

Lecture Notes in Computer Science 6123
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jianying Zhou Moti Yung (Eds.)

Applied Cryptography
and Network Security

8th International Conference, ACNS 2010
Beijing, China, June 22-25, 2010
Proceedings

13

Volume Editors

Jianying Zhou
Institute for Infocomm Research
1 Fusionopolis Way, Singapore, 138632, Singapore
E-mail: jyzhou@i2r.a-star.edu.sg

Moti Yung
Google Inc. and Columbia University
Computer Science Department
New York, NY 10027, USA
E-mail: moti@cs.columbia.edu

Library of Congress Control Number: 2010928335

CR Subject Classification (1998): E.3, E.4, K.6.5, D.4.6, C.2, K.4.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-13707-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13707-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

ACNS 2010, the 8th International Conference on Applied Cryptography and
Network Security, was held in Beijing, China, during June 22-25, 2010. ACNS
2010 brought together individuals from academia and industry involved in mul-
tiple research disciplines of cryptography and security to foster the exchange of
ideas.

ACNS was initiated in 2003, and there has been a steady improvement in
the quality of its program over the past 8 years: ACNS 2003 (Kunming, China),
ACNS 2004 (Yellow Mountain, China), ACNS 2005 (New York, USA), ACNS
2006 (Singapore), ACNS 2007 (Zhuhai, China), ACNS 2008 (New York, USA),
ACNS 2009 (Paris, France). The average acceptance rate has been kept at around
17%, and the average number of participants has been kept at around 100.

The conference received a total of 178 submissions from all over the world.
Each submission was assigned to at least three committee members. Submis-
sions co-authored by members of the Program Committee were assigned to at
least four committee members. Due to the large number of high-quality sub-
missions, the review process was challenging and we are deeply grateful to the
committee members and the external reviewers for their outstanding work. Af-
ter extensive discussions, the Program Committee selected 32 submissions for
presentation in the academic track, and these are the articles that are included
in this volume (LNCS 6123). Additionally, a few other submissions were selected
for presentation in the non-archival industrial track. The prize for the best stu-
dent paper was awarded to Mehdi Tibouchi for his paper “On the Broadcast
and Validity-Checking Security of PKCS#1 v1.5 Encryption”, co-authored with
Aurelie Bauer, Jean-Sebastien Coron, David Naccache, and Damien Vergnaud.

We would like to thank General Chair Yongfei Han and the local organizing
team from Beijing University of Technology and ONETS for their efforts in
putting this conference together. Our special thanks are due to Ying Qiu for
managing the Easy Chair system for paper submission and review. We would
also like to thank all the authors who submitted papers and the participants
from all over the world who chose to honor us with their attendance.

April 2010 Jianying Zhou
Moti Yung

ACNS 2010

8th International Conference on
Applied Cryptography and Network Security

Beijing, China
June 22–25, 2010

Organized and Sponsored by

Beijing University of Technology & ONETS, China

General Chair

Yongfei Han BJUT & ONETS, China

Program Chairs

Jianying Zhou Institute for Infocomm Research, Singapore
Moti Yung Columbia University & Google, USA

Program Committee

Michel Abdalla ENS, France
Ben Adida Harvard University, USA
N. Asokan Nokia, Finland
Joonsang Baek I2R, Singapore
Lucas Ballard Google, USA
Feng Bao I2R, Singapore
Lujo Bauer Carnegie Mellon University, USA
Alex Biryukov Uni. of Luxembourg, Luxembourg
Alexandra Boldyreva Georgia Tech, USA
Colin Boyd QUT, Australia
Levente Buttyan BME, Hungary
Liqun Chen HP Laboratories, UK
Songqing Chen George Mason University, USA
Debra Cook Telcordia, USA
Cas Cremers ETH Zurich, Switzerland
Sabrina De Capitani

di Vimercati UNIMI, Italy
Robert Deng SMU, Singapore

VIII Organization

Orr Dunkelman Weizmann Institute, Israel
Dieter Gollmann TU Hamburg-Harburg, Germany
Stefanos Gritzalis University of the Aegean, Greece
Marc Joye Technicolor, France
Charanjit Jutla IBM, USA
Angelos Keromytis Columbia University, USA
Xuejia Lai Shanghai Jiao Tong University, China
Dong Hoon Lee Korea University, Korea
Ninghui Li Purdue University, USA
Yingjiu Li SMU, Singapore
Benoit Libert UCL, Belgium
Dongdai Lin Institute of Software, China
Peng Liu Pennsylvania State University, USA
Javier Lopez University of Malaga, Spain
Mark Manulis TU Darmstadt, Germany
Fabio Martinelli CNR, Italy
Atefeh Mashatan EPFL, Switzerland
Paolo Milani Technical University of Vienna, Austria
Chris Mitchell RHUL, UK
Atsuko Miyaji JAIST, Japan
Tatsuaki Okamoto NTT, Japan
Alina Oprea RSA Laboratories, USA
Elisabeth Oswald University of Bristol, UK
Benny Pinkas University of Haifa, Israel
Pandu Rangan Indian Institute of Technology, India
Vincent Rijmen TU Graz, Austria
Mark Ryan University of Birmingham, UK
Ahmad-Reza Sadeghi Ruhr-Uni. Bochum, Germany
Reihaneh Safavi-Naini University of Calgary, Canada
Palash Sarkar Indian Statistical Institute, India
Nitesh Saxena Poly Institute of New York Uni., USA
Radu Sion Stony Brook University, USA
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi FUN, Japan
Duncan Wong City University of Hong Kong, China

Organizing Chairs

Jian Li Beijing University of Technology, China
Yu Wang ONETS, China

Publicity Chairs

Javier Lopez University of Malaga, Spain
Tsuyoshi Takagi FUN, Japan
Sijin Li ONETS, China

Organization IX

Steering Committee

Yongfei Han BJUT & ONETS, China
Moti Yung Columbia University & Google, USA
Jianying Zhou Institute for Infocomm Research, Singapore

External Reviewers

Gergely Acs
Isaac Agudo
Efthimia Aivaloglou
Mansoor Alicherry
Elli Androulaki
Myrto Arapinis
Frederik Armknecht
Tomoyuki Asano
Elias Athanasopoulos
Man Ho Au
Jean-Philippe Aumasson
Sumeet Bajaj
Collard Baudoin
Bruno Blanchet
Marina Blanton
Shaoying Cai
Tianjie Cao
Bogdan Carbunar
Julien Cathalo
Sambuddho Chakravarty
Shiping Chen
Wei Cheng
Kyu Young Choi
Tom Chothia
Cheng-Kang Chu
Ji Young Chun
Gabriele Costa
Gabriela Cretu
Ning Ding
Alexandra Dmitrienko
Ming Duan
Mark Felegyhazi
Carmen Fernandez-Gago
Dario Fiore
Martin Gagne
Zheng Gong
Juan Gonzalez

Choudary Gorantla
Tzipora Halevi
Christoph Herbst
Shlomo Hershkop
Tamas Holczer
Qiong Huang
Toshiyuki Isshiki
Stas Jarecki
Ayman Jarrous
Seny Kamara
Giorgos Karopoulos
Vasileios P. Kemerlis
Bum Han Kim
Kitak Kim
Ilya Kizhvatov
Miroslav Knezevic
Clemens Kolbitsch
Deguang Kong
Elisavet Konstantinou
Woo Kwon Koo
Leanid Krautsevich
Swarun Kumar
Virendra Kumar
Francesco la Torre
Fabien Laguillaumie
Aliaksandr Lazouski
Hyun Sook Lee
Kwangsu Lee
Fagen Li
Tieyan Li
Wei Li
Yan Li
Jingqiang Lin
Hanwu Liu
Joseph. K. Liu
Mei Cheng Liu
Xianhui Lu

Christoph Ludwig
Yiyuan Luo
Hans Lohr
Ilaria Matteucci
Marcel Medwed
Daisuke Moriyama
Andreas Moser
Francisco Moyano
Pablo Najera
Toru Nakanishi
Kris Narayan
Kris Narayan
Matthias

Neugschwandtner
Ching Yu Ng
Ivica Nikolic
Geon Tae Noh
Adam O’Neill
Wakaha Ogata
Katsuyuki Okeya
Kazumasa Omote
Khaled Ouafi
Carles Padro
Jung Ha Paik
Vasilis Pappas
Sai Tej Peddinti
Chris Peikert
Kun Peng
Christophe Petit
Thomas Plantard
Bertram Poettering
Mariana Raykova
Tzachy Reinman
Evangelos Reklitis
Ruben Rios
Panagiotis Rizomiliotis
Rodrigo Roman

X Organization

Bagus Santoso
Werner Schindler
Michael Schneider
Thomas Schneider
Dominique Schroder
Sharmila Deva selvi
Nicolas Sendrier
Daniele Sgandurra
Siamak Shahandashti
Jun Shao
Takeshi Shimoyama
Francesco Sica
Stelios Sidiroglou
Matt Smart
Nigel Smart
Ben Smyth
Miroslava Sotakova
Douglas Stebila
Thorsten Strufe
Chunhua Su

Xiaorui Sun
Martin Szydlowski
Kouya Tochikubo
Ashraful Tuhin
Michael Tunstall
Berkant Ustaoglu
Istvan Vajda
Serge Vaudenay
Jose Luis Vivas
Sree Vivek
Jonathan Voris
Camille Vuillaume
Christian Wachsmann
Zhongmei Wan
Xinyuan Wang
Ralf-Philipp Weinmann
Zhongming Wu
Fubiao Xia
Jing Xu
Guanhua Yan

Qiang Yan
Guomin Yang
Artsiom Yautsiukhin
Kuo-Hui Yeh
Kazuki Yoneyama
Junfeng Yu
Tsz Hon Yuen
Angelika Zavou
Bin Zhang
Min Zhang
Mingwu Zhang
Shengzhi Zhang
Xinwen Zhang
Yunlei Zhao
JinMin Zhong
Chunfang Zhou
Hong-Sheng Zhou
Bo Zhu

Table of Contents

Public Key Encryption

On the Broadcast and Validity-Checking Security of pkcs#1 v1.5
Encryption . 1

Aurélie Bauer, Jean-Sébastien Coron, David Naccache,
Mehdi Tibouchi, and Damien Vergnaud

How to Construct Interval Encryption from Binary Tree Encryption 19
Huang Lin, Zhenfu Cao, Xiaohui Liang, Muxin Zhou,
Haojin Zhu, and Dongsheng Xing

Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions 35
Xavier Boyen and Brent Waters

Digital Signature

Trapdoor Sanitizable Signatures Made Easy . 53
Dae Hyun Yum, Jae Woo Seo, and Pil Joong Lee

Generic Constructions for Verifiably Encrypted Signatures without
Random Oracles or NIZKs . 69

Markus Rückert, Michael Schneider, and Dominique Schröder

Redactable Signatures for Tree-Structured Data: Definitions and
Constructions . 87

Christina Brzuska, Heike Busch, Oezguer Dagdelen, Marc Fischlin,
Martin Franz, Stefan Katzenbeisser, Mark Manulis, Cristina Onete,
Andreas Peter, Bertram Poettering, and Dominique Schröder

Block Ciphers and Hash Functions

Impossible Differential Cryptanalysis on Feistel Ciphers with SP and
SPS Round Functions . 105

Yuechuan Wei, Ping Li, Bing Sun, and Chao Li

Multi-trail Statistical Saturation Attacks . 123
Baudoin Collard and Francois-Xavier Standaert

Multiset Collision Attacks on Reduced-Round SNOW 3G and SNOW
3G⊕ . 139

Alex Biryukov, Deike Priemuth-Schmid, and Bin Zhang

High Performance GHASH Function for Long Messages 154
Nicolas Méloni, Christophe Négre, and M. Anwar Hasan

XII Table of Contents

Side-Channel Attacks

Principles on the Security of AES against First and Second-Order
Differential Power Analysis . 168

Jiqiang Lu, Jing Pan, and Jerry den Hartog

Adaptive Chosen-Message Side-Channel Attacks . 186
Nicolas Veyrat-Charvillon and François-Xavier Standaert

Secure Multiplicative Masking of Power Functions . 200
Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater

Zero Knowledge and Multi-party Protocols

Batch Groth–Sahai . 218
Olivier Blazy, Georg Fuchsbauer, Malika Izabachène,
Amandine Jambert, Hervé Sibert, and Damien Vergnaud

Efficient and Secure Evaluation of Multivariate Polynomials and
Applications . 236

Matthew Franklin and Payman Mohassel

Efficient Implementation of the Orlandi Protocol . 255
Thomas P. Jakobsen, Marc X. Makkes, and Janus Dam Nielsen

Improving the Round Complexity of Traitor Tracing Schemes 273
Aggelos Kiayias and Serdar Pehlivanoglu

Key Management

Password Based Key Exchange Protocols on Elliptic Curves Which
Conceal the Public Parameters . 291

Julien Bringer, Hervé Chabanne, and Thomas Icart

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman with
Minimal Overhead . 309

Rosario Gennaro, Hugo Krawczyk, and Tal Rabin

Deniable Internet Key Exchange . 329
Andrew C. Yao and Yunlei Zhao

Authentication and Identification

A New Human Identification Protocol and Coppersmith’s Baby-Step
Giant-Step Algorithm . 349

Hassan Jameel Asghar, Josef Pieprzyk, and Huaxiong Wang

Table of Contents XIII

Secure Sketch for Multiple Secrets . 367
Chengfang Fang, Qiming Li, and Ee-Chien Chang

A Message Recognition Protocol Based on Standard Assumptions 384
Atefeh Mashatan and Serge Vaudenay

Privacy and Anonymity

Affiliation-Hiding Key Exchange with Untrusted Group Authorities 402
Mark Manulis, Bertram Poettering, and Gene Tsudik

Privacy-Preserving Group Discovery with Linear Complexity 420
Mark Manulis, Benny Pinkas, and Bertram Poettering

Two New Efficient PIR-Writing Protocols . 438
Helger Lipmaa and Bingsheng Zhang

Regulatory Compliant Oblivious RAM . 456
Bogdan Carbunar and Radu Sion

RFID Security and Privacy

Revisiting Unpredictability-Based RFID Privacy Models 475
Junzuo Lai, Robert H. Deng, and Yingjiu Li

On RFID Privacy with Mutual Authentication and Tag Corruption 493
Frederik Armknecht, Ahmad-Reza Sadeghi, Ivan Visconti, and
Christian Wachsmann

Internet Security

Social Network-Based Botnet Command-and-Control: Emerging
Threats and Countermeasures . 511

Erhan J. Kartaltepe, Jose Andre Morales, Shouhuai Xu, and
Ravi Sandhu

COP: A Step toward Children Online Privacy . 529
Wei Xu, Sencun Zhu, and Heng Xu

A Hybrid Method to Detect Deflation Fraud in Cost-Per-Action Online
Advertising . 545

Xuhua Ding

Author Index . 563

On the Broadcast and Validity-Checking
Security of pkcs#1 v1.5 Encryption

Aurélie Bauer1, Jean-Sébastien Coron2, David Naccache1,
Mehdi Tibouchi1,2,�, and Damien Vergnaud1

1 École normale supérieure – C.N.R.S. – I.N.R.I.A.
Département d’informatique, Groupe de cryptographie

45, rue d’Ulm, f-75230 Paris Cedex 05, France
{aurelie.bauer,david.naccache,mehdi.tibouchi,damien.vergnaud}@ens.fr

2 Université du Luxembourg
6, rue Richard Coudenhove-Kalergi
l-1359 Luxembourg, Luxembourg
jean-sebastien.coron@uni.lu

Abstract. This paper describes new attacks on pkcs#1 v1.5, a depre-
cated but still widely used rsa encryption standard.

The first cryptanalysis is a broadcast attack, allowing the opponent to
reveal an identical plaintext sent to different recipients. This is nontrivial
because different randomizers are used for different encryptions (in other
words, plaintexts coincide only partially).

The second attack predicts, using a single query to a validity check-
ing oracle, which of two chosen plaintexts corresponds to a challenge
ciphertext. The attack’s success odds are very high.

The two new attacks rely on different mathematical tools and under-
line the need to accelerate the phase out of pkcs#1 v1.5.

Keywords: pkcs#1 v1.5, Encryption, Broadcast Encryption, Crypt-
analysis.

1 Introduction

pkcs stands for Public-Key Cryptography Standards [15]. pkcs is a large cor-
pus of specifications covering rsa encryption, Diffie-Hellman key agreement,
password-based encryption, syntax (extended-certificates, cryptographic mes-
sages, private-key information and certification requests) and selected attributes.
pkcs was initially developed by rsa Laboratories, Apple, Digital, Lotus, Mi-
crosoft, mit, Northern Telecom, Novell and Sun and regularly updated since.
Today, pkcs has become part of several standards and of a wide range of secu-
rity products including Internet Privacy-Enhanced Mail.

Amongst the pkcs collection, pkcs#1 v1.5 describes a particular encoding
method for rsa encryption called rsaEncryption. In essence, the protected
� This research was completed while the fourth author was visiting the Okamoto

Research Laboratory at the NTT Information Sharing Platform (Tokyo, Japan).

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 1–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Bauer et al.

data is first encrypted under a randomly chosen key κ using a symmetric block-
cipher (e.g. a triple des in cbc mode) then κ is rsa-encrypted (wrapped) with
the recipient’s public key.

In 1998, Bleichenbacher [5] published an adaptive chosen-ciphertext attack
against pkcs#1 v1.5 capable of recovering arbitrary plaintexts from about half
a million ciphertexts. Although active adversary models are generally regarded
as theoretical concerns, Bleichenbacher’s attack makes use of an oracle that only
detects conformance with respect to the padding format, a real-life assumption
that resulted in a practical threat. pkcs#1 v1.5 was subsequently updated (re-
lease 2.0 [16]) and patches were issued to users wishing to continue using the old
version of the standard. As we write these lines1 and despite its vulnerabilities,
pkcs#1 v1.5 is still widely used. Millions of (patched) pkcs#1 v1.5 programs re-
main deployed. Provably secure algorithms such as rsa-oaep [11] and rsa-kem

are recommended replacements, but not widespread yet [17].
Independently, there exist several well-known chosen-plaintext attacks on rsa-

based encryption schemes [8,6]. These typically enable an attacker to decrypt
ciphertexts at moderate cost without factoring the public modulus. The most
powerful cryptanalytic tool applicable to low exponent rsa is certainly an at-
tack due to Coppersmith [7]. As a matter of fact, one major reason for adding
randomness to encrypted messages2 is to thwart such attacks.

The last publication concerning pkcs#1 v1.5’s security [9] presented a some-
what atypical attack allowing the opponent to retrieve plaintexts ending by
enough zero bits.

This paper describes two new weaknesses in pkcs#1 v1.5:

– The possibility to predict, using a single decryption query, which of two
chosen plaintexts corresponds to a challenge ciphertext. The attack’s success
odds are very high.

– A broadcast attack allowing to decrypt an identical message sent to several
recipients.

From a mathematical perspective, the two techniques are totally different. The
authors regard these as a wake-up call to accelerate the phase out of pkcs#1 v1.5.

2 pkcs#1 v1.5 Encryption

We assume that the reader is familiar with the traditional public-key encryption
definitions and security model preliminaries. For the sake of completeness we
refer the reader to Appendix A.

2.1 The pkcs#1 v1.5 Encoding Function

pkcs#1 v1.5 describes a particular encoding method (rsaEncryption) for rsa

encryption [20]. Consider an rsa modulus N , and let k denote its byte-length
1 November 2009.
2 Besides attempting to achieve indistinguishability.

On the Broadcast and Validity-Checking Security 3

(i.e. 28(k−1) < N < 28k). Let m be an |m|-byte message with |m| < k − 11. The
pkcs#1 v1.5 padding μ(m) of m is defined as follows:

1. A randomizer r consisting in k − 3 − |m| ≥ 8 nonzero bytes is generated
uniformly at random;

2. μ(m) = μ(m, r) is the integer converted from the octet-string:

μ(m, r) = 000216||r||0016||m (1)

(the leading 00 octet guarantees that the encryption block is an integer
smaller than N).

The encryption of a message m of |m| < k − 11 bytes is defined as

c = μ(m, r)e mod N

for some randomizer r of k − 3− |m| nonzero bytes.
To decrypt c ∈ Z∗

N , compute cd mod N , convert the result to a k-byte octet-
string and parse it according to equation (1). If the string cannot be parsed
unambiguously or if r is shorter than eight octets, the decryption algorithm D
outputs ⊥; otherwise, D outputs the plaintext m.

2.2 Previous Attacks on pkcs#1 v1.5

In 1998, Bleichenbacher [5] published an attack on pkcs#1 v1.5 capable of
recovering arbitrary plaintexts from a large number of ciphertexts validation
queries. This attack established that pkcs#1 v1.5 is not �-GOAL-ATTACK for
a large3 �, GOAL ∈ {OW, IND, NM} and ATTACK ∈ {VCA, CCA} (see Appendix
A.2 for definitions of these security notions).

In 2000, Coron, Naccache, Joye and Paillier [9] introduced two new CPAs on
pkcs#1 v1.5. The first attack can be considered as a IND-CPA when e is small
(for plaintext ending by sufficiently many zeroes). The second attack applies
to arbitrary e, provided that |m| is large and most message bits are zeroes.
Thus pkcs#1 v1.5 is not GOAL-CPA for a small e or a large |m|, for GOAL ∈
{IND, NM}.

The previous crytanalytic results are summarized in Figure 1. UBK-CPA is
equivalent to Factoring but establishing the UBK-VCA and UBK-CCA security
is equivalent to proving (or refuting) the equivalence of the factoring and the
RSA Problem (which is a long-standing open question in cryptography). In the
rest of the paper, we will study the remaining security notions and prove that
pkcs#1 v1.5 is:

– OW-CPA assuming the intractability of the RSA problem (§ 3);
– not OW-CCA for � = 2 (§ 3);
– not NM-CPA (§ 4.1);
– not IND-VCA for � = 1 (§ 4.2);
– not OW-CPA in a multi-user setting (§ 5).

3 3 · 105 < � < 2 · 106 for 512 < log2N < 1024.

4 A. Bauer et al.

UBK-CCA ⇐= UBK-VCA ⇐= UBK-CPA

= Factoring
⇓ ⇓ ⇓

OW-CCA ⇐= ����
OW-VCA ⇐= OW-CPA

large � ([5])
⇓ ⇓ ⇓

IND-CCA ⇐= ����
IND-VCA ⇐= ����

IND-CPA

large � ([5]) small e or large |m| ([9])
⇓ ⇓ ⇓

NM-CCA ⇐= NM-VCA ⇐= NM-CPA

Fig. 1. pkcs#1 v1.5 Security

3 On pkcs#1 v1.5’s OW-CPA-Security

In this paragraph, we prove the following result:

Proposition 1. The OW-CPA security of pkcs#1 v1.5 is equivalent to the RSA
Problem.

In [10, Lemma 2], Coron, Joye, Naccache and Paillier proved that for suitable
parameters, the existence of an algorithm that on input y ∈ Z∗

N outputs the
k1 least significant bits of yd mod N is equivalent to the existence of an rsa

inverter. Following their approach, we prove the following lemma:

Lemma 1. Let A be a OW-CPA-adversary against pkcs#1 v1.5 with success
probability ε within time τ , with uniformly distributed messages of (maximum)
length k − 11. There exists an algorithm B that solves the RSA Problem with
success probability ε′ within time τ ′, where:{

ε′ ≥ η2 · ε2 − 2−kε

τ ′ ≤ 2 · τ + poly(k)

where η is a constant independent of k and η ≥ 5 · 10−8.

Proof. Let A be a OW-CPA-adversary against pkcs#1 v1.5 with success prob-
ability ε within time τ . We construct an algorithm B that on input y ∈ Z∗

N

outputs yd with success probability ε′ within time τ ′:

1. B picks α ∈ Z∗
N uniformly at random;

2. B sets y0 = y and y1 = y · αe

3. Let us denote, for i ∈ {0, 1}:

yd
i = ωi · 2β + mi

with β = 8(k− 11). yi is a valid pkcs#1 v1.5 ciphertext if ωi = 0002||ri||00
where ri is a 8-(nonzero)-octet string. This happens with probability η ≥
(255/256)8 · 2−24. If this happens, then with probability ε, A will return mi

on input yi (for i ∈ {0, 1}).

On the Broadcast and Validity-Checking Security 5

4. Therefore with probability at least (ηε)2, we obtain:

α(ω0 · 2β + m0) = ω12β + m1 mod N.

Letting c1 = 2−β(αm0 −m1) mod N , we get the equation in (ω0, ω1):

ω1 − α · ω0 = c1 mod N (2)

From [10, Lemma 3], there exists an algorithm that given this system will output
a solution (ω0, ω1) (should such a solution exist) with probability at least 1−2−k

on the choice of α. ��
Using the same technique, this can be extended to messages of different length,
with a possibly higher constant loss in the reduction.

As a byproduct of the previous proof one immediately gets that:

Proposition 2. pkcs#1 v1.5 is not 2-OW-CCA.

Proof. Thanks to rsa’s homomorphic properties, an adversary can mask the
challenge ciphertext c as c′ = cre for some random r and with two decryption
oracle queries, compute the e-th root x′ of c′ as in the previous proof. Then
x = x′/r is the e-th root of c from which, the adversary retrieves readily the
plaintext. ��

4 pkcs#1 v1.5 Malleability and Indistinguishability

We now show that μ is neither NM-CPA-secure nor IND-VCA-secure. The general
idea is the following. Let m be some message to be encrypted, and μ(m) a
corresponding pkcs#1 v1.5 padded encryption block. If m has Z > 2 trailing
zero bits, then μ(m) is divisible by 2Z , and μ(m)− μ(m)/2Z mod N has a good
probability of still being a valid encryption block. This is not usually the case
when the Z lsbs of m are not all zero.

Let c = μ(m)e mod N be a ciphertext of some message m. If m has Z > 2
trailing zeroes, c′ = c · (1−2−Z)e mod N will often be a valid ciphertext of some
other message m′ which can be related to m: this contradicts non-malleability
under chosen plaintext attack. Moreover, if one is granted one query to a validity
oracle, it is possible to distinguish ciphertexts of plaintexts with trailing zeroes
and ciphertexts from plaintexts whose lsbs are not all zero: this contradicts
indistinguishability under validity checking attack. Note that if i queries are
allowed, the distinguishing success odds can quickly approach one by iterating
the test with c′i = c · (i− 2−Z)e mod N for i = 1, 2, . . .

We will develop this idea in further detail in the coming sections.

4.1 On pkcs#1 v1.5’s NM-CPA Security

Let k be the byte-size of N , Z = 4k, and M a positive integer such that M+Z+1
is a multiple of 8 and (M + Z + 1)/8 < k − 11. We consider messages of the
following form:

m = m̄︸︷︷︸
M bits

‖12‖ 0 · · ·02︸ ︷︷ ︸
Z zero bits

6 A. Bauer et al.

LetM denote the uniform distribution over messages of this form. Furthermore,
we define a relation R over messages of length l = M + Z + 1 as follows: for
any l-bit two messages m1, m2 (not necessarily of the previous form), R(m1, m2)
holds if and only if the M msbs of m1 and m2 coincide. In particular, for any
given message m2, there is exactly one m1 ∈M such that R(m1, m2).

Now, consider m ←M. We can write μ(m) · (1− 2−Z) as:

000216‖r‖0016‖m̄‖12‖ 0 · · ·02
− 000216‖r‖0016‖m̄‖12
= 000216‖r‖0016‖m̄‖02‖ some digits · · · some digits

Hence, μ(m) · (1− 2−Z) = μ(m′) for some message m′
= m such that R(m, m′).
Consider, the NM-CPA adversary A which outputs sampling algorithm M

in the setup stage, and transforms a challenge ciphertext c into c′ = c · (1 −
2−Z)e mod N . A’s advantage is:

AdvNM-CPA
A = Pr[R(m, m′)]− Pr[m0

$←M;R(m0, m
′)] = 1− 2−M ≥ 1/2

which is non-negligible. Therefore, pkcs#1 v1.5 encryption is not NM-CPA-
secure.

Noted that A’s advantage is, in fact ∼ 1. For a 1024-bit modulus and a 128
bit randomizer, we have M = 383, making it exceedingly unlikely that A will
ever fail.

4.2 On pkcs#1 v1.5’s IND-VCA Security

We now show how to contradict ciphertext indistinguishability under validity
checking attack using a single oracle query. There are two natural types of va-
lidity oracles: one which determines whether a given query is a valid ciphertext
associated to a plaintext of any length, and the other which also checks message
length. We can always contradict IND-VCA-security in the non-length-checking
case (which is the one considered in Bleichenbacher’s attack [5]) with a single
oracle query. Furthermore, if the byte-length of the randomizer is constant, as
permitted by the pkcs#1 v1.5 standard, it is also possible to break IND-VCA-
security with a single query to a length-checking oracle. Both attacks stem from
the following result.

Proposition 3. Let c = μ(m)e mod N be the ciphertext associated to some
byte-string message m, ω the byte-length of the randomizer and c′ = c · (1 −
2−4)e mod N .

1. If the least significant nibble of m is not 016, then c′ is never a valid cipher-
text.

2. If m is a message consisting of a string of 0016 bytes, then c′ is a valid
ciphertext with probability at least 0.47. c′ is a valid ciphertext corresponding
to a message of the same length as m with probability at least:

64
1445

(
239
255

)ω−1

On the Broadcast and Validity-Checking Security 7

Proof. Starting with the first assertion, consider a message m such that c′ is a
valid ciphertext. This implies that μ(m)−μ(m) · 2−4 mod N is a valid encoding
string that, in particular, begins with the same 000216 pattern as μ(m).

If, for an integer x, we denote by x̄ the only integer in (−N/2, N/2) such that
x ≡ x̄ mod N , it follows that:

|μ(m) · 2−4 mod N | < 28k−16

Consider the set S of residue classes x mod N such that |x̄| < 28k−16. Clearly,
|S| = 28k−15−1. On the other hand, let T + be the set consisting of k-byte strings
of the form 00016‖u‖016, and T be the union of T + and −T + (where opposites
are taken modN). We also have |T | = 28k−15 − 1 and T maps into S under
multiplication by 2−4 mod N . Since multiplication by 2−4 is a permutation of
ZN , we infer that (y · 2−4 mod N) ∈ S if and only if y ∈ T .

In particular, if c′ is a valid ciphertext, we get μ(m) ∈ T . By inspection of
its top bits, we see that μ(m) cannot be in −T +, so it has to be in T +. Its
least-significant nibble must thus be 016 as required.

Turning now to the second assertion, let m be the zero-message of some fixed
byte-length. Write the encryption block μ(m) as follows:

μ(m) = 000216‖r2ω−1‖r2ω−2‖ · · · ‖r1‖r0‖0016‖00 · · ·0016

where r0, . . . , r2ω−1 are randomizer’s nibbles. Recall that the randomizer bytes
r2j‖r2j+1 are chosen uniformly and independently at random in the range 0116,
. . . , FF16.

Assuming that r2ω−1 is at least 4 (which happens with probability (256 −
4 × 16)/255 = 64/85, and which we will henceforth assume), we can write (1 −
2−4)μ(m) as:

000216 ‖ r2ω−1 ‖ r2ω−2 ‖ · · · ‖ r1 ‖ r0 ‖ 0016 ‖ 00 · · ·0016
− 000016 ‖ 216 ‖ r2ω−1 ‖ · · · ‖ r2 ‖ r1 ‖ r0‖016 ‖ 00 · · ·0016
= 000216 ‖ r′2ω−1 ‖ r′2ω−2 ‖ · · · ‖ r′1 ‖ r′0 ‖ s ‖ 00 · · ·0016

where r′j ≡ rj − rj+1 − κj mod 16 for some carry bit κj .
Then, μ′ = (1 − 2−4)μ(m) is a valid encoding block if and only if the first 8

randomizer bytes, namely r′2ω+1−2j‖r′2ω−2j , j = 1, . . . , 8, are all nonzero. μ′ is a
valid encoding block for a message of the same length as m (or for short, “strongly
valid”) if and only if s = 0 and all the padding bytes r′2j+1‖r′2j , j = 0, . . . , ω− 1,
are nonzero. We will find an explicit lower bound for the probability of these
events.

Note first that a sufficient condition for r′2j+1‖r′2j to be nonzero is that r′2j+1
=
0. This nibble is zero if and only if r2j+2 ≡ r2j+1 − κ2j+1. Now r2j+2 is picked

8 A. Bauer et al.

independently of r2j+1, since they belong to different bytes; it is also independent
of κ2j+1, which only depends on lower order bytes. Consequently:

Pr[r′2j+1 = 0] =
15∑

ρ=0

Pr[r2j+2 = ρ] · Pr[r2j+1 − κ2j+1 ≡ ρ mod 16]

≤ max
ρ

Pr[r2j+2 = ρ] =
16
255

and this bound still holds conditionally to any assignment of the lower order
nibbles r′2i+1, i < j. Therefore:

Pr[μ′ is valid] ≥ Pr[r2ω−1 ≥ 4 ∧ r′2ω−3
= 0 ∧ r′2ω−5
= 0 ∧ · · · ∧ r′2ω−15
= 0]

≥ 64
85
·
(

1− 16
255

)7

≥ 0.47

Furthermore:

Pr[μ′ is strongly valid] ≥ Pr[r2ω−1 ≥ 4 ∧ r′2ω−3
= 0 ∧ · · · ∧ r′1
= 0 ∧ r0 = 0]

≥ 64
85
·
(

1− 16
255

)ω−1

· 15
255

=
64

1445
·
(

239
255

)ω−1

The corresponding validity assertions for c′ follow immediately. ��

Consider the IND-VCA adversary A defined as follows. In the setup stage, A
outputs two equal-length messages m0, m1 with m1 not zero-terminated (e.g.
00 · · ·000116) and m0 consisting of 0016 bytes only. Then, upon receiving a chal-
lenge ciphertext c = μ(mb)e mod N , A makes a single oracle query and outputs
b′ = 0 or 1 according to whether c′ = c · (1 − 2−4) mod N is a valid ciphertext
or not. Its advantage is then:

AdvIND-VCA
A = Pr[b′ = 0|b = 0]− Pr[b′ = 1|b = 0] = Pr[b′ = 0|b = 0]− 0

≥
{

0.47 if the oracle doesn’t check message length
64

1445 ·
(239

255

)ω−1 otherwise

which is non-negligible. In the length-checking case, it is over 2.8% (resp. 1.6%)
for 64-bit (resp. 128-bit) randomizers.

In the non-length-checking case, we can obtain an even better advantage using
c′ = c·(1−2−8) mod N (shifting by 8 bits instead of 4). The proof works similarly
provided that N satisfies N > 28k−7, which is not required by the pkcs#1 v1.5
standard but is usually verified in practice. This yields an advantage of at least:

252
255

·
(

254
255

)7

> 0.96

On the Broadcast and Validity-Checking Security 9

5 Broadcast Attacks on pkcs#1 v1.5

We now examine the security of pkcs#1 v1.5 in a multiple users context.
In such a scenario, i.e. when broadcast encryption is performed, the sender

wishes to transmit the same message m to � parties P1, . . . , P�. As each party
has its own key pki = (e, Ni) (with a common public exponent e), the sender
encrypts m using all the pki’s and sends the resulting ciphertexts c1, . . . , c� to the
corresponding recipients. It has long been known that textbook rsa encryption
should not be used in such a context, since an attacker can easily recover the
plaintext using the Chinese Remainder Theorem as long as � ≥ e. Therefore, m
has to be padded before applying the rsa function, and the padding has to be
different for each recipient.

In 1988, H̊astad [12] showed that using different linear paddings μi(m) for all
parties is not enough to guarantee security. Indeed, when e is small, e ciphertexts
are again sufficient to efficiently recover m provided that the encoding functions
μi are known to the attacker. To achieve this result, H̊astad expressed the attack
in terms of finding small roots of a univariate modular polynomial, which he
accomplishes using Coppersmith’s techniques [7].

H̊astad’s attack does not apply to pkcs#1 v1.5, since the padding used for
a given recipient is random, and is thus unknown to an attacker. The following
sections will overcome this difficulty. Our main result is as follows:

Proposition 4. Let c1, . . . , c� be � pkcs#1 v1.5 ciphertexts of the same message
m, of byte length |m|. Each ci is encrypted for a receiver having pki = (e, Ni).
All Ni are k-byte long. Then there exists a heuristic algorithm which, given
c1, . . . , c�, outputs m, if:

� >
e|m|

k − e(k − |m| − 3)
> 0

Its complexity is polynomial in e, |m| and k but exponential in the number of
ciphertexts �.

We describe this algorithm in the coming sections. The core idea is to reduce
the problem to finding small modular roots of a multivariate polynomial equa-
tion, which can be achieved using a standard generalization of Coppersmith’s
techniques. As usual, this generalization relies on an assumption concerning in-
dependence between polynomials, which makes the algorithm heuristic.

5.1 The Multivariate Polynomial of Broadcast pkcs#1 v1.5

Recall (section 2.1) that to encrypt message m for recipient Pi, a pkcs#1 v1.5
sender first generates an |ri|-byte randomizer ri, and then computes the encoding
function:

μ(m, ri) = 000216‖ri‖0016‖m

10 A. Bauer et al.

Numerically, this gives:

μ(m, ri) = m + 28|m|+8ri + 28|m|+8|ri|+9

The ciphertext ci is then computed as ci = μ(m, ri)e mod Ni.
Consider then an adversary A who obtains c1, . . . , c�. Since the Ni are of the

same size, the randomizers ri have a common byte length |r|. Therefore, the
ciphertexts collected by A can be written as:

c1 = (m + Ar1 + B)e mod N1, . . . , c� = (m + Ar� + B)e mod N�

where A = 28|m|+8 and B = 28|m|+8|r|+9. Obviously, the Ni are pairwise co-
prime (otherwise, the factorization of some of the Ni could easily be recovered).
Thus, the Chinese Remainder Theorem ensures that the previous equations can
be rewritten as a single congruence mod N = N1 · · ·N�:

u1c1 + · · ·+ u�c� = u1(m + Ar1 + B)e + · · ·+ u�(m + Ar� + B)e mod N

where the constants u1, . . . , u� are given by the extended Euclidean algorithm.
It follows that the tuple (m, r1, . . . , r�) is a root of the multivariate modular
polynomial:

f(x, y1, . . . , y�) = u1(x + Ay1 + B)e + · · ·+ u�(x + Ay� + B)e −C mod N (3)

where C = u1c1 + · · · + u�c�. This root is small in the sense that all of its
components are bounded by quantities that are small compared to N : m is
smaller than 28|m| and each ri is bounded by 28|r|. Under suitable conditions on
|m| and |r| which will be detailed below, it will thus become feasible to recover
this root, and hence m, in polynomial time using Coppersmith’s techniques, as
recalled in Appendix B.

In particular, we show in section B.3 that the lattice construction of Jochemsz
and May [14] yields a heuristic polynomial time algorithm for recovering the
small root of f under the following condition:

�|r|+ |m| < t(ν)
s(ν)

· �k

where ν is a parameter which determines the attack’s complexity, and s(ν), t(ν)
are defined as:

s(ν) =
eν∑
i=0

i

(
eν − i + �

�

)
=
(

� + eν − 1
�

)
(� + eν)(1 + � + eν)

2 + 3� + �2

and

t(ν) =
ν∑

i=1

(
eν − ie + � + 1

� + 1

)
We also prove in the same section that t(ν)/s(ν) → 1/e as ν tends to +∞, so
that the best achievable bound on |m| and |r| for which the attack applies is:

�|r|+ |m| < �k

e

On the Broadcast and Validity-Checking Security 11

Since |r| = k − |m| − 3 in pkcs#1 v1.5 we obtain the bound announced in
Proposition 4. As usual when using Coppersmith’s techniques, the complexity of
the attack is polynomial in the dimension of the constructed lattice and in the
size of the entries (see Appendix B for details on these parameters).

Given pkcs#1 v1.5’s widespread use and the heuristic nature of multivariate
Coppersmith-like techniques, it is important to practically assess our attack. We
report practical experiment results in Appendix C.

6 Conclusion

Figure 2 summarizes our current knowledge of pkcs#1 v1.5 security.

UBK-CCA ⇐= UBK-VCA ⇐= UBK-CPA = Factoring
⇓ ⇓ ⇓

����
OW-CCA ⇐= ����

OW-VCA ⇐= OW-CPA = RSA, single user (§ 3)
� = 2 (§ 3) large � ([5]) ����

OW-CPA small e and large |m|, multi-user (§ 5)
⇓ ⇓ ⇓

IND-CCA ⇐= ����
IND-VCA ⇐= ����

IND-CPA

large � ([5]) small e or large |m| ([9])
� = 1 (§ 4.2)

⇓ ⇓ ⇓
NM-CCA ⇐= NM-VCA ⇐= ����

NM-CPA (§ 4.1)

Fig. 2. Updated Security Status for pkcs#1 v1.5

The authors regard the new flaws as an indication that the process of phasing
out pkcs#1 v1.5 should be accelerated.

References

1. Baudron, O., Pointcheval, D., Stern, J.: Extended notions of security for multicast
public key cryptosystems. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP
2000. LNCS, vol. 1853, pp. 499–511. Springer, Heidelberg (2000)

2. Bauer, A., Coron, J.-S., Naccache, D., Tibouchi, M., Vergnaud, D.: On the broad-
cast and validity-checking security of pkcs#1 v1.5 encryption. Full version of this
paper. Cryptology ePrint Archive, Report 2010/135, http://eprint.iacr.org/

3. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 549–570. Springer, Heidelberg (1998)

5. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the rsa

encryption standard. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp.
1–12. Springer, Heidelberg (1998)

http://eprint.iacr.org/

12 A. Bauer et al.

6. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Hei-
delberg (1996)

7. Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

8. Desmedt, Y., Odlyzko, A.M.: A chosen text attack on the rsa cryptosystem and
some discrete logarithm schemes. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS,
vol. 218, pp. 516–522. Springer, Heidelberg (1986)

9. Coron, J.-S., Naccache, D., Joye, M., Paillier, P.: New attacks on pkcs#1 v1.5
encryption. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 369–
381. Springer, Heidelberg (2000)

10. Coron, J.-S., Naccache, D., Joye, M., Paillier, P.: Universal Padding Schemes for
rsa. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 226–241. Springer,
Heidelberg (2002)

11. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: rsa-oaep is secure under the
rsa assumption. Journal of Cryptology 17(2), 81–104 (2004)

12. H̊astad, J.: Solving simultaneous modular equations of low degree. siam Journal
on Computing 17(2), 336–341 (1988)

13. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

14. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking rsa variants. In: Lai, X., Chen, K. (eds.) ASI-
ACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

15. Kaliski, B.: pkcs#1: rsa Encryption Standard, Version 1.5, rsa Laboratories
(November 1993)

16. Kaliski, B.: pkcs#1: rsa Encryption Standard, Version 2.0, rsa Laboratories
(September 1998)

17. Kaliski, B.: rsa Laboratories, personal communication (October 2009)
18. Lenstra, A.K., Lenstra, H.W., Lovàsz, L.: Factoring polynomials with rational co-

efficients. Math. Annalen 261, 513–534 (1982)
19. Pointcheval, D.: Provable security for public-key schemes. In: Contemporary cryp-

tology. Advanced courses in mathematics, pp. 133–190. Birkhäuser, Basel (2005)
20. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptosystems. Communications of the acm 21(2), 120–126 (1978)

A Preliminaries

In this appendix, we recall a few basic definitions necessary for an accurate
description of our attack. We refer the reader to the full version of this paper [2]
for more details.

A.1 Public-Key Encryption

A Public-Key Encryption Scheme P = (K, E ,D) is a collection of three (proba-
bilistic) algorithms:

1. A Key Generation Algorithm K. Given a security parameter k ∈ N, the
algorithm K produces a pair (pk, sk) of matching public and private keys
(which implicitly define a message space M).

On the Broadcast and Validity-Checking Security 13

2. An Encryption Algorithm E. Given a message m ∈M and a public key
pk, E produces a ciphertext c = E(pk, m).

3. A Decryption Algorithm D. Given a ciphertext c and the private key sk,
D(sk, c) recovers a plaintext m or a special symbol ⊥/∈M.

A.2 Security Definitions

Security is traditionally defined by combining an adversarial goal and an attack
model. We refer to classical texts on provable security, such as [19], for precise
statements of security definitions. Intuitively, a public-key encryption scheme P
is:

– Unbreakable (UBK). If no adversary A can compute sk given pk.
– One-Way (OW). If no adversary A can recover m ∈M given c and pk.
– Indistinguishable (IND). If no adversary A can derive significant infor-

mation about m ∈ M given only c and pk. IND is sometimes alternatively
referred to as ”semantically secure”.

– Non-Malleable (NM). If no adversary A can produce, given c and pk, a
new ciphertext corresponding to a plaintext m′ meaningfully related to m.

Security notions for encryption schemes are obtained by combining an adversarial
goal with an attack model:

– Chosen-Plaintext Attack (CPA). A is given nothing more than pk.
– Validating-CheckingAttack(VCA).A is givenaccess to avalidity-checking

oracle indicating only if a given ciphertext is valid or not (i.e. returning the bit

D(sk, c)
?

=⊥). Note that this is not the same thing as a Plaintext-Checking At-

tack (PCA) [19].
– Chosen-Ciphertext Attack (CCA). A has access to a decryption oracle.

Whenever oracle access is used A cannot submit to the oracle the challenge
ciphertext he has to attack. These definitions are classical and we refer the
reader to [19] for more details.

We denote security notions positively: e.g. OW-VCA[S] is the problem of contra-
dicting the one-wayness of scheme S under validity-checking attack. This conven-
tion permits the easy description of hierarchies [4] between security notions using
reductions (seeFigure 1as an example).Whenoracle access is permitted, we denote
by �-GOAL-ATTACK[S] the problem of contradicting GOAL ∈ {UBK, OW, IND,
NM} in less than � oracle queries under an ATTACK ∈ {VCA, CCA}.

B Finding Small Modular Roots of a Multivariate
Polynomial

The problem of solving modular polynomial equations is believed to be difficult
in the general case. Nevertheless, when we restrict the problem to finding small

14 A. Bauer et al.

roots only, the problem becomes easier to solve. Indeed, in 1996, Coppersmith
[6] introduced a technique, based on lattice reduction, allowing to recover the
root of a univariate modular polynomial provided that this root is small enough.
This construction was reformulated in simpler terms by Howgrave-Graham [13]
and its extensions to more variables found numerous cryptanalytic applications.

B.1 Coppersmith’s Technique

Starting from a polynomial f modulo a known composite integer N , the idea
behind Coppersmith’s method is to construct a set of polynomials h1, . . . , hn

sharing the same sought root over the integers. If the number of these generated
polynomials is sufficiently large (greater than the number of variables) and under
the assumption that all resultant computations lead to non-zero results, then
the root can easily be recovered. Note that this assumption makes the method
heuristic.

A sufficient condition ensuring that the polynomials h1, . . . , hn share a com-
mon root in Z was formulated by Howgrave-Graham.

Lemma 2 (Howgrave-Graham [13]). Let h ∈ Z[x1, . . . , xn] be an integer
polynomial that consists of at most ω monomials. Suppose that

1. h(x01, . . . , x0n) ≡ 0 mod N for some |x01| < X1,. . . ,|x0n| < Xn

2. ‖h(x1X1, . . . , xnXn)‖ < N√
ω
.

Then h(x01, . . . , x0n) = 0 holds over the integers.

The problem can thus be reduced to finding polynomials h1, . . . , hn of small
norm having the same modular root as f . This can be achieved by representing
polynomials as coefficient vectors (using a suitable ordering on monomials) and
using lattice reduction techniques such as lll [18] to search for small vectors in
a lattice spanned by polynomials which are known to have the sought modular
root.

If L is a lattice of polynomials consisting of at most ω monomials and all
having the same modular root as f , then the condition

2
ω(ω−1)

4(ω+1−n) det(L)
1

(ω+1−n) <
N√
ω

(4)

ensures first n polynomials obtained by applying lll to the lattice L match
Howgrave-Graham’s bound. In the analysis, we let terms that do not depend
on N contribute to an error term ε, and simply use the determinant condition
det(L) ≤ Nw+1−n.

B.2 Lattice Construction

A variety of methods for constructing the lattice L have been proposed in the
literature. In what follows, we choose to rely on the technique introduced by
Jochemsz and May in [14].

On the Broadcast and Validity-Checking Security 15

Recall that we have a polynomial f with an unknown root x0 = (x01, . . . , x0n)
modulo some composite integer N whose factorization is unknown. This root
is small in the sense that each of its components is bounded: |x0i| < Xi for
i ∈ {1, . . . , n}. We denote by λ the leading monomial of the polynomial f and
by M(f) the set of monomials appearing in f . Of course, λ can be assumed to
be monic as otherwise one simply has to multiply f by the modular inverse of
its initial coefficient.

Given ε > 0, we fix an integer ν = ν(ε) and without loss of generality we
assume that M(f j) ⊆ M(fν) for j ∈ {1, . . . , ν − 1}. If k is an integer between
0 and ν + 1, we define the set Mk as M(fν) ∩ λkM(fν−k) (in particular M0 =
M(fν) and Mν+1 = ∅). Next, we define the following shift polynomials:

gi1...in(x1, . . . , xn) =
xi1

1 · · ·xin
n

λk
fkNν−k

for k ∈ {0, . . . , ν} and xi1
1 · · ·xin

n ∈ Mk \Mk+1. By definition, all polynomials
g have the root (x01, . . . , x0n) modulo Nν . We can now define L as the lattice
generated by the coefficient vectors of all polynomials gi1...in(x1X1, . . . , xnXn).
If the monomial ordering has been chosen correctly, the matrix corresponding to
that lattice is lower triangular and the determinant becomes easy to compute.
Indeed, the diagonal elements are those corresponding to the monomial λk in fk

for each row. Therefore, the diagonal terms of the matrix are X i1
1 · · ·X in

n Nν−k

for k ∈ {0, . . . , ν} and xi1
1 . . .xin

n ∈ Mk \Mk+1. By doing a simple computation
and neglecting low order terms, one can finally reduce the condition (4) to the
following new one:

n∏
j=1

X
sj

j < NsN for

{
sj =
∑

x
i1
1 ···xin

n ∈M0
ij (1 ≤ j ≤ n)

sN =
∑ν

k=1 |Mk|
(5)

This formula expresses an asymptotic condition on the bounds X1, . . . , Xn al-
lowing to recover the root in polynomial time.

Remark 1. The method outlined above is what Jochemsz and May called the
“basic strategy”; they also proposed an “extended strategy” in which we can
use extra shifts of a certain variable and replace Mk for instance by Mk =⋃t

j=1 xj
1

(
M(fν) ∩ λkM(fν−k)

)
for some well-chosen parameter t.

B.3 The Jochemsz-May Lattice in Broadcast pkcs#1 v1.5

Let us examine what the lattice L looks like in the particular setting of broadcast
pkcs#1 v1.5 encryption.

Recall from section 5.1 that recovering m from c1, . . . , c� reduces to finding the
root (x0, y0,1, . . . , y0,�) = (m, r1, . . . , r�) of the following modular polynomial:

f(x, y1, . . . , y�) = u1(x + Ay1 + B)e + · · ·+ u�(x + Ay� + B)e − C mod N

We know that this root satisfies the bounds |x0| < X and |y0i| < Y for all
i ∈ {1, . . . , �} with X = 28|m| and Y = 28|r|. We examine how the Jochemsz-
May bounds described in the previous section translate into bounds on |m| and
|r| allowing the message to be recovered in polynomial time.

16 A. Bauer et al.

Form of the Sets Mk. The analysis’ first step consists in describing the sets
Mk. Note first that the set of monomials M(f) is included in {xayb1

1 · · · yb�

� | a+
b1 + · · ·+ b� ≤ e}. In other words, the geometrical shape of the polynomial f is
included in a “pyramid” of dimension � + 1 of monomials with total degree less
than e. We choose the deglex monomial order, according to which the leading
monomial of f is xe. The sets Mk can then be described as follows:

M0 = {xayb1
1 · · · yb�

� | a + b1 + · · ·+ b� ≤ eν}
M1 = {xayb1

1 · · · yb�

� | a + b1 + · · ·+ b� ≤ eν with a ≥ e}
...

Mν = {xayb1
1 · · · yb�

� | a + b1 + · · ·+ b� ≤ eν with a ≥ eν}
which makes it easy to count the number of monomials in each of them.

Condition on the Bounds. Given the above description, we can evaluate the
quantities sj and sN of equation (5) as follows. First, by symmetry, si, sj1 , . . . sj�

are all equal to:

s(ν) =
eν∑

i=0

i(eν − i + 1)(eν − i + 2) · · · (eν − i + �)
�!

Furthermore, we have:

sN = t(ν) =
ν∑

i=1

(eν − ie + 1)(eν − ie + 2) · · · (eν − ie + � + 1)
(� + 1)!

Condition (5) can then be rewritten as Xs(ν)Y �s(ν) < N t(ν), and since N is of
byte size �k, this gives:

�|r|+ |m| < t(ν)
s(ν)

· �k

Asymptotic Bound. The functions s(ν) and t(ν) are polynomials in ν. Hence,
it suffices to evaluate their leading coefficients to obtain an asymptotic estimate
as ν → +∞. Note further that s(ν) and t(ν) are easily expressed in terms of
the antidifference operator, which takes a polynomial P (X) to the polynomial
σ(P)(X) defined by σ(P)(j) =

∑j
i=1 P (i) for j ∈ N. Indeed:

s(ν) =
eν∑
i=0

(eν − i)P (i) = eν · σ(P)(eν)− σ(XP)(eν) + eν

with P (X) =
(X + 1) · · · (X + �)

�!

t(ν) =
ν∑

i=1

Q(i) = σ(Q)(ν)

with Q(X) =
(eX − e + 1) . . . (eX − e + � + 1)

(� + 1)!

On the Broadcast and Validity-Checking Security 17

Now it is easily seen that if the leading coefficient of P is cdX
d, the leading

coefficient of σ(P) is cdX
d+1/(d + 1). It follows that, as ν → +∞, we have:

s(ν) ∼ eν · (eν)�+1

�!(� + 1)
− (eν)�+2

�!(� + 2)
=

(eν)�+2

(� + 2)!
and t(ν) ∼ e�+1ν�+2

(� + 2)!

In particular, t(ν)/s(ν) → 1/e when ν → +∞. Thus, the best asymptotic bound
on |m| and |r| for which the attack is theoretically possible is:

�|r|+ |m| < �k

e

C Broadcast Attack Experimental Results

Given pkcs#1 v1.5’s widespread use and the heuristic nature of Coppersmith’s
techniques in the multivariate case, it is important to practically assess our
attack. In particular, one of the main questions remains to know how many
ciphertexts an attacker really needs in practice to recover m. In the particular
instance {log2 N = 1024, e = 3}, the number of required ciphertexts is, in fact,
really low.

Corollary 1. If a pkcs#1 v1.5 user encrypts the same message m with 64-
bit randomizers to multiple recipients using 1024-bit moduli and e = 3, then
there exists a heuristic polynomial time algorithm that recovers m from � = 4
ciphertexts.

Proof. This is a direct consequence of Proposition 4, given that, for 1024-bit
moduli and 64-bit randomizers, message size is equal to 936 bits.

These parameters, corresponding to optimal message size and encryption speed
for 1024-bit moduli, are quite realistic and widely implemented. The practical
implications of this result are potentially serious.

C.1 Partial Information

Consider an attacker who does not collect all the � required ciphertexts. In that
specific case, even if m can not be fully recovered, the attacker can nevertheless
obtain partial information on m. In particular, in a scenario where m would not
be of full size and would have been previously padded with zero bits (e.g. using
an aes key), the attack can still be performed.

C.2 Practical Implementations

To check the applicability of the attack, we investigated three configurations: An
attacker having access to two, three and four ciphertexts. Before implementing
the attack in each scenario, we first evaluated the dimension of the corresponding
lattices (for reasonably small values of the parameter ν) and then expressed the
number of bits on m that should be recovered in practice. The results obtained
for 1024-bit moduli and e = 3 are shown in the following table.

18 A. Bauer et al.

� = 2 � = 3 � = 4
ν dim(L) |m| dim(L) |m| dim(L) |m|
2 84 213 210 246 462 249
3 220 306 715 395 2002 451
4 455 359 1820 483 6188 578
5 816 394 3876 542 15504 664
6 1330 418 7315 584 33649 726
7 2024 435 12650 615 65780 773

10 5456 469 46376 675 324632 863

As we can see, the number of bits of m that we are able to recover increases
with ν, and approaches 936 bits for (�, ν) = (4, 10). Unfortunately, the dimen-
sions of the constructed lattices are often quite impractical. Indeed, size often
turns out to exceed 1000, making lattice reduction unfeasible in practice. As a
result, and because we had limited processor time at our disposal, we only ran
practical experiments in the small cases, namely � = 2 and ν = 2, 3.

Experiments have been performed on a hepta-processor Intel Xeon clocked at
1.86ghz. Each test was done in the same way: construction of the appropriate
lattice, lll-reduction and then extraction of short vectors. Although one only
theoretically requires a number of vectors equal to the number of variables, in
practice we decided to take as much vectors as possible to increase the attack’s
success odds. Most cpu time was claimed by the lll-reduction step (approxi-
mately 3 hours for (�, ν) = (2, 3)). With 1024-bit moduli and 64-bit randomizers,
we managed to recover a 115-bit message (padded with zero msbs).

C.3 Toy example

Here is a toy example for 150-bit moduli and 5-bit m, corresponding to a lattice
of dimension 84. The first 50 vectors corresponded to polynomials having the
desired root over the integers. We then took all these polynomials and computed
a Gröbner basis of the ideal they generated. The results were the following:

Ni = 150 bits, m = 5 bits, r = 6 bits, e = 3, ν = 2
f(x, y, z) with modular root (24, 58, 34)⎧⎪⎪⎨⎪⎪⎩

p1 = z4 + 512z3 + 98304z2 + 86093442y− 94710946z− 1908346880
p2 = yz2 − 89

81z3 + 256yz − 7936
27 z2 + 16384y− 573440

27 z − 33783328
81

p3 = y2 − 62
27yz + 961

729z2 − 1024
27 y + 31744

729 z + 262144
729

p4 = x− 55297y + 63489z + 1048576

The Gröbner basis computation does not allow us to directly recover the mes-
sage m, since the corresponding subvariety is not of dimension zero. In fact, we
commonly faced problems of algebraic dependence between the resulting poly-
nomials (hence our choice to take a large number of polynomials, rather than the
first few, to compute the Gröbner basis). Nevertheless, it was usually possible to
recover the message, as the polynomials in the Gröbner basis had a very simple
form. In this particular case, for instance, p4 is affine and p3 can be written as
(ay + bz + c)2, making it easy to recover the common root.

How to Construct Interval Encryption from Binary Tree
Encryption

Huang Lin�, Zhenfu Cao, Xiaohui Liang, Muxin Zhou,
Haojin Zhu, and Dongsheng Xing

Department of Computer Science and Engineering, Shanghai Jiao Tong University
faustlin@sjtu.edu.cn�

Abstract. In a broadcast encryption system with a total of n users, each user is
assigned with a unique index i ∈ [1, n]. An encryptor can choose a receiver set
S ⊆ [1, n] freely and encrypt a message for the recipients in S such that only
those receivers can open the message. The transmission overload of most previ-
ous broadcast encryption systems grows in line with the number of revoked users
r and thus they are suitable for the scenario where the target receiver set is large
when r � n holds. Some other recently proposed constructions for arbitrary re-
ceiver set require a unreasonably large user storage and long decryption time. On
the other hand, it is observed that, in a practical broadcast encryption system,
the receiver set can be regarded as a collection of k natural intervals, where the
interval number k should be much less than r for most cases. This observation
motivates us to introduce a novel type of encryption, called interval encryption,
which could realize a more efficient broadcast encryption. To achieve this, we
first present a generic way to transform a binary tree encryption scheme into
interval encryption. One concrete instantiation of this method based on the hier-
archical identity based encryption scheme by Boneh et al. only requires a O(k)
transmission cost and O(log n) private storage consumption, while the decryption
is dominated by O(log n) group operations. With detailed performance analysis,
we demonstrate that the proposed interval encryption strategy has the superiority
on improved efficiency and thus is expected to serve as a more efficient solution
in more cases than the traditional systems in practice. Interestingly, our method-
ology can also be employed to transform a fully secure hierarchical identity based
encryption scheme proposed by Lewko and Waters into an adaptively secure in-
terval encryption scheme with a O(k) transmission cost and O(log n) private stor-
age consumption. Finally, we also discuss several other promising applications of
interval encryption.

Keywords: Interval encryption, Public key broadcast encryption, Binary tree en-
cryption, Hierarchical IBE.

1 Introduction

A broadcast encryption (BE) scheme enables a broadcaster to choose a subset S of n
users, who are listening on the broadcast channel and encrypt a message for this subset.
Any user in S is allowed to successfully decrypt the message while even if all the
users outside of S collude together they can not obtain any useful information on the

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 19–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

20 H. Lin et al.

broadcast message. In the following, we also use r to represent the number of revoked
users, i.e., r = n − |S | where |S | is the size of S . Compared with a private key broadcast
encryption scheme [25,1], a public key broadcast encryption has the benefit that there
is no need for the users to pre-share any private information. Therefore, in this study,
we mainly focus on pubic key broadcast encryption. Three efficiency parameters of
a broadcast encryption scheme are of our major concern: the transmission cost, user
storage, and the decryption time.

1.1 Related Work

The transmission overload of most current public key broadcast encryption construc-
tions will grow along with increase of the revocation number r. Naor et al. [22] pre-
sented a BE construction (NNL method) with an average ciphertext size of 1.38r and
private key size O(log2 n). The private key size is further improved to O(log1+ε n), 0 <
ε < 1 in HS construction [18], where the ciphertext size blows up with a 1

ε
factor.

The private key size is further improved to O(log n) by Goodrich et al. [16]. Dodis
and Fazio [12] presented a generic method (DF transformation) to transfer the NNL
method and HS construction into a public key broadcast system using hierarchical iden-
tity based encryption (HIBE). The transmission overload remains unchanged and the
private key consists of O(log2 n) and O(log1+ε n) HIBE node secret keys if DF transfor-
mation is instantiated with BBG HIBE [3]. The security is reduced to standard Deci-
sional BDHE assumption and the decryption time cost is O(log n). The decryption time
is then improved to constant by Liu and Teng [21]. However, their security is reduced to
decisional BDH assumption in the random oracle model. Recently, Sahai and Waters
proposed a broadcast encryption system with a transmission overload linearly depen-
dent on r and constant storage cost. However, the decryption cost is linearly dependent
on r and the security is reduced to a complex assumption called q-MEBDH assump-
tion. Actually, it has been pointed out in [19] that at least one key per each revoked
user should be included in the transmission overhead and hence r might be the lower
bound of the transmission overload in any broadcast encryption scheme with reasonable
decryption computational and storage cost. Therefore, constructing a BE system with a
transmission overload lower than r as well as reasonable user storage and computational
cost is still an open problem, which is one of the major motivation of this paper.

On the other hand, there are two major application scenarios [5] for broadcast en-
cryption: applications where we broadcast to large sets, namely sets of size n − r for
r � n and applications where we broadcast to small sets, namely sets of size |S | � n.
Apparently, a broadcast encryption system with a transmission overload dependent on
r is not efficient when r grows, and especially it fails to be an optimal choice for the
second kind of application where r is very close to n. Before BGW proposed their con-
struction [5], the only suitable solution for the latter scenario is the trivial solution, i.e.,
encrypting the message under each recipient’s key.

In order to construct a BE scheme suitable for arbitrary receiver sets, we need to
break the barrier of r. BGW [5] proposed an elegant BE scheme with constant size ci-
phertext as the first attempt to solve this problem. Although the ciphertext and private
key size of their construction is constant, the public key material is linearly dependent
on n. The public key must be accessible to any decryptor, which implies a high storage

How to Construct Interval Encryption from Binary Tree Encryption 21

cost of size O(n). This makes their system unsuitable for the application scenario where
users have only limited storage capability [24]. Their underlying assumption is the stan-
dard Decisional BDHE assumption. Later, Delerablee [11] proposed a BE construction
where the public key size depends on the maximum size of S while both ciphertext
and private key remain constant size. However, this still does not serve as an efficient
solution for applications where the receiver set is large, namely r � n. The security of
this construction is reduced to a complex assumption called GDHE assumption in the
random oracle model. Besides, the decryption of both constructions is not efficient. The
decryption cost of the BGW construction depends on n, and the decryption of Delera-
blee’s construction requires O(|S |) operations.

1.2 Our Contribution

In this paper, we study this problem from a brand-new angle and a more practical point
of view. The basic motivation comes from the following observation: in a broadcast en-
cryption system with n users, where each user is assigned with an index i ∈ [1, n]. The
receiver set S can be regarded as a collection of k intervals. Considering the fact that
the number of intervals containing in S is always less than r + 1 and in the best cases k
could even be much less than r, the system performance can be dramatically increased
if the transmission overhead of the broadcast encryption system is only determined by
the interval number k while irrelevant of r. In this study, we will use more detailed per-
formance analysis and simulation to show that a BE construction based on k is always
more efficient than the previous scheme dependent on r, and suitable for more cases in
practice.

In order to realize a broadcast encryption system with a transmission overload de-
pendent on k, this paper proposes a new type of encryption called interval encryption.
In interval encryption, a message is encrypted under a collection of natural intervals
S =

⋃k
j=1 NI j, where NI j is a natural interval in [1, n]. Each receiver is identified by

a unique natural number i ∈ [1, n] and assigned with the respective private key. The
decryption is successful if and only if the natural number i belongs to S .

We present a generic methodology which can transfer a series of binary tree en-
cryption scheme into interval encryption. We illustrate the basic methodology using
the BBG HIBE scheme [3]. The construction achieves a ciphertext size of O(k), and
O(log n) private storage. The decryption is dominated by at most O(log n) group opera-
tions. The security is reduced to the Decisional BDHE assumption. We note that one of
the best public key BE schemes under this assumption is the DF transformation of the
HS construction which requires a transmission overload of O(r/ε) size and the private
key consists of O(log1+ε n) HIBE node secret keys, where 0 < ε < 1.

We also apply our basic methodology to the fully secure HIBE [20] scheme proposed
by Lewko and Waters to present an adaptively secure interval encryption scheme. Gen-
try and Waters [15] proposed the first adaptively secure broadcast encryption scheme
under a complex bilinear assumption. The public parameter size of their construction
is of O(|S |). The private key size is constant, and the ciphertext size of their construc-
tion is of O(max|S |). After that, Waters [26] gave the first short ciphertext adaptively

22 H. Lin et al.

secure broadcast encryption system under static (i.e. non q-based) assumptions. How-
ever, both of the public parameter and private key size are linearly dependent on n. The
public parameter of our construction is of size O(log n) and the ciphertext size is of
O(k). It only requires O(log n) private storage. In other words, our construction serves
as one of the most efficient adaptively secure broadcast encryption systems. Besides,
our construction also reduces its security to static assumptions.

Since we consider the proposal of this new concept and the corresponding method-
ology one of our major contributions, an inclusive extended interval encryption is pro-
posed as another illustration of the power of our basic methodology. A message is
encrypted under a collection of intervals S =

⋃k
j=1 NI j in this extended construction.

A user’s private key corresponds to a certain interval NIω. The decryption is success-
ful if and only if there’s at least one interval NI j, j ∈ [1, k] such that NIω ⊆ NI j. The
construction also provides user with delegation capability. We also discuss several in-
teresting applications of interval encryption. In particular, we propose a useful concept
of range attribute based encryption and present an efficient construction from interval
encryption.

1.3 Organization

At first, some preliminaries will be given in Section 2. As an important step of under-
standing the primitive idea of our construction, we’ll introduce the notion of binary
tree encryption and a different view on forward secure encryption constructed from bi-
nary tree encryption in Section 3. The notations used in this paper are introduced in
Section 4. A generic transformation from binary tree encryption to interval encryption
will be presented in Section 5. In Section 6, we’ll give our concrete instantiations based
on BBG HIBE and then discuss the system performance in details. In section 7, we
introduce how to present an inclusive extended interval encryption using our method.
How to construct an efficient adaptively secure interval encryption scheme is shown in
section 8. At last, some interesting applications and extensions of interval encryption,
including how to construct a range attribute based encryption from interval encryption,
are given with some open problems in Section 9.

2 Preliminaries

2.1 Assumptions

Bilinear maps [23] are crucial to our construction. A pairing is an efficiently com-
putable, non-degenerate function, ê : G1 × G1 → G2, with the bilinearity property
that ê(gr, gs) = ê(g, g)rs. Here, G1, and G2 are all multiplicative groups of prime order
p, respectively generated by g and ê(g, g).

The security proof of our constructions relies on the Decisional d+1 BDHE assump-
tion, which can be stated as [8]: Given a tuple [h, g, gα, g(α2), · · · , gα

d
, g(αd+2), · · · , g(α2d),

Z] ∈ G2d+1
1 ×G2 for a random exponent α ∈ Zp, decide whether Z = ê(g, h)α

d+1
.

How to Construct Interval Encryption from Binary Tree Encryption 23

2.2 Security Definitions

Our construction is a Key Encapsulation Mechanism (KEM)1, thus long messages can
be encrypted under a short symmetric key. An interval encryption scheme is made up
of four randomized algorithms:

Setup(n). Takes as input a natural interval [1, n]. It outputs a public key PK and the
system master key S Kε.

PvkGen(ω, S Kε). Takes as input a natural numberω ∈ [1, n] and the system master key
S Kε. It outputs a private key Dω.

Encrypt(S , PK). Takes as input a public key PK, and a k-wise natural interval set
S =

⋃k
j=1 NI j where NI j = [l j, r j] satisfying 1 ≤ l1 ≤ r1 < l2 ≤ r2 · · · < lk ≤ rk ≤ n.

For j ∈ [1, k], it outputs k pairs {Hdr j,Kj}. We call Hdr = {Hdr j}kj=1 the header and

K = {Kj}kj=1 the message encryption keys.
Let M be a message that should be decipherable precisely by the receivers holding

the private key corresponding to ω ∈ S . For j ∈ [1, k], let C j be the encryption of M
under the message encryption key Kj. Let CM be the collection of these encryption,
namely CM = {C j}kj=1. The whole ciphertext consists of (S ,Hdr,CM).

Decrypt (S , ω,Dω,Hdr, PK) . Takes as input a k-wise natural interval set S =
⋃k

j=1 NI j

and the private key Dω for a natural number ω ∈ [1, n], a header Hdr, a public key PK.
If ω ∈ NI j, 1 ≤ j ≤ k, then the algorithm outputs the corresponding message encryption
key Kj ∈ K .

We say the system to be correct, if and only if that for all k-wise natural interval sets

S =
⋃k

j=1 NI j and natural numbers ω ∈ NI j (where j ∈ [1, k]), if PK
R←− Setup(n),

Dω
R←− PvkGen(ω, S Kε) and (Hdr,K)

R←− Encrypt(S , PK), then Decrypt(S , ω, Dω,
Hdr, PK)=Kj. The concept of interval encryption is close to private linear broadcast
encryption (PLBE) mentioned in [7], and can be viewed as an extension of PLBE.

Semantic Security(IND-sI-CPA) . The selective interval game is very similar to that of
BE [11], and it forms as follow:

Init. The adversary outputs a k-wise natural interval set S ∗ =
⋃k

j=1 NI∗j , where NI∗j =
[l∗j, r

∗
j] satisfying 1 ≤ l∗1 ≤ r∗1 < l∗2 ≤ r∗2 · · · < l∗k ≤ r∗k ≤ n, which it wishes to attack.

Setup. The challenger runs Setup(n) to obtain a public key PK for the adversary.

Phase 1. The adversary issues query for private key of ω � S ∗.

Challenge . The challenger runs algorithm Encrypt to obtain (Hdr∗,K)
R←− Encrypt (S ∗,

PK) where K ∈ K k. Next, the challenger picks a random β ∈ {0, 1}. It sets K∗ = K if
β = 1 and sets K∗ to a random string of length equal to |K| otherwise. It then sends
Hdr∗,K∗ to the adversary.

Phase 2. Same as phase 1.

Guess . The adversary outputs its guess β′ ∈ {0, 1} for β and wins the game if β′ = β.
1 We adopt KEM for the ease of comparison since all the BE constructions in the literature

employ the same mechanism.

24 H. Lin et al.

The adversary’s advantage is the absolute value of the difference between its success
probability and 1

2 .

Definition 1. An interval encryption scheme is selective-interval chosen plaintext se-
cure (IND-sI-CPA) if all polynomial time adversaries have at most a negligible advan-
tage in winning the above security game.

The adaptive CPA security can be defined in a similar way except that there is no Init
stage in the adaptive game and the challenge interval S ∗ in the Challenge stage should
be provided under the restriction that none of the identities ω for the key queries of
Phase 1 and Phase 2 belongs to S ∗, i.e., ω � S ∗.

The ultimate security goal is to realize IND-CCA security where the adversary doesn’t
need to choose the interval set at the beginning and is provided with a decryption ora-
cle. However, this paper concentrates on IND-sI-CPA security, and leaves the formal
definition of IND-CCA security in the full version.

3 Binary Tree Encryption and a Different View on Forward
Secure Encryption

The concept of binary tree encryption (BTE) was first proposed by Canetti, et al [10].
BTE is a relaxation of hierarchical identity-based encryption (HIBE) [14]. As in HIBE,
a “master” public key PK is associated with a binary tree in BTE; each node ω in this
tree has a corresponding secret key S Kω. To encrypt a message “targeted” for some
node, one uses both PK and the name of the target node; the resulting ciphertext can
then be decrypted using the secret key of the target node. Moreover, as in HIBE the
secret key of any node can be employed to derive the secret keys for the children of that
node. The only difference between HIBE and BTE is that the latter insists on a binary
tree, where each non-leaf node only has two child nodes.

Technically speaking, forward secure encryption (FSE) is an elegant application of
BTE. Let the depth of a binary tree be d which implies it has n = 2d leaf nodes. In
a FSE scheme, the lifetime of a system is divided into n = 2d time periods, each of
which is associated with a unique leaf node of the tree. A user holding a private key for
time period ω can open all the messages encrypted under the subsequent time periods,
namely ω′ ∈ [ω, n]. The private key Dω in a FSE construction contains the node secret
keys S Kω for the leaf node ω as well as node secret keys for the right siblings of the
nodes on the path from the root to node ω, where all these node secret keys come from
the underlying BTE scheme. To encrypt a message for a certain period ω′, one uses
both PK and the name of respective leaf node ω′ as in the BTE scheme; the resulting
ciphertext can then be decrypted using node secret key S Kω′ , which is also similar to
the BTE scheme. As shown in Fig. 1. a, a private key D2 containing the node secret
keys S K2, S Kc, S Kb can be used to derive all the node secret keys for leaf nodes falling
into the interval [2, 8]. Therefore, D2 can be used to open all the messages encrypted
under time periods in the interval [2, 8].

Indeed, forward secure encryption can be viewed as a special case of interval en-
cryption. As shown in Fig. 1. a, if we use ciphertext C4 encrypted under leaf node 4
to represent the interval [1, 4], then only the private key for time period ω ∈ [1, 4] can

How to Construct Interval Encryption from Binary Tree Encryption 25

Left BTE system Right BTE system

2, SK2 5, SK5 6, SK6

1 2 3 4 6 7 85

D2={SK2, SKc, SKb}, D5={SK5, SK6, SKa}

b, SKb

c, SKc a, SKa

C4

1 2 3 4 6 7 85

0|

1| 11

)R(,|5

1)RS(,2

)RS(,2

,111|

SK10| 212

)R(,5)L(,5

321

,

5100

SKSK
)R(,|5

21)RS(,3

)RS(,3

1011|

SK

)L(,|2)L(,|5

1)LS(,1

1)LS(,1

|0|

SKSK

)L(,2

321 2001

SK

},,{)R(,|5)R(,|5)R(,5)R(,5)RS(,3)RS(,2
SKSKSKD},{)L(,|5)L(,5)L(,5)LS(,1

SKSKD

55

Fig. 1. (a). The key distribution mode of forward secure encryption, C4 represents the interval
[1, 4], and the private key for a user ω can be used to derive the node secret keys for all the
nodes in the interval [ω, n] (b). Key distribution mode of interval encryption: we let ω = 5
here. The respective private key D5 contains left private keyD5,(L) and right private key D5,(R).
D5,(L) = {S K5,(L), S K5|1,(LS),(L)} which are derived from left master key α − α5. Similarly, we have
D5,(R) = {S K5,(R), S K5|2,(RS),(R), S K5|3,(RS),(R)} derived from right master key α5. Let the left bound η
of an interval be 2 here, then S K2,(L) can be derived from S K2|1,(L) which is equal to S K5|1,(LS),(L)

belonging to D5,(L).

be used to open the message, e.g., D2 could be used for the decryption of C4 because
S K4 can be derived from S Kc, which belongs to D2. However, D5 cannot be used for
decrypting C4 for it is impossible to deduce S K4 from any node secret keys included
in D5.

In the remainder of this paper, we use a right direction arrow from a certain leaf node
(or the corresponding index in the axis) to denote this particular private key distribu-
tion mode. A right direction arrow from a leaf node ω means that all the node secret
keys of the leaf nodes in the interval [ω, n] are computable from its own private key.
Therefore, this private key can be used to open all the message encrypted under these
nodes. Besides, we also use a left direction arrow from a leaf node ω to denote an op-
posite decryption ability, namely the respective private key can be used to open all the
messages encrypted under the leaf nodes in the interval [1, ω]. It is feasible by simply
assigning a user with the node secret keys for nodeω as well as node secret keys for the
left siblings of all the nodes on the path from the root to ω. Generally speaking, a FSE
construction is treated as a special interval encryption scheme in which the encryptor
can set the interval form as [1, j]. The upper bound j depends on which leaf node the
ciphertext corresponds to. Now, our goal is to realize an interval encryption scheme
covering multiple intervals, each of which has two freely chosen bounds determined by
the encryptor.

4 Notation

We inherit most notations from the underlying BTE and FSE [9] construction. Recall
that d denotes the depth of the tree, and n = 2d is the number of leaf nodes. We set the
root node to be ε by convention. The other nodes on the tree have an associated name
chosen from {0, 1}≤d. The left child of a node is concatenated with 0, and the right child

26 H. Lin et al.

is concatenated with 1. Therefore each leaf node will also have an associated binary
name [ω1ω2 · · ·ωd]. We also let a natural number ω ∈ [1, n] associate with the ω-th leaf
node of the binary tree (starting from left to right). We implicitly let ω = [ω1ω2 · · ·ωd]
in the remainder of this paper. The j-bit prefix of a string ω = [ω1ω2 · · ·ωd] is denoted
by ω| j, namely ω| j=[ω1ω2 · · ·ω j]. We implicitly set ω|0 = ε and ω|d = ω. It is easy
to observe that a set of nodes ω| j, j ∈ [1, d] corresponds to the nodes on the path from
the root to the leaf node ω (see Fig. 1. (b)). Besides, we use ω| j,(RS) or ω| j,(LS) to denote
the right or left sibling of ω| j respectively if ω| j has such a sibling. Namely, ω| j,(RS) =

[ω1ω2 · · ·ω j−11] or ω| j,(LS) = [ω1ω2 · · ·ω j−10].
Generally speaking, our BE system consists of two parallel BTE systems: the right

BTE system and the left BTE system. The right BTE system covers all the leaf nodes
in the interval [ω, n] and the left BTE system covers all the leaf nodes in the interval
[1, ω]. User ω will be assigned with a unique right master key and a left master key.
All the node secret keys or private keys for ω in the right BTE system are derived from
the right master key while its node secret keys or private keys in the left BTE system
are derived from the left master key. We use two different subindexes (L) or (R) in the
notations of all these keys to distinguish the left or right BTE system they correspond
to respectively.

5 Primitive Idea: A Generic Transformation from BTE to Interval
Encryption

5.1 Trivial Constructions

A trivial interval encryption scheme can be given directly from attribute based encryp-
tion [17] if one treats log n bits to represent a number from 1 to n as attributes and
builds an access tree allowing specific intervals. However, even the most efficient triv-
ial methodology would inevitably result in an interval encryption construction with a
ciphertext size of O(k log n), where k is the number of intervals. As introduced in the in-
troduction, our goal is to realize a broadcast encryption system in which the ciphertext
size is determined by the number of intervals k. I f all the messages are only encrypted
under the bounds o f each interval like in the FS E scheme, then this goal is reachable.
However, how to make sure that only those receivers with an index within two bounds
of each interval can open the message still represents a challenge.

5.2 A Generic Transformation from BTE to Interval Encryption

Yet there remains some difficulties to conquer. The first difficulty is how to differentiate
the decryption ability of an index in and outside of an interval. Taking the interval [3,
6] shown in Fig. 2. a for instance, we could easily find the required difference if we
project two oppositely direction arrows from each index in the axis, where the connota-
tion of the arrows can be found in our exposition of the last paragraph in Sec. 3. The key
observation to our transformation is that: the two opposite direction arrows starting
f rom index 5 can cross both bounds 3 and 6 respectively and there f ore decrypt
the corresponding partial ciphertext in two di f f erent manners (We will show how

How to Construct Interval Encryption from Binary Tree Encryption 27

to differentiate the partial decryption from two different directions, and how this will
eventually lead to successful generation of the corresponding message encryption key
in the sequel). However, only one unique direction arrow f rom index 2 or 7 can cross
the two bounds, i.e., only the right direction arrow f rom index 2 can cross 3 and 6
while only the le f t direction arrow f rom index 7 can cross 3 and 6. This implies
that those outside o f an interval can only decrypt the partial ciphertext in a unique
manner. The private key for right direction arrow is called right private key in the con-
crete construction while the one for left direction arrow is left private key.

D5, (R)(5)

D5, (L)(5)

D7, (R)(7)

C3() D7, (L)(7)

D2, (R)(2)

D2, (L)(2)

1 2 3 4 5 6 7 8

Left BTE system

a. prevention of two-user collusion:

2 +(7

C6()

Right BTE system

D5, (L)(5)

D5, (R)(5)

6

C4(1)

4

C6(2)C3(1)

1 2 3 5 7 8

Left BTE system

C8(2)

b. prevention of single user collusion:

5 2+(5) 1 2 1

Right BTE system

Fig. 2. Collusion and its prevention

We require that the master key of the underlying BTE or HIBE scheme only contains
one group element. The message encryption key for each interval corresponds to α · γ
in the exponent of a pairing, where α is the system master key and γ is a randomness
chosen by the encryptor. For each user ω, we choose a random number αω and split the
master key α into two parts: one is the right master key αω, which serves as the root
master key for the right BTE system, from which the right private key Dω,(R) of ω is
derived; the other part is the left master key α − αω, i.e., the root master key for the left
BTE system, from which the left private key Dω,(L) of ω is derived. It is observable that
the two private keys for ω can be distributed similarly to a FSE scheme as shown in
Fig. 1. b. Consequently, a partial decryption using the user’s right private key contains
αω · γ in the exponent of a pairing while a partial decryption using the left private key
will have (α−αω) ·γ in its exponent. Then, the message encryption key containing α ·γ
in its exponent will be recovered since α = αω + α − αω holds.

In this way, we can actually prevent a possible collusion attack called two-user col-
lusion. For example (shown in Fig. 2. a), a user ω = 7 with a left private key D7,(L)

(which could decrypt the partial ciphertext C3) and a user ω = 2 with right private key
D2,(R) (which could decrypt the partial ciphertext C6) might collude to open the message
aiming for interval [3, 6] (since they could also complete the partial decryption in two
different manners) although neither of them is in this particular interval. In our system,
the partial decryption from D7,(L) will contain (α − α7) · γ while the partial decryption
from D2,(R) contains α2 · γ in their exponents, and hence the collusion will fail since
there’s no way for them to incorporate α · γ in the final step.

Besides, we require the encryptor to use a unique randomness γ j while generating the
ciphertext for each interval NI j. This aims to prevent another attack called a single-user

28 H. Lin et al.

collusion. This attack only occurs in the scenario with multiple intervals (where k ≥ 1).
For instance (shown in Fig. 2. b), in an interval encryption system with two intervals
[3, 4]

⋃
[6, 8], the partial decryption on C3 from the left private key D5,(L) contains α−α5

and the partial decryption on C8 from the right private key D5,(R) contains the other half
randomnessα5, the message encryption key corresponding to α ·γmight be recovered if
these two intervals use the same randomness. However, a unique randomness for each
interval can guarantee that only a user within a certain interval can successfully open the
message. For example (as shown in Fig. 2. b), a randomness γ1 is used in the ciphertext
for interval [C3,C4] and γ2 is used in the encryption for interval [C6,C8]. The message
encryption keys of these two intervals correspond to α · γ1 and α · γ2 respectively. A
single-user collusion fails since the randomized partial decryption (α − α5)γ1 and α5γ2

won’t incorporate a meaningful encryption key in the final step (see Fig. 2. b).
Although the proposed methodology is generic, it is not fully generic since it some-

how relies on the property of bilinear mapping. Therefore, we only illustrate our method-
ology using concrete examples rather than providing a formal description of a generic
interval encryption system in the following sections.

6 Basic Construction: A Concrete Instantiation Based on BBG
HIBE

In the following section, we’ll describe how the proposed methodology can be applied
to the BBG HIBE(viewed as a binary tree encryption scheme here) construction [3]
to propose an interval encryption system. Note that there is an additional algorithm
DeckeyDer (Dω = {Dω,(L),Dω,(R)}, ζ, η) compared with the original definition of interval
encryption in Sec. 2.2. This algorithm is a preliminary step for the decryption algorithm,
and we treat it as an independent algorithm for clarity. Besides, there’s an additional
slightly technical modification to the underlying BTE construction in the sense that we
basically have two concrete instantiations of a hash function to guarantee that we could
cover both the two bounds of each interval in the security proof.

Let G1 be a bilinear group of prime order p, and let g be a generator of G1. In
addition, let ê : G1 × G1 → G2 denote the bilinear map. A security parameter, κ, will
determine the size of the groups. Assume the system accommodates n = 2d users, where
d is an integer.

Setup(n): Select a random α ∈ Zp and set g1 = gα. Choose random elements g2, g3,(L),
g3,(R), h1,(L), · · · , hd,(L), h1,(R), · · · , hd,(R) from G1.

The public key is PK = (g, g1, g2, g3,(L), g3,(R), h1,(L), · · · , hd,(L), h1,(R), · · · , hd,(R)). For a
binary string v = [v1v2 · · · v j] where j ∈ [1, d], define two publicly computable func-
tions: F(L)(v) = g3,(L) ·∏ j

i=1 hvi
i,(L)

and F(R)(v) = g3,(R) ·∏ j
i=1 hvi

i,(R)
. The system master key is

S Kε = gα2 .

PvkGen(ω, S Kε): For receiver ω = [ω1ω2 · · ·ωd] which is associated with the ω-th
leaf node (starting from left to right), the algorithm first chooses a random number
αω. The right master key for ω is S Kε,(R)=gαω2 , and the left master key is S Kε,(L)=gα−αω2 .
The algorithm first generates two node secret keys S Kω,(R)=[gαω2 (F(R)(ω))rω , grω] and
S Kω,(L)=[gα−αω2 (F(L)(ω))rω , grω] for leaf node ω where rω is a random number from Zp.

How to Construct Interval Encryption from Binary Tree Encryption 29

For all the nodes ω| j, j = 1, · · · , d on the path from the root to the leaf node ω, if it
has a right sibling ω| j,(RS)=[ω1ω2 · · · ω j−11], the algorithm uses the right master key to
generate the respective node secret key as S Kω| j,(RS),(R)=[gαω2 (F(R)(ω| j,(RS)))r j , gr j , h

r j

j+1,(R)
,

· · · , h
r j

d,(R)
] where r j is also a random number; Otherwise the algorithm uses the left

master key to generate node secret key for its left sibling ω| j,(LS)=[ω1ω2 · · ·ω j−10] as
S Kω| j,(LS),(L)=[gα−αω2 (F(L)(ω| j,(LS)))r j , gr j , h

r j

j+1,(L)
, · · · , h

r j

d,(L)
].

Output private key Dω = {Dω,(R),Dω,(L)}, where Dω,(R) = {S Kω,(R), S Kω| j,(RS),(R)} j∈[1,d] and
Dω,(L) = {S Kω,(L), S Kω| j,(LS),(L)} j∈[1,d].

Encrypt(S , PK): The encryptor first chooses a k-wise natural interval set S =
⋃k

j=1 NI j,
where NI j = [l j, r j]. For each interval, pick γ j uniformly from Zp at random. Let the
binary name of the corresponding leaf nodes for the two bounds be r j = [r j1 · · · r jd] and
l j = [l j1 · · · l jd].

Output the respective ciphertext Clj={gγ j , (F(L)(l j))γ j } and Cr j={gγ j , (F(R)(r j))γ j}. Set
the message encryption key for each interval NI j as Kj=ê(g1, g2)γ j ∈G2. The collection
of these partial ciphertexts constitute the header Hdr={Clj , Cr j }kj=1.

DeckeyDer (Dω = {Dω,(L),Dω,(R)}, ζ, η): This algorithm derives the node secret key
S Kη,(L) for the lower bound η, and S Kζ,(R) for the upper bound ζ.

1. Let a natural number η ≤ ω denote the η-th leaf node, and thus η is on the left of
ω in the binary tree. Assume the binary representation of η is η = η1 · · ·ηd. There must
exist a node secret key S Kη| j,(L), j ∈ [1, d] which belongs to Dω,(L) (as shown in Fig. 1. b).
Run the derivation algorithm of the underlying BTE scheme iteratively, which means
the following steps need to be executed iteratively for i = j to i = d − 1:

(a) Let η|i = η1 · · · ηi. Parse S Kη|i,(L) as
(
gα−αω2 (F(L)(η|i))ri , gri , hri

i+1,(L)
, · · · , hri

d,(L)

)
=(a0,

a1, bi+1, · · · , bd).
(b) Choose random t ∈ Zp, and output S Kη|i+1,(L) = (a0 ·bηi+1

i+1 · (F(L)(η|i+1))t, a1 ·gt, bi+2 ·
ht

i+2,(L)
, · · · , bd · ht

d) and set i = i + 1.
Finally, it will output a node secret key S Kη,(L)=[gα−αω2 (F(L)(η))r′ , gr′] for the lower

bound η.
2. Let a natural number ζ ≥ ω denote the ζth leaf node. Assume the binary rep-

resentation of ζ is ζ = ζ1 · · · ζd. Therefore there must exist a node secret key S Kζ | j ,(R)

which belongs to Dω,(R). Run the derivation algorithm of the underlying BTE scheme
iteratively, which means steps 1(a)-1(b) need to be executed iteratively.

Output a node secret key S Kζ,(R)=[gαω2 (F(R)(ζ))r′′ , gr′′] for the upper bound ζ.

Decrypt (S , ω,Dω,Hdr, PK): Ifω ∈ NI j = [l j, r j], 1 ≤ j ≤ k which implies that l j ≤ ω ≤
r j, then it runs DeckeyDer (Dω, r j, l j) to generate decryption key S Kr j,(R) and S Klj ,(L). It
obtains the corresponding secret key S Kr j ,(R)=[gαω2 (F(R)(r j))r′′ , gr′′] and the partial cipher-

text for the upper bound Cr j={gγ j , (F(R)(r j))γ j}. Compute
ê[gγ j , gαω2 (F(R)(r j))r′′]

ê[gr′′ , (F(R)(r j))
γ j]
= ê(g, g2)γ jαω .

It also obtains the corresponding secret key S Klj ,(L)=[gα−αω2 (F(L)(l j))r′ , gr′] and the partial
ciphertext for the lower bound Clj={gγ j , (F(L)(l j))γ j}. Compute
ê[gγ j , gα−αω2 (F(L) (l j))r′]

ê[gr′ , (F(L) (l j))
γ j]
= ê(g, g2)γ j(α−αω). Finally, it manages to compute ê(g, g2)γ jαω ·ê(g, g2)

γ j(α−αω) = ê(gα, g2)γ j = ê(g1, g2)γ j

30 H. Lin et al.

6.1 Discussion on Efficiency and Security

In this construction, the public key size is O(log n), and the private key only contains
O(log n) BTE node secret keys. Note that the private key in the DF transformation [12]
of the NNL method or the HS construction containsO(log2 n) orO(log1+ε n) node secret
keys respectively. It is important to point out that a widely used tool, updateable public
storage in the FSE scheme [4], can be also adopted in our proposed interval encryption
system to limit the private storage cost to O(log n). The above efficiency parameters
could be further improved if the random oracle is adopted, i.e., the public key size can
be reduced to O(1) in this case.

The decryption cost is dominated by the derivation of the two node secret keys.
The derivation cost can be reduced to O(log n) by doing the following computation:
in order to deduce the node secret key S Kη,(L)=[gα−αω2 · (F(L)(η))r′ , gr′]=(a′0, a′1) from

S Kη|i,(L)=
(
gα−αω2 (F(L)(η|i))ri , gri , hri

i+1,(L)
, · · · , hri

d,(L)

)
=(a0, a1, bi+1, · · · , bd), we could com-

pute a′0 = a0 ·∏d
k=i+1 bηk

k · (F(L)(η))t, a′1 = a1 · gt where we force r′ = ri + t. We could
deduce the node secret key S Kζ,(R) from S Kζ |i,(R) in a similar way. The overall decryption
time is then reduced to O(log n) since the rest of the decryption procedure only requires
a constant number of group operations.

Why is O(k) better: A system with a transmission overhead proportional to k is more
efficient than the traditional systems, especially the system where communication load
is linearly dependent on r such as the revocation system proposed in [24,27]. To demon-
strate that, we compare the performance of both systems in presence of different values
for r as well as k. We assume that the total node number n is set to 217 = 131072 and let
r increase from 1 to n. For a specific r, we randomly generate 1000 revoked sets, which
correspond to 1000 different interval number k, and thus obtain an average interval num-
ber k as well as the average transmission overhead of the proposed scheme, which has
been shown in Fig. 3. From Fig. 3, it is observed that, when the revocation set is small,
the performance of the proposed scheme is very close to the tradition systems, however
the difference will be scaled up along with the increase of r. If the revoked set number
exceeds 50% of the total number, the communication load of the proposed scheme will
decrease with increase of r. It is also observed that the proposed scheme can achieve
the best performance in case that r is very large, which further demonstrates that the
proposed scheme is suitable for cases when a small receiver set is employed. Compared
with the BGW generalized construction [5] with a

√
n size transmission overload which

only serves as a better choice than the trivial solution and the traditional systems when
r >

√
n, we have the benefit that our system keeps the advantage of the traditional

constructions when r is a small number, namely r � n.
From the above results, we conclude that the proposed construction fits into more

cases than the traditional systems dependent on r, and therefore constitutes a more
favorable choice in practice.

The selective security of the proposed construction can be proven secure under the
d + 1-BDHE assumption, and it’s stated as follow. We leave the concrete proof in the
full version.

Theorem 1. If the Decisional (d + 1)-BDHE assumption holds in G1,G2, then the pro-
posed interval encryption scheme is selective chosen plaintext secure.

How to Construct Interval Encryption from Binary Tree Encryption 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x 10
4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
x 10

4

Revocation Number

T
r
a
n
s
m
i
s
s
i
o
n

o
v
e
r
h
e
a
d

Our System: k

Classical Method: r

Fig. 3. Comparison between k and r

7 Inclusive Extended Interval Encryption

An inclusive extended interval encryption scheme deals with the scenario where the
message is encrypted under a collection of intervals S =

⋃k
j=1[l j, r j], and the private

key Dω of a user ω corresponds to an interval [lω, rω]. The decryption is successful if
and only if there exists at least one interval [l j, r j], j ∈ [1, k] such that [lω, rω] ⊆ [l j, r j].
To generate a private key corresponding to an interval [lω, rω] (see Fig. 4), we simply
generate a left private key Dlω,(L) corresponding to the lower bound lω using the left
master key α − αω as in the basic construction. Similarly we generate a right private
key Drω,(R) for the upper bound rω using the right master key αω. The rest of the above
algorithms have no significant differences from those in the basic construction. Further-
more, it is easy to observe that a man holding a private key for an interval [lω, rω] can
delegate a private key for another interval [lω′ , rω′] using the DeckeyDer algorithm as
long as [lω, rω] ⊆ [lω′ , rω′]. This is a property somewhat close to a recently proposed
concept called inclusive identity based encryption (IBE) [6]. We consider this extended
construction of important theoretical interest since there exist very few inclusive con-
structions [13] since the proposal of inclusive IBE.

C7(2)

D5, (R)()

D4, (L)()C3(1)

1 2 3 4 5 6 7 8

Left BTE system

C6(1)

Right BTE system

C8(2)

Fig. 4. Extended Interval Encryption: the generation of a private key for an interval [4, 5]

32 H. Lin et al.

8 Adaptively Secure Interval Encryption

This construction is based on Lewko and Waters’ HIBE construction [20]. The ba-
sic idea is to apply our proposed transformation method to Lewko and Waters’ HIBE
scheme, and the concrete construction will be shown in the full version.

9 Extensions and Future Work

9.1 Range Attribute Based Encryption

In a key policy attribute based encryption (ABE) [17], a private key might be associated
with an access policy such as “Old man AND tall”. A man holding this private key can
open a message encrypted under an attribute set {“Old man”, “tall”} since this attribute
set satisfies the above access policy. In practice, the attributes in an attribute set might
have certain range and the attributes in an access policy might be assigned with certain
concrete evaluations. In the above example, the access policy might be denoted as a
formula “Age: 60 AND Height: 180 (cm)”. A man holding a private key associated
with the above policy should be able to open a message encrypted under an attribute set
{“Age: 50 to 100”, “Height: 175 to 250 (cm)”}. The reason for the successful decryption
is that both evaluations of the two attributes fall into the range required in the attribute
set and hence the access policy is satisfied. However, A man holding a private key
associated with an access policy “Age: 49 AND Height: 180 (cm)” cannot decrypt this
message since the evaluation “Age: 49” is not within the corresponding range “Age: 50
to 100” in the attribute set. A range ABE scheme is realizable from a traditional ABE
scheme. However, the ciphertext will blow up with a log n factor as shown in our trivial
example of constructing interval encryption from ABE.

The proposed interval encryption scheme can be easily modified to a range ABE
scheme with a constant ciphertext size. The primitive idea and concrete construction
can be found in the full version.

9.2 Interval Encryption under Simpler Assumption

The proposed method also applies to those BTE or HIBE schemes, in which cases their
master keys only contain one single group element such as [2,9]. We can construct in-
terval encryption schemes based on the decisional bilinear Diffie-Hellman assumption.
The concrete steps are similar to that of Sec.6 and hence trivial. The weakness of these
constructions is that the ciphertext size will blow up with a log n factor compared with
the basic construction while the private key size remains O(log n).

9.3 Encryption under a Graph

Consider the following application: a message might be encrypted under a digital map
of a certain territory on earth (which a close two-dimensional graph can represents)
and only those who hold a private key for a location in the territory can open the mes-
sage. This notion might actually intrigue several interesting applications. For example,

How to Construct Interval Encryption from Binary Tree Encryption 33

a launch order of a certain weapon might be encrypted under a map of a specific re-
gion and only those who have a private key corresponding to a location within this
region can launch this weapon. Apparently, we could map all the points in a two-
dimensional digital map to the points in an one-dimensional axis. We could simply
calculate i = (y − 1)c + x where (x, y) is a point in a two-dimensional map with width
c and height d. If we set n = c ∗ d, then all the points can be mapped into an index
i ∈ [1, n]. In other words, all the points within the territory of this digital map can be
mapped into a collection of intervals. Therefore, the proposed interval encryption pro-
vides a solution for the above scenario. The count of intervals depends on the perimeter
of this graph.

9.4 Future Work and Open Problems

The reason why the proposed construction can improve the transmission overload relies
on the fact that we utilize the difference between the points in and outside a certain
interval. How to use the difference between a point in and outside of a graph to reduce
the transmission overload, especially to minimize the constant factor k during the multi-
dimensional scenario is left as an important open problem. It is possible to borrow some
idea from computational geometry to solve this problem. To propose a BTE or HIBE
construction with improved efficiency or under a weaker assumption which fits into our
framework is very interesting since this directly implies the improvement of interval
encryption.

References

1. Attrapadung, N., Imai, H.: Graph-decomposition-based frameworks for subset-cover broad-
cast encryption and efficient instantiations. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS,
vol. 3788, pp. 100–120. Springer, Heidelberg (2005)

2. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without ran-
dom oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 223–238. Springer, Heidelberg (2004)

3. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant
size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456.
Springer, Heidelberg (2005)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size
ciphertext (2005), http://eprint.iacr.org/2005/015

5. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short cipher-
texts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275.
Springer, Heidelberg (2005)

6. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption schemes. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470. Springer, Heidelberg
(2008)

7. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short cipher-
texts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
573–592. Springer, Heidelberg (2006)

8. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random
oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Hei-
delberg (2006)

http://eprint.iacr.org/2005/015

34 H. Lin et al.

9. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham,
E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. J. Cryptol-
ogy 20(3), 265–294 (2007)

11. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private
keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer,
Heidelberg (2007)

12. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In: Feigenbaum,
J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003)

13. Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially many lev-
els. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456. Springer, Heidelberg
(2009)

14. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

15. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with short ci-
phertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer,
Heidelberg (2009)

16. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups of low-
state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 511–527. Springer,
Heidelberg (2004)

17. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: ACM Conference on Computer and Communications
Security, pp. 89–98 (2006)

18. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

19. Jho, N.-S., Hwang, J.Y., Cheon, J.H., Kim, M.-H., Lee, D.H., Yoo, E.S.: One-way chain based
broadcast encryption schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 559–574. Springer, Heidelberg (2005)

20. Lewko, A.B., Waters, B.: Fully secure hibe with short ciphertexts,
http://eprint.iacr.org/2009/

21. Liu, Y.-R., Tzeng, W.-G.: Public key broadcast encryption with low number of keys and
constant decryption time. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 380–396.
Springer, Heidelberg (2008)

22. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)

23. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access
structures. In: ACM Conference on Computer and Communications Security, pp. 195–203
(2007)

24. Sahai, A., Waters, B.: Revocation systems with very small private keys,
http://eprint.iacr.org/2008/309

25. Wang, P., Ning, P., Reeves, D.S.: Storage-efficient stateless group key revocation. In: Zhang,
K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 25–38. Springer, Heidelberg (2004)

26. Waters, B.: Dual system encryption: Realizing fully secure ibe and hibe under simple as-
sumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer,
Heidelberg (2009)

27. Yoo, E.S., Jho, N.-S., Cheon, J.H., Kim, M.-H.: Efficient broadcast encryption using multiple
interpolation methods. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 87–
103. Springer, Heidelberg (2005)

http://eprint.iacr.org/2009/
http://eprint.iacr.org/2008/309

Shrinking the Keys of Discrete-Log-Type Lossy
Trapdoor Functions

Xavier Boyen and Brent Waters�

Institut Montefiore, Université de Liège, Belgium
University of Texas at Austin, USA

Abstract. To this day, realizations in the standard-model of (lossy)
trapdoor functions from discrete-log-type assumptions require large pub-
lic key sizes, e.g., about Θ(λ2) group elements for a reduction from the
decisional Diffie-Hellman assumption (where λ is a security parameter).
We propose two realizations of lossy trapdoor functions that achieve
public key size of only Θ(λ) group elements in bilinear groups, with a
reduction from the decisional Bilinear Diffie-Hellman assumption.

Our first construction achieves this result at the expense of a long
common reference string of Θ(λ2) elements, albeit reusable in multiple
LTDF instantiations. Our second scheme also achieves public keys of
size Θ(λ), entirely in the standard model and in particular without any
reference string, at the cost of a slightly more involved construction.

The main technical novelty, developed for the second scheme, is a
compact encoding technique for generating compressed representations
of certain sequences of group elements for the public parameters.

1 Introduction

The notion of Lossy Trapdoor Function (LTDF) is a new fundamental public-key
primitive that was recently introduced by Peikert and Waters [20], henceforth
PW. This notion has generated interest for two main reasons:

1. LTDFs can be constructed from widely differing hardness assumptions. These
include the two recent constructions of PW from the Discrete-Log-based
DDH and a worst-case Lattice assumption [20]. In addition, the Damg̊ard-
Jurik [9] variant of the decade-old Paillier cryptosystem [19], which, as was
independently pointed out in [23,5], happens to immediately give an LTDF
from the Factoring-based assumption of composite residuosity.

2. LTDFs can in turn serve as black-box building blocks within more complex
primitives, such as regular injective trapdoor functions, provably collision-
resistant hashing, and public-key encryption with chosen-ciphertext security
[20], as well as some new strong notions of security for deterministic public-
key encryption [5]. We may also expect to see more such applications in the
future.

� Supported by NSF CNS-0716199, Air Force Office of Scientific Research (AFOSR)
under the MURI award for “Collaborative policies and assured information sharing”
(Project PRESIDIO) and the U.S. DHS under Grant Number 2006-CS-001-000001.

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 35–52, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

36 X. Boyen and B. Waters

Since LTDFs are general and admit several applications, an interesting pursuit
is to seek how to realize them in the most efficient manner, from robust and
hardness assumptions. Peikert and Waters (PW), who first proposed the notion,
provide two LTDF constructions from appealing hardness assumptions [20]. All
of their constructions provided built upon a public key that reflected a “matrix
structure”. One drawback of this approach is that it results in a rather large
public key of Θ(λ2) group elements and thus (for the DDH-based construction)
grows cubically with the security parameter λ. As a concrete example, at the
λ = 128 bit security level, if we assume an optimal elliptic-curve implementation
with the smallest possible 256-bit element representation, this implies a public-
key storage and transmission requirement in excess of (3 × 128)2 × 256 bits, or
about 36 Mb, for every single instance of the LTDF.

In subsequent work Boldyreva, Fehr, and O’Neill [5] and Rosen and Segev [23]
provided constructions of Lossy Trapdoors from the composite residuosity as-
sumption. These constructions provided greater efficiency. Their security de-
pends upon the composite residuosity assumption, while our goal is to look
for new and efficient lossy trapdoors that do not depend upon the difficulty of
factoring.

Our goal is to work toward achieving efficient trapdoor functions based on
discrete log assumptions. One compelling reason to find solutions in the discrete
log setting is that there are potentially many concrete instances for any one
constructions. For example, there are several different realizations of bilinear
groups [13]. If one group them turned out to be insecure, a construction might
still be viable under a different group. In contrast, the assumption of factoring
is absolute.

Our Approach. In this work, we aim toward making LTDFs from discrete log
assumptions realizable in practice. Our guiding principle is to try to compress
the DDH-based LTDF construction from [20] in order to shrink the public key
size from Θ(λ2) to Θ(λ) group elements.

More precisely, we propose two new LTDF constructions that extend the PW
DDH-based LTDF onto pairing-friendly curves. Since with a (symmetric) pairing
the DDH assumption is generally false, we use the related decisional Bilinear
Diffie-Hellman (DBDH) assumption. DBDH is weaker than DDH, which is why
it may hold even in bilinear groups where DDH does not, but in counterpart our
constructions do require a pairing.

On pairing-friendly curves, we will show how to exploit the bilinear map in
various ways in order to remove much of the redundancy from the LTDF public
key, and instead allow the user to reconstruct it efficiently as needed. Not only
does this save a factor of λ in the public-key size, it also makes the LTDF
computation more space- and time-efficient.

We begin by observing that in the original construction there is informational
theoretically much redundancy in their public key. When constructing an injec-
tive key their setup algorithm chooses r1, . . . , rn, a1, . . . , an ∈ Zp for a trapdoor
function of input length n. The (i, j)-th entry for i
= j is the element gri·aj and
along the diagonal the key consists of gri·ai · g.

Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions 37

In order to take advantage of this redundancy our first idea is to use a bi-
linear group G with generator g. A natural approach is to consider publishing
as part of the public key ga1 , . . . , gan , gr1 , . . . , grn consisting of only O(n) group
elements. Then when evaluating the trapdoor, one can dynamically generate the
PW matrix by taking the (i, j)-th element as e(gri , gaj). While this first tech-
nique does indeed compress the matrix, it actually gives the attacker too much
information. In particular, it gives the attacker the diagonal of a lossy key. This
allows the attacker to trivially distinguish between a lossy and an injective key;
undercutting the main security guarantee. Our challenge is create a public key
that allows a user to generate all the matrix elements except along the diagonal,
but while simultaneously keeping the key short (Θ(n) group elements).

In our first construction we amortize the cost of a creating the matrix by
leveraging a (fixed, reusable) common reference string (CRS) to achieve the com-
pression. The reference string consists of Θ(n2) group elements, and is therefore
as long as one public key in the PW scheme; however, each additional public key
consists of just O(n) group elements. This system works since the CRS provides
information when taken along with the public key to generate everything except
along the diagonal. The primary downsides to this approach are the reliance on
a trusted third party to generate the reference string and the large size of the
reference string itself.

In our second construction we develop a new method in order to achieve true
key compression without CRS. To do this we find a somewhat surprising connec-
tion to the identity-based revocation scheme of Lewko, Sahai, and Waters [17].
In their work, they describe a “two equation” technique for identity-based revo-
cation. They show how to encrypt to an identity ID∗ such that a private key for
any identity ID
= ID∗ is able to decrypt.1 Intuitively, we will apply a (high-level)
version of this idea, not for revocating IBE users but for compressing an LTDF
public key.

Conceptually we will map each row i of a ciphertext to a ciphertext that is
associated with a “virtual identity” i and each column j with a “virtual key”
for identity j. Using this approach one is able to decompress the encoding and
obtain an LTDF public key matrix for every element (i, j), except on the diagonal
where i = j. Along the diagonal, the system generates two dependent equations
and the public key will provide these components separately. Taken all together,
this gives us a Lossy TDF system with Θ(n) size public keys in the standard
model.

The security of both schemes follows from the DBDH assumption, respectively
in the common reference string model in the first case and in the standard model
in the second case.

We note that, while our keys and ciphertext only require Θ(λ) group elements
instead of Θ(λ2), half of the new elements will live in the bilinear “target” group
Gt instead of entirely in the “source” group G. For known pairing and known
attacks, the optimal choices of G and Gt are such that the representation size of

1 The work of Lewko et al. [17] actually shows how to efficiently revoke several users
at once, but for our purposes discussing a single revocation is sufficient.

38 X. Boyen and B. Waters

Gt-elements grows faster than that of G-elements. This makes our technique less
useful in the asymptote that one could have expected (based on current knowl-
edge). Nevertheless, our framework is quite advantageous for practical values of
the security parameter.

1.1 Related Work

The concept of trapdoor functions was first proposed by Diffie and Hellman [10].
In an (injective) trapdoor function f() a party with a trapdoor can invert the
function; however, inversion should be hard for any attacker. Trapdoor func-
tions have several interesting applications in cryptography ranging from two
party computation [26], Non-Interactive Zero Knowledge Proofs [4], and Chosen-
Ciphertext Secure Encryption [18,11] among others.

The first trapdoor realization was given by Rivest, Shamir, and Adleman [22]
with security based on what has become known as the RSA assumption. Other
standard model construction include the factoring based one of Rabin [21] and
that of Paillier [19]. We note that all these standard model constructions rely on
the difficulty of factoring.

Using the random oracle heuristic it is possible to transform any secure pub-
lic key encryption system into an injective trapdoor [3,2]. In addition, Bellare,
Halevi, Sahai, and Vadhan gave generic standard model transformations from
one way functions to highly non-injective trapdoor functions; however, the ap-
plications of these forms of trapdoors is rather limited. For example, they cannot
be used to realize public key encryption. For this reason, we will often implicitly
assume injectiveness when discussing useful trapdoor functions.

Until recently, the only known standard model realizations of trapdoor func-
tions (LTDFs) relied on the difficulty of factoring. Recently, Peikert and Wa-
ters [20] introduced the concept of Lossy Trapdoor Functions. A Lossy Trapdoor
system has the property that a publicly evaluable function f can be created to
either be an injective function or highly non-injective; moreover, an adversary
should not be able to distinguish what type of function f is given its description.
They showed that Lossy TDFs implied standard trapdoor functions and gave
several other applications of LTDFs including chosen-ciphertext secure encryp-
tion. In addition, they showed different realizations from both the hardness of
the decisional Diffie-Hellman problem and certain lattice-based problems. One
drawback of their construction is that uses a matrix of public key components
that results in large public keys of O(λ2) group elements.

The PW lattice-based LTDF construction fares better asymptotically than
the discrete-log one, since it requires O(λ2) elements of Zq where q is relatively
small2. However, the constants associated with the lattice-based construction
might make it less efficient for security parameters in the foreseeable future,
and for this paper we focus on the discrete-log setting (specifically, in a pairing-
enabled context).

2 Typically, q is set to be much less than 2λ. See Gama and Nguyen [14] for a discussion
of current lattice parameters.

Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions 39

One potential benefit of our work is that our public key compression tech-
niques, developed here in a pairing context, might have future applications
to the lattice setting. We note that lattice-based crypto analogues of pairing-
based techniques have been used to construct Identity-Based Encryption in a
lattice setting: e.g., Gentry et al. [15] recently gave a lattice-based trapdoor
function system with interesting applications such as hash-and-sign signatures
and identity-based encryption: at first in the random-oracle model (see [15]),
and more recently in the standard model (see [1,7,8]).

More recently, Boldyreva, Fehr, and O’Neill [5] and Rosen and Segev [23] in-
dependently showed that the Damg̊ard Jurik [9] extension of the Paillier [19]
trapdoor was actually an efficient lossy trapdoor function and therefore inher-
its its applications. Freeman et al. [12] gave a number of LTDF constructions
based on the quadratic and composite residuosity assumptions, or on d-Linear
assumptions (see [6,24]). Hemenway and Ostrovsky [16] showed that LTDFs can
also be constructed from smooth homomorphic hash proof systems.

2 Preliminaries

Before describing our constructions, it is useful to review and understand the
original scheme, and also to see where it can be improved. (The paper [20] has
two constructions, one from the DDH problem, the other from worst-case Lattice
problems. We focus on the first. We refer to the paper for the full details of their
construction.)

2.1 Simplified Definition of Lossy TDFs

First, we give a somewhat simplified definition of Lossy TDF, based on [20].
Let λ be a security prameter and n(λ) be the length of the input on which the
function is evaluated.

Definition 1. A lossy trapdoor function (LTDF) is a collection of polynomial-
time algorithms (Sinj, Sloss, Fltdf, F

−1
ltdf) such that

– Sinj randomly generates an injective function along with an associated trap-
door,

– Sloss generates a lossy function (and no trapdoor),
– Fltdf evaluates any function generated by either Sinj or Sloss on any input

vector x ∈ {0, 1}n,
– F−1

ltdf recovers the original input x from the output y of an injective function
using its trapdoor.

Additionally, there is a security requirement that the injective and lossy functions
respectively generated by Sinj and Sloss be computationally indistinguishable.

This simplified definition will cover all the cases of interest in this paper. We refer
to [20] for a more precise and more complex definition. A few related notions
(such as the amount of “lossiness” induced by the lossy mode of an LTDF) will
be recalled as we need them.

40 X. Boyen and B. Waters

3 Compact LTDFs from DBDH in the CRS Model

Our first LTDF construction with a compressed output is set in the common
reference string (CRS) model, and uses bilinear maps.

The main interest of this construction is that it is very simple, yet produces
a Lossy TDF with shorter public keys than any previous ones not based on
factoring. It also features a security reduction from the decisional bilinear Diffie-
Hellman assumption, which is one of the most-studied and weakest among all
the very many bilinear-group assumptions that have been made to date.

Although the reference string in this scheme is about as long as the public
key in the PW DDH scheme of the previous section, we stress that the CRS is
reusable across users whereas public keys are clearly not.

3.1 Intuition

At a high level, this LTDF is a bit similar to the PW DDH-based PW. A gener-
alized ElGamal scheme is used to encrypt a matrix message M that is either the
identity matrix I or the zero matrix 0, with the same consequences on injectivity
versus lossiness as before. The novelty lies in the distribution of the public key.

Recall that in the PW DDH-based LTDF, the public key comprises the actual
ciphertext C of M, and whose representation takes up to n × (n + 1) group
elements. Of course, there is a lot of redundancy in C, due to the way it is
constructed, but all of this redundancy had to remain computationally hidden
in order for the injective and lossy modes to remain indistinguishable.

Our general goal here will be carefully to reveal a portion of this redundancy,
so that it can be reconstructed at the time of use (explicitly or implicitly) with-
out having to be transmitted, but without compromising the computational
indistinguishability between an injective LTDF and a statistically lossy one.

Our approach in this first scheme starts with a decomposition of the ciphertext
C = (C1‖C2) linearly into two “additive” components: C = Cbulk⊕Cdiag, where
⊕ is the element-wise matrix addition using G’s own group operation (which we
chose to write using a multiplicative notation):

1. The first component, Cbulk, will correspond to C1 and all the elements of
C2 off the diagonal: this is the “bulk” of the matrix C, which stays the same
in both injective and lossy modes.

2. The second component, Cdiag, will comprise just the elements on the diag-
onal of C2: there are only n of them, and the only ones whose construction
changes between the two modes.

Since Cdiag is already relatively compact, most of the gain will come from com-
pressing Cbulk. Observe in the PW scheme that the off-diagonal elements of C2
are of the form grizj , where ri is ephemeral and zj belongs to the private key (if
any); i.e., we have a product of two secret values in the exponent of a fixed group
generator. Instead of publishing all the grizj elements in extenso, this suggests
the publication of “precursor” elements gri and gzj and the use of a pairing to

Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions 41

reconstruct e(g, g)rizj = e(gri , gzj) on the receiving end. From there, one could
then implement the rest of the PW scheme in the group generated by e(g, g)
instead of G.

Unfortunately, this idea does not quite work yet, because it also exposes the
diagonal values e(gri , gzj) for i = j, and from this information the injective and
lossy modes become easy to distinguish. We need to forbid the reconstruction
of e(gri , gzj) when i = j, and allow it only when i
= j. This is where the CRS
comes into play: the CRS can be constructed in such a way that it contains
values of the form e(gri, gzj), or even grizj , but only for i
= j and not for i = j.

Alas, there is still one problem: the private key elements zj clearly cannot be
part of a CRS that is meant to be reusable across multiple users. The solution
is to have the CRS contain a reusable matrix of non-diagonal elements griaj ,
and have each LTDF public key contain an independent vector of gbj . A bilinear
pairing can be used to reconstruct e(griaj , gbj) = e(g, g)riajbj as needed, for i
= j.
The products ajbj play the role of the zj in the PW scheme (though only bj is
available as trapdoor information). The ri are analogous to the secret ephemeral
randomizers in the PW scheme, except that they have been immortalized in the
CRS.

The main difficulties will be to show that inversion can still be performed only
with the partial trapdoor bj (in injective mode), and to prove that the ri can be
safely reused for all LTDF instances (even with different public keys) without
putting their security in jeopardy.

3.2 Construction

Consider a pair of finite, abelian, bilinear groups (G,×) and (Ĝ,×) of prime
order p = |G| = |Ĝ|, respectively generated g ∈ G and ĝ ∈ Ĝ. Let e : G ×
Ĝ → Gt be a non-degenerate, efficiently computable, bilinear pairing into a
third abelian group Gt also of order p = |Gt| and thus generated by e(g, ĝ) ∈
Gt. We use the multiplicative notation for the group operation in all three
groups. There may or may not exist efficiently computable group homomor-
phisms between G and Ĝ; we make no requirement of this nature either way. We
assume that the Decision Bilinear Diffie-Hellman (DBDH) problem is hard in
G × Ĝ, meaning that no probabilistic polynomial-time algorithm A can distin-
guish (g, ga, gb, ĝ, ĝa, ĝc, e(g, ĝ)abc) from (g, ga, gb, ĝ, ĝa, ĝc, e(g, ĝ)d) with proba-
bility non-negligibly greater than 1

2 , for randomly chosen a, b, c, d ∈ Zp.
As before, in all generality we must consider not a fixed pair of groups G and

Ĝ, but an infinite family of such groups sampled by a PPT instance generator G,
where G on input 1λ outputs a description of (p, G, g, Ĝ, ĝ, e) such that �log2 p� =
Θ(λ). The DBDH assumption, rigorously speaking, pertains to the family of
groups induced by G for sufficiently large λ.

For simplicitly of notation, in the description of the scheme and its proof
below, we drop all “hats”, thereby blurring the distinction between the two
bilinear groups G and Ĝ (though Gt must remain distinct). For example, in this
case the Decision-BDH problem becomes to distinguish (g, ga, gb, gc, e(g, g)abc)
from (g, ga, gb, gc, e(g, g)d).

42 X. Boyen and B. Waters

Our compact LTDF from DBDH in the CRS model is constructed as follows:

CRS Setup: The universal setup algorithm, on input 1λ, selects a bilinear
group (p, G, g, e) ← G(1λ) and fixes n > 3 log2 p. It then secretly chooses
random ri ∈ Zp for i ∈ [n] and random aj ∈ Zp for j ∈ [n], and publishes a
CRS that consists of the following:
– the description of G = 〈g〉, and the pairing e;
– gri for all i ∈ [n];
– gaj for all j ∈ [n];
– griaj for all (i, j) ∈ [n]2 such that i
= j;

Everyone can check that the CRS has been computed correctly (though of
course not that the exponents ri and ai have been actually picked at random
and forgotten).

Sampling algorithm, Injective mode: The injective function generator, de-
noted Sinj(p, G, g, e), randomly draws bj ∈ Zp for j ∈ [n]. It looks up the
CRS to obtain gri for i ∈ [n] and gaj for j ∈ [n].
– The LTDF function index, or “public key”, is published as 2n elements

of G and Gt in total, arranged in a single-row matrix B and a diagonal
matrix D (where 1 = e(g, g)0),

B =
(
gb1 · · · gbn

)
D=

⎛⎜⎜⎜⎝
e(gr1 , ga1)b1 · e(g, g) 1 · · · 1

1 e(gr2 , ga2)b2 · e(g, g) · · · 1
...

. . . 1
1 1 · · · e(grn , gan)bn · e(g, g)

⎞⎟⎟⎟⎠
– The LTDF trapdoor, or “private key”, consists of the n-vector b =

(b1, . . . , bn) ∈ Zn
p .

Sampling algorithm, Lossy mode: The lossy function generator, denoted
Sloss(p, G, g, e), looks up the CRS and proceeds in the same fashion as Sinj,
except that the public and private keys are created differently.
– The LTDF function index, or “public key”, consists of two matrices B

and D, where,

B =
(
gb1 · · · gbn

)
D =

⎛⎜⎜⎜⎝
e(gr1 , ga1)b1 1 · · · 1

1 e(gr2 , ga2)b2 · · · 1
...

. . . 1
1 1 · · · e(grn , gan)bn

⎞⎟⎟⎟⎠
– There is no LTDF trapdoor, or “private key” (since in this case one is

statistically unable to perform an inversion, whether one is given the bj

or not).

Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions 43

Evaluation algorithm: The evaluation algorithm, denoted Fltdf, takes as in-
put ((B,D),x), where (B,D) is a function index, and x ∈ {0, 1}n is an
n-bit binary input string. The evaluation algorithm Fltdf naturally also has
access to the CRS. To facilitate the exposition, we present two different but
functionally equivalent implementations of Fltdf.

