successfully
extract the road pixels from the scanned maps using R2V. For the digital map, we
used one set of color threshold to extract the road pixels using R2V.

For the extracted road vector data, we report the accuracy of the extrac-
tion results using the road extraction metrics proposed in [9], which include the
completeness, correctness, quality, redundancy, and the root-mean-square (RMS)
difference. We manually drew the centerline of every road line in the maps as the
ground truth. The completeness and correctness represent how complete/correct
the extracted road vector data are (the optimum is 100%). The quality is a com-
bination metric of completeness and correctness (the optimum is 100%). The
redundancy shows the difference in percentage between the correctly extracted
lines and the matched ground truth (the optimum is 0). The RMS difference is
the average distance between the extracted lines and the ground truth, which
represents the geometrical accuracy of the extracted road vector data. To gen-
erate these metrics, the authors in [9] suggest using a buffer width as half of the
road width in the test data. In our test maps, the roads are five and eight pixels
wide in the digital map and are seven to ten pixels wide in the scanned maps.
We used a buffer width of four pixels.

Table 2 and Table 3 show the numeric results. The average completeness are
from 87.9% to 95.6%, the average correctness are from 93.7% to 99.9%, and the
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(a) ITM tile 3 (b) Road pixels of (a) (c) Road vector data of (a)

(d) ITM tile 6 (e) Road pixels of (d) (f) Road vector data of (d)

(g) ITM tile 9 (h) Road pixels of (g) (i) Road vector data of (g)

(j) Gecko tile 7 (k) Road pixels of (j) (l) Road vector data of (j)

(m) UN map (portion) (n) Road pixels of (m) (o) Roadvectordataof(m)

Fig. 5. Examples of the road vectorization results
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Table 3. Numeric results of the extracted road vector data from the UN digital map
(four-pixel-wide buffer) using our approach and R2V

Tested Technique Completeness Correctness Quality Redundancy RMS Diff.

This Paper 87.9% 99.9% 87.8% 0% 3.75
Able R2V 76.1% 96.7% 74.2% 18.92% 3.91

average redundancy are from 0% to 1.7% for the scanned and digital map using
our approach. Figure 5 shows some example results, where the geometry of the
extracted road vector data are very close to the road centerlines in the maps.
Some broken lines are not connected (causing lower completeness numbers, such
as for the digital map) since the gaps are larger than the iterations of the dilation
operations (we automatically detected the road format as single-line roads and
used three iterations of the dilation operator to fix the gaps smaller than six
pixels). The broken lines could be reconnected with post-processing on the road
vector data since the gaps are now smaller than they were in the extracted road
layers resulting from the dilation operations. The tiles 3 and 10 of the ITM map
and tiles 1 and 9 of the Gecko map have lower correctness since parts of non-
road features are also extracted using the identified road colors and those parts
contribute to false-positive road vector data. Figure 5(a) to Figure 5(c) show
the ITM tile 3 where the runways are represented using the same color as the
white roads and hence are extracted as road pixels. This type of false-positives
could be further removed by including a user validation step after the road pixels
were extracted. Some tiles have higher redundancy numbers such as the Gecko
tiles 3 and 7, which is because some of the straight road lines in these tiles were
extracted as shorter line segments with a small orientation variation and their
buffers overlap with each other. The average RMS differences are under three
pixels for scanned maps and under four for the digital map, which shows that
the thinning operator and our approach to correct the distortion results in good
quality road geometry. Table 3 shows our approach achieved better results than
R2V.2 The lower completeness of R2V is because R2V did not automatically
connect broken road pixels. The lower correctness and high redundancy of R2V
is because R2V generated small line segments instead of long and smooth lines
and did not generate accurate road lines near the intersections.

For the computation time, we built our test system using Microsoft Visual
Studio 2008 running on a Windows XP Professional Virtual Machine installed
on 2.4 GHz Intel Core 2 machine with one GB of memory. The average processing
time for vectorizing the road pixels for a scanned map tile (800x600 pixels) is 13
seconds. The dominant factors of the computation time are the image size, the
number of road pixels in the raster map, and the number of road intersections
in the road layer.

2 We used the “Auto Vectorize” function in R2V without manual post-processing.
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6 Conclusion and Future Work

We present a general technique that extracts accurate road vector data from het-
erogeneous raster maps with minimal user input. We utilize our previous work [5]
to handle raster maps with varying image quality and exploit the accurate road-
intersection templates [4; 6] to prevent distorted extraction results. We show
that our technique extracts accurate road vector data from three raster maps
with varying color usage and image quality. In the future, we plan to test our
approach on more maps from various sources and test to include post-processing
on the road vector data to improve the results.
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Abstract. In this paper, we study the segmentation of sketched engineering 
drawings into a set of straight and curved segments. Our immediate objective is 
to produce a benchmarking method for segmentation algorithms. The criterion 
is to minimise the differences between what the algorithm detects and what 
human beings perceive. We have created a set of sketched drawings and have 
asked people to segment them. By analysis of the produced segmentations, we 
have obtained the number and locations of the segmentation points which  
people perceive. Evidence collected during our experiments supports useful  
hypotheses, for example that not all kinds of segmentation points are equally 
difficult to perceive. The resulting methodology can be repeated with other 
drawings to obtain a set of sketches and segmentation data which could be used 
as a benchmark for segmentation algorithms, to evaluate their capability to 
emulate human perception of sketches. 

Keywords: Sketch recognition, Low level ink processing and pen stroke seg-
mentation, Engineering Graphics, Segmentation Ability. 

1   Presentation 

Our interest is computer-based recognition of sketched engineering drawings, such as 
would allow automated conversion of engineering sketches into CAD representations. 
Segmentation of the drawing is a critical stage, and one which has received much 
attention over the years. Some important aspects of segmentation still remain un-
solved, perhaps because (as [1] shows), segmentation is not, in fact, a single problem, 
but a set of similar problems. In this paper, we consider one such unsolved aspect: the 
benchmarking of computer-based segmentation of sketches. 

Recognition of the object portrayed in engineering drawings is a topical subfield of 
graphics recognition, which deals more generally with how computers can interpret 
semi-structured drawings which contain both freeform elements and symbols defined 
by convention. In the case of creating 2D or 3D CAD models of engineering objects 
from single or multiple drawings, it is the freeform elements, lines and curves, which 
portray the surfaces of the object, and it is these which we wish to identify. At this 
stage of processing, the conventional symbols (like dimensions and hatching) are 
clutter, and should be removed (and perhaps stored for later use). Our objective is 
thus to segment engineering drawings into lines, curves and clutter. 
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When evaluating new segmentation approaches, one common strategy is simply 
comparing the number of segmentation points obtained by the new approach with the 
number of segmentation points which the “theoretical” shape possesses (by “theoreti-
cal” we mean the ideal primitives obtained from a line drawing by applying a well-
defined set of topological and geometrical constraints). This strategy assumes that the 
new approach should detect those properties which the theoretical shape should pos-
sess, regardless of whether or not the actual drawing used as input really does possess 
them. 

In reality, we cannot assume that a sketched line drawing on paper will always 
contain exactly the same number and type of segments as the “perfect” line drawing 
which existed only in the mind’s eye of the drawing’s creator. The total number of 
segments may vary, both because of imperfections in the sketch itself and because of 
differences between geometrical and perceptual interpretation of sketches (such as the 
well-known perceptual illusions described by Hoffmann [2] or Palmer [3]). The types 
of perceived segments may also vary: for example, a sketched arc of large radius may 
be perceived as a straight line. 

Another common strategic deficiency is not paying attention to the locations of the 
segmentation points. As a result, a new approach may be considered good simply 
because it finds the ideal number of segmentation points, even though their actual 
locations are far from ideal (see, for example, [4]). 

If we are to evaluate a sketch recognition algorithm realistically, we should com-
pare the differences between what the algorithm detects and what human beings per-
ceive when parsing the same sketch. The comparison should consider not merely 
“how many?” but also “how close?”. We must also bear in mind that perhaps not all 
segmentation points are equally difficult to find. In such case, recognising many 
"easy" segmentation points should not be considered as a measure of success. 

To this end, we have performed experiments aimed at discovering: which segmen-
tation points people perceive; where the segmentation points are located; and what 
geometrical flexibility in the locations of segmentation points can be tolerated. 

The paper is organised as follows. We first explain our motivation and hypothesis. 
Then we describe the design of the experiment so that the procedure we have devel-
oped may be used by other researchers to obtain segmentations of different sketches. 
In the subsequent section, we analyse our results and how they validate, modify or 
refute our hypothesis. The paper finishes with lessons learned and main conclusions. 

2   Motivation 

Most sketch-based modelling approaches need line drawings as input for the model 
reconstruction stage. Freehand sketches must be converted into “tidy” line drawings 
[5]. The two main problems of this process are segmentation and overtracing. Over-
tracing is the use of multiple strokes to represent a single line. Readers interested in 
this topic can find a recent contribution by Ku et al. [6]. Segmentation is the process 
of dividing a complex stroke into its geometrical primitives. Segmentation of sketches 
is an open problem in the process of sketch recognition. One recent contribution can 
be found in [4]. 
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We can note, in passing, that even segmentation of line drawings remains an un-
solved problem. For example, arc segmentation is a classical process related to vec-
torisation and line drawing interpretation. Starting in 2001, the GREC workshops 
(organized by IAPR) have included contests focused on arc segmentation. Those 
contests test the abilities of participating algorithms to detect arcs from raster images. 

Segmentation of freehand sketches presents further difficulties due to the inherent 
imperfections of such sketches. E.g., it is often difficult to determine whether small 
variations from perfect geometry in the sketch are intentional, and should be detected 
during segmentation, or are simply the accidental consequence of hasty drawing. 

Most of the approaches described in the literature ([5], [7], [8], [9]) attempt to 
solve this problem by requiring the user to provide additional information. However, 
humans are able to segment sketches without requiring such extra information. It is 
reasonable to foresee, and prepare for, the day when advances in cognitive science 
result in automated approaches which come close to matching human performance. 
When they do, we shall require benchmarking criteria to evaluate such approaches. 

2.1   Hypothesis 

Our initial hypothesis was that four different aspects affect the segmentation process 
done by humans: 

• Input quality. We hypothesise that sketches can be roughly graded as good, aver-
age or bad. Given good sketches, everybody will find the same segmentations 
(with, perhaps, meaningless differences). Given bad drawings, humans will not 
reach a consensus on how to interpret them. Thus neither good drawings nor bad 
drawings are appropriate for benchmarking. Only in average drawings will there 
be some obvious segmentation points upon which everyone will agree, but other 
segmentation points upon which opinions diverge. 

• Other lines. We hypothesise that some auxiliary lines (e.g. axes and dimensions) 
will help people to find the best segmentation, while others (e.g. grids) will disturb 
them. Perhaps, some lines will be neutral (e.g. hatching). 

• Clutter. We hypothesise that clutter (including auxiliary lines) will disturb people 
much less than it currently disturbs computer segmentation algorithms. 

• 2D versus 3D. We hypothesise that drawings of two dimensional shapes are easier 
to segment, as segmentation is not mixed with other problems. People perceive the 
image as “flat” and try to find its segmentation points without first trying to create 
a mind’s eye 3D model of the object portrayed in the image. However, the segmen-
tations they produce after perceiving 3D shapes are more constrained, as they may 
never contradict their mind’s eye model. 

Another aspect of this problem is whether we should use natural or wireframe draw-
ings. From the strict point of view of segmentation, this should make no difference, 
but if we assume that perception of 3D and perception of segmentation affect one 
another, then we should test the two modes separately. Ideally, we should produce test 
drawings in both styles.  

However, in fixing the limits of our current research, we decided that this initial 
investigation will consider neither wireframe drawings nor drawings containing  
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representations of “scenes” (assemblies of several parts designed to function to-
gether). We limit our study to natural drawings depicting single parts. 

3   Design of the Experiment 

Since our experiments are aimed at finding how humans segment sketched drawings, 
the core of our experiment is of necessity to produce a set of drawings and to ask 
people to segment them. 

In order to investigate our hypothesis given above, we distinguish three types of 
drawings: 

• Single orthographic views. These are not used as input in any existing sketch-based 
modeling application, but they nevertheless constitute a segmentation problem. 
They have the advantage of simplicity, and are useful for detecting very bad seg-
mentation strategies and/ or approaches. 

• Multiple orthographic views. This is the input format used in some existing 
Sketch-Based Interfaces and Modelling (SBIM) systems. For example, we can hy-
pothesise that segmentation strategies which combine the views and analyse the re-
sulting 3D shape will be more successful than those which simply scrutinise the 
separate views. 

• Axonometric or perspective views. This is the input format used in most existing 
SBIM systems and includes several segmentations point types which can not be 
found in single orthographic views. 

Consequently, three different experiments are required. Each experiment consists of 
three main stages: (a) production of sketches, (b) segmentation and (c) measurement. 

3.1   Production of Sketches 

As discussed above, we require sketches which meet the following criteria: 

• the sketch must not be too simple: if segmentation is easy, any reasonable approach 
will process it correctly, and the benchmark is meaningless, 

• the sketch must not be too complex: if the majority of humans cannot agree on an 
interpretation, there is no “human performance” to be duplicated, 

• the sketch must not be perfect: we are interested in the human ability to interpret 
freehand sketches, not in the application of simple geometrical rules, 

• the sketch must not be too imperfect: we must be able to reach a consensus as to 
whether an imperfection is deliberate or accidental, 

• the sketches must, as a set, contain examples of all of the common cases where 
curves meet planar faces (see, for example chapter 7 of Cooper’s book [10]) 

• the sketches must be representative of real engineering drawings: to avoid the 
problem of “gaming the system”, where an approach obtains high benchmark 
scores but does not perform well with a larger set of real drawings. 

The production process was divided into two steps: (a) choosing the suitable draw-
ings; and (b) obtaining versions of different quality. 
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To choose suitable drawings, we first reviewed figures from the literature and cre-
ated our own large initial set of figures, using our experience as teachers of engineer-
ing graphics and researchers in the field of SBIM to select figures which met our 
criteria. By circulating them to all of the members of the research team for comment 
we obtained a reduced but diverse set. After some iterations of this step, we finally 
reduced the test set to five CAD drawings (see figures 1, 2 and 3). 

To obtain versions of different quality, we asked other people from the research 
team to draw sketches reproducing the CAD drawings obtained in the previous step. 
All the sketches were drawn in standard sheets marked with a 15 x 15 cm square 
frame, in order to encourage the sketchers to draw sketches with similar sizes and 
proportions. The same frame was later useful as a reference system to measure the 
location of segmentation points. In order to evaluate the effects of input quality, the 
members of the research team evaluated the quality of the sketches and scored them 
from bad to good (fig. 1- 2). From the resulting set of drawings, we selected those we 
needed for the three experiments. Each volunteer segmenter was given only one of the 
three chain plate sketches and only one of the three pipe flange sketches. 

For comparison purposes, the segmenters were also asked to segment line drawings 
of both the chain plate and the pipe flange. The line drawings were given to the seg-
menters only after they had finished segmenting the sketches, to avoid those images 
influencing their perception of the sketches. 

In order to evaluate the influence of other lines, we compared the differences in 
perception of a drawing containing only edges, and the same drawing containing 
auxiliary lines (axis, hatching, dimensions, etc). For this test, we chose an average 
quality sketch of multiple orthographic views, and deleted auxiliary lines to obtain a 
"clean" version (fig 3, top). Half of the segmenters were asked to segment the original 
sketch, while the other half were asked to segment the "clean" version. 

In order to evaluate understanding of axonometric views, average quality versions 
of the two selected drawings were given to the segmenters (fig. 3, bottom). 

3.2   Segmentation 

During the segmentation of the final set of sketches, each segmenter was asked to 
segment a small subset of the full set of sketches, in order to avoid wearying the sub-
ject. The figures assigned to each particular subject were chosen randomly, to avoid 
subjective grouping of similar or dissimilar figures. 

We asked the segmenters to segment the sketches by marking the exact position of 
each segmentation points and indicating the type of each resulting segment. These 
instructions were refined in each experiment. More information about the instructions 
given to answer the test can be found in [11]. 

3.3   Measurements 

For the first experiment, segmenters were chosen from different profiles: from 11 to 
69 years old, males and females, and a variety of technical drawing knowledge ac-
quired in different formal education levels, ranging from primary school to university 
professors. 
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The information contained in the tests was collated and recorded in: identification 
of the subject (sex and age), level of technical drawing knowledge, number of seg-
mentation points marked, and (x,y) coordinate pairs of each segmentation point. 

The process we followed to obtain the coordinates was: a) scan the image as a bit-
map; b) import the image into a CAD application and align its origin and the horizon-
tal axis with those of the coordinates of the CAD application; c) mark the locations of 
the segmentation points and save their coordinates. 

Before storing the coordinates, we first had to decide which segmentation points 
they belonged to. To do this, we first analysed all the answers and produced templates 
containing the different segmentation points, using frequency and position as our two 
criteria. More details on measurements can be found in [11]. 

4   Analysis 

Qualitative results for the “chain plate” experiment are shown in figure 1, where 
every segmentation point of the chain plate marked by any of the segmenters has been 
superimposed. Analysing the results of the experiment 1, we can conclude that our 
first hypothesis is valid, as quality of sketches has clearly influenced the perception of 
segmentation points. 

 
 

 
 

Fig. 1. Superimpositon of every segmentation point marked by any segmenter in the four clas-
sified drawings: (a) line drawing, (b) poor, (c) average and (d)good quality sketch 

However, our results suggest that the grading (poor, average or good) which we 
gave to the three selected sketches does not always fit with the dispersion in the  
segmentation points found by the segmenters. The chain plate sketch considered as 
average (upper right in figure 1) was marked with more erroneous segmentation 
points that the sketch graded as poor (lower left). We conclude that some of the grad-
ing criteria we followed were wrong. For example, we assumed that overtracing 
makes a sketch more difficult to perceive, but this seems not to be so. On the other 
hand, greater the topology and geometry distortions appear to be distracting for the 

(a) (b) 

(c) (d) 
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segmenters. More studies are needed to determine a method of grading the quality of 
sketches aimed particularly at the segmentation process. 

We can note in passing that the exact line drawing (Figure 1 a) also led to in some 
erroneous segmentation points. This result appears to contradict our hypothesis that in 
good drawings everyone should perceive the same segmentation points. However, 
most of these erroneous points come from a misunderstanding: some segmenters said 
that they had thought that full circles were not arcs, and should thus be segmented, 
and decided to break the circles into two halves or four quadrants. It is interesting to 
note that, having segmented full circles, some of them propagated their segmentation 
points to the surrounding concentric external arcs, perhaps because these too encom-
passed more than 180°. 

The same results can be confirmed through qualitative analysis of “pipe flange” 
segmentation as shown in figure 2. 

 

 

 

Fig. 2. Superimpositon of every segmentation point for the pipe flange drawing in the four 
classified drawings of it: (a) line drawing, (b) poor, (c) average and (d) good quality sketch 

As can be seen in figure 3 (on the top), the second experiment clearly validates one 
aspect of our second and third hypotheses: no significant differences can be found 
between segmentations of the rocker arm with and without auxiliary lines. Only a few 
segmenters marked some intersections between edges and dimensions (e.g. the upper 
arrow of the diameter 45 dimension in the left side). However, one main question 
which remains unanswered is whether or not the prior perception of the 3D shape 
depicted in the drawing is important when uncoupling edges from the remaining lines. 
Another factor which could have contributed to the result is previous knowledge of 
the meaning of those symbols—all of the segmenters for this experiment had some 
exposure to technical drawing. Finally, more experiments should be required to  
determine the exact impact of noise in the segmentation process. 

The results of our third experiment, fork and hinge segmentations shown in figure 
3 (bottom), cannot be used to validate our fourth hypothesis. It certainly seems that 
segmentation points are as dispersed (and possibly more dispersed) in the flat  
 

(a) (b) 

(c) (d) 



 Human Perception in Segmentation of Sketches 113 

 
 

  

Fig. 3. Superimpositon of every segmentation point for the second (up) and the third (low) 
experiment 

drawings of the first experiment as in the 3D shapes depicted in the second and third 
experiments. This would be what we would expect. 

However, there are methodological problems with the third experiment which 
could “pollute” our results. Firstly, the instructions explicitly asked the segmenters to 
perceive a three dimensional shape for the second and third experiment. Secondly, 
while many of the segmenters in the first experiment had no technological back-
ground, all of the segmenters in the second and third experiments had had previous 
exposure to technical drawings. We believe that training and practice are more impor-
tant for interpreting multi-view drawings than for axonometric drawings. 

Thus, although we believe that, left to themselves, people would first perceive the 
3D shape and then produce a segmentation influenced by this perception, we cannot 
as yet claim any experimental evidence to validate this belief. 

We can, however, confirm one result which was partially observed in the previous 
experiments. Segmentation points located on those junctions where two or more 
straight segments meet are perceived by almost all segmenters, and the location of 
those points is very precise (dispersion is very low). Segmentation points located on 
junctions where more than two lines meet are also readily perceived, irrespective of  
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whether the lines are straight segments or arcs. We regard this result as conclusive—
no further studies are required about segmentation points located on junctions where 
three or more lines meet, or two straight lines meet. 

Segmentation points located at tangential junctions of two arcs or one straight 
segment and one arc seem to be more difficult to perceive, as a significant part of the 
segmenters failed to mark them. The dispersion in the location of those points is high. 

We have calculated the average positions of all the segmentation points (figure 4 
left), and the average position of those points that are perceived by most than 50% of 
the interviewed subjects (figure 4 right). These images are indicative of the results we 
will obtain after processing a full set of sketches to be used as benchmarks for seg-
mentation algorithms. 

5   Lessons Learned 

We have discovered small distortions in size and orientation between the paper sheets 
that we gave to the interviewed subjects and the electronic copies that we used to 
process the data after scanning the paper sheets. Although they have had no influence 
in the current qualitative analysis of results, this problem should be resolved before 
proceeding to a fine measurement of average location and tolerable deviations for 
those segmentation points where significant dispersion appears. 

Although we detected some misunderstanding of the task due to ambiguities in the 
explanatory text of the first experiment and tried to correct them in the explanatory 
texts of the subsequent experiments, some misunderstandings nevertheless occurred. 

We have to detect the origin of the misunderstandings and produce a clearer set of 
instructions in order to ensure that future segmenters understand clearly the task they 
are supposed to do. 

For example, some segmenters included an excessive number of segmentation 
points. Although their answers are not statistically significant, one of their repeated 
comments is valuable. When they were asked why they had done so, their replies 
were as follows: I perceive what you intend to represent in the drawing, but, as you 
have asked me to segment what I can see, I have had to mark what I know that are 
actual imperfections due to mistakes in the sketching process, or even due to the print-
ing process (i.e. serrations). 

The comment raises the important distinction between what can be seen but should 
be ignored, and what is really important because it corresponds to the perceived pur-
pose or message of the image. Obviously, humans are able to perceive the latter, and 
it is this complex ability which should be emulated by computer applications. 

The procedure we followed for measuring the coordinates of the segmentation 
points is tedious and should be automated. Even more importantly, measuring Carte-
sian coordinates with reference to an external origin is not an ideal strategy. Firstly, 
they are statistically awkward to process. Secondly, (x,y) coordinates are particularly 
bad choice as they are paper-relative, not drawing-relative. If the results are scanned 
obliquely or at an offset, the (x,y) coordinates of the drawing itself change. What is 
needed is a single-parameter parameterisation of locations where a hand-drawn anno-
tation intersects a pre-existing hand-drawn sketch. 
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Fig. 4. Average locations of all segmentation points (left) and those perceived by more than 
50% of the segmenters (right) 
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Fig. 4(cont). Average locations of all segmentation points (left) and those perceived by more 
than 50% of the segmenters (right) 

The main requirement of the single-parameter parameterisation is that it must be 
object-relative: the coordinates must be relative to fixed features of the object. In 
future, we intend to fit the sketches to parametric curves (for example, by applying 
some variant of the approach described in [4]), and use natural coordinates for coor-
dinates and statistical values. 

6   Conclusion 

We have defined and evaluated a procedure for obtaining a set of benchmark sketches 
that will be useful for evaluating the quality of segmentation approaches, with regard 
to their capability to emulate human perception of sketches. 

The procedure includes criteria for selecting the drawings, and an approach for ex-
tracting and analysing the information. 

In spite of its apparent simplicity, even examples like the fork have proved to be 
challenging, as they contain many segmentation points whose locations are difficult to 
fix. This indicates that the procedure followed when choosing the benchmarking 
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drawings was appropriate. The evidence collected during our experiments supports 
the hypothesis that not all kinds of segmentation points are equally difficult to  
perceive. As a consequence, we should ensure that the final set of benchmarking 
sketches will contain a balanced set of different kinds of segmentation points, as it is 
important to consider levels of difficulty of segmentation points rather than merely 
their number. 

The procedure should be refined to avoid the inconveniences described in Section 
5 and a large set of drawings should be processed to obtain a benchmarking set with 
segmentation points statistically validated as being those which people perceive. 
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Abstract. The design of a slide presentation is a creative process. In this process
first, humans visualize in their minds what they want to explain. Then, they have
to be able to represent this knowledge in an understandable way. There exists a lot
of commercial software that allows to create our own slide presentations but the
creativity of the user is rather limited. In this article we present an application that
allows the user to create and visualize a slide presentation from a sketch. A slide
may be seen as a graphical document or a diagram where its elements are placed
in a particular spatial arrangement. To describe and recognize slides a syntactic
approach is proposed. This approach is based on an Adjacency Grammar and
a parsing methodology to cope with this kind of grammars. The experimental
evaluation shows the performance of our methodology from a qualitative and
a quantitative point of view. Six different slides containing different number of
symbols, from 4 to 7, have been given to the users and they have drawn them
without restrictions in the order of the elements. The quantitative results give an
idea on how suitable is our methodology to describe and recognize the different
elements in a slide.

1 Introduction

The design of a slide presentation is a creative process where a user tries to express a
certain knowledge in an understandable way. Commercial software exists allowing the
design of slide presentations but the creativity of the user is rather limited. Normally,
this software forces the user to use some predefined widgets and constrains the spatial
arrangements. Most of the times the process of designing becomes an arduous task. On
the other hand, most of the times when attending to a slide presentation the audience
becomes bored. This fact is due to two factors, the slide presentation and the speaker.
Concerning the speaker they normally read what is written on the slide and use a mono-
tone speech without emphasizing the relevant parts. Concerning the presentation, slides
use to contain excessive text or a lot of formulas where the speaker explains the min-
imum parameter of them. Nowadays a new trend of slide presentations has become. It
is known as zen presentations [12]. This trend tries to design slides with the important
concepts to show associating images to them. Summarizing the creativity in the design
becomes a helpful point in a good way of doing a presentation.

In terms of an automatic interpretation task, two fields are involved in the design
of slides, namely Graphics Recognition (GR) and Human Computer Interaction (HCI).

J.-M. Ogier, W. Liu, and J. Lladós (Eds.): GREC 2009, LNCS 6020, pp. 118–129, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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From the point of view of Graphics Recognition, a slide can be seen as a graphical
document where each of its widgets may be seen as a graphical symbol with an specific
meaning. There exists wide variety of techniques to recognize the different widgets in
a slide as the presented in [6,11]. Moreover, these widgets follow spatial arrangements.
These facts make us to plan to use a syntactic approach to describe and recognize a slide.
Then, the syntactic approach defines a vocabulary of symbols referring to the widgets
in a slide and the parser, given a slide, will recognize the different elements of the slide.
Taking up again the concept of creativity and viewing a slide as a graphical document,
we may consider that the use of sketches to design a slide is a powerful tool. In the
last decades the advent of new devices has increased the focus of graphic recognition in
recognizing hand drawn symbols. Different techniques have been applied to work with
this kind of symbols like syntactic approaches as the work of Mace and Anquetil [7].
They use a derivation of Constraint Multiset Grammars to interpret electrical circuits in
an on-line input form. Statistical approaches have also been used, as Zernike Moments
in the work of Hse and Newston [4] or 2D dynamic programming in the work of Feng
et al. [3].

From the point of view of Human-Computer Interaction, due to the appearance of
new devices such as Tablet PC’s, PDA’s and pen & paper protocols new paradigms of
interaction have appeared as the proposed in [9,1]. In these paradigms the user interacts
with the computer by means of a pen input. A pen input is composed by a set of strokes.
A stroke is a set of points captured between two consecutive pen down and pen up users
actions. A gesture is a stroke with an associated meaning involving a user action. Then,
in these paradigms the user draws in a display or a board and waits for a computer
response, depending on whether this response adapts to his/her intention or not, the
user continues or edit it to achieve the user intention. The literature is prolific in sketch
recognition applications from these point of view. Davis in [2] summarizes of the works
done by the MIT during the last decade, DAI in [1] presents a new paradigm of Human
Computer Interaction based on Pen Based User Interfaces (PUI).

The aim of our work is to develop an application to create a slide presentation raising
the creativity of the user in the process. To do so the application recognizes the elements
in the slide and produces the corresponding latex source. The recognition of the graphi-
cal part is done by means of a syntactic approach consisting in an Adjacency Grammar
and a Directional Parser. The grammar allows to describe the different elements without
constraining an order in the appearance of them. The parser analyzes the input while
the user is drawing it. Analyzing 2D structures, at each new primitive the parser has
to re-scan all the previous input to search for candidates to produce a valid reduction.
To reduce the searching space a spatial division based on a grid has been defined in
the parser. The results show in a quantitative way the performance of our application to
create a slide presentation.

The rest of the article is organized as follows: next section describes the technical
core of the application composed by the grammar and the parser. Section 3 is devoted
to describe the application and to discuss its performance evaluation. Section 4 shows
in a theoretically way how the user may edit his/her slides. Finally, section 5 presents
the conclusions and possible future lines of the work.
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2 Technical Core

This section is devoted to present the technical details behind the application presented
in this paper. As we may conceive a slide as a diagram where the different elements
composing it are described by means of a graphical alphabet of widgets and which
follow spatial arrangements, we decided to use a syntactic approach to describe and
recognize the different widgets of a slide. This syntactic approach is based on an adja-
cency grammar and a parsing algorithm.

2.1 Adjacency Grammars

Adjacency Grammars have been first introduced by Jorge in [5]. This kind of grammars
belongs to the attributed multiset family, i.e, Adjacency Grammars express their produc-
tions as a multiset of terminal and non-terminal symbols. The fact they use a multiset
instead of a list takes profit in the use of multiple instances of the same type of symbol
and the order of appearance is not restricted. Among all the representative grammars
in this family, Adjacency Grammars have been chosen because they are context-free in
opposite to Constraint Multiset Grammars [8].

Formally our Adjacency Grammar is defined as a 6-tuple G = {VT , VN , S, R, A, P}
where:

– VT is the finite set of terminal symbols.
– VN is the finite set of non-terminal symbols.
– S is the initial symbol of the grammar.
– R is a set of predefined constraints.
– A is a finite set of attributes defined in the symbols of the grammar.
– P is the set of productions of the grammar of the form:

α → {β1, . . . , βj} if r1(Γ1, c1), . . . , rk(Γk, ck) (1)

with α ∈ VN , β1, . . . , βj ∈ VT

⋃
VN and for all i = 1 . . .k, ri ∈ R, Γi ⊆

{β1, . . . , βj} and ci represents the distortion measure associated to each constraint
ri. The sum of all these measures gives an idea of the distortion from the ideal
shape.

This kind of grammars has been adapted to cope with the slide presentation problem.
The terminal alphabet of the grammar is depicted to cope with graphical languages and
is formed by segments and arcs, i.e. VT = {segment, arc}. Depending on whether a
primitive is a segment or an arc its attributes will be the tuples (xo, yo) and (xf , yf)
representing the endpoints of the segment or the triplet (xc, yc, r) describing the x and
y coordinates of the center of the arc and its radius respectively. The different possible
elements in the composition of a slide are described by the productions of the grammar,
i.e. VN = {text, equation, image, item, . . .}. Figure 1 presents different productions
of our grammatical approach, e.g., the production Image is composed by a terminal
symbol arc and a non-terminal symbol triangle which has a vertex inside of the arc.
Similarly, the production Item is defined as a non-terminal square and a segment that
has a vertex inside the square.
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:= { , } hasVertexInside(
,

)

Image

:= { , } hasVertexInside(
,

)

Item

:= { , } IsParallel( , )

Text

Equation

:= { , } Intersects( , )

& Perpendiculars( , )

Fig. 1. Grammatical productions describing the visual alphabet of the SSP application

2.2 Parsing a Slide

A syntactic approach, as mentioned above, consists of a grammar and a parser or syn-
tactic analyzer. The parser is the process that given an instance and a grammar, decides
if the input belongs to the language generated by the grammar. As a result, the parser
constructs a parse tree where the root is the start symbol of the grammar and the leafs
correspond to the basic primitives.

A parser or syntactic analyzer is categorized by two features: the way the input is an-
alyzed and how the parse tree is constructed. The former defines a parser as a directional
or non-directional parser, while the latter describes it as a bottom-up or top-down. The
syntactic analyzer presented in this work is a directional incremental bottom-up parser.

The parser takes the input symbol by symbol in an incremental way while the user is
drawing it. At each step, it applies a reduction using the primitive being analyzed and
the previous scanned symbols. Thus, the parse tree is constructed from the leafs (basic
primitives) to the root (Start symbol of the grammar). At each level, we found all the
possible non-terminals that the parser could reduce.

When analyzing an input primitive, the parser must decide which of the possible
productions it will apply. There are two ways to choose these productions, Depth First
Search and Breadth First Search. The former entails more complexity since the parser
selects a production and tries to apply it until no valid reduction is possible. Then, the
parser has to go back to a previous step and re-trace the parse tree. The second, opens
all the possible productions simultaneously, eliminating those that belong to invalid
ones when analyzing a basic primitive. The parser presented in this works proceeds in
a Breadth First Search.

The analysis of two dimensional inputs, at the contrary of linear ones, implies that
the parser could not assume that the primitive being analyzed forms a symbol with
the previous analyzed ones. Thus, when analyzing a primitive, the parser must search
among the previous analyzed symbols for candidates to produce a valid reduction. This
search entails more time consuming as the input increases it size, and the possibility of
reduce a production with primitives that are so far away to be considered as a part of
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the same symbol. To solve this problem we have proposed an indexing structure based
on a spatial tessellation.

Let C = {C1, . . . , Cn} be the set of cells obtained by dividing the space into n parts
and let O be a symbol representing a graphical element in a diagram. We define as
CO(O) | CO(O) ⊆ C the set of cells containing the symbol and NC(O)| NC(O) ⊂
C represents the set of neighbouring cells for each of the cells in CO. We define
the influence zone Ψ of a symbol O as the union of the sets CO and NC, Ψ(O) =
CO(O)

⋃
NC(O).