• “Pedestrian” evaluation (requires n2 − n pairings):
To compute the desired output, the simplest way is first to reconstruct the
analogous to the matrix C in the PW scheme, and then proceed with the
function evaluation in the analogous way. One big difference with PW is that,
here, the matrix C does not have all of its elements in the same group G.
Rather, the zero-th column, C1, has elements in G, whereas the remaining
n column, C2, have elements in Gt.

Let thus C = C1‖C2 with C1 ∈ Gn×1 and C2 ∈ Gn×n
t computed from

B, D, and the CRS,

C1 =

⎛⎜⎝gr1

...
grn

⎞⎟⎠ C2 =

⎛⎜⎜⎜⎜⎜⎜⎝

D1 e(gr1a2 , B2) · · · e(gr1an , Bn)
...

. . .
...

e(gr2a1 , B1) D2 · · · e(gr2an , Bn)
...

. . .
...

e(grna1 , B1) e(grna2 , B2) · · · Dn

⎞⎟⎟⎟⎟⎟⎟⎠
The output is the row-vector y = x ·C, with 1 element in G and n elements
in Gt, given by,

y=x ·C=x · (C1‖C2)=
(
x1 . . . xn

)
·

⎛⎜⎝c1,0 c1,1 · · · c1,n

...
. . .

...
cn,0 cn,1 · · · cn,n

⎞⎟⎠
=
(∏n

i=1 cxi

i,0 ,
∏n

i=1 cxi

i,1 , . . .
∏n

i=1 cxi

i,n

)
∈ G×Gn

t

• “Shortcut” evaluation (requires n pairings):
A careful study of the above procedure suggests a faster but equivalent way to
evaluate the function on the given inputs. Instead of expanding each element
of C using a pairing, only to have them multiplied up together down the line,
we keep the multiplication in mind from the start which allows us to do but
a single pairing for each output element.

The output must be a row-vector y of size n + 1, where y0 ∈ G and
each of the elements yj ∈ Gt for j ∈ [n] are directly computable from the
respective expressions,

y0 =
n∏

i=1

(gri)xi ∈ G , yj =e

⎛⎝ ∏
i∈[n]\{j}

(griaj)xi , Bj

⎞⎠ ·Dxj

j ∈ Gt

It is easy to see that both methods give the same result. The pedestrian
methods clearly shows the analogy to PW, while the shortcut method re-
quires much less memory and is more efficient.

44 X. Boyen and B. Waters

Inversion algorithm: The inversion algorithm F−1
ltdf is input (b,y), where b =

(b1, . . . , bn) ∈ Zn
p is the trapdoor from the injective sampling algorithm Sinj,

and y = (y0, y1, . . . , yn) ∈ Gn+1
t is the output of the evaluation algorithm

Fltdf. The algorithm F−1
ltdf has access to the CRS.

The bits of the preimage x = (x1, . . . , xn) ∈ {0, 1}n of y are output as
follows,

xj =

{
0 if yj = e(y0, g

aj)zj · e(g, g)0

1 if yj = e(y0, g
aj)zj · e(g, g)1

Naturally, e(y0, g
aj)zj is only computed once for each j ∈ [n], so the entire

inversion process requires n pairing evaluations — or n+1, strictly speaking,
though e(g, g) never changes.

3.3 Security

There are three properties that must be satisfied in order for our scheme to be
an LTDF: (1) injectivity in injective mode; (2) enough lossiness in lossy mode;
(3) computational indistinguishability of the two modes.

Theorem 1. The preceding algorithms define a collection of (n, n−log2 p)-Lossy
TDFs under the Decision Bilinear Diffie-Hellman assumption for G, in the Com-
mon Reference String model.

Proof. We need to prove each of the three listed properties: (1) injectivity in
injective mode; (2) enough lossiness in lossy mode; (3) computational indistin-
guishability of the two modes.

Injectivity in injective mode follows from that, since the matrix M and thus
C2 is invertible, the information from x will be preserved by the evaluation
function, which by construction amounts to “multiplying” the input vector x by
the matrix C2 (and also C1 which is important to compute the function inverse
but not to show injectivity).

Lossiness in lossy mode follows from that, under the parameters generated
by Sloss, the evaluation function Fltdf(C, ·) has at most p possible output values
as the input vector x varies, for any given choice of randomness, and so the
information about x contained in the output y is at most log2 p bits. Since the
domain of x is {0, 1}n of size 2n for n > 3 log2 p, it follows that the lossiness (i.e.,
the information loss about x for a uniformly distributed x) caused by Fltdf(C, ·)
is equal to k = log2(2n)− log2 p = n− log2 p > n− n/3 = 2n/3.

Indistinguishability is the only property that requires a complexity assump-
tion, and whose proof makes use of the common reference string. The result is
stated in Lemma 1.

Lemma 1. Under the Decision Bilinear Diffie-Hellman assumption in G, the
distributions of public keys C generated by Sinj and by Sloss cannot be distin-
guished with non-negligible advantage by a probabilistic polynomial-time algo-
rithm, in the CRS model.

Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions 45

Proof (Proof.). The proof is based on a hybrid-game argument; that is, we grad-
ually switch the LTDF from an injective-mode setup Sinj to a lossy-mode setup
Sloss, one element of the diagonal at a time. That is, for k ∈ [n], one k at a
time, we change Dk from the injective definition (where mk = 1) into the lossy
definition (where mk = 0). For each k, we then show that if the adversary can
successfully distinguish the transition from Hk to Hk+1, then we can turn it into
a BDH distinguisher. (And it must distinguish at least one such transition, if it
is to distinguish injective from lossy.)

We begin by defining intermediate game H ′
k where in game H ′

k the first k− 1
elements are in lossy mode, Dk is a random group element, and Di for i > k are
chosen according to the injective setup.

Under the BDH assumption we can show that Hk is indistinguishable from
H ′

k. Our reduction algorithm takes in a d-BDH challenge tuple g, ga, gb, gc ∈
G and T ∈ Gt. For i
= k it chooses random ai, bi, ri itself. It uses these to
populate the CRS and the public key B at all positions except the k-th position.
It then sets gak = ga , grk = gc, and gbk = gb. Using these knowledge of
bi for i
= k the reduction can create Di = (e(gai , gri))bi for i < k and for
Di = (e(gai , gri))bie(g, g) for i > k. It finally creates Dk = Te(g, g). If T is a
bilinear tuple we are in game Hk; otherwise we are in game H ′

k.
A symmetrical argument can show that for all k it is difficult to distinguish

between H ′
k and Hk+1. Putting the sequence together completes our proof.

4 Compact LTDFs from DBDH in the Standard Model

We now present a second LTDF construction with public keys about as compact
as our first construction, and likewise also based on the DBDH assumption in
bilinear groups, but without CRS or any setup requirement.

4.1 Intuition

The general structure is similar to that of our first scheme, which is to say that
it combines the PW LTDF strategy to achieve lossiness with some algebraic
manipulations to remove as much redundancy as possible from the public key.

There is a paradox that we mentioned in the intuition of our first scheme: that,
in order to achieve any meaningful compression of the elements of C without
“outside help”, we would need to expose the redundancy that was hidden in
the matrix C. But we could not do that, because it would allow an adversary to
reconstruct not only its off-diagonal elements , but also the “forbidden” elements
on the diagonal (those that determine whether the function is injective or lossy).
Our solution was to use a (thankfully reusable) common reference string to reveal
(the better part of) the off-diagonal elements without saying anything much at
all about the diagonal ones.

Here, we will do much better, and resolve the paradox: we construct a special
compact encoding that, without any outside help, will let anyone easily recon-
struct the off-diagonal elements of C, without exposing the diagonal ones (which
are sent separately).

46 X. Boyen and B. Waters

The idea is to construct a linear system of equations, with one equation per
row i and one per column j, in such a way that each element at the intersection
(i, j) can be obtained by solving the pair of the i-th row and j-column equations
for two variables. The trick is that the equations are constructed in such a way
that they become linearly dependent for i = j, rendering them useless on the
diagonal — and only on the diagonal. As stated in the introduction, this can
be viewed as a novel twist on Lewko’s et al. [17] two equation-based revocation
system, where we conceptually match up rows and columns of the Lossy TDF
with ciphertexts and private keys of an broadcast revocation system.

Of course, we cannot give the equations in the clear, we use a technique that
is quite common in Discrete-Log-hard groups, of encoding all the coefficients we
need to hide as powers of some group generator. That is, instead of revealing
α ∈ Zp, we reveal gα ∈ G. Because Zp and G are homomorphic through expo-
nentiation, we can still perform any additive operation that we like on the “α”s
hidden in the exponents.

Then, since our stratagem with the pairs of equations require some multipli-
cation at some point when trying to solve for the unknowns, we need to make
use of a bilinear map in order to do this one multiplication “in the exponent”.

We now describe our system. The crux of the construction lies in the denomi-
nator 1

j−i that we make appear along the computation path, and that will break
things down when one tries it for i = j.

4.2 Construction

The notation regarding bilinear groups is the same as in Section 3. Likewise, to
avoid clutter, we drop all “hats” in the notation, thereby implicitly assuming a
symmetric pairing e : G× Ĝ → Gt where G = Ĝ. The system continues to work
in the asymmetric setting, for any partition of the bilinear-group elements into
G or Ĝ, as long as it is self-consistent.

Our compact LTDF from DBDH in the Standard Model is constructed as
follows:

Sampling algorithm, Injective mode: The injective function generator Sinj,
on input a security parameter 1λ, selects a bilinear group (p, G, g, e)← G(1λ),
and fixes n > 3 log2 p. It also chooses two independent random generators
u ∈ G and h ∈ G in addition to g ∈ G. It then chooses random ri ∈ Zp for
each i ∈ [n], and random zj ∈ Zp for each j ∈ [n].
– The LTDF function index, or “public key”, is listed as 4n elements of G

and n of Gt:

for each “row” indexi ∈ [n] : Ri = gri , Si = (hi · u)ri

for each “column” indexj ∈ [n] : Vj = gzj , Wj = (hj · u)zj

for each “diagonal” elementk ∈ [n] : Dk= e(g, u)rkzk· e(g, g)

– The LTDF trapdoor, or “private key”, consists of the n-vector z =
(z1, . . . , zn) ∈ Zn

p .

Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions 47

Sampling algorithm, Lossy mode: The lossy function generator Sloss, on in-
put a security parameter 1λ, proceeds similarly as Sinj above, except for the
key computation:
– The LTDF function index, or “public key”, is listed as 4n elements of G

and n of Gt:

for each “row” indexi ∈ [n] : Ri = gri , Si = (hi · u)ri

for each “column” indexj ∈ [n] : Vj = gzj , Wj = (hj · u)zj

for each “diagonal” elementk ∈ [n] : Dk = e(g, h)rkzk

– There is no LTDF trapdoor (since the evaluation output will be lossy
even with the knowledge of all the secret exponents).

Evaluation algorithm: The evaluation algorithm Fltdf takes as input an LTDF
public key and an n-bit binary input string x ∈ {0, 1}n. Again, there are at
least two functionally equivalent ways to perform the computation; we start
with the inefficient one for expository purposes.

• “Pedestrian” evaluation (requires a total of n2 pairings and double-pairings):
To compute the desired output, the evaluation algorithm starts by recon-
structing a virtual matrix C very similar to that of the CRS scheme of
Section 3 (in its “pedestrian” implementation), and then proceed with the
actual function evaluation. With the present notation, here the virtual ma-
trix C = C1‖C2 is written,

C1 =

⎛⎜⎝e(g, h)r1

...
e(g, h)rn

⎞⎟⎠

C2 =

⎛⎜⎜⎜⎝
e(g, h)r1z1 · e(g, g)m1 e(g, h)r1z2 · · · e(g, h)r1zn

e(g, h)r2z1 e(g, h)r2z2 · e(g, g)m2 · · · e(g, h)r2zn

...
...

. . .
...

e(g, h)rnz1 e(g, h)rnz2 · · · e(g, h)rnzn · e(g, g)mn

⎞⎟⎟⎟⎠
As before, the “message” (m1, . . . , mn) is a vector of all 0 or all 1, depending
whether the LTDF is lossy or injective (which fact must remain unknown to
Fltdf). We now show how the evaluation algorithm can compute C given the
information at its disposal.

The zero-th column of C consists of elements of Gt that are computed
from the public key. For each index i ∈ [n], the i-th element of C1 is computed
as the pairing,

ci,0 : = e(Ri, h)
= e(g, h)ri ∈ Gt which is indeed the required value for ci,0

The diagonal elements of C are elements of Gt which are explicitly given
in the public key. For k ∈ [n], those are the given values Dk. Hence, the
algorithm simply assigns, for i ∈ [n],

48 X. Boyen and B. Waters

ci,i : = Di

= e(g, h)rizi · e(g, g)mi ∈ Gt as required, with mi ∈ {0, 1} unknown

The off-diagonal of C, i.e., the values ci,j with indices i, j ∈ [n] such that i
=
j > 0, must be computed explicitly. For each such pair (i, j), the algorithm
Fltdf computes a double-pairing, which is a product, or more precisely here,
a ratio, of two pairings. (Such “double pairings” can be computed almost as
fast as a single pairing.) It computes,

c′i,j :=
e(Ri, Wj)
e(Vj , Si)

=
e(g, hj)rizj · e(g, u)rizj

e(g, hi)rizj · e(g, u)rizj
=

e(g, hj)rizj

e(g, hi)rizj
=
(
e(g, h)rizj

)j−i

and for each such value takes its (j − i)-th root,

ci,j : =
(
c′i,j
) 1

j−i =
(
e(g, h)rizj

) j−i
j−i

= e(g, h)rizj as required for ci,j

Thus, for i
= j this gives the desired outcome, e(g, h)rizj , as the preceding
derivations show. Crucially, this computation and the root-taking step in
particular will succeed if and only if i
= j. Hence, a malicious Fltdf cannot
use this method to compute e(g, h)rkzk on the diagonal, and, by comparison
with Dk, infer whether the LTDF is lossy or injective.

The actual LTDF output is the row-vector y = x ·C with n+1 elements
in Gt, given by,

y = x ·C = x · (C1‖C2) =
(∏n

i=1 cxi

i,0 ,
∏n

i=1 cxi

i,1 , . . .
∏n

i=1 cxi

i,n

)
∈ Gn+1

t

• “Shortcut” evaluation (requires n double-pairings plus 1 pairing):

As in Section 3, it is possible to delay the pairing computation and do the
group multiplications first. This reduces the number of pairings (or more
precisely, two-pairing ratios) from n to 1, for each element of the output
vector.

Thus, to compute the output y, a row-vector of n+1 elements, it suffices
for the algorithm Fltdf to compute yj for j = 0 and j ∈ [n] respectively as
follows,

y0 : = e
(n∏

i=1

Rxi

i , h
)

=
n∏

i=1

e(g, h)rixi ∈ G which is the required value for the output y0

Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions 49

yj : =
(

e

(∏
i�=j R

xi
j−i
i , Wj

)
/e

(
Vj ,
∏

i�=j S

xi
j−i
i

))
·Dxj

j

=
e
(∏

i�=j g
rixi
j−i , (hj · u)zj

)
e
(
gzj ,
∏

i�=j(hi · u)
rixi
j−i

) ·Dxj

j =

∏
i�=j e
(
g, h
)j rixi

j−i zj∏
i�=j e
(
g, h
)i rixi

j−i zj
·Dxj

j

= e(g, h)
∑

i�=j
j

j−i rixizj · e(g, h)
∑

i�=j
−i

j−i rixizj ·Dxj

j

= e(g, h)
∑

i�=j
j−i
j−i rixizj ·Dxj

j =
∏
i�=j

e(g, h)rixizj ·Dxj

j

=
n∏

i=1

e(g, h)rixizj · e(g, g)mjxj ∈ Gt as required for yj

It is easy to see that this “Shortcut” evaluation gives the same result as the
“Pedestrian” one, while requiring much less memory and being much faster.

Inversion algorithm: The inversion algorithm F−1
ltdf is input (z,y), where z =

(b1, . . . , bn) ∈ Zn
p is the trapdoor output by the injective-mode Sinj, and

y = (y0, y1, . . . , yn) ∈ Gn+1
t is the output of the evaluation algorithm Fltdf.

The bits of the preimage x = (x1, . . . , xn) ∈ {0, 1}n of y are output as
follows,

xj =

{
0 if yj = y

zj

0 · e(g, g)0

1 if yj = y
zj

0 · e(g, g)1

4.3 Security

Theorem 2. The preceding algorithms define a collection of (n, n−log2 p)-Lossy
TDFs under the Decision BDH assumption for G.

Proof. The theorem follows from the following Lemmas 2, 3, and 4.

Lemma 2. For all LTDF parameters (C, z) produced by the injective-mode setup
function Sinj, we have that ∀x ∈ {0, 1}n, F−1

ltdf(z, Fltdf(C,x)) = x, i.e., the LTDF
output is invertible.

Proof. By inspection of the algorithm specifications. Notice that in injective
mode (i.e., for parameters sampled by Sinj), the exponents mi on the diagonal
are equal to 1, and thus preserve the information in the bit xi, allowing the
inversion algorithm to proceed.

Lemma 3. For all LTDF parameters C produced by the lossy-mode setup func-
tion Sloss, the “lossiness” (or information loss for a uniform input vector x) of
the function Fltdf(C, ·) is at least k = n− log2 p > 2

3n bits.

Proof. By construction of the lossy-mode parameters generated by Sloss, the
evaluation function Fltdf(C, ·) has at most p possible output values as the input
vector x varies, for any choice of randomness. Thus the information leakage
about x is at most log2 p bits. Since the domain of x is {0, 1}n of size 2n for
n > 3 log2 p, it follows that the lossiness of Fltdf(C, ·) is k = log2(2n)− log2 p =
n− log2 p > n− n/3 = 2n/3.

50 X. Boyen and B. Waters

Lemma 4. Under the DBDH assumption in G, the distributions of public keys
C generated by Sinj and by Sloss cannot be distinguished with non-negligible ad-
vantage by a probabilistic polynomial-time algorithm.

Proof. The proof is based on a hybrid-game argument; that is, we gradually
switch the LTDF from an injective-mode setup Sinj to a lossy-mode setup Sloss,
one element of the diagonal at a time. That is, for k ∈ [n], one k at a time, we
change Dk from the injective definition (where mk = 1) into the lossy definition
(where mk = 0). For each k, we then show that if the adversary can successfully
distinguish the transition from Hk to Hk+1, then we can turn it into a BDH
distinguisher. (And it must distinguish at least one such transition, if it is to
distinguish injective from lossy.)

Here are the details of the hybrid argument.
We define a series of experiments H1, ..., Hn+1, where, in the experiment Hk,

the LTDF setup function sets Dj = e(g, h)rjzj for all j < k, and sets Dj =
e(g, h)rjzj e(g, g) for all j ≥ k. Recall that all the other components of the public
key (i.e., other than the Dj) are defined identically in the injective mode and
the lossy mode.

Observe that H1 is an injective key with the correct distribution, and that
Hn+1 is a lossy key also with the correct distribution. It follows that if for no
k can an adversary distinguish between Hk and Hk+1, then no adversary can
distinguish the injective mode from the lossy mode.

Suppose then that for some k an adversary distinguishes Hk and Hk+1. Then
we can use that adversary to solve a Decisional BDH challenge, thereby con-
tradicting our assumption. Let thus g, ga, gb, gc ∈ G and T ∈ Gt be our DBDH
challenge, where T is either e(g, g)abc or a random element in Gt.

For any fixed k ∈ [n], the reduction for the transition from Hk to Hk+1 works
as follows.

For all i
= k and j
= k, the simulator simply chooses ri ∈ Zp and zj ∈ Zp at
random, and computes the corresponding public-key elements Ri and Vj as in
the actual scheme.

For i = k and j = k, the simulator instead chooses some random y ∈ Zp, and
lets h = (gc) and u = h−kgy. It then sets Rk = (ga) and Vk = (gb) (thereby
implictly setting a = rk and b = zk, even though it does not know such values).

The simulator can now compute the public-key components Si and Wj for
all i
= k and j
= k, since it knows the exponents ri and zj can thus compute
Sk = (ga)y and Wk = (gb)y. This works only because the contribution of h = (gc)
vanishes from within Sk and Wk for this value of k, and one can check that this
gives the correct values for Sk and Wk.

The simulator can also compute the public-key components Di for all i
= k.
For consistency and continuity within the entire hybrid sequence of games, for
i < k the components Di are set to be lossy (i.e., computed as in Sloss), while
for i > k the Di are set to be injective (i.e., computed as in Sinj).

To set the one remaining public-key component, Dk, the simulator flips a coin
β ∈ {0, 1} and defines Dk = T ·e(g, g)β. The public key is given to the adversary,
who must tell whether it is lossy or injective.

Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions 51

If the BDH instance was genuine, then T = e(g, g) and the adversary will be
in the situation of having to distinguish Hk (if β = 1) from Hk+1 (if β = 0);
it will thus be able to exploit its advantage, if any. However, if T is random
then the adversary cannot have any advantage in this situation since the bit β
is completely hidden from its view.

It follows that any advantage ε that the adversary has at distinguishing Hk

from Hk+1, gives us a BDH distinguisher with advantage ε/2.
To conclude the hybrid argument, considering the entire sequence of hybrid

transitions from Hk to Hk+1 for k ∈ [n], we deduce that any adversary that can
distinguish an injective key from a lossy key with advantage ε, must be able to
distinguish Hk from Hk+1 for at least one value of k with advantage ε/n, which
in turn will give us a distinguisher for solving DBDH with advantage ε/(2n).

This concludes the proof of indistinguishability between the injective and lossy
modes.

5 Conclusion

We have proposed two new Lossy Trapdoor Function schemes of the “discrete-
log” type, that are significantly more efficient than earlier comparable construc-
tions. We gave two schemes: with and withour common reference string. Both of
them make use of pairings, and have efficient security reductions from the classic
DBDH assumption.

The main advantage of “discrete-log-type” LTDF constructions, compared
to more efficient ones of the “factoring” type (based on the Paillier trapdoor),
is that the hardness of problems related to the discrete log generally depend
on the choice of group, unlike those related to factoring that are, so to speak,
absolute. In other words, even though Factoring is liable to be universally easy
independently in all choices of context, there is a hope that Discrete Log and
related problems can remain hard for certain choices of groups (e.g., the counter-
factual generic groups [25]), provided that we can find and construct them.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg
(2010)

2. Bellare, M., Halevi, S., Sahai, A., Vadhan, S.P.: Many-to-one trapdoor functions
and their relation to public-key cryptosystems. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 283–298. Springer, Heidelberg (1998)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC (1988)

5. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

52 X. Boyen and B. Waters

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

7. Boyen, X.: Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056. Springer, Heidelberg (2010)

8. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110. Springer,
Heidelberg (2010)

9. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

10. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

11. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000); Preliminary version in STOC 1991

12. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. Cryptology ePrint Archive, Re-
port 2009/590 (2009), http://eprint.iacr.org/

13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

14. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EU-
ROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

16. Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomorphic
hash proof systems (manuscript, 2010),
http://www.math.ucla.edu/~bretth/papers/uhp_ltdf.pdf

17. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: Security and Privacy (2010)

18. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC, pp. 427–437 (1990)

19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

20. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC,
pp. 187–196 (2008)

21. Rabin, M.O.: Digitalized signatures and public-key functions as intractable as fac-
torization. Technical report, Massachusetts Institute of Technology (1979)

22. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

23. Rosen, A., Segev, G.: Efficient lossy trapdoor functions based on the composite
residuosity assumption. Cryptology ePrint Archive, Report 2008/134 (2008),
http://eprint.iacr.org/

24. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007), http://eprint.iacr.org/

25. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

26. Yao, A.C.-C.: Theory and applications of trapdoor functions (extended abstract).
In: FOCS, pp. 80–91 (1982)

http://eprint.iacr.org/
http://www.math.ucla.edu/~bretth/papers/uhp_ltdf.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

Trapdoor Sanitizable Signatures Made Easy

Dae Hyun Yum, Jae Woo Seo, and Pil Joong Lee

Electronic and Electrical Engineering, POSTECH, Republic of Korea
{dhyum,jwseo,pjl}@postech.ac.kr

Abstract. A sanitizable signature scheme allows a signer to partially
delegate signing rights on a message to another party, called a sanitizer.
After the message is signed, the sanitizer can modify pre-determined
parts of the message and generate a new signature on the sanitized
message without interacting with the signer. At ACNS 2008, Canard
et al. introduced trapdoor sanitizable signatures based on identity-based
chameleon hashes, where the power of sanitization for a given signed
message can be delegated to possibly several entities, by giving a trap-
door issued by the signer at any time. We present a generic construction
of trapdoor sanitizable signatures from ordinary signature schemes. The
construction is intuitively simple and answers the basic theoretic question
about the minimal computational complexity assumption under which a
trapdoor sanitizable signature exists; one-way functions imply trapdoor
sanitizable signatures.

1 Introduction

Message origin authentication can be achieved by digital signatures, since any
alteration on signed messages nullifies the validity of digital signatures. However,
some applications (e.g., releasing medical documents or classified government
documents) require that some parts of a signed document be sanitized without
invaliding the signature. This is often called the digital document sanitizing
problem and many signature schemes for this problem have been proposed with
various names: content extraction signature [1], redactable signature [2], and
sanitizable signature [3]. Informally, we will use the term of sanitizable signature
to refer to any signature scheme for the digital document sanitizing problem.

A sanitizable signature scheme allows a signer to delegate signing rights on
a message to a sanitizer (or a censor) in a limited and controlled way. When
generating a signature on a message, the signer selects a specific sanitizer who
can later sanitize pre-determined parts of the message and update the signature
without interacting with the signer. As pointed out by Ateniese et al. [3], there
are many situations where re-signing by the original signer is undesirable, in-
cluding: (1) the signer’s key has expired, (2) the original signature was securely
time-stamped, (3) the signer may not be reachable or available, and (4) each new
signature would cost too much, either in terms of real expense or in terms of
computation. In the literature, there are two different definitions of sanitizable
signatures according to the degree of sanitizing capability. The first type is a

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 53–68, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

54 D.H. Yum, J.W. Seo, and P.J. Lee

sanitizable signature with pre-determined deletion that allows the sanitizer only
to delete pre-determined parts of a signed message (e.g., [1,2,4,5,6]). The second
type is a sanitizable signature with pre-determined modification that allows the
sanitizer to modify pre-determined parts of the message and generate a new sig-
nature on the modified message (e.g., [3,7,8]). The capability of modification is
valuable for many applications; especially for authenticated multicast, database
outsourcing, and secure routing.

A simple sanitizable signature scheme can be constructed by applying a cryp-
tographic hash function hash(·) to the concatenation of each submessage with
a random number [1]. To generate a signature on a message m = m1‖m2 con-
sisting of two submessages m1 and m2, the signer computes σ = S(h1‖h2) for
hi = hash(mi‖ri) for i = 1, 2, where S(·) is a signing algorithm of an ordi-
nary signature scheme and ri is a random number. The sanitizable signature
on m = m1‖m2 is (σ, r1, r2). If a sanitizer wants to delete m1, he removes m1
from m and replaces the signature with (σ, h1, r2). While verifies can check the
validity of the sanitized version of the signed message, they cannot extract any
information on the submessage m1 from h1 without knowing r1. In this scheme,
either (mi, ri) or hi should be disclosed for verifiers to check the validity of (m, σ)
and hence, an undeleted submessage can be sanitized by anyone.

A more sophisticated sanitizable signature scheme was introduced by Ateniese
et al. [3], substituting a chameleon hash function chash(·) for the hash function
hash(·). A chameleon hash [9,10] computed over a submessage mi with random-
ness ri, and under a public key pk is denoted by chashpk(mi, ri). A chameleon
hash function (or trapdoor commitment) has the same properties of any cryp-
tographic hash function and, in particular, it provides collision resistance. How-
ever, the owner of the secret key sk corresponding to the public key pk can
find collisions, i.e., m′

i and r′i such that hi = chashpk(mi, ri) = chashpk(m′
i, r

′
i).

For given (mi, ri, m
′
i), the unique randomness r′i such that chashpk(mi, ri) =

chashpk(m′
i, r

′
i) can be computed with the knowledge of sk. Chameleon hash

functions are always probabilistic algorithms because of the randomness ri in
the input. For a given mi, there are many hash values hi = chashpk(mi, ri) by
using different randomness ri. To verify the correctness of a computed chameleon
hash value hi, it is necessary to provide both the submessage mi and the random-
ness ri. If each sanitizer publishes a public key of the chameleon hash function,
the signer can choose a specific sanitizer by using the sanitizer’s public key. Only
the sanitizer who knows the corresponding secret key can modify a signed mes-
sage by finding collisions of the chameleon hash with a modified message. Several
extensions of this approach was presented in [7].

While previous sanitizable signatures divide a message into submessages and
then apply a cryptographic primitive (e.g., a hash function or a chameleon hash
function) to each submessage, a new methodology utilizing a label was intro-
duced in [11]. By marking the position of sanitizable submessages in a label, a
sanitizable signature with constant length can be obtained.

At ACNS 2008, Canard et al. [12] introduced trapdoor sanitizable signatures,
where the signer allows a specific user to modify pre-determined parts of a signed

Trapdoor Sanitizable Signatures Made Easy 55

message by producing a piece of information (or trapdoor) that will help the user
in sanitizing the message. The signer can choose to whom and when he will de-
liver the trapdoor information and hence, any user can act as a sanitizer; in
other words, a sanitizer does not need any setup procedure such as generating
a key pair. To implement the “trapdoor” requirement, Canard et al. [12] gave a
construction based on the identity-based chameleon hash function [13]. Instead
of the public key pk of chameleon hash functions, identity-based chameleon hash
functions can use “identity strings” that are essentially any form of strings such
as an e-mail address, a URL, a person’s address, and any other unambiguous
reference. A secret key skID corresponding to an identity string ID is gener-
ated by an authority who knows a master secret key msk. To build a trapdoor
sanitizable signature scheme, the signer keeps the master secret key msk of the
identity-based chameleon hash function. The trapdoor information for sanitiz-
ing a message m is essentially the secret key skm with respect to the “identity
string” m. Consequently, the signer can compute the trapdoor information at
any time and give it to whomever he wants.

Our Contribution. We present a very simple and efficient approach to building
trapdoor sanitizable signature schemes from ordinary signature schemes. Previ-
ous construction of trapdoor sanitizable signature [12] is based on the identity-
based chameleon hash function (e.g., [13,14]), which, in turn, is based on the RSA
signature or the bilinear maps. The identity-based chameleon hash function is
evaluated for each sanitizable submessage. In contrast, our approach requires
only one additional signature generation. When instantiated with an aggregate
signature scheme (e.g., [15]), the trapdoor sanitizable signature consists of two
group elements. The proposed construction answers the basic theoretic ques-
tion about the minimal computational complexity assumption under which a
trapdoor sanitizable signature exists; one-way functions imply trapdoor sanitiz-
able signatures. If we borrow the terminology of [16], this shows that trapdoor
sanitizable signature belongs to the “private cryptography world.”

2 Preliminaries

If x is a string, then |x| denotes its length, while if X is a finite set, |X | denotes
its size. If x and y are strings, x‖y denotes the concatenation of x and y. If k is
a positive integer, then [1, k] = {1, 2, . . . , k}. If k ∈ N, then 1k denotes the string
of k ones. A function f(k) is negligible if for all polynomial p(k), f(k) < 1/p(k)
holds for all sufficiently large k ∈ N. For a probability space P , x ← P denotes
the algorithm that samples a random element according to P . For a finite set X ,
x← X denotes the algorithm that samples an element uniformly at random from
X . IfA is a probabilistic polynomial time (PPT) algorithm, then z ← A(x, y, . . .)
denotes the operation of runningA on inputs x, y, . . . and letting z be the output.
If p(·, ·, · · ·) is a boolean function, then Pr[p(x1, x2, · · ·) | x1 ← P1, x2 ← P2, · · ·]
denotes the probability that p(x1, x2, · · ·) is true after executing algorithms x1 ←
P1, x2 ← P2, · · · .

56 D.H. Yum, J.W. Seo, and P.J. Lee

Definition 1 (One-way Function). A function f : {0, 1}∗ → {0, 1}∗ is a one-
way function, if there exists a polynomial time algorithm which computes f(x)
correctly for all x and the following probability is negligible in k for all PPT
algorithm A:

Pr[f(x′) = y | x← {0, 1}k, y = f(x), x′ ← A(y, 1k)] �

The existence of one-way functions is the most fundamental assumption of
the complexity-based cryptography [17]. The definition of ordinary signature
schemes is as follows.

Definition 2 (Digital Signature). A digital signature scheme DS is a 3-tuple
of PPT algorithms (K, S, V) that, respectively, generate keys for a user, sign a
message, and verify the signature for a message.

– K, the key generation algorithm, is a probabilistic algorithm that takes as
input a security parameter and outputs a signing key and a verification key;
(SK, V K)← K(1k).

– S, the signing algorithm, is a probabilistic algorithm that takes as input
a message m ∈ {0, 1}∗ and a signing key SK. It outputs a signature or a
special character ⊥ indicating an error; σ ← S(m, SK).

– V , the verification algorithm, is a deterministic algorithm that takes as input
a message m, a signature σ, and a verification key V K. It outputs a single
bit b indicating validity (b = 1) or invalidity (b = 0) of the signature; b ←
V(m, σ, V K) where b ∈ {0, 1}. �

We consider existential unforgeability under adaptive chosen message attacks,
denoted by UF-CMA [18]. Let DS = (K,S,V) be a signature scheme. The ad-
versary A is given oracle access to the signing oracle OS

SK(·), i.e., A is allowed
to query the signing oracle OS

SK(·) to obtain valid signatures σ1, . . . , σλ of ar-
bitrary messages m1, . . . , mλ adaptively chosen by A. The adversary succeeds
if it forges a valid signature σ of a message m that was not queried to OS

SK(·),
i.e., m /∈ {m1, . . . , mλ}. An adversary A is said to (t, λ, ε)-break DS, if A runs
in time at most t, makes at most λ queries to the signing oracle, and succeeds
in forgery with probability at least ε. The signature scheme DS is said to be
(t, λ, ε)-secure, if no adversary can (t, λ, ε)-break it.

Definition 3 (Secure Signature). The adversary A’s advantage against a
signature scheme DS is defined by

Advuf-cma
A,DS (k)=Pr[V(m, σ, V K)=1 | (SK, V K)← K(1k), (m, σ) ← AOS

SK (V K)]

where m should not be queried to the signing oracle. A signature scheme DS is
secure if the advantage of any PPT adversary A is negligible in k. �

It is well known that a secure signature scheme can be built from a one-way
function.

Trapdoor Sanitizable Signatures Made Easy 57

Theorem 1 ([19,20]). Secure signatures exist if and only if one-way functions
exist. �

Boneh et al. [15] introduced an aggregate signature that allows incremental ag-
gregation of signatures generated by multiple signers into one short signature
based on bilinear groups. Let G and GT be multiplicative cyclic groups of prime
order p and let g be a generater of G. A bilinear map is a computable map
e : G×G → GT with the following properties:

– Bilinear: for all g1, g2 ∈ G and a, b ∈ Z, e(ga
1 , gb

2) = e(g1, g2)ab.
– Non-degenerate: e(g, g)
= 1.

A bilinear group is any group that possesses such a map e and on which CDH
(Computational Diffie-Hellman) problem is hard; for given g, ga, h ∈ G, it is
hard to compute ha ∈ G. Let hash : G × {0, 1}∗ → G be a cryptographic hash
function. The bilinear aggregate signature is defined as follows [21].

Key Generation. For a particular user, pick random x ← Zp and compute
v = gx. The user’s signing key is (x, v) and the verification key is v.

Signing. For a particular user, given a message m ∈ {0, 1}∗ and the signing key
(x, v), compute h = hash(v‖m) and σ = hx. The signature is σ ∈ G.

Verification. Given a user’s verification key v, a message m, and a signature
σ, compute h = hash(v‖m); accept if e(σ, g) = e(h, v).

Aggregation. Arbitrarily assign to each user whose signature will be aggre-
gated an index i, ranging from 1 to λ. Each user i provides a signature
σi ∈ G on a message mi ∈ {0, 1}∗. Compute σ =

∏λ
i=t σi. The aggregate

signature is σ ∈ G.

Aggregation Verification. We are given an aggregate signature σ ∈ G for
a set of users, indexed as before, and are given the messages mi ∈ {0, 1}∗
and verification keys vi ∈ G. To verify the aggregate signature σ, compute
hi = hash(vi‖mi) for 1 ≤ i ≤ λ, and accept if e(σ, g) =

∏λ
i=1 e(hi, vi) holds.

3 Trapdoor Sanitizable Signatures

3.1 Definition

A message m is composed of L submessages i.e., m = m1‖ . . . ‖mL. We assume
that each submessage (implicitly or explicitly) includes an index to check that
mi is the i-th submessage; otherwise, we can simply insert an index (e.g., mi =
i‖mi). Let Iadm ⊂ [1, L] be a set of indices of admissible submessages that can
be modified by a sanitizer. We say that Iadm is consistent with (m, m′) for an
original message m and a modified message m′ if {i ∈ [1, L] | mi
= m′

i} ⊂ Iadm.
To put it another way, Iadm is consistent with (m, m′) if a modified message m′

agrees with the signer’s intention.

58 D.H. Yum, J.W. Seo, and P.J. Lee

Definition 4 (Trapdoor Sanitizable Signature). A trapdoor sanitizable
signature scheme TSS is a 6-tuple of PPT algorithms (Setup, KeyGen, Sign,
Trapdoor, Sanitize, Vrfy) that, respectively, generate a public parameter, gener-
ate keys for a user, sign a message, generate a trapdoor for sanitization, sanitize
a signed message, and verify the signature for a message.

– Setup, the parameter generation algorithm, is a probabilistic algorithm that
takes as input a security parameter 1k for k ∈ N and outputs a public
parameter; param← Setup(1k).

– KeyGen, the key generation algorithm, is a probabilistic algorithm that takes
as input a public parameter and outputs a secret key and a public key;
(sk, pk)← KeyGen(param).

– Sign, the signing algorithm, is a probabilistic algorithm that takes as input
a message m = m1‖m2‖ · · · ‖mL for mi ∈ {0, 1}∗ and L ∈ N, a secret key sk,
and a set of indices Iadm ⊂ [1, L]. It outputs a signature or a special character
⊥ indicating an error; σ ← Sign(m, sk, Iadm).

– Trapdoor, the trapdoor generation algorithm, is a probabilistic algorithm
that takes as input a message m, a signature σ, a secret key sk, and a set
of indices Iadm. It outputs a trapdoor or a special character ⊥ indicating an
error; td ← Trapdoor(m, σ, sk, Iadm).

– Sanitize, the sanitization algorithm, is a probabilistic algorithm that takes
as input a message m, a signature σ, a public key pk, a trapdoor td, a set
of indices Iadm, and a modified message m′. It outputs a new signature on
the modified message or a special character ⊥ indicating an error; σ′ =
Sanitize(m, σ, pk, td, Iadm, m′).

– Vrfy, the verification algorithm, is a deterministic algorithm that takes as
input a message m, a signature σ, a public key pk, and a set of indices Iadm.
It outputs a single bit b indicating validity (b = 1) or invalidity (b = 0) of
the signature; b← Vrfy(m, σ, pk, Iadm) where b ∈ {0, 1}.

The parameter generation algorithm Setup is optional; in this case, Setup is
an identity function (i.e., param = 1k). We omit param in the input of Sign,
Trapdoor, Sanitize, and Vrfy, because param can be included in the secret key sk
and the public key pk, if necessary. �

Correctness. A trapdoor sanitizable signature scheme should satisfy the stan-
dard correctness property of ordinary signature schemes, saying that a genuinely
signed message is accepted by the verification algorithm; for any security param-
eter k ∈ N, any public parameter param ← Setup(1k), any key pair (sk, pk) ←
KeyGen(param), any message m = m1‖ · · · ‖mL for L ∈ N, any set of indices
Iadm ⊂ [1, L], and any signature σ ← Sign(m, sk, Iadm), we have

Vrfy(m, σ, pk, Iadm) = 1.

In a trapdoor sanitizable signature scheme, a signature sanitized with a valid
trapdoor should also be accepted by the verification algorithm; for any secu-
rity parameter k ∈ N, any public parameter param ← Setup(1k), any key pair

Trapdoor Sanitizable Signatures Made Easy 59

(sk, pk) ← KeyGen(param), any message m = m1‖ · · · ‖mL for L ∈ N, any
set of indices Iadm ⊂ [1, L], any signature σ ← Sign(m, sk, I), any trapdoor
td ← Trapdoor(m, σ, sk, Iadm), and any sanitized signature σ′ = Sanitize(m, σ, pk,
td, Iadm, m′) on a modified message m′ = m′

1‖ · · · ‖m′
L where {i ∈ [1, L] | mi
=

m′
i} ⊂ Iadm, we have

Vrfy(m′, σ′, pk, Iadm) = 1.

Moreover, the sanitization process can be repeated; for any (original or sanitized)
signature σ on a (original or sanitized) message m with Vrfy(m, σ, pk, Iadm) = 1,
a sanitized signature σ′ = Sanitize(m, σ, pk, td, Iadm, m′) on a modified message
m′ = m′

1‖ · · · ‖m′
L where {i ∈ [1, L] | mi
= m′

i} ⊂ Iadm is valid;

Vrfy(m′, σ′, pk, Iadm) = 1.

3.2 Security Model

Ateniese et al. [3] informally introduced five security requirements of sanitizable
signature schemes.

– Unforgeability. No outsider should be able to forger the signer’s or the
sanitizer’s signature.

– Immutability. The sanitizer should not be able to modify any part of the
message that is not designated as sanitizable by the original signer.

– Transparency. Given a signed message with a valid signature, it should
be infeasible to decide whether the message has been sanitized or not.

– Privacy. Sanitized messages and their signatures should not reveal the orig-
inal data (i.e., the parts which have been sanitized).

– Accountability. In case of a dispute, the signer can prove to a trusted third
party (e.g., court) that a certain message was modified by the sanitizer.

Note that unforgeability considers security against outsiders, while immutability
against insiders (or sanitizers). These five security requirements were rigorously
formalized according to game-based approaches by Brzuska et al. [8]. They dis-
tinguished between signer-accountability and sanitizer-accountability and inves-
tigated the relationship of the security requirements.

When it comes to trapdoor sanitizable signature schemes, Canard et al. [12]
formalized two security requirements: unforgeability and indistinguishability. We
rephrase the security model of [12] with game-based approaches. We first define
the following oracles that are initialized with a key pair (sk, pk) and a random
bit b ∈ {0, 1}.

– A signing oracle OSign
sk (·, ·) takes a message m = m1‖ · · · ‖mL, and a set of

indices Iadm ⊂ [1, L] as input and outputs σ ← Sign(m, sk, Iadm).
– A trapdoor generation oracle OTrapdoor

sk (·, ·, ·) takes a message m, a signature σ,
and a set of indices Iadm as input and outputs td ← Trapdoor(m, σ, sk, Iadm).

– A sanitization oracle OSanitize
sk (·, ·, ·, ·) takes as input a message m, a sig-

nature σ, a set of indices Iadm, and a modified message m′. It outputs
σ′ ← Sanitize(m, σ, pk, td, Iadm, m′), where td ← Trapdoor(m, σ, sk, Iadm).

60 D.H. Yum, J.W. Seo, and P.J. Lee

– A sanitization-or-signing oracle O
Sanitize/Sign
sk,b (·, ·, ·) takes as input a message

m, a set of indices Iadm, and a modified message m′, where Iadm should be con-
sistent with (m, m′). If b = 0, it outputs σ′ ← Sanitize(m, σ, pk, td, Iadm, m′)
where σ ← Sign(m, sk, Iadm) and td ← Trapdoor(m, σ, sk, Iadm). If b = 1, it
outputs σ′ ← Sign(m′, sk, Iadm).

– A left-or-right oracle OLoR
sk,b(·, ·, ·, ·) takes as input two messages m1, m2 com-

posed of the same number of submessages, a set of indices Iadm and a
modified message m′, where Iadm should be consistent with both (m1, m

′)
and (m2, m

′). It outputs σ′ ← Sanitize(mb, σb, pk, td, Iadm, m′) where σb ←
Sign(mb, sk, Iadm) and td ← Trapdoor(mb, σb, sk, Iadm).

In trapdoor sanitizable signature schemes, a signer can choose any user as a
sanitizer just by giving the trapdoor information; thus no clear distinction exists
between outsiders and insiders. Accordingly, unforgeability of trapdoor sanitiz-
able signature schemes is defined to include the immutability requirement.

Definition 5 (Unforgeability [12]). A trapdoor sanitizable signature scheme
TSS is unforgeable if for any PPT adversary A, the probability that A succeeds
in the following game is negligible in the security parameter k:

1. A public parameter param and a key pair (sk, pk) are generated using param←
Setup(1k) and (sk, pk) ← KeyGen(param). The public parameter param and
the public key pk are given to A.

2. A is given access to a signing oracle OSign
sk (·, ·), a trapdoor generation oracle

OTrapdoor
sk (·, ·, ·), and a sanitization oracle OSanitize

sk (·, ·, ·, ·).
3. A outputs (m∗, σ∗, I∗adm) and succeeds if the following conditions hold.

(a) Vrfy(m∗, σ∗, pk, I∗adm) = 1.
(b) (m∗, σ∗) did not come from the signing oracle. In other words, A never

queried (m∗, ·) to the signing oracle.
(c) (m∗, σ∗) did not come from the sanitization oracle. In other words, A

never queried (·, ·, ·, m∗) to the sanitization oracle.
(d) (m∗, σ∗) is not linked to a tuple (td, m, σ) from the trapdoor generation

oracle. More precisely, for any message m being in the input of OTrapdoor
sk ,

there is an index i /∈ Iadm such that m∗
i
= mi, where Iadm corresponds to

(m, σ). �

The indistinguishability requirement of [12] demands that the output distribu-
tions of the sanitization algorithm and the signing algorithm should be identical.
That is, the following distributions DSanitize and DSign should be statistically in-
distinguishable for all key pairs (sk, pk) and messages m, m′ ∈ {0, 1}∗:

DSanitize = {σ′ | σ ← Sign(m, sk, Iadm), td ← Trapdoor(m, σ, sk, Iadm),
σ′ ← Sanitize(m, σ, pk, td, Iadm, m′)}

DSign = {σ′ | σ′ ← Sign(m′, sk, Iadm)}

As the indistinguishability requirement of [12] considers statistical difference
between the output distributions of the sanitization algorithm and the signing

Trapdoor Sanitizable Signatures Made Easy 61

algorithm, the distinguisher is not given any other information (through oracle
queries). By contrast, the transparency requirement of [8], which is defined with
computational indistinguishability, captures the indistinguishability requirement
of [12] with game-based approaches. We give the transparency requirement of
trapdoor sanitizable signatures based on the definition of [8]. The adversary
can probe the output distributions adaptively through oracle queries and have
additional information by accessing the signing oracle, the sanitization oracle,
and the trapdoor generation oracle.

Definition 6 (Transparency). A trapdoor sanitizable signature scheme TSS
is transparent if the advantage of any PPT adversary A in the following game
is negligible in the security parameter k:

1. A public parameter param and a key pair (sk, pk) are generated using param←
Setup(1k) and (sk, pk) ← KeyGen(param). The public parameter param and
the public key pk are given to A.

2. A bit b is randomly chosen and the adversary A is given access to a signing
oracle OSign

sk (·, ·), a trapdoor generation oracle OTrapdoor
sk (·, ·, ·), a sanitization

oracle OSanitize
sk (·, ·, ·, ·), and a sanitization-or-signing oracle O

Sanitize/Sign
sk,b (·, ·, ·).

3. A outputs a guess b′.

We say that the adversaryA succeeds if b′ = b, and denote the probability of this
event by Prtrans

A,TSS[Succ]. The adversary’s advantage is defined as |Prtrans
A,TSS[Succ]−

1/2|. �

There are two equivalent ways in formalizing privacy for sanitizable signature
schemes [12]; one approach follows semantic security of encryption schemes and
the other is based on the indistinguishability notion for encryption. We define
the privacy requirement of trapdoor sanitizable signature schemes with the more
handy approach of the indistinguishability notion.

Definition 7 (Privacy). A trapdoor sanitizable signature scheme TSS is pri-
vate if the advantage of any PPT adversary A in the following game is negligible
in the security parameter k:

1. A public parameter param and a key pair (sk, pk) are generated using param←
Setup(1k) and (sk, pk) ← KeyGen(param). The public parameter param and
the public key pk are given to A.

2. A bit b is randomly chosen and the adversary A is given access to a signing
oracle OSign

sk (·, ·), a trapdoor generation oracle OTrapdoor
sk (·, ·, ·), a sanitization

oracle OSanitize
sk (·, ·, ·, ·), and a left-or-right oracle OLoR

sk,b(·, ·, ·, ·).
3. A outputs a guess b′.

We say that the adversaryA succeeds if b′ = b, and denote the probability of this
event by PrprivA,TSS[Succ]. The adversary’s advantage is defined as |PrprivA,TSS[Succ]−
1/2|. �

Brzuska et al. [8] showed that transparency implies privacy in sanitizable sig-
natures. Their proof of implication can be straightforwardly translated into the

62 D.H. Yum, J.W. Seo, and P.J. Lee

case of trapdoor sanitizable signatures and hence, the same implication holds in
trapdoor sanitizable signatures.

Theorem 2. A transparent trapdoor sanitizable signature scheme is private.

Proof. In a similar manner to [8], we convert an adversary Apriv against privacy
with a non-negligible advantage ε into Atrans against transparency with a non-
negligible advantage ε/2 as follows.

AOSign
sk (·,·),OTrapdoor

sk (·,·,·),OSanitize
sk (·,·,·),OSanitize/Sign

sk,b (·,·,·)
trans (param, pk)

b∗ ← {0, 1}
a ← AOSign

sk (·,·),OTrapdoor
sk (·,·,·),OSanitize

sk (·,·,·),OLoR
sk,b∗ (·,·,·)

priv (param, pk)

where OLoR
sk,b∗(m0, m1, Iadm, m′) = O

Sanitize/Sign
sk,b (mb∗ , Iadm, m′) for ev-

ery query on (m0, m1, Iadm, m′) that Apriv sends to the left-or-right
oracle.

Return b′ = 0 if a = b∗, otherwise b′ = 1

Atrans gets a public parameter param and a public key pk as input and has
access to OSign

sk (·, ·), OTrapdoor
sk (·, ·, ·), OSanitize

sk (·, ·, ·, ·), and O
Sanitize/Sign
sk,b (·, ·, ·). The

goal of Atrans is to guess a random bit b with non-negligible advantage, i.e.,
to distinguish whether the message has been sanitized or not. Atrans simulates
the attack environment of Apriv and utilizes Apriv as a subroutine. For signing,
trapdoor generation, and sanitizing queries of Apriv, Atrans forwards them to its
own oracles and hands the answers back to Apriv. For a left-or-right query of Apriv

on (m0, m1, Iadm, m′), Atrans sends (mb∗ , Iadm, m′) to the sanitization-or-signing
oracle and hands the answer back to Apriv. Eventually, Apriv outputs its guess a,
and Atrans outputs b′ = 0 iff a = b∗.

Now, we consider the success probability of Apriv. If b = 0, then the simulation
is identical to the actual attack environment of Apriv with a random bit b∗ and
we have Pr[b′ = 0|b = 0] = Pr[Apriv = b∗] ≥ 1

2 + ε. If b = 1, then no information
on the bit b∗ is given to Apriv and we have Pr[b′ = 1|b = 1] = 1

2 . Therefore, the
advantage Adv of Atrans is given as follows.

Adv =
∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
=
∣∣∣∣Pr[b = 0] · Pr[b′ = 0|b = 0] + Pr[b = 1] · Pr[b′ = 1|b = 1]− 1

2

∣∣∣∣
≥
∣∣∣∣12 ·
(

1
2

+ ε

)
+

1
2
· 1
2
− 1

2

∣∣∣∣ = ε

2 �

Accountability of sanitizable signatures requires that the origin of a (sanitized)
signed message should be undeniable [3,8]. To recognize a sanitizer in any mean-
ingful way, the sanitizer must have some secret information. However, there is no
such information in trapdoor sanitizable signatures, because any user, just with
a trapdoor, can act as a sanitizer. Therefore, accountability cannot be defined
in trapdoor sanitizable signatures.

Trapdoor Sanitizable Signatures Made Easy 63

In summary, the security model of trapdoor sanitizable signatures considers
unforgeability and transparency because the definition of unforgeability includes
immutability, the transparency requirement implies privacy, and the accountabil-
ity requirement cannot be defined in a meaningful way.

Definition 8 (Security). A trapdoor sanitizable signature scheme TSS is se-
cure if it is unforgeable and transparent. �

4 Generic Construction from Ordinary Signatures

The previous construction of trapdoor sanitizable signature schemes is based on
identity-based chameleon hash functions to implement the trapdoor generation
functionality [8]. Identity-based chameleon hash functions are not as efficient as
cryptographic hash functions such as SHA-1; rather they are a kind of public-key
primitive in terms of functionality and efficiency. Currently known identity-based
chameleon hash functions (e.g., [13,14]) are based on the RSA signature or the
bilinear maps. Consequently, they are not more efficient than ordinary signature
schemes. Recall that the purpose of trapdoor is to delegate the power of signing
on a message. Our approach to implementing the trapdoor generation function-
ality is to generate a temporary key pair (ˆSK, ˆV K) of an ordinary signature
scheme and use the signing key ˆSK as a trapdoor. This is simple and intuitive.
We first give a stateful construction that stores (ˆSK, ˆV K) in a list and then
discuss how to remove it.

Construction 1 (Stateful Version). Let DS = (K,S,V) be an ordinary sig-
nature scheme.

– Setup. The public parameter generation algorithm is an identity function. It
takes a security parameter 1k as input and sets param = 1k.

– KeyGen. The key generation algorithm takes param = 1k as input and gener-
ates a long-term key pair by executing (SK, V K) ← K(1k). The secret key
is sk = SK and the public key is pk = V K.

– Sign. The signing algorithm takes as input a message m = m1‖m2‖ · · · ‖mL,
a secret key sk = SK, and a set of indices Iadm ⊂ [1, L]. It generates a
temporary key pair (ˆSK, ˆV K) ← K(1k) and forms m̂ from m and Iadm as
follows.

m̂ = ˆV K‖m̂1‖m̂2‖ · · · ‖m̂L, where m̂i =

{
� if i ∈ Iadm

mi if i /∈ Iadm

(1)

where � is a special character for space holder. The signing algorithm com-
putes σ0 ← S(m̂, SK) and σ1 ← S(m̂‖m, ˆSK). The signature is σ = (ˆV K,
σ0, σ1). The temporary key pair (ˆSK, ˆV K) is kept in a list List for trapdoor
generation.

– Trapdoor. The trapdoor generation algorithm takes as input a message m, a
signature σ, a secret key sk, and a set of indices Iadm. If σ is a valid signature
on m and ˆV K exists in List, it outputs a trapdoor td = ˆSK from List.
Otherwise, it outputs ⊥.

64 D.H. Yum, J.W. Seo, and P.J. Lee

– Sanitize. The sanitization algorithm takes as input a message m, a signature
σ = (ˆV K, σ0, σ1), a public key pk = V K, a trapdoor td = ˆSK, a set of
indices Iadm, and a modified message m′. If σ is not a valid signature on
m, Iadm is not consistent with (m, m′), or ˆSK is not a valid signing key
with respect to ˆV K, then it outputs ⊥. Otherwise, it forms m̂ according to
Equation (1) and computes σ′

1 ← S(m̂‖m′, ˆSK). The sanitized signature is
σ′ = (ˆV K, σ0, σ

′
1).

– Vrfy. The verification algorithm takes as input a message m, a signature
σ = (ˆV K, σ0, σ1), a public key pk = V K, and a set of indices Iadm. It
forms m̂ according to Equation (1) and checks the validity of σ0 and σ1 by
b0 ← V(m̂, σ0, V K) and b1 ← V(m̂‖m, σ1, ˆV K). The verification algorithm
outputs b = b0 ∧ b1. �

The signing algorithm Sign generates a signature σ0 that is essentially a kind of
“public-key certificate” of the verification key ˆV K. The content of the certificate
(i.e. m̂), which is similar to the label of [11], limits the usage of the key ˆV K;
the corresponding signing key can only be used to generate signatures σ1 with
respect to messages m′ where Iadm is consistent with (m, m′). This is natural
because in a sense, a public-key certificate “delegates” a signing power to a user.
The temporary key ˆV K is also used for a message ID for m̂ = ˆV K‖m̂1‖ · · · ‖m̂L.

If we adopt an aggregate signature scheme, the values σ0 and σ1 in a signature
σ = (ˆV K, σ0, σ1) can be shortened into one value. For example, if we use the
bilinear aggregate signature of Section 2, the signature σ = (ˆV K, σ0, σ1) on a
message m can be compressed into σ = (α, β) = (ˆV K, σ01) = (v, hx

0hx̂
1) where

(sk, pk) = (x, v), (ˆSK, ˆV K) = (x̂, v̂), h0 = hash(v‖m̂), and h1 = hash(v̂‖m̂‖m).
An updated signature σ′ with a modified message m′ and a trapdoor td =
ˆSK = x̂ can be obtained by σ′ = (α,

βσ′
1

σ1
) where σ1 = hash(v̂‖m̂‖m)x̂ and

σ′
1 = hash(v̂‖m̂‖m′)x̂. Note that sequential aggregate signatures (e.g., [22,23])

can be used in a similar manner, since σ1 can always be computed after σ0.

Theorem 3. Construction 1 is a secure trapdoor sanitizable signature scheme
if the underlying signature scheme is secure.

Proof. Let DS = (K,S,V) be a secure signature scheme and TSSDS be a trap-
door sanitizable signature scheme of Construction 1 instantiated with DS. To
prove the security of TSSDS , we have to show that TSSDS is unforgeable and
transparent.

Unforgeability. To show the unforgeability of TSSDS , we build an adversary
A against the signature scheme DS from an adversary B breaking the unforge-
ability of TSSDS . Recall that A gets V K as input and has access to the signing
oracle OS

SK , where (SK, V K) is a valid key pair of DS. On the other hand, B
gets (param, pk) as input and makes qsig queries to the signing oracle OSign

sk , qtr

queries to the trapdoor generation oracle OTrapdoor
sk , and qsan queries to the san-

itization oracle OSanitize
sk . Since a query to the trapdoor generation oracle should

contain a valid signature, we have qsig ≥ qtr by assuming that the adversary
does not make two queries for the same trapdoor.

Trapdoor Sanitizable Signatures Made Easy 65

On input V K, the adversary A begins simulating the attack environment of
B. It first sets param = 1k where k = |V K| and generates a long-term key pair
(SK0, V K0) ← K(1k) and qsig temporary key pairs (SKi, V Ki) ← K(1k) for
i ∈ [1, qsig]. It picks a random number μ ∈ [0, qsig] and then sets keys as follows
for i ∈ [1, qsig].

sk =

{
SK0 if μ
= 0
⊥ if μ = 0

ˆSKi =

{
SKi if μ
= i

⊥ if μ = i

pk =

{
V K0 if μ
= 0
V K if μ = 0

ˆV Ki =

{
V Ki if μ
= i

V K if μ = i

The random number μ is A’s guess at the signing key for which B makes a
forgery. If A’s guess is correct, then A can break the security of DS from B’s
forgery. Otherwise, A aborts simulation without success. The adversaryA stores
all key pairs (ˆSKi, ˆV Ki) in List, gives (param, pk) to B as input, and answers
the queries of B as follows.

– For the i-th signing query (m, Iadm), the adversary A forms m̂ according
to Equation (1). If μ
= 0, then A generates σ0 ← S(m̂, SK0). Otherwise,
A generates σ0 by making a query m̂ to its own signing oracle OS

SK(·). If
μ
= i, then A generates σ1 ← S(m̂‖m, ˆSKi). Otherwise, A generates σ1
by making a query m̂‖m to OS

SK(·). The adversary A returns the signature
σ = (ˆV Ki, σ0, σ1).

– For the i-th trapdoor query (m, σ, Iadm) where σ = (ˆV K, σ0, σ1), the ad-
versary A first checks the validity of σ. If Vrfy(m, σ, pk, Iadm) = 0, then A
returns ⊥. If Vrfy(m, σ, pk, Iadm) = 1 and ˆV K = V K, then A aborts the
simulation. Otherwise, A returns ˆSK corresponding to ˆV K from List.

– For the i-th sanitization query (m, σ, Iadm, m′) where σ = (ˆV K, σ0, σ1), the
adversary A first checks the validity of the query. If Vrfy(m, σ, pk, Iadm) = 0
or Iadm is not consistent with (m, m′), then A returns ⊥. Otherwise, A
computes a sanitized signature as follows.
• If ˆV K
= V K, then A searches ˆSK corresponding to ˆV K from List and

generates σ′
1 ← S(m̂‖m′, ˆSK).

• Otherwise, A generates σ′
1 by making a query m̂‖m′ to its own signing

oracle OS
SK(·).

The adversary A returns a sanitized signature σ′ = (ˆV K, σ0, σ
′
1).

Let (m∗, σ∗, I∗adm) be a successful forgery of B, where σ∗ = (ˆV K
∗
, σ∗

0 , σ∗
1). That

is, Vrfy(m∗, σ∗, pk, I∗adm) = 1.

– If μ = 0 and σ∗
0 is a successful forgery with respect to V K, then A forms

m̂∗ from m∗ and I∗adm according to Equation (1) and returns (m̂∗, σ∗
0) as its

own output.
– If μ = 0 and σ∗

0 is not a successful forgery with respect to V K, then A
aborts.

66 D.H. Yum, J.W. Seo, and P.J. Lee

– If μ
= 0 and ˆV K
∗

= V K, then A forms m̂∗ from m∗ and I∗adm according to
Equation (1) and returns (m̂∗‖m∗, σ∗

1) as its own output.
– Otherwise (i.e., μ
= 0 and ˆV K

∗
= V K), then A aborts.

If A does not abort (i.e., μ ∈ [0, qsig] is a correct guess), then the simulation is
perfect. As qsig ≥ qtr, the event of A’s not aborting happens with probability at
least 1/(qsig + 1). Therefore, if B succeeds with a probability ε, the adversary A
succeeds with probability at least ε/(qsig + 1).

Transparency. Recall that a sanitization-or-signing oracle O
Sanitize/Sign
sk,b (·, ·, ·)

takes as input a message m, a set of indices Iadm, and a modified message
m′, where Iadm should be consistent with (m, m′). If b = 0, it outputs σ′ ←
Sanitize(m, σ, pk, td, Iadm, m′) and otherwise, it outputs σ′ ← Sign(m′, sk, Iadm).
The adversary’s goal is to guess the random bit b ∈ {0, 1}. For all messages m, m′

and their consistent index set Iadm, the scheme TSSDS generates the signature
σ′ = (ˆV K, σ0, σ

′
1) on message m′ as follows.

m̂′ = ˆV K‖m̂′
1‖m̂′

2‖ · · · ‖m̂′
L, where m̂′

i =

{
� if i ∈ Iadm

m′
i if i /∈ Iadm

,

σ0 ← S(m̂′, SK),
σ′

1 ← S(m̂′‖m′, ˆSK).

This holds whether the signature σ′ is given by σ′ ← Sanitize(m, σ, pk, td, Iadm, m′)
or σ′ ← Sign(m′, sk, Iadm). In the TSSDS scheme, the sanitization-or-signingoracle
O

Sanitize/Sign
sk,b (·, ·, ·) works exactly in the same way irrespective of the random bit b =
{0, 1}. Therefore, any adversary, which is not necessarily a PPT algorithm, cannot
guess the random bit b with a probability greater than 1/2, even with additional
queries to the signing oracle, the trapdoor generation oracle, and the sanitization
oracle. In other words, TSS is transparent in an information-theoretic sense. �

Our construction gives a simple answer to the basic theoretic question about the
minimal computational complexity assumption under which a trapdoor sanitiz-
able signature exists.

Theorem 4. Secure trapdoor sanitizable signatures exist if and only if one-way
functions exist.

Proof. Theorem 1 and Theorem 3 proves that one-way functions imply secure
trapdoor sanitizable signatures. For the other direction, we use a well-known tech-
nique of [20]. Let TSS = (Setup, KeyGen, Sign, Trapdoor, Sanitize, Vrfy) be a secure
trapdoor sanitizable signature. We build a one-way function f(·) as follows; let
f(x) for x ∈ {0, 1}k run param ← Setup(x) and (sk, pk) ← KeyGen(param) and
output pk. Assume that there is an adversaryA that can invert f(·). Then, given
a public key pk, we would be able to obtain a secret key sk′ with the property that
sk′ could generate signatures valid for pk. But this implies that TSS is insecure,
which is a contradiction. �

Trapdoor Sanitizable Signatures Made Easy 67

Gertner et al. [16] minted the terms of “private cryptography world” and “pub-
lic cryptography world” to divide cryptographic primitives into two groups. The
former world consists of one-way function and all its equivalent primitives (e.g.,
pseudo-random generator, pseudo-random function, bit commitment, and digi-
tal signature) and the latter world consists of “harder” primitives such as key
agreement, public key encryption, oblivious transfer, secure function evaluation,
and trapdoor permutation. According to the terminology of Gertner et al. [16],
Theorem 4 shows that trapdoor sanitizable signature belongs to the private cryp-
tography world.

Stateless Version. There is a simple technique to remove the necessity of
List in Construction 1. One can make K(·), the key generation algorithm for
temporary key pairs (ˆSK, ˆV K), deterministic. Let �1(·) and �2(·) be polyno-
mials. Let PRFk : {0, 1}�1(k) × {0, 1}∗ → {0, 1}�2(k) be a variable input-length
pseudo-random function such as variable input-length MACs (message authenti-
cation codes). Let γk be the randomness used by K(1k) where |γk| = �2(k). The
randomness γk can be produced in a way that is deterministically dependent
on m̂. First, a random key κ ∈ {0, 1}�1(k) for PRFk is generated and included
in the secret key sk. To sign a message m, the randomness γk is computed by
γk = PRFk(κ, m̂). Then, the trapdoor (i.e., the temporary signing key ˆSK) can
be re-computed from κ and m̂ without consulting List. No PPT algorithm can
distinguish between the stateless version and the stateful version because PRFk

is a pseudorandom function.

References

1. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

2. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

3. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

4. Izu, T., Kanaya, N., Takenaka, M., Yoshioka, T.: PIATS: A partially sanitizable
signature scheme. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 72–83. Springer, Heidelberg (2005)

5. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S.,
Imai, H.: Digitally signed document sanitizing scheme with disclosure condition
control. IEICE Transactions 88-A(1), 239–246 (2005)

6. Miyazaki, K., Hanaoka, G., Imai, H.: Invisibly sanitizable digital signature scheme.
IEICE Transactions 91-A(1), 392–402 (2008)

7. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B.
(eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

8. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

68 D.H. Yum, J.W. Seo, and P.J. Lee

9. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS. The Internet Society
(2000)

10. Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes.
In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179.
Springer, Heidelberg (2005)

11. Yum, D.H., Lee, P.J.: Sanitizable signatures reconsidered (2010) (unpublished
manuscript)

12. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their
application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg
(2008)

13. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In:
Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004)

14. Zhang, F., Safavi-Naini, R., Susilo, W.: ID-based chameleon hashes from bilinear
pairings. Cryptology ePrint Archive, Report 2003/208 (2003),
http://eprint.iacr.org/

15. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

16. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: The 41st An-
nual Symposium on Foundations of Computer Science, pp. 325–335. IEEE, Los
Alamitos (2000)

17. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: The 30th Annual Symposium on Founda-
tions of Computer Science, pp. 230–235. IEEE Computer Society, Los Alamitos
(1989)

18. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

19. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: The 21st Annual ACM Symposium on Theory of Computing, pp.
33–43. ACM, New York (1989)

20. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: The 22nd Annual ACM Symposium on Theory of Computing, pp. 387–394.
ACM, New York (1990)

21. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: A survey of two signature aggrega-
tion techniques. CryptoBytes 6(2), 1–10 (2003)

22. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

23. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EU-
ROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

http://eprint.iacr.org/

Generic Constructions for Verifiably Encrypted
Signatures without Random Oracles or NIZKs

Markus Rückert�, Michael Schneider, and Dominique Schröder�

Technische Universität Darmstadt, Germany
markus.rueckert@cased.de,

mischnei@cdc.informatik.tu-darmstadt.de,

schroeder@me.com

Abstract. Verifiably encrypted signature schemes (VES) allow a signer
to encrypt his or her signature under the public key of a trusted third
party, while maintaining public signature verifiability. With our work,
we propose two generic constructions based on Merkle authentication
trees that do not require non-interactive zero-knowledge proofs (NIZKs)
for maintaining verifiability. Both are stateful and secure in the stan-
dard model. Furthermore, we extend the specification for VES, bringing
it closer to real-world needs. We also argue that statefulness can be a
feature in common business scenarios.

Our constructions rely on the assumption that CPA (even slightly
weaker) secure encryption, “maskable” CMA secure signatures, and col-
lision resistant hash functions exist. “Maskable” means that a signature
can be hidden in a verifiable way using a secret masking value. Unmask-
ing the signature is hard without knowing the secret masking value. We
show that our constructions can be instantiated with a broad range of
efficient signature and encryption schemes, including two lattice-based
primitives. Thus, VES schemes can be based on the hardness of worst-
case lattice problems, making them secure against subexponential and
quantum-computer attacks. Among others, we provide the first efficient
pairing-free instantiation in the standard model.

Keywords: Generic construction, Merkle tree, post-quantum, standard
model.

1 Introduction

Boneh et al. introduced the concept of verifiably encrypted signatures (VES) at
Eurocrypt 2003 as a means of covertly exchanging signatures, while maintaining
their verifiability [8]. They include a passive, trusted third party, the adjudicator,
which makes VES schemes fall into the category of optimistic fair exchange
protocols [2,4].

� This work was supported by CASED (www.cased.de). Dominique Schröder is also
supported by the Emmy Noether Programme Fi 940/2-1 of the German Research
Foundation (DFG).

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 69–86, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

70 M. Rückert, M. Schneider, and D. Schröder

Signer, receiver, and adjudicator, interact as follows. The signer encrypts his
or her signature σ for a document M as a verifiably encrypted signature �.
Given �, the receiver can verify that it contains a valid signature for M , but is
otherwise unable to extract σ. A commercially important application is online
contract signing under the supervision of an escrow. As opposed to the classic
(offline) scenario, where the escrow needs to be involved in every step of the pro-
cess, verifiably encrypted signatures make signing contracts more cost-efficient
due to the passiveness of the escrow and simultaneously allow the parties to
negotiate online rather than meet in person. They simply exchange verifiably
encrypted signatures on the negotiated contract, verify them, and finally ex-
change the corresponding regular signatures. Assume Alice acts honestly, while
Bob tries to misuse (e.g., for negotiating a better deal elsewhere or simply for
blackmail) the partially signed document without providing a signature himself.
The adjudicator can step in and disclose Bob’s signature. The contract becomes
binding despite Bob’s attempt to back out.

Boneh et al. propose the first construction [8], which is provably secure in the
random oracle model (ROM), followed by a slightly more efficient construction
by Zhang et al. [24]. Lu et al. present the first scheme in the standard model in
[13]. Furthermore, they sketch a generic construction based on NIZKs. Another
NIZK construction has been proposed by Dodis et al. in [11]. Using NIZKs,
however, is generally very inefficient with respect to computational cost and
signature size.

The previous efficient instantiations typically use pairings in order to achieve
verifiability of El Gamal encrypted signatures. With pairings, however, security
proofs have to rely on very special versions of the Diffie-Hellman problem, whose
actual hardness is yet to be assessed [7]. Note that there is a second line of work
on “verifiable encryption” in a more general scenario by Camenisch and Shoup
[9] as well as Ateniese [3]. Their objectives differ from the one in [8] as Boneh
et al. demand that transmitting and verifying an encrypted signature can be
done in a single move. In particular, the verification process does not involve
interactive ZK proofs as required in both [9] and [3]. Therefore, we focus on the
line of research coming from Boneh et al.

Our Contribution
Generic construcions of cryptographic schemes help understand their complexity.
A common approach is: take a message, encrypt it, and append a NIZK, proving
that the encrypted value satisfies some property. Removing NIZKs is non-trivial.
In the following, we discuss how they can be avoided in the context of VES.

VES with a Setup Phase. We extend the model of Boneh et al. in the sense that
the signer’s key may depend on the adjudicator’s public key. More precisely, we
allow signer and adjudicator to interact once during key generation. We believe
that this is a good model of real-world business scenarios. To illustrate this, let’s
consider a notary, the adjudicator, that oversees fair online contract signing. In
general, the notary wants to remain passive but he or she still wants to bill his

Generic Constructions for Verifiably Encrypted Signatures 71

or her services on a per signature-exchange basis. With our extension and the
instantiations therein, we show how the (offline) notary can actually control the
number of verifiably encrypted signature that his or her customers can securely
exchange. The customer pays for a certain number of signatures in advance
and the notary completes the customer’s key pair accordingly. Interestingly, the
underlying signature scheme can still be used in a black-box way. Thus, smart
cards or other signing devices can be used and the secret signing key is not
revealed. This is important for contract signing as laws and ordinances often
require this for the contract to be legally binding.

Generic Construction. So far, there have been two construction principles for
VES schemes: use pairings for efficiency or NIZKs for generic constructions from
minimal cryptographic assumptions. Our construction fills the gap between those
extremes as it can be considered both efficient (compared to NIZKs) and generic.
We believe that our construction principles may also be helpful in finding NIZK-
free generic constructions for other schemes. In detail, we show three things.

Firstly, generic constructions for VES schemes need not involve inefficient
non-interactive zero-knowledge proofs. We propose two generic constructions
in the standard model, which is encouraged by the work of Canetti, Goldre-
ich, and Halevi [10]. Both are based on “random plaintext secure” (RPA) en-
cryption1, “maskable” existentially unforgeable (EU-CMA) signatures, and a
collision-resistant hash function in a Merkle authentication tree [18] that can be
handled efficiently. This allows us to scale the resulting scheme according to the
individual needs of specific application scenarios.

Maskability is a property of the signature scheme that states that we can
choose a random masking value α and mask a given signature σ for a message
M by calling (τ, β) ← Mask(σ, α). The resulting masked signature τ is still valid
for the same message under a modified verification procedure that uses some
additional advice β. Given (τ, β), it is hard to recover σ. However, with the
secret masking value α, one can call σ′ ← Unmask(τ, β, α) and recover a valid
(ordinary) signature for M .

Our first construction uses regular (many-time) signature schemes, the other
solely requires the existence of a suitable one-time signature scheme. Both of our
constructions are stateful and the key generation step depends, as always with
tree-based constructions [18], on the desired signature capacity � of the resulting
scheme. Using Merkle trees for VES was first considered in [20] for the special
case of RSA signatures. By formalizing this approach, we develop this technique
to its full potential.

Secondly, pairings are not necessary for efficient VES schemes. In particular,
we show the first pairing-free VES scheme in the standard model without NIZKs.

Thirdly, we introduce efficient VES schemes to the post-quantum era be-
cause we give lattice-based instantiations that withstand quantum computer
and subexponential attacks. Previous instantiations will become insecure in the

1 A weaker notion than CPA security, where the adversary has to distinguish the
ciphertext for a random message from the encryption of the 0-string (see Section 3).

72 M. Rückert, M. Schneider, and D. Schröder

presence of quantum computers due to the work of Shor [23]. The full version
contains a second instantiation from lattices and one from RSA.

Organization. We start by recalling the VES security model in Section 2. There,
we also propose our extension. Then, we describe the required building blocks,
including “maskability”, in Section 3, followed by our generic constructions. In
order to demonstrate their feasibility, we instantiate both constructions with
various efficient primitives in Section 4 and the full version [21].

2 Verifiably Encrypted Signatures

Verifiably encrypted signature schemes support the encryption of signatures un-
der the public key of a trusted third party, while simultaneously proving that
the encryption contains a valid signature. They are built upon digital signature
schemes DSig = (Kg, Sign, Vf), defined via Key Generation: Kg(1n) outputs a
key pair (ssk, spk). ssk is a private signing key and spk the corresponding public
verification key spk ∈ K (public key space); Signing: Sign(ssk, M) outputs a sig-
nature σ ∈ Σ (signature space) on a message M ∈ M (message space) under ssk;
Signature Verification: Vf(spk, σ, M) outputs 1 iff σ is a valid signature on M un-
der spk. Now, a verifiably encrypted signature scheme VES = (AdjKg, AdjSetup,
Kg, Sign, Vf, Create, VesVf, Adj) consists of the following algorithms. Note that
we generalize the model slightly by letting the key generation algorithm of the
signer depend on the keys of the adjudicator (see AdjSetup below). In particu-
lar, we view the key generation process as an interactive algorithm between the
adjudicator and the signer, i.e., the interaction takes place only once.

Adjudicator Key Generation: AdjKg(1n) outputs a key pair (ask, apk), where
ask is the private key and apk the corresponding public key.

Adjudication Setup: The adjudicator provides an algorithm AdjSetup(ask, pk)
whose input is the private key of the adjudicator ask and a public key pk of the
signer. It returns a key pk′.

Key Generation: The key generation algorithm Kg(1n) may interact with the
adjudicator via the oracle AdjSetup(ask, ·) to produce the key pair (sk, pk).

Signing and Verification: Same as in a digital signature scheme
VES Creation: Create(sk, apk, M) takes as input a secret key sk, the adjudica-

tor’s public key apk, and a message M ∈M. It returns a verifiably encrypted
signature � for M .

VES Verification: VesVf(apk, pk, �, M) takes as input the adjudicator’s pub-
lic key apk, a public key pk, a verifiably encrypted signature �, and a message
M . It returns a bit.

Adjudication: Adj(ask, apk, pk, �, M) takes as input the key pair (ask, apk)
of the adjudicator, the public key of the signer pk, a verifiably encrypted
signature �, and a message M . It extracts an ordinary signature σ for M .

A VES scheme is complete if for all adjudication key pairs (ask, apk)← AdjKg(1n)
and for all signature key pairs (sk, pk)← KgAdjSetup(ask,·)(1n) the following holds:
VesVf(apk, pk, Create(sk, apk, M), M) = 1 and Vf(pk, Adj(ask, apk, pk, Create(sk,
apk, M)), M) = 1 for all M ∈M.

Generic Constructions for Verifiably Encrypted Signatures 73

Experiment VesForgeVES
A (n)

(ask, apk) ← AdjKg(1n)
(sk, pk) ← KgAdjSetup(ask,·)(1n)
(M∗, �∗) ← AC(sk,apk,·),A(ask,apk,pk,·,·),S(ask,·)(pk, apk)
Return 1 iff VesVf(apk, pk,�∗,M∗) = 1 and

A has never queried M∗ to C(sk, apk, ·)
or A(ask, apk, pk, ·, ·).

Experiment OpacVES
A (n)

(ask, apk) ← AdjKg(1n)
(sk, pk) ← KgAdjSetup(ask,·)(1n)
(M∗, σ∗) ← AC(sk,apk,·),A(ask,apk,pk,·,·),S(ask,·)(pk, apk)
Return 1 iff Vf(pk, σ∗,M∗) = 1 and

A has never queried M∗ to A(ask, apk, pk, ·, ·).

Experiment ExtractVES
A (n)

(ask, apk) ← AdjKg(1n)
(M∗, �∗, pk∗) ← AA(ask,apk,·,·,·),S(ask,·)(apk)
Let σ∗ ← Adj(ask, apk, pk∗,�∗,M∗)
Return 1 iff VesVf(apk, pk∗,�∗,M∗) = 1

and Vf(pk∗, σ∗,M∗) = 0.

Experiment CollusionVES
A (n)

(apk, ask) ← AdjKg(1n)
(sk, pk) ← KgAdjSetup(ask,·)(1n)
state ← (apk, ask, pk)
(M∗,�∗) ← AC(sk,apk,·)(state)
Return 1 iff VesVf(apk, pk,�∗,M∗) = 1 and

A has never queried C(pk, apk, ·) about M∗.

Fig. 1. Overview over the different security experiments

2.1 Security Model

Security of verifiably encrypted signatures is defined by unforgeability, opacity
[8], extractability, and collusion-resistance [22].2 Unforgeability requires that it
is hard to forge a verifiably encrypted signature, opacity implies that it is diffi-
cult to extract an ordinary signature from an encrypted signature, extractability
guarantees that the adjudicator can always extract a regular signature from a
valid verifiably encrypted signature, and collusion-resistance prevents signer and
adjudicator from successfully colluding in order to produce a verifiably encrypted
signature on behalf of another party, provided that the collusion happens in the
online phase and not during key registration. The security requirement can be
interpreted as a stronger form of unforgeability.

Since we allow the key generation algorithm to depend on the interaction with
the adjudicator, we also give the adversary access to the corresponding oracle.
Unforgeability and opacity are formalized in experiments, where the adversary is
given the public keys of the signer and of the adjudicator. Moreover, the adver-
sary has access to three oracles: C returns verifiably encrypted signatures for a
given message, A extracts a regular signature from a verifiably encrypted signa-
ture, and S allows the adversary to perform setup queries. In the extractability
experiment, the adversarial signer is given access to an adjudication oracle and
wins if he or she can output an encrypted signature that is hidden irrecoverably.
Finally, the collusion-resistance experiment gives the adversary direct access to
the adjudicator’s private key. The goal is to forge a signature for another party.
All experiments are defined in Figure 1.

As usual, n is the security parameter. VES is secure if the following holds for
any efficient adversary A:

Unforgeability: VES is unforgeable if VesForgeVES
A (n) outputs 1 with negligible

probability.
2 Note that in [22] this was called “abuse-freeness”. Here, however, we prefer

“collusion-resistance” because abuse-freeness already has a slightly different meaning
in the context of fair-exchange, which creates confusion.

74 M. Rückert, M. Schneider, and D. Schröder

Opacity: VES is opaque if OpacVES
A (n) outputs 1 with negligible probability.

Extractability: VES is extractable if ExtractVES
A (n) outputs 1 with negligible

probability.
Collusion-Resistance: VES is collusion-resistant if CollusionVES

A (n) outputs 1
with negligible probability. In this experiment the adversary gets as input the
adjudication key pair and a signer public key pk. The adversary gets access
to a VES creation oracle C(sk, apk, ·). It does not need the other oracles
because it has ask.

A scheme is (t, qC, qA, qS, ε)-secure, if no adversary, running in time at most
t, making at most qC verifiably encrypted signature oracle queries, at most qA

adjudication oracle queries, and at most qS key registration queries, can succeed
with probability at least ε in the VesForge, Opac, Extract (with qC = 0), or
Collusion (with qA = qS = 0) experiment.

Since we have extended the model slightly, we have to re-prove the relations
among the different properties. The relations in [22] still hold in our setting as
phrased in the following propositions. We defer the details to the full version.

Proposition 1. If unforgeable VES schemes exist, there is also an unforgeable
VES scheme that is not extractable.

Proposition 2. If unforgeable and extractable VES schemes exist, there is also
an unforgeable and extractable VES scheme that is not collusion-resistant.

In addition, there is a new relation that can be quite useful when proving a VES
secure. It states that a VES is unforgeable if it is collusion-resistant. To see this,
observe that giving ask to A in the collusion-resistance experiment enables the
adversary to simulate the oracles S and A itself. Thus, if A is successful in the
unforgeability experiment it can also break collusion-resistance.

Proposition 3. If VES is collusion-resistant, it is also unforgeable.

2.2 Discussion

As already discussed in the introduction, giving the key generation algorithm
access to the adjudicator corresponds to the natural case where we have an
initial setup phase. Note that the oracle S only takes as input the public key and
not the private key. Thus, this phase cannot be compared with the models that
require the signer to prove knowledge of the secret key (e.g., KOSK). Moreover,
this phase only takes place once, during key generation and not during each
signature creation process. The adjudicator remains offline, i.e., our modification
is suitable for fair exchange protocols with a passive adjudicator. Via AdjSetup,
the adjudicator may define parts of signer keys. Giving the adjudicator too much
control over, however, is discouraged as it affects collusion-resistance.

In [22], the authors show that “abuse-freeness” is already implicit as long
as the underlying signature scheme is unforgeable and treated as a black box
(key independence, Definition 2 below). Since we consider a slightly stronger
definition, we have to re-prove this result for collusion-resistance (Lemma 2).

Generic Constructions for Verifiably Encrypted Signatures 75

Note that our constructions satisfy these properties. Thus, it is sufficient to prove
opacity and extractability because key-independent and extractable schemes are
automatically unforgeable (Lemma 1).

3 Generic Construction

We propose two efficient generic constructions based on CPA-secure (even slightly
weaker) encryption, “maskable” digital signature schemes, and collision resistant
hash functions. As our instantiations in Section 4 and in the full version demon-
strate, this does not overly restrict the possible choices. In order to ensure that
verifiably encrypted signatures can always be decrypted (cf. extractability), we
build a Merkle authentication tree from a collision-resistant hash function. While
our first construction uses regular signature schemes, our second construction re-
duces the assumptions even further by merely relying on one-time signatures.

3.1 Building Blocks

Let G : {0, 1}∗ → {0, 1}n be a collision resistant hash function and let {xi}�
1 be

the ordered set of values x1, . . . , x�. Furthermore, we use x←$S, when choosing
an x ∈ S uniformly at random and x

Δ← S if x is chosen according to a distri-
bution Δ over S. For our generic constructions, we need to define “maskable”
signature schemes, secure encryption schemes, and Merkle authentication trees.

Digital Signature Scheme. The definition of digital signature schemes DSig =
(Kg, Sign, Vf) follows the well-known and established definition due to [12].

For our generic construction, we need a signature scheme that is “maskable”.
Generally speaking, signatures can be hidden by a masking value, such that we
can still verify them. Furthermore, we have to be able to recover a valid signature
from a valid masked one. We formalize this in the following definition.

Definition 1 (Maskability). Let DSig be a signature scheme with public-key
space K, signature space Σ, and message space M. It is maskable if there is
a corresponding masking scheme MSDSig = (Advice, Mask, Unmask, Vf) with the
following specification:

Sets: Let S be a set of masking values and let Δ be a distribution over S.
Furthermore, let V be the set of advice strings for verifying masked signatures
and T be the space of masked signatures.

Advice: On input spk, α, Advice outputs an advice β ∈ V .
Mask: On input spk, σ, α, M , the algorithm Mask outputs a masked signature

τ ∈ T . Notice that we do not require a perfect masking scheme but allow
the scheme to output the special symbol τ = ⊥.

Unmask: On input τ , β, α, M , the algorithm Unmask outputs a signature
σ ∈ Σ.

Verification: On input spk, τ , β, and M the algorithm MSDSig.Vf outputs a
bit, indicating the validity of the masked signature. If τ = ⊥, it returns 0.

76 M. Rückert, M. Schneider, and D. Schröder

Experiment Recover
MSDSig

A (n)
(ssk, spk) ← DSig.Kg(1n)
α

Δ← S
β ← Advice(spk, α)
σ∗ ← AM(ssk,spk,α,·),DSig.Sign(ssk,·)(spk, β)
Let {Mi}�

1 be the queries to DSig.Sign and let M∗ be the query to M.
Return 1 iff M∗ �∈ {Mi}�

1 and DSig.Vf(spk, σ∗,M∗) = 1.

Fig. 2. Experiment for the hiding property of a masking scheme

Validity: We require MSDSig.Vf(spk, τ, β, M) = 1 =⇒ DSig.Vf(spk, σ′, M) = 1,
where σ′ = Unmask(τ, β, α, M) and β = Advice(spk, α), for all keys, masked
signatures, messages, and masking values. Note that β is honestly created.

Hiding: The masking scheme needs to hide the signature σ (for M) in (τ, β)
such that no adversary can recover a valid signature for M without knowing
the masking value α. This must even hold if the adversary can query an ora-
cle M once that returns a masked signature for an adversely chosen message
and a randomly chosen α: M(ssk, spk, α, M) = [σ ← DSig.Sign(ssk, M); τ ←
Mask(spk, σ, α, M); Return σ;]. Furthermore, the adversary can make arbi-
trary queries to an ordinary signature oracle. MS is (t, ε)-hiding if there is
no adversary, running in time t, that wins the Experiment in Figure 2 with
probability at least ε.

Notice that the above definition can be trivially satisfied by an encryption
scheme. Then, the output of Advice is a zero-knowledge proof, demonstrating
that it was honestly encrypted. Here, the masking value α would comprise the
public and secret keys for the encryption scheme.

As we are interested in efficient instantiations, we propose that somewhat
homomorphic signature schemes can provide the same functionality. We demon-
strate this with the following example.

Example 1. Take the RSA signature scheme with full-domain hash function H
and public key (N, v). The verification function for a signature σ on a message
M checks whether 0 ≤ σ < N and σv = H(M) over ZN . We let Σ = V = ZN and
S = Z∗

N . Δ is the uniform distribution. Mask((N, v), σ, α, M) outputs σα mod N
and Advice((N, v), α) returns αv mod N . Thus, Unmask(τ, β, α, M) has to com-
pute σ ← τα−1 mod N . The modified verification algorithm MS.Vf(spk, τ, β, M)
checks whether 0 ≤ τ < N and τv = H(M)β. Observe that validity and the
hiding property are satisfied in the random oracle model.

Remark 1. Given the above example, it is easy to see that one can forge a masked
signature (τ, β) that passes MS.Vf, unless α and β = Advice(pk, α) are well-
formed. One could simply compute β ← τv/H(M) over ZN for arbitrary M
and τ . The result (τ, β, M) would be valid because τv ≡ H(M)β. However,
in our constructions, the attacker is not able to choose β freely. It is chosen

Generic Constructions for Verifiably Encrypted Signatures 77

during a trusted setup procedure and then authenticated with a hash tree. This
authentication mechanism yields an implicit rejection of adversely chosen β.

Notice that AdjSetup and the setup oracle S are always controlled by the
experiments in Figure 1 to make the setup procedure trusted. A straightforward
extension of our security model would be to remove this trusted setup procedure.

Random Plaintext Attacks (RPA). Let PKE = (Kg, Enc, Dec) be a public key
encryption scheme, defined via Key Generation: Kg(1n) outputs a key pair
(esk, epk). epk is the public encryption key and esk is the secret decryption key;
Encryption: Enc(epk, M) outputs a ciphertext c for M ; Decryption: Dec(esk, c)
attempts to decrypt c and returns the enclosed message, or ⊥ upon failure. We
define a weaker notion of security for encryption schemes that we call random
plaintext attacks that is similar to a key encapsulation mechanism (KEM). The
idea is that the adversary obtains a randomly chosen string s and a ciphertext
c. The task is to determine whether c encrypts s or the 0-string.

We say that PKE is indistinguishable under random plaintext attacks (IND-
RPA) if no efficient algorithm A can associate a randomly generated plaintext
with its ciphertext. The adversary wins if it is able to guess b with probability
> 1/2. PKE is RPA secure if for any efficient A and a negligible ε = ε(n)

∣∣∣Prob
[
b = A(epk, C) : (esk, epk) ← Kg(1n); b←${0, 1};M0←$M;M1 ← 0|M0|;C←$Enc(epk,Mb)

]
− 1

2

∣∣∣ < ε .

CPA =⇒ RPA. We claim that the notion of random plaintext attacks is
strictly weaker than chosen plaintext attacks, in the sense that any CPA scheme
is also RPA, but not vice-versa.

Proposition 4. A CPA secure scheme is also RPA secure. If an RPA secure
scheme exists then there is also an RPA secure scheme that is not CPA secure.

The first part is obvious. As for the second part, the basic idea is letting
Enc(1‖0n−1) in the modified RPA scheme output esk. Clearly, the scheme is
not CPA secure but it is still RPA secure.

Merkle Authentication Trees. Merkle presented a tree structure that can be
used to authenticate big amounts of data using only a single hash value [18].
Originally his idea was to create digital signatures out of one-time signature
schemes, but many other applications of Merkle trees appeared in the past.
With our constructions, we add verifiable encryption to this list of applications.

A Merkle tree is a complete binary tree of height h that is built from the
bottom up to the root such that the leaves define the whole tree. The leaves
are numbered consecutively from left to right. Inner nodes are constructed using
the following rule: a node’s value is the hash value of the concatenation of its
children left and right: node = G(left‖right), where G : {0, 1}∗ → {0, 1}n is a
collision resistant hash function. The root of the tree is used to authenticate the
leaf values. For the authentication process, additional tree nodes are required.

78 M. Rückert, M. Schneider, and D. Schröder

These nodes form the authentication path of a leaf. Consider the path from the
leaf with index ϕ ∈ [1, 2h] to the root. The siblings of the nodes on this path
form the authentication path of this leaf. Using this path and the construction
rule G(left‖right), the root of the tree can be reconstructed. If the calculated root
matches the original one, the leaf data is correctly authenticated.

Using an adversary that is able to replace a leaf value, such that the replaced
leaf is still correctly authenticated by the tree, one can find collisions in the un-
derlying hash function G. For an overview of techniques, results, and references,
we refer the reader to [5, Chapter 3].

3.2 Generic Construction

The general idea is to use a maskable signature scheme with one-time masking
values and encrypt these masking values under the adjudicator’s public key. The
validity property of the masking scheme ensures completeness, and opacity will
be guaranteed by the hiding property. In general, we take an ordinary σ and
hide it by applying Mask, using one of � predefined one-time masking values
α. If, for any reason, the masking scheme returns an invalid masked signature,
the process is repeated with the next α. This allows for a broader range of
(imperfect) masking schemes. The corresponding advice β for verification is also
precomputed. Then, β and an encryption γ of α are used to build a Merkle
authentication tree that allows a verifier to efficiently check whether β and γ
correspond. The adjudicator forms the tree during the initial registration phase
and signs its root under a certification key pair (csk, cpk) in order to prevent
malicious signers from cheating in the extractablity experiment.

Construction 1. Let DSig be a maskable signature scheme with masking scheme
MSDSig, PKE be a public key encryption scheme and G : {0, 1}∗ �→ {0, 1}n be a
collision resistant hash function. Choose an adequate h ∈ N, such that the resulting
scheme admits � = 2h signatures. VES1 = (AdjKg, AdjSetup, Kg, Sign, Vf, Create,
VesVf, Adj) is defined as follows.

Adjudicator Key Generation: Call (ask, apk) ← PKE.Kg(1n), (csk, cpk) ←
DSig.Kg(1n) and output ((ask, csk), (apk, cpk)).

Adjudication Setup: On input ((ask, csk), spk), perform the following steps:
1. Choose αi

Δ← S and set βi ← Advice(spk, αi), γi ← Enc(apk, αi) for i =
1, . . . , �; 2. Construct a Merkle tree T using G, i.e., with leaves G

(
G(βi)||G(γi)

)
that fully define the root ρ; 3. Compute the signature σρ ← DSig.Sign(csk, ρ);
4. Output ({αi}�

1, {γi}�
1, ρ, σρ).

Key Generation: Perform the following steps: 1.Call (ssk, spk)← DSig.Kg(1n);
2. Call ({αi}�

1, {γi}�
1, ρ, σρ) ← AdjSetup((ask, csk), spk); 3. Initialize a signa-

ture counter c ← 0; 4. Output pk = (spk, ρ, σρ) and sk = (ssk, c, {αi}�
1, {γi}�

1).
Sign, Verify: As defined in the underlying signature scheme DSig.
Create: On input sk, pk, M , the algorithm Create works in three steps: 1. Incre-

ment the counter c: c ← c+1; 2. Sign the message M using the underlying sig-
nature scheme: σ ← DSig.Sign(ssk, M); 3. Mask the signature σ with the secret

Generic Constructions for Verifiably Encrypted Signatures 79

value αc: τ ← Mask(spk, σ, αc, M); 4. If MSDSig.Vf(spk, τ, βc, M) = 0 increase
c and go to 3. The output is � = (τ, βc, γc, πc), where βc ← Advice(spk, αc)
and πc is the authentication path for leaf c.

VES Verification: On input ((apk, cpk), (spk, ρ, σρ), (τ, β, γ, π), M), VesVf out-
puts 1 iff 1. DSig.Vf(cpk, σρ, ρ) = 1; 2. π is correct for β and γ with respect to
ρ; 3. MSDSig.Vf(spk, τ, β, M) = 1.

Adjudication: On input ((ask, csk), (apk, cpk), (spk, ρ, σρ), (τ, β, γ, π), M), Adj
verifies the input using VesVf. If it is correct, it decrypts α′ ← Dec(ask, γ),
calls σ′ ← Unmask(τ, β, α′, M), and outputs σ′.

3.3 Generic Construction Using One-Time Signatures

Since we already need a Merkle authentication tree for Construction 1, we can
as well use a suitable one-time signature instead of a regular one. These sig-
natures are potentially easier to achieve, i.e., they may be secure under milder
assumptions. The following construction demonstrates that the second tree that
is needed to turn a one-time signature scheme into a “many-time” signature
scheme via the Merkle transformation can be easily merged with the first one.

Construction 2. With OTS we denote a maskable one-time signature scheme
with masking scheme MSOTS. We define VES2 as follows:

Adjudicator Key Generation: Call (ask, apk) ← PKE.Kg(1n), (csk, cpk) ←
DSig.Kg(1n) and output ((ask, csk), (apk, cpk)).

Adjudication Setup: On input ((ask, csk), {spki}�
1), perform the following steps:

1. Choose αi
Δ← S and set βi ← Advice(spk, αi), γi ← Enc(apk, αi) for i =

1, . . . , �; 2. Construct a Merkle authentication tree T using the hash function G,
where the leaves are of the form G

(
G(βi)||G(γi)||G(spki)

)
. Denote the root node

with ρ; 3. Compute the signature σρ ← DSig.Sign(csk, ρ); 4. Output ({αi}�
1,

{γi}�
1, ρ, σρ).

Key Generation: Run the following steps: 1. Call (sski, spki) ← OTS.Kg(1n)
for i = 1, . . . �; 2. Call ({αi}�

1, {γi}�
1, ρ, σρ) ← AdjSetup((ask, csk), {spki}�

1);
3. Initialize a signature counter c ← 0; 4. Output pk = (ρ, σρ) and sk =
({sski}�

1, {spki}�
1, c, {αi}�

1, {γi}�
1).

Sign, Verify: As defined in OTS.
Create: On input {sski}�

1, {spki}�
1, c, {αi}�

1, {γi}�
1, M , Create works in four steps:

1. Increment c: c ← c + 1; 2. Sign M : σ ← OTS.Sign(sskc, M); 3. Mask σ:
τ ← Mask(spkc, σ, αc, M); 4. If MSDSig.Vf(spkc, τ, βc, M) = 0 go to 1.
The output is � = (τ, βc, γc, πc, spkc), where βc ← Advice(spk, αc) and πc is
the authentication path for leaf c.

VES Verification: On input ((apk, cpk), (ρ, σρ), (τ, β, γ, π, spk), M), VesVf out-
puts 1 iff 1. DSig.Vf(cpk, σρ, ρ) = 1; 2. ρ can be reconstructed using π, β, γ,
and spk; 3. MSDSig.Vf(spk, τ, β, M) = 1.

Adjudication: On input ((ask, csk), (apk, cpk), (ρ, σρ), (τ, β, γ, π, spk), M), Adj
verifies the input using VesVf. If it is correct, it decrypts α′ ← Dec(ask, γ),
calls σ′ ← Unmask(τ, β, α′, M), and outputs σ′.

80 M. Rückert, M. Schneider, and D. Schröder

3.4 Proof of Security

We show in this section that VES1 satisfies the desired security requirements. Se-
curity of Construction 2 is proven analogously, the assumptions are just weaker,
i.e., we only need a maskable one-time signature scheme instead of a regular
one. We show extractability, unforgeability, collusion-resistance, and opacity. The
proofs for VES1 and VES2 are essentially the same, we focus on VES1.

Theorem 1 (Extractability). If G is collision resistant, DSig is unforgeable,
and MSDSig satisfies validity then VES1 (VES2) is extractable.

Proof. The reduction plays against unforgeability of DSig and uses the validity
of MSDSig and the collision-resistance of G and in the analysis. The unforgeabil-
ity ensures that the adversary has to call AdjSetup to create its public key and
validity guarantees that an extracted signatures is valid if computed from an
honestly masked signature. Most importantly, the collision-resistance of G pre-
vents the adversary from altering the leaves of the authentication tree, i.e., from
being able to dishonestly mask a signature.

The reduction chooses the adjudication key honestly during the simulation
and has access to a signature oracle for DSig and to the verification key spk.
Thus, the adversary’s environment can be perfectly simulated. The adversarial
user A outputs a public key (pk∗, ρ∗, σ∗

ρ) and a pair (M∗, (τ∗, α∗, γ∗, π∗)) for
which VesVf outputs 1. Furthermore, we let σ′ be the result of the adjudication
algorithm for (τ∗, β∗, γ∗, π∗).

Towards contradiction, assume that extraction fails, i.e., DSig.Vf(spk, σ′, M∗)
= 0. From VesVf, we know that ρ∗ was previously created by the simulator
together with a signature σ∗

ρ , using the external signature oracle. Otherwise, we
would have an existential forgery that refutes unforgeability of DSig. Assume
that ρ∗ was formed using {αi}�

1, {βi}�
1, {γi}�

1.
VesVf guarantees that π∗ is an authentication path for the leaf G(G(β∗)||G(γ∗))

w.r.t. ρ. Thus, there is an index i ∈ {1, . . . , �} such that β∗ = βi = Advice(spk, αi)
and γ∗ = γi. Otherwise, we would have at least one collision in the hash tree, which
refutes collision resistance of G.

Finally, VesVf ensures that MSDSig.Vf(spk, τ∗, β∗, M∗) = 1, which implies the
contradiction DSig.Vf(spk, σ′, M∗) = 1 because of the validity of MSDSig. ��

In order to prove unforgeability, we need to observe that both constructions
apply signature and encryption keys separately because DSig.Sign is called as a
black box and the result is encrypted, or masked in our context. More precisely,
they satisfy the following definition of key-independence.

Definition 2 (Key-Independence [22]). Let the signer’s private key sk con-
sist of two independent elements (kisk, ssk) and let pk = (kipk, spk) be the
corresponding public key. VES is key-independent if there is an efficient encryp-
tion algorithm KI-Enc such that KI-Enc(apk, kipk, kisk, DSig.Sign(ssk, M), M) ≡
VES.Create(sk, apk, M) for all M ∈M, where DSig is employed signature.

Lemma 1 ([22]). Let VES be extractable and key-independent. VES is unforge-
able if the underlying signature scheme DSig is unforgeable.

Generic Constructions for Verifiably Encrypted Signatures 81

Regarding our novel security requirement against collusion of the adjudicator
and a user, we prove the following useful lemma.

Lemma 2. Let VES be extractable and key-independent. VES is collusion-resis-
tant if the underlying signature scheme DSig is unforgeable.

Proof. Suppose that there exists an adversaryA that successfullybreaks collusion-
resistance with non-negligible probability ε(n) after at most q queries to the
oracle C. We show how to forge ordinary signatures in DSig, runningA as a black-
box, with q queries to the signature oracle. The reduction B, playing against un-
forgeability of DSig, receives a public verification key spk and has access to a sign-
ing oracle DSig.Sign(ssk, ·). It generates an adjudication key pair (ask, apk) ←
VES.AdjKg(1n) and runs the remaining part of VES.Kg, including AdjSetup, to ob-
tain a VES key pair (sk, pk). This is possible because VES is key-independent. Af-
terwards,B sets state← (ask, apk, pk) and runsA(state) as a black-box. Whenever
A queries M to C, B calls its external signing oracle σ ← Sign(ssk, M) and com-
putes � ← KI-Enc(apk, kipk, kisk, σ, M). Finally, A stops and outputs (M∗, �∗).
B extracts the corresponding signature σ∗ ← VES.Adj(ask, apk, pk, �∗, M∗) and
returns (M∗, σ∗). Observe that the environment of A is perfectly simulated and
all oracle queries are simulated efficiently. By definition, A has not queried M∗

to C. Thus, B has not queried M∗ to its signature oracle. Moreover, the result-
ing (M∗, �∗) yields an ordinary message-signature pair (M∗, σ∗) because VES is
extractable. As a consequence, B’s attack is legitimate and it succeeds with prob-
ability ε(n) after q queries to the signature oracle. ��

Since VES1 and VES2 are extractable and key-independent, unforgeability follows
from Lemma 1, and Lemma 2 guarantees collusion-resistance.

Corollary 1 (Unforgeability). If DSig is unforgeable and VES1 (VES2) is ex-
tractable and key-independent, then VES1 (VES2) is unforgeable.

Corollary 2 (Collusion-resistance). If DSig is unforgeable and VES1 (VES2)
is extractable and key-independent, then VES1 (VES2) is collusion-resistant.

Concerning Opacity, we show the following:

Theorem 2 (Opacity). If DSig is unforgeable, PKE is RPA secure, MSDSig is
hiding, and G is collision resistant then VES1 (VES2) is opaque.

Proof. An adversary breaking opacity can succeed in two different ways. First,
by forging the underlying signature scheme, and second, by decrypting a given
verifiably encrypted signature. We say that an algorithm A is a

1. type-1 adversary (A1), if it outputs a message-signature pair (M∗, σ∗) such
that it has never queried M∗ to C, or if it invokes A on M ′ without having
queried M ′ to C before.

2. type-2 adversary (A2), if it outputs a message-signature pair (M∗, σ∗) such
that it has queried M∗ to C and it has never invoked A on M ′ without
having queried M ′ to C before.

82 M. Rückert, M. Schneider, and D. Schröder

A1 can be directly used to forge signatures in DSig. The reduction has control
over the adjudicator’s private key and can therefore extract ordinary signatures
(forgeries) from A1’s output. We refer the reader to the full version.

Type-2 Attacker. We perform a change to the simulation of A2’s environment
and argue that each does not change A2’s success probability but for a neg-
ligible amount. Let ε be A2’s success probability in the (unmodified) opacity
experiment. We change the algorithm AdjSetup.

Adjudication Setup: The algorithm AdjSetup′ selects the elements αi, βi as
before and chooses a random index c∗←${0, . . . , �}. It computes all γi�=c∗ as
before but γc∗ ← Enc(apk, 0n). It outputs the corresponding tree, root ρ,
and signature σρ as before.

Due to the RPA security of the encryption scheme, this only changes A2’s suc-
cess probability by a negligible ε′. The next change to AdjSetup allows us the
reduction to use A2 to refute the hiding property of MSDSig.

Adjudication Setup: The algorithm AdjSetup′′ works like AdjSetup′, but re-
ceives βc∗ from Recover and embeds it into the the leaf at index c∗.

The success probability of A2 does not change because βc∗ is distributed as
before. Also, knowledge of αc∗ is not necessary to build the modified public key.

The remaining oracles, C and A, are perfectly simulated for all indices
= c∗

because the reduction has access to all masking values (except αc∗) and can
therefore answer all adjudication queries. In particular, this is the reason why
we do not require some form of CCA secure encryption: all plaintexts are known
and authenticated. Also, using these masking values together with the signature
oracle in the Recover experiment, enables the reduction to answer queries to C.

Eventually, A2 outputs a message-signature pair (M∗, σ∗). If it is valid for
the index c∗, the reduction outputs σ∗ to refute the hiding property. Otherwise,
it aborts. The reduction’s success probability is noticeable if ε is noticeable. ��

4 Efficient Instantiations

We show that the assumptions in our generic constructions are sound and that
maskability does not overly restrict the choice of signature schemes. We aim at
providing VES schemes based on a broad range of cryptographic assumptions,
including post-quantum ones. Here, we present the first efficient pairing-free VES
in the standard model. The full version contains a instantiations of Construction 1
from lattices and RSA in the random oracle model.

4.1 An Instantiation Based on Worst-Case Lattice Problems in
Ideal Lattices (Construction 2)

We propose an instantiation based on the hardness of lattice problems for
Construction 2 in the standard model. The impact of this instantiation is sig-
nificant. Not only are lattice-based constructions immune to quantum computer

Generic Constructions for Verifiably Encrypted Signatures 83

attacks, but they are also desirable in the classic scenario. Computations in
lattices are efficient (mostly basic linear algebra) and cryptographic hardness
can be based on worst-case assumptions by Ajtai’s worst-case to average-case
reduction [1].

Lattices. A full-rank lattice in Rm is a set Λ = {
∑m

i=1 xi bi |xi ∈ Z}, where
b1, . . . ,bm are linearly independent over R. The matrix B = [b1, . . . ,bm] is a
basis of the lattice Λ and we write Λ = Λ(B). The number of linearly independent
vectors in the basis is the dimension of the lattice. Ideal lattices are a special
class of lattices. Given a monic, irreducible (over Z) polynomial f of degree n,
the ring R = Zp[x]/〈f〉 ∼= Zn

p , and an ideal I of R, the ideal lattice Λ is the
set of coefficient vectors of the polynomials in I. In other words, Λ = {a ∈ Zn :∑n−1

i=0 aix
i ∈ I}. The main computational problem in lattices is the approximate

shortest vector problem (SVP∞), where an algorithm is given a basis of a lattice
Λ and is supposed to find a sufficiently short vector v ∈ Λ \ {0} with respect to
the �∞ norm. The SVP∞ in ideal lattices is called ISVP∞. We write ISVP∞(f, ν)
for the problem of finding a vector v with ‖v‖∞ ≤ νλ1 (λ1 is the minimum
distance in the lattice) in all lattices corresponding to ideals in the ring R.
HR,m is the family of compression functions that map elements from Rm

to R. Functions h ∈ HR,m are module homomorphisms, especially h(a + b) =
h(a) + h(b). The problem Col(h, d) asks to find two distinct x and x′ with
max{‖x‖∞ , ‖x′‖∞} ≤ d such that h(x) = h(x′). A polynomial time algorithm
that solves Col(h, d) for d = 10φp1/mn log2(n) can be used to solve ISVP∞(f, ν),
where ν = Õ(φ5n2). Here, φ is a small ring constant defined in [15].

LM-OTS signatures. We use the one-time signature scheme of Lyubashevsky
and Micciancio [15]. Its security is based on the problem of finding short vectors
in ideal lattices, which is conjectured to be intractable by quantum computers.

Let p = Θ̃((φn)4), m = �log n�. Define the constant D = 10φp1/mn log2(n).
The LM-OTS scheme is a tuple (Kg, Sign, Vf), defined via Key Generation:
Kg(1n) outputs a signing key (k, l) ∈ Rm × Rm with ‖k‖∞ and ‖l‖∞ bounded.
The verification key is (h, h(k), h(l)), where h←$HR,m; Signing: Sign((k, l), M),
M ∈ R, ‖M‖∞ ≤ 1, returns σ = kM + l ∈ Rm

D , where Rm
D restricts the coef-

ficients in R to the range [−D, D]; Verification: Vf((h, h(k), h(l)), σ, M) returns
1 iff σ ∈ Rm

2ψmnD−D and h(σ) = h(k)M + h(l), for some constant ψ. The above
scheme is a slight modification compared to [15] with regard to the admissible
signature length. Observe that honestly generated signatures are in Rm

D , whereas
signatures in Rm

2ψmnD−D may still be valid. The scheme remains secure under
the stronger assumption that Col(h, 2ψmnD−D), instead of Col(h, D), is hard.
This change is required for the masking scheme to be hiding. If there is a suc-
cessful adversary against unforgeability of this modified signature scheme, then
one can find a collision (x,x′) under h such that max{‖x‖∞ , ‖x′‖∞} ≤ D. This
can be used to solve ISVP∞ in the worst case.

Instantiation. Let ψ ∈ N>0 be a small constant. The following table summarizes
the instantiation using Construction 2 and the masking scheme MSLM-OTS .

84 M. Rückert, M. Schneider, and D. Schröder

pk Σ T S V Advice Mask Mask.Vf Unmask

(h, h(k),h(l)) Rm
2ψmnD−D Rm

ψmnD−D Rm
ψmnD R h(α) σ + α h(τ) ≡ h(k)M + h(l) + β, τ ∈ T τ − α

The masking distribution Δ is component-wise uniform. Signatures σ are
masked via τ ← σ + α. Therefore, the verification function is easy to adapt
because h is a module homomorphism. Notice that τ ← σ + α may lie outside
Rm

2ψmnD−D. In this case, Mask returns the special symbol ⊥ and Mask.Vf fails.
Fortunately, we have σ + α ∈ Rm

2ψmnD−D with probability ≈ e−1/ψ (a general-
ization of Lemma 5.1 in [14]). There are two ways to deal with this completeness
error. The first is to prepare ω(log(n)) many masking values for each leaf of the
tree for a negligible error. However, this would waste time and space as a negli-
gible completeness error is not necessary. By a simple trial-and-error approach,
we may to discard some of the α’s in VES.Create and move on to the next leaf. In
practice, the number of failures is small. Choosing ψ = 2, for example, yields a
success probability > 0.6 and it can be brought arbitrarily close to 1 by allowing
larger ψ. Thus, ψ allows a tradeoff between completeness and size/security.

The following propositions show that MSLM-OTS is applicable.
Proposition 5. MSLM-OTS supports validity.

Proof. Let τ be a masked signature for M with advice β = h(α). If τ is valid
under Mask.Vf, then h(τ) = h(k)M +h(l)+β. But if this equation holds, then it
implies that h(τ −α) = h(k)M + h(l). Observe that τ −α ∈ Rm

2ψmnD−D because
‖τ − α‖∞ ≤ ‖τ‖∞+‖α‖∞ ≤ 2ψmnD−D. Thus, we obtain a signature σ = τ−α
that passes LM -OTS.Vf for M as required. ��
Proposition 6. MSLM-OTS is hiding if Col(h, 2ψmnD −D) is hard.

Proof. The proof is done in two steps. First, we show that two alternative LM-
OTS signatures σ
= σ′ for a given message M , which always exist because
|Rm

D | � |R| makes h compressing, are indistinguishable when masked according
to the above rejection procedure. Second, we show that a successful attacker
that wins in the Recover experiment can be used to find a collision under h.

The first part is showing that the statistical distance SD(σ + α, σ′ + α),
conditioned on σ + α, σ′ + α ∈ T , is zero over the choice of α. Notice that
SD(σ+α, σ′+α) = 1/2

∑
t∈T |Prob[α = t− σ]−Prob[α = t− σ′] | = 1/2

∑
t∈T

|
∏mn

i=1 Prob[αi = ti − σi]−
∏mn

i=1 Prob[αi = ti − σ′
i] |. The index i specifies a co-

efficient of the vectors in Rm ∼= Zmn
q . Now, Prob[αi = ti − σi] = 1/|Rm

ψmnD|
because ti − σi ∈ S and α←$S. Thus, the distance is zero. The second part is a
reduction from the collision problem. It chooses its own signature key with pub-
lic key (h(k), h(l)) to simulate the oracle M, not the additional signature oracle
because LM-OTS is one-time. On input M∗, it masks a signature σ ∈ Rm

D . The
adversary’s output will be σ∗ ∈ Rm

2ψmnD−D with h(σ∗) = h(k)M∗ + h(l) = h(σ).
Since two alternative signatures are indistinguishable when masked, we have
σ∗
= σ with probability 1/2 and we obtain the desired collision. ��

Encryption. One could use ring-LWE [17] for encryption and furthermore use
SWIFFT [16] for collision resistant hashing. This would base security entirely
on worst-case ideal lattice problems.

Generic Constructions for Verifiably Encrypted Signatures 85

5 Conclusions

With our work, we have extended the model of Boneh et al. by allowing an
initial setup phase that is common in real-world scenarios. Moreover, we have
proposed two novel generic constructions for verifiably encrypted signatures.
Both rely on a certain class of signature schemes, a weaker-than-CPA secure
encryption scheme, and a collision-resistant hash function. Both work without
NIZKs or random oracles. To demonstrate their feasibility, we have instantiated
them with a range of primitives, including post-quantum ones.

Acknowledgments

We thank the reviewers of ACNS 2010 for valuable comments. In particular, we
are indebted to Willy Susilo.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC, pp. 99–108 (1996)

2. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE Journal on Selected Areas in Communications 18(4), 593–610 (2000)

3. Ateniese, G.: Verifiable encryption of digital signatures and applications. ACM
Trans. Inf. Syst. Secur. 7(1), 1–20 (2004)

4. Bao, F., Deng, R.H., Mao, W.: Efficient and practical fair exchange protocols with
off-line ttp. In: IEEE Symposium on Security and Privacy, pp. 77–85. IEEE Com-
puter Society, Los Alamitos (1998)

5. Bernstein, D.J., Buchmann, J.A., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2008)

6. Biham, E. (ed.): EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)
7. Boneh, D.: A brief look at pairings based cryptography. In: FOCS, pp. 19–26. IEEE

Computer Society, Los Alamitos (2007)
8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted

signatures from bilinear maps. In: Biham [6], pp. 416–432
9. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete

logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

11. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting.
In: Okamoto, Wang [19], pp. 118–133

12. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

13. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EU-
ROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

14. Lyubashevsky, V.: Towards Practical Lattice-Based Cryptography. PhD thesis
(2008)

86 M. Rückert, M. Schneider, and D. Schröder

15. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

16. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Swifft: A modest proposal
for fft hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer,
Heidelberg (2008)

17. Lyubashevsky, V., Regev, O., Peikert, C.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110. Springer,
Heidelberg (2010)

18. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

19. Okamoto, T., Wang, X. (eds.): PKC 2007. LNCS, vol. 4450. Springer, Heidelberg
(2007)

20. Rückert, M.: Verifiably encrypted signatures from RSA without NIZKs. In: Roy,
B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 363–377. Springer,
Heidelberg (2009)

21. Rückert, M., Schneider, M., Schröder, D.: Generic constructions for verifiably en-
crypted signatures without random oracles or NIZKs. Cryptology ePrint Archive,
Report 2010/200 (2010), http://eprint.iacr.org/

22. Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a con-
struction without random oracles. In: Shacham, H. (ed.) Pairing 2009. LNCS,
vol. 5671, pp. 17–34. Springer, Heidelberg (2009)

23. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

24. Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient verifiably encrypted signature and
partially blind signature from bilinear pairings. In: Johansson, T., Maitra, S. (eds.)
INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003)

http://eprint.iacr.org/

Redactable Signatures for Tree-Structured Data:
Definitions and Constructions

Christina Brzuska, Heike Busch, Oezguer Dagdelen, Marc Fischlin,
Martin Franz, Stefan Katzenbeisser, Mark Manulis, Cristina Onete,

Andreas Peter, Bertram Poettering, and Dominique Schröder

Technical University of Darmstadt
Center for Advanced Security Research Darmstadt (CASED)

Abstract. Kundu and Bertino (VLDB 2008) recently introduced the
idea of structural signatures for trees which support public redaction
of subtrees (by third-party distributors) while pertaining the integrity
of the remaining parts. An example is given by signed XML documents of
which parts should be sanitized before being published by a distributor
not holding the signing key. Kundu and Bertino also provide a construc-
tion, but fall short of providing formal security definitions and proofs.
Here we revisit their work and give rigorous security models for the
redactable signatures for tree-structured data, relate the notions, and
give a construction that can be proven secure under standard crypto-
graphic assumptions.

1 Introduction

The XML data format is increasingly used to store and organize data. This de-
velopment is most notable in the context of XML databases, which store the
entire content in XML files. In some applications, both the integrity and the au-
thenticity of the stored data must be ensured; this can in principle be achieved by
signing the tree with a conventional cryptographic signature. In some scenarios,
the content of the tree is privacy sensitive and an access control mechanism de-
termines which part of the tree may be accessed by a specific user. The database
management system must therefore be able to prune a tree upon access, so that
those parts of the tree that the user is not allowed to see are removed prior to
access. Still, it should be possible to prove the authenticity of the remaining data
with respect to the original signer, without having to re-sign the document.

This can in principle be resolved by applying sanitizable signatures [2], which
allow to overwrite certain parts of the data with a special null symbol while
retaining the integrity of the data’s signature. Such schemes also guarantee that
the signature does not allow the recovery of deleted parts. Unfortunately, pure
sanitization of data is insufficient to guarantee privacy: the recipient of the data
clearly sees (due to the presence of the null symbol) that some data has been
removed from the tree. This mere fact may already be an unwanted privacy leak.

Consider the following example taken from [6]. An XML file describes the
health records of a single person. The root node’s successors encode visits to

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 87–104, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

88 C. Brzuska et al.

a medical institution, whereas their successors encode results of medical tests
performed at those institutions. Since nodes in XML files are ordered (and the
tree structure may be publicly known), the recipient of the sanitized tree will
be able to associate positions of null symbols in his tree with medical checks
performed by the institution. For example, if a null symbol appears at a tree
position associated with an HIV test, the recipient knows that such a test was
performed, even without knowing its outcome. This information is already a
privacy intrusion. Even worse breaches occur when several null symbols appear
in positions associated with checkups for a certain disease: the recipient then
quite accurately reconstructs the diagnosis.

To avoid such problems, it is therefore necessary to have a sanitizable signature
that hides any performed santizations. Kundu and Bertino [6] proposed such a
signature scheme for trees. However, they did not formally define the desired
security properties; consequently, they were unable to formally prove the security
of their scheme. Indeed, we show in this paper that their construction does not
meet a strong security requirement.

Our Results. In this paper, we revisit the problem and give precise definitions for
the privacy requirements. That is, besides the unforgeability of structural tree
signatures, we also use game-based definitions to describe the notions of privacy
(deleted data cannot be recovered) and transparency (recipients cannot even
determine whether parts have been redacted). Our definitions are furthermore
strong in the sense that they, for instance, allow the adversary to adaptively ask
for multiple signatures for chosen tree structures.

Given our definitions of the desired security properties, we then formally relate
these notions, showing that transparency implies privacy, whereas the converse
is not true. We also show that the scheme of Kundu and Bertino [6] does not
achieve transparency, even if the adversary may only ask for a single signature.

We then provide a secure construction of a tree signature scheme for ordered
trees supporting redaction of subtrees. Our construction can be implemented
with any EU-CMA signature scheme and provides reasonable efficiency. While
for general trees with n nodes and large out-degree in nodes, it requires O(n2)
signature generations, for trees with bounded out-degree the number of signa-
tures is linear in n. Our construction also permits incremental signing of trees,
i.e., if a leaf is added to a signed tree, the signatures on the remaining tree can
be re-used and the new signature generated in O(n) time. We leave it as an open
problem to find schemes with better efficiency, still meeting our security notions.

Related Work. Deleting parts of a document while maintaining the integrity and
authenticity of the remaining data is an issue that has been approached under
different setup assumptions and goals. There have been various approaches to
designing redactable signatures [9,10,8], where only linearly ordered documents
and the deletion of substrings are considered. Still, they do not require hiding
the amount of data removed from the document, i.e., one is able to derive the
lengths of the removed strings, or where these were removed from. The former
aspect has been addressed in [4] and [3], where the privacy requirement also

Redactable Signatures for Tree-Structured Data 89

includes the length of the hidden portions. A solution furthermore hiding their
positions is sketched in [4] and this idea is also used as a building block in our
construction for tree.