Given a non-terminal symbol of the grammar α defined by a production α →
{β1, . . . , βj}, we denote as Fα ⊆ {β1, . . . , βj} the set of symbols forming α which
have been already reduced or analyzed, and as Mα ⊂ {β1, . . . , βj} or Mα = ∅,
the set of symbols missing in α to be completely reduced. For a given symbol α,
Fα

⋃
Mα = {β1, . . . , βj} and Fα

⋂
Mα = ∅. In the following we refer as under

reduction symbols to non-terminal symbols where Mα �= ∅, and as reduced symbols to
the non-terminal symbols with Mα = ∅.

Algorithm 1 describes the parsing method. The parser works as follows: Given an
input symbol x ∈ VT , the parser allocates it into the grid and searches for candidates to
produce a valid reduction in its influence zone. Depending on whether the candidate is
an under reduction production or a reduced production the parser proceeds as follows:

– For each under reduction symbol α, the parser has to check:
• If the symbol x is one of the remaining symbols of the under reduction one

x ∈ Mα and satisfies the constraints in the production, then {x}⋂Fα ⊆
{β1, . . . , βj}. Mα = Mα\{x} and Fα = Fα

⋃{x}.
• The symbol x invalidates an under reduction symbol: x ∈ Mα but not sat-

isfies the constraints in the production, or x /∈ Mα and invalidates possible
successive relations between the symbol α and other possible terminals.

– For each new symbol that x can generate:
• The symbol x and its neighbours, NB, produce a valid partial reduction of a

production creating an under reduction symbol α′. I.e., {x}⋃NB ⊂ Fα′ .
• The symbol x and its neighbours, NB, produce a valid reduction of a produc-

tion creating a reduced symbol α′. I.e., {x}⋃NB = Fα′ .

3 Experimental Framework

This section presents an overview of the application developed to create slide presen-
tations and the experimental part in terms of graphics recognition and the distortion
measure.

3.1 Application Overview

In this work we present an application to create slide presentations. We have devel-
oped a sketch based application where the user interacts with the computer drawing
the different elements that are present in a slide. The aim of the application, based on a
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Algorithm 1. Incremental parsing algorithm.
Require: C = {C1, . . . , Cn} be a space tessellation.

x a terminal symbol in the input.
O′ a non-terminal symbol of the grammar.
SI = {Y1, . . . , Ym} be a set of previous parsed symbols.
Parse(x)
for all Yj ∈ SI |j = 1, . . . , m & CO(Yj)

⋂
Ψ(x) �= ∅ do

if Finished(Yj) then
Find productions P ′ with x and Yj

for all p ∈ P ′ do
O′ = V alidate(p,x, Yj)
insert O′ into NC(O′)

end for
else

O′ = Finalize(Yj , x)
end if

end for

visual vocabulary, is to produce the latex source and finally, the slide presentation that it
represents. The application follows the architecture of Fig. 2. A user draws a stroke and
it is pre-processed by the application. Once the stroke is pre-processed, the application
sends it to the parser that tries to recognize it in terms of the grammar productions
and returns to the application the possible object. Once the user has completely drawn
the slide it may generate whole presentation. The application sends the corresponding
source latex code to the latex which, with the help of the prosper class, generates the
slides. Figure 3 presents a snapshot of our application. As we can see, the application
consists of a drawing area and a set of buttons that allow to the user to insert a new slide
in the presentation, go forward and backward in the created slides, preview the current
slide and run the whole presentation.

Fig. 2. Schema of the SSP application
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Fig. 3. Snapshot of the SSP application

3.2 Experimental Evaluation

The experimental part of this paper is driven to show the performance of our method-
ology in a quantitative way. To achieve that six different slides containing different
number of widgets, from 4 to 7, has been presented to 7 different people to draw it.
The components of the slide can be drawn in an unrestricted order. Figure 5 presents
in a graphical way the six slides given to the users in this experiment. To evaluate this
experiment in a quantitative way let us define the concept of ideal parse tree. The ideal
parse tree can be defined as the parse tree from an instance of the slides in Fig. 5 without
containing any kind of distortion, i.e., the ideal parse tree of Fig. 5(a) is shown in Fig. 4.
As we may observe at the bottom part of the tree we found the different primitives com-
pounding the slide and at each level of the tree we find the different elements: two text,
one equation and one image. To reduce the size of the tree width we have renamed
the primitive segment to Seg. The number in the primitives, Seg, Arcs, describes the
temporal order of them.

Figure 6 presents the percentiles of the distortion of the different elements com-
pounding the slides. The values in the y-axis represents the distortion measure com-
puted during the parsing. This measure value comes from 0 to 1, being 0 an element
with high distortion and 1 an element near the ideal shape. The box represents the 50%

Fig. 4. Ideal Parse Tree Corresponding to the Slide of Fig. 5(a)
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(a) Slide 1 (b) Slide 2 (c) Slide 3

(d) Slide 4 (e) Slide 5 (f) Slide 6

Fig. 5. Slide samples in the first experiment

of the values being the extremes of the box the 1st and 3rd percentile. The line inside
the box represents the median value. Figure 6(c) shows the percentiles for the image
element. This element is composed by an arc and a triangle. The triangle is a non-
terminal composed by three segments. As it is sketched there are three outliers in this
element but with a deviation of 0.2 at the most. The element that presents major dis-
tortion in its instances is the item element, see Fig. 6(b), the distortion measure comes
from 0.53 to 0.93. The IQR rate is of 0.15 between the values 0.62 and 0.77 we found
the 50% of the instances. The distribution is not symmetric, but it is negative asym-
metric, i.e., most of the values in the distribution are below the median. The elements
of Text, Fig. 6(a), and Minipage, Fig. 6(e) are the elements with the small distortion
in their instances. To conclude, as the symbol contains more primitives it increases the
distortion, see Fig. 6(b) which the symbol is represented by a QUAD and a line. The
line contains a vertex inside of the QUAD. Text and Minpage symbol contains a low
distortion rate since they are described by two parallel lines in different orientation for
each symbol.

Figure 7 presents the percentiles of the recognition rate for each of the slides in the
experiment. To estimate a recognition rate we propose a measure based in the number
of elements in a instance parse tree that appears in the ideal parse tree. The values
in the y-axis represent the recognition rate for each slide. In the x-axis the numbers
coincide with the slides of Fig. 5. As we may observe the slides 1 and 3, Fig. 5(a)
and (c) respectively, are the slides containing the best recognition rates while slide 6,
Fig. 5(f) presents the worst results. This is due to the parser does not recognizes the
symbol imatges in most of the instances of this slide. This symbol is composed by
a square containing two or more images. The grammatical production describing the
symbol is as follows:
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Fig. 6. Percentiles of the distortion of the elements in the experiments: (a) Text , (b) Item, (c)
Image, (d) Equation and (e) Minipage

Imatges --> {Square, Image1, Image2} IsInside(Square,Image1) &
IsInside(Square, Image2)

Imatges --> {Imatges, Image1} IsInside(Imatges,Image1)

In most of the instances the square is not recognized. The worst recognition rate be-
longs to slide 2 with a value of 0.25%, it is considered as an outlier in the distribution
of Fig. 7(b). The median of the recognition result is over the 0.7% showing a good per-
formance of our method to the application domain where it is used. Diverse errors have
been occurred during the experiment. We may classify them into three types:
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Fig. 7. Percentiles representing the recognition rate for each of the slides in Fig. 5

Fig. 8. A Slide containing an error of Type 1

– Type 1: Miss-classification of basic primitives.
– Type 2: Additional primitives.
– Type 3: High distortion in the constraints between the primitives of a symbol.

Figure 8 presents an instance of the Slide 4 of Fig. 5. This instance contains an error of
type 1. The two segments marked with arrow are recognized as an arc. The parser has
recognized two OverlayedSlide symbols rather than recognizing a QUAD which is
the corresponding one.

4 User Interaction: Adding the Capability of Editing the Slides

This section describes how the user is able to edit a slide. First of all, this part of the
work is in an embryonic state. The main idea is to present a set of gestures that allow
to the user edit their slides such as, delete, copy, move, etc. In this case, rotation is not
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necessary due to the symbols will be placed always in the same orientation. The user
has to change to edition mode to be able to edit the slides.

The main drawback of the user interaction becomes the deletion of part of the slide.
In this case, we have to take into account the parse tree and the grid in this state. Pre-
viously to the deletion we have to save the state of the parser and the grid in order
to recover in a future time if it is necessary. Then, the parse tree and the grid should
be modified deleting those elements forming the symbol or symbols the user wants to
delete. This action may leave the slide in an inconsistent state. In that case, the slide
generator should inform to the user that the slide contains erroneous symbols.

5 Conclusions

In this work we have presented an application to create a slide application from the
user sketches. To describe and recognize the different elements of a slide a syntactic
approach has been presented. The syntactic approach is based on Adjacency Grammars
and a directional parser improved with a spatial tessellation. The grid helps the parser
to reduce the search space when a new primitive is being analyzed. The results show
the performance of the proposed approach from a quantitative point of view. Focusing
in the values of recognition rate and distortion rate we may conclude that our method
solves the problem with a high accuracy level. Nevertheless, the addition of the user
into the loop of recognition will increase the performance of the parser. Adding some
gestures, the user is able to modify the bad recognized symbols. The future work can be
devoted to improve the application to allow to the user to create its own style of slides.
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Abstract. In this paper, a system named QuickDiagram is proposed for quick 
diagram input and understanding. With a user sketching a (complete or partial) 
component/symbol or a wire (connecting two components) of the diagram, the 
system can recognize and beautify it immediately. After the entire diagram is 
finished, certain understandings can be obtained. Especially, the following two 
methods are used to interpret the recognized diagram: 1) Nodal Analysis on re-
sistive circuits, and 2) generation of PSpice codes from the recognized dia-
grams. Experiments on a few sketched circuit diagrams show that the results are 
robust and accurate for both recognition and understanding.  

1   Introduction  

Currently, most interactive graphical editing systems face difficulties on how to fur-
ther improve the efficiency and reduce human burdens. Such a system has to ask a 
user to input graphical objects by a series of mouse/keyboard operations, making 
design ideas interruptive. Hence, as a customary and natural expression method for 
human beings, sketching with a pen is more preferable and is especially helpful and 
suitable for creative design. However, the freehand sketches are not elegant in ap-
pearance and not compact for representation or storage. Moreover, the sketchy objects 
are difficult for further automatic processing, including automatic understanding. 

Real-time recognition of on-line sketches provides an effective approach to con-
verting the freehand sketches to the regular ones, which can also be stored in a neat 
way. Moreover, the diagram input process can be greatly facilitated in a productive 
way since the recognized results can be used as instant feedbacks for real-time correc-
tion or positioning. In addition, if the recognized diagram is understood and analyzed 
immediately, the semantic errors and/or deficiency found from the diagram can be 
used to correct and improve the design. 

In this paper, we present a new on-line system, QuickDiagram, to recognize the in-
stant sketching input of electronic circuits and make certain analyses of the recog-
nized circuits. When a user freely designs a circuit diagram by sketching it,  
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QuickDiagram can recognize all diagram components and connections immediately, 
and then perform real-time circuit analysis simultaneously. In this way, the efficiency 
of an interactive circuit design system can be greatly improved. 

Before we explain our work in more detail, we first present related definitions. An 
electronic circuit diagram is comprised of the following three types of elements: 

1)  Device (or component): a meaningful electronic symbol, such as a voltage source, 
a resistor, a diode, an inductance or a transistor. An electronic device/component has 
at least one connection point (terminal), which is used to connect to another device. 

2)  Connection: the wire (usually in the form of a line segment or a polyline) used to 
connect two neighboring devices at their connection points. Each connection is be-
tween two connection points. 

3)  Node: a congregation point of connections, which can be at a connection point or 
at a merged point connecting with multiple connection points.  

QuickDiagram consists of two main modules: sketch recognition and diagram under-
standing. The sketch recognition module first distinguishes connection strokes (with 
at least one end point touching a connection point) from symbol strokes. Connection 
strokes are segmented and beautified into regularized lines or polylines. Symbol 
strokes are segmented into regular segments (lines or arcs) and then grouped together 
and matched with the candidate model symbols (devices/components) in a predefined 
database. After the devices are recognized and connected, the understanding module 
analyzes the entire recognized circuit diagram and obtains its semantics with the 
guidance of domain knowledge. In this module, we use the following two approaches 
to automatically understand the recognized circuit diagrams: 1) for resistive circuit 
diagrams, we adopt Nodal Analysis [24] to find all the relevant equations about the 
voltage of the recognized devices and the current passing through the devices, then 
we collect all the equations and solve them by Gaussian elimination to obtain the 
unknowns; and 2) for the certain types of circuit diagrams, we generate PSpice codes, 
which can be read by PSpice for simulation. 
    The rest of this paper is organized as follows. Section 2 presents related work. 
Section 3 briefly presents the diagram recognition processes of our system. Section 4 
presents the two understanding methods to interpret circuit diagrams. Experimental 
results are described in Section 5. Finally, Section 6 presents concluding remarks and 
future research. 

2   Related Work  

Research works on sketch understanding may date back to the birth of pen-based 
interaction, starting with Sutherland’s “SketchPad” [30]. Due to limitations of the 
technology at that time, its functions and performance are far from what we call now 
“understanding” but only a method for human-computer interaction. In 1990’, dia-
gram-understanding has reached a new level in both researches and applications, with 
the evidence of electronic whiteboards mainly used for sketching during informal 
workgroup meetings, such as “Tivoli” [26] and “Flatland” [9]. In the last decade, 
quite a few sketch understanding systems have been developed and reported by 
Davis’ group, who also presented a very good survey of the state-of-the-art research 
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of sketching recognition and understanding [7]. In this section, we only briefly men-
tion the main problems and some of their solutions: stroke processing, symbol recog-
nition, and understanding based on domain knowledge. 

     (1) A user may want to draw only one primitive geometric shape (e.g., line or arc) 
or at most a connected sequence of shapes in one stroke. However, the stroke usually 
consists of many intermediate and redundant, and sometimes, even noisy points. 
These non-critical should be removed during stroke pre-processing and the entire 
stroke can be segmented and fit into a few primitive shapes, which can be either line 
segments, polylines, or arcs [28][5]. In addition to high curvature, low speed is also a 
good feature to locate segmentation points [7]. While most systems do primitive 
shape recognition after the user finishes a stroke, the stroke can be continuously 
morphed to the predicted primitive shape in some systems [4].   

(2) Many symbol recognition methods have been reported in literature. In certain 
offline recognition systems statistic features are extracted [37] while some others use 
structural methods, which convert symbols to specific structures like trees [21] or 
graphs [34]. A comparison between these features and those of the model symbols in 
the database are computed, using certain algorithms such as the Hausdorff distance 
and Tanimoto coefficient [17]. Certain hybrid approaches may use statistics of struc-
tural features and thus lower down the computation [33][12]. Almost all offline meth-
ods can be applied to online recognition, but the later can utilizes more information. 
For example, after one primitive shape is just recognized, it is combined with previ-
ously inputted components together (based on their spatial relationship) as one com-
ponent to form a query for searching for similar objects in the symbol database [21]. 
All these approaches could be categorized as appearance-based methods. Other ap-
proaches include the “definition-based” method [27][14], which recognizes a symbol 
described in terms of its component shapes and their spatial relationship (geometric 
constraints) using a well-defined language, and the “drawn sequence-based” method, 
which recognizes shapes based on the orders of the strokes [29]. In addition to sym-
bols previously known and described, recent studies can learn descriptions of new 
symbols for future recognition from their examples and recognition feedback 
[32][15].  

(3) Researches on sketching understanding mainly focus on certain domain(s) 
where graphical lexicon, syntax, and semantics can be well-modelled, such as elec-
tronic engineering (circuits) [3], mechanic engineering [2], architectural engineering 
[20], and chemistry (understanding of chemical compounds [25]). ASSIST (which 
stands for A Shrewd Sketch Interpretation and Simulation Tool) [2] can understand 
mechanical engineering sketches and then interpret their mechanisms using simula-
tion. ESQUISE [16] can capture and understand architectural sketches and then evalu-
ate the energy needs of the project. Sketch-based 3D construction or understanding 
uses similar techniques at the 2D level of recognition and understanding. However, 
more techniques specific to the 3D level are required. Especially, Zeleznik et al. in-
vent an interface to input 3D sketchy shapes by recognizing the predefined patterns of 
some 2D shapes that represent certain sketchy solid shapes [36], and Matsuda et al. 
present a freehand sketch system for 3D geometric modelling [22]. Other well-known 
application domains of sketch recognition and understanding include flowcharts [13], 
mathematic expressions [31], music notations [11], and UML diagrams [19]. 
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In the context of sketching recognition and understanding for Spice, Narayanas-
wamy developed an interface for SPICE which uses hard-coded recognizers [23]. 
However, it assumes a fixed drawing order in sketching and requires the user to pause 
between symbols. Gennari also developed such an interface for electric circuit analy-
sis program called AC-SPAEC [12]. De silva et al. employed this interface as the core 
part in the development of their system – Kirchhoff’s pen, a pen based circuit analysis 
tutor [8].  

Applications for creative and conceptual design are among the most useful appli-
cations of sketching recognition and understanding. Although some works at this 
level have been reported in certain limited domains [20][2], currently, sketching un-
derstanding is still a challenging problem requiring domain knowledge and integra-
tion of multidisciplinary technologies, e.g., both graphics recognition and imaginal 
thinking research. More research works should be done such that reasoning and pre-
diction of the user’s intentions can be made from the sketches he/she draws in order to 
support and facilitate his/her conceptual design, e.g., in creative design tasks. 

3   Instant Sketchy Diagram Recognition 

After a sketchy stroke is drawn, it is first classified as either a connection stroke or a 
symbol stroke. If an end point of the stroke touches a connection point of any recog-
nized symbol/device, it is a connection stroke. Otherwise, it is a symbol stroke. The 
connection strokes are segmented and beautified into regularized lines or polylines. 
The symbol strokes are segmented into regular segments (lines or arcs) by the stroke 
segmentation module. We developed a so-called Quick Penalty Based Dynamic Pro-
gramming (QPBDP) [18] method for stroke segmentation. QPBDP is an extension of 
the dynamic programming framework with a customizable penalty function. It meas-
ures the correctness of splitting a stroke at a particular point. With the help of the 
penalty function, the proposed dynamic programming framework can finish the stroke 
segmentation process without any prior knowledge, like the number and/or the type of 
the segments contained in the sketchy stroke. Moreover, its response time is short 
enough for online applications, even for long strokes. 

After each symbol stroke is input and segmented, we try to recognize the current 
symbol/device even before it is finished. We have developed quite a few algorithms 
for quickly filtering [33] and recognizing [37] complete or incomplete symbols 
[34][21].  Although the vectorial signature/descriptor [33] we proposed is mainly for 
rapid discrimination and filtration of symbols, it still preserves high recognition  
accuracy. This is due to the utilization of the complete set of the primitive-pair rela-
tionships in a symbol as the signature for the symbol. It can therefore act as a  
pre-processing step to reduce the computational load if a full recognition process is 
applied rather. After quick filtration, the remaining candidates can undergo a full 
recognition process with even higher recognition accuracy, e.g., the statistical method 
based on kernel densities of the symbols [37]. A syntactical/structural method 
[34][21] can also be used, which is usually based on matching of the tree/graph repre-
sentations of the relationships among the symbol components. This kind of methods 
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can recognize online sketching symbols of varied stroke orders and stroke numbers, 
or even before they are completely sketched. Due to page limit, we refer the readers to 
these papers for more details of symbol/device recognition and focus more on dia-
gram understanding methods in this paper.  

 

 

Fig. 1. An User Interface of QuickDiagram 

4   Circuit Diagram Understanding 

Currently, QuickDiagram can only understand certain types of circuit diagrams, in 
which each device is modelled in its regular form with its connection points also 
marked.  With more devices/components modelled, QuickDiagram can be extended 
to understand other types of circuit diagrams and diagrams in other domains. After 
recognition, each device is assigned with a default name automatically numbered 
and displayed beside the device in the diagram. The default value of its parameters, 
e.g., R1=5 ohm, is also assigned and displayed next to its name. Its name and value 
can also be changed in its property dialog box, as show in the user interface of  
Figure 1. The connection points of the devices are also numbered such that each 
connection point in the entire diagram has a unique name. After all the individual 
devices and their connections are recognized, the entire diagram is displayed in a 
neat form prior to further analysis and understanding. In this paper, we focus on 
understanding of the recognized circuit diagrams and present two approaches: 
Nodal Analysis and generation of PSpice codes, based on semantics of the recog-
nized devices, connections, and nodes of certain types of circuit diagrams. The key 
step of such understanding is the recognition of individual devices, the connections 
among them, and the connection nodes. After that, the semantics of each individual 
device, each connection, and each node can be applied and many kinds of under-
standing can then be obtained. 
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4.1   Semantics Modeling 

The semantics and syntax of each device are the basis for circuit diagram understand-
ing, just like the lexical model is the basis of the recognition of each device/symbol. 
Take a resistor named Ri as example, its semantics is actually an equation following 
Ohm's Law (Vi1 – Vi2 = Ii * Ri), where Vi1 is the voltage of its first connection point, 
Vi2 is the voltage of its second connection point, Ii is the current passing from the first 
connection point to the second connection, and Ri is its parameter value, resistance. 
For the example of a voltage source named Vj, its semantics is also an equation: Vj1 – 
Vj2 = Vj, where Vj1 is the voltage of its first connection point, Vj2 is the voltage of its 
second connection point, and Vj is its parameter value, the voltage source value. 

 

Fig. 2. How nodes are merged in a common emitter transistor amplifier circuit 

The semantics of each connection is also an equation: Vk1 – Vk2 = 0, where Vk1 
and Vk2 are the voltages of the two connection points at the two ends of the connec-
tion. The connection points of each connection can be merged into one node and mul-
tiple connection points connected together can be merged into one node as well. In 
fact, each connection point can be considered as a kind of node before merging. For 
each merge, the nodes before and after merging are kept in one merge record reveal-
ing the equivalence or aliasing relationships among them, as we can from Figure 2. 
For example, merged node 5 is the result of merging node 5, 6, 7 and 8 on the same 
connection and can then represent them in certain equations. 

The semantics of each node following the Kirchoff's Current Law (KCL: The cur-
rent flowing into the node is equal to the current flowing out of the node) is then ap-
plied to obtain an equation: ∑In = 0, where In is the current flowing from the node 
along each edge (branch).  

Recognition of these individual devices, their connections and the merged nodes 
are the bases for full understanding of a circuit diagram, as we will show in both of 
the following methods. 
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4.2   Nodal Analysis for Resistive Circuits 

Nodal Analysis is applied in pure resistive circuits to find the unknowns (i.e., the 
voltage of the devices and the current passing through the devices). In this paper, 
we choose the method of “Nodal Analysis” as an illustration of diagram understand-
ing of QuickDiagram because it is a very basic method in circuits and the users can 
benefit  a lot when they are teaching students or learning about KCL, Kirchhoff’s 
Voltage Law, and Ohm's Law. In such a circuit diagram, we first have to declare a 
reference node, which can be any node in the circuit. The reference node is consid-
ered to have a voltage value zero and can be marked (or connected) with a ground 
symbol/device. In fact, the semantics of a ground device is exactly such. The volt-
age of any node is then the voltage difference between the node and the reference 
one. Next, we build up the equations about the voltage of the devices and the cur-
rent passing through them based on the semantics of the recognized devices, connec-
tions, and nodes we mentioned in Section 4.1. There might be duplicate equations due 
to different sources of the equations and they should be removed from the set of equa-
tions. Finally, we find the unknowns by solving these equations using the method of 
Gaussian elimination.  

4.3   Generation of PSpice Codes  

PSpice is a powerful circuit simulation tool. It can analyze a broad range of circuits. 
It can also generate graphical results, such as a graph of frequency response. The 
code of the PSpice is simple. It just contains the connection information (via each 
merged nodes) of the circuit diagram and the parameter values of the components.  

In the current prototype of QuickDiagram, we can generate PSpice codes for cir-
cuits consisting of the following 10 common types of devices: resistor, inductor, ca-
pacitor, DC voltage source, AC voltage source, current source, op-amp, diode, JFET 
and BJT. In the PSpice code, each line describes one device about its connection 
information and parameter information. Every device’s code has its own format [6]. 
Generally speaking, the format is “<name> <node1> <node2> <node3> <value>”, 
where the node should be a merged node shared with other devices. E.g., for resister, 
it could be “R1 1 3 600”, which means R1 is connected to node 1 and 3 and its resis-
tance value is 600. QuickDiagram combines all the lines of the code and save them 
into a PSpice (.cir file), which can be read by PSpice for circuit simulation. In addi-
tion, it can also display the text format in the output form of QuickDiagram so that the 
user can verify if the code is satisfying.  

5   Experiments  

We have done experiments on quite various types of circuits using the two under-
standing methods, which can generate accurate results. Due to space limit in this 
paper, we only show one example for each method. Readers can visit  
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http://www.cs.cityu.edu.hk/~liuwy/QuickDiagram/QD_Understanding_Experiments.htm to 
see other examples. The circuits QuickDiagram can recognize in our experiments 
include series resistive circuits, parallel resistive circuits, series-parallel combina-
tion circuits, low pass filters, high pass filters, elliptic filters, common emitter  
amplifier transistor circuits, NPN transistor circuits  [1], and Op-amp saw tooth 
oscillator  [10]. The Nodal Analysis method we implemented in QuickDiagram can 
analyze circuits constructed by resistors and voltage sources connected in both 
series and parallel modes. The PSpice code generation approach can generate 
PSpice code correctly and gives correct analysis results for the recognized circuits. 

Figure 3 shows a resistive circuit containing 8 resistors connected in a series-
parallel combination circuit. Applying Nodal Analysis on it, QuickDiagram  
can analyze and generate all the necessary equations for calculation of the  
unknowns (the voltages of each components and the current passing through them in 
the circuit). 

 

Fig. 3. A resistive circuit containing 8 resistors 

The parameter values of corresponding components can be input using the UI 
shown in Figure 1. We summarize all the parameter values of these devices in a form 
in Figure 4(a). The generated equations and solved unknowns are demonstrated in 
Figure 4(b) and Figure 4(c), respectively. All the values are correct as checked by 
hand and by PSpice. 

The common emitter transistor amplifier circuit is a very common amplifier cir-
cuit which usually appears in the IC design. Such circuit as shown in Figure 2 is used 
to test QuickDiagram’s function to generate the PSpice code, which can be input to 
PSpice to analyze the frequency response of the circuit. The unit of the resistor is set 
to be ohm and the unit of both DC and AC voltage source are set to be Volt by de-
fault. The parameter values of the devices are summarized in Figure 5(a). Figure 5(b) 
displays the generated PSpice code which represents the whole diagram connections 
and the parameter value of each device. 
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(a)                                    (b)                                     (c) 

Fig. 4. The values of the devices (a), the generated equations (b) and the values of unknowns 
calculated for the circuit in Figure 3 

 
(a)                                    (b)                                    (c) 

Fig. 5. The parameter values of the devices (a), the generated code (b), and modified code (c) 
for the circuit shown in Figure 2 

Before being read by PSpice for further analysis, the generated code needs to be 
customized to meet our specific task. In this example, we set the model of the transis-
tor to be NPN with the current gain equal to 50. The frequency analysis range is set to 
1HZ to 30 kHz with 100 frequency points on a logarithmic scale. The “.Probe” com-
mand is to tell the system to plot the graph. The “.OP” command is to discover the 
bias point and the various currents of the amplifier transistor. “.End” is to indicate the 
end of the circuit file. The modified code is shown in Figure 5(c). The modified code 
is then read by the PSpice system, which can generate the graphs of the frequency 
response of the circuit, as shown in Figure 6. 
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Fig. 6. Frequency response of the circuit of Figure 2: (a) gain, (b) phase 

6   Concluding Remarks 

In this paper, we present an integrated system QuickDiagram for online sketching and 
understanding of electronic circuit diagrams. The system is composed of a recognition 
module and an understanding module. Currently, the symbol database has more than 
600 symbols, some of which are for electronic circuit devices. We also have a sepa-
rate system to model more types of symbols to further extend the symbol database. 
While we refer readers to some of our papers for the symbol recognition methods, we 
focus on the understanding methods in this paper. We developed two methods: Nodal 
Analysis and generation of PSpice codes to interpret the recognized diagrams of cer-
tain types of circuits. Especially, the Nodal Analysis can be applied on “resistive 
circuits”, while generation of PSpice codes can be applied to quite a wide range of 
circuits. Experimental results show that the results are robust and accurate for both 
recognition and understanding.  

We hope QuickDiagram can understand more types of diagrams in the future 
when more domain knowledge and semantics are modelled. We also wish to con-
tinue to improve the QuickDiagram system as an open source project, which is 
hosted at http://code.google.com/p/quickdiagram/. We hope all researchers and 
developers interested in this project can help improve it in any aspect, including 
the stroke pre-processing algorithms, graphic recognition algorithms, diagram 
understanding algorithms for more domains, and the general UI. Suggestions for 
new functions, or even bug reports or bug fixing suggestions will also be appreci-
ated. 
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Abstract. This paper presents a new method to extract areas of interest in drop
caps and particularly the most important shape: Letter itself. This method relies
on a combination of a Aujol and Chambolle algorithm and a Segmentation using a
Zipf Law and can be enhanced as a three-step process: 1)Decomposition in layers
2)Segmentation using a Zipf Law 3)Selection of the connected components.

1 Introduction

With the improvement of printing technology since the 15th century, there is a huge
amount of printed documents published and distributed. Since that time, books have
been falling into decay and degrading. This means not only books themselves are dis-
appearing, but also the knowledge of our ancestors. Therefore, there are a lot of at-
tempts to keep, organize and restore ancient printed documents. With the improving
digital technology, one of the preservation methods of these old documents is the dig-
itization. However, digitized documents will be less beneficial without the ability to
retrieve and extract the information from them which could be done by using tech-
niques of document analysis and recognition. This paper presents a new method to
improve old document images description using segmentation and characterization of
letter inside.

1.1 NaviDoMass

NAVigation Into DOcuments MASSes is a french collaborative projec, financed by the
National French Research Agency, with the challenge to index ancient documents. With
the collaboration of seven laboratories in France, the global objective of this project is
to build a framework to derive benefit from historical documents. It aims to preserve
and provide public accessibility to this national heritage and is established on four prin-
ciples: anywhere (global access), anyone (public and multilingual), anytime and any
media (accessible through various channels such as world wide web, smartphone, etc.).
The focus of NAVIDOMASS is on five studies: (1) user requirement, participative de-
sign and ground truthing, (2) document layout analysis and structure based indexing,
(3) information spotting, (4) structuring the feature space [HSO+08, JT08] and (5) in-
teractive extraction and relevance feedback. As a part of NAVIDOMASS project, this
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paper focuses on the graphics part : graphics indexing and CBIR. However, the main in-
terest of this study is based on specific graphics called drop caps, and on the extraction
of shapes in drop caps and particularly on the most important shape : the letter itself.
This work is inspired by [PV06] and [ULDO05] which used a Zipf law and a Wold
decomposition to extract elements of drop caps.

1.2 Drop Caps in Details

The images of documents of the inheritance are heterogeneous and damaged by time.
Drop caps (decorative capital letters also named drop caps or drop cap) belong to the
images to index. These images are made up of two principal elements: the letter and the
background. (See Fig. 1). An important step in the recognition process of the drop caps
consists in segmenting the letter and the elements of the background to characterize
them using a signature. This signature will allow a simple and fast comparison for our
indexing process of great masses of data. This paper presents in details the various
stages of our method: 1) Simplification of the images using layers 2) Extraction of
shapes from one of these layers 3) Selection of these shapes.

Fig. 1. Drop Caps Examples

2 Simplification of Images Using Layers

Decomposing an image into meaningful components appears as one of major aims in
recent development in image processing. The first goal was image restoration and de-
noising; but following the ideas of Yves Meyer [Mey01], in total variation minimization
framework of L. Rudin, S. Osher and E. Fatemi [LSE92], image decomposition into
geometrical and oscillatory (i.e texture) components appears an useful and very inter-
esting way in computer vision and image analysis. There is a very large literature and
also recent advances on image decomposition models, image regularization and tex-
ture extraction and modeling. So, we only cite, among many others, most recent works
which appear most relevant and useful paper. In this way, reader can refer to the work of
Stark et al. [SED05], Aujol et al. [AAFC05], [AGCO06], Aujol and Chambolle [AC05],
Aujol and Ha Kang [AK06], Vese and Osher [OSV03], [VO04], [VO06] and more re-
cently Bresson and Chan [BC07] and Duval et al. [DAV08] to cover the most recent and
relevant advances.



144 M. Coustaty et al.

2.1 The Developped Method

Images of drop caps are very complex and very rich images in terms of information
and requires to be simplified. These images are mainly made up of lines, unsuitable
for usual texture methods. We thus use an approach developed by Dubois and Lugiez
[DLPM08] to separate original image in several layers of information, easier to process.
This decomposition relies on minimization of a functional calculus F :

inf (u,v,w)∈X3/f=u+v+wF (u, v, w) =

J(u)︸︷︷︸
Regularization

TV

+ J∗
(

v

μ

)
︸ ︷︷ ︸

Texture
extraction

+ B∗
(w

δ

)
︸ ︷︷ ︸

Noise extraction by:
shrinkage

+
1
2λ

‖f − u − v − w‖2
X︸ ︷︷ ︸

Residual part

(1)

where each element of the functional represents a layer of information and corresponds
to a type of information in the image. B∗ can be seen as a wavelet soft threshold, J∗ a
computation of a gradient and J a linear computation between the original image and
the two precedent elements. For deeper explanation about notations and each element,
one can refer to [DLPM08].

2.2 Layers in Details

We are aiming to catch the pure geometrical component in an image independently of
texture and noise to extract shapes. So, we are studying here how to decompose images
into three components:

– The Regularized Layer corresponds to the area of image which has low fluctuation
of gray level. This layer permits to highlight geometry which corresponds to shapes
in the image. In the following of this paper, we will name this layer the ”Shape
Layer”.

– Oscillating Layer which corresponds to the oscillating element of the image. In our
case, this layer highlights texture from drop caps and in the following of this paper,
we will name this layer the ”Texture Layer”.

– Highly Oscillating Layer which corresponds to noise in image. in fact, this layer
retrieves all that do not belong to the two first layers. So, we can find in this layer
noise, text of background and problem of ageing. Our goal is to recognize old
document images while being robust toward noise variations. That is why we will
not use this layer in the next of this work.

An example of decomposition applied to the first image of Fig. 1 is given in Fig. 2.