Further works by Ateniese et al. [1] and the extension to sanitizable signatures
due to Brzuska et al. [2], where one can modify authenticated data in a controlled
way, are influential to our security models. However, sanitization in such contexts
requires the input of a secret key, whereas we allow for data to be manipulated by
public means. Moreover, sanitizable signatures usually do not hide the amount
of sanitized data.

Organization. The paper is organized as follows. After introducing the necessary
notation in Section 2 we formally define the functionality of structural signa-
tures for trees in Section 3. We discuss several formal security notions together
with their relations in Section 4, and propose a provably secure construction in
Section 5. Finally, we show in Appendix A that the scheme by Kundu and
Bertino [6] does not achieve our notion of security.

2 Preliminaries

Trees. A tree T is a connected graph G = (VT , ET) which consists of a nonempty
finite set VT = {v1, . . . , vr} of vertices, a set ET = {e1, . . . , es} of edges and does
not contain cycles. We simply write V (resp. E) instead of VT (resp. ET) if the
context is clear. Edges are denoted e = (vi, vj) ∈ V × V . A tree Tρ is rooted if
one vertex ρ ∈ V (the root) is distinguished from the others. The path-distance
from node v ∈ V to the root node ρ is called the depth of v. If e = (vi, vj) is
an edge, then the node that is closer to ρ is called the parent of the other node,
while the latter is called a child of the former. If two vertices have the same
parent, then these two vertices are called siblings. A leaf L is a vertex with no
children. The root is the only node without parents. If the children of each vertex
in Tρ are ordered in respect to some linear order relation, then the tree is called
ordered. Since this paper only concerns trees that are both rooted and ordered,
we consider in the following all trees as rooted and ordered. We further assume
that all edges e = (vi, vj) are directed away from the root, i.e. vi is parent of
vj . If two trees T and T ′ are isomorphic (where the isomorphism also maintains
the root and the node order), we write T � T ′ (or T = T ′). By T \L, we denote
the tree resulted after cutting leaf L from T ; thus the vertex and edge sets of
T \L are VT \{L} and {(vi, vj) ∈ ET | vj
= L}. Furthermore, we write T ′ ≺ T
for trees T and T ′ if either T ′ � T \L, or T ′ ≺ (T \L) for some leaf L of T .
Consequently, we denote by T ′ ! T the case where T ′ ≺ T or T ′ � T . Note that
writing T ′ ! T means saying that T ′ is a rooted ordered subtree of T with the
same root.

Signature Schemes. A signature scheme DS is a tuple (Kg, Sign, Vf) of efficient al-
gorithms, where the key generation algorithm Kg(1λ) returns a key pair (sk, pk);
the signing algorithm Sign(sk, m) takes as input a signing key sk and a mes-
sage m ∈ {0, 1}λ, and returns a signature σ; and the verification algorithm

90 C. Brzuska et al.

Vf(pk, m, σ) takes public key pk, message m and signature σ, and returns 0 or 1.
We assume that the signature scheme is complete, i.e. for any (sk, pk) ← Kg(1λ),
any message m ∈ {0, 1}λ, and any σ ← Sign(sk, m), we have: Vf(pk, m, σ) = 1.
Note that it is always possible to sign messages of arbitrary length by applying
a collision-resistant hash function h : {0, 1}∗ �→ {0, 1}λ to the message prior to
signing. The security of signature schemes (Kg, Sign, Vf) is defined following [5],
as usual. In this model, an adversary may adaptively invoke a signing oracle and
is successful if it manages to compute a signature on a new message.

Definition 1 (Unforgeability). A signature scheme DS is unforgeable under
adaptive chosen message attacks (EU-CMA) if for any efficient algorithm A the
probability that the experiment ForgeDS

A evaluates to 1 is negligible (as a function
of λ), where

Experiment ForgeDS
A (λ)

(sk, pk)← Kg(1λ)
(m∗, σ∗)← ASign(sk,·)(pk)
Return 1 iff Vf(pk, m∗, σ∗) = 1 and A has never queried Sign(sk, ·) on m∗.

The probability is taken over all coin tosses of Kg, Sign, and A.

3 Structural Signatures for Trees

Kundu and Bertino proposed in [6] special signatures for trees, where parts of the
tree can be cut off without invalidating the signature on the rest of the tree and
without having to re-sign using the private key. To make formal security claims,
we first formally define structural signature schemes for trees. These schemes
sign trees and also support one public operation on signed trees: any user may
remove parts of the tree and derive a signature for the pruned tree without access
to the private key. We define such schemes for the operation of cutting single
leaves only; iterating the cutting operation then allows for the removal entire
subtrees.

Definition 2 (Structural Signature Scheme for Trees). A structural sig-
nature scheme for trees strucSig consists of four efficient algorithms (sKg, sSign,
sVf, sCut) such that:

Key Generation. The key generation algorithm sKg(1λ) outputs a private key
sk and a corresponding public key pk:

(sk, pk) ← sKg(1λ).

Signing. Algorithm sSign(sk, T) takes as input a secret key sk and a tree T . It
outputs a structural signature σ (with T ′ = T):

(T ′, σ) ← sSign(sk, T).

Redactable Signatures for Tree-Structured Data 91

Verification. The verification algorithm sVf outputs a bit d ∈ {0, 1} verifying
that σ is a valid structural signature on a tree T with respect to a public
key pk:

d← sVf(pk, T, σ).
Cutting. The input of the algorithm sCut(pk, T, σ, L) is a public key pk, a tree

T , a signature σ, as well as a leaf L of T . It returns the tree T ′ = T \L and
a signature σ′:

(T ′, σ′)← sCut(pk, T, σ, L).

We say that a structural signature scheme is correct if:

Signing Correctness. For any λ ∈ N, any key pair (sk, pk) ← sKg(1λ), any
tree T , and any (T ′, σ) ← sSign(sk, T) we have sVf(pk, T, σ) = 1.

Cutting Correctness. For any λ ∈ N, any key pair (sk, pk) ← sKg(1λ),
any tree T , any σ with sVf(pk, T, σ) = 1, any leaf L of T , and any pair
(T ′, σ′) ← sCut(pk, T, σ, L), we require sVf(pk, T ′, σ′) = 1.

Again note that iterative leaf-cutting results in the removal of entire subtrees.
It is obvious that any subtree T ′ of T which can be generated by successive
executions of sCut satisfies T ′ ! T , and vice versa.

Note that our cutting algorithm relies only on the public key of the signer. In
the medical example above, this allows the database to generate authentic tree
parts without accessing the private key of the medical personnel.

4 Security of Structural Signature

We define in this section the security properties of structural signature schemes
via unforgeability, privacy, and transparency. Informally, these security require-
ments state:

Unforgeability. No one should be able to compute a valid signature on a
tree without having access to the secret key. That is, even if an outsider
can request signatures on different trees, it remains impossible to forge a
signature. This is analogous to the standard unforgeability requirement for
signature schemes.

Privacy. No one should be able to gain any knowledge about parts cut off the
tree from its structural signature without having access to these parts. Our
definition is similar to the standard indistinguishability notion for encryption
schemes.

Transparency. Nobody should be able to decide whether a signature of a tree
has been created from scratch, or through an sCut. This means that a party
who receives a signed tree cannot tell whether he received a freshly signed
tree or a subtree of a signed tree where some parts have already been cut off.

In the following we will define these notions formally. We note that our definitions
resemble the ones of Brzuska et al. [2] for sanitizable signatures which, in turn,
refine previous notions [1,10] for sanitizable and redactable signatures. Yet, our
notion here takes into account the (tree) structure of documents and allows
public sanitizations.

92 C. Brzuska et al.

4.1 Unforgeability

The unforgeability definition for structural signatures is defined analogously to
the standard security requirement for signature schemes. Informally, it states
that no one should be able to compute a valid signature σ on a tree T without
having access to the secret key sk. This condition must hold even if the adversary
can request signatures on q (possibly adaptively chosen) other trees. The forgery
must be non-trivial in the sense that it is not the result of a sequence of cutting
operations on a tree for which the adversary has previously requested a signature
(recall that the cut algorithm operates on public data only).

Definition 3 (Unforgeability). Astructural signature scheme strucSig = (sKg,
sSign, sVf, sCut) is unforgeable under adaptively chosen tree attacks if for any effi-
cient algorithm A the probability that the experiment UnforgeabilitystrucSig

A evaluates
to 1 is negligible (as a function of λ), where

Experiment UnforgeabilitystrucSig
A (λ)

(pk, sk)← sKg(1λ)
(T, σ) ← AsSign(sk,·)(pk)

for i = 1, 2, . . . , q, denote by Ti resp. σi the
queries to, resp. answers from, the oracle sSign

return 1 iff
sVf(pk, T, σ) = 1 and
for all i = 1, 2, . . . , q we have T
! Ti

The probability is taken over all coin tosses of sKg, sSign, and A.

4.2 Hiding Properties

Preventing leakage of information roughly means that it should be infeasible for
anybody to recover further information on the cut parts of the tree from the
structural signature. Here we propose two different notions, the first definition
being weaker than the second one. Intuitively, the first notion hides the contents
of the cut parts, but not necessarily the cut operations themselves, whereas our
stronger notion also hides whether cutting operations have been performed.

Privacy. A basic requirement in the medical data example is that a party can-
not gain any information on the parts of the tree that were cut off. This is
formalized by demanding that, given a subtree with a signature and two pos-
sible source trees, one cannot decide from which source tree the subtree stems
from. Intuitively, it follows that one cannot derive any information about the
cut parts.

The definition of privacy for structural signatures is based on the indistin-
guishability definition for encryption schemes: an adversary A can choose two
pairs (T0, L0), (T1, L1) of trees and leaves such that T0\L0 � T1\L1, i.e., re-
moval of the leaves results in isomorphic trees. Furthermore, A has access to a
left-or-right oracle, which, given those two trees, consistently either returns a

Redactable Signatures for Tree-Structured Data 93

cut signature for the left pair (b = 0) or for the right pair (b = 1). The scheme
offers privacy, if no adversary can decide whether the oracle returns the left or
the right cut tree.

Definition 4 (Privacy). A structural signature scheme strucSig = (sKg, sSign,
sVf, sCut) is private if for any efficient algorithm A the probability that the ex-
periment LeakPrivstrucSig

A evaluates to 1 is negligibly close to 1/2 (as a function
of λ), where

Experiment LeakPrivstrucSig
A (λ)

(sk, pk) ← sKg(1λ)
b ← {0, 1}
d ← AsSign(sk,·),SignCut(·,·,·,·,sk,b)(pk)
return 1 if d = b.

SignCut(Tj,0, Lj,0, Tj,1, Lj,1, sk, b)
if Tj,0\Lj,0
� Tj,1\Lj,1 abort
(Tj,b, σj,b)← sSign(sk, Tj,b)
return (T ′

b, σ
′
b)← sCut(pk, Tj,b, σj,b, Lj,b)

The probability is taken over all coin tosses of b, sKg, sSign, SignCut and A. (Note
that for trees the graph isomorphism problem can be decided in polynomial time.)

Note that, similar to the case of encryption, a hybrid argument shows that
allowing the adversary to perform multiple cutting operations per oracle call is
equivalent to the case in which only a single cutting operation is performed.

Transparency. The above notion of privacy does not prevent the following infor-
mation leakage in the medical example: a party may learn that data about the
patient’s psychological treatment has been deleted from his subtree, although
he cannot deduce the actual data. To capture a stronger notion of leakage pre-
vention, we present a definition which not only protects the structure of the
tree, but also the operations that may have been performed on it. Intuitively,
an adversary should be unable to decide whether he is given a signed tree whose
signature has been derived by an sCut operation, or a freshly signed tree. Let
(T ′, σT ′)← sCut(pk, T, σ, L) be a signed tree derived from the signed tree (T, σ)
by application of the leaf-cutting algorithm, and let (T ′, σS) ← sSign(sk, T ′) be
a signature of T ′, generated from scratch (without doing any leaf-cutting). The
task for the adversary is to distinguish both cases.

Definition 5 (Transparency). A structural signature scheme strucSig = (sKg,
sSign, sVf, sCut) is transparent if for any efficient algorithm A the probability
that the experiment LeakTransstrucSig

A evaluates to 1 is negligibly close to 1/2 (as
a function of λ), where

Experiment LeakTransstrucSig
A (λ)

(sk, pk)← sKg(1λ)
b ← {0, 1}
d ← AsSign(sk,·),SignOrCut(·,·,sk,b)(pk)

return 1 if d = b.

SignOrCut(T, L, sk, b)
if b = 0 :

(T, σ) ← sSign(sk, T)
(T ′, σ′)← sCut(pk, T, σ, L)

if b = 1 :
T ′ = T \L
(T ′, σ′) = sSign(sk, T ′)

return (T ′, σ′)

94 C. Brzuska et al.

The probability is taken over all coin tosses of b, sKg, sSign, SignOrCut, and A.

As for privacy, a hybrid argument again shows that this notion is robust in the
sense that it already implies security against adversaries that pass several cut
operations in a single oracle call instead of only one.

Note further that it is easy to see that the construction of Kundu and
Bertino [6] does not satisfy this strong definition of transparency; for an analy-
sis see Appendix A.

As mentioned, transparency provides strong hiding guarantees and is desir-
able in many cases. However, for various application examples privacy is in fact
sufficient, namely in all cases, where the receiver already expects partly sani-
tized documents. This is the case for e.g. all anonymization procedures where,
a party’s data (patient’s name) is removed. Therefore, privacy is a sufficient re-
quirement for some applications and by using a private, non-transparent scheme,
one thereby gains in efficiency. Thus, both security requirements deserve a formal
treatment.

4.3 Relationships of the Security Requirements

In this section we show that transparency is strictly stronger than privacy. We
first prove formally that transparency implies privacy. Then we separate the
notions by turning a structural signature scheme that offers privacy into one
which still has this property, but which violates transparency.

It is clear that unforgeability does not follow from privacy (and thus not from
transparency). Take, for example, the trivial scheme which outputs constants
as signatures, say, σ = 0; the cut algorithm for this scheme prunes the three
and also outputs σ = 0. This scheme is clearly transparent, but easily forgeable.
Vice versa, it holds that unforgeability implies neither privacy, nor transparency
(e.g., take an unforgeable scheme and modify the cut algorithm to append the
original tree to the output signature).

Proposition 1 (Transparency⇒Privacy). Any transparent structural signa-
ture scheme is also private.

Proof. Assume towards contradiction that there exists a transparent structural
signature scheme strucSig which is not private, i.e., there exists an efficient ad-
versary A that breaks the privacy of strucSig with non-negligible probability
1/2+1/poly(λ) for some polynomial poly(λ). We derive a contradiction showing
how to construct a successful algorithm B against transparency. The input of B
is a public key pk. It runs a black-box simulation of A on input pk and picks a
random bit b∗. Whenever A invokes its signing oracle strucSig on a tree T and
some leaf L, then B answers this query with its sSign oracle. For every query
(T0, L0), (T1, L1) that A sends to its SignCut oracle, B forwards (Tb∗ , Lb∗) to
its external SignOrCut oracle and sends the answer to A. Eventually, A stops
outputting a decision bit d. Algorithm B outputs a∗ = 0 iff d = b∗.

For the analysis first observe that B is efficient because A runs in polynomial
time and handling all queries can also be done efficiently. We now look at the
probability of B being successful:

Redactable Signatures for Tree-Structured Data 95

– Given that b = 0, then the SignOrCut oracle always signs and applies the
cutting algorithm afterwards. Thus, the simulation from A’s point of view
is identical to the attack against privacy (with random bit b∗ = 0). Hence,

Prob[a∗ = 0 | b = 0] = Prob[A = b∗ | b = 0] ≥ 1/2 + 1/poly(λ).

In other words, the probability of success is lower-bounded by A’s success
probability.

– Given on the other hand b = 1, then SignOrCut signs the modified tree
T ′ directly. Bit b∗ is information theoretically hidden from A. This follows
because the privacy experiment demands that the modified trees have to be
identical. Thus, the input of the signing algorithm is independent of b∗:

Prob[a∗ = 1 | b = 1] =
1
2
.

The overall success probability of B is now at least

Prob[B = b] = Prob[b = 0] · Prob[B = 0 | b = 0]
+ Prob[b = 1] · Prob[B = 1 | b = 1]

≥ 1
2
·
(

1
2

+
1

poly(λ)

)
+

1
2
· 1
2

=
1
2

+
1

2 · poly(λ)
,

which is non-negligibly larger than 1/2. ��

The following proposition separates both notions by showing that not all private
structural signature schemes are also transparent:

Proposition 2 (Privacy
⇒Transparency). Suppose that there exists a pri-
vate structural signature scheme. Then there exists a private scheme which is
not transparent.

Proof. To prove this separation, we modify a structural signature scheme that
provides privacy in such a way that it does leak the information what kind
of operation has been performed. To do so, we append a bit to the signature
indicating whether a sign (b = 0) or cut (b = 1) operation has been performed.

More precisely, let strucSig = (sKg, sSign, sVf, sCut) be a secure structural
signature scheme that preserves privacy. We then define the scheme strucSig′ =
(sKg′, sSign′, sVf′, sCut′) as follows:

sKg′(1λ)
return sKg(1λ)

sSign′(sk, T)
return sSign(sk, T)‖1

sVf ′(pk, T, σ)
parses σ = (σ′‖b)

(with b ∈ {0, 1})
return sVf(pk, T, σ′)

sCut′(pk, T, σ, L)
parses σ = (σ′‖b)

(with b ∈ {0, 1})
return sCut(pk, T, σ′, L)‖0

96 C. Brzuska et al.

It follows easily from the construction that strucSig′ is efficient and preserves
privacy. The scheme, however, is clearly not transparent, because the last bit of
a signature directly indicates which operation has been performed. The algorithm
A breaking transparency queries its SignOrCut oracle on an arbitrary tree and
some leaf of the tree. It then parses σ = σ′‖b and outputs d = b. Obviously, this
attacker breaks transparency with probability 1. ��

5 Constructing Secure Structural Signatures

In this section, we present our structural signature scheme for ordered trees
which is unforgeable, transparent and private.

5.1 Construction

The idea of our construction is as follows (see Figure 1): We use an ordinary EU-
CMA signature scheme to sign all edges in the tree. In order to avoid match-and-
mix attacks between several trees, we endow each vertex with a fresh random
number (A) and sign for each edge the contents (which could be, in the above-
mentioned XML scenario, the XML tags and attributes) of its adjacent vertices
(B) together with the associated random numbers.

A

v2‖r2 v3‖r3 v4‖r4

v1‖r1

v5‖r5
B

v2‖r2 v3‖r3 v4‖r4

v1‖r1

v5‖r5

e1
e2

e4

e3

C

v2‖r2 v3‖r3 v4‖r4

v1‖r1

v5‖r5
p2,4

p2,3 p3,4

D E F

v2‖r2 v3‖r3 v4‖r4

v1‖r1

v5‖r5

message sig
e1 = v1‖r1‖v2‖r2 σe1

e2 = v1‖r1‖v3‖r3 σe2

e3 = v4‖r4‖v5‖r5 σe3

e4 = v1‖r1‖v4‖r4 σe4

p2,3 = v2‖r2‖v3‖r3 σp2,3

p3,4 = v3‖r3‖v4‖r4 σp3,4

p2,4 = v2‖r2‖v4‖r4 σp2,4

ρ = v1‖r1 σρ

σ = {σe1 , σe2 , σe3 , σe4 , σp2,3
,

σp3,4
, σp2,4

, σρ, r1, r2, r3, r4, r5}

message sig
e1 = v1‖r1‖v2‖r2 σe1

e2 = v1‖r1‖v3‖r3 σe2

e3 = v4‖r4‖v5‖r5 σe3

e4 = v1‖r1‖v4‖r4 σe4

p2,3 = v2‖r2‖v3‖r3 σp2,3

p3,4 = v3‖r3‖v4‖r4 σp3,4

p2,4 = v2‖r2‖v4‖r4 σp2,4

ρ = v1‖r1 σρ

σ = {σe1 ,σe2 , σe3 , σe4 ,σp2,3
,

σp3,4
,σp2,4

,σρ, r1,r2, r3, r4, r5}

Fig. 1. This figure demonstrates a simple application of the algorithms: (A) random-
izing vertices, (B) signing edges, (C) signing order of siblings, (D) signing the root,
(E) assembling the final signature, and (F) computing the signature when cutting the
leftmost leaf. A more detailed description of the steps is given in Section 5.1.

Redactable Signatures for Tree-Structured Data 97

As we consider ordered trees, we also have to protect the order of siblings
of a node; we do this by signing elements of the linear order relation between
siblings of a node (C). Finally, the root node and its random value need to be
signed (D), as trees containing only a single node do not have any edges. The
security of the presented construction relies only on the existence of a standard
signature scheme, and no further cryptographic assumptions are required.

We start with defining some further notation. We use the notation v inter-
changeably to denote a node and its content. Let P denote the set of all parent
nodes having more than one child and let VP = (vP,1, . . . , vP,q) be the ordered
sequence of child nodes of a node P ∈ P . We write RP ⊆ VP ×VP for the linear
order relation on VP , i.e., (vP,i, vP,j) ∈ RP if and only if i < j. We often denote
the elements of RP as J := (vP,J1 , vP,J2). Similarly, we write rP,J1 and rP,J2

to denote the random values we will assign to vP,J1 and vP,J2 . Furthermore, we
write rρ for the randomness associated to the root node.

Let (Kg, Sign, Vf) be a signature scheme. We construct a structural signature
scheme strucSig = (sKg, sSign, sVf, sCut) as follows:

Key Generation. On input the security parameter 1λ, sKg runs the signature
scheme’s key generation algorithm and outputs (sk, pk)← Kg(1λ).

Signing. The signing algorithm works
as follows:

sSign(sk, T) :
// T is given as graph G = (V, E)
For each vertex v ∈ V :

rv ← {0, 1}λ

S := ""

// sign all edges
perform a post-order traversal of the tree:
for each edge e := (v, w) ∈ E do

me = v‖rv‖w‖rw

σe ← Sign(sk, 0‖me)
S := σe‖S

// sign the order of child nodes of a vertex
perform a post-order traversal of the tree:
for each vertex P ∈ P and all J ∈ RP do

mP,J := vP,J1‖rP,J1‖vP,J2‖rP,J2

σP,J ← Sign(sk, 1‖mP,J)
S := σP,J‖S

// sign the root node
σρ ← Sign(sk, 2‖ρ‖rρ)

return (T, σρ‖S‖rv1‖ . . . ‖rv|V |)

Verification. The verification algo-
rithm works as follows:

sVf(pk, T, σ) :
parse σ as σ = σρ‖S‖rv1‖ . . . ‖rv|V |

// check signature on the root node
if Vf(pk, 2‖ρ‖rρ, σρ) = 0 return 0
// check signatures over the order of child nodes
// VP of a parent node P
perform a post-order traversal of the tree:
for each vertex P ∈ P in reverse order do

for all J ∈ RP

parse S as σP,J‖S′

mP,J := vP,J1‖rP,J1‖vP,J2‖rP,J2

if Vf(pk, 1‖mP,J , σP,J) = 0 return 0
S = S′

// check signature for each edge e ∈ E
perform a post-order traversal of the tree:
for each edge e = (v, w) ∈ T in reverse order do

parse S as σe‖S′

me = v‖rv‖w‖rw

if Vf(pk, 0‖me, σe) = 0 return 0
S = S′

if S = "" return 1 else return 0

Cutting. The cutting algorithm takes a tree T and its valid structural signature
σT as well as a leaf node L ∈ V as input. sCut outputs T ′ := T \ L as well
as a redacted signature σ′

T , which is constructed from σT by removing the
signatures σe for e = (P, L) ∈ E, σP,J for J ∈ RP with J = (v, L) or
J = (L, v) as well as σρ, if L = ρ. In addition, rL is removed from the
signature.

It is obvious that the construction provides both signing and cutting correctness,
as defined in Section 3.

98 C. Brzuska et al.

Efficiency. The complexity of our structural signature scheme is linear in the
number of nodes and quadratic in the number of siblings per node. For binary
trees, the scheme remains linear in the number of nodes |V |, where exactly
3
2 (|V | − 1) + 1 signature operations are needed; for a tree with a bounded out-
degree it also remains linear. We note that the construction in [6] is linear in the
number of nodes as well, but is not provably transparent (see Appendix A).

We remark that the idea of signing all pairs of siblings to achieve transparency
has been already sketched in [4] for linear ordered documents. There, the authors
also present a scheme for linear ordered documents with a linear number of
signature generations, denoted RSS, which is based on redactable signatures
for (non-ordered) sets. If this underlying scheme for sets provides transparency,
then so does RSS, and we can then use RSS in our construction to achieve a
transparent scheme with improved efficiency.1

5.2 Proof of Security

We show in this section that our construction is unforgeable, transparent, and
private.

Theorem 1. The structural signature scheme strucSig = (sKg, sSign, sVf, sCut)
defined above is unforgeable, transparent, and private.

We prove this theorem via the following propositions.

Proposition 3. If (Kg, Sign, Vf) is an unforgeable signature scheme, then the
above construction is an unforgeable structural signature scheme.

Proof. Let A be a successful adversary against unforgeability of structural sig-
natures. Then, we build a successful adversary B breaking EU-CMA of the un-
derlying signature scheme. The simulation works as follows. When A queries a
tree T to its oracle sSign(sk, ·), then B draws distinct, but random numbers rv

for each vertex v ∈ V , sends the queries 0‖me, 1‖mP,J , 2‖ρ‖rρ for e ∈ E, P ∈ P
and J ∈ RP to its signing oracle Sign(sk, ·), retrieves all signatures, combines
them as in the signing algorithm, and returns the tree signature to B. In the end,
A returns (T, σ). We show that if this is a forgery, then a forgery for the under-
lying signature scheme has occurred. Furthermore, this forgery can be computed
efficiently by an extraction algorithm. B returns the output of the subsequently
defined algorithm Extract to the game. The remaining part of the proof will show
that if A is successful, then so is B.

The crucial idea is to prove that if (T, σ) is a successful forgery, then T contains
one of the following elements: a root ρ that was not a root of any previously asked
Ti; a signature over an edge me not contained in any query tree Ti; or a signature
over a siblings’ order relation mP,L not contained in any Ti. In the following we
provide an extraction algorithm, which extracts such a forgery from the tree
signature. We will show afterwards that if (T, σ) is a valid forgery of a tree
1 The authors in [4] also claim a version of a more efficient scheme, called SRSS, to

be transparent, but we were unable to verify this claim.

Redactable Signatures for Tree-Structured Data 99

signature, then one of the three cases must occur and the algorithm successfully
outputs a forgery of the underlying signature scheme.

In the algorithm we use the following notation: For d ∈ N+, we denote by Td

the tree obtained from T by removing all nodes of depth larger than d; let Vd,T

be the set of vertices of depth d in tree T and Ed,T be the set of edges, such
that one node is at depth d and the other, at depth d− 1. For a node v, denote
the edge to its parent node by ev. Denote by VT

P the ordered sequence of child
nodes of a single parent node P in tree T , and write RT

P for its linear order.

Extraction. The extraction algorithm Extract on input (pk, (T, σ), (T1, σ1), ...,
(Tn, σn)) works as follows:

if 0← sVf(pk, (T, σ)), return failure
else if ∀i ρT
= ρTi , return (2‖ρ‖rρ, σρ)
else if ρT = ρTi , then I := i

for d from 1 to depth of TI + 1 do
if Ed,T
⊆ Ed,TI

find e ∈ Ed,T \ Ed,TI and return (0‖me, σe)
else if Ed,T ⊆ Ed,TI

if ∃P ∈ Vd−1,T such that RT
P
⊆ R

TI

P

find P ∈ Vd−1,T and J ∈ RT
P \ R

TI

P

return (1‖mP,J , σP,J)
return failure

Lemma 1. On inputs pk, (T1, σ1), ..., (Tn, σn) and a valid forgery (T, σ) of a tree
signature,Extract returns avalid forgeryagainstEU-CMA security of (Kg, Sign, Vf).

A proof of the lemma can be found in Appendix B. This proves the proposition.
��

Proposition 4. The structural signature scheme as defined above is transparent.

Proof. Transparency follows from a simple investigation of distributions: As on
identical inputs, the distribution of the output of SignOrCut with b = 0 is iden-
tical to the distribution of the outputs of SignOrCut with b = 1, transparency
follows. ��

Note that transparency even holds for unbounded adversaries such that the
redacted data remains confidential information-theoretically.

The following corollary follows directly from Propositions 1 and 4.

Corollary 1. The structural signature scheme described above is private.

5.3 Dynamic Update of Signed Trees

Our structural signature scheme for trees allows for the easy addition of new
leaf nodes (and consequently new subtrees) by the signer. This update can be
performed efficiently in the sense that the signer does not need to refresh any of

100 C. Brzuska et al.

the existing signatures (on edges and sibling order) that constitute the structural
signature. The signer only has to sign new edges and new sibling order relation-
ships resulting from the inclusion of some leaf node (or subtree) into the original
tree, and update the structural signature with these signatures. In the following
we provide a pseudo-code of the signature update algorithm that adds a new leaf
L into some existing tree-signature pair (T, σT) and updates the signature. Note
that this algorithm can be used to iteratively update T and σT with subtrees
containing more than one leaf.

sSignUpd(sk, T, σT , P, vP , L) :
// T is given as graph G = (V, E), σT is the signature of T , P is a node
// in T , vP is either a child node of P or ⊥, L is a new leaf node that
// should be inserted in T as a sibling node following vP or as the new
// first child node of P if vP = ⊥
parse σT as σρ‖Ss‖Se‖rv1‖ . . . ‖rv|V |

// here Ss contains concatenated signatures on the order of siblings in T
// and Se contains concatenated signatures of edges in T
// for every vertex vi, rvi denotes the randomness for that vertex
update T := (V ∪ {L}, E ∪ {(P, L)}) with L
rL ← {0, 1}λ

// sign the order of all siblings of new leaf node L and add them to Ss

update RP to R∗
P using new relationships {(L, vP,i)}i and {(L, vP,j)}j

for all J ∈ R∗
P \ RP do

mP,J := vP,J1‖rP,J1‖vP,J2‖rP,J2

σP,J ← Sign(sk, 1‖mP,J)
insert σP,J into Ss preserving the post-order of the latter

// sign the edge (P, L)
me = P‖rP ‖L‖rL

σe ← Sign(sk, 0‖me)
insert σe into Se preserving the post-order of the latter
insert rL into sequence of random numbers preserving their post-order
denote the re-ordered random values by r′vi

for i ∈ {1, . . . |V |+ 1}
return (T, σρ‖Ss‖Se‖r′v1

‖ . . . ‖r′v|V |+1
)

We note that the above algorithm preserves the hiding properties (privacy
and transparency) of the input tree-signature pairs (T, σT). Indeed, each edge
and each linear order relation have their own signatures. Similarly to the sCut al-
gorithm, which removes irrelevant signatures from the original set, the sSignUpd
updates the set with new signatures. An adversary is thus unable to distinguish
whether some σT is output by a single execution of sSign or of several consecutive
executions of sSignUpd.

Such dynamic updates of signed trees are a very valuable feature of our scheme
since in the envisioned applications, such as XML records with medical data, the
documents are frequently updated with new diagnoses or treatment procedures.

Redactable Signatures for Tree-Structured Data 101

Acknowledgments

We thank Moti Yung and the anonymous reviewers for valuable comments. Marc
Fischlin and Dominique Schröder are supported by the Emmy Noether Program
Fi 940/2-1 of the German Research Foundation (DFG). This work was supported
by CASED (http://www.cased.de).

References

1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

2. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of San-itizable Signatures Revisited. In: Jarecki,
S., Tsudik, G. (eds.) Public Key Cryptography – PKC 2009. LNCS, vol. 5443, pp.
317–336. Springer, Heidelberg (2009)

3. Bertino, E., Kundu, A.: A New Model for Secure Dissemination of XML Content.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews 38, 292–301 (2008)

4. Chang, E.-C., Lim, C.L., Xu, J.: Short Redactable Signatures Using Random Trees.
Cryptology ePrint Archive, Report 2009/025 (2009), http://eprint.iacr.org/;
A preliminary version has appeared at Fischlin, M. (ed.): CT-RSA 2009. LNCS,
vol. 5473. Springer, Heidelberg (2009)

5. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988)

6. Kundu, A., Bertino, E.: Structural signatures for tree data structures. Proceedings
of the VLDB Endowment 1(1), 138–150 (2008)

7. Kundu, A., Bertino, E.: Leakage-Free Integrity Assurance for Tree Data Structures.
Technical Report 2009-1, CERIAS (2009)

8. Miyazaki, K., Hanaoka, G., Imai, H.: Invisibly Sanitizable Digital Signature
Scheme. IEICE Transactions 91-A(1), 392–402 (2008)

9. Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura,
H.: Digital documents sanitizing problem. Technical Report ISEC2003-20. IEICE
(2003)

10. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

A Randomized Traversal Numbers

Kundu and Bertino [6] use traversal numbers to assign unique numbers to nodes;
subsequently, all edges (including the content of adjacent nodes and their unique
numbers) are signed. Consider for example a binary tree with a root v0 and left
child vl and right child vr; we will denote the unique numbers assigned to the
vertices as r0, rl, rr . Traversing the tree in pre-order we obtain the sequence
of associated numbers (r0, rl, rr) = (1, 2, 3). Similarly, if we perform a post-
order traversal, we obtain (r0, rl, rr) = (3, 1, 2). Given both pre- and post-order
traversal numbers one can reconstruct the tree.

http://eprint.iacr.org/

102 C. Brzuska et al.

As noted in [6], since the post-order traversal number 2 of the right child
vr in the example above reveals that this node had a sibling, even after vl has
been pruned, such numbers inhibit transparency. Therefore, [6] introduce random
traversal numbers which are basically order-preserving random numbers. These
numbers remain unchanged during the document’s life time. In the full version [7]
of the paper the authors outline three implementations of such random traversal
numbers:

– Sorted random numbers: Generate sufficiently random numbers, sort them,
and assign them to nodes.

– Order-preserving encryption: Assign ordered random numbers to the nodes
and apply order-preserving encryption.2

– Addition of random numbers: iteratively assign numbers to nodes by taking
the previous traversal number and adding a random offset.

We discuss next that none of the methods above yields a transparent solution.3

Consider again our simple example of a tree with root, left child and right child.
Suppose for the moment that the scheme uses post-order traversal. From an
abstract point of view, this traversals assign random numbers (rl, rr, r0) ← R
to the nodes vl, vr, v0 (visited in this order) according to some distribution R.
This distribution is balanced in the first argument for the examples above, i.e.,
letting μ = E[rl] be the expected random number assigned to vl (and assuming
for sufficiently large random numbers simply that Prob[rl = μ] = 0), we have
Prob[rl ≤ μ] = Prob[rl ≥ μ] = 1

2 . Furthermore, we have Prob[rr ≥ μ] ≥ 3
4 in

the examples above, since rr is the largest among two random traversal numbers
and is thus only smaller than μ if both rl and rr are below μ.

We can now break transparency for the simple three-node tree as follows.
In the experiment, we either get a structural signature for the tree containing
only the nodes v0 and vr or a signature for the whole tree, but where vl has
been cut. To solve the challenge, we check the randomized post-order traversal
number of the only child vr and output 0 if rr ≥ μ, and 1 otherwise. We remark
that, following Kerckhoff’s principle, the expectation μ should be assumed to be
known by the adversary (since μ can be derived from the signing algorithm).

As for the analysis note that, if the signer creates a signature by cutting a
previously generated signature for the full tree, then rr is larger than μ with
probability 3

4 . If, on the other hand, the pruned tree is signed from scratch,
then rr is distributed as rv in the original tree and thus Prob[rr ≥ μ] = 1

2 . It
follows that we predict the secret choice b with probability 5

8 , which contradicts
Definition 5. Note that the attack even works on a very simple tree and requires
only one tree signature.

Note further that [6] also discusses other uniquely determining traversal com-
binations, like in-order traversal for binary trees together with post-order traver-
sal; the aforementioned attack applies in a similar fashion.
2 The description of this step is rather sketchy but all possible interpretations seem

to suffer from the same problems discussed below.
3 Note that transparency, although not defined rigorously, is mentioned as a desired

security property in [6].

Redactable Signatures for Tree-Structured Data 103

B Proof of Lemma 1

Essentially, the proof is an induction over the depth of the tree, i.e. we show at
each level d of the tree, that either we already found a forgery against EU-CMA
security of (Kg, Sign, Vf), or there are still nodes at level d + 1 in T , i.e. there
is at least one node at depth d having at least one child node. The finiteness of
the tree will assure that at some point, we find a forgery.

Within the proof, we use the following statement in an essential way: Let T ′ be
a connected subgraph of T containing the distinguished vertex ρ and respecting
the sibling order. By a simple induction proof over the number of nodes |V \V ′|,
one can show that starting with T , via successive leaf cutting operations, one
can obtain T ′. This entails that any such connected subgraph of any of the Ti

would not be a valid forgery, as T ! Ti. Therefore, in the following, we may use
! and “subtree of” interchangeably.

We assume that (T, σ) is a valid forgery with respect to queries (Ti, ..., Tn) to
sSign, and we show that Extract extracts a valid forgery against the underlying
signature scheme. The proof follows the structure of the Extract algorithm:

First of all, (T, σ) is a valid forgery which entails that it is validly signed.
Therefore, 0 ← sVf(pk, (T, σ)) is impossible, and Extract does not return failure
in the first execution step.

If for all i = 1, ..., n, ρT
= ρTi , then (2‖ρ‖rρ, σρ) is a valid forgery against the
underlying signature scheme, because Sign(sk, ·) queries beginning with 2 are
only asked for root nodes, as queries for edges and siblings order relation do not
start with 2.

If for some i = 1, ..., n, ρT = ρTi and rρT = rρTi
, we fix I := i as to adapt the

Extract algorithm notation. Before getting to the induction proof, we introduce
some helpful notation first: For d ∈ N, let T d denote T cut at depth d, i.e. all
nodes having distance strictly greater than d from the root node ρT are cut. We
show by induction on the depth of the tree T that the following statement is
true up to negligible probability: At each level d ≥ 0, either

(i) we already found a forgery against EU-CMA security of (Kg, Sign, Vf), or
(ii) T d is a subtree of TI .

Note that the latter always entails that the depth of T is strictly greater than d.
Base case. As ρT = ρTI , T 0 is a subtree of TI . Therefore, the statement is
clearly true for d = 0.
Induction hypothesis. We assume that at level d−1, 1 ≤ d, we already found
a forgery against EU-CMA security of (Kg, Sign, Vf) or T d−1 is a subtree of TI .
Induction step. If we already found a forgery at stage d − 1 or lower, the
statement is trivially true for d. It is thus sufficient to treat the case, where
there is no forgery until level d − 1 and T d−1 is a subtree of TI . As this entails
that there is at least one node in T at level d− 1 having at least one child, there
is at least one node in T at level d. We now consider all of these nodes:

1. New edge. Assume there is an edge e ∈ Ed,T \ Ed,TI , which we denote by
(v, w) = e. We claim that (0‖v‖rv‖w‖rw, σ) was no output of Sign(sk, ·): First

104 C. Brzuska et al.

of all, only queries for edges need to be considered, as only those start by 0.
Furthermore, only queries for edges in TI are relevant, as by construction,
rw and rv are unique and do not appear in other trees except for negligible
probability. Therefore 0‖v‖rv‖w‖rw can only be an edge query for an edge
in TI . Furthermore, rv and rw are unique within TI . If 0‖v‖rv‖w‖rw had
been queried to Sign(sk, ·), this would mean that e is contained in ETI and
because of the randomness’ uniqueness within TI , it follows e ∈ Ed,TI , a
contradiction. Thus, (0‖v‖rv‖w‖rw, σ) is a valid forgery.

2. Wrong order of siblings. Now, assume that there is no forgery until level
d − 1 and T d−1 is a subtree of TI and furthermore, Ed,T ⊆ Ed,TI . For the
sake of contradiction, assume that there is a P ∈ Vd−1,T and a J ∈ RT

P \R
TI

P .
We claim that 1‖vP,J1‖rP,J1‖vP,J2‖rP,J2 had not been asked to Sign(sk, ·):
first of all, as in the previous case, only signatures related to TI need to be
considered up to negligible probability. And within TI , only order relation
signatures may have caused such a query to Sign(sk, ·). Furthermore, by
uniqueness of the random values rP,J1 and rP,J2 within TI , such strings
may only be signed as order relation strings within P ∈ Vd−1,T , whereas
J ∈ RT

P \ R
TI

P was assumed. Thus, (1‖vP,J1‖rP,J1‖vP,J2‖rP,J2 , σP,J) is a
valid forgery against the underlying signature scheme.

3. If T d−1 is a subtree of TI and if at stage d, we neither found a forgery in
the two previous cases, then T d is a subtree of TI , as all nodes added while
getting from T d−1 to T d do exist in the same position and same order in TI .
For a more formal argument, T d−1 being a subtree of TI entails that there is
an embedding from T d−1 into TI , and the subset relations Ed,T ⊆ Ed,TI and
RT

P ⊆ R
TI

P define a unique way to extend this embedding to an embedding
from T d into TI .

Finally, we argue that at least at one stage d, we find a valid forgery against the
underlying signature scheme, if (T, σ) is a valid forgery. T d cannot be a subtree
of TI at all levels d, as the trees are finite and thus, at some point, T = Td. Thus,
T d ! TI would contradict the assumption that T is a valid forgery. Thus, we are
sure to find a forgery at some level, which concludes the proof of the lemma.

Impossible Differential Cryptanalysis on Feistel
Ciphers with SP and SPS Round Functions

Yuechuan Wei1, Ping Li2, Bing Sun2, and Chao Li1,2,3

1 School of Computer Science, National University of Defense Technology,
Changsha, China, 410073

2 Science College of National University of Defense Technology,
Changsha, China, 410073

3 State Key Laboratory of Information Security, Chinese Academy of Sciences,
Beijing, China, 100049

wych004@163.com, leave17@gmail.com, happy−come@163.com,
lichao−nudt@sina.com

Abstract. Impossible differential cryptanalysis is well known to be ef-
fective in analyzing the security of block ciphers. Known result shows
that there always exists 5-round impossible differentials of a Feistel cipher
with bijective round function. However, if more details of the round func-
tion are known, the result could be improved. This paper mainly studies
the impossible differentials of Feistel ciphers with both SP and SPS
round functions where the linear transformation P is defined over Fn×n

2 .
For Feistel ciphers with SP round functions, any column of P ⊕ P−1

whose Hamming weight is greater than 1 corresponds to some 6-round
impossible differentials. The existence of some 7-round impossible dif-
ferentials can be determined by counting the times that 1 appears at
some special positions of P and P−1. Some 8-round impossible differ-
entials can be found by computing the rank of some sub-matrix of P .
Impossible differentials of Camellia found by these techniques are well
consistent with previously known results. For Feistel ciphers with SPS
round functions, by determining the rank of some sub-matrix of P , 6-
round impossible differentials can be found, which improves the results
on E2 by one round. These results tell that when designing a Feistel ci-
pher with SP or SPS round function where the diffusion layer is selected
from Fn×n

2 , the linear transformation should be chosen carefully to make
the cipher secure against impossible differential cryptanalysis.

Keywords: Block cipher, Feistel cipher, Impossible differential.

1 Introduction

Impossible differential cryptanalysis, proposed by Biham and Knudsen, was first
applied to the cipher DEAL [7] and later to Skipjack [8]. The main idea is to
specify a differential with probability zero over some rounds of the cipher. Then
one can derive the right keys by discarding the wrong keys which lead to the
impossible differential. Impossible differential cryptanalysis has been applied to
AES, Camellia, MISTY1 and so on with very good results [10–16].

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 105–122, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

106 Y. Wei et al.

The key step of impossible differential cryptanalysis is to retrieve the longest
impossible differential. The main technique is miss-in-the-middle [8, 9], namely
to find two differential characteristics with probability 1 from encryption and
decryption directions, and connect them together. When there are some incon-
sistencies, their combination is the impossible differential that we are looking
for. Once the impossible differential is found, it can be used to distinguish the
cipher from a random permutation. In [17], Kim et al. introduced the U-method
to find impossible differentials of various block ciphers. However, U-method is
so general that some information is often lost during calculating the impossible
differentials. Some longer impossible differentials cannot be found by using the
U-method.

The class of block ciphers considered in this paper is Feistel cipher with SP
and SPS round functions whose diffusion layers can be represented by matrices
over F2. These structures are worth being looked at since they are so popular
that they have been employed by many famous ciphers, including Camellia, E2
and so on. For Feistel structure, 5-round impossible differential always exists if
the round function is bijective [7]. However, if more details of the round function
are taken into consideration, we can prove the existence of impossible differ-
entials over more than 5 rounds. By carefully analyzing the properties of the
linear transformations, we found that the existence of impossible differentials in
a cipher is strongly related to the properties of the diffusion layer P . We should
emphasize that the idea of exploiting incomplete diffusion of the round function
is not new. Impossible differential for 7 rounds of DES is shown in [9], 8-round
impossible differential for Camellia has been used in the previous attacks [11].

The contribution of this paper is an improvement of the original judgement
about the impossible differential for Feistel cipher. Instead of searching by ex-
perience and intuition, some sufficient conditions are given to characterize the
existence of 6/7/8-round impossible differentials of Feistel cipher with SP round
functions and 6-round impossible differential of Feistel cipher with SPS round
functions. One can discover these impossible differentials just by observing the
linear transformation. All of these kinds of impossible differentials cannot be
found by U-method. As examples, 6-round impossible differential of E2 is found
while previously known round of impossible differentials of E2 is 5 [3]. 8-round
impossible differentials of Camellia found by this technique are well consistent
with [11].

The paper is organized as follows: Feistel structure and χ-function are de-
scribed in Section 2. In Section 3 and Section 4, we discuss the existence of
impossible differentials of Feistel ciphers with SP and SPS round functions,
respectively. Section 5 concludes this paper.

2 Preliminaries

In this section, we describe Feistel structure firstly, and then give the definition
and properties of χ-function.

Impossible Differential Cryptanalysis on Feistel Ciphers 107

2.1 Feistel Structure

A Feistel network consists of r rounds, each of which is defined as follows. Denote
by (L, R) the 2n-bit input, set α0 = L and β0 = R, let (αi−1, βi−1) be the input
to the i-th round, (αi, βi) and ki be the output and the round key of the i-th
round, respectively. Then (αi, βi) = Round(αi−1, βi−1) is defined as:{

αi = βi−1,
βi = f(βi−1, ki)⊕ αi−1,

where f is the round function and in this paper, we always assume that f(βi−1, ki)
= f(βi−1 ⊕ ki). After iterating Round r times, the ciphertext (CL, CR) is defined
as (βr, αr). According to the definition of round function f , Feistel cipher can
be fractionized to many branch structures. Major round functions under study
are based on SP structure and SPS structure (See Fig. 1).

The former structure has one nonlinear transformation layer, and one linear
transformation layer. Examples of these ciphers are DES [4], Camellia [5]. The
later structure consist of 1st nonlinear transformation layer, linear transforma-
tion layer, and 2nd nonlinear transformation layer. Example of this kind of cipher
is E2 [1].

This paper focuses on the above two kinds of Feistel ciphers with following
nonlinear transformation S and linear transformation P . S : Fn

2t → Fn
2t is defined

as S(x1, x2, . . . , xn) = (S1(x1), S2(x2), . . . , Sn(xn)), where Si(1 ≤ i ≤ n) are
nonlinear bijective mappings on F2t . P is an invertible linear transformation
defined over Fn×n

2 .
To be convenient, we simply denote P = (pi,j)1≤i,j≤n = (p1, . . . , pn), P−1 =

(qi,j)1≤i,j≤n = (q1, . . . , qn), where pi and qi are the i-th columns of P and P−1,
respectively. E denotes a Feistel cipher with SP round function. D denotes a Feis-
tel cipher with SPS round function. Brief descriptions of Camellia, SNAKE(2)
and E2 are presented in Appendix A.

S

1i 1i

i
k

i i

P S

1i 1i
1

i
k

i i

PS

2

i
k

Fig. 1. Feistel Ciphers with SP and SPS Round Function

Proposition 1. If the round function of a Feistel cipher is bijective, then (x, 0)
� (0, x) is a 5-round impossible differential of the cipher, where x �= 0.

108 Y. Wei et al.

The above proposition is pointed out by Knudsen. As described in Fig. 2, the
output difference of the 3rd round function should be x⊕x = 0, while the input
difference is non-zero, which indicates a contradiction since f is bijective.

x

yx

x

f

f

f

f

f

0

5
0

5
x

x

0
x

0
0

0
in

y0
out

x x

Fig. 2. 5-round Impossible Differential of Feistel Structure

2.2 χ-Function

In this section, we first give the definition of χ-function that maps any element
of Fn

2t to Fn
2 , and then discuss basic properties of χ-function.

Definition 1. (χ-Function) Let θ : F2t → F2 be defined as

θ(x) =

{
0 if x = 0,
1 if x �= 0.

Then χ : Fn
2t → Fn

2 is defined as

χ(x1, x2, . . . , xn) = (θ(x1), θ(x2), . . . , θ(xn)),

while χs : Fn
2t → F2 is defined as

χs(x1, x2, . . . , xn) = θ(xs).

Impossible Differential Cryptanalysis on Feistel Ciphers 109

The χ-function is well used in truncated differential cryptanalysis, when we
only consider whether there is a difference or not while the concrete value of
the difference is out of consideration. If χs(ΔX) = 1 (ΔX ∈ Fn

2t), it means that
there is some non-zero difference at the s position.

For convenience, let Ei ∈ Fn
2 be a vector whose i-th component is 1 while

other components are 0, and ei is any one of the vectors such that χ(ei) = Ei.
For nonlinear transform layer S, we denote S(X)⊕ S(X ⊕ΔX) by S(ΔX).

Property 1. (1) For any difference ΔX ∈ Fn
2t ,

χ(S(ΔX)) = χ(ΔX);

(2) Let P = (p1, . . . , pn) where pi is the i-th column of P , if ΔX = ei, then

χ(P ◦ S(ΔX)) = χ(P (ΔX)) = pi;

(3) Let X = (x1, . . . , xn) and Y = (y1, . . . , yn), respectively, if xs = 0, then

χs(X ⊕ Y) = χs(Y).

Definition 2. (Hamming Weight) Let Fq be a finite field with q elements,
X = (x1, . . . , xn) ∈ Fn

q . Then the Hamming Weight of X is defined as the number
of non-zero components of X:

w(X) = |{i|xi �= 0, 1 ≤ i ≤ n}|.

3 Analysis of Round-Reduced Feistel Cipher with SP
Structure

By carefully analyzing the properties of the linear transformations and taking
the χ-function into consideration, some sufficient conditions will be given which
characterize the existence of 6/7/8-round impossible differentials of Feistel ci-
pher with SP round functions (Notice that Feistel cipher with this structure is
denoted by E).

To apply the miss-in-the-middle technique effectively, we concentrate on dif-
ferentials with the form (ei, 0) → (0, ej), i.e. both the Hamming weight of input
difference and out difference are 1.

3.1 Analysis of 6-Round Feistel Cipher with SP Structure

Let (αr, βr) be the output of the r-th round, and Yr and Zr be the outputs
of S-Box layer and P layer of the r-th round, respectively. In the following,
impossibility of some differential (ei, 0) → (0, ej) will be proved given that some
special properties of the linear transformation P are satisfied.

Proposition 2. For linear transformation P , let P ⊕ P−1 = (γ1, γ2, . . . , γn),
where γi is the i-th column of P ⊕P−1. If there exists an i, 1 ≤ i ≤ n, such that
w(γi) ≥ 2, then for any j, 1 ≤ j ≤ n, (ei, 0) → (0, ej) is a 6-round impossible
differential of E.

110 Y. Wei et al.

SP

SP

SP

SP

SP

SP

0 i
e

2
()

i
PS e

6 j
e

5 j
e

3
()

i
Y SPS e

3
()

i
Z PSPS e

1 i
e

2 i
e

4 j
e

4
()

j
PS e

3
()

j
PS e

3

0
0

1
0

5
0

6
0

Fig. 3. 6-round Impossible Differential of Feistel-SP

Proof. Fig. 3 describes the 6-round impossible differential. From the encryption
direction, if the input difference is

Δ(α0, β0) = (ei, 0),

the differences of the output of the 1st and 2nd rounds can be calculated as
follows:

Δ(α1, β1) = (0, ei),
Δ(α2, β2) = (ei, P ◦ S(ei)).

Impossible Differential Cryptanalysis on Feistel Ciphers 111

Accordingly, in the third round,

ΔY3 = S ◦ P ◦ S(ei),
ΔZ3 = P ◦ S ◦ P ◦ S(ei).

From the decryption direction, if the output difference (the 6-th round) is

Δ(α6, β6) = (0, ej),

the differences of the output of the 5-th and 4-th rounds are

Δ(α5, β5) = (ej , 0),
Δ(α4, β4) = (P ◦ S(ej), ej).

According to the Feistel structure,

Δα4 = Δβ3 = ΔZ3 ⊕Δα2 = ΔZ3 ⊕Δβ1,

the following equation must hold:

P ◦ S(ej) = Δα4 = ΔZ3 ⊕Δβ1 = P ◦ S ◦ P ◦ S(ei)⊕ ei,

which implies that

S(ej) = S ◦ P ◦ S(ei)⊕ P−1(ei),

and

χ(S(ej)) = χ
(
S ◦ P ◦ S(ei)⊕ P−1(ei)

)
.

From Property 1,

χ(S(ej)) = χ(ej) = Ej .

If w(pi ⊕ qi) ≥ 2, which implies that pi and qi differ at least 2 positions, say
pt1,i = 0, qt1,i = 1 and pt2,i = 1, qt2,i = 0. Thus

χt1(S ◦ P ◦ S(ei)⊕ P−1(ei)) = χt1(P
−1(ei)) = 1,

χt2(S ◦ P ◦ S(ei)⊕ P−1(ei)) = χt2(S ◦ P ◦ S(ei)) = 1,

which implies that w(χ(S ◦ P ◦ S(ei) ⊕ P−1(ei))) ≥ 2, and this is contradicted
with χ(S(ej)) = Ej whose Hamming weight is 1. Thus (ei, 0) → (0, ej) is a
6-round impossible differential. 	

Example 1. (6-Round Impossible Differential of Camellia) By careful computa-
tion, we have:

P ⊕ P−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (γ1, γ2, . . . , γ8).

112 Y. Wei et al.

Since for any 1 ≤ i ≤ 8, w(γi) = 2, according to Proposition 2, for any 1 ≤ i, j ≤
8, (ei, 0) → (0, ej) is a 6-round differential of Camellia.

3.2 Analysis of 7-Round Feistel Cipher with SP Structure

The 7-round Feistel ciphers with SP round functions can be analyzed similarly.

Proposition 3. For linear transformation P , if there exists a triplet (i, j, k)
such that the multiset {pk,i, pk,j , qk,i, qk,j} is equal to {1, 0, 0, 0}, then (ei, 0) →
(0, ej) is a 7-round impossible differential of E.

Proof. Let Δ(α0, β0) = (ei, 0) and Δ(α7, β7) = (0, ej), respectively. Then by
analyzing the propagation of Δ(α0, β0) and Δ(α7, β7) from the encryption and
decryption directions, respectively, we have (see Fig. 4)

Δ(α1, β1) = (0, ei),
Δ(α2, β2) = (ei, P ◦ S(ei)),

ΔZ3 = P ◦ S ◦ P ◦ S(ei),
Δ(α6, β6) = (ej , 0),
Δ(α5, β5) = (P ◦ S(ej), ej),

ΔZ5 = P ◦ S ◦ P ◦ S(ej).

Since

Δα2 ⊕ΔZ3 = Δβ3 = Δα4 = Δβ5 ⊕ΔZ5,

thus

ei ⊕ P ◦ S ◦ P ◦ S(ei) = ej ⊕ P ◦ S ◦ P ◦ S(ej),

from which we have

P−1(ei)⊕ P−1(ej) = (S ◦ P ◦ S(ei))⊕ (S ◦ P ◦ S(ej)).

Let ρ1 = χ(P−1(ei)), ρ2 = χ(P−1(ej)), ρ3 = χ(S◦P◦S(ei)), ρ4 = χ(S◦P◦S(ej)).
According to Property 1, the following equations hold:

ρ1 = qi,

ρ2 = qj ,

ρ3 = pi,

ρ4 = pj .

Assume that there exists some t, such that {ρ1,t, ρ2,t, ρ3,t, ρ4,t} = {1, 0, 0, 0}, say
ρ1,t = 1, and ρ2,t = ρ3,t = ρ4,t = 0, then

χt(P−1(ei)⊕ P−1(ej)) = 1,

Impossible Differential Cryptanalysis on Feistel Ciphers 113

SP

SP

SP

SP

SP

SP

SP

5
()

j
Y SPS e5

()
j

Z PSPS e

7
0

7 j
e

6 j
e

6
0

5
()

j
PS e

4

5 j
e

0 i
e

0
0

1
0

1 i
e

2 i
e

2
()

i
PS e

3 3

4

3
()

i
Z PSPS e

3
()

i
Y SPS e

Fig. 4. 7-round Impossible Differential of Feistel-SP

and

χt ((S ◦ P ◦ S(ei))⊕ (S ◦ P ◦ S(ej))) = 0,

which is a contradiction. Thus the above Proposition holds. 	

114 Y. Wei et al.

Example 2. (7-Round Impossible Differentials of Camellia) By the definition of
Camellia, we can determine P = (pi,j)1≤i,j≤8 and P−1 = (qi,j)1≤i,j≤8 as follows:

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since p1,1 = 1, p1,5 = q1,1 = q1,5 = 0, (e1, 0) → (0, e5) is a 7-round impossible
differential of Camellia; Similarly, (e2, 0) → (0, e7) is another 7-round impossible
differential of Camellia since q7,7 = 1, p7,2 = p7,7 = q7,2 = 0.

3.3 Analysis of 8-Round Feistel Cipher with SP Structure

Let Δ(α0, β0) = (ei, 0), Δ(α8, β8) = (0, ej). Then from the encryption direction,
we have (see Fig. 5):

Δ(α1, β1) = (0, ei),
Δ(α2, β2) = (ei, P ◦ S(ei)),
Δ(α3, β3) = (P ◦ S(ei), ei ⊕ P ◦ S ◦ P ◦ S(ei)),
ΔZ4 = P ◦ S(ei ⊕ P ◦ S ◦ P ◦ S(ei)),

and while analyzing from the decryption direction, we have

Δ(α7, β7) = (ej , 0),
Δ(α6, β6) = (P ◦ S(ej), ej),
Δ(α5, β5) = (ej ⊕ P ◦ S ◦ P ◦ S(ej), P ◦ S(ej)).

Since

Δβ2 ⊕ΔZ4 = Δα3 ⊕ΔZ4 = Δβ4 = Δα5,

the following equation holds

P ◦ S(ei)⊕ P ◦ S(ei ⊕ P ◦ S ◦ P ◦ S(ei)) = ej ⊕ P ◦ S ◦ P ◦ S(ej),

which implies that

S(ei ⊕ P ◦ S ◦ P ◦ S(ei)) = P−1(ej)⊕ S ◦ P ◦ S(ej)⊕ S(ei).

Let Ui,j = {t|pt,j = qt,j = 0, t �= i} = {t1, . . . , tu}, thus for any t ∈ Ui,j ,

χt

(
P−1(ej)⊕ S ◦ P ◦ S(ej)⊕ S(ei)

)
= 0,

Impossible Differential Cryptanalysis on Feistel Ciphers 115

which tells that

χt(ei ⊕ P ◦ S ◦ P ◦ S(ei)) = 0.

and now, we have the following Proposition:

Proposition 4. For any i and j, let

Ui,j = {t|pt,j = qt,j = 0, t �= i} = {t1, . . . , tu},
Vi = {r|pr,i = 1} = {r1, . . . , rv},

and

Mi,j = (pta,rb
)u×v = (m1, . . . , mv).

If Ui,j �= ∅, Vi �= ∅, and there exists an s, 1 ≤ s ≤ v, such that

rank{m1, . . . , mv} = rank{{m1, . . . , mv} \ {ms}}+ 1,

then (ei, 0) → (0, ej) is an 8-round impossible differential of E.

Proof. Let η = ei ⊕ P ◦ S ◦ P ◦ S(ei), λ = S ◦ P ◦ S(ei). Then

χt(λ) =

{
1 if t ∈ Vi,
0 if t �∈ Vi.

Accordingly, χt(λ) �= 0 holds if and only if when λt �= 0. Thus

η = ei ⊕ (pr1 , . . . , prv)(λr1 , . . . , λrv)T,

where r1 < · · · < rv, rk ∈ Vi(1 ≤ k ≤ v) and prk
is the rk-th column of P .

By the definition of Ui,j , we have

ηt = 0 if t ∈ Ui,j ,

thus ⎛⎜⎝pt1,r1 · · · pt1,rv

...
...

ptu,r1 · · · ptu,rv

⎞⎟⎠
⎛⎜⎝λr1

...
λrv

⎞⎟⎠ � (Mi,j)u,vλ̃ =

⎛⎜⎝0
...
0

⎞⎟⎠
where tk ∈ Ui,j , rk ∈ Vi and λrk

�= 0.
The above equation can be described as

(m1, . . . , ms−1, ms+1, . . . , mv)(λ1, . . . , . . . , λv)T = λsms,

from linear algebra, the equation has solutions if and only if

rank{{m1, . . . , mv} \ {ms}} = rank{m1, . . . , λsms, . . . , mv}.

116 Y. Wei et al.

Since rank{m1, . . . , mv} = rank{{m1, . . . , mv}\{ms}}+1, if (Mi,j)u,vλ̃ = 0 has
a solution λ̃ = (λ1, . . . , λv), λs must be 0 which is a contradiction. 	

For most cases, especially when n = 4 or n = 8, |Ui,j | = u ≤ 2. According to
Proposition 4, the case that u = 1 and u = 2 can be characterized as follows:

Proposition 5. Let Ui,j and Vi defined as in Proposition 4, and

Mi,j = (pta,rb
)u×v =

⎛⎜⎝l1
...
lu

⎞⎟⎠ .

(1) If u = 1 and w(l1) = 1, then (ei, 0) → (0, ej) is an 8-round impossible
differential of E.

(2) If u = 2 and w(l1 ⊕ l2) = 1, then (ei, 0) → (0, ej) is an 8-round impossible
differential of E.

Example 3. (8-Round Impossible Differentials of Camellia) We verify (e2, 0) →
(0, e2) is an 8-round impossible differential. From the linear transformation of
Camellia we have,

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since p7,2 = q7,2 = 0, p8,2 = q8,2 = 0,

U2,2 = {7, 8}.

Since p2,2 = p3,2 = p4,2 = p5,2 = p6,2 = 1, we have

V2 = {2, 3, 4, 5, 6},

Thus M2,2 is a sub-matrix of P

M2,2 =
(

0 1 1 1 1
0 0 1 1 1

)
.

Since,

2 = rankM2,2 = rank{M2,2 \ {l2}}+ 1,

we know that (e2, 0) → (0, e2) is an 8-round impossible differential of Camellia
which is consistent with [11].

Impossible Differential Cryptanalysis on Feistel Ciphers 117

SP

SP

SP

SP

SP

SP

SP

7 j
e

7
0

6
()

j
PS e

6 j
e

5
()

j j
e PSPS e

4
()

j j
e PSPS e

5
()

j
PS e

0 i
e

0
0

1
0

1 i
e

2 i
e

2
()

i
PS e

3
()

i
PS e

3
()

i i
PSPS e e

4

SP

8
0

8 j
e

4
(())

i i
Z PS PSPS e e

4
(())

i i
Y S PSPS e e

Fig. 5. 8-round Impossible Differential of Feistel-SP

118 Y. Wei et al.

Example 4. (8-Round Impossible Differentials of SNAKE(2)) SNAKE(2) is equiv-
alent to Feistel structure with SP round function by adding a P−1 in the begin-
ning and a P in the end. By the definition of SNAKE(2), we describe P and P−1

as follows:

P =

⎛⎜⎜⎝
1 1 1 1
1 0 0 0
1 1 0 0
1 1 1 0

⎞⎟⎟⎠ P−1 =

⎛⎜⎜⎝
0 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎞⎟⎟⎠.

Hence,

U4,4 = {2}, V4 = {1}, and M4,4 = {1}.

Since w(l1) = 1, (e4, 0) → (0, e4) is an 8-round impossible differential of SP
part of SNAKE(2). Therefore, (P (e4), 0) → (0, P (e4)) is an 8-round impossible
differential of SNAKE(2).

4 Analysis of 6-Round Feistel Cipher with SPS Structure

By using the same techniques that are used in analyzing 8-round Feistel ciphers
with SP round functions, a characterization for the existence of 6-round of Feistel
cipher with SPS round functions (Notice that Feistel cipher with this structure
is denoted by D) can be given as follows, and the details of the proof are omitted.

Proposition 6. For any i and j, let

Ui,j = {t|pt,j = 0, t �= i} = {t1, . . . , tu},
Vi = {r|pr,i = 1} = {r1, . . . , rv},

and

Mi,j = (pta,rb
)u×v = (m1, . . . , mv).

If Ui,j �= ∅, Vi �= ∅, and there exists an s, 1 ≤ s ≤ v, such that

rank{m1, . . . , mv} = rank{{m1, . . . , mv} \ {ms}}+ 1,

then (ei, 0) → (0, ej) is a 6-round impossible differential of D.

Proposition 7. Let Ui,j and Vi be defined as in Proposition 6, and

Mi,j = (pta,rb
)u×v =

⎛⎜⎝l1
...
lu

⎞⎟⎠ .

(1) If u = 1 and w(l1) = 1, then (ei, 0) → (0, ej) is a 6-round impossible differ-
ential of D.

Impossible Differential Cryptanalysis on Feistel Ciphers 119

(2) If u = 2 and w(l1 ⊕ l2) = 1, then (ei, 0) → (0, ej) is a 6-round impossible
differential of D.

Example 5. (6-Round Impossible Differentials of E2) Since the permutation BRL
after the 2nd nonlinear transformation layer of E2 is a byte-transposition, the
structure is equivalent to an SPS structure, where the linear transformation P

′

is defined as:

P
′
= BRL ◦ P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1
0 1 1 1 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We have

U1,3 = {2, 4}, V1 = {1, 2, 3, 4, 5, 7},
hence,

M1,3 =
(

1 1 0 1 1 1
1 1 0 1 1 0

)
.

Since,

w(l1 ⊕ l2) = 1,

(e1, 0) → (0, e3) is a 6-round impossible differential of E2, whereas only 5-round
impossible differentials were previously known[3].

5 Conclusion

In this paper, we propose impossible differential cryptanalysis on Feistel ciphers
with SP and SPS round functions. Both 6/7/8-round impossible differentials
of Feistel cipher with SP round functions and 6-round impossible differential
of Feistel cipher with SPS round functions can be judged by verifying some
properties of linear transformations. The former result that 5-round impossible
differential exists when round function is bijective is improved. Since we know a
lot about Feistel cipher against impossible differential cryptanalysis, the proper-
ties presented in this paper should be considered when designing a block cipher.

Acknowledgements

The authors would like to thank Vincent Rijmen and Ruilin Li for their helpful
comments and corrections that improved the quality of the paper. We are also
grateful to the anonymous referees for their valuable remarks.

This work is supported by the Natural Science Foundation of China (No:
60803156) and the open research fund of State Key Laboratory of Information
Security (No: 01– 07).

120 Y. Wei et al.

References

1. NTT-Nippon Telegraph and Telephone Corporation: E2: Efficient Encryption Al-
gorithm, http://info.isl.ntt.co.jp/e2

2. Lee, C., Cha, Y.: The Block Cipher: SNAKE with Provable Resistance against DC
and LC attacks. In: JW-ISC 1997, pp. 3–17 (1997)

3. Aoki, K., Kanda, M.: Search for Impossible Differential of E2,
http://csrc.nist.gov/encryption/aes/round1/comment

4. Feistel, H.: Cryptography and Data Security. Scientific American 228(5), 15–23
(1973)

5. Aoki, K., Ichikawa, T., Kanda, M., et al.: Specification of Camellia — a 128–bit
Block Cipher. In: Stinson, D.B., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
183–191. Springer, Heidelberg (2001)

6. Duo, L., Li, C., Feng, K.: New Observation on Camellia. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 51–64. Springer, Heidelberg (2006)

7. Knudsen, L.: DEAL — A 128-bit Block Cipher. Technical Report 151, Department
of Informatics, University of Bergen, Bergen, Norway (1998)

8. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

9. Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

10. Sugita, M., Kobara, K., Imai, H.: Security of Reduced Version of the Block Cipher
Camellia against Truncated and Impossible Differential Cryptanalysis. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 193–207. Springer, Heidelberg
(2001)

11. Wu, W., Zhang, W., Feng, D.: Impossible Differential Cryptanalysis of Reduced-
Round ARIA and Camellia. Journal of Computer Science and Technology 22(3),
449–456 (2007)

12. Wu, W., Zhang, L., Zhang, W.: Improved Impossible Differential Cryptanalysis of
Reduced–Round Camellia. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008.
LNCS, vol. 5381, pp. 442–456. Springer, Heidelberg (2009)

13. Lu, J., Kim, J., Keller, N., et al.: Improving the Efficiency of Impossible Differential
Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T.G. (ed.) CT-RSA
2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

14. Lu, J., Dunkelman, O., Keller, N., et al.: New Impossible Differential Attacks on
AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 279–293. Springer, Heidelberg (2008)

15. Dunkelman, O., Keller, N.: An Improved Impossible Differential Attack on
MISTY1. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 441–454.
Springer, Heidelberg (2008)

16. Mala, H., Shakiba, M., Dakhilalian, M., Bagherikaram, G.: New Results on Impos-
sible Differential Cryptanalysis of Reduced-Round Camellia–128. In: Jacobson Jr.,
M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 281–294.
Springer, Heidelberg (2009)

17. Kim, J., Hong, S., Sung, J., Lee, S., Lim, J.: Impossible Differential Cryptanalysis
for Block Cipher Structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT
2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)

http://info.isl.ntt.co.jp/e2
http://csrc.nist.gov/encryption/aes/round1/comment

Impossible Differential Cryptanalysis on Feistel Ciphers 121

A Appendix

A.1 Brief Description of Camellia

Camellia is a Feistel cipher with SP round function and has 18 rounds (for 128-
bit keys) or 24 rounds (for 192/256-bit keys). The FL/FL−1 function layer is in-
serted at every 6 rounds. In this paper, we consider Camellia without FL/FL−1

function layer. The nonlinear layer S and linear transformation P in the round
function of Camellia are represented as follows. For more details, we refer to [5].

S : F8
28 → F8

28 : (x1, x2, . . . , x8) → (y1, y2, . . . , y8)
y1 = s1(x1), y2 = s2(x2), y3 = s3(x3), y4 = s4(x4),
y5 = s2(x5), y6 = s3(x6), y7 = s4(x7), y8 = s1(x8),

where s1, s2, s3 and s4 are 8× 8 nonlinear transformations (s-boxes).

P : F8
28 → F8

28 : (y1, y2, . . . , y8) → P (y1, y2, . . . , y8)

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
A.2 Brief Description of SNAKE(2)

SNAKE(1) and SNAKE(2) are Feistel ciphers proposed by Lee and Cha at JW-
ISC’97 [2] and this paper concentrates on SNAKE(2) only. Although it employs
a PS round function, according to [6], SNAKE(2) is equivalent to a Feistel cipher
with SP round function by adding a P−1 transformation before the first round
and a P transformation after the last round. The nonlinear layer S and linear
transformation P in the round function of SNAKE(2) are represented as follows.

S : F4
28 → F4

28 : (x1, x2, x3, x4) → (y1, y2, y3, y4)
y1 = s(x1), y2 = s(x2), y3 = s(x3), y4 = s(x4),

where s is an 8× 8 nonlinear transformation.

P : F4
28 → F4

28 : (y1, y2, y3, y4) → P (y1, y2, y3, y4)

P =

⎛⎜⎜⎝
1 1 1 1
1 0 0 0
1 1 0 0
1 1 1 0

⎞⎟⎟⎠

122 Y. Wei et al.

A.3 Brief Description of E2

E2, designed by NTT, is a candidate of AES [1]. It employs Feistel structure
with an SPS round function. There is also an initial transformation in the
beginning and a final transformation in the end. Another permutation BRL is
placed after the 2nd non linear transformation layer. The non-linear layer S and
linear transformation P and BRL in the round function of E2 are represented
as follows.

S : F8
28 → F8

28 : (x1, x2, . . . , x8) → (y1, y2, . . . , y8)
y1 = s(x1), y2 = s(x2), y3 = s(x3), y4 = s(x4),
y5 = s(x5), y6 = s(x6), y7 = s(x7), y8 = s(x8),

where s is an 8× 8 nonlinear transformation.

P : F8
28 → F8

28 : (y1, y2, . . . , y8) → P (y1, y2, . . . , y8)

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
BRL : F8

28 → F8
28 : (y1, y2, . . . , y8) → (y2, y3, . . . , y8, y1).

Multi-trail Statistical Saturation Attacks

Baudoin Collard� and Francois-Xavier Standaert��

UCL Crypto Group, Microelectronics Laboratory, Université catholique de Louvain
Place du Levant 3, B-1348, Louvain-la-Neuve, Belgium

baudoin.collard, fstandae@uclouvain.be

Abstract. Statistical Saturation Attacks have been introduced and ap-
plied to the block cipher PRESENT at CT-RSA 2009. In this paper, we
consider their natural extensions. First, we investigate the existence of
better trails than the one used in the former attack. For this purpose,
we provide a theoretical evaluation of the trail distributions using proba-
bility transition matrices. Since the exhaustive evaluation of all possible
distributions turned out to be computationally hard, we additionally pro-
vide a heuristic branch-and-bound algorithm that allows us to generate a
large number of good trails. These tools confirm that the trail of CT-RSA
2009 was among the best possible ones, but also suggest that numerous
other trails have similar properties. As a consequence, we investigate the
use of multiple trails and show that it allows significant improvements
of the previous cryptanalysis attempts against PRESENT. Estimated
complexities indicate that PRESENT-80 is safe against key recovery, by
a small security margin. We also discuss the impact of multiple trails for
the security of the full PRESENT-128. We finally put forward a “statis-
tical hull” effect that makes the precise theoretical analysis of our results
difficult, when the number of block cipher rounds increases.

Introduction

PRESENT is a block cipher presented at CHES 2007, that was designed for
small embedded applications [3]. It has a Substitution Permutation Network
architecture, with a 64-bit block size and 31 rounds. The same 4-bit S-box is
applied 16 times in parallel in each round. The designers have proposed two key
sizes: 80 and 128 bits. Due to its simple and elegant structure, it has been the
focus of different cryptanalysis attempts. In [23], the author presented a first
attack against PRESENT, using differential cryptanalysis. It applies to 16 block
cipher rounds and requires the whole codebook and a time complexity of 265. In
2009, Ozen et al. proposed a related key rectangle attack against up to 17 rounds
of PRESENT, with a time complexity of 2104 and 263 chosen plaintexts [20].
Two papers exploit the linear cryptanalysis and target 26 rounds, respectively
by taking advantage of the linear hull effect [17] and multiple approximations
[10]. These attacks require the whole codebook. Finally, [19] combines linear
cryptanalysis and weak keys and targets up to 28 rounds in this context.
� Work supported by the project Nanotic-Cosmos of the Walloon Region.

�� Associate researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.).

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 123–138, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

124 B. Collard and F.-X. Standaert

In this paper, we pay a particular attention to a Statistical Saturation Attack
that was specifically devised for the cryptanalysis of PRESENT (although it
could apply to other ciphers). It exploits the weak diffusion of certain bits (called
the trail) during the encryption process, when some of the plaintext bits are fixed.
This property did lead to an estimated attack against up to 24 rounds, using
approximately 260 chosen plaintexts. As detailed in [6], the main limitation when
trying to extend this technique towards more rounds is the data complexity that
exceeds the complete codebook. We consequently investigated the tracks that
could be used to get rid of this limitation. Our contributions are threefold.

First, we provide tools allowing one to approximate the diffusion in a trail,
using Markov chains. We exhibit that, besides the iterative trail proposed in [6],
there exists many other trails with a similarly weak diffusion. We also propose a
heuristic branch-and-bound algorithm in order to generate them efficiently. We
finally confirm our theoretical analysis with experiments that can break up to
16 rounds PRESENT. Then, in a second part of the paper, we investigate the
exploitation of these multiple trails. We show that they can be used to trade
data complexity for time complexity. As a result, we discuss the possibility to
mount a key-recovery attack against the full 31-round PRESENT-128, using
the complete codebook, and a time complexity below 2128 memory accesses.
We put forward that such an attack could be possible under certain (optimistic)
conditions of independence for the trails - the exact evaluation of these conditions
being an important scope for further research. We note that such an attack would
anyway be of theoretical interest only. In particular, the authors in [3] clearly
suggest PRESENT-80 for their target applications (rather than PRESENT-128).
However, these results question the number of rounds for PRESENT-128 and
highlights that they could have been increased over those for PRESENT-80.
Finally, in a third part of the paper, we put forward a “statistical hull effect”,
i.e. a counterpart of the linear hull effect in linear cryptanalysis. We discuss its
impact for the theoretical analysis of our estimated attack complexities.

1 The Statistical Saturation Attack

1.1 Principle of the Attack

The Statistical Saturation Attack, originally described in [6], takes advantage
of a weakness in the diffusion layer of PRESENT. For the S-boxes 5, 6, 9 and
10 (called the active S-boxes), only 8 out of 16 input bits are directed to other
S-boxes. Figure 1 illustrates this observation (note that there exists many other
examples of weak diffusion in the permutation). Consequently, if we fix the 16
bits at the input of the active S-boxes, then 8 bits will be known at the very
same input for the next round. We can iteratively repeat this process round by
round and observe a non-uniform behavior at the output of the active S-boxes.

Thanks to this non-uniform behavior, 16 bits of the last subkey can be recov-
ered as follows. We first generate a large number of plaintexts with 8 fixed bits.
The plaintexts are encrypted using r-rounds PRESENT and the distribution of
the ciphertexts are recorded for the 16 bits at the output of the 4 active S-boxes

Multi-trail Statistical Saturation Attacks 125

Fig. 1. Permutation layer of PRESENT: bold lines show the weak diffusion

in the last round. Given this experimental distribution, it is possible to compute
the output distribution of the target 8-bit trail one round before, using a partial
decryption process. For one key guess, the evaluation of such an r − 1-round
distribution requires 216 computations. Hence the total time complexity for all
the key guesses equals 216 ∗ 216 = 232. Additionally using an FFT-based trick
similar to the technique presented in [4], this complexity can be decreased to
16 · 216 · 28. For the correct key guess, the experimental 8-bit distribution in the
penultimate round is expected to be more non-uniform than for any other guess.
This is because decrypting with a wrong guess is expected to have the same ef-
fect as encrypting one more round. We can thus hope to distinguish the correct
key from the wrong ones by computing the distance between a partially de-
crypted distribution and the uniform distribution. If the attack works properly,
the distribution with the highest distance should correspond to the correct key.

1.2 Extensions of the Attack

In [6], the authors propose 3 extensions to improve the cryptanalysis:

(ext. 1) Increase the fixed part in the plaintexts. One can easily gain one
round in the attack by simply fixing the 16 bits of plaintext corresponding to the
4 active input S-boxes of the trail. This way, the 8-bit trail in the second round
is also fixed and the diffusion is postponed by one round. By fixing 32 bits out
of 64 (corresponding to S-boxes 4-5-6-7-8-9-10-11), one can similarly extend the
attack by 2 rounds. However, we are then limited in the generation of at most
232 texts. This limitation may be mitigated with the following extension.

(ext. 2) Use multiple fixed plaintext values. The same analysis can be per-
formed multiple times, using different values for the 8-bit (or 16- or 32-bit) fixed
part of the plaintexts and then combining the results (e.g. taking the sum of the
uniform vs. measured distances corresponding to the different fixed plaintexts).
This allows exploiting more texts and moving to a known-plaintext context. The
resulting attack is similar to multiple linear cryptanalysis: each fixed part of the
plaintext can be seen as analogous to an additional approximation in [2,11].

126 B. Collard and F.-X. Standaert

(ext. 3) Partial decryption of two rounds instead of one. In this case, 8
S-boxes are active in the last round and 4 S-boxes are active in the penultimate
round. As detailed in [7] and illustrated in Figure 4, one can perform two inde-
pendent partial decryptions in parallel, in order to decrease the time complexity
of the attack down to 2 · (16 · 216 · 28) · (8 · 28 · 24) = 244 elementary operations.

Fig. 2. Practical trails for 2-round partial decryption in PRESENT with reduced time
complexity. The two independent trails are shown in different shades of gray.

2 Evaluating the Trail Distributions with Markov Chains

As a matter of fact, the previous attack essentially exploits the property that
it is possible to evaluate the distribution of a subset of output bits given the
distribution of a subset of input bits for one round of PRESENT. Minier and
Gilbert use a similar technique in their attack against Crypton [16]. In [6], the
authors exploited an iterative trail with 8 active bits in 4 active S-boxes in each
round. However, as already mentioned, this is not the only possible trail and
an interesting problem is to determine if there are other trails leading to better
attacks. In this section, we show how to evaluate the distribution of a trail going
through several rounds of PRESENT. For this purpose, we characterize such a
trail by a matrix containing the transition probabilities between the inputs and
outputs. Additionally, we rely on the assumption that the bits that are not part
of the trail are uniformly distributed. This assumption as well as the Markov
chains that we exploit in the following were also used by Vaudenay in his paper
on χ2 cryptanalysis [21]. As will be discussed in Section 5, this is becoming
incorrect as the number of rounds in the trail increases. But as the next section
will show, this assumption is required in order to limit the computational cost
of our estimations to tractable values, when comparing different trails.

2.1 Transition Matrix for an S-Box

Let us consider an active S-box with size n∗n, and suppose that the trail includes
i active bits among n in input and j active bits in output. Consequently, there
are 2i possible inputs and 2j possible outputs, and the size of the transition
matrix is 2i ∗ 2j. This matrix is constructed in the following way:

Multi-trail Statistical Saturation Attacks 127

– Initialize a matrix of size 2i ∗ 2j and fill it with zeros.
– For every possible S-box input value, extract a masked i-bit input and the

j-bit output, and increment the matrix in the corresponding position.
– Multiply the matrix by 2i/2j for normalization.

By construction, any transition matrix has the properties that the sum over any
row is equal to one. For example, the iterative trail represented in Figure 1 uses
the same transition matrix for each active S-box:

A =

⎛⎜⎜⎝
0 0.25 0.5 0.25

0.25 0.25 0 0.5
0.5 0 0.25 0.25
0.25 0.5 0.25 0

⎞⎟⎟⎠
In this case, the matrix is square, but it is not mandatory as it depends on the
number of active input/output bits. The interpretation of the transition matrix is
easy: each row represents a possible value for the input and the column represents
the probability of transition to a particular output value given the input.

2.2 Transition Matrix for the Permutation Layer

For a permutation layer like the one used in PRESENT, the number of active
bits in output is equal to the number k of active bits in input. Consequently, the
matrix is square with size 2k ∗ 2k. Moreover, at each input value in the trail cor-
responds one and only one output value and thus the transition matrix contains
only zeros and ones (i.e. it is a particular instance of permutation matrix).

2.3 Transition Matrix for the Subkey Addition

The effect of a XOR between the input bits in the trail and unknown key bits
is similar to a permutation. To each value in the trail before the key addition
corresponds only one output value after the key addition. Hence, the transition
matrix for the subkey addition is also a permutation matrix. However, unlike
the transition matrix for the permutation layer, this transition matrix does not
increase the diffusion in the trail. Intuitively, this is because the key addition
does not mix the active bits coming from different active S-boxes as with the
permutation layer. Mathematically, this corresponds to the property that the
transition matrix can be decomposed into a Kronecker product of small subma-
trices. Consequently, given the assumption of uniform distribution for the bits
that are not part of the trail, different subkeys have different output distribu-
tions in the trail, but they present an identical non-uniform behavior. Hence, it
is sound to compute the distribution of a trail independently of the keys.

2.4 Composition of Transition Matrices

If several S-boxes are active in parallel in a trail, the overall transition matrix is
given by the Kronecker product of the transition matrix related to each S-box.
The transition matrix of a round can then be computed as the matrix product

128 B. Collard and F.-X. Standaert

of the transition matrices for the S-box and permutation layers. Thereafter,
given the transition matrix for a complete trail, the output distribution can be
directly evaluated as the the vector-matrix product of the input distribution and
the transition matrix. The main drawback of this method is that it requires to
compute a matrix product with matrices of size 2n ∗ 2n where n is the number
of active bits involved at any point in the trail during the encryption process.

2.5 Practical Example

We illustrate this technique using the iterative trail of Figure 1. This trail is
composed of 4 active S-boxes at each round, with 2 bits out of 4 active in each
S-box. As there are 8 active bits at each round, the full transition matrix has
a size of 28 ∗ 28. It is computed in the following way: The matrix transition for
the 4 parallel S-boxes is computed as: A4 = A ⊗ A ⊗ A ⊗ A, where ⊗ is the
symbol for the Kronecker product. The matrix for one full round is then given
by R = A4 · P (where P is the transition matrix for the permution on 8 bits).
The transition matrix after n rounds is then Rn = R ·R.... ·R︸ ︷︷ ︸

n times

. Given a vector

din of size (1 ∗ 28) describing the distribution of the 8-bits active bits in input,
the distribution of the output active bits is finally given by dout = din · Rn.

3 Heuristic Branch-and-Bound for Trail Search

As detailed in the previous section, the evaluation of the distribution for a single
trail can be computationally intensive if this trail involves a lot of active bits.
This was not an issue for the attack in [6], but may become the limiting factor for
other trails (or other ciphers). In order to mitigate this limitation, we now present
a heuristic algorithm based on the branch-and-bound proposed by Matsui for
linear approximation search in [15]. The goal of this heuristic is to perform a
pre-selection of “interesting trails” that minimizes the number of active S-boxes
(so that the treatment of the previous section can still be applied) while trying
to limit the diffusion based on a simpler criteria than a probabilistic distance.

3.1 Description of the Algorithm

The basic principle of the heuristic is to maximize the ratio between the number
of active bits and the number of active S-boxes in a trail. While this criteria
does not ensure finding the best trail distributions, it is extremely fast to eval-
uate and to integrate into the execution of a branch-and-bound algorithm. As
will be shown later in the section, it also provides reasonably good results. The
justification is the following: even though all the trails with low diffusion are
not necessarily good trails (because of the influence of the transition matrices
for the S-boxes), all the good trails must have low diffusion in their permuta-
tions layers. Consequently, a good strategy is to first generate a large number
of trail candidates with a branch-and-bound heuristic, then to compute the full
transition matrices for each of these candidates and to select the best ones only.

Multi-trail Statistical Saturation Attacks 129

In order to speed-up the execution of the algorithm, we used a similar im-
plementation technique as presented in [4]. That is, we start by exhaustively
counting the couples (input, output) of the permutation for which the number
of active S-boxes is low. Such couples are called permutation candidates and are
entirely defined by the number of active input and output S-boxes, the position
of these S-boxes and their corresponding mask value. The permutation candi-
dates are then stored in a database (a hash table) instead of being generated
on-the-fly during each branching phase. All the candidates having the same ac-
tive output S-boxes are stored in the same list. Once the database is created,
we launch the actual trail search: a trail on r rounds can be obtained by the
concatenation of r permutation candidates, if the positions of the active S-boxes
at the exit of a permutation candidate correspond to those of the active S-boxes
at the input of the next candidate. These constraints are easily checked, as the
candidates are picked up in the database according to the position of their active
output S-boxes. The objective function that we need to maximize is the average
ratio between the number of active bits and the number of active S-boxes in the
trail. Note finally that we pile up the candidates starting with the last round,
then going down gradually until the first round, in order to benefit from the
knowledge of the best ratio in each phase of the branch-and-bound.

3.2 Results

As an illustration, we generated 1000 trails with maximum 5 active S-boxes
in each round and computed the theoretical data complexity as in [6], for the
distinguishers based on each of these trails. That is, following the analysis of
Baignère et al. [1], we estimate the data complexity as proportional to the inverse
of the Euclidean distance between the distributions evaluated in Section 2 and a
uniform distribution. The results in the figure show that after 15 rounds, the data
complexity varies between 250 and 266, according to the trail. The original trail

Fig. 3. Theoretical data complexity for distinguishers based on 1000 different trails

130 B. Collard and F.-X. Standaert

of Figure 1 is marked with an arrow and is among the best ones (see Figure 3).
Note that by increasing the number of trails generated by the branch-and-bound
(beyond 1000), we can easily produce very large amounts of trails with good
theoretical data complexities. As will be detailed in Section 5, the amount of
such trails increases exponentially with the number of rounds.

3.3 Experimental Validation of the Estimated Data Complexity

The estimations in the previous section indicate that the data complexity in-
creases by approximately 23 for every additional round. As these estimations
rely on the assumptions needed to evaluate the distributions in Section 2, we
confirmed these predictions experimentally, in order to verify that our assump-
tions hold to a sufficient extent. For this purpose, we complemented the exper-
iments in [6] and attacked up to 15 rounds PRESENT with 232 texts, using a
2-round partial decryption process. Figure 4 illustrates that we gain one round
compared to the original attack of CT-RSA, and confirms the theoretical expec-
tations. Note that the two-round decryption also allows a significantly increased
gain (because there are more key bits guessed in the experiment).

Fig. 4. Average gain of 6 attacks against 4 to 16 rounds PRESENT, using up to 232

texts (these attacks exploit ext. 1, with 32 fixed bits and ext. 3)

4 Multiple Trails

The previous section shows that the simple trail of Figure 1 is among the best
ones to perform a Statistical Saturation Attack against PRESENT. On the other
hand, we also observe that a large number of trails perform similarly good in
theory. Hence, a natural idea is to investigate the use of multiple trails, as can be
done in linear cryptanalysis with multiple approximations [2]. In the following,
we consequently consider two questions. First, we study the possibility to exploit
several trails with different input masks and the same output mask, in order to

Multi-trail Statistical Saturation Attacks 131

increase the gain of the attack. Our experiments suggest that this technique
yields good results and allows improving the best-reported cryptanalysis against
PRESENT. Then, in Section 5, we show that there exists many different trails
with the same input and output masks, the combination of which affects the
distribution of the output in a hardly predictable way. We discuss the impact of
such a “statistical hull” effect on the assumptions of Section 2.

4.1 (ext. 4) Multiple Trails Cryptanalysis

In the Statistical Saturation Attack of [6], the main limitation of the attack
was the number of texts required to find the correct subkey. Above 24 rounds
(and assuming that ext. 2 yields the expected improvements), the data com-
plexity of the attack reaches the codebook size of PRESENT. In this section, we
consequently investigate the possibility to use several distinct trails in order to
partially remove this limitation. Thanks to our branch-and-bound, we were able
to generate many trails with different input masks and the same output mask.
It allowed us to run several independent attacks in parallel, each one using a
different trail and thus different partitioning of the plaintexts. As the output
mask is the same, we can combine the results of the attacks together because
the partial decryption involves the same subkey bits. In practice, each single-trail
attack produces a vector containing the distances between the uniform and out-
put distributions after partial decryption with the keyguess. A straightforward
combination that was used in the context of linear cryptanalysis using multiple
approximations (and for ext. 2) simply consists of taking the mean of these vec-
tors. Such heuristic may not be optimal (e.g. compared to a maximum likelihood
approach), but as detailed in [5], it is convenient when we lack the exact informa-
tion about the expected distribution of the trail output after partial decryption.
In particular, it is useful when linear hull (or related) effects imply errors when
determining the approximated probability density functions of multidimensional
approximations in linear cryptanalysis (see [9]). As will be exhibited in Section
5, this is exactly the type of situation that we face in this paper.

If we use n such trails, the time complexity is multiplied by the same factor
because we have to repeat the partial decryption for each trail. The overhead
required to combine the results is negligible. The effect on the data complexity
is more intricate because each input mask defines a different partition of the
plaintexts, according to the bits that are fixed and those that can change. For
example, if the whole codebook is used, each plaintext will be used exactly once
for each trail. The plaintexts can either be stored, requiring 267 bytes of memory,
or they can be generated on-the-fly, which would require n ∗ 264 encryptions.

In order to evaluate the feasibility of this technique, we applied the statistical
saturation attack on 9-round PRESENT for 128 different input masks with 228

texts each. We selected the trails according to two different rules:

1. Best trails: we generated masks using our branch-and-bound and we selected
the 8-round trails leading to the lowest theoretical data complexity.

2. Random trails: we generated trails from random (compatible) masks.

132 B. Collard and F.-X. Standaert

The results of our experiments are in Figure 5, which compares the mean gain
(as defined in [2]) of attacks against 9-round PRESENT, exploiting different
amounts of trails (up to 128), in function of the number of plaintexts used in
the attacks. They illustrate that the combination of the information coming
from different trails can be done constructively (i.e. lead to increased gains). For
example, reaching a gain of 10 bits with a single trail requires approximately 224

texts in the left part of the figure. But a combination of 27 trails leads to a nearly
equivalent gain after 218 texts in this case. Interestingly, the positive impact of
combining several trails appears to be reduced for the random trails case (in the
left part of the figure). In addition, there are two phenomenons that are worth
being mentioned. First, the practical gains of trails having similar theoretical
data complexity turned out to be quite different. For example, in the context
of the best selected trails, we observed that 12.5% of them led to relatively
low bias (less than 4 bits) even after 228 texts. Second, the difference between
the best and random trails was not as strong in practice as expected from the
theoretical data complexities computed in the previous section. In both cases,
this observation relates to the “statistical hull” effect discussed in Section 5.

Fig. 5. Gains of attacks using multiple trails (left: best trails, right: random trails)

Note that, since the experiments in Figure 5 are far from using the full code-
book of PRESENT, the attacks using different trails also use different plaintexts.
By contrast, when estimating the effectiveness of attacks against more than 26-
round PRESENT, the data complexity gets close to the full codebook. It means
that exploiting multiple trails will require to rearrange (and hence, reuse) the
codebook several times. Such a context raises the question to evaluate whether
these multiple partitions of the codebook also improve the gain of the attack.
Quite naturally, generating the full codebook is unfeasible for a 64-bit cipher.
As a first step, we consequently considered a reduced-size version of PRESENT,
with 16-bit blocks [12]. This allowed us to compute the average gain of one versus
a combination of 128 trails, for different amounts of plaintexts. The results of
these experiments are in Figure 6, for attacks against different number of rounds.

Multi-trail Statistical Saturation Attacks 133

Fig. 6. Comparison between the gain of a single trail and the combined gain of 128
trails, using the full codebook against a simplified PRESENT with 16-bit block size

A first observation is that, even in this extreme context, the combination
of the trails improves the overall gain of the attack significantly. That is, the
bold plain curves (representing the combined gains) exceed the bold dotted
curves (representing the average gains of single trails - the other curves rep-
resenting all the 128 single-trail experiments). On the other hand, the improve-
ments are not as large as in Figure 5, arguably because in such a small scale
example, the input masks of the different trails are correlated. Also, it is no-
ticeable that for the 9-round case, the gain of the multi-trail attack is similar
to the one of a single-trail attack. This illustrates a context where the key-
dependent signal provided by a single trail is so small that combining 128 mul-
tiple trails is not sufficient to reach a significant gain (since multiple trails can
only be used to amplify an existing signal, here too small for the considered data
complexities).

Summarizing, in the best case, different trails bring independent information,
meaning that using two trails is equivalent to doubling the amount of texts with
a single trail (this is the expectation in multiple linear cryptanalysis [2,9])1. In
practice, these (best) conditions of independence (e.g. for the masks) are not
perfectly respected in our context. But as the previous experiments illustrate for
reduced-round PRESENT, different trails yield useful information, even when
recombining the same set of plaintext with correlated masks. We leave the exact
evaluation of these dependencies as an important scope for further research.

1 Just as it is expected when using multiple fixed values in ext. 2.

134 B. Collard and F.-X. Standaert

4.2 Consequence for the Security of PRESENT-128

The previous section showed experimentally that combining multiple trails can
lead to an improvement of the attack’s gain with constant data complexity.
In this section, we consider the impact of this observation for the security of
PRESENT and quantify the overheads that it causes in terms of time and
memory complexity. In particular, we analyze the possibility to perform a key-
recovery attack exploiting the complete codebook of PRESENT-128.

According to [6], an attack against 24 rounds requires between 257 and 260

texts and the data complexity increases by a factor of 23 for every additional
round. This was experimentally confirmed in Figure 4 for up to 16 rounds. If
we extrapolate these estimations for 7 more rounds, it amounts to a total of
approximately 260+3·7 = 281 texts for 31 rounds, which is more than the whole
codebook. However, using multiple trails, we can decrease this complexity by
extracting more information from a reduced number of texts. For example, using
281/264 = 217 trails with similar distributions as the one in [6] with the whole
codebook - and assuming that they give rise to independent information ! -
should be enough to recover 48 bits of the key with a significant gain.

The time complexity of such an hypothetical attack would be 264 memory
accesses for each trail, meaning 281 memory accesses for all the 217 trails. It
would additionally require 267 bytes to store the codebook. This complexity is
slightly higher than an exhaustive search for 80-bit keys, but is a significant
improvement for a 128-bit key. Also, there is a possible time-memory tradeoff
since one can avoid storing the codebook by re-generating it for each trail.

Again, it is important to emphasize that these complexities are optimistic
compared to what would be observed if experiments could be launched with the
full codebook. This is because they assume that multiple trails bring independent
information. As experimented in the previous section, this is only correct up to a
certain (for now, hard to quantify) extent. Hence, it is necessary to multiply our
estimated time complexities by a constant factor (as it was done with the data
complexities in [6]). These corrective terms should mainly incorporate two effects:
first, the possible correlation between different mask and trails as mentioned
in this section; second, the possible deterioration and key dependencies of the
statistical biases of single trails when the number of rounds increases, due to
the statistical hull effect that we detail in the next section. Since we do not
have a sound theory to analyze this statistical hull effect, and its experimental
evaluation beyond 16 rounds is computationally intensive, we can only conjecture
that the combination of multiple trails can be used to trade data complexity for
time complexity up to a certain level. Yet, it remains that multiple trails improve
the previous results from CT-RSA 2009. And the approximated time complexity
of the hypothetical attack (i.e. 281) is small enough compared to 2128, so that
there is a reasonable chance that it will remain faster than exhaustive key search,
even after the introduction of these corrections. At least, these estimations raise
interesting questions about the number of rounds in PRESENT-128.

Multi-trail Statistical Saturation Attacks 135

5 Statistical Hull Effect

As detailed in Section 4.1, the theoretical data complexities computed following
the transition matrices in Section 2 do not always correspond to our practical
experiments. In this section, we underline one possible reason explaining this
divergence, in relation with the assumption of uniform distributions for the bits
that are not part of the trail. That is, while this assumption is nicely respected
for the input plaintexts, it becomes incorrect as the number of rounds increases.
In fact, this behavior can be related to the statistical hull effect that has been
put forward in the context of linear cryptanalysis. A linear hull describes a set
of linear approximations that share the same input and output masks, but have
different trails and different biases. Consequently, each of these approximations
contributes to the bias of the overall approximation [18]. This phenomenon ex-
plains why linear cryptanalysis can perform better than expected by the theoret-
ical bias evaluated for a particular approximation. Differential cryptanalysis has
a similar concept of differential that is made of several differential characteristics
with the same input and output differences, e.g. described in [14].

Fig. 7. 4-round trails with the same input and output masks

In Statistical Saturation Attacks, an analogous phenomenon can also be ob-
served. Namely, several trails with the same active input and output bits can be
found, each of them having its own specific transition matrix. For example, two
trails with the same input and output masks as the one of Figure 1 are given
in Figure 7. By running our branch-and-bound algorithm, we could find numer-
ous other trails corresponding to this input and output masks, as detailed in
Table 1.

Table 1. Number of trails with the same input and output masks as in Figure 7

#rounds #trails
2 1
3 5
4 54
5 1044

136 B. Collard and F.-X. Standaert

The table directly suggests that the number of such trails increases expo-
nentially with the number of rounds. For a large enough number of trails, it
consequently becomes difficult to estimate their global effect on the distribution
of the output bits. That is, as the trails may be correlated, the combined output
distribution is not a simple combination of the theoretical output distributions
of each trail. This observation can in fact be related to the work of Keliher et
al. [13], in which the estimation of an upper bound for the linear hull effect was
shown to be computationally hard in the number of rounds.

In the context of linear cryptanalysis, such experiments explain why, as the
number of rounds increases, random masks can be almost as effective in recov-
ering a key than a carefully selected trail (as witnessed, e.g. by Vaudenay’s χ2

cryptanalysis [21]). Strong hull effects may also imply key dependencies in the
sense that the behavior of a trail for different keys may not be identical any-
more (hence illustrating that the key equivalence hypothesis first discussed in
[8] would not hold for PRESENT). In our (mainly experimental) setting, we
conjecture that similar effects explain the deviations between the practical gain
of trails having similar deviations from uniform under the assumptions of Sec-
tion 2. However, we note that for a number of trails (e.g. the iterative one in
Figure 1), these assumptions holds nicely. Analyzing the possible differences be-
tween these experimental observations and the ones made in the context of a
linear cryptanalysis in another interesting scope for further research.

6 Conclusion and Further Works

A summary of the published cryptanalysis results against PRESENT is given
in Table 2. It shows that Statistical Saturation Attacks outperform other types
of cryptanalyses (in particular linear and differential) against this cipher. This
is due to the design of its permutation layer. The main outcome of this paper
is to show that the use of multiple trails allows improving the previous result
of CT-RSA 2009. Also, if the assumptions in this paper are verified for larger
number of rounds, the use of multiple-trails could lead to attacks with smaller
time complexity than exhaustive key search against the full PRESENT-128.

As discussed in the previous sections, these estimations have to be considered
with care, which is made explicit with the constant multiplicative factor c that
we give for the time complexities in the table. This situation is similar to the
one in linear cryptanalysis, where the precise estimation of the complexities is
made difficult by the large cardinality of the trails to investigate.

In fact, the situation in the present paper is even more difficult, since we have
to deal with complete distributions rather than scalar bias values. Positively,
the experimental attacks that we performed against reduced number of rounds
confirm our theoretical estimations to a reasonable extent. They at least show a
significant improvement of the attacks when using multiple trails.

While these results do not threaten the practical applications of PRESENT
(especially since it is mainly its 80-bit version that was advertised in [3]), they

Multi-trail Statistical Saturation Attacks 137

Table 2. Summary of attacks (italic are not experimented and use ext. 2, 4.)

#rounds Attack Data compl. Time compl. Memory compl. Ref.
16 SSA c ∗ 236CP 228 MA 216 counters [6]
16 DC 264CP 265 MA 6 ∗ 232 bits [23]
17 RKR 263CP 2104 MA 253 counters [20]
24 SSA c ∗ 260CP 228MA 216 counters [6]
26 LH 264KP 298.7 MA 240 counters [17]
26 MLC 264KP 272 MA 234 bytes [10]
27 MT-SSA 264CP c · 269MA 267 bytes This paper
29 MT-SSA 264CP c · 275MA 267 bytes This paper
31 MT-SSA 264CP c · 281MA 267 bytes This paper

CP-Chosen Plaintext, KP-Known Plaintext, MA-Memory Access
DC-Differential Cryptanalysis, SSA-Statistical Saturation Attack, RKR-Related
Key Rectangle, MLC-Multidimensional Linear Cryptanalysis, LH-Linear Hull

raise interesting open questions. For example, they make a case for designing effi-
cient ciphers in which all the statistical effects that can be exploited in cryptanal-
ysis are taken into account. The decorrelation theory appears as an interesting
alternative in this respect [22]. But most importantly, the present experimental
work implies the need of a better understanding of the statistical saturation at-
tack and its extensions (in particular, ext. 2, i.e. using multiple fixed values in
the trails, and ext. 4, i.e. using multiple trails). This implies providing sound
explanations for the statistical hull and correlation effects between masks and
trails, informally described in this paper. The similarities of our results with
recent works in multidimensional cryptanalysis [9] also need to be investigated.

References

1. Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

2. Biryukov, A., De Cannière, C., Quisquater, M.: On Multiple Linear Approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004)

3. Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M.,
Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007)

4. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the Time Complexity
of Matsui’s Linear Cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007.
LNCS, vol. 4817, pp. 77–88. Springer, Heidelberg (2007)

5. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Experiments on the Multiple Lin-
ear Cryptanalysis of Reduced Round Serpent. In: Nyberg, K. (ed.) FSE 2008.
LNCS, vol. 5086, pp. 382–397. Springer, Heidelberg (2008)

138 B. Collard and F.-X. Standaert

6. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack on the Block Cipher
PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–210.
Springer, Heidelberg (2009)

7. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack on the Block Cipher
PRESENT, Errata and Improvement,
http://www.dice.ucl.ac.be/~fstandae/PUBLIS/62b.pdf

8. Harpes, C., Kramer, G., Massey, J.: A Generalization of Linear Cryptanalysis and
the Applicability of Matsui’s Piling-Up Lemma. In: Guillou, L.C., Quisquater, J.-J.
(eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg (1995)

9. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional Extension of Matsui’s Al-
gorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009)

10. Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. Cryptology ePrint
Archive: Report 2009/397, http://eprint.iacr.org/2009/397

11. Kaliski, B.S., Robshaw, M.J.B.: Linear Cryptanalysis Using Multiple Approxima-
tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer,
Heidelberg (1994)

12. Leander, G.: Small Scale Variants of the Block Cipher PRESENT. IACR ePrint
Archive, http://eprint.iacr.org/2010/143

13. Keliher, L., Meijer, H., Tavares, S.E.: New Method for Upper Bounding the Max-
imum Average Linear Hull Probability for SPNs. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 420–436. Springer, Heidelberg (2001)

14. Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

15. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

16. Minier, M., Gilbert, H.: Stochastic Cryptanalysis of Crypton. In: Schneier, B. (ed.)
FSE 2000. LNCS, vol. 1978, pp. 121–133. Springer, Heidelberg (2001)

17. Nakahara Jr., J., Seperhdad, P., Zhang, B., Wang, M.: Linear (Hull) and Algebraic
Cryptanalysis of the Block Cipher PRESENT. To appear in the proceedings of
CANS 2009, Kanazawa, Japan (December 2009)

18. Nyberg, K.: Linear Approximation of Block Ciphers. In: De Santis, A. (ed.) EU-
ROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

19. Ohkuma, K.: Weak Keys of Reduced-Round PRESENT for Linear Cryptanaly-
sis. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 249–265. Springer, Heidelberg (2009)

20. Özen, O., Varici, K., Tezcan, C.: Lightweight Block Ciphers Revisited: Cryptanal-
ysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., González Nieto, J.
(eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg (2009)

21. Vaudenay, S.: An Experiment on DES Statistical Cryptanalysis. In: The proceed-
ings of the third ACM Conference on Computer and Communications Security
(CCS 1996), New Delhi, India, pp. 139–147. ACM, New York (1996)

22. Vaudenay, S.: Decorrelation: A Theory for Block Cipher Security. Journal of Cryp-
tology 16(4), 249–286 (2003)

23. Wang, M.: Differential Cryptanalysis of Reduced-Round PRESENT. In: Vaudenay,
S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg
(2008)

http://www.dice.ucl.ac.be/~fstandae/PUBLIS/62b.pdf
http://eprint.iacr.org/2009/397
http://eprint.iacr.org/2010/143

Multiset Collision Attacks on Reduced-Round
SNOW 3G and SNOW 3G⊕

Alex Biryukov, Deike Priemuth-Schmid, and Bin Zhang

University of Luxembourg
{alex.biryukov,deike.priemuth-schmid,bin.zhang}@uni.lu

Abstract. The stream cipher SNOW 3G designed in 2006 by ETSI/SA-
GE is a base algorithm for the second set of 3GPP confidentiality and
integrity algorithms. In this paper we study the resynchronization mech-
anism of SNOW 3G and of a similar cipher SNOW 3G⊕ using multiset
collision attacks. For SNOW 3G we show a simple 13-round multiset dis-
tinguisher with complexity of 28 steps. We show full key recovery chosen
IV resynchronization attacks for up to 18 out of 33 initialization rounds
of SNOW3G⊕ with a complexity of 257 to generate the data and 253

steps of analysis.

Keywords: Stream ciphers, SNOW 3G, Resynchronization attack.

1 Introduction

The SNOW 3G stream cipher is the core of the 3GPP confidentiality and in-
tegrity algorithms UEA2 and UIA2, published in 2006 by the 3GPP Task Force
[5]. Compared to its predecessor, SNOW 2.0 [4], SNOW 3G adopts a finite state
machine (FSM) of three 32-bit words and 2 S-Boxes to increase the resistance
against algebraic attacks by Billet and Gilbert [2]. Full evaluation of the design
by the consortium is not public, but a survey of this evaluation is given in [6].
SNOW 3G⊕ (in which the two modular additions are replaced by xors) is also
defined and evaluated in this document. The designers and external reviewers
show that SNOW 3G has remarkable resistance against linear distinguishing
attacks [7,8], while SNOW 3G⊕ offers much better resistance against algebraic
attacks.

In this paper we analyze the resynchronization mechanizm of SNOW 3G and
SNOW 3G⊕ using multiset collision attacks. This technique has proved itself
useful against AES [3] but to the best of our knowledge has not been used yet
for the analysis of the key-IV setup of stream ciphers. It seems natural to apply
this technique to SNOW 3G since its finite state machine (FSM) is essentially
a 96-bit AES like cipher in which the LFSR plays a role of a key-schedule. This
picture is complicated by the fact that there is a feedback from the FSM to the
LFSR during the setup phase (a feature never present in block ciphers) and that
the attacker sees only 32-bits of output at a time, while the internal state keeps
changing constantly.

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 139–153, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

140 A. Biryukov, D. Priemuth-Schmid, and B. Zhang

We start by showing a very efficient multiset distinguisher for 13-round SNOW
3G with complexity of 28 steps. We then switch to the analysis of SNOW 3G⊕

which is a very good model for the main features of SNOW 3G, since its analysis
is not blurred by the presence of carries. We have found an attack on up to 18-
rounds (out of 33) with a complexity of 257 to generate the data and 253 steps
of analysis. In this attack for the first 10 rounds the multiset propagates for free
since we put it in the most significant byte of the IV word IV0. It enters the FSM
at the 11th round. Strong cancellations due to balanced properties of multisets
stop to be useful after 15 rounds and we have to resort to multiset collision
techniques which can allow us to go three more rounds deeper. Multisets still
help us to cancel out the keystream words out of the keystream equation, which
are an obstacle for a simple differential analysis at this depth. This attack is very
technical and is more involved than attacks of similar type on block ciphers. We
have experimentally verified the crucial parts of our attacks.

This paper is organized as follows. We give a description of SNOW 3G and
SNOW 3G⊕ in Section 2. The multiset collision chosen IV attacks on round-
reduced SNOW3G and SNOW 3G⊕ are presented in Section 3. Finally, some
conclusions are given in Section 4.

2 Description of SNOW 3G and SNOW 3G⊕

The SNOW 3G stream cipher uses a 128-bit key and a 128-bit IV, considered as
four 32-bit words vectors. It consists of a linear feedback shift register (LFSR)
of 16 32-bit words and a finite state machine (FSM) with three 32-bit words,
shown in Figure 1. Here ’⊕’ denotes the bit-wise xor and ’�’ denotes the addition
modulo 232. The feedback word of the LFSR is recursively computed as

st+1
15 = α−1 · st

11 ⊕ st
2 ⊕ α · st

0,

where α is the root of the GF (28)[x] polynomial x4+β23x3+β245x2+β48x+β239

with β being the root of the GF (2)[x] polynomial x8 + x7 + x5 + x3 + 1. The
FSM has two input word st

5 and st
15 from the LFSR and is updated as follows.

Rt
3 = S2(Rt−1

2), Rt
2 = S1(Rt−1

1), Rt
1 = Rt−1

2 � (Rt−1
3 ⊕ st−1

5),

and output F t = (st
15 � Rt

1)⊕Rt
2, where S1 and S2 are 32-bit to 32-bit S-boxes

defined as compositions of 4 parallel applications of two 8-bit to 8-bit small S-
boxes, SR and SQ, with a linear diffusion layer respectively. Here SR is the well
known AES S-box and SQ is defined as SQ(x) = x⊕x9⊕x13⊕x15⊕x33⊕x41⊕
x45 ⊕ x47 ⊕ x49 ⊕ 0x25 for x ∈ GF (28) defined by x8 + x6 + x5 + x3 + 1. If we
decompose a 32-bit word B into four bytes B = B0‖B1‖B2‖B3 with B0 being
the most and B3 the least significant bytes, then

Si(B) = MCi ·

⎛⎜⎜⎝
SR(B0)
SR(B1)
SR(B2)
SR(B3)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2 1 1 3
3 2 1 1
1 3 2 1
1 1 3 2

⎞⎟⎟⎠
i

·

⎛⎜⎜⎝
SR(B0)
SR(B1)
SR(B2)
SR(B3)

⎞⎟⎟⎠ , (i = 1, 2)

Multiset Collision Attacks on Reduced-Round SNOW 3G and SNOW 3G⊕ 141

s2

α−1

S1

α

zt
FSM

R2 S2 R3R1

s15 s11 s0s5

Fig. 1. Keystream generation of SNOW 3G

where MC1 is the AES mix-column for S1 over GF (28) defined by x8 + x4 +
x3 + x + 1 and MC2 is the similar operation for S2 over GF (28) defined by
x8 + x6 + x5 + x3 + 1.

SNOW 3G is initialized with the key K = (k0, k1, k2, k3) and the IV =
(IV0, IV1, IV2, IV3) as follows. Let 1 be the all-one word, first load the LFSR as
follows.

s15 = k3 ⊕ IV0 s14 = k2 s13 = k1 s12 = k0 ⊕ IV1
s11 = k3 ⊕ 1 s10 = k2 ⊕ 1⊕ IV2 s9 = k1 ⊕ 1⊕ IV3 s8 = k0 ⊕ 1
s7 = k3 s6 = k2 s5 = k1 s4 = k0
s3 = k3 ⊕ 1 s2 = k2 ⊕ 1 s1 = k1 ⊕ 1 s0 = k0 ⊕ 1

.

The FSM is initialized with R1 = R2 = R3 = 0. Then run the cipher 32 times
with the FSM output F xored to the feedback of the LFSR and no keystream
generated. After this, the cipher is switched into the keystream generation mode,
but the first keystream word is discarded. Hence, there are 33 initialization
rounds. The keystream word generated at clock t is

SNOW 3G: zt = st
0 ⊕ F t = (st

15 � Rt
1)⊕Rt

2 ⊕ st
0 (1)

SNOW 3G⊕: zt = st
0 ⊕ F t = st

15 ⊕Rt
1 ⊕Rt

2 ⊕ st
0 (2)

If we replace the two modulo additions in SNOW 3G by xors, we get SNOW
3G⊕.

3 Chosen IV Attacks on Reduced Round SNOW 3G and
SNOW 3G⊕

In this section, we evaluate the security margin of SNOW 3G and SNOW 3G⊕

against chosen IV attacks. Our results are listed in Table 1.

142 A. Biryukov, D. Priemuth-Schmid, and B. Zhang

Table 1. Our results on SNOW 3G and SNOW 3G⊕

Cipher Round Data Time Type
SNOW 3G 13 28 28 distinguisher

SNOW 3G⊕ 14 28 28 distinguisher
SNOW 3G⊕ 14 212.1 227 full key recovery
SNOW 3G⊕ 15 232.1 232.4 partial state recovery
SNOW 3G⊕ 18 257 253 full key recovery

3.1 Distinguishing Attack on 13-Round SNOW 3G

We first look at SNOW 3G with 13-round initializations. For each secret key
K, we randomly choose an IV and make a multiset at the most significant byte
IV 0

0 of the most significant word IV0 such that it takes all the byte values in
[0, 255] exactly once. From the key/IV loading of SNOW 3G, we known that
the multiset difference is introduced in the most significant byte of s15. Now we
trace the multiset difference propagation in the 19 registers during the 13 rounds
of initialization, which is shown in Table 2. The differences at round i are the
differences at the end of the corresponding round.

Here we actually have 256 IV s associated with the same key. Denote the first
keystream word generated by (K, IV) when IV 0

0 = i by zi,0 and denote the
corresponding content in the j-th LFSR cell by si,j , then we have

255⊕
i=0

zi,0 =
255⊕
i=0

(si,0 ⊕Ri,2)⊕
255⊕
i=0

(si,15 � Ri,1) =
255⊕
i=0

(si,15 � Ri,1).

From Table 2, the least significant bit is always 0. To show that this property
holds for the other 7 bits in the least significant byte, it suffices to note that the
least significant bytes of R1 forms an permutation set, while the least significant
bytes of si,15 are the same, so by lemma 2 in [1], the least significant byte of⊕255

i=0 zi,0 is always 0. In experiments, we randomly choose 26 IV s to check this
property. For each chosen IV , we make a multiset attack as above and calculate⊕255

i=0 zi,0. We found that the least significant byte of this sum is always 0. This
gives a very simple distinguishing attack of complexity 28 IV’s and key-stream
words for 13-round SNOW 3G. We expect that this attack can be extended into
a key recovery attack on 14-round SNOW 3G, but we preferred to concentrate
on breaking more rounds of SNOW 3G⊕ instead.

3.2 Distinguishing Attack on 14-Round SNOW 3G⊕

The above distinguisher can be extended by several rounds in SNOW 3G⊕. For
each secret key K, we also randomly choose an IV and make a multiset at the
most significant byte IV 0

0 of the most significant word IV0 such that it takes all
the byte values in [0, 255] exactly once. The multiset difference propagation is
formally derived in Table 6 in Appendix A, where Δi = i denotes the difference
in IV 0

0 for i = 0, · · · , 255. From that table, we can see that until round 11, the

Multiset Collision Attacks on Reduced-Round SNOW 3G and SNOW 3G⊕ 143

Table 2. Multiset sum propagation in 13-round initialization of SNOW 3G. (? indicates
that the sum in this byte takes some random value and 0 means that the corresponding
sum is 0).

s15 s14 s13 s12 s11 s10 s9 s8 sj: (0≤j≤7) R1 Ri: (i=2,3)

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
.
.
.

...
...

...
...

...
5 0 0 0 0 0 0 0 0 0 0 0

6 ?000 0
...

...
...

...
...

...
...

...
...

7 ?000 ?000 0
...

...
...

...
...

...
...

...

8 ?000 ?000 ?000 0
...

...
...

...
...

...
...

9 ?000 ?000 ?000 ?000 0
...

...
...

...
...

...

10 ?000 ?000 ?000 ?000 ?000 0
...

...
...

...
...

11 ??00 ?000 ?000 ?000 ?000 ?000 0
...

...
...

...

12 ??00 ??00 ?000 ?000 ?000 ?000 ?000 0
... 0

...
13 0?00 ??00 ??00 ?000 ?000 ?000 ?000 ?000 0 ???0 0

difference Δi will not affect the memory registers Ri (i = 1, 2, 3). Hence, at the
end of round 10, the contents in Ri (i = 1, 2, 3) are three unknown constants not
depending on IV0 and the difference Δi. Let the unknown constant in Ri be ci

for i = 1, 2, 3. Table 3 shows the contents evolution process in the three memory
registers. We have the following theorem:

Theorem 1. If there are 14 initialization rounds in SNOW 3G⊕ and the mul-
tiset is taken at IV 0

0 , then
⊕255

i=0 zi,0 = (2a, 3a, a, a) with a ∈ [0, 255].

Proof. From the line 14 of Table 3 and the keystream equation (2), we have

255⊕
i=0

zi,0 =
255⊕
i=0

(si,0 ⊕Ri,2 ⊕ si,15 ⊕Ri,1) =
255⊕
i=0

(Ri,1 ⊕Ri,2)

=
255⊕
i=0

(Bi,13 ⊕ Ci,13 ⊕ s18 ⊕Δi)⊕
255⊕
i=0

MC1[S1(A13 ⊕Δi)].

Note that there is only one active byte in IV0, so we have
⊕255

i=0 Bi,13 = 0,⊕255
i=0 Ci,13 = 0 by Lemma 2 in [1]. Since ∀i, si,18 = s18, we have

⊕255
i=0 s18 = 0.

Thus,
⊕255

i=0 zi,0 =
⊕255

i=0 MC1[S1(A13 ⊕ Δi)] = MC1 ·
⊕255

i=0[S1(A13 ⊕ Δi)].
Expanding

⊕255
i=0[S1(Ai,13 ⊕Δi)], we have

144 A. Biryukov, D. Priemuth-Schmid, and B. Zhang

Table 3. The contents evolution process of the memory registers during the 10 − 17
initializations round of SNOW 3G⊕. (Ai, Bi and Ci are the contents in R1, R2 and R3

for i ≥ 11 with Ai being the content when Δi = 0. * denotes permutation property of
the values, c denotes constant property, ? denotes property to be determined, b denotes
balanced property).

R1 R2 R3

10 c1 c2 c3
11 c2 ⊕ c3 ⊕ k3 MC1[S1(c1)] MC2[S2(c2)]

⊕IV0 ⊕Δi

(∗, c, c, c) (c, c, c, c) (c, c, c, c)
12 B11 ⊕ C11 MC1[S1(A11 ⊕Δi)] MC2[S2(B11)]

⊕s16 ⊕Δi

(∗, c, c, c) (∗, ∗, ∗, ∗) (c, c, c, c)
13 B12 ⊕ C12 MC1[S1(A12 ⊕Δi)] MC2[S2(B12)]

⊕s17 ⊕Δi

(b, ∗, ∗, ∗) (∗, ∗, ∗, ∗) (b, b, b, b)
14 B13 ⊕ C13 MC1[S1(A13 ⊕Δi)] MC2[S2(B13)]

⊕s18 ⊕Δi

(b, b, b, b) (?, ?, ?, ?) (b, b, b, b)
15 B14 ⊕ C14 MC1[S1(A14 ⊕Δi)] MC2[S2(B14)]

⊕s19 ⊕Δi

16 B15 ⊕ C15 ⊕ s20 MC1[S1(A15 ⊕Δi)] MC2[S2(B15)]
⊕Δi ⊕ α−1Δi

17 B16 ⊕ C16 ⊕ s21 MC1[S1(A16 ⊕Δi ⊕ α−1Δi)] MC2[S2(B16)]
⊕Δi

255⊕
i=0

S1(A13 ⊕Δi) =
255⊕
i=0

S1
(
s17 ⊕ C12 ⊕Δi ⊕MC1[S1(A11 ⊕Δi)]

)
, (3)

where A11 = c2 ⊕ c3 ⊕ k3 ⊕ IV0. From (3) and Table 4, we can see that s17, C12
and A11 do not dependent on Δi. Let A11 = A0

11‖A1
11‖A2

11‖A3
11 and s17⊕C12 =

m0‖m1‖m2‖m3, then we have the byte equations:
255⊕
i=0

SR[2SR(A0
11 ⊕Δi) ⊕ SR(A1

11) ⊕ SR(A2
11) ⊕ 3SR(A3

11) ⊕m0 ⊕Δi] = a (4)

255⊕
i=0

SR[3SR(A0
11 ⊕Δi) ⊕ 2SR(A1

11) ⊕ SR(A2
11) ⊕ SR(A3

11) ⊕m1] = 0 (5)

255⊕
i=0

SR[SR(A0
11 ⊕Δi) ⊕ 3SR(A1

11) ⊕ 2SR(A2
11) ⊕ SR(A3

11) ⊕m2] = 0 (6)

255⊕
i=0

SR[SR(A0
11 ⊕Δi) ⊕ SR(A1

11) ⊕ 3SR(A2
11) ⊕ 2SR(A3

11) ⊕m3] = 0 (7)

It is easy to see that (5), (6) and (7) equal to 0 for any value of its inputs, while the
value of (4) is dependent on the input value. Let (3) = a, by passing the vector
(a, 0, 0, 0) through the MC1 we finish the proof. �

Multiset Collision Attacks on Reduced-Round SNOW 3G and SNOW 3G⊕ 145

Theorem 1 shows that the four sub-bytes of
⊕255

i=0 zi,0 are correlated. In experi-
ments, we randomly choose 26 IV s to verify it. We found that Theorem 1 holds
all the time. This property is a distinguisher with a complexity of 28 steps, given
1 keystream word for each IV .