3 Extraction of Shapes

Regularized layer obtained by decomposition contain all shapes. In order to extract
them and to select the most interesting, we used a Zipf Law. Zipf Law was empiri-
cally defined by George Kingsley Zipf and relies on the frequency and on the rank of
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(a) Shapes (b) Textures (c) Noise

Fig. 2. An example of drop cap decomposition using Aujol and Chambolle algorithm

appearance of words in a text. This law has been transposed on images by [PV06] by
taking subimages as patterns and by calculating frequency and rank of these patterns.
This method is a three steps process:

– Simplification of image applying a 3-means on gray level histogram to reduce num-
ber of patterns

– Seek for patterns of size three by three to obtain their frequency and their rank
– Classification of patterns in three classes according to the evolution law of the fre-

quency compared to their rank.

3.1 Simplification of Images

Images provided by historians are composed of 256 gray levels. A huge amount of three
by three patterns are possible (theoretically 2569 different patterns). Indeed, if all pat-
terns are represented only once, the model that is deduced from the pattern frequencies
would not be reliable, the statistics would lose their significance. Then it is necessary to
restrict the number of perceived patterns to give sense to the model.

To decrease the number of graylevels in the image, we have made use of k-means
clustering algorithm [McQ67]. As images we are dealing with in this study are composed
of three elements (background, foreground and motive), we decided to keep only three
gray levels. Moreover, this reduction is made without loosing too much information.

3.2 Patterns Research

Once the number of gray levels have been reduced, a simple count of each pattern per-
mit to know their frequency and their rank. This step is essential to build the Zipf curve
which represent the evolution law of the frequency compared to their rank. From this
curve, three straight lines are computed to estimate three main parameters of Zipf laws
that interfere. The splitting points are defined as the furthest points from the straight
line linking the two extreme points of the curve. The first line, which correspond to the
most frequent patterns, represent shapes of image (uniform areas). We have extracted
pixels from each layer and we display them in an image. Figure. 3 show an example
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Fig. 3. Example of a Drop Cap and its Zipf plot where are indicated the different straight zones
extracted

(a) Original image (b) First straight line (c) Second straight
line

(d) Third straight line

Fig. 4. Example of a Drop Cap and images corresponding to the straight lines of Zipf’curve

of a Zipf curve with its drop cap while Figure. 4 show an example of binarized images
obtained with each straight line.

3.3 Shapes Extration

Once shapes have been extracted, one can seek connected components of binarized
image. When we observe all the connected components in Figure 5(b), we can see
that the most important shapes have particular characteristics (based on size, location,
center of mass and eccentricity). A selection of connected components in accordance
with these parameters permit to obtain region of interest of drop caps. An example of
extracted connected components can be seen in Figure 5(c). Finally, with an accurate
selection on these parameters, the most important connected component for historian
can be extracted: the letter. This one can be obtained by selecting the bigger connected
component which center of mass is centered and which don’t touch borders of image.
An example of result can be seen in Figure 5.
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(a) Original image (b) Shapes of images (c) Three larger con-
nected components

(d) The letter ex-
tracted

Fig. 5. An example of treatment on a drop cap

4 Experimentations and Validation

The evaluation of such a system is a fundamental point because it guarantees its usabil-
ity by the users, and because it permits to have an objective regard on the system. In
the context of such a project, the implementation of an objective evaluation device is
quite difficult, because of the variability of the user requirements: historian researchers,
netsurfers, are likely to retrieve many different information which can be very different
the ones from the others.

In the context of NAVIDOMASS project, and more specifically for this objective of
drop caps indexing, we have decided to evaluate the quality of our system by consid-
ering the purpose of ”Letter Based Retrieval”. This choice is motivated by the fact that
many historians want to be able to retrieve drop caps in regard with this criterion. As a
consequence, the evaluation of our system relies on the application of an OCR system
at the issue of the letter segmentation. Considering these aspects, the classification rate
is the main performance evaluation criterion of our system.

Table 1. Recognition rate of drop caps using two kinds of OCR

FineReader Tesseract
Classification Rate 72,8% 67,9%

For the evaluation, we have used commercial OCR systems, as well as open source
system. In order to implement the evaluation, we have used FineReader on the one
hand, and Tesseract on the other hand. We have experimented the approach on an im-
age database containing 4500 images. 1500 of these images were considered for the
training set, while 3000 were considered for the tests. The results are summarized in
the Table 1. As one can see the obtained results are still unsatifying, but very encour-
aging. We are working on the improvement of the processing chain, as one can see in
the conclusion and perspective part. However, there is not such existing system deal-
ing with this problem, and historians researchers are satisfied to use our system for the
classification of their graphic images. The cases for which our system fails correspond
to very difficult images, as one can see an example in Fig. 6.
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(a) Original lettrine (b) Letter extracted

Fig. 6. An example of very difficult letter extraction

5 Conclusions

This paper presents a new method to extract informations in drop caps. It relies on
a combination of two decomposition. The first one simplifies image to only extract
shapes of original image while the second one, a Zipf Law’ decomposition, realize a
background-foreground segmentation. From this segmentation, a selection of shapes
segmented permit to extract some interesting shapes and particularly the letter itself.
The first experimentations are encouraging and we are actually working on improve-
ments of this global process.
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1 Laboratoire Informatique, Image, Interaction (L3I)
UPRES EA 2118
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Abstract. Recently we have developed a model for shape description and match-
ing. Based on minimum spanning trees construction and specifics stages like the
mixture, it seems to have many desirable properties. Recognition invariance in
front shift, rotated and noisy shape was checked through median scale tests re-
lated to GREC symbol reference database. Even if extracting the topology of a
shape by mapping the shortest path connecting all the pixels seems to be pow-
erful, the construction of graph induces an expensive algorithmic cost. In this
article we discuss on the ways to reduce time computing. An alternative solu-
tion based on image compression concepts is provided and evaluated. The model
no longer operates in the image space but in a compact space, namely the Dis-
crete Cosine space. The use of block discrete cosine transform is discussed and
justified. The experimental results led on the GREC2003 database show that the
proposed method is characterized by a good discrimination power, a real robust-
ness to noise with an acceptable time computing.

Keywords: Document analysis, Graphics Recognition, Region Based Shape
Descriptor, Feature extraction, Minimum Spanning Tree, Discrete Cosine
Transform, Image Compression.

1 Motivations

From the last ten years an intensive campaign of document digitalization as been lead
all around the world. A large part of documents handled are graphics document (Tech-
nical Drawings, Maps etc). i.e. documents dominated by graphic components (signs or
shapes) which can be classified as symbols. Because they bring complementary infor-
mation than purely textual, these entities are often used as information support. So the
symbol recognition process plays a central role in the framework of automatic document
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interpretation and decision making. In other side, various models for symbol character-
ization have been developed, especially in the field of technical documents. Usually a
partition is made between structural and statistical approaches. A complete state of the
art can be find in [16], some original methods can be find in [30,9] and the perspectives
for the next ten years are mentioned in [32]. In front of the proliferation of the number
of models , one could claim that it is not necessary to develop new ones. Many factors
contribute to the persistance of the characterization problem :

– The task of representation is intimately constrained by the recognition process and
it can be difficult to decorrelate from any solution of this second classification stage.
That’s why neural network solutions were widely used [4,22].

– Links between image segmentation and object recognition play an important role,
as was emphasized by K. Tombre and B. Lamiroy in [31]. We need to develop a
model tolerant to segmentation errors or any approach allowing to simultaneously
combine a segmentation/recognition stage.

– Practical aspects should not be forgotten. The impact of time learning models es-
pecially for future web applications - such as ”an on line user select on the fly an
arbitrary symbol in a technical document and queries for similar symbols” - could
not be neglected. Noise resistance it’s also a key component of an efficient shape
descriptor. When levels of degradation induce the loss of the connectedness of the
shape many reference models [23,14] are not powerful any more. Our approach is
globally inscribed in the framework of these items.

Recently, we have developed a class of algorithms [5,6] based on the capture of the
topological properties of a shape via Minimum Spanning Tree Lengths. This approach
was evaluated in previous works through the problem of graphical symbols recognition.
Medium scale tests on reference symbols database (GREC 2003) have been lead and
the position with a standard approach (Zernike moments) was also investigated. A brief
review of the key stages of the technique, completed by an example of application are
provided in Section 2. The results seem to be conclusive but the approach still has an
expensive algorithmic cost. In this article, the main ways to reduce it are discussed
and an alternative is provided (Section 3). The proposed solution is guided by image
compression concepts. The target object is expressed in the Discrete Cosine space. The
use of blocked Discrete Cosine Transform (DCT) is discussed and justified (cf Section
3.3). This track leads to a substantial time computing reduction whilst conserving a
significant level of inter-object discrimination (cf. Section 4).

2 Using Minimum Spanning Trees for Shape Description:
Previous Algorithm

Any object is described in the image system coordinates as a multi-dimensional points
set with a specific topology. By mapping all the points (completely connected tree),
with non oriented edges (not directed tree), without cycle (tree and not graph) under the
constrainst to build a minimal path (tree with minimal length), we define a measure of
the object’s topology.
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MSTs are widely exploited by many algorithms for varied operations dealing with
image processing. For example, the MST-based image segmentation task can be found
in [37]. In the field of pattern recognition some works investigate the use of MST to
line image matching [20] or fingerprint matching [21]. By definition, the construction
of MST is a natural way to extract topology properties from a multi-dimensional data
distribution. This idea is well traducted in data clustering [36], where clusters are lo-
calized in the MST by thresholding the edge lengths (connected component labeling).
Moreover, the MST length is linked to an entropy measure called Rényi’s entropy [27].
The Recent work of A. Hero and O. Michel [11] shows that a family of trees1 which sat-
isfies the Redmond’s quasi-additivity property [26], built on one d -dimensional points
distribution, is a robust estimator of Rényi’s entropy of this distribution. These results
can shed a new light on previous works using MST for pattern recognition [33] or
clustering [38].

We have shown that the MST length can define a metric capable of discriminating
between a prototype and an unknown object. A mixture of both objects (union points
sets) is realized before computing the variation of the lengths from to the prototype
length. This stage removes any risk of ambiguity in the recognition process. In the real
world problem the objects can be multi-oriented. So we can iteratively apply geomet-
rical transformations on the input object, in order to really estimate their similarity.
When the prototype completely matches the unknown object, the topology defined by
their union point sets is identical to the prototype one. In this case, the two MST have
the same length and the error measure is minimum. This rule is synthesized by the Al-
gorithm 1. O1 being the prototype and O2 being a given object and γ is an order length
of the tree (γ ∈]0, d[).

2.1 An Example of Application

The approach described above is implemented within the framework of graphical sym-
bol recognition. The samples test are extracted from the reference database [1] used in
the Symbol Recognition Contest of GREC’2003 (Barcelona, Spain). Two kind of sym-
bols have been considered, Architectural prototypes (cf Figure 1) and Electrical ones.
In order to show the characteristics of our method, the original prototypes have been
translated, rotated and then degraded by 30% ”salt and pepper” noise (cf. Figure 2).
Median filtering (arbitrary mask 3 × 3) and a segmentation task enabled the objects to
be classified to be isolated (cf. Figure 3). This artificial process results in the objects to
be classified substantially differing from the prototypes. For example, even full regions
of the ”sink” class no longer appear in ”object 1” which is supposed to belong to this
class (cf. Figure 3). Numerous shape connexity breaks can also be observed, perturbing
the pixels neighbourhood relationships2 that is fundamental for the construction of the
spanning tree. We can see that our algorithm is quite robust to this kind of deterioration
and this is thanks to the mixture. We explain this relative resistance in the following way.
The MST defines the dominant skeleton of the symbol by mapping the shortest path of

1 The Steiner tree, the minimal spanning tree, and the trees related to Traveling Salesman
Problem.

2 That’s why the ”salt and pepper” noise model was chosen.
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Fig. 1. Original symbols: 6 classes. From left to right respectively : Sink, Television, Washbasin,
Table, Sofa and Bed.

Data : O1 = {p1, .., pi, .., pN}, O2 = {q1, .., qj , .., qN}, γ

begin
Build a MST on the prototype set O1, let L1 be its γ order length.
for Several matrix transformation T do

1. Define the transformed object :

OT
2 = T ∗ O2 = {qT

1 , ..., qT
N}

2. Define the union (”mixture”) between the prototype and the transformed ob-
ject :

O12 = O1 ∪ OT
2 = {p1, ..., pN , qT

1 , ..., qT
N}

3. Build a MST on O12, let L12 be its length.
4. Compare O2 with O1 by :

ET = |L12 − L1|

end
Finally, the γ distance between the prototype and the unknown object is :

E� = min{ET } with T � = Argmin
T

{ET }

end

Algorithm 1. Objects matching by minimum spanning trees: previous algorithm

nearest neighbor points set. The mixture operation can restore the pixels which were
randomly removed. By consequent the symbol topology is not irreversibly lost and the
dominant skeleton is globally conserved. Outliers could resist to the preliminary filter-
ing process and significantly damaged the skeleton by adding out of proportion edges
length. A specific program against outliers can be provided by detecting and cutting
edges which have too highest lengths. The classification results are given in the Table 1.
The object’s identity is that of the symbol for which the prototype minimizes the er-
ror. In this basic experiment all the objects were rightly recognized (minimal distances
located on the diagonal) despite the degradation level of some objects.
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Table 1. Results of previous algorithm : minimum spanning tree-based symbol recognition (γ =
1) operating in the image space. Matrix of minimal distances between symbol prototypes and
unknown objects (E�).

Objects
obj.1 obj.2 obj.3 obj.4 obj.5 obj.6

sink 241.151 813.667 796.598 788.656 763.928 661.071
television 771.110 176.791 338.359 915.355 918.071 805.424
washbasin 769.000 345.120 60.968 919.571 890.757 773.585
table 796.019 848.280 851.381 616.001 759.019 815.000
sofa 762.252 906.763 893.877 775.057 63.083 805.583
bed 689.019 784.095 765.703 806.026 828.034 192.001
Reality sink television washbasin table sofa bed

Fig. 2. Degraded symbols : 30% salt and pep-
per noise

Fig. 3. After filtering and segmentation : un-
known objects

If the mixture stage led to a significant recognition rate3, it also introduces a growing
time computing because twice more points must be connected by the trees. In the next
Section, the algorithmic cost of our solution is estimated and ways to reduce it were
pointed out.

3 Using Minimum Spanning Trees for Shape Description: New
Algorithm

The time computing of our approach is a critical point. To give an idea, for a given object
randomly rotated and degraded (binary images d = 2, N = 1000), less than 4mn4 are
needed to establish the inter-objects distance (E�). In this section, the algorithm cost
of our method is estimated and ways to reduce it are mentioned. The solution chosen is
described and justified and the final algorithm gain is evaluated.

3 That was confirmed on medium scale tests.
4 It is the result of a blind and iterative research with the Matlab 6.5 implementation of the

algorithm on a standard PC (Pentium 4 processor at 3.06 GHz with 512 MB RAM) with the
input algorithm parameters (T = 24, γ = 1).



Application to Graphical Symbols Recognition 155

3.1 Algorithm Cost Estimation and Ways to Reduce It

The time computing is closely dependant of the algorithmic cost5 of the MST6 construc-
tion. For a given number of points to be connected N , evolving in dimension {2, 3} ∈ d,
the MST algorithmic cost is increased by N2 log N . According to the algorithm pro-
vided in Section 2, T +1 trees are required to determine the inter-object distance, where
T , is the maximum number of iterations in the research. The first tree is calculated on
N points, whereas the other T are calculated on the union of objects, i.e. 2N points7.
The algorithmic cost therefore stands at C1 ≈ N2 log(N) + T .{(2N)2 log(2N)}.

Several solutions to algorithmic cost reduction exits, both algorithmic and from the
image processing field. Thus the use of a faster algorithm (D. Karger and P. Klein in
[13]) or even an incremental schema (M. Soss in [29]) are the methods currently be-
ing explored by the community. In practice, another solution consists in reducing the
number of geometric transformations (rotations) applied, it is also possible to carry out
a main component analysis in order to accelerate the research for the optimal transfor-
mation (identification of inertia axes). Image processing methods can also be used to
reduce all the pixels to be taken into account, as, for example, in morphological erosion
operations [28]. The extraction of the minimal skeleton of an image is in the center of
some works in which the minimization of redundancy is tracked [19,15]. These mor-
phological approaches, however, lead to a loss of structural information on the object
to be classified. This could penalize our spatial description-based approach. The alter-
native that we propose consists in carrying out a global transformation of the image,
whilst preserving the structural dimensions of the objects.

3.2 Cost Reduction via Discrete Cosine Transform

The main idea is that of working in an image representation mode in which the co-
efficients can be better decorrelated. The Discrete Cosine Transformation (DCT) was
chosen for these ”good” properties discussed below. Introduced in 1974 by N. Ahmed,
T. Natarajan and K. Rao [2], it is expressed as follows :

F (u, v) =
1√
2N

C(u)C(v)
N−1∑
x=0

N−1∑
y=0

I(x, y). cos
πu(2x + 1)

2N
cos

πv(2y + 1)
2N

(1)

where: I(x, y) is the original image and F (u, v) is the transformed image; x, y is the
spatial plane coordinates and u, v is the frequency plane coordinates;

C(u) = C(v) =
1√
2

for u, v = 0 C(u) = C(v) = 1 otherwise

5 By algorithmic cost we mean the number of operations required for a given number of points,
as opposed to the complexity which refers more to the class of an algorithm (quadratic for the
two algorithms proposed).

6 The code chosen is that recently developed by A. Hero and O. Michel. Since the problem is
a full NP, their algorithm provides a good estimate of the MST length in a reasonable time
computed [12,10].

7 Under the assumption that the objects are defined by the same number of points.
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The term 1√
2

enables the transformation to be orthogonal.
The DCT is very close to the Fourier Transformation (FT) and possesses interesting

properties for our aim of minimizing the number of points that describe an object :

– strong energy compaction, the signal information tends to be concentrated in a few
low-frequency components of the DCT;

– low correlation between the transformed coefficients, the DCT approaching the
Karhunen-Love transform (which is optimal in the decorrelation sense);

– fast computation, only 11 multiplications are needed to perform the 1D DCT with
the practical fast algorithm proposed by C. Loeffler, A. Ligtenberg, and
G. Moschytz in [17].

What is more, K. Rao shows that the DCT provides a better approximation of an image
with less coefficients than the FT [25]. Moreover, the capacity of the DCT to decorrelate
data can be explained statistically. By considering the pixels of the images as realiza-
tions of a random stationary process, some works [8,25] show that the DCT is a good
estimation of the Karhunen-Love transform; in addition, it does not come up against
the diagonalization of the covariance matrix which is always delicate. These properties
have been widely tested since the DCT was chosen for the JPEG compression norm8 in
1992 [3,35].

3.3 Adaptation to Graphic Symbol Recognition Problem : Justifications

Some image compression concepts [25,7,24] are used in this section. The concepts sur-
rounding the steps of transformation, quantization and coding have guided some of our
choices. For example, the DCT is not applied to the whole image but to blocks of the
image. For computation reasons, it is preferable to decompose the original image into
K blocks of size M × M and to perform the DCT on each of the blocks. One should,
however, ensure that the size of the blocks (directly related to the loss of some frequen-
cies) is large enough to avoid the mosaic effect. Another argument, notably concerning
our application, reinforces this choice - the construction of a tree in transformed space
without partitioning the original image inevitably leads to the loss of spatial information
in the image. After integration (on the whole image) it is difficult to link a frequency
to a specific region of the object in the image. The spatial information is diluted in the
set of frequencies. By partitioning the image and ordering the blocks, part of the spatial
dimension is conserved, which should facilitate the tree-based comparison of objects.

The transformed matrices do not undergo any quantization process. The quantization
is only to attenuate the amplitude of the coefficients in order to minimize the number of
bits required to code them. On the contrary, it would appear to be interesting to maintain
the greatest inter-coefficient variability possible, so as to discern the objects.

The DCT is very compact, in other words few coefficients are required for an esti-
mation. What is more, the majority of the non null coefficients are concentrated around
the continuous component. The further away you are from the low frequencies (in both
directions) the closer the coefficients are to zero. This distribution can be used to omit

8 Joint Photographic Expert Group.
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Fig. 4. From left to right respectively : the original image; the image expressed in DCT space
(K = 25, M = 20), and the image reconstructed when only 19.5% of the original DCT coeffi-
cients are conserved (78 coefficients per blocks) via zig-zag algorithm

certain coefficients without risking alteration of the original image (cf. Figure 4). Fur-
thermore, this trend is used by scanning techniques (coding theory) which aim to mini-
mize the address of the last non-null coefficient to be transmitted. The zig-zag algorithm
example is fairly well known [8,7]. The trees are therefore constructed on the sub-block
DCT coefficients.

4 Algorithm Evaluation

The symbol recognition experiment carried out in Section 2.1 was reproduced under
the same conditions. The algorithm presented in Section 2 was applied by integrating
the stages described in Section 3.3. That is to say that the prototype object is firstly
expressed into DCT space (K blocks of size M ×M ). A selection of the coefficients is
made using the zig-zag algorithm (cf. Figure 4). Only N ′ points per block are kept. In
DCT space, a sub-block is a set of N ′ points evolving in dimension 3 (u, v, F (u, v)).
An MST is constructed on each sub-block. Finally, K MSTs are performed and their
lengths are the components of the features vector for the prototype processed. The same
schema is applied to the image resulting of the mixture between the prototype and the
input object. The same9 DCT block partition is used in the two case. An Euclidean
norm between features vectors is computed. This metric based on MST lengths built on
sub-blocks DCT space is used as classification criterion. For multi-oriented objects, the
inter-object distance is the minimum distance observed during the several geometric
transformations (T ). The results are given in Table 2. They are obtained with the set
of parameters {K = 25, M = 20, N ′ = 78}, their values are guided by the analysis
developed in Section 3.3. Complementary results observed on another sample test are
given in the Appendix.

9 The tree-based characterization of transformed coefficients only makes sense if the symbols
are decomposed on the same image partition. For various symbols size, the highest image
bounding box is used as reference.
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Table 2. Results of new algorithm : minimum spanning tree-based symbol recognition (γ = 1)
operating in reduced DCT space. Matrix of minimal distances between feature vectors related to
symbol prototypes and unknown objects.

Objects
obj.1 obj.2 obj.3 obj.4 obj.5 obj.6

sink 16.752 11031.616 11327.937 91.292 67.839 48.822
television 62.281 7.885 10561.515 110.458 82.309 78.956
washbasin 68.056 30.257 13.196 110.748 96.129 66.874
table 19217.062 11955.169 11892.729 29.400 23828.005 20298.654
sofa 19790.828 10893.603 11545.823 82.740 17.976 54.041
bed 19372.944 11006.482 11291.834 83.158 25060.909 29.064
Reality sink television washbasin table sofa bed

All the objects were rightly recognized (cf. Table 2). The recognition quality was
measured using a criterion Δ, reflecting the discriminant nature of the decision. Δ
is evaluated by comparing the distances associated with the two emerging symbols.
For example, the television was identified (second column) with a discrimination index
Δ = 30.257−7.885

7.885 = 283.7%. Within the framework of this experiment (model, noise
level, etc.), the two approaches have a similar level of discrimination. The median levels
were 244.3% vs. 271.7% when the trees operate in the image space and the DCT space,
respectively. However, the algorithmic gain is undeniable when the comparison is car-
ried out in transformed space, which we propose to estimate. The calculation cost of
the DCT is negligible in comparison with that engendered by MST construction. This
assumption seems acceptable given the fast algorithm class proposed by C. Loeffler,
A. Ligtenberg and G. Moschytz in [17]. The cosine basis functions are pre-computed
and stored and the separability property of the DCT is exploited. The cost (approxi-
mate) therefore evolves with C2 ≈ K.N ′2 log(N ′) + T .{K.(N ′)2 log(N ′)}. The first
term refers to the calculation of the features vector of the prototype object and the
second refers to that of the feature vector of the mixture of objects to be compared.
For {K = 25, T = 24, N ′ = 78, N = 1000} the average algorithmic gain reaches
C1
C2

= 44.463. This gain is substantial and is mainly due to the second term of C2 in
relation with that of C1. The complexity of the construction of trees is circumvented by
constructing more trees (K more times) but on a smaller volume of data ( N ′

2N = 3.9%).
We therefore profit from the polynomial evolution of the cost in terms of number of
points. Less than 3mn vs. 2h33mn12s is thus required to obtain the distance matrix
synthesized in Table 2. From a decision making point of view, the time processing be-
comes reasonable even if it is not yet compatible with the time constraints of a real
application related to a large database. However, this time could be shortened by the
more in depth reduction of the number of DCT coefficient taking into account. Another
hand, we know from image compression point of view that image restitution quality is
linked to compression rate especially for loss techniques based on DCT (cf. Figure 5).
So, the decision making speed up will be followed by a drop of recognition rate. Large
scale tests have shown that a good trade-off between accuracy (∼ 85.5%) and time pro-
cessing (∼ 2, 21s/sample) is realized when 36 coefficients per block (N ′ = 36) are
conserved. When less than 36 coefficients are selected, the part of the original image
energy brought falls under 50%, causing deeply degradations on the reconstructed im-
age from reduced DCT space (cf. Figure 5) then the link between the original image
and the reduced DCT space is broken.
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Fig. 5. The original image (on the left) and the reconstructed images from progressive reduction
of DCT coefficients selected (resp. from 78, 55, 36, and 21 DCT coefficients per block). The part
of the original image energy conserved is respectively 86.6%, 81.6%, 74% and 48%.

5 Conclusion

This article is focused on the way to reduce time computing on a previous algorithm
dealing with the use of minimum spanning trees (and specific stages) for shape match-
ing. Many ways leading to its reduction are described, such as the expression of the tar-
get object in Discrete Cosine Space (JPEG-1992 standard). We are therefore no longer
operating in the image space but in a compact space in which the data is better decor-
related. If the expression of images in the DCT space appears to be adapted (energy
compaction, noise resistance), the use of other transformations to improve the calcula-
tion time come rapidly to mind. We can cite the wavelet transform chosen in the new
JPEG-2000 standard (sub-band coding [18,34]). However, it would be appropriate to
verify that the final algorithmic gain is real. The cost estimated in Section 3.1 concerns
points of dimension 3. In scale-position space the points are of a greater dimension,
causing this estimation to be null and void. The algorithmic cost for trees construction
should therefore be revised upwards. As a result a better approximation using scales
should compensate the increased cost. Our proposition leads to a substantial reduction
of the algorithm cost whilst conserving a competitive recognition rate. These results
were confirmed by medium-scale tests (25 classes comprising 20 samples per class)
involving varied and realistic sets of symbols from a reference database [1] to which
increasing amounts of degradation have been added inducing loss of the connectedness
of the shapes.
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Another sample test : case of electrical symbols. Problem : Complex symbols recogni-
tion (i.e. shift, rotated, degraded and sometimes defined by disjoint regions).
Support : low resolution binary images (< 240 dpi).



162 P. Franco et al.

Fig. 6. From left to right respectively : original and degraded symbols (”salt and pepper” noise,
level NSR = 30%) and the objects to be classified (after blind filtering and segmentation)

Table 3. Results of first algorithm : minimum spanning tree-based symbol recognition (γ = 1)
operating in the image space. Matrix of minimal distances between symbol prototypes and un-
known objects (E�). Median discrimination level: Δ = 278.1%, time computing: 2h28mn34s.

Objects
obj.1 obj.2 obj.3 obj.4 obj.5 obj.6

symb.1 134.656 588.306 651.173 1146.886 564.485 749.122
symb.2 580.235 138.171 597.887 1238.154 522.313 935.886
symb.3 589.093 598.551 90.892 1150.123 633.514 770.414
symb.4 1087.915 1154.539 1126.148 272.472 1112.076 910.770
symb.5 564.656 494.585 643.242 1175.009 91.656 767.236
symb.6 679.679 858.757 737.521 991.402 703.514 198.122

Reality symb.1 symb.2 symb.3 symb.4 symb.5 symb.6

Table 4. Results of new algorithm : minimum spanning tree-based symbol recognition (γ = 1)
operating in reduced DCT space. Matrix of minimal distances between feature vectors related
to symbol prototypes and unknown objects. Median discrimination level: Δ = 367.2%, time
computing: 2mn3s.

Objects
obj.1 obj.2 obj.3 obj.4 obj.5 obj.6

symb.1 8.762 13564.972 20644.405 87.801 18334.453 24845.423
symb.2 54.728 14.357 38.627 107.445 47.365 63.031
symb.3 50.695 13593.552 6.243 100.729 18347.104 24884.850
symb.4 18280.536 13541.843 20588.324 16.341 18262.776 24870.032
symb.5 45.373 17.158 33.005 98.618 7.271 24876.376
symb.6 40.946 24.934 39.714 92.548 32.276 8.507

Reality symb.1 symb.2 symb.3 symb.4 symb.5 symb.6
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Abstract. In this paper, we present a novel unifying concept of pairwise
spatial relations. We develop two way directional relations with respect
to a unique point set, based on topology of the studied objects and
thus avoids problems related to erroneous choices of reference objects
while preserving symmetry. The method is robust to any type of image
configuration since the directional relations are topologically guided. An
automatic prototype graphical symbol retrieval is presented in order to
establish its expressiveness.

1 Introduction

Pairwise spatial relations can greatly ease image understanding, scene analy-
sis and pattern recognition tasks. It has been widely used in many areas such
as, GIS understanding [1,2] – where it is necessary to handle efficiently both
inaccurate and vague spatial data –, analyzing architectural documents for au-
tomatic recognition [3], graphical drawing understanding from scanned color
map documents [4] and defining efficient image retrieval methods [5,6,7]. How-
ever, it is still difficult to organise and obtain spatial relations in an automated
way [8,9].

In general, there is no particular spatial reasoning approach that can adapt
to any type of application. They can be either topological [10,11,12,13] or di-
rectional [14,15,16,17,18] in nature. Further, models are entirely depending on
the characteristics of the studied objects as well as specific application driven
needs for spatial relations, such as binary or metrical refinement: the level of de-
tail in the expression of spatial predicates such as Left, Right etc., varies widely
from one application to another [19] as does to the precision of the quantised
information. Moreover, the introduction of metric information often gives rise
to asymmetry, rendering it subject to erroreneous choices of reference objects,
which in turn affect the global positioning semantics.

It is possible however, to identify three main levels of information that are
involved in spatial relations: topological (that describes neighborhood and inci-
dence e.g. Dis-Connected, Externally Connected...), directional (that describes
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order in space e.g. Left, Right...) and metric (e.g. Near, Far...). Unlike the exist-
ing models that separately treat topological and directional relations, this paper
unifies topological and directional information into one descriptor as described
in [8] i.e., topologically guided quantised directional relation with symmetry. This
unification does not increase computational time. In addition, our method pro-
duces angular coverage over a cycle in IR2 that avoids fluctuations of spatial
predicates or other instabilities that may occur even with a small change in the
quantised information. Further, we built upon the idea of semantic inverse the-
ory [8] and preserved symmetry by using a unique reference point set instead of
selecting an object from a pair. Moreover, this unique reference point set gives
a very sound basis for determining metric relations. Currently, this aspect is
beyond the scope of the paper.

We organise the rest of the paper as follows. Section 2 provides a literature
review of existing methods with their strenghts and shortcomings. The proposed
method appears in section 3, immediately followed by an example. Section 4
explores a series of tests. In section 5, a prototype application based on the
proposed method is explored. Section 6 concludes the paper along with a few
steps to go further.

2 Review

Topological relations are invariant to topological transformations [20]. These
encompass, but are not restricted to rigid transforms as rotation, scaling, and
translation. Since we are interested in developing topologically guided directional
relations, we need to assess both topology and directional parts. We distinguish
the following topological models: the 4-intersection model [10], the 9-intersection
model [11], the Voronoi-based 9-intersection model [21], the general intersection
model [22] and the calculus-based model [23]. In this paper, we will be consider-
ing the 9-intersection model instead of the 4-intersection [24]. The Voronoi-based
9-intersection model is found to be inappropriate in our context. As mentioned
earlier, no existing model fully integrates topology. They rather have various de-
grees of sensitivty to or awareness of topological relations. The fact is that inte-
grating both high level metrical directional and topologically sound descriptions
is computationally expensive. Existing approaches present a trade-off between
these factors.

The cone-shaped model reduces relative positionning to the discretised an-
gle [17] of the sole centroids. It is robust to small variations of shape and size
and separation. However, in cases where the centroids coincide it cannot produce
any measure. It even leads to the computation of wrong directions, particularly
in the case of concavity, where the centroid does not fall within the shape. Ex-
tensions like [25], do not lift such ambiguities, nor does it handle to overlapping
regions.

Overlapping is a complex problem and approaches based on angle histograms
are more efficient. Let two objects A and B be considered as the sets of their
pixels: A = {ai}i=1...m and B = {bj}j=1...n. The m × n pairs of points allow for
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the computation of a set of angles θi,j between each (ai, bj). The histogram H
representing the frequency of occurrence of each angle fθ can then be formulated
as Hθ(A, B) = [θ, fθ]. Besides a higher time complexity, there is no significant
difference between the cone-shaped and the angle histogram model when objects
are separated by a relatively large distance. The approach was thoroughly studied
from its accuracy point of view, and its ambiguity for describing different pairs
of objects, resulting in identical histograms [15]. The work was also extended
to include metric information in [26], but cannot handle complex objects with
holes.

Approaches based on the Minimum Bounding Rectangle (MBR) [18,27,5,28,12]
give more interesting relations as they also approximate shape and size of the ob-
ject. The quality of the bounding rectangle depends on compactness1 of the tile.
The sole information used in the MBR approaches is derived from the geome-
try of the bounding rectangle from which externally aligned orientations: Left,
Right, Top and Bottom etc. are straightforwardly derived. There are 36 possible
configurations of pairwise spatial relations with MBRs and 218 possible spatial re-
lations between non-empty and connected regions [29]). Further, MBR
approximates topological relations, which in turn may express false
connection/overlapping.

The F-Histogram model gives coherent results [16] at the risk of high pro-
cessing time. It is generic and depends on a sound mathematical framework.
It considers pairs of longitudinal sections instead of pairs of points. It does not
cover basic topological relations such as, Inside and Overlap nor does it integrate
metric information. Another well-known approach uses fuzzy landscapes [14], and
is based on fuzzy morphological operators.

3 Proposed Method

In addition to the shortcomings mentioned earlier, proper reference is always
a primary factor to organise spatial relations between the objects. It is to be
reminded that a change of reference object implies a change in spatial predicates.
This, in its turn, may eventually affect overall spatial reasoning (if reference is
not given).

In our method, we propose to unify topology and directional relations between
the objects A and B. The proposed method is summarised in two steps. We first
extract a unique reference point set R based on their MBR (Â, B̂) topology. This
R, thus avoids problems related to erroneous choices of reference entities and
will guarantee that subsequent computations of spatial relations �. In addition,
it preserves symmetry.

3.1 Unique Reference Point Set R Based on Topology

Fig. 1 shows examples of topological configurations and the corresponding refer-
ence region R that they define. R is derived from the topological relation between

1 Compactness = Area(A)
Area(MBR(A))

.
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(a) DC (b) DC
(c) DC (d) EC (e) EC (f) O (g) Cr/CB (h) Cn/I (i) EQ

Fig. 1. R via topological relations

Â and B̂, as either the common region of two neighbouring sides in the case of
disconnected components or the intersection in the case of overlapping, equal or
otherwise connected components. In what follows we shall use the characteristic
points Rpi (extrema and centroid) of R as,

R = {Rpi}i=1...2n+1

where n is the dimensionality of the region. The dimension of R changes with
the topological relations (Fig. 1). In this illustration, R becomes both 1D (b)
and 2D (a,c) when two MBRs are Dis-Connected (DC ) while, 0D (d) and 1D
(e) when they are Externally Connected (EC ). Similarly, only 2D (f, g, h, i)
when Overlapping (O), Cover/Covered By (Cr/CB), Contain/Inside (Cn/I ),
and Equal (EQ) occur. These are the basic topological predicates closely related
to human understanding in conncetion with the Region Connection Calculus-8
(RCC-8) [13]. We express the topological relations in a 9-dimensional binary
space based on the 9-intersection model [11]. It uses on the intersections of
the boundaries (∂∗), interiors (∗o) and exteriors (∗−) of two shapes A and B.
The topological configuration Topo.(A, B) is a vector in this space in which
componetns equal 0 if the corresponding intersection is empty, and 1 otherwise,
as shown here:

Topo.(A, B) =

⎡
⎣ Ao ∩ Bo Ao ∩ ∂B Ao ∩ B−

∂A ∩ Bo ∂A ∩ ∂B ∂A ∩ B−

A− ∩ Bo A− ∩ ∂B A− ∩ B−

⎤
⎦

Therefore 3 × 3 binary signature for DC(A, B) =
[

0 0 1
0 0 1
1 1 1

]
, EC(A, B) =

[
0 0 1
0 1 1
1 1 1

]
,

. . . , EQ(A, B) =
[

1 0 0
0 1 0
0 0 1

]
.

3.2 Directional Relations - Radial Line Model (RLM)

The model precisely yields angular coverage over a cycle in IR2 and thus avoids
the use of spatial predicates as in the existing models. It is to remind that the
level of expresion of spatial predicates is sensitive to every small change in quan-
tised information. The model further, explores both qualitative and quantitative
process.
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Binary Relations. Let X be one of the initial objects A or B and let their
reference region be R. At every Rpi, we cover the surrounding space at regular
radial intervals of Θ = 2π/m, such that θj = jΘ. It rotates over a cycle and
intersecting with X, and generates binary values at every step of its rotation
(Fig. 2). This gives a boolean histogram of angular coverage,

H(X, Rpi) = [I(Rpi, jΘ)]j=0..m where I(Rpi, θj) =
{

1 if line(Rpi, θj) ∩ X �= ∅
0 otherwise

This is extended wlog to the sector defined by two successive angle values:
Cone(Rpi, θj, θj+1). The process is repeated for every Rpi.

Fig. 2. Radial line line(Rpi, θj) rotation

Refined Relations. In order to be robust to noise and to border conditions
due to discritization, we extend the boolean description by partially building on
the cloud model [30]. We normalise the coverage with respect to the total area of
the object under consideration with respect to every Rpi,

Area(Cone(Rpi,θj ,θj+1))
Area(X)

such that
∑H(.) = 1. This goes without loss of generality and it is robust to

any type of point set (either a point, a line or a region). It is not only convey
information about the presence of objects in a given direction, but also infores
about the proportion of the object that is lying there.

We average the resulting histograms (from every Rpi) to produce �(X, R).

Remarks

– Spatial Relations: We use �Bin(.) and �Ref (.) for binary and refined rela-
tions respectively.

– Symmetry: Due to R, RLM yields twowaydirectional relations aswell as it pre-
serves symmetry. For symmetry reasons, we use �(�, ∗) = {H(�, R),H(∗, R)}.
This guarantees that, �(�, ∗) = �(∗, �).

– Resolution: Θ determines a trade-off between precision and time complexity,
determining resolution of H. Smaller the resolution, better the information
exploitation.
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3.3 An Example

Fig. 3 shows an example illustrating our method for a pair of truly overlap-
ping objects. We first show how to determine R from Topo.(Â,B̂). Fig. 4 shows
how both boolean and metrical refinement histograms are produced
from Topo.(R, X).

As an example, we use Θ = π/20 to produce H for �Bin(.) and �Ref (.). For
every Rpi, the visual representations of binary (blue) and refined (red in blue
mask – zoomed ×3) histograms are shown for object A and B in Fig. 4. For easier
understanding, the directional relation signatures with respect to the reference
centroid point Rpc are:

HBin(A, Rpc) = [0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
HRef (A, Rpc) = [0 0 0 0 0 0 0.0261 0.0722 0.0746 0.0775 0.0708 0.0746 0.0841

0.0675 0.0433 0.0299 0.0328 0.0323 0.0328 0.0352 0.0299 0.0328
0.0323 0.0328 0.0352 0.0375 0.0361 0.0095 0 0 0 0 0 0 0 0 0 0 0 0]

After averaging, it is found that �(A, R) �= ∅ while �(B, R) is. It is due to the
fact that Cr(R, X) or CB(X, R).

(a) A pair (b) Encased with MBR (c) R generation

Fig. 3. An example to illustrate the proposed method (a truly overlapping case)

For Object A:

H(A, Rp1)
0 − 2π

H(A, Rp2)
8π
20 − 27π

20

H(A, Rp3)
0 − 2π

H(A, Rp4)
10π
20 − 22π

20

H(A, Rpc)
7π
20 − 28π

20

=⇒

(A, R)

7π
20 − 28π

20

For Object B:

H(B, Rp1)
31π
20 − 2π

H(B, Rp2)
21π
20 − 30π

20

H(B, Rp3)
0 − 10π

20

H(B, Rp4)
11π
20 − 20π

20

H(B, Rpc)
22π
20 − 9π

20

=⇒

(B, R)
0 − 0π

20

Fig. 4. 7π
20

− 28π
20

(A, R) (1st row) and 0 − 0π
20

(B,R) (2nd row)

4 Experiments

In this experiment, we use segmented and labeled objects in order just to explore
the expressive power of the method. Table. 1 shows the behaviour of our method
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Table 1. A series of tests
(
Θ = π

20

)
Image Topology 
Bin.(.) + 
Ref.(.) Image Topology 
Bin.(.) + 
Ref.(.)
with R (A, B) (Â, B̂) 
(A, R) 
(B, R) with R (A, B) (Â, B̂) 
(A, R) 
(B, R)

Experiment I

DC DC DC DC
(a) 11π

20 − 28π
20

33π
20 − 8π

20 (d) 11π
20 − 28π

20
33π
20 − 8π

20

DC DC DC DC
(b) 11π

20 − 28π
20

33π
20 − 8π

20 (e) 14π
20 − 28π

20
33π
20 − 2π

20

DC DC DC DC
(c) 11π

20 − 28π
20

33π
20 − 8π

20 (f) 14π
20 − 28π

20
33π
20 − 2π

20
Experiment II

DC DC DC Cn
(i) 11π

20 − 30π
20

33π
20 − 7π

20 (iv) 04π
20 − 37π

20 0 − 0π
20

DC O DC Cn
(ii) 11π

10 − 31π
20

31π
20 − 10π

20 (v) 02π
20 − 39π

20 0 − 0π
20

DC Cn DC Cn
(iii) 09π

20 − 32π
20 0 − 0π

20 (vi) 0 − 40π
20 0 − 0π

20

on a series of objects, ranging from simple, solid and regular pairs of objects to
concave, as well as complex ones, covering all possible topologies. The overall
result shows a comparison between the topology of the shapes themselves (A, B)
as well as their MBR (Â, B̂). Comparison made with the topology between them
determines the qualtity of the MBR tile. The difference in topological relations
is due to MBR false connection/overlapping. It is however, not a problem in our
method since it uses the initial objects (A, B) to produce � after the discovery
of R. Further, �Bin and �Ref of both objects with respect to R are also shown
in Table 1.

4.1 Discussions

In a few congurations (Table 1), RLM yields identical �Bin but different �Ref

between different pairs of objects. This behaviour can be observed in Experiment
I for (a), (b), (c) and (d) as well as (e) and (f). It is to be noted that �Ref is only
used to cross validate when �Bin is found to be non discriminant. Experiment
II shows the behaviour of our method on progressive coverage of one object by
another. In this illustration, a progressive angular coverage as well as effect of
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inclusion topological relations on directional relations are clearly demonstrated.
As in Fig. 4 �(B, R) = ∅ because Cn(R, B).

Overall, directional relations are topologically guided. For DC, EC and O
relations, it is straightforward. But for all inclusion relations like Cr/CB, Cn/I,
and EQ, H(X, R) = ∅. Therefore, only one part of � needs to be computed. This
eventually reduces time complexity as RLM gives no measure.

4.2 Time Complexity

In this section we analyse the time complexity behaviour both with respect
to the precision (Θ) and the size of the objects. Unlike the existing models
described in section 2, processing time does not increase exponentially with the
size of the images but has only a little effect. Fig. 5 shows time complexity
measure by increasing the size of the image (scaling step +0.2). Overall, the
RLM takes almost the same time to make a complete rotation over a cycle in
all size of images. This is the main reason for the time complexity graph being
approximately level. In order to increase the speed, one can use boundaries of
objects to compute the boolean histogram.

It has no doubt that cone shaped and classical projection models run faster
than the RLM and histogram of angles (and its variant). In our method, resolu-
tion Θ determines which one to trade off: either quality or computational load.
It is to be noted that the RLM resolution should be chosen based on the size of
objects under consideration. Further, time complexity is compensated to n(n−1)

2
for n objects due to the symmetry relations.

Fig. 5. Time complexity for �Bin (left) and �Ref (right) for a number of different
resolutions

5 An Application

5.1 Symbol Description via Spatial Relations

We use the visual vocabulary presented in [31,32] to organise spatial relations
and use them for symbol description. In our case, the vocabulary consists of:
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Symbol
pair encased with MBR R generation

circle and corner

circle and extremity

corner and extremity

Fig. 6. Reference point set R generation for all possible pairs of classes

...

Fig. 7. A small set of electrical symbols

Query Retrieval List

1. 2. 3. 4. 5. 6.

7. 8. 9. 10. ...

1. 2. 3. 4. 5. 6.

7. 8. 9. 10. ...

1. 2. 3. 4. 5. 6.

7. 8. 9. 10. ...

Fig. 8. Retrieval lists based on similarity for a few chosen queries
(
Θ = π

180

)
circles, corners, loose ends and thick (filled) components. To handle arbitrary
number of vocabulary elements, we group them together into ‘classes’ having the
same type, as shown in Fig. 6. The symbol is then modeled as a graph in which
each group is a typed node, and the arcs, representing the spatial relations �.
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5.2 Symbol Retrieval

We use straightforward graph matching to retrieve similar symbols with respect
to the chosen query. We manually choose query symbols which are matched
with symbols in the database. We employ similarity ranking based on the geo-
metric distance. We take manhattan distance metric between the corresponding
relations in the graphs,

∑n
i |(�i(.) −�′

i(.))|. Fusion of matching scores from in-
dividual relations reflects how similar the symbol in the database with query
symbol. Based on the similarity value, we rank retrieval symbols.

Since it is a protype application, we use small database and a few test queries.
A sample of the database is shown in Fig. 7. Ranking retrieval lists for a few
choosen queries are shown in Fig. 8.

6 Conclusions and Further Works

In this paper, we have presented a new concept of unifying pairwise spatial
relations. Since directional relations are topologically guided, one does not need
to model them separately. The method provides accurate spatial organisation for
any type of image configuration. In addition, it produces symmetric directional
relations thanks to the use of a unique reference point set. These two way spatial
relations are developed at one pass, while this is not the case in existing models.

One of the possible applications – prototype symbol retrieval – is reported,
using a small database. Further work consists of using intra-class spatial relations
as well as pre-filtering techniques to establish precision and recall in symbol
retrieval. We will further develop the use of this method for scene matching and
image analysis tasks which will ultimately bring it into the context of full image
recognition.
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Abstract. A common problem encountered in recognizing signs in real-
scene images is the perspective deformation. In this paper, we employ a
descriptor named Cross Ratio Spectrum for recognizing real scene signs.
Particularly, this method will be applied in two different ways: recogniz-
ing a multi-component sign as an whole entity or recognizing individual
components separately. For the second strategy, a graph matching is used
to finally decide the identify of the query sign.

Keywords: Graphics Recognition, Real Scene Recognition, Perspective
Deformation.

1 Introduction

With the advancement of camera technology, many techniques are developed for
real scene symbol/character recognition. Traffic sign recognition [3,4] is imple-
mented in Driver Support Systems to recognize the traffic signs put on the road
e.g. “slow”, “school ahead”, or “turn ahead”. Another application is license plate
recognition [9], which is practically useful in parking lot billing, toll collecting
monitoring, road law enforcement, and security management. Cargo container
code recognition systems [5] are used in ports to automatically read cargo con-
tainer codes for cargo tracking and allocation. Signboard recognition systems
or translation cameras recognize signs captured by a portable camera, helping
international tourists to overcome language barrier.

Many difficulties are encountered in real scene symbol/character recognition,
including uneven illumination, occlusion, blur, low resolution as well as perspec-
tive deformation. For traffic sign recognition, license plate recognition, and cargo
container code recognition, the recognition target is far away from the camera
and moving, and thus issues needed to be resolved are blur and low resolution.
For translation cameras, because the recognition target is often near the camera,
the perspective distortion and uneven illumination become the main obstacles.

We are particularly interested in signboard recognition in this papers. Besides
perspective distortion and uneven illumination, another difficulty of signboard
recognition is in the concise nature of signs: a sign often comprises of only a
few words/characters and some graphic symbols displaying a certain format. It
will cause problems in both detection and recognition. An approach to address
the perspective issue is to use Affine invariant detectors and Affine invariant
descriptors. However, existing Affine invariant descriptors, like SIFT, work well
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on complex objects with great variation in intensity. However, the simplicity and
symmetry of symbols make the Affine invariant descriptors not discriminative
enough.

In our early paper [6], a real-scene character recognition method was proposed,
based on a descriptor named cross ratio spectrum. The main contribution of this
paper is to propose two strategies to recognize multi-component signboards. In
Section 2, we will show the performance of our recognition method, treating
multi-component signboards as whole entities. Since this strategy is only useful
when the boundary of a signboard is known, we will discuss a more general
case when the such condition is satisfied in Section 3. In particular, a graph
matching method is proposed to assemble the individual component recognition
results gotten by our previous method [6]. With this strategy, the recognition can
be conducted for real scene images without prior knowledge about the boundary
of a signboard.

2 Recognize Perspectively Deformed Symbols

In this section, a brief review of the recognition method proposed in [6] will be
made. The experimental result of applying it on whole signboards will be also
presented.

2.1 Comparing Two Cross Ratio Spectra

Cross Ratio is a fundamental invariant for projective transformation [7]. The
cross ratio of four collinear points (P1, P2, P3, P4) displayed in order is defined
as:

cross ratio(P1, P2, P3, P4) =
P1P3

P2P3
/
P1P4

P2P4
(1)

where PiPj denotes the distance between Pi and Pj . cross ratio(P1, P2, P3, P4)
remains constant under any projective transformation.

Suppose there are two sample points P1 and Pk on the convex contour of a
symbol H , as shown in Fig. 1. I1 and I2 are the intersections between the line
P1Pk and the symbol contour. The cross ratio, defined by P1, I1, I2, and Pk, is
denoted by CR(P1, Pk). When there are more than two intersections between
two points, only the first two intersections (near P1) are used. If the number
of intersections is 0 or 1, and thus no cross ratio value can be computed, the
pseudo-cross ratio value is assigned as -1 and 0 respectively.

A cross ratio spectrum is a sequence of cross ratios. Suppose the sample point
sequence of the convex hull of P is {Ps, s = [1 : S]}, where P2 is the anti-clock-
wise neighbor pixels of P1, etc. The Cross Ratio Spectrum (CRS) of a pixel Pi

is defined as:

CRS(Pi) = {CR(Pi, Pi+1), ..., CR(Pi, Pn), CR(Pi, P1), ..., CR(Pi, Pi−1)}
An example of a cross ratio spectrum is shown in Fig. 1. An important hypothesis
about the cross ratio spectrum is that:
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Fig. 1. The Cross Ratio Spectrum of point P1 at the left top corner of symbol ‘H’

If Pi and P ′
i are two mapping points in a symbol P and its perspec-

tive version P ′, spectrum CRS(Pi) is an uneven stretching version of
spectrum CRS(P ′

i ).

Hence, we use Dynamic Time Warping (DTW) to compare the similarity between
two spectra. In the following sections, Q refers to an unknown symbol with M
sample points on the convex hull, and T refers to a template symbol with N
sample points. The notation of CRS(Qi) is rewritten as CRS(Qi) = {qu, u = 1 :
M −1} for simplicity. Similarly, CRS(Tj) = {tv, v = 1 : N −1}. The comparison
between two sample points Qi and Tj is formulated as:

DTW (u, v) = min

⎧⎪⎨
⎪⎩

DTW (u − 1, v − 1) + c(u, v)
DTW (u − 1, v) + c(u, v)
DTW (u, v − 1) + c(u, v)

(2)

c(u, v) =
abs(log(CR(Qi, Qu)) − log(CR(Tj, Tv))

log(CR(Qi, Qu)) + log(CR(Tj , Tv))
(3)

If CR(., .) is -1 or 0, log(CR(., .)) is assigned as -1 and -0.5 respectively. The
distance between points Qi and Tj is given by the last item:

DTW dist(Qi, Tj) = DTW (M − 1, N − 1) (4)

2.2 Comparing Two Symbols

In order to compare two symbols Q and T . Two steps are followed:

– DTW comparisons are conducted between each pair of Qi and Tj , and a
DTW-distance-table is constructed as the table showed in Fig. 2(a). Cells in
the table denote the distances of corresponding pixel pairs.

– Each time, a DTW is applied to a sub-table comprising of column {�, � +
1, ..., � + M − 1} of the table, to align T1 with Q� and TN with Q�+M−1 as
the boundary condition. The comparison is formulated as follows:

DTW (i, j) = min

⎧⎪⎨
⎪⎩

DTW (i − 1, j − 1) + c(i, j)
DTW (i − 1, j) + c(i, j)
DTW (i, j − 1) + c(i, j)

(5)
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Fig. 2. (a)DTW distance table. (b)Searching in a sub-table.

Fig. 3. Samples of testing symbols

c(i, j) = DTW dist table(� + i − 1, j) (6)

where i = 1 : M and j = 1 : N . A sub-table is shown in Fig. 2 (b) when
� = 1. A candidate distance between Q and T is given by DTW (M, N).
M DTW comparisons are conducted. Among M candidate distances, the
smallest one gives the desirable global distance.

The comparison algorithm has a bi-quadratic time complexity of O(M2 ∗ N2).
This will be solved by the indexing step in Section 3.1. We take a 1NN recognition
strategy int the experiment: a query is compared with all templates, and the
template which has the smallest distance with the query gives the identity of
the query.

2.3 Synthetic Symbol Testing

In this section, the ability of handling perspective deformation of the proposed
method will be illustrated with a well defined synthetic image set. Scale Invariant
Feature Transforms (SIFT) with Harris-Affine detector 1, Shape Context 2, are
employed as comparative methods.
1 http://www.robots.ox.ac.uk/˜vgg/research/affine/index.html
2 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc digits.html
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Fig. 4. Deformed versions of a symbol

Shape context is a global descriptor, in which each sample point on the shape
contour is represented by the distribution of the remaining points relative to
it, and a point-to-point correspondence between the query and a template is
solved by a bipartite graph matching. After that, a Thin Plate Spline model-
based transformation is estimated for a better alignment between two shapes.
The distance between two shapes is given by a sum of shape context distances.
Iterations are employed for better recognition result. Our experiment follows the
same process as introduced in [2].

SIFT is a local Affine invariant descriptor which describes a local region
around a key point. SIFT descriptor is robust to occlusion, and does not re-
quire segmentation. However, a foreseeable problem of applying SIFT descriptor
to symbols is the lack of discriminating power, because of the simple and sym-
metrical structure of symbols. In order to solve the structural ambiguity and
maximize the recognition strength of SIFT descriptor, the recognition process is
designed as follows. A Harris-Affine detector is used to detect Affine invariant
key points. For each key point of Q, its first 20 nearest neighbors are found in
the training set. If the distance is less than a threshold (200 in the experiment),
the neighbor is kept, otherwise is thrown away. RANSAC fitting algorithm is
then used to further filter false matches. False matches (outliers) are removed by
checking for agreement, between each match and the perspective transformation
model (8 degrees of freedom) generated by RANSAC. The identity of Q is given
by the template which has the maximum number of correct matches with Q.

In our experiment, the convex hull of a symbol is extracted by [1], and the
points are sampled in an equal distance manner. A subset of a standard traffic
sign database3 (45 signs with red and blue frames) are employed as the template
set. Some symbols are shown in Fig. 3. 12 testing datasets are generated by
Matlab using various perspective parameters. The perspective images are gen-
erated by setting the target point at a specific point o′, and setting the perspec-
tive viewing angle as 25◦ (to model a general camera lens), while changing the

3 http://en.wikipedia.org/wiki/Road signs in Singapore
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Table 1. Recognition accuracy of synthetic images

(a) Our method

el= 10◦ 30◦ 50◦ 70◦ 90◦

n = 0 99.25 100 100 100 100
n = 50 97.77 97.77 99.25 100 100
n = 100 95.92 97.77 97.77 100 100

(b) SIFT

el= 10◦ 30◦ 50◦ 70◦ 90◦

n = 0 54.07 60.74 74.44 74.44 74.44
n = 50 52.22 53.33 68.88 73.33 74.44
n = 100 38.14 44.44 51.48 51.48 74.44

(c) Shape Context

el= 10◦ 30◦ 50◦ 70◦ 90◦

n = 0 71.85 82.96 94.07 100 100
n = 50 51.48 74.81 88.88 100 100
n = 100 45.18 60.74 74.81 88.88 100

azimuth (az) and elevation (el) angles gradually. Point o′ is at the same hor-
izontal line as the mass center of a symbol, denoted by o, with a distance of
n× h, where n is a positive integer and h is the height of the symbol. Generally,
the larger the n is, the greater the deformation is. For each testing set, n and
el are predefined, and az is set as {30◦, 90◦, 150◦, 210◦, 270◦, 330◦} respectively.
Therefore, each testing set comprises of 6×45 = 270 symbols. Deformed versions
of a symbol with different perspective parameters are shown in Fig. 4.

Tables 1(a), (b), and (c) show the recognition accuracy using our method,
SIFT, and Shape Context methods respectively, where accuracy is the number
of correctly recognized symbols over the number of total query symbols. The ac-
curacy in each cell is based on a testing set comprising of 270 symbols generated
with corresponding perspective parameters. It is easy to see that when symbols
are deformed by perspective projection, our method has a better recognition
accuracy than other methods. Table 1(a) shows that the performance of our
method degrades only a little with increasing deformation. For the performance
of SIFT descriptor shown in Table 1(b), when the perspective deformation is
moderate, such as n = {0, 50} and el ≥ 50◦, errors are mainly caused by the
structural similarity of symbols. However, when the deformation is more severe,
the descriptor is not resistant to the deformation any longer. Table 1(c) shows
that when the deformation is moderate, Shape Context has a very good recogni-
tion accuracy. However, when the perspective becomes more severe, it is not able
to work well. Under a perspective deformation, some parts of a symbol expand,
while some parts shrink, which affects the statistics calculated from the symbol.
Therefore, statistic-based methods like SIFT and Shape Context will not work
under severe perspective deformation.
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Fig. 5. Rectify photos by the correspondence given by different methods, rectified
images are scaled for better viewing purpose. (a) real-scene symbols (b) by our method
(c)by SIFT (d)by Shape Context (e) template.

The alignment information is useful for perspective rectification. Fig. 5 shows
the results of rectifying two symbols by ours method, SIFT, and Shape Context
respectively, using Least Square method to evaluate a transformation model
based on correspondences between a real-scene symbol and the template achieved
by the three methods.

3 Identifying Signboards in Real Scene

In Section 2, we take a signboard as a whole entity, assuming that its boundary is
already known. However, it is difficult to detect the boundary of a signboard with
disjointed components in a real scene image with presence of many irrelevant
objects. It is even more difficult when several signboards gather together or
incomplete signboards exist. In these cases, the strategy introduced in Section 2
cannot be applied directly.

(a) (b)

Fig. 6. (a)Locating a signboard out of a real scene image. (b)The identity of the sign-
board.
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The task of this section is to identify template signboards in real scene images,
as shown in Fig. 6. First, regions likely to contain signboards are found out, and
then are decomposed into components. A component is a homogenous area with
uniform color. Second, components are recognized with the method proposed
in [6]. Finally, a graph matching process is employed to find the identity of
signboards present in the image.

3.1 Indexing Templates

The training set is the same as used in Section 2. These signboards are indexed
in three layers: sign, component and point. The index structure is shown in
Fig. 7. In the sign layer, topology information of signs is kept. Details can be
found in Section 3.3. In the component layer, the point index information for
each component is maintained. The point layer stores actual CRS descriptors of
points.

Fig. 7. The index structure

In order to build the component layer, we first dismantle template
signboards into components by Color Structure Code segmentation4 [8]. All
foreground components, namely red, blue, black components, and white com-
ponents surrounding by blue or red components are indexed. Duplicate compo-
nents are removed as follows. The template component set Γ is initialized as
Γ = ∅. If a component cannot be recognized with Γ correctly, it is added to
Γ , otherwise thrown away. We got 138 template components from the training
set.

For the point layer, CRSs of all points in Γ are extracted. Based on an im-
portant observation that many neighboring points have similar spectra, we will
further reduce the number of points needed to be indexed by KNN clustering.
In particular, CRSs of all 11040 points extracted from Γ (80 points from each of
138 template signboard) are obtained. Pairwise DTW distances are computed
for these points. KNN clustering method is applied on these distances. 400 clus-
ters are formed. The centroid of a cluster is defined as the CRS which has
the minimum sum of distances to the other CRSs in the cluster. The centroid
4 http://www.uni-koblenz.de/˜lb/lb research/research.csc.html
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and member CRSs for each cluster are recorded. When a query comes in, it
is compared to the centroid of each cluster. The results are used to fill up the
DTW-distance-table (Fig. 2(a)), referring to the member list of clusters. Details
about the indexing and searching process can be found in [10].

3.2 Searching Index

When a query image Q comes in, it is dismantled into components by Color
Structure Code segmentation method [8], as shown in Fig. 8. Components which
are too small are thrown away. The nearest neighbor for each remaining query
component is found in Γ with the method proposed in [10]. If the distance
between the query component and its nearest neighbor is larger than a certain
threshold, the match fails. Note that the segmentation algorithm tends to over-
segment due to uneven illumination. Therefore, in this case, the query component
is merged with its adjacent components to form a new query, as shown in Fig.
9, if the hue difference between the query component and its adjacent neighbor
is less than 5%. Then the index searching is run again with the new query
component.

(a) (b)

(c)

Fig. 8. Preprocessing: (a)Original image. (b)Segmentation results. (c)Examples of com-
ponents obtained from the original image.
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(a) (b) (c)

Fig. 9. (a)A component cannot be matched to any template. (b)An adjacent compo-
nent of (a) which has similar hue. (c)A new component is formed by merging (a) with
(b).

3.3 Template Model and Query Graph

Signboards may have identical components but different layout, such as sign-
boards in Fig. 10(a) and (c). In order to differentiate them, directed graphs
are built to represent their topology information, with components as vertices,
spatial relationships as edges.

For template signboards, if component Vi is encompassed by component Vj ,
there is an arc from Vj to Vi. A dummy vertex is added for each template
model, represented by

⊗
. It has an arc to each vertex whose component is not

encompassed by any other component. This dummy vertex actually refers to the
background of a signboard. Template models for signboards in Fig. 10 (a) and
(c) are shown in Fig. 10 (b) and (d), respectively.

For a query image, a dummy vertex is assigned to a component if it has not
been assigned with any identity. Arcs are added as follows. An arc is added
from one vertex to another vertex, if the corresponding component encompass
another, as for template processing. An arc is added from a dummy vertex to
a vertex if two corresponding components are adjacent and the dummy compo-
nent is not encompassed by the other. Then, we obtain all subgraphs, starting
at a dummy vertex and comprising of all vertices to which there are paths from
the starting vertex. They are denoted as SG = {SGi, i = 1 : K}. If subgraph

(a) (b) (c) (d)

Fig. 10. (a)Signboard. (b)The graph model for signboard (a). (c)Signboard. (d)The
graph model for signboard (c).
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Fig. 11. Samples of testing data

SG1 is a subgraph of subgraph SG2, SG1 will be removed from SG. For ex-
ample, {{⊗1

, Vj}, {
⊗1 −→ Vj}} will be removed, if {{⊗2

, Vj , Vi}, {
⊗2 −→

Vj ,
⊗2 −→ Vi}} exists.

3.4 Graph Matching

The remaining elements in SG will be matched against all template models. We
define that dummy nodes can be matched to each other without any cost. If SGi

is a subgraph of a template model, the match is successful. The final identity
of SGi is given by the model which has the maximum number of matches with
it. Finally, all subgraphs of the query image which share the same identity are
grouped together. This matching processing is able to handle both gathering
signboards and incomplete signboards.

3.5 Experiment Results

Our testing data comprises of 100 real scene images. Examples are shown in
Fig. 11. Many of them have elevation angles smaller than 20◦, leading to severe
perspective distortion.

In the experiment, we first use a simple yet effective color thresholding method
proposed in [3] to detect possible regions of signboards. A loose threshold is set
to avoid loss of signboards in this step. Overlapping regions are merged together
to form a larger region. Then we apply our recognition method introduced in
Section 3 on these regions. 203 regions are extracted in total, within which there
are 142 target signboards. Our method identifies 137 signboards, out of which
129 is correct, leading to recognition precision and recall at 94.16% and 90.84%.

4 Conclusion

In this paper, we proposed two strategies to apply a symbol recognition method
to recognize real scene signboards, namely holistic and dismantling/assembling
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strategies. We do recommend using holistic recognition for better performance, if
good detection and segmentation algorithms are available, because this increases
the distinctiveness of symbols. However, the dismantling/assembling strategy
will give more flexibility. For example, speed limit signs have the same format:
a circle with a number in it, representing the speed limit. With different num-
bers, the sign may have many different variants. In the dismantling/assembling
strategy, all these variants can be represented by a circle and 10 digits.
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Edifici O, UAB, 08193 Bellaterra, Spain

{marcal,josep}@cvc.uab.cat
2 L3I, University of La Rochelle
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Abstract. In this paper we propose a new approach to recognize sym-
bols by the use of a concept lattice. We propose to build a concept lattice
in terms of graphical patterns. Each model symbol is decomposed in a set
of composing graphical patterns taken as primitives. Each one of these
primitives is described by boundary moment invariants. The obtained
concept lattice relates which symbolic patterns compose a given graphi-
cal symbol. A Hasse diagram is derived from the context and is used to
recognize symbols affected by noise. We present some preliminary results
over a variation of the dataset of symbols from the GREC 2005 symbol
recognition contest.

Keywords: Graphics Recognition, Symbol Classification, Concept Lat-
tices, Shape Descriptors.

1 Introduction

In order to tackle the problem of recognizing graphic symbols, a wide variety
of symbol descriptors have been proposed in the literature. In most cases the
applications have to cope with large corpora of graphical entities. In such condi-
tions, the final performance of the systems not only depends on the description
technique but also on which kind of data structure is used to provide efficient
access and organize the feature descriptors.

In other cases, data structures are not used to provide efficient access to
the data but also convey themselves some kind of information. In the field of
Graphics Recognition the most clear example of such structures is the use of
graphs, which have been applied over the years in structural pattern recognition
problems. As other examples of data structures which have also been used in
the symbol recognition domain due to its inherent codification of information
we can cite for instance trees, dendrograms, or concept lattices.

Concept lattices are used as knowledge representation and its application to
the symbol recognition domain was first proposed by Bertet and Ogier in [1]. The
followed symbol recognition scheme by using concept lattices is to first build a

J.-M. Ogier, W. Liu, and J. Lladós (Eds.): GREC 2009, LNCS 6020, pp. 187–198, 2010.
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binary table where the symbols correspond to the rows of the table and features
from the descriptor vector correspond to the columns. A boolean value in a given
cell indicates whether if a given symbol has a certain feature. From this table
a Hasse diagram is derived and the classification of symbols is done in terms
of traversal of this diagram. Guillas et al. presented in [5] a symbol recognition
approach using concept lattices of pixel-based descriptors, whereas Coustaty et
al. proposed in [3] the use of a structural description technique as features.

In this paper we propose a new approach to recognize symbols by the use of a
concept lattice. Instead of using a numeric values arising from the feature vector,
we propose to build the lattice in terms of symbolic patterns. Each symbol we
want to recognize is represented by a set of composing primitives. Each one
of these primitives is described by a well-known shape descriptor. The concept
lattice relates which primitives compose a given graphical symbol. The obtained
concept lattice from the context is then used to recognize symbols affected by
noise. We present some preliminary results over a variation of the dataset of
symbols from the GREC 2005 Symbol Recognition Contest.

The remainder of this paper is structured as follows: the next section presents
the followed steps to extract the primitives from the graphical symbols and
how they are described. In section 3, we detail how the concept lattice is build
from the set of model symbols and the sets of primitives. Section 4 presents
the experimental setup by using a large dataset of distorted graphical symbols.
Finally, the conclusions and future research lines can be found in Section 6.

2 Primitive Extraction and Symbol Description

Let us detail in this section how a graphical symbol is decomposed in a set of
primitives representing simple graphical patterns, and how these primitives are
described by the use of the well-known boundary moment invariants.

2.1 Extracting Primitives from Symbols

Our research work is mainly focused on the management of graphical data ap-
pearing in line-drawing images. Since these documents are mainly composed by
lines, we choose to work with a vectorial representation of the symbols rather
than at pixel level. In order to convert the symbol images to the vector domain,
we use the raster-to-vector process proposed by Rosin and West in [9]. Instead
of polygonally approximate the skeleton of the symbols, in our method, we ap-
proximate the contour of the closed loops conforming a symbol and its external
contour in order to tackle with symbols which do not contain any loop at all.
However, line segments are not suitable to be used as primitives due to its insta-
bility in terms of artifacts, fragmentation, errors in junctions, etc. A higher level
entity has to be used as primitive. Adjacent vectors are merged together into a
polyline instance. These polylines represent the graphical patterns conforming a
given graphical symbol.
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Fig. 1. Symbol representation in terms of a polygonal approximation of the contours
of closed regions

Formally, let p = {s1...sn} be a polyline consisting of n segments si. A symbol
is represented in terms of its polylines representing loops and denoted as S =
{p1...pm}. We can appreciate in Fig. 1 how the different parts of a symbol are
detached making the regions meaningful primitives. Let us review in the next
section how can we coarsely describe these primitives by the use of boundary
moment invariants.