3.3 Key Recovery Attack on 14-Round SNOW 3G⊕

The above distinguisher can be converted into a key recovery attack on 14-round
SNOW 3G⊕. It works as follows. From Theorem 1, we have

255⊕
i=0

SR[2SR(A0
11 ⊕Δi)⊕ SR(A1

11)⊕ y(0)⊕Δi] =
255⊕
i=0

z3
i,0, (8)

where y(0) = SR(A2
11) ⊕ 3SR(A3

11) ⊕m0. To solve it, we randomly choose two
other IV s, IV ′ and IV ′′, such that

1. IV ′
r = IV ′′

r = IVr for r = 1, 2, 3.
2. IV

′r
0 = IV r

0 for r = 0, 2, 3.
3. IV

′1
0 = IV 1

0 ⊕ β1.
4. IV

′′r
0 = IV r

0 for r = 0, 2, 3.
5. IV

′′1
0 = IV 1

0 ⊕ β2.

with βi ∈ GF (28) for i = 1, 2. For IV ′ and IV ′′, we also make a multiset
at the corresponding most significant byte. Our observation is that for such
chosen IV s, we can derive similar equations to (8) due to the linearity of A11 =
c2 ⊕ c3 ⊕ k3 ⊕ IV0, A′

11 = c2 ⊕ c3 ⊕ k3 ⊕ IV ′
0 and A′′

11 = c2 ⊕ c3 ⊕ k3 ⊕ IV ′′
0 :

255⊕
i=0

SR[2SR(A0
11 ⊕Δi) ⊕ SR(A1

11 ⊕ β1) ⊕ y(β1) ⊕Δi] =
255⊕
i=0

z
′3
i,0 (9)

255⊕
i=0

SR[2SR(A0
11 ⊕Δi) ⊕ SR(A1

11 ⊕ β2) ⊕ y(β2) ⊕Δi] =
255⊕
i=0

z
′′3
i,0 , (10)

where y(β1) = y(β2) = y(0) according to the conditions 2 and 4. From (8)−(10),
we can derive A1

11 with 224 steps. It is interesting to note that we cannot restore
A0

11 and y(0) together with A1
11 from (8) − (10). The reason is that (8) − (10)

cannot be regraded as random equations, which is supported by extensive exper-
iments. Note that the information we recovered is the byte where we introduce
the difference βi. In order to determine other bytes of A11, we just shift the byte
position where the difference βi is introduced to Ar

11(r = 2, 3). Thus, we will get
equations looking like

255⊕
i=0

SR[2SR(A0
11 ⊕Δi) ⊕ SR(A1

11) ⊕ SR(A2
11 ⊕ γj) ⊕ 3SR(A3

11) ⊕m0 ⊕Δi] =
255⊕
i=0

z3
i,0

255⊕
i=0

SR[2SR(A0
11 ⊕Δi) ⊕ SR(A1

11) ⊕ SR(A2
11) ⊕ 3SR(A3

11 ⊕ δj) ⊕m0 ⊕Δi] =
255⊕
i=0

z3
i,0

146 A. Biryukov, D. Priemuth-Schmid, and B. Zhang

for randomly chosen γj , δj ∈ GF (28) (j = 1, 2, 3), from which we can recover
A2

11 and A3
11. We can determine A0

11 by shifting the multiset position to another
byte and introduce the byte differences at A0

11. Thus, we will get

255⊕
i=0

SR[3SR(A0
11 ⊕ ξj) ⊕ 2SR(A1

11 ⊕Δi) ⊕ SR(A2
11) ⊕ SR(A3

11) ⊕m1 ⊕Δi] =
255⊕
i=0

z0
i,0

for randomly chosen ξj ∈ GF (28)(j =1, 2, 3). In this case,
⊕255

i=0 zi,0=(a, 2a, 3a, a)
with a ∈ GF (28).

Next, we can restore s17 ⊕ C12 by substituting Ai
11 (i = 0, 1, 2, 3) into the

solution set of (8)−(10), identifying the corresponding variable and determining
mi. To make a full key recovery, we need to look at the second keystream word
and derive the following byte equations:

255⊕
i=0

SR[s018 ⊕Δi ⊕ 2f0 ⊕ f1 ⊕ f2 ⊕ 3f3︸ ︷︷ ︸
MC2

⊕ 2SR(A0
12 ⊕Δi) (11)

⊕ SR(A1
12 ⊕ αj) ⊕ SR(A2

12) ⊕ 3SR(A3
12)] =

255⊕
i=0

z0
i,1 ⊕

255⊕
i=0

z3
i,0

255⊕
i=0

SR[s118 ⊕ αj ⊕ 3f0 ⊕ 2f1 ⊕ f2 ⊕ f3︸ ︷︷ ︸
MC2

⊕ 3SR(A0
12 ⊕Δi) (12)

⊕ 2SR(A1
12 ⊕ αj) ⊕ SR(A2

12) ⊕ SR(A3
12)] =

255⊕
i=0

z1
i,1

255⊕
i=0

SR[s218 ⊕ f0 ⊕ 3f1 ⊕ 2f2 ⊕ f3︸ ︷︷ ︸
MC2

⊕ SR(A0
12 ⊕Δi) (13)

⊕ 3SR(A1
12 ⊕ αj) ⊕ 2SR(A2

12) ⊕ SR(A3
12)] =

255⊕
i=0

z2
i,1

255⊕
i=0

SR[s318 ⊕ f0 ⊕ f1 ⊕ 3f2 ⊕ 2f3︸ ︷︷ ︸
MC2

⊕ SR(A0
12 ⊕Δi) (14)

⊕ SR(A1
12 ⊕ αj) ⊕ 3SR(A2

12) ⊕ 2SR(A3
12)] =

255⊕
i=0

z3
i,1,

where

f0 = SQ(2SR(A0
11 ⊕Δi) ⊕ SR(A1

11 ⊕ αj) ⊕ SR(A2
11) ⊕ 3SR(A3

11)) (15)

f1 = SQ(3SR(A0
11 ⊕Δi) ⊕ 2SR(A1

11 ⊕ αj) ⊕ SR(A2
11) ⊕ SR(A3

11)) (16)

f2 = SQ(SR(A0
11 ⊕Δi) ⊕ 3SR(A1

11 ⊕ αj) ⊕ 2SR(A2
11) ⊕ SR(A3

11)) (17)

f3 = SQ(SR(A0
11 ⊕Δi) ⊕ SR(A1

11 ⊕ αj) ⊕ 3SR(A2
11) ⊕ 2SR(A3

11)) (18)

for randomly chosen αj (j = 1, 2, 3). Since A11 is known, we can recover A0
12, A1

12
and SR(A2

12)⊕ 3SR(A3
12) ⊕ s0

18 from (11) by the three equations corresponding
to αj (j = 1, 2, 3). Shifting the byte position of αj and the multiset position

Multiset Collision Attacks on Reduced-Round SNOW 3G and SNOW 3G⊕ 147

Δi to the other positions, we can derive A2
12, A3

12 in a similar manner. After
obtaining A12, we can restore s18 by (11)− (14), which is a linear combination
of the internal states after initialization. Then we proceed in the same way as
above to look at the next 15 keystream words and derive 16 linear equations on
the internal states of LFSR after the key/IV setup. Solving this linear system
will yield the initial internal state of the LFSR. The values of the three memory
registers can be recovered from A11, A12 and s17 ⊕ C12 according to Table 4.
Then we can run the cipher backwards to recover the secret key since all the
steps here are invertible.

The total complexity of the above attack is 4 · 224 + 4 · 28 + 4 · 224 + 4 · 28 ≈
227 steps and 17 keystream words for each IV . We also made experiments to
verify the attack. The experiments show that there are exactly 256 solutions to
(7) − (9) with a common A1

11 and (10) − (13) behaves like random equations.
From (10)− (13), we always recover A12 and s18 correctly.

3.4 Key Recovery Attack on 15-Round SNOW 3G⊕

In this and the following subsections, we extend previous ideas and combine
them with the Gilbert-Minier [3] like ideas of functional collisions in order to
cover more rounds of SNOW 3G⊕.

For 15-round SNOW 3G⊕, from the first keystream word we have:

255⊕
i=0

MC1[S1(s17 ⊕ C12 ⊕Δi ⊕MC1[S1(A11 ⊕Δi)])]⊕
255⊕
i=0

MC1[S1(s18

⊕Δi ⊕MC2[S2(MC1[S1(A11 ⊕Δi)])]⊕MC1[S1(A12 ⊕Δi)])] =
255⊕
i=0

zi,0.

Note that the first term B14 =
⊕255

i=0 MC1[S1(s17 ⊕ C12 ⊕Δi ⊕MC1[S1(A11 ⊕
Δi)])] has a special pattern (2a, 3a, a, a) with unknown a. Denote the inverse of
MC1 by MC−1

1 , we have

255⊕
i=0

S1(s18⊕Δi⊕MC2[S2(B12)]⊕MC1[S1(A12⊕Δi)]) = MC−1
1 (

255⊕
i=0

zi,0⊕B14).

(19)
Expanding (19) to byte equations, we have

255⊕
i=0

SR[s0
18 ⊕Δi ⊕ 2f0 ⊕ f1 ⊕ f2 ⊕ 3f3︸ ︷︷ ︸

MC2

⊕ 2SR(A0
12 ⊕Δi) (20)

⊕ SR(A1
12 ⊕ ηj)⊕ SR(A2

12)⊕ 3SR(A3
12)] = kc0

j ⊕ a

255⊕
i=0

SR[s1
18 ⊕ ηj ⊕ 3f0 ⊕ 2f1 ⊕ f2 ⊕ f3︸ ︷︷ ︸

MC2

⊕ 3SR(A0
12 ⊕Δi) (21)

⊕ 2SR(A1
12 ⊕ ηj)⊕ SR(A2

12)⊕ SR(A3
12)] = kc1

j

148 A. Biryukov, D. Priemuth-Schmid, and B. Zhang

255⊕
i=0

SR[s2
18 ⊕ f0 ⊕ 3f1 ⊕ 2f2 ⊕ f3︸ ︷︷ ︸

MC2

⊕ SR(A0
12 ⊕Δi) (22)

⊕ 3SR(A1
12 ⊕ ηj)⊕ 2SR(A2

12)⊕ SR(A3
12)] = kc2

j

255⊕
i=0

SR[s3
18 ⊕ f0 ⊕ f1 ⊕ 3f2 ⊕ 2f3︸ ︷︷ ︸

MC2

⊕ SR(A0
12 ⊕Δi) (23)

⊕ SR(A1
12 ⊕ ηj)⊕ 3SR(A2

12)⊕ 2SR(A3
12)] = kc3

j ,

where kcj = MC−1
1 ·
⊕255

i=0 zi,0 corresponding to ηj , fi (0 ≤ i ≤ 3) defined in
(15)− (18) and ηj (1 ≤ j ≤ t) are randomly chosen byte differences with t to be
determined. Our first observation is that there is no unknown variables on the
right hand of (21)− (23), so these equations can be used directly to restore the
involving variables. However, if we try to solve (21) by exhaustively searching
all the possible values of A11, A0

12, A1
12 and s1

18 ⊕ S1(A2
12) ⊕ S1(A3

12), we need
to choose t = 7 and the time complexity is 256 steps. In order to get an efficient
attack, we proceed as follows.

We regard the left part of (21) as a function of the following variables: A11,
A0

12, A1
12 and s1

18⊕SR(A2
12)⊕SR(A3

12). Note that there are 7 bytes involved here
and if these bytes take the same value for two independent IV s, the outputs of
(21) should be equal. In order to detect such an internal collision, we randomly
choose a series of byte differences ηj (1 ≤ j ≤ t) and compare the corresponding
output kc1

j . If a pair of IV , IV and IV ′, passes all the t tests, i.e., the outputs of
(21) remain the same for ηj (1 ≤ j ≤ t), we can conclude with high probability
that the 7 bytes involved in the two equations have the same value for IV and
IV ′.

More precisely, given 228 (K, IVi)s such that

∀i �= j, (IVi)r = (IVj)r for r = 2, 3. (24)

∀i �= j, (IVi)r �= (IVj)r for r = 0, 1. (25)

will guarantee that there exists such a pair. To filter out the wrong candidates,
we choose t = 8. A wrong candidate will pass 8 consecutive tests with probability
256 · 2−64 = 2−8 which is less than 1, while the correct candidate will always
pass the tests. We use the standard birthday paradox argument to detect such
a pair, the time complexity is about 228 · 8 = 231 steps. Now we have two IV s,
IV and IV ′, that generate the same input values for (21), i.e.,

– A11 = A′
11, A0

12 = A
′0
12, A1

12 = A
′1
12.

– s1
18 ⊕ SR(A2

12)⊕ SR(A3
12) = s

′1
18 ⊕ SR(A

′2
12)⊕ SR(A

′3
12).

We need to investigate the value evolution process of the memory registers in the
first 10 rounds of initialization to derive the state information, which is shown
in Table 4. In Table 4, ci (i = 1, 2, 3) are the same variables as those in Table 3.

We have the following facts on Table 4 when the (K, IVi) pair are chosen
according to the conditions (24) and (25):

Multiset Collision Attacks on Reduced-Round SNOW 3G and SNOW 3G⊕ 149

Table 4. The value evolution process of the memory registers in the first 10-round
initialization of SNOW 3G⊕ (hi (i = 1, 2, 3) are known constants)

Ai Bi Ci

0 0 0 0
1 k1 h1 h2

2 k2 ⊕ h1 ⊕ h2 MC1[S1(k1)] h3

3 h3 ⊕ k3 ⊕MC1[S1(k1)] MC1[S1(A2)] MC2[S2(B2)]
4 B3 ⊕ C3 MC1[S1(A3)] MC2[S2(B3)]

⊕k0 ⊕ 1
5 B4 ⊕ C4 MC1[S1(A4)] MC2[S2(B4)]

⊕k1 ⊕ 1 ⊕ IV3

6 B5 ⊕ C5 MC1[S1(A5)] MC2[S2(B5)]
⊕k2 ⊕ 1 ⊕ IV2

7 B6 ⊕ C6 MC1[S1(A6)] MC2[S2(B6)]
⊕k3 ⊕ 1

8 B7 ⊕ C7 MC1[S1(A7)] MC2[S2(B7)]
⊕k0 ⊕ IV1

9 B8 ⊕ C8 ⊕ k1 MC1[S1(A8)] MC2[S2(B8)]
10 B9 ⊕ C9 ⊕ k2︸ ︷︷ ︸ MC1[S1(A9)]︸ ︷︷ ︸ MC2[S2(B9)]︸ ︷︷ ︸

c1 c2 c3
11 c2 ⊕ c3 ⊕ k3 MC1[S1(c1)] MC2[S2(c2)]

⊕IV0 ⊕Δi

12 B11 ⊕ C11 MC1[S1(A11 ⊕Δi)] MC2[S2(B11)]
⊕s16 ⊕Δi

R1 R2 R3

1. A4 = A′
4, B4 = B′

4 and C4 = C′
4, which are only determined by K.

2. Ai = A′
i, Bi = B′

i and Ci = C′
i for i = 5, 6, 7.

3. A8 ⊕A′
8 = IV1 ⊕ IV ′

1 , B8 = B′
8 and C8 = C′

8.
4. A9 = A′

9, C9 = C′
9.

5. A10 ⊕A′
10 = c1 ⊕ c′1 = MC1[S1(A8)]⊕MC1[S1(A′

8)].
6. B10 = B′

10, i.e., c2 = c′2.

From Table 4, A11 = c2⊕c3⊕k3⊕IV0 and A11 = A′
11, we have c3⊕c′3 = IV0⊕IV ′

0 ,
i.e.,

S2(MC1[S1(A8)])⊕ S2(MC1[S1(A′
8)]) = MC−1

2 · (IV0 ⊕ IV ′
0). (26)

We can determine A8 and A′
8 from (26) and A8⊕A′

8 = IV1⊕IV ′
1 with 232 steps.

Knowing A8 and A′
8, we can derive c3 and c′3. So far, we have partially recovered

the internal states corresponding to IV and IV ′.

3.5 Key Recovery Attack on 18-Round SNOW 3G⊕

Now we skip the 16 and 17 rounds case, since they are similar and go directly to
the 18-round. Let us denote F = MC1[S1(·)], G = MC2[S2(·)] and H = G[F (·)],
then from the first keystream word, we have:

150 A. Biryukov, D. Priemuth-Schmid, and B. Zhang

255⊕
i=0

F [s20 ⊕ α−1Δi ⊕Δi ⊕H(s17 ⊕ C12 ⊕Δi ⊕ F (A11 ⊕Δi))⊕ F (s18⊕ (27)

H(A11 ⊕Δi)⊕ F (A12 ⊕Δi)]⊕
255⊕
i=0

H(s19 ⊕Δi ⊕H(A12 ⊕Δi)⊕ F (s17

⊕ C12 ⊕Δi ⊕ F (A11 ⊕Δi))⊕
255⊕
i=0

F (s21 ⊕Δi ⊕H(s18 ⊕Δi ⊕H(A11

⊕Δi)⊕ F (A12 ⊕Δi))⊕ F (s19 ⊕Δi ⊕H(A12 ⊕Δi))⊕ F (s17 ⊕ C12⊕

Δi ⊕ F (A11 ⊕Δi)) =
255⊕
i=0

zi,0.

Here by using multisets, we get rid of the LFSR words, s33 and s18, involved
in the keystream equations. Of these, s33 is the main obstacle to a differential
analysis of the keystream equation. To have an intuitive view, we color the
repeating patterns of variables in the left side of (23) in the same color. Note
that we can control the values of s17, s18, s19, s20 and s21 by properly choosing
the IV s. From the following equations (28)− (33),

s16 = α−1(k3 ⊕ 1)⊕ (k2 ⊕ 1)⊕ α(k0 ⊕ 1)⊕ k3 ⊕ IV0 (28)

s17 = α−1(k0 ⊕ IV1)⊕ (k3 ⊕ 1)⊕ α(k1 ⊕ 1)⊕ k1 ⊕ s16 ⊕ h1 (29)

s18 = α−1k1 ⊕ k0 ⊕ α(k2 ⊕ 1)⊕ k2 ⊕ F (k1)⊕ h1 ⊕ h2 ⊕ s17 (30)

s19 = α−1k2 ⊕ k1 ⊕ α(k3 ⊕ 1)⊕ k3 ⊕ F (k1)⊕ F (k2 ⊕ h1 ⊕ h2) (31)
⊕ h3 ⊕ s18

s20 = α−1(k3 ⊕ IV0)⊕ k2 ⊕ αk0 ⊕ F (k2 ⊕ h1 ⊕ h2)⊕H(k2)⊕ (k0 ⊕ 1) (32)
⊕ F (k3 ⊕ h3 ⊕ F (k1))⊕ s19

s21 = α−1s16 ⊕ k3 ⊕ αk1 ⊕ k1 ⊕ 1⊕ IV3 ⊕ F (k3 ⊕ F (k1))⊕H(k2) (33)
⊕ F (A4)⊕ s20.

we know that if we choose IV and IV ′ such that: IV3 = IV ′
3 and

α−1(IV1 ⊕ IV ′
1)⊕ (IV0 ⊕ IV ′

0) = 0,

then, we have s17 = s′17, s18 = s′18, s19 = s′19, s21 = s′21 and s20 ⊕ s′20 =
α−1(IV0 ⊕ IV ′

0). If we undo the MC1 on both sides of (27), we can see that in
order to have a collision on the involved variables of the left side of (27), we need
the following 32-bit conditions:

C12 = C′
12. (34)

A11 = A′
11. (35)

A12 = A′
12. (36)

Multiset Collision Attacks on Reduced-Round SNOW 3G and SNOW 3G⊕ 151

There are 96 bits involved here, so 248 random (K, IV) pairs satisfying the
above specified conditions will ensure that there exists such a collision with high
probability. Then injecting the byte differences λj (1 ≤ j ≤ 8) into the second
most significant byte of the involved variables will preserve the collision. Such a
collision can be detected by changing these byte differences and comparing the
most and second most significant bytes of the corresponding keystream words
xors. The time complexity of this detection is 248 · 8 · 2 = 252 steps. Then from
Table 4 and (34)− (36), we have c1 = c′1, i.e.,

k2 ⊕ F (A8)⊕G(B8) = k2 ⊕ F (A′
8)⊕G(B′

8). (37)

From Table 4, B8 is determined by B6 and C6 which are the same when the key
and IV3 are fixed, and thus B8 = B′

8. Further, from (37), we get A8 = A′
8, i.e.,

F (A6)⊕ F (A′
6) = IV1 ⊕ IV ′

1 ⇒ F (k2 ⊕ 1⊕ IV2 ⊕ F (A4)⊕G(B4))⊕ (38)
F (k2 ⊕ 1⊕ IV ′

2 ⊕ F (A4)⊕G(B4)) = IV1 ⊕ IV ′
1 .

Let k2⊕F (A4)⊕G(B4)⊕ 1 = V which is an unknown constant, then from (38)
we get V in 232 steps. Then we know A6 = V ⊕ IV2 and A′

6 = V ⊕ IV ′
2 .

From A12 = A′
12, c1 = c′1 and B11 = B′

11, we have G(c2)⊕G(c′2) = IV0⊕ IV ′
0 ,

see Table 4. Again from Table 4, we have

H(k1 ⊕B8 ⊕H(A6))⊕H(k1 ⊕B8 ⊕H(A′
6)) = IV0 ⊕ IV ′

0 . (39)

So we can derive k1⊕B8 from (39) in 232 steps. Combining k1⊕B8 with A6 and
A′

6, we get c2 and c′2. Then from A11 = A′
11, we get c3⊕c′3 = IV0⊕IV ′

0⊕c2⊕c′2,
i.e.,

H(IV1 ⊕ F (A6)⊕ k0 ⊕G(B6))⊕H(IV ′
1 ⊕ F (A′

6)⊕ k0 ⊕G(B6)) (40)
= IV0 ⊕ IV ′

0 ⊕ c2 ⊕ c′2.

From (40), we can get k0 ⊕ G(B6) in 232 steps. Thus, we know A8 and A′
8, c3

and c′3. So far, the information restored is shown in Table 5, where ♣ means
recovered and ♦ means partially recovered.

Table 5. The register values restored

5 6 7 8 9 10 11
R1 ♣ ♣ ♣
R2 ♦ ♣ ♦ ♣ ♣
R3 ♣ ♣ ♣

In order to recover the key, we recall the above attack once with a different
value of IV3 = IV ′

3 , i.e., we choose another set of 248 random (K, IV) pairs such
that the key K is the same as before and the IV s satisfy the same conditions,
but with a different set of values. Then the above analysis process also applies
to the second set. Our observation is that the values of the registers in the FSM

152 A. Biryukov, D. Priemuth-Schmid, and B. Zhang

in the second set case are highly correlated to those in the first set case. For
example, k2⊕F (A4)⊕G(B4)⊕ 1 = V is the same, since it only depends on the
key K. From the values of k0 ⊕G(B6), we have

k0 ⊕G(B6) = const1. (41)

k0 ⊕G(B6) = const2. (42)

From (41) and (42), we have

H(IV3 ⊕ 1⊕ k1 ⊕B4 ⊕ C4)⊕H(IV3 ⊕ 1⊕ k1 ⊕B4 ⊕ C4) = const3. (43)

From (43), we can restore k1⊕B4⊕C4 in 232 steps, which in turn gives us A5 and
A5, B6 and B6. Combining these values with A8 and A8 which are known from
the corresponding individual analysis, we can recover k0 successfully. We can use
similar procedures to recover the other key words. The total time complexity is
252 · 2 = 253 steps and the data complexity is 28 · 248 · 2 = 257 keystream words.

4 Conclusions

In this paper, we have shown chosen IV resynchronization attacks on SNOW
3G and SNOW 3G⊕. We show full key-recovery attacks on up to 18 out of
33 initialization rounds of SNOW 3G⊕ using a multiset collision idea. We also
show 13-round distinguisher of 28 complexity for the actual SNOW 3G. Practical
parts of all these attacks have been verified experimentally on a PC. Our results
show that about half of the initialization rounds of SNOW 3G might succumb
to chosen IV resynchronization attacks. The remaining security margin however
is quite significant and thus these attacks pose no threat to the security of
SNOW 3G.

Acknowledgements. We would like to thank the anonymous reviewers for very
helpful comments. Bin Zhang was with State Key Laboratory of Information
Security, Institute of Software, Chinese Academy of Sciences, Beijing, 100190,
China and supported by the key programm of the National Natural Science
Foundation of China (Grant No. 60833008) and the general programm of the
National Natural Science Foundation of China (Grant No. 60603018).

References

1. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

2. Billet, O., Gilbert, H.: Resistance of SNOW 2.0 Against Algebraic Attacks. In:
Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 19–28. Springer, Heidelberg
(2005)

3. Gilbert, H., Minier, M.: A Collision Attack on 7 Rounds of Rijndael. In: AES Can-
didate Conference 2000, pp. 230–241 (2000)

Multiset Collision Attacks on Reduced-Round SNOW 3G and SNOW 3G⊕ 153

4. Ekdahl, P., Johansson, T.: A New Version of the Stream Cipher SNOW. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 37–46. Springer, Heidelberg
(2003)

5. ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 2: SNOW 3G Specification, version 1.1 (September 2006),
http://www.3gpp.org/ftp/

6. ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 5: Design and Evaluation Report, version 1.1 (September
2006), http://www.3gpp.org/ftp/

7. Nyberg, K., Wallén, J.: Improved Linear Distinguishers for SNOW 2.0. In: Robshaw,
M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer, Heidelberg (2006)

8. Watanabe, D., Biryukov, A., De Canniére, C.: A Distinguishing Attack of SNOW
2.0 with Linear Masking Method. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003.
LNCS, vol. 3006, pp. 222–233. Springer, Heidelberg (2004)

A Multiset Difference Propagation Table

Table 6. Multiset difference propagation in 10-round initialization of SNOW 3G⊕

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 sj Ri

(0≤j≤4) (i=1,2,3)

0 Δi 0 0 0 0 0 0 0 0 0 0 0 0

1 Δi Δi 0 0 0 0 0 0 0 0 0
...

...

2 Δi Δi Δi 0
...

...
...

...
...

...
...

...
...

3 Δi Δi Δi Δi 0 0 0 0 0 0 0
...

...

4 Δi Δi Δi Δi Δi 0
...

...
...

...
...

...
...

5 Δi⊕ Δi Δi Δi Δi Δi 0
...

...
...

...
...

...
α−1Δi

6 Δi Δi⊕ Δi Δi Δi Δi Δi 0
...

...
...

...
...

α−1Δi

7 Δi⊕ Δi Δi⊕ Δi Δi Δi Δi Δi 0
...

...
.
.
.

...
α−1Δi α−1Δi

8 Δi Δi⊕ Δi Δi⊕ Δi Δi Δi Δi Δi 0
...

...
...

α−1Δi α−1Δi

9 Δi⊕ Δi Δi⊕ Δi Δi⊕ Δi Δi Δi Δi Δi 0
...

...
α−1Δi α−1Δi α−1Δi

10 Δi⊕ Δi⊕ Δi Δi⊕ Δi Δi⊕ Δi Δi Δi Δi Δi 0 0
α−2Δi α

−1Δi α−1Δi α−1Δi

http://www.3gpp.org/ftp/
http://www.3gpp.org/ftp/

High Performance GHASH Function for Long
Messages

Nicolas Méloni1, Christophe Négre2, and M. Anwar Hasan1

1 Department of Electrical and Computer Engineering
University of Waterloo, Canada

2 Team DALI/ELIAUS
University of Perpignan, France

Abstract. This work presents a new method to compute the GHASH
function involved in the Galois/Counter Mode of operation for block ci-
phers. If X = X1 . . .Xn is a bit string made of n blocks of 128 bits
each, then the GHASH function effectively computes X1H

n +X2H
n−1 +

. . .XnH , where H is an element of the binary field F2128 . This operation
is usually computed by using n successive multiply-add operations over
F2128 . In this work, we propose a method to replace all but a fixed num-
ber of those multiplications by additions on the field. This is achieved by
using the characteristic polynomial of H . We present both how to use
this polynomial to speed up the GHASH function and how to efficiently
compute it for each session that uses a new H .

Keywords: Galois/Counter mode, GHASH function, characteristic
polynomial.

1 Introduction

The Galois/Counter mode (GCM) is one of the modes of operation recommended
by the National Institute of Standards and Technology (NIST) [10]. As an au-
thenticated encryption mode, it generates both a cipher text and an authentica-
tion tag for each session. The cipher text is obtained by using the counter mode
of encryption (CRT) with a 128 bit block cipher algorithm (usually AES). The
authentication part is performed by using a universal hashing (GHASH) based
on multiplication in the binary field F2128 [9]. More precisely, if X = X1 . . . Xn

is a bit stream divided into 128 bit blocks, the authentication process computes
X1H

n + X2H
n−1 + · · ·+ XnH , where H depends on the encryption key.

High speed GCM designs are usually based on both fast implementations of
the block cipher [2,4,6,16] and bit-parallel multiplier over F2128 [1,3,8,11]. One
can refer to [7,13,14,15] for various implementations of the AES-GCM mode of
encryption.

In practice, the F2128 multiplier operates faster than the block cipher. However,
it is easy to speed up the block cipher computation by taking advantage of the
natural parallelism of the CRT mode. In that case, the F2128 multiplier’s critical
path of the GHASH function becomes the bottleneck. To overcome this problem,

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 154–167, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

High Performance GHASH Function for Long Messages 155

it is always possible to parallelize the GHASH computation process as suggested
in [9]. Such solutions imply a proportional increase in the number of multipliers.

In this paper, we propose a new way to speed up the GHASH function for
long messages, by moving the bottleneck from the multiplier to that of one
XOR and one AND gate. This is achieved by first computing the characteristic
polynomial of H and then performing the computation of the GHASH function
modulo this polynomial. Effectively, we replace the finite field multiplication by
a faster operation. In addition, our method can be parallelized to further reduce
the GHASH computation time.

The remainder of this paper is organized as follow: Section 2 briefly describes
the functioning of GHASH and the implementation of the binary field F2128 . In
section 3, we describe our approach to use characteristic polynomials to compute
GHASH and a parallelization of this operation using multiple polynomial reduc-
tion units. In section 4, we present how to efficiently compute a characteristic
polynomial over F2128 . Finally, a few concluding remarks are made in section 5.

2 GHASH Authentication Function

GCM uses two main operations: encryption and authentication. Encryption is
performed using a block cipher encryption function whereas the authentication
mainly requires the use of multiplication over F2128 . One can find a full descrip-
tion of the encryption process in [9]. Below we only describe the authentication
part.

2.1 Authentication Function

Let X = X1X2 . . .Xn be a bit string divided into 128 bit blocks (Xn might be
padded with 0’s) and H the 128 bit hash sub-key. The GHASH function performs
as follow:

Algorithm 1. GHASH function
Require: X, H
Ensure: GHASHH(X)
Y ← 0
for i = 1 to n do
Y ← (Y +Xi) ×H

end for
return Y

One can verify that Algorithm 1 computes X1H
n + X2H

n−1 + · · ·+XnH . In
practice, X is obtained as the concatenation of the cipher text, the authentication
data and the length of those two data, and H is generated by applying the
block cipher to the zero block. Note that Algorithm 1 requires n multiplications
and n additions on the field F2128 . Assuming that we have only one multiplier
and one adder, these operations would be performed in sequence and the total

156 N. Méloni, C. Négre, and M.A. Hasan

Table 1. Complexities of various multipliers over F2m where DX (resp. DA) is the
delay of a two-input XOR (resp. AND) gate

Multiplier #AND #XOR Gate delay (DM)
CRT [1] O(m1.6) O(m1.6) O(m)DX + 4m0.4DA

Karatsuba [11] O(m1.58) O(m1.58) (3 log2(m) + 1)DX +DA

Fan-Hasan [3] O(m1.58) O(m1.58) (2 log2(m) + 1)DX +DA

Mastrovito [8] O(m2) O(m2) log2(m)DX +DA

computation time for GHASH is approximately n times the combined delay of
a multiplication and an addition over the field. On binary fields, the delay of an
addition is exactly that of a bitwise XOR operation. In Table 1, we summarize
various bit-parallel multiplication methods and their space and time complexities
in terms of gate counts and gate delays.

2.2 Underlying Computations

In GCM specifications, the binary field F2128 is defined as F2[x]/(x128 + x7 +
x2 + x + 1). That is to say, the set of residues of polynomials with coefficients
in F2 modulo x128 + x7 + x2 + x + 1. An element A of this field can be easily
represented as a vector of length 128 with coefficient in F2.

In that case, addition is very simple as it just consists of a bitwise XOR
between the two summands. Multiplication can be performed by a succession of
shifts and additions. Depending on the platform on which GCM is implemented,
it is possible to improve this operation, as shown in [9] or [3] for instance.

One common feature among several of the previously reported methods for
improving GCM is that all efforts are made to optimize the field multiplication
only. In this work, we propose a way to improve the efficiency of the overall
computation of GHASHH(X) = X1H

n + X2H
n−1 + · · ·+ XnH .

3 Computing GHASH Using a Characteristic Polynomial

In order to easily present our method, here we consider a bit string, divided
into n blocks: X1X2 . . .Xn and an element H of F2128 . Our goal is to compute
GHASHH(X) = X1H

n + X2H
n−1 + · · · + XnH . As H ∈ F2128 there exists

a polynomial χH of degree 128 (at most), with coefficients in F2, such that
χH(H) = 0, called the characteristic polynomial of H in F2. This section shows
how to use such a polynomial to limit the number of field multiplications involved
in the polynomial evaluation.

3.1 Using χH

Let H ∈ F2m and χH(T) = Πm−1
i=0 (T + H2i

) be a polynomial in T of degree m.
The polynomial χH(T) is called the characteristic polynomial of H and satisfies
χH(H) = 0 and has its coefficients in F2.

High Performance GHASH Function for Long Messages 157

Hence P = X1H
n + X2H

n−1 + · · ·+ XnH = X1H
n + X2H

n−1 + · · ·+ XnH
mod χH is considered as a polynomial in H with coefficients in F2m . Let us now
write χH as

∑m
i=0 ciT

i. It can be shown that cm = c0 = 1. Using the fact that
Hm =

∑m−1
i=0 ciT

i, it is possible to reduce a polynomial in H of degree n to a
polynomial of degree m− 1. As an example, let P = X1H

128 + X2H
127 + · · ·+

X128H with Xi ∈ F2m , where m = 128. Then P = (X2 + c127X1)H127 + (X3 +
c126X1)H126 + · · ·+(X128 + c1X1)H + c0X1. It is important to note that all the
ci’s are in F2, which means that computing (Xm−i+1 + ciXi) is just an addition
over F2128 or a simple parameter assignment. Moreover, all these additions are
independent and can all be performed in parallel. Figure 1 shows a diagram
of a possible implementation of this operation in hardware. The output of the
polynomial reduction unit (PRU) is a polynomial of degree m− 1 in H . We can
take the output of the PRU to an multiply-and-add unit to apply the Horner
scheme and eventually obtain the desired GHASH value, which is an element of
F2128 (see Figure 2).

A generalized description of the operation of the structure of Figure 2 is
given in Algorithm 2, where a polynomial P of degree n ≥ m can be computed
using at most m− 1 field multiplications, replacing each of the remaining n−m
multiplications by a maximum of m parallel field additions.

c1 cm−1

m m

Y1Y0 Ym−2 Ym−1
Xj+1

m

cm−2

m m

χ
.

.

Η Y = X mod

Fig. 1. Implementation of the Polynomial Reduction Unit (PRU)

Algorithm 2 computes P in two steps:

– first it computes the remainder of P modulo χH using a shift-and-add algo-
rithm,

– then it effectively calculates P using the Horner scheme.

Complexity: For long messages, the value of n is expected to be much longer than
that of m, e.g. if the size of X is 1 MBytes, then n = 216, and in Algorithm 2, the
upper for loop will dominate in terms of computational cost. As noted previously,
one important feature of Algorithm 2 is that all the additions involved in the upper
for loop are independent. Moreover, the ci’s are elements of F2, which means that
the operation Yi−1 + ciC is just a bitwise XOR operation. In the end, each step
of this loop requires m bitwise XOR operations. Thus, our method trades n −m
multiplications by H overF2m againstm(n−m)(WH−1) bit levelXOR operations,
where WH is the number of non-zero coefficients of χH .

158 N. Méloni, C. Négre, and M.A. Hasan

Bit parallel

multiplier

H

Y

PRU
GHASHX

Fig. 2. Implementation of the GHASH function using a PRU

Algorithm 2. GHASHH(X) using χH

Require: X = X1X2 . . .Xn and χH(T) =
∑m

i=0 ciT
i

Ensure: GHASHH(X) = X1H
n +X2H

n−1 + · · · +XnH
Ym−1 . . . Y0 ← X1 . . .Xm, GHASH = 0
for j = m to n do
C = Ym−1

Yi ← Yi−1 + ciC, 1 ≤ i ≤ m− 1
Y0 = Xj+1 + c0C

}
(in parallel)

end for
for i = m− 1 down to 1 do
GHASH = (GHASH + Yi) ×H

end for
return (GHASH + Y0)

In the case of a hardware implementation, on a parallel architecture, a step of
the loop would require m2 XOR gates, all used in parallel, and the gate delay is
DX+DA (delay of one XOR and one AND gates). In the end, the implementation
of the GHASH function as shown in Figure 2 has a space complexity of O(m2)
and the total time delay for the upper loop is (n − m)(DX + DA). The final
m− 1 field multiplications can be performed using any of the already available
methods as listed in Table 1.

Comparison: Let n be the length of the message to be treated (considered as a
sequence of m bit blocks). Implementations based on Algorithm 1 performs, at
each step of the algorithm, one field multiplication and one block bitwise XOR
operation. Denoting DM as the delay of a field multiplication, the total delay is:

n(DM + DX).

On the other hand, Algorithm 2 first requires the computation of the character-
istic polynomial. We denote the cost of this computation as Dχ. It is important
to remark that this cost is constant, i.e. independent of n. Then, Algorithm 2
performs m2 parallel bitwise XOR operations in each pass of the upper loop.

High Performance GHASH Function for Long Messages 159

Finally, the algorithm ends by computing (m − 1) field multiplications and m
bitwise XOR operations on m bit blocks. Assuming that the m Y -registers of
the PRU can be initialized in parallel, the total delay can then be approximated
as:

Dχ + (n−m)(DX + DA) + (m− 1)(DM + DX).

Asymptotically (i.e. for large n), the new method reduces the critical path delay
of the GHASH function to that of one XOR plus one AND operation (i.e. O(1)),
whereas that of the traditional method is due to the multiplier, i.e. O(log m) for
bit-parallel implementations. This reduction in the critical path is obtained at
the cost of a PRU. However, the number of multiplications in the final Horner
scheme being constant, using a smaller but slower multiplier can greatly reduce
the additional cost, in terms of space, without changing the overall asymptotic
complexity.

3.2 Delay Reduction with Multiple PRUs

Let n = 2n′ be an even integer (in order to simplify notations). Then one can
write

P = X1H
n + X2H

n−1 + · · ·+ XnH (1)

=
(
X1(H2)n′−1 + X3(H2)n′−2 + · · ·+ Xn−1

)
H2

+
(
X2(H2)n′−1 + X4(H2)n′−2 + · · ·+ Xn

)
H

≡ P1H
2 + P2H. (2)

Now assume that we have two PRUs whose feedback connections are defined
by the characteristic polynomial of H2 over F2. Then these PRUs can process
even and odd numbered blocks of X in parallel in n

2 −m steps. Referring to (2),
the outputs of PRUs are P1 mod χH2 and P2 mod χH2 , that we call partial
GHASH. One can then simply multiply and add according to the equality P ≡
P1H

2 + P2H .
More generally, let us assume that we have r PRUs whose feedback connec-

tions are defined by the characteristic polynomial of Hr over F2. For simplicity,
we also assume that n is a multiple of r (we pad zeros to X if needed). Then we
can decompose X into r different sets P1, P2, . . . , Pr such that

P = P1H
r + P2H

r−1 + · · ·+ PrH. (3)

where for 1 ≤ i ≤ r we have used Pi = Xi(Hr)
n
r −1 + Xi+r(Hr)

n
r −2 + · · · +

Xn−r+i(Hr)0.
Let P ′

i = Pi mod χHr . Using r PRUs operating concurrently, we can reduce
Pi mod χHr to obtain the corresponding P ′

i , ∀i, in n
r iterations as shown in the

left part of Fig. 3. (The number of iterations reduces to n
r −m if each PRU can

be initialized with m coefficients in parallel at the beginning of its operation.)
We now write (3) in terms of P ′

i as follows:

P ≡ P ′
1H

r + P ′
2H

r−1 + · · ·+ P ′
rH. (4)

160 N. Méloni, C. Négre, and M.A. Hasan

...

χΗP mod

1 P’

2 P’

r P’

2 P

r P

1 P PRU

PRU

PRU

PRU

multiplierY

GHASH

H

Fig. 3. Implementation of the GHASH function using multiple PRUs

Since each P ′
i is a degree m − 1 polynomial in Hr, one can verify that the

sum of the products in (4) is nothing but a degree rm polynomial in H (with
the constant term being zero). We can then use one more PRU whose feed-
back connection is defined by the characteristic polynomial of H and reduce
the polynomial in H from degree rm to degree m − 1. Note that computing
this characteristic polynomial, unlike that of Hr, can be done in parallel with
obtaining P ′

i . Moreover, if r is a power of two, then Hr and H share the same
characteristic polynomial and hence the latter does not need to be computed a
second time. We obtain the final result by applying the Horner scheme to the
output of the final PRU and this requires m− 1 multiply-and-add operations.

Hence, given χHr and using r + 1 PRUs and one multiplier (see Fig. 3), the
GHASH computation of X has the following time delay(n

r
+ rm + 1

)
(DX + DA) + (m− 1) (DM + DX). (5)

Comparison: As noted in [9], the conventional method of computing GHASH
can also be parallelized. Assume that we have r field multipliers. Then all Pi,
for 1 ≤ i ≤ r, can be computed in n

r − 1 iterations, assuming that we have
H, H2, . . . , Hr, and the time delay of each iteration is DM + DX . With one
additional delay of DM , one can compute PiH

r−i+1, 1 ≤ i ≤ r. Finally P is ob-

tained as
r∑

i=1

PiH
r−i+1, which incurs a delay of (log2 r)DX , assuming additions

are done in parallel in a binary tree fashion. Thus, given Hi, 1 ≤ i ≤ r, using r
field multipliers and r−1 adders, one can compute GHASH based on Algorithm
1 with the following time delay:(n

r
− 1
)

(DM + DX) + DM + (log2 r)DX (6)

High Performance GHASH Function for Long Messages 161

In hardware implementation, DX is normally larger than DA, and more impor-
tantly, for bit parallel implementation we have DM ≥ (log2 m)DX . For example,
as mentioned in Table 1, the Karatsuba algorithm based bit-parallel multiplier
over F2128 has DM > 7DX . Thus for a large n (i.e., long messages), it is clear
that (5) is considerably smaller than (6).

4 Computation of the Characteristic Polynomial over
F2128

In this section, we first recall a method from Gordon [5] that determines the
characteristic polynomial of an element of a finite field and requires, in our
context, 127 multiplications and 127 squarings. We then propose a new method
taking advantage of the tower structure of F2128 that can be faster than the first
one depending on the representation of the finite field.

Gordon’s method: Let A ∈ F2m . Then the characteristic polynomial of A is
given by

χA(T) =
m−1∏
i=0

(T + A2i

).

We want to find the polynomial in the form
m∑

i=0

BiT
i, with Bi ∈ F2. Gordon’s

method is based on the observation that χA(x) =
m−1∏
i=0

(x + A2i

) =
m∑

i=0

Bix
i. In

other words, the coefficients of the representation of field element χA(x) corre-
spond to those of the polynomial χA(T) mod χx(T). As χA(T) has degree 128,
we have χA(T) = (χA(T) mod χx(T))+χx(T). This can be easily evaluated by
adding χA(x) to χx(x) modulo 2. Evaluating χA(x) can be done using 127 field
multiplications and 127 fields squaring.

Gordon’s method is quite general and can be applied to any binary field. We
now propose a new method that takes into account that F2128 has a very special
structure. We will use the following lemma to compute the polynomial χA. Let
P =
∑d

i=0 piT
i be a polynomial in F2n [T] and k an integer. We denote

σk(P) =
d∑

i=0

p2k

i T i.

Lemma 1. Let F2m be a binary field, and let F22m a degree 2 field extension of
F2m . The following assertions hold

1. If P, Q ∈ F2m [T] and k an integer then

σk(PQ) = σk(P)σk(Q).

2. If P ∈ F22m [T] satisfies P (A) = 0, then the polynomial Q = Pσm(P) satisfies

Q(A) = 0 and Q ∈ F2m [T].

162 N. Méloni, C. Négre, and M.A. Hasan

Proof. 1. Let us write P =
∑d

i=0 piT
i and Q =

∑d′

i=0 qiT
i then

PQ =
d∑

i=0

d′∑
j=0

piqiT
i+j.

Then, we apply σk to PQ

σk(PQ) = σk

(∑d
i=0
∑d′

j=0 piqiT
i+j
)

=
∑d

i=0
∑d′

j=0(piqi)2
k

T i+j

=
∑d

i=0
∑d′

j=0 p2k

i q2k

i T i+j

= σk(P)σk(Q)

which proves the assertion.
2. We now prove the second assertion of the lemma. Let Q = Pσ2m(P). We

first check that Q(A) = 0, we have

Q(A) = P (A)σq(P)(A) = 0× σq(P)(A) = 0

In order to show that Q ∈ F2m [T] we have to prove that σm(Q) = Q, since
this would mean that each coefficient of Q is in F2m . We compute

σm(Q) = σm(P)σm(σm(P))

But σm((σm(P)) = σ2m(P) = P since P ∈ F22m [T]. Finally

σm(Q) = Pσm(P) = Q

This completes the proof.

Let us now see, how to use the above result to compute the characteristic poly-
nomial of an element A ∈ F28 over F2. We begin with the polynomial P0 = T +A
which satisfies P (A) = 0 and P ∈ F28 [T].

– Now we apply the lemma for the field extension F28/F24 to obtain a poly-
nomial P1 = P0σ4(P0) which satisfies

P1(A) = 0 and P1 ∈ F24 [T]

Moreover we have P1 = (T + A)(T + A24
).

– We apply again the lemma for the field extension F24/F22 to obtain a poly-
nomial P2 = P1σ2(P1) which satisfies

P1(A) = 0 and P1 ∈ F22 [T].

Moreover we also have P2 = (T + A)(T + A24
)(T + A22

)(T + A26
).

High Performance GHASH Function for Long Messages 163

– Finally we apply the lemma a third time for the field extension F22/F2 to
the polynomial P2. We get

P3 = P2σ1(P2)
= (T + A)(T + A24

)(T + A22
)(T + A26

)︸ ︷︷ ︸
P2

× (T + A2)(T + A25
)(T + A23

)(T + A27
)︸ ︷︷ ︸

σ2(P2)

,

and P3 ∈ F2[T] and satisfies P3(A) = 0. If we look at the expression of P3
we can see that it is equal to the characteristic polynomial of A.

This method is generalized for binary field F2m where m = 2k is a power of 2 in
Algorithm 3.

Algorithm 3. Computing the characteristic polynomial of A

Require: A ∈ F
22k

Ensure: PA (the minimal polynomial of A)
P ← T + A
for i = k − 1 to 0 do
P ← P × σ2i(P)

end for
return (P)

Proposition 1. Algorithm 3 returns the characteristic polynomial of A over F2.

Proof. Applying Lemma 1, for successive extension field of degree 2 shows that
the returned polynomial P satisfies P (A) = 0 and P ∈ F2m . Let us now prove
that the polynomial P is the characteristic polynomial of A, i.e., we show that
the returned P satisfies

P (T) =
m−1∏
i=0

(T + A2i

).

Specifically, we will show by induction on the index of the loop that the computed
P in the jth loop is the characteristic polynomial of A over the field F2k−j .

– For j = 0 this is clear that P = T + A is the characteristic polynomial of A
over F2k .

– For j = 1 we have P = (T + A)(T + A2k−1
), thus the assertion is true.

– Suppose that P =
∏j−1

i=0 (T + Adi

) where d = 2k−j , then

Pσj+1(P) =

(
j−1∏
i=0

(T + Ad2i

)

)(
j−1∏
i=0

(T + Ad2i+1
)

)

where d = 2k−(j+1). This completes the proof.

164 N. Méloni, C. Négre, and M.A. Hasan

Complexity
Let us now evaluate the complexity of Algorithm 3. We suppose that each poly-
nomial multiplication is done using the Karatsuba method, and each exponen-
tiation to 2k is done by computing k successive squares.

First, we make two observations:

– Let us first check that the degree of P after j iterations of the for loop has
degree 2j. This is true when j = 0 since P is initialized by T + A. In each
loop the degree of P is multiplied by 2, thus after j loop, the degree of P
must be equal to 1× 2j .

– At the end of the j-th iteration of the for loop, the polynomial P belongs
to F2k−j . Indeed, for j = 1, P = (T + A)σ22k−1 (T + A) with A ∈ F22k , so
P ∈ F22k−1 [T] from Lemma 1. If we suppose that after j iterations P ∈
F22k−j [T], then, at step j + 1 we compute P = P × σ2k−(j+1) (P), which
belongs to P ∈ F22k−(j+1) [T].

From the above two remarks, we can now evaluate the complexity of Algorithm 3.

– At the j-th iteration of the for loop, P is a monic polynomial of degree 2j

(and thus has 2j coefficients). As its coefficients are in F22k−j+1 and that
we need to compute the 2k−j -th power of each of them, we have to perform
2j×2k−j squarings over F22k−j+1 to compute σ2k−j (P). Let us denote S2k as
the cost of a squaring over F22k , we assume that S2k = 2S2k−1 (squaring is
linear over binary fields). Then, the total complexity of computing σ2k−j (P)
is

k∑
j=1

2j2k−jS2k−j+1 =
k∑

j=1

2k S2k

2j−1

= 2kS2k

k∑
j=1

1
2j−1

= 2kS2k(2− 2−(k−1))
= 2k+1S2k(1 − 2−k)
∼ 2k+1S2k

– In the same manner, at the j-th iteration, after computing σ2k−j (P), the
algorithm computes Pσ2k−j (P). Thus, we multiply two degree 2j polynomi-
als. Performing this multiplication using the Karatsuba algorithm requires
3j multiplications of fields elements. Let us denote M2k as the cost of a multi-
plication over F22k , we assume that M2k = 3M2k−1 . Then, the computational
cost is equal to

∑k
j=1 3jM2k−j+1 , so we obtain

High Performance GHASH Function for Long Messages 165

k∑
j=1

3jM2k−j+1 =
k∑

j=1

3j M2k

3j−1

=
k∑

j=1

3M2k

= 3kM2k

In the end, the overall cost of computing the characteristic polynomial of an
element of F22k over F2 is, in terms of number of operations over F22k is 3kM2k +
2k+1S2k .

In the case of GCM, k = 7 and thus the number of field operations is 21
multiplications and 256 squarings over F2128 .

Remark 1. It is not always suitable to decompose the field F22k into k extensions
of degree 2. As a example, F2128 can be seen as a degree 4 extension of F232 and
F232 a degree 32 extension of F2. In that case, multiplying two elements of F264

is performed on the extension field F2128 , which means that M27 = M26 . In the
end, the total complexity would be:

2∑
j=1

3jM27 +
6∑

j=3

3jM25 + 3jM27 = 12M27 + 1080M25 + 2187M2

= 135M27

This shows that depending on the representation, the computational cost might
vary. However, this computation is done once and for all at the beginning of a
GCM session. As such a session can involve thousands of field multiplications
(the plain text can have up to 239 bits, i.e. 231 128 bit blocks), this additional
cost can be considered as negligible for long sessions.

Remark 2. For large values of n, the computation of GHASH using the char-
acteristic polynomial is expected to be several times faster than traditional
methods that use n field multiplications. For example, consider n = 10, 000
and the FPGA based bit parallel multiplier from [12], which has a delay of
DM = 6.637 ns. This multiplier is based on the Karatsuba algorithm and hence
DM = 3(log2(27))DX + DA, i.e., ignoring the delay due to the single level of
AND gates, we have DM/DX ≈ 21. Thus, the traditional method for computing
GHASH will require 10, 000 × (DX + DM) ≈ 69.6 μs. On the other hand, the
characteristic polynomial based GHASH using the same multiplier will require
approximately 10, 000× (DX + DA) + 128× (DM + DX) + 135×DM ≈ 8.1 μs,
resulting in more than 8 fold reduction in the computation time.

5 Conclusions

In this paper we have proposed a new way to improve the performance of the
GHASH function of GCM. Our method is based on the use of the characteristic

166 N. Méloni, C. Négre, and M.A. Hasan

polynomial of the authentication data. It has allowed us to trade most of the field
multiplications involved during the authentication tag computation by a series
of 128 independent fields additions. This is very attractive for high performance
implementations where all such additions can be performed in parallel. This
allows us to reduce the delay of each of the first n − 128 multiplications over
F2128 to that of one XOR and one AND operation. To illustrate the effectiveness
of the proposed method, we have considered n = 10, 000 and the Karatsuba
algorithm based bit parallel multiplier on FPGA from [12], which has a delay
of DM = 6.637 ns and DM/DX ≈ 21, and we have estimated that compared
to the traditional method, the new method can significantly reduce the GHASH
computation time, that it to say, eight times.

In this paper, we have also shown the flexibility of our method in terms of
parallelization. Using multiple polynomial reduction units allows us to efficiently
parallelize the computations and improve the performance of GHASH even fur-
ther. Finally, we have also proposed a method, specific to F2128 , to compute the
initial characteristic polynomial efficiently.

References

1. Bajard, J.-C., Imbert, L., Jullien, G.A.: Parallel Montgomery multiplication in
GF(2k) using trinomial residue arithmetic. In: Proc. 17th IEEE Symposium on
Computer Arithmetic (ARITH), pp. 164–171 (2005)

2. Bulens, P., Standaert, F.-X., Quisquater, J.-J., Pellegrin, P., Rouvroy, G.:
Implementation of the AES-128 on virtex-5 FPGAs. In: Vaudenay, S. (ed.)
AFRICACRYPT 2008. LNCS, vol. 5023, pp. 16–26. Springer, Heidelberg (2008)

3. Fan, H., Hasan, M.A.: A new approach to subquadratic space complexity parallel
multipliers for extended binary fields. IEEE Transactions on Computers 56(2),
224–233 (2007)

4. Good, T., Benaissa, M.: AES on FPGA from the fastest to the smallest. In: Rao,
J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 427–440. Springer, Hei-
delberg (2005)

5. Gordon, J.A.: Very simple method to find the minimum polynomial of an arbitrary
nonzero element of a finite field. Electronics Letters 12(25), 663–664 (1976)

6. Jarvinen, K.U., Tommiska, M.T., Skyttae, J.O.: A fully pipelined memoryless 17.8
Gbps AES-128 encryptor. In: International symposium on Field programmable
gate arrays - FPGA, pp. 207–215. ACM, New York (2003)

7. Lemsitzer, S., Wolkerstorfer, J., Felber, N., Braendli, M.: Multi-gigabit GCM-AES
architecture optimized for FPGAs. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 227–238. Springer, Heidelberg (2007)

8. Mastrovito, E.D.: VLSI Architectures for Computation in Galois Fields. PhD the-
sis, Dept. of Electrical Eng., Link ping Univ., Sweden (1991)

9. McGrew, D.A., Viega, J.: The Galois/Counter Mode of Operation (GCM) (2005)
10. NIST. Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC (November 2007)
11. Paar, C.: A new architecture for a parallel finite field multiplier with low complexity

based on composite fields. IEEE Transactions on Computers 45(7), 856–861 (1996)
12. Patel, P.: Parallel multiplier designs for the Galois/counter mode of operation. Mas-

ter’s thesis, Electrical and Computer Engineering, University of Waterloo (2008)

High Performance GHASH Function for Long Messages 167

13. Satoh, A.: High-speed hardware architectures for authenticated encryption mode
gcm. In: IEEE International Symposium on Circuits and Systems - ISCAS, pp.
4831–4834 (2006)

14. Satoh, A.: High-speed parallel hardware architecture for Galois counter mode. In:
IEEE International Symposium on Circuits and Systems - ISCAS, pp. 1863–1866
(2007)

15. Satoh, A., Sugawara, T., Aoki, T.: High-speed pipelined hardware architecture for
Galois counter mode. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.)
ISC 2007. LNCS, vol. 4779, pp. 1863–1866. Springer, Heidelberg (2007)

16. Standaert, F.X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: Efficient implemen-
tation of Rijndael encryption in reconfigurable hardware: Improvements and design
tradeoffs. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 334–350. Springer, Heidelberg (2003)

Principles on the Security of AES against First
and Second-Order Differential Power Analysis�

Jiqiang Lu1, Jing Pan1,2, and Jerry den Hartog1

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology,

5600 MB Eindhoven, The Netherlands
lvjiqiang@hotmail.com, {j.pan,j.d.hartog}@tue.nl

2 Riscure BV, 2628 XJ Delft, The Netherlands
pan@riscure.com

Abstract. The Advanced Encryption Standard (AES) is a 128-bit block
cipher that is currently being widely used in smartcards. Differential
Power Analysis (DPA) is a powerful technique used to attack a cryp-
tographic implementation in a resource-limited application environment
like smartcards. Despite the extensive research on DPA of AES, it seems
none has explicitly addressed the fundamental issue: How many rounds
of the beginning and end parts of an AES implementation should be
protected in order to resist practical DPA attacks, namely first and
second-order DPA attacks? Implementation designers may think that
it is sufficient to protect the first and last one (or one and a half) rounds
of AES, leaving the inner rounds unprotected or protected by simple
countermeasures. In this paper, we show that power leakage of some in-
termediate values from the more inner rounds of AES can be exploited to
conduct first and/or second-order DPA attacks by employing techniques
such as fixing certain plaintext/ciphertext bytes. We give five general
principles on DPA vulnerability of unprotected AES implementations,
and then give several general principles on DPA vulnerability of pro-
tected AES implementations. These principles specify which positions of
AES are vulnerable to first and second-order DPA. To justify the prin-
ciples, we attack two recently proposed AES implementations that use
two kinds of countermeasures to achieve a high resistance against power
analysis, and demonstrate that they are even vulnerable to DPA. Finally,
we conclude that at least the first two and a half rounds and the last
three rounds should be secured for an AES implementation to be resis-
tant against first and second-order DPA in practice.

Keywords: Side channel cryptanalysis, Advanced Encryption Standard,
Differential power analysis.

1 Introduction

Nowadays, smartcards are widely used in many real-life security applications as a
medium of authenticating the identity of a user and/or executing cryptographic
� This work was supported by the Dutch Sentinels project PINPASJC TIF.6687.

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 168–185, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Principles on the Security of AES against First and Second-Order DPA 169

operations. Power analysis [1] is well known as a practical threat to the security
of a cryptographic implementation running in a resource-constrained application
environment such as a smartcard. It is based on the fact that the power con-
sumption during an execution of the implementation reveals some information
about the data being processed. Primarily, there are two types of power analysis:
Simple Power Analysis (SPA) and Differential Power Analysis (DPA). An n-th
order DPA attack extracts secret key information by analysing the correlation
between the secret key and n points of the power consumption, and it works
under the fundamental hypothesis [2]: There exists a set of n intermediate vari-
ables that appear during execution of the algorithm, such that guessing a few
key bits (in practice less than 32 bits) allows us to decide whether or not two
inputs give the same value for a known function of these n variables. Though the
computing power has been increasing, guessing 32 or more bits is still considered
to be unpractical in the context of DPA on smartcards. Up to now, only first and
second-order DPA attacks have been experimentally demonstrated to be feasible
and efficient in practice, see [3, 1, 4, 5]. Thus, it is a minimum requirement for
a cryptographic implementation to be resistant against first and second-order
DPA in practice.

The Advanced Encryption Standard (AES) [6] is a 128-bit block cipher with
a user key of 128, 192 or 256 bits. It was released by NIST in 2001 as the new-
generation data encryption standard for use in the USA, and was adopted as an
ISO [7] international standard in 2005. Being used more and more widely in real-
ity, AES is one of the most promising cryptographic algorithms for smartcards,
and thus how to design a secure and efficient AES smartcard implementation is
of great interest to both industry and academia. A variety of solutions have been
presented during the past several years, for example, [10,11,12,8,13,14,9]. One of
the most widely used software countermeasures is the Boolean masking method,
as followed in [10,15,16,12,17,14]. The main idea of this method is to mask any
sensitive intermediate value by XORing it with one or more randomly generated
values called masks. Another kind of software countermeasures is hiding, such
as randomizing the operations of an algorithm [18].

It has been known that an attacker can exploit the SubBytes operation of the
first or last round of AES to conduct a first-order DPA attack. In 2006, Jaffe [19]
described a first-order DPA attack exploiting the SubBytes operation of Round 2.
Despite the extensive research on the protection of AES against DPA, to our best
knowledge, it seems that none has explicitly addressed the fundamental issue:
How many rounds of the beginning and end parts of an AES implementation
should be protected in order to resist practical DPA attacks, namely first and
second-order DPA attacks? To achieve a good tradeoff between security and
efficiency, some implementation designers may think that it is enough to protect
the first and last one (or one and a half) rounds of AES to thwart first and
second-order DPA attacks, leaving the inner rounds unprotected or protected
by simple countermeasures, e.g. [8, 9]. The reason that the beginning and end
parts of AES are particularly protected is that they are more vulnerable to DPA
attacks, because an intermediate value from there depends on a relatively small

170 J. Lu, J. Pan, and J. den Hartog

fraction of the key, and an intermediate value from the inner rounds depends on
a group of 32 or more key bits, due to the diffusion and confusion properties of
the MixColumns operation.

In this paper, we focus on the security of the AES with 128 key bits against
DPA. Taking advantage of several simple techniques, such as fixing certain plain-
text/ciphertext bytes, we exploit some intermediate values from the inner rounds
of AES to conduct first and second-order DPA attacks. We summarise them as
five general principles for first and second-order DPA on unprotected AES im-
plementations; some simple cases in the principles have already been known to
the public, but more cases are presented for the very first time. We then de-
rive several general principles for first and second-order DPA on protected AES
implementations. The principles suggest that when securing an AES implemen-
tation against first and second-order DPA one should well protect at least the
first two and a half rounds and the last three rounds, i.e. from the beginning un-
til the MixColumns operation of the third round and from the beginning of the
eighth round to the end. As examples, we apply the general principles to attack
Herbst et al.’s and Tillich et al.’s AES software implementations [8,9], and show
that they are not secure against first and/or second-order DPA attacks. An in-
novative point for Herbst et al.’s and Tillich et al.’s implementations is that they
use two kinds of countermeasures, namely randomization (operation shuffling)
and masking, to make themselves highly resistant against power analysis.

The remainder of this paper is organised as follows. In the next section we
give the notation and briefly review the AES cipher. In Section 3, we present the
general principles on first and second-order DPA of unprotected and protected
AES implementations, and explain these principles in detail in Section 4. In
Section 5, we provide justifications by applying the general principles to Herbst
et al.’s and Tillich et al.’s AES implementations in practice. In Section 6 we
compare our result with related work. In Section 7 we give several principles on
the protection of AES against first and second-order DPA. Section 8 concludes
the paper.

2 Preliminaries

In this section we describe some notation and the AES block cipher.

2.1 Notation

In the following descriptions, we assume that a number without a prefix is in
decimal (base 10) notation, and a number with prefix 0x is in hexadecimal (base
16) notation. The sixteen bytes of a 4×4 byte array are numbered using the
conventional row-column fashion, starting with (0,0) (i.e. (0,0), (0,1), · · · , (3,3)).
We use the following notation.

⊕ bitwise logical exclusive OR (XOR) of two bit strings of the same length
∗ polynomial multiplication modulo the polynomial x8 + x4 + x3 + x + 1

Principles on the Security of AES against First and Second-Order DPA 171

2.2 The AES Block Cipher

The AES [6] cipher takes as input a 128-bit plaintext block P , represented as
a 4 × 4 byte array, and has a total of 10 rounds. It uses the following four
elementary operations to construct the round function.

– The AddRoundKey operation XORs a 4×4 byte array with a 16-byte subkey.
– The SubBytes operation applies the same 8×8-bit bijective S-box (denoted

below by S) 16 times in parallel to a 4×4 byte array.
– The ShiftRows operation cyclically shifts the jth row of a 4×4 byte array to

the left by j bytes, (0 ≤ j ≤ 3).
– The MixColumns operation pre-multiplies a 4×4 byte array by a fixed 4×4

byte matrix MC = (mi,j); see [6] for the specifications of the matrix MC
and its inverse MC−1 = (m′

i,j).

The encryption procedure is, where X is a 16-byte variable, K0, Ki and K10 are
16-byte round keys, and C denotes the ciphertext.

1. X = AddRoundKey(P, K0).
2. For i = 1 to 9:

X = SubBytes(X),
X = ShiftRows(X),
X = MixColumns(X),
X = AddRoundKey(X, Ki).

3. X = SubBytes(X), X = ShiftRows(X), C = AddRoundKey(X, K10).

The ith iteration in Step 2 in the above description is referred to below as Round
i, and the transformation in Step 3 is referred to below as the final round (i.e.
Round 10). We write Ki

j,h for byte (j, h) of Ki, (0 ≤ j, h ≤ 3, 0 ≤ i ≤ 10).

3 Principles on First and Second-Order DPA of AES

In this section, we first give five general principles for DPA attacks on unprotected
AES implementations, and then derive a few general principles on protected AES
implementations. These principles are obtained under the fundamental hypothesis
given in Section 1. Recall that a DPA attack is, under the fundamental hypothesis,
considered to be unpractical if it requires guessing 32 bits or more. We remind the
reader that more inner rounds could be similarly attacked if it was feasible to guess
32 or more bits in some environments.

3.1 Principles for Unprotected AES Implementations

Below are the five general principles for first and second-order DPA on plain
AES implementations without countermeasure, which are categorized by the
location of the intermediate byte(s) exploited. Details of the principles are given
in Section 4.

172 J. Lu, J. Pan, and J. den Hartog

i. Any intermediate byte before the MixColumns operation of Round 3 can be
exploited to conduct a first-order DPA attack. The attack uses a number
of plaintexts with 0, 3 or 15 bytes fixed, depending on the location of the
exploited byte.

ii. Any intermediate byte after the AddRoundKey operation of Round 7 can
be exploited to conduct a first-order DPA attack. The attack uses a number
of ciphertexts with 0, 3 or 15 bytes fixed, depending on the location of the
exploited byte.

iii. Any two intermediate bytes before the SubBytes operation of Round 3 can
be exploited to conduct a second-order DPA attack, if their XOR value is
plaintext-dependent1. The attack uses a number of plaintexts with 0, 1, 2,
3, 4, 7, 11 or 15 bytes fixed, depending on the location of the two exploited
bytes.

iv. Any two intermediate bytes after the SubBytes operation of Round 8 can
be exploited to conduct a second-order DPA attack, if their XOR value is
ciphertext-dependent. The attack uses a number of ciphertexts with 0, 2, 3,
4, 7 or 15 bytes fixed, depending on the location of the two exploited bytes.

v. Any intermediate byte before the MixColumns operation of Round 2 and
any intermediate byte after the MixColumns operation of Round 8 can be
exploited to conduct a second-order DPA attack. The attack uses a number
of plaintexts with 0, 3 or 4 bytes fixed and their ciphertexts with 0, 4 or 3
bytes fixed, depending on the location of the two exploited bytes.

To apply these DPA attacks in practice one needs to acquire the power traces
of plaintexts and/or ciphertexts with the required properties, which depends
on specific application environments. These DPA attacks work under four at-
tack scenarios, namely, a ciphertext-only scenario, a known-plaintext scenario,
a chosen-plaintext scenario, and an adaptive chosen-ciphertext scenario. The
simple cases in the principles, like those exploiting the SubBytes operation of
the first or last round, requires a known-plaintext or ciphertext-only scenario.
Obtaining plaintexts with a few bytes fixed is simple, which can be easily done
under a chosen-plaintext scenario. Obtaining ciphertexts with a few bytes fixed
is a little sophisticated. It usually requires an (adaptive) chosen-ciphertext sce-
nario. For instance, an attacker can first choose a number of ciphertexts with
certain bytes fixed, and then decrypts them under the attacked key. This usu-
ally requires an AES decryption implementation available, and in this case the
attacker may choose to attack the decryption implementation using the cho-
sen ciphertexts. Anyway, as demonstrated by Bleichenbacher [20], an adaptive
chosen-ciphertext attack is feasible in some real world applications. To obtain
plaintexts with a few bytes fixed and their ciphertexts with certain bytes fixed,
an attacker can use the following way under a chosen-plaintext scenario: first
encrypt a number of plaintexts with certain bytes fixed, and then look for only
those ciphertexts whose concerned bytes are identical (plaintexts not meeting
this property can be discarded, which causes a high data complexity). Since a
1 The notion ‘plaintext-dependent’ means that the XOR value involves some plaintext

byte(s). Similar for the following notion ‘ciphertext-dependent’.

Principles on the Security of AES against First and Second-Order DPA 173

large amount of computations are needed in order to obtain the useful texts,
this attack may only be applicable to cryptographic devices that have a strong
computation ability. In the rest of the paper we mainly focus on the possibility
of launching an effective DPA attack when the required texts are available.

The principles also consider attacks where 15 bytes of the plaintexts or ci-
phertexts are fixed and the remaining byte is random. Thus there remain only
256 different plaintexts/ciphertexts available, and a remaining problem is how to
obtain sufficient power traces. A simple way to do so is to encrypt/decrypt every
available plaintext/ciphertext many times, and then to use the obtained power
traces. This is applicable for some devices in practice, particularly considering
that a first-order DPA attack can break an AES S-box implementation using as
few as 100 or even 30 power traces (see [21, 22, 23]). The technique of fixing a
few plaintext and/or ciphertext bits has been used in differential power analysis
of some implementations for the DES [24] block cipher [16,26,25] and AES [19],
as well as in block cipher cryptanalysis, [27] say.

3.2 Principles for Protected AES Implementations

From Principles (i)–(v), we can easily get the following two principles for a
protected AES implementation:

vi. If a byte concerned by Principle (i) or (ii) is unprotected, then it can be
exploited to conduct a first-order DPA attack, no matter how well the other
parts are protected.

vii. If two bytes concerned by Principle (iii), (iv) or (v) are unprotected or pro-
tected only by the same mask, then they can be exploited to conduct a
second-order DPA attack, no matter how well the other parts are protected.

Therefore, a protected AES implementation would be vulnerable to a first or
second-order DPA attack if it has either of the above weaknesses, no matter
how well the other parts are protected. Herbst et al.’s and Tillich et al.’s AES
implementations are such examples as to be attacked in Section 5.

4 Principle Details

In this section we explain the principles in Section 3.1 in detail.

4.1 Explaining Principles (i) and (ii)

Simple cases in Principles (i) and (ii) have been well known, such as those ex-
ploiting a byte immediately before the SubBytes operation of Round 10. Here
we will explain two representative cases: a moderate case in Principle (ii) which
exploits a byte immediately before the AddRoundKey operation of Round 8,
and the most difficult case in Principle (i) which exploits a byte immediately
after the SubBytes operation of Round 3. The reasoning is similar for the other
cases of Principles (i) and (ii).

174 J. Lu, J. Pan, and J. den Hartog

Attacking the AddRoundKey Operation in Round 8. Let v be the ex-
ploited byte immediately before the AddRoundKey operation in Round 8. There
is no MixColumns operation in the last round of AES, and a byte immediately
before the AddRoundKey operation of Round 8 depends on a group of 9 key
bytes (one from K8, four from K9, and the remaining four from K10) when we
express it using relevant ciphertext bytes. Thus, a naive first-order DPA attack
exploiting the byte v would need to guess more than 32 secret key bits, which is
infeasible under the fundamental hypothesis. Nevertheless, as described subse-
quently, we find that this limitation can be circumvented by using the technique
of fixing a few ciphertext bytes.

The XOR of v and the corresponding byte of K8, denoted by k0, is input
to an S-box in Round 9; and let u be the output of the S-box. Thus, we have
v = k0⊕S−1(u). The following ShiftRows operation does not change the value of
u. Then, u is used as a part of the input to the MixColumns operation in Round 9,
and we refer to the resulting output column (four bytes) as (u0, u1, u2, u3). Hence,
u can be expressed as follows:

u = m′
0 ∗ u0 ⊕m′

1 ∗ u1 ⊕m′
2 ∗ u2 ⊕m′

3 ∗ u3 ,

where m′
0, m

′
1, m

′
2, m

′
3 are relevant elements from MC−1. Subsequently, (u0, u1, u2,

u3) is used to generate four ciphertext bytes, where four bytes of K9 and four
bytes of K10 are involved. We denote the involved four bytes of K9 as (k1, k2, k3,
k4), the involved four bytes of K10 as (k5, k6, k7, k8), and the resulting four
ciphertext bytes as (c0, c1, c2, c3). Thus, the four bytes u0, u1, u2, u3 can be ex-
pressed as,

u0 = S−1(c0 ⊕ k5)⊕ k1, u1 = S−1(c1 ⊕ k6)⊕ k2,

u2 = S−1(c2 ⊕ k7)⊕ k3, u3 = S−1(c3 ⊕ k8)⊕ k4 .

To simplify our explanations, we write the value of m′
0 ∗k1⊕m′

1 ∗u1⊕m′
2 ∗u2⊕

m′
3 ∗ u3 as θ. Thus, we have u = m′

0 ∗ S−1(c0 ⊕ k5)⊕ θ. Therefore, the exploited
byte v can now be represented as

v = k0 ⊕ S−1(m′
0 ∗ S−1(c0 ⊕ k5)⊕ θ) . (1)

Observe that θ is related to only three ciphertext bytes, namely (c1, c2, c3). Thus,
if we have a number of ciphertexts such that bytes (c1, c2, c3) are fixed to ar-
bitrary values (and the other bytes are random), then the value of θ will be
constant for these ciphertexts. In order to use these ciphertexts to conduct a
first-order DPA attack exploiting v, we need to guess only the 24 unknown bits
for (k0, k5, θ) to predict the value of v. This is much less than the limitation of
32 bits in the fundamental hypothesis. As a consequence, the DPA attack can
reveal the values of the two key bytes k0 and k5, guessing only 24 unknown bits.
The whole round key K8 or K10 can be revealed by performing additional 15
similar attacks.

Further, we can conduct a single-bit (first-order) DPA attack using Eq. (1),
by guessing only the 16 unknown bits for (k5, θ). In such an attack, one bit of

Principles on the Security of AES against First and Second-Order DPA 175

the intermediate byte v is targeted, and to predict the target bit we first make a
hypothesis on the value of the corresponding bit of k0, and then guess for (k5, θ).
The difference between the average of the power traces for which the target bit
is 1 and the average of the power traces for which the target bit is 0 is used to
determine whether or not the guess for (k5, θ) is correct. The difference will be
the largest only when the guess for (k5, θ) is correct, because the bit from k0 does
not affect the magnitude and just changes the sign of the difference. Therefore,
the single-bit DPA attack can reveal k5, guessing only 16 unknown bits (k5, θ).

Attacking the SubBytes Operation in Round 3. The most difficult case
in Principle (i) is to attack a byte immediately after the SubBytes operation
in Round 3. Let v denote such a byte. Different from the intermediate byte
exploited above, any intermediate byte between the MixColumns operation of
Round 2 and the MixColumns operation of Round 8 depends on the whole 128
key bits and the whole 128-bit plaintext or ciphertext. Thus, we need more tricks
to deal with this case. v is dependent on all the 16 plaintext bytes, due to the
diffusion and confusion properties of the MixColumns and ShiftRows operations
of Rounds 1 and 2. Following a reasoning similar to that described above, we
learn that the intermediate byte v is an expression of the form:

v = S(m0 ∗ S(m1 ∗ S(p0 ⊕ k0)⊕ θ)⊕ δ) , (2)

where m0, m1 are relevant elements from MC, p0 is a plaintext byte, k0 is the
byte of K0 XORed with p0, θ is a function of 3 plaintext bytes and 4 key bytes,
and δ is a function of 12 plaintext bytes and 13 key bytes. After a simple analysis,
we can get the details of θ and δ.

If we choose a number of plaintexts with the fifteen bytes except p0 fixed, then
θ and δ are constant for these plaintexts. Thus, using these plaintexts, we can
conduct a first-order DPA attack using Eq. (2), by guessing the 24 unknown bits
for (k0, θ, δ), and obtain the 8 key bits for k0. Note that unlike in the previous
attack, we now have to guess for all the 24 unknown bits even when a single-bit
DPA is conducted, for each bit of v depends on all the 24 unknown bits.

4.2 Explaining Principles (iii) and (iv)

Second-order DPA exploits two intermediate values. We first explain a moderate
case of Principle (iii), and then explain a most difficult case of Principle (iii).
Similar for the remaining cases of Principles (iii) and (iv).

Attacking the SubBytes Operation in Round 2. The two exploited bytes
are from the output of the SubBytes operation in Round 2. Let’s first investigate
how the targeted intermediate bytes are calculated. Let v be the output of one
exploited S-box in Round 2, and let u be the input of the S-box, that is, v = S(u).
This input u equals the XOR of a byte of K1, denoted by k0, and an output byte
of the MixColumns operation in Round 1. This output byte of the MixColumns

176 J. Lu, J. Pan, and J. den Hartog

operation is calculated based on a column of 4 input bytes, and let (u0, u1, u2, u3)
denote this column. Then, u can be expressed as:

u = k0 ⊕m0 ∗ u0 ⊕m1 ∗ u1 ⊕m2 ∗ u2 ⊕m3 ∗ u3 ,

where m0, m1, m2, m3 are relevant elements from MC. The four bytes u0, u1, u2,
u3 are calculated based on 4 plaintext bytes and 4 bytes of K0; we denote
by (p0, p1, p2, p3) the 4 plaintext bytes and by (k1, k2, k3, k4) the 4 bytes of K0.
Hence, we have

u0 = S(p0 ⊕ k1), u1 = S(p1 ⊕ k2), u2 = S(p2 ⊕ k3), u3 = S(p3 ⊕ k4).

Let θ = k0 ⊕ m1 ∗ u1 ⊕ m2 ∗ u2 ⊕ m3 ∗ u3, then v can be rewritten as v =
S(m0 ∗ S(p0 ⊕ k1)⊕ θ).

Now, given the other exploited output byte w of the SubBytes operation in
Round 2, we have two situations to consider: (A) v and w are dependent on
different sets of four plaintext bytes; and (B) v and w are dependent on the
same set of four plaintext bytes. We first consider situation A. Compute the
XOR of v and w as:

v ⊕ w = S(m0 ∗ S(p0 ⊕ k1)⊕ θ)⊕ w . (3)

It requires 4 plaintext bytes and 5 key bytes to calculate v or w. Hence, a
straightforward second-order DPA attack needs to guess the 10 key bytes in
order to predict the value v ⊕ w, which is impossible in practice under the
fundamental hypothesis. Nevertheless, observe that θ and w involve a total of 7
plaintext bytes. If we have a number of plaintexts with the seven bytes involved
in θ and w fixed, then w and θ are constant for these plaintexts, and thus we
can conduct a second-order DPA attack using Eq. (3), by guessing only the 24
unknown bits for (k1, θ, w). Further, as in the single-bit first-order DPA attack in
Section 4.1, if a single-bit second-order DPA attack is conducted using Eq. (3),
we need to guess only the 16 unknown bits for (k1, θ), and finally reveal the key
byte k1.

Next we consider situation B, where v and w are dependent on the same set of
four plaintext bytes. Similarly, w can be expressed as w = S(m4∗S(p0⊕k1)⊕θ′),
where m4 is an element from MC, and θ′ is a function of the three plaintext bytes
(p1, p2, p3) and four key bytes. Thus, the XOR of v and w is

v ⊕ w = S(m0 ∗ S(p0 ⊕ k1)⊕ θ)⊕ S(m4 ∗ S(p0 ⊕ k1)⊕ θ′) . (4)

As a result, if we have a number of plaintexts with the three bytes involved in
θ and θ′ fixed, then θ and θ′ are constant for these plaintexts, and thus we can
conduct a second-order DPA attack using Eq. (4) to obtain k1, by guessing only
the 24 unknown bits for (k1, θ, θ

′).

Attacking the AddRoundKey Operation in Round 2. The two exploited
bytes v and w are from the output of the AddRoundKey operation of Round 2.
Obviously, either of v and w is dependent on all the 16 plaintext bytes and 21

Principles on the Security of AES against First and Second-Order DPA 177

key bytes. After a simple analysis, we learn that v and w can be respectively
expressed as the following form.

v = m0 ∗ S(m1 ∗ S(p0 ⊕ k0)⊕ θ)⊕ δ ,

w = m2 ∗ S(m3 ∗ S(p0 ⊕ k0)⊕ θ′)⊕ δ′ ,

where m0, m1, m2, m3 are elements from MC, p0 is a plaintext byte, k0 denotes
the byte of K0 XORed with p0, either of θ and θ′ is a function of 3 plaintext
bytes and 4 key bytes, and either of δ and δ′ is a function of 12 plaintext bytes
and 16 key bytes. Consequently, the XOR of v and w is

v⊕w =
m0 ∗ S(m1 ∗ S(p0 ⊕ k0)⊕ θ)⊕m2 ∗ S(m3 ∗ S(p0 ⊕ k0)⊕ θ′)⊕ δ ⊕ δ′ . (5)

Observe that θ′ involves the same set of 3 plaintext bytes as θ, and δ′ involves
the same set of 12 plaintext bytes as δ. Thus, if we have a number of plaintexts
with the 15 plaintext bytes except p0 fixed, then θ, θ′, δ and δ′ will be constant
for these plaintexts. Thus, by guessing the 24 unknown bits for (k0, θ, θ

′) we can
conduct a single-bit second-order DPA attack using Eq. (5) to obtain k0.

Furthermore, v⊕w involves only a total of 12 plaintext bytes in a few special
situations, and thus we need a number of plaintexts with only 11 bytes fixed.
For example, v and w are the output bytes (0, i) and (1, i) of the AddRoundKey
operation of Round 2, where 0 ≤ i ≤ 3. As bytes (0,3) and (1,3) of the MC
matrix are identical (i.e. 0x01), XORing v and w will cancel the last input byte
of the i-th column of the MixColumns operation of Round 2, and v⊕ u involves
a total of 12 plaintext bytes only. As a result, we only need to fix 11 plaintext
bytes to get constant θ, θ′, δ and δ′. Other special situations include bytes (0, i)
and (3, i), bytes (1, i) and (2, i), and bytes (2, i) and (3, i), which can be easily
spotted from the MC matrix. These special situations are because every column
of the MC matrix contains two identical elements. Similar special cases do not
hold for the MC−1matrix, for the four elements of a column of MC−1are different
one another.

4.3 Explaining Principle (v)

We briefly explain a difficult case in Principle (v): one exploited byte v is imme-
diately after the SubBytes operation of Round 2, and the other exploited byte w
is immediately before the AddRoundKey operation of Round 8. We know that v
is dependent on 4 plaintext bytes and 5 round key bytes, and w is dependent on
4 ciphertext bytes and 9 round key bytes. A similar analysis reveals that v ⊕ w
can be expressed as the following form:

v ⊕ w = S(m0 ∗ S(p0 ⊕ k0)⊕ θ)⊕ w , (6)

where m0 is an element from MC, p0 is a plaintext byte, k0 is the byte of K0
XORed with p0, and θ is a function of 3 plaintext bytes and 4 key bytes. If

178 J. Lu, J. Pan, and J. den Hartog

we have a number of plaintexts and ciphertexts such that the 3 plaintext bytes
involved in θ and the 4 ciphertext bytes involved in w are fixed, then θ and w are
constant for these plaintexts and ciphertexts. Consequently, we can conduct a
second-order DPA attack using Eq. (6) to obtain k0, by guessing the 24 unknown
bits for (k0, θ, w). Similarly, a single-bit second-order DPA attack guessing only
the 16 unknown bits for (k0, θ) is feasible using Eq. (6).

Alternatively, v ⊕ w can also be expressed as the following form:

v ⊕ w = S−1(m′
0 ∗ S−1(c0 ⊕ k0)⊕ θ)⊕ δ , (7)

where m′
0 is an element from MC−1, c0 is a ciphertext byte, k0 denotes the byte

of K10 XORed with c0, θ is a function of 3 ciphertext bytes and 7 key bytes,
and δ is a function of 4 plaintext bytes and 6 key bytes. Therefore, if we have a
number of plaintexts and ciphertexts such that the 4 plaintext bytes involved in
δ and the 3 ciphertext bytes involved in θ are fixed, we can conduct a second-
order DPA attack using Eq. (7) to obtain k0 by guessing the 24 unknown bits
for (k0, θ, δ), and conduct a single-bit second-order DPA attack to obtain k0 by
guessing only the 16 unknown bits for (k0, θ).

5 Experimental Results

In 2006, Herbst, Oswald and Mangard [8] presented an AES software implemen-
tation for 8-bit smartcards; see [8] for its specifications. Herbst et al.’s implemen-
tation uses randomization and masking for (roughly) the first round and the last
one and a half rounds, and uses only masking for the inner rounds. Building on
Herbst et al.’s idea, in 2007 Tillich, Herbst and Mangard [9] presented an AES
implementation for 32-bit smartcards; see [9] for its specifications. Tillich et al.’s
implementation uses both the countermeasures for (roughly) the first one and a
half rounds and the last one and a half rounds, and uses no countermeasures for
the inner rounds.

In this section, we take Herbst et al.’s and Tillich et al.’s AES implementations
as examples, and conduct representative experiments to justify the principles in
Section 3. We program the two implementation schemes in the EEPROM of
an AVR-based 8-bit micro-controller. The micro-controller is clocked at 3.57
Mhz, and the power signals are sampled at a rate of 200M samples per second.
Note that we use correlation to distinguish correct and incorrect key guesses in
the experiments, but similar results hold when using the classical “difference of
means” way [1].

5.1 Practical Attacks on Herbst et al.’s Implementation

From [8] we observe that the output bytes of the SubBytes operation of Round 2
or 9 are protected only by the same mask M ′ in Herbst et al.’s implementation,
and the output bytes of the AddRoundKey operation of Round 1 or 8 are pro-
tected only by the same mask M . Thus, by Principle (vii) we learn that Herbst
et al.’s implementation is vulnerable to second-order DPA attacks.

Principles on the Security of AES against First and Second-Order DPA 179

Fig. 1. The SubBytes operation in Round 2

We perform a second-order attack that exploit two output bytes of the
SubBytes operation of Round 2. The attack recovers a key byte by guessing
only 16 unknown bits. The two exploited bytes are the first byte X0,0 and the
last byte X3,3. Following the descriptions in Section 4.2, we know that their
XOR is,

X0,0 ⊕X3,3 = S(m0,0 ∗ S(P0,0 ⊕K0
0,0)⊕ θ)⊕X3,3 .

We choose 16384 plaintexts such that the seven bytes (1, 1), (2, 2), (3, 3), (1, 0),
(2, 1), (3, 2) and (0, 3) are respectively fixed to 5, 10, 15, 1, 6, 11 and 12, and
the other bytes are random, and we use the secret key K = (Ki,j) with Ki,j =
i + j × 4. Thus, θ = 115 and X3,3 = 94 hold for every plaintext.

We then obtain the power traces for encrypting the 16384 plaintexts on the
micro-controller. We use the attack strategy given in Chapter 10.3 of [21]. In
order to reduce the computational workload of the attack, we compress the power
traces by combining (adding up) all the signals during each clock cycle. We next
make an educated guess for the time frames when X0,0 and X3,3 are computed
during every execution by optically inspecting the power traces. Fig. 1 plots a
power trace segment that corresponds to the SubBytes operation in Round 2,
where the 16 sequential S-box substitutions are clearly distinguishable from each
other. The first S-box substitution occurs in clock cycles 19–38, and the last S-
box substitution occurs in clock cycles 338–356. Subsequently, for every power
trace we calculate the absolute-of-difference of each signal in clock cycles 19–38
and each signal in clock cycles 338–356. The resulting traces, which contains 380
signals each, are referred to as the preprocessed power traces. At last, a first-order
attack is applied using the preprocessed power traces. In this step, we correlate
the power traces to the leftmost bit of the exploited variole X0,0 ⊕X3,3, where
all the possible values for (K0

0,0, θ) are tested. In our experiment the advantages
of a single-bit attack over a multi-bit attack are two-fold: (1) The testing space
is reduced by 1

3 ; and (2) The ghost peaks caused by incorrect hypotheses of X3,3
in case of a multi-bit attack (due to the linearity of XOR) can be avoided.

The results of the second-order attack are plotted in Fig. 2, where the black
curve corresponds to the correct guess (i.e., when (K0

0,0, θ) = (0, 115)), and
the gray curves correspond to the incorrect guesses. The figure shows that the
correct guess leads to the highest peak at point 300. This point corresponds to
clock cycles 34 and 352 in the original traces, during which X0,0 and X3,3 are
manipulated on the micro-controller.

180 J. Lu, J. Pan, and J. den Hartog

Fig. 2. Results for all the 65536 guesses
in a second-order attack

Fig. 3. Results at point 300 with an in-
creasing number of traces

We analyze the number of power traces required by such an attack. We per-
form 128 attacks using 128, 256, 384, . . . , 16384 power traces, respectively. Dif-
ferent from the above experiment, we only test the interesting point in time,
i.e., point 300 in the preprocessed trace. Fig. 3 depicts the evolution of the re-
sults over an increasing number of power traces used, where the outer thicker
black curves mark the expected region of the incorrect key hypotheses with a
confidence of 0.9999. Again, the result for the correct guess is plotted in black,
and the rest are plotted in gray. The point where the curve for the correct key
hypothesis leaves this region gives an estimation of the number of traces required
by a successful attack. From Fig. 3 we get that the attack can almost always
succeed with approximately 8000 traces.

5.2 Practical Attacks on Tillich et al.’s Implementation

From [9] we observe that there is no protection between the AddRoundKey op-
eration in Round 2 and the MixColumns operation in Round 3 and between the
MixColumns operation in Round 7 and the AddRoundKey operation in Round
8. Thus, by Principle (vi) we can conduct first-order DPA attacks on Tillich et
al.’s implementation. Observe that all the output bytes of the AddRoundKey
operation in Round 8 are concealed by the same mask M , and thus by Principle
(vii), Tillich et al.’s implementation is vulnerable to second-order DPA attacks.
The second-order DPA attacks are similar to that described above for Herbst et
al.’s implementation.

We perform a first-order attack exploiting an input byte of the AddRoundKey
operation in Round 8. The attack reveals a key byte of K10 by guessing only 16
unknown bits. The exploited byte is the first input X0,0, and by the guideline in
Section 4.1 we have,

X0,0 = K8
0,0 ⊕ S−1(m′

0,0 ∗ S−1(C0,0 ⊕K10
0,0)⊕ θ).

We generate 16384 plaintexts which cause 16384 ciphertexts with bytes (1, 3),
(2, 2) and (3, 1) being equal respectively to 13, 10 and 7 when encrypted using

Principles on the Security of AES against First and Second-Order DPA 181

Fig. 4. Results for all 65536 guesses in a
first-order attack

Fig. 5. Results at clock cycle 27 with an
increasing number of traces

the secret key K = (Ki,j) with Ki,j = i + j × 4. Hence, θ = 124 for all the
ciphertexts, and K10

0,0 = 19.
We collect the power traces for encrypting the plaintexts on themicro-controller.

Again, to reduce the computational complexity of the subsequent analysis we per-
form the same compression of traces and optical inspection as in the attack in Sec-
tion 5.1. Finally, we successfully find the key byte K10

0,0 after performing an attack
on the leftmost bit of X0,0 by guessing for (K10

0,0, θ). The results of this attack are
depicted in Fig. 4, where the black curve represents the result for the correct guess
of (K10

0,0, θ) and the gray curves represent the results for the incorrect guesses. A
distinctive peak happens at clock cycle 27, indicating that X0,0 is manipulated at
clock cycle 27 during the encryptions. To analyze the number of required power
traces, we performe 128 such attacks using 128, 256, 384, . . . , 16384 power traces
respectively and calculate the results only for clock cycle 27; the results are shown
in Fig. 5, which indicates 2000 traces are adequate for a successful attack.

6 Comparison with Related Work

As mentioned above, this paper concerns solely the security of an AES imple-
mentation against the primary type of power analysis — DPA. During the past
few years, other types of power analysis have been proposed, including the tem-
plate attack [28], the side-channel collision analysis [29] and those obtained by
combining the existing power analytic techniques [30]. Compared with DPA,
these attack techniques require more assumptions on the ability of an attacker
and are much harder to conduct in practice.

Following the side-channel collision analysis approach, in 2006 Handschuh
and Preneel [31] applied differential cryptanalysis [32] for power attacks on DES,
which exploit intermediate values immediately after the first four rounds of DES.
Handschuh and Preneel’s result differs from ours in several aspects: (I) Their
attacks require high probability differentials for reduced rounds of the cipher
concerned, and are hard to apply to the first two and a half rounds of AES (i.e.
from the beginning until the MixColumns operation of the third round). For DES
there are 4-round differentials with large probabilities (e.g. 3.8×10−4); but as the

182 J. Lu, J. Pan, and J. den Hartog

maximum differential probability for the AES S-box is 2−6 and the MixColumns
operation has a branch number of 5 [33], thus for AES a differential characteristic
operating on the first two and a half rounds has a probability of at most 2−54.
Park et al. [34] gave the upper bound 1.144 × 2−111 for the probability of a
4-round AES differential. Therefore, these differentials are not useful for power
analysis in practice because their probabilities are too small; (II) Handschuh
and Preneel’s attacks depend on a direct measurement of the Hamming weight
of an intermediate value, and like the side-channel collision analysis, are harder
to perform than DPA attacks, but our attacks are DPA attacks; and (III) Our
result also includes attacks that work for protected implementations where the
exploited intermediate state is masked or partially masked.

Motivated by Handschuh and Preneel’s work, in 2007 Biryukov and Khovra-
tovich [35] applied two other traditional symmetric-key cryptanalytic methods
to obtain new techniques of side-channel cryptanalysis, namely the impossible
collision attack and the multiset collision attack, which exploit intermediate val-
ues immediately after the first three or four rounds of AES. This is better than
our result in terms of the numbers of attacked rounds. However, their attacks
require more and stronger assumptions on the ability of an attacker than ours,
and have much larger data and computation complexities, e.g., 219 − 232 mea-
surements and 227−254 off-line computations; and another important difference
is like that described in the above (III): our result can be applicable in some
implementations with the exploited intermediate values being masked.

In 2008, using some sophisticated techniques [9] obtained by combining (high-
order) DPA attacks and the windowing technique [3], Tillich and Herbst [36]
presented several complicated power analysis attacks on Herbst et al.’s imple-
mentation. Their attacks aim to demonstrate how to break the countermeasures;
they use the assumption that the attacker has the knowledge of the generating
or storing time of a mask (as well as its power consumption), and use the win-
dowing technique to deal with the effect of randomization. By contrast, we aim
to demonstrate how far intermediate values can be exploited. Our attacks do not
use the assumption, and do not need to deal with the effect of randomization,
for they exploit intermediate values beyond the randomization zones; and they
require much less plaintexts, and are very simple and easy to conduct in practice.

7 Principles on the Protection of AES against First and
Second-Order DPA

From the principles in Section 3, we can easily get the following principles for
protecting AES against first and second-order DPA.

(1) Any one or two bytes concerned by Principles (i)–(v) should not be left
unprotected.

(2) Any two bytes concerned by Principles (iii)–(v) should not be protected only
by the same mask; in other words, if they are protected by the same mask,
other countermeasure(s) should be present.

Principles on the Security of AES against First and Second-Order DPA 183

How far should we protect the beginning and end parts of AES in order to re-
sist first and secon-order DPA attacks (under the fundamental hypothesis)? Now
the general principles answer this question to some extent: In summary, in order
to make an AES implementation secure against first and second-order DPA, one
should sufficiently protect at least the first two and a half rounds and the last three
rounds of AES, i.e. from the beginning until the MixColumns operation of Round
3 and from the beginning of Round 8 to the end. Note that this result is towards
a general application environment, and aims to provide a necessary security level
against first and second-order DPA, and sophisticated attacks are not taken into
account. In addition, it is based on the techniques we have known currently. In
practice, implementation designers can decide the protected rounds according to
application environments, for example, if it is not possible for an attacker to obtain
plaintexts then the first two and a half rounds might be left unprotected.

Various countermeasures or their combinations can be applied to make an
AES implementation secure against first and second-order DPA. If using the
randomization and masking techniques as followed in [8, 9], one should apply
masking to those operations that are vulnerable to first-order DPA, and should
apply both countermeasures to those operations that are vulnerable to second-
order DPA. If the sophisticated attacks were considered, enhanced protection
mechanisms should be adopted.

8 Conclusions

In this paper, we have extensively studied the security of AES against first and
second-order DPA. A few general principles have been presented for attacking
an AES implementation. We have discovered that some values from the inner
rounds of AES can be exploited to conduct a first or second-order DPA attack.
As examples, we have demonstrated that Herbst et al.’s and Tillich et al.’s AES
implementations are even vulnerable to first and second-order DPA attacks, al-
though they are designed to achieve a high protection against power analysis
using two kinds of countermeasures. We have given several principles for pro-
tecting an AES implementation against first and second-order DPA attacks. In
general, for the time being, the first two and a half rounds and the last three
rounds of an AES implementation should be well protected in order to thwart
first and second-order DPA in practice.

Acknowledgments. The authors are very grateful to Jaap de Vos for providing
the power traces and to Jasper van Woudenberg and the anonymous referees for
their comments.

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Goubin, L., Patarin, J.: DES and differential power analysis — the “duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

184 J. Lu, J. Pan, and J. den Hartog

3. Clavier, C., Coron, J.S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

4. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

5. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA at-
tacks for masked smart card implementations of block ciphers. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)

6. National Institute of Standards and Technology (NIST), Advanced Encryption
Standard (AES), FIPS-197 (2001)

7. International Organization for Standardization (ISO), ISO/IEC 18033-3:2005: In-
formation technology — Security techniques — Encryption algorithms — Part 3:
Block ciphers (2005)

8. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

9. Tillich, S., Herbst, C., Mangard, S.: Protecting AES software implementations on
32-bit processors against power analysis. In: Katz, J., Yung, M. (eds.) ACNS 2007.
LNCS, vol. 4521, pp. 141–157. Springer, Heidelberg (2007)

10. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

11. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999)

13. Oswald, E., Schramm, K.: An efficient masking scheme for AES software implemen-
tations. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786,
pp. 292–305. Springer, Heidelberg (2006)

14. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

15. Akkar, M.-L., Goubin, L.: A generic protection against high-order differential power
analysis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 192–205. Springer,
Heidelberg (2003)

16. Akkar, M.L., Bévan, R., Goubin, L.: Two power analysis attacks against one-mask
method. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 332–347.
Springer, Heidelberg (2004)

17. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

18. Daemen, J., Rijmen, V.: Resistance against implementation attacks: a comparative
study of the AES proposals. In: Proceedings of The Second Advanced Encryption
Standard Candidate Conference, NIST(1999)

19. Jaffe, J.: Introduction to differential power analysis. In: ECRYPT Summer School
on Cryptographic Hardware, Side Channel and Fault Analysis (2006)

20. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

Principles on the Security of AES against First and Second-Order DPA 185

21. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: revealing the secrets
of smart cards. Springer, Heidelberg (2007)

22. Pan, J., den Hartog, J., de Vink, E.: An operation-based metric on CPA resistance.
In: Jajodia, S., Samarati, P., Cimato, S. (eds.) SEC 2008. International Federation
for Information Processing, vol. 278, pp. 429–443. Springer, Boston (2008)

23. Prouff, E., Ciraud, C., Aumonier, S.: Provably secure S-box implementation based
on Fourier transform. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 216–230. Springer, Heidelberg (2006)

24. National Institute of Standards and Technology (NIST), Data Encryption Standard
(DES), FIPS-46 (1977)

25. Lv, J., Han, Y.: Enhanced DES implementation secure against high-order differen-
tial power analysis in smartcards. In: Boyd, C., González Nieto, J.M. (eds.) ACISP
2005. LNCS, vol. 3574, pp. 195–206. Springer, Heidelberg (2005)

26. Lv, J.: On two DES implementations secure against differential power analysis in
smart-cards. Information and Computation 204(7), 1179–1193 (2006)

27. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: Proceedings
of The Third Advanced Encryption Standard Candidate Conference, NIST (2000)

28. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

29. Schramm, K., Wollinger, T.J., Paar, C.: A new class of collision attacks and its
application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003)

30. Pan, J., den Hartog, J., Lu, J.: You cannot hide behind the mask: Power analysis
on a provablely secure S-box implementation. In: Youm, H.Y., Yung, M. (eds.)
WISA 2009. LNCS, vol. 5932, pp. 178–192. Springer, Heidelberg (2009)

31. Handschuh, H., Preneel, B.: Blind differential cryptanalysis for enhanced power
attacks. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 163–
173. Springer, Heidelberg (2007)

32. Biham, E., Shamir, A.: Differential cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

33. Daemen, J., Rijmen, V.: AES proposal: Rijndael. In: Proceedings of The First
Advanced Encryption Standard Candidate Conference, NIST (1998)

34. Park, S., Sung, S.H., Lee, S., Lim, J.: Improving the upper bound on the maxi-
mum differential and the maximum linear hull probability for SPN structures and
AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer,
Heidelberg (2003)

35. Biryukov, A., Khovratovich, D.: Two new techniques of side-channel cryptanalysis.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 195–208.
Springer, Heidelberg (2007)

36. Tillich, S., Herbst, C.: Attacking state-of-the-art software countermeasures—A case
study for AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 228–243. Springer, Heidelberg (2008)

Adaptive Chosen-Message Side-Channel Attacks

Nicolas Veyrat-Charvillon� and François-Xavier Standaert��

Université catholique de Louvain, Crypto Group, Belgium
nicolas.veyrat, fstandae@uclouvain.be

Abstract. Most side-channel attacks that have been published in the
open literature assume known- or chosen-message adversarial scenarios.
In this paper, we analyze the increase of the attacks’ efficiencies that can
be obtained by adaptively selecting the messages. For this purpose, we
first describe a generic strategy that allows an adversary to take advan-
tage of this capability. We show that it can be applied to any differential
power or electromagnetic analysis attack, against unprotected or pro-
tected devices and exploiting profiled or non-profiled leakage models.
Then, we provide various experiments to quantify these improvements.
Finally, we discuss the optimality of our strategy and its implications for
the security evaluation of leakage-resilient cryptographic hardware.

1 Introduction

In classical cryptanalysis, the adaptive selection of the inputs to a cryptographic
primitive is known to be a powerful ability for the adversaries. For example,
blockwise-adaptive chosen-message attacks have been used to show the insecurity
of different encryption modes in [9]. Similarly, Bleichenbacher has demonstrated
in [3] that chosen-ciphertext attacks can be used to attack the RSA Encryp-
tion Standard PKCS #1. And in the symmetric setting, boomerang attacks are
an example of how the adaptivity can be exploited to reduce the complexity
of certain categories of attacks [24]. Quite surprisingly, and although it is fre-
quently suggested as a possible improvement, very few related works have been
performed in the context of side-channel attacks. In [20], Schindler presented a
timing attack against RSA with the Chinese remainder theorem that requires
some form of adaptivity. And more recently, Köpf and Basin provided a careful
model and analysis of such an attack scenario. But the investigations in [12] are
carried out in a restricted context of noiseless leakage. This typically applies to
timing attacks such as [10], but is of limited interested in the case of power or
electromagnetic side-channel attacks, in which noise is a typical issue adversaries
have to deal with [1,11,19]. To the best of the authors’s knowledge, the general-
ization of this previous work, from the context of deterministic leakages to the
one of probabilistic (or noisy) leakages was left as an open question.

In this paper, we consequently tackle this problem and propose a careful inves-
tigation of adaptive chosen-message side-channel attacks. We describe a generic
� Work supported by the Walloon region through the project SCEPTIC.

�� Associate researcher of the Belgian Fund for Scientific Research (F.R.S.-FNRS).

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 186–199, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Adaptive Chosen-Message Side-Channel Attacks 187

strategy that can be applied to improve the efficiency of any distinguisher. As an
illustration, we detail its impact for correlation and template attacks [4,5], both
from simulations and actual experiments. Our evaluations show significant in-
creases of the side-channel key-recovery success rates. We additionally evaluate
the application of adaptive strategies against implementations protected with
masking [8] and observe very similar improvements. Eventually, we discuss the
optimality of our approach and compare it with the one in [12].

These results imply direct consequences for the good security evaluations of
leaking cryptographic devices. They show that when applicable, adaptive strate-
gies require to take larger security margins than for random-message attacks. In
other words, the attacks described in this paper indicate how to best exploit the
physical information leakage, in the standard DPA setting formalized in [15].
Hence, they can be used to determine the worst-case number of measurements
required to performed a successful key-recovery in this context. We note that
considering key-recovery attacks in security evaluations can appear as too weak
from a theoretical point of view. But as demonstrated in [2], there is a strong
relationship between distinguishing attacks and key-recovery attacks in the con-
text of block ciphers. Hence, this situation is not very different than the one
in classical (e.g. linear, differential) cryptanalysis, in which one considers the
best available attacks in order to approximate the security of a cipher. And the
adaptive strategies presented in this paper are part of these evaluation tools.

Note also that our results have interesting connections with recent works in
the area of leakage resilient cryptography. Indeed, one of the assumptions in, e.g.
[6,16], is that the leakage function can be adaptively selected by the adversary.
But as discussed in [23], this is a quite strong requirement that is rarely observed:
it would require that the adversary can change his measurement setup in a
constructive manner. In practice, most attacks rather rely on a fixed leakage
function and measure this function for different plaintexts. It is the combination
of several plaintexts that allows increasing the information leakage in such a way
that the key is eventually revealed. Hence, our adaptive selection of the messages
provides a more realistic counterpart of the adversarial capabilities.

2 Terminology and Notations

In a side-channel attack, an adversary tries to recover some secret information
from a leaking implementation, e.g. a software program or an IC computing
a cryptographic algorithm. In this paper, we focus on the divide-and-conquer
strategies that are most frequently considered in the literature [14] and are for-
malized as “standard DPA attacks” in [15]. In the context of a block cipher
implementation (that will be our running example), one typically targets small
pieces of the master key - called subkeys in the following - one by one. The
attacks then follow the different steps illustrated in Figure 1.

Namely, we consider a device performing several cryptographic computations
Ek(xi) on different plaintexts xi drawn from the text space X , using some fixed
key k drawn from the key space K. While computing Ek(xi), the device handles

188 N. Veyrat-Charvillon and F.-X. Standaert

some intermediate values that depend on the known input xi and the unknown
key k (defined as sensitive variables in [18]). In practice, the interesting sensitive
variables in a DPA attack are the ones that depend on an enumerable subkey s:
we denote them as vs

i , for a plaintext xi. Any time such a sensitive intermediate
value is computed, the device generates some physical leakage, denoted as lki
(where the k superscript indicates that the leakage potentially depend on all
the key k, including the subkey s). Hence, in order to perform a key-recovery,
an adversary first has to select a sensitive value. Given that this variable only
depends on a subkey s, he can then predict its result for the plaintexts xi that
generated lki and enumerate every possible subkey candidate s∗ ∈ S. This leads
to different hypothetical intermediate variables vs∗

i . Afterwards, the adversary
exploits a leakage model to map these values from their original space V towards
a modeled leakage space M. As a result, he obtains |S| different models, denoted

xi

s

vs
i lki

s∗

vs∗
i ms∗

i

T

T′

compute leak

predict model

ds∗
i

Device

Adversary

Fig. 1. Schematic description of a side-channel key-recovery attack

as ms∗

i , again corresponding to the different subkey candidates. Eventually, he
uses a statistical test T to compare the different models ms∗

i with the actual
leakages lki . If the attack is successful, the highest value for this test should
occur for the correct subkey candidate s∗ = s. This procedure can be repeated
for different subkeys in order to recover the complete key k.

In view of this description, there are several important parameters that deter-
mine the efficiency of a DPA. First, the choice of an intermediate computation
and leakage model have a significant impact. For example, it is well known that
predicting the first round S-boxes’ outputs in a block cipher leads to a better
discrimination of the subkeys than predicting their inputs [17]. As for the leak-
age models, it mainly relates to the a-priori knowledge of the adversary about the

Adaptive Chosen-Message Side-Channel Attacks 189

device he targets. One generally distinguishes profiled and non-profiled attacks.
In the first ones (e.g. template attacks [5]), the adversary can characterize the
leakage probability density functions (pdf for short) prior to the online attack. In
the second ones, he exploits simpler models (e.g. predicting only certain moments
of the leakage pdf, as in correlation attacks [4]) or performs the profiling “on-
the-fly” [7]. Second, and closely related, the choice of a statistical test is usually
determined by the type of models available to the adversary.

Another parameter that is less frequently considered (and evaluated) in the
literature is the selection of the plaintexts. That is, in most experimental settings,
one generally considers attacks with random input messages. But as illustrated
in Figure 1, a more powerful scenario is to adaptively select the plaintexts, in
function of the prior knowledge about the secret subkey and an hypothetical
leakage model. In this paper, we consequently investigate the statistical tests T′

that can be used in order to best exploit the available leakage.

3 Adaptive Template Attacks

In this section, we present the principles of our adaptive chosen-message strategy.
We first describe it in the (profiled) context of template attacks. Then, we discuss
how to generalize our solution to non-profiled distinguishers.

3.1 Template Attacks

Template attacks, first published in [5], are usually considered as the most pow-
erful type of side-channel attacks, in an information theoretic sense. They work
in two main steps. In a first profiling phase, the adversary builds key-dependent
templates, i.e. he estimates the leakage pdf for different internal configurations
of his target device. Then, in a second (online attack) phase, he uses these tem-
plates to perform a maximum-likelihood key-recovery. In this paper, we focus on
the (most frequently considered) case of Gaussian templates.

Templates construction. Gaussian template attacks assign a Gaussian distri-
bution to a number of different configurations of the target device. In their most
generic form, they perform this assignment exhaustively. For example, if an ad-
versary targets the 8 first bits of an AES master key, he will use one Gaussian for
any pair (xi, s

∗), out of the 216 possible ones. In practice, different tricks can be
used to reduce this number of templates, in order to increase the efficiency of the
profiling, e.g. by taking advantage of symmetry properties and stochastic mod-
els [21]. In this section, we describe the generic approach for simplicity. Suppose
that the adversary is provided with Np traces to estimate the pdf corresponding
to a state (xi, s). He will then assume that the leakage traces {lk,j

i }Np

j=1 are drawn
from the multivariate normal distribution:

N (lk,j
i |μs

xi
,Σs

xi
) =

1

(2π)
N
2 |Σs

xi
| 12

exp
{
−1

2
(lk,j

i − μs
xi

)�(Σs
xi

)−1(lk,j
i − μs

xi
)
}
,

190 N. Veyrat-Charvillon and F.-X. Standaert

where the mean μs
xi

and the covariance matrix Σs
xi

specify completely the noise
distribution associated to the leakage trace of each pair (xi, s). The templates
are built by estimating the sets of parameters μs

xi
and Σs

xi
for xi ∈ X and

s ∈ S. Maximum likelihood estimators can be used for this purpose: μ̂s
xi

=
1

Np

∑Np

j=1 lk,j
i , and Σ̂

s

xi
= 1

Np

∑Np

j=1(l
k,j
i − μ̂xi,s)(l

k,j
i − μ̂xi,s)

T.

Online attack. Assume now that there are |S| possible subkeys. To determine
which one is the most likely to have generated a new trace lki , we compute:

s̃ = argmax
s∗

P̂r[s∗|lki] = argmax
s∗

P̂r[lki |s∗, xi] · P̂r
(0)

[s∗],

where P̂r[lki |s∗, xi] = N (lki |μ̂
s∗

xi
, Σ̂

s∗

xi
) and P̂r

(0)
[s∗] is the a priori probability of

the subkey candidate s∗, that we assume to be uniform in the following (i.e. equal
to 1/|S|, ∀s∗). In other words, the classification rule assigns lki to the candidate
s∗ with the highest a posteriori probability. Since in practice, a single trace is
usually not enough to recover the subkey with high confidence, the adversary
finally combines several plaintexts and computes s̃ = argmax

k∗
P̂r

(q)
[s∗], with:

P̂r
(q)

[s∗] =
∏q

i=1 Pr[s∗|lki]∑
s′∈S
∏q

i=1 Pr[s′|lki]
,

and q the number of traces used in the online attack. Note that in the following
sections, we will denote as univariate (resp. multivariate) the attacks in which
the the traces lki contain one (resp. several) samples.

3.2 Adaptive Selection of the Plaintexts

Let us now assume that a template attack has been performed with i traces,
corresponding to different plaintexts x1 to xi, and giving rise to a certain knowl-
edge about the subkey candidates summarized as P̂r

(i)
[s∗]. The objective of this

paper, illustrated in Figure 1, is to select the next plaintext xi+1 in such a way
that it will best discriminate the correct subkey. Ideally, this plaintext could be
obtained by computing the success rate of the adversary in step i + 1 or, simi-
larly, by computing the residual entropy of this correct subkey s (i.e. one of the
metrics in [22]). But while running an attack, the adversary obviously does not
know the value of this correct subkey yet. As a consequence, the only applicable
strategy is to exploit a criteria that can be estimated “on-the-fly”.

Following the previous section, it appears that a natural criteria is to look at
the entropy of the subkey candidates rather than the one of the correct subkey.
Indeed, in a successful attack, the entropy of these subkey candidates should
eventually be null (i.e. we should determine only the correct subkey with prob-
ability one). For example, at step i, this entropy can be estimated as:

Ĥ
(xi)[S∗] = −

∑
s∗

P̂r
(i)

[s∗] · log2 P̂r
(i)

[s∗],

Adaptive Chosen-Message Side-Channel Attacks 191

where xi = [x1, x2, . . . , xi] is the vector of plaintexts used in the attack. Using
this entropy as a criteria for our adaptive chosen-message attacks implies select-
ing the plaintext xi+1 as the one minimizing Ĥ

(xi+1)[S∗]. This can be done as
follows. First, let us observe that for every plaintext candidate x∗

i+1 and subkey
candidate s∗, one can define a random variable L̂s∗

x∗
i+1

, corresponding to the sim-
ulated leakage trace that perfectly follows the leakage model obtained from the
templates construction phase (i.e. a normal curve with mean vector μ̂s∗

xi+1
and

covariance matrix Σ̂
s∗

x∗
i+1

). We can then construct a random variable L̂S∗

x∗
i+1

, as a

mixture of L̂s∗

x∗
i+1

’s, for different plaintext candidates x∗
i+1, with probability:

Pr[L̂S∗

x∗
i+1

] =
∑
s∗

P̂r
(i)

[s∗] · Pr[L̂s∗

x∗
i+1

]. (1)

That is, we have one L̂S∗

x∗
i+1

per plaintext candidate x∗
i+1. Exemplary mixtures are

represented in Figure 2, for two different plaintexts and in a simple context with
only four possible subkeys. The definition of this variable is motivated by the
fact that at step i in an attack, the only available knowledge about the subkeys
is stored in P̂r

(i)
[s∗]. Hence, Equation (1) is the best available estimation of the

leakage pdf at this step. For a given mixture and a fixed (simulated) leakage

value l̂S
∗

x∗
i+1

, it is possible to compute the conditional entropy Ĥ
(x∗

i+1)[S∗|l̂S∗

x∗
i+1

],
as illustrated in Figure 2 for three exemplary leakage values l0, l1 and l2.

l̂S
∗

x∗
i+1

Pr[L̂S∗
x∗

i+1
]

l0

H(x∗
i+1)[S∗|l0] ≈ 1.28

l̂S
∗

x∗
i+1

Pr[L̂S∗
x∗

i+1
]

l1

H(x∗
i+1)[S∗|l1] ≈ 0.83

l2

H(x∗
i+1)[S∗|l2] ≈ 0.72

Fig. 2. Adaptive selection of the plaintexts in a simplified context with |S| = 4

192 N. Veyrat-Charvillon and F.-X. Standaert

Integrating this entropy over the leakages yields the estimations:

Ĥ
(x∗

i+1)[S∗] =
∫

Pr[l̂S
∗

x∗
i+1

] · Ĥ(x∗
i+1)[S∗|l̂S∗

x∗
i+1

] dlS
∗

x∗
i+1

.

And since we have one such entropy value for every possible choice of x∗
i+1 in

|X |, we finally obtain the following rule to select the plaintexts:

x̃i+1 = argmin
x∗

i+1

Ĥ
x∗

i+1 [S∗]

Summarizing, we use the available a-priori subkey information at step i and
the leakage model (i.e. the templates) to predict how the entropy of the subkey
candidates would evolve at step i + 1, for different plaintext candidates x∗

i+1.

3.3 Generalization to Non-profiled Attacks

As detailed in the previous section, an important requirement when applying an
adaptive strategy (e.g. in the case of template attacks) is the availability of a
good leakage model. Therefore, an interesting question is to know if such strate-
gies can still help in the context of non-profiled side-channel attacks, where the
model is usually less precise. As an illustration, we discuss this problem for the
frequently considered correlation power analysis using Pearson’s coefficient.

Correlation attacks, as described in [4], use the following distinguisher:

ρ̂(Ms∗

q ,Lq) =
Ê
((

li − Ê(Lq)
)
·
(
ms∗

i − Ê(Ms∗

q)
))

σ̂(Lq) · σ̂(Ms∗
q)

,

where Ê and σ̂ denote the sample means and standard deviations of a ran-
dom variable, respectively. In this context, the models ms∗

i are not the complete
leakage pdf (as in template attacks) but only their mean values (i.e. the first-
order moments of the pdf). In general, these mean values are not estimated with
profiling, but rather taken from engineering intuition. For example, a usual as-
sumption is to use the so-called Hamming Weight or distance leakage models [14].

Adaptive correlation. When trying to apply the strategy of the previous sec-
tion to correlation attacks, two main problems arise, that we now detail. First,
the subkey probability estimation is not straightforward. Whereas template at-
tacks rate these subkey candidates using their probabilities, correlation attacks
return a set of scores, corresponding to the value of Pearson’s coefficient. In order
to mount an adaptive attack, the adversary consequently needs to use heuristics
in order to estimate the subkey distribution P̂r

(i)
[s∗], e.g. by:

– using the absolute value of the estimated coefficient p̂s∗

i = |ρ̂(Ms∗

q ,Lq)|,
– applying Fisher’s transform on this correlation coefficient (in order to get a

normal distribution), i.e. computing p̂s∗

i = |arctanh(ρ̂(Ms∗

q ,Lq))|,

Adaptive Chosen-Message Side-Channel Attacks 193

– computing the p-values associated with each correlation in a hypothesis test.
For example, one could estimate the p-value obtained when stating that the
subkey candidate in not correlated with the model.

In each case, we then need to normalize the p̂s∗

i ’s in order to get an estimated
probability distribution, as the values we obtain are not actual probabilities, and
some wrong subkeys may give a non-zero score (aka ghost peaks [4]):

P̂r
(i)

[s = s∗] =
p̂s∗

i∑
s′∈S p̂s′

i

Second, and more critically, the selection procedure of Section 3.2 requires to
build a random variable L̂S∗

x∗
i+1

as a mixture of L̂s∗

x∗
i+1

, that estimates the leakage
distribution given the subkey probabilities at step i in an attack. This requires
an estimate of the leakage pdf that is given if the leakage model is probabilistic
(as in template attacks), but is not directly available in a correlation attack.
Again, a number of heuristics are possible. The simplest one, that we considered
in this work, is to combine the (Hamming weight or distance) power models with
a Gaussian assumption, i.e. to paste a Gaussian curve to the different Hamming
weights, of which the variance is estimated “on-the-fly” during the attack.

4 Simulated Experiments

In order to validate our adaptive message selection, we first conducted software
simulations. These attacks target the output of a single AES S-box in the first
encryption round. Excepted if mentioned otherwise, physical leakages are simu-
lated as the Hamming weight of the S-box outputs, to which is added a normally
distributed noise with standard deviation σn. The efficiency of an attack is then
measured with the success rate, averaged over 1000 independent key recoveries.
The results of our experiments are in Figure 3 from which we observe:

1. In all cases, the adaptive strategy leads to increased success rates. It no-
ticeable that the impact of this adaptivity becomes significant as soon as
a slight a-priori knowledge is known about the target subkey. Also, and as
illustrated in Figure 3.(a), this improvement holds for different noise levels.

2. The same observation also holds for different leakage functions. For example,
Figure 3.(b) shows the success rates of attacks exploiting three different side-
channels of the form: L(x) =

∑
i αix[i] + n, where x[i] is the ith bit of the

target S-box output and n a Gaussian noise. Interestingly, these examples
directly connect with the framework in [22]. They show that as in a non-
adaptive context, a more informative leakage function (measured with the
conditional entropy H[S|L1]) leads to more efficient attacks.

3. Although more computationally intensive (because they require to deal with
mixtures of probability distributions, e.g. as described in [13]), attacks against
masked implementations exhibit similar improvements (see Figure 3.(c)).

194 N. Veyrat-Charvillon and F.-X. Standaert

(a) Hamming weight leakage function, σn = 1 (left) and σn = 4 (right).

random plaintexts adaptive chosen plaintexts

#messages

Success rate

0 5 10 15 20 25
0

0.2
0.4
0.6
0.8

1

#messages

Success rate

0 50 100 150 200 250

(b) Different leakage functions with the same noise level σn = 1 and the conditional
entropy H[S|L1] = 7.7 (left), H[S|L1] = 7.4 (middle), H[S|L1] = 6.9 (right).