2.2 Primitive Description by Boundary Moment Invariants

The central (p + q)th order moment for a digital image I(x, y) is expressed by

μpq =
∑

x

∑
y

(x − x̄)p(y − ȳ)qI(x, y) (1)

The use of the centroid c = (x̄, ȳ) allows to be invariant to translation. The
geometric moments can also be computed among the contour of the object as
introduced by Chen in [2] and by Sardana et al. in [10] by using eq. 1 only for the
pixels of the boundary of the object. A normalization by the object perimeter is
used to achieve invariance to scale by using the following equation:

ηpq =
μpq

μγ
00

where γ = p + q + 1 (2)

By sampling the polygonal approximation we can use the boundary moments as
geometric descriptors of the primitives. In order to obtain invariance to rotation
we use the set of seven functions proposed by Hu in [6] involving moments up
to third order.

φ1 = η20 + η02
φ2 = (η20 − η02)2 + (2η11)2

φ3 = (η30 − 3η12)2 + (3η21 − η03)2

φ4 = (η30 + η12)2 + (η21 + η03)2

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]+
(3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]

φ6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2] + 4η11(η30 + η12)(η21 + η03)
φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]−

(η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]

(3)
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Moment invariants can be normalized to get the different invariants into simi-
lar numerical ranges. Hupkens and de Clippeleir proposed in [7] the following
normalization of invariants to achieve a better robustness to noise.

φ′
1 = φ1, φ′

4 = φ4 / φ3
1,

φ′
2 = φ2 / φ2

1, φ′
5 = φ5 / φ6

1,
φ′

3 = φ3 / φ3
1, φ′

6 = φ6 / φ4
1,

φ′
7 = φ7 / φ6

1

(4)

Formally, each primitive pi of a symbol S is described by a seven-dimensional
feature vector

fi = [φ′
1, φ

′
2, φ

′
3, φ

′
4, φ

′
5, φ

′
6, φ

′
7]

arising from the boundary moment invariant descriptors. The description space
is quantized to transform this continuous set of values into a discrete set of
symbolic graphical patterns. Let us detail in the next section how the concept
lattice is build from the set of model symbols and the corresponding sets of
primitives.

3 Concept Lattice of Graphical Patterns

Let us begin by reviewing the mathematical foundation of the concept lattices.
We then focus on its application to the particular problem of symbol recognition
by the traversal of the concept lattice.

3.1 Foundations of the Concept Lattice

We formally define a concept lattice by the formal concept analysis theory [4].
A concept lattice is a representation of a formal context C = (G, M, R) where
G is a set of objects and M is a set of attributes. R is a relation between these
two sets. The fact that a certain object o has the attribute a is denoted as oRa.

From an object set O ⊆ G we define as f(O) the set of attributes in relation
R with the objects from O.

f(O) = {a ∈ M | oRa ∀o ∈ O} (5)

We analogously define g(A) as being the set of objects in relation with the
attributes from a set A ⊆ M .

g(A) = {o ∈ G | oRa ∀a ∈ A} (6)

A formal concept for the context C is defined as a pair of objects and attributes
(O, A) in relation according to R. The objects O ⊆ G and the attributes A ⊆ M
must verify that f(O) = A and g(A) = O. We denote as β(C) all the concepts
of the context C.
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Formally, a concept lattice is defined as the set of concepts ordered by the
order relation1 ≤ defined for two concepts (O1, A1) and (O2, A2), as:

(O1, A1) ≤ (O2, A2) ⇐⇒ O1 ⊆ O2 (7)

the set of concepts and the order relation form the concept lattice (β(C),≤) of
the context C = (G, M, R).

By defining a cover relation ≺ as:

(O1, A1) ≺ (O2, A2) ⇐⇒
{

(O1, A1) < (O2, A2)
�(O3, A3) ∈ β(C) | (O1, A1) < (O3, A3) < (O2, A2)

(8)
the Hasse diagram (β(C),≺) of a concept lattice (β(C),≤) is obtained.

A context may be seen as a table, where the objects correspond to the rows
of the table and the attributes correspond to the columns. A boolean value in
cell (o, a) indicates whether if a given object o has the attribute a.

Let us see in the next section how the concept lattices can be applied to the
symbol recognition problem.

3.2 On the Use of Concept Lattices for Symbol Description

Concept lattices are used as knowledge representation and its application to the
symbol recognition domain was first proposed by Bertet and Ogier in [1]. A clas-
sical symbol recognition scheme can define a context C where G corresponds
to the set of graphical symbols we want to recognize and M corresponds to a
set of attributes arising from the symbol descriptors. Guillas et al. presented in
[5] a symbol recognition approach using concept lattices of pixel-based descrip-
tors, whereas Coustaty et al. proposed in [3] the use of a structural description
technique to define the context C.

In all these previous approaches, graphical symbols are represented by a nu-
merical descriptor. Each value of this feature vector is discretized in a number of
intervals following a cutting criterion. Given a cutting value dividing a feature
in two intervals, each model symbol has a membership relation with one of the
intervals, that enables to differentiate the two subsets of symbols. The process
of cutting the description space in intervals is repeated until each class can be
distinguished. A concept lattice is build from the binary relationship between in-
tervals and symbol families. When a symbol has to be recognized its description
vector is also cut into intervals and the traversal of the Hasse diagram results in
the class where the symbol belongs to.

However, these approaches may be very sensitive to noise, occlusions or even
non-perfect symbol segmentations. If a single value of the feature vector is as-
signed to an incorrect interval, then the symbol can not be correctly recognized.
In this paper we propose to describe symbols by graphical patterns taken as prim-
itives and to build a concept lattice representing that a symbol family contain
1 An order relation is a reflexive, antisymmetric and transitive binary relation.
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Objects Attributes

composite even odd prime square
c e o p s

1 1 1
2 1 1
3 1 1
4 1 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1 1
10 1 1

(a) Context C = (G, M, R)

(b) Hasse diagram

Fig. 2. A concept lattice represented by a Hasse diagram for integers from 1 to 10 and
several number attributes

or not a given simple shape. We can see an example of the proposed approach in
Fig. 3. From the model symbols, we construct a set of attributes being graphical
patterns. This set of attributes is constructed by clustering by similarity the
space formed by all the feature vectors fi describing the graphical primitives pi

composing the symbols in the database. The context C defines then a relation-
ship between symbol classes and composing primitives. Let us see in the next
section how we can use this context and the Hasse diagram derived from the
concept lattice to recognize distorted symbols.
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Fig. 3. Intuitive idea of the proposed approach

3.3 Traversing the Hasse Diagram for Symbol Recognition

Given a query symbol Sq and its corresponding feature vectors f q
i describ-

ing each of the primitives pq
i which compose the symbol, the Hasse diagram

is traversed in order to recognize the query symbol. Starting from the top-
most concept of the Hasse diagram, all the concepts of the poset containing
a given set of attributes (primitives) of the query symbol are visited. A vot-
ing scheme accumulates evidences of the hypothetic symbols which may be
the query symbol. These hypothetic symbols are the ones found in each poset
concept.

Let us see the example in Fig 4. A noisy instance of a symbol from the family
joystick has been taken as query symbol to recognize. The square and the circle
primitives can be correctly identified despite the noise, however, the rectangle
is not correctly recognized. When traversing the Hasse diagram, at each poset
concept, we accumulate evidences of the plausible symbols. At the end, the
symbol family accumulating more votes is taken as the class where the symbol
belongs to.
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Fig. 4. Traversing the Hasse diagram for symbol recognition

In order to recognize symbols having different number of primitives a nor-
malization of the voting space is done according to the theoretical number of
votes which a given symbol should have obtained. A symbol having m primitives
should receive 2m − 1 votes if all its primitives have been correctly identified.
Let us see in the next section the obtained experimental results.

4 Experimental Results

We present in this section the experimental results for a symbol recognition
problem. Let us first detail the symbol dataset we use and then present the
obtained results.

4.1 Symbol Dataset

In order to carry out our experiments we have build a database of symbols in
vectorial format with vectorial distortions. We have used all the 150 symbols
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of the original GREC2005 symbol database [11] as models. In order to gener-
ate realistic vectorial deformations, we first applied a degradation model to the
bitmap images, and then applied a raster-to-vector process to these degraded
images.

The bitmap images are degraded using the method presented by Kanungo et
al. in [8] to simulate the noise introduced by the scanning process. Three different
parameter configurations are used to obtain three different degradation levels.
Some simple morphological operations are applied to these degraded images to
get rid of the background noise. A connected component analysis is applied to
label the closed regions and to extract the internal and external contours com-
posing a symbol. These distorted contours are then polygonally approximated
by using the Rosin and West algorithm introduced in [9]. In this dataset, the
graphical symbols are composed by several polylines each one composed by a set
of adjacent segments. The number of polylines which composes a symbol is con-
stant for a given class, but the number of segments of these polylines is affected
by the distortion model and varies from an instance to another. Fig. 5 shows an
example of this distortion as well as some complementary characteristics of this
dataset.2

(a) Bitmap model. (b) Degraded symbol
with Kanungo noise
(level 2 of 3).

(c) Distorted symbol.

Property Value

Number of classes 150
Total number of elements 45,000 (300 elements/class)
Max. number of polylines in a symbol 16
Min. number of polylines in a symbol 1
Mean number of polylines in a symbol 3.9
Max. number of segments in a symbol 264
Min. number of segments in a symbol 11
Mean number of segments in a symbol 73.7

(d) Details on the GREC-POLY database.

Fig. 5. Example and characteristics for the GREC-POLY database

2 The vectorial symbol dataset is public available and can be downloaded through the
following website http://www.cvc.uab.cat/∼marcal/GREC-POLY/
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4.2 Evaluation

We present in Table 1 the obtained recognition results for the whole recognition
experiment. Each one of the 45,000 degraded symbols is classified into the most
likely symbol class depending on the value of the votes. However, we show in Ta-
ble 1 the obtained recognition rates when considering just the topmost element,
the two highest classes or the first three classes.

As we can appreciate, the noise introduced by the lowest distortion level is
quite well tolerated. However, the deformation of the medium and higher level
really impairs the overall performance of the method. Nevertheless, the box plot
shown in Fig. 6, indicates that the performance is also highly dependent on the
symbol design. Even in the highest level of distortion, the upper quartile attains
good recognition rates whereas in the lowest level of distortion some symbol
designs are badly recognized provoking some outliers in the box plot.

Table 1. Recognition results

Considered Results Recognition rates(%)

Distortion levels
1 (low) 2 (medium) 3 (high)

top 1 78.93 64.61 53.92
top 2 80.41 66.03 55.24
top 3 80.58 66.13 55.38

Fig. 6. Box plot of the recognition rates depending on the distortion levels
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5 Conclusions and Future Work

In this paper we have proposed a new approach to recognize symbols by the use of
a concept lattice of graphical patterns. Each model symbol has been decomposed
in a set of graphical patterns taken as primitives. Each one of these primitives has
been described by boundary moment invariants. The obtained concept lattice
relates which symbolic patterns compose a given graphical symbol. The concept
lattice was then used to recognize symbols affected by noise. We have presented
some preliminary results over a variation of the dataset of symbols from the
GREC 2005 symbol recognition contest.

Despite the simplicity of the used descriptor, the obtained results are encour-
aging. The use of concept lattices as knowledge representation and its combi-
nation with voting approaches accumulating evidences to validate symbol class
hypotheses seems a promising approach. The main novelty of this paper is the
use of concept lattices from a symbolic set of attributes instead of numeric ones
used in the previous approaches. The use of symbolic description of graphical
symbols has been proven to be a powerful tool. We believe that this research
line has to be further studied since there is still room for improvements.

The remaining challenge is to try to apply such kind of approaches to recognize
non-segmented graphical symbols which may appear within its real context.
The combined use of the knowledge representation given by the concept lattices
and some spatial coherence rules may be envisaged in order to tackle with the
problem of recognizing graphical symbols appearing in complete documents.
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Abstract. Interpretation of graphical document images is a challenging
task as it requires proper understanding of text/graphics symbols present
in such documents. Difficulties arise in graphical document recognition
when text and symbol overlapped/touched. Intersection of text and sym-
bols with graphical lines and curves occur frequently in graphical docu-
ments and hence separation of such symbols is very difficult.

Several pattern recognition and classification techniques exist to rec-
ognize isolated text/symbol. But, the touching/overlapping text and
symbol recognition has not yet been dealt successfully. An interesting
technique, Scale Invariant Feature Transform (SIFT), originally devised
for object recognition can take care of overlapping problems. Even if
SIFT features have emerged as a very powerful object descriptors, their
employment in graphical documents context has not been investigated
much. In this paper we present the adaptation of the SIFT approach in
the context of text character localization (spotting) in graphical docu-
ments. We evaluate the applicability of this technique in such documents
and discuss the scope of improvement by combining some state-of-the-art
approaches.

1 Introduction

With the rapid progress of research in document image analysis and document
image understanding many applications are coming up to manage the paper
documents in electronic form to facilitates indexing, viewing, extracting the in-
tended portions, etc. These applications include documents that to be digitized
and stored in a database.

Due to the emergence of Geographical Information Systems (GIS), map acqui-
sition and recognition have become a pursued topics, both by the industry and
the academy. The interpretation of graphical documents does not only require
the recognition of graphical parts but the detection and recognition of multi-
oriented text. The problem for detection and recognition of such text characters
is many-folded. Text/symbols many times touch/overlap with long graphical
lines. Sometimes, the text lines are curvi-linear to annotate graphical objects.
Thus the recognition of such document is more difficult due to the usage of
multi-oriented and multi-scale environment.

J.-M. Ogier, W. Liu, and J. Lladós (Eds.): GREC 2009, LNCS 6020, pp. 199–211, 2010.
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Fig. 1. Locations of isolated (bounded by blue box) and touching (bounded by red
box) character (‘R’) are shown in a part of graphical image

Separation of text/graphics in document image is one of the fundamental aims
in graphics recognition. It requires proper discrimination of text/graphics [1], [2],
[3]. Here, the aim is to segment the document into two layers: a layer assumed
to contain text and symbols, and the other one containing the rest of graphical
objects representing street, river, border of the regions, etc. The problem has
received a great deal of attention in the literature because of the different pro-
cessing approach of text and graphics. At the component level the problem is not
too intensed. The spatial distribution of the components and their sizes can be
measured in a number of ways, and fairly reliable classification can be obtained.
Difficulties arise however, when either there is text and symbol overlapped in the
graphics components, or text and symbol touched with graphics. See Fig.1, where
some characters are touched/overlapped with graphical lines, and segmentation
of such documents is very difficult. Text/Symbol identification in complex docu-
ment is done in two ways. Majority of the methods use segmentation approach of
these text/symbols and then recognize them. On the other hand, a few methods
work on recognizing the symbols before approaching segmentation. There exists
many pieces of published work on text/graphics separation. Algorithm due to
Fletcher and Kasturi [2] uses simple heuristics based on the characteristics of
text characters. The method is insensitive in text font style, size and orienta-
tion. One of the assumptions was that the text characters do not touch with
graphics or other characters and each text character forms an isolated compo-
nent. Directional mathematical morphology approach has been used by Luo et
al. [4] for separation of character strings from maps. The idea is to separate
large linear segments by directional morphology and histogram analysis of these
segments. Large segments are considered as part of graphics; effectively leaving
small text character segments. Tan et al. [5] illustrates a system using Pyramid
structure. Multi-resolution representations of such a pyramid structure help to
select different regions for segmentation. Cao and Tan [1] proposed a method
of detecting and extracting text characters that are touched to graphics. It is
based on the interpretation of intersection of lines in the overlapped region on
the vectorized image of text and graphics. A consolidated method, proposed
by Tombre et al. [3] used connected components analysis to make it stable for
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graphics-rich documents. Although there exist many research work [1], [2], [3],
the separation of text and graphics when text and graphics portion intersects
has not yet been dealt with successfully because of the complexity of the prob-
lem. The shape of non-analytic curves found from text character is difficult to
analyze where background noise or overlapping/touching of graphical lines exist.

Recently, the Scale Invariant Feature Transform (SIFT) [6] has emerged as a
cut edge methodology in general object recognition as well as for other machine
vision applications [7]. One of the interesting features of the SIFT approach is the
capability to capture the main features of an object by means of local patterns
extracted from a scale-space decomposition of the image. The main advantage of
SIFT is that, this approach works in invariant to image scale, rotation, addition
of noise/occlusion. With the wide applicability and potential of this technique,
for the classification of 2D objects, recently, this approach is also investigated in
graphical symbol recognition [8].

In this paper we present the evaluation of the SIFT approach in the context of
text character spotting in graphical documents which deals with localization and
detection of multiple instances of text character. It is applied to take care of seg-
mentation of text/symbol components from graphical component. We evaluate
the potentiality and applicability of this technique in such documents and discuss
the scope of improvement with combination of state-of-the-art approaches.

The rest of the paper is organized as follows. The system overview is discussed
in Section 2. In Section 3, we explain briefly the SIFT approach for object recog-
nition. We describe the isolated component extraction and recognition procedure
in Section 4. In Section 5, we present the adaptation of SIFT approach to detect
text characters in graphical documents. The experimental results are demon-
strated in Section 6. Finally conclusion is given in Section 7.

2 System Overview

Graphical documents normally contain text characters printed in different fonts.
Sometimes, in a single document more than one font exist to describe the entities
used. Also, the shapes of text images are different from one font to another and
they do not comprise analytical curves always. Thus, when these characters touch
with graphical lines, it is not easy to segment them.

To take care of it, our system works in a combination of bottom-up and top-
down approaches to separate and locate text characters. We extract the knowl-
edge from bottom-up approach and use them in top-bottom approach. First, the
isolated characters are extracted from graphical document. Next, these charac-
ters are labelled using a rotation invariant character recognition system. Given a
query text character, the system learns the different fonts of that character from
these recognized (labelled) character sets. Thus, the different shapes of each char-
acter are learnt dynamically using this bottom-up approach. Next these different
shapes of the character are used as query images to search other instances of
characters of similar shapes in touching/overlapped graphical regions. In Fig.1,
we show some isolated characters (bounded by blue box). The isolated characters
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Fig. 2. Touching Text Character Spotting System

are learnt online to have the knowledge of shape of the query character. Next,
other similar characters which are touching (bounded by red box in Fig.1) are
searched using this knowledge. Thus, if a character is touched with graphical
lines, a top-bottom approach is used to locate them.

The flow chart of the proposed scheme is shown in Fig.2. We use a connected
component analysis to separate isolated characters from graphical components.
These characters are recognized using a Support Vector Machine (SVM) clas-
sifier. The SVM is trained before to build the character shape models from
corresponding feature of different text characters of the database. Finally, the
recognized models are queried using SIFT to locate text character in touch-
ing/overlapping zones.

3 SIFT Approach for Object Recognition

The SIFT approach [6] to object recognition is a combination of selecting “local-
features” and their “matching” method. SIFT features are invariant to image
scale and rotation, and are demonstrated to provide robust matching in both
the spatial and frequency domains, reducing the probability of disruption by oc-
clusion, clutter, or noise. In addition, the features are highly distinctive, which
allows a single feature to be correctly matched against a large database of fea-
tures. SIFT feature usage for object recognition involves two steps - (1) SIFT
feature extraction and (2) Object recognition.

3.1 Feature Extraction

Following are the major stages of computation used to generate the set of image
features.
Scale space extrema detection: Distinctive points are selected by identifying max-
ima/minima of the document image after applying the image with a
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Difference-Of-Gaussian (DOG) filter. This is done by convolving the image with
Gaussian filters at different scales and taking differences of the resultant images.
Key-point Localization: At each candidate location, a detailed model is fit to
determine location and scale. Keypoints are selected based on measures of their
stability. Once a keypoint candidate has been found by comparing a pixel to
its neighbors, a detailed step is performed using the neighbor data for location,
scale, and ratio of principal curvatures.
Orientation assignment: One or more orientations are assigned to each key-point
based on local image gradient directions. This method is used to incorporate
rotation invariance to the key-point. To determine a key-point orientation, a
gradient orientation histogram is computed in the neighborhood of the key-point.
Generation of key-point descriptor: The descriptor is meant to encode the key-
point and information about the neighboring points. The information is encoded
based on the local image gradients at these points. Once a keypoint orientation
has been selected, the feature descriptor is computed as a set of orientation
histograms on 4 × 4 pixel neighborhoods. Each histogram contains 8 bins. Thus
the descriptor obtained is a 128 (4 × 4 × 8) element descriptor.

3.2 Object Recognition

Recognizing an object using SIFT can be performed using the following steps.
Key-point matching: Key-point matching is done by matching the key-point
descriptors from the test image with those of a template query image, using a
nearest neighbor approach. The nearest neighbor match is compared with the
next (second nearest) closest one to ensure that a match is only accepted if
it is distinctive enough. Hough Transform: The Generalized Hough Transform
(GHT ) [9] is used to cluster key-point matches that are consistent with a single
object hypothesis. Each key-point is characterized by a 2D location, a scale
and an orientation. Thus a 4 dimensional hough space is used for this purpose.
Finally, a set of potential hypothesis of the object in the test image is obtained
using HT.

4 Text Character Extraction and Labeling

Here, we present the approach to extract the text character images automatically.
It works in 3 stages namely isolated text character extraction, labeling these text
characters and finally selecting shape/font of each text character label.

4.1 Text Component Extraction Using CC Analysis

In map, text and graphics appear simultaneously. We used the connected com-
ponent analysis [3] for initial segmentation of isolated text components. The
information using geometrical and statistical features [2] of the connected com-
ponent perform well to group a component into one between text or graphics
layer. For each connected component, we use a minimum enclosing bounding
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(a) (b)

Fig. 3. (a)Long graphical regions and (b) text regions of Fig.1

box which describes the height and width of the character shape. These rotated
bounding boxes are better adjusted to the character components in rotation in-
variant environment. The components are filtered to be as a member of a text
component based on its attributes (bounding box, pixel density, ratio of dimen-
sions, area). A histogram on the size of components is analyzed for this purpose.
By a correct threshold selection obtained dynamically from the histogram, the
large graphical components are discarded, leaving the smaller graphics and text
components. In our experiment, the threshold T is considered as,

T = n × max(Amp, Aavg) (1)

where, Amp and Aavg are frequency of most populated area and average area
respectively. The value of n was set to 3 from the experiment [10].

4.2 Text Character Modeling

We generate universal character model for each character shapes using training
of data which are extracted from different graphical documents. The isolated
characters are recognized using the change of angle of characters’ contour pixels
configuration. We describe the feature extraction and character model generation
method as follows.

Feature Extraction: We proposed a zone-based signature for character recog-
nition in our earlier paper [11]. Circular ring and convex hull ring based concept
have been used to divide a character into several zones to compute features. To
make the system rotation invariant, the features are mainly based on angular
information of the external and internal contour pixels of the characters. Given
a sequence of contour pixels, the change of angle of each pixel is calculated from
the neighbour pixels. The angles obtained from all the contour pixels of a char-
acter are grouped into 8 bins corresponding to eight angular intervals of 45◦. For
a character, frequency of the angles of 8 bins will be similar even if the character
is rotated at any angle in any direction.

Circular and convex hull rings are constructed on a character as follows. A set
of circular rings is defined as the concentric circles considering their center as the
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center of minimum enclosing circle (MEC) of the character and the minimum
enclosing circle is the outer ring of the set. Similarly, convex hull rings are also
constructed from the convex hull shape of the character.

To get more local feature, we compute angular information (slope) of the
contour pixels with respect to the center of the MEC. We grouped the contour
pixels of a character into 8 bins based on their angular information with respect
to the neighbor pixels. Now, angular information (slope) with respect to the
centre of MEC of the bin-wise contour pixels is computed. The angle obtained
from all the contour pixels of a bin are grouped into 8 sets corresponding to
8 angular information. Thus, for 8 bins of contour pixels, we have 8×8 = 64
dimensional slope features.

Finally, considering 7 circular rings and 7 convex hull rings, we have 56 (8×7)
feature from convex hull ring, 56 (8×7) features from circular ring and 64 (8×8)
features from angular information with respect to center of MEC. As a result,
we have 176 (56+56+64) dimensional feature vector for the classification. This
feature has been selected based on experiment. Normalization of the feature is
done to obtain scale invariance [11].

Character Classification: For recognition, we feed the features in a Support
Vector Machine (SV M) classifier. SVM classifier has been used to build the
character shape model from corresponding feature of our training data. Given
a connected component, we compute the recognition confidence to obtain the
corresponding class and use the label to describe the component as the text
character.

The SVM is defined for two-class problem and it looks for the optimal hyper-
plane which maximizes the distance, the margin, between the nearest examples
of both classes, named support vectors (SVs). Given a training database of M
data: xm‖m=1,. . .,M, the linear SVM classifier is then defined as:

f(x) =
∑

j

αjxj · x + b

Where, xj is the set of support vectors and the parameters αj and b have been
determined by solving a quadratic problem [12]. The linear SVM can be extended
to a non-linear classifier by replacing the inner product between the input vector
x and the SVs xj , to a kernel function k defined as:

k(x, y) = φ(x) · φ(y)

This kernel function should satisfy the Mercer’s Condition [12]. Some examples
of kernel functions are polynomial kernels (x ·y)p and Gaussian kernels k(x, y) =
exp(− ‖x−y‖2

σ2 ). Gaussian kernel has been chosen in our experiments to recognize
multi-oriented text character. Details of SVM can be found in [12].

Identification of Text Components: Both English uppercase and lowercase
alpha-numeric characters were considered for our experiment, so we should have
62 classes (26 for uppercase, 26 for lowercase and 10 for digit). But because of
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Fig. 4. A part of Fig.3(b) with their character label shown in Red color

shape similarity due to orientation of some of the characters (‘d’, ‘p’; ‘b’, ‘q’;
etc) are grouped together.

The isolated components which were included in text components group using
CC analysis as described in Section 4.1 are recognized and labelled as text char-
acter using SVM. For each component, we compute the recognition confidence
for all character class models using our SVM classification process and rank the
confidence scores in descending order. If we recognize a component with a very
high accuracy, we accept it as a good-shaped character. If the difference between
top two recognition scores of a component is high, it is also considered as good-
shaped character. The score difference is selected based on experimental result.
In Fig.4, we show a portion of the text layer of Fig.3(b) containing isolated char-
acters and their recognition label. Thus, given a character ascii value, we find
different font styles used in the document from these isolated character shapes.
It is to be noticed that, the character ‘n’ is identified as ‘u’ because of its shape
similarity nature in rotation invariant environment. Thus, given an ascii char-
acter to search in the document, we find all the shapes used in that document
corresponding to the ascii value using this appraoch. The rest of the components
are not considered as isolated components. Sometimes due to background noise
the recognition confidence is low. Also, due to noise, two or three characters may
touch. These touching characters may be filtered in text character layer using
CC analysis due to their small size. Using the recognition confidence we reject
these components and add them in graphical layer of the document. Next, the
good shapes of isolated characters found in the document are clustered according
to different font style which may present in the document. This is explained as
follows.

4.3 Font/Style Adaptability

Graphical documents may contain text characters of different fonts (for e.g. “Ar-
ial”, “Times New Roman”, etc.) or style (normal, italics) to annotate and give
importance to the location names present in the document. To learn online the
font used in the document, different fonts are trained in SVM before. It is to
recognize variation of style or font of characters. Thus, for each alpha-numeric
text character value, the system finds component shapes according to their font
style. We may use all the components to search other instances present in the
mixed graphics layer. We reduce the time complexity by finding unique repre-
sentative shape for each font and style of each character. To select the unique
model shape of each font style, a clustering algorithm is employed. The differ-
ent classes will represent different font shapes of a character. The representative
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text character images are used as template (query image) to find out other text
character images in the document which were not extracted or recognize well
due to touching or noise.

5 Locating Similar Text Characters Using SIFT

We use character shape model as query model to locate overlapped/touching
characters from graphical documents. SIFT is used to detect and describe the
local features in this context. Before proceeding directly to locate text characters,
we reduce the search regions of probable text characters in the document using
skeleton analysis.

5.1 Potential Text Regions in Graphical Layer

According to text and graphics feature, it is assumed that the length of segments
of the characters are smaller compared to that of graphics. When a line touches
a symbol or text of blob like shape (dense pixels), the arrangement of segments
in thinned (skeleton) image is not easy always to separate text components
perfectly. It needs post-processing, which is a difficult task. Here, we use the
segment length of skeleton for separating the long lines. The segments of skeleton
are decomposed at the intersection point of the skeleton. Intersection points refer
to those points where more than one segment intersect in skeleton image. Next,
the length of these segments are computed. Based on the bounding box (BB)
information of a segment, the length of a segment (Ls) is calculated as:

Ls = Max(HeightBB, WidthBB) (2)

The skeleton segments having length Ls larger than T (T is computed from Eq.1)
are chosen for elimination. The remaining portion after removal of long segments
are considered for potential regions of touching text characters according to their
feature. For example, Fig.3(a) demonstrates an initial mixed component with
touching characters. The components after removing long graphical segments
are shown in Fig.5.

Fig. 5. Potential Regions of Text Characters
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(a) (b)

Fig. 6. SIFT features of text character. Circle denotes the zone of corresponding de-
scriptor.

5.2 Text Character Spotting

For each text font model we find the local SIFT features. As explained in Sec-
tion 3, each feature is composed by four parts: the locus (location in which
the feature has been found), the scale, the orientation and the descriptor. The
descriptor is a vector of 128 dimension. Some examples of the keypoints using
SIFT approach to two different text characters are shown in Fig.6. Here, in the
figure the line denotes the direction of dominant direction. The figure explains
the different keypoint-feature descriptors corresponding to different text charac-
ters. SIFT is also applied in the document of graphical layer containing touching
characters.

If we search for all text character using the approach described in Section 4
only, we find many false alarms due to curvature nature of graphical lines. Since,
we estimated before the size of character using connected components analysis,
different size criteria can be made to reduce more false positives.

As text character images are very small, they produce a set of SIFT keypoint
descriptors, out of which many of them are for corner points. These corner points
are not always distinctive to produce the location of the character in the graph-
ical document, specifically for map images. To reject the keypoint descriptors
which consist of only local corner point regions, a criteria is set to reject them.
This filtering is done by comparing the region of key-descriptor to the size of
query character shape. A size threshold is chosen for this purpose. The value of
threshold is selected as TK1 ≥ S/2, where S is the size of the character template.
Thus, only the keypoints which captures major part of the text character are
only accepted.

The graphical document also contain many corners due to its nature which
leads to have many false positive. We remove the SIFT keypoints whose size
are small or large. It is assumed that the size of text character will not be very
small. A size threshold TK2 is chosen to discard these small descriptors. The
value of TK2 is set to 6 from experimental result. Again, the maximum size
(T ) of the text components is computed in our earlier stage. This parameter
is used to restrict the size of keypoint which are found larger from graphical
document.

Finally, the local SIFT features of each text characters are matched with each
features to the character SIFT features. The corresponding matching locations
are detected as probable zones of text characters. See Fig.7, where we have shown
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Fig. 7. Matching result of SIFT features of text characters ‘R’ and ‘S’ in the document
image. Corresponding SIFT features are marked by different colors. Here, red color
indicates matching of character ‘R’ and blue color indicates matching of character ‘S’.

probable location of two specific characters ‘R’ and ‘S’ in the document. Here,
we have shown detection of two characters only. It is to be noticed that we have
located the characters ‘R’ and ‘S’ by our approach which were intersected by
curve lines.

6 Experimental Result

We have considered 10 different real geographical maps to test our method.
Images were digitized by a flatbed scanner at 300 DPI. They contain text char-
acters of different scale and orientation. Sometimes text characters are broken
into different components due to printing or noise issue. Graphical long lines are
touched/overlapped with text in many places. We show some qualitative exam-
ples in Fig.8 and Fig.9. In these image potions, the characters ‘g’, ‘E’ and ‘B’ are
touched with graphical lines. We have tested these images in two ways. Fig.8 is
the result of spotting of the character ‘g’ after removing all other isolated char-
acters. In Fig.9 the spotting is done without removing other isolated characters.
It is to be noticed that, here, we get many false alarms due to similar shape
characters (‘R’ due to ‘B’ and ‘T’ due to ‘E’).

From the experimental result, it is found that this approach works better to
take care of locating characters of arbitrary shape and orientation in graphical
documents. Also, it is observed that, it finds the locations of corresponding

Fig. 8. Character ‘g’ is localized after removing isolated characters
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(a) (b)

Fig. 9. Character ‘E’ and ‘B’ are localized in two different images. Here the spotting
is done without removing other isolated characters.

characters with some false positive which are taken care according to different
approaches we described earlier.

7 Conclusion

In this paper a combination of bottom-up and top-down approach has been in-
vestigated in the context of text character localization (spotting) in graphical
documents. We have adapted SIFT in this application to locate text charac-
ters which are touched/overlapped. As our text extraction system is based on
connected component analysis, when there is white noise in the text characters,
we miss such text characters using our algorithm. Here, SIFT is useful to give
us the probable location of character which are not extracted properly due to
white noise or overlapping with graphical lines. The local text character model
shapes are identified dynamically for each text character. Next, we used them to
locate the similar images in other areas of the graphical image. This enables us
to detect the text characters which are touched with graphical lines on-the-fly.
SIFT descriptor finds the possible locations of text characters. It is appreciable
that, using SIFT the other instances of text characters in different pose such as
scale and rotation are detected using character model.

As explained earlier, our system learns the character shapes online from the
isolated characters present in the document. Thus, if it does not find any isolated
chacters from the document, then we can not seach the isolated characters in
the rest of the document. Another problem is that, SVM is learnt using different
character shapes before in offline. If some shapes are not learnt properly, our
system may not recognize characters properly. Also, as SIFT features depends
only on local neighbor area, in graphical documents due to curvature nature
of graphical lines it generates many false positives. We have combined some
state-of-the-algorithm using size criterion to reduce the volume of false alarms.
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Abstract. This paper presents a method for graphical drop caps indexing. Drop 
caps are extracted from old books. Finding a method classifying them according 
to styles defined by the historian is of considerable interest. The developed me-
thod is a statistical approach, where all possible patterns included in a pixel 
mask are processed in order to extract indexes that characterize the image. Then 
these indexes are used to classify a query drop cap by searching its most similar 
drop caps in the indexed base. 

Keywords: Graphics Recognition, Graphics indexing, Zipf law, tf-idf, Drop 
caps, law mixture. 