#messages

Success rate

0 16 32 48 64 80
0

0.2
0.4
0.6
0.8

1

#messages

Success rate

0 8 16 24 32 40
#messages

Success rate

0 4 8 12 16 20

(c) Masked S-box, Hamming weight leakages, σn = 0.5 (left) and σn = 1 (right).

#messages

Success rate

0 30 60 90 120 150
0

0.2
0.4
0.6
0.8

1

#messages

Success rate

0 100 200 300 400 500

(d) Correlation attacks, Hamming weight leakages, σn = 0.5 (left) and σn = 1 (right).

#messages

Success rate

0 3 6 9 12 15
0

0.2
0.4
0.6
0.8

1

#messages

Success rate

0 8 16 24 32 40

Fig. 3. Success rates of different simulated experiments

Adaptive Chosen-Message Side-Channel Attacks 195

4. Eventually, the results of the heuristics proposed to exploit adaptivity in the
context of correlation power analysis are given in Figure 3.(d). As expected,
the imperfect approximations of the pdf imply smaller improvements.

This last point implies interesting scopes for further research. For example, it
would be interesting to apply adaptive strategies to other non-profiled tools such
as the MIA [7], in which an estimation of the leakage pdf is computed as part
of the attack. In the same line, it could also be possible to exploit stochastic
models in order to obtain a leakage model “on-the-fly”. In this respect, it is
worth recalling that such distinguishers can also be used for profiling a device,
without a-priori knowledge of the key (i.e. to obtain templates in a flexible way).

5 Experiments Using Actual Measurements

In order to confirm the previous simulations, we additionally performed actual
experiments against an implementation of the AES Rijndael in an Atmel At-
mega 644p chip. Such actual measurements are interesting because they allow
exploiting the leakage of several time samples, contrary to the simulated case
where a single point of interest was considered. In other words, actual experi-
ments allow easily evaluating the impact of multivariate templates. In practice,
we compared attacks with up to three samples, for adaptive and random message
selection. The points of interest were selected as part of the profiling phase, two
of them corresponding to the S-box computation, and one to the first key addi-
tion. Again, we estimated the success rates over 1000 independent key recoveries,
excepted for the trivariate attack which was only launched against 50 different
keys. The smaller number of attacks in this case is due to their computational
cost, that grows exponentially with the number of dimensions, and makes the
exhaustive analysis of Section 3.2 too intensive to be performed.

The results of these experiments are in Figure 4. They show that the adaptive
strategy holds for real world implementations. That is, the leakage models built
during profiling can be precise enough1 so that the estimation of the “next-step

entropy” Ĥ
x∗

i+1 [S∗] leads to a meaningful selection of the next plaintext xi+1. It
is worth noting the large difference between univariate random-message attacks
and trivariate chosen-message ones. It illustrates the variability that can be ob-
served between different attack scenarios in physically observable cryptography.

6 Discussion and Concluding Remarks

Is our strategy optimal?. Following the previous sections, a first natural
question is to know if the proposed strategy is optimal. For this purpose, it
is interesting to relate our work with the one of [12]. The authors estimate the
number of queries required for a key-recovery, in the context of deterministic side-
channel leakages. For each encryption step, the key candidates are partitioned in
1 We used a 1000 traces to characterize each template.

196 N. Veyrat-Charvillon and F.-X. Standaert

random univariate

random bivariate

random trivariate
adaptive univariate

adaptive bivariate

adaptive trivariate

#messages

Success rate

0 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Fig. 4. Success rates of experiments carried out against an AES implementation

r sets, and the side-channel leakage allows the adversary to discriminate one set
containing the correct key. The optimal strategy minimizes the number of steps
required to reduce the number of key candidates to one. The main limitation is
that its computational cost is doubly exponential in the number of attack steps.
This is because in this optimal strategy, it is in fact several next plaintexts (xi+1,
xi+2, . . .) that have to be predicted in order to minimize the entropy of the key
candidates. Hence, this strategy is hardly applicable, even for small parameters
size. In order to get rid of this limitation, Köpf and Basin propose an alternative
greedy heuristic, which predicts only one next plaintext at a time.

The procedure presented in this paper can be seen as the extension of such a
greedy strategy, from the deterministic case towards the more general probabilis-
tic case. The main difference is that deterministic leakages allow the adversary
to effectively eliminate subkeys, whereas probabilistic leakages only help the ad-
versary to update the subkey candidates’ distribution. This extension allows an
application of adaptive strategies to a broader class of attacks, including power
and electromagnetic leakages, typically. But it comes at a computational cost,
since we had to turn deterministic sums into integrals (that are multidimensional
in the case of multivariate attacks). Summarizing, our strategy is not optimal.
But as indicated in [12], greedy heuristics can provide close to (or even equal to)
optimal results in practice. The exact evaluation of the greedy approach with re-
spect to the optimal one and the investigation of alternative solutions to reduce
the computational cost of adaptive attacks is a scope for further research.

Implications. Next to optimality, another important question is to determine
whether the application of adaptive strategies may have practical impact in
certain applications. Looking at the figures in the previous sections indicates
that the improvements are not huge, but can be significant. For example, Table 1
shows that the number of measurements required to reach a certain success
rate is improved, in particular when combining adaptive attacks with trivariate
leakages. But in fact, the consequences of adaptivity are best observed with
respect to the global success rates of the attacks. That is, because standard DPA

Adaptive Chosen-Message Side-Channel Attacks 197

Table 1. Approximated data complexities for different attacks against an 8-bit subkey

Target success rate > 20% > 40% > 60% > 80% ≈ 100%

random messages - 1D 5 7 8 11 20
adaptive messages - 1D 4 5 7 8 16
adaptive strategy - 3D 3 4 5 6 8

Table 2. Approximated success rates for different attacks against a 128-bit key

Number of messages 2 3 4 5 6 7 8

random messages - 1D 2−69 2−55 2−42 2−29 2−21 2−15 2−10

adaptive messages - 1D 2−64 2−50 2−33 2−20 2−12 2−7 2−5

adaptive strategy - 3D 2−58 2−32 2−16 2−9 2−4 2−2 -

attacks exploit a divide-and-conquer strategy, the overall success rate against the
full AES master key can be estimated by simply raising the success rate against
an 8-bit byte to the power 16. This assumes that all key bytes are equally difficult
to recover, which is reasonable in most applications, in particular software ones as
in Section 5. In the case of adaptive attacks, it also means that the selection of all
the plaintext bytes are performed concurrently. Table 2 shows these estimated
success rates in function of the number of messages in the attack. It clearly
illustrates the strong impact that adaptive strategies may have. For example,
one can imagine a re-keying scheme where the secret is updated every four
encryptions. Our results suggest that the resulting security level would differ
by a factor of 29 depending on the use or not of adaptive messages. This factor
increases to 226 if multivariate leakages are considered. And in the case of attacks
against the AES-256, these factors would additionally be squared.

It is worth mentioning that targeting hardware implementations, in which
all the subkeys are manipulated in parallel, would imply additional questions.
For example, in a context where a single key byte has to be recovered with
high efficiency, one could also take advantage of chosen plaintexts so that the
remaining input bits are constant, in order to reduce the algorithmic noise. But
an adaptive strategy would still apply to the target key byte. Extending the
experiments of this paper towards more devices and countermeasures against
side-channel attacks is anyway another interesting direction for further research.

Eventually, and as discussed in [23], the success rates of adaptive attacks can,
when applicable, be used as rough (but only available ones) estimations of the
bounded leakage2 that is necessary to prove the security of certain leakage re-
silient constructions. Our results can also be directly integrated in the evaluation
framework of Eurocrypt 2009 [22]: they exhibit a new type of distinguisher that
can take advantage of the information leakage in a close to optimal manner.
Summarizing, this paper brings an important contribution to the exploitation of
side-channel leakages in both theoretical and practical settings.

2 Given that the plaintext selection is granted to adversaries. As previously said, it is
anyway a more reasonable abstraction than the adaptivity of the leakage function.

198 N. Veyrat-Charvillon and F.-X. Standaert

References

1. Agrawal, D., Archambeault, B., Rao, J., Rohatgi, P.: The EM Side-Channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

2. Baignères, T.: Quantitative Security of Block Ciphers: Design and Cryptanalysis
Tools. PhD Thesis, EPFL, Lausanne, Switzerland (November 2008)

3. Bleichenbacher, D.: Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

4. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

6. Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography. In: The proceed-
ings of FOCS 2008, Washington, DC, USA, October 2008, pp. 293–302 (2008)

7. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis: A
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 396–410. Springer, Heidelberg (2008)

8. Goubin, L., Patarin, J.: DES and Differential Power Analysis. In: Koç, Ç.K., Paar,
C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)

9. Joux, A., Martinet, G., Valette, F.: Blockwise-Adaptive Attackers: Revisiting the
(In)Security of Some Provably Secure Encryption Models: CBC, GEM, IACBC. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 17–30. Springer, Heidelberg
(2002)

10. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

11. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–412. Springer, Heidelberg (1999)

12. Köpf, B., Basin, D.A.: An Information-Theoretic Model for Adaptive Side-Channel
Attacks. In: The proceedings of the ACM Conference on Computer and Commu-
nications Security, Alexandria, Virginia, USA, October 2007, pp. 286–296 (2007)

13. Lemke-Rust, K., Paar, C.: Gaussian Mixture Models for Higher-Order Side Channel
Analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
14–27. Springer, Heidelberg (2007)

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Heidelberg
(2007)

15. Mangard, S., Oswald, E., Standaert, F.-X.: One for All, All for One: Unifying
Standard DPA Attacks, Cryptology ePrint Archive, Report 2009/449

16. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2010)

17. Prouff, E.: DPA Attacks and S-Boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)

18. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. In: Nyberg, K. (ed.) FSE 2008.
LNCS, vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

Adaptive Chosen-Message Side-Channel Attacks 199

19. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

20. Schindler, W.: A Timing Attack against RSA with the Chinese Remainder The-
orem. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 109–124.
Springer, Heidelberg (2000)

21. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side-
Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 30–46. Springer, Heidelberg (2005)

22. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2010); extended version available on
the Cryptology ePrint Archive, Report 2006/139

23. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage Resilient Cryptography in Practice. Cryptology ePrint Archive, report
2009/341

24. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

Secure Multiplicative Masking of Power
Functions

Laurie Genelle1, Emmanuel Prouff1, and Michaël Quisquater2

1 Oberthur Technologies
{l.genelle,e.prouff}@oberthur.com

2 University of Versailles
michael.quisquater@prism.uvsq.fr

Abstract. Side Channel Analysis (SCA) is a powerful key recovery at-
tack that efficiently breaks block ciphers implementations. In software,
it is usually counteracted by applying a technique called masking, that
combines the key dependent variables with random values. When the
block cipher to protect mixes affine functions and power functions, a
natural strategy is to additively mask the first category of functions and
to multiplicatively mask the second one. Several works that follow this
strategy have been proposed in the literature, but all of them have been
proved to be flawed or very costly. The main difficulty comes from the
multiplicative masking of the zero value in a finite field. In this paper,
we propose a scheme to multiplicatively mask power functions in such a
way that the security against first-order SCA is maintained. We more-
over show how to securely combine additive masking of affine transfor-
mations with multiplicative masking of power functions. We then apply
our method to protect the AES implementation and we show that our
proposal offers good timing/memory performances.

1 Introduction

Originally, cryptographic algorithms were designed to provide resistance against
logical attacks. These attacks try to recover the key from ciphertexts related to
known or unknown plaintexts. While an algorithm may be considered as perfect
from a logical point of view, its implementation may leak information. This very
old idea was actually already applied to the one-time pad by distinguishing the
electrical trace of a zero resulting from the addition of two one’s and of two
zero’s. In the late 90’s, the development of the smart card industry instigated
the research community to develop attacks against software (and hardware) im-
plementations of algorithms. Those attacks take advantage of the correlation
between the manipulated secret key and physical measures such as the running
time, the power consumption or the electromagnetic emanation of the algorithm
processing. Cryptanalyses based on physical measures are today commonly re-
ferred to as side channel attacks. For such attacks, the idea consists in targeting
internal processed values from which it is often possible to derive information
on the key. The family of side channel analyzes can be split into two main cat-
egories: the Simple Power Analysis (SPA) and the Differential Power Analysis

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 200–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Secure Multiplicative Masking of Power Functions 201

(DPA). SPA consists in directly interpreting power consumption measurements
and in identifying the execution sequence. In a DPA, the attacker focuses on the
power consumption of a single instruction and performs statistical tests to reveal
some correlations between the distribution of the measurement values and the
sensitive data (i.e. depending on a secret value) manipulated by the instruction.
Since the publication of the first SPA and DPA, many papers describing either
countermeasures or attack improvements have been published (see [2, 4, 5, 13]
for example). Among these improvements, higher-order SCA attacks are of par-
ticular interest. They extend the SPA and DPA by considering a set of several
instructions instead of a single one. The number d of instructions targeted by
the attack is called order of the SCA. Today’s implementations are expected
to be resistant against first-order SCA (1O-SCA for short), higher order being
difficult to mount in practice. That’s why only resistance against SCA of order
one (including the classical DPA) is considered in this paper. We investigate
this problematic for software implementations of block ciphers that mix affine
transformations with power functions (e.g. the AES).

1.1 Related Work

A way to thwart SCA involves random values (called masks) to de-correlate
the leakage signal from the sensitive data that are manipulated. This way of
securing the implementation is called masking. It is today considered as the most
effective one and is therefore privileged by the smart card industry. The masking
countermeasures that have been proposed in the literature may be divided into
two global strategies.

The first one consists in masking additively internal values whatever the trans-
formation of the block cipher is applied to. For linear operations, dealing with
additive masks propagation and correction is straightforward. In contrast, deal-
ing with additive masking for the non-linear steps of the algorithm (e.g. the
S-box transformations) is more difficult. This issue was addressed in several
ways. Table re-computation [5,12] enables to mask any function at the cost of a
high memory complexity. It may be a good solution when the device on which is
embedded the implementation is not too limited in RAM memory. In the context
of the S-boxes of the AES, Courtois and Goubin [7] have improved the memory
performances of the method by using the compact representation of homographic
functions. The main other methods concern S-boxes with a simple polynomial
representation and they are essentially based on the decomposition of the eval-
uation of those functions. Blömer et al. [3] proposed to evaluate them using a
square-and-multiply algorithm while propagating additive mask at each step. In
the same spirit, several researchers have applied the so-called tower field meth-
ods [19,10,14,15,16,18] that evaluate functions defined on quadratic extensions
of a finite field from the elements of the subfields while propagating the mask
from one representation to another.

The second global strategy was initially proposed by Akkar and Giraud [2]
and is dedicated to block ciphers that mix additive operations with multiplica-
tive ones. The core of the strategy is to take the best part of each world using

202 L. Genelle, E. Prouff, and M. Quisquater

additive masking to secure linear operations and multiplicative masking to deal
with power functions. Originally, the tricky part of this approach was believed to
be the conversion of additive masked values into multiplicative ones and Akkar
and Giraud [2] proposed a solution to this problematic. However Golić and Ty-
men [9] exhibited a flaw in the scheme, observing that the sensitive variable is
not masked when it equals zero. Indeed, in this case the multiplicatively masked
variable equals zero whatever the value of the mask. As a result and as confirmed
afterwards in several papers, it turned out that the main difficulty of the second
strategy is to multiplicatively mask the value zero in a finite field.

In order to bypass this difficulty, several solutions were proposed:

– Golić et al. [9] proposed to shift the computation of the power function up
to a ring embedding the finite field on which the power function is defined.
This procedure enables to map the zero element of the finite field to non-
zero elements of the ring. This procedure doubles the size of the elements
and thus induces both a memory and a computational overhead. Moreover,
the scheme does not perfectly protect the data against first-order SCA.

– Trichina et al. [20] simplified Akkar and Giraud’s scheme and proposed some
tricks to correct the zero-value flaw. Unfortunately, the whole scheme was
shown to be vulnerable to DPA attacks [1] because some masks are biased.

– Another solution would be to detect the zero value masking processing and
to apply a particular treatment in this case. As for instance suggested in [8],
this could be done by using conditional branches. However, this solution
does not give satisfaction because it is vulnerable to SPA. Trichina and
Korkishko [21] proposed a trick based on pre-computed tables in order to
avoid the use of conditional branches. However, with such a procedure the
processing of the AES S-box is simply wrong when applied to zero or one as
noticed by Oswald and Schramm [16]. The latter authors tried to repair the
schema but conditional branches were always necessary.

Eventually none of the techniques proposed in the literature to apply multiplica-
tive masking to sensitive data is perfectly secure against first-order SCA. This
led people to work in the direction of the first strategy even if the second one is
actually more natural for block ciphers such as AES.

1.2 Our Results

The method we describe in this paper circumvents the difficulties encountered
so far to combine additive masking with multiplicative one. Our solution may be
outlined as follows. We first mask the sensitive variable additively and we com-
pute the propagation of this mask through the affine transformations. We then
convert this additive masking into a multiplicative masking, mapping (masked)
sensitive data equal to zero into non-zero values. We keep track of this modi-
fication if applied and we compute the propagation of the multiplicative mask
of this non-zero masked value through the power function. The multiplicative
mask is then converted into an additive mask taking into account the poten-
tial modification of a sensitive variable at the preceding step. These steps are

Secure Multiplicative Masking of Power Functions 203

repeated to eventually obtain both the additively masked ciphertext and the
corresponding mask. In the paper we propose two algorithms to convert an ad-
ditive masking into a multiplicative masking and conversely. Those algorithms
result in two methods to secure the implementation of block ciphers. We com-
pared their performances with those of the main techniques proposed in the
literature [5, 12, 14, 15, 18, 21]. The timing complexity of our first proposal is
ranked second after the table re-computation method [5, 12] and is at least 2.5
times faster than the others [14, 15, 18, 21]. It requires as much memory as the
re-computation table method, but it enables to change the masks frequently
during the processing with only little overhead. This is a strong advantage since
this specificity can be mandated to ensure that no simple higher-order SCA is
possible [9]. The second method we propose is an optimization of the first one for
devices with little RAM and with at least 32 bytes of bit-addressable memory (as
for instance the 80C251 architecture microcontrollers). In memory constraints
environment, the re-computation method can no longer be used and our solution
is the fastest first-order secure alternative to it. We may further conclude that
this second proposal achieves the best timing/memory trade-off while having the
advantage to enable frequent change of the masks during the computation with
only little overhead.

1.3 Paper Organization

The paper is organized as follows. Section 2 deals with the definitions and the
concepts we use in the paper. Section 3 and 4 respectively describe the core idea
and the algorithms enabling to convert additive masks to multiplicative ones
and conversely. Section 5 compares our solution to other implementations in the
case of the AES. Section 6 concludes the paper.

2 Theoretical Framework for Security Analysis

We briefly give in what follows some definitions and concepts used to describe
our proposal and to analyze its security.

We shall view an implementation of a cryptographic algorithm as the pro-
cessing of a sequence of intermediate data, as defined by Blömer et al. [3]. Those
data will be associated with random variables (r.v. for short) denoted by cap-
ital letters, X for instance, while lowercase letters, x for instance, will denote
a particular value. The probability of the event {X ∈ B} shall be denoted by
P(X ∈ B). When the event is the singleton {x}, we will write P(X = x). If the
random variable X has the law of probability L(S) on the set S, we will write
X ∼ L(S). In particular, the uniform law will be denoted by U(S). We introduce
below the concept of dependency with respect to P(·).
Definition 1 (Independency). Two discrete random variables X1 and X2,
defined over finite sets S1 and S2 respectively, are independent if and only if

P(X1 = x1, X2 = x2) = P(X1 = x1) · P(X2 = x2)

for any pair (x1, x2) ∈ S1 × S2.

204 L. Genelle, E. Prouff, and M. Quisquater

Throughout this paper we will often use the following results (see Theorems
3.3.1 and 3.3.2 in [6]).

Proposition 1. Let X1, X2, · · · , Xn be independent random variables taking re-
spectively their values in the finite sets S1, S2, · · · , Sn. If T1, T2, · · · , Tn, U and
V denote arbitrary sets, then

1. g1(X1), g2(X2), · · · , gn(Xn) are independent for any applications gi : Si →
Ti, i = 1...n,

2. f(X1, · · · , Xk) and g(Xk+1, · · · , Xn) are independent for any applications
f : S1 × · · · × Sk → U and g : Sk+1 × · · · × Sn → V .

We now state a proposition that will allow us to derive the next results. It
generalizes analyzes published in [3, 15].

Proposition 2. Consider a finite group (G, �), a finite set S and an application
g : S → G. Let X1 and X2 be two independent random variables over G and
S, respectively. If X1 is uniform, then X3 = X1 � g(X2) is a uniform random
variable over G which is independent of X2.

Proof. See Appendix A.1. �
In the next proposition, we apply Proposition 2 to the additive group (GF(2n),⊕)
and the multiplicative group (GF(2n)�, ·). These results will be useful to prove
the security of our scheme in Sect. 4.

Proposition 3. In what follows, L(S) denotes a law of probability on S which
is not specified.

1. If X1 ∼ U(GF(2n)) and X2 ∼ L(GF(2n)) are independent r.v’s and g is an
application from GF(2n) to GF(2n), then

X3 = X1 ⊕ g(X2) ∼ U(GF(2n)) and X3 is independent of X2 .

2. If X1 ∼ U(GF(2n)�) and X2 ∼ L(GF(2n)) are independent r.v’s and g is an
application from GF(2n) to GF(2n)�, then

X3 = X1 · g(X2) ∼ U(GF(2n)�) and X3 is independent of X2 .

3. If X1 ∼ L(GF(2n)�), X2 ∼ U(GF(2n)) and X3 ∼ L(GF(2n)) are indepen-
dent r.v’s and g is an application from GF(2n) to GF(2n), then

X4 = X1 · (X2 ⊕ g(X3)) ∼ U(GF(2n)) and X4 is independent of X3 .

Proof. See Appendix A.2. �
In the rest of the paper, an intermediate variable shall be said to be sensitive if it
is dependent on the secret key. The following definition gives a formal definition
of the security against first-order SCA.

Definition 2 (First-Order SCA Security). A cryptographic algorithm is
said to be secure against first-order SCA if every intermediate variable is in-
dependent of every sensitive variable.

In the next sections, we present the core idea of our proposal and we prove that
it is first-order SCA resistant.

Secure Multiplicative Masking of Power Functions 205

3 Core Idea of Our Proposal

The core idea of our contribution deals with the first-order SCA resistant imple-
mentation of block ciphers mixing affine transformations and power functions in
a finite field. In what follows, Op denotes either an affine transformation or a
power function, depending on the context.

In what follows, we assume that input/output of the affine operations of the
block cipher (e.g. the AES individual affine transformations) are always masked
additively. Namely, every such operation Op is implemented such that it takes
as input the masked data x ⊕min ∈ GF(28), where min is randomly generated
over GF(28) and x is a sensitive value. Since Op is affine, then the corresponding
output equals Op(x) ⊕ Op(min) ⊕ c, where c is a constant and Op(min) ⊕ c is
the new mask. In this case, it is obvious that neither the input, nor the output,
nor any intermediate data during the computation is sensitive.

Let us now consider the case when Op is a power function (not linear) defined
over GF(28). To take advantage of the multiplicative structure of Op, we would
like to secure its implementation with multiplicative masks. For such a purpose,
since Op is likely to operate on the output of additively masked affine trans-
formations, we first need to convert an additively masked value x ⊕min into a
multiplicatively one in the form x · b, where b is a random value in GF(28)�.
Secondly, we need to define a scheme such that Op operates securely on x · b,
and outputs data in the form Op(x) · b′. Eventually, since an affine transforma-
tion is likely to operate on the multiplicatively masked output of Op, we need
to convert it back into an additively masked value in the form Op(x) ⊕ mout,
where mout is randomly generated over GF(28). The masking conversions and
the secure scheme for the power function must be defined by taking into account
the so-called zero-value problem identified in several papers [7,9,20,21]: the value
x = 0 cannot be masked multiplicatively.

The core idea of this paper is to convert additive masking into multiplicative
masking via an algorithm AMToMM in such a way that the sensitive value x = 0
is mapped into 1, keeping trace of this transformation. The power function is then
applied to this non-zero multiplicatively masked value. The result is eventually
converted into an additive masked value via an algorithm MMToAM, taking into
account the potential mapping of the zero sensitive value in the first step.

For any y, let us denote by δy the function defined by δy(x) = 1 if x = y and
δy(x) = 0 otherwise. The most tricky part in this method is to define AMToMM
such that it computes b · (x ⊕ δ0(x)) in a secure way from x ⊕min, min and b.
This indeed implies the SCA-secure computation of δ0(x) from x⊕min and min.
It can first be noticed that we have δ0(x) = δmin(x⊕min). Based on this remark,
we propose in the following section a masked implementation of δmin(x ⊕min)
designed such that:

δ̃min(x⊕min) =

{
r ⊕ 1 if x = 0
r otherwise

206 L. Genelle, E. Prouff, and M. Quisquater

where r is a random value in GF(28) (Proposal 1 in Sect(s). 4.1 and 4.3) or
in GF(2) (Proposal 2 in Sect. 4.4). To implement it securely and efficiently we
choose to tabulate the function thanks to a pre-computed table T defined such
that T [i] = r⊕1 if i = min and T [i] = r otherwise. Indeed, for such a table T we
have δ̃min(x⊕min) = T [x⊕min]. The whole procedure is summarized in Fig. 1.

min b

mout

x ⊕ min

Op(x) ⊕ mout

b · (x ⊕ δ0(x))

b′ · (Op(x) ⊕ δ0(x))

b′ = Op(b)

Op

MMToAM

AMToMM

x
?= 0

Fig. 1. Multiplicative Masking of a Power Function Op

In the next section the three algorithms AMToMM, Op and MMToAM are
described and their efficiency and security are both discussed.

4 Algorithmic of Our Proposal

In the following description of Alg(s). AMToMM, Op and MMToAM we will keep
the same notations involved above. Namely, we shall denote by x a sensitive
value, by min an additive mask, by b ∈ GF(28)� a multiplicative mask, by
r a random value over GF(28) and by T a table of 256 bytes/bits such that
T [x ⊕ min] takes the value r ⊕ 1 if x = 0 and r otherwise. The value r and
the table T are regenerated at each execution of the algorithm. Values min and
b can be regenerated several times per algorithm processing. We shall denote
(x)min = x ⊕min and [x]b = b · (x ⊕ δ0(x)). The output Op(x) ⊕ δ0(x) shall be
denoted by x′ and the associated multiplicative mask Op(b) shall be denoted
by b′.

4.1 From Additive Masking (AM) to Multiplicative Masking (MM)

To transform every (x)min into [x]b without leaking information about x, we
suggest to use the following algorithm which has been decomposed into several

Secure Multiplicative Masking of Power Functions 207

elementary operations (left column), each manipulating an intermediate result
(right column) computed from x⊕min, min, b and r.

Algorithm 1. SCA-resistant AMToMM

Inputs: The table T , the random value r, the additively masked value (x)min , the
additive mask min, the multiplicative mask b
Output: The multiplicatively masked value [x]b and the updating of the global variable
mem with T [(x)min]

Pseudo-Code Data
1. res← r res = r
2. res← res⊕ (x)min res = r ⊕ x⊕min

3. res← res⊕min res = r ⊕ x
4. res← b · res res = b · (r ⊕ x)
5. tmp← (x)min tmp = x⊕min

6. mem← T [tmp] mem = r ⊕ δ0(x)
7. tmp← b ·mem tmp = b · (r ⊕ δ0(x))
8. res← res⊕ tmp res = b · (x⊕ δ0(x))

Correctness of Alg. 1. Algorithm 1 processes the following computations. Ad-
ditions are performed in the order from left to right to insure that the calculation
is first-order SCA resistant:

b · (r ⊕ (x)min ⊕min ⊕ T [(x)min]) .

Substituting the data according to their definitions, this computation simplifies
to:

b · (x⊕ δ0(x)) = [x]b .

Moreover we can see that Alg. 1 keeps the track of the possible mapping into 1
of x = 0 by saving T [(x)min] in a global variable denoted by mem.

Security Analysis. In the following, we denote by X , Min, B and R the random
variables modeling the values x, min, b and r respectively. From the description
of Alg. 1, we obtain in Table 1 the list of all intermediate variables I1, . . . , I7 that
involve X in their construction. We prove below that each of them is independent
of X .

We remind that Min and R are uniformly distributed over GF(28), and that
B is uniformly distributed over GF(28)�. Moreover Min, B, R and X are by
definition mutually independent.

Proposition 4. Algorithm 1 is first-order SCA resistant.

Proof. We have I1 = (R ⊕ Min) ⊕ X , I2 = R ⊕ X , I4 = X ⊕ Min and I5 =
R ⊕ δ0(X), where R, Min and X are mutually independent random variables.
We moreover have Min ∼ U(GF(28)) and R ∼ U(GF(28)). Thus, the random
variable R⊕Min satisfies R⊕Min ∼ U(GF(28)) according to the first statement

208 L. Genelle, E. Prouff, and M. Quisquater

Table 1. Intermediate variables of Alg. 1

j Ij

1 R⊕X ⊕Min

2 R⊕X
3 B · (R⊕X)
4 X ⊕Min

5 R⊕ δ0(X)
6 B · (R⊕ δ0(X))
7 B · (X ⊕ δ0(X))

of Proposition 3 and it is independent of X according to Statement 2 of Propo-
sition 1. The three r.v’s Min, R and R⊕Min being uniform over U(GF(28)) and
independent of X , it follows from Statement 1 of Proposition 3 that I1, I2, I4
and I5 are also independent of X .

We observe now that I7 = B · (X ⊕ δ0(X)) is the product of a uniform
random variable B defined over GF(28)∗ with a function of X taking its values
in GF(28)∗. Noting that B and X are independent, it follows from the second
statement of Proposition 3 that I7 is independent of X .

Eventually, we have I3 = B · (R ⊕X) and I6 = B · (R ⊕ δ0(X)), where B ∼
GF(28)∗, R ∼ U(GF(28)) and X are mutually independent random variables. We
conclude that I3 and I6 are independent of X according to the third statement
of Proposition 3.

We have proved that all intermediate variables in Alg. 1 are independent
of X . From Definition 2, we can then conclude that Alg. 1 is first-order SCA
resistant. �

4.2 Multiplicative Masking of Power Functions

We describe hereafter how to secure the processing of a power function Op with
multiplicative masking.

Algorithm 2. SCA-resistant Power Function Op

Inputs: The multiplicative masked value [x]b and the multiplicative mask b
Output: The masked value [Op(x)]b′ and the output mask b′

1. output ← Op([x]b)
2. b′ ← Op(b)

Correctness of Alg. 2. We apply the power function Op to the multiplicatively
masked value [x]b and we obtain:

Op([x]b) = Op(b) ·Op(x ⊕ δ0(x)) = b′ · x′ ,

where we recall that x′ and b′ respectively denote Op(x ⊕ δ0(x)) and Op(b).
Observing that x′ is always non-zero, we deduce that δ0(x′) = 0 and we have:

Secure Multiplicative Masking of Power Functions 209

Op([x]b) = b′ · (x′ ⊕ δ0(x′)) = [x′]b′ .

Security Analysis. In Alg. 2, the following intermediate variables appear:
I1 = [x]b, I2 = Op([x]b) and I3 = Op(b). Among them only I1 and I2 involve X
in their definition and we prove below that each of them is independent of X .

Proposition 5. Algorithm 2 is first-order SCA resistant.

Proof. Let g denote the function defined from GF(28) into GF(28)� by g(X) =
X ⊕ δ0(X). The r.v. I1 is the product of g(X) with a random variable B ∼
U(GF(2n)�) which is independent of X . The second statement of Proposition 3
thus implies that I1 and X are independent. Since I2 is a function of the r.v. I1
which is independent of X , it is itself independent of X according to Statement
1 of Proposition 1. We eventually conclude that all the intermediate variables
of Alg. 2 are independent of X . Definition 2 thus implies that the latter one is
secure against first-order SCA. �

4.3 From Multiplicative to Additive Masking

We recall that we have x′ = Op(x⊕ δ0(x)), that is x′ = Op(x)⊕ δ0(x) since Op
is a power function (and thus Op(0) = 0 and Op(1) = 1). We assume that mout
is a random value generated over GF(28).

The following algorithm describes a method to securely convert every [x′]b′
into (Op(x))mout .

Algorithm 3. SCA-resistant MMToAM

Inputs: The multiplicatively masked value [x′]b′ , the multiplicative mask b′ ∈ GF(28)�,
the additive mask mout ∈ GF(28), the global variable mem = T [(x)min]
Output: The additively masked value (Op(x))mout

Pseudo-Code Data
1. res← mem res = r ⊕ δ0(x)
2. res← res⊕mout res = r ⊕ δ0(x) ⊕mout

3. res← res⊕ r res = δ0(x) ⊕mout

4. res← b′ · res res = b′ · (δ0(x) ⊕mout)
5. tmp← [x′]b′ tmp = b′ · (Op(x) ⊕ δ0(x))
6. res← res⊕ tmp res = b′ · (Op(x) ⊕mout)
7. res← b′−1 · res res = Op(x) ⊕mout

Correctness of Alg. 3. Algorithm 3 processes the following computations
where the operation order is defined from the left to the right between each pair
of brackets:

b′−1 · (b′ · (T [(x)min]⊕mout ⊕ r) ⊕ [x′]b′) .

Substituting the variables according to their definitions and observing that Op
(x⊕ δ0(x)) = Op(x) ⊕ δ0(x), this computation simplifies to:

210 L. Genelle, E. Prouff, and M. Quisquater

δ0(x)⊕ r ⊕mout ⊕ r ⊕ x′ ⊕ δ0(x′) = δ0(x)⊕mout ⊕Op(x⊕ δ0(x))
= mout ⊕Op(x)
= (Op(x))mout

Security Analysis. We use the same notations as introduced in Sect. 4.1.
Additionally we denote by Mout and B′ the random variables corresponding
respectively to the values mout and b′. Table 2 lists all the intermediate variables
I1, . . . , I7 of Alg. 3. We prove below that each of them is independent of X .

Table 2. Intermediate variables of Alg. 3

j Ij

1 R⊕ δ0(X)
2 R⊕ δ0(X) ⊕Mout

3 δ0(X) ⊕Mout

4 B′ · (δ0(X) ⊕Mout)
5 B′ · (Op(X) ⊕ δ0(X))
6 B′ · (Op(X) ⊕Mout)
7 Op(X) ⊕Mout

By definition Mout is uniformly distributed over GF(28), and B′ is uniformly
distributed over GF(28)�. Moreover we remind that Mout, B′ and X are mutually
independent.

Proposition 6. Algorithm 3 is first-order SCA resistant.

Proof. We have, I1 = R ⊕ δ0(X), I2 = (Mout ⊕R)⊕ δ0(X), I3 = Mout ⊕ δ0(X)
and I7 = Op(X)⊕Mout where R, Mout and X are mutually independent. After
noting that Mout ∼ U(GF(28)) and R ∼ U(GF(28)), we deduce respectively from
the first Statement of Proposition 3 and the second Statement of Proposition 1
that R ⊕ Mout satisfies R ⊕ Mout ∼ U(GF(28)) and is independent of X . We
conclude from Statement 1 of Proposition 3 that I1, I2, I3 and I7 are independent
of X .

Let us observe now that I5 = B′ · (Op(X) ⊕ δ0(X)) is the product of a
uniform random variable defined over GF(28)∗ and a function of X with values
in GF(28)�. It follows from Statement 2 of Proposition 3 that I5 is independent
of X .

Eventually, we have I4 = B′ · (δ0(X)⊕Mout) and I6 = B′ · (Op(X)⊕Mout),
where B′ ∼ U(GF(28)∗), Mout ∼ U(GF(28)) and X are mutually independent.
These intermediate variables are independent of X according to Statement 3 of
Proposition 3.

All intermediate variables of Alg. 3 are independent of X . We conclude that
Alg. 3 is secure against first-order SCA according to Definition 2. �

Secure Multiplicative Masking of Power Functions 211

4.4 Optimization

Here we propose an alternative algorithm to convert an additive masking into
a multiplicative masking. Compared with Alg. 1, it involves a RAM-table T of
256 bits (stored in 32 bytes) instead of a RAM-table T of 256 bytes, at the cost
of only two additional bitwise additions (Steps 3 and 9 in Alg. 4). This ver-
sion is therefore of particular interest when the device on which is implemented
the countermeasure makes it easy to manipulate bits in memory (e.g. has bit-
addressable memory).

In what follows, we denote by γ a random bit and we define T by T [i] = γ⊕1
if i = min and T [i] = γ otherwise.

Algorithm 4. SCA-resistant AMToMM using a bit-table

Inputs: The table T , the random bit γ, the additively masked value (xi)min , the
additive mask min, the multiplicative mask b
Output: The multiplicatively masked value [x]b and the updating of the global variable
mem with T [(x)min]

Pseudo-Code Data
1. res← γ res = γ
2. rand← RNG rand is random value
3. res← res⊕ rand res = γ ⊕ rand
4. res← res⊕ (x)min res = γ ⊕ rand⊕ x⊕min

5. res← res⊕min res = γ ⊕ rand⊕ x
6. res← b · res res = b · (γ ⊕ rand⊕ x)
7. tmp← (x)min tmp = x⊕min

8. mem← T [tmp] mem = γ ⊕ δ0(x)
9. tmp← mem⊕ rand tmp = γ ⊕ δ0(x) ⊕ rand
10. tmp← b · tmp tmp = b · (γ ⊕ δ0(x) ⊕ rand)
11. res← res⊕ tmp res = b · (x⊕ δ0(x))

We have described the optimization for Alg. AMToMM only but the mod-
ification must obviously also be done for Alg. MMToAM. Since adapting the
optimization above to the latter algorithm is straightforward, we chose to not
describe it.

5 Application to the AES

To compare the efficiency of our proposals with that of other methods in the
literature, we applied them to protect an implementation of the AES-128 al-
gorithm in encryption mode. We wrote the codes in assembly language for an
8051 based 8-bit architecture without bit-addressable memory. This context was
not ideally suitable for our Proposal 2, but as it can be observed in Table 3, its
performances are already good for this architecture and actually achieve the
best timing/memory trade-off. For this reason, we didn’t chose to move to a
bit-addressable target1 for our comparison.
1 After a rough analysis of the assembly code for our Proposal 2, we think that a 10%

loss of performances is due to the fact that no bit-addressable memory is available.

212 L. Genelle, E. Prouff, and M. Quisquater

In Table 3, we have listed the timing/memory performances of the different
implementations. Memory performances correspond to the number of bytes al-
locations and cycles numbers correspond to multiple of 103. We moreover have
dissociated RAM consumption inherent to the method from RAM consumption re-
lated to the implementation choice (in brackets) which can highly vary from
a code to another. A column has been added to alert on the fact that some
of the listed countermeasures can be easily adapted (without significant tim-
ing/memory performances overhead) to involve different masks to secure each
S-box calculation. This specificity is referred to as MM (for Multi-Masking) in
the table and is discussed in more details in [9, 18]. We also added a column to
point out that some of the listed countermeasures do not achieve first-order SCA
resistance as defined in Definition 2. This fact is discussed in further details in
the next paragraph.

Table 3. Comparison of AES implementations

Method Ref. Cycles RAM ROM MM 1O-SCA
Unprotected Implementation

1. No Masking Na. 2 0 (+32) 1150 Na. No.
Masking by Addition vs First-Order SCA

2. Re-computation [12] 10 256 (+35) 1553 No. Yes.
3. Tower Field in GF(22) [14,15] 77 0 (+42) 3195 Yes. Yes.
4. Tower Field in GF(24) [16] 29 0 (+36) 3554 Yes. No.
5. Masking on-the-fly [18] 82 0 (+39) 2948 Yes. Yes.

Masking by Addition-and-Multiplication vs First-Order SCA
6. Log-ALog Tables [21] 55 256 (+44) 1900 No. No.
7. Proposal 1 Na. 26 256 (+40) 2795 Yes. Yes.
8. Proposal 2 Na. 28 32 (+40) 2960 Yes. Yes.

Outlines of the Methods and Main Differences. The AES implementa-
tions listed in Table 3 only differ in their approaches to protect the S-box access.
The linear steps and the key-scheduling of the AES have been implemented in
the same way: the key-scheduling has not been masked and the internal sensi-
tive data manipulated during the linear steps have been protected by bitwisely
adding a random value. We moreover chose to protect all the rounds of the AES
processing.

Since the linear steps are protected by additive masking, the AES S-Box
denoted by S must be modified to securely deal with such a masking of its in-
puts/outputs. To answer this issue, the re-computation method computes the
table of the function x �→ S[x ⊕ min] ⊕ mout for two pre-defined values of
input/output masks and stores it in RAM. For the other methods, S is split
into its affine part and its non-linear part Op which is the power function
x ∈ GF(28) �→ x254 ∈ GF(28). Under this representation, dealing with the
mask propagation for S amounts to deal with the mask propagation for Op. The
methods of Oswald et al. [14, 15] and of Prouff et al. [18] start by representing

Secure Multiplicative Masking of Power Functions 213

Op over an extension field of GF(24) of degree 2 (such a technique is usually
called tower field method) and they only differ in the ways of securely computing
an inversion in GF(24). In [15, 14], the inversion is performed by going down
to GF(22) where this operation is linear. In [18], the inversion is performed for
every element of GF(24) and the correct result is saved in a special location in
memory according to the value of a comparison test. This method is referred
to as the Masking on-the-fly method in Table 3. All the methods mentioned
above achieve perfect security against first-order side channel analysis, which is
not the case of those of Trichina-Korkishko [21] and Oswald-Schramm [16] that
respectively correspond to the 6th and 4th method presented in Table 3.

In Trichina et al.’s method, a primitive element of GF(28) is computed and
every non-zero element of GF(28) is expressed as a power of that element. To
resolve the zero-value problem, Trichina et al. use slightly modified discrete log-
arithm and exponentiation tables that are pre-computed at the beginning of the
processing to evaluate the AES power function. As argued in [16], the method
has a faulty behavior when some intermediate values are null and no sound
correction of the method has been published until now in the literature. As
in [14,15], the method proposed by Oswald-Schramm [16] is based on the tower
field method but some operations are processed by accessing look-up tables at
addresses that depend on both the mask and the masked data. Since such a
variable is dependent on the sensitive variable, the scheme cannot be consid-
ered as first-order SCA resistant with respect to Definition 2 and attacks such
as those exhibited in [17, 22] are possible. Despite the imperfect security of the
two methods discussed above, we chose to implement them for comparison since
they counteract almost all first-order SCA when no pre-processing is performed
(which is for instance the case for the classical DPA [11] and CPA [4]).

Discussion about the Implementations Results. First, since the perfor-
mances have been measured for a particular implementation on a particular
architecture, we draw reader’s attention that Table 3 does not aim at arguing
that a method is better than another but aims at enlightening the main partic-
ularities (timing performances and ROM/RAM requirements) of each method.

As expected, when 256 bytes of RAM memory are available, then the re-
computation method achieves the best timing performances. In this context,
our first proposal is also promising (ranked second behind the re-computation
method). It can even be a valuable alternative to the re-computation method,
when the input/output masks of the S-box calculations are required to change
during the AES processing. As argued for instance by Golić and Tymen [9] or
by Prouff and Rivain [18], such a security requirement can be laid down in order
to increase the resistance against simple higher-order SCA. In this case, the re-
computation becomes prohibitive whereas the performances of our first proposal
stay almost unchanged (the values taken by the input/output mask in Alg. 1−4
are not assumed to be fixed during the AES processing).

As RAM memory is a very sensitive resource in the area of embedded devices,
it is often preferable to value memory allocation reduction over timing reduc-
tion. Except for our first proposal, all the countermeasures listed in Table 3

214 L. Genelle, E. Prouff, and M. Quisquater

are less efficient than the re-computation method but they all require much less
RAM allocation. In memory constrained devices, they therefore are preferred to
the re-computation method. Among them, our second proposal is the most effi-
cient one. Only the method of Oswald-Schramm has close performances, but at
the cost of imperfect security versus 1O-SCA. When compared to the methods
achieving perfect resistance against first-order SCA, our second proposal is at
least 2.5 times faster.

To conclude about the experiment results reported in Table 3, the choice be-
tween the implementations that offer perfect resistance against first-order SCA
essentially depends on two parameters: the size of the RAM memory available on
the device and the necessity to change masks frequently. We sum up our conclu-
sions in Table 4, where we give for different contexts (amount of RAM available
and chosen masking methods) the method(s) which is(are) the most efficient
one(s).

Table 4. Distribution of the 1O-SCA-resistant methods vs the available RAM memory

Method Cycles (×103) ROM (in bytes) Multi-Masking
Device with Large RAM memory (> 256 bytes)

Re-computation Table 10 1553 No.
Proposal 1 26 2795 Yes.
Device with Medium RAM memory (between 40 and 256 bytes)
Proposal 2 28 2960 Yes.

Device with Small RAM memory (< 40 bytes)
Tower Field in GF(22) 77 3195 Yes.

Masking on-the-fly 82 2948 Yes.

6 Conclusion

In this paper, we have proposed a solution to the zero-value problem in the
multiplicative masking. By introducing a scheme that embeds the multiplicative
masking in GF(28) into a multiplicative masking in GF(28)� we obtained a secure
method to protect the implementation of power functions. We proposed two
methods with different timing/memory trade-offs to implement our scheme and
we proved the security of both methods against first-order SCA. We moreover
compared the new solutions with the existing ones for the AES. Based on our
experiments, we argued that our solutions offer very valuable timing/memory
performances. When a large amount of RAM memory can be used, our proposal is
ranked second among the implemented methods and offers better resistance to
simple higher-order SCA than the first ranked method. In memory constrained
devices, our second proposal is ranked first. To the best of our knowledge, it has
the best timing/memory overhead and is therefore a valuable alternative to the
existing methods.

Secure Multiplicative Masking of Power Functions 215

References

1. Akkar, M.-L., Bévan, R., Goubin, L.: Two Power Analysis Attacks against One-
Mask Methods. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
332–347. Springer, Heidelberg (2004)

2. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

3. Blömer, J., Merchan, J.G., Krummel, V.: Provably Secure Masking of AES.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83.
Springer, Heidelberg (2004)

4. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract
Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
398–412. Springer, Heidelberg (1999)

6. Chung, K.L.: A Course in Probability Theory. Academic Press, London (2001)
7. Courtois, N., Goubin, L.: An Algebraic Masking Method to Protect AES against

Power Attacks. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp.
199–209. Springer, Heidelberg (2006)

8. Damgard, M., Keller, M.: Secure Multiparty AES. In: Financial Cryptography (to
appear, 2010)

9. Golić, J., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

10. Gueron, S., Parzanchevsky, O., Zuk, O.: Masked Inversion in GF(2n) Using Mixed
Field Representations and its Efficient Implementation for AES. In: Nedjah, N.,
Mourelle, L.M. (eds.) Embedded Cryptographic Hardware: Methodologies and Ar-
chitectures, pp. 213–228. Nova Science Publishers, Bombay (2004)

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388–397. Springer, Heidelberg (1999)

12. Messerges, T.: Securing the AES Finalists against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

13. Messerges, T.: Using Second-order Power Analysis to Attack DPA Resistant Soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

14. Oswald, E., Mangard, S., Pramstaller, N.: Secure and Efficient Masking of AES –
A Mission Impossible? Cryptology ePrint Archive, Report 2004/134 (2004)

15. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

16. Oswald, E., Schramm, K.: An Efficient Masking Scheme for AES Software Im-
plementations. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS,
vol. 3786, pp. 292–305. Springer, Heidelberg (2006)

17. Prouff, E., McEvoy, R.P.: First-Order Side-Channel Attacks on the Permuta-
tion Tables Countermeasure. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 81–96. Springer, Heidelberg (2009)

216 L. Genelle, E. Prouff, and M. Quisquater

18. Prouff, E., Rivain, M.: A Generic Method for Secure SBox Implementation. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2008)

19. Rudra, A., Bubey, P.K., Jutla, C.S., Kumar, V., Rao, J., Rohatgi, P.: Efficient
Rijndael Encryption Implementation with Composite Field Arithmetic. In: Koç,
Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184.
Springer, Heidelberg (2001)

20. Trichina, E., DeSeta, D., Germani, L.: Simplified Adaptive Multiplicative Masking
for AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 187–197. Springer, Heidelberg (2003)

21. Trichina, E., Korkishko, L.: Secure and Efficient AES Software Implementation for
Smart Cards. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp.
425–439. Springer, Heidelberg (2005)

22. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

A Appendix

A.1 Proof of Proposition 2

Proof. We first observe that for any x2 ∈ S and x3 ∈ G,

P(X1 � g(X2) = x3, X2 = x2) = P(X1 � g(x2) = x3, X2 = x2) .

Since X1 and X2 are independent and X1 is uniform over G,

P(X1 � g(x2) = x3,X2 = x2) = P(X1 � g(x2) = x3) ·P(X2 = x2) =
1

| G | ·P(X2 = x2) ,

for any x2 ∈ S and x3 ∈ G. It follows that for any x2 ∈ S and x3 ∈ G,

P(X1 � g(X2) = x3, X2 = x2) =
1

| G | · P(X2 = x2) . (1)

Let us now prove that X3 = X1 � g(X2) is a uniform random variable over G.
According to the law of total probability, for any x3 ∈ G

P(X1 � g(X2) = x3) =
∑
x2∈S

P(X1 � g(X2) = x3 | X2 = x2) · P(X2 = x2) .

By definition of the conditional probability and (1), for any x3 ∈ G

P(X1 � g(X2) = x3) =
∑

x2∈S

1
| G | · P(X2 = x2) .

Noting that
∑

x2∈S P(X2 = x2) = 1, we conclude that X3 = X1 � g(X2) is a
uniform random variable over G. According to (1) and the uniformity of X3, we
have for every (x2, x3) ∈ S:

P(X1 � g(X2) = x3, X2 = x2) = P(X1 � g(X2) = x3) · P(X2 = x2) .

This means that X3 = X1 � g(X2) and X2 are independent. �

Secure Multiplicative Masking of Power Functions 217

A.2 Proof of Proposition 3

Proof. The first and the second statement follow immediately from Proposition 2
particularized to the groups G = (GF(2n),⊕) and G = (GF(2n)∗, ·) respectively.
Let us prove the third statement. Let us first prove that if we have two in-
dependent random variables A ∼ L(GF(2n)∗) and B ∼ U(GF(2n)) then C =
A ·B ∼ U(GF(2n)). Let us denote by A−1 the inverse of A in GF(2n)∗. For any
c ∈ GF(2n), we have

P(C = c) = P(A ·B = c) = P(B = c · A−1) = P(B ⊕ c ·A−1 = 0) .

Note that B ⊕ c · A−1 is the sum of uniform random variable over GF(2n) and
a random variable that may be considered over GF(2n). According to the first
statement we have B ⊕ c · A−1 ∼ U(GF(2n)). It follows that C ∼ U(GF(2n)).

Consider now the independent random variables X1 ∼ L(GF(2n)∗), X2 ∼
U(GF(2n)) and X3 ∼ L(GF(2n)). Note that X2⊕ g(X3) is uniform over GF(2n)
according to the first statement of Proposition 3. Applying the result above to
A = X1 and B = X2 ⊕ g(X3), we deduce that

X4 = X1 · (X2 ⊕ g(X3)) ∼ U(GF(2n)) .

We are left to prove that X4 = X1 · (X2 ⊕ g(X3)) is independent of X3. For any
x3, x4 ∈ GF(2n), we have:

P(X1 · (X2 ⊕ g(X3)) = x4, X3 = x3) = P(X1 · (X2 ⊕ g(x3)) = x4, X3 = x3) .

Since X1, X2 and X3 are independent random variables, it follows that X1 ·(X2⊕
g(x3)) is independent of X3 for any x3 ∈ GF(2n) (see for example Theorem 3.3.2
in Chung [6] p.54). Therefore, we have for any x3, x4 ∈ GF(2n)

P(X1 · (X2 ⊕ g(X3)) = x4, X3 = x3) = P(X1 · (X2 ⊕ g(x3)) = x4) · P(X3 = x3) .
(2)

Now, applying the result above to the random variables A = X1 and B = X2,
we have X1 · X2 ∼ U(GF(2n)). Therefore, considering X1 · g(x3) as a random
variable over GF(2n), we have according to the first statement of this proposition
that

X1 · (X2 ⊕ g(X3)) = X1 ·X2 ⊕X1 · g(x3) ∼ U(GF(2n)) .

We conclude that

P(X1 · (X2 ⊕ g(x3)) = x4) = P(X1 · (X2 ⊕ g(X3) = x4)

for any x3, x4 ∈ GF(2n). Due to (2), we have for any x3, x4 ∈ GF(2n),

P(X1 · (X2 ⊕ g(X3)) = x4, X3 = x3) = P(X1 · (X2 ⊕ g(X3)) = x4) ·P(X3 = x3) .

The result follows. �

Batch Groth–Sahai

Olivier Blazy1, Georg Fuchsbauer1, Malika Izabachène2,
Amandine Jambert3,4, Hervé Sibert5, and Damien Vergnaud1

1 École normale supérieure-CNRS-INRIA, 45 rue d’Ulm, 75320 Paris Cedex 05, France
2 Université de Versailles, 45 avenue des États-Unis, 78035 Versailles, France

3 Orange Labs R&D, 42 rue des Coutures, BP6243, 14066 Caen Cedex, France
4 IMB, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France

5 ST-Ericsson, 9-11 rue Pierre-Felix Delarue, 72100 Le Mans Cedex 9, France

Abstract. In 2008, Groth and Sahai proposed a general methodol-
ogy for constructing non-interactive zero-knowledge (and witness-indis-
tinguishable) proofs in bilinear groups. While avoiding expensive
NP-reductions, these proof systems are still inefficient due to the num-
ber of pairing computations required for verification. We apply recent
techniques of batch verification to the Groth-Sahai proof systems and
succeed to improve significantly the complexity of proof verification. We
give explicit batch-verification formulas for generic Groth-Sahai equa-
tions (whose cost is less than a tenth of the original) as well as for
specific popular protocols relying on their methodology (namely Groth’s
group signatures and the P-signatures by Belenkiy, Chase, Kohlweiss and
Lysyanskaya).

Keywords: Pairing-based cryptography, Batch verification, Groth-Sahai
proof system.

1 Introduction

In a zero-knowledge proof system, a prover convinces a verifier via an interactive
protocol that a mathematical statement is true, without revealing anything other
than the validity of the assertion. In 1988, Blum, Feldman and Micali [BFM90]
showed that the use of a common random string shared between the prover
and the verifier permits to design a zero-knowledge proof system for all NP-
languages that does not require interaction. These proofs, called non-interactive
zero-knowledge (NIZK), turned out to be a particularly useful tool in construct-
ing cryptographic primitives. Unfortunately, their work (as well as subsequent
results) does not yield efficient proofs. Until recently, the only way to construct
efficient proofs was to rely on the random-oracle model (ROM) [BR93], which
has been subject to a series of criticisms starting with [CGH98].

In 2008, Groth and Sahai [GS08] proposed a way to produce efficient and
practical NIZK and non-interactive witness-indistinguishable (NIWI) proofs for
(algebraic) statements related to groups equipped with a bilinear map. In par-
ticular, they give proofs for the simultaneous satisfiability of a set of equa-
tions. They proposed three instantiations of their system based on different

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 218–235, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Batch Groth–Sahai 219

(mild) computational assumptions: the subgroup decision problem, the sym-
metric external Diffie-Hellman problem (SXDH) and the decision linear problem
(DLIN). Each one of these has already given rise to many applications such as
[BW06, BW07, CGS07, Gro07, GL07, BCKL08, BCC+09, FPV09]. Although it
is much more efficient than all previous proposals, their proof system still lacks
in practicality compared to the ROM, since the verification of a single equation
requires the computation of dozens of bilinear-map evaluations by the verifier.

The aim of this paper is to optimize the verification procedure at the expense
of slightly weakening the soundness of the proof system.

Prior Work. In the last twenty years, there has been a lot of work in cryptog-
raphy in which expensive tasks are processed in batch rather than individually
to achieve better efficiency. Batch cryptography was first introduced by Fiat
[Fia90], who proposed an algorithm to compute several private RSA key oper-
ations (with different exponents) through one full exponentiation and several
small exponentiations. Batch cryptography is particularly relevant in settings
where many exponentiations need to be verified together: many schemes were
proposed to achieve batch verification of digital signatures - e.g. [NMVR94] for
DSA signatures, and it seems natural to apply such techniques to the verifica-
tion of Groth-Sahai proofs, which require expensive evaluations of pairings. In
1998, Bellare, Garay and Rabin [BGR98] took the first systematic look at batch
verification and described several techniques for conducting batch verification
of exponentiations with high confidence. They proposed three generic methods
called the random-subset test, the small-exponents test and the bucket test. More
recently, Ferrara, Green, Hohenberger and Pedersen [FGHP09] presented a de-
tailed study on how to securely batch-verify a set of pairing-based equations and
some applications on existing signatures schemes.

Our Results. The main result of the paper is a significant reduction of the cost
of Groth-Sahai proof systems by using batch-verification techniques. In particu-
lar, we give efficient explicit verification procedures for the three1 instantiations
proposed in [GS08]. The essence of our approach is a trade-off between soundness
and efficiency: if the verification algorithm returns valid, the verifier is assured
that all proved statements are indeed valid with overwhelming probability. The
best improvements are for the proofs based on SXDH and DLIN, which are the
ones with most practical relevance (see Sections 5 and 6). Table 1 summarizes the
number of dominant pairing operations required to verify the different algebraic
statements in Groth-Sahai terminology (see Section 3 for details).

In [CHP07], Camenisch et al. explicitly mentioned as an “exciting” open prob-
lem the development of fast batching schemes for various forms of anonymous
authentication, such as group signatures and anonymous credentials. This paper
is the first to address this issue in the standard security model by considering
two schemes based on the Groth-Sahai methodology.

1 The results for the (least practical) instantiation based on the subgroup decision
problem are deferred to the full version of the paper [BFI+10].

220 O. Blazy et al.

Table 1. Number of pairings per proof verification, where n and m stand for the
number of different types of variables

Naive computation Batch computation

SXDH

Pairing-product 5m+ 3n+ 16 m+ 2n+ 8

Multi-scalar multiplication in G1 8m+ 2n+ 14 min(2n+ 9, 2m+ n+ 7)

Multi-scalar multiplication in G2 8n+ 2m+ 14 min(2m+ 9, 2n+m+ 7)

Quadratic 8m+ 8n+ 12 2min(m,n) + 8

DLIN

Pairing-product 12n+ 27 3n+ 6

Multi-scalar multiplication 9n+ 12m + 27 3n+ 3m+ 6

Quadratic 18n+ 24 3n+ 6

The first scheme we consider was proposed by Groth in 2007 [Gro07]. It is a
constant-size group-signature scheme whose security can be proved in the stan-
dard model, i.e. without relying on the random oracle heuristic. For illustrative
purposes, we concentrate on the simpler variant of the scheme that provides CPA
anonymity only. Even this variant does not achieve satisfactory efficiency—the
verification of a signature requires the computation of 68 expensive pairing op-
erations. In Section 7, we propose an improved verification procedure in which
the total number of bilinear-map evaluations drops to 11. In addition, if n ≥ 2
signatures (for the same group) have to be verified at once, we manage to further
decrease this number from 11n to 4n + 7.

In Section 8, we study the P-signature scheme2 proposed by Belenkiy, Chase,
Kohlweiss and Lysyanskaya [BCKL08]. Since anonymous credentials are an im-
mediate consequence of P-signatures, we thereby apply our techniques to privacy-
preserving authentication mechanisms.Belenkiy et al. proposed two instantiations
of their protocol (based on SXDH and DLIN). They evaluated that the verification
of a proof of possession of a signature would involve respectively 68 and 128 pairing
evaluations.We show that this can be reduced to 15 and 12, respectively. Moreover,
the number of pairing operations required to verify n ≥ 2 signatures is reduced to
2n + 13 and 3n + 9, respectively, by using our techniques.

2 Preliminaries

2.1 Bilinear Groups

Since Groth-Sahai proof systems apply to group-dependent languages, we sum-
marize the basics of bilinear groups and pairing-based assumptions. In the sequel,

2 A P-signature scheme is a digital-signature scheme with an additional non-interactive
proof of signature possession.

Batch Groth–Sahai 221

we consider an algorithm G that, on input a security parameter λ, outputs a tu-
ple (N, G1, G2, GT , e, g1, g2), where G1, G2, GT are cyclic groups of order N , g1
and g2 generate G1 and G2 respectively, and e is an admissible bilinear map
e : G1 × G2 → GT , which means that it is efficiently computable, e(g1, g2) gen-
erates GT , and that e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ ZN .

Definition 1. Let (p, G1, G2, GT , e, g1, g2) be a bilinear group with p prime. The
Symmetric eXternal Decision Diffie-Hellman (SXDH) assumption [ACHdM05]
states that the decision Diffie-Hellman assumption holds in both G1 and G2, i.e.
the distributions (u, ux, uy, uz) and (u, ux, uy, ux·y) are computationally indistin-
guishable for a random group element u ∈ Gi and random scalars x, y, z ∈ Zp

(for i ∈ {1, 2}).

Definition 2. Let (p, G, GT , e, g) be a bilinear group where p is prime (and G1 =
G2 = G). The decision linear (DLIN) assumption [BBS04] states that the two
distributions (u, v, w, ua, vb, wc) and (u, v, w, ua, vb, wa+b) are computationally
indistinguishable for random group elements u, v, w ∈ G and random a, b, c ∈ Zp.

2.2 Notation

We let “·” denote the product of two elements either in ZN , in G or in GT . For
equal-dimension vectors or matrices A and B of group elements, A � B stands
for their entry-wise product (i.e. their Hadamard product). For a vector or a
matrix A = (ai,j)i,j of group elements and x ∈ Z, we let Ax denote the matrix
(ax

i,j)i,j . Let Γ = (γi,j)i,j ∈ Zm×n and �B ∈ Gn. Then Γ �B := (
∏n

j=1 B
γij

j)m
i=1.

We will use 〈·, ·〉 for bilinear products between vectors of either scalars or group
elements. Let �a,�b ∈ Zn

N and �A, �B ∈ Gn. We define

〈�a,�b 〉 :=
∑n

i=1 ai · bi 〈�a, �B 〉 :=
∏n

i=1 B
ai

i 〈 �A, �B 〉 :=
∏n

i=1 e(Ai,Bi)

We employ Groth and Sahai’s notation of a bilinear product (for k ∈ {2, 3}):

• : G n×k
1 ×G n×k

2 → G k×k
T

defined as �c • �d := (
∏n

�=1 e(c�,i, d�,j))1≤i,j≤k. For the case G1 = G2 and k = 3
we define a symmetric variant3

s• : Gn×3 ×Gn×3 → G 3×3
T by:

�c
s• �d :=

(
n∏

�=1

e(c�,i, d�,j)
1
2 e(c�,j, d�,i)

1
2

)
1≤i,j≤3

3 Groth-Sahai Proof Systems

We sketch the results of Groth and Sahai [GS08] on proofs of satisfiability of
sets of equations over a bilinear group (N, G1, G2, GT , e, g1, g2). Due to the com-
plexity of their methodology, we merely give what is needed for our results and
3 Note that in their DLIN instantiation, Groth and Sahai use •̃ for the asymmetric

map and • for the symmetric variant.

222 O. Blazy et al.

refer to the full version of [GS08] for any additional details. The three types of
equations are the following:

A pairing-product equation over variables �X ∈ G m
1 and �Y ∈ G n

2 is of the form

〈 �A, �Y〉 · 〈 �X , �B〉 · 〈 �X , Γ �Y〉 = tT , (1)

defined by constants �A ∈ G n
1 , �B ∈ G m

2 , Γ ∈ Zm×n
N and tT ∈ GT .

A multi-scalar multiplication equation over variables �y ∈ Zn
N and �X ∈ G m

1 is of
the form

〈�y, �A〉 · 〈�b, �X〉 · 〈�y, Γ �X〉 = T , (2)

defined by the constants �A ∈ G n
1 , �b ∈ Zm

N , Γ ∈ Zm×n
N and T ∈ G1.

A multi-scalar multiplication equation in group G2 is defined analogously.
A quadratic equation in ZN over variables �x ∈ Zm

N and �y ∈ Zn
N is of the form

〈�a, �y 〉+ 〈�x,�b 〉+ 〈�x, Γ�y 〉 = t , (3)

defined by the constants �a ∈ Zn
N , �b ∈ Zm

N , Γ ∈ Zm×n
N and t ∈ ZN .

The common reference string for the proof system is a key to make commitments
to the variables of the different types. A proof of satisfiability is constructed by
first committing to the variables of the respective equation and then constructing
a “proof” for each equation. The latter asserts that the committed values indeed
satisfy the equation. There are three instantiations of the proof system described
in [GS08]; we present only those based on the SXDH and the DLIN assumption
(the instantiation based on the subgroup decision assumption is described in the
full version of the paper [BFI+10]).

SXDH. The language is over a bilinear group (p, G1, G2, GT , e, g1, g2) where p
is prime. The commitment key consists of u1 = (u1,1, u1,2) ,u2 = (u2,1, u2,2) in
G 2

1 and v1 = (v1,1, v1,2) ,v2 = (v2,1, v2,2) in G 2
2 .

We write �u =
(

u1
u2

)
=
(

u1,1 u1,2
u2,1 u2,2

)
and �v =

(
v1
v2

)
=
(

v1,1 v1,2
v2,1 v2,2

)
.

Let X ∈ G1, Y ∈ G2 and x ∈ Zp. We define ι1(X) := (1, X), ι2(Y) := (1, Y),
ι′1(x) := (u x

2,1, (u2,2g1)x) and ι′2(x) := (v x
2,1, (v2,2g2)x). To commit to X ∈ G1,

one chooses randomness s1, s2 ∈ Zp and sets cX := ι1(X)�us1
1 �us2

2 , a commit-
ment to Y ∈ G2 is defined as dY := ι2(Y)� vs1

1 � vs2
2 . To make a commitment

to x ∈ Zp in G 2
1 one chooses s ∈ Zp and sets cx := ι′1(x)�us

1, a commitment in
G 2

2 is defined as dx := ι′2(x) � vs
1.

To show satisfiability of a set of equations of the form (1), (2) or (3), one first
makes commitments to a satisfying witness (i.e. an assignment to the variables of
each equation) and then adds a “proof” per equation. Groth and Sahai describe
how to construct these; for Type (1), they are in G 2×2

2 × G 2×2
1 , for Type (2)

they are in G 2×2
2 ×G 2

1 and for Type (3) in G 2
2 ×G 2

1 .

Batch Groth–Sahai 223

The verification relations for the proofs are given in Section 5, where we also
discuss how to optimize them. For convenience we define some notations. Let
t ∈ Zp, T1 ∈ G1, T2 ∈ G2 and tT ∈ GT . Then we let4

ιT (tT) :=
(

1 1
1 tT

)
, ι̂T (T1) :=

(
1 1

e(T1, v2,1) e(T1, v2,2g2)

)
, ι̂T (T2) :=

(
1 e(u2,1, T2)
1 e(u2,2g1, T2)

)
,

and ι′T (t) :=
[
(u2,1, u2,2g1)•(v2,1, v2,2g2)

]t =
(

e(u2,1, v2,1)t e(u2,1, v2,2g2)t

e(u2,2g1, v2,1)t e(u2,2g1, v2,2g2)t

)
.

For the sake of consistency with [GS08], for c ∈ G 1×2
1 and d ∈ G 1×2

2 we denote
F (c,d) := [c • d].

DLIN. In this instantiation, the language is over a bilinear (symmetric) group
(p, G, GT , e, g) with p prime. The commitment key �u ∈ G 3×3 is of the form
u1 = (u1,1, 1, g), u2 = (1, u2,1, g), u3 = (u3,1, u3,2, u3,3). Let X ∈ G and x ∈ Zp.
We define ι(X) := (1, 1, X) and ι′(x) := (u x

3,1, u
x
3,2, (u3,3g)x). To commit to

X ∈ G, choose randomness s1, s2, s3 ∈ Zp and set cX := ι(X)�us1
1 �us2

2 �us3
3 .

To commit to x ∈ Zp, choose s1, s2 ∈ Zp and set cx := ι′(x)� us1
1 � us2

3 .
Due to the fact that G1 = G2 = G in this setting, the equations (1), (2) and

(3) simplify to the following respective equations:

〈 �A, �Y〉 · 〈�Y , Γ �Y〉 = tT (1′)

〈�a, �Y〉 · 〈�x, �B〉 · 〈�x, Γ �Y〉 = T (2′)

〈�x,�b〉+ 〈�x, Γ�x〉 = t (3′)

Groth and Sahai show how to construct “proofs” for each type of equation, where
for Types (1’) and (2’), the proof is in G 3×3, whereas for Type (3’) it is in G 2×3.
The verification relations for the proofs are given in Section 6. We define the
following notations. Let t ∈ Zp, T ∈ G and tT ∈ GT . Then we let

ιT (tT) :=

⎛⎝1 1 1
1 1 1
1 1 tT

⎞⎠ ι̂T (T) :=

⎛⎜⎝ 1 1 e(u3,1, T)
1
2

1 1 e(u3,2, T)
1
2

e(u3,1, T)
1
2 e(u3,2, T)

1
2 e(u3,3g, T)

⎞⎟⎠
and ι′T (t) :=

[
(u3,1, u3,2, u3,3g)

s• (u3,1, u3,2, u3,3g)
]t

.

4 Batch Verification of Pairing Equations

We address the problem of securely batching the verification of (potentially
many) Groth-Sahai proofs. We achieve a trade-off between soundness and ef-
ficiency: if the verification algorithm returns valid, the verifier is assured that
all proved statements are valid with overwhelming probability. Ferrara, Green,

4 Here (and in the DLIN instantiation) we use the rectifications of ι̂T and ι′T by
[GSW09].

224 O. Blazy et al.

Hohenberger and Pedersen [FGHP09] presented a detailed study on how to se-
curely batch-verify a set of pairing-based equations, which we briefly recall here
(see the full version of [FGHP09] for any additional details).

Given a bilinear structure (N, G1, G2, GT , e, g1, g2), a pairing-based verifica-
tion equation is a Boolean relation of the form:

∏k
i=1 e(fi, hi)ci

?= A for k ∈ N,
(fi, hi, ci) ∈ G1 × G2 × ZN for i ∈ {1, . . . , k} and A ∈ GT . A pairing-based
verifier is an algorithm which given a pairing-based verification equation out-
puts yes if the Boolean relation holds, and no otherwise (except with negligible
probability).

In order to design a pairing-based verifier for m pairing-based verification
equations, one has to find a way to combine all equations. The technique pro-
posed in [FGHP09] consists in using the small exponents test proposed by Bellare
et al. [BGR98], which here amounts to pick small random exponents δ1, . . . , δm

and checking whether
∏m

j=1
∏kj

i=1 e(fi,j , hi,j)ci,jδj =
∏m

j=1 A
δj

j holds. In order to
further reduce the computational needs, three main techniques may be used:

1. Move the exponent into the pairing: Since, in practice, exponentiation
in GT is more expensive5 than in G1 and G2, this gives a first speed up. As
we are working on pairings, we can also do the opposite if it allows another
technique to apply: e(fi, hi)δi → e(f δi

i , hi)

2. Move the product into the pairing: When two pairings have a common
element, they can be combined to reduce the number of pairings:∏m

j=1 e
(
f

δj

j , hi

)
→ e
(∏m

j=1 f
δj

j , hi

)
3. Switch two products: Sometimes improvements can be made by moving a

product from the first to the second component of a pairing (or vice-versa):∏k
i=1 e
(∏m

j=1 f
δi,j

j , hi

)
↔
∏m

j=1 e
(
fj ,
∏k

i=1 h
δi,j

i

)
The soundness of the pairing-based verifier based on the small exponents test is
quantified in the following theorem [FGHP09, Theorem 3.2]:

Theorem 1. Given m pairing-based verification equations, the small-exponents
verifier described above with random exponents δ1, . . . , δm of � bits is a pairing-
based batch verifier that accepts an invalid batch with probability at most 2−�.

Handling Invalid Proofs. In the case of verification of multiple proofs (as in
Sections 7 and 8), if there is an invalid proof in the batch, then the verifier will
reject the entire batch with high probability. A simple technique for finding in-
valid proofs in a batch consists in using a recursive divide-and-conquer approach
[PMPS00]. Recently, more efficient techniques were proposed for pairing-based
signatures (see e.g. [Mat09] and references therein) and they apply as well to our
setting.

5 Note that, for Type 2 pairings, exponentiation in G2 is more expensive than in GT

(see [GPS08] for details).

Batch Groth–Sahai 225

5 Instantiation 2: SXDH

5.1 Pairing-Product Equation

A proof (�c, �d, �π, �θ) ∈ Gm×2
1 ×Gn×2

2 ×G2×2
2 ×G2×2

1 of satisfiability of an equation
of Type (1) is verified by checking the following equation [GS08]:[

ι1(�A) • �d
]
�
[
�c • ι2(�B)

]
�
[
�c • Γ�d
]

= ιT (tT)�
[
�u • �π
]
�
[
�θ • �v
]

.

Let �c = (ci,k)1≤i≤m
1≤k≤2

∈ Gm×2
1 , �d = (dj,k)1≤j≤n

1≤k≤2
∈ Gn×2

2 , Γ = (γi,j)1≤i≤m
1≤j≤n

∈ Zm×n
p ,

�A = (Aj)1≤j≤n ∈ Gn×1
1 and �B = (Bi)1≤i≤m ∈ Gm×1

2 .

Plugging in the definitions from Section 3, the left hand side is equal to⎛⎜⎜⎜⎜⎝
m∏

i=1

e
(
ci,1,
∏n

j=1 d
γi,j

j,1

) m∏
i=1

e
(
ci,1,Bi

∏n
j=1 d

γi,j

j,2

)
n∏

j=1

e
(
Aj

∏m
i=1 c

γi,j

i,2 , dj,1
) n∏

j=1

e(Aj , dj,2)
m∏

i=1

e
(
ci,2,Bi

∏n
j=1 d

γi,j

j,2

)
⎞⎟⎟⎟⎟⎠ .

If we denote �π =
(

π1,1 π1,2
π2,1 π2,2

)
, �θ =
(

θ1,1 θ1,2
θ2,1 θ2,2

)
, the right hand side is equal to

⎛⎜⎜⎝
e(u1,1, π1,1)e(u2,1, π2,1) e(u1,1, π1,2)e(u2,1, π2,2)

· e(θ1,1, v1,1)e(θ2,1, v2,1) · e(θ1,1, v1,2)e(θ2,1, v2,2)
e(u1,2, π1,1)e(u2,2, π2,1) tT e(u1,2, π1,2)e(u2,2, π2,2)

· e(θ1,2, v1,1)e(θ2,2, v2,1) · e(θ1,2, v1,2)e(θ2,2, v2,2)

⎞⎟⎟⎠ .

By grouping pairings, we reduced the number of pairings on the left-hand side of
the equation from 5m + 3n to 3m + 2n, while the right-hand side remains at 16
pairings. Using the techniques explained in Section 4, i.e. taking each element
Mi,j of the equation to a random power ri,j , multiplying all the components,
and regrouping pairings, we get the following equation:

2∏
k=1

n∏
j=1

e
((∏m

i=1 c
γi,j

i,1

)r1,k
(
Aj

∏m
i=1 c

γi,j

i,2

)r2,k
, dj,k

)
·

m∏
i=1

e
(
c
r1,2
i,1 c

r2,2
i,2 ,Bi

)
= e(ur1,1

1,1 u
r2,1
1,2 , π1,1)e(u

r1,1
2,1 u

r2,1
2,2 , π2,1)e(θ

r1,1
1,1 θ

r2,1
1,2 , v1,1)e(θ

r1,1
2,1 θ

r2,1
2,2 , v2,1)

· e(ur1,2
1,1 u

r2,2
1,2 , π1,2)e(u

r1,2
2,1 u

r2,2
2,2 , π2,2)e(θ

r1,2
1,1 θ

r2,2
1,2 , v1,2)e(θ

r1,2
2,1 θ

r2,2
2,2 , v2,2) · tr2,2

T

which requires m + 2n pairings and 2mn + 2m + 4n exponentiations in G1 for
the left part and 8 pairing computations and 16 exponentiations in G1 and
one exponentiation in GT for the right side of the equation. The alternative
expression

n∏
j=1

e
(
Aj , d

r2,1
j,1 d

r2,2
j,2

)
·

2∏
k=1

m∏
i=1

e
(
ci,k,
(∏n

j=1 d
γi,j

j,1

)rk,1
(
Bi

∏n
j=1 d

γi,j

j,2

)rk,2
)

for the left side of the equation requires 2m + n pairings and 2mn + 4m + 2n
exponentiations in G2.

226 O. Blazy et al.

5.2 Multi-scalar Multiplication Equation in G1

Here, we consider equations of Type (2) in G1 (the case of equations in G2,
which work analogously, is treated in the full version of the paper [BFI+10]).
The verification of a proof (�c, �d′, �π, θ) ∈ G m×2

1 ×G n×2
2 ×G 2×2

2 ×G 1×2
1 consists

in checking the following:[
ι1(�A) • �d′

]
�
[
�c • ι′2(�b)

]
�
[
�c • Γ �d′

]
= ι̂T (T1)�

[
�u • �π
]
� F (θ,v1).

Let �c = (ci,k)1≤i≤m
1≤k≤2

∈ Gm×2
1 , �d′ = (d′j,k)1≤j≤n

1≤k≤2
∈ Gn×2

2 , Γ = (γi,j)1≤i≤m
1≤j≤n

∈ Zm×n
p ,

�A = (Aj)1≤j≤n ∈ Gn×1
1 , �b = (bi)1≤i≤m ∈ Zm×1

p . The left hand-side is equal to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∏
i=1

e(ci,1, vbi
2,1

∏n
j=1 d

′
j,1

γi,j)
m∏

i=1

e(ci,1, (v2,2g2)bi
∏n

j=1 d
′
j,2

γi,j)

m∏
i=1

e(ci,2, vbi
2,1

∏n
j=1 d

′
j,1

γi,j)
m∏

i=1

e(ci,2, (v2,2g2)bi
∏n

j=1 d
′
j,2

γi,j)

·
n∏

j=1

e(Aj , d
′
j,1) ·

n∏
j=1

e(Aj , d
′
j,2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
while the right-hand side is equal to⎛⎜⎝ e(θ1, v1,1)e(u1,1, π1,1)e(u2,1, π2,1) e(θ1, v1,2)e(u1,1, π1,2)e(u2,1, π2,2)

e(θ2, v1,1)e(u1,2, π1,1)e(u2,2, π2,1) e(θ2, v1,2)e(u1,2, π1,2)e(u2,2, π2,2)
· e(T1, v2,1) · e(T1, g2v2,2)

⎞⎟⎠
By grouping the pairings, the number of pairings on the left-hand side of the
equation has already been reduced from 8m + 2n to 4m + 2n. Now, by using
the batch technique, i.e., multiplying each member by a random value and mul-
tiplying all the components, we obtain on the left-hand side

2∏
k=1

n∏
j=1

e
((∏m

i=1 c
γi,j

i,1

)r1,k
(
Aj

∏m
i=1 c

γi,j

i,2

)r2,k , d′j,k

)
· e
(
(
∏m

i=1 c
bi
i,1)

r1,1(
∏m

i=1 c
bi
i,2)

r2,1 , v2,1

)
· e
(
(
∏m

i=1 c
bi
i,1)

r1,2(
∏m

i=1 c
bi
i,2)

r2,2 , v2,2g2
)

which requires 2mn + 2m + 4n + 4 exponentiations in G1 and 2n + 2 pairing
computations. The alternative expression

n∏
j=1

e
(
Aj ,

2∏
k=1

d′j,k
r2,k
) 2∏

k=1

m∏
i=1

e
(
ci,k,
(
vbi
2,1

n∏
j=1

d′j,1
γi,j
)rk,1
(
(v2,2g2)bi

n∏
j=1

d′j,2
γi,j
)rk,2
)

for the left side of the equation requires 2mn + 6m + 2n exponentiations in G2
and 2m + n pairing computations. On the right-hand side, the same technique
achieves a reduction from 14 to 7 pairings:

e(θr1,1
1 θ

r2,1
2 , v1,1)e(θ

r2,1
1 θ

r2,2
2 , v1,2)e(u

r1,1
1,1 u

r2,1
1,2 , π1,1)e(u

r1,1
2,1 u

r2,1
2,2 , π2,1)

· e(ur1,2
2,1 u

r2,2
2,2 , π1,2)e(u

r2,1
2,1 u

r2,2
2,2 , π2,2)e(T1, v

r2,1
2,1 (g2v2,2)r2,2)

Batch Groth–Sahai 227

5.3 Quadratic Equation

The verification of (�c′, �d′, π, θ) ∈ Gm×2
1 ×Gn×2

2 ×G 1×2
2 ×G 1×2

1 for an equation
of Type (3) consists in checking[

ι′1(�a) • �d′
]
�
[
�c′ • ι′2(�b)

]
�
[
�c′ • Γ �d′

]
= ι′T (t)� F (u1, π)� F (θ,v1) .

Let �c′ = (c′i,k)1≤i≤m
1≤k≤2

∈ Gn×2
1 , �d′ = (d′j,k)1≤j≤n

1≤k≤2
∈ Gn×2

2 , Γ = (γi,j)1≤i≤m
1≤j≤n

∈ Zm×n
p ,

�a = (aj)1≤j≤n ∈ Zn×1
p , �b = (bi)1≤i≤m ∈ Zm×1

p . The left hand side is equal to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∏
i=1

e(c′i,1, v
bi
2,1)

m∏
i=1

e(c′i,1, (v2,2g2)bi)

·
n∏

j=1

e
(
u

aj

2,1

∏m
i=1 c

′
i,1

γi,j , d′j,1

)
·

n∏
j=1

e
(
u

aj

2,1

∏m
i=1 c

′
i,1

γi,j , d′j,2

)
m∏

i=1

e(c′i,2, v
bi
2,1)

m∏
i=1

e(c′i,2, (v2,2g2)bi)

·
n∏

j=1

e
(
(u2,2g1)aj

∏m
i=1 c

′
i,2

γi,j , d′j,1

)
·

n∏
j=1

e
(
(u2,2g1)aj

∏m
i=1 c

′
i,2

γi,j , d′j,2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Denoting π = (π1, π2) and θ = (θ1, θ2) , for the right-hand side we have(

e(u1,1, π1)e(θ1, v1,1)e(u2,1, v2,1)t e(u1,1, π2)e(θ1, v1,2)e(u2,1, v2,2g2)t

e(u1,2, π1)e(θ2, v1,1)e(u2,2g1, v2,1)t e(u1,2, π2)e(θ2, v1,2)e(u2,2g1, v2,2g2)t

)
By grouping the pairings, the number of pairings on the left-hand side member
of the equation has been reduced from 8m + 8n to 4m + 4n. By using the batch
technique, i.e., multiplying each member by a random value and multiplying all
the members, we obtain on the left-hand side:

e
((m∏

i=1

c′i,1
bi
)r1,1
(m∏

i=1

c′i,2
bi
)r2,1

, v2,1

)
· e
((m∏

i=1

c′i,1
bi
)r1,2
(m∏

i=1

c′i,2
bi
)r2,2

, v2,2g2
)

·
2∏

k=1

n∏
j=1

e
((

u
aj

2,1

m∏
i=1

c′i,1
γi,j
)r1,k
(
(u2,2g1)aj

m∏
i=1

c′i,2
γi,j

)r2,k

, d′j,k

)
which requires 2mn + 2m + 6n + 4 exponentiations in G1 and 2n + 2 pairing
computations. Alternatively, the left-hand side is also equal to

e
(
u2,1,
(n∏

j=1

d′j,1
aj
)r1,1
(n∏

j=1

d′j,2
aj
)r1,2
)
· e
(
u2,2g2,

(n∏
j=1

d′j,1
aj
)r2,1
(n∏

j=1

d′j,2
aj
)r2,2
)

·
2∏

k=1

m∏
i=1

e
(
c′i,k,
(
vbi
2,1

n∏
j=1

d′j,1
γi,j
)rk,1
(
(v2,2g2)bi

n∏
j=1

d′j,2
γi,j
)rk,2
)

which requires 2mn + 6m + 2n + 4 exponentiations in G2 and 2m + 2 pairing
computations. On the right-hand side, the same technique achieves a reduction
from 12 to 6 pairings:

228 O. Blazy et al.

e(ur1,1
1,1 u

r2,1
1,2 , π1)e(u

r1,2
1,1 u

r2,2
1,2 , π2)e(θ

r1,1
1 θ

r2,1
2 , v1,1)e(θ

r1,2
1 θ

r2,2
2 , v1,2)

· e(ur1,1t
2,1 (u2,2g1)r2,1t, v2,1)e(u

r1,2t
2,1 (u2,2g1)r2,2t, v2,2g2)

6 Instantiation 3: DLIN

6.1 Pairing-Product Equation

The verification relation of a proof (�d, φ) ∈ Gn×3×G3×3 for equation Type (1′)
is the following: [

ι(�A)
s• �d
]
�
[
�d

s• Γ�d
]

= ιT (tT)�
[
�u

s• �φ
]

For simplicity, we consider the squares of all GT elements on both sides of the
equation. Writing Γ�d as

(∏n
k=1 d

γi,k

k,j

)
1≤i≤n
1≤j≤3

and replacing the bilinear product

s• by its definition, we get for the left-hand side:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∏
i=1

e(di,1,
∏
d

γi,k

k,1)2
n∏

i=1

e(di,1,
∏
d

γi,k

k,2)
n∏

i=1

e(Ai, di,1)e(di,1,
∏
d

γi,k

k,3)

·e(di,2,
∏
d

γi,k

k,1) ·e(di,3,
∏
d

γi,k

k,1)

n∏
i=1

e(di,2,
∏
d

γi,k

k,1)
n∏

i=1

e(di,2,
∏
d

γi,k

k,2)2
n∏

i=1

e(Ai, di,2)e(di,2,
∏
d

γi,k

k,3)

·e(di,1,
∏
d

γi,k

k,2) ·e(di,3,
∏
d

γi,k

k,2)

n∏
i=1

e(Ai, di,1)
n∏

i=1

e(Ai, di,2)
n∏

i=1

e(Ai, di,3)2

·e(di,3,
∏
d

γi,k

k,1) ·e(di,3,
∏
d

γi,k

k,2) ·e(di,3,
∏
d

γi,k

k,3)2

·e(di,1,
∏
d

γi,k

k,3) ·e(di,2,
∏
d

γi,k

k,3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
For the right-hand side, we get:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3∏
i=1

e(ui1, φi1)2
3∏

i=1

e(ui1, φi2)e(ui2, φi1)
3∏

i=1

e(ui1, φi3)e(ui3, φi1)
3∏

i=1

e(ui2, φi1)e(ui1, φi2)
3∏

i=1

e(ui2, φi2)2
3∏

i=1

e(ui2, φi3)e(ui3, φi2)

3∏
i=1

e(ui3, φi1)e(ui1, φi3)
3∏

i=1

e(ui3, φi2)e(ui2, φi3) t 2
T

3∏
i=1

e(ui3, φi3)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Taking each component Mi,j of the equation to the power of ri,j , multiplying
all components, and regrouping pairings, we get the following for the left-hand
side:

Batch Groth–Sahai 229

∏n
i=1 e
(
di,1, Ar1,3+r3,1

i

∏
d

γi,k2·r1,1
k,1 d

γi,k(r1,2+r2,1)
k,2 d

γi,k(r1,3+r3,1)
k,3

)
·

e
(
di,2, Ar2,3+r3,2

i

∏
d

γi,k(r1,2+r2,1)
k,1 d

γi,k2·r2,2
k,2 d

γi,k(r2,3+r3,2)
k,3

)
·

e
(
di,3, A2·r3,3

i

∏
d

γi,k(r1,3+r3,1)
k,1 d

γi,k(r2,3+r3,2)
k,2 d

γi,k2r3,3
k,3

)
(4)

and for the right-hand side:

∏3
i=1 e
(
ui,1, φ

2·r1,1
i,1 φ

r1,2+r2,1
i,2 φ

r1,3+r3,1
i,3

)
· e
(
ui,2, φ

r1,2+r2,1
i,1 φ

2·r2,2
i,2 φ

r2,3+r3,2
i,3

)
· e
(
ui,3, φ

r1,3+r3,1
i,1 φ

r2,3+r3,2
i,2 φ

2·r3,3
i,3

)
· t2r3,3

T

Due to the fact that u1,2 = u2,1 = 1, and u1,3 = u2,3 (cf. Section 3) this simplifies
to:

e
(
u1,1, φ

2·r1,1
1,1 φ

r1,2+r2,1
1,2 φ

r1,3+r3,1
1,3

)
· e
(
u2,2, φ

r1,2+r2,1
2,1 φ

2·r2,2
2,2 φ

r2,3+r3,2
2,3

)
· e
(
u1,3, (φ1,1φ2,1)r1,3+r3,1(φ1,2φ2,2)r2,3+r3,2(φ1,3φ2,3)2·r3,3

)
· e
(
u3,1, φ

2·r1,1
3,1 φ

r1,2+r2,1
3,2 φ

r1,3+r3,1
3,3

)
· e
(
u3,2, φ

r1,2+r2,1
3,1 φ

2·r2,2
3,2 φ

r2,3+r3,2
3,3

)
·

e
(
u3,3, φ

r1,3+r3,1
3,1 φ

r2,3+r3,2
3,2 φ

2·r3,3
3,3

)
· t2r3,3

T

We reduce the number of pairings from 12n+27 to 3n+6 pairings at the expense
of adding 9n2 + 3n exponentiations in G and one exponentiation in GT .

6.2 Multi-scalar Multiplication and Quadratic Equations

The description of the batch verification of multi-scalar multiplication equation
and quadratic equation is similar to the previous one. Due to space constraints
it is given in the full version [BFI+10].

7 Application 1: Groth’s Group Signatures

7.1 Description

We demonstrate our techniques by applying them to one of the most practical
fully-secure group-signature schemes in the standard model to date: Groth’s
construction [Gro07]. Groth proposed a methodology of transforming certified
signatures [BFPW07] that respect a certain structure into group signatures using
Groth-Sahai NIWI proofs:

– a member picks a key pair for the certified-signature scheme and asks the
issuer to certify her verification key;

– to produce a group signature, the member makes a certified signature, en-
crypts it and makes a NIWI proof that demonstrates that the ciphertext
contains a valid certified signature.

230 O. Blazy et al.

Groth proposed an efficient certified-signature scheme based on the so called
q-U assumption (see [Gro07] for details). In the CPA-anonymous version6 of the
scheme, the issuer’s public key is a triple (f, h, T) ∈ G2 × GT (and its private
key is z ∈ G such that e(f, z) = T) and the certificate for a group member
with public key v = gx ∈ G is a pair (a, b) satisfying e(a, vh) e(f, b) = T . To
sign a message m ∈ Zp, the group member first computes a weak Boneh-Boyen
signature [BB08] σ = g1/(x+m) using her private key x; then she forms Groth-
Sahai commitments dv, db and dσ to the group elements v, b and σ, resp., and
makes a proof that they satisfy the following:

e(a, vh) e(f, b) = T e(σ, gmv) = e(g, g) (5)

The fact that a is given in the clear is not a problem since the certificate is
malleable, so the group member can unlinkably re-randomize it each time she
signs a message. A group signature is thus of the form (a,db,dv,dσ, ψ, φ), where
ψ and φ denote the Groth-Sahai proofs for the two equations in (5), respectively.

We first instantiate our generic batch construction to verify a single signature
more efficiently and then show how to verify multiple signatures at once. The
first equation is of a particular form that allows for more efficient proofs and
verification. We describe the verification relations and the batch verification in
the next section.

7.2 Batching Linear Pairing-Product Equations

We consider a special case of pairing-product equations for which Γ = 0, called
linear equations, i.e. the equation is of the following form: 〈 �A, �Y〉 = tT , that is∏n

i=1 e(Ai,Yi) = tT . In this case, the proof simplifies to three group elements and
is verified as follows (taking into account that u1,2 = u2,1 = 1, and u1,3 = u2,3):∏n

i=1 e(Ai, di,1) = e(u11, ψ1) e(u31, ψ3)∏n
i=1 e(Ai, di,2) = e(u22, ψ2) e(u32, ψ3)∏n
i=1 e(Ai, di,3) = tT e(u13, ψ1ψ2) e(u33, ψ3)

which can be batch-verified by checking7

n∏
i=1

e(Ai, d
s1
i,1d

s2
i,2d

s3
i,3)

= t s3
T e(u11, ψ

s1
1) e(u13, (ψ1ψ2)s3) e(u22, ψ

s2
2) e(u31, ψ

s1
3) e(u32, ψ

s2
3) e(u33, ψ

s3
3) .(6)

6 Groth also proposes group signatures achieving CCA-anonymity [BSZ05]; for illus-
trative purposes we restrict ourselves to the basic CPA-anonymous scheme here.

7 If we considered a single set of equations then it would be more efficient to order the
right-hand side by the ψi’s and save 3 pairings. We order by the uij though, since
this enables us to batch with other equations containing pairings of these constants.

Batch Groth–Sahai 231

7.3 Batching the Equations for One Group Signature

1st Equation. Instantiating (6) for first equation in (5), we get, after some
more optimization (shifting e(a, h−1))s3 to the left-hand side of the equation)

e(ds1
v,1d

s2
v,2(dv,3h)s3 , a) e(ds1

b,1d
s2
b,2d

s3
b,3, f) =

T s3 e(u11, ψ
s1
1) e(u13, (ψ1ψ2)s3) e(u22, ψ

s2
2) e(u31, ψ

s1
3) e(u32, ψ

s2
3) e(u33, ψ

s3
3)

2nd Equation. Setting �A :=
(

gm

1

)
, �Y :=

(
σ
v

)
, Γ :=

(
0 1
0 0

)
, tT := e(g, g),

d1 := dσ and d2 := dv and substituting in (4), we get

e
(
dσ1, (gmdv3)(r13+r31)d2·r11

v1 d
(r12+r21)
v2

)
e
(
dσ2, (gmdv3)(r23+r32)d

(r12+r21)
v1 d2·r22

v2

)
· e
(
dσ3, (gmdv3)2·r33d

(r13+r31)
v1 d

(r23+r32)
v2

)
=

e
(
u11, φ

2·r11
11 φr12+r21

12 φr13+r31
13

)
e
(
u13, (φ11φ21)r13+r31(φ12φ22)r23+r32(φ13φ23)2·r33

)
· e
(
u22, φ

r12+r21
21 φ2·r22

22 φr23+r32
23

)
e
(
u31, φ

2·r11
31 φr12+r21

32 φr13+r31
33

)
· e
(
u32, φ

r12+r21
31 φ2·r22

32 φr23+r32
33

)
e
(
u33, φ

r13+r31
31 φr23+r32

32 φ2·r33
33

)
e(g, g2r33) .

Multiplying the two equations we get a single verification relation of the following
form:

e(ds1
v,1d

s2
v,2(dv,3h)s3 , a) e(ds1

b,1d
s2
b,2d

s3
b,3, f)e

(
dσ1, (gmdv3)(r13+r31)d2·r11

v1 d
(r12+r21)
v2

)
· e
(
dσ2, (gmdv3)(r23+r32)d

(r12+r21)
v1 d2·r22

v2

)
e
(
dσ3, (gmdv3)2·r33d

(r13+r31)
v1 d

(r23+r32)
v2

)
=
(
T s3e(g, g2r33)

)
e
(
u13, (φ11φ21)r13+r31(φ12φ22)r23+r32(φ13φ23)2·r33(ψ1ψ2)s3

)
e
(
u11, φ

2·r11
11 φr12+r21

12 φr13+r31
13 ψs1

1

)
· e
(
u22, φ

r12+r21
21 φ2·r22

22 φr23+r32
23 ψs2

2

)
e
(
u31, φ

2·r11
31 φr12+r21

32 φr13+r31
33 ψs1

3

)
· e
(
u32, φ

r12+r21
31 φ2·r22

32 φr23+r32
33 ψs2

3

)
· e
(
u33, φ

r13+r31
31 φr23+r32

32 φ2·r33
33 ψs3

3

)
Analysis. With no use of batching techniques, the verification of a single sig-
nature takes for the first equation 13 pairings and for the second 20 pairings for
the left-hand side and 35 for its right-hand side. This is an overall of 68 pairing
evaluations, compared to 11 for the batched verification.

7.4 Batching Several Group Signatures

Consider the situation where we want to verify multiple group signatures at
once. That is given a group public key (f, h, T, u11, u13, u22, u31, u32, u33) and n
group signatures(

a(k),d(k)
b ,d(k)

v ,d(k)
σ , (ψ(k)

i)1≤i≤3, (φ
(k)
ij)1≤i,j≤3

)
.

Using the same technique of taking each of the (new) equations to the power of
some randomness and multiplying them, we can unify the pairings e(·, f) on the

232 O. Blazy et al.

left-hand side and all pairings (which are of the form e(uij, ·)) on the right-hand
side. Instead of 11n pairings needed when checking each equation, the batched
version only requires 4n + 7 pairings.

8 Application 2: P-Signatures

8.1 Description

Belenkiy et al. [BCKL08] formalize digital signature schemes with an addi-
tional non-interactive proof of signature possession that they called P-signature
schemes. They proposed two constructions8: the first is based on the weak Boneh-
Boyen signature scheme [BB08] while the second one is inspired by its full version.

Since Belenkiy et al.’s first scheme relies on a rather strong assumption, we
consider only their second proposal: a signature σ on a message m ∈ Zp is a
triple σ = (C1, C2, C3) ∈ G1 × G2 × G1 such that e(C1, vhmC2) = e(g, h) and
e(f, C2) = e(C3, w), where f and g are (public) generators of G1, h is a (public)
generator of G2 and v, w ∈ G2 are parts of the signer’s public key. To prove
possession of such a signature, a prover forms the Groth-Sahai commitments c1,
c2 and c3 for the group elements C1, M1 = fm, C3 in G1 and d1 and d2 for the
group elements M2 = hm and C2 in G2 (respectively) and provides a proof that
they satisfy:

e(C1, vM2C2) = e(g, h), e(f, C2) = e(C3, w) and e(f, M2) = e(M1, h) (7)

8.2 SXDH Instantiation

In [BCKL08], the authors evaluated that the verification of the proof in the
SXDH instantiation requires the computation of 68 pairings. In the full version
of this paper [BFI+10] we show that it can be reduced to 15.

8.3 DLIN Instantiation

As in Section 7, the last two pairing-product equations from (7) are actually
linear pairing-product equations. We denote the Groth-Sahai commitments for
the group elements C1, C2, C3, M1 = fm, M2 = hm in G by d1,d2, d3, d4 and
d5 (respectively) and by φ, ψ and θ the proofs that they satisfy the first, the
second and the third equation (respectively). For the first equation, setting and
substituting

�A =

(
v
1
1

)
, �d =

(
d1

d2

d5

)
, Γ =

(
0 1 1
0 0 0
0 0 0

)
and tT = e(g, g)

in (4), we get:

8 An extended version of their scheme was recently proposed [BCKL09] but here we
restrict ourselves to the basic scheme from [BCKL08].

Batch Groth–Sahai 233

e
(
d1,1, (v d2,3 d5,3)r1,3+r3,1(d2,1 d5,1)2r1,1(d2,2 d5,2)(r1,2+r2,1)

)
· e
(
d1,2, (v d2,3 d5,3)r2,3+r3,2(d2,1 d5,1)r1,2+r2,1(d2,2 d5,2)2r2,2

)
· e
(
d1,3, (v d2,3 d5,3)2r3,3(d2,1 d5,1)r1,3+r3,1(d2,2 d5,2)r2,3+r3,2

)
=

= e
(
u1,1, φ

2·r1,1
1,1 φ

r1,2+r2,1
1,2 φ

r1,3+r3,1
1,3

)
· e
(
u2,2, φ

r1,2+r2,1
2,1 φ

2·r2,2
2,2 φ

r2,3+r3,2
2,3

)
· e
(
u1,3, (φ1,1φ2,1)r1,3+r3,1(φ1,2φ2,2)r2,3+r3,2(φ1,3φ2,3)2·r3,3

)
· e
(
u3,1, φ

2·r1,1
3,1 φ

r1,2+r2,1
3,2 φ

r1,3+r3,1
3,3

)
· e
(
u3,2, φ

r1,2+r2,1
3,1 φ

2·r2,2
3,2 φ

r2,3+r3,2
3,3

)
· e
(
u3,3, φ

r1,3+r3,1
3,1 φ

r2,3+r3,2
3,2 φ

2·r3,3
3,3

)
· e(g, g)2r3,3 .

Substituting �A =
(

f
w−1

)
, �d =
(
d2
d3

)
, tT = 1, and �A =

(
f

h−1

)
, �d =
(
d5
d4

)
,

tT = 1 (respectively) in (6), we obtain the second and third equation. Once the
three equations multiplied, we obtain:

e
(
d1,1, (v d2,3 d5,3)r1,3+r3,1(d2,1 d5,1)2r1,1(d2,2 d5,2)(r1,2+r2,1))

e
(
d1,2, (v d2,3 d5,3)r2,3+r3,2(d2,1 d5,1)r1,2+r2,1(d2,2 d5,2)2r2,2

)
e
(
d1,3, (v d2,3 d5,3)2r3,3 (d2,1 d5,1)r1,3+r3,1(d2,2 d5,2)r2,3+r3,2

)
e(f, ds1

2,1d
s2
2,2d

s3
2,3d

t1
5,1d

t2
5,2d

t3
5,3)e(w

−1, ds1
3,1d

s2
3,2d

s3
3,3)e(h

−1, dt1
4,1d

t2
4,2d

t3
4,3)

= e
(
u1,3, (φ1,1φ2,1)r1,3+r3,1(φ1,2φ2,2)r2,3+r3,2(φ1,3φ2,3)2·r3,3(ψ1ψ2)s3(θ1θ2)t3

)
· e
(
u1,1, φ

2·r1,1
1,1 φ

r1,2+r2,1
1,2 φ

r1,3+r3,1
1,3 ψs1

1 θt1
1

)
· e
(
u2,2, φ

r1,2+r2,1
2,1 φ

2·r2,2
2,2 φ

r2,3+r3,2
2,3 ψs2

2 θt2
2

)
· e
(
u3,1, φ

2·r1,1
3,1 φ

r1,2+r2,1
3,2 φ

r1,3+r3,1
3,3 ψs1

3 θt1
3

)
· e
(
u3,2, φ

r1,2+r2,1
3,1 φ

2·r2,2
3,2 φ

r2,3+r3,2
3,3 ψs2

3 θt2
3

)
e
(
u3,3, φ

r1,3+r3,1
3,1 φ

r2,3+r3,2
3,2 φ

2·r3,3
3,3 ψs3

3 θt3
3

)
e(g, g)2r3,3

In [BCKL08], the authors evaluated that the verification of the proof in the DLIN
instantiation requires the computation of 126 pairings. With our result, we prove
it can be reduced to 12.

Batching Several P-Signatures. As in the previous section, in case we want
to verify multiple P-signatures at once, we can unify the pairings containing f, h
and w on the left-hand side and all pairings (which are of the form e(ui,j , ·)) on
the right-hand side. Instead of 15n (resp. 12n) pairings needed when checking
each equation, the batched version only requires 2n+ 13 (resp. 3n + 9) pairings.

9 Conclusion

In this paper, we presented efficiency improvements for the verification of Groth-
Sahai non-interactive zero-knowledge and witness-indistinguishable proofs and
two privacy-preserving authentication schemes, saving up to 90% of the (domi-
nant) pairing operations. These results can be combined with known methods to
compute the product of many pairing evaluations efficiently [GS06]. Our results
notably provide the first algorithm to batch-verify a group signature scheme in the
standard model (an open problem raised in [FGHP09]) and, surprisingly, demon-
strate that thanks to batch verification techniques, the DLIN instantiation of the

234 O. Blazy et al.

Groth-Sahai proof system may be the most efficient implementation for the veri-
fication of a single signature.

Acknowledgments

This work was supported by the French ANR-07-TCOM-013-04 PACE Project,
by the European Commission through the IST Program under Contract ICT-
2007-216646 ECRYPT II and by EADS.

References

[ACHdM05] Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practi-
cal group signatures without random oracles. Cryptology ePrint Archive,
Report 2005/385 (2005)

[BB08] Boneh, D., Boyen, X.: Short signatures without random oracles and the
SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004)

[BCC+09] Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous creden-
tials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125.
Springer, Heidelberg (2009)

[BCKL08] Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures
and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)

[BCKL09] Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-
cash and simulatable vRFs revisited. In: Shacham, H. (ed.) PAIRING
2009. LNCS, vol. 5671, pp. 114–131. Springer, Heidelberg (2009)

[BFI+10] Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H.,
Vergnaud, D.: Batch Groth-Sahai. Cryptology ePrint Archive, Report
2010/040 (2010)

[BFM90] Blum, M., Feldman, P., Micali, S.: Proving security against chosen cypher-
text attacks. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp.
256–268. Springer, Heidelberg (1990)

[BFPW07] Boldyreva, A., Fischlin, M., Palacio, A., Warinschi, B.: A closer look at
PKI: Security and efficiency. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 458–475. Springer, Heidelberg (2007)

[BGN05] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ci-
phertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341.
Springer, Heidelberg (2005)

[BGR98] Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular
exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: ACM CCS 93 Conference on Computer
and Communications Security, pp. 62–73. ACM Press, New York (1993)

[BSZ05] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case
of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 136–153. Springer, Heidelberg (2005)

Batch Groth–Sahai 235

[BW06] Boyen, X., Waters, B.: Compact group signatures without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444.
Springer, Heidelberg (2006)

[BW07] Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size
group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 1–15. Springer, Heidelberg (2007)

[CGH98] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM
Press, New York (1998)

[CGS07] Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size
without random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg
(2007)

[CHP07] Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of
short signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 246–263. Springer, Heidelberg (2007)

[FGHP09] Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical short
signature batch verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS,
vol. 5473, pp. 309–324. Springer, Heidelberg (2009)

[Fia90] Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS,
vol. 435, pp. 175–185. Springer, Heidelberg (1990)

[FPV09] Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable constant-size
fair e-cash. In: Miyaji, A., Echizen, I., Okamoto, T. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 226–247. Springer, Heidelberg (2009)

[GL07] Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability.
In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67.
Springer, Heidelberg (2007)

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers.
Discrete Applied Mathematics 156(16), 3113–3121 (2008)

[Gro07] Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180.
Springer, Heidelberg (2007)

[GS06] Granger, R., Smart, N.P.: On Computing Products of Pairings. Cryptol-
ogy ePrint Archive, Report 2006/172 (2006)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008)

[GSW09] Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–sahai proofs revisited.
Cryptology ePrint Archive, Report 2009/599 (2009)

[Mat09] Matt, B.J.: Identification of multiple invalid signatures in pairing-based
batched signatures. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 337–356. Springer, Heidelberg (2009)

[NMVR94] Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be im-
proved? complexity trade-offs with the digital signature standard. In: De
Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer,
Heidelberg (1995)

[PMPS00] Pastuszak, J., Michatek, D., Pieprzyk, J., Seberry, J.: Identification of bad
signatures in batches. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS,
vol. 1751, pp. 28–45. Springer, Heidelberg (2000)

Efficient and Secure Evaluation of Multivariate
Polynomials and Applications

Matthew Franklin1 and Payman Mohassel2

1 Department of Computer Science, UC Davis
franklin@cs.ucdavis.edu

2 Department of Computer Science, University of Calgary
pmohasse@cpsc.ucalgary.ca

Abstract. In this work, we design two-party and multiparty protocols
for evaluating multivariate polynomials at participants’ inputs with se-
curity against a malicious adversary who may corrupt all but one of the
parties. Our protocols are round and communication efficient, and use
the underlying cryptographic primitives in a black-box way. Our con-
struction achieves optimal communication complexity for degree 2 and
3 polynomials.

Our constructions can be used to securely and efficiently realize a
wide range of functionalities. For instance, we demonstrate how our tech-
niques lead to efficient protocols for secure linear algebra with security
against malicious adversaries. Other applications include secure evalu-
ation of DNF/CNF formulas, and conditional secret reconstruction (or
conditional oblivious transfer) for a large family of condition functions.

1 Introduction

In a secure multiparty computation (MPC) protocol, several parties each with
their own private inputs collectively compute a function of their inputs without
revealing additional information. Security is defined with respect to an adversary
who corrupts a fraction of the parties in order to undermine the correctness of
protocol and/or the privacy of honest participants. In this paper we allow the
adversary to corrupt all but one of the participants (dishonest majority). A mod-
est security consideration for MPC is to defend against a semi-honest adversary
who follows the steps of the protocol but tries to learn more information based
on the messages he receives. Semi-honest security, however, is often not sufficient
and in many cases does not reflect the scenarios one encounters in real-world.
A solution to this problem is to strengthen the definition by requiring security
against a malicious adversary who can deviate from the protocol, arbitrarily.
While many functions of interest are efficiently realizable in the semi-honest
model, the same statement is not true in the malicious model. This motivates
the following question for any function of practical importance f :

Is it possible to design an MPC protocol for realizing f with security against
malicious adversaries that matches, in efficiency, the best existing constructions
in the semi-honest model?

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 236–254, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient and Secure Evaluation of Multivariate Polynomials 237

We study the above question where the functions of interest are low-degree
multivariate polynomials, or equivalently, constant-depth arithmetic circuits.
Many problems of interest in cryptography can be represented as such. Exam-
ples include, linear algebra computation, and conditional oblivious transfers or
secret reconstruction. The efficiency criteria we consider when trying to answer
the above question are:

• Round, communication, computation. We require that the round, computation
and communication complexity (in terms of the input size) of the protocol in the
malicious model matches those of the best existing constructions (for realizing
f) in the semi-honest model. Note that this is the best we can hope for since
malicious adversaries are strictly stronger than semi-honest ones.

• Black-box use of the primitives. We aim for a black-box use of the underly-
ing cryptographic primitives. Non-black-box techniques require parties to prove
in zero-knowledge, statements that involve the computation of the underlying
primitives. A black box construction, on the other hand, would make the num-
ber of invocations of the primitives independent of the complexity of implement-
ing them. Furthermore, black-box constructions can potentially be instantiated
based on a variety of computational assumptions.

The existing techniques for defending against malicious adversaries fall short
of giving a positive answer to the question we asked. Generic zero-knowledge
compilers [10,11] for transforming a protocol that is secure in the semi-honest
model into one that is secure in the malicious model, require communication
complexity that is polynomial in the computational complexity of the original
semi-honest protocol. The only exception in this framework is the compiler of [25]
based on sublinear-communication zero-knowledge techniques such as [20], which
preserves the communication complexity of the original semi-honest protocol up
to a poly-logarithmic factor. This method, however, does not meet our efficiency
criteria as it requires a non-black-box use of the primitives, and invokes inef-
ficient procedures such as reductions to the circuit satisfiability problem and
applications of the PCP theorem.

A different line of research has focused on our second criteria for efficiency, i.e.,
a black-box use of the underlying primitives. This includes the variants of Yao’s
garbled circuit protocol in the malicious model such as [22,13] in the two-party
case and works such as [17,18,19] in the multi-party case. Due to their generic
nature, however, these constructions have communication complexities that are
proportional to the size of the circuit being computed which, for many functions
of interest (including multivariate polynomials), is higher than the best existing
protocols in the semi-honest model.

1.1 Our Results

Let P be a multivariate polynomial of degree 3 in n variables and let k be a
security parameter. Note that P can have as many as n3 terms. In the semi-
honest model, the most efficient protocols for securely evaluating P at parties
inputs require the communication of O(n) ciphertexts between the participants.

238 M. Franklin and P. Mohassel

In this paper, we design efficient two-party and multiparty protocols for the same
task, with security against malicious adversaries:
Two-party case. In the two-party setting, we design a protocol for this task that
runs in a constant number of rounds and requires the communication of O(kn)
ciphertexts1 between the parties. This matches the most efficient constructions in
the semi-honest model and is essentially optimal. It also significantly improves on
the efficiency of the previous constructions in the malicious model (e.g. variants
of Yao’s protocol) which require O(poly(k)n3) communication in worst case.
It is also interesting to note that while we focus on security against malicious
adversaries, our protocols are automatically secure against covert adversaries [1]
wit lower communication overhead.

We use a Reed-Solomon (RS) code with properly chosen parameters to en-
code inputs and use an additively homomorphic encryption scheme to send the
encrypted encodings to the other party. Each character in the encoding of an in-
put can also be interpreted as a share in a Shamir’s secret sharing of the input.
Parties use the homomorphic properties of the encryption scheme in order to
evaluate the multivariate polynomial at each share and compute an encrypted
RS encoding of the final output. Then, parties engage in a cut-and-choose pro-
cess where a random subset of the characters in the codewords for each input and
output are revealed. This allows them to verify honest computation for that sub-
set and ensures that with high probability the number of errors in the codeword
for the output is small. Thus, parties can unambiguously decode the final out-
put. We also show how to use share packing techniques in order to achieve better
amortized efficiency when multiple instances of the protocol are performed.

We prove our protocols secure in the stand-alone model using the ideal-
world/real-world simulation framework. Nevertheless, many instances of our pro-
tocols can be securely run in parallel if the same challenge-verification steps are
used for all of them.
On use of homomorphic encryption. As mentioned above we use a semanti-
cally secure and additively homomorphic encryption scheme as the main cryp-
tographic primitive in our protocol. However, in addition to being additively
homomorphic, we require that the Reed-Solomon encoding and decoding algo-
rithms work properly over the domain of plaintexts defined by the cryptosystem.
At first glance this seems to be a rather restrictive assumption. Consider the two
widely used additively homomorphic encryption schemes in the literature, i.e.
the Goldwasser-Micali (GM) encryption scheme [12] and the Paillier’s encryp-
tion scheme [27]. The GM encryption works over GF(2) while we need the finite
field to have at least k distinct elements for the Reed-Solomon encoding to be
meaningful (where k is the security parameter). In case of Paillier’s encryption
scheme, the domain of plaintexts is not a finite field, and it is no longer obvious
whether the Reed-Solomon encoding continues to work.

Nevertheless, we show that both schemes can be adapted to satisfy this addi-
tional requirement. First we show a simple way of extending the GM encryption
1 Sometimes we drop the term ciphertext, but all the asymptotic complexities given

in this paper refer to the number of ciphertexts communicated.

Efficient and Secure Evaluation of Multivariate Polynomials 239

to an additively homomorphic encryption scheme over the extension field GF(2s)
for any positive integer s. Second, we prove that while the domain of plaintexts
in Paillier’s scheme is ZN where N is the product of two large and secret primes,
the Reed-Solomon encoding and decoding algorithms work correctly over ZN or
else the decoding algorithm can be used to factor N . We hope that the observa-
tions we make about these schemes can be of further use in other applications
that use homomorphic encryption schemes.

Multiparty case. In the multi-party setting, our protocol is based on a recent
compiler of Ishai et. al. [18] that combines an outer protocol with security against
malicious adversaries (only corrupting a constant fraction of parties) with an
inner protocol with security against semi-honest adversaries. We instantiate the
inner and outer protocols with black-box constructions that meet our efficiency
criteria. We design a constant round protocol with O(poly(c, k)n) communication
where c is the number of parties. The protocol uses the underlying primitives in
a black-box way. This improves on the existing generic black-box constructions,
most notably the construction of [19] for evaluating arithmetic circuits, which
require O(poly(c, k)n3) communication in worst case. Due to lack of space, we
omit the constructions of the multiparty protocol from this extended abstract
and refer the reader to the full version for more details.

Higher degrees. Our protocols (for both two-party and multiparty setting) gen-
eralize to higher degree polynomials in a natural way. Particularly, for a degree
t multivariate polynomial, we achieve black-box constructions with communica-
tion of O(poly(k)n�t/2�) ciphertexts (linear in k in the two-party case). While this
is no longer optimal, it is more efficient that what can be achieved using existing
general constructions. We leave it as an open problem to design protocols with
security against malicious adversaries for evaluating multivariate polynomials of
degree t > 3 with the optimal communication complexity.

Applications. We describe how our constructions lead to the design of efficient
secure linear algebra protocols in the malicious model. Other applications we
discuss include communication-efficient protocols for secure evaluation of DNF
and CNF formulas, and conditional secret reconstruction (or conditional obliv-
ious transfer) for a large family of condition functions. We expect that other
useful cryptographic protocols can be efficiently instantiated by protocols for
secure evaluation of multivariate polynomials.

1.2 Related Work

Cut-and-choose techniques have been used in works such as [23,29,22,13] to boost
the security of Yao’s garbled circuit protocol [30] from semi-honest adversaries to
malicious adversaries. These constructions lead to protocols with communication
that is proportional to the circuit size (as opposed to the input size). In contrast,
our constructions apply cut-and-choose techniques to algebraic encodings of the
inputs and the final output.

240 M. Franklin and P. Mohassel

Representing functions with low-degree multivariate polynomials has been
used by [15,16] to design round-efficient secure MPC in a different setting. The
connection between secret-sharing schemes and error correcting codes has been
the subject of study in other cryptography research such as [4] where it is shown
how to construct linear secret sharing schemes from random error correcting
codes. It is interesting to see if their techniques can be used to design more
efficient mechanism for defending against malicious adversaries. A similar us-
age of Reed-Solomon codes and cut-and-choose techniques was recently and in-
dependently used in [5] to design efficient special-purpose secure computation
protocols.

2 Preliminaries

Security Definitions. The security definitions we use to prove our protocols se-
cure follow the ideal-world/real-world simulation paradigm. Roughly speaking,
in this framework, a protocol is secure if anything that an adversary can do in
the real protocol can be simulated by a simulator in an ideal world where par-
ticipants send their inputs to a trusted party who performs the computation on
their behalf and sends back their corresponding outputs. We do not include the
detailed definitions here. Please see [9] for more detail.

Commitment Schemes. We use two types of commitment schemes in our con-
structions, perfectly binding (comb) and perfectly hiding (comh) commitments.
Roughly speaking, in a perfectly binding commitment, the committed party
cannot alter his commitment even if he has unbounded computational power.
Similarly, a commitment scheme is perfectly hiding if an adversary that does
not know the decommitment, cannot learn anything about the committed value
even with unbounded computational resources. For a vector

−→
V and a set I, we

abuse the notation and use com(
−→
V) and com(I) for element-wise commitments

to each entry of the vector
−→
V and the set I respectively. We use a similar nota-

tion to commit to a permutation which in this paper is simply represented using
a vector of the permuted elements.

Reed-Solomon Codes. We briefly introduce Reed-Solomon codes.

Definition 1. Let Σ = �q be a finite field and α1, . . . , αk be distinct elements
of �q. Given k, d and �q such that d ≤ k < q, we define the encoding function
for Reed-Solomon codes as C : Σd → Σk which on message m = (m0, . . . , md−1)
outputs C(m) = 〈p(α1), . . . , p(αk)〉 where p(X) =

∑d−1
i=0 miX

i.

The next Lemma refers to the Welch-Berlekamp algorithm [28] for decoding
Reed-Solomon codes.

Lemma 1. If number of errors in a code word is less than or equal to (k−d)/2,
the Welch-Berlekamp algorithm can unambiguously decode the message in
O(k3) time.

Efficient and Secure Evaluation of Multivariate Polynomials 241

3 On Using Homomorphic Encryption Schemes

We use a semantically secure public-key encryption scheme that is also additively
homomorphic. In particular, we call an encryption scheme E additively homo-
morphic if given two encryptions E(m1) and E(m2), we can efficiently compute
an encryption of m1 + m2. We denote this by E(m1 + m2) = E(m1) +h E(m2).
This implies that given an encryption E(m) and a value c, we can efficiently
compute a random encryption E(cm); we denote this by E(cm) = c ×h E(m).
For a vector

−→
V we denote by E(

−→
V) an entry-wise encryption of the vector. We

can encrypt matrices and polynomials in a similar way. We can then add two
encrypted vectors (matrices/polynomials) by adding each encrypted component
individually. Finally, we assume that a party who knows the randomness and
plaintexts for two ciphertexts E(m1) and E(m2), can efficiently compute the
randomness for E(m1 + m2) = E(m1) +h E(m2).

There are a number of homomorphic encryption schemes each with their own
special properties. Our protocols work with any encryption scheme that is ad-
ditively homomorphic and where the domain of plaintexts is either a finite field
or a commutative ring where we can assume that with high probability (i) all
the values we work with throughout the protocol are invertible and (ii) that the
Reed-Solomon encoding/decoding algorithms work in the expected way. Next we
show that two of the widely used additively homomorphic encryption schemes in
the literature, namely the Goldwasser-Micali (GM) encryption scheme [12] and
the Paillier’s encryption scheme [27] can both be used to implement our proto-
cols. In case of GM encryption we show a simple way of extending it to work over
any extension field of GF(2) while preserving its homomorphic properties. For
the Paillier’s encryption which operates over a ring ZN where N is the product
of two large primes, we argue that conditioned on the fact that it is hard to fac-
tor N , we can safely assume that with high probability any element in ZN used
by our protocols is invertible, and that the Reed-Solomon encoding/decoding
algorithms over ZN work in the expected way. We hope that the observations
we make here about these two encryption schemes can be of further use in other
applications that use additively homomorphic encryption schemes.

3.1 Using the Goldwasser-Micali Encryption

The GM encryption scheme [12] is a semantically secure scheme based on the
quadratic residuosity problem, with the additional property that it is additively
homomorphic over GF(2). Unfortunately, we cannot use the GM encryption
directly since for the Reed-Solomon encoding to work we need to do our compu-
tation over a finite field with at least k distinct elements where k is the security
parameter. Nevertheless, we describe a simple way to extend the homomorphic
properties of the GM encryption to any extension field of GF(2). We also empha-
size that a similar transformation works for any other encryption scheme that
is additively homomorphic over a small-size finite field. Particularly, by consid-
ering higher residuosity classes, Benaloh [2] constructs homomorphic encryption

242 M. Franklin and P. Mohassel

schemes over Zp, where p is a polynomially bounded (small) prime number. Our
transformation is applicable to his constructions as well.

Let k = 2s, where we want to perform our computation over the extension
field GF(2s). Let L[x] be an irreducible polynomial of degree s with coefficients
in GF(2). We define our extension field GF(2s) to be the set of all polynomials of
degree s−1 with coefficients in GF(2). Addition is defined in the natural way to
be the normal polynomial addition. In order to multiply two elements in GF(2s),
we first multiply the two polynomials in the normal way and then reduce the
resulting polynomial mod L[x].

Adding encrypted data in GF(2s). In order to encrypt an element in GF(2s)
we encrypt each coefficient of the corresponding polynomial using the GM en-
cryption. Then, it is easy to add two encrypted elements by performing the
coefficient-wise addition of encrypted values over GF(2). This requires O(s) ho-
momorphic additions of encrypted elements in GF(2).