1   Introduction 

Drop caps are specific graphics; they are neither images, nor writing but they are 
really both considering on the one hand the letter and on the other hand the back-
ground that is used to ornament the book. Several problems can be associated with 
them, such as recognition of the letter, analysis of the background scenery or analysis 
of the far background. For example the far background can be black and leaf can be 
drawn as background of the letter. The background contains as well as the letter font 
can be different according to the book manufacturer. It is of interest for the historians 
to find the identity, and the location of the manufacturer or the printing period of a 
document to better understand, that communication could be real in those days. In this 
paper, the far background analysis is the core of the study. The Historian of the CESR 
(Centre d'Etude Supérieur de la Renaissance in Tours ) have at their disposal large 
bases of drop caps and one of their aim is to index them. They want to analyse the 
drawings contained in the background, maybe flowers, leafs, or scenery involving 
small children. But they are also interested by the far background, which has been 
classified in four types. The simplest one is white; non ink contributes to this back-
ground. On the contrary others are black and the scenery has to be carved in the log of 
wood used for printing. Two other types are more sophisticated. One is spotted that is 
to say some dots are carved in the wood and the printed result is a black layer where 
small white dots appear. Finally the last one comprises many small parallel lines that 
build different textures giving the feeling of a real painting. Then one possible index 
can have four instances: white, black, spotted and hatched. The four styles are shown 
in Fig. 1. Drop caps have already been studied [3] from the style point of view using  
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Fig. 1. Drop caps styles 

some statistical local information. Here, the method relies on the same approach but 
instead of a global point of view we are paying more attention to local shapes for their 
own sake. 

Our goal is to make a first indexing of the drop caps according to the description of 
far background styles that we have just mentioned. Then we have to achieve four 
classes recognition system. It will be performed in a two-step process. First of all, 
some indexes are to be extracted from the image in order to build descriptors that 
characterize each image. Then, these indexes are used to compare drop caps. A simi-
larity measure has to be defined and we assume very similar images belong to the 
same style. After a learning phase, a drop cap image whose index is not yet known, is 
considered as a query image and compared to the most similar images contained in 
the reference database. 

In the next section will be presented the features we have made use of and in sec-
tion 3 we define a similarity measure inspired of the textual information retrieval. In 
section 4 some results are presented and discussed.    

2   Representation Space 

Before we can define some descriptor the representation space has to be chosen. 
Some references have to be highlighted, most significant for own purpose. In the first 
subsection we justify our choices based on the use in the field of text analysis. 

2.1   From Text to Image Modeling 

In this study we have been inspired by method used for text understanding. Texts are 
mad of a sequence of characters that are gathered in words of different lengths. In 
images the primary elements are pixels, they are not ordered but they are displayed in 
2D space. What the eye perceives are spots of neighboring pixels, these spots are 
assumed to have in the image a role similar to word in a text. To simplify the model 
we limit the spots to a fix number of pixels. How to choose the spot shape is a prob-
lem. Some possible shapes are shown in Fig. 2.  
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Fig. 2. Shape examples 

If considering an image as a set of horizantal pixel lines, shape (a) in Fig. 2 is the 
most natural. Similary when considering a set of vertical pixel lines, shape (b) in Fig.2 
is more appropriate. But images have more complex topology. Then shapes (c), (d) 
and (e) respect this 2D aspect. Shape (e) corresponds to the most commun definition 
of a neighbour in the field of discret image processing, the most isotropic neighbour. 
Indeed when reading, we are looking to the text with a privileged direction in the 
movement of the eye. The neighbourhood of a dot is longer on the horizantal direction 
rather than in the verticale one leading to shape (c). Finally an image is seen as a set 
of spots that are organised in the plane. 

Salton [5] space representation is not relying on the order of the text words but on-
ly on their frequencies, much information is lost but enough is left to index texts, we 
want to do the same in the case of images. 

Texts are always referring to a dictionary. In fact not all sequences of character 
have a meaning but only a rather small number of them. The number of words is the 
dimension of the text representation space. 

2.2   Set of Reference Patterns 

The drop caps images to be studied are grey level images with 256 grey levels. In our 
case words are any possible pattern contained in a shape as shown in Fig. 2. A shape 
is a mask of size nxm. Then the number of possible words, which are patterns, would 
be 256nxm.  

Then the representation space has a dimension equal to the number of possible pat-
terns. With shape (e) this would lead to more than 1021 different words. This is a far 
too large dictionary and information would be too much dispatched. Then the dictio-
nary has to be reduced. This can be done in two different ways: either the number of 
pixels in a mask or the number of grey levels characterizing the pixels can be reduced. 

In our case, drop caps images are graphics, thus they are fundamentally binary im-
ages. In fact, when studying closely the images, we can see three levels that can be 
described as black, grey and white. Thus, a quantization was applied on the original 
image to obtain a new 3 grey levels image. With 3 grey levels the number of possible 
patterns is reduced to 3 nxm. With shape (e) this would lead to 39 different patterns that 
is to say 19683 patterns, with 2x3 shape ((c) in Fig. 2) we obtain only 729 different 
patterns. This is more reasonable as the images we are studying, are rather small ones. 
The dimension of the representation space is 729. 
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2.3   Descriptors 

As in text representation an image is associated with a frequency vector. The frequen-
cies are computed while scanning the image with a 2x3 mask. The occurrence fre-
quency for each different pattern within the mask is computed.  

Another piece of information related to the frequency through zipf law [8] in text is 
the rank of each pattern when frequencies are sorted in a decreasing order. Then we 
have also computed this information for the 729 patterns.  

A drop caps image can be represented in two ways in a 729 dimension space.  

3   Similarity Measurement  

In order to take into account the property of the set of images we are studying, some 
new type of information is introduced. Let us consider each pattern in an image as a 
term in a document. Then the tf-idf model used in classical textual Information Re-
trieval [2,5] methods can be applied for comparison with ornamental letters contained 
in the database. 

The aim of using tf-idf (term frequency- inverse document frequency) is to reduce 
the importance of a pattern present in the image and in the same time present in all 
images. The tf-idf helps us to find the most relevant patterns that represent an image. 

Tf-idf [5,6] is the most common weighting method used to describe documents in 
the Vector Space Model, particularly in Information Retrieval problems. The term 
frequency component (tf ) of a term ti for a document dj  is calculated according to: ࢚࢐,࢏ࢌ ൌ  ࢐ሻ,࢒࢟ࢉ࢔ࢋ࢛ࢗࢋ࢘ࢌሺ࢞ࢇࡹ࢐,࢏࢟ࢉ࢔ࢋ࢛ࢗࢋ࢘ࢌ

In addition, idf (inverse document frequency) measures how infrequent a word is  
in the collection. This value is estimated using the whole training text collection at 
hand. Accordingly, if a word is very frequent in the text collection, it is not consi-
dered to be particularly representative of this document. The idf, is normally com-
puted as follows: ࢏ࢌࢊ࢏ ൌ  ࢏࢔ࡺ
where N is the total number of documents in the collection, and ni is the number of 
documents in which the term ti appears. 

In tf.idf weighting schemes, the component of the weight for term ti in a document 
dj at position is of the form is: ࢐,࢏ࢃ ൌ ࢌ࢚ כ  ࢌࢊ࢏

Thus, tf-idf is a scheme to weight each value according to the use of the feature in all 
the patterns. It is strongly based on the frequency use. 

To quantify the similarity between a document d and a query q, several measures 
of similarity are proposed. The most popular measures are shown in Table 1. 

Let us note:   |ࢊ| ൌ ∑ ୀ૚࢏࢔૛࢏ࢊ   and ࢊ. ࢗ ൌ ∑ ࢏ࢊ כ ୀ૚࢏࢔࢏ࢗ . 
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Table 1. Some similiraty measures 

Cosine Jaccard ࢓࢏ࡿሺࢊ, ሻࢗ ൌ .ࢊ .|ࢊ|ࢗ ,ࢊሺ࢓࢏ࡿ |ࢗ| ሻࢗ ൌ .ࢊ |ࢊ|ࢗ ൅ |ࢗ| െ .ࢊ  ࢗ

4   Experiments and Results 

Whereas our method is quite general, we are testing it on a specific problem presented 
at the beginning of the paper. The database we use contains 2670 drop caps. The dif-
ferent styles are not represented in an equal way and in table2; the contribution of 
each class in the database is indicated.This database is provided by the CESR. 

Table 2. Drop caps number for each style 

Spotted Hatched Black White Total 

258 674 258 1480 2670 

 
The simplest classifier, using a vector space model, is a Knn classifier. This avoids 

the difficulty of a learning phase specially when the number of training data is low. 
The efficiency of the descriptors we introduced is assessed on this database using the 
leave one out method. 

As we have introduced three descriptors (rank, frequency and tf-idf associated with 
frequency) several systems can be compared. 

The dimension of the representation space is quite high and their right distance to 
compare elements is difficult to choose. Nevertheless we have made use of the Eucli-
dian distance in the three cases. Moreover in the case of tf-idf of frequency we also 
introduced classical similarity measures and the distance associated with, by the for-
mula: ࢊሺࢊ, ሻࢗ ൌ ૚ െ ,ࢊሺ࢓࢏࢙  ሻࢗ

We tested two similarity measures, that are the cosine and Jaccard measures. 
One parameter has to be fixed in the knn approach. We have compared results us-

ing four values of k: 1, 3, 5 and 10.Table 3 resumes some results we obtained. 

Table 3. Recognition rate using each descriptor 

 Rank Frequency tf-idf 

K Euclidian Jaccard Cosine 

1 71.9 79.843 83 83.03 83.3 

3 73.7 80.7 82.84 82.58 84.31 

5 75.73 80.855 82.43 82.32 84.89 

10 77.27 79.67 81.57 82.13 83.7 
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We see the rank information gives lower results than the frequencies. This proves 
some information is lost when only rank is considered instead of frequency. Indeed it 
has been shown in [3] that distribution of patterns in an image, when drop caps are 
considered, cannot be modelled by a single zipf law but rather by a mixture of zipf 
laws. Then the rank and frequency are not equivalent. 

As expected introducing the tf-idf weighting scheme the result are even better, 
they have been improved by up to 4%. In this case the choice of the similarity meas-
ure has some significant influence on the recognition rate. The high dimension of our 
representation space may justify these better results. That reach 84.89% using k=5 
and the cosine similarity. 

Now lets us look at the results in more details. Table 4 shows the recognition rate 
for each style using pattern frequency and tf-idf weighting scheme.  

Table 4. Contribution of using tf-idf  

 Spotted Hatched Black White 
Frequency 60.85 81.3 43.58 90.61 

t-idf (Cosine) 75.58 79.38 72.375 91.22 

 
We can notice that the recognition rate increased for most of styles and especially 

for the Black style. This improvement shows the success of tf-idf model to find the 
most representative pattern of each style. The fewer examples we have in a class the 
more important is the improvement obtained by this approach. 

Furthermore we have investigated in the tf-idf model and looked for discriminat-
ing power of each feature. To do this we computed the Fisher score [7] associated 
with them. We show in Fig. 3 the score obtained on 729 frequency pattern consider-
ing two classes of drop caps the spotted and the hatched. The second graph of Fig. 3 
contains tf-idf weighting associated with 729 patterns.  

 

Fig. 3. Fisher score of frequency and tf-idf associated features 

We see Fisher score of frequency never exceeds 0.3. Whereas in the second case 
more than 12% have a discriminating power higher than 0.3. It is usually assumed [7] 
that features with discriminating power lower than 0.01 are not interesting in the rec-
ognition process. These are 24.5% of them in the frequency case and 17.8% in tf-idf 
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case. That is an increase of efficient features of 9%. The discriminating power mean 
moves from 0.06 to 0.12. 

Our results were compared to those obtained with another method, the Z-method; 
proposed in [4].This method uses seven features to classify the drop caps. These fea-
tures are based on the Zipf law [8]. Indeed the characteristics are factors built from 
the whole set of initial features. The first six features are shown in Fig.4.  

 

Fig. 4. Features of Z-method extracted using Zipf grapf 

Features S₁, S₂ and S₃ correspond to 3 slopes. B₁, B₂ and B₃ represent the abscissa 
of these three points. The seventh is the slope of the inverse Zipf graph's line. The 
results of this method are illustrated in the table 5; they show that when a too global 
approach is used as in [4] some discriminating information about images is lost. 

Table 5. Comparison with Z-method 

K tf-idf (cosine) Z-method 

1 83.3 74 

3 84.31 77.27 

5 84.89 77.95 

10 83.7 77.44 

5   Conclusion 

Drop caps are particular graphics containing several layers. In this paper, we have 
proposed a method to index drop caps according to the far background. Statistical 
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information extracted by scanning an image using a 2x3 mask helps us to define a set 
of descriptors that represents drop caps. Two descriptors that we have defined are 
Frequency pattern and its rank which are used with a Knn classifier to define our 
recognition system. We improved the recognition rate introducing a tf-idf weighting 
scheme. This model helps us to enhance the discrimination power of feature in our 
context. In our experiments we have shown that keeping all pattern information gives 
better results than factorizing information in seven features as in [4]. However, the 
space dimension is quite high, and other feature selection methods can be incorpo-
rated to define a new representation space. Other perspectives are to use other similar-
ity measures and to test our approach on other graphic databases such as the GREC 
one. 
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Abstract. The proceedings of many technical events in different areas of 
knowledge witness the history of the development of that area. LiveMemory is 
a user friendly tool developed to generate digital libraries of event proceedings. 
This paper describes the module designed to perform content recognition in 
LiveMemory.  

Keywords: Digital libraries, image indexing, content extraction. 

1   Introduction 

LiveMemory is a software platform designed to generate digital libraries from pro-
ceedings of technical events. Until today, only very few prestigious events have pro-
ceedings printed and widely distributed by international publishing houses. Thus, 
copies of the proceedings are restricted to those who attended the event. In this case, 
past proceedings are difficult to obtain and very often disappear; bringing gaps into 
the history of the evolution of events and even research areas. The digital version of 
proceedings, which started to appear at the end of the 1990’s, possibly made things 
even worse. Only conference attendees were able to obtain copies of the CDs of the 
proceedings. LiveMemory was used to generate a digital library released in a DVD 
containing the whole history of the 25 years of the proceedings of the Symposium of 
the Brazilian Telecommunications Society, the most relevant academic event in the 
area in Latin America. The problems faced in the generation of the SBrT digital li-
brary ranged from compensating paper aging effects, filtering back-to-front noise [5], 
correcting page orientation and skew during scanning, to image binarization and 
compression. LiveMemory merges together proceedings that were scanned and vol-
umes that were already in digital form. The SBrT'2008 digital library was organized 
per year of the event. 

This paper outlines the functionality of the LiveMemory platform in general and 
addresses the way it recognizes the contents of the pages, making possible general 
indexing of documents and better access to the information in the library. This  
module works by getting information from two different sources. The first one is the 
image of the pages of the "Table of Contents" of the volume. The second one is each 
paper page image. Besides those pages there are introductory pages such as the  
history of the event, the address of the volume editor, etc. There may also be track or 
session separation pages, remissive index, etc. Pages are segmented to find the block 
areas which correspond to the information and then transcribed via OCR. The  
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transcription of the blocks of the Table of Contents and headings of papers are cross 
analyzed to generate the entries of the navigation index (hyperlinks) in the digital 
library. It is important to remark that the volumes of SBrT varied widely in layout 
from one year to another, or even within the same volume, as most of those volumes 
were typewritten according to "loose" requirements stated that each year editor at a 
time there were no word processors. Even the page numbering systems adopted varied 
from one year to another. Some volumes are numbered with Indo-Arabic numerals 
throughout, some others use Roman numerals in introductory pages, there are vol-
umes that are split into "sessions" or "tracks" and each paper gets a numbering ac-
cording to its position in there. The title and page number segmentation process was 
developed in MatLab© and correctly spotted the required information in almost 100% 
of times. In the cross reference system, that information was checked against the tran-
scription of the pages of the Table of Contents and in case of inconsistent information 
the priority is given to the index in the calculus of page attributes. 

This paper is organized as follows. In the next section one provides a brief over-
view of the features of the LiveMemory platform. Section 3 details the page content 
functionality of the platform. The information cross-reference modulo is described in 
Section 4. The concluding section details the results obtained for the content detection 
module in LiveMemory in the development of the SBrT Digital Library, presents the 
conclusions and draws lines for further work. 

2   LiveMemory Image Pre-processing Routines 

The top-level interface of the LiveMemory platform allows the user to generate the 
opening screen of the proceedings to be generated. In that screen, the user provides 
the information of the number of volumes to be inserted. The LiveMemory environ-
ment automatically builds the hierarchy of directories for the different volumes. The 
user may also provide a wallpaper image to the screen and an opening soundtrack to 
be played when the library is accessed. The user must provide information of which 
volumes are already in digital form and which volumes are originally in paper. In the 
previous version of LiveMemory the only entry to the library is through the top menu 
that provides buttons to volumes. To improve that situation a few difficulties need to 
be overcome. The volumes that were originally in digital form use several different 
technologies. Some volumes are one large pdf file where all pages/articles appear one 
after another. Some others are structured/browsable pdf files where each article has an 
entry in the index. Some volumes have some search and indexing software that point 
at pdf files. Some other volumes are encapsulated Flash or database protected files. 
Being able to "unstructured" all the available data to generate a global library index or 
re-index by author or keywords them is far from being a trivial task, which is consid-
ered out of the scope of this paper. 

This section outlines the image processing functionalities in LiveMemory. All 
printed proceedings are scanned in true color with a resolution of 200 dpi and stored 
in uncompressed bmp file format. The scanned images are loaded in a directory that 
corresponds to the year of the event. LiveMemory is targeted at non-experts in image 
processing, thus the image processing part is as automated as possible and asks for no 
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parameter input. The set of tools to suitably filter images encompasses the following 
routines: 

• content identification, 
• image binarization, 
• noise border removal, 
• orientation and skew correction, 
• page size normalization, 
• salt-and-pepper filtering, and 
• image compression in Tiff_G4 file format. 

Content identification for index generation is explained in the next section. The most 
important image processing routines are outlined below. LiveMemory makes use of 
some of the functionalities of BigBatch [4] a platform to process monochromatic 
documents. Similarly, to BigBatch, the document process interface may work in user 
driven or batch modes. 

2.1   Image Binarization 

Monochromatic images claim much less space than their color equivalent, are much 
faster loaded for visualization, need less toner for printing, etc. Most proceedings 
were printed in black-and-white. Thus, it is advantageous to have the pages in their 
monochromatic version, whenever possible. One phenomenon observed in several of 
the proceedings digitized by the authors to the SBrT Digital Library is that several 
volumes exhibit a light back-to-front interference [5], also known as bleeding or 
showtrough. Fig.1 zooms into a part of a page of a volume of SBrT with such noise. 
To minimize such phenomenon, LiveMemory successfully uses an entropy based 
binarization algorithm that was designed to remove back-to-front interference in  
historical documents [5]. 

 

 

Fig. 1. Part of a document with light back-to-front noise 
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Fig. 2. Proceedings page with photo in true-
color Size: 431 kB - JPG, 435kB - pdf 

Fig. 3. Monochromatic version of Figure 02   
Size: 122kB - Tiff, 351kB-pdf 

  

Fig. 4. Versions of Fig.3. Size: 3.03 kB - Tiff 
and 230 kB – pdf. 

Fig. 5. LiveMemory Versions of Fig.5. Size: 
3.03 kB - Tiff and 343 kB - pdf. 
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Very often, paper pages incorporate graphical elements such as photos, figures, and 
graphs that are printed using dithering techniques in such a way that resemble gray 
scale images, although printed in black and white. Figure 2 provides an example of 
such a page, also with some back-to-front noise. The direct binarization of such pages 
does not yield satisfactory graphical results as may be observed in Figure 3. The con-
version of page with photos, figures and graphs into gray scale provides a reasonable 
alternative in size, but introduces non-uniform pages into the volume as the majority 
of pages are monochromatic for the sake of space and readability. LiveMemory image 
processing module automatically sweeps the directory of scanned images from a vol-
ume looking for pages that encompass graphical elements. These pages are found by 
using projection profile both in the horizontal and vertical directions. Pages whose 
projection presents large contiguous areas indicate the presence of graphical elements. 
The projections allow splitting pages into blocks, which are tagged. Similar blocks are 
merged together. In such way, LiveMemory decomposes pages into text and graphical 
elements. Text areas are binarized. The graphical elements are converted from true 
color into gray scale. Figure 5 provides an example of such synthetic image which, 
although it brings no gain in space, if compared with gray scale, it is uniform to the 
reader as there is no difference in the text areas from the other pages in the volume. 
Layout analysis is performed in the different kinds of paper pages to identify the 
fields of interest with the aid of an OCR platform.  
 

 

   

Fig. 6. Page with and without black border 
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2.2   Black Border Removal 

As one may observe in the case of the page shown on the left hand side of  
Figure 6, the monochromatic version of the document exhibits a black border on its 
left margin. This border is the result of the uneven illumination of the scanning proc-
ess due to volume binding. The same phenomenon appears, for different reasons 
whenever the volume of the proceedings is unbound and the loose pages are scanned 
using a production line automatically fed monochromatic scanner. The difference 
between the two cases aforementioned is that in the former the black border is within 
the document area, while in the latter case of automatically fed monochromatic  
scanners the noise surrounds the document. The right hand side of Figure 6 presents 
the same document of the left hand side with the black noisy border removed.  
The algorithm used in LiveMemory for black border removal is described in  
reference [1]. 

3   Paper Preparation 

The experience with the digital volumes integrated into the SBrT digital library 
showed that, in general, there are standard layouts in the articles in one proceeding 
volume and that editors were careful enough to include headings with title and data of 
the authors. This information may be used for indexing articles and volumes in a 
similar way to the one proposed in reference [6]. 

A volume of proceedings has a somehow standard format that may be split into 
four parts: 

• Volume presentation. 
• Table of Contents. 
• Papers. 
• Remissive Index (optional). 

The volume presentation frequently encompasses a title page, a forward (or preface) 
by the conference chairperson, the list of people on the program committee and other 
optional items. The Table of Contents is a list of authors, paper title, and page num-
bers. In general, roman numerals are used for page numbering the Volume presenta-
tion and the Table of Contents parts. Some conferences that use the Track format 
structure their proceedings differently, as:  

• Volume presentation. 
• Table of Contents. 
• Track 1 (Track presentation+Papers)...Track n (Track presentation+Papers). 
• Remissive Index (optional). 

In this version of LiveMemory, the user provides information of the kind of structur-
ing used in each volume. The papers themelves encompass front or title and content 
pages. The front pages of papers include: 
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• Paper Title. 
• List of authors and affiliation. 
• Abstract (or summary). 
• Abstract in a foreign language (optional). 
• List of keywords (optional). 
• Classification indices (optional). 

Identifying all these elements allows a complete navigation in the contents of papers. 

3.1   Block Image Segmentation and Classification  

LiveMemory segmentation algorithm uses projection profile to iteratively split the 
page in blocks in a top-down fashion. At first, one takes the projection profile of the 
whole page as the example shown in Figure 7, where one finds information blocks.  

Each of those blocks are 
then recursively split into 
sub-blocks until reaching 
blocks that envelope each 
line. If 25% of blocks are 
aligned vertically then that 
alignment point is a col-
umn margin. The analysis 
of the height, width and 
the position within the 
page and in relation to the 
other blocks in it allows 
one to re-merge similar 
blocks and to decide about 
their nature. For instance, 
in general the block that 
contains the title of an 
article is on the top-center 
of a page, not aligned with 
the column margins. A 
minimum width parameter 
is also used, to distinguish 
between a title and a page 
numbering. In the case of 
the paper proceedings of 
SBrT, no page heading had 
any other information 
besides page number. 

Similarly, the blocks on the bottom of a page generally contain information about the 
paper and page number. In the case of the paper shown in Figure 7 the block on the  
 
 

 

Fig. 7. – Front page block decomposition 
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top of the page contains the paper title, authors' names and affiliations. On the bottom 
of the page, one finds two blocks. The central one contains "0-7803-2097-2/94/$4.00 
©1994 IEEE" (every four years the SBrT annual event is called the International 
Telecommunications Symposium, an IEEE event) and the rightmost one presents 
"073", the page number in the proceedings volume. One may also observe that the 
page of Figure 7 also has back-to-front interference, which is more pronounced on the 
left hand side of the title block. 

The segmentation and classification of the information on the Table of Contents is 
aided by user provided information on its general layout.   

4   Automatic Categorization 

Automatic categorization (or classification) of textual information in pre-defined 
classes is a research area of rising importance due to the ever growing availability of 
documents in digital format, thus a greater need of organizing them. A common ap-
proach to address such problem is based on machine learning: frequently an inductive 
process automatically generates a classifier having as starting point a set of pre-
classified documents in each of the categories of interest. The advantages of such 
strategy in relation to the knowledge engineering one (which consists in experts in the 
subject manually defining a classifier) is due to its performance once it brings a con-
siderable economy of efforts of the experts in the field, besides providing systematic 
grounds for extensibility, allowing more easily to address new domains in a much 
faster way. The LiveMemory platform follows the machine learning approach for text 
categorization, but also makes use of some artifices that yield an efficiency rise of 
such a process. 

4.1   Document Organization 

Indexing documents with a controlled dictionary is an example of the more general 
problem of database organization. Often, several other problems relative to docu-
ment filing either for personal organization or in structuring a corporative database 
may be solved using text categorization techniques. An example of such may be 
found in the interesting paper in reference [9], which addresses the problem of effi-
ciently finding patents of different categories with a high accuracy rate. Another 
example is the automatic fulfilment of columns in a newspaper (such as Economics, 
Health, International Politics, etc.). LiveMemory attempts to group together the 
papers in proceedings according to its concentration area. In the case of a telecom-
munications conference, for instance, one has mobile communications, satellite 
communications, computer networks, cryptography, etc. To make searches in a 
proceedings database in which the paper subject has been previously annotated is 
far more precise and faster. Very often, papers have no keywords and have to be 
swept to find them in their abstract or even the paper body, with the aid of a subject 
dictionary.  
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4.2   Document Organization 

Text categorization dates back to 1961 with the work reported in [10] about the prob-
abilistic text classification. Since then it has been used in a large number of different 
applications. LiveMemory is a tool that aims to work with proceedings independly of 

the language they are written. 
In the specific case of the pro-
ceedings of SBrT, there are 
papers in English, Portuguese 
and Spanish. Thus one has two 
different outlooks to cluster the 
papers into: one is in the lan-
guage the paper is written in 
and another is its subject area. 
In the case of the SBrT digital 
library, priority is given to the 
paper concentration area, using 
as guidance the information 
within the volume such as ta-
bles of contents, indices, sepa-
ration pages, etc. Even section 
ordering and conference sched-
ule that often appears in some 
volumes are used to infer in-
formation about the content of 
papers, as chairpersons tend to 
organize sections with related 
papers. All information gath-
ered must be cross-checked 
with abstracts and sometimes 
introductory and/or concluding 
sections. A different research 
concern, but somehow related 
to the one reported, focuses in 
finding document authorship 
and detecting plagiarism. 

5   The Table of Contents Generator 

Having ways to fast navigate in digital libraries is mandatory. The blocks of interest 
spotted during the segmentation process shown above are transcribed via OCR. This 
information is used for indexing articles and volumes. The index generating module 
of LiveMemory takes the set the transcription of the Table of Contents pages from a 
volume and tries to match a formation rule of a regular expression to find the 
"page_number". The Java library for regular expression parsing was used to create the 
parser generator. 

 

Fig. 8. Block segmentation of a page 



 Content Recognition and Indexing in the LiveMemory Platform 229 

Each image that corresponds to a volume page is segmented to find its number and 
title blocks, which are transcribed using the Tesseract OCR. This information be-
comes attributes of the image. Figure 9 shows the results of block segmentation from 
the Table of Contents and of the paper title page for the article shown in Figure 8. As 
one may observe, the information in the two blocks are not the same. Even the title 
does not fully coincide as in the paper title there is a spelling mistake, corrected by  
the volume editor in the Table of Contents. Now, the system tries to unify the 
page_number information with the page attributes. The title pages are the key for the 
image and contents matching. 
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Fig. 9. Top: (Left) Information from Table of Contents; (Right) Paper Title; Bottom – 
Tesseract© transcriptions 

The top-left part of Figure 9 presents an image block extracted from the Table of 
Contents of a volume. Its automatic transcription performed by the Tesseract OCR is 
shown immediately below. The use of regular expressions has enabled to spot the 
page number in the volume. That information was used to find the corresponding 
image file by offsetting the list_of_filenames. The segmentation process shown in the 
last section is able to find the image of the paper_title_block as shown in the top of 
right hand side. 

Another aiding element is provided by the image filenames: they follow a strict 
numerical order. This means that the image filenames follow a pattern such as vol-
ume_year_page_number. For instance, the first image scanned of the 1991 volume is 
1991_001, the second one is 1991_002, the third page is 1991_003, etc. Then, the 
problem of tying hyperlinks between the table_of_contents and images becomes find-
ing the right offset in the two lists. Unfortunately, in some volumes of the SBrT pro-
ceedings there are missing and repeated pages. This may cause unrecoverable trouble 
to any automatic indexing system. 
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6   Conclusions and Lines for Further Work 

This concluding section provides some evidence of the effectiveness of the index 
generation scheme presented herein. A total of 613 pages of 323 papers within several 
volumes of the SBrT proceedings with different page, table of contents, heading and 
footnote layouts, typesetting and printing technologies, paper color due to aging, etc. 
were tested. The title blocks were correctly recognized in 96.9% of the total number 
of pages, while page numbers were spotted in 97.1% of cases. The linking of the 
"Table of Contents" to page numbers was successful in 98.3 % of the total number of 
papers. 

LiveMemory is no doubt a valuable and user friendly platform for the generation 
of digital libraries of event proceedings. Its use in the case of the SBrT digital library 
witnesses its usability. 

The automatization of the detection procedure of the layout of the pages of the Ta-
ble of Contents using a classification tool such as Weka [8] is under development. 
Other lines for further work include automatic author and keyword searching. 
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Abstract. A colour image segmentation (CIS) process for scanned historical 
maps is presented to overcome common problems associated with segmentation 
of old documents such as (1) variation in colour values of the same colour layer 
within one map page, (2) differences in typical colour values between homoge-
neous areas and thin line-work, which belong both to the same colour layer, and 
(3) extensive parameterization that results in a lack of robustness. The described 
approach is based on a two-stage colour layer prototype search using a con-
strained sampling design. Global colour layer prototypes for the identification 
of homogeneous regions are derived based on colour similarity to the most ex-
treme colour layer values identified in the map page. These global colour layer 
prototypes are continuously adjusted using relative distances between prototype 
positions in colour space until a reliable sample is collected. Based on this sam-
ple colour layer seeds and directly connected neighbors of the same colour layer 
are determined resulting in the extraction of homogeneous colour layer regions. 
In the next step the global colour layer prototypes are recomputed using a new 
sample of colour values along the margins of identified homogeneous coloured 
regions. This sampling step derives representative prototypes of map layer sec-
tions that deviate significantly from homogeneous regions of the same layers 
due to bleaching, mixed or false colouring and ageing of the original scanned 
documents. A spatial expansion process uses these adjusted prototypes as start 
criterion to assign the remaining colour layer parts. The approach shows high 
robustness for map documents that suffer from low graphical quality indicating 
some potential for general applicability due to its simplicity and the limited 
need for preliminary information. The only input required is the colours and 
number of colour layers present in the map. 

Keywords: Colour image segmentation, two-stage colour sampling, historical 
maps, homogeneity, cartographic pattern recognition. 

1   Introduction 

The unique value of cartographic documents for the extraction of spatial information 
about the landscape has motivated a number of research efforts including the recogni-
tion of e.g., elevation contours [1], roads [2], symbol chains [3], forest area [4], or 
map text [5]. Topographic maps show the highest degree of complexity [6,7] and, 
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with increasing age, the level of graphical quality decreases [8,9], which limits at-
tempts of data capture and pattern recognition in such documents, to date. However, 
spatial representations in historical maps are invaluable projections of information 
about the landscape in the past over large areas. Large amounts of digital historical 
map series exist in national and international archives indicating the high demand for 
automated recognition processes to extract relevant information. One of the most 
important pre-processing steps in image analysis efforts is colour image segmentation 
(CIS) [10,11]. Subsequent procedures of pattern recognition and object extraction 
strongly depend on the results of the segmentation step. Due to the low graphical 
quality of scanned historical maps in which topographic and thematic information is 
represented as colour map layers CIS remains a challenging field of research. Differ-
ent approaches to CIS have been described for well-conditioned maps [12-15]. For 
low-quality map documents only few such attempts can be found [9,16], which still 
suffer from limited applicability to other map products and the need for extensive 
parameterization, which results in a lack of robustness. 

In this paper an approach for CIS is presented, which overcomes typical problems 
encountered in historical cartographic (and related) documents produced manually 
using engraving techniques and printing technologies of the 19th century. These prob-
lems include (1) varying colour values of the same colour layer within one map page, 
and (2) differences in colour values between area objects and line-work which belong 
to the same colour layer as a consequence of critical image resolution and bleaching 
effects. The process described herein retrieves colour values from a representative 
sub-area of the map based on similarity to extreme colour values in colour space. This 
first step derives robust global colour layer prototypes, which are used to identify 
homogeneous regions of each colour layer. To classify remaining areas, which deviate 
in colour from homogeneous areas, a re-sampling of colour values is conducted at the 
margins of the identified homogeneous areas and a spatial layer-specific expansion is 
carried out. This two-stage sampling approach compensates for variations in colour 
values and saturation in different parts of the same colour layer by adjusting the col-
our layer prototypes, which are used for segmentation.  

2   Data and Methods 

The CIS procedure is tested on different map pages of the historic topographic USGS 
map series, which were produced between 1899 and 1961. Problems include shape 
deformations, object interactions, as well as bleached, mixed and blurred colours due 
to ageing of the paper, manual reproduction and scanning parameters. Sample maps in 
the scale of 1:62,500 or 1:125,000 are available from the San Francisco Bay Area 
Regional Database (BARD) of the U.S. Geological Survey (http://bard.wr.usgs.gov/) 
[17] as scanned documents with a resolution of 400 dpi in 24 bit RGB colour (Fig. 1). 

The CIS process presented here consists of two main steps: (1) the derivation of 
primary global colour layer prototypes and the extraction of homogeneous or well-
saturated regions of different colour layers, and (2) re-sampling of colour values for 
the adjustment of prototypes to classify parts of map layers that significantly deviate 
in colour from identified homogeneous areas (Fig. 2).   
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Fig. 1. Subsections of map page San Jose (1899) in the scale 1:62,500 from the San Francisco 
Bay Area Regional Database (BARD) (http://bard.wr.usgs.gov/) 

 

Fig. 2. Overview of the CIS process. Part 1 focuses on the colour sampling for prototype defini-
tion to identify homogeneous regions; part 2 includes the re-sampling of colour values and the 
adjustment of colour layer prototypes to find remaining parts of map layers. 
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In both parts iterative constrained colour value sampling is carried out for the com-
putation of colour layer prototypes and their dispersion measures. Homogeneous or 
well-saturated regions identified in the first step and their prototypes are input to  
the second step where a re-sampling takes place to adjust colour layer prototypes. The 
only information, which is required a priori, is the number of colour layers and the 
colours used for these map layers in the topographic map. The colours of the map 
layers are quantified by theoretical full colour extremes of the colour space. The his-
toric USGS quadrangle series contains four map layers: whitish background, blue for 
hydrography and wetlands, red for elevation and black for other thematic objects such 
as infrastructure, buildings, administrative boundaries or map text. 

2.1   Segmentation of Homogeneous Regions 

Colour Value Sampling and Initial Colour Layer Prototypes  
One or more sub-regions of the image are selected and used as sampling area. The size 
of each sub-region should allow the collection of a sufficient number of colour values 
for each colour layer and thus a representative sample to derive global colour layer 
prototypes and layer-specific variation measures. Initial candidates of colour layers are 
determined by computing the minimum Euclidean distances in RGB colour space be-
tween the locations defined by the colour values of the pixels within the sampling area 
and the full colour locations for white, black, red and blue. This step allows the sam-
pling procedure to start with more realistic initial colour candidates, which are found in 
the original image, and not theoretical full colour values. Instead candidates represent 
the most extreme colour values that occur within the sampling area defined by the prox-
imity to full colour values in colour space. 

For each pixel in the sampling area the Euclidean distances in colour space are 
computed between the positions defined by the colour values of this pixel and each of 
the initial colour layer candidates (white, black, red and blue). The computed dis-
tances are written into four new “colour distance grids”, one for each colour layer. 
Next, the minimum distance values are identified in each of the four distance grids; 
the colour values in the original image, which correspond to these locations in colour 
space, define the new colour candidates of the corresponding colour layers. These 
new candidates are used for the next distance calculation in colour space and excluded 
from the following iteration in which further colour layer candidates are collected 
based on minimum distance in colour space to the new colour candidates. This itera-
tive process continues until a robust set of initial colour layer candidates could be 
identified. The colour values of all collected colour layer candidates are written into 
data arrays, one for each colour space dimension and thus three arrays for each colour 
layer (R,G,B). These arrays serve as containers for storing point coordinates in colour 
space to define the point clouds of each colour layer as described below. This first 
sampling step ensures that colour layer candidates show representative colour values 
for the colour layers of the considered map page. During this iterative process the 
locations of these candidates in colour space move away from the initial extreme 
colour values.  

The colour layer candidates that have been collected during the initial sampling are 
expected to represent typical colour values and to indicate the expected variability 
within well-saturated sections of the different colour layers. 3D point clouds are defined 
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for each colour layer in colour space using the colour values of colour layer candidates, 
which have been stored in data arrays. The locations of the centroids of each of the point 
clouds are determined; these centroids represent the colour values of the first colour 
layer prototypes. Furthermore, the standard deviations of the distances in colour space 
between the individual colour layer candidates and the associated colour layer prototype 
(the centroid of the point cloud) are derived to quantify the expected variation in colour 
values within the same colour layer.  

Defining Robust Colour Seeds and Homogeneous Regions of Colour Layers 
Based on the identified prototypes the image is searched for robust colour seeds to be 
written into the image. First, the distances in colour space between each pair of colour 
layer prototypes are calculated (e.g., between black and red prototypes). Next for each 
pixel in the image it is tested whether its position in colour space is close to one of the 
prototypes and at the same time distant enough from all other prototypes. The proce-
dure starts at a proportion of 1/10 (e.g., distance must be less than 1/10 of the RED-
BLACK distance to prototype RED and farther than 9/10 away from prototype 
BLACK). The denominator is iteratively decreased (resulting in 1/9 and 8/9 of the 
inter-prototype distances, 1/8 and 7/8, etc.) and thus the range of positions in 3D col-
our space to be admitted is increased until a sufficient number of colour seeds is iden-
tified to shape a statistically robust sample. The colour values of the seeds identified 
are further collected in the data arrays to continuously refine the positions of colour 
layer prototypes in colour space. Based on these recalculated positions the distances 
between pixels and prototypes as well as between all pairs of prototypes in colour 
space are also recalculated before any change in distance proportions. If a sufficient 
number of colour seeds have been found the identified pixels are marked in the image 
object. A grey dummy layer prototype is determined by the midpoint in colour space 
between the black and white prototypes. This dummy layer is used to define pixels 
that cannot be unambiguously classified to one colour layer but are at risk to be  
misclassified. 

Next, the physical neighbours of the colour seeds are identified using a simple test. 
If an adjacent pixel of a seed has the minimum distance in colour space to the same 
colour layer the pixel is immediately marked as part of the colour layer. The colour 
values of these new colour layer members are continuously collected to even further 
refine the colour layer prototypes. This member assignment is carried out until no 
new value is identified in the image. The strict constraint of colour similarity between 
adjacent pixels allows extraction of homogenous and well-saturated parts of the  
different colour layers (Figs. 3b,c).  

2.2   Segmentation of Remaining Regions with Deviating Colour Properties 

Repeated Colour Sampling and Prototype Re-computation  
Typically, line-work such as elevation contours or river networks in topographic maps 
show only few homogeneous or well-saturated areas and can appear in light colours in 
some areas where line thickness becomes critical for the scanning resolution. Where 
colour layer elements include both areas and line-work, the colour layer prototypes 
can be very different between homogenous areas (saturated colours) and line-work  
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Fig. 3. Illustration of the single steps of the CIS process (the original map is shown in Fig. 1). 
Crème colour indicates background, blue, red and black are used for the corresponding colour 
layers, dark grey in (b) and (c) indicates the grey dummy colour layer): (a) Initial colour seeds 
based on global colour layer prototypes; (b) Homogeneous regions of the different colour lay-
ers; (c) Identified locations for colour sampling along the margins of homogeneous areas for 
prototype adjustment; (d) final segmentation after colour assignment, constraint filtering and 
expansion. 

 

(less saturation, bleached colours), e.g., buildings and road lines both belong to the 
black map layer but appear in different tones in the historic USGS maps. Such varia-
tions represent particular problems since these bleached regions show high similarity 
to the background or could be easily misclassified as members of a different colour 
layer and cannot be detected based on primary colour layer prototypes. For this reason 
the second step of the CIS approach attempts to classify the remaining parts that suf-
fer from colour deviation or lack in homogeneity. 

First, a second sampling procedure is carried out to derive new colour layer proto-
types for coloured foreground layers (i.e., red and blue). The rationale is to define 
prototypes that are representative for these bleached colour layers and thus would be 
located farther away in colour space from the black colour layer prototype. The sam-
pling is conducted along the margins of the identified homogeneous colour regions of 
the blue and red foreground layers; only pixels in direct neighbourhood to these re-
gions that are not yet classified and at the same time are not adjacent to homogeneous 
areas of any other foreground colour layer are sampled. The underlying assumption is 
that pixels of thin colour line-work appear very light and bleached similar to the col-
ours of pixels at the margins of homogeneous colour regions of the same map layer. 
Sampling is carried out until a sufficient amount of sample pixels are collected for 
each colour layer. The following conditions have to be fulfilled: (a) The pixel has to 
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be adjacent to one homogeneous region of a coloured foreground layer (red or blue), 
(b) The pixel must not be adjacent to any other homogeneous area that belongs to a 
foreground layer, and (c) the Euclidean distance in colour space between the colour 
point of this pixel and the colour layer prototype of the adjacent foreground layer has 
to be less than the distances to all other homogeneous colour layer prototypes (fore-
ground). For each colour layer the collected sample is used to define adjusted global 
colour layer prototypes for blue and red by calculating centroids of layer specific 3D 
point clouds in colour space similar to the above described procedure (see 2.1).  

After the new prototypes for the coloured foreground layers have been derived the 
black layer prototype can also be recomputed. Since the distances between the (old) 
black prototype and the new prototypes for blue and red increased in colour space this 
step can be done with looser constraints. All pixels that are not yet classified and not 
adjacent to a blue or red homogenous region are considered. If the distance in colour 
space between the considered pixel and the black layer prototype (or the grey proto-
type while the second-least distance must be to the black prototype) the pixel is 
marked as member of the black layer. Based on all identified pixels the black layer 
prototype is also recomputed by calculating the centroid of the 3D point cloud in 
colour space. 

Assignment and Expansion of Colour Layers  
Only non-classified pixels are considered in the final assignment and expansion step. 
Based on the distances in colour space between the pixel’s colour values and the ad-
justed colour layer prototypes (colour similarity) and tests in the local environment of 
this pixel each pixel is assigned a map layer class. To overcome effects of false col-
ouring and misclassification some additional tests for adjacency of each pixel are 
performed and constrained filters are applied to produce the final colour segmentation 
(Fig. 3d). This final result also includes a post-processing step to create a cartographic 
representation of road network similar to the original map. A filling step was carried 
out to re-label the background pixels to grey, which appear enclosed by grey and 
black layer elements. Next, the inner dimension of these filled compact regions could 
be determined and the interior parts were transformed back to background to create a 
double-line geometry. If the representation of a road changes to single lines this step 
simply does not find any locations with such inner dimensions of grey pixels. 

3   Results and Discussion 

First experimental segmentation results are illustrated in Figs. 4 and 5. The first step 
of the CIS approach proved a very high degree of robustness. Colour layer seeds (pix-
els) were misclassified in less than 3%. As can be seen in Figs. 3a-c many parts of 
well-saturated and homogeneous sections of the map layers (e.g., buildings, parts of 
map text or thicker line-work) as well as background were detected. Global colour 
layer prototypes as computed from 3D point clouds of sampled colour values repre-
sented suitable quantifiers for the identification of homogeneous colour layer regions. 
Consequently the segmentation of homogeneous regions was very reliable and repre-
sented an optimal basis for step two of the CIS approach. 



238 S. Leyk 

 

Fig. 4. Result of colour image segmentation shown on a larger subsection of map page San Jose 
(1899) in the scale 1:62,500 

The sole use of such global layer prototypes did not allow classification of non-
homogeneous regions or parts of colour layers whose colours significantly deviated 
from homogeneous parts. This high degree of within-layer colour variation would 
have resulted in considerable lack or misclassification of colour layer segments given 
traditional approaches. 

The presented CIS approach could solve this problem to a great extent by perform-
ing a hierarchical segmentation approach. The colour value re-sampling step allowed 
the computation of new colour layer prototypes after the homogeneous regions were 
identified. These prototypes were more representative for the bleached parts or thin 
line-work of the different colour layers and allowed the successful assignment of non-
classified locations (e.g., elevation contour line sections in the lower left and upper 
right corner in Fig. 3d). The original map (Figs. 1, 4 and 5) shows particular problems 
with regard to colour deviation within the red and blue colour layers but also due to 
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differences between area features and line-work of the black layer. Thinner line-work 
is represented by colours of lower saturation most likely due to age-caused bleaching.  

Some problems occurred if background colour was significantly darker (shadow 
effects), such as in urban areas where black layer objects are in close proximity; 
background area can be misclassified as black layer region. Similarly, if elevation 
contours became too dense no background could be identified between them (Fig. 4). 
In some instances thin and bleached parts of river networks were not identified if they 
significantly changed colour appearance due to colour mixing (Fig. 5). However some 
parts of such streams were classified correctly, which indicates some potential for 
post-processing steps using symbol chain tracking or gap filling techniques as well as 
cluster analysis for wetland symbols (Fig. 4). False colours impeded the final expan-
sion and assignment of pixels in some cases, which required the definition of 
 

 

Fig. 5. Result of colour image segmentation shown on a larger subsection of map page San Jose 
(1899) in the scale 1:62,500 
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simple neighbourhood relationships during the expansion. Quantitative accuracy as-
sessments are difficult to conduct and hard to interpret for colour image segmentation 
results in maps if both line-work and area features are involved [9,15]. However the 
results demonstrate a high degree of completeness and an accuracy assessment will be 
conducted based on vectorized spatial data in a GIS when larger areas can be exam-
ined based on visual inspections as demonstrated in [9].  

4   Conclusions 

The described procedure represents an attempt to conduct colour image segmentation of 
scanned historical USGS map documents with a minimum of parameterisation, 
which is the most significant contribution of this approach. The procedure relies 
only on the preliminary knowledge of the number and colours of map layers present 
in the document. This preliminary knowledge drives the definition of initial colour 
seeds based on theoretical full-colour values in colour space. The strength of this 
approach is its simplicity, which indicates potential for general applicability to 
similar documents. Various national archives of thousands of historical topographic 
maps exist in different countries that contain unique information about the land-
scape in the past. The hierarchical determination and adjustment of colour layer 
prototypes ensures the robustness of the approach against colour variation in colour 
layers and allows the segmentation of area features and line-work at the same time. 
Alternative segmentation approaches based on homograms [10], local window opera-
tions [15] or fuzzy c-means classification were tested and found unsuccessful for these 
kinds of problems. 

The presented approach overcomes typical problems in historical map documents 
such as (1) variation in colour values of the same map layer within one map page, 
(2) the change in typical colour values if elements of the same layer contain both 
homogeneous areas and thin line-work. The latter problem arises in particular if  
the scanning resolution is critical for the representation of line objects or if  
the document suffers from bleaching due to ageing and historical reproduction 
technology. However, the described approach can be improved by the incorporation 
of more sophisticated neighbourhood relationships during expansion or shape  
descriptions.  

The use of RGB colour space can be justified with the fact that topographic map 
production conforms to rules and constraints regarding colours to be used for different 
layers in the map. Since these colours correspond to full colours that can be numeri-
cally quantified in RGB colour space this choice can be defended [9]. Also since the 
main problems refer to bleaching and blurring effects in the scanned map documents 
employment of colour space transformations remains of limited use.   

Next steps include the test of this approach for different historical map products to 
examine its robustness for different document types. Also the incorporation of topo-
logic relationships, line continuation and smoothing, as well as gap filling criteria will 
be tested to improve the results of this pre-processing step.  
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Abstract. This paper presents a new comparative objective method for
image quality evaluation. This method relies on two keys points: a local
objective evaluation and a perceptual gathering. The local evaluation
concerns the dissimilarities between the degraded image and the refer-
ence image; it is based on a gray-level local Hausdorff distance. This
local Hausdorff distance uses a generalized distance transform which is
studied here. The evaluation result is a local dissimilarity map (LDMap).
In order to include perceptual information, a perceptual map based on
the image properties is then proposed. The coefficients of this map are
used to weight and to gather the LDMap measures into a single quality
measure. The perceptual map is tunable and it gives encouraging quality
measures even with naive parameters.

Keywords: Quality measure, gray-level image, image comparison, Haus-
dorff distance, distance transform, local dissimilarity measure.

1 Introduction

Image quality evaluation is a key point in several domains including image com-
pression algorithm assessment or graphical image quality evaluation. Even if the
best method is the subjective method MOS (Mean opinion score), which is based
on observers’ evaluation, it is not always possible to seek it: it is subject to vari-
ations and it involves many people and a lot of time. An alternative is to use an
automatic quality evaluation. In this frame, the measure can be estimated just
on the transformed image itself or in comparison with a reference image. We
focus on the latter kind of methods so-called comparative objective methods.
There exists a lot of well known comparative objective methods like the Mean
Square error (MSE) or the Peak Signal to Noise Ratio (PSNR), ... But none of
the current methods take in account a perceptual evaluation because they are of-
ten based on a pixel to pixel difference and perceptual information include both
local and global aspects of the image. In order to move closer to the evaluation
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Fig. 1. Scheme of the quality measure method

of the final user, it is important to integrate a perceptual evaluation.
We propose a new method which is based on two key points:

– a local objective evaluation
– a perceptual gathering.

Unlike to human vision, the pixel to pixel difference is very sensitive to small
translations. A generalization of it to a less sensitive local measure has been de-
veloped for binary images in [1]: the so-called Local Dissimilarity Map (LDMap).
It is based on the distance transform and several distance transform generaliza-
tion to gray-level images are available. A comprehensive study of the LDMap
generalization to gray-level images is presented here in quality measure aim.

Our method then exploits the spatial distribution of the dissimilarity measures
gathered in the LDMap generalized to gray-level images thanks to a perceptual
weighting that emphasizes image areas that are important for human vision.
These weights, gathered in a so-called weighting map, are based on brightness,
shape and texture; they can be tuned in function of the final application. Our
method results in a single measure, the Figure 1 illustrates the measurement
principle. The proposed measure has been compared to subjective evaluations
on the test image base IVC database and gives encouraging results. The two
key points are detailed in the following sections, the section 2 present the Local
Dissimilarity Map - LDMap, the section 3 present the Perceptuel Map and the
quality measure. The last section presents experiments and comparison with the
LIVE base.

2 The Local Dissimilarity Map

2.1 Definition

The LDMap is based on a local and adaptative evaluation of dissimilarities
between images. It has been first defined on binary images via a local measure
of dissimilarities, and is based on a distance between a pixel and a set of pixel.



244 N. Girard, J.-M. Ogier, and É. Baudrier

When the Hausdorff distance is used as a local measure, the formula of the
LDMap is simple as follows

Definition 1 (LDMap). Let A, B be two bounded sets of points in R2, and
x ∈ R2 a pixel, the LDMap between A and B is defined as

LDMap(x) = |indB(x) − indA(x)|max(d(x, A), d(x, B)) (1)

where indE(x) = 1 if x ∈ E and 0 otherwise, d is a distance transform (DT),
measuring the distance between a point and a set of points.

The formula gives for each pixel x a value that depends on the distance trans-
formation from the sets A and B. Figure 2 illustrates the notion of local dissim-
ilarity. Each image contains two letters. The dissimilarities are quantified: big
dissimilarities are represented in dark and small ones in light. Moreover, they are
spatially localized: from the LDMap, one can see that the bigger dissimilarities
are situated on the straight line of the ”e” and on the top of the ”t”, so the
corresponding dissimilarities are important. The ones between the left part of
the ”o” and the bottom of the ”t” and between the loop of the ”e” and the ”c”
are light, so they are small.

Fig. 2. Letters CO and ET and their LDMap illustrating their local dissimilarities

Remark 1. The DT : x �→ d(x, A) ∈ R+ is null for x ∈ A.

This definition 1 can be generalized to gray-level images:

– the term |indB(x) − indA(x)| is changed in |B(x)−A(x)|
max(|B(x)−A(x)|) so as its result

stays in [0, 1]
– the rest is a maximum between two DT. Several DT generalizations have

been proposed in the literature, e.g. GRAYMAT[2], DTOCS[3]. These DT
are generalizations in the sense that they hold the same result for gray-level
version of binary images

Thus the LDMap for gray-level images can be defined as follows:

Definition 2 (Gray-level LDMap). Let A, B R2 → R be two bounded func-
tions R2, and x ∈ R2 a pixel, the gray-level LDMap between A and B is defined
as

LDMap(x) =
|B(x) − A(x)|

max(|B(x) − A(x)|) max(d(x, A), d(x, B)) (2)

where d is a generalized distance transform (DT).
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These different generalizations to gray-level images lead to different dissimilarity
measures. In the next section, we study the properties of these DT so as to choose
the most suitable for our application.

2.2 Computation of DT in the Gray Level Case

The distance transform and its continuous generalizations
The DT are based on an underlying distance between pixels. The different DT
come from distinct underlying distances. We focus here on the underlying dis-
tance computation so as to choose the most adapted DT to image processing.

For binary images, pixels can be seen as points of the plan. The distance trans-
forms are then based on 2D mathematical spatial distances (e.g. the Euclidean
distance, the Mahalanobis distance and so on). A first possibility for replacing the
distance transform (in the binary case) is to define a new point set (in the gray-level
image), that is the set of the points equal to the minimum or the maximum value
and to measure the distances from this point set. This is the choice in all the arti-
cles but [4]. Under this hypothesis, there is still to compute the distance between
pixels. For gray-level images, the gray-level dimension is added to the two plan
dimensions. There are different ways of including this dimension in the distance
computation, and they influence the produced dissimilarity measure. Considering
a gray-level image as a set of points of R3, the image is a surface in R3. Then the
distance between two points of this surface is the shortest path between these two
points accorded to a path-length measure. There are two possibilities in the liter-
ature for this measure: the measure of the length of the path on the image surface
or the measure of the area of the surface under the path on the image surface. A
formal definition is given thereafter (Definition 3).

Definition 3 (path-length measure). Let I be a continuous function defined
on X the image support:

I :

{
X −→ R

(x, y) �→ I(x, y)

and let π : t ∈ [0, 1] �→ π(t) ∈ R2 be a continuous path between the pixels p and
q of I. The length of the path π (so-called Lπ) is given by

1. the length of the path on the image surface

L1
π =

∫ 1

0
|I ′(π(t))|dt (3)

2. the area of the surface under the path on the image surface

L2
π =

∫ 1

0
|I(π(t))π′(t)|dt (4)

Both of these possibilities have been implemented in the discrete space. The
discretization step implies also choices so the different versions of the DT under-
lying distances are briefly introduced in the next section. A last generalization
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so-called Continuous distance transform (CDT) is proposed by Arlandis and al
[4]. The CDT is not based on a path-length measure but on a darkness satu-
ration measure around the pixel on which the distance is computed. The CDT
only has a algorithm, so it will not be detailed in the next section.

Discrete implementations of the distance transforms
The detailed presentation of the different DT is too long for this paper so we
will only give a brief insight on them.

1. methods based on eq. 3 (introduced by P. Toivanen):
– the Distance Transform On Curved Space [3,5] (DTOCS), the Weighted

DTOCS (WDTOCS)
– the method improvements: 3-4-DTOCS and Optimal WDTOCS (Opt-

WDTOCS).
2. methods based on eq. 4

– the Gray-Weighted Medial Axis Transform [2] (GRAYMAT) introduced
by G. Levi and U. Montanari. Its underlying distance is based on the
pixel difference value and as a consequence, it promotes low gray-level
pixel paths. It is aimed at skeletization.

– the Gray-Weighted Distance Transform [6] (GWDT) introduced by
D. Rutovitz.

Fig. 3. An example of some DT
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2.3 Comments and Choice

It is quite difficult to anticipate the qualities of the different DT from their
definition, nevertheless, we have chosen the first family method because their
underlying distance is closer to the notion of distance in the graylevel dimen-
sion. The first family indeed, takes into account differences of gray levels on a
path and the spatial distance. It seems to us more appropriate than the second
family which overwrites some spatial information for the benefit of gray level
information (see Fig. 3). In the second family the differences between the ver-
sions are minor. Nevertheless the 3-4-DTOCS seems the most interesting to us
because it does not underestimate the diagonal distance unlike to DTOCS. The
CDT gives also good visual results. Our study on this point should be furthered
to detail the choice.

For a m × n image, the LDMap always gives m × n dissimilarity measures
for one image comparison, which represent to much information. So we want to
used all these measures in order to define a single quality measure. This is the
goal of the following section.

3 The Quality Measure

It is known that the visual perception do not take all the image into account [7],
e.g. the perception of a compression artefact depends on the characteristics of the
surrounding pixels [8]. As influencing characteristics, one can cite the texture, the
luminance and the edges [9]. The LDMap measures the local dissimilarities but
does not take into account these perceptual characteristics. Thus, we propose
to defined a weighting map (WMap) where the weights model the perceptual
sensitivity. A weight equal to 1 means that, according to its model, the eye will
be very sensitive to perturbation on this pixel. On the contrary, a weight equal
to 0 means that a perturbation there will not be perceptible. The sum of the
LDMap values weighted with these weights is based on the objective dissimilarity
measures and their perceptual importance. It is important to notice that the
choice of the WMap computation that is given there after is only a proposition
dependent on the application. The scheme of the process proposed Fig. 1 is a
general one where the WMap computation can be adjusted to the application.
This scheme shows that the WMap is computed from the original image and
weights the LDMap obtained from the image comparison. We make this choice
because we suppose that the protocol is to compare the original image with the
transform one. Thus the reference image from which the defaults are evaluated
is the original one.

The WMap combines the brightness, shape, texture attributes which are fac-
tors the eye is sensitive to. Each attribute is calculated on the reference image
and for each one we define a map: for the brightness B, for the shape S and
for the texture T . The WMap is defined as weighted sum (Definition 4) of B, S
and T . Then the WMap is normalized in order to be a weighting Map. Figure 4
presents an example of WMap.
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Fig. 4. WMap with p1=2, p2=1 and p3=-2

Definition 4 (WMap). Let A be an image, the WMap of A is defined by:

WMapA =
p1 · B + p2 · S + p3 · T

max(p1 · B + p2 · S + p3 · T )
(5)

Where p1, p2 and p3 are the weights respectively of the brightness, the shape and
the texture, and where B, S and T are positive.

By balancing the LDMap with the WMap as illustrated Fig. 1, we obtain the
perceptual local dissimilarity map (PLDMap), containing local information on
dissimilarities and visual perception. The quality of the transformed image can be
measured by extracting the maximum value or the mean value of the PLDMap.
We have study the two values and the maximum appears to be the best quality
measure.

4 Results

The measure has been tested on the LIVE base [10], with the JPEG compressed
images. The DT that have been tested are the 34-DTOCS and the CDT, which
are the most relevant for the quality measure (cf sec.2). As we do not succeed
in finding automatically the right parameters for the WMap, we have made a
learning step. It consists in finding the parameters that minimize the variance
of our quality measure against the MOS on a learning base of 40 images. The
next step is a test that is made on a 50 image set totally disjoint from the
learning set. The parameters values are those obtained thanks to the learning.
The parameters obtained with the learning are

– for the 34-DTOCS: p1 = 2
15 , p2 = 1

2 , p3 = 11
30

– for the CDT: p1 = 1
4 , p2 = 1

2 , p3 = 1
4

As a result, we test the correlation between our measure and the MOS value for
the 34-DTOCS and the CDT. The hypothesis of no correlation has a probability
of 0.01 for the CDT measure and 0.17 for the 34-DTOCS measure. The threshold
of rejection is commonly 0.05, which means that the CDT can not be seen as no
correlated with the MOS, unlike to the 34-DTOCS measure.
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5 Conclusion and Future Works

We present a generalization of the CDL to the graylevel images. The generalized
CDL is improved with perceptual weights so as to give an objective quality
measure. Our test shows that this measure based on the CDT is well correlated
with the MOS on a test base of 50 images. First of all, the WMap for which the
optimal parameters have been computed as an illustration of the method, could
take in account other attributes. Obviously, weights of maps constituting the
WMap can be refined to improve the measure. Then, the correlation coefficient
of the measure should be compared with those of other quality measures. Finally,
the LDMap could be developed to color images.
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A Appendix

– LDMap : Local Dissimilarity Map (section 2)
– MOS : Mean opinion score
– MSE : Mean Square error
– PSNR : Peak Signal to Noise Ratio
– DT : Distance Transform (section 2)
– GRAYMAT : Gray-Weighted Medial Axis Transform
– DTOCS : Distance Transform On Curved Space
– CDT : Continuous Distance Transform
– WDTOCS : Weighted Distance Transform On Curved Space
– GWDT : Gray-Weighted Distance Transform
– WMap : Weighting Map (section 3)
– PLDMap : Perceptual Local Dissimilarity Map (section 3)
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Abstract. Empirical performance evaluation of raster to vector methods is an
important topic in the area of graphics recognition. By studying automatic vec-
torization methods we can reveal the maturity of the tested methods whether as a
research prototype or a commercial software. Arc Segmentation Contest held in
conjunction with the eighth IAPR International Workshop on Graphics Recogni-
tion (GREC09) is an excellent opportunity for researchers to present the results of
their proposed raster to vector methods. The contest provides a uniform platform
where the output of different methods can be analyzed. The relevance of the con-
test is further revealed by the creation of new test images with their ground truth
data. Old documents were used in this contest. Five methods participated (two
research prototypes and three commercial software). Two tests were performed
namely between-methods test (participated by all methods) and within-method
test (participated by only one method). This paper presents the results of the con-
test.

Keywords: Performance Evaluation, Graphics Recognition, Raster to Vector
Conversion Methods, Line Drawings.

1 Introduction

The Arc Segmentation Contest 2009 is the fifth in the series of contests and was held
during GREC’09 at the City University of La Rochelle, France, in July 2009. It was
organized by the School of Computer Sciences, Universiti Sains Malaysia, Malaysia.
The previous contest was held during GREC’07 in Curitiba, Brazil, in September 2007
and was organized by Image Understanding and Pattern Recognition (IUPR) Research
Group, University of Kaiserslautern, Germany.

In the next paragraphs a short synopsis for each of the previous reports of the arc seg-
mentation contests are presented. Note that, the first two contests were called dashed-
line detection contests rather than arc segmentation contests.

GREC’95: Bin Kong et al. [1] performed dashed-line detection contest on a set of
synthetic images.

GREC’97: Chhabra and Ihsin [2] evaluated the performance of participating methods
in dashed-line detection contest. Solid and dashed lines, solid and dashed circular arcs,
and segmentation of text were evaluated in the contest. Only synthesized images were

J.-M. Ogier, W. Liu, and J. Lladós (Eds.): GREC 2009, LNCS 6020, pp. 251–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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used. Many performance metrices were used to judge the performance of the segmen-
tation/detection.

GREC’99: Chhabra and Ihsin [3][4] evaluated the performance of four vectorization
software: one research prototype (VrLiu) and three commercial software (Scan2CAD,
Vectory, TracTrix). Ten real scanned images were used in the test (five mechanical
engineering drawings and five architectural drawings). EditCost Index [5] was used
as the criterion of the performance. Many metrices (false alarms, miss detection, one-
to-many matches, and many-to-one matches) are combined into one index (EditCost
Index). Continuous straight lines, circular arcs, and text regions were evaluated.

GREC’01: Liu et al. [6] evaluated the performance of two research prototypes (TIF2VEC
and RANVEC). Seven images were tested (four synthesized and three real scanned).
Different types of noise were used (Gaussian noise, high frequency, hard pencil, geo-
metrical noise). Vector Recovery Index (VRI) was used to measure the performance of
the methods. Only solid circular arcs were included in the test.

GREC’03: Liu [7] evaluated two research prototypes (Elliman’s and JiQiang’s algo-
rithms). Twelve images were used (eight real scanned images, four synthesized images
created by adding noise to the real scanned images). VRI was used to measure the
performance of the methods. Only solid circular arcs were tested.

GREC’05: Liu [8] evaluated three research prototypes (TIF2VEC, RANVEC, and Key-
sers & Breuel method). Eighteen test images were used in the test (six real scanned
and twelve synthesized images created by adding salt and pepper noise to the six
real images). The VRI was also used but with slightly modified formula (VRI =√

Dv ∗ (1 − Fv)) in order to avoid the case of scoring when no (or very small) arcs
could be detected. Only continuous circular arcs were considered in this contest.

GREC’07: Shafait et al. [9] evaluated the performance of four vectorization methods:
one research prototype (Wenyin’s method) and three commercial software (VPstudio,
Scan2CAD, Vectory). Five real scanned images (with no artificial noise) were used in
the contest. A recent performance evaluation method was the criteria (vectorial scores)
used to judge the quality of vector detection. The calculation of vectorial scores [10]
requires the ground truth data to be represented in color pixels. Vectorial scores are a set
of metrices that represents the errors made by the vectorization algorithm. The metrices
include total oversegmentation, total undersegmentation, oversegmented components,
undersegmented components, missed components, and false alarms. Only solid circular
arcs were considered in this contest.

This paper presents the results of the Arc Segmentation Contest at GREC’09. The
purpose of this contest is to study the current status of raster to vector methods and to
generate new test images with their ground truth data available to the public. For these
reasons there was no attempt to find a winner in this contest. The test data in this con-
test were selected from two old books. This would ensure that a level of complexity
was already added to the data in order to make the correct detection of the graphi-
cal elements more challenging and it would also serve to avoid the use of degrada-
tion model (which could be controversial) since some kind of degradation was already
embedded in the original scanned raster image due to low quality of image prepara-
tion. One element of VRI index (namely Dv) was used as the acceptable performance
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evaluation criterion in this contest. Dv is the vector detection rate obtained by calculat-
ing the length-weighted sum of all vector detection quality of all ground truth lines [11].
In this contest a within-method comparison was performed. The comparison involves
comparing different versions of a raster to vector method developed over time. Also,
a research prototype called Qgar-Lamiroy [16] participated for the first time in GREC
Arc Segmentation Contests.

The rest of the paper is organized as follows. Section 2 shows how test images and
ground truth images are created. In Section 3, the participating methods and the two
test methods performed in this contest are provided. Section 4 shows the criterion to be
used for performance evaluation. Section 5 shows the results of the contest. Section 6
presents the summary.

2 Test Images and Generating Ground Truth Data

Ground truth data were generated for the contest by selecting a set of mechanical engi-
neering drawings from two text books [12][13]. Color images were obtained by scan-
ning the paper drawings with 450 DPI each. The images were then converted to grey
level images using ImLab imaging software [14]. A total of twelve binary images were
obtained by thresholding the grey images. Seven images were selected as test images
(shown with their ground truth data in Figs. 1 and 2), and five images were used as
training images. Figure 1 shows the test images selected from an old book published in
1960s [12]. The drawings seem to be prepared by hand with the same graphical element
having different thickness at different places. Figure 2 shows the test images selected
from a more recent text book [13]. The quality of the drawings is better than those of
Fig. 1 but the drawings were less complex. The ground truth data is superimposed on
the original scanned images using a web-based service1.

The ground truth images for test and training images were created by manual mea-
surement of the primitives’ parameters. An engineer generated the ground truth data
manually by drawing, resizing, positioning the vector data over a displayed raster im-
age using a vector editor. The first author then checked the generated data visually and
randomly verified some of the real numerical data. The widths of the graphical ele-
ments were generated by measuring it using a raster image editor. Only circles and
circular arcs were included in the ground truth files (shown in Figs. 1 and 2 in green
color [electronic form]). The attributes (centers and radii) of the arcs are measured
in pixels. The images are diverse in terms of graphics complexity as well as in the
number of graphical entities. However, images with higher complexity were selected
as test images. No vector representation is generated for any arc-like or circle-like
characters such as the letters ’c’, ’O’ and others; and symbols such as ’(’ and ’)’. In
other words, all text strings in the images were ignored during ground truthing. This
is true for all training images and test images. For this reason, in this contest we
have focused our attention on Dv rather than the combined index (VRI). A website
(http://www.cs.usm.my/arcseg2009/) was made online for the contest. The
training images and the test images generated in this contest were made available for
upload by third party.