Multiplying encrypted data in GF(2s). It is slightly more subtle to compute
E(ab), given a and E(b) for a, b ∈ GF(2s). Let A[x] and B[x] be the polyno-
mials of degree s − 1 over GF(2) representing a and b in the extension field.
Multiplying the publicly known polynomial A[x] with the encrypted polynomial
B[x] is straightforward and can be performed using the homomorphic properties
of GM over GF(2). This results in an encrypted polynomial of degree at most
2s−2 over GF(2). In order to complete the multiplication operation over GF(2s),
however, we need to reduce the product polynomial modulo the publicly known
irreducible polynomial L[x]. A simple inspection of the synthetic polynomial di-
vision reveals that this step can also be reduced to addition and multiplication
operations of encrypted elements over GF(2) which can again be performed us-
ing the homomorphic properties of the GM encryption (all the multiplications
are between one public and one encrypted value in GF(2)). For completeness,
we describe a cleaner way to perform the modular polynomial division next.

Let C[x] = A[x]B[x] =
∑2s−2

j=0 cjx
j be the product polynomial. Our goal is to

compute C[x] mod L[x] where C[x] is encrypted and L[x] is publicly known. De-
note the encrypted coefficients of C[x] by E(c2s−2), · · · , E(c0). Let ui[x] = xs+i

mod L[x] for 0 ≤ i ≤ s − 1. Each ui[x] is a publicly computable polynomial of
degree at most s− 1 with coefficients in GF(2). Let α0[x] = cs−1x

s−1 + · · ·+ c0
and αi[x] = ui[x] if cs+i = 1, and equal to the zero polynomial if cs+i = 0, for
1 ≤ i ≤ s − 1. Then we have that C[x] mod L[x] =

∑s−1
j=0 αj . First note that

since ui[x]’s are publicly known and we know E(cs+i) for 1 ≤ i ≤ s− 1, we can
non-interactively compute an encryption of αi[x] for 0 ≤ i ≤ s − 1 using the
homomorphic properties of the GM encryption. We then compute an encryption
of the final result by homomorphically adding the encrypted αi[x]’s. It is not
hard to verify that the above procedure for multiplying an encrypted element in
GF(2s) with a publicly known one requires at most O(s2) homomorphic addi-
tions over GF(2) using the GM encryption scheme. Also note that polynomials
ui[x] are computed only once and can be reused for all future homomorphic
multiplication operations.

Efficient and Secure Evaluation of Multivariate Polynomials 243

3.2 Using the Paillier’s Encryption Scheme

Another option for our protocols is to use the Paillier’s cryptosystem [27]. Pail-
lier’s encryption is a semantically secure and additively homomorphic encryption
scheme based on the decisional composite residuosity assumption. One issue we
have to deal with when using the scheme is that the domain of Paillier’s cryp-
tosystem is the ring ZN , where N is the product of two large and secret primes.
Note that ZN is not a finite field and it is no longer clear whether the elements
that the parties encounter in the protocol are invertible or if the Reed-Solomon
encoding and decoding algorithms, which are an essential part of our schemes,
function properly over ZN . Next, we argue that based on the hardness of factor-
ing N, we can safely assume that working over ZN will not cause any problems.

Inverting elements in ZN . As part of the computation that takes place in our
protocols, we need to invert values modulo ZN . For example, this is the case
when parties perform the Reed-Solomon decoding algorithm. Hence we need to
make sure that these steps can be completed successfully. A simple observation
we make is that if during the computation, we encounter a value a that is not
invertible mod N , we can use a to efficiently learn a non-trivial factor of N . More
specifically, gcd(a, N) is a non-trivial factor of N . Hence, we can assume that
all the intermediate values we encounter during the computation are invertible
modulo N .

Validity of Reed-Solomon decoding. It is a bit more challenging to argue that
the Reed-Solomon decoding algorithm works properly and returns the correct
answer. The main problem we need to address is that we can no longer assume
the crucial property that any polynomial of degree d has at most d roots.

Let N = pq for primes p, q. A non-zero polynomial of degree d with coefficients
in ZN has at most d distinct roots modulo Zp and d additional roots modulo
Zq. The same polynomial has at most d2 distinct roots over the ring ZN , where
each root over ZN is formed by applying the Chinese Remainder Theorem to a
root over Zp and a root over Zq. The following lemma states that even though a
polynomial of degree d over ZN might have upto d2 roots in ZN , knowing more
than d of them allows us to factor N .

Lemma 2. Given a set S ⊂ ZN that contains more than d distinct roots of a
polynomial of degree d over ZN , we can factor N in O(|S|2polylog|N |) time,
even if the polynomial is unknown.

Proof. Let r1, ..., rd+1 ∈ ZN be distinct roots of a polynomial over ZN . By the
pigeonhole principle, there exists i, j such that ri and rj are the same root of
the polynomial over Zp but different roots over Zq. But then the gcd(ri− rj , N)
yields a nontrivial factor of N . By computing the gcd of si− sj and N for every
si, sj ∈ S, a nontrivial factor of N is found. 	

We briefly mentioned the Reed-Solomon encoding procedure in section 2. The
corresponding decoding algorithm is supposed to perform the following task.
Given (αi, yi) ∈ ZN × ZN for i ∈ {1, . . . , k} find a polynomial f(x) of degree at

244 M. Franklin and P. Mohassel

most d− 1 over ZN such that |E| < (k − d)/2, for E = {i : yi �= f(αi) mod N}.
We describe an algorithm that will either find such an f(x), or factor N .

Theorem 1. There exist an efficient algorithm that either returns a valid de-
coding of the codeword (y1, . . . , yk), or finds a non-trivial factor of N .

Proof. The following is an adaptation of the standard Berlekamp-Welch decoding
algorithm for Reed-Solomon encoding with the notations taken from the recent
survey article of Guruswami and Rudra [14].

Set up a system of linear equations over ZN with unknowns being the coeffi-
cients of D2(x) and N2(x) and k homogeneous constraints Q(αi, yi) = 0 mod N ,
where Q(X, Y) = D2(X)Y −N2(X) over ZN , and where degree(D2) ≤ (k−d)/2,
degree(N2) < (k + d)/2. Here, D2 plays the role of an error locator polynomial.

Solve the system of linear equations to recover a bivariate polynomial Q(X, Y)
over ZN . Let R(X) = Q(X, f(X)) be an (unknown but well defined) univariate
polynomial over ZN . By construction, the degree of R(X) is less than (d+ k)/2.
Moreover, R(αi) = 0 mod N for every i /∈ E, and there are at least (k + d)/2 of
these.

We now have two cases. (i) If R(X) is not identically zero over ZN , then we
can factor N by computing gcd(αi − αj , N) for all distinct i, j ∈ {1, . . . , k}. (ii)
If R(X) is identically zero over ZN , then (Y − f(X)) is a factor of Q(X, Y)
over ZN , and so we can factor Q(X, Y) over ZN to recover f(X). Factoring
the multivariate polynomial Q is much easier than the general task of factoring
polynomials and can be performed in near linear time. 	

The above algorithm is guaranteed to find a valid decoding polynomial of the
original codeword. But, since we are no longer computing over a finite field it is
possible that the computed answer is not unique. Particularly, it might be the
case that after factoring Q(X, Y), there are multiple factors (Y−f1(X)), . . . , (Y−
ft(X)), where fi(X)’s are valid decodings. It is not clear how to pick the “right”
polynomial that contains the output we need in our protocol. Next we show that
as long as no (αi − αj) shares a factor with N for i, j ∈ {1, . . . , k}, the valid
decoding is unique and hence this will not be an issue. Note that we have control
over the choice of αi’s used for the Reed-Solomon codes in our protocols and can
make sure that none of the pairwise differences share a factor with N .

Theorem 2. Let αi for 1 ≤ i ≤ k be the k values in ZN used for the Reed-
Solomon encoding. If gcd(αi − αj , N) = 1 for all i, j ∈ {1, . . . , k}, there is only
one valid decoding.

Proof. Lets assume that there are two polynomials of degree at most d−1, f1(x)
and f2(x) that both are correct decodings for a specific codeword of length k,
with at most (k−d)/2 errors. This means that p(x) = f1(x)−f2(x) is a non-zero
polynomial of degree at most d − 1, with at least k − 2(k − d)/2 = d roots in
ZN . In other words, p(x) which is of degree d − 1 has at least d roots that are
among the αi’s. Based on Lemma 2 this means that one of the (αi − αj)’s has
a non-trivial factor in common with N which contradicts our assumption. 	

Efficient and Secure Evaluation of Multivariate Polynomials 245

3.3 Homomorphic Encryption Schemes That do Not Work

Elgamal encryption scheme [7], is an example of a multiplicatively homomor-
phic encryption scheme that cannot be used in our construction. There are more
powerful homomorphic encryption schemes such as [3] for evaluating 2DNF for-
mulas, and the recent construction of a fully-homomorphic encryption scheme
by Gentry [8]. These constructions lead to communication-efficient protocols
against semi-honest adversaries. Particularly, polynomials of arbitrary degree
can be evaluated securely with the optimal communication of O(n) ciphertext
using the latter scheme. However, our techniques for defending against malicious
adversaries do not seem to work for these schemes. For example, as mentioned
earlier we rely on working over plaintext domains in which Reed-Solomon encod-
ing is meaningful while neither scheme seems to satisfies this property. Moreover,
the scheme of [3] can only efficiently decrypt small plaintexts which makes the
decryption of random values in a large field difficult. We leave it as an open
problem to extend our techniques to encryption schemes with more powerful
homomorphic properties.

4 Secure Evaluation of Degree 3 Multivariate Polynomials

We start with the description of a simple two-party protocol for secure evaluation
of a multivariate polynomial of degree at most 3 against semi-honest adversaries.
In what follows, to simplify the composition we assume that the computation
takes place over a finite field �, but as discussed in detail in section 3, the
computation actually takes place over the domain of plaintexts defined by the
encryption scheme (given that the plaintext domain has the properties we dis-
cussed earlier). In case of the Paillier’s encryption, for instance, the computation
takes place over ZN where N is the product of two large primes, while in case
of extended GM encryption, the computation takes place over GF(2s).

4.1 A Protocol against Semi-honest Adversaries

Parties encrypt their inputs using homomorphic encryption schemes and ex-
change the encrypted inputs. In order to achieve the best communication effi-
ciency possible, terms of the polynomial being evaluated are split between the
two parties based on who owns the majority of the variables in that term2. Each
party computes the encryption of sum of all terms assigned to him using the
homomorphic properties of the encryption. Parties then combine their results to
compute the final output. The detailed description follows:

Protocol Semi-honest SecPoly3

Alice’s Inputs: x1, . . . , xn ∈ �
Bob’s Inputs: y1, . . . , ym ∈ �
2 We use this monomial assignment strategy repeatedly in the paper. Similar ideas

have been used in the context of communication complexity and private information
retrieval (PIR) protocols.

246 M. Franklin and P. Mohassel

Output: P (X1 = x1, . . . , Xn = xn, Y1 = y1, . . . , Ym = ym), where P is a pub-
licly known multivariate polynomial of degree at most 3.

1. Key generation step: Alice chooses a key-pair (pka, ska) ← G(1n) for a ho-
momorphic encryption scheme Ea. Bob does the same, for an encryption scheme
Eb.

2. Alice sends her encrypted inputs to Bob: For every xi, Alice sends Ea(xi)
to Bob. She also generates a random input ra and sends its encryption Ea(ra) to
Bob.

3. Bob sends his encrypted inputs to Alice: For every yi, Bob sends Eb(yi)
to Alice. He also generates a random value rb and sends its encryption Eb(rb) to
Alice.

4. Alice performs her portion of computation: Alice performs this task in two
steps:
(a) For every term of the form pXrXsXq in polynomial P , Alice computes the

value pxrxsxq. She adds all such values to get a1. Terms of the form pXrXs,
pXr and p are also computed as special cases of this step where some of the
variables are set to 1.

(b) For every term of the form pXrXsYq in polynomial P , Alice computes the
ciphertext pxrxs ×h Eb(yq). She then adds all the encrypted values using ho-
momorphic properties of Eb to get the encrypted value Eb(a2). Terms of the
form pXrYs and pYs are also computed as special cases of this step.

(c) Alice sends Eb(a = a1 + a2 + ra) to Bob.
5. Bob performs his portion of computation: Bob follows a similar process

to compute Ea(b1) and b2 corresponding to the terms of the form pYrYsXq and
pYrYsYq respectively. He sends Ea(b = b1 +b2+rb) to Alice. Note that terms of the
form pXrYs are already computed by Alice and therefore will not be recomputed
here again.

6. Parties combine and output their results:
(a) Alice decrypts the ciphertext she receives to get the value b. She then computes

Eb(a + b − ra) using the homomorphic properties of Eb, and sends the result
to Bob. Bob decrypts the result and outputs a+ b− ra − rb.

(b) Bob computes and sends Ea(a+b−rb) to Alice in a similar way. Alice decrypts
the result and outputs a+ b− ra − rb.

We skip the proof of security for this above construction since we shortly give
a security proof for the more complicated case of malicious adversaries. The
protocol runs in constant number of rounds and requires the communication
of O(n + m) ciphertexts between the two parties. The computational cost is
dominated by O(n+m) encryptions, and O(n+m) homomorphic multiplications
(denoted ×h). When measuring the computation complexity in this paper we
ignore the multiplication and addition operations when both operands are public
since the cost of these operations is dominated by operations on encrypted data.

4.2 Defending against Malicious Adversaries

We modify and enhance the protocol of previous section in order to defend
against malicious adversaries. Particularly the new protocol runs in a constant
number of rounds and requires the communication of O(k(n + m)) ciphertexts

Efficient and Secure Evaluation of Multivariate Polynomials 247

between the two parties where k is a security parameter. Since the protocol is
a bit technical and long, we divide its description into four different phases and
explain the intuition behind each phase as we go along: (i) Input exchange (ii)
Computation (iii) Challenge-verification and (iv) Output retrieval.

Input Exchange Phase. First Alice and Bob setup two encryption schemes Ea

and Eb respectively (step 1). For every input value, each party generates a ran-
dom polynomial of degree d = O(k) with the only restriction that the input
value is the constant term of the polynomial. Parties then encrypt the coeffi-
cients of these polynomials using their own encryption schemes and send the
encrypted results to each other (steps 2-5). Parties repeat a similar process for
a random input, which will be used later to blind the intermediate computation
results (similar to the semi-honest case). After receiving the encrypted polyno-
mials, each party uses the homomorphic properties of the encryption scheme to
compute an encrypted Reed-Solomon encoding of the other parties input values
(steps 6, 7). Each character in the encoding of an input can also be interpreted
as a share in a secret sharing of the input (Shamir’s secret sharing in this case).

1. Key generation step: Alice chooses a key-pair (pka, ska) ← G(1n) for a homo-
morphic encryption scheme Ea. Bob does the same, for an encryption scheme Eb.
We assume that it is possible to verify whether the public key is in a valid range
or not. If this is not the case a zero-knowledge proof of this fact must be added
to the protocol. Note that it is possible to achieve such a proof through a similar
cut-and-choose procedure described next and therefore preserve the black-box use
of the encryption scheme. To simplify the presentation of the protocol, however,
we eliminate this step.

2. Alice sends encrypted encoding of her inputs to Bob: For every xi, Alice
generates random values a1

i , . . . , a
d
i ∈ � and lets Ai(z) = ad

i z
d + ...+ a1

i z+ xi. She
then computes and sends Ea(xi) and Ea(aj

i) for 1 ≤ j ≤ d and 1 ≤ i ≤ n to Bob.
The choice of parameter d is crucial for security of the protocol. It turns out that
d = k/5 is enough, where k is a security parameter.

3. Alice sends encrypted encoding of a random field element to Bob: Alice
generates a random field element ra and sends an encrypted encoding of it to Bob
similar to previous step. Denote the corresponding polynomial by Ra(z).

4. Bob sends encrypted encoding of his inputs to Alice: For every yi, Bob
generates random values b1i , . . . , b

d
i ∈ � and lets Bi(z) = bdi z

d + ... + b1i z + yi. He
then computes and sends Eb(yi) and Eb(bji) for 1 ≤ j ≤ d and 1 ≤ i ≤ m to Alice.

5. Bob sends encrypted encoding of a random field element to Alice: Bob
generates a random field element rb and sends an encrypted encoding of it to Alice.
Denote the corresponding polynomial by Rb(z).

6. Alice computes encrypted Reed-Solomon encoding of Bob’s inputs: Al-
ice computes the encryptions Eb(Bi(1)), . . . , Eb(Bi(k)) for 1 ≤ i ≤ m, using the
homomorphic properties of the encryption scheme:

Eb(Bi(j)) = Eb(yi) +h Eb(b1i) ×h j +h . . .+h Eb(bdi) ×h j
d

She computes Eb(Rb(1)), . . . , Eb(Rb(k)) in a similar way.
7. Bob computes encrypted Reed-Solomon encoding of Alice’s inputs: Bob

does so similar to Alice.

248 M. Franklin and P. Mohassel

Computation phase. Similar to the semi-honest protocol, the terms in the poly-
nomial are split into two disjoint sets, each of which is assigned to one party. In
other words the polynomial P = Pa + Pb where Alice is assigned the terms in
Pa and Bob is assigned the terms in Pb. Parties use the homomorphic properties
of the encryption scheme in order to evaluate their assigned polynomial at each
share of the inputs (steps 8a,8b for Alice). Each party then blinds the encrypted
result with his/her random input and commits to the encrypted encoding of the
result (step 8c for Alice). These are the vectors

−→
Va and

−→
Vb. The blinding is per-

formed in order to keep the intermediate results private, since at a later step the
commitments are opened. Intuitively,

−→
Va and

−→
Vb are the Reed-Solomon encodings

of the blinded output of evaluating Pa and Pb at parties inputs, respectively.

8. Alice performs her portion of computation:
(a) For every term of the form pXrXsXq in P , Alice computes the vector

〈pAr(1)As(1)Aq(1), . . . , pAr(k)As(k)Aq(k)〉

She adds all such vectors to get a final vector
−→
V1. Terms of the form pXrXs,

pXr and p are computed as special cases of this step where some variables are
set to 1.

(b) For every term of the form pXrXsYq in polynomial P , Alice computes the
vector

〈pAr(1)As(1) ×h Eb(Bq(1)), . . . , pAr(k)As(k) ×h Eb(Bq(k))〉

She then adds all such vectors using homomorphic properties of Eb to get the
encrypted vector Eb(

−→
V2). Terms of the form pXrYs and pYs are also computed

as special cases of this step.
(c) Denote the vector 〈Ra(1), . . . , Ra(k)〉 by

−→
V a

r . Alice computes Eb(
−→
Va =

−→
V1 +

−→
V2 +

−→
V a

r) and sends the commitment comb(Eb(
−→
Va)) to Bob.

9. Bob performs his portion of computation: Bob follows a similar process
to compute Ea(

−→
V3) and

−→
V4 corresponding to the terms of the form pYrYsXq

and pYrYsYq respectively. He computes Ea(
−→
Vb =

−→
V3 +

−→
V4 +

−→
V b

r) where
−→
V b

r =
〈Rb(1), . . . , Rb(k)〉. Bob then sends the commitment comb(Ea(

−→
Vb)) to Alice.

Challenge-verification phase. Parties engage in challenge-generation steps
(steps 10,12) in order to generate random subsets of size d/2 of K = {1, . . . , k}.
The type and order of the commitments (and decomitments) in the challenge-
generation steps are important for the simulation proof of security to go through.
Also, while it is tempting to use the same challenge subset for both Alice and
Bob, it is not clear how to construct the simulator in the proof and prove the
resulting protocol secure.

After the challenge subsets are generated, each party reveals the plaintexts
and randomness corresponding to shares with indices in the challenge subset,
for each input and the intermediate computation results (

−→
Va and

−→
Vb). Parties

verify the validity of the openings and ensure that they are consistent with
the encrypted encodings of the inputs they computed in an earlier step of the

Efficient and Secure Evaluation of Multivariate Polynomials 249

protocol. Roughly speaking, this allows the parties to verify honest encoding
and computation for the fraction of the shares opened, and ensures with high
probability that the number of errors in the codewords for inputs and the in-
termediate results are small. During the next and final phase, this allows the
parties to unambiguously recover the final output using a decoding algorithm
for Reed-Solomon codes. It is important to note that the number of shares to
be revealed should be chosen carefully for two reasons: (i) It should be small
enough not to leak any information about the actual inputs and (ii) it should
be large enough to guarantee that with all but negligible probability, malicious
behaviors are caught and that the decoding algorithm successfully computes the
final output.

10. Parties generate a challenge set for Alice:
(a) Alice generates a random subset of size d/2 of K = {1, . . . , k}, namely Ia, and

sends comb(Ia) to Bob.
(b) Bob generates a random permutation πb of 1, . . . , k and sends a commitment

to it comh(πb) to Alice.
(c) Alice decommits to reveal Ia.
(d) Bob decommits to reveal πb. Let I = πb(Ia) where I = {i1, . . . , id/2}.

11. Bob verifies validity of Alice’s inputs: For 1 ≤ e ≤ n, and 1 ≤ e′ ≤ d/2,
Alice reveals the plaintexts and randomness for Ea(Ae(ie′)) and Ea(Ra(ie′)). Bob
verifies that all the opened encryptions are valid. He will abort the protocol if this
is not the case.

12. Parties generate a challenge set for Bob. This is similar to Alice’s challenge
generation step.

13. Alice verifies validity of Bob’s inputs. This is similar to Bob’s verification of
Alice’s input.

14. Bob verifies validity of Alice’s computation: Alice opens the commitment
to Eb(

−→
Va). Bob verifies that Eb(

−→
Va[ie′]) was computed correctly in step 8 for

1 ≤ e′ ≤ d/2. Note that in step 11 of the protocol, Alice has already revealed the
shares of her input corresponding to indices ie′ for 1 ≤ e′ ≤ d/2. Hence, in order
to perform the verification, Bob can simply redo Alice’s computation using the
revealed values and confirm that the answer is the same as what Alice decommitted
to. Bob will abort if this is not the case, or if Alice fails to open the commitment.

15. Alice verifies correctness of Bob’s computation. This is similar to Bob’s
verification of Alice’s computation.

Output retrieval phase. In this phase, parties combine their results by adding
their intermediate encrypted results

−→
Va and

−→
Vb, and subtracting the random

values used for blinding. Moreover, in order to ensure that the addition and sub-
traction are performed honestly, parties engage in a second challenge-verification
phase which is very similar to the one performed previously.

16. Alice receives her output:

(a) Bob decrypts the ciphertext he received in step 14 to get
−→
Va. For the ciphertexts

he is not able to decrypt (in case they are invalid), he replaces those compo-

nents of
−→
Va with random values in the field. He then computes Ea(

−→
Va+

−→
Vb−

−→
V b

r)
using the homomorphic properties of the encryption scheme and sends the re-
sult to Alice.

250 M. Franklin and P. Mohassel

(b) Parties generate a challenge set J ′ of size d/2 of K − J . This is done similarly
to the previous challenge-generation steps.

(c) For 1 ≤ e ≤ m, and 1 ≤ e′ ≤ d/2, Bob reveals the plaintexts and randomness
for Eb(Be(j′e′)) and Eb(Rb(j′e′)). Alice verifies that all the opened encryptions
are valid. She aborts if this is not the case.

(d) For every index j ∈ J ∪ J ′, Bob reveals
−→
Va[j]. Note that given the revealed

plaintexts and randomnesses by Bob, Alice can compute the
−→
Va[j]’s on her

own and verify that they match the values revealed by Bob. Bob also makes

sure that Ea(
−→
Vb[j] +

−→
Va[j] −

−→
V b

r [j]) is computed honestly for every j ∈ J ∪ J ′.
He will abort the protocol if this is not the case.

(e) Alice decodes her output: Alice decrypts the encrypted vector she received

in step 16a to get the vector
−→
V final =

−→
Va +

−→
Vb −

−→
V b

r . Note that,
−→
V final is

the Reed-Solomon encoding of output + ra where output is the final output
of the protocol, i.e., polynomial P evaluated at parties’ inputs. Alice uses a
Reed-Solomon decoding algorithm (see Lemma 1) to unambiguously recover
the final result (Note that the degree of the polynomial corresponding to the
Reed-Solomon encoding of the output is 3d).

17. Bob receives his output: This is almost identical to Alice’s strategy.

Theorem 3. Given that Ea and Eb are semantically secure, comh is perfectly
hiding, and comb is perfectly binding, the above protocol is secure against mali-
cious adversaries. The protocol runs in a constant number of rounds, requires the
communication of O(k(m + n)) ciphertexts, and uses the underlying primitives
in a black-box way, where k is the security parameter.

A detailed proof of security and a more concrete measurement of efficiency is
given in the full version of the paper. Letting d = k/5 is sufficient to get the
desired level of security. Given that, it is easy to verify the claimed round and
communication efficiency. The computational complexity of the protocol is dom-
inated by O(k(m + n)) encryptions/decryptions and the same number of homo-
morphic multiplications (again here we ignore operations where both operands
are public).

Parallel runs of the protocol. While we only prove the protocol secure in the
stand-alone model, it is worth pointing out that it is possible to run multiple
instances of the protocol in parallel. The only consideration for making the
simulation proof go through is to make sure that the same challenge generation
steps are used for all instances.

Extension to higher degree polynomials. In the full version we show how to
naturally extend this protocol to higher degree polynomials. Particularly, for
degree t multivariate polynomials in n variables, our protocol requires O(kn�t/2�)
communication.

Multiparty protocols. It is not clear how to extend our two-party protocol to
the multiparty case while preserving the important features such as round and
communication efficiency and/or the black-box use of the underlying primitives.

Efficient and Secure Evaluation of Multivariate Polynomials 251

In the full version, we show a different construction based on a recent con-
struction by Ishai et. al. [18] to design secure multiparty protocols for evaluat-
ing multivariate polynomials. The protocol runs in constant round and requires
O(poly(c, k)n�t/2�) communication for degree t multivariate polynomials where
c is the number of parties.

5 Better Amortized Efficiency

Until now, we have focused on the efficiency of a single run of the protocol for
evaluating multivariate polynomials. In this section we describe how to securely
evaluate a polynomial at multiple inputs with amortized efficiency that is su-
perior to the naive solutions. Consider a multivariate polynomial P of degree t
in n variables. We want to design a secure two-party protocol for evaluating P
at � different sets of inputs. The straightforward solution is to run the protocol
of previous section � times, but this requires the computation and communica-
tion of O(�kn�t/2�) ciphertexts. We show how to improve on this by designing a
protocol that requires the computation and communication of O((k + �)n�t/2�)
ciphertexts between the parties. One immediate application of this improvement
is better efficiency for secure linear algebra protocols as described in the appli-
cation section.

We take advantage of share packing techniques (originally introduced by
Franklin and Yung [6]) in order to encode a collection of inputs at the cost
of (almost) sharing one input. In a share packing scheme, a polynomial is used
to encode many secrets as opposed to only one. For example, as a generalization
of Shamir’s secret sharing scheme, one can share s secrets a1, . . . as by generating
a random polynomial S of certain degree with the restriction that S(i− 1) = ai

for 1 ≤ i ≤ s.
Recall that in our two-party malicious protocol, each input to the protocol is

encoded using a polynomial of degree d. When evaluating P on � different inputs,
we encode every vector of � values (where each component of the vector belongs
to one instance of the protocol) using a single polynomial of degree � + d. Given
such an encoding for the inputs, the rest of the protocol proceeds similar to the
original protocol, with a few differences in the choice of parameters. At the end
of the protocol, the codeword corresponding to the final output contains � useful
values, namely the results of evaluating P at each of the � inputs. Parties can
retrieve the � outputs by decoding the codeword for the final output. A detailed
description of the protocol is given in the full version. The following theorem
summarizes our amortized improvement.

Theorem 4. Given a polynomial P of degree t in n variables, there exists a
secure two-party protocol for evaluating P at � different input sets in constant
round and with communication of O((k + �)n�t/2�) ciphertexts. The protocol is
secure against malicious adversaries and uses as semantically secure homomor-
phic encryption scheme in a black-box way.

252 M. Franklin and P. Mohassel

6 Applications

Our constructions lead to more efficient protocols for a wide range of functional-
ities such as linear algebra problems, evaluation of CNF and DNF formulas and
conditional oblivious transfers. Due to lack of space, we only discuss the secure
linear algebra protocols here and refer the reader to the full version of the paper
for more details.

6.1 Secure Linear Algebra

Efficiency and security of linear algebra protocols have been studied in a series of
previous works [26,21,24,19]. Mohassel and Weinreb [24] design protocols with
almost optimal efficiency and security against covert adversaries [1]. Ishai et
al. [19] extend these results by providing security against malicious adversaries.
Our techniques lead to protocols for linear algebra that improve on the efficiency
all previous constructions while providing security against malicious adversaries.

In [24], the authors design secure two-party protocols for different linear al-
gebra problems by reducing the task to the design of a secure matrix product
protocol. Particularly, important linear algebra functionalities are securely com-
puted using a protocol that runs in O(s) rounds and performs O(sn1/s) secure
matrix product protocols where the matrices are n × n. First, note that each
matrix multiplication can be interpreted as a protocol for evaluating a collection
of multivariate polynomials of degree at most 2 on n2 variables. Our construc-
tion leads to a constant round protocol for this task with O(kn2) communication.
Second, to perform O(sn1/s) secure matrix multiplications, we can use the amor-
tization techniques of section 5. This amounts to a protocol which requires the
communication and computation of O((k+sn1/s)n2 = sn2+1/s+kn2) ciphertexts
and results in a reduction in the dependency of the complexity on the security
parameter k compared to the most efficient previous works which require the
communication and computation of O(poly(k)sn2+1/s) ciphertexts.

Theorem 5. There exist secure two-party protocols against malicious adver-
saries, for testing singularity, computing the rank and determinant, and solving
a linear system of equation for shared n× n matrices. For any positive constant
s, the protocol runs in constant number of rounds and requires the communica-
tion of O(sn2+1/s + kn2) ciphertexts between the parties. The protocol is secure,
based on the existence of a semantically secure homomorphic encryption scheme.

Note that our construction is in general more efficient than the recent construc-
tion of [19] since the security parameter k is only multiplied with an n2 term
in the asymptotic complexity and only additively effects the larger term in the
complexity, namely sn2+1/s. Hence, for many reasonable choices of s, our proto-
col is more communication-efficient than all previous constructions with security
against malicious adversaries.

Efficient and Secure Evaluation of Multivariate Polynomials 253

References

1. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols
for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007)

2. Benaloh, J.: Verifiable secret-ballot elections. Yale University, New Haven (1987)
3. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:

Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

4. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure
computation from random error correcting codes. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007)

5. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private
Set Intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D.
(eds.) ACNS 2009. LNCS, vol. 5536, p. 142. Springer, Heidelberg (2009)

6. Franklin, M.K., Yung, M.: Communication complexity of secure computation. In:
Proc. of the 24th ACM Symp. on the Theory of Computing, pp. 699–710 (1992)

7. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

9. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. II. Cambridge
University Press, Cambridge (2004)

10. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proc.
of the 19th ACM Symp. on the Theory of Computing, pp. 218–229 (1987)

11. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. JACM, 691–729 (1991)

12. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: STOC ’82, pp. 365–377 (1982)

13. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computa-
tion against covert adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 289–306. Springer, Heidelberg (2008)

14. Guruswami, V., Rudra, A.: Error Correction Up to the Information-Theoretic
Limit. Communications of the ACM 52(3), 87–95 (2009)

15. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with ap-
plications to round-efficient secure computation. In: Proc. of the 41st IEEE Symp.
on Foundations of Computer Science, pp. 294–304 (2000)

16. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002)

17. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: STOC, pp. 99–108 (2006)

18. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

19. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009)

254 M. Franklin and P. Mohassel

20. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Proceedings of STOCS, pp. 723–732 (1992)

21. Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.: Secure linear algebra using
linearly recurrent sequences. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
p. 291. Springer, Heidelberg (2007)

22. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation
in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

23. Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party compu-
tation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 458–473. Springer, Heidelberg (2006)

24. Mohassel, P., Weinreb, E.: Efficient secure linear algebra in the presence of covert
or computationally unbounded adversaries. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 481–496. Springer, Heidelberg (2008)

25. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: Proc. of the 33rd ACM Symp. on the Theory of Computing (2001)

26. Nissim, K., Weinreb, E.: Communication efficient secure linear algebra. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 522–541. Springer, Heidelberg
(2006)

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

28. Welch, L.R., Berlekamp, E.R.: Error correction for algebraic block codes. US Patent
4,633,470, December 30 (1986)

29. Woodruff, D.P.: Revisiting the efficiency of malicious two-party computation. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer, Heidel-
berg (2007)

30. Yao, A.C.: How to generate and exchange secrets. In: Proc. of the 27th IEEE Symp.
on Foundations of Computer Science, pp. 162–167 (1986)

Efficient Implementation of the Orlandi Protocol

Thomas P. Jakobsen1, Marc X. Makkes2, and Janus Dam Nielsen1

1 The Alexandra Institute
Aabogade 34, 8200 Aarhus N

Denmark
{thomas.jakobsen,janus.nielsen}@alexandra.dk

2 Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven

Netherlands
m.x.makkes@student.tue.nl

Abstract. We present an efficient implementation of the Orlandi pro-
tocol which is the first implementation of a protocol for multiparty com-
putation on arithmetic circuits, which is secure against up to n−1 static,
active adversaries. An efficient implementation of an actively secure self-
trust protocol enables a number of multiparty computation where one
or more of the parties only trust himself. Examples includes auctions,
negotiations, and online gaming. The efficiency of the implementation
is largely obtained through an efficient implementation of the Paillier
cryptosystem, also described in this paper.

Keywords: Secure multiparty computation, MPC, homomorphic en-
cryption, protocols.

1 Introduction

Secure multiparty computation is a cryptographic technique allowing n parties
to jointly compute the result of a function f(x1, x2, ..., xn) while ensuring that
the input xi of each party Pi is kept private, even with a number t of the parties
acting maliciously. The only information that is allowed to be revealed is the
result of the function.

In the 80s it was proved that secure multiparty computation could in fact be
applied to any computable function, making it an extremely general and useful
technique, at least in theory. This was first done by Yao [34] in the restricted
case of two parties, but soon followed similar results for the general case of n
parties [4,13]. These results were, however, mostly of theoretical interest due to
the complexity of the protocols.

Since then a large number of results have been obtained using different security
and adversary models, underlying network assumptions, and improvements of
previously known results.

In recent years, the theory has advanced enough to allow practical implemen-
tations of secure multiparty computation. Examples of practical systems which
support evaluation of general multiparty computation are the FairPlay [23],

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 255–272, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

256 T.P. Jakobsen, M.X. Makkes, and J.D. Nielsen

VIFF [32], ShareMind [7], and SIMAP [9] systems. However, many applications
are still infeasible in practice, especially those that rely on quick response times
like online auctions. Also, in order to be practical, the aforementioned systems
tend to either be restrited to a limited number of parties or to loosen up the se-
curity model. Some examples of the latter could be assuming that the corrupted
parties do not deviate from the protocol (the passive security model) or that at
most a certain threshold t of parties gets corrupted (threshold security model).
Especially the active security model have until recently been regarded as too
complex for practical implementations. However, recently Lindell, Pinkas, and
Smart showed that active security in the two-party case is indeed practical [22],
and Damg̊ard, Geisler, Krøigaard, and Nielsen showed that active security can
be practical if less than n/3 parties out of n are corrupted [14].

In this paper we go one step further and document an implementation of the
Orlandi protocol [28] for secure multiparty computation which is both actively
secure and tolerates up to n−1 corruptions. We further describe our benchmarks
of this implementation, compare it to benchmarks of related protocols and argue
that the protocol is indeed practical.

The rest of the paper is organized as follows. Section 2 gives an introduction to
the Orlandi protocol. Section 3 describes our implementation, and we introduce
our benchmarks, their setup, and discuss our results in Section 4. In Section 5 we
describe and discuss how we removed the main performance bottlenecks using
a high-performance implementation of the Paillier cryptosystem. A description
of related work is given in Section 6, and we conclude in Section 7 along with
discussing future work.

2 The Orlandi Protocol

The Orlandi protocol [28] is a protocol for secure multiparty computation on
arithmetic circuits, which is secure against up to n− 1 static, active adversaries.
We will introduce the protocol in this section by giving a high-level description of
the protocol and a detailed account of the parts of the protocol which have been
the target of our optimizations. The Orlandi protocol is based on a Verifiable
Secret Sharing (VSS) scheme, secure against a dishonest majority, augmented
with a protocol for generating random shared multiplicative triples, based on
a homomorphic cryptosystem. The Orlandi protocol needs a group G of some
prime order p which is specified by the generator g ∈ G. The order p and the
generator g are part of the public parameters. A secret x ∈ Zp is shared in the
Orlandi protocol using additive secret sharing. Every party of the computation
holds a share xi of the secret, two uniformly randomly chosen additively secret
shared elements ρi,1 and ρi,2 in Zp and a public commitment C . The two random
elements ρi,1 and ρi,2 are needed in order to compute the commitment to the
secret, and the commitment is used when reconstructing the secret to check
that no party contributed a wrong share. The commitment is computed using
a double trapdoor Pedersen commitment scheme [31] based on the hardness
of the discrete logarithm in the group G. The commitment C is computed as

Efficient Implementation of the Orlandi Protocol 257

C = Com(x, ρi,1, ρi,2) = gxhρ1
1 hρ2

2 where hi = gti for i ∈ {1, 2} and ti is a
trapdoor. We denote h1, h2 as the public key of the commitment scheme. A share
in the Orlandi protocol is a four-tuple (Zp×Zp×Zp×C), consisting of the share
of the secret, xi ∈ Zp, two uniformly randomly chosen numbers ρ1, ρ2 ∈ Zp,
and a commitment C ∈ C to the secret. We write a share of the secret x as
[x]. The protocol is secure in the Common Reference String (CRS) Model [12],
and a proof of the security is sketched in Orlandi’s PhD progress report [28]
under the assumption of the hardness of the discrete logarithm problem in G,
the availability of a secure broadcast protocol, and the semantic security of
the homomorphic cryptosystem. The security of the protocol holds, up to the
security level 2−s if λ and d are chosen such that:

s < d log2(M) + (d + 1) log2(ln(1 + λ)) + 2 (1)

where M is the number of multiplicative triples needed for a given computation.
We refer the reader to Orlandi’s PhD progress report [28] for the intuition behind
the above expression. The parameters λ and d are used in the definition of the
commands below.

The protocol can be divided into two parts: a preprocessing part where mul-
tiplicative triples are generated and an online part where arithmetic expressions
are evaluated. The online part provides the commands one would usually ex-
pect from a VSS scheme such as commands for sharing a given value Input(x),
reconstructing a secret Open([x]), creating a random secret Rand(), addition,
subtraction, and multiplication (Mul([x], [y], [a], [b], [c])) of shared numbers. We
will not explain these commands further, except for the multiplication com-
mand. We instead refer the reader to Orlandi’s PhD progress report [28]. The
preprocessing part is divided into a number of building blocks (leak-tolerant mul-
tiplication, triple generation, and triple test), which are composed into the final
triple generating (random triple generation) functionality which produces a list
of triples. We will describe online multiplication, triple generation, and random
triple generation below.

Basic Multiplication. We define the multiplication of the shares [x] and [y]
as [z] = Mul([x], [y], [a], [b], [c]) where we assume that the parties are given a
random triple ([a], [b], [c]) s.t. c = a · b from a honest dealer. The multiplica-
tion is realized as follows:
1. d = Open([x] − [a]) and e = Open([y]− [b])
2. [z] = e[x] + d[y]− de + [c]

The basic multiplication is used both as a building block in the preprocessing
phase and also for performing online multiplications. This is the main reason why
multiplicative triples are generated in the preprocessing, so that they can be used
in online multiplications. It also indicates that one multiplication requires one
triple.

The leak-tolerant multiplication of shares [x] and [y] is defined as [z] =
LTMul([x], [y],M) where M = {([ai], [bi], [ci])}i∈{1,...,2d+1} is a set of multiplica-
tive triples. Leak-tolerant multiplication is an extension of the basic multiplica-
tion with the property that if d + 1 triples (ai, bi, ci) are uniformly random in

258 T.P. Jakobsen, M.X. Makkes, and J.D. Nielsen

view of the adversary then the protocol leaks no information about x, y, and
x · y.

TripleGen() generates a triple by having each party first choose random
shares [a] and [b] including the needed randomness and the commitments. Sec-
ond, each party encrypts (Enceki

(ai)) his share ai using his public key eki and
a homomorphic cryptosystem. Then he broadcasts the encrypted share, the cor-
responding commitment, and the commitment for bj . The share of the product
[c] = [a] · [b] is computed by using the homomorphic property of the received en-
crypted values to multiply the shares [ai] and [bj]. The product is then masked
with some randomness di,j and sent. The share ci is then computed by de-
crypting Decski(γi,j) the product shares, adding them up and subtracting the
randomness. The private key of party i is ski.

Triple Generation. The triple generation command TripleGen() creates a
multiplicative triple which is shared among the parties. The triple gener-
ation is realized as follows:
1. Every party Pi chooses ai, ri,1, ri,2 ∈R Zp × Zp × Zp, computes αi =

Enceki(ai), Ai = Com(ai, ri,1, ri,2), and broadcasts them
2. Every party Pj does:

(a) choose bj , sj,1, sj,2 ∈R Zp×Zp×Zp, compute Bj = Com(bj, sj,1, sj,2)
and broadcast Bj

(b) Party Pj does, for every other party Pi: choose di,j ∈R Zp3 , compute
and send γi,j = α

bj

i Enceki
(1; 1)di,j to Pi

3. Every party Pi does:
(a) compute ci =

∑
j Decski

(γi,j)−
∑

j di,j mod p
(b) pick ti,1, ti,2 ∈R Zp×Zp, compute and broadcast Ci = Com(ci, ti,1, ti,2)

4. Everyone computes (A, B, C) = (
∏

i Ai,
∏

i Bi,
∏

i Ci)
5. Every party Pi outputs:

([a]i, [b]i, [c]i) = ((ai, ri,1, ri,2, Ai), (bi, si,1, si,2, Bi), (ci, ti,1, ti,2, Ci))

The computation inside encrypted values gives rise to the requirement that the
modulus of the cryptosystem N must be much larger than the modulus of the
shares and the commitment scheme p. This is not an issue in practice because
the key size of a factorization based cryptosystem is usually much bigger than
the order of the group of points on an elliptic curve, if the same level of security
is to be obtained.

The triple test command TripleTest() creates one multiplicative triple from
two. The first triple is used to check the correctness of the second triple. This
removes the risk of overflow in the encrypted computation in TripleGen() with
overwhelming probability. The overflow may occur due to the differrence in the
modulus of the cryptosystem and the shares and the commitment scheme.

Random triple generation RandomTriple() creates a set of multiplicative triples
M of size M , which we call the result set. The result set is created by first generat-
ing a larger distillation set D of triples using TripleTest(). The size of the distilla-
tion set depends on the security parameter and M . The result set is distilled from
the distillation set by first choosing a uniformly random subset called the test set

Efficient Implementation of the Orlandi Protocol 259

T ⊂ D of size λ(2d + 1)M . The triples in the test set are checked for correctness,
and if any inconsistency is detected the protocol is aborted. Second the remaining
triples D\T are partitioned into M random sets of size (2d + 1). The result set is
generated using these sets and the FPP(rand, . . .) functionality.

Random Triple Generation. The implementation of the random triple gen-
eration command RandomTriple() creates a set M of multiplicative triples
of size M which is shared among the parties. The random triple generation
is realized as follows:
1. D = ∅. For i = 1, . . . , (1 + λ)(2d + 1)M do: D = D ∪ TripleTest()
2. Coin-flip a subset T ⊂ D of size λ(2d + 1)M
3. For all i ∈ T the parties reveal the randomness used for TripleTest()
4. Check that the randomness is consistent with the view. Check that

ai, bi < p and di,j < p3. Abort otherwise.
5. Partition D\T in M random subsets Di of size (2d + 1)
6. For i = 1, . . . , M do:

(a) [a] = FPP(rand, . . .), [b] = FPP(rand, . . .), [r] = FPP(rand, . . .)
(b) [c] = LTMul([a], [b],Di) and Open([c] + [r])
(c) Add ([a], [b], [c]) to M

The FPP(rand, . . .) functionality used in the random triple generation creates a
random share using the

∏
comm protocol described in Chapter 4 of Orlandi’s PhD

progress report [28]. The difference between using the Rand() function and the
FPP functionality is twofold. First, they differ in the security model of the overall
protocol. If one uses the Rand() function then the protocol provides stand-alone
security [11] whereas if one uses the FPP functionality then it is secure in the
CRS model. Second, they differ in speed. The Rand() function is faster than the
FPP functionality because the latter generates random shares using Universal
Composable commitments whereas the first does not. In the implementation we
use the Rand() function and thus achieve stand-alone security.

In the original protocol it is assumed that the public key for the commitment
scheme is provided to the parties by a trusted third party (TTP), so that the
key is randomly chosen. However in a real world setting, where the parties don’t
trust each other, it might not be the case that there is a single TTP that all
parties trust. Other ways of generating the public key might include: measuring
some physical random quantity, running a coin-flip protocol, or modeling a hash
function with a random oracle (e.g. the first party can choose a random string r
and publish (r, H(r)) and everyone parses H(r) as the public key). The security
of the whole protocol will reflect the security of the method used to generate the
public key.

3 Implementation of the Orlandi Protocol

In this section we describe how we implemented the Orlandi protocol using VIFF,
the Virtual Ideal Functionality Framework [14,32]. VIFF is an open source frame-
work implemented in Python for executing general multiparty computations. It

260 T.P. Jakobsen, M.X. Makkes, and J.D. Nielsen

is possible to extend VIFF with new protocols for evaluation of arithmetic cir-
cuits. Such protocols are called runtimes in VIFF lingo and are materialized by
the Runtime class, which new runtimes must subclass. A share in VIFF is rep-
resented by instances of the Share class. A Share instance represents a value
to be computed in the future, and one can attach callbacks which will be exe-
cuted once the share gets a concrete value. A share in the Orlandi protocol is
represented using the OrlandiShare class which extends Share . The concrete
value held by an OrlandiShare forms a tuple as described in Section 2.

The Orlandi protocol is implemented as the OrlandiRuntime , a subclass of
Runtime and as such overloading the usual addition, subtraction and multipli-
cation operators. It also provides some further methods largely corresponding to
the commands described in Section 2. The implementation of the various com-
mands follows the protocol closely, except that we combine steps and/or schedule
them in parallel whenever possible. An example where we combine steps is step
1, 2.a, and 2.b of TripleGen() where we save one broadcast operation. An exam-
ple of scheduling operations in parallel is the TripleTest() command where two
TripleGen() commands are scheduled in parallel with one Open() and a Rand()
command.

To speed-up the computation it can be observed that in step 2.c of the
TripleGen() function that Enceki(1; 1) will result in gN+1 when encrypting with
the Paillier system. Hence, γij can be computed by using a simultaneous multi-
exponentiation method as described in Section 5, i.e. γij = α

bj

i (gN+1)dij . In
addition, when using homomorphic properties of the Paillier cryptosystem, step
3.a can be rewritten to cij = Decsk(

∏
j γij mod N2)−

∑
j dij , which results in

just doing one exponentiation in total instead of one per party.
The security of the Orlandi protocol is based on the assumption of the hard-

ness of the discrete logarithm of the group used and the presence of a broadcast
channel. We satisfy the hardness assumption of the discrete logarithm by com-
puting the commitments in a group defined by an elliptic curve over the field Fp

with prime p of 192-bits with the generator g and the public key h1, h2 which
consists of points on the curve. We have implemented the commitment scheme
as a Python C extension using the industry strength PrimeInk ECC library v.
6.4.0 [1]. The main obstacle was the conversion from integers in base 215, which
is used as the internal representation of arbitrary precision integers in Python,
to base 232 which is the representation used by PrimeInk ECC. The broadcast
channel assumed by the Orlandi protocol is implemented using an instance of
the weak-crusader broadcast. The weak-crusader broadcast is a variant of the
crusader broadcast [16] where we allow a malicious adversary to make some
honest parties output a message while others abort. The crusader broadcast is
not needed in the Orlandi case since the protocol is already vulnerable to denial
of service attacks, e.g. an adversary can just refrain from sending messages at
all. By relaxing the requirements on the broadcast protocol we also get a more
efficient implementation since we do not need a signature scheme. The protocol
consists of two rounds. In the first round the senders send a value to each of the
receivers, who then computes a collision resistant hash of the received value, and

Efficient Implementation of the Orlandi Protocol 261

sends it to the other receivers in the second round, who check the correctness.
We generally use the broadcast protocol in the implementation for broadcasting
from a set of parties to all parties, except for the share reconstruction command
in the case where only some subset of the parties should learn the output.

Broadcast. ls = broadcast(value, senders, receivers), where the result ls is a
list of received values.
1. Each party Pj ∈ senders sends value to every party Pi ∈ receivers
2. Every party Pi in receivers computes a collision resistant hash on the

received value and sends the hash to every other party in receivers
3. Each party in receivers checks that the received hash is equal to the hash

computed by the party in the previous step, and returns value if true,
or aborts if not

4 Benchmarks

In this section we describe how we have benchmarked our implementation with
various levels of optimization, and discuss the results. We have chosen to bench-
mark the three commands Mult , TripleGen , and RandomTriple , because the
other commands are not much different than the commands in a standard addi-
tive secret sharing scheme. Mult and TripleGen are straightforward to bench-
mark since they do not depend on the security parameter. The execution of
RandomTriple on the other hand depends on the security parameter and the
needed number of triples.

The RandomTriple command generates a set of triples which is distilled into
a smaller set that is the result of the command. The total number of triples
generated is (1 + λ)(2d +1)M where M is the size of the result set, and λ and d
have to satisfy Equation 1. The overhead of distilling M triples is (1 + λ)(2d +
1)−1, and it is clear from Equation 1 that the overhead increases as the security
parameter goes up, but also that it decreases as the number of needed triples M
increases. This gives two interesting dimensions along which to investigate the
execution time.

It is infeasible to benchmark every possible combination of security parameter
and number of triples so we chose the security parameter values 1 (covert secu-
rity [2]), 16, and 21, and 5, 10, and 30 triples, because they are representative
and feasible for the interval of interesting security parameters [1, 32]. They are
feasible in the sense that they can be computed in a reasonable amount of time.
We have chosen λ and d such that the overhead is minimal.

The benchmarks are created using the VIFFBench Framework [33], which
automates benchmarking of VIFF protocols. The benchmarks are defined as a
small program parametrized with the number of parties and the VIFF reposi-
tory revision. The results are automatically stored in a relational database. We
have chosen to hardwire two numbers t1, t2 into the implementation, in order
to avoid unnecessary complexity. The numbers are used to compute the public
keys (as gt1 , gt2) for the commitment scheme. This breaks the security of the
implementation if one is to use the implementation for practical applications.

262 T.P. Jakobsen, M.X. Makkes, and J.D. Nielsen

It does, however, not influence the efficiency of the commands, because the key
can be computed in a setup phase, before the preprocessing phase. We have per-
formed three benchmarks which were executed for each of the VIFF revisions
containing significant improvements to the commands. Except for random triple
generation which is only benchmarked for revision 1435. The online multiplica-
tion benchmark consist of 100 multiplications run in parallel. If we only executed
one multiplication we would get too close to the resolution of the system clock
that it would affect the precision of our measurements. The triple generation
and the random triple generation benchmarks, on the other hand, only execute
one invocation of the corresponding commands, because the execution time is
much longer. For each revision we have repeated each benchmark 50, 50, and 1
times for online multiplication, triple generation, and random triple generation,
respectively, in order to eliminate random noise. Executing the random triple
generation 50 times for each revision would be prohibitively time consuming.
All the benchmarks are performed using 1024-bits key size for the Paillier cryp-
tosystem. We do not investigate how the implementation behaves as the latency
on the network changes. The benchmarks were performed by using up to 10
identical computers equipped with 1 GHz dual-core AMD Opteron 2216 proces-
sors with 2x1 Mb level 2 cache and 2 Gb RAM each. The hosts are running Red
Hat Enterprise Linux 5.2 on a 64-bit x86 architecture and were connected using
gigabit Ethernet with a round-trip latency of 0.104 ms. One of the machines was
chosen as the coordinator, whose responsibility it was to distribute and execute
the benchmarks on the needed subset of the nine other machines. VIFFBench
chooses the subset randomly.

4.1 Benchmark Results

The results of the basic multiplication benchmarks are shown in Table 1 where
the average execution time for one multiplication is presented for two to nine par-
ties along with the standard deviation. We clearly see that the implementation
is efficient and achieves 15.9 ms per multiplication for three parties. The figure
also shows that the average execution time increases linearly as the number of
parties increases which is as expected due to the broadcast. A multiplication
basically consists of two Open() operations with execution time linear in the
number of parties. The execution time for two parties is not as expected. Based
on the protocol we would expect it to be faster than for three parties, but the
measurements shows that it is slower than for three, four, five, six, and even
seven parties. We contemplate that the cause of this anomaly is that for two
parties the implementation is CPU bound and not network bound as we have
observed for three parties. The standard deviations are large compared to the
measurements, and indicates some variation in our measurements. However the
timings are meaningful and the basic multiplication is useful in practice even if
we take the standard deviation into account.

Table 2 shows the average execution time of triple generation for two, three,
and nine parties and the data is visualized as a graph in Figure 1. We only
show a subset of our measurements, please see the extended version of this

Efficient Implementation of the Orlandi Protocol 263

Table 1. The average execution time in ms. of selected Basic Multiplication bench-
marks as function of the number of parties

parties 2 3 4 5 6 7 8 9
time (ms) 27.4 15.9 19.7 22.8 25.6 26.7 28.2 35.9
stdvar (ms) 0.1 3.5 4.7 6.7 7.4 6.8 8.1 8.3

paper [18] for the full set of measurements. We have benchmarked different
revisions of our implementation corresponding to the various optimizations we
have performed. Revision 1231 is the initial unoptimized implementation which
uses the implementation of Paillier in VIFF, revision 1355 in-lined step 1, 2.a,
and 2.b of TripleGen(), 1370 uses our efficient implementation of the Paillier
cryptosystem, 1393 moves step 2.c into C, 1399 moves step 3.a into C, and 1400
is a minor technical optimization.

The performance of the final revision is below 200 ms for all but two and
four parties. This is encouraging for practical uses of the protocol. Based on the
definition of TripleGen() we would expect to see the execution time increase
linearly (O(n)) in the number of players n. This is also the case until revision
1393. One explanation is that random noise is more dominant when the measured
time is small. We again see that two parties are slower than even nine parties,
but it seems like the anomaly is introduced in revision 1370, where we use a more
efficient implementation of Paillier. This is consistent with our earlier observation
that the two party case is CPU bound and the other are network bound. It is
clear from Figure 1 that the use of an efficient implementation of Paillier gives
a substantial improvement of the execution time and is the main contributor to
the efficiency of the Orlandi implementation. The Figure shows that rewriting
step 2.c in C gives a larger performance increase than rewriting step 3.a does,
which is as we would expect. Step 2.c is more computational intensive. The
improvements we have done in the Python code in revision 1355 and 1400 are
dwarfed by the other improvements.

Table 3 shows the average execution time of random triple generation defined
in revision 1435 for two, three, and nine parties. The full set of measurements
can be found in the extended version of this paper [18]. One would expect the
benchmarks to show that the execution time per triple increases as the security

Table 2. The average execution time in ms. of triple generation as a function of number
of parties

parties 1231 1355 1370 1393 1399 1400
2 time 3519.6 3519.6 894.6 243.8 226.5 224.2
2 stdvar 1.0 0.8 3.2 0.9 0.7 0.7
3 time 3972.7 4012.1 376.3 155.0 168.3 170.9
3 stdvar 94.8 157.4 72.1 59.2 35.9 38.2
9 time 8937.4 8849.7 846.9 237.0 188.9 188.4
9 stdvar 460.2 281.2 27.0 36.5 20.7 29.0

264 T.P. Jakobsen, M.X. Makkes, and J.D. Nielsen

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1231 1355 1370 1393 1399 1400

T
im

e
in

 m
s

Revision number relative to http://hg.viff.dk/viff (1024 bit Paillier key)

Execution time pr. triple generated by triple generation as a function of the revision

2 Players
3 Players
9 Players

Fig. 1. The average execution time in ms. of selected Triple Generation benchmarks
as a function of the changes to the implementation

parameter increases (O(d log ln(λ))) and decreases as the number of triples in-
creases. The measurements shows that the execution time increases as the secu-
rity parameter increases. And, in most cases the execution time also decreases as
the number of triples increases. Random noise may explain the cases where we
do not see the a decrease in execution time. We have only run the benchmarks
once for each combination of security parameter and number of triples due to
time considerations.

4.2 Performance Comparison

We are aware of two other implementations of secure multiparty computation
protocols with active security: A protocol by Damg̊ard, Geisler, Krøigaard, and
Nielsen (DGKN) which has been implemented in VIFF [14], and a protocol by Lin-
dell, Pinkas, and Smart (LPS) [22]. The performance of these implementations
cannot be directly compared to the performance of the Orlandi protocol since
they rely on different security models and the benchmarks have been executed

Table 3. The average execution time in seconds of random triple generation as a
function of parties (2, 5, and 9), security parameter, and number of triples

s 1 1 1 16 16 16 21 21 21
t 5 10 30 5 10 30 5 10 30
2 1.872 1.511 1.370 15.879 15.157 11.641 20.959 16.560 16.453
3 1.598 0.952 1.059 11.796 11.883 10.944 16.931 15.981 15.269
9 2.238 1.799 1.794 25.931 24.444 25.638 31.901 32.572 37.545

Efficient Implementation of the Orlandi Protocol 265

on different hardware. However, in this section we will try to elaborate on the dif-
ference between the performance of the systems.

The DGKN protocol provides evaluation of arithmetic circuits and is secure
against an adaptive active adversary up to a threshold of n/3 corrupted parties.
An adversary may halt the computation up to a synchronization point, not after
- in which case termination is guaranteed. The LPS protocol is a 2-party pro-
tocol for evaluation of boolean circuits. The Orlandi protocol is a full-threshold
multiparty protocol. Both the Orlandi and the LPS protocol are secure against a
static active adversary, the security is based on cryptographic assumptions, and
they are “unfair” in the sense that a corrupt party can prevent honest parties
from getting any result while the corrupt party get results himself.

It is difficult to make a direct comparison between our results and those
reported for the LPS protocol, since they do not benchmark multiplications, but
rather comparisons of 16-bit integers.

Results have been reported for the DGKN protocol for 4, 7, 10, 13, 16, 19,
22, and 25 parties. If we compare the numbers for 4 and 7 parties, which is
the setups we have numbers for, then DGKN takes 4 and 6 ms which is only
a factor 5 (roughly) better than our results for the online case. Whereas in the
preprocessing case the DGKN uses 5 ms and 22 ms in the best case, which is
a factor 80-240 better then our implementation even with the smallest security
parameter. Based on these numbers our implementation may seem inferior, but
remember that the Orlandi protocol provides full threshold. And the benchmarks
show that it is possible to use the Orlandi protocol in practice.

5 High-Performance Paillier

Various non-deterministic cryptosystems have been proposed based on random-
ized encryption schemes which encrypt a message m by raising a base g to the
power m and suitably randomizing this result [5,15,17,26,27,29]. The security of
these systems is based on the intractability of various ”residuosity” problems.
As an important consequence of this encryption technique, those schemes have
homomorphic properties. These homomorphic properties enable computation on
ciphertexts without knowing the context. This allows for a wide spread of appli-
cations such as secure multiparty computations, like Orlandi’s protocol. In this
section we discuss the Paillier cryptographic system and its implementation and
optimization.

5.1 Description of the Paillier Schemes

Paillier has presented multiple closely related cryptosystems [29,30]. We will
focus on the main- and subgroup variants of these cryptosystems shown in
Figure 2 and 3, respectively. The subgroup variant is slightly different as it
computes residues in a subgroup of order λ(N).

266 T.P. Jakobsen, M.X. Makkes, and J.D. Nielsen

Key Generation Let N be a RSA modulus N = pq, where p and q are large prime
integers. Let g ∈ Z∗

N2 be chosen such that its order is a multiple of N . Let λ(N) =
lcm(p− 1, q − 1). The public key is (g,N), and the private key is λ(N)

Encryption To encrypt a message m ∈ ZN , randomly chose r ∈ Z∗
N and compute the

ciphertext c = gmrN mod N2.
Decryption The decryption of c is defined by L(cλ mod n2)

L(gλ mod N2)
mod N . Where the L(μ)

function is defined as μ−1
N

and takes inputs of SN = {u < N2 | u = 1 mod N}.

Fig. 2. The main variant

5.2 Paillier Performance Evaluation

A common task in implementations of many public-key cryptosystems is multi-
exponentiation in commutative groups. This is also the case for the Paillier cryp-
tosystem, namely computing gmrN mod N2 for the main variant and gm(gN)r

mod N2 for the subgroup. Many algorithms have been proposed to speed-up
the computation a single exponentiation [10,24,25,35,21]. These algorithms can
be modified to compute a product over of multiple exponentiations in such a
way that it is faster than a product of single exponentiations. In the following
subsections we show how to reduce this overhead with different simultaneous
multi-exponentiation algorithms.

The simultaneous 2k-ary method was first introduced by Brauer [10], the idea
behind the method is slicing the binary representation of an exponent into pieces
using a windows of length k and processing the exponent in a larger basis. For
each evaluation of the exponent the intermediate results get raised by power
of 2k and multiplied by its base raised to the power of the evaluated bits in
the exponent. The powers {0, 1, 2, . . . , 2k − 1} of base g are precomputed in an
auxiliary table.

In order to make the 2k-ary method evaluate two powers at the same time
(i.e. ge1

1 ge2
2 mod n). Two separate auxiliary tables with there powers of g1 and g2

are required. Each time both exponents get evaluated at the same time. First
the intermediate result is raised to 2k and is multiplied by each separate base
raised to the power of the evaluated bits from the corresponding exponent. This
saves a squaring for every bit that is evaluated.

Key Generation Let N be a RSA modulus N = pq, where p and q are large prime
integers. Let λ(N) = lcm(p− 1, q− 1) and choose α such that it divides λ(N). Let
h ∈ Z∗

N2 such that is has maximal order of nλ(N), and g = hλ/α mod N2. The
public key is (g,N), and the private key is α

Encryption To encrypt a message m ∈ ZN , randomly chose r ∈ Z∗
N and compute the

ciphertext c = gm+r·N mod N2.
Decryption The decryption of c is defined by m = L(cα mod N2)

L(gα mod N2)
mod N . Where the

L(μ) function is defined as μ−1
N

and takes inputs of SN = {u < N2 | u = 1
mod N}.

Fig. 3. The subgroup variant

Efficient Implementation of the Orlandi Protocol 267

Algorithm 1. 2k-ary Method
Require: auxa, auxb, b = 2k − 1, e1, e2
Ensure: ge1

1 · ge2
2

A← 1
for j = 	(b− 1)/w
w down to 0 do
A← A2k

if (e1[j + w − 1 . . . j])
A← A · auxg1 [e1,j+1, e1,j+2, . . . e1,j+w−1]

if (e2[j + w − 1 . . . j])
A← A · auxg2 [e2,j+1, e2,j+2, . . . e2,j+w−1]

The simultaneous 2k-ary matrix method is a slight modification of the simul-
taneous 2k-ary method. The main difference is the computation of the auxiliary
table which consists of k×k table entries which holds for 0 < i, j < 2k−1 the prod-
uct of gi

1g
j
2 in entry aux[i][j]. Building such a table requires more pre-computation,

but gives one less multiplication per evaluated window of length k.
The simultaneous sliding window exponentiation method of Yen, Laih, and

Lenstra [35] is an improvement of the 2k-ary method. Just like the 2k-ary method
the sliding window method consists of slicing the binary representation of ei

into pieces using a window of length ω and processing the part one by one.
The addition of letting the window slide allows us to skip consecutive zeros in
ei while squaring the intermediate result. As a result, evaluation of two even
exponents are avoided, and computation of the entries of these entries in the
auxiliary table can be avoided. This results in a generally faster algorithm for
evaluating exponents.

To evaluate two exponents simultaneously we apply the same trick as for
simultaneous 2k-ary method. But with the change that we check if both evaluated
bits are zero. Additional bookkeeping is needed to keep track of the bits.

When comparing both decryption version of the Paillier scheme, the basic
computation consists of one fixed exponentiation and a multiplication in Z∗

N2

and a multiplication in Z∗
N . The subgroup variant requires the same operation,

except the size of the exponent α is smaller, which makes the subgroup variant
faster. Paillier has suggested an alternative decryption method by means of the
Chinese Remainder Theorem (CRT). By defining Lp = μ−1

p and Lq = μ−1
q we

can decrypt by separately computing the message modulo p and q and combining
mp and mq with CRT. First compute hp = Lp(gp−1 mod p2) and hq = Lq(gq−1

mod q2) then mp = Lp(cp−1 mod p2)hp mod p and mq = Lq(cq−1 mod q2)hq

mod q and finally recombine using CRT. Additional speed-up can be found by
computing L(μ) with μ · n−1 mod 2|N |. This is just a multiplication and a
logical AND. Another way to make computations more efficient is a careful choice
of parameters. For instance if one chooses g = 1+n then the exponentiation gm

can be executed using only one multiplication, namely gm = (1+n)m ≡ (1+mn)
mod n2. This only works for the encryption in the main variant of the Paillier
scheme. Such optimizations can provide substantial speed-ups as we show in the
next subsection.

268 T.P. Jakobsen, M.X. Makkes, and J.D. Nielsen

223
225
226

227

228

229

 1024 2048 3072 4096

C
PU

 C
yc

le
s

Keysize in bits

sc-main
karym k=2
karym k=3
karym k=4
karym k=5

kary k=2
kary k=3
kary k=4
kary k=5
ssw k=2
ssw k=3
ssw k=4
ssw k=5

Fig. 4. The execution time in CPU cycles with different keys sizes with simultaneous
sliding window method (ssw), simultaneous 2k-ary method (kary) and simultaneous 2k-
ary method (karym) Parameter k is the size of the window in bits and the main variant
(sc-main) with g = n+ 1

5.3 Results

In this section we describe how we benchmarked our implementation with various
optimizations and discuss the results. We have chosen to benchmark the three
above simultaneous multi-exponentiation algorithms and their parameters for
key sizes N ranging from 1024-bit to 4096-bit with increments of 1024-bits.

To benchmark the speed of encryption of the Paillier cryptosystem we ran
the main variant with g = N + 1 and the subgroup variant with the 3 different
simultaneous multi-exponentiation algorithms, with window size k as parameter.
For windows size k we select 1 < k ≤ 5, as choosing k higher than 5 will result
in longer pre-computation for these bit sizes.

The benchmarks can be found in Figure 4. The speed of the algorithms be-
comes clear as the key-sizes increase. As it is infeasible to test all combinations
of random element r and message m, we have chosen m and r to have the same
size as the sub-group length in bits this is approximately 1/4 of N . This is due
to the requirement of the Paillier cryptosystem. The benchmark includes the
generation of auxiliary tables.

It is clear that the main variant of the Paillierwith optimized parameters is slow-
est, this is mostly due to the computation of rN with N having {1024, . . .4096}-
bits. The simultaneous 2k-ary normal and matrix variant as well as simultaneous

Efficient Implementation of the Orlandi Protocol 269

sliding window method perform better with a greater k if the key length gets big-
ger. Also, we can see that 2k-ary matrix performs better than 2k-ary method as
the key size grows. The 2k-ary matrix has larger pre-computation but has one mul-
tiplication less for evaluating one bit of the exponent. The simultaneous sliding
window method is in most cases the best performing algorithm, this is due to the
fact that it skips consequent zeros.

The benchmarks were performed by using a 2 GHz Intel Pentium E2180 dual
core with 1024KB cache per core and 2 GB Ram. The system is running Fedora
release 8 with kernel 2.6.26.8-57.fc8 in 64-bit mode. For benchmarking we used
cpucycles with is part of eBACS [6] to measure the amount of CPU cycles used
by the execution.

6 Related Work

Several practical systems for general multiparty computation have been imple-
mented during the recent years. FairPlay [23] is the earliest implementation
that the authors are aware of. In the system one can specify computations in a
high-level, procedural programming language. Using the FairPlay compiler, the
high-level programs are then compiled to low-level representations of one-pass
boolean circuits. These circuits are then used for secure computation as described
by Yao [34]. The timings reported on FairPlay show that FairPlay is efficient, but
it should be noted that it only supports two-party computation in the passive
security model. FairPlay has later been supplemented by FairPlayMP [3] which
is capable of handling the case with more than two parties in the passive security
model assuming less than n/2 corrupted parties. A two-party protocol for secure
computation which is secure against a static active adversary has recently been
implemented [22]. Like the protocol used in FairPlay, this protocol is also based
on boolean circuits.

Another practical system for general multiparty computation was created by
Bogetoft et al. [9] in the SIMAP project. The system was used for the first
known large-scale commercial application of secure multiparty computation [8].
It supports general multiparty computation in a passive threshold security model
assuming less than n/2 corrupted parties. Like FairPlay it lets users express
programs in a high level language, but contrary to FairPlay, it evaluates the
programs as arithmetic rather than boolean circuits. The downside of this strat-
egy is that comparison of integers becomes more complex and time consuming.
The protocol used in the SIMAP system has also been implemented in the VIFF
framework [32]. In addition, VIFF contains a passively secure two-party protocol
based on the Paillier cryptosystem as well as an implementation of a multiparty
protocol described in Section 4. The ShareMind system [7] represents yet another
efficient approach to practical multiparty computation based on arithmetic cir-
cuits and additive sharing. It only supports three parties in the passive model
and assumes that at most one party gets corrupted. None of the above imple-
mentations, though, support the combination of active security and self-trust,
that is available with the implementation of the Orlandi protocol described in
this paper.

270 T.P. Jakobsen, M.X. Makkes, and J.D. Nielsen

7 Conclusion and Future Work

In this paper we presented an implementation of the Orlandi protocol, which is
the first implementation of a MPC protocol based on arithmetic circuits, which is
secure against up to n−1 static, active adversaries. We showed that the protocol
can be implemented efficiently in the presence of an efficient implementation of
a double trapdoor Petersen commitment scheme and a homomorphic cryptosys-
tem. We also described an efficient implementation of the Paillier cryptosystem.

Practical uses is an interesting direction of future work e.g. auctions, bench-
marks, and online games. Also it would be interesting to implement and bench-
mark the FPP(rand, . . .) functionality and a suitable setup phase.

A further direction of future work would be to implement and benchmark the
Lim/Lee [21] and the fractional window exponentiation [24] algorithms, which
we expect would provide further speed up.

Acknowledgements

The authors would like to sincerely thank Ivan Damg̊ard, Claudio Orlandi, and
Jesper Buus Nielsen for answering our questions about the Orlandi protocol. In
addition many thanks to Tanja Lange, Daniel J. Bernstein, and Peter Schwabe
for comments and suggestions on the Paillier cryptosystem. We thank the VIFF
and VIFFBench Development Teams for creating VIFF and VIFFBench, respec-
tively. Thanks to our partners in the CACE project for making this collaboration
possible. Also thanks to Cryptomatic A/S for letting us use the PrimeInk ECC
library, and to the anonymous reviewers for suggestions on improving the paper.

References

1. Cryptomatic A/S. PrimeInk ECC library v. 6.4.0, http://www.cryptomatic.com
2. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols

for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007)

3. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM Conference on Com-
puter and Communications Security, pp. 257–266. ACM, New York (2008)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Si-
mon, J. (ed.) [19], pp. 1–10

5. Benaloh, J.D.C.: Verifiable Secret-Ballot Elections. PhD thesis, Yale University
(1978)

6. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems, http://bench.cr.yp.to

7. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

http://www.cryptomatic.com

Efficient Implementation of the Orlandi Protocol 271

8. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M.I., Toft,
T.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.)
FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

9. Bogetoft, P., Damg̊ard, I., Jakobsen, T.P., Nielsen, K., Pagter, J., Toft, T.: A prac-
tical implementation of secure auctions based on multiparty integer computation.
In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147.
Springer, Heidelberg (2006)

10. Brauer, A.: On addition chains. Bulletin of the American Mathematical Soci-
ety 45(10), 736–739 (1939)

11. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

12. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

13. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Simon, J. (ed.) [19], pp. 11–19

14. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: Theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

15. Damg̊ard, I., Geisler, M., Krøigard, M.: Homomorphic encryption and secure com-
parison. International Journal of Applied Cryptography 1(1), 22–31 (2008)

16. Dolev, D.: The byzantine generals strike again. Technical report, Stanford Univer-
sity, Stanford, CA, USA (1981)

17. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

18. Jakobsen, T.P., Makkes, M.X., Nielsen, J.D.: Efficient Implementation of the Or-
landi Protocol Extended Version. Cryptology ePrint Archive, Report 2010/224
(2010), http://eprint.iacr.org/

19. In: STOC ’88: Proceedings of the twentieth annual ACM symposium on Theory of
computing, May 1988. ACM, New York (1988)

20. Lee, P.J., Lim, C.H. (eds.): ICISC 2002. LNCS, vol. 2587. Springer, Heidelberg
(2003)

21. Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Hei-
delberg (1994)

22. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg
(2008)

23. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - Secure Two-Party Compu-
tation System. In: USENIX Security Symposium, pp. 287–302. USENIX (2004)

24. Möller, B.: Improved techniques for fast exponentiation. In: Lee, Lim (eds.) [20],
pp. 298–312

25. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
computation 44(170), 519–521 (1985)

26. Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg (1997)

27. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998)

http://eprint.iacr.org/

272 T.P. Jakobsen, M.X. Makkes, and J.D. Nielsen

28. Orlandi, C.: LEGO and Other Cryptographic Constructions - PhD Progress Report
(March 2009), http://www.cs.au.dk/~orlandi/

29. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

30. Paillier, P., Pointcheval, D.: Efficient public-key cryptosystems provably secure
against active adversaries. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASI-
ACRYPT 1999. LNCS, vol. 1716, pp. 165–179. Springer, Heidelberg (1999)

31. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

32. VIFF - The Virtual Ideal Functionality Framework, http://viff.dk
33. VIFFBench Framework, http://bitbucket.org/tpj/viffbench
34. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: Foun-

dations of Computer Science, pp. 162–167. IEEE, Los Alamitos (1986)
35. Yen, S.M., Laih, C.S., Lenstra, A.K.: Multi-exponentiation. Computers and Digital

Techniques 141(6), 325–326 (1994)

http://www.cs.au.dk/~orlandi/
http://viff.dk
http://bitbucket.org/tpj/viffbench

Improving the Round Complexity of Traitor
Tracing Schemes

Aggelos Kiayias1,� and Serdar Pehlivanoglu2,��

1 Computer Science and Engineering,
University of Connecticut Storrs, CT, USA

aggelos@cse.uconn.edu
2 Division of Mathematical Sciences

School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

pserdar@ntu.edu.sg

Abstract. A traitor tracing scheme is a multiuser encryption that has
a built-in key leakage deterrence mechanism : the sender is capable of
utilizing a tracing process that can interact with any adversarial decoder
and reveal the identities of the users whose keys are employed by the de-
coder. A number of desired design goals have been put forth for traitor
tracing schemes, notably the minimization of the length of the cipher-
texts, the length of the encryption key and the storage for private keys.
An important efficiency parameter that is not as widely investigated is
the round complexity of the tracing process, i.e., the number of rounds
of interaction that is required for the tracing process to terminate. In
this work we provide (1) a general formalization of this important design
consideration, (2) a novel tracing procedure that exhibits an asymptotic
improvement over the previously known approaches. Our first result is
achieved by casting the tracing process as a game between the tracer and
the adversary where the objective of the tracer is to reveal the identity
of the corrupted users while the adversary wishes to prevent that while
still meeting a minimum functionality requirement. The second result
involves a novel application of fingerprinting codes.

1 Introduction

The distribution of content to a set of subscribers is not served adequately by the
mere employment of an encryption scheme. Indeed, in this setting — where many
users are supposed to share the same decryption capability — it is plausible to
expect that an adversary may take hold of some subscriber keys and spread them
to other entities. In order to prevent this type of key-leakage some deterrence
mechanisms can be built into the encryption scheme. In the multiuser encryption
setting, the ability of an authority to interact with a rogue decoder and recover
� Research partly supported by NSF Awards 0447808, 0831304, 0831306.

�� Research is supported by The Singapore National Research Foundation under Re-
search Grant NRF-CRP2-2007-03.

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 273–290, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

274 A. Kiayias and S. Pehlivanoglu

at least one of the identities of the users whose keys have been leaked and utilized
in the decoder gives rise to traitor tracing schemes.

These constructions were introduced in [6] and subsequently a great number
of subsequent works improved various aspects of them [1,2,3,4,7,8,10,13,14,15,
17, 18, 19, 20, 21, 22, 23, 24, 26, 25, 27, 28, 29, 30, 31]. In this long sequence of works
a number of important efficiency characteristics of traitor tracing schemes have
been identified and have been stepwise refined : (i) the length of ciphertexts, (ii)
the length of the encryption key, (iii) the size of storage required in the subscriber
side. These quantities are typically expressed as functions of the number of users
n, the failure probability of tracing ε and an upper bound w on the number of
corrupted users.

An important aspect of traitor tracing schemes is the number of rounds of
interaction that are required between the tracing authority (or simply the tracer)
and a rogue device in order for the tracer to establish the desired identities. A
possible reason for not pursuing this measure of optimization is that much fewer
essentially different techniques to perform tracing exist compared to the large
number of different constructions.

In fact the majority of schemes share the same tracing strategy that can
be summarized in the following fashion : divide the users in N subsets of a
certain size and perform a “walking procedure” of N steps that utilizes partially
corrupted ciphertexts and identifies which one of the N subsets is overlapping
with the corrupted users. Then repeat the procedure with a different set of
subsets. In the end combine all the results to infer a corrupted user identity. In
its most basic form, the subsets can be singletons, i.e., the users themselves and
it is only needed to perform a single such walking procedure (cf. [22]).

We refer to this ubiquitous tracing strategy as “linear tracing”; it was utilized
in the majority of the works cited above. Interestingly none of the previous
works explicitly focused on the round complexity as an efficiency measure and
on its proper formalization. In fact a proper formalization of the measure not
only involves the number of steps/users n, the failure probability ε but also
the minimum threshold σ that is required by a rogue decoder to meet when
decrypting a valid ciphertext (as obviously if σ drops it becomes harder and
harder to trace).

The only two known improvements of the linear tracing strategy were put
forth in [26] called “binary search tracing” and “noisy binary search tracing”
(the latter being an improvement inspired by [12]). These were the first asymp-
totic improvements of the round complexity of the linear tracing strategy as we
highlight below.

The present work has two major contributions:

1. We present the first formalization of the round complexity of traitor tracing
schemes. This is achieved by casting the tracing process as a protocol game
between the tracer and the adversary (the rogue device). The goal of the
tracer is perform identification of one of the traitor users while the goal
of the adversary is to prevent this from happening while still maintaining
the required functionality threshold. Of independent interest is the fact that

Improving the Round Complexity of Traitor Tracing Schemes 275

this formalization of tracing is the flip side of a class of privacy related
interactions considered in [11] : there the adversary is in the tracer side and
wishes to violate the privacy of the users.

2. We present a new tracing strategy that has an improved round complexity
compared to the previous known approaches for small values of σ. Further,
our strategy is the first one that can utilize an upper bound on the number of
corrupted users and use that bound to curb the round complexity. Our strat-
egy relies on a novel application of fingerprinting codes [3, 33] overimposed
on the tracing process. An illustration of our results is shown in figure 1.

Tracing Technique Corruption Failure Adversary Round
In Use Bound Probability Threshold σ Complexity

Linear [22,6] n ε > 4nεp O(n3σ−2 log 1
ε)

)
Bin. Search [26] n ε > 4nεp O(n2σ−2 log log n

ε
log3 n)

Noisy Bin. Search [26,12] n ε > 2
3

O(n2 log 1
ε

log n)

Our Result(1) n ε > 4nεp + 2δ O(n2δ−2 log n2 log n/ε
ε

)

Our Result(2) w ε > 4nεp + 2δ O(w2δ−2 log w2 log n/ε
ε

)

Fig. 1. A comparison of tracing techniques where σ is the required minimum success
threshold for the adversary in decoding valid transmissions. The value εp corresponds
to essentially the probability of building a “keyless” decoder. The value n corresponds
to the number of users.

As it is evident by the table our first result matches the best previous tracing
strategy of noisy binary searching for constant adversarial thresholds but are
also capable of addressing smaller adversarial thresholds (e.g., σ = O(1

log n) etc.)
with comparable asymptotic behavior. In addition our second result improves
the round complexity bound much further if one assumes that w << n. We note
that the general approach we put forth here is fundamentally different than the
one of all these previous works and it is not apparent how to utilize a bound in
the number of corrupted users w in the previous strategies.

As final note, beyond [26], another previous work that identified the impor-
tance of round complexity was [16]; while the results of that paper exhibit a
linear dependency on w they employ much stronger assumptions that go beyond
the transmission capabilities of the majority of previous works: in particular,
they assume that the content can be watermarked with an alphabet that is lin-
ear in w. This is not applicable in many settings where traitor tracing is being
used (e.g., the distribution of cryptographic keys); further even in settings where
watermarking is possible the alphabet size is preferably binary or a small con-
stant independent of w. For this reason we do not include the results of [16] in
the comparison above.

Paper Organization. In section 2 we present our basic primitive, the multiuser
encryption scheme. In section 2.1 we put forth the simple linear length multiuser
encryption scheme as our basic work paradigm. For simplicity we present our

276 A. Kiayias and S. Pehlivanoglu

results over this scheme but they can be easily generalized to other settings
where we have sequences of subsets of users etc. In section 3 we present our
formalization of a tracing game that makes explicit the notion of tracing round
complexity. In section 4 we present our novel tracing algorithm. Given that our
formalization of the notion of tracing round complexity is new, we present first
a complete analysis of the standard linear tracing strategy in our model that is
then followed by our new tracing strategy based on fingerprinting codes. In the
appendix we present the proofs of all our claims.

2 Multiuser Encryption Schemes

Any traitor tracing scheme is based on an underlying encryption mechanism
called a multi-user encryption scheme (ME).

A multi-user encryption scheme ME is a triple (KeyDist,Transmit,Receive).
The parameter of the scheme is n, the number of receivers and is associated with
three sets K, M, C corresponding to the sets of keys, plaintexts and ciphertexts
respectively. We describe the I/O of these procedures below:

– KeyDist. It is a probabilistic algorithm that on input 1n, it produces
(tk, ek, sk1, . . . , skn). The decryption key ski is to be assigned to the i-th
user while ek is the encryption key. The tracing key tk is some auxiliary
information to be used for tracing that may be empty.

– Transmit. It is a probabilistic algorithm that given a message m ∈ M,
it prepares an element c ∈ C. We will write the following to denote the
distribution of the output: c ← Transmit(ek, m)

– Receive. It is a deterministic algorithm that on input c sampled from
Transmit(ek, 〈m〉) and a user-key ski for some i ∈ [n] where (tk, ek, sk1, . . . ,
skn) ← KeyDist(1n), it either outputs m or fails. Note that Receive can
also be generalized to be a probabilistic algorithm but we will not take ad-
vantage of this here.

We can consider a variant of the multi-user encryption scheme that is state-
ful where the algorithm Transmit is parameterized by a set of states denoted
by States. In a stateful multi-user encryption scheme, the Transmit algorithm
prepares an element c ∈ C as a function of the current state and updates the
state after each transmission. In this chapter, unless stated otherwise, we will be
discussing stateless multiuser encryption schemes.

The above determine the syntax of the algorithms that define a multiuser
encryption scheme ME. We expect from such a scheme to satisfy correctness in
the usual sense. In particular we require that:

Definition 1. Correctness. We say a multiuser encryption scheme ME is cor-
rect if for any n ∈ N, for any message m ∈ M and for any u ∈ [n], it holds
that

Prob[Receive(Transmit(ek, M), sku) ∈ {m}] = 1

where (tk, ek, sk1, . . . , skn) is distributed according to KeyDist(1n).

Improving the Round Complexity of Traitor Tracing Schemes 277

Security. In a setting where the hybrid encryption approach is employed, the
content transmission operates at two levels: first, a one-time content key k is
selected and encrypted with the multiuser encryption scheme. Second, the actual
message will be encrypted with the key k and will be transmitted alongside the
encrypted key. It follows that a minimum requirement would be that the scheme
ME should be sufficiently secure to carry a cryptographic key k. As an encryption
mechanism this is known in the context of public key cryptography as a “Key
Encapsulation Mechanism” [9]. The security model we present in this section
will take this formalization approach, i.e., it will focus on the type of security
that needs to be satisfied by a multiuser encryption scheme in order to be used
as a key encapsulation mechanism. The figure 2 is the standard security game
that captures the key encapsulation we require from the multi-user encryption
scheme.

TransmitOracle(m) ReceiveOracle(c, u)
retrieve ek; retrieve sku;
c← Transmit(ek,m); return Receive(c, sku);
return c;

Experiment ExpME
A (1n)

(tk, ek, sk1, . . . , skn) ← KeyDist(1n)
aux← ATransmitOracle(·),ReceiveOracle(·)(1n)
m0,m1

R← M

b
R← {0, 1}; c← Transmit(ek,m1)

b′ ← ATransmitOracle(·)(aux,mb, c)
return 1 if and only if b = b′

Fig. 2. The CCA-1 security game for multi user encryption scheme between the ad-
versary and the challenger

Definition 2. We say a multiuser encryption scheme ME is CCA-1 ε-insecure
if for any probabilistic polynomial time algorithm A, it holds that

Advkem
A (1n) = Prob[Expkem

A (1n) = 1]− 1
2
] ≤ ε

where the experiment Expkem
A is defined as in figure 2.

We note that ε in general is not supposed to be a function of n, i.e. the secu-
rity property should hold independently of the number of users present in the
recipient list. It is possible to define CPA version of the above security defini-
tion/game by not letting the attacker to access the ReceiveOracle on the second
line of the security game. In such case we say the multiuser encryption scheme
is CPA ε-insecure, if the above condition given in the definition holds for a CPA
adversary.

Note that typically key encapsulation mechanisms are defined without any
input beyond the encryption key (i.e., there is no plaintext part). For convenience

278 A. Kiayias and S. Pehlivanoglu

we take a different approach where we provide the input. In effect, we state above
that the encryption mechanism of the multiuser encryption matches the syntax
of regular encryption and is supposed to satisfy the security requirements of a
key encapsulation mechanism.

2.1 Linear Length Multiuser Encryption Scheme

We will now, present a straightforward multiuser encryption scheme that pro-
duces a ciphertext of length linear in number of receivers. We will name this
scheme by MEL which will be transmitting a single encrypted message to each of
the receivers. It is parameterized by an encryption scheme (E, D).

– KeyDistL: Given 1n it produces a set of keys {k1, . . . , kn} ⊆ K, ski is set
to be the key ki for i = 1, . . . , n, and sets ek = 〈k1, . . . , kn〉. The tracing key
tk is empty.

– TransmitL: On input m ∈ M and the encryption key ek = 〈k1, . . . , kn〉,
it transmits the encryption of the message m with ek by employing the
encryption scheme (E, D) as follows:

〈Ek1(m), . . . , Ekn(m)〉

– ReceiveL: Given the key ski = ki for some i ∈ [n] and a transmission of the
form 〈c1, . . . , cn〉, it returns Dki(ci).

We require the broadcast encryption scheme to be capable of transmitting a
cryptographic key. We will ask that this same requirement should also be satisfied
by the underlying cryptographic primitive (E, D), i.e., a cryptographic key should
be encapsulated safely by the underlying encryption primitive.

We formalize the security requirement as the following game: for a random
choice of the key k, the adversary A can adaptively choose plaintexts and see
how Ek encrypts them; similarly, is capable of observing the output of decryption
procedure Dk. The adversary is challenged with a pair (c, m) for which it holds
that either c ← Ek(m) or c ← Ek(m′) where m, m′ are selected randomly from
the message space. The goal of the adversary is to distinguish between the two
cases. This models a CCA1 type of encryption security, or what is known as a
security against lunch-time attacks.

Experiment Expkem
A

Select k at random.
aux← AEk(),Dk()()
m0,m1

R← M; b R← {0, 1}; c = Ek(m1)
b′ ← AEk()(aux, c,mb)
return 1 if and only if b = b′;

Fig. 3. The security game of CCA1 secure key encapsulation for an encryption scheme

Improving the Round Complexity of Traitor Tracing Schemes 279

Definition 3. We say the symmetric encryption scheme (E, D) is ε-insecure if
it holds that for any probabilistic polynomial depth circuit A

Advkem
A = |Prob[Expkem

A = 1]− 1
2
| ≤ ε

Observe that the above requirement is weaker that one would typically expect
from an encryption scheme that may be desired to protect the plaintext even if
it is arbitrarily distributed. We note though that the key encapsulation security
requirement will still force the encryption function to be probabilistic: indeed,
in the deterministic case, the adversary can easily break security by encrypting
mb and testing the resulting ciphertext for equality to c. Further, since we are
only interested in key encapsulation we can require the encryption oracle to only
return encryptions of random plaintexts (as opposed to have them adaptively
selected by the adversary).

Theorem 1. A linear length multiuser encryption scheme MEL satisfies cor-
rectness (cf. Definition 1) i.e., we assume that for all k, m ∈ K, M it holds
Dk(Ek(m)) = m. It is, further, CCA-1 ε-insecure in the sense of Definition 2
with ε ≤ 2n · εp where the underlying encryption scheme (E, D) is εp-insecure in
the sense of Definition 3.

The obvious shortcoming of the above scheme is that the ciphertext length is
linear in n. A nontrivial approach to reduce the transmission overhead involves
the usage of fingerprinting codes, see [5,1,6,7,33] for a non-inclusive citation list.
As the scope of this paper is not improving the transmission overhead we will
not discuss such constructions. We find the description of linear length traitor
tracing scheme sufficient to discuss the new formalization and to introduce the
new technique in identifying a traitor. This new technique is readily applicable
to all traitor tracing mechanisms involving some walking argument, i.e. querying
the adversary with special transmissions that randomizes the ciphertexts one by
one.

3 Tracing Game: Definitions

We define the property that is the characteristic of a traitor tracing scheme. We
first introduce the concept of the tracing game.

Definition 4. A tracing game is specified by any triple 〈KeyDist,Q,R〉, where
KeyDist is a probabilistic algorithm that on input 1n, it produces a tuple (tk, ek,
sk1, . . . , skn), R is a predicate and Q is a set of random variables.

We now explain the meaning of the tracing game. A tracing game is an inter-
action between two parties: the adversary and the tracer. The tracer has at its
disposal the encryption and the tracing key (resp. tk, ek) while the adversary has
a set of user keys, that is a subsequence of sk1, . . . , skn. The ultimate objective
of the tracer is to identify one of the keys that the adversary controls.

280 A. Kiayias and S. Pehlivanoglu

Next we set the general rules of engagement between the tracer and the ad-
versary that are determined by Q,R. The essence on the constraint that we will
place on the interaction is the following: as long as the tracer follows a certain
query distribution as defined in Q the adversary is obliged to formulate its re-
sponses in a way that they will satisfy the predicate R with sufficient probability.

More specifically the pair 〈A, T 〉 will be said to be σ-admissible according to
a tracing game 〈KeyDist,Q,R〉 with a parameter t provided that A, T follow
the proper rules of engagement. More specifically, σ-admissible would be a pair
of interacting algorithms that when T sends some message to A that follows a
random variable of Q then A as to provide a response that satisfies the predicate
R. Formally we have the following definition.

Definition 5. Let 〈A, T 〉 be a pair of interacting algorithms (the adversary and
the tracer) and let 〈KeyDist,Q,R〉 be a tracing game. For n ∈ N and any
C ⊆ [n] assume the following regarding the interaction of 〈A, T 〉 :

– Initialization. The tuple (tk, ek, sk1, . . . , skn) ← KeyDist(1n) is sampled
and the adversary A is given input {skj}j∈C while the tracer T is given
tk, ek.

– Round actions. A and T exchange messages in rounds until the tracer T
terminates. In the i-th round T goes first transmitting a value qi and then
party A responds by a value ai. In case A produces no output at a certain
round i the value ai is defined to be ⊥.

We say the pair 〈A, T 〉 is σ-admissible for the tracing game 〈KeyDist,Q,R〉
for t-coalitions, where t ∈ N if for any n ∈ N, C ⊆ [n], in case, qi is distributed
according to some member of Q it holds that for any C ⊆ [n] with |C| ≤ t,

Prob[R(C, tk, ek, sk1, . . . , skn, qi, ai) = 1] ≥ σ

where ai is the response of A to the query qi on input {skj}j∈C. We denote the
random variable that is the output of the tracer T after interacting with A by
〈A, T 〉(tk, ek, sk1, . . . , skn, C). We denote the maximum number of rounds that
take place before T terminates the protocol by r〈A,T 〉.

The definition of σ-admissibility in plain words it says that as long as the tracer
T follows some of the specified valid moves in Q the party A has to oblige
and satisfy with its response the predicate R with probability σ. We observe
that the predicate R takes into account the total information that is available
to both players and thus it is not something that the tracer T is necessarily
capable of computing by itself. In the coming section we will formulate various
tracing games that are resulting from interactions based on multiuser encryption
schemes.

We will also condider the following variations of the definition:

1. Stateful Tracing. Consider the set {Qh}h∈{0,1}∗ , a collection of sets of ran-
dom variables. In this specification, for the adversary to oblige and satisfy
the R predicate we require the tracing queries of T to be consistent with

Improving the Round Complexity of Traitor Tracing Schemes 281

the history of previous queries. More specifically, we define, for any i > 0,
h = 〈q1, . . . , qi−1〉 to be the history of the queries posed by T (it is empty if
i = 1), the next query qi should be distributed according to some member
of Qh in order to impose the σ lower bound in the satisfaction of the pred-
icate R for A. Note that the predicate R will also take the history of the
queries into account while producing a result. Stateful tracing is thus places
a further possible restriction on the tracer’s side as it drops any compliance
requirements on the part of A when the tracer becomes inconsistent with
the query history.

2. Alfresco. When tracing alfresco the tracer needs to form every query he
makes to be statistically indistinguishable from members of Q (or from Qh

in case of stateful tracing). More specifically, when the tracer has submitted
h = 〈q1, . . . , qi−1〉 queries, in the i-th round it must choose a query that is
statistically indistinguishable from a member of Q (from a member of Qh in
case of stateful tracing). Note that this is a different type of restriction on
the tracer T . Without this restriction the tracer has the flexibility to provide
queries to T that are outside of Q but they may perhaps be computationally
indistinguishable to some random variables ofQ forA; depending on the case
this may carry substantial advantages for the tracer that are stripped in the
case of alfresco tracing.

3. Tracing with Resetting. The adversary A is not allowed to maintain state
from one round to the next, i.e., in each round the tracer can “reset” the
adversary. This model weakens the adversary A as it is prohibited from
keeping knowledge of previous queries. This can be taken advantage of by
the tracer T . Alternatively, when the adversary maintains state across rounds
(i.e., the default in the definition above) we say we deal with history-recording
adversaries.

4. Abrupt adversaries. This is a strengthening of the adversarial model that
enables A to finish the game at a moment of its choosing. This means that
A may produce a special symbol as a response upon receiving which the
tracer T is not allowed to submit any further queries. We note that this is
not in violation of the basic tenet of being admissible : A when it forms a
σ-admissible pair with the adversary is still supposed to satisfy the R with
probability at least σ. If A is abrupt though it may decide to stop the tracing
game with probability as high as 1− σ if given a query from Q (and in fact
with even higher probability when given queries from outside of this set).

Now that we have defined the rules of engagement between the two players of
the tracing we will specify when game is winnable by the tracer.

Definition 6. We say that the tracing game TG = 〈KeyDist,Q,R〉 is winnable
with probability α for σ-threshold and t-coalitions if there exists a tracer T such
that for all A for which the pair 〈A, T 〉 is σ-admissible it holds that for all n ∈ N,
C ⊆ [n], |C| ≤ t,

Prob[∅ �= 〈A, T 〉(tk, ek, sk1, . . . , skn, C) ⊆ C] ≥ α

where (tk, ek, sk1, . . . , skn) is distributed according to KeyDist(1n).

282 A. Kiayias and S. Pehlivanoglu

Provided that TG is winnable with a tracer T , we define the tracing round
complexity roundc[TG, T] of the tracing game TG as the supremum of all r〈A,T 〉;
note that roundc[TG, T] is a function of t, σ and possibly of other parameters as
well.

It is interesting to note that the tracing game can be thought of as a privacy
game if we flip the semantics of what side is adversarial. In this alternative
interpretation, the good side is sitting on the adversary side and attempts to
output some data that meet some “usefulness criterion” determined byR and are
based on the private information of the users. On the other hand, the adversary
is sitting on the tracer side and attempts to violate the privacy of the users. This
perspective is in line with a recent work by Dwork et.al. [11] for which we do
not pursue this parallel further here.

In this work, we are interested in tracing games whose KeyDist algorithm
and the query distribution Q are related to multiuser encryption schemes. For
an s-ary multiuser encryption scheme ME = (KeyDist,Transmit,Receive), the
set of random variables Q is defined as the collection of all encryptions of plain-
texts that can be transmitted, i.e. denoting it by QTransmit, it contains the ran-
dom variables Transmit(ek, m) for any m ∈ M where (tk, ek, sk1, . . . , skn) ←
KeyDist(1n). In case the scheme ME is stateful over as a set of States, Q is
parameterized with States as well. We note that depending on the actual use
of a multiuser encryption scheme one may define the tracing game considering
only specific distributions of plaintext.

With respect to the predicate R there are more than one ways to define
it. Recall that intuitively we use this predicate to measure the success of the
adversary in responding to the transmissions in a normal mode of operation as we
define the query space Q to be sampled from Transmit. Indeed a σ-admissible
tracer-adversary pair is one for which Prob[R(C, tk, ek, sk1, . . . , skn, q, a) = 1] ≥
σ holds if a is the response of the adversary to the query q that is sampled as
an element of Q.

The exact choice of the way predicate R works will provide a classification of
types for tracing games. Jumping forward we give a glimpse to possible defini-
tions: for example, the adversary may return a key from the key space (not nec-
essarily among the {ski}i∈[n]) that successfully decrypts the query/transmission
q ← Transmit(ek, m) with σ probability for any choice of m ∈ M. Alternatively
the predicate R checks to see if the response a is the plaintext transmitted in
the encrypted form q. We note that R is capable of performing these checks in
polynomial-time as it has access to the full information of keys and the adver-
sarial input.

The exact choice of the predicate R and the restrictions on the queries posed
by the tracer T yield different types of tracing. Formalizing three types of tracing
games very roughly, our interest in this work is black-box traitor tracing.

Black-Box Tracing Game. In this setting, the tracer has merely black-box access
to the pirate decoder. Black-box traitor tracing may in some cases allow tracing
to be performed remotely without the physical availability of the pirate decoder.

Improving the Round Complexity of Traitor Tracing Schemes 283

The major challenge in the black-box traitor setting is to extract information
regarding the original keys utilised in the construction of the pirate decoder.
The tracer will communicate with the pirate decoder using a set of specially
crafted queries. These queries will not be necessarily normal transmissions as
the tracing center is allowed to communicate with the decoder in an arbitrary
way. The response of the decoder may be equal to the decrypted plaintext, or
be simply of binary form, essentially “yes”, in case of returning the content in
the cleartext form, or “no”, in case of responding arbitrarily or jamming.

In our exposition, we will use the threshold σ to impose the adversarial con-
straint related to the success probability of the pirate decoder in decrypting
regular transmissions. This is of particular importance, since tracing would be
impossible against a pirate decoder that is not required to operate correctly at
least some of the time.

Definition 7. A multi-user encryption scheme ME = (KeyDist,Transmit,
Receive) is a black box traitor tracing scheme for t-coalitions with success
probability α against σ-pirates if the black-box tracing game TG = 〈KeyDist,
QTransmit,RBB〉 against t-coalitions is winnable with probability α against σ-
adversaries.

The RBB is defined as follows: RBB(C, tk, ek, sk1, . . . , skn, q, a) is equal to 1 if
and only if a = m whenever q = Transmit(ek, m).

We define the tracing round complexity roundc[ME] of the multiuser encryption
scheme as the infimum of all roundc[TG, T] for which ME is winnable with the
tracer T .

One may also consider a more general view of the black box tracing model, that
is related to the case that the pirate decoder is a tamper resistant box, such as
a music player and the response of the decoder is not the exact decryption of
the transmission but rather the actual rendering of the cleartext transmission
on a display device. In such case, the tracer can still extract useful information
by observing whether the given ciphertext results in music being played or not.
It is possible to address such definitions in our framework by introducing a filter
algorithm that restricts some of the information contained in ai and having the
tracer have access to ai only through the filter.

Among the different variations of the tracing game described in Definition 4,
tracing with resetting is relevant to black-box tracing as it is defining the capa-
bilities of the pirate decoder the tracer has access to. We would like to motivate
this case briefly in the following paragraph for the context of the present section.

A pirate decoder is said to be resettable if the tracer has the capability to
reset the pirate decoder to its initial state and the decoder is available for a
new query. This gives the tracer the advantage of asking queries that will be
handled independently during the tracing process, i.e., effectively preventing the
decoder from using previous querying information submitted by the tracer in
order to decide its present action. In contrast, a history recording pirate decoder
“remembers” the previous queries made by the tracer and because the tracing
procedure is public, the history recording capability can be used by the decoder
to evade tracing.

284 A. Kiayias and S. Pehlivanoglu

Other Tracing Games In the setting for non-black box tracing game, the ad-
versary is considered to be a pirate decoder that is capable of receiving the
transmission through some key material that is made out of traitor keys. The
non-black box tracing game refers to the case where the response of the adversary
is defined to be the key material that makes the decoder succesful. This response
is not necessarily a real reaction of the adversary but rather an abstract notion
that in reality may include physical tampering on behalf of the tracer. In many
settings by “reverse-engineering” a decoder, it might be possible to retrieve the
key employed within. We note that a decryption key from the key-space K should
be available to the tracer because of the unlikelihood of performing decryption
without a key.

The scenario for pirate rebroadcasting aims to capture a different setting
compared to black-box tracing : when the tracer not only does not have access
to the pirate decoder physically but in fact it is incapable of performing tracing
outside of normal broadcast to the users. In this scenario, the adversary first
decrypts the content by using its traitor key material and then once it is in
clear text form, it rebroadcasts the content. Clearly a traitor tracing scheme
with merely black-box tracing capability is useless against a pirate rebroadcast
attack. The tracer is entirely powerless in handling such an attacker as the output
of the rebroadcast itself will potentially provide no information about the traitor
keys. It is easy to see that the restrictions imposed to the tracer in the pirate
rebroadcasting setting are captured by the notion of tracing alfresco as described
in the different variations of the tracing game in Definition 4. This is the case
as the tracer needs to perform its task by making queries that are statistically
indistinguishable from members of Qh where h is the previous queries of the
tracer.

4 Traceability in Multiuser Encryption Schemes

We will now show that the linear length multiuser encryption scheme MEL is a
black box traitor tracing scheme against resettable pirate decoders. Resettable
pirate decoders allow the tracer to ‘reset’ the adversary and to receive ‘fresh’
responses from the pirate that forgets the history of the interaction. This is the
key fact in our choice of tracing queries; i.e. we will deviate from the normal
set of random variables QTransmit and query the decoder with some special
tracing ciphertexts that will yield the identification of a traitor involved in the
piracy.

We will first give a high level description of the old technique in Section 4.1
and present our new technique which decreases the number of rounds. The new
technique is more like a replacement of the old technique based on walking
argument. Particularly, the improvement we made here is readily applicable to
the subset cover framework of [24] and any other traitor tracing schemes based
on fingerprinting codes (cf. [1, 6]).

Improving the Round Complexity of Traitor Tracing Schemes 285

4.1 Formal Analysis of Linear Tracing Strategy

We will now show that the linear length multiuser encryption scheme MEL is a
black box traitor tracing scheme against resettable pirate decoders. Recall that
resettable pirate decoders allow the tracer to reset the adversary and to receive
fresh responses forgetful of the history of the interaction. This is the key fact in
our choice of tracing queries; in particular we will deviate from the normal set
of random variables QTransmit and query the decoder with some special tracing
ciphertexts that will yield the identification of a traitor involved in piracy.

Recall that the linear length multiuser encryption scheme MEL transmits a
vector of ciphertext 〈Ek1(m), . . . , Ekn(m)〉 where (E, D) is the underlying sym-
metric encryption scheme of MEL and the key ki is available to the i-th receiver.
The tracing queries consist of the special transmission Transmits

L(ek, m) for
s = 0, 1, . . . , n by substituting the first s ciphertexts with random strings.

Transmits
L(ek, m) = 〈Ek1(R1), Ek2(R2), . . .Eks(Rs), Eks+1(m), . . . Ekn(m)〉 (1)

where Ri, for i = 1, . . . , s, is a random string of the same length as the message
m. Given that the adversary-tracer pair is σ-admissible the adversary will be
required to respond the queries of type Transmit0

L(ek, m) such that the pred-
icate RBB is satisfied with probability at least σ. On the other hand note that
the predicate necessarily fails with overwhelming probability for queries of type
Transmitn

L(ek, m). This suggests that the tracer can progressively randomize
the pattern of the ciphertext until a position is identified that the pirate-box
fails to decrypt successfully whenever it queries the tracing ciphertext.

The soundness of the above argumentation is supported by the following
lemma:

Lemma 1. Assuming that s /∈ C, any probabilistic polynomial time adversary
A, on input {ki}i∈C, distinguishes the distributions Transmits−1

L (ek, m) and
Transmits

L(ek, m) with probability at most 2εp where (tk, ek, sk1, . . . , skn)
← KeyDist(1n) assuming that the underlying encryption scheme (E, D) is εp-
insecure in the sense of Definition 3.

Let us define ps as the probability that the box decodes the special tracing
ciphertext Transmits

L(ek, m). Suppose, now, that the key ks is not available
to the adversary, it holds that the pirate decoder can distinguish between the
probability spaces Transmits

L(ek, m) and Transmits−1
L (ek, m) only with small

probability that is related to the insecurity of the underlying encryption scheme
E(·). As a result, it holds that |ps−1− ps| is sufficiently small with respect to the
advantage εp in being succesful in security game of the underlying primitive.

On the other hand, for a succesful pirate decoder it holds that p0 ≥ σ due to
the A-constraint described in the tracing game, while pn < 1

|M| (M denotes the
plaintext space.). Hence there must be some 0 < s ≤ n for which |ps−1 − ps| ≥
σ−1/|M|

n by the triangular inequality. If it turns out that σ−1/|M|
n > 2εp, this leads

the accusation of the user possessing ks due to the above lemma 1.

286 A. Kiayias and S. Pehlivanoglu

Having discussed roughly the interaction of a tracer exploiting the walking
argument, we want to note that there are two different ways to locate the proba-
bility drop between successive tracing queries. One is due to [22] which results the
number of rounds to be O(n3σ−2 log 1/ε) where ε is the security parameter. The
other interaction methodology is given by Naor, Naor and Lotspiech in [24, 26]
which resembles like a binary search of the unit gap where the probability drops
sufficiently enough to make the accusation. This methodology results an inter-
action between the tracer and the adversary which has O(n2σ−2 log 1

ε log3 n)
number of rounds.

For the sake of reference, we state(leaving the proof for full-version of the
work) that the MEL is a black-box traitor tracing scheme for which the cor-
responding tracing game for n-coalitions is winnable by a tracer exploits the
walking argument of [22] against any probabilistic polynomial time adversarial
algorithm A. The tracer that we will construct queries the special transmission
of the form Transmits

L(ek, m) for s = 0, 1, . . . , n.

Theorem 2. Consider a multiuser encryption scheme MEL that employs a sym-
metric encryption scheme that is εp-insecure in the sense of Definition 3. MEL,
on input (1n), is a black box traitor tracing scheme for n-coalitions with proba-
bility 1− ε against resettable σ-pirates with σ > 4nεp + 1

|M| . It further holds that

roundc[MEL, TS] ≤ 48n3·ln(8/ε)
(σ−1/|M|)2 .

4.2 Our New Tracing Technique Based on Fingerprinting Codes

Preliminaries on Fingerprinting Codes A fingerprinting code is a pair of algo-
rithms (CodeGen, Identify) that is defined as follows: CodeGen is an algo-
rithm that is given input 1n, it samples a pair (C, tk) ← CodeGen(1n) where
C is an (�, n, q)-code defined over an alphabet Q with � as a function of n and
q, and the identifying key tk is some auxiliary information to be used for iden-
tifying that may be empty. We may use � as a superscript, i.e. denoting by
CodeGen�, to emphasize the fact that � might be a function of n, q and some
other parameters.

Identify is a deterministic algorithm that on input pair (C, tk), sampled by
CodeGen(1n), and a codeword c ∈ Q�, it outputs a codeword-index t ∈ [n] or
fails. Informally speaking, we say a fingerprinting code is (α, w)-identifier if c is
constructed by a traitor coalition size of at most w by combining their codewords,
the Identify algorithm outputs a traitor with a failure probability of at most α.

Tracing Queries. The tracing queries of the new technique consist of the special
transmission TransmitS

L(ek, m) for any S ∈ [n] by substituting the ciphertexts
Eki(m) with encryption of random strings if i ∈ S.

TransmitS
L(ek, m) = 〈Ek1(e1), Ek2(e2), . . . , Ekn(en)〉 and ei =

{
Ri, i ∈ S
m, i /∈ S

(2)

Improving the Round Complexity of Traitor Tracing Schemes 287

where Ri, for i = 1, . . . , n, is a random string of the same length as the message
m. Given that the adversary-tracer pair is σ-admissible the adversary will be
required to respond the queries of type Transmit∅L(ek, m) = TransmitL(ek, m)
such that the predicateRBB is satisfied with probability at least σ. The predicate
is satisfied on responses of the queries of type TransmitS

L(ek, m) either with
probability at least σ/2 or less than. Both of these cases will result in existence
of a traitor in either S or [n] \ S if the probability σ is sufficiently large, i.e.
σ ≥ 4nεp.

The soundness of the above argumentation is based on the following lemma
and we will elaborate more on after the lemma:

Lemma 2. Let S ⊆ [n] satisfies C∩ S = ∅ for some set C ⊆ [n]. Any probabilis-
tic polynomial time adversary A, given {ki}i∈C, distinguishes the distributions
Transmit∅L(ek, m) and TransmitS

L(ek, m) with probability at most 2nεp where
(tk, ek, sk1, . . . , skn) ← KeyDist(1n) assuming that the underlying encryption
scheme (E, D) is εp-insecure in the sense of Definition 3.

The proof of the above lemma can be structured as a general case of the security
theorem 1 of the linear length multiuser encryption scheme. In the statement
above we considered the worst case where S = [n] for which the probability
difference is bounded by 2nεp as the Theorem 2 suggests.

Let us define pS as the probability that the box decodes the special tracing
ciphertext TransmitS

L(ek, m). Suppose, now, that no key ki for i ∈ S is available
to the adversary, it holds that the pirate decoder can distinguish between the
distributions Transmit∅L(ek, m) and TransmitS

L(ek, m) only with probability
at most 2nεp due to the Lemma 2, i.e. it holds that |p∅− pS| ≤ 2nεp where εp is
the insecurity of the underlying encryption scheme E(·).

On the other hand, if any key ki available to the adversary satisfies for i ∈ S,
then it holds that the pirate decoder can decrypt the tracing ciphertexts of
the form TransmitS

L(ek, m) with probability at most 2nεp due to the security
theorem put forth by the Theorem 1, i.e. pS ≤ 2nεp.

Suppose now that we have σ = p∅ > 4nεp. We query the adversary with the
tracing ciphertexts of the form TransmitS

L(ek, m) to approximate the success
probability pS. If pS > 2nεp then we obtain the fact that there exists a traitor
in the set [n] \ S. Otherwise it holds that σ − pS > 2nεp for which case we
observe the existence of a traitor in the set S due to the Lemma 2. The following
theorem 3 suggests that the failure in approximation of pS will be bounded by
ε′ for O(log 1/ε′

2δ2) many queries with σ > 4nεp + 2δ.
The new tracing technique is parameterized by a binary fingerprinting code

F = 〈CodeGen, Identify〉 that generates an (�, n, 2)-code C = {c1, . . . , cn}. We
then define the set Sj = {i : ci

j = 0}. Observe that [n] \ Sj = {i : ci
j = 1} hold.

We submit the adversary with the tracing queries of type TransmitSj

L (ek, m)
for j = 1, . . . , �. If it happens that σ > 4nεp then for each j = 1, . . . , � a traitor
exists in the set Sj or in the set [n]\Sj . We let pj = 0 if the Sj happens to contain
a traitor and pj = 1 holds otherwise. We finally obtain a pirate codeword p that
is produced by a coalition of traitors. Running the identification algorithm over

288 A. Kiayias and S. Pehlivanoglu

the pirate codeword p outputs a receiver index that is found to be traitor. The
overall failure probability is bounded by εf + �ε′ (for the failure in identification
and failure in approximation respectively).

Theorem 3. Consider a multiuser encryption scheme MEL that employs a sym-
metric encryption scheme that is εp-insecure in the sense of Definition 3. MEL, on
input (1n), is a black box traitor tracing scheme for w-coalitions with probability
1− εf − �ε′ against resettable σ-pirates with σ > 4nεp + 2δ. It further holds that
roundc[MEL, T F

KP] ≤ 3�·ln(2/ε′)
δ2 where � is the length of the binary fingerprinting

code F = (CodeGen�, Identify) which is a (εf , w)-identifier.

Note that the tracing round complexity is a function of �, the length of the
underlying fingerprinting code, the parameter δ required for the adversary’s ad-
missibility to approximate the success in decryption, and finally ε′, the security
parameter of the tracing scheme.

Instantiation 1. In our first instantiation of the tracer, we consider the optimal
codes of [33]. This provides a tracing against any size of traitor coalition for
O(n2δ−2 log 1

ε′ log n
εf

) number of queries submitted by the tracer where n is the
number of receivers and εf is the security parameter of the Tardos code. The
bound follows from Theorem 3 and the fact that the length of Tardos’ codes is
O(n2 log(n/εf)) where n is the number of codewords (that in our setting matches
the number of receivers). Note that this scheme tolerates an unlimited number
of traitors and revocations.

Instantiation 2. Our second instantiation employs again Tardos’ codes but as-
suming an upper bound on the number of traitors w. This provides for code
length of O(w2 log n

εf
) and given that in our setting we have that n is the num-

ber of codewords that should be equal to the number of receivers using theorem 3
we obtain a tracing round complexity of O(w2δ−2 log 1

ε′ log n
εf

), i.e., with only
logarithmic dependency on the number of receivers in the system.

In the above, we can set εf = ε/2 and ε = ε′

2� , thus obtaining the round
complexity of 3�·ln(4�/ε)

δ2 . Such selection will yield the results of the table 1(by

neglecting log n/εf as the asymptotic complexity already includes n2 log n/εf

εf
).

References

1. Boneh, D., Naor, M.: Traitor Tracing with Constant Size Ciphertext. In: ACM
Conference on Computer and Communications Security, pp. 501–510. ACM, New
York (2008)

2. Berkman, O., Parnas, M., Sgall, J.: Efficient dynamic traitor tracing. In: SODA
2000, pp. 586–595 (2000)

3. Boneh, D., Franklin, M.: An Efficient Public-Key Traitor Tracing Scheme. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer,
Heidelberg (1999)

Improving the Round Complexity of Traitor Tracing Schemes 289

4. Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with
Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

5. Boneh, D., Shaw, J.: Collusion-Secure Fingerprinting for Digital Data. IEEE Trans-
actions on Information Theory 44(5), 1897–1905 (1998)

6. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

7. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing Traitors. IEEE Transactions on
Information Theory 46(3), 893–910 (2000)

8. Chabanne, H., Hieu Phan, D., Pointcheval, D.: Public Traceability in Traitor Trac-
ing Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–
558. Springer, Heidelberg (2005)

9. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

10. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and re-
voking. In: PODC 2003, Proceedings of the Twenty-Second ACM Symposium on
Principles of Distributed Computing (PODC 2003), Boston, Massachusetts, July
13-16 (2003)

11. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On the complex-
ity of differentially private data release: efficient algorithms and hardness results.
In: STOC 2009, pp. 381–390 (2009)

12. Feige, U., Raghavan, P., Peleg, D., Upfal, E.: Computing with Noisy Information.
SIAM J. Comput. 23(5), 1001–1018 (1994)

13. Fiat, A., Tassa, T.: Dynamic Traitor Tracing. Journal of Cryptology 4(3), 211–223
(2001)

14. Gafni, E., Staddon, J., Lisa Yin, Y.: Efficient Methods for Integrating Traceability
and Broadcast Encryption. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 372–387. Springer, Heidelberg (1999)

15. Jin, H., Lotspiech, J.: Renewable Traitor Tracing: A Trace-Revoke-Trace System
For Anonymous Attack. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 563–577. Springer, Heidelberg (2007)

16. Jin, H., Lotspiech, J.B.: Unifying Broadcast Encryption and Traitor Tracing for
Content Protection. In: ACSAC 2009, pp. 139–148 (2009)

17. Jin, H., Lotspiech, J., Nusser, S.: Traitor tracing for prerecorded and recordable
media. In: Digital Rights Management Workshop 2004, pp. 83–90 (2004)

18. Kiayias, A., Pehlivanoglu, S.: Pirate Evolution: How to Make the Most of Your
Traitor Keys. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 448–465.
Springer, Heidelberg (2007)

19. Kiayias, A., Pehlivanoglu, S.: Tracing and Revoking Pirate Rebroadcasts. In: Ab-
dalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS,
vol. 5536, pp. 253–271. Springer, Heidelberg (2009)

20. Kiayias, A., Yung, M.: Self Protecting Pirates and Black-Box Traitor Tracing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 63–79. Springer, Heidelberg
(2001)

21. Kiayias, A., Yung, M.: On Crafty Pirates and Foxy Tracers. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 22–39. Springer, Heidelberg (2002)

22. Kiayias, A., Yung, M.: Traitor Tracing with Constant Transmission Rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002)

290 A. Kiayias and S. Pehlivanoglu

23. Kurosawa, K., Desmedt, Y.: Optimum Traitor Tracing and Asymmetric Schemes.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer,
Heidelberg (1998)

24. Naor, D., Naor, M., Lotspiech, J.B.: Revocation and Tracing Schemes for Stateless
Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

25. Naor, M., Pinkas, B.: Threshold Traitor Tracing. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)

26. Naor, D., Naor, M., Lotspiech, J.B.: Revocation and Tracing Schemes for State-
less Receivers. In: Electronic Colloquium on Computational Complexity (ECCC),
vol. 43 (2002)

27. Naor, M., Pinkas, B.: Efficient Trace and Revoke Schemes. In: Frankel, Y. (ed.)
FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

28. Hieu Phan, D., Safavi-Naini, R., Tonien, D.: Generic Construction of Hybrid Public
Key Traitor Tracing with Full- Public-Traceability, pp. 264–275.

29. Safavi-Naini, R., Wang, Y.: Sequential Traitor Tracing. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000)

30. Safavi-Naini, R., Wang, Y.: Traitor Tracing for Shortened and Corrupted Finger-
prints. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 81–100. Springer,
Heidelberg (2003)

31. Silverberg, A., Staddon, J., Walker, J.L.: Efficient Traitor Tracing Algorithms Us-
ing List Decoding. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
175–192. Springer, Heidelberg (2001)

32. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial Properties of Frameproof and
Traceability Codes. IEEE Transactions on Information Theory 47(3), 1042–1049
(2001)

33. Tardos, G.: Optimal probabilistic fingerprint codes. In: ACM 2003, pp. 116–125
(2003)

Password Based Key Exchange Protocols on
Elliptic Curves Which Conceal the Public

Parameters

Julien Bringer1, Hervé Chabanne1,2, and Thomas Icart3

1 Sagem Sécurité
2 Télécom ParisTech

3 This work has been done while this author was affiliated with
Sagem Sécurité and the University of Luxembourg

Abstract. We here describe a new Password-based Authenticated Key
Exchange (PAKE) protocol based on elliptic curve cryptography. We
prove it secure in the Bellare-Pointcheval-Rogaway (BPR) model. A sig-
nificant novelty in our work is that the elliptic curve public parameters
remain private. This is important in the context of ID contactless de-
vices as, in this case, there will exist most probably a way to link these
parameters with the nationality of the ID document owners.

Keywords: Password-based Authenticated Key Exchange, Elliptic
Curves, Privacy.

1 Introduction

To enable secure communication over insecure channels, two parties encrypt and
authenticate their messages using a shared secret key, usually obtained through
key exchange. A key exchange protocol enables the two parties to establish a
common secret in an authenticated way (Authenticated Key Exchange, AKE).
The goal is for the session key to be known only by the parties involved in
the protocol; the session key should be indistinguishable from a random data.
Password-based key exchange protocols are a convenient way to achieve this.
The two parties rely on a shared low-entropy secret (e.g. a four-digit PIN) to
derive a common high-entropy session key.

Password-Based Authenticated Key Exchange (PAKE) protocols are today
considered in the context of identity documents to ensure the security of the
communications between the chip and a reader [18]. With machine readable
travel documents (MRTD, cf. International Civil Aviation Organization speci-
fications [15]), the data stored on the machine readable zone (MRZ) are seen
as low-entropy shared information between the reader and the chip to establish
a secure link. For efficiency constraints, the protocols usually rely on elliptic
curves. Moreover, when these protocols will be used in real ID documents, the
parameters will almost surely depend on the nationality of the document owner
(each country keeps usually its freedom of choice in matter of cryptographic pa-
rameters with respect to its own evaluation of the associated level of security).

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 291–308, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

292 J. Bringer, H. Chabanne, and T. Icart

However, if one eavesdrops the communication resulting from executions of an
AKE protocol based on elliptic curves, then he would learn some elliptic curve
points and would be able to obtain the elliptic curve parameters [2]. He therefore
retrieves the owner’s nationality as a side information, thus leading to a privacy
leakage and security issues. This is our motivation for finding PAKE protocols
based on elliptic curves while hiding the elliptic curve parameters. To the best of
our knowledge, our work is the first to provide a secure solution to this problem.

1.1 Related Works

AKE protocols. Password-based authenticated key exchange was considered
first by Bellovin and Merritt [5]. The goal is to authenticate a key exchange
between two parties based on simple passwords possibly from a small dictio-
nary that an adversary may know. The basic idea behind the different schemes
described in [5] was to encrypt some messages of the key exchange (hence
the acronym EKE for Encrypted Key Exchange). This work was followed by
many variants and later on several security analysis in different models, e.g.
[5, 6, 3, 4, 9, 10, 8]. The main issue is the resistance against offline dictionary
attacks.