1 http://demo.iupr.org/vec2img/

http://www.cs.usm.my/arcseg2009/
http://demo.iupr.org/vec2img/
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(a) P0036.tif (b) Ground Truth of P0036.tif

(c) P0093.tif (d) Ground Truth of P0093.tif

(e) P0096.tif (f) Ground Truth of P0096.tif

(g) P0168.tif (h) Ground Truth of P0168.tif

(i) P0169.tif (j) Ground Truth of P0169.tif

Fig. 1. Test images (Scanned from [12])
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(a) P0537a.tif (b) Ground Truth of P0537a.tif

(c) P1099.tif (d) Ground Truth of P1099.tif

Fig. 2. Test images (Scanned from [13])

3 Participating Methods and Tests Performed

Research prototypes as well as commercial software were accepted in this contest. We
have two research prototypes VrLiu [15] and Qgar-Lamiroy [16] as well as five different
trial versions of three commercial software (VPstudio 8, 9, and 10 [17], Scan2CAD
7.5d [18], Vectory 5.0 [19]). All the software that we have used in the contest are trial
versions. However, they are fully functional. The limitation is only on the size of the
images and the duration in which the software can be used. Both limits have no effect
on the outcomes of the contest. Some software parameters were preset while running
the experiment in order to ensure consistency between the outputs of all the methods.
To be fair to all software, no attempt has been made to fine tune software parameters
for the purpose of getting better results. Getting the most performance of a software
package requires a person experienced with the package and there were no seasoned
operator on hand for the contest.

We were particularly interested in performing within-method comparison i.e. study-
ing the performance of different versions of the same method (developed over time)
to gauge the improvement in the performance of line detection. However, only one
method (VPstudio) participated because of the unavailability of earlier versions of other
methods.

Two different kinds of tests (Table 1) were performed in this contest. In the first
test (between-method) different raster to vector methods were used to vectorize the
raster images. VRI was used to judge the quality of arc detection. In the second test
(within-method) different versions of the same method developed over time were used
to vectorize the test images in an endeavor to reveal any improvements to the method
(only VPstudio participated in this case) as to its ability at detecting arcs.
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Table 1. Comparisons performed

Method Between-methods Within-method
VrLiu Y -
Qgar-Lamiroy Y -
VPstudio Y Y
Vectory Y -
Scan2CAD Y -

4 Performance Evaluation Method

The VRI index [11] was the performance evaluation of choice used in previous Arc
Segmentation Contests [6,7,8]. It was also the criterion of choice used by many authors
when reporting the performance of their proposed raster to vector methods [20,21].

VRI is calculated as follows:

VRI =
√

Dv ∗ (1 − Fv) (1)

where Dv is the detection rate and Fv is the false alarm rate. As noted in Section 2
all text strings were ignored during ground truthing including the arc-like symbols.
Some systems will try to detect arc-like symbols as real arcs which may increase the
false alarm rate thus decreasing the VRI score. Hence, we used only detection rate Dv

rather than the combined index (VRI) in order to focus on the detection ability of the
participating methods and to cancel the effect of recognizing some symbols as real arcs.

5 Results

The contest was performed offsite after the workshop. The participants were provided
with the test images through e-mail. They have provided us with the results of their
methods in VEC format. The other results were prepared by the authors of this report.
The scores of the first test which include two research prototypes and three commercial
software are shown in Table 2. The numbers in bold highlight the highest Dv scores
for that image. From the Dv column it is noted that VrLiu’s method has the largest
Dv score (on average) and hence it is the best performer in this contest. The second
best performer is VPstudio followed by Qgar-Lamiroy at third place. VPstudio scored
higher than VrLiu for the image P0096.tif which is the most complex image in the set
of test images. All VEC files (except for VrLiu) were prepared or provided to us with
arc/circle widths set to 1. This may have resulted in lower Dv scores for these methods.

The scores of the second test are shown in Table 3. The numbers in bold highlight
the highest Dv scores for that image. From the Dv column of Table 3 it is shown that
version 9 scores slightly better than version 8. Version 10 performs better (on average)
than the older versions. The differences within these three versions could be visualized
by looking at Fig. 3.
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Table 2. Performances of different systems

VrLiu Qgar-Lamiroy VPstudio 10 Vectory 5 Scan2CAD 7
Image Dv Fv VRI Dv Fv VRI Dv Fv VRI Dv Fv VRI Dv Fv VRI
P0036 .740 .287 .726 .546 .264 .634 .584 .398 .593 .155 .831 .162 .250 .586 .322
P0093 .483 .715 .371 .459 .774 .322 .477 .435 .519 .443 .341 .540 .441 .554 .444
P0096 .563 .344 .608 .356 .335 .487 .700 .413 .641 .003 .994 .004 .299 .434 .411
P0168 .696 .748 .419 .629 .739 .405 .534 .467 .534 .421 .343 .526 .437 .650 .391
P0169 .788 .245 .772 .417 .424 .490 .595 .467 .563 .298 .504 .384 .417 .429 .488
P0537a .811 .205 .803 .426 .318 .539 .413 .649 .381 .063 .937 .063 .382 .576 .403
P1099 .755 .283 .736 .693 .377 .657 .767 .175 .795 .198 .776 .211 .540 .450 .545
Avg .691 .404 .634 .504 .462 .505 .581 .429 .575 .226 .675 .270 .395 .526 .429

Table 3. Performances of different versions of VPstudio software

VPstudio 8 VPstudio 9 VPstudio 10
Image Dv Fv VRI Dv Fv VRI Dv Fv VRI
P0036 0.572 0.353 0.608 0.572 0.353 0.608 0.584 0.398 0.593
P0093 0.477 0.444 0.515 0.477 0.444 0.515 0.477 0.435 0.519
P0096 0.682 0.413 0.633 0.699 0.413 0.641 0.700 0.413 0.641
P0168 0.534 0.489 0.522 0.534 0.467 0.534 0.534 0.467 0.534
P0169 0.599 0.448 0.575 0.592 0.470 0.560 0.595 0.467 0.563
P0537a 0.414 0.647 0.382 0.414 0.647 0.382 0.413 0.649 0.381
P1099 0.767 0.175 0.795 0.760 0.175 0.795 0.767 0.175 0.795
Avg 0.578 0.424 0.576 0.578 0.424 0.576 0.581 0.429 0.575
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Fig. 3. Performances (DV ) of three versions of VPstudio software
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6 Summary

In this paper we have described the detail of the Arc Segmentation Contest 2009 held
in conjunction with GREC’09 that includes preparation of ground truth data, the tests
performed, the participating methods, and the performance evaluation method. Real
scanned images scanned from two old text books were used as test data. No artificial
noise and no degradation model were used in the contest. However, since most draw-
ings were scanned from an old text book, some distortions and noise are inherited in
the scanned images. The ground truth data were created by manual measurement of
arcs/circles attributes. Five methods participated in this contest; two research proto-
types and three commercial software. To focus on the detection ability of the software
Dv score was used as performance evaluation criterion. Two tests were performed: A
test between different methods and a test between different versions of one of the meth-
ods. The former test shows that Liu’s method outperforms the other methods. The latter
test shows that the recent version of VPstudio is slightly better than the previous two
versions.
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Abstract. In this paper we present an algorithm for performance characterization
of symbol localization systems. This algorithm is aimed to be a more “reliable”
and “open” solution to characterize the performance. To achieve that, it exploits
only single points as the result of localization and offers the possibility to recon-
sider the localization results provided by a system. We use the information about
context in groundtruth, and overall localization results, to detect the ambiguous
localization results. A probability score is computed for each matching between a
localization point and a groundtruth region, depending on the spatial distribution
of the other regions in the groundtruth. Final characterization is given with detec-
tion rate/probability score plots, describing the sets of possible interpretations of
the localization results, according to a given confidence rate. We present experi-
mentation details along with the results for the symbol localization system of [1],
exploiting a synthetic dataset of architectural floorplans and electrical diagrams
(composed of 200 images and 3861 symbols).

Keywords: symbol localization, groundtruth, performance characterization.

1 Introduction

In recent years there has been a noticeable shift of attention, within the graphics recog-
nition community, towards performance evaluation of symbol recognition systems. This
interest has led to the organization of several international contests and development of
performance evaluation frameworks [2]. However, to date, this work has been focussed
on recognition of isolated symbols. It didn’t take into account the localization of sym-
bols in real documents. Indeed, symbol localization constitutes a hard research gap,
both for recognition and performance evaluation tasks.

Different research works have been recently undertaken to fill this gap [3]. Groundtru-
thing frameworks for complete documents and datasets have been proposed in [4,5], and
different systems working at localization level in [6,1,4]. The key problem is now to de-
fine characterization algorithms working in a localization context. Indeed the character-
ization of localization in complete documents is harder, as comparison of results with
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groundtruth needs to be done between sets of symbols. These sets could be of different
size, and significant differences could appear between the localizations of symbols pro-
vided by a given system, and the corresponding ones in the groundtruth.Characterization
metrics must then be reformulated to take these specificities into account.

In the rest of the paper, we will first introduce in section 2 related work on this topic.
We will present next in section 3 the approach we propose. Section 4 will give exper-
iments and results we have obtained with our algorithm. Conclusion and perspectives
arising from this work will be presented in section 5.

2 Related Work

Performance characterization, in the specific context of localization, is a well known
problem in some research topics such as computer vision [7], handwriting segmenta-
tion [8], layout analysis [9], text/graphics separation [10], etc. Concerning symbol lo-
calization, at the best of our knowledge only the work of [4] has been proposed to date.
Performance characterization algorithms (in the specific context of localization) aim to
detect possible matching cases between groundtruth and localization results, as detailed
in Table 1. They determine about true or false localization results, without considering
the class of objects. It is therefore a two-class recognition problem, to separate objects
from background. Once objects are correctly located/segmented, we could proceed the
evaluation of recognition. This is known as whitebox evaluation in the literature [11],
the goal is to characterize the performance of individual submodules of a complete
system and to see how they interact each other.

Table 1. Matching cases between groundtruth and localization results

single an object in the results matches with a single object in the groundtruth
misses an object in the groundtruth doesn’t match with any object in the results
false alarm an object in the results doesn’t match with any object in the groundtruth
multiple an object in the results matches with multiple objects in the groundtruth

(merge case) or an object in the groundtruth matches with multiple objects
in the results (split case)

The key point when developing such a characterization algorithm, is to decide about
representations to be used, both in results and groundtruth. Two kinds of approach exist
in the literature [9], exploiting pixel-based and geometry-based representations.

In a pixel-based representation, results and groundtruth correspond to sets of pixels.
For that reason, algorithms exploiting such a representation are very accurate. They are
usually employed to evaluate segmentation tasks in computer vision [7] or handwriting
recognition [8]. However, groundtruth creation is more cumbersome and requires a lot
more storage. Comparison of groundtruth with the results is also time-consuming.

In a geometry-based representation, algorithms employ geometric shapes to describe
the regions (in results and groundtruth). The type of geometric shapes depend on the
application: bounding boxes - text/graphics separation [10], isothetic polygons - layout
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analysis [9], convex hulls - symbol spotting [4], etc. Comparison of the groundtruth
with the results is time-efficient, and the corresponding groundtruth straightforward to
produce. Such a representation is commonly used in the document analysis field, as it is
more focused on semantic [10,9,4]. Because the main goal of the systems is recognition,
evaluation could be limited to detection aspects only (i.e. to decide about a wrong or a
correct localization without evaluation of the segmentation accuracy).

In both cases, characterization algorithms exploit information about regions in lo-
calization results, and compare them to groundtruth. This results in boolean decisions
about positive/negative detections, which raises several open problems:

Homogeneity of results: Regions provided as localization results could present a huge
variability (set of pixels, bounding boxes, convex hulls, ellipsis, etc.). This variabil-
ity disturbs the comparison of systems. A characterization algorithm should take
these differences into account, and put the results of all the systems at a same level.

Reliability of results: Large differences could appear between the size of regions in
the results and the groundtruth. These differences correspond to over or under
segmentation cases. This results in aberrant positive matching cases between the
groundtruth and the detection results, when large regions in the results intersects
smallest ones in groundtruth. To be able to detect these ambiguous cases a charac-
terization algorithm should be able to reconsider the localization results provided
by a system.

Time complexity: Complex regions, such as symbols, must be represented by pixel
sets or polygons to obtain a correct localization precision. However, their compar-
ison is time-consuming both for geometry-based and pixel-based representations
[9,8]. This involves to use specific approaches to limit the complexity of the algo-
rithms [9].

In this paper we propose an alternative approach to region-based characterization, to
solve these problems. We present this approach in the next section 3.

3 Our Approach

3.1 Introduction

Our objective in this work is to provide a “reliable” and “open” solution to characterize
the performance of symbol localization systems. To achieve that, we propose an algo-
rithm exploiting only single points as the result of localization and offering the possi-
bility to reconsider the localization results provided by a system. It uses the information
about context in groundtruth, and overall localization results, to detect the ambiguous
localization cases. A probability score is computed for each matching between a local-
ization point and a groundtruth region, depending on the spatial distribution of the other
regions in the groundtruth. Final characterization is given with detection rate/probability
score plots, describing the sets of possible interpretations of the localization results, ac-
cording to a given confidence rate.
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Fig. 1. Our approach

Fig.1 illustrates our approach. For each result point ri, probability scores are com-
puted with each symbol gi in the groundtruth. These probability scores will depend on
the spatial distribution of the symbols gi in the groundtruth, they will change locally
for each result point ri. In Fig. 1, r1, r2 and r3 are located at similar distances of sym-
bols g1, g2 and g3 in groundtruth. However, r2 and r3 present highest probability scores
to be matched with g2 g3 respectively, but not r1. Local distribution of symbols gi in
groundtruth around r1 makes ambiguous the characterization of this localization result.
For that reason, a positive matching between r1 and any symbols gi will be considered
with a low probability. Final characterization is given with a detection rate/probability
score plot, describing the sets of possible interpretations of the localization results ac-
cording to their probability scores.

In the rest of this section we describe our characterization algorithm. We exploit three
main steps to perform the characterization: (1) in a first step we use a method to compare
the localization of a result point to a given symbol in groundtruth (2) exploiting this
comparison method, we compute next for each result point its probability scores with
all the symbols in groundtruth (3) at last, we employ a matching algorithm to identify
the correct detection cases, and draw the detection rate/probability score plots. We will
detail each of these steps in next subsections 3.2, 3.3 and 3.4 respectively. Table 2.
provides the list of mathematical symbols that we have used for detailing the different
steps of our proposed algorithm.

Table 2. Table of mathematical symbols
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3.2 Localization Comparison

In our approach, groundtruth is provided as regions (contours with corresponding grav-
ity centers) and localization results as points (Fig. 1). We ask the systems to provide
points that should be in regions near the location of symbols in groundtruth. These
points could be gravity centers, key-points of interest or junctions. The use of points as
results makes impossible to compare them directly with groundtruth, due to the scal-
ing variations. Indeed, symbols appear at different scales in drawings. To address this
problem, we compare the result points with groundtruth regions by computing scale
factors (Fig. 2). In geometrical terms, a factor s specifies how to scale a region in the
groundtruth so that its contour fits with a given result point. Thus, result points inside
and outside a symbol will have respectively scale factors of s ≤ 1 and s > 1.

Fig. 2. Scale factor

The factor s is computed from the line L of direction θ, joining the gravity center
g defined in groundtruth to a result point r. On this line L, s corresponds to the ratio
of lengths lgr and lgi. lgr is the Euclidean distance between the gravity center g and
the result point r. lgi is computed in the same way, but with the intersection point i of
L with contours c of symbol. This intersection point i is detected using standard line
intersection methods [12]. If several intersections exist (i.e. cases of concave contours
or holes in symbol), the farthest one from g is selected.

3.3 Probability Scores

In a second step, we compute probability scores between result points and groundtruth
(Fig. 3). For each result point r, relations with groundtruth are expressed by a set of n
points S =

⋃n
i=1 gi(θ, s) (Fig. 3 (a)), where θ and s represent respectively the direction

and scale factor between the result point and a symbol i. We define next the probability
scores between the result point r and symbols

⋃n
i=1 gi as detailed in Fig. 3 (b). When

all symbols
⋃n

i=1 gi are equally distant (i.e s1 = s2 = ...si.. = sn), thus
⋃n

i=1 pi = 0.
In the case of a si = 0, thus the corresponding pi = 1. Otherwise, any other cases
0 < si < sj will correspond to probability scores 0 < pj < pi < 1.

The equations (1) (2) below give the mathematical details we employ to compute the
probability scores. For each gi, we compute the probability score pi to the result point r
as detailed in (1). To do it, we exploit the other symbols

⋃n
j=1,j �=i gj in the groundtruth.

We mean the values f
(

si

sj

)
corresponding to local probabilities gi to r, regarding gj .
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Fig. 3. (a) plot (θ, s) (b) probability scores

The function f
(

si

sj

)
must respect the conditions given in Table 3. In fact, there exists

different mathematical ways to define such a function (based on inverse, linear, cosinus
functions, etc.). We have employed here a gaussian function (2), as it is a common way
to represent random distributions. This function is set using a variance σ2 = 1, and
normalization parameters ky and kx. These parameters are defined in order to obtain
the key values f(x = 0) = 1 and f(x = 1) → 0. Fig. 4 gives plots of gaussian and
probability score functions to illustrate how kx and ky impact the values. The value
of ky is defined as

√
2π, to bound f(x = 0) at 1 (e0). Concerning kx, we determine

it using the approximation into a taylor serie of the cumulative distribution function
Φ0(x) =

∫ x

0 φ(x). We define kx when Φ0(x) = 1 − λ, with λ a precision defined
manually. In our experiments, we have fixed λ = 10−6 corresponding to kx = 3.9.

pi =
n∑

j=1,j �=i

f
(

si

sj

)
n − 1

(1)

f

(
x =

si

sj

)
=

ky√
2π

× e−
(kxx)2

2 (2)

Table 3. Table of function f(x = si
sj

)
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Fig. 4. Gaussian and probability score functions

3.4 Matching Algorithm

Once probability scores are computed, we look for relevant matchings between ground-
truth and results of a system. In order to make open interpretation of localization of
symbols, we provide characterization results using distribution plots. We compute dif-
ferent sets of matching results, according to the ranges of the probability scores. Final
results are displayed into distribution plots (Fig. 5 (a)), where the x axis corresponds to
score error ε (i.e. inverse of probability score ε = 1− p), and the y axis to performance
rates.

Fig. 5. (a) result plot (b) correspondence list

We compute different performance rates, Ts, Tf and Tm corresponding respectively
to single detections, false alarms and multiple detections (see Table 1.). The rate of
“misses cases” corresponds to 1 − Ts. To do it, we build-up a correspondence list be-
tween results and groundtruth as detailed in Fig. 5 (b). This correspondence list is bi-
partite, composed of nodes corresponding to the groundtruth

⋃n
i=1 gi and the results⋃q

j=1 rj . Our probability scores are given as undirected arcs
⋃nq

k=1 ak = (gi, rj , pij) of
nq size. We use these arcs to make the correspondences in the list in an incremental way,
by shifting the ε value from 0 to 1. An arc ak is added to the list when its pij ≥ 1 − ε.



A Performance Characterization Algorithm for Symbol Localization 267

For each ε value, the Ts and Tf rates are computed by browsing the list, and checking
the degrees of nodes

⋃n
i=1 dgi and

⋃q
j=1 drj , as detailed in (3), (4) and (5).

∀gi ↔ rj , dgi = drj = 1 → s = s + 1 (3)

Ts =
s

n
∀rj , drj = 0 → f = f + 1 (4)

Tf =
f

q

∀rj ↔ gi, drj > 1 ∨ dgi > 1 → m = m + 1 (5)

Tm =
m

q

4 Experiments and Results

In this section, we present experiments and results obtained using our algorithm. We
have applied it to evaluate the symbol localization system of [1]. This system relies on
a structural approach, using a two-step process.

First, it extracts topological and geometric features from a given image, and rep-
resents it using an ARG1 (Fig. 6). The image is preliminary vectorized into a set of
quadrilateral primitives. These primitives become nodes in the ARG (labels 1, 2, 3, 4),
and connections between become arcs. Nodes have, as attributes, relative lengths (nor-
malized between 0 and 1) whereas arcs have connection-type (L junction,T junction, X
junction, etc.) and relative angle (normalized between 0◦ and 90◦).

Fig. 6. Representation phase of [1]

In the second step, the system looks for potential regions of interest corresponding to
symbols. It detects parts of the ARG that may correspond to symbols i.e. symbol seeds.
Scores, corresponding to probabilities of being part of a symbol, are computed for all
edges and nodes of the ARG. They are based on features such as lengths of segments,
perpendicular and parallel angular relations, degrees of nodes, etc. The symbol seeds
are detected next during a score propagation process. This process seeks and analyzes

1 Attributed Relational Graph.
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Table 4. Dataset used for experiments

Fig. 7. Examples of test documents

the different shortest paths and loops between nodes in the ARG. The scores of all
the nodes belonging to a detected path are homogenized (propagation of the maximum
score to all the nodes in the path) until convergence, to obtain the seeds.

To test this system, we have employed datasets coming from the SESYD database2.
This database is composed of synthetic document images, with the corresponding
ground-truth, produced using the system described in [5]. This system allows the gener-
ation of synthetic graphic documents, containing non-isolated symbols in a real context.
It is based on the definition of a set of constraints, that permit to place the symbols on a
predefined background, according to the properties of a particular domain (architecture,
electronics, etc.). The SESYD database is composed of different collections, including
architectural floorplans, electrical diagrams, geographic maps, etc. In this work, we have
limited our experiments to subsets of this database, including documents from the elec-
trical and architectural domains. Table 4. gives details of the dataset we use, and Fig. 7
gives some examples of test documents.

Fig. 8 presents the characterization results we have obtained on floorplans, with vari-
ation of {Ts, Tf , Tm} rates. The system presents in A a good confidence for the detec-
tion results Ts ≤ 0.50, with an score error ε ≤ 0.05 and nearly none multiple detections
Tm ≤ 0.03. The best detection results is obtained in B with a Ts = 0.57, corresponding
to an score error of ε = 0.11. However, these detection results are joined to a Tf = 0.31,
highlighting a bad precision of the system. In addition, at this state confusions appear
in localization results with a Tm ≥ 0.20. This rate results in the merging of false alarms
with less confident results, as the false alarm rate goes down to Tf = 0.31. Up to this

2 http://mathieu.delalandre.free.fr/projects/sesyd/
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Fig. 8. Characterization results on floorplans

point, Ts dies down slowly, and for score error ε ≥ 0.21 in C the Ts and Tm curves
start to be diametrically opposite.

Fig. 9 gives results concerning electrical diagrams. The system presents a good con-
fidence in A, for ε ≤ 0.04 and Ts = Tf = 0.45. However, at this point the system
already does multiple detections with a Tm = 0.10. The best localization score is ob-
tained at B with ε = 0.13 and Ts = 0.62. Therefore, the best localization score is
better for electrical diagrams than floorplans. In addition, the system doesn’t make a

Fig. 9. Characterization results on electrical diagrams
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lot of false detections with a Tf = 0.13. However, multiple detections stay higher with
Tm = 0.30. Up to C, Ts decreases in linear way for score errors ε ≥ 0.23.

When comparing results obtained by the system [1] on these two application do-
mains, the ones on electrical diagrams are best. However, each of them illustrates spe-
cific failures of the system. The first is the high level of multiple detection appearing
on electrical diagrams. Certainly the systems could increase a lot its detection results,
by introducing split / merge procedures of detected regions of interest. The second con-
cerns the generated false alarms on floorplans. In order to reduce this problem, a point
to be improved in the system is to introduce a checking procedure of detected ROIs, to
reduce the hypothesis of localization.

5 Conclusions and Perspectives

In this paper we have presented an algorithm for performance characterization of object
localization systems. This algorithm has been applied in the context of symbol localiza-
tion, but we believe it could be applied to other problems (medical image segmentation,
mathematical formula recognition . . . ). It aims to propose a more “reliable” and “open”
solution to characterize the performance of systems, by offering the possibility to recon-
sider the localization results. It exploits only single points as the results of localization.
Then a probability score is computed for each matching between a localization point
and a groundtruth region, depending on the spatial distribution of the other regions in
the groundtruth. They will change locally for each result point. Characterization results
are given with detection rate/probability score plots, describing the sets of possible in-
terpretations of the localization results, according to a given confidence rate. We present
experiments and results obtained using our algorithm, to evaluate the symbol localiza-
tion system of [1]. These experiments have been done on a dataset of synthetic images
(with the corresponding groundtruth), composed of 200 document images and around
3861 symbols from electrical and architectural domains. We conclude about the per-
formance of this system, in terms of localization accuracy, precision level (false alarms
and multiple detections) on both datasets.

In future, we aim to take-forward our experimentations to evaluate the scalability
(large number of symbol models) and robustness (noisy images [13]) of systems. We
also plan to perform experiments with real datasets [4], and to compare the obtained
results with the synthetic ones. And, our final goal is the comparison of different symbol
localization systems. We plan to take benefit of the work done around the EPEIRES
project3, to look for potential participants interested in testing their systems with this
characterization approach.
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Abstract. This paper tries to sum up the discussions held during the
sessions of GREC’09, as well as at the final panel session. As it is always
good to know where you are coming from, the paper briefly takes a look
back at the discussions held two years earlier, before looking ahead at
the future challenges for our research community. A number of points
raised two years ago remain very much valid, but we also try to identify
some new grand challenges for the field of graphics recognition.

1 Introduction

In this paper, we will not repeat the brief summary of the history of graphics
recognition, which was presented in the report from the GREC’07 panel dis-
cussion [1]. The historical view of the reasons for gathering a specific document
analysis community, and within that a graphics recognition sub-group, remains
valid and the reader should keep it in mind in the thoughts raised here.

At the end of the GREC’09 workshop, a panel session was organized to wrap
up the numerous and lively discussions held throughout the sessions of the work-
shop, and try to come up with some more general conclusions. The panel mem-
bers were Young-Bin Kwon, George Nagy, Sitaram Ramachandrula, and Karl
Tombre. A number of workshop participants also contributed to the debate.

This article presents the main discussions and conclusions of the panel.

2 Looking Back: Some of Our 2007 Conclusions

“The only person who likes change is a baby with a wet diaper.”
Mark Twain

Traditionnally, we start by taking a look back at the “hot” topics discussed at
the 2007 panel. At that time, we identified the following categories:

2.1 Features

It becomes increasingly difficult to answer the question: which features dis-
tinguish graphics recognition from general pattern recognition problems? This

J.-M. Ogier, W. Liu, and J. Lladós (Eds.): GREC 2009, LNCS 6020, pp. 272–277, 2010.
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stems among other causes from the fact that we experience a deep convergence
with the methods used in content-based image retrieval. The specificities of
black-and-white images and of graphical information tend to become a detail
in this broader context.

We pointed out that one interesting contribution would be to work on the
characterization of various features for shape representation and recognition. In
that sense, graphics recognition can be at the forefront of putting together large-
scale repositories of features, so as to avoid the recurring appearance of “new”
features which are actually minor variations on old ideas.

2.2 User Interaction

We pointed out that little work had been done, in the area of user interaction,
on modeling the user, despite the fact that there are not many common fea-
tures between a general, low-technicity user and a highly specialized technician,
mastering the knowledge specific to a given application. This becomes a cru-
cial problem when we produce applications aimed at the general public, but
with complex user interaction which becomes accessible only after months of
training.

2.3 Large-Scale Applications

A lot of discussions addressed the specific challenges of building large-scale ap-
plications, i.e. scaling from an academic problem to a really useful system. It
was felt that this was not only an engineering problem but a cultural question
and one of scaling our approaches. The need for a true policy on software devel-
opment firmly rooted in the scientific achievements and tested on large datasets
becomes crucial; we have to include the composition with reusable sofware and
stress the building of production-quality code.

We also agreed that graphics recognition was still looking for its “killer appli-
cation”. One idea put forward was that a general sketching interface could be the
answer, or maybe a combined sketching/retrieval/recognition system, making it
possible to navigate in documentation by sketching simple examples of what is
being searched for. It was pointed out that the GREC community does not seem
to be very interested in dealing with digital documents such as PDF documents
or web graphics. This may stem from a lack of good opportunities, or be an
illustration of Mark Twain’s quote cited above...

2.4 Performance Evaluation

We were disappointed by the low number of participants in our contests, even
the more because this is an area where our community has often been showing
the path to the image analysis community at large. We agreed that beyond
the contests, we need to have open-source, robust benchmarking tools available
online, with a sufficient amount of ground-truthed data. The question remains
to know whether we have access to benchmarking data covering all our needs.
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We suggested to make the methods available as web services, so as to be
able to test the limits of new methods as soon as they are developed. Another
idea vented two years ago was to announce in advance a grand challenge for the
commmunity to work on.

3 Topics Discussed during the GREC’09 Workshop

“All progress is precarious, and the solution of one problem
brings us face to face with another problem.”

Martin Luther King Jr.

The workshop was a good opportunity to explore the variety of topics addressed
nowadays by the graphics recognition community. The format of the workshop,
the fact that it (still) gathers a significative part of the research teams active in
the area, makes it a good observatory for the state of the art.

3.1 Technical / Methodological Aspects

Segmentation of graphics document is the historical theme of GREC, maybe
also the only one for which you can be reasonably confident that you will see the
most advanced results at GREC! We had several nice presentations at GREC’09;
some of them dealt with vectorization, and especially the problem of robust arc
detection, as well as specific ad hoc improvements, including domain knowledge,
for various applications. Still, a very interesting question was raised during the
workshop: why do we insist on vectorizing our raw data? Is it just something
we have inherited from the “David Marr paradigm” or is it really necessary for
the problems we have to deal with? Another question was whether it still makes
sense to work mostly on binary images, whereas our raw data are often grey-level
or color images.

Another typical segmentation topic of our community is text-graphics sep-
aration. We had several presentations dealing directly or indirectly with this
question, including some nice applications such as the analysis of business cards
on mobile phones. Somebody pointed out in a very interesting way that we im-
prove our text-graphics separation methods because we have changed our focus:
we now do text detection, not image segmentation!

Symbol recognition and spotting has also been a very active domain for
many years already. Several papers addressed that area and questions asked
included the way of dealing with complex symbols made of simpler symbols (we
probably do not have robust approaches to that yet), the nature and the use
of the available context (which is often difficult to capture), and the recurring
search for genericity, which may be a kind of unreachable “Holy Grail” as it
makes much more sense to build ad hoc systems for specific application areas.

Due to the very nature of the data we have to deal with, structural pattern
recognition approaches are often a straightforward choice for many problems we
deal with. This workshop was no exception and we saw a number of contributions
using structural signatures, numeric signatures containing embedded graphs with
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the usual questions about graph edit distances, graph classification problems,
adjacency grammars used in sketching applications, spatial relations represented
in various ways. Using graphs necessarily leads to the general problems of graph
matching, sub-graph matching, and the numerous embeddings and/or heuristics
which aim at making these operations more efficient and applicable to large-scale
problems. Note that these are not problems specific to graphics recognition.

It was pointed out that despite the known limitations of structural methods,
they will remain useful for our problems for many reasons, including the struc-
tural and spatial nature of a lot of information we have to deal with, and the
fact that we often do not have sufficient learning data to be able to perform
statistical learning of our recognition methods.

Any recognition problem, be it solved by structural or statistical methods,
has to deal with a representation of the shapes to be recognized through appro-
priate features. With respect to our 2007 conclusions, we must acknowledge
that at GREC’09, we saw some very nice new results on features, signatures and
descriptors used in graphics recognition problems. But the question pointed out
two years ago remains very much valid, maybe even more so than two years ago:
which features distinguish graphics recognition from general pattern recognition
problems?

This question is also at the core of work on content-based indexing, where we
have some exciting results on our graphics-specific problems, but no real specific
methodology, compared to the large area of information indexing and spotting
in image databases.

Finally, our community remains active in performance evaluation and
contests, but we still have problems gathering participants, as pointed out two
years ago. On the positive side, our GREC databases are used as reference in
many papers. We still need to foster discussions about a broader policy of sharing
data used in our publications.

3.2 Applications

We had the opportunity to see a lot of applications during these workshop days.
Here is an overview of the variety encountered:

– Engineering drawings, architectural drawings, etc. do not seem to attract a
lot of interest these days.

– Specific diagrams or notations such as chemical diagrams or music notation
were more present; maybe this is a trend to move to very specialized areas,
far from the main trend where a lot of effort has already been done (including
with manual labor).

– There is a lot of interest in historical archives, i.e. legacy documents, often
drawn and/or written by hand, with the purpose of archival, indexing and
retrieval tasks.

– Ad hoc tasks such as identification and recognition of tables are addressed
more easily than full-fledged, large-scale applications.

– The interest for sketching interfaces, already largely present two years ago,
was confirmed at this workshop.
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4 Some Hot Topics

“It’s a long way to Tipperary, It’s a long way to go.
It’s a long way to Tipperary, To the sweetest girl I know!”

British music hall and marching song by Jack Judge

During the closing panel, we discussed several possible hot topics for the coming
years.

A first item was the recurring wish for methods capable of efficiently combin-
ing structural and statistical methods. Of course, this is not specific to graphics
recognition, but as said before, the very structural and spatial nature of the
information we work with makes structural methods quite natural in the com-
munity. Their efficient integration into methods which also take full advantage
of statistical learning and classification is certainly the right path to take.

As much as it was two years earlier, the need for the development of large-scale
applications remains a strong incentive. We need toolboxes of robust document
image processing algorithms. We need to make code and test data available. But
we often end up with the dilemma of the cost we are ready to pay, as academic
researchers, in order to develop professional-quality code.

Questions were also raised about the usefulness of the contest model for per-
formance evaluation. Wouldn’t it be desirable to stabilize noise models and eval-
uation metrics, make test databases available, maybe even have a consortium in
charge of maintaining them and delivering the service of performance evaluation
throughout the year.

Historical documents seem to become a major issue, but this is not specific
to GREC and we even wondered whether it was the right place to deal with the
issues which had been presented. The problems to be solved go all the way from
image processing for restoration purposes to large-scale indexing and retrieval,
based on the right features and descriptors, computed both from images, graphics
and text.

5 Food for Thought

Will the last person to leave graphics recognition
please turn off the lights?

Let us conclude this report by mentioning some broader questions which were
discussed at the panel:

– Is there life outside Google? Services such as those delivered by Google and
other major industry players have drastically changed the way we deal with
digitized information. How can we be reasonaly confident that we will not
discover one day that we discuss at GREC “new” research trends which
are already out there, available as a web service by one of these players?
Said in other words, how can an academic community interested in graphics
recognition have a real impact on large-scale applications for collections of
historical documents, for instance?
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– Can we define a Grand Challenge? In other fields (speech recognition, au-
tonomous vehicles, etc.) the scientific community has worked towards solving
a Grand Challenge, involving cooperation between different teams. This has
been a driving force towards progress in these fields. How could this kind
of higher goals be set in an area like graphics recognition? Would it make
sense for it to be specific to graphics recognition, or should it be a broader
problem?

– What is the value to end-users or to customers? More precisely, what are
the difficult questions for today’s users (i.e. those who use information), and
what partial answers do we have to these questions? Are we willing and
ready to consolidate these answers to bring real value, so as to have a real
impact?

Of course, these questions look more like open and general problems than like
a conclusion, but maybe the best way of concluding a panel is actually to leave
the audience with some food for future thought...
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