One of the most well-known variant of EKE is Diffie-Hellman EKE (DH-EKE)
which is merely a DH key exchange where at least one message exchanged un-
der DH is encrypted via the password. Bellare et al. introduced in [3] a formal
security model to grasp the specificity of password-based key exchange. This
model was used later in [9, 10] to establish the security of DH-EKE under ideal
assumptions (namely the ideal cipher model and the Random Oracle Model,
ROM). However ideal cipher model is not easily applicable to elliptic curves and
thus in its classical version, DH-EKE is not well adapted to elliptic curves. A
naive application of the encryption step of DH-EKE to elliptic curves points
would lead to an insecure scheme. Indeed, due to the redundancy in a point
representation, partition attacks [16] are made possible to distinguish possible
passwords from impossible ones and the security against offline dictionary at-
tacks does not hold (the main idea is that a decryption with a bad password of
an encrypted point would most probably not be a point over the elliptic curve).
In [8], a modification of the scheme is suggested by using either a point of the
curve or a point over its twist. Although, this enables to withstand the security
issue, the scheme is not proved in the model of [3] and becomes much less simple
than DH-EKE.

Another well-known and widely used PAKE is SPEKE (Simple Password Ex-
ponential Key Exchange) [14]. It is part of the IEEE P1363.2 standard. Likewise,
it is based on Diffie-Hellman key exchange but the password is here used to select
the generator of the DH key exchange, which is then operated without encrypted
messages. To do so, a hash of the password is used to generate a group element,
and the security is based on the ROM. Here again security against offline dictio-
nary attacks does not hold if you do not have a way to hash into elliptic curves
(cf. also Remark 5).

Password Based Key Exchange Protocols on Elliptic Curves 293

Finally, in both cases, DH-EKE and SPEKE do not hide the curve parameters
as they can easily be deduced from 2 eavesdropped points.

The BPR (Bellare-Pointcheval-Rogaway) model. Several security models
have been suggested to analyze the security of password-based AKE. The BPR
model [3] is now considered as a standard model for PAKE protocols. It captures
well the security requirements that a PAKE should satisfy. In particular even if
protocols remain subject to online guessing attacks, they should thwart offline
dictionary attacks. Different protocols have been shown secure in this model. The
model is based on the Find-Then-Guess principle where an adversary – mounting
an active attack against several protocol instances running concurrently – should
not be able to determine whether a session key is the actual one, i.e. that the key
should be indistinguishable from a random string. This also ensures an implicit
authentication between the two parties involved in the protocol. The model is
refined in [1] by requiring that all the concurrent session keys look random (Real-
Or-Random principle).

Admissible Encodings. The notion of admissible encoding has been intro-
duced by Boneh-Franklin in order to hash into elliptic curves since it is required
for their Identity-Based Encryption scheme [7]. Later, Coron and Icart [12] have
introduced a more general notion of admissible encodings. These encodings are
built out of deterministic functions that map bit strings into elliptic curves such
the ones of [13, 17].

An admissible encoding from {0, 1}∗ into a group is a function that enables to
transform any bit string into a group element. Moreover, to comply with the defi-
nition, there must exist a polynomial-time inversion algorithm that can compute
a bit string from a group element. The existence of this algorithm ensures that
a random group element is mapped into a random bit string. Thanks to these
encodings, [12] describes a way to create a random oracle into an elliptic curve.
From [12], we here only use the fact that a random point can be represented by
a random bit string.

This property can be used within the DH-EKE protocol, as it is much safer
to encrypt random bit strings, especially when the key is directly derived from
a low entropy password.

1.2 Our Contribution

We provide the first PAKE protocol which ensures that the elliptic curve public
parameters remain hidden. This holds even against dictionary attacks. This is
made possible thanks to the existence of admissible encodings. Since each elliptic
curve point can be seen as a random bit string, it enables to encrypt a point
by processing a bit string through a block cipher. The password can here be
seen as a seed for computing the secret key used in the block cipher. This has
a direct application within DH-EKE, as an eavesdropper cannot verify which
elliptic curve parameters are used. Since eavesdroppers only see “random” bit

294 J. Bringer, H. Chabanne, and T. Icart

strings, whatever are the elliptic curve public parameters, they cannot tell which
ones are used.

This first construction is a direct application of admissible encodings on ellip-
tic curves. Moreover, we provide a second PAKE protocol where we exploit the
fact that the knowledge of the elliptic curve parameters can be interpreted as a
shared secret. This is our main result as this enables to drop out the encryption
of EKE while the protocol can still be proved secure. We introduce complex-
ity assumptions based on the discrete logarithm problem ensuring that finding
one bit string which represents 2 points with known discrete logarithm from
2 different curves is hard. These assumptions enable us to prove the security
of our Diffie-Hellman AKE protocol where the password directly relies on the
elliptic curve parameters. The hardness of these new complexity assumptions
holds in the generic group model (as it is proved in the extended version of the
paper [11]).

2 Definitions

2.1 Admissible Encoding and Admissible Representation

We here recall the definition of an admissible encoding.

Definition 1. Given 2 random variables X and Y over a set S, we say that the
distribution of X and Y are (ε)-statistically indistinguishable if:∑

s∈S

|Pr(X = s)− Pr(Y = s)| < ε.

Moreover, given a security parameter, two distributions are statistically indistin-
guishable if they are (ε)-statistically indistinguishable for an ε negligible in the
security parameter.

Definition 2 (Admissible Encoding, [12]). A function F : S → R is said
to be an ε-admissible encoding if:
1. F is computable in deterministic polynomial time;
2. There exists such a probabilistic polynomial time algorithm IF : given r ∈ R

as input, IF outputs s such that either F (s) = r or s = ⊥, and the distribu-
tion of s is ε-statistically indistinguishable from the uniform distribution in
S when r is uniformly distributed in R.

When an admissible encoding from {0, 1}L into a curve exists, its inversion
algorithm IF enables to transform uniformly distributed elliptic curve points
into uniformly distributed bit strings. Encrypting an elliptic curve point thus
becomes easier when it is represented as a bit string. In particular, no trivial
partition attack is possible.

Password Based Key Exchange Protocols on Elliptic Curves 295

Icart’s Mapping in Characteristic 2. The equation which defines an elliptic
curve Ea,b in characteristic 2 is of general form:

(Ea,b) Y 2 + XY = X3 + aX2 + b

where a and b are elements of F2n . For an odd n, the map x �→ x3 is a bijection.
Let

fa,b : F2n �→ (F2n)2

u �→ (x, ux + v2)

where v = a + u + u2 and x = (v4 + v3 + b)1/3 + v. It is clear that, whenever
computing a cube root is an exponentiation, computing fa,b is a deterministic
polynomial time algorithm.

Lemma 1 (Hashing into Ea,b, [13]). Let F2n be a field with n odd. For any
u ∈ F2n , fa,b(u) is a point of Ea,b.

We here focus on characteristic 2 version of [13] for two reasons: the computation
is simpler than in the general case, and the inverting algorithm is deterministic
and easy to implement [11]. Note that this encoding is not the only known general
encoding for elliptic curves. In [17], Shallue and van de Woestijne proposed
another encoding. We choose to introduce only the encoding from [13] as the
encoding from [17] is not as simple to describe. But it is possible to adapt our
work to any existing admissible encoding.

Let E be an elliptic curve over a field F2n . From such a point encoding f and
a generator G of the group of points, an admissible encoding F from {0, 1}2n

to E can be constructed. Let l be a 2n-bit long string. This string is split in 2
substrings u||λ where λ is seen as a n-bit integer. We then introduce what we
call in the sequel the Coron-Icart admissible encoding:

F (l) = f(u) + λ ·G (1)

The resulting function is proved to be an admissible encoding in [12] with a neg-
ligible ε. The main condition on f is to be an encoding that satisfies a condition
weaker than in Definition 2, where the inversion algorithm needs to work only
on a polynomial fraction of the inputs and where the statistically indistinguisha-
bility is measured only with respect to this fraction. Such encoding is denoted
in [12] a weak encoding.

Admissible Representation. We introduce below the notion of admissible
representations. These representations are the outputs of IF , when it is applied
to an elliptic curve point.

Definition 3 (Admissible Representation). Assume that F is an admissible
encoding from S to R. For any r ∈ R, we define as an admissible representation
of r any output of IF (r).

296 J. Bringer, H. Chabanne, and T. Icart

An element r ∈ R may have many different admissible representations. Fur-
thermore, an uniformly random r ∈ R has an uniformly random admissible
representation s ∈ S. For instance, following Eq. (1) a random point P of an
elliptic curve admits an admissible representation of the form (u, λ) where u||λ
is a random bit string of size 2n.

2.2 BPR Security Model

This model defines the notions of partnership, session key freshness and security
against dictionary attacks. The model considers a set of honest players who do
not deviate from the protocol. The adversary controls all the communications
network. This is an active adversary formalized through queries. Users can have
many protocol instances running concurrently. The adversary can create, modify,
or forward messages and has oracle access to the user instances.

Let A and B be two users which can be part of the key exchange protocol
P . Several concurrent instances may run in different executions of P : they are
denoted by Ai and Bj . The server and the user share a low-entropy secret pw
uniformly drawn from a dictionary of size N .

Oracles. The protocol P consists of the execution of a key exchange algorithm.
It is an interactive protocol between Ai and Bj that provides the instances of A
and B with a session key sk. The adversary A has access to the following oracles
for controlling the interactions.

– Execute(Ai, Bj) simulates a passive attack where A eavesdrops the com-
munication. It causes an honest execution of P between fresh instances Ai

and Bj .
– Send(Ui, m) models A sending a message m to instance Ui (U = A or

B). The output is the message generated by U in processing the message
m according to the protocol and the state of the instance. It simulates an
active attack.

– Reveal(Ui) returns the session key of the input instance. This query models
the misuse of the session key by instance Ui. The query is only available to
the adversary if the targeted instance actually holds a session key (i.e. if the
protocol has correctly terminated).

Security Notions. Two instances are defined as partnered if both instances
have terminated correctly with the same session key. The freshness notion
captures the fact that a session key has not been directly leaked. An instance is
said to be fresh in the current protocol execution if the instance has terminated
and neither a Reveal query has been called on the instance nor on a partnered
instance.

The Test(Ui) query models the semantic security of the session key. It is
available to the adversary only if the aimed instance is fresh. When called, the
oracle tosses a coin b and returns the session key sk if b = 0 or a random value
(from the domain of keys) if b = 1.

Password Based Key Exchange Protocols on Elliptic Curves 297

The AKE security is then defined as follows. By controlling executions of
the protocol P , the adversary A tries to learn information on the session keys.
The game is initialized by drawing a password pw from the dictionary and by
letting A ask a polynomial number of queries. At the end of the game, A outputs
its guess b′ for the bit output by the Test oracle.

The AKE advantage of the adversary A for the key exchange protocol P is
denoted

Advake
P (A) = |Pr[b′ = b]− 1

2
|

Definition 4. The protocol P is said to be AKE-secure if the adversary’s
advantage is negligible in the security parameter, for any polynomially bounded
adversary.

A strategy of proof consists generally in the simulation of all the oracles to show
that there is no leakage.

Remark 1. An oracle Corrupt is also available in this model to analyze the
forward secrecy. When called with respect to one player, the adversary will
obtain the player’s password. For AKE with forward secrecy, the Test query
should not be related to a player corrupted before the Test query. Nevertheless,
corruption after the query is allowed.

2.3 Classical Assumption

We recall the classical Computational Diffie-Hellman (CDH) assumption.

Definition 5 (CDH Assumption). Let E be an elliptic curve and G be a
generator of a subgroup of points of prime order. Let A be an algorithm that:

– inputs two random points P = a ·G and Q = b ·G;
– and outputs R = ab ·G.

The CDH assumption ensures that the best polynomial time adversary has a
negligible probability of success, when the probability is taken over P and Q.

Throughout this work, we define CDHG(P, Q) to be the correct value of R. We
introduce in the next section assumptions related to this problem when the
elliptic curve parameters are unknown. In particular, given two elliptic curves
E1, E2, we rely on the hardness of finding two admissible representations l and
l′ such that the points CDH(F1(l), F1(l′)) ∈ E1 and CDH(F2(l), F2(l′)) ∈ E2 are
known (with Fi an admissible encoding into Ei, i ∈ {1, 2}).

3 A New Family of Complexity Assumptions

In order to prove the strength of our protocol, we introduce complexity assump-
tions that arise from the fact that we are using in the same scheme different
elliptic curve parameters. As already mentioned, these assumptions are new due

298 J. Bringer, H. Chabanne, and T. Icart

to our specific setting. However, we strongly justify the difficulty of these as-
sumptions in the sequel.

Throughout this section, we use the following definitions. Let k be a security
parameter. Let S be a set of N = poly(k) sets of elliptic curve parameters:
{ai, bi, qi, Gi}i∈[1,N] over a field F2n (i.e. elliptic curves Ei := Eai,bi over F2n

with a point Gi, generator of a subgroup of points of order qi) such that:

– for each i, an admissible encoding (cf. Definition 2) exists over Eai,bi ;
– qi is a prime integer and its cofactor is 2 (more generally we need the same

cofactor for all curves);
– for all i �= j, we have qi �= qj .

The last point ensures that there does not exist an isomorphism between the
different curves. It is important since it ensures that the discrete logarithm of a
point over Ei is not related to a discrete logarithm over another Ej .

Let Fi be the admissible encoding associated to Ei. In the sequel, we mainly
focus on the Coron-Icart admissible encoding obtained via Equation. (1) (Sec-
tion 2.1) with the point encoding from [13]. It ensures that an admissible repre-
sentation of size 2n exists for almost all points.

3.1 Hard Problems Around the Discrete Logarithm of the Points Pi

One question arises from this setting: Given a bit string l, is the discrete loga-
rithm of each Pi = Fi(l) in basis Gi still hard to compute?

Since an admissible encoding has an inversion algorithm, over each curve Ei,
given a point with an unknown discrete logarithm, we can almost always (except
with a negligible probability) compute one of its admissible representations and
thus we have:

Lemma 2. Assume that Fi is an admissible encoding. Computing the discrete
logarithm of any Pi = Fi(l) with the knowledge of l is as hard as solving the
discrete logarithm problem over the curve Ei.

When an adversary computes an admissible representation l of a point Pi over
Ei, we also want that for each admissible representation, his advantage on the
discrete logarithm of Pj = Fj(l) in basis Gj over Ej , for some j �= i, remains
negligible.

Definition 6 (Admissible Encoding Twin Discrete Logarithm Assump-
tion). Let A be an algorithm that:

– inputs S;
– outputs l and a pair (ri, rj) ∈

(
Z/qiZ

× × Z/qjZ
×) such that

Pi = Fi(l) = ri ·Gi and Pj = Fj(l) = rj ·Gj.

The AET-DL assumption holds if any polynomial algorithm succeeds with a neg-
ligible probability, when the probability is taken over S.

Password Based Key Exchange Protocols on Elliptic Curves 299

Remark 2. This assumption can be expressed differently for the Coron-Icart ad-
missible encoding of Eq. (1). Indeed, for this encoding, l is a pair of values (u, λ)
such that Fi(l) = fi(u) + λ · Gi. Clearly, finding u and a pair (ri, rj) such that
fi(u) = ri · Gi and fj(u) = rj · Gj is equivalent to solving the AET-DL prob-
lem. The problem is thus to find r1, r2 such that f−1

1 (r1 · G1) ∩ f−1
2 (r2 · G2) is

a non-empty set. For a random pair (G, G′) ∈ Ei × Ej the probability to have
a u such that fi(u) = G and fj(u) = G′ is at most 4 × 4

2n = 2−(n−4) for the
Icart mapping, because any point has at most 4 preimages (see [13]) through
this mapping. Since the scalar multiplication is a one-way map in each Ei, it is
computationally hard to find such pairs.

In addition to the above justification of the difficulty of the AET-DL problem, we
formally prove in the generic group model the hardness of this AET-DL problem
in [11].

Definition 7 (Admissible Encoding Twin Computational Diffie-
Hellman Assumption). Let A be an algorithm that:

– inputs S and l;
– outputs l′ and a pair of points (Ri, Rj) (both points different from the neutral

element) such that
CDHGi(Fi(l), Fi(l′)) = Ri and CDHGj (Fj(l), Fj(l′)) = Rj.

The AET-CDH assumption holds if any polynomial time adversary has a negli-
gible probability of success, when the probability is taken over S and l.

This assumption is stronger than the AET-DL assumption because the AET-
CDH problem can be solved using the l, ri, rj of the AET-DL assumption.

Remark 3. Due to the special form of admissible encodings defined by Eq. (1),
Fi can be replaced by fi in this assumption. For this reason, the AET-CDH
assumption ensures that an adversary, who receives a bit string u, cannot com-
pute u′ such that over Ei and Ej he knows both CDHGi(fi(u′), fi(u)) and
CDHGj (fj(u′), fj(u)). It is easily seen that CDHGi(fi(u′), fi(u)) = Ri implies
CDHfi(u)(Gi, Ri) = fi(u′). The AET-CDH problem is thus to find Ri ∈ Ei and
Rj ∈ Ej such that

f−1
i (CDHfi(u)(Gi, Ri)) ∩ f−1

j (CDHfj(u)(Gj , Rj)) �= ∅

As above, the probability for a random pair (G, G′) ∈ Ei × Ej to have a u′

such that fi(u′) = G and fj(u′) = G′ is at most 4 × 4
2n = 2−(n−4) for the Icart

mapping. Thanks to AET-DL, choosing u such that the adversary knows both
logarithms of Gi in basis fi(u) and Gj in basis fj(u) is hard. Thus either the
map Ri �→ CDHfi(u)(Gi, Ri) or the map Rj �→ CDHfj(u)(Gj , Rj) is one way.
Consequently, it is computationally hard to find a pair (Ri,Rj).

As for the AET-DL assumption, the proof of the validity of the AET-CDH
assumption in the generic group model is given in [11].

300 J. Bringer, H. Chabanne, and T. Icart

Remark 4. The AET-DL assumption is stronger than the DL assumption. Like-
wise, AET-CDH is a stronger assumption than the CDH assumption over any
elliptic curve Ei. Indeed, AET-CDH is trivial if, for one curve Ej , CDH is an
easy problem. The following algorithm illustrates this.

1. Randomly select ri, compute Pi = ri ·Gi, Ri = ri · Fi(l).
2. Compute l′ = IFi(Pi).
3. Compute Rj = CDHGj (Fj(l), Fj(l′)) and return l′, Ri, Rj .

We finally introduce a last assumption, which is the password based variant of
the AET-DL assumption.

Definition 8 (n-Password Based Admissible Encoding Twin Compu-
tational Diffie-Hellman Assumption). Let Pπ be a point over Eaπ,bπ . Let
l be an admissible representation of Pπ (Pπ = Fπ(l)). Let A be a polynomial
algorithm that:

– inputs S and l;
– outputs l′, K1, . . . , Kn, where each Ki is a point of one of the curves in S.

The n-PAET-CDH assumption holds if any polynomial adversary A has a prob-
ability 1/N + ε to have returned one Ki such that CDHGπ(Fπ(l), Fπ(l′)) = Ki,
where ε is negligible and N corresponds to the dictionary size (i.e. the number
of possible curves).

In this assumption, ε is the advantage of the algorithm over the value of π.
Indeed, a trivial way to solve the n-PAET-CDH problem is, from S and l, to
randomly choose a j ∈ [1, N] and to assume that j = π. This has a probability at
least 1/N to succeed. Further, this assumption implies the AET-CDH assump-
tion. Indeed an algorithm Aaet−cdh, which solves the AET-CDH problem, can
be transformed into an adversary which solves the n-PAET-CDH problem with
ε = 1/N . The following lemma proves that the converse is also true.

Lemma 3. The AET-CDH assumption implies the n-PAET-CDH assumption,
for any n.

Proof. Let Succx be the probability of success of the best adversary against the
problem x. Let Eventi be the event that an algorithm outputs i ≤ n points
Kj1 , . . . , Kji such that

CDHGji
(Fji(l), Fji (l

′)) = Kji

We have:

Pr
[
Succpaet−cdh

]
≤

min(N,n)∑
i=1

Pr [Eventi]
i

N

It is easily seen that for all i ≥ 2, Pr [Eventi] ≤ Pr
[
Succaet−cdh

]
. This leads to:

Pr
[
Succpaet−cdh

]
≤ Pr [Event1]

1
N

+ Pr
[
Succaet−cdh

] N − 1
2

≤ 1
N

+ Pr
[
Succaet−cdh

] N − 1
2

Password Based Key Exchange Protocols on Elliptic Curves 301

If Pr
[
Succaet−cdh

]
is negligible, since N is polynomial, then: Pr

[
Succpaet−cdh

]
=

1
N + ε 	

4 The EC-DH-EKE Protocol with an Admissible
Encoding

The Diffie-Hellman Encrypted Key Exchange (DH-EKE) protocol is roughly a
DH key exchange where each data sent is encrypted by a block cipher with a key
derived from a shared secret. This protocol has been introduced in [5], extended
in [3], and proved in the ideal cipher model and random oracle model under
the CDH assumption in [9]. Its basic flows are presented in Figure 1 (a complete
execution, with the final authentication checks, is given in Figure 2 in our elliptic
curve instantiation).

Device parameters : E, N, G Reader
password π password π
Compute Kpw = H(π) Compute Kpw = H(π)
Pick α Pick β

Compute G1 = α · G
z1=EKpw

(G1)
−−−−−−−−−−−−−−−−−→ Compute G2 = β · G

z2=EKpw
(G2)

←−−−−−−−−−−−−−−−−−
Compute K = α · DKpw (z2) Compute K = β · DKpw (z1)

Fig. 1. Basic flows of the DH-EKE scheme

Note however that it is assumed that the ideal cipher inputs group elements.
Consequently, a naive implementation of the DH-EKE over elliptic curves could
be insecure. Indeed, the encryption of a point P = (x, y) with a key Kpw = H(π)
leads to a ciphertext z = EKpw(x||y). However, for any password π′ �= π, the
decryption of z is not a point over the elliptic curve with an overwhelming
probability. This leads to an offline dictionary attack (see for instance [8]). More
generally, since there exists a redundancy in the representation of P = (x, y),
it is difficult to encrypt P without having a dictionary attack. The encryption
over the elliptic curves points should in fact be a permutation. One possibility to
address this problem is to represent P thanks to an admissible representation.
Hence applying a classical cipher would become possible.

4.1 Parameters

Let k be a security parameter. Let H be a hash function with {0, 1}l as range.
Let N be the size of D, the dictionary of the different passwords. Let Ea,b be an
elliptic curve over F22k+1 with an admissible encoding F (and a related inversion
algorithm IF) and G be a generator of its prime order subgroup of order q, with
a cofactor 2.

We assume that the protocol takes place between different devices D and a
reader R. Each device possesses a password π ∈ D.

302 J. Bringer, H. Chabanne, and T. Icart

4.2 EC-DH-EKE

The DH-EKE scheme has been proved secure in [9] in the ideal cipher model
and the random oracle model under the CDH assumption. However, the ideal
cipher requires to manage group elements as inputs.

Thanks to the admissible encoding, a group element can be seen as a bit-
string. For this reason, a real implementation of the protocol is much more
realistic because the ideal cipher can be instantiated by a cipher such as AES-
128 in ECB mode, while an ideal cipher over elliptic curve points is still to be
found. The resulting protocol is described by Figure 2.

Device Reader
parameters : Ea,b, N, G

password π password π
Compute Kpw = H(π) Compute Kpw = H(π)
Pick α Pick β
Compute G1 = α · G Compute G2 = β · G
Compute l1 = IF (G1) Compute l2 = IF (G2)

z1=EKpw
(l1)

−−−−−−−−−−−−−−−−→
z2=EKpw

(l2)
←−−−−−−−−−−−−−−−−

Compute l2 = DKpw (z2) Compute l1 = DKpw (z1)
Compute K = α · F (l2) Compute K = β · F (l1)
Compute K = H(K, z1, z2) Compute K = H(K, z1, z2)
Compute Kenc = H(K, 1) Compute Kenc = H(K, 1)
Compute Kmac = H(K, 2) Compute Kmac = H(K, 2)
Compute TD = H (Kmac, z2) Compute TR = H (Kmac, z1)

TD−−−−−−−−−−−−−−−−→
TR←−−−−−−−−−−−−−−−−

Abort if TR invalid Abort if TD invalid

Fig. 2. The EC-DH-EKE scheme with an Admissible Encoding

This finally leads to an efficient and secure protocol. Additionally, the elliptic
curves parameters remain hidden from an eavesdropper, since it only sees some
encryption of statistically indistinguishable bit string.

Remark 5. In the masked DH-EKE variant, which is proved in [10] in the ROM
only, the encryption primitive is a mask generation function instead of an ideal
cipher; the Diffie-Hellman values sent are masked by addition with a full-range
hash of the password. Here a similar problem arises: the hash needs to be a
ROM into elliptic curves. It is possible to use the [12] ROM construction, which
is based on Admissible Encoding, to hash the password. But in that case the
elliptic curves parameters will not be kept hidden as the resulting ciphertexts
are points on the curve.

Remark 6 (Eavesdroppers without the Elliptic Curve Parameters). The family
of DH-EKE protocol is secure against offline dictionary attacks under the CDH
assumption: an adversary has to compute K = CDHG(G1, G2) to get some infor-
mation on the password. Indeed, based on CDH and the ROM, the distribution

Password Based Key Exchange Protocols on Elliptic Curves 303

of G1, G2, TD, TR is computationally indistinguishable from the uniform distri-
bution over E2

a,b×{0, 1}2l. Using this property and the property of the admissible
encoding (cf. Definition 2), we know that l1 and l2 are bit strings computation-
ally indistinguishable from random ones. In the ideal cipher model, this implies
that the z1, z2, TD, TR are indistinguishable from random strings as well. For this
reason, an adversary who does not know the elliptic curve parameters, cannot
compute them, even if he has a list of curves parameters.

5 Our Proposal of Password Based EC-DH Key Exchange
without Encryption

In the EC-DH-EKE scheme (Figure 2), we use the admissible representation
in order to encrypt properly elliptic curves points. As an additional benefit,
this protocol also ensures the privacy of the elliptic curve parameters. Following
this last idea, we modify further the EC-DH-EKE protocol in order to base the
authentication directly on the knowledge of the elliptic curve parameters instead
of the knowledge of an additional password.

Our proposal is similar to our EC-DH-EKE variant: points are represented by
an admissible representation. But we did not encrypt the representations any-
more. Since the distribution of l1, l2, TD, TR is computationally indistinguishable
from the uniform distribution, exchanging these values in clear makes no differ-
ence from an eavesdropper point of view. This enables to avoid the use of an
ideal cipher in the security analysis. In the sequel, we denote our scheme EC-DH-
ARKE which stands for Elliptic Curve Diffie-Hellman Admissibly Represented
Key Exchange.

In our scheme, the dictionary of passwords becomes a set of different elliptic
curves parameters indexed by a table. This table is not secret. Before an authen-
tication, the device holder typesets an index over the reader, the latter can then
verifies whether this index corresponds to the stored elliptic curve parameters.

5.1 Parameters

Let k be a security parameter and N a polynomial integer in k. Let H0,H1,H2
be 3 hash functions with {0, 1}l as range.

Let F2n be a field such that there exist efficient admissible encodings and
such that 2n = O(22k). Let S = {ai, bi, Gi, qi}i∈[1,N] be a set of elliptic curve
parameters such that Gi is a generator of the prime order group of Ei = Eai,bi

of order qi and let Fi be the associated admissible encoding. It is assumed that
the cofactor is the same (2) for each group of points. We also assume that the
prime integers qi are pair-wise distinct. This last condition is sufficient to ensure
that no isomorphism exists between any pair (Ei, Ej) with i �= j.

5.2 The EC-DH-ARKE Protocol

During the initialization phase, each reader receives the set S as input and each
device receives one element of S as parameters. It can further define its own

304 J. Bringer, H. Chabanne, and T. Icart

public discrete logarithm based pair of public/secret keys with these parameters.
The index i related to these parameters is given to the device owner. We stress
that the set S does not need to remain secret. We use the index in order to
enable a user to typeset data related to the parameter.

At the beginning of each authentication, the device holder has to typeset one
index and then the reader verifies that the index corresponds to the elliptic curve
parameters used by the device. The protocol is illustrated in Figure 3.

Device Reader
password : Eaπ,bπ , qπ, Gπ password : Eaπ,bπ , qπ, Gπ

Pick α Pick β
Compute G1 = α · Gπ Compute G2 = β · Gπ

Compute l1 = IFπ (G1) Compute l2 = IFπ (G2)
l1−−−−−−−−−−−−−−−−→
l2←−−−−−−−−−−−−−−−−

Compute K = α · G2 Compute K = β · G1
= α · Fπ(l2) = β · Fπ(l1)

Compute K = H0(K, l1, l2) Compute K = H0(K, l1, l2)
Compute Kenc = H1(K, 1) Compute Kenc = H1(K, 1)
Compute Kmac = H1(K, 2) Compute Kmac = H1(K, 2)
Compute TD = H2 (Kmac, l2) Compute TR = H2 (Kmac, l1)

TD−−−−−−−−−−−−−−−−→
TR←−−−−−−−−−−−−−−−−

Abort if TR invalid Abort if TD invalid

Fig. 3. Our proposal EC-DH-ARKE

5.3 Security Result

Our proposal is secure in the random oracle model under the AET-CDH as-
sumption. More concretely:

Theorem 1 (AKE security). Let S be a randomly chosen set of N elliptic
curve parameters as above. Let π be an uniformly chosen index in [1, N]. Assume
that H0, H1, H2 are random oracles. Let A be an adversary in the BPR model
against the AKE security of our scheme within a time T , with less than qs

interactions with the parties, qp eavesdroppings and qh hash queries. We have:

Advake
EC−DH−ARKE(A) ≤ qsSuccqh−paet−cdh(T ′) + qpSucccdh(T ′) + ε

where T ′ = T +O(Q2), where Q = qs + qh + qp and ε is negligible if qs, qp and
qh are polynomial in k.

The security of this protocol relies on two ideas:

1. a passive eavesdropper does not get any information on the exchanged data
whenever the CDH is a hard problem for any curve in S;

2. an active adversary can find the password by an online dictionary attack
with a probability 1/N . In fact, an adversary can always be turned into
an algorithm, which solves the PAET-CDH problem with almost the same
probability.

Password Based Key Exchange Protocols on Elliptic Curves 305

Remark 7. By definition of an admissible encoding, the inversion algorithm runs
in probabilistic time (see Definition 2), thus the implementation of the protocol
could result on a non-constant execution runtime (that is depending of the curve
used, i.e. of the password); which in a practical application may represent a
privacy risk. In [11], we explain that a polynomial adversary cannot exploit this
information to distinguish two curves.

5.4 Security Proof

Proof. We use a sequence of game in order to prove the security of the protocol.
In the sequel Pr[Gi] denotes the probability in the game Gi that the adversary
outputs the good guess b′ = b.

Game G0: This is the real security game. A set of N parameters is chosen, the
device receives one element of S and the reader receives the same, while the
set S is given to the adversary. The reader and the device act as described in
Figure 3. We assume that H0,H1,H2 are random oracles into {0, 1}l.

Once the Test query is sent, following a randomly chosen bit b, the key Kenc

or a random string is returned. Hence

Advake
EC−DH−ARKE(A) = |Pr[G0]− 1/2|

Game G1: We simulate the device and the reader for each query to the Send,
Execute, Test and Reveal oracles, as the real players would do. We also
simulate the random oracles H0,H1,H2. This does not change the adversary
advantage but modifies the duration of the simulation because of the necessary
table lookups. We thus have T ′[G1] = T +O(Q2).

Game G2: We abort the simulation if a collision occurs while simulating one
of the random oracles. A collision occurs with a probability Q2/2l+1 for each
random oracle. We thus have:

|Pr[G2]− Pr[G1]| ≤ 5× Q2

2l+1

From this game, we are almost sure that the values of K are different. This
property is also true for Kenc, Kmac, TD, TR.

Game G3: We simulate the Execute oracle using random values. To distinguish
this game from the previous one, the adversary needs to solve the CDH problem
over a curve for at least one pair (l1, l2) exchanged during one of the Execute

queries. For this reason, we have:

|Pr[G3]− Pr[G2]| ≤ qpSucccdh(T ′)

Game G4: We abort the simulation when we get a collision on elliptic curve
points chosen at the beginning. Since there are qπ points in the curve, we have
that:

|Pr[G4]− Pr[G3]| ≤
Q2

qπ

306 J. Bringer, H. Chabanne, and T. Icart

From this game, we know that the admissible representations returned by the
simulation are pair-wise distinct.

Game G5: We abort when one triplet (CDHGπ(Fπ(l1), Fπ(l2)), l1, l2) is queried
a second time to H0, while l1, l2 are values exchanged during one instance I
initiated by the query Send. When this second query to H0 occurs, we know
that the adversary knows the value K of the instance I. We have assumed that
the adversary does not make two identical queries to any random oracle.

Before this abortion, the adversary does not have any advantage over the
password π since he has observed random values (due to the admissible repre-
sentations property, see Section 2.1) that he could not verify, without querying
H0 with a correct query. Once this event happens, we determine l, the value
amongst l1 or l2, that we sent when we simulated the Send query. We then get
all the triplets queried to the random oracle H0 by the adversary, which contains
l. These triplets form an answer to the PAET-CDH problem. For this reason we
have:

|Pr[G5]− Pr[G4]| ≤ qsSuccqh−paet−cdh(T ′)

Game G6: We do not use H1 and H2 anymore when we simulate the execution
of the protocol. For this reason, the Reveal query does not give any information
such as the Send query concerning TR and TD. We thus have:

Pr[G6] = 1/2

Furthermore, since the adversary did not compute K in any instance, there is
no difference from the adversary point of view between G5 and G6. So Pr[G5] =
Pr[G6]. 	

Note that in the above security result, the ROM hypothesis is needed only to
simulate the flow part (TD, TR), the ROM is not used in the simulation of the
first part (key exchange, l1, l2) of the protocol. Only our complexity assumptions
(cf. Section 3) are necessary for this part. This result holds in the forward secrecy
setting (cf. Remark 1) as well.

6 Conclusion and Further Works

This paper describes a new and efficient Password-based Authenticated Key Ex-
change protocol which is especially adapted for elliptic curves. Particularly, it
enables to keep the elliptic curves parameters hidden. In the context of contact-
less ID documents, this opens a way for implementing realistic solutions which
preserve privacy of the owners; especially their nationality. As extensions of this
work, a good perspective is to apply our technique on the enhanced versions
of EKE which are secure in a more general model (e.g. UC) or with standard
assumptions (standard model).

An implementation in a PKI context with the property that the curve pa-
rameters remain hidden is also a possible application of our idea. For instance,

Password Based Key Exchange Protocols on Elliptic Curves 307

a smartcard could contain a certified public key which is stored directly in its
admissible representation.

Note that the implementation issues are discussed in the characteristic 2 con-
text for simplicity. Applications to characteristic p > 2 when p is approximately
a power of 2 (i.e. a pseudo-Mersenne prime as for the curves recommended by
NIST) are also possible.

Acknowledgements. The authors thank the reviewers for their comments.

References

1. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

2. Barreto, P.: Why public elliptic curves parameters are public, Tales from the Cryp-
tographers (2005), http://www.larc.usp.br/~pbarreto/tales1.html

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Bellare, M., Rogaway, P.: The AuthA protocol for password-based authenticated
key exchange. In: IEEE P1363, pp. 136–3 (2000)

5. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: IEEE Symposium on Research in Security
and Privacy, pp. 72–84 (1992)

6. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: A password-based
protocol secure against dictionary attacks and password file compromise. In: ACM
Conference on Computer and Communications Security, pp. 244–250 (1993)

7. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

8. Boyd, C., Montague, P., Nguyen, K.Q.: Elliptic curve based password authenticated
key exchange protocols. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS,
vol. 2119, pp. 487–501. Springer, Heidelberg (2001)

9. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM
Conference on Computer and Communications Security, pp. 241–250. ACM, New
York (2003)

10. Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted key
exchange. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
145–158. Springer, Heidelberg (2004)

11. Bringer, J., Chabanne, H., Icart, T.: Password based key exchange with hidden el-
liptic curve public parameters. Cryptology ePrint Archive, Report 2009/468 (2009),
http://eprint.iacr.org/

12. Coron, J.-S., Icart, T.: A random oracle into elliptic curves. Cryptology ePrint
Archive, Report 2009/340 (2009), http://eprint.iacr.org/

13. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)

http://www.larc.usp.br/~pbarreto/tales1.html
http://eprint.iacr.org/
http://eprint.iacr.org/

308 J. Bringer, H. Chabanne, and T. Icart

14. Jablon, D.P.: Strong password-only authenticated key exchange. ACM Computer
Communications Review 26, 5–26 (1996)

15. International Civil Aviation Organization. Machine readable travel documents
website, http:/mrtd.icao.int/

16. Patel, S.: Number theoretic attacks on secure password schemes. In: IEEE Sympo-
sium on Security and Privacy, pp. 236–247. IEEE Computer Society, Los Alamitos
(1997)

17. Shallue, A., van de Woestijne, C.: Construction of rational points on elliptic curves
over finite fields. In: Hess, F., Pauli, S., Pohst, M.E. (eds.) ANTS 2006. LNCS,
vol. 4076, pp. 510–524. Springer, Heidelberg (2006)

18. Ullmann, M., Kugler, D., Neumann, H., Stappert, S., Vogeler, M.: Password au-
thenticated key agreement for contactless smart cards. In: RFIDSec (2008)

http:/mrtd.icao.int/

Okamoto-Tanaka Revisited: Fully Authenticated
Diffie-Hellman with Minimal Overhead�

Rosario Gennaro, Hugo Krawczyk, and Tal Rabin

IBM T.J. Watson Research Center
Hawthorne, New York 10532

rosario@us.ibm.com, hugo@ee.technion.ac.il, talr@us.ibm.com

Abstract. This paper investigates the question of whether a key agree-
ment protocol with the same communication complexity as the original
Diffie-Hellman protocol (DHP) (two messages with a single group ele-
ment per message), and similar low computational overhead, can achieve
forward secrecy against active attackers in a provable way. We answer this
question in the affirmative by resorting to an old and elegant key agree-
ment protocol: the Okamoto-Tanaka protocol [22]. We analyze a variant
of the protocol (denoted mOT) which achieves the above goal. Moreover,
due to the identity-based properties of mOT, even the sending of certifi-
cates (typical for authenticated DHPs) can be avoided in the protocol.

As additional contributions, we apply our analysis to prove the secu-
rity of a recent multi-domain extension of the Okamoto-Tanaka protocol
by Schridde et al. and show how to adapt mOT to the (non id-based)
certificate-based setting.

1 Introduction

Since the invention of the Diffie-Hellman protocol (DHP) [10], much work has
been dedicated to armor the protocol against active (“man in the middle”) at-
tacks. Designing authenticated Diffie-Hellman protocols has proven to be very
challenging at the design and analysis level, especially when trying to optimize
performance (both computation and communication). This line of work has been
important not only from the practical point of view but also for understandings
what are the essential limits for providing authentication to the DHP.

In particular, it has been shown that one can obtain an authenticated DH pro-
tocol with the same communication as the basic unauthenticated DHP (at least
if one ignores the transmission of public key certificates); namely, a 2-message
exchange where each party sends a single DH value, and where the two mes-
sages can be sent in any order. A prominent example of such protocols is MQV
[18] (and its provably-secure variant HMQV [17]) where the cost of computing
a session key is as in the basic unauthenticated DHP plus half the cost of one
exponentiation (i.e., one off-line exponentiation and 1.5 on-line exponentiations).

Protocols such as the 2-message MQV are “implicitly-authenticated proto-
cols;” that is, the information transmitted between the parties is computed
� Extended Abstract. Full version available at http://eprint.iacr.org/2010/068.

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 309–328, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

310 R. Gennaro, H. Krawczyk, and T. Rabin

without access to the parties’ long-term secrets while the authentication is ac-
complished via the computation of the session key that involves the long-term
private/public keys of the parties. Unfortunately, implicitly-authenticated proto-
cols, while offering superb performance, are inherently limited in their security
against active attackers. Indeed, as shown in [17], such protocols can achieve
perfect forward secrecy (PFS) against passive attackers only.

Recall that PFS ensures that once a session key derived from a Diffie-Hellman
value is erased from memory, there is no way to recover the session key even
by an attacker that gains access to the long-term authentication keys of the
parties after the session is established. PFS is a major security feature that
sets DHPs apart from other key agreement protocols (such as those based in PK
encryption) and is the main reason for the extensive use of DHPs in practice (e.g.,
IPsec and SSH). Adding PFS against active attackers to protocols like MQV
requires increased communication in the form of additional messages and/or
explicit signatures.

In this paper we investigate the theoretical and practical question of whether
the limits of DHPs can be pushed further and obtain a protocol with full se-
curity against active attackers (including PFS) while preserving the communi-
cation complexity of a basic DHP (two messages with a single group element
per message) and low computational overhead. We answer this question in the
affirmative by departing from implicitly authenticated protocols and resorting to
an old and elegant key agreement protocol: the Okamoto-Tanaka protocol [22].
We analyze a variant of the protocol (denoted mOT) which achieves the above
minimal communication, incurs a negligible computational overhead relative to
a basic DHP over an RSA group, and yet achieves provable security including
full PFS against active attackers1. Moreover, due to the identity-based [24] prop-
erties of mOT, even the sending and verification of certificates is avoided in the
protocol.
Our Results. The protocol mOT we analyze is a “stripped down” version of the
“affiliation-hiding” key exchange protocol by Jarecki et al. [15] (a version of key
agreement where parties want to hide who certified their public keys). We remove
all the extra steps designed to obtain affiliation-hiding (which is not a concern
for our paper) and focus on the 2-message version of the [15] protocol (the latter
includes a third message and the transmission of additional authentication infor-
mation for the parties to confirm they indeed have the same key). We present a
rigorous proof of security for mOT in the Canetti-Krawczyk (CK) Key-Agreement
Protocol model [5]. The security of the protocol in this model, including weak PFS
(i.e., against passive attacks only), is proven in the random oracle model under
the standard RSA assumption. For the proof of full PFS against active attack-
ers (and only for this proof) we resort to non-black-box assumptions in the form
of the “knowledge of exponent” assumptions. We stress that our goal is to prove
full security (including full PFS) for the 2-message protocol without the extra key

1 There are DH protocols that provide full PFS against active attacks with just two
messages, but they require to send (and process) additional information, e.g. explicit
signatures [27] or encrypted challenges [16].

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 311

confirmation steps: indeed the 3-message protocol with key confirmation can be
proven secure (including full PFS) under the standard RSA assumption without
requiring extra assumptions (this proof is actually implicit in [15]).

Modified Okamoto-Tanaka (mOT). The modified Okamoto-Tanaka protocol
mOT, is described in Figure 1 (for a precise specification see Section 3). We
describe the protocol as an identity-based protocol using a KGC (key generation
center) as this setting provides added performance advantages to the protocol.
Following [15], we include hashing operation on identities as well as the hashing
and squaring operations in the computation of the session key K (these steps
are not part of the original Okamoto-Tanaka).

The Modified Okamoto-Tanaka (mOT) Protocol

Setting: A Key Generation Center (KGC) chooses RSA parameters
N = pq (such that p and q are random safe primes), and exponents d, e, and
a random generator g of QRN , the (cyclic) subgroup of quadratic residues
modN .

KGC publishes N, e, g, two hash functions H (with range QRN) and H ′

(with range of the desired length of the session key), and distributes to
each user U with identity idU a private key SU = H(idU)d mod N .

Key agreement: A and B choose ephemeral private exponents x and y,
respectively.

A α = gxSA mod N � B

β = gySB mod N�

K̄A = (βe/H(idB))2x mod N K̄B = (αe/H(idA))2y mod N

K̄ = K̄A = K̄B = g2xye mod N

A and B set the session key to K = H ′(K̄, idA, idB, α, β)

Fig. 1. A and B share session key K. See Section 3 for full details.

Security Proof and Full PFS “for free”. The security result that sets our
protocol and work apart is our proof of full PFS for mOT, namely, perfect for-
ward secrecy against fully active attackers. The proof of full PFS (and only this
proof) requires two additional “non-black-box” assumptions: one is the well-
known KEA1 (knowledge of exponent) assumption [8,1] related to the hardness
of the Diffie-Hellman problem and the second is similar in spirit but applies to
the discrete logarithm problem (see Section 4). Enjoying full PFS is a major
advantage of mOT relative to efficient two-message protocols such as MQV that

312 R. Gennaro, H. Krawczyk, and T. Rabin

can only offer weak PFS. Indeed, in spite of mOT transmitting a single group
element in each of the two messages, it overcomes the inherent PFS limitations
of implicitly authenticated DHPs by involving the sender’s private key in the
computation of each protocol’s message. Most importantly, as we explain below,
this full security against active attackers is achieved with zero communication
and negligible computational overhead relative to the basic DHP. We believe this
to be not just a practical feature of mOT but also a significant contribution to
the theory of key agreement protocols showing that armoring the original DHP
against active attackers can be achieved essentially “for free”.

Performance. The cost of mOT remains essentially the same as in the basic
(unauthenticated) DHP: one message per party, that can be sent in any order,
with each message containing a single group element. No additional authentica-
tion information needs to be transmitted. Thanks to the identity-based proper-
ties of the protocol, public-key certificates need not be sent or verified. The only
extra operation is one exponentiation to the e-th power, which can be chosen to
be 3, and one squaring; that is, just three modular multiplications in all. How-
ever, note that mOT works over an RSA group and therefore exponentiations
are more expensive than over elliptic curves (where protocols like MQV can be
run). Yet, we also note that mOT can be implemented with short exponents,
say 160-bit exponents when the modulus is of size 1024 (or a 224-bit exponent
with a 2048-bit modulus). Our proof of the protocol holds in this case under
the common assumption that in the RSA group the discrete logarithm problem
remains hard also for these exponent sizes. In terms of practical efficiency, for
moderate security parameters (160-200 bit exponents) the cost of one on-line
exponentiation in mOT is competitive with the 1.5 exponentiations over elliptic
curves required by MQV. For larger security parameters the advantage is fully
on the elliptic curve side though in this case one has to also consider the over-
head incurred by certificate processing in a protocol like MQV (which is costly
especially for ECDSA-signed certificates).

Of course, beyond the practical performance considerations, mOT holds a
significant security advantage over 2-message MQV, namely, its full PFS against
active attackers. The fact that mOT can do so well with almost no overhead
over the underlying basic Diffie-Hellman protocol, and with full security against
active attacks, is an important theoretical (and conceptual) aspect of our work
pointing to the limits of what is possible in this area.

More discussion on the performance mOT can be found in the full version.

The Need for a Key Generation Center (KGC). As an identity-based
protocol, mOT avoids the need for certificates (a significant communication and
computational advantage). The id-based setting, however, introduces the need
for a KGC that generates and distributes keys to users. This results in a differ-
ent trust model than the traditional certification authority (CA) that certifies
public keys but does not generate or know the private keys of parties. Note,
however, that in mOT the private keys are used only for authentication. Thus,
while a KGC can impersonate a party, it cannot learn keys exchanged by that
party (we note – see full version – that the PFS property holds also against a

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 313

corrupted KGC). Note that a regular CA can also impersonate parties at will
by issuing certificates with the user’s name but with a private key known to the
CA. Interestingly, as we show below, mOT can be modified to work also in the
traditional CA setting.

Further results. In the full version we extend the above proofs and analysis to
a recent extension of the Okamoto-Tanaka protocol proposed by Schridde, Smith
and Freisleben [25] that allows the execution of the protocol between users that
belong to different domains, i.e., to different key generation centers (KGC).

The full version also shows that the mOT protocol and its extension from
[25] can be modified to work as “traditional” (i.e., not ID-based) key agreement
protocol.

Related work. Key agreement protocols (KAPs) have played an important role
in the development of identity-based cryptography, with Okamoto [21], Okamoto
and Tanaka [22], Gunther [12] being early examples of id-based cryptography.
(Even earlier, the work by Blom [2] on key distribution can be seen as a precursor
of id-based schemes.) With the flourishing of pairings-based cryptography, many
more id-based KAPs have been designed; yet getting them right has been a chal-
lenging task. See the survey by Boyd and Choo [3] and Chen, Cheng, and Smart
[6] for good descriptions and accounts of the main properties of many of these
protocols. Even to date it seems that very few (e.g., [4,29]) were given full proofs
of security (many others were broken or enjoy only a restricted notion of secu-
rity, such as partial resistance to known-key attacks). In all, the mOT protocol
studied here compares very favorably with other id-based and traditional KAPs
in provability and security properties (e.g., PFS) as well as performance-wise.

We already discussed the relationship of our work with [15]. We stress again
that the security analysis there is for the protocol with the extra key confirmation
messages, while we analyze the minimalistic 2-message protocol in Figure 1.

Multi-domain extensions of id-based KAPs have been proposed in [7,19] but
without full proofs of security. The multi-domain extension of the mOT protocol
that we fully analyze here is from Schridde et al. [25] which also contains a good
discussion of the benefits of multi-domain identity-based protocols.

In general, while interactive authenticated KAPs, especially those authenti-
cated with signatures, can easily accommodate certificates (which a party can
send together with its signature), avoiding the need for certificates constitutes a
significant practical simplification of many systems. In particular, they provide
more convenient solutions for revocation and less management burden [28]. The
Okamoto-Tanaka example shows that the identity-based setting can sometimes
even improve performance.

Open questions. We believe that the mOT protocol is remarkable for its
“minimalism”, providing full and provable authenticated key-agreement secu-
rity (including full PFS) with the same communication and minimal compu-
tational overhead relative to the underlying unauthenticated DHP. Yet there
are several ways one could hope to improve on this protocol and on our results;

314 R. Gennaro, H. Krawczyk, and T. Rabin

achieving any of these improvements would bring us even closer to the “ultimate”
authenticated DHP:

(i) Find a protocol with the same communication/computation/security
characteristics as mOT but which works over arbitrary dlog groups (in particular
elliptic curves). In this case, the minimalism of mOT would translate into opti-
mal practical performance (even a certificate-based protocol with these properties
would be very useful). (ii) Prove the full PFS security of mOT without resorting
to non-black-box assumptions (while we believe that proofs under these assump-
tions carry a very strong evidence of security, using more standard assumptions is
obviously desirable). (iii) Improve on mOT by avoiding the vulnerability of the
protocol to the exposure of the DH values gx, gy or the ephemeral exponents
x, y.

2 Preliminaries

Let SPRIMES(n) be the set of n-bit long safe primes. Recall that a prime p
is safe if p−1

2 is prime. Let N = pq be the product of two random primes in
SPRIMES(n); denote p = 2p′ + 1 and q = 2q′ + 1. Let e be an integer which
is relatively prime to φ(N) = 4p′q′.

We say that the RSA Assumption (with exponent e) holds if for any prob-
abilistic polynomial time adversary A the probability that A on input N, e, R,
where R ∈R Z∗

N , outputs x such that xe = R mod N is negligible in n. The
probability of success of A is taken over the random choices of p, q, R and the
coin tosses of A.

Remark (semi-safe primes). For simplicity, we assume that p = 2p′ + 1
and q = 2q′ + 1 are safe primes, namely, p′ and q′ are prime. We can relax
this assumption to require that gcd(p′, q′) = 1 and that neither p′ or q′ have
a prime factor smaller than 2� for a given security parameter �. With these
assumptions we get that QRN is cyclic and that a random element in QRN is a
generator with overwhelming (1 − 2−�) probability, two properties that we use
in our construction and analysis.

Throughout the paper we use the following well-known result of Shamir [23]:

Lemma 1. Let N, e, d be RSA parameters and f be an integer relatively prime
to e. There is an efficient procedure that given N, e, f (but not d) and a value
(xf)d mod N , for x ∈ Z∗

N , computes xd mod N .

The cyclic group QRN . If N is an RSA modulus product of safe primes, then
the subgroup QRN of quadratic residues in Z∗

N is cyclic of order p′q′. Let g be a
random generator of QRN (such generator can be found by squaring a random
element in Z∗

N (this algorithm yields a generator with overwhelming probability
and the resulting distribution is statistically close to uniform). In protocols and
proofs below we are going to generate random elements in the group generated by
g according to the uniform distribution and with known exponents (i.e., their dlog
to the base g). Such a random element X could be generated by choosing an integer

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 315

x ∈ [1..p′q′] uniformly at random and setting X = gx mod N . But this option
implies knowledge of the factorization of N (knowing the value p′q′ is equivalent to
factoring N). Parties who do not know the value p′q′ can approximate the uniform
distribution over 〈g〉 as follows: generate x ∈ [1..!N/4"] and set X = gx mod N .
It is not hard to see (cf. [9]) that if p′ and q′ are of the same size (as required here)
then the uniform distributions over [1..p′q′] and [1..!N/4"] are statistically close
with an exponentially small gap.

Let g be a random generator of QRN and let X = gx mod N and Y = gy mod
N two random elements in QRN . We say that the Computational Diffie-Hellman
(CDH) Assumption (for N and g) holds if for any probabilistic polynomial time
adversary A the probability that A on input N, g, X, Y outputs Z such that
Z = gxy mod N is negligible in n. The probability of success of A is taken over
the random choices of p, q, x, y and the coin tosses of A. We know from [26] that
the hardness of factoring N (and therefore the RSA Assumption) implies the
CDH Assumption.

3 The Modified Okamoto-Tanaka Protocol

Protocol Setup. A key generation center KGC (for “trusted authority”) chooses
an RSA key (N, e, d), where N is the product of two safe primes p, q. As usual e, d
are such that ed = 1 mod φ(N). The KGC also chooses a random generator g for
the subgroup of quadratic residues QRN . The public key of the KGC is (N, e, g)
and its secret key is d.

Two hash functions H, H ′ are public parameter. The first function H outputs
elements in the group generated by g (this can be achieved by setting H to be the
square mod N of another hash function with rangeZ∗

N). The second hash function
H ′ outputs k-bit strings, where k is the length of the required session key.

Each user in the system has an identity; for convenience we sometimes asso-
ciate a name to an identity. For example, Alice will be the name of a party while
her identity is denoted idA. We also denote A = H(idA) and B = H(idB) (thus,
A, B are elements in QRN). When Alice requests her secret key from the KGC,
she receives the value SA = Ad mod N as her secret key (we can think of this as
the KGC’s RSA signature on Alice’s id).

The key agreement. Alice chooses a random integer x from a set S that
we specify below. She then computes X = gx mod N and sends to Bob α =
X · SA mod N . Bob chooses a random y in S, sets Y = gy mod N , and sends
to Alice the value β = Y · SB mod N . Alice computes a shared secret value
K̄A = (βe/B)2x mod N while Bob computes it as K̄B = (αe/A)2y mod N . (Alice
and Bob check that the incoming value is in Z∗

N or else they abort the session.)
Notice that the values K̄A, K̄B are equal:

K̄A = Y 2xe · (Se
B/B)2x = Y 2xe(Bed/B)2x = g2xye = ((XSA)e/A)2y = K̄B

Alice and Bob set K̄ as this shared secret value K̄ = K̄A = K̄B = g2xye mod N
and set the session key to K = H ′[K̄, idA, idB, α, β]. Since we want both parties

316 R. Gennaro, H. Krawczyk, and T. Rabin

to compute the same session key we need to determine an ordering between
idA and idB, and between α and β in the input to the hash; for example, a
lexicographic ordering (note that we are not assuming necessarily that there is
a definite role of “initiator” and “responder” in the protocol, and hence we do
not use such roles to determine the ordering of the above values).
Protection of ephemeral values. We specify that the ephemeral Diffie-Hellman
values X, Y chosen by the parties be given the same protection level as the private
keys SA, SB (indeed, learning these ephemeral values is equivalent to learning the
private keys). In particular, if these values are stored in the (less secure) session
state they need to be stored encrypted under a (possibly symmetric) key stored
with the private key. (This is analogous to the need for protecting the ephemeral
value k in a DSA signature.) In addition, we specify that in the computation of
the session key, the hashing of the value K̄ be performed in protected memory
and only the session key be exported to a session state or application (learning
the shared secret K̄ value opens some attack venues as explained in the full
version).

The exponents set S and performance considerations. The performance
cost of the protocol is dominated by the exponentiation operations; hence the
choice of the set S from which ephemeral exponents are selected is important.
A first choice would be to define S as the interval [1..!

√
N/2"]. In this case, as

shown in [11] (following the results in [14]), the two distributions

{gx for x ∈R [1..!N/4"]} and {gx for x ∈R [1..!
√

N/2"]}

are computationally indistinguishable under the assumption that factoring N is
hard. Therefore, one can use exponents of length half the modulus without any
loss in security. However, performance can be significantly improved by setting
S to be the set of exponents of length κ, where κ is twice the security parameter
(e.g., κ = 224). Indeed in this case, the security of the protocol relies on the
common assumption that discrete log (over Z∗

N) is hard also when the exponents
are of length κ. Indeed (see Lemma 3.6 in [11]), this assumption implies that the
two distributions

{gx for x ∈R [1..!N/4"]} and {gx for x ∈R [1..2κ]}

are computationally indistinguishable, and hence using the short or long expo-
nents is equivalent. Therefore, we recommend the protocol to be implemented
using short exponents; in particular, we use this case when discussing the pro-
tocol’s performance.

3.1 Proof of the mOT Protocol

We prove first the following theorem showing the basic security of the mOT
protocol. In the full paper we prove further security properties, namely, resistance
to KCI and to reflection attacks, and weak PFS. We defer the proof of full PFS
(which requires a more involved proof and additional assumptions) to Section 4.

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 317

Theorem 1. Under the RSA assumption, if we model H, H ′ as random oracles,
the mOT protocol is a secure identity-based key agreement protocol.

Proof. The proof is carried in the Canetti-Krawczyk Key-Agreement security
model [5] (a succinct summary of this model is presented in the full version)
and it follows a typical simulation/reduction argument: We assume an efficient
KA-attacker M that breaks the security of the mOT protocol and use it to build
an algorithm that inverts RSA on random inputs.

We start by noting the following fact about an attacker against mOT: Since the
session identifier (idA, idB, α, β) is hashed together with the shared secret value
K̄ to obtain the session key K, we know that two different sessions necessarily
correspond to two different session keys. Moreover, since the hash function H ′

is modelled as a random oracle then the only way for the attacker to calculate,
identify, or distinguish a session key is by computing the value K̄ and explicitly
querying it from H ′.2

We call the algorithm that we build for inverting RSA a “simulator” (denoted
SIM) since it works by simulating a run of the mOT protocol against the KA-
attacker M which is assumed to win the test-session game with non-negligible
probability.
Input to SIM . The input to SIM is a triple (N, e, R) where N, e are chosen
with the same RSA distribution as used in the mOT protocol and R is a random
element in Z∗

N . The goal of SIM is to output Rd mod N where d is such that
ed = 1 mod φ(N).
Some conventions: We often omit the notation “modN” when operating in the
group Z∗

N . When saying that we chose a random element u from QRN we mean
choosing v ∈R Z∗

N and setting u = v2 mod N . To choose a value u in Z∗
N with

a known “RSA signature” s = ud, we first choose s and then set u = se. If
U = gu, W = gw are elements of QRN we denote with DHg(U, W) the value
guw, i.e. the result of the Diffie-Hellman transform in base g applied to U, W .

SIM runs a virtual execution of the mOT protocol (consisting of multiple
sessions) against the attacker M, simulating all protocol actions, including the
determination of private keys and responses to queries to the functions H, H ′

made byM. In particular, we allow SIM to “program” the hash functions H, H ′

(as long as outputs are chosen independently of each other and with uniform
distribution) as is customary when modeling H, H ′ as random oracles.
Identities and keys. Each participant in the protocol has an identity, idP , possibly
chosen by M; we denote P = H(idP). Of all party identities participating in
the protocol, SIM chooses one at random; we denote it by idB and will refer
to this party as Bob. For each participant idP other than Bob, SIM chooses a

2 Note that if parties A and B have a session where they exchanged messages α
(from A to B) and β (from B to A), and another session where the same messages
were exchanged but in the reverse direction, both sessions will have the same key.
However, as long as one of A and B is honest, each session will have at least one
fresh message (except for the negligible probability that two random values in QRN

coincide), hence the above cannot happen even with the attacker’s intervention (who
can only choose one message in each session).

318 R. Gennaro, H. Krawczyk, and T. Rabin

random value p ∈R QRN and sets P = H(idP) = pe. In this way, SIM also
knows the private key of the participant, i.e., SP = P d = p (note that P and SP

are elements of QRN). For Bob, SIM sets H(idB) = B = R2 mod N , where R
is the input to SIM (note that R2 is random in QRN).

Choosing a QRN generator. SIM sets the random generator g of QRN to be
used in the protocol as following: it chooses random r̄ ∈R QRN , sets r = r̄e, and
g = (rB)e. Note that with these choices B = gd/r and r̄ = rd; also note that g
and B are random in QRN and independent.

Guessed test session. Before starting the simulation of session establishments,
SIM chooses at random a (future) session that it conjectures will be chosen by
M as the test session. SIM does so by guessing the holder of the test session
among all the parties in the orchestrated protocol run (we refer to this party as
Alice) and guessing the order number of the session among all of Alice’s sessions.
This allows SIM to know when the guessed session is activated at Alice in the
protocol’s run. In addition, SIM also guesses that the peer to the test session
will be Bob (defined above). We specify that, if at any point in SIM ’s simulation,
it is determined from the protocol’s run that the guessed session is not to be
chosen as the real test session by M (e.g., if either Alice or Bob are corrupted, or
another test session is chosen by M, etc.) the simulator aborts. The probability
that the guessed session will actually be chosen by M as the test session is
non-negligible (as long as the simulation of the protocol by SIM is correct).

Session Interactions (non-test sessions). Attacker M can choose to initiate and
schedule sessions between any two participants and can input its own values
into the various sessions, either by utilizing corrupted players or by delivering
messages allegedly coming from honest parties. The simulator SIM needs to
act on behalf of honest parties in these interactions. Simulating the actions of
any uncorrupted party other than Bob is simple for SIM , as it knows their
private keys and can choose their ephemeral exponents. Sessions in which Bob
is a participant are more problematic since SIM does not know Bob’s private
key SB = Bd. Whenever Bob is activated in a session, SIM will set the value
β = gb/r̄ as the outgoing message from Bob where b ∈R [1..!N/4"] is chosen
afresh with each activation of Bob and the value r̄ is fixed and defined above.
Clearly, β is distributed uniformly over QRN as in the real runs of mOT. While
SIM cannot compute session keys with such choice of β we will still see that it
can answer the attacker’s session-key queries.

Response to party corruption and session key queries (non-test sessions). If at
any point M corrupts a party, SIM provides all information for that party in-
cluding the private key (which SIM knows). Note that if the attacker asks to
corrupt Bob, SIM aborts since it is a sign that SIM did not guess correctly the
test session. Session-key queries for sessions where one of the messages was gen-
erated by an honest party other than Bob, can be answered by SIM who chooses
the ephemeral exponent for the session. The problematic cases are sessions where
Bob is a peer and for which the incoming message to Bob was chosen by the
attacker (rather than by SIM itself), and provided to Bob as coming from some

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 319

party idC (we refer to it as Charlie), which may be honest or corrupted, but
different than Bob3. In this case SIM does not know the ephemeral exponents
of either party to the session so it cannot compute the session key. Instead the
simulation proceeds as follows.

The idea is that as long as M does not query the session value K̄ from the
random oracle H ′, then SIM can answer the session key query with a random
value. However, if M does know the value K̄, and it actually queries H ′ on
this value, then SIM needs to answer consistently. Specifically, we are dealing
with a session where the peers are Bob and Charlie, whose hashed identities
are B = H(idB) and C = H(idC), respectively, and the exchanged values are
γ, chosen by the attacker, and β chosen by SIM as specified above. Thus, the
session key is H ′(K̄, idC , idB, γ, β) for the appropriately computed K̄. Before
answering the session-key query, SIM needs to check whether an input of the
form (Q, idC , idB, γ, β) was queried from H ′ where Q = K̄. If such a query with
Q = K̄ was indeed performed then SIM will answer the session-key query with
the existing value H ′(Q, idC , idB, γ, β). If not, SIM will choose a random value
ρ in the range of H ′ and will return ρ as the value of the session key.

The main question is how will SIM verify whether Q = K̄ for a prior query.
The value K̄ can be represented as DHg(Z2, βe/B) for Z = γ/SC . By our choice
of B = gd/r, β = gb/r̄ and r = r̄e, we have that βe/B = (gebr̄−e)/(gdr−1) =
geb−d and therefore,

K̄ = DHg(Z2, βe/B) = DHg(Z2, geb−d) = Z2(eb−d) (1)

Now, since exponentiation to the e is a permutation over Z∗
N , we have that

Q = K̄ if and only if Qe = K̄e, and by Equation (1) this is the case if and only
if Qe = (Z2(eb−d))e = Z2(e2b−1). But this last computation can be performed
by SIM who knows all the involved values, including b that SIM chose and Z
(since Z = γ/SC and SIM knows both γ and SC).4

Simulating the test session. When M activates the session at Alice that SIM
chose as its guess for the test session, SIM acts as follows. Let the identity of
Alice be idA and denote A = H(idA). Since Alice is assumed to be the holder of
the test session, it means that it is Alice (or SIM in our case) who chooses the
outgoing message α from the session, not the attacker. SIM sets this message
to the value α = (rB)fSA, where r, B are as described at the begining of the
simulation, SA = Ad is Alice’s private key (which SIM knows) and f is chosen
as f = te+1 for t ∈R [1..!N/4"]. With this choice, α’s distribution is statistically
close to uniform over QRN . Indeed, we have (rB)te+1 = (gd)te+1 = gdgt with
3 We assume for the time being that Bob does not run a KA session with itself (thus
C �= B). The case where both session peers have the same identity is called a
reflection attack and is proved in the full version.

4 We note for future reference, that knowing SC is not strictly necessary for SIM
to carry this simulation step. If SIM does not know SC (as in some other proofs
in this paper) it does not know Z either. Instead SIM will use Ze = γe/C which
it does know, and instead of checking Qe = Z2(e2b−1) it will check the equivalent
Qe2

= (Ze)2(e
2b−1).

320 R. Gennaro, H. Krawczyk, and T. Rabin

t ∈R [1..!N/4"] (recall that in the real protocol Alice chooses α = gxSA with
gx also statistically close to uniform distribution over QRN). It also makes it
independent of other values in the protocol including B and β.

The peer to the test session is Bob (or else SIM aborts) and the incoming
message is denoted by β. This value can be chosen by the attacker (which delivers
it to Alice as coming from Bob) or by Bob itself. In the latter case, β is chosen by
SIM as described above for other sessions activated at Bob. In case M chooses
β, it can be any arbitrary value. Below, we make no assumption on β other than
being in Z∗

N . The session key in this case is K = H ′(K̄, idA, idB, α, β) where K̄
is computed as follows: if X = gx denotes the value α/SA then K̄ = (βe/B)2x.
Now, by our choice of parameters α, g, B, r (in particular, rB = gd), we have
that X = α/SA = (rB)f = (gd)f and hence x = df mod φ(N)/4. Thus,

K̄ = (βe/B)2df (2)

Since SIM cannot compute this value (it does not know the ephemeral exponent
of either peer to the session) we need to show how SIM responds to a test-session
query (assuming the guessed session is indeed chosen by M as the test session).
Upon such a query, SIM will check if there was any query made to H of the
form (Q, idA, idB, α, β) and if so, it will check if Q equals the session value K̄.
This is done by checking whether Qe = (βe/B)2f (which involves values known
to SIM). Indeed, note that Q = K̄ if and only if Qe = K̄e (as exponentiation
to e is a permutation) and using Equation (2) we have K̄e = (βe/B)2f . If SIM
identifies such a Q, SIM has learned K̄ from which it can compute its target
RSA forgery as we explain below. If not, SIM responds to the session-key query
with a random value. From now on, it monitors M’s queries to H to see if a
Q = K̄ is identified, in which case SIM learns the session key and outputs the
forgery.

Computing the forgery Rd. The goal of SIM is to compute Rd mod N where
R ∈R Z∗

N was given to SIM as input. We now show that whenever SIM learns
the session key corresponding to the test session (as shown above) it can compute
Rd. Indeed, it is easy to see from Equation (2) that (B2f)d = β2f/K̄, and since
SIM chose B = R2 then (R4f)d = β2f/K̄. Using Lemma 1 and the fact that 4f
is relatively prime to e we derive Rd from (R4f)d.

Finally, we note that in order to win the test-session game with non-negligible
advantage it must be that M queries the correct K̄ from H with non-negligible
probability, then SIM is guaranteed to learn K̄, and hence compute Rd, also
with non-negligible probability.

In the full version we prove further security properties of mOT , such as resistance
to reflection and key compromise attacks.

4 Proof of the PFS Property of the mOT Protocol

In this section we prove that the Modified Okamoto-Tanaka protocol enjoys
full Perfect Forward Secrecy (PFS) against active attackers. For this proof we

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 321

need to resort to two additional assumptions5 (on top of the RSA Assumption
required for the proof of the basic security of the protocol, i.e. Theorem 1).
The first assumption is the well-known “Knowledge of Exponent Assumption”
introduced by Damgard [8] (and further used and studied in [13,1]). Intuitively,
it states that to compute a DH value gxy out of a triple g, gx, gy one has to
necessarily know either x or y. We will refer to this assumption (called KEA1 in
[1]) as KEA-DH.

Knowledge of Exponent Assumption for Diffie-Hellman (KEA-DH).
Let G be a cyclic group, and let g, h be distinct generators of G. The assumption
says that for every algorithmM that on input G, g, h outputs (y, z) where y = gx

and z = hx for some integer x, there exists an algorithm M∗ which outputs x.
A fully formal statement of the assumption can be found in [1]; in particular,

it is assumed that for every set of random coins used by M, if M outputs
(y = gx, z = hx) then for the same set of random coins M∗ outputs x.

Our second assumption is close in spirit to KEA-DH but it applies to the
discrete logarithm problem; we refer to it as KEA-DL*. The idea is as follows:
Under the discrete log assumption, given a pair (g, B = gb) (for random b) it is
hard to find b. But what if in addition to the pair (g, B = gb) one is also given
a dlog oracle where one can input any value in G other than B, and receive its
dlog to base g. Obviously, one can find b by querying, for example, the value Bg;
more generally, one can query BV where V = Bigj for known i, j, and compute
b out of the dlog of BV . The KEA-DL* assumption states that if one is allowed
a single query to the oracle then the above strategy is the only feasible one.
Namely, if an algorithm finds b by querying a single value from the oracle then
there is another algorithm that outputs values i, j as above. In addition we also
need to assume that the knowledge of the e-th root of B (for a fixed value e) does
not help the attacker to find the dlog of B in the above game. More formally6:

Modified Knowledge of Exponent Assumption for Discrete Log (KEA-
DL*). Let G be the subgroup of Quadratic Residues in Z∗

N where N is an RSA
modulus. We modify the KEA-DL assumption to allow M to receive also the
e-root of B (where e is an RSA exponent). The modified assumption is as follows:

1. ChallDL∗ provides M with N, e, g, B = gb where g, B are random quadratic
residues in Z∗

N ;
2. M is allowed to query an element V ∈ G;
3. ChallDL∗ responds with the discrete log of BV and the e-root of B;
4. M outputs an integer b′; M wins if b = b′.

5 It is important to note that, as shown in the full version, weak PFS – i.e. against pas-
sive attackers – is a direct consequence of Theorem 1 and does not require additional
assumptions.

6 A fully formal statement of the assumption quantifies over each set of random coins
of algorithms M and M∗; the details are similar to the treatment of the KEA-DL*
assumption in [1] and are omitted from this extended abstract.

322 R. Gennaro, H. Krawczyk, and T. Rabin

The KEA-DL* assumption states that for every algorithm M that wins the
above game, there exists an algorithm M∗ which outputs integers i, j such that
V = Bigj .

Theorem 2. Under the RSA, KEA-DH and KEA-DL* assumptions, if we
model H, H ′ as random oracles, then the mOT protocol enjoys perfect forward
secrecy (PFS) (against passive and active attackers).

Proof. The PFS case differs from the non-PFS case, proven in Theorem 1, in
that, after completing the test session between Alice and Bob, the attacker is
given the values SA = Ad and SB = Bd, i.e., the private keys of the peers to the
session. Only after receiving these values, the adversary needs to distinguish the
test key from random.

Recall that due to the fact that the session key is the hash of the resulting
secret value K̄ = g2xye, where the hash is modeled as a random oracle, distin-
guishing the key is equivalent to finding K̄. Thus, in the sequel we assume that
a successful attacker is one that guesses this value g2xye.

Examining the proof of Theorem 1 we can see that in all the simulations in
that proof, the simulator knows the secret key SA of Alice, and therefore it can
provide it to the adversary upon corruption of Alice.

The difficulty in proving full PFS is the need to provide the attacker M with
SB = Bd before M outputs its guess for the session key. This is very different
than the case of Theorem 1 where the simulator first receives the attacker’s
guess and only then it uses this value to compute the forgery Bd. Still, with
some significant changes to the simulation and some added assumptions, we will
be able to prove the theorem by transforming a successful mOT attacker M into
an RSA forger F that inverts RSA on a random input. We show this reduction
now.
The RSA Forger F . The forger F is given as input an instance N, e, R ∈R QRN

of the RSA problem and needs to compute Rd mod N with non-negligible prob-
ability. F starts by running a simulation of the mOT protocol against attacker
M (which we assume to guess the test session key with non-negligible proba-
bility). For this F sets up the public parameters of mOT as N, e, g where N, e
are from F ’s input and g = he mod N for h chosen by F at random in QRN .
As in the proof of Theorem 1, F generates private keys for all parties except
Bob7 by programming the random oracle H (i.e., for each party idP , F chooses
p ∈R QRN and sets H(idP) = P = pe, and SP = p).

For Bob, F chooses the value B = H(idB) by programming H as follows. It
sets a value U = gu mod N where F chooses u as a random integer in the range
[1..!N/2"] (note that with this choice of u, the distribution of the value U is
statistically close to uniform in QRN – by a similar argument as in Section 2).

7 Bob is the peer to the test session - as in the previous proof we assume that the
simulator successfully guesses the test session and its peers, an event that happens
with non-negligible probability.

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 323

Then, it flips an unbiased coin coin, and sets

H(idB) = B =
{

R2 mod N if coin = 0 (where R is part of F ’s input)
Ue mod N if coin = 1

Notice that the distribution of B is correct, i.e., (statistically close to) random in
QRN and independent of other values in the protocol. To simulate all the sessions
other than the test session, F follows the same simulation as in Theorem 1. In
other words, we keep the proof of Theorem 1 intact up to the point in that proof
titled “Simulating the test session”.

It remains to show how F simulates the test session interaction with M in the
PFS case, and how this simulation results in the computation of Rd. For this we
are going to first modify the attacker M into an attacker M̄ that behaves like
M but, in addition, in runs where M guesses correctly the test session, M̄ will
output some additional values that will allow F to complete its forgery. Thus, F
will be running against the modified M̄ rather than against M. We now show
how we transform M into M̄ via several intermediate “games”. We start by
presenting a first game that represents the interaction with a KA-attacker in the
test session experiment in the PFS setting.

The PFS Game. The following game represents the test session interaction
between a “PFS challenger”, ChallPFS , and the KA-attacker M where M is
allowed to corrupt Bob after the test session key is complete. In this case, M
sends the incoming message β (allegedly coming from Bob) into the test session
held by Alice, and Alice outputs a value α. After these values are set, the attacker
receives Bob’s secret key SB = Bd and M wins the game if it outputs K̄ = g2exy.
PFS Game:

1. ChallPFS sends to M the values N, e, g, B, X .
Here X represents the value α sent by Alice; indeed, since we assume that
M can also be given SA (which F chooses and hence knows) then providing
α = X · SA is equivalent to providing X .

2. The adversary sends a value β which in turn determines a value Y defined
as Y = β/Bd.
Note that β, which is chosen by M, may not be an element of QRN , and
the same holds for Y . However, Y 2 mod N is necessarily in QRN and hence
generated by g. Defining y = logg(Y

2 mod N), and thanks to the squaring
operation in the computation of the session key in mOT, we get that the
session key g2xye equals Xye.

3. ChallPFS sends Bd.
4. M sends K̄. The adversary, M, wins if K̄ = Xye.

We now show how to transform an attacker M that wins the above PFS game
(with non-negligible probability) into a modified attacker M̄ (with the same
probability of success) that F will use to compute its RSA forgery. We arrive
to M̄ from M through a series of adversaries (M,M∗,M1,M∗

1,M̄) defined in
the following games.

324 R. Gennaro, H. Krawczyk, and T. Rabin

The adversary M∗: Note that M, in the above PFS game, can be changed
to also output Y 2e (computed as β2e/B2). So in a winning run on input g, X ,
attacker M would output K̄ = Xye and also Y 2e = gye. By invoking the KEA-
DH assumption there is another attackerM∗ that behaves as M but in addition
it outputs, in winning runs, ye = logg Y 2e in step 4.

Building Adversary M1 from M∗

ChallDL∗ M1 M∗

N, e, g,B �
N, e, g,B,X �

β�
V = β2e ·B−2

�
Bd, w = logg(BV) �

Bd
�

ye�
b = w − ye�

Fig. 2. Creating a KEA-DL* adversary

The adversary M1: We now use the modified PFS attacker M∗ to build an
attacker M1 that interacts with a challenger ChallDL∗ in a KEA-DL* game.
The actions ofM1 are described in Figure 2:M1 usesM∗ as a subroutine (where
M1 acts as the PFS challenger with respect to M∗) and uses responses received
from M∗ to answer ChallDL∗ queries. Now, since in a successful run of M∗ the
last value ye output by M∗ satisfies gye = Y 2e = β2e/B2 = V , and the value w
output by ChallDL∗ satisfies w = logg BV = b + ye, then the value b = w − ye

answered by M1 is correct (i.e., gb = B) and M1 wins the KEA-DL* game.
In other words, each successful run of M∗ (which happens with non-negligible
probability) induces a successful run of M1 in the KEA-DL* game.

The adversary M∗
1: By the KEA-DL* Assumption, there is an adversary

M∗
1 that behaves exactly as M1 except that together with V it also outputs i, j

such that V = Bigj . Replacing M1 with M∗
1 in Figure 2, we get the same flows

except that now the values i, j as above are added to the second flow from M1
to ChallDL∗. We refer to this as the modified game of Figure 2.
The hybrid adversary M̄: Using M∗

1 we build an attacker M̄ that interacts
in a PFS game as represented in Figure 3. In the first flow M̄ receives inputs
from ChallPFS as in a regular PFS game. Next M̄ uses these inputs to call
M∗

1 in the modified game of Figure 2. In this modified game, M∗
1 uses these

same values as its first flow to M∗. Upon receiving the β response from M∗,

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 325

Building PFS Adversary M̄ from M∗
1

ChallPFS M̄
N, e, g,B,X �

β, i, j�

Bd
�

ye�

Fig. 3. A Hybrid PFS Adversary M̄ (values in second flow satisfy β2eB−2 = Bigj)

M∗
1 produces the value V = β2eB−2 as well as i, j such that V = Bigj. Then,

M̄ sends to ChallPFS the values β, i, j (note that i, j are not part of the basic
PFS game but additional outputs produced by M̄). In the next flow, M̄ receives
from ChallPFS the value Bd as in a PFS game, which M̄ uses as the third flow
from M∗

1 to M∗. Finally, upon receiving the response ye from M∗, M̄ outputs
this same value as its fourth message in the PFS game.

It is important to observe that the flows involving the value w produced by
the dlog oracle in Figure 2 are not used by M̄; this is important since in a real
execution of the PFS game – as part of the interaction with a mOT attacker –
there is no such dlog oracle (this only exists as an artifact of the proof).

We note that in a successful run of M̄, the values β, i, j, ye output by M̄
satisfy the following equations:

gye = Y 2e = (βe/B)2 mod N (3)

β2eB−2 = V = Bigj mod N (4)

which yield
gye = Bigj mod N (5)

Also note that by virtue of the above sequence of games, if M succeeds with
non-negligible probability then M̄ succeeds in outputting the above values also
with non-negligible probability.

Summarizing the above transformations, we showed that the existence of a
successful PFS attacker M implies (via the KEA assumptions) the existence of
a second PFS attacker M̄ that in addition to the normal outputs of M (i.e.,
β and the session key guess), it also outputs the values i, j, ye that satisfy the
above equations.

Applying the above to the key agreement setting of mOT we get that one
can take a KA-attacker M that successfully breaks the PFS property of mOT
and transform it into an equivalent KA-attacker M̄, that differs from M in that
it also outputs the above values i, j, ye during a successful interaction in the
test session experiment. We use this modified KA-attacker M̄ to complete the
description of the forger F .

326 R. Gennaro, H. Krawczyk, and T. Rabin

Back to the RSA Forger F . We have seen before how F simulates a run of
mOT against a KA-attacker M except for the test session interaction. Here we
complete the description of this part of the simulation and show how F computes
its RSA forgery. For this we consider a run of F (as described so far) against
the modified KA-adversary M̄ defined above; that is, M̄ behaves exactly as M
but, in successful runs of M, in addition to β it outputs i, j and in addition to
the guess of the session key it outputs ye.

The way F uses M̄ to generate a forgery depends on two values: whether i
output by M̄ is 0 or not, and whether the coin chosen by F (see above) is 0 or
1. We now show these different cases.

Case i = 0. With probability 1/2 we also have that coin = 0 and therefore B =
R2 mod N . In this case, F is running M̄ on g = he, B = R2 and X ∈R QRN .
Assuming the run of M̄ is successful and i = 0, the forger F obtains the value
j = ye mod p′q′ in the second message from M̄ in Figure 3 (recall that by (5)
we have ye = ib + j mod p′q′). F then uses j to compute Y 2 as follows:

hj = hye = (gd)ye = gy = Y 2 mod N,

and uses Y 2 to compute (R4)d = B2d = (β2/Y 2) mod N . Using Lemma 1 and
the fact that 4 and e are relatively prime F can compute, out of the value (R4)d,
the required forgery Rd mod N .

Important: In the above case, F only needs to know j to complete its forgery;
therefore it does not need to complete the third and fourth flows in Figure 3
(that involve Bd) before it can forge.

Case i �= 0. With probability 1/2 we also have that coin = 1 and therefore
B = Ue = gue mod N where, by definition, u is a random integer in the range
[1..!N/2"]. In this case, F knows Bd = U and hence can complete the full run
against M̄ in Figure 3. That is, F runs M̄ sending (g, B, X) in the first message
and U in the third message. F receives from M̄ the values i, j in the second
message and y′ = ye in the last message. F will use i, j, y′ to find two values s
and t from which it will derive (whp) the factorization of N .

Specifically, F sets s = ie and t = y′ − j (these operations are over the
integers). It holds (mod p′q′) that

t = y′ − j = ye− j = ib = ieu = su mod p′q′

where the third equality is from Equation (5) and b = eu mod p′q′ holds by the
choice B = Ue = gue.

Thus, the integer t− su is a multiple of p′q′ that F can compute as it knows
s, t, u. If this number is non-zero then F factors N (as it is well known, the
factorization of N can be found from such a multiple of p′q′, e.g. [20]). Now,
note that there are at least two values of the integer u that will result in the
same element U in QRN (since u ∈R [1..!N/2"] and !N/2" ≥ 2p′q′). Since M̄
knows U but not the specific u (indeed, from the value U one cannot learn which
of the possible values of u was chosen by F), the probability that t and s (that

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 327

are derived from M̄ outputs) result in t− su being zero is at most 1/2 (at most
one of the u’s can satisfy this equation).

In all, we have that if F interacts with a successful run of M (which implies a
successful run of M̄) and i = 0 then with probability 1/2 F correctly computes
Rd. If the run of M is successful and i > 0 then with probability 1/2 F factors N
and hence can produce Rd as well. Since M (and M̄) succeed with non-negligible
probability so does F in computing the forgery Rd mod N . 	

Acknowledgment. Research was sponsored by US Army Research laboratory
and the UK Ministry of Defense and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the US Army Research Laboratory, the
U.S. Government, the UK Ministry of Defense, or the UK Government. The US
and UK Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

References

1. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004)

2. Blom, R.: An optimal class of symmetric key generation systems. In: Beth, T.,
Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338.
Springer, Heidelberg (1985)

3. Boyd, C., Choo, K.-K.R.: Security of two-party identity-based key agreement. In:
Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 229–243.
Springer, Heidelberg (2005)

4. Boyd, C., Mao, W., Paterson, K.G.: Key Agreement Using Statically Keyed Au-
thenticators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 248–262. Springer, Heidelberg (2004)

5. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

6. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from
pairings. Int. J. Inf. Sec. 6(4), 213–241 (2007)

7. Chen, L., Kudla, C.: Identity Based Authenticated Key Agreement Protocols from
Pairings. In: 16th IEEE Computer Security Foundations Workshop - CSFW 2003,
pp. 219–233. IEEE Computer Society Press, Los Alamitos (2003)

8. Damg̊ard, I.: Towards Practical Public Key Systems Secure Against Chosen Ci-
phertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
445–456. Springer, Heidelberg (1992)

9. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: STOC ’94, pp. 522–533. ACM Press, New York (1994)

10. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. Info.
Theor. 22(6), 644–654 (1976)

11. Goldreich, O., Rosen, V.: On the security of modular exponentiation with applica-
tion to the construction of pseudorandom generators. Journal of Cryptology 16(2),
71–93 (2003)

328 R. Gennaro, H. Krawczyk, and T. Rabin

12. Gunther, C.G.: An Identity-Based Key-Exchange Protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990)

13. Hada, S., Tanaka, T.: On the Existence of 3-round Zero-Knowledge Protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 408. Springer, Heidelberg
(1998)

14. Hastad, J., Schrift, A., Shamir, A.: The Discrete Logarithm Modulo a Composite
Hides O(n) Bits. J. Comput. Syst. Sci. 47(3), 376–404 (1993)

15. Jarecki, S., Kim, J., Tsudik, G.: Beyond Secret Handshakes: Affiliation-Hiding Au-
thenticated Key Exchange. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 352–369. Springer, Heidelberg (2008)

16. Krawczyk, H.: SKEME: A Versatile Secure Key Exchange Mechanism for Internet.
In: 1996 Internet Society Symposium on Network and Distributed System Security,
NDSS (1996)

17. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

18. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient Protocol
for Authenticated Key Agreement. Designs, Codes and Cryptography 28, 119–134
(2003)

19. McCullagh, N., Barreto, P.S.L.M.: A New Two-Party Identity-Based Authenticated
Key Agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–
274. Springer, Heidelberg (2005)

20. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

21. Okamoto, E.: Key Distribution Systems Based on Identification Information. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 194–202. Springer, Hei-
delberg (1988)

22. Okamoto, E., Tanaka, K.: Key Distribution System Based on Identification Infor-
mation. IEEE Journal on Selected Areas in Communications 7(4), 481–485 (1989)

23. Shamir, A.: On the Generation of Cryptographically Strong Pseudorandom Se-
quences. ACM Trans. Comput. Syst. 1(1), 38–44 (1983)

24. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

25. Schridde, C., Smith, M., Freisleben, B.: An Identity-Based Key Agreement Protocol
for the Network Layer. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN
2008. LNCS, vol. 5229, pp. 409–422. Springer, Heidelberg (2008)

26. Shmuely, Z.: Composite Diffie-Hellman Public-Key Generating Systems are Hard
to Break, Technical Report 356, CS Dept., Technion, Israel (1985)

27. Shoup, V.: On formal models for secure key exchange (version 4) (November 15,
1999), http://www.shoup.net/papers/

28. Smetters, D.K., Durfee, G.: Domain-based Administration of Identity-Based Cryp-
tosystems for Secure E-Mail and IPSEC. In: SSYM 2003: Proceedings of the 12th
Conference on USENIX Security Symposium, Berkeley, CA, USA, p. 15. USENIX
Association (2003)

29. Wang, Y.: Efficient Identity-Based and Authenticated Key Agreement Protocol.
Cryptology ePrint Archive, Report 2005/108 (2005),
http://eprint.iacr.org/2005/108/

http://www.shoup.net/papers/
http://eprint.iacr.org/2005/108/

Deniable Internet Key Exchange�

Andrew C. Yao1 and Yunlei Zhao2

1 ITCS, Tsinghua University, Beijing, China
2 Software School, Fudan University, Shanghai, China

ylzhao@fudan.edu.cn

Abstract. In this work, we develop a family of non-malleable and deniable
Diffie-Hellman key-exchange (DHKE) protocols, named deniable Internet key-
exchange (DIKE). The newly developed DIKE protocols are of conceptual clar-
ity, provide much remarkable privacy protection to protocol participants, and are
of highly practical (online) efficiency.

For the security of the DIKE protocols, we formulate the notion of tag-based
robust non-malleability (TBRNM) for DHKE protocols, which ensures robust
non-malleability for DHKE protocols against concurrent man-in-the-middle
(CMIM) adversaries and particularly implies concurrent forward deniability for
both protocol participants. We show that the TBRNM security and the session-
key security (SK-security) in accordance with the Canetti-Krawczyk framework
are mutually complementary, thus much desirable to have DHKE protocols that
enjoy both of them simultaneously. We prove our DIKE protocol indeed satisfies
both (privacy preserving) TBRNM security and SK-security (with post-specified
peers). The TBRNM analysis is based on a variant of the knowledge-of-exponent
assumption (KEA), called concurrent KEA assumption introduced and clarified
in this work, which might be of independent interest.

1 Introduction

The Internet Key-Exchange (IKE) protocols [21,22] are the core cryptographic pro-
tocols to ensure Internet security, which specifies key exchange mechanisms used to
establish shared keys for use in the Internet Protocol Security (IPsec) standards [23].
The IPsec and IKE are intended to protect messages communicated in the IP layer, i.e.,
“layer 3” of ISO-OSI, which process the transmission of messages using the network
addresses possibly without knowing end-user peers’ identities. The IKE and IPsec can
in turn be used to offer confidentiality, authentication and privacy for communication
protocols in the higher layers of ISO-OSI.

The standard of IKE key-exchange has gone through two generations. The first gen-
eration IKEv1 [21] uses public-key encryption as the authentication mechanism, and the
IKEv2 [22] uses signatures as the authentication mechanism with the SIGMA protocol
[24] serving as the basis.

� This work was supported in part by the National Basic Research Program of China Grant
Nos.2007CB807900, 2007CB807901, the National Natural Science Foundation of China
Grant Nos.60553001, 60703091, and the QiMingXing Program of Shanghai. Preliminary
version of this work appeared in Cryptology ePrint Archive 2007/191.

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 329–348, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

330 A.C. Yao and Y. Zhao

The IKEv2 protocol is based on DHKE [13], and works in the “post-specified peer”
setting [22], where the information of who the other party is does not necessarily exist at
the session initiation stage and is learnt by the party only after the protocol run evolves.
Actually, this is quite a common case for KE protocols in practice, particularly for the
purpose of preserving players’ privacy. For example, the key-exchange session may take
place with any one of a set of servers sitting behind a (url/ip) address specified in the
session activation; Or, a party may respond to a request (for a KE session) coming from
a peer that is not willing to reveal its identity over the network and, sometimes, even not
to the responder before the latter has authenticated itself (e.g., a roaming mobile user
connecting from a temporary address, or a smart-card that authenticates the legitimacy
of the card-reader before disclosing its own identity) [7].

For key-exchange protocols, both security and privacy are desired. Among privacy
concerns, deniability is an essential privacy property, and has always been a central
concern in personal and business communications, with off-the-record communication
serving as an essential social and political tool [16,12,14]. Given that many of these
interactions now happen over digital media (email, instant messaging, web transactions,
virtual private networks), it is of critical importance to provide these communications
with “off-the-record” or deniability capability to protocol participants.

A protocol is called forward deniable, if it ensures deniability for both the sender and
the receiver simultaneously. Forward deniability essentially implies that the protocol is
statistical zero-knowledge (ZK) [19] for both the sender and the receiver, in the sense
that both the view of the sender and that of the receiver can be statistically simulated by
an efficient algorithm alone without any interactions.

Whenever deniability of messages is desired, in general, we can just run a forward
deniable authentication protocol [16] for each message to be sent. However, the beauty
of using forward deniable key-exchange is that if the key-exchange protocol is deniable,
then all the transactions (of public messages) using the session-key produced by the key-
exchange protocol can be deniable (i.e., simulatable) for both the protocol participants.
Moreover, for the IKE protocol that is the core cryptographic protocol to ensure Internet
security, offering deniability by IKE running at the IP layer within the IPsec standard
[23] is much more desirable, because it enables various privacy services to be offered
at the higher layers with uncompromised quality. Note that a privacy problem at the
IP layer can cause irreparable privacy damage at the application layer. For example, an
identity connected to an IP address, if not deniable, certainly nullifies an anonymous
property offered by a fancy cryptographic protocol running at the application level. (If
deniability is not desired, for some cases, then a non-repudiable proof, e.g., a signature,
can always be issued at the application level.)

1.1 Our Contributions

In this work, we develop a family of non-malleable [15] and deniable DHKE protocols,
named deniable Internet key-exchange (DIKE), which adds novelty and new value to
the IKE key-exchange standard [21,22] and the SIGMA protocol [24]. The newly de-
veloped DIKE protocols are of conceptual clarity, provide much remarkable privacy
protection to protocol participants, are of highly practical (online) efficiency, and of
well compatibility with the IKEv2 and SIGMA protocols.

Deniable Internet Key Exchange 331

For the security of the DIKE protocols, we formulate the notion of tag-based robust
non-malleability (TBRNM) for Diffie-Hellman key-exchange protocols, which ensures
robust non-malleability for DHKE protocols against concurrent man-in-the-middle
(CMIM) adversaries. Roughly speaking, TBRNM says that a CMIM adversary can suc-
cessfully finish a session of a DHKE protocol only if it does know both the secret-key
and the DH-exponent corresponding to the public-key and the DH-component alleged
and sent by the CMIM adversary for that session. The TBRNM formulation takes secu-
rity and privacy in an integrity, which particularly implies concurrent forward deniabil-
ity (actually, concurrent non-malleable statistical zero-knowledge CNMSZK) for both
the protocol initiator and the protocol responder. We show that the TBRNM security and
the session-key security (SK-security) formulated in the Canetti-Krawczyk framework
(CK-framework) [6] are mutually complementary, thus much desirable to have DHKE
protocols that enjoy both of them simultaneously. simultaneously.

We prove our DIKE protocol is indeed both TBRNM secure and SK-secure (with
post-specified peers). The TBRNM analysis is conducted in the restricted random or-
acle (RO) model introduced by Yung, et al [41], in order to bypass the subtleties of
deniability loss for simulation with unrestricted ROs [33,35,41], and is based on a vari-
ant of the knowledge-of-exponent assumption (KEA) [9]. In particular, we revisit the
KEA assumption, demonstrate and clarify the subtleties and insufficiency of employ-
ing the KEA assumption to argue the security of DH-based interactive cryptographic
protocols when they are run concurrently in the public-key model (as is the focus of
this work). This motivates us to introduce a new extended KEA assumption, called con-
current KEA (CKEA) assumption. Interestingly, the CKEA assumption can be viewed
as the non-black-box counterpart of the gap Diffie-Hellman (GDH) assumption [34],
while the original KEA assumption is that of the computational Diffie-Hellman (CDH)
assumption. As we shall show, the CKEA-based approach for achieving concurrent
non-malleability and deniability can be a useful paradigm in DH-based cryptographic
practice, with a reasonable trade-off between practical efficiency and formal provable
security. The SK-security (with post-specified peers) of our DIKE protocol is proved
under the GDH assumption in the RO model.

2 Preliminaries

If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on
inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · ·) denote the experiment of
picking r at random and letting y be A(x1, x2, · · · ; r). If S is a finite set then x ← S is
the operation of picking an element uniformly from S. If α is neither an algorithm nor
a set then x ← α is a simple assignment statement.

On a system parameter n (also written as 1n), a function μ(·) is negligible if for
every polynomial p(·), there exists a value N such that for all n > N it holds that
μ(n) < 1/p(n). Let X = {X(n, z)}n∈N,z∈{0,1}∗ and Y = {Y (n, z)}n∈N,z∈{0,1}∗

be distribution ensembles. Then we say that X and Y are computationally (resp.,
statistically) indistinguishable, if for every probabilistic polynomial-time (resp., any
power-unbounded) algorithm D, for all sufficiently large n’s, and every z ∈ {0, 1}∗,
|Pr[D(n, z, X(n, z)) = 1]− Pr[D(n, z, Y (n, z)) = 1]| is negligible in n.

332 A.C. Yao and Y. Zhao

Let G′ be a finite Abelian group of order N , and G = 〈g〉 be a unique subgroup
of G′, generated by the generator g, of prime order q which is ensured by requiring
gcd(t, q) = 1 for t = N/q. Denote Zq = {0, 1, · · · , q−1} and Z∗

q = {1, 2, · · · , q−1},
denote by 1G the identity element of G′ and by G/1G the set of elements of G except
1G. In the specification of this paper, w.l.o.g., we assume G′ is the multiplicative group
Z∗

p of order N = p − 1 for a large prime p, and G is the unique subgroup of order
q for some prime divisor q of N = p − 1. Typically, the length of p (i.e., the length
of group element for a DL-based cryptographic system), denoted |p| = n, is treated as
the system parameter, and the length of q, denoted |q| = k, is treated as the security
parameter. The value t = (p − 1)/q is called the cofactor. The specification can be
trivially applicable to the groups based on elliptic curves. In elliptic curve systems, G′

is the group of points E(L) on an elliptic curve E defined over a finite field L, and G
is a subgroup of E(L) of prime order q. For elliptic curve based groups, the cofactor t
is typically very small.

Let H, HK : {0, 1}∗ → {0, 1}|q| be hash functions, which are modeled as random
oracles in security analysis. Here, for presentation simplicity, we have assumed H, HK

are of the same output length. In practice, they may be of different output lengths.

Definition 1 (Computational Diffie-Hellman (CDH) assumption). Let G be a cyclic
group of prime order q generated by an element g, for two elements X = gx, Y = gy

in G, where x, y ∈ Zq, we denote by CDH(X, Y) = gxy mod q mod p (the mod
operation is usually omitted for presentation simplicity). An algorithm is called a CDH
solver for G if it takes as input pairs of elements (X, Y) (and also a generator g of
G) and outputs the value of CDH(X, Y). We say the CDH assumption holds in G if
for any probabilistic polynomial-time (PPT) CDH solver, the probability that on a pair
(X, Y), for X, Y ← G (i.e., each of x and y is taken uniformly at random from Zq), the
solver computes the correct value CDG(X, Y) is negligible. The probability is taken
over the random coins of the solver, and the choice of X, Y uniformaly at random in G.

The gap DH assumption (GDH) [34] essentially says that in the group G, computing
CDH(X, Y), for X, Y ← G, is strictly harder than deciding if Z = CDH(U, V) for
an arbitrary triple (U, V, Z) ∈ G3.

Definition 2 (Gap Diffie-Hellman (GDH) assumption [34]). Let G be a cyclic group
generated by an element g, and a decision predicate algorithm O be a (full) Deci-
sional Diffie-Hellman (DDH) Oracle for the group G and generator g such that on
input (U, V, Z), for arbitrary (U, V) ∈ G2, oracle O outputs 1 if and only if Z =
CDH(U, V). We say the GDH assumption holds in G if for any PPT CDH solver for
G, the probability that on a pair of random elements (X, Y) ← G the solver computes
the correct value CDG(X, Y) is negligible, even when the algorithm is provided with
the (full) DDH-oracle O for G. The probability is taken over the random coins of the
solver, and the choice of X, Y (each one of them is taken uniformly at random in G).

Definition 3 (Knowledge-of-Exponent Assumption (KEA) [9,25]). Let G be a cyclic
group of prime order q generated by an element g, and consider algorithms that on input
a triple (g, C = gc, z) output a pair (Y, Z) ∈ G2, where c is taken uniformly at random
from Z∗

q and z ∈ {0, 1}∗ is an arbitrary string that is generated independently of C.

Deniable Internet Key Exchange 333

Such an algorithm A is said to be a KEA algorithm if with non-negligible probability
(over the choice of g, c and A’s random coins) A(g, gc, z) outputs (Y, Z) ∈ G2 such
that Z = Y c. Here, C = gc is the random challenge to the KEA algorithm A, and z
captures the auxiliary input of A that is independent of the challenge C.

We say that the KEA assumption holds over G, if for every efficient (probabilistic
polynomial-time) KEA algorithm A for G there exists another efficient algorithm K,
referred to as the KEA-extractor, for which the following property holds except for a
negligible probability: let (g, gc, z) be an input to A and ρ a vector of random coins
for A on which A outputs (Y, Z = Y c), then on the same inputs and random coins
K(g, C, z, ρ) outputs the triple (Y, Z = Y c, y) where Y = gy .

The KEA assumption is derived from the CDH assumption, and is a non-black-box
assumption by nature [1]. Since its introduction in [9], the KEA assumption has been
used in a large body of works, particularly in the literature of deniable authentication
and key-exchange (e.g., [20,2,1,11,25,10,12,38,39], etc).

3 DIKE Implementation and Advantageous Features

Let (A = ga, a) (resp., (X = gx, x)) be the public-key and secret-key (resp., the DH-
component and DH-exponent) of the initiator Â, and (B = gb, b) (resp., (Y = gy, y))
be the public-key and secret-key (resp., the DH-component and DH-exponent) of the
responder player B̂, where a, x, b, y are taken randomly and independently from Z∗

q .
The deniable Internet key-exchange protocol, for the main model of [21,22,23], is

depicted in Figure 1 (page 334), where CERTÂ (resp., CERTB̂) is the public-key
certificate of Â (resp., B̂) issued by some trusted Certificate Authority (CA) within
the underlying public-key infrastructure (PKI), and sid is the session-identifier that is
assumed to be set by some “higher layer” protocol that “calls” the KE protocol and
ensures no two sessions run at a party are of identical session-identifier [7]. Throughout
this work, we assume no proof-of-knowledge/possession (POK/POP) of secret-key is
mandated during public- key registration, but the CA will check the non-identity sub-
group (i.e., G/1G) membership of registered public-keys. Also, each party checks the
G/1G membership of the DH-component from its peer.

3.1 Some Advantageous Features of DIKE

Our DIKE enjoys remarkable privacy protection for both protocol participants. Note
that all authentic messages, NMZK(B̂, y) and NMZK(b, y) (resp., NMZK(a, x)),
from B̂ (resp., Â) can be computed merely from its peer’s DH-exponent x (resp., y)
and one’s own public messages; Furthermore, one party sends the authentic messages
involving its secret-key only after being convinced that its peer does “know” the corre-
sponding DH-exponent. This ensures forward deniability for both the protocol partici-
pants. IKEv2 and SIGMA do not enjoy these privacy properties, due to the underlying
signatures used. Note also that the DIKE protocol works in the post-specified-peer set-
ting, and the messages from one party do not bear the information of its peers’s ID and
public-key.

334 A.C. Yao and Y. Zhao

Â B̂

(N, q, g, A = ga)
a ← Z∗

q

(N, q, g, B = gb)
b ← Z∗

q

sid,X = gx

sid, B̂, CERTB̂, Y = gy, NMZK(B̂, y) = H(sid, B̂, Y, X, Xy)

sid, Â, CERTÂ, NMZK(a, x) = H(sid, Â,X, Y, Y a, Y x)

sid,NMZK(b, y) = H(sid, B̂, Y,X,Xb, Xy)

The session-key output is K = HK(gxy, X, Y)

Fig. 1. Deniable Internet Key-Exchange (the main model)

Besides some hashing operations and the validation of peer’s public-key certificate,
the player Â computes (Y q, Y a, Y x) and (X, Bx), the player B̂ computes (Xq, Xb, Xy)
and (Y, Ay). Note that the computation of (Y q, Y a, Y x) (resp., (Xq, Xb, Xy)) in paral-
lel actually amounts to about 1.5 modular exponentiations. The DH-component X (resp.,
Y) can always be off-line pre-computed by Â (resp., B̂). Moreover, if the peer’s identity
is pre-specified, Â (resp., B̂) can further off-line pre-compute the value Bx (resp., Ay).
That is, the total computational complexity at each player side is about 3.5 exponentia-
tions, and the on-line computational complexity at each player side can remarkably be
only 1.5 exponentiations. We note that if the underlying signatures used in SIGMA are
implemented with the Digital Signature Standard (DSS) [17], the computational com-
plexity of SIGMA is about 4.5 exponentiations at each player side in total, and the online
complexity is about 2.5 exponentiations (with offline partial signature generation). For
communication complexity, by waiving the use and exchanges of signatures, our deni-
able IKE is of improved communication complexity, in comparison with that of SIGMA.

Our DIKE protocol is of well compatibility with IKEv2/SIGMA and the (H)MQV
protocols [26,25,31]. By compatibility with SIGMA/IKEv2, we mean that in case some
players are not of discrete logarithm (DL) public-keys, they still can use the Sign-then-
MAC mechanism of SIMGA/IKEv2 to authenticate messages from them. In more de-
tails, in this case, any one of the last two messages in our deniable IKE can be replaced
by the corresponding message flow in SIGMA/IKEv2. By compatibility with (H)MQV,
we mean that both (H)MQV and DIKE work for players of DL public-keys, and can be
of the same system parameters.

Deniable Internet Key Exchange 335

4 Security Formulation and Analysis

In this section, we formulate tag-based robust non-malleability for DHKE protocols
based on the CNMZK argument-of-knowledge (CNMZKAOK) formulation [19,36,40],
investigate the subtleties of the KEA assumption for arguing the security of DH-based
interactive protocols running concurrently in the public-key model and introduces the
CKEA assumption, and finally show both the TBRNM security and the SK-security of
the DIKE protocol.

4.1 Formulating (Privacy-Preserving) TBRNM for DHKE Protocols

We consider an adversarial setting, where polynomially many instances (i.e., sessions)
of a DHKE protocol 〈Â, B̂〉 are run concurrently over an asynchronous network like
the Internet. To distinguish concurrent sessions, each session run at the side of an
uncorrupted player is labeled by a tag, which is the concatenation, in the order of
session initiator and then session responder, of players’ identities, public-keys, and
DH-components available from the session transcript; A session-tag is complete if it
consists of a complete set of all these components, e.g., (Â, A, X, B̂, B, Y). Informally
speaking, two sessions are matching if they are of the same session-tag.

We assume all communication channels, among all the concurrent sessions of 〈Â, B̂〉,
are unauthenticated and controlled by a PPT (CMIM) adversary A . This means that the
honest player instances cannot directly communicate with each other, since all com-
munication messages are done through the adversary. All honest player instances are
working independently with independent random tapes in different sessions (but with
the same public-key), and answer messages sent by A promptly. Once a session is fin-
ished, the honest players always erase the ephemeral (private) state information gener-
ated during the session, and only keep in privacy the session key output. Sessions can
also be expired, and for expired sessions the session keys are also erased.

The CMIM adversary A (controlling all communication channels) can do whatever
it wishes. In particular, A can interact with polynomial number of instances of Â in
the name of any player playing the role of the responder; such sessions are called the
left-sessions. At the same time, A can interact with polynomial number of instances of
B̂ in the name of any player playing the role of the initiator; such sessions are called
the right-sessions. For presentation simplicity, we assume the number of left-sessions
is equal to that of right-sessions, which is s(n) for some positive polynomial s(·). The
adversary A can decide to simply relay the messages of honest player instances. But,
it can also decide to block, delay, divert, or modify messages arbitrarily at its wish.

The CMIM adversary A also takes some arbitrary auxiliary input z ∈ {0, 1}∗, which
captures arbitrary information collected/eavesdropped by A over the network from the
executions of arbitrary (possibly different) protocols prior to its actual session inter-
actions with the instances of Â or B̂. For example, z may consist of a CDH triple
(X, B, gxb) that is collected over the Internet where B = gb is the public-key of the
player B̂, or just the secret-key b in case the CMIM attacker ever broke in the ma-
chine of B̂. But, the auxiliary input z, collected prior to the actual session interactions
of 〈Â, B̂〉, is assumed to be independent of the ephemeral DH-components to be gen-
erated and exchanged by the instances of Â and B̂ (specifically, we can consider an

336 A.C. Yao and Y. Zhao

experiment where the ephemeral DH-components to be exchanged by the instances of
uncorrupted players are generated only after the auxiliary string z is fixed.)

We denote by viewA (1n, Â, A, B̂, B, z) the random variable describing the view
of A in its concurrent interactions with the instances of Â and B̂, which includes the
input (1n, Â, A, B̂, B, z), A ’s random tape, and all messages received in the s(n) left
sessions and the s(n) right sessions (for protocols in the RO model, A ’s view also
includes the RO, see [3] for more details). Here, for presentation simplicity, we have
assumed that A concurrently interacts with any polynomial number of instances of
two players: one is the initiator player Â and one is the responder player B̂. In a way,
the two players Â and B̂ (which can be identical) stand for all uncorrupted players in
the system. In general, A can concurrently interact with any polynomial number of
instances of any polynomial number of players. Our definitional framework, as well
as the security analysis, can be extended to this general setting, by noting that honest
players of different public-keys work independently.

Definition 4 (Tag-based robust non-malleability (TBRNM) for DHKE). A DHKE
protocol, 〈Â, B̂〉, is called tag-based robust non-malleable, if for any PPT CMIM ad-
versary A there exists a PPT simulator/extractor S such that for any sufficiently large
n, any pair of uncorrupted players Â and B̂ (of public-key A and B respectively), and
any auxiliary string z ∈ {0, 1}∗, the output of S(1n, Â, A, B̂, B, z) consists of two
parts (str, sta) such that the following hold, where z captures the arbitrary (possibly
public-key dependent) information collected by A prior to its actual session interac-
tions of 〈Â, B̂〉 but is independent of the ephemeral messages (particularly, the DH-
components) to be generated and exchanged by the instances of Â and B̂:

– Statistical simulatability. The following ensembles are statistically indistinguish-
able:{viewA (1n, Â, A, B̂, B, z)}n∈N,Â∈{0,1}∗,A∈G/1G,B̂∈{0,1}∗,B∈G/1G,z∈{0,1}∗

and {S1(1n, Â, A, B̂, B, z)}n∈N,Â∈{0,1}∗,A∈G/1G,B̂∈{0,1}∗,B∈G/1G,z∈{0,1}∗ ,

where S1(1n, Â, A, B̂, B, z) denotes (the distribution of) the first output of S, i.e.,
str.

– Knowledge extraction. sta consists of a set of 2s(n) strings, {w̃l
1, w̃

l
2, · · · , w̃l

s(n),

w̃r
1, w̃

r
2 , · · · , w̃r

s(n)}, satisfying the following:
• For any i, 1 ≤ i ≤ s(n), if the i-th left-session (resp., right-session) in str

is aborted or with a tag identical to that of one of the right-sessions (resp.,
left-sessions), then w̃l

i = ⊥ (resp., w̃r
i = ⊥);

• Otherwise, i.e., the i-th left-session (resp., right-session) in str is successfully
completed and is of session-tag different from those of all right-sessions (resp.,
left-sessions), then w̃l

i = (b̃l
i, ỹ

l
i) (resp., w̃r

i = (ãr
i , x̃

r
i)), where b̃l

i (resp., ãr
i)

is the discrete-logarithm of the public-key B̃l
i (resp., Ãr

i) set and alleged by
the CMIM adversary A for the i-th left-session (resp., right-session) in the

name of ˆ̃Bl
i (resp., ˆ̃Ar

i), and ỹl
i (resp., x̃r

i) is the discrete-logarithm of the DH-
component Ỹ l

i (resp., X̃r
i) set and sent by the CMIM adversary A in the i-th

left-session (resp., right-session).

Furthermore, we say the DHKE protocol 〈Â, B̂〉 is of privacy-preserving TBRNM, if it
additionally satisfies: (1) the transcript of each session can be generated merely from

Deniable Internet Key Exchange 337

the DH-exponents (along with some public system parameters, e.g., players’ public-key
and identity information, etc); (2) messages from one party do not bear the identity and
public-key information of its peer.

TBRNM vs. SK-security. We make some brief comparisons between TBRNM and the
SK-security in accordance with the CK-framework.

– At a high level, the SK-security essentially says that a party that completes a session
has the following guarantees [6]: (1) if the peer to the session is uncorrupted then
the session-key is unknown to anyone except this peer; (2) if the unexposed peer
completes a matching session then the two parties have the same shared key.

Roughly speaking, besides others, TBRNM ensures the enhanced guarantee of
the above (2): if the possibly malicious peer completes a matching session, then the
two parties, not only, have the same shared key, but also and more importantly, the
(possibly malicious) peer does “know” both the DH-exponent (and thus the shared
session-key) and the secret-key corresponding to the DH-component and public-key
sent and alleged by it in the test-session. We suggest this kind of security guarantee
is very essential to DHKE protocols, particularly when they are run concurrently
over the Internet.

– The TBRNM formulation follows the simulation approach [19,36,40] of adaptive
tag-based CNMZKAOK, which can actually be viewed as an extended and much
strengthened version of the latter. In particular, TBRNM implies concurrent for-
ward deniability for both the protocol initiator and the responder. The SK-security
definition follows the indistinguishability approach, which particularly does not
take deniability into account.

– Recall that the TBRNM formulation is w.r.t. any PPT CMIM adversary of arbi-
trary auxiliary input. In particular, the adversary’s auxiliary input can be depen-
dent on player’s public-key, e.g., consisting of a CDH triple (X, B, gxb) or just the
secret-key b. That is, the TBRNM formulation implicitly captures the adversarial
leakage of static secret-keys of uncorrupted players. Static secret-key exposure for
uncorrupted players was not captured by the SK-security in [6] (static secret-key
exposure and party corruption were separately treated in [6]). But, the TBRNM for-
mulation does not take into account the following abilities of the CMIM adversary
in: exposing ephemeral private state for incomplete sessions, exposing session-keys
for completed sessions, and party corruption, which are however captured by the
SK-security in the CK-framework.

From the above clarifications, the TBRNM security and the SK-security can be viewed
mutually complementary, and thus it is much desirable to have DHKE protocols that
enjoy both the SK-security and the TBRNM security simultaneously.

4.2 KEA Assumption Revisited, and the CKEA Assumption

Subtleties of employing the KEA assumption in the public-key model. Note that, for
the KEA assumption in Definition 3, the requirement of independence between the
challenge C and the auxiliary input z plays a critical role. For example, when us-
ing KEA for provable security of cryptographic protocols running concurrently in the

338 A.C. Yao and Y. Zhao

public-key model, in some cases the challenge C is actually the player’s public-key.
In this case, a valid answer (A, B = Ac), with respect to the challenge C, could be
just got by an adversary A from its auxiliary input that models arbitrary information
collected/eavesdropped by A over the network from executions of other (possibly dif-
ferent) protocols before the interaction of the protocol at hand takes place. Note that,
in this case, it is impossible to efficiently extract the value a from the internal state
and auxiliary input of the adversary A . This shows that for protocols with provable
security based on the KEA assumption w.r.t. public challenges, the independence re-
quirement between the auxiliary input z and the public challenge C (corresponding to
player’s public-key) can significantly limit the composability of the protocol in prac-
tice. In other words, in practice it is unrealistic to assume adversary’s auxiliary input to
be independence of player’s public-keys, particularly for protocol running concurrently
in the public-key model. To bypass this subtlety of KEA with public challenges and
to render robust composability to cryptographic protocols, in this work we insist us-
ing ephemeral fresh challenges in designing and analyzing protocols in the public-key
model with the KEA assumption.

Subtleties of employing the KEA assumption for interactive protocols in the con-
current setting. The KEA assumption was originally introduced to argue the (non-
malleability) security of public-key encryption (that is a non-interactive cryptographic
primitive) [9]. But, when arguing the security of interactive protocols running con-
currently against CMIM adversaries, we note that, in many scenarios (particularly for
DH-based authentication and key-exchange as is the focus of this work), the KEA as-
sumption is insufficient. The reason is that, in such settings, the CMIM adversary can
potentially get access to a list of (polynomially many) DDH-oracles, with each being
w.r.t. an element taken randomly and independently in G by an honest player instance.

For example, consider a two party protocol 〈Â, B̂〉, where Â generates and sends
X = gx ∈ G and B̂ generates and sends Y = gy ∈ G; After (or during) the exchange
of X and Y , each party uses the shared DH-secret gxy to authenticate some values, and
aborts in case the authenticated values from its peer are deemed to be invalid. Now, con-
sider a CMIM adversary who, on a system parameter 1n, simultaneously interacts with
s(n) instances of Â (by playing the role of B̂) and s(n) instances of B̂ (by playing the
role of Â), where s(·) is a positive polynomial. On an arbitrary value Z ∈ G, a random
element Xi generated by Â (or B̂), 1 ≤ i ≤ s(n), and another arbitrary element Yj ∈ G

where Yj may also be one of the random elements generated by Â or B̂, the CMIM ad-
versary A can simply use Z (as the supposed DH-secret) to authenticate a value to the
party who sends Xi: if the party aborts, A concludes Z �= CDH(Xi, Yj), otherwise
it concludes Z = CDH(Xi, Yj). This simple protocol example demonstrates that in
the concurrent settings for (DH-based) interactive protocols, the CMIM adversary can
actually get access to polynomially many DDH-oracles.

The concurrent KEA (CKEA) assumption. The above discussion motivates us to
introduce the following assumption, named concurrent knowledge-of-exponents as-
sumption (in reminiscence of the motivation for arguing the concurrent security of
interactive cryptographic schemes against CMIM adversaries).

Definition 5 (Concurrent knowledge-of-exponents assumption (CKEA)). Suppose
G is a cyclic group of prime order q generated by an element g, 1n is the system

Deniable Internet Key Exchange 339

parameter, p(·) and q(·) are positive polynomials. Let a decision predicate algorithm
OC for C = {C1 = gc1 , · · · , Cp(n) = gcp(n)} (where ci, 1 ≤ i ≤ p(n), is taken uni-
formly at random from Z∗

q) be a DDH-Oracle (w.r.t. the random challenge set C) for
the group G and generator g, such that on input (X, Y, Z), for arbitrary (X, Y) ∈ G2,
the oracle OC outputs 1 if and only if X ∈ C and Z = CDH(X, Y). Consider algo-
rithms that on input a triple (g, C, z), with oracle access to OC , output a set of triples
{(X1, Y1, Z1), · · · , (Xq(n), Yq(n), Zq(n))} ⊆ (G3)q(n), where z ∈ {0, 1}∗ is an ar-
bitrary string that is generated independently of C. (Specifically, we can consider an
experiment where the DH-components in the set C are generated only after the aux-
iliary string z is fixed.) Such an algorithm AOC is said to be a CKEA algorithm if
with non-negligible probability (over the choice of g, c1, · · · , cp(n) and A’s random
coins) A(g, C, z) outputs {(X1, Y1, Z1), · · · , (Xq(n), Yq(n), Zq(n))} ⊆ (G3)q(n) such
that Xi ∈ C and Zi = CDH(Xi, Yi) for all i, 1 ≤ i ≤ q(n).

We say that the CKEA assumption holds over G, if for every PPT CKEA-algorithm
AOC there exists another efficient PPT algorithmK, referred to as the CKEA-extractor,
such that for any polynomials p(·), q(·) and sufficiently large n the following property
holds except for a negligible probability: let (g, C, z) be the input to AOC , ρ a vector
of random coins for AOC and � a vector of answers given by OC on queries made by
AOC on which A outputs {(X1, Y1, Z1), · · · , (Xq(n), Yq(n), Zq(n))} ⊆ (G3)q(n) such
that Xi ∈ C and Zi = CDH(Xi, Yi) for all i, 1 ≤ i ≤ q(n), then on the same inputs
and random coins and oracle answers K(g, C, z, ρ, �) outputs {(X1, Y1, Z1, y1), · · · ,
(Xq(n), Yq(n), Zq(n), yq(n))} where Yi = gyi for all i, 1 ≤ i ≤ q(n).

We note that the CKEA assumption can be viewed as the non-black-box counterpart of
the gap Diffie-Hellamn assumption, while the original KEA assumption is that of the
CDH assumption. As we shall show in this work, the CKEA assumption is powerful for
achieving highly practical cryptographic protocols provably secure against CMIM ad-
versaries in concurrent settings like the Internet. We suggest the CKEA-based approach
for achieving concurrent non-malleability can be a useful paradigm in DH-based cryp-
tographic practice, with a reasonable trade-off between practical efficiency and formal
provable security.

4.3 Simulation with Restricted RO

When employing the simulation paradigm for proving the security of cryptographic
protocols in the RO model, the RO is usually programmed by the simulator (i.e., the
simulator provides random answers to RO queries, provided that multiple identical RO-
queries are answered with the same answer). But a subtlety here is: simulation with
(programmable) RO may lose deniability in general [33,35,41].

To overcome the deniability loss of simulation with programmable RO, the works
of [33,35] proposed the unprogrammable RO model where all parties have access to an
unprogrammable (fixed) RO. A further investigation, made in [41] (particularly for in-
teractive protocols), showed that, in most cases (particularly for the subtleties observed
in [33,35,41]), the problem lies in the ability of the simulator in defining (i.e., program-
ming) the RO on queries (first) made by the simulator itself in order to simulate honest
parties of private inputs. Specifically, the simulator runs the underlying adversary as a

340 A.C. Yao and Y. Zhao

subroutine and mimics honest parties in its simulation. Typically, honest parties (e.g.,
honest ZK provers) possess some private inputs and get access to un unprogrammable
RO in reality; The simulator (in its simulation) has to take the advantage of its abil-
ity in programming the RO (to be more precise, programming the RO on queries first
made by the simulated honest parties) in order to successfully simulate messages gen-
erated by honest parties. But, the simulated honest-party messages may not necessarily
be generated with the unprogrammable RO actually accessed by the honest parties in
reality. This is precisely the reason for the problems, particularly the loss of deniability,
observed in [33,35,41] for simulation with programmable RO.

The work of [41] proposed the restricted RO model, where all parties (particu-
larly, all honest parties and the simulator) except the adversary get access to an un-
programmable RO but the adversary (who is polynomial-time and possesses no private
inputs) is still allowed to access a programmable RO. We can simply view that the re-
stricted RO model is identical to the original RO model, except for that the simulator
is confined to programming the RO only on queries first made by the adversary (run
by the simulator as its subroutine). Clearly, the restricted RO model is a hybrid of the
original programmable RO model [4] and the unprogrammable RO model [33,35]. The
restricted RO model allows efficient (interactive) protocol implementations, while still
reasonably avoiding the loss of some properties (particularly, deniability) caused by
simulation with fully programmable RO.

4.4 Security Results and Overview

For the security of the DIKE protocol (depicted in Figure 1), we prove that it en-
joys both the (privacy-preserving) TBRNM security and the SK-security with post-
specified peers. Specifically, the DIKE protocol is privacy-preserving tag-based robust
non-malleable in the restricted RO model under the GDH assumption and the CKEA
assumption. In particular, as a warm-up, we show that the DIKE protocol also implies
a 3-round adaptive tag-based concurrent non-malleable statistical (straight-line) zero-
knowledge argument of knowledge for discrete logarithm (DL), which is presented in
Section 5. We then prove that the DIKE protocol, with exposable DH-exponents and
pre-computed DH-components, is SK-secure in the CK-framework with post-specified
peers under the GDH assumption in the random oracle model. We suggest that the
(restricted) RO and the CKEA assumption might be unavoidable to achieve highly prac-
tical DHKE protocols of the TBRNM security (particularly with the SK-security simul-
taneously). But, the proof details of TBRNM and SK-security are somewhat tedious
and conceptually less interesting. For space limitation and to avoid potential sidetrack-
ing, the reader is referred to the full paper for complete proof details. Below, we mainly
provide high-level overviews of the TBRNM analysis (particularly, the tricks of us-
ing CKEA assumption and restricted RO in the TBRNM analysis) and the SK-security
analysis.

TBRNM analysis overview. For the TBRNM analysis, the polynomial-time simula-
tor S generates DH-components and DH-exponents by itself by emulating honest player
instances. But, different from honest player instances, S uses the DH-exponents (gen-
erated by S itself) merely for DDH-tests in its simulation. To this end, S maintains a
DDH-test list, denoted LDDH , and stores all DDH-test records into LDDH . The key

Deniable Internet Key Exchange 341

observation is: what can be done by the simulator S can also be done by another ef-
ficient oracle machine SOC on the same common input and the random coins of S
except the coins used to generate the DH-components, where OC is a DDH-oracle and
C = {X l

1, · · · , X l
s(n), Y

r
1 , · · · , Y r

s(n)} is the set of all the DH-components generated

by S. Specifically, SOC works just as S does, but with the following modifications: (1)
SOC just sets the DH-component for the i-th left-session (resp., the j-th right-session)
to be the value X l

i (resp., Y r
j), 1 ≤ i, j ≤ s(n), given in the set of C, rather than gen-

erating them by itself as S does. (2) Whenever SOC needs to perform a DDH-test w.r.t.
a DH-component in C, it queries the DDH-test to its oracle OC and stores the record of
the DDH-test into LDDH . Whenever SOC /S needs to extract the DH-exponent and/or
secret-key corresponding to the DH-component and/or public-key sent and alleged by
the CMIM adversary A , SOC /S runs the CKEA-extractor K on the same common in-
put, the random coins of SOC that just correspond to the coins of S except the coins
used to generates the DH-components X l

i ’s and Y r
j ’s, and LDDH that corresponds

to the vector of records of DDH-tests performed by OC . By the CKEA assumption,
K will successfully extract the corresponding DH-exponents and/or secret-keys with
overwhelming probability.

For the use of restricted RO, whenever S needs to send one of the values NMZK(B̂,
y), NMZK(a, x) and NMZK(b, y), it first checks whether the value has been defined
by checking all RO queries made by A and performing corresponding DDH-tests. If
the value to be sent has already been defined (by A ’s RO query), the value is set to be
the already defined one, otherwise, S sends a random value. If S sends a random value,
from this point on whenever A makes an RO query, S checks whether the previously
sent random value is the answer to the RO query (again by performing DDH-tests). Note
that in the later case (i.e., the value to be sent has not been defined), S does not try to use
its knowledge of DH-exponents (generated by itself) to honestly generate such values,
to ensure that those DH-exponents are used merely for DDH-tests in order to comply
with the CKEA assumption. If A never makes an RO query with the previously sent
random value as the RO answer, the RO on this point remains undefined. In particular,
S never defines it on its own, which ensures S works in the restricted RO model. By
the above tricks, the simulator S works in strict polynomial-time and its simulation is
straight-line (without rewinding A).

SK-security analysis overview. The core of the SK-security analysis is to prove that
any PPT CMIM attacker can successfully finish an unexposed session in the name of
some uncorrupted player only if that uncorrupted player (impersonated by the CMIM at-
tacker) does indeed send the authenticated value, say, NMZK(a, x) or NMZK(b, y),
in the corresponding matching session. In more details, we prove that: for the DIKE pro-
tocol 〈Â, B̂〉 (depicted in Figure 1) with exposable DH-exponents and pre-computed
DH-components, where the players Â and B̂ may be identical, the probability of the
following events is negligible under the GDH assumption in the random oracle model:

Event-1. The CMIM adversary A successfully finishes the j-th right-session for some

j, 1 ≤ j ≤ s(n), where A sends ÑMZK(a, x̃r
j) in the third-round in the name

of Â (actually, any uncorrupted player) with respect to the DH-component Y r
j sent

by the uncorrupted player B̂ in the second-round, while the uncorrupted player Â

342 A.C. Yao and Y. Zhao

did not send ÑMZK(a, x̃r
j) in any left-session and A does not know the discrete-

logarithm of Y r
j (i.e., A did not make the state-reveal query against the j-th right-

session at the uncorrupted player B̂ in accordance with the CK-framework).
Event-2. The CMIM adversary A successfully finishes the i-th left-session for some i,

1 ≤ i ≤ s(n), where A sends ÑMZK(b, ỹl
i) in the fourth-round in the name of B̂

(actually, any uncorrupted player) with respect to the DH-component X l
i sent by the

uncorrupted player Â in the first-round, while the uncorrupted player B̂ did not send

ÑMZK(b, ỹl
i) in any right-session and A does not know the discrete-logarithm

of X l
i (i.e., A did not make the state-reveal query against the i-th left-session at the

uncorrupted player Â in accordance with the CK-framework).

Now, suppose the DIKE protocol is not SK-secure, which roughly means that A can dis-
tinguish the session-key HK(X, Y, gxy) of an unexposed test-session, say a left-session
(Â, sid) at the side of the uncorrupted player Â, from a random value. Let X = gx

(resp, Y = gy) be the DH-component sent by Â (resp., B̂), and NMZK(b, y) =
H(sid, B̂, Y, X, Xy, Xb) be the authentication value sent by B̂ (maybe impersonated by
A) in the fourth-round of this test-session. By the above discussions, we have that with
overwhelming probability the uncorrupted player B̂ does indeed send NMZK(b, y) in
one of right-sessions. This implies that in the RO model with overwhelming probability,
the (left) test-session has matching (right) session (B̂, sid) in which B̂ sends Y in the
second-round (after receiving X in the first-round but not necessarily in the peer name
of Â) and NMZK(b, y) in the fourth-round.

As the session-key is computed as HK(X, Y, gxy) and HK is a random oracle, there
are only two strategies for the adversary A to distinguish HK(X, Y, gxy) from a ran-
dom value:

– Key-replication attack: A succeeds in forcing the establishment of a session (other
than the test-session or its matching session) that has the same session-key output as
the test-session. In this case, A can learn the test-session key by simply querying
that session to get the same key (without having to expose the test-session or its
matching session).

– Forging attack: At some point in its run, A queries the RO HK with (X, Y, gxy).

The possibility of the key-replication attack is trivially ruled out in the RO model, by
observing that X is only sent by Â in the test-session and Y is only sent by B̂ in the
matching session.

The success of the forging attack says A can successfully output (X, Y, CDH
(X, Y)). Recall that, with overwhelming probability, X and Y are only sent by un-
corrupted players in the test-session and its matching session. As both the test-session
and its matching session are assumed to be unexposed in accordance with the CK-
framework (and thus A does not know the DH-exponent x or y), then we can exploit
the assumed ability of A in performing the successful forging attack to break the CDH
assumption (with the assistance of the DDH-oracle OX or OY), which in turn violates
the GDH assumption.

Deniable Internet Key Exchange 343

4.5 Discussions on the Resistance against Some Concrete Attacks

The both TBRNM security and SK-security of our DIKE protocol imply the resistance
to most concrete yet essential security attacks against DHKE protocols (some of which
are beyond the SK-security), particularly, unknown key share (UKS), key compromise
impersonation (KCI), cutting-last-message attack, perfect forward security (PFS), re-
flection attacks, etc. In this section, we make informal discussions on the resistance to
some of these concrete attacks, with more details deferred to the full paper.

Resistance against unknown key share attack. Informally speaking, by a success-
ful UKS attack an adversary can successfully make two uncorrupted parties compute
the same session-key in two sessions but have different views of who the peer to
the exchange was, even if the adversary actually does not know the corresponding
session-key.

For a successful UKS attack against our DIKE protocol, between two sessions of
different pairs of players, we have the following observations: As the session-key is
derived from H(X, Y, gxy) and the two sessions are of the same session-key, with over-
whelming probability in the RO model these two sessions must be of the same DH-
components, say (X, Y), and furthermore, in the same (initiator and responder) order.
Note that, with overwhelming probability, there are at most two sessions (involving un-
corrupted players) of the same DH-components exchanged in the same order, as uncor-
rupted players generate DH-components randomly and independently. In other words,
besides the two sessions suffering from the UKS attack, there exist no other sessions
of the same (ordered) DH-components (X, Y). This implies that each one of the two
sessions (suffering from the UKS attack) is of a distinct tag, i.e., different from the tags
of all other sessions. By the tag-based robust non-malleability, the adversary must know
both of the corresponding DH-exponents x and y (and also the secret-keys correspond-
ing to the public-keys alleged by the adversary in the two sessions). This particularly
implies that the adversary does know the session-key H(X, Y, gxy), which violates the
assumed success of the UKS attack.

Resistance against cutting-last-message attack. Suppose the player B̂ sends the last
message in the run of a DHKE protocol 〈Â, B̂〉, the cutting-last-message attack, suf-
fered by IKEv2, works as follows [29]: A man-in-the-middle A interacts with the
uncorrupted B̂ in the name of Â in a session (referred to as the test-session), while
concurrently interacting with the uncorrupted Â in the name of M̂ �= B̂ in another ses-
sion (referred to as the matching session). M̂ just relays messages between Â and B̂ in
these two sessions, but aborts the matching session after receiving the last message from
B̂ in the test-session. Such a simple attack results in authentication failure as follow: B̂
is perfectly fooled to believe that it has shared a session key with Â in the test-session,
while Â thinks it only ever took part in an aborted session with M̂ in the matching ses-
sion. (As suggested in [7], this cutting-last-message attack can be prevented by adding
an additional fifth-round of “acknowledgement” from Â to B̂, but increasing the system
complexity.)

Such cutting-last-message attack is simply ruled out for our DIKE protocol by the
tag-based robust non-malleability of DIKE. Specifically, for the above cutting-last-
message attack, with overwhelming probability the tag of the completed test-session
(i.e., the one in which B̂ believes it has shared a session-key with Â) must be distinct;

344 A.C. Yao and Y. Zhao

In particular, it is different from the tag of the aborted matching session in which A
interacts with Â in the name of M̂ �= B̂. By the tag-based robust non-malleability,
it implies that A has to know Â’s secret-key a and the DH-exponent generated by
Â in the aborted matching session, in order to successfully complete the test-session
with B̂ in the name of Â. In particular, after receiving the second-round message
(B̂, Y = gy, NMZ(B̂, y)) from B̂ in the test-session, the CMIM adversary A can-
not compute and send to Â the message of (M̂, Y = gy, NMZK(M̂, y)) in the name
of M̂ �= B̂ in the matching session.

Implication of perfect forward secrecy. Informally, a key-exchange protocol is of
the PFS property, if the leakage of the static secret-key of an uncorrupted player does
not compromise the security of the session-keys established by the player for unexposed
yet expired sessions, which have been erased from memory before the leakage occurred
[25]. In other words, once an unexposed session is expired and the session-key is erased
from its holder’s memory, then the session-key cannot be learned by the attacker even if
the player is subsequently corrupted. The PFS property of our DIKE protocol is from the
observation that: the computation of the session-key HK(X, Y, gxy) does not involve
players’ secret-keys. Note also that secret-key leakage has already been captured by the
TBRNM formulation.

Resistance against reflection attack. In a reflection attack, an attacker simply copies
the authentic messages from Â and sends them back to Â as the messages coming from
the other copy of Â. With respect to the protocol structure of our deniable IKE, to
mount a successful reflection attack against the DIKE protocol an adversary has to set
Y = X and B̂ = Â so that (X, Y) = (Y, X) and NMZK(b, y) = NMZK(a, x).
But, this play is frustrated with our DIKE, by briefly noting that the adversary cannot
provide the proof-of-knowledge of y = x, i.e., NMZK(B̂, y) = NMZK(Â, x), in
the second-round.

5 Protocol Variants and Implications

Deniable IKE: the aggressive model. In accordance with the aggressive model of IKE
[21,22], we present the 3-round variant of our DIKE protocol in Figure 2.

Most security properties of the deniable IKE of the main model are essentially in-
herited by this 3-round protocol variant in the aggressive model, except for the full de-
niability for the responder player B̂. Specifically, the player B̂ only enjoys completed-
session deniability, in the sense that if a malicious player Â, denoted as Â∗, completes
the session then B̂’s deniability will be guaranteed. But if the (possibly malicious) Â∗

just aborts the session after receiving the second-round message, the deniability for B̂
is not ensured. Note that the initiator player Â still has full deniability. We remark that
such kind of completed-session deniability for the responder is still very useful and
reasonable. For instance, consider the scenario where Â is a client and B̂ is a (bank or
shop) server: in such a scenario it is the client Â who cares more about its privacy and
full deniability does guarantee for it, while the server cares less about deniability and
the completed-session deniability may still be deemed to be good enough for it.

3-round adaptive tag-based concurrent non-malleable (statistical straight-line) zero-
knowledge argument of knowledge (CNMZKAOK) for DL. Let A = ga ∈ G be the

Deniable Internet Key Exchange 345

Â B̂

(p, q, g, A = ga)
a ← Z∗

q

(p, q, g, B = gb)
b ← Z∗

q

sid,X = gx

sid, B̂, CERTB̂ , Y = gy, NMZK(b, y) = H(sid, B̂, Y,X, Xb, Xy)

sid, Â, CERTÂ, NMZK(a, x) = H(sid, Â,X, Y, Y a, Y x)

The session-key output is K = HK(gxy, X, Y)

Fig. 2. Deniable Internet Key-Exchange (the aggressive model)

Â B̂

(p, q, g, A = ga, TAG)

a ∈ Zq[
(p, q, g, A, TAG)

X = gx

Y = gy, ν = H(Y, X, Xy)

κ = H(A, Y, Y a, TAG)

Fig. 3. Adaptive tag-based straight-line CNMZKAOK for DL in the restricted RO model

common input (where the group G is specified by the parameters (p, q, g)), a ∈ Zq be
the private input of the prover Â, Tag be the session-tag, and H be a hash function
that is assumed to be a (restricted) random oracle. The protocol of adaptive tag-based
CNMZKAOK for DL is depicted in Figure 3 (page 345), where the DH-component X

346 A.C. Yao and Y. Zhao

(resp., Y) is taken randomly and independently from G/1G by Â (resp., B̂) and each
player checks the G/1G membership of its peer’s DH-component.

Note that in the protocol specification, for presentation simplicity, the session-tag
Tag is predetermined and known to both the prover Â and the verifier B̂ prior to the
protocol run. In an actual adversarial setting, the session-tag may be set by the CMIM
adversary adaptively during the protocol run based on its view in all the concurrent
(left and right) sessions. The security analysis given in the full paper, which is based
upon the CKEA assumption in the restricted RO model, is w.r.t. this general adversarial
setting of adaptive tag selection.

The 3-round adaptive tag-based CNMZKAOK protocol for DL, depicted in Figure 3,
further implies a 3-round concurrent and forward deniable authentication protocol [15],
based on the CKEA assumption and the DL assumption in the restricted RO model, by
viewing messages to be authenticated as the session-tags.

Acknowledgment. We are indebted to Frances F. Yao and Bin Zhu for many contribu-
tions to the earlier versions of this work, though they finally declined the coauthorship.

References

1. Bellare, M., Palacio, A.: The Knowledge-of-Exponent Assumptions and 3-Round Zero-
Knowledge Protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289.
Springer, Heidelberg (2004)

2. Bellare, M., Palacio, A.: Towards Plaintext-Aware Public-Key Encryption without Ran-
dom Oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62. Springer,
Heidelberg (2004)

3. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 273–289. Springer, Heidelberg (1994)

4. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Effi-
cient Protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73
(1993)

5. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively Secure Multi-Party Computation.
In: ACM Symposium on Theory of Computing, pp. 639–648 (1996)

6. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 453.
Springer, Heidelberg (2001)

7. Canetti, R., Krawczyk, H.: Security Analysis of IKE’s Signature-Based Key-Exchange Proto-
col. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161. Springer, Heidelberg
(2002)

8. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-Box Concurrent Zero-Knowledge Re-
quires Ω̃(log n) Rounds. In: ACM STOC 2001, pp. 570–579 (2001)

9. Damgård, I.: Towards Practical Public-Key Systems Secure Against Chosen Ciphertext At-
tacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer,
Heidelberg (1992)

10. Dent, A.: Cramer-Shoup Encryption Scheme is Plantext Aware in the Standard Model. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 289–307. Springer, Heidelberg
(2006)

11. Di Raimondo, M., Gennaro, R.: New Approaches for Deniable Authentication. In: Proc. of
12nd ACM Conference on Computer and Communications Security (ACM CCS’05), pp.
112–121. ACM Press, New York (2005)

Deniable Internet Key Exchange 347

12. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable Authentication and Key Exchange.
In: ACM CCS’06, pp. 466–475 (2006); Full version appears in Cryptology ePrint Archive
Report No. 2006/280

13. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Information
Theory 22(6), 644–654 (1976)

14. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and On-line Deniability of Au-
thentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162. Springer,
Heidelberg (2009)

15. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. SIAM Journal on Comput-
ing 30(2), 391–437 (2000); Preliminary version in ACM Symposium on Theory of Comput-
ing, pp. 542–552 (1991)

16. Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In: ACM Symposium on The-
ory of Computing, pp. 409–418 (1998)

17. FIPS Pub 186-2, Digital Signature Standard (DSS), Federal Information Processing Stan-
dards Publication 186-2, US Department of Commerce/National Institute of Standard and
Technology, Githersburg, Maryland, USA (January 27, 2000)

18. Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game. In: ACM Sympo-
sium on Theory of Computing, pp. 218–229 (1987)

19. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof-
Systems. In: ACM Symposium on Theory of Computing, pp. 291–304 (1985)

20. Hada, S., Tanaka, T.: On the Existence of 3-Round Zero-Knowledge Protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Heidelberg
(1998)

21. Harkins, D., Carreal, D. (eds.): The Internet Key-Exchange (IKE), RFC 2409 (November
1998)

22. Kaufman, C.: Internet Key Exchange (IKEv2) Protocol. The Internet Engineering Task
Force: INTERNET-DRAFT (October 2002)

23. Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol. Request for Comments
2401 (1998)

24. Krawczyk, H.: SIGMA: the “SIGn-and-MAc” Approach to Authenticated Diffie-Hellman
and Its Use in the IKE-Protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
400–425. Springer, Heidelberg (2003)

25. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005)

26. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An Efficient Protocol for Authenti-
cated Key Agreement. Designs, Codes and Cryptography 28, 119–134 (2003)

27. Lindell, Y.: General Composition and Universal Composability in Secure Multi-Party Com-
putation. In: IEEE Symposium on Foundations of Computer Science, pp. 394–403 (2003)

28. Lindell, Y.: Lower Bounds and Impossibility Results for Concurrenet Self Composition.
Journal of Cryptology 21(2), 200–249 (2008)

29. Mao, W.: Modern Cryptography: Theory and Practice. Prentice Hall PTR, Englewood Cliffs
(2004)

30. Maurer, U., Wolf, S.: Diffie-hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

31. Menezes, A.: Another Look at HMQV. Cryptology ePrint Archive, Report No. 2005/205
32. Naor, M., Reingold, O.: Number-Theoretic Constructions of Efficient Pseudo-Random Func-

tions. Journal of the ACM 1(2), 231–262 (2004)
33. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-

committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–
126. Springer, Heidelberg (2002)

348 A.C. Yao and Y. Zhao

34. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security
of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118.
Springer, Heidelberg (2001)

35. Pass, R.: On Deniabililty in the Common Reference String and Random Oracle Models. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003)

36. Pass, R., Rosen, A.: New and Improved Constructions of Non-Malleable Cryptographic Pro-
tocols. In: ACM Symposium on Theory of Computing, pp. 533–542 (2005)

37. Pass, R., Rosen, A.: Concurrent Non-Malleable Commitments. In: IEEE Symposium on
Foundations of Computer Science, pp. 563–572 (2005)

38. Stinson, D.R., Wu, J.: An Efficient and Secure Two-Flow Zero-Knowledge Identification
Protocol. Cryptology ePring Archive, Report 2006/337

39. Stinson, D.R., Wu, J.: A Zero-Knowledge Identification and Key Agreement Protocol. Cryp-
tology ePring Archive, Report 2007/116

40. Yao, A.C., Yung, M., Zhao, Y.: Adaptive Concurrent Non-Malleability with Bare Public-
Keys. Cryptology ePrint Archive, Report 2010/107

41. Yung, M., Zhao, Y.: Interactive Zero-Knowledge with Restricted Random Oracles. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 21–40. Springer, Heidelberg
(2006)

A New Human Identification Protocol and
Coppersmith’s Baby-Step Giant-Step Algorithm

Hassan Jameel Asghar1, Josef Pieprzyk1, and Huaxiong Wang1,2

1 Center for Advanced Computing – Algorithms and Cryptography,
Department of Computing, Faculty of Science, Macquarie University,

Sydney, NSW 2109, Australia
{hasghar,josef,hwang}@science.mq.edu.au

2 Division of Mathematical Sciences, School of Physical & Mathematical Sciences,
Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

hxwang@ntu.edu.sg

Abstract. We propose a new protocol providing cryptographically
secure authentication to unaided humans against passive adversaries.
We also propose a new generic passive attack on human identification
protocols. The attack is an application of Coppersmith’s baby-step giant-
step algorithm on human identification protcols. Under this attack, the
achievable security of some of the best candidates for human identifi-
cation protocols in the literature is further reduced. We show that our
protocol preserves similar usability while achieves better security than
these protocols. A comprehensive security analysis is provided which sug-
gests parameters guaranteeing desired levels of security.

Keywords: Human Computer Cryptography; Human Identification
Protocols; Entity Authentication.

1 Introduction

Secure human identification protocols are a form of user authentication proto-
cols through which the human user proves his/her identity to a remote computer
server using an insecure public terminal and through an insecure channel. Such
protocols are based on shared-key cryptography and are potentially more secure
than traditional authentication methods such as passwords, biometrics, tokens or
combinations of them, since the adversary has more powers in the threat model.
The adversary can view the alphanumerics entered by the user, see the compu-
tations done at the terminal and above all observe the information exchanged
between the user and the remote server during a protocol session. Much stronger
models allow the adversary to actively interfere with the communication channel.
This scenario was conceived by Matsumoto and Imai in [4].

Although, human identification protocols secure against active attacks is cov-
eted, it is extremely hard to construct one that ensures both acceptable security
and good human executability. To date there have been a handful of proposals
known to resist some active attacks [1,6,8,13]. Among them only the sum of k

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 349–366, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

350 H.J. Asghar, J. Pieprzyk, and H. Wang

mins protocol proposed in [1] has been constructed to be secure against generic
active adversaries; yet, the protocol falls short of usability. The other protocols
only consider security against a known set of active attacks. Due to the difficulty
of constructing usable protocols secure against active attacks, recently the focus
of the research community has been on security against passive (eavesdropping)
adversaries [2,3,10,12]. Despite this being a weaker threat model, there is still no
widely accepted human identification protocol secure against passive adversaries
and this remains an open problem. Recently proposed protocols can be used for
only a small number of authentication sessions if a certain level of usability is de-
sired. Loosely speaking, most of these protocols consist of a shared secret that is
a set of k objects out of n. The protocol involves a series of challenges from the
server and corresponding responses by the user, which are constructed as a func-
tion of the secret and the challenges. Since the challenges and their responses are
communicated in the open, the adversary can always do a search after learning a
few challenge-response pairs to find the secret. We shall call protocols belonging to
this general category, k-out-of-n protocols. Hopper and Blum showed a bound on
the achievable security level for this class of protocols assuming a certain generic
time-memory tradeoff attack to be optimal [1, §6]. In other words, all k-out-of-n
protocols are susceptible to this time-memory tradeoff attack, even if they do not
have any other weaknesses. This bound severely reduces accomplishable security
level for small values of k. A smaller value of k is necessary to ensure that human
memory and computational requirements are low.

Hopper and Blum also proposed two protocols for human identification. One
of them is the now famous HB protocol based on the problem of learning parity in
the presence of noise. However, the variant of this protocol proposed as a human
identification protocol uses a small hamming weight k. We call this protocol
the k-weight HB protocol to distinguish it from the HB family of protocols
used for pervasive devices. The other protocol is the sum of k mins protocol
mentioned before. We use the variant that is constructed to be secure against
passive adversaries only. The two protocols achieve good security against passive
adversaries but fall short of the theoretically achievable bound imposed by the
time-memory tradeoff attack. The reason for this is an attempt to maintain a
reasonable level of usability.

In this paper, we propose a protocol that achieves better security than the
aforementioned protocols while preserving a similar usability level. We also pro-
pose a new time-memory tradeoff attack on human identification protocols that
has lower time-complexity than the one sketched in [1, §6]. The main compo-
nent of the attack is Coppersmith’s baby-step giant-step algorithm, which has
its application in solving the restricted hamming weight discrete logarithm prob-
lem [14]. Once again, this attack can be applied to all k-out-of-n protocols. It
performs better than the attack mentioned in [1] on the two proposed protocols
in that paper, further reducing their security level. Our protocol shows better
security under both time-memory tradeoff attacks. We also rigorously analyze
other possible attacks to demonstrate their efficacy, or lack thereof, in breaking
our protocol. Our focus is restricted to passive adversaries.

A New Human Identification Protocol 351

2 Related Work

The first human identification protocol that was constructed to be secure in the
aforesaid threat model was proposed by Matsumoto and Imai in [4]. This scheme
was shown to be insecure by Wang, Hwang and Tsai in [6] and the authors
proposed some improvements but with a severe loss in usability. Matsumoto
proposed another scheme in [7] based on techniques from linear algebra, but
it can only be used for a small number of authentication sessions. Yang and
Teng proposed a couple of protocols in [8] which with the suggested memory
requirement of three 20 to 40-bit secrets, is surely infeasible for most humans.
Hopper and Blum proposed two human identification protocols in [1]. One of
them is the k-weight HB protocol and the best known attack on this protocol is
the meet-in-the-middle attack [1, §3.1, pp. 58]. The protocol requires the human
to toss a coin with a fixed probability between 0 and 0.5, which is arguably
not achievable without additional aid. The other proposal by the authors is
the sum of k mins protocol. The version of this protocol secure against passive
adversaries is, in our opinion, the most secure and usable protocol published to
date. Our protocol performs slightly better, in that it does not use ordered pairs
and hence the user does not necessarily have to remember the secret objects in
a specific order. Furthermore, the security of our protocol is much higher for
similar parameter values.

Li and Shum [13] describe two protocols which resist a large number of passive
attacks and can be used for a large number of authentication sessions. However,
the security analysis of their protocols does not take time-memory tradeoff at-
tacks into account. Weinshall [10] proposed a slightly different protocol in which
the user has to remember images instead of alphanumeric secrets. The protocol
was cryptanalyzed and broken by Golle and Wagner in [11]. Use of images as
memory aids has been employed previously, such as in [5]. However, straightfor-
ward protocols in which the user is required to click on a subset of secret pictures
in a set of given pictures is susceptible to shoulder-surfing or passive observer
attacks. For a comprehensive survey of these protocols and others see [9]. More
recently, the authors of [2] and [3] proposed a slightly different concept in which
the internal properties of images are used as secrets. However, the security of
the protocols cannot be concretely demonstrated as it relies on some unproven
assumptions. Another recent attempt is by Bai et. al. in [12], but their protocol
was shown insecure by Li et al. [17].

3 Preliminaries: Definitions and Threat Model

Throughout this text, the prover is denoted by H and the verifier by C. This
is to acknowledge that in the real world, the prover will be a human user and
the verifier will be a remote computer (server). The goal of an identification
protocol is to authenticate H to C. We restate the definitions of identification
protocols and human executable protocols from [1] for reference. A protocol is
defined as a sequence of interactions between a pair of public and probabilistic

352 H.J. Asghar, J. Pieprzyk, and H. Wang

interactive turing machines (ITMs) (H, C). The result of the interaction between
these two (ITMs) with respective inputs x and y is denoted by 〈H(x), C(y)〉. The
transcripts of bits exchanged between H and C during this interaction is denoted
by T (H(x), C(y)).

Definition 1. An identification protocol is a pair of public, probabilistic inter-
active turing machines (ITMs) (H, C) with shared auxiliary input z, such that
the following conditions hold:
– For all auxiliary inputs z, Pr [〈H (z) , C (z)〉 = accept] > p0
– For each pair x �= y, Pr [〈H (x) , C (y)〉 = accept] < 1− p0 where 0.5 < p0 ≤ 1.

When 〈H, C〉 = accept, we say that H authenticates to C. For human computa-
tional ability, we shall use the following definition from [1]:

Definition 2. An identification protocol (H, C) is (α, β, τ)-human executable if
at least a (1− α) portion of the human population can perform the calculations
H unaided and without errors in at most τ seconds with probability greater than
(1− β).

The goal is to minimize α, β and τ . Concrete values to these parameters can be
assigned by either an intuitive approximation or where it is hard to do so, actual
user experiments can be carried out [1].

3.1 Security Definitions

The adversary, denoted by A, has passive access to the channel between H and
C. In this light, the adversary views both H and C as oracles. The following
definition treats H and C as Interactive Turing Machines. In the identification
protocols discussed in this paper the computations done by H have to be carried
out by a human user. Therefore, all such computations should be done by the
human mentally, or else any security proved against A will be superfluous.

The following security definition is taken from [1] and involves the passive
adversary A defined above.

Definition 3. An identification protocol (H, C) is (p, m) secure against passive
adversaries if for all computationally bounded adversaries A and for all auxiliary
inputs z,

Pr [〈A (T m (H (z) , C (z))) , C (z)〉 = accept] ≤ p

Here T m (., .) represents the transcript of m independent communication sessions
between H and C.

If 〈A(T m(H, C)), C〉 = accept for some m, we say that A impersonates H. We
define a challenge-response identification protocol as the following sequence of
messages communicated between H and C:

request, (c1, r1), (c2, r2), . . . , (cm, rm), accept/reject

The message request is sent by H to C. It symbolizes a request to start a protocol
and contains information about H such as its identity. Each pair (ci, ri) consists

A New Human Identification Protocol 353

of a challenge ci drawn from some challenge space by C and a response ri com-
posed from a response space by H. At the end of m challenge-response pairs,
C sends the message accept or reject. We call this sequence of messages as one
session (or an authentication session) of the challenge-response identification
protocol.

4 Proposed Protocol

Notation. We refer to a vector of n elements or an n-tuple as an ordered list of
n elements. If c is a vector of n-elements, then c[i] denotes the ith element of c,
for 0 ≤ i ≤ n− 1; the index i is called the ith location in c. Let n be such that
n = ab for positive integers a and b. We call a the jump constant for reasons
that will be clear later. Let k and d be positive integers. Let c be a vector of n
integers drawn uniformly at random from the set {0, 1, . . . , d− 1}.

We first describe the protocol formally and then show an implementation that
is human friendly. Sections 4.1 and 4.2 give a less technical description of the
protocol with example values for the parameters.

Protocol 1.
Setup: Let n, a, b, m, k and d be public parameters, with n = ab. C and H

choose k + 1 locations in c. These locations are essentially a set of integers:
s0, s1, . . . , sk, where 0 ≤ si ≤ n − 1. s0 is called the starting location. All
these locations constitute the secret.

1: repeat
2: C updates m← m− 1, generates the vector c and sends it to H.
3: H assigns t← s0.
4: Vertical movement: H updates t← (t + a · c[s0]) mod n.
5: for 1 ≤ i ≤ k do
6: Horizontal movement: H updates t← (t + c[si]) mod n.
7: H sends c[t] to C.
8: if the answer is incorrect then
9: C outputs reject.

10: until m = 0
11: C outputs accept.

It is clear that the above protocol is an identification protocol in which C ac-
cepts the legitimate prover with probability 1 and the success probability of an
impersonator is less than or equal to d−m.

4.1 User Friendly Implementations

Both graphical and textual implementations are possible for our protocol. In a
graphical implementation, we can use n graphical objects such as software icons.
In this case, the user’s secret is a set of k icons out of n. Here we illustrate an
example text-based implementation.

354 H.J. Asghar, J. Pieprzyk, and H. Wang

We represent the secret space, i.e. the locations in c, by an alphabet. For
instance, the English alphabet is a candidate. In this subsection, we abuse the
notation a little to denote the human user by H. The vector c is presented to
H in the form of a grid with a × b cells, where b = n/a (a is chosen such that
it divides n). Each location in c is mapped to a unique character in the secret
space alphabet. Each cell in the grid contains a unique character from the secret
space, below which is the corresponding random digit from c. The secret is then
a string from this alphabet, instead of a set of integers of vector locations. Thus,
the starting location is also a character from this alphabet.

Given a challenge “grid”, H locates the cell containing the starting character.
This corresponds to the location s0 in the formal description.H then looks at the
digit corresponding to this cell. Let the digit be d0. H moves d0 steps vertically
downwards, in a circular way, thus reaching a new character location in the same
grid. Call this location l0. H then looks at the digit in the cell containing s1.
Let d1 be the digit. It now moves horizontally to the right of the location l0 and
moving to the start of the next row if the end of the row is reached. This results
in the new location l1. H continues to move horizontally according to the digits
corresponding to the rest of its secret locations. If the bottom right corner of
the grid is reached, H moves to the top left corner, thus moving in a cycle. At
the end of this procedure, H simply outputs the digit corresponding to the final
character location thus reached. Figure 1 shows an example. Here a = 12 and
b = 6, which implies that n = 72. In this example and also through most of the
text, we will choose d = 10, as this is a common base for humans. The alphabet
is composed of the characters a, . . . , z, A, . . . , Z, 0, . . . , 9 and special characters:
!, @, #, $, %,∧, &, ∗, (,). Notice that the order of the characters remains the same
for all challenges and only the digits corresponding to these characters change
for different challenges. For the graphical implementation, we simply replace the
alphabet with a corresponding set of graphical objects. While the text-based
implementation is shown here as an illustration of our protocol, we recommend
graphical implementation as it is more user-friendly and has less security issues,
such as resistence to dictionary attacks.

a b c d e f g h i j k l
3 2 6 9 2 1 7 5 4 4 6 8

m n o p q r s t u v w x
1 6 7 4 9 7 5 3 2 7 6 1

y z A B C D E F G H I J
3 2 5 1 5 2 9 6 6 8 6 0

K L M N O P Q R S T U V
3 1 7 4 9 7 5 3 4 7 6 1

W X Y Z 0 1 2 3 4 5 6 7
6 3 8 2 6 8 3 2 9 5 8 0

8 9 ! @ # $ % ∧ & ∗ ()
4 7 2 0 9 1 5 3 6 3 4 9

Fig. 1. An example challenge grid

A New Human Identification Protocol 355

4.2 Different Ways of Computation

The above mentioned procedure is one way the human user can perform the
protocol steps. There are a number of other ways in which the protocol can be
executed. The user can choose any method he or she prefers.

For instance, a different and probably more efficient way is sketched here.

1. Ignore the starting location and add all the digits corresponding to the re-
maining k secret locations.

2. From the starting location, move d0 steps vertically downwards (continuing
from the top if the bottom of the grid is reached), where d0 is the digit
corresponding to the starting location.

3. Divide the sum obtained in Step 1 by the jump constant a to get a quotient
and a remainder. The quotient is the number of vertical steps and the re-
mainder is the number of horizontal steps to be taken. The user can then
follows these steps from the location reached in Step 2 and finally output
the digit corresponding to the location thus reached.

If the jump constant a is a multiple of 10 then the above division can be per-
formed by most humans mentally. Thus to make this method easy for most users,
n and a can be chosen to be 200 and 20 respectively. These parameters are easy
for humans to use. k can be chosen somewhere between 10 and 15.

5 Security Analysis

Recall that for security, we consider the computationally bounded passive ad-
versary of Definition 3. The adversary can view every challenge-response pair.
The adversary knows the description of Protocol 1 and the public parameters
specified in that protocol. The only thing hidden from the adversary is the set
of secret locations shared by C and H. In this section, we assume that the cal-
culations H can be performed by a human mentally without any additional aid
and thus A gains no advantage in observing the human user’s behavior. We also
assume that the secret locations are chosen uniformly at random from the set of
all possible secret locations.

Given m challenge-response pairs (c1, r1), . . . , (cm, rm), the goal of A is to
impersonate H either by partially or completely learning the secret locations or
by impersonating H by guessing the answers without knowledge of the secret.
We assume that all these challenge-response pairs correspond to successful au-
thentication sessions between H and C. We first look at some obvious attacks
following which we shall show more sophisticated attacks.

5.1 Some Obvious Attacks

Random Guess 1. The most obvious impersonation attack is to randomly guess
the answers when prompted for a challenge. Since the output is in the range
{0, 1, . . . , d−1}, a random guess from this set will be successful with probability
1/d for each challenge. For m challenges, this probability is d−m.

356 H.J. Asghar, J. Pieprzyk, and H. Wang

Random Guess 2. Another method for impersonation is to guess the secret and
then answer a challenge by following the steps of Protocol 1 correctly. We see
that there are a total of n

(
n+k−1

k

)
possible ways of choosing a secret. Thus the

probability of success in guessing the correct secret is (n
(
n+k−1

k

)
)−1.

The hitherto mentioned attacks are online attacks and effective measures exist
to prevent them. For instance, if there are more than a threshold number (say
3) of unsuccessful consecutive login attempts, the user account can be blocked.

Brute Force. The bruteforce attack has complexity O(n
(

n+k−1
k

)
). It works by try-

ing all possible secret locations satisfying m challenge-response pairs. In the next
section, we shall see that after observing m challenge-response pairs, the expected
number of candidates for the secret is: n

(
n+k−1

k

)
/dm. To reduce this number to

a unique secret, A needs on average: n
(
n+k−1

k

)
/dm ≈ 1 ⇒ m ≈ logd(n

(
n+k−1

k

)
)

challenge-response pairs. Thus O(logd(n
(
n+k−1

k

)
)) challenge-response pairs are

enough to find the secret uniquely. With a lower number of challenge-response
pairs, there are multiple candidates and even a computationally unbounded ad-
versary cannot distinguish between them. For concrete values, we see that if
n = 200 and k = 15, the brute force attack has complexity roughly 283. An
attack with this complexity is generally considered intractable.

5.2 Algebraic Interpretation

Given m challenge-response pairs (c1, r1), . . . , (cm, rm), we now consider the
problem of finding the secret locations s0, . . . , sk. We attempt to describe this
problem algebraically. The following notations will be used henceforward: If A is
a set, then |A| denotes the number of elements in A. If x and y are two strings,
then x||y represents their concatenation. If x and y are two integers, [x, y] rep-
resents the interval of integers between x and y inclusive. A string of n-elements
can be transformed into a vector of n-elements in a natural way, and the two
terms will be used interchangeably in the following.

For any challenge-response pair (c, r), a location r̂ satisfying c[r̂] = r is called
a satisfying location for (c, r). For 1 ≤ i ≤ m, let Ri be the set of all satisfying
locations for (ci, ri). Let Rm = R1 × · · · ×Rm be the m-ary cartesian product
over these m sets. We represent the elements of Rm as m-element vectors, r̂ =
[r̂1 · · · r̂m]T , in an obvious way. For any vector x, let |x| denote the number of
elements in x. Define the weight of x as:

wt(x) =
∑|x|

i=1
xi

where xi = x[i], the ith element of x. Define the matrix C as:

C =

⎡⎢⎢⎢⎣
c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n

...
...

...
...

cm,1 cm,2 · · · cm,n

⎤⎥⎥⎥⎦

A New Human Identification Protocol 357

where ci,j = ci[j]. Then, for each r̂ ∈ Rm we have:

[
aC C
] [x

y

]
= r̂ mod n (1)

where x and y are n-element vectors with wt(x) = 1 and wt(y) = k. Clearly, x
corresponds to the starting secret location and y corresponds to the k remaining
secret locations. Notice that y need not be a binary vector since each location
can be chosen more than once. There are |Rm| such equations and we cannot
write this as a system of fewer equations as for each satisfying location r̂ for
a challenge-response pair (c, r), r is independent of r̂. This is true since each
element of c is generated uniformly at random from {0, 1, . . . , d− 1}.

We see that for, 1 ≤ i ≤ m, the expected value E[|Ri|] is n/d. This implies
that E[|Rm|] = (n/d)m. There is exactly one element in Rm that contains the
satisfying location corresponding to H’s secret. We denote this by r̂s. For more
compact notation, define s = [x y]T and C′ = [aC C]. Finding a unique s
satisfying C′s = r̂s mod n thus translates into finding the secret locations of
H. There are 2n unknowns in s. If m is small, the number of solutions for s
is very large. On the other hand, higher m means a higher value of E[|Rm|] =
(n/d)m, which in turn means more equations to be solved, since A has no way
to distinguish r̂s from other elements in Rm.

Let Solve Equations be an algorithm that finds solutions (possibly multi-
ple) to the linear system defined in Equation 1. Further, let τ(n, k, m, d) be the
time complexity of this algorithm. We have the following probabilistic algorithm
for finding s.

Algorithm 1
Input: The matrix C′ and the set Rm.
1: Initialize an empty set S.
2: for each r̂ ∈ Rm do
3: Run Solve Equations on input C′s = r̂ mod n. If any solutions are

found, assign them to the set S.
4: Output an element uniformly at random from S.

This algorithm will perform well probabilistically if |S| is small. As we have found
before, the expected size of Rm is (n/d)m. There are a total of nm possible
different output vectors for C′s mod n. Therefore, the probability that an s,
different from H’s secret, is in the set S can be estimated as (n/d)m

nm = 1/dm.
Thus this probability becomes lower as m increases. Therefore, we can assume
that the performance of this algorithm is good. The expected time complexity
of Algorithm 1 is:

O
(
τ (n, k, m, d)

(n
d

)m)
If gaussian elimination is used as the Solve Equations algorithm, we require
m ≥ 2n, but this means that the expected size of Rm will be greater than or
equal to (n/d)2n. We can see the complexity of this algorithm with concrete

358 H.J. Asghar, J. Pieprzyk, and H. Wang

values. Let n = 100, d = 10 and k = 16. Then, we have m ≥ 2n = 200. Gaussian
elimination takes time O(n3) giving a total approximate time 2687, which is
surely infeasible.

Since the weights of x and y are restricted, we might still be able to use other
methods with a smaller value of m. To this end, given m, we find the number of
possible solutions of the following equation:

C′s = r̂ mod n (2)

where r̂ ∈ Rm. Since wt(x) = 1 and wt(y) = k, with m = 0 there are a total of
n
(
n+k−1

k

)
possible choices for s. With m = 1, we expect a 1/n fraction of these

choices to satisfy the above equation. Continuing on this way, we see that the
expected number of possible choices for s are:

n
(
n+k−1

k

)
nm

=

(
n+k−1

k

)
nm−1

Since the expected size of Rm is (n/d)m, we see that the combined expected
number of solutions are:

n
(
n+k−1

k

)
dm

Equating the above expression to 1, we get:

m = logd n + logd

(
n + k − 1

k

)
(3)

Thus m = O(logd n+logd

(
n+k−1

k

)
) is required on average to find a unique value

of s in Equation 2. By using the concrete values as above, we find that the
resulting value of m from Equation 3 is approximately 29. Thus in theory, we
can have an algorithm that solves the problem with m = 29. However, this value
of m implies that (n/d)m ≈ 296. Thus whether or not a Solve Equations

algorithm that works for smaller values of m can be found, the overall time
complexity of Algorithm 1 is still very high. Thus it is not possible to improve this
complexity without a different approach. Informally speaking, the main reason
for this interesting result is that in our protocol, the computations are also done
on the location indices and not just the digits corresponding to these locations
as in previously proposed protocols. Since the digits are generated uniformly at
random, the final answer is not linearly dependent on the location indices. Next,
we present a time-space tradeoff algorithm that utilizes fewer challenge-response
pairs and has better time complexity.

5.3 Time-Memory Tradeoff

In [1, §6], Hopper and Blum sketched a meet-in-the-middle algorithm which, on
k-out-of-n protocols, has average-case time complexity of:

O
(
nk(1− ln d

2 ln Q)
)

(4)

A New Human Identification Protocol 359

Here Q is an intermediate result, which in our protocol corresponds to the range
of the intermediate locations during the computation of the protocol. Thus in our
protocol, Q = n. Our protocol and the protocols from [1] as well as many other
protocols in literature loosely fall in this category of protocols (the only difference
in our protocol is that we have a starting location that is computed differently
from the k remaining locations). For the k-weight HB protocol, the average-case
time complexity of this attack is: O(

(
n

k/2

)
) [1, §3.1, pp. 58]. This is true due to two

reasons. First the protocol uses the addition operation, which is commutative,
and the user has to choose k unique locations as a secret. Therefore, the number
of possible secrets are

(
n
k

)
instead of nk. Secondly, Q equals d in their protocol.

Similarly, for the sum of k mins protocol the average-case time complexity of this
attack is O(

(n(n−1)/2
k/2

)
)[1, §3.2, pp. 59]. However, since the size of the secret is

exactly twice than in the k-weight HB protocol, the comparative time complexity
is O(
(n(n−1)/2

k/4

)
).

This attack is essentially a time-memory tradeoff. The time-memory tradeoff
attack that we present here employs a deterministic baby-step giant-step algo-
rithm by Coppersmith, summarised in [16, pp. 109] and detailed in [14, §2.1].
On k-out-of-n protocols, the resulting attack has average-case time complexity
of:

O

(
nk(1− ln d

2 ln Q)n
ln d
ln Q

2
k
2

ln d
ln Q

)

which is better than the former if 2k/2 < n or k < 2 log2 n. The space complexi-
ties of the two attacks are the same. While the time complexity is comparable to
the previously mentioned meet-in-the-middle attack for generic k-out-of-n pro-
tocols, our attack however, performs much better on the two protocols in [1].
The average-case time complexity of our algorithm on the k-weight HB pro-
tocol is O(

(n/2
k/2

)
) and on the sum of k mins protocol is O(

(n(n−1)/4
k/4

)
). This is

substantially smaller than the previous result.
The original application of Coppersmith’s algorithm is to solve the restricted

hamming weight discrete logarithm problem [15]. But since this algorithm essen-
tially utilizes the knowledge of the restricted hamming weight, we can modify
it to solve our problem. We notice that there are several other deterministic
algorithms that perform asymptotically better than Coppersmith’s algorithm

like the one proposed by Stinson of time complexity O
(
k3/2(ln n)

(n/2
k/2

))
[14].

However, for the choice of parameters used in this paper, the performance is
comparable to Coppersmith’s algorithm if not worse. There are also some prob-
abilistic variants, but which cannot be applied here since the discrete logarithm
is always unique and this is not necessarily the case with the candidate locations
in our problem for small values of m. For larger values of m time-memory trade-
off algorithms become infeasible. We now describe the attack on our protocol
and derive its time complexity. The derivations of the other results mentioned
above are similar.

For simplicity, we assume n and k to be even integers. For arbitrary n and
k, the attack can be carried out with minor differences [14, §5]. For 0 ≤ i ≤

360 H.J. Asghar, J. Pieprzyk, and H. Wang

n − 1, define bi to be a vector of length n such that bi[l + 1] = 1 whenever,
l ≡ i + j mod n, for 0 ≤ j ≤ n/2− 1, and 0 otherwise. Clearly, for all i, bi is a
binary vector with wt(bi) = n/2. Let B = {bi : 0 ≤ i ≤ n/2−1}. Now, let Y be
the set of all n-element vectors. From [14, §2.1], we see that for all y ∈ Y with
wt(y) = k, there exists a b ∈ B, such that:

y · b =
k

2

For any y1,y2 ∈ Y, y2 is called the sub of y1, denoted y2 ≺ y1, if y1[l] = 0 ⇒
y2[l] = 0 for 1 ≤ l ≤ n. Let 1 denote the binary vector of weight n. Let y=k/2

denote a vector whose weight is k/2. We divide s into two parts: s1 = [x y=k/2]T

and s2 = [0 y=k/2]T . We assume there to be a hash table, initially empty, which
will be used as a data structure in this attack.

Algorithm 2
Input: The set B and m challenge-response pairs.
1: Initialize an empty set S.
2: for 0 ≤ i ≤ n/2− 1 do
3: for each possible vector s1 = [x y=k/2]T such that y=k/2 ≺ bi do
4: Compute the string q ← c1 · s1 mod n|| · · · ||cm · s1 mod n.
5: Insert this m-digit string q along with s1 in the hash table.
6: for each vector s2 = [0 y=k/2]T such that y=k/2 ≺ 1− bi do
7: for 1 ≤ i ≤ m do
8: Initialize an empty set Qi.
9: For 1 ≤ j ≤ n, if ri ≡ (j+ci ·s2) mod n, update Qi ← {j}∪Qi.

10: Insert each string q ∈ Q1 × · · · ×Qm in the hash table along with
s2.

11: For each collision in the hash table, construct s = s1 + s2 and update S←
{s} ∪S.

12: Output S.

Once Algorithm 2 is executed, we need another algorithm to uniquely determine
the vector in S that satisfies m ≥ logd(n

(
n+k−1

k

)
) challenge-response pairs.

Algorithm 3
Input: The set S and m ≥ logd(n

(
n+k−1

k

)
) challenge-response pairs.

1: for each s ∈ S do
2: If ci · s ≡ ri mod n for 1 ≤ i ≤ m, output s and halt.

The memory requirement of Algorithm 2 is O(n
(n+k/2−1

k/2

)
). Neglecting logarith-

mic terms, the combined running time of Algorithm 2 and 3 is:

O

(
nm+1

dm

(
n/2 + k/2− 1

k/2

)
+

(
n+k−1

k

)
dm

)

A New Human Identification Protocol 361

Following a similar procedure to that of [1, §6], we see that to minimize this
quantity the optimum value of m for Algorithm 2 is:

m =

ln

(
(n+k−1

k) ln d

(n/2+k/2−1
k/2) ln(n/d)

)
ln n

− 1

And this value of m gives the running time:

O

((
n + k − 1

k

)1−ln d/ ln n(
n/2 + k/2− 1

k/2

)ln d/ ln n
)

In contrast, if we use the meet-in-the-middle algorithm from [1], we get a running
time in which n/2 is replaced by n in the second term above; hence considerably
larger in the second term. Table 1 shows various choices of the parameters n and
k and the resulting combined time and space complexity of Algorithms 2 and 3.
We assume d = 10 and the time and space complexities are represented by the
symbols τ and μ respectively.

Table 1. The time complexity τ and space complexity μ of the time-memory tradeoff
attack with the optimum value of m against n and k

n k τ μ n k τ μ n k τ μ

100 10 233 233 120 10 236 235 150 10 239 237

20 255 252 20 260 255 20 265 258

30 272 267 30 279 271 30 286 276

200 10 243 239 300 10 248 243 500 10 255 247

20 272 263 20 283 269 20 296 277

30 297 283 30 2112 292 30 2132 2104

5.4 Comparative Time Complexities

The main motivation behind our protocol was to increase Q relative to d in
Equation 4 without compromising too much on usability. If Q roughly equals
the square of d, then we can choose smaller values of k, as the time complexity of
the attack will increase. This is not straightforwardly possible in the k-weight HB
protocol and the sum of k mins protocol. For instance, if Q = 100 = 102 = d2,
these protocols will require k additions of 2 digit numbers in a single round.
This is prohibitively difficult for most humans since the additions have to be
performed mentally. Our protocol achieves this by shifting the computations to
the locations rather than the values of those locations. At each step, the user
only has to add a 2 or 3 digit number to a single digit number. As a result,
usability is preserved while the time-memory tradeoff attacks perform worse in
our case. Table 2 shows a direct comparison of the three protocols in terms of the

362 H.J. Asghar, J. Pieprzyk, and H. Wang

time-complexity of our attack. The time complexity of the meet-in-the-middle
attack from [1] is labeled “Old”, whereas our attack is labeled “New”. As can
be seen, our attack is more efficient than the previous attack by a few orders
of magnitude. Time-memory tradeoff attacks is one way to attack our protocol.
The next section looks at a different way to attack the protocol.

Table 2. The time complexities of the time-memory tradeoff attacks on the k-weight
HB protocol, the sum of k mins protocol and our protocol

k-weight HB Sum of k mins Our Protocol
n k Old New Old New Old New

100 8 222 218 224 222 230 228

12 230 224 234 231 241 238

16 237 229 245 241 251 247

200 8 226 222 228 226 237 236

12 236 230 240 237 252 249

16 246 237 253 249 265 261

300 8 228 224 230 228 242 240

12 240 234 244 241 258 256

16 250 242 257 253 273 270

5.5 Significance of the Jump Constant a

Let r̂ denote a location. Clearly it is an integer modulo n. We first attempt
to find the probability distribution of obtaining r̂ as a sum of the values of k
locations, ignoring the starting location and hence the jump constant a. To this
end, let p(k, r̂) be the probability that r̂ is the final location after the sum of the
values of k locations as in our protocol. In other words, it denotes the probability
that r̂ is the sum of k integers (not necessarily unique): s1, . . . , sk ∈ Zd. Clearly,
p(1, r̂) = 1/d for 0 ≤ r̂ ≤ d − 1 and p(1, r̂) = 0 for d ≤ r̂ ≤ n − 1. For any
subsequent k, we see that the probability p(k, r̂) can be obtained by:

p (k, r̂) =
∑n−1

i=0
p (k − 1, r̂ − i mod n)p (1, i)

This is similar to [1, §3.2]. By a dynamic programming algorithm of time com-
plexity O(kn2) we can compute these probabilities. Now, let q(a, k, r̂) denote the
probability of obtaining the location r̂ as the sum of k integers and the starting
location, thus including the jump constant a. Then, we can see that:

q (a, k, r̂) =
1

d

∑d−1

i=0
p (k, r̂ + ia mod n)

Let U denote the uniform distribution over Zn. Let Q denote the distribution
of the q (a, k, r̂)’s. Δ(Q, U) = 1

2

∑n−1
i=0 |q (a, k, i)− 1

n | is defined as the statistical
distance between the two probability distributions. We can then see that this

A New Human Identification Protocol 363

Table 3. The statistical distance Δ(Q,U) against n and k. Greater value of n requires
larger value of k to make Δ(Q,U) small

n k Δ(Q,U) n k Δ(Q,U) n k Δ(Q,U)

100 10 3.5 × 10−16 120 10 4.9 × 10−8 150 10 1.0 × 10−4

20 7.0 × 10−16 20 3.3 × 10−15 20 1.6 × 10−8

30 9.9 × 10−16 30 1.0 × 10−15 30 2.5 × 10−12

200 10 7.2 × 10−3 300 10 9.7 × 10−2 500 10 3.3 × 10−1

20 8.2 × 10−5 20 1.5 × 10−2 20 1.7 × 10−1

30 9.3 × 10−7 30 2.3 × 10−3 30 8.8 × 10−2

distance is minimum if a = n
d . Table 3 shows Δ(Q, U) with different values of

n and k (a is chosen such that n = ab = ad). Based on these results, we see
that if the statistical distance is small, an adversary can distinguish from the
uniform distribution after observing 1

Δ(Q,U) challenge-response pairs on average.

The adversary can then (possibly) use some statistical methods to guess the
starting location and can then guess the answer by choosing a location in the
region which is more probable to contain the answer. Notice that each session in
our protocol consists of m rounds. Therefore, in light of the discussion above, we
mandate the use of our protocol for 1

mΔ(Q,U) sessions only, before secret renewal.

6 Usability

To demonstrate comparable usability, we use similar parameters as used in the
experiment in [1]. We use n = 200, k = 15 and m = 6. With these parameters, the
time and space complexity of our time-memory tradeoff attack is proportional to
261 and 254, respectively. The statistical distance Δ(Q, U) is 4.9 × 10−4, which

means that the quantity (Δ(Q,U))−1

m ≈ 340. Thus, with these parameters our
scheme can be used securely for at least 340 authentication sessions.

With n = 200, k = 15 and m = 7, the experiment done for the k-weight HB
protocol by the authors in [1] gave an average time of 166 seconds. Notice that
there are m = 7 rounds instead of 6. This is important to add noise into the
answer. The user sends the wrong answer to one of the challenges. To compare
with our protocol, we can see that apart from the starting location, the user
has to add two numbers for each secret location. One of these numbers is in the
range [0, 199] and the other is in the range [0, 9]. Thus arguably, adding a single
digit number to a number in the range [0, 199] will take approximately the same
time, as we are well versed with doing such computations in our heads. For the
starting location, we see that the user can move vertically (in a circular way)
according to the digit corresponding to the starting location. The user reaches to
a new location this way. The result of the remaining k = 15 locations can then
be divided by 20 to get a quotient and a remainder. The quotient is the number
of vertical steps and the remainder is the number of horizontal steps to be taken.

364 H.J. Asghar, J. Pieprzyk, and H. Wang

The user can then follow these steps and output the digit corresponding to the
location thus reached. Thus while this last step takes more time than the other
steps, it can surely be done within half the time required for the computation of
the k = 15 other secret locations. Now, one round of k-weight HB protocol takes
166/7 ≈ 23.7 seconds on average. This implies that according to our argument,
the computation of the last part takes ≈ 12 seconds. Thus, conjecturing that the
calculations for the remaining k = 15 locations amounts to time 166, we can see
that for m = 6 rounds, this amounts to a total time of ≈ 213 seconds.

From this discussion, we can say that for low values of α and β, our protocol is
approximately (α, β, 213)-human executable. While it takes slightly more time
than the k-weight HB protocol, it is more usable as the user does not have
to send a wrong answer with probability 1/7, which is not possible for most
humans. Furthermore, for these parameter choices, the time complexity of the
time-memory tradeoff attack is proportional to 237 in the case of k-weight HB
protocol. In our case, the complexity is 261. The comparative time-complexity
of the attack on the sum of k mins protocol with similar parameters is 249.
Again, lower than the time-complexity for our protocol. To increase usability,
one can further reduce m from 6 to 4 and get a time of approximately 143
seconds. Some of the common authentication mechanisms, such as PIN number
authentication, use 4-digit numbers for security. We acknowledge the absence of
actual experiments on users.

Finally, to handle human errors we can require the user to only answer cor-
rectly in most of the rounds. For instance, if m = 6, then the server accepts the
user if 5 or more of the answers are correct.

6.1 Suggested Parameters

Table 4 shows choices of parameter values for different security requirements
and the resulting parameterized security against different attacks. In the table,
m stands for the number of iterations (rounds) in one authentication session. R
stands for the success probability of the random guess attack. B stands for the
complexity of the brute force attack. τ/μ shows the time/space complexity of
the time-space tradeoff algorithm. Finally, Sessions, represents the number of au-

thentication sessions a particular secret can be used. It is obtained as (Δ(Q,U))−1

m .
Notice that, space complexity can be a severe limitation as well (263/8 ≈ 1018,
i.e. about 1 eta byte). For low and medium level security, the restriction on the
number of sessions can be relaxed.

Notice that in comparison with some other protocols found in literature,
the number of sessions is quite high. For instance, the cognitive authentica-
tion scheme of Weinshall [10] can only be used for approximately 40 sessions
even when the size of the user’s secret is as large as 150 [11, §4.1]. For more
practical sizes of the secret, the number of allowable sessions is even lower. For
these reasons, we have restricted our comparison to the two protocols in [1].

A New Human Identification Protocol 365

Table 4. Suggested Parameters

Security n k m R B τ/μ Δ(Q,U) Sessions

Low 200 12 4 10−4 271 249/244 2.9 × 10−3 85
Medium 200 16 4 10−4 287 261/254 4.9 × 10−4 500

High 200 20 6 10−6 2101 272/263 8.2 × 10−5 2, 000
Paranoid 200 24 6 10−6 2114 283/271 1.4 × 10−5 12, 000

7 Conclusion

Recently, many human identification protocols secure against passive adversaries
have been proposed in the literature. However, they can only be used for a few
authentication sessions before secret renewal. Furthermore, many of them lack a
detailed security analysis. Some of them have ignored the impact of time-memory
tradeoff attacks. We attempted to construct a protocol with security against
time-memory tradeoff attacks in mind. The resulting protocol offers reasonable
usability and good security. We acknowledge that the protocol can not be used
frequently, as authentication seems to require about 2-3 minutes time. However,
it can be used under certain circumstances such as when the user is using an
insecure computer. An interesting question is whether improvements can be
made to find a solution that achieves better security with progressively smaller
values of parameters such as the size of the secret. Another area of interest is
to find other variants of time-memory tradeoff attacks that can be applied to
human identification protocols.

Acknowledgements. Hassan Jameel Asghar was supported by Macquarie Uni-
versity Research Excellence Scholarship (MQRES). Josef Pieprzyk was sup-
ported by the Australian Research Council under Grant DP0987734. The work
of H. Wang is supported in part by the Australian Research Council under
ARC Discovery Project DP0665035, the Singapore National Research Founda-
tion under Research Grant NRF-CRP2-2007-03 and the Singapore Ministry of
Education under Research Grant T206B2204.

References

1. Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

2. Jameel, H., Shaikh, R.A., Lee, H., Lee, S.: Human Identification Through Im-
age Evaluation Using Secret Predicates. In: Abe, M. (ed.) CT-RSA 2007. LNCS,
vol. 4377, pp. 67–84. Springer, Heidelberg (2006)

3. Jameel, H., Shaikh, R., Hung, L., Wei, Y., Raazi, S., Canh, N., Lee, S., Lee, H., Son,
Y., Fernandes, M.: Image-feature based human identification protocols on limited
display devices. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS,
vol. 5379, pp. 211–224. Springer, Heidelberg (2009)

366 H.J. Asghar, J. Pieprzyk, and H. Wang

4. Matsumoto, T., Imai, H.: Human Identification through Insecure Channel. In:
Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 409–421. Springer,
Heidelberg (1991)

5. Jermyn, I., Mayer, A., Monrose, F., Reiter, M., Rubin, A.: The design and analysis
of graphical passwords. In: 8th USENIX Security Symposium (1999)

6. Wang, C.H., Hwang, T., Tsai, J.J.: On the Matsumoto and Imai’s Human Iden-
tification Scheme. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 382–392. Springer, Heidelberg (1995)

7. Matsumoto, T.: Human-computer cryptography: An attempt. In: 3rd ACM Con-
ference on Computer and Communications Security, pp. 68–75. ACM Press, New
York (1996)

8. Li, X.-Y., Teng, S.-H.: Practical Human-Machine Identification over Insecure Chan-
nels. Journal of Combinatorial Optimization 3, 347–361 (1999)

9. Li, S., Shum, H.-Y.: Secure Human-computer Identification against Peeping At-
tacks (SecHCI): A Survey. Unpublished report, available at Elsevier’s Computer
Science Preprint Server (2002)

10. Weinshall, D.: Cognitive Authentication Schemes Safe Against Spyware (Short
Paper). In: 2006 IEEE Symposium on Security and Privacy, pp. 295–300 (2006)

11. Golle, P., Wagner, D.: Cryptanalysis of a Cognitive Authentication Scheme. Cryp-
tology ePrint Archive, Report 2006, /258, http://eprint.iacr.org/

12. Bai, X., Gu, W., Chellappan, S., Wang, X., Xuan, D., Ma, B.: PAS: Predicate-
Based Authentication Services Against Powerful Passive Adversaries. acsac. In:
2008 Annual Computer Security Applications Conference, pp. 433–442 (2008)

13. Li, S., Shum, H.-Y.: Secure human-computer identification (interface) systems
against peeping attacks:SecHCI. IACR’s Cryptology ePrint Archive: Report
2005/268 (August 2005)

14. Stinson, D.: Some Baby-Step Giant-Step Algorithms for the Low Hamming Weight
Discrete Logarithm Problem. Math. Comp. 71, 379–391 (2002)

15. Agnew, G., Mullin, R., Onyschuk, I., Vanstone, S.: An Implementation for a Fast
Public-Key Cryptosystem. J. Cryptography 3 (1991)

16. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press, Boca Raton (1997)

17. Li, S., Asghar, H.J., Pieprzyk, J., Sadeghi, A.-R., Schmitz, R., Wang, H.: On the
Security of PAS (Predicate-Based Authentication Service). In: ACSAC ’09: Pro-
ceedings of the 2009 Annual Computer Security Applications Conference, pp. 209–
218 (2009)

http://eprint.iacr.org/

Secure Sketch for Multiple Secrets

Chengfang Fang1, Qiming Li2, and Ee-Chien Chang1,�

1 School of Computing, National University of Singapore
{c.fang,changec}@comp.nus.edu.sg

2 Institute for Infocomm Research, Singapore
Qiming.Li@ieee.org

Abstract. Secure sketches are useful in extending cryptographic schemes
to biometric data since they allow recovery of fuzzy secrets under in-
evitable noise. In practice, secrets derived from biometric data are seldom
used alone, but typically employed in a multi-factor or a multimodality
setting where multiple secrets with different roles and limitations are
used together. To handle multiple secrets, we can generate a sketch for
each secret independently and simply concatenate them. Alternatively,
we can “mix” the secrets and individual sketches, for example, by taking
the first secret as the key to encrypt the sketches of all other secrets.
Hence, it is interesting to investigate how the secrets are to be mixed
so as to cater for different requirements of individual secrets. We found
that, by appropriate mixing, entropy loss on more important secrets (e.g.,
biometrics) can be “diverted” to less important ones (e.g., password or
PIN), thus providing more protection to the former. On the other hand,
we found that mixing may not be advisable if the amount of random-
ness invested in sketch construction is large, or the sketch contains high
redundancy, or all secrets are of the same importance. Our analysis pro-
vides useful insights and guidelines in the applications of secure sketches
in biometric systems.

Keywords: Multi-factor authentication, biometric security, sketch
construction.

1 Introduction

Biometrics is potentially useful in building secure and easy-to-use security sys-
tems, since it is tightly bound to identities, cannot be easily forgotten or lost.
However, these features can also make user credentials based on biometric mea-
sures hard to revoke, since once the biometric data of a user is compromised, it
would be very difficult to replace it, if possible at all. A key challenge in protect-
ing biometric data as user credentials is that they are fuzzy, in the sense that
it is not possible to obtain exactly the same data in two measurements. This
renders traditional cryptographic techniques used to protect passwords and keys
inapplicable.

� Chang is supported by Grant R-252-000-413-232/422/592 from Temasek Defence
Systems Institute (TDSI).

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 367–383, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

368 C. Fang, Q. Li, and E.-C. Chang

Secure sketches [6] are a recently proposed cryptographic primitive that can
be used, in conjunction with other cryptographic techniques, to extend classical
cryptographic techniques to fuzzy secrets, including biometric data. The key idea
is that, given a secret x, we can compute some auxiliary data p, which is called a
sketch. The sketch p will be able to correct errors from a noisy version of x and
recover the original data x that was enrolled. From there, typical cryptographic
schemes such as one-way hash functions can then be applied on x. In particular,
an extractor can be further applied on the data to obtain a nearly-uniform key
of certain length given that the min-entropy of the original data is known. Such
a generic method of obtaining a consistent key from fuzzy data is referred to as
a fuzzy extractor.

The work by Dodis et al. [6] on secure sketches and fuzzy extractors provides
a theoretical framework that allows us to analyze the security measured by the
entropy loss of the sketch, which gives a measure of the amount of information a
sketch reveals about the underlying secret. There are also a number of schemes
(e.g., [11,10,6,3]) with provable upper bounds on the entropy loss. However, no
matter how small the entropy loss is, without additional protections, for most
biometric representations, it is inevitable that some important information is
revealed.

Biometric data is often employed together with other types of secrets as in a
multi-factor setting, or in a multimodal setting where there are multiple sources
of biometric data, partly due to the fact that human biometrics is usually of
limited entropy. In the context of secure sketches, it is possible to treat these
secrets independently: The sketches are generated independently and the final
sketch is simply the concatenation of all sketches. The security analysis can also
be easily carried out by investigating each secret separately. However, secrets
may differ in terms of their entropies and fuzziness. More importantly, they may
differ in their roles and constraints in their usage. For example, the likelihood of
being lost, stolen or forgotten and the ease of revocation and replacement, would
be different for different secrets. Furthermore, when exposed, biometric data,
like fingerprints, can be used to infer some sensitive illness information [25] of
the person. The straightforward method of combining the secrets independently
treats each secret equally, thus may not be able to cater for individual security
requirements.

One way to address this issue is to mix different secrets together. By mixing
the secrets, we may be able to provide more protection to more important secrets
at the expense of reduced protection of others. However, if mixing is not done
appropriately, it could reveal more information compared to the straightforward
method without mixing. Therefore, a detailed investigation is required.

Let us give a simple example here. Suppose the credential of a user consists
of a fingerprint and a password, both of which are known to have relatively low
entropies. Intuitively, to provide more protection to the important fingerprint,
one could use the password to encrypt the fingerprint’s sketch. Now, a few ques-
tions to address are: How to quantify the additional protection provided? Does

Secure Sketch for Multiple Secrets 369

the method really provide additional protection, i.e. are there situations where
more information is leaked by inappropriate mixing?

In this paper, we propose and analyze a cascaded mixing approach which is
essentially the same as described above: use the less important secret to mix
with the sketch of the more important secret. As the leftover entropies of pass-
word might be low, it is feasible for an adversary to carry attack by enumerating
all likely passwords. Hence, we do not rely on the assumption that the mixing
function is computationally one-way. Instead, we focus on information-theoretic
aspect of the mixing. To address the question on how to quantify the security,
note that if we treat the two secrets as a single secret and investigate the com-
bined leftover entropy H̃∞((X, K)|Q), where X , K and Q are random variables
of the biometrics data, password and the final sketch respectively, the simple
method of concatenating the two secrets could already be optimal. Hence, to
capture the additional protection, we investigate the individual leftover entropy
H̃∞(X |Q) and H̃∞(K|Q).

We show that, if the sketch construction is deterministic, cascaded mixing
can divert the information leakage towards K. Such additional protection is
desirable. In the above example, consider a scenario where an adversary happens
to obtain some prior knowledge of the more important secret X . Without mixing,
the sketch may provide additional information for the adversary to obtain the
secret with high probability. By proper mixing, the adversary cannot obtain
information of X from the mixed sketch Q, instead, he obtains some information
of K.

Consider the second question on whether there are scenarios where mixing is
not advisable. We make two observations. Firstly, we found that when there are
high redundancies in the sketch, more entropy could be lost compared with the
straightforward method of handling the secrets independently. More precisely,
the leftover entropy H̃∞(X, K|Q) may be less than H̃∞(X, K|P), where P is
simply the concatenation of the sketches for X and K. This observation is useful
as a number of sketch constructions (e.g., [5]) would produce sketches that con-
tain high redundancies but are difficult to compress. In the second observation,
we give counter example to show that, when the randomness invested during
sketch construction cannot be decoupled from the sketch, there are scenarios
where the mixing is an redundant step as it does not provide more protection to
the more important secret, i.e. it essentially provides the same protection as the
simple concatenation method. Hence given two choices of sketch constructions
where one is deterministic and the other is probabilistic, it is advisable to employ
the deterministic method to achieve the protection provided by mixing.

Contributions and Organization
We observe that, in some biometric applications, different secrets have different
requirements and some secrets require more protection than others. We argue
that the straightforward method of constructing the sketch independently is not
satisfactory as it does not address such differences.

We propose a cascaded mixing approach to mix the secrets whereby more im-
portant secrets are mixed first (Section 4.1). We analyze the approach and show

370 C. Fang, Q. Li, and E.-C. Chang

that, if the sketch construction does not involve randomness, the information
leakage on the more important secrets will be “diverted” to the less important
secrets (Section 5.1, Theorem 2, 3).

We provide counter-examples to demonstrate that, if the sketch construction
involves randomness, there are scenarios where mixing function is unable to
further protect the more important secret (Section 6.1) and in some cases it leak
information of the less important secret (Section 6.2). We also give an intuitive
explanation.

Based on our analysis, we provide guidelines in constructing sketches for mul-
tiple secrets (Section 7).

2 Related Work

The fuzzy commitment [11] and the fuzzy vault [10] schemes are among the first
error-tolerant cryptographic techniques. More recently, Dodis et al. [6] give a
general framework of secure sketches and fuzzy extractors, where the security
is measured by the entropy loss of the secret given the sketch. They give spe-
cific schemes that meet theoretical bounds for Hamming distance, set difference
and edit distance respectively. Another distance measure, point-set difference,
motivated from a popular representation for fingerprint features, is investigated
in a number of studies [5,3,4]. A different approach [14,24,23] focuses on infor-
mation leakage defined using Shannon entropy on continuous data with known
distributions.

There are also a number of investigations on the limitations of secure sketches
under different security models. Boyen [1] studies the re-usability of sketches
where the concern is whether multiple sketches of the same biometric data reveal
sensitive information. This security model is further extended and studied by
Boyen et al. [2] and Simoens et al. [20], where the latter work focuses more
on privacy issues. Kholmatov et al. [12] and Hong et al. [9] demonstrate such
limitations by giving correlation attacks on known schemes.

The idea of using a secret to protect other secrets is not new. Souter et
al. [21] propose integrating biometric patterns and encryption keys by hiding
the cryptographic keys in the enrollment template via a secret bit-replacement
algorithm. Some other methods use password protected smartcards to store user
templates [15,19]. Ho et al. [8] propose a dual-factor scheme where a user needs
to read out a one-time password generated from a token, and both the password
and the voice features are used for authentication. Sutcu et al. [22] study secure
sketch for face features and give an example of how the sketch scheme can be
used together with a smartcard to achieve better security.

Using only passwords as an additional factor is more challenging than using
smartcards, since the entropy of typical user chosen passwords is relatively low
[17,7,13]. Monrose [16] presents an authentication system based on Shamir’s
secret sharing scheme to harden keystroke patterns with passwords. Nandakuma
et al. [18] propose a scheme for hardening a fingerprint minutiae-based fuzzy
vault using passwords, so as to prevent cross-matching attacks.

Secure Sketch for Multiple Secrets 371

3 Formulations and Background

Table 1 summarizes the notation we are going to use in this paper.

Table 1. Table of notations used

X: Fuzzy secret distributed over space M.
D: Distance function defined with M.
H∞(A): Min-entropy of random variable A.

H̃∞(A|B): Average min-entropy of A given B.
Enc: Encoder of a known sketch scheme.
P : The sketch of X, P = Enc(X,R).
R: Recoverable random string used in an encoder.
K: A non-fuzzy secret or a key.
f : A mixing function.
S: Recoverable randomness used in f .
Q: Output of a mixing function, Q = f(P,K, S).
LA: The length of variable A, e.g. LP is the length of sketch P

3.1 Min-Entropy and Entropy Loss

We follow Dodis et al. [6] and use the following definitions of min-entropy and
entropy loss.

The min-entropy H∞(A) of a discrete random variable A is H∞(A) = − log
(maxa Pr[A = a]). For two discrete random variables A and B, the average
min-entropy of A given B is defined as H̃∞(A|B) = − log(Eb←B [2−H∞(A|B=b)])

The entropy loss of A given B is defined as the difference between the min-
entropy of A and the average min-entropy of A given B. In other words, the
entropy loss L(A, B) = H∞(A)− H̃∞(A|B). Note that for any n-bit string B, it

holds that H̃∞(A|B) ≥ H∞(A) − n, which means we can bound L(A, B) from
above by n regardless of the distributions of A and B.

3.2 Secure Sketches and Fuzzy Extractors

Assuming the original secret x is a point in a discrete domain M with distance
function D, a secure sketch scheme consists of two efficient algorithms: An en-
coder Enc, which computes a sketch p on the given x, and a decoder Dec, which
computes an x′ given a p and y such that x′ = Dec(p, y) = x if D(x, y) ≤ t for
some threshold t.

More formally, let M be a metric space with distance function D, we have the
following definition1.

1 Our definition here looks slightly different from that given by Dodis et al. [6] in that
we make the randomness invested during encoding more explicit.

372 C. Fang, Q. Li, and E.-C. Chang

Definition 1 ([6]). An (M, t, γ)-sketch scheme consists of two deterministic
polynomial-time algorithms Enc :M×{0, 1}γ → {0, 1}∗ and Dec :M×{0, 1}∗ →
M such that for all x, y ∈ M and r ∈ {0, 1}γ, it holds that Dec(y, Enc(x, r)) = x
when D(x, y) ≤ t. We call p = Enc(x, r) the sketch of x. Also, we say that the
randomness r is recoverable if for any x and r′, if Enc(x, r′) = Enc(x, r), we
have r = r′.

A fuzzy extractor can be built on top of a secure sketch by applying an extractor
Ext on a random secret, as shown by Dodis et al. [6]. Given a random variable X
with sufficient min-entropy, an extractor2 is able to compute a nearly uniform
key of a length that is slightly less than the min-entropy of X . Hence, given a
secret x, we can use an extractor to obtain a key k from it. When a y that is close
to x with respect to D and t is presented, the original x can be reconstructed
and hence the same key can be obtained by applying the same extractor again
on the reconstructed x. In this way, fuzzy secrets can be used just the same way
as consistent secrets, except that now an additional sketch p has to be stored
and used to reconstruct the original secret.

A well adopted approach measures the security of such a scheme by the
amount of information revealed by the sketch about the original secret. For-
mally, for discrete metric space M with distance function D, the entropy loss of
an (M, t, γ)-sketch scheme with encoder Enc is defined as follows.

Definition 2. The entropy loss of an (M, t, γ)-sketch scheme is H∞(X) −
H̃∞(X | P) for random variable X on M and the sketch P = Enc(X, R).

Essentially, if a sketch scheme has an entropy loss bounded from above by L, it
means that H∞(X) − H̃∞(X |P) ≤ L for any distribution of X . It is possible
to design an extractor Ext such that K = Ext(X) is nearly uniform even when

P is known, and the length of K can be at least H̃∞(X |P) − δ for a small δ
determined by how close the distribution of K is to the uniform distribution[6].
Hence, if an attacker tries to guess the extracted key, the success probability

cannot be much better than 2−H̃∞(X|P)+δ.
Furthermore, let R be the randomness invested by the encoder Enc during

the computation of the sketch P , it is not difficult to show (as mentioned in [6])
that when R is recoverable from X and P , we have

H∞(X)− H̃∞(X |P) ≤ LP −H∞(R) (1)

That is, the entropy loss is bounded from above by the difference between the
length of P and H∞(R), which is just the length of R if it is uniform. Further-
more, this upper bound is independent of X , hence it holds for any distribution
of X .

2 For example, pair-wise independent hash functions.

Secure Sketch for Multiple Secrets 373

The inequality (1) is useful in deriving a bound on the entropy loss, since
typically the size of P and H∞(R) can be easily obtained regardless of the
distribution of X . This approach is useful in many scenarios where it is difficult
to model the distribution of X , for example, when X represents the features of
a fingerprint.

4 Secure Sketch for Two Secrets

In some applications the credential of a user consists of two independent se-
crets. The sources of these secrets can be different. For example, they may be in
different metric spaces with different distance functions and thresholds.

A straightforward extension of sketch construction to two secrets is to simply
apply two sketch schemes, for the two secrets x1 and x2 independently. The final
sketch for the two secrets is the concatenation of the sketches p1 and p2 computed
from x1 and x2 respectively. That is, the sketch p = p1‖p2, where ‖ represents
concatenation. Furthermore, the final key can be obtained by concatenating the
keys k1 and k2 extracted from x1 and x2 respectively.

Suppose the entropy loss of the first secret given the sketch is at most L1, and
that of the second secret is at most L2, then it is clear that the overall entropy
loss is at most L = L1 + L2, since the secrets are independent.

As we have mentioned, this straightforward approach is not able to differ-
entiate secrets with different characteristics, and give equal protection to both
secrets.

4.1 A Cascaded Mixing Approach

Instead of treating the two secrets independently, it may be desirable to combine
different types of secrets to achieve additional security goals. Here we give an
alternative sketch construction. Figure 1 illustrates our proposed method.

For secrets x1 and x2, we first compute sketches p1 and p2 as in the con-
catenating approach, and extract keys k1 and k2 respectively then we encrypt
p1 using k2 as the key. That is, we compute q1 = f(p1, k2, s), where f is a de-
terministic function and s is an auxiliary random string. The final sketch q is
q = q1‖p2.

Let us call f the mixing function which serves as an encryption with k2 as the
key. As the leftover entropy of k2 given p2 could be low, we should not rely on
the computational difficulty in inverting f to protect p1. Thus, it is important
to analyze how much information about the two secrets x1 and x2 is revealed.

Let us consider the mixing function f : {0, 1}LP × {0, 1}LK × {0, 1}LS →
{0, 1}LQ and random variables Q, P , K and S such that Q = f(P, K, S). We
require f to have certain properties. First, as an encryption function, f must be
invertible.

Definition 3 (Invertibility). We say that a mixing function f is invertible if
there is a function g such that for all p ∈ {0, 1}LP , k ∈ {0, 1}LK and s ∈ {0, 1}LS,
g(f(p, k, s), k) = p.

374 C. Fang, Q. Li, and E.-C. Chang

r 1

r 2

x 2

x 1

k 2

p , k , s
1 2f () q1

q1

p
1

p
2

p
2x , r2 2

s

||

()x , r1 11Enc

Ext

Enc
2

()

Fig. 1. Construction of cascaded mixing approach

In addition, in our analysis we consider mixing functions with the following
properties on recoverability of the randomness invested.

Definition 4 (Recoverable Randomness). For a mixing function f , the ran-
domness S is called recoverable if for any p ∈ {0, 1}LP , k ∈ {0, 1}LK and
s, s′ ∈ {0, 1}LS , if f(p, k, s) = f(p, k, s′), we have s = s′.

Definition 5 (β-Recoverable Key). For a mixing function f , the key K is
called β-recoverable if for any p ∈ {0, 1}LP , q ∈ {0, 1}LQ, the cardinality of the
set Kp,q = {k ∈ {0, 1}LK |∃s ∈ {0, 1}β, f(p, k, s) = q} is at most 2β.

It is easy to construct mixing function achieving both invertability and re-
coverability. For example, we can obtain one from a block cipher f(p, k, r) =
r‖Ek(p‖r). Note that the recoverability properties are not necessary for the re-
covery of the secrets, but will become handy in the security analysis.

When a user presents y1 and y2 that are close to x1 and x2 respectively, x2 is
first reconstructed using y2 and p2, and a key k2 is extracted from x2, which in
turn is used to retrieve p1 if f is invertible. After that, x1 is reconstructed using
y1 and p1. An extractor can be further applied on x1‖x2 to extract a key.

Intuitively, this alternative approach gives more protection to the first secret
x1, since it would require the attacker to guess x2 using p2 first, only when
the attacker is successful can the attacker gain information on x1 from q1 by
computing p1 from q1 and x2.

5 Analysis

We now study the case of two secrets and a scheme that follows the cascaded
sketch construction (Section 4.1) Let x ∈ M be a fuzzy secret (say, a fingerprint),
and let k ∈ {0, 1}LK be an independent secret key that is not fuzzy. Consider
a (M, t, LR)-sketch scheme with encoder Enc, and let the sketch p = Enc(x, r).
Figure 2 illustrates the process.

It is clear that when the key K is uniform and no shorter than the sketch, we
can easily hide the sketch p completely (e.g., by using a one-time pad). However,

Secure Sketch for Multiple Secrets 375

Enc (x, r)

r

x f (p, k, s)

p

k

q

s

Fig. 2. Computation of mixed sketch

in practical scenarios (e.g., user chosen PIN/password as the key), K can be
shorter than p, and the analysis of security may become challenging. In fact, we
will show that, for shorter K, mixing is not always a better strategy than the
straightforward method of treating the secrets independently. We will also show
the conditions under which mixing is desirable.

5.1 Security of the Cascaded Mixing Approach

Analysis of overall remaining entropy H̃∞(X, K|Q)
First, let us investigate the remaining entropy when we treat (X, K) as a single

secret, i.e. the remaining entropy H̃∞(X, K|Q).

Lemma 1. Given random variables X, K, R, S and mixing function f as de-
scribed above, We haveH̃∞(X, K|Q) ≥ H∞(X) + H∞(K) + H∞(R)− LP .

Proof: Since S is recoverable, we can consider Enc and f together as the
encoding algorithm for the final sketch Q, R and S together as the recoverable
randomness, and the inequality (1) in Section 3 applies. Note that LQ = LP +LS ,
and we have

H̃∞(X, K|Q) ≥ H∞(X, K) + H∞(R) + H∞(S)− LQ

= H∞(X) + H∞(K) + H∞(R)− LP .

Hence the lemma holds as claimed.

Lemma 1 gives a lower bound of the remaining entropy of X and K. In general,
if both secrets are fuzzy, we can similar obtain the bound:

H̃∞(X1, X2|Q) ≥ H∞(X1) + H∞(X2) + H∞(R1) + H∞(R2)− LP1 − LP2 .

where X1 and X2 are the secrets, R1, R2, are the randomness invested in con-
structing the sketch P1, P2 for the two respective secrets. Note that this bound
is the same when we use the straightforward concatenation approach.

Analysis of individual secret H̃∞(X|Q) and H̃∞(K|Q)
Now, let us look at the remaining entropy of individual secret, i.e. H̃∞(X |Q)

and H̃∞(K|Q).

376 C. Fang, Q. Li, and E.-C. Chang

If the sketch is not uniformly distributed, then given the mixed q, it is possible
that (K|Q = q) is not uniform. That is, Q will leak some information about K.
Indeed, an adversary, given q, may enumerate all possible k’s and the correspond
sketch p to determine the most likely k. Nevertheless, leakage of K is acceptable
as long as it can provide more protection to X . Next theorem gives a lower
bound on the remaining entropy of X given the mixed sketch Q.

Theorem 2. Given three independent random variables X, K and R distributed
over M, {0, 1}LK and {0, 1}LR respectively and an (M, t, LR)-sketch scheme
with encoder Enc, Let P be the sketch of X, i.e., P = Enc(X, R), where R is
recoverable, and let f : {0, 1}LP × {0, 1}LK → {0, 1}LQ be an mixing function
and Q = f(P, K, S), where S is a LS bits of recoverable randomness. If f is
invertible and the key K is LS-recoverable. Then

H̃∞(X |Q) ≥ H∞(X) + H∞(K)− LQ. (2)

We would like to refer the reader to Appendix A for the proof of the above
theorem.

The theorem holds for any distributions of X and K, and for uniformly dis-
tributed K, the theorem implies that H̃∞(X |Q) ≥ H∞(X) + LK − LQ. Let
us compare the remaining entropy if we use the simple concatenation method,
which is as follows,

H̃∞(X |P) ≥H∞(X) + LR − LP (3)

Now, coming back to the question that whether it is beneficial to use a cascading
function when the secret k is short compared with p. Clearly, from Theorem 2 and
inequality (3), we can see that when H∞(K)− LQ ≥ LR − LP , or equivalently,
H∞(K) ≥ LR + LS , the R.H.S in (2) is larger then the R.H.S in (3), i.e. the
entropy bound when using a mixing function is no worse than not using it. In
particular, consider a deterministic sketch scheme (i.e. LR =0), and a length
preserving mixing function (thus LP = LQ), the difference in the right hand
side of the inequality (2) and (3) is H∞(K). In other words, the bound on
leftover entropy of X given Q can be increased by H∞(K). Viewing from another
direction, information loss on X is “diverted” to K.

Now, we consider only the non-fuzzy secret k and analyze the entropy loss.

Theorem 3. Given an (M, t, LR)-sketch scheme with encoder Enc, and let X,
K, R, P , Q, f , S be as defined in Theorem 2, we have

H̃∞(K|Q) ≥ H∞(K) + H∞(R)− LP . (4)

Proof: Since Q = f(P, K, S), we can regard Q as a sketch of K where the
cascading function f is an encoder, and P = Enc(X, R) and S are the “random-
ness” invested in computing Q, which are recoverable. Clearly, we can apply the
general bound (1) on K and Q, and since R is recoverable, we have

H∞(X) + H∞(P) ≥ H̃∞(X, P) ≥ H∞(X) + H∞(R)

which means that H∞(P) ≥ H∞(R), hence the inequality holds as desired.

Secure Sketch for Multiple Secrets 377

It is worth to note that the bound in Theorem 3 is tight in the sense that there
exists random variables and functions such that the equality in (4) holds. We
will see an example of such case in Section 6.2. Therefore, if LP is large but the
min-entropy H∞(P) is low, the quantity H∞(K)+H∞(P)−LP may be reduced
to 0 or even less than 0, in which case Q may reveal all information about K.

6 Examples of Improper Mixing

In this section we give examples to illustrate the scenarios where mixing function
may not be beneficial: (1) in scenarios where the sketch construction employs
randomness, mixing function may not always provide protection on X . (2) when
the sketch contains high redundancy from the adversary point of view, mixing
function may reveal information of K.

6.1 Randomness Invested in Sketch

This section gives a simple example to illustrate the idea that mixing function
may not always provide protection on X , if the sketch construction contains
randomness. Hence, as a general guideline, when choosing a sketch scheme to be
used in the cascaded mixing framework, it is better to select one that requires
no randomness.

Consider a non-fuzzy K in {0, 1}LK , and a fuzzy X in {1 . . . 2LX} with the
distance function

d(x1, x2) =

⎧⎨⎩
0, if x2 = x1
1, if x2 = x1 + 1 mod 2LX

∞, otherwise

for any x1, x2 ∈ {1 . . .2LX} and the noise threshold is 1. Hence, a noisy copy of
an x could be either x or (x + 1) mod 2LX .

Consider the following two sketch constructions: a deterministic construction
Enc1(X) = X mod 2, and a probabilistic construction Enc2(X, R) = X + R
mod 2LX , where R is a uniform random even number in {1 . . . 2LX}. Without
mixing, sketches output from both constructions reveal at most one bit of X .

Given a one bit secret K, let the mixing function f(P, K, S) be as following:
it first generates with seed S a set S = 〈s1, s2〉 of random strings of length LP ,
then it output P + kK mod 2LP .

Consider the case when Enc1 is used, the mixing function is one-time pad
encryption, by Theorem 2, there will be no entropy loss on X i.e. H∞(X) −
H̃∞(X |Q) = 0. However, when Enc2 is used, there could be cases where si has
same parity, for example, S = 〈0, 2〉. In that case, the information of the sketch

is not protected and H∞(X) − H̃∞(X |Q) = 1 and there is no gain nor loss in
mixing the secrets compare to the straightforward method. In other words, the
secret K is unable to provide additional protection as desired.

Note that, by Lemma 1, the overall entropies H̃∞(X, K|Q) are the same in
the aforementioned two cases, as well as in the straightforward method of not
mixing the secrets.

378 C. Fang, Q. Li, and E.-C. Chang

Hence, when given two choices of sketch constructions where one is determin-
istic and the other is probabilistic, it is advisable to employ the deterministic
method to achieve the protection provided by mixing function.

6.2 Redundancy in Sketch

When the sketch has redundancy, that is, the entropy of the sketch is smaller
than the length of the sketch, information on k will be leaked from the mixed
sketch. There are a few known sketch constructions where the “support” of the
sketch (i.e. the number of sketches which non-zero probability of occurrences)
is significantly smaller than 2LP where LP is the length of the sketch and thus
their sketches contain redundancy. One example is the chaff-based method [5]
proposed to protect the biometric fingerprint. Here, a fingerprint is the secret x
and can be represented as a set of 2D points. The chaff-based method gives its
sketch which is the original x union with a set of random 2D points, constrained
by the requirement that no two points are close to each other (w.r.t Euclidean
distance). It is not easy to derive a compact description of the sketch whose
support has size close to 2LP . Now, suppose that the sketch is mixed with a
short k. Given a mixed sketch q, it could be highly likely that among all possible
K’s in inverting q, only one give a point set that satisfies the constrain. Thus,
immediately, the secret k and the sketch is revealed, and the remaining entropy
of the combined H̃∞(X, K|Q) = H̃∞(X |P). Hence, by mixing, not only there is
no further protection of x, the k is revealed.

We also conducted experiment to illustrate that, even when the description of
sketch is compact, i.e. its support equals 2LP , the chaff-based sketch still contains
significant redundancy that leads to lost of information on k.

Consider the chaff-based method for 1D points, which is easy to derive a com-
pact description. We simulated the chaff-based method in Z24 with a minimum
distance 3. There are in total 605 possible sketches, and we randomly generated
105 sketches. Figure 3 shows the numbers of occurrences for all 605 sketches
with x-axis descendingly sorted by the number of occurrence (and we call the
position of a sketch in this descending list the rank of it).

Suppose the sketch is then protected by a 5 bits key k, and a mixing function
f such that the inverts are always valid sketches. We then simulate an adversary
who try to guess k when given q = f(k, p, s), where k and s are randomly chosen
from their domain and p is chosen according to the distribution approximated
by Figure 3. We simulated 105 guesses and the adversary can succeed with
probability slightly more than 0.052, instead of 1/(25) = 0.03125 as in random
guessing.

7 Further Discussions

7.1 The Case of Two Fuzzy Secrets

When both secrets are fuzzy and may not be uniform, we show that the bounds
of Lemma 1, Theorem 2 and 3 can be obtained with slight modifications.

Secure Sketch for Multiple Secrets 379

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

Rank

T
im

es
 it

 a
p

p
ea

rs

Fig. 3. Histogram of sketch occurrences

Suppose there are two independent secrets x1 ∈ M1 and x2 ∈ M2, and two
sketch construction schemes with encoder Enc1 and Enc2 respectively. We assume
that the first secret x1 is more important than x2. In this case, we can use the
following steps to construct the sketch for the two secrets.

1. Compute p1 = Enc1(x1, r1) and p2 = Enc2(x2, r2).

2. Extract a key k2 from x2 using an extractor Ext.

3. Compute q1 = f(p1, k2, S) using a mixing function f .

4. Output the final sketch q = q1‖p2.

It is possible to design Ext such that K2 and P2 are independent, and H∞(K2) is

only slightly smaller than H̃∞(X2|P2) [6]. Let δ be a small extractor-dependent

value such that H∞(K2) ≥ H̃∞(X2|P2)− δ.
The bound in Theorem 2 still applies on x1 and k2. Consider random variables

X1 and K2, corresponding sketches P1 and P2, mixed sketch Q1, and final sketch
Q, it’s not difficult to show that H̃∞(X1|Q) ≥ H∞(X1)+H∞(X2)+H∞(R2)−
LP2 − δ−LQ where R2 is the recoverable randomness used in computing P2. In
this case, the small δ can be considered as the overhead of using the extractor
Ext.

As a comparison, if we treat the two secrets independently, and consider P =
P1‖P2, we have H̃∞(X1|P) = H̃∞(X1|P1) ≥ H∞(X1) + LR1 − LP1 .

Similar to the example, we can conclude that if H∞(K2) ≥ LR1 + LS , we
can obtain a better bound on the entropies when we choose to mix k2 with p1.
Otherwise, doing so may reveal more information about X1.

The entropy loss on the second secret X2 can be obtained using the bound in
Theorem 3. It’s not difficult to show that H̃∞(X2|Q) ≥ H∞(X2) + H∞(R2) +
H∞(R1)− LP1 − LP2 − δ

The overall entropy loss in Lemma 1 applies to the general case. That is,

H̃∞(X1, X2|Q) ≥ H∞(X1) + H∞(X2) + H∞(R1) + H∞(R2)− LP1 − LP2 .

380 C. Fang, Q. Li, and E.-C. Chang

7.2 Cascaded Structure for Multiple Secrets

In some systems, it may be desirable to use more than two secrets. For example,
in a multi-factor system, a user credential may include a fingerprint, a smartcard
and a PIN, or two fingerprints and a password. Unlike the two secret case, there
are many different cascaded strategies to mix the secrets.

Given secrets x1, x2, · · · , xs and the corresponding sketches p1, p2, · · · , ps, the
following are the main strategies to mix them, assuming we have mixing functions
f1, · · · , fs−1.

1. (Fanning) Apply mixing functions fi on x1 and pi+1 for all 1 ≤ 1 ≤ s− 1.
2. (Chaining) Apply mixing function fi on xi and pi+1 for all 1 ≤ 1 ≤ s− 1.
3. (Hybrid) Use a combination of fanning, chaining and independent encoding.

For example, we can mix x1 with p2 and p3, and further mix x2 with p4, but
x5 is encoded independently.

With the fanning approach, the entropy loss would be mostly diverted to the first
secret, which may be the most easily revocable and replaceable secret. However,
this approach requires that the first secret has sufficiently high entropy, since
otherwise it may be relatively easy to obtain the first secret from the mixed
sketch. In practice, this approach can be used when a long revocable key is
available, such as key stored in a smartcard.

On the other hand, using the chaining approach only requires that the entropy
of the i-th secret is sufficient to mix with the (i + 1)-th sketch. In this case, the
secrets should be mixed in the order of their “importance”, which could be, for
example, the ease of revocation and replacement, or the likelihood of being lost
or stolen. Note that in this approach, it is crucial to determine the exact order
of importance of the secrets.

If no single secret is of sufficient entropy, and the order of importance among
secrets is not always clear, a hybrid approach may become more appropriate. As
a special case, when all secrets are short and no secret is more important than
others, it would not be advisable to use the mixing approach and a straightfor-
ward method can be better.

7.3 Guidelines for Applying Mixing Functions on Two Secrets

To summarize, we give some guidelines for the application of cascaded mixing
functions to two secrets. The same principles apply to multiple secrets.

1. If the importance of the secrets cannot be determined or is the same for
both secrets, mixing is not recommended.

2. For the more important secret, if there are two secure sketch schemes that
differ only in the amount of randomness used in the construction; choose the one
that uses less randomness.

3. If the randomness invested cannot be decoupled from the sketch, cascaded
mixing is not advisable unless the length of consistent key is longer than the
length of the sketch.

Secure Sketch for Multiple Secrets 381

8 Conclusions

In this paper, we investigate the security of secure sketches and fuzzy extractors
that use more than one secret, motivated by the fact that user credentials based
on biometric data are seldom used alone, but often combined with other secrets.
Since the leftover entropy of each secret is not high and exhaustive search is
feasible, we focus on information theoretic results and measure security using
min-entropies.

In many practical applications that involve multiple secrets, the secrets may
have different characteristics such as their revocability, ease of replacement, and
likelihood of being lost or stolen. Hence, they often require different level of
protections. However, such differentiation cannot be expressed easily in existing
frameworks.

To cater for different security requirements for different secrets, we propose to
analyze the security separately for different secrets, and we propose a cascaded
mixing approach that combines the secrets when computing the final sketch.
We show that under certain conditions, the proposed method provides more
protections to more important secrets at the expense of increasing the risk of
reduced security on the less important ones.

We show that there are scenarios where the cascaded mixing approach may not
be advisable. These include cases where the sketch construction uses a lot of ran-
domness, or the sketch contains a lot of redundancies, or it is difficult to determine
the importance of secrets. We illustrate these subtleties with some examples.

We start with the case of two secrets and extend our discussions to the case
of more secrets. We also give general guidelines as how these secrets should be
mixed in practice.

References

1. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Proceedings ACM Conf.
on Computer and Communications Security, October 2004, pp. 82–91 (2004)

2. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005)

3. Chang, E.-C., Li, Q.: Hiding secret points amidst chaff. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 59–72. Springer, Heidelberg (2006)

4. Chang, E.C., Shen, R., Teo, F.W.: Finding the original point set hidden among
chaff. In: ACM Symposium on Information, computer and communications secu-
rity, p. 188 (2006)

5. Clancy, T.C., Kiyavash, N., Lin, D.J.: Secure smartcard-based fingerprint authen-
tication. In: ACM Workshop on Biometric Methods and Applications, pp. 45–52
(2003)

6. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

7. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th international conference on World Wide Web, pp. 657–666. ACM,
New York (2007)

382 C. Fang, Q. Li, and E.-C. Chang

8. Ho, P., Armington, J.: A dual-factor authentication system featuring speaker ver-
ification and token technology. In: Audio- and Video-Based Biometric Person Au-
thentication, pp. 128–136 (2003)

9. Hong, S., Jeon, W., Kim, S., Won, D., Park, C.: The vulnerabilities analysis of fuzzy
vault using password. In: Second International Conference on Future Generation
Communication and Networking, FGCN’08, pp. 76–83 (2008)

10. Juels, A., Sudan, M.: A fuzzy vault scheme. In: IEEE Intl. Symp. on Information
Theory, pp. 408–421 (2002)

11. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Proceedings ACM
Conf. on Computer and Communications Security, pp. 28–36 (1999)

12. Kholmatov, A., Yanikoglu, B.: Realization of correlation attack against the fuzzy
vault scheme. Security, Forensics, Steganography, and Watermarking of Multimedia
Contents (January 2008)

13. Klein, D.V.: Foiling the cracker: A survey of, and improvements to, password se-
curity. In: 2nd USENIX Security Workshop, pp. 5–14 (1990)

14. Linnartz, J.-P.M.G., Tuyls, P.: New shielding functions to enhance privacy and
prevent misuse of biometric templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA
2003. LNCS, vol. 2688, pp. 393–402. Springer, Heidelberg (2003)

15. Lisimaque, G.: Biometrics and smart cards. In: Proceedings of Conference of the
Biometric Consortium (1999)

16. Monrose, F., Reiter, M., Wetzel, S.: Password hardening based on keystroke dy-
namics. In: Proceedings ACM Conf. Computer and Communications Security, pp.
73–82 (1999)

17. Morris, R., Thompson, K.: Password security: A case history. Communications of
the ACM, 594–597 (1979)

18. Nandakumar, K., Nagar, A., Jain, A.K.: Hardening fingerprint fuzzy vault using
password. In: Advances in Biometrics International Conference, August 2007, pp.
927–937 (2007)

19. Sanchez-Reillo, R.: Including biometric authentication in a smart card operating
system. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 342–
347. Springer, Heidelberg (2001)

20. Simoens, K., Tuyls, P., Preneel, B.: Privacy weaknesses in biometric sketches. In:
IEEE Symposium on Security and Privacy, vol. 16. IEEE Computer Society, Los
Alamitos (2009)

21. Soutar, C., Roberge, D., Stoianov, A., Gilroy, R., Kumar, B.V.K.V.: Biometric
encryption. In: ICSA Guide to Cryptography (1999)

22. Sutcu, Y., Li, Q., Memon, N.: Protecting biometric templates with sketch: Theory
and practice. IEEE Transactions on Information Forensics and Security, 503–512
(September 2007)

23. Tuyls, P., Akkermans, A.H.M., Kevenaar, T.A.M., Schrijen, G.J., Bazen, A.M.,
Veldhuis, R.N.J.: Practical biometric authentication with template protection. In:
Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 436–
446. Springer, Heidelberg (2005)

24. Tuyls, P., Goseling, J.: Capacity and examples of template-protecting biometric
authentication systems. In: Maltoni, D., Jain, A.K. (eds.) BioAW 2004. LNCS,
vol. 3087, pp. 158–170. Springer, Heidelberg (2004)

25. Yousefi-Nooraie, R., Mortaz-Hedjri, S.: Dermatoglyphic asymmetry and hair whorl
patterns in schizophrenic and bipolar patients. Psychiatry Research, 247–250
(2008)

Secure Sketch for Multiple Secrets 383

Appendix A: Proof of Theorem 2

Proof: First, let Kx,q ⊂ {0, 1}LK be the set of secret k ∈ {0, 1}LK such that
there exists an r ∈ {0, 1}LR and s ∈ {0, 1}LS so that q can be computed from x,
r, k and s. That is,

Kx,q = {k ∈ {0, 1}LK |∃r, s, f(Enc(x, r), k, s) = q}.
Since the key of the mixing function f is LS-recoverable, it is clear that the
cardinality |Kx,q| is no more than the number of all possible r’s multiplied by
2LS , where LS = LQ − LP . That is, |Kx,q| ≤ 2LR+LS for any x and q. Now,
consider

A = 2−H̃∞(X|Q)−LR−LS

=
∑

q

Pr[Q = q] max
x

Pr[X = x|Q = q]2−LR−LS

=
∑

q

max
x

Pr[X = x, Q = q]2−LR−LS .

On the other hand, we have

B = 2−H̃∞(X,K|Q) =
∑

q

max
x,k

Pr[X = x, K = k|Q = q].

For any q0 ∈ {0, 1}LQ, let us consider

max
x

Pr[X = x, Q = q0]2
−LR−LS

= max
x

∑
k

Pr[X = x, Q = q0, K = k]2−LR−LS

≤ max
x

(
max

k
Pr[X = x, Q = q0, K = k]2LR+LS

)
2−LR−LS

= max
x,k

Pr[X = x, Q = q0, K = k]

The inequality holds because for any x, there will be at most |Kx,q0 | ≤ 2LR+LS

non-zero terms in the summation, hence the sum will be at most 2LR+LS times
the largest term in the summation. As a result, we have

A ≤
∑

q

max
x,k

Pr[X = x, Q = q, K = k] = B.

This is equivalent to

H̃∞(X |Q) + LR + LS ≥ H̃∞(X, K|Q).

By applying the bound on overall entropy loss (Lemma 1), and considering that
the recoverable randomness includes the LR bit R and LS bit S, we have

H̃∞(X |Q) ≥ H̃∞(X, K|Q)− LR − LS ≥H∞(X) + H∞(K)− LQ

Therefore the theorem holds as claimed.

A Message Recognition Protocol Based on
Standard Assumptions

Atefeh Mashatan and Serge Vaudenay

The Security and Cryptography Laboratory (LASEC), EPFL
CH-1015 Lausanne, Switzerland
http://lasecwww.epfl.ch/

Abstract. We look at the problem of designing Message Recognition
Protocols (MRP) and note that all proposals available in the literature
have relied on security proofs which hold in the random oracle model or
are based on non-standard assumptions.

Incorporating random coins, we propose a new MRP using a pseu-
dorandom function F and prove its security based on new assumptions.
Then, we show that these new assumptions are equivalent to the stan-
dard notions of preimage resistance, second preimage resistance, and
existential unforgeability given that F is a pseudorandom function.

Keywords: Cryptographic Protocols, Authentication, Recognition,
Pseudorandom Functions, Pervasive Networks, Ad Hoc Networks.

1 Introduction

Message recognition is a notion that has recently been developed for small devices
in ad hoc networks. In particular, the devices have low computational power,
low communication bandwidth and low energy resources. Moreover, they are
placed in an environment where no pre-established authentic information exists
and without the presence of a trusted third party. Although chips in embedded
systems are becoming more and more powerful, researchers have always been
looking for lower complexity algorithms in the past 30 years.

In 2003, Weimerskirch and Westhoff [WW03], realized that achieving message
authentication is not possible under such restrictive assumptions. The notion of
recognition was later formalized by Hamell et al. [HWGW05] and motivated by
Lucks et al. [LZWW08] with the following example. Alice and Bob are two
complete strangers. They meet in a party. Therefore, they have the chance to
briefly meet in person, before they depart. A few days later, Bob receives some
message from a person who claims to be Alice. Now, obviously Bob would like
to recognize the source of the message and make sure the message is sent from
the same person who introduced herself as Alice in the party, and not from a
malicious person, Eve, who is trying to deceive Bob.

As a real life application, one can think of Alice having a contactless smart
badge who wants to buy several movies from a shop owned by Bob. For her
first movie, she walks into the shop and pays using her contactless smart badge.

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 384–401, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://lasecwww.epfl.ch/

A Message Recognition Protocol Based on Standard Assumptions 385

She would like to download the movie to her computer when she goes home.
Moreover, she would like to buy and download more movies from home with-
out having to walking to the shop in person. That is, Alice would like Bob to
recognize her after the first in person encounter. Many other settings can be
considered when Alice and Bob do not have public keys and do not have the
required time to generate appropriate keys or agree on domain parameters when
they meet for the first time.

More formally, we have two small devices, one sender and one receiver, who
share no secret information and are in a setting where they can send authentic,
but not confidential, information for a short period of time. Later, the sender
wants the receiver to recognize the message it sends. The adversarial goal is to
make the receiver accept a message as sent by the sender whereas the sender
never sent that message. A message recognition protocol (MRP) is secure if the
sender or the receiver detect the active adversary. A passive adversary is not
considered harmful in this setting.

There have been many recent MRP proposals in the literature, see for ex-
ample [GMS09, LZWW08, MS08, Mit03]. However, one can go back to 1998
to trace the first protocol [ABC+98] which was designed to fulfill the notion
of recognition, although such a term was not used then. Clearly, a digital sig-
nature scheme would suffice: Alice gives her public-key to Bob when they first
meet and, later, signs her messages. However, in message recognition protocols,
one is looking for a cheaper primitive, such as message authentication codes,
as opposed to having to compute modular exponentiations. In the case of this
paper, the message recognition protocol requires one MAC computation and one
pseudorandom function computation. We are unaware of any public-key based
solution that could compete with such efficiency.

1.1 Literature Review

There has been considerable recent interest in designing security protocols for
devices who do not share a secret key which are placed in an environment that
does not provide a public-key infrastructure. One proposal is the use of a narrow-
band authenticated channel, along with a broadband insecure channel, in order
to achieve message authentication in such an environment has been investigated
in several recent papers, see for example [GN04, MS09, SA99, Vau05]. In such
solutions, the narrow-band channel is available all the time and can be used
at least once for every message. In this paper however, we are focusing on a
more restricted case where the narrow-band channel is only available once at the
beginning at the initialization step. To distinguish between the two, the literature
refers to the more restricted case as recognition, as opposed to authentication.

We now briefly go over the already existing message recognition protocols and
mention their advantages and disadvantages compared to one another.

‘Guy Fawkes’ protocol, designed by Anderson et al. [ABC+98], seems to be the
first in line in proposing a protocol achieving recognition, but not authentication.
The first variant requires a time-stamping authority and the second variant uses

386 A. Mashatan and S. Vaudenay

digital signatures for authentication. Hence, the practicality of either variants
for restricted devices in restricted environments is under question.

‘Remote User Authentication’ protocol, proposed by Mitchell [Mit03], uses a
message authentication code to authenticate the sender. Hence, does not need a
trusted third party. However, it requires computing and sending 2t MAC values
and sending r secret keys for every message. The suggested parameters are t ≥ 35
and r ≈ t/2. Therefore, in terms of computation and communication, it is costly
and not suitable for low power and low communication bandwidth devices.

‘Zero Common-Knowledge’ (ZCK) protocol, by Weimerskirch et al. [WW03],
seemed to be the first to admit all the required properties. Implemented by Ham-
mell et al. [HWGW05], the ZCK protocol proved to be practical for devices with
restrictive properties such as low computational power, low code space, low com-
munication bandwidth, low energy resources. However, Lucks et al. [LZWW08]
found an attack against ZKC which pointed out a flaw in its security proof.

‘Jane Doe’ protocol, designed by Lucks et al. [LZWW08], uses the idea of using
values of a hash chain as keys for MACs to authenticate messages. The Jane
Doe protocol exhibits all the preferred properties for small devices placed in a
hostile environment. Its security proof is based on the assumption that preimage
resistance, second preimage resistance, and their hash chain equivalents, hold
for a hash function. Moreover, it makes use of a message authentication code
that exhibits existential unforgeability and its hash chain equivalent. The hash
chain equivalent properties are non-standard ones. On the other hand, although
provably secure, the Jane Doe protocol has a recoverability problem: with one
move Eve can bring Alice and Bob out of their synchronized states for the life
time of these devices. As a result, they will never be able to communicate again.

Goldberg et al. proposed a self-recoverable MRP [GMS09] to overcome Jane
Doe’s shortcoming in synchronization. They modified the assumptions of the
Jane protocol a little bit, however, they still need to assume the non-standard
hash chain assumptions.

Mashatan and Stinson proposed a message recognition protocol [MS08] which
does not make use of a hash chain. As a result, they claim that the security
assumptions they need become closer to the standard notions of preimage resis-
tance and second preimage resistance. However, the assumptions are not exactly
standard yet, and it comes with a communication cost of sending about twice as
long messages in each flow. Since these protocols are considered in the context
of small devices, power consumption is an issue. One should avoid unnecessary
communication in order to minimize the power consumption.

Hence, the problem of designing a message recognition protocol based on
standard assumptions which exhibits low computational power, low code space,
low communication bandwidth, and low energy resources is yet unsolved. This
is what we try to achieve in this paper. Alongside of other papers in this area,
we do not target any particular device and only specify that low computational
power, low code space, low communication bandwidth, and low energy resources
are the constraints that our devices are dealing with.

A Message Recognition Protocol Based on Standard Assumptions 387

1.2 Our Contribution

We propose an MRP and for the first time prove its security in the standard
model and based on the existence of pseudorandom functions. The essential idea
in our protocol consist in adding random coins in every step of the Jane Doe
protocol or its self-recoverable variant due to Goldberg et al. [GMS09].

The MRP presented in this paper is based on the same design principle of
the protocols by Lucks et al. [LZWW08] and Goldberg et al. [GMS09] which
instructs Alice to send a message m along with a commitment d of m to Bob.
Then, Bob is to make Alice recognize him followed by Alice revealing the key in
which the commitment was computed with. We use the same design principle,
but we use different primitives, e.g., a pseudorandom function. Moreover, the
only source of the randomness in the latter two proposals is the root of a hash
chain, whereas we insert randomness per key while building the hash chain.
Furthermore, using appropriate primitives along with more randomness, we end
up not requiring the non-standard security assumptions that both Lucks et al.
[LZWW08] and Goldberg et al. [GMS09] need to assume. Instead, we prove the
security of our MRP based on standard assumptions. Note that the logic of our
protocol is similar to the protocol due to Goldberg et al. [GMS09], as opposed
to the original Jane Doe protocol, to obtain self-recoverability.

We make use of two primitives, a function F : {0, 1}s+k → {0, 1}s and a
message authentication code MAC : {0, 1}s × {0, 1}∗ → {0, 1}c. We define new
notions of security for our primitives, F and MAC, namely degree-i preimage
resistance and degree-i second preimage resistance for F , and F -degree-i existen-
tial unforgeability for MAC. Next, we show that these new notions are equivalent
to preimage resistance, second preimage resistance, and existential unforgeability
under the assumption that F is a pseudorandom function.

In each protocol instance, Alice and Bob are only required to exchange one F
output during their encounter (when they meet in the party). This output can
be as short as 80 bits.

As in the Jane Doe protocol, one instance of our MRP provides the message
recognition primitive from Alice to Bob. This is not considered as a limitation
since one uses two separate protocol instances, one in each direction, to achieve
message recognition in both directions. Moreover, the total number of messages
to be recognized is required to be preset, both in the Jane Doe protocol and in
ours, but we propose the last message to be recognized to simulate a new ‘key
exchange during a party’ which enables Alice and Bob to execute the protocol
for another set of messages (see Section 3.2). This is possible whenever message
recognition is in place in both directions.

The rest of the paper is organized as follows. In Section 2, we list and analyze
the properties we require for the function F and the message authentication
code MAC and reduce them to the standard notions. Section 3 is dedicated to
our MRP and proves its security based on the assumptions analyzed earlier.

388 A. Mashatan and S. Vaudenay

2 Our Security Assumptions and Pseudorandom
Functions

Suppose we have a function F : {0, 1}s+k → {0, 1}s and a message authentication
code MAC : {0, 1}s × {0, 1}∗ → {0, 1}c. We now present three non-standard
security notions for F and MAC. Later, we show that these notions are equivalent
to standard notions based on the assumption that pseudorandom functions exist.

By F is pseudorandom we mean that the Fr family defined by Fr(ρ) = F (ρ, r)
is a pseudorandom function family. In other words, an oracle initialized with a
random r and implementing Fr would be indistinguishable from another imple-
menting a random function after a polynomial number of queries. Note that we
only require indistinguishability after a single query, and not multiple queries.

Definition 1. For randomly chosen secrets r1, . . . , ri, each having k bits, and
randomly chosen secret ρ0, of size s, let secret ρ1, . . . , ρi−1 and known ρi be such
that ρj = F (ρj−1, rj), where 1 ≤ j ≤ i. The function F is a degree-i preimage
resistant (i-PR) function if it is infeasible to find π, of size s + k, such that
ρi = F (π).

We note that the notion of degree-i preimage resistance is similar to the well
known notion of one-way on iterates first introduced by Levin [Lev85]. Variations
of this notion was used later by other authors, see for example [GKL93]. We use
our variation of ‘one-way on iterates’ and give it the new name ‘degree-i preimage
resistance’ to be consistent with the later security notions of this paper and also
the literature on message recognition protocols.

The notion of degree-i preimage resistance is illustrated in Figure 1 as a game
between a player Oscar and a challenger.

Oscar Challenger

Choose random r1, . . . , ri of size k.
Choose random ρ0 of size s.
Compute ρj = F (ρj−1, rj),
for 1 ≤ j ≤ i

ρi←−−−−−

Find π of size s + k. π−−−−−→ Oscar wins if ρi = F (π).

Fig. 1. Degree-i Preimage Resistant Game

Note that we obtain the classical notion of preimage resistance when i = 0.
Moreover, for k = 0, we obtain the depth-i preimage resistance considered by
Lucks et al. [LZWW08]. In other words, we are considering extra randomness
for each round, whereas they rely on the randomness of the root element of the
hash chain for the entire life time of the protocol.

A Message Recognition Protocol Based on Standard Assumptions 389

Definition 2. For randomly chosen secrets r1, . . . , ri−1, each having k bits, and
randomly chosen secret ρ0, of size s, let secret ρ1, . . . , ρi−2 and known ρi−1 be
such that ρj = F (ρj−1, rj), where 1 ≤ j ≤ i− 1. The function F is a degree-i
second preimage resistant (i-SPR) function if, given a random ri of size k,
it is infeasible to find π, of size s + k, such that F (ρi−1, ri) = F (π).

Figure 2 depicts this notion as a game between a player and a challenger.

Oscar Challenger

Choose random r1, . . . , ri of size k.
Choose random ρ0 of size s.
Compute ρj = F (ρj−1, rj),
for 1 ≤ j ≤ i − 1

ρi−1, ri←−−−−−

Find π of size s + k. π−−−−−→ Oscar wins if F (ρi−1, ri) = F (π).

Fig. 2. Degree-i Second Preimage Resistant Game

Again, note that for i = 1, we obtain the classical notion of second preimage
resistance. Furthermore, if we consider the case of k = 0, the case when the only
source of randomness is ρ0, we obtain the depth-i second preimage resistance of
Lucks et al. [LZWW08].

Definition 3. For randomly chosen secrets r1, . . . , ri, each having k bits, and
randomly chosen secret ρ0, of size s, let secret ρ1, . . . , ρi−1 and known ρi be such
that ρj = F (ρj−1, rj), where 1 ≤ j ≤ i. A message authentication code MAC is
F -degree-i existentially unforgeable (i-EU) if, knowing ρi, it is infeasible
to mount an existential forgery against MACρi−1 in an adaptive chosen message
attack scenario.

2.1 Pseudorandom Functions Satisfy i-PR

We now show that if F is a pseudorandom function, then the notion of degree-i
preimage resistance for F is equivalent to the notion of preimage resistance.

Theorem 1. Consider a pseudorandom function F : {0, 1}s+k → {0, 1}s and
let i be polynomial in s and k. Then, the function F is preimage resistant if and
only if it is degree-i preimage resistant.

We actually show a stronger result: if the distribution of F (ρ, π), for (ρ, π) ∈R

{0, 1}s+k, is computationally indistinguishable from the uniform distribution
using a single sample, then F is preimage resistant if and only if it is degree-i
preimage resistant.

Note that for k = 0, as in the case of properties introduced by Lucks et al.
[LZWW08], this property can only be true if almost all elements of {0, 1}s have

390 A. Mashatan and S. Vaudenay

a single preimage under F . For a random function F , the probability of every
value to have no preimage is roughly e−1. Hence, this property is almost never
achieved. And, this argument justifies the introduction of random values ri.

Proof. Define the success probability of a polynomially bounded player Oscar in
the iPR game to be

Succi
PR := Pr(F (π) = ρi),

where the probability is taken over all random choices of Oscar and the Chal-
lenger. In other words, F is an i-PR if and only if Succi

PR is negligible. We
are going to first find an upperbound for |Succi

PR − Succi−1
PR | and use triangle

inequality to find an upper bound for |Succi
PR − Succ1

PR|.
Moreover, for a variable x of size s, define the degree-i distribution to be

Di
PR(x) := Pr

r0,r1,...,ri

[ρi = x].

Note that D0
PR is just the uniform distribution.

Consider a player, Charlie, who wants to distinguish a ρ following either Di
PR

or Di−1
PR . As illustrated in Figure 3, Charlie can use Oscar as a black-box. His

advantage is
Advi

PR := |Succi
PR − Succi−1

PR |.

Oscar Charlie Challenger

Choose a random b from {i − 1, i}.
ρ←−−−−− Pick ρ ∈ {0, 1}s according to Db

PR.

ρi←−−−−− Let ρi := ρ.

Find π of size s + k. π−−−−−→ If ρi = F (π),

then b′ = i,
else b′ = i − 1.

b′−−−−−→

Fig. 3. Degree-i Distinguishing Game

On the other hand, Charlie can be transformed into a distinguisher Dave
between D1

PR and D0
PR. To see this, consider a player Dave who, given ρ, uses

Charlie as a black-box. This game is illustrated in Figure 4.
The advantage of Dave is equal to Advi

PR. Therefore, Advi
PR = |Succi

PR −
Succi−1

PR | must be negligible. Now applying the triangle inequality i − 1 times,
we obtain that |Succi

PR − Succ1
PR| is negligible.

Note that Succ1
PR is simply the success probability of the adversary in winning

the standard notion of preimage resistance for our function F . On the other
hand, if the function F is pseudorandom, then the advantage of any polynomial
time distinguisher between D1

PR and D0
PR must be negligible. Therefore, we have

shown that F is i-PR if and only if it is PR. ��

A Message Recognition Protocol Based on Standard Assumptions 391

Charlie Dave Challenger

Pick a random b from {0, 1}.
ρ←−−−−− Pick ρ ∈ {0, 1}s according to Db

PR.

Choose random r2, r3, . . . , ri

of size k. Let ρ1 = ρ and
compute ρj = F (ρj−1, rj),
for 2 ≤ j ≤ i

ρi←−−−−−

b′−−−−−→ b′−−−−−→

Fig. 4. Reducing Degree-1 Distinguishing Game to Degree-i Distinguishing Game

2.2 Pseudorandom Functions Satisfy i-SPR

Similarly to the previous section, we show that the notions of degree-i second
preimage resistance and second preimage resistance are equivalent for a pseudo-
random function F .

Theorem 2. Consider a pseudorandom function F : {0, 1}s+k → {0, 1}s and
let i be polynomial in s and k. Then, the function F is second preimage resistant
if and only if it is degree-i second preimage resistant.

Again, we prove a slightly stronger statement than the Theorem. We prove
that if the distribution of F (ρ, π), for (ρ, π) ∈R {0, 1}s+k, is computationally
indistinguishable from the uniform distribution using a single sample, then F is
second preimage resistant if and only if it is degree-i second preimage resistant.

Proof. We define the success probability of a computationally bounded player
Oscar in the iSPR game to be

Succi
SPR := Pr(F (π) = F (ρi−1, ri)),

where the probability is taken over all random choices of Oscar and Challenger.
To show that F is iSPR, we need to show that Succi

SPR is negligible. We
first find an upperbound for |Succi

SPR − Succi−1
SPR| and, then, using the triangle

inequality find an upperbound for |Succi
SPR − Succ1

SPR|.
Now consider Charlie who wants to distinguish ρ following either Di−1

PR or
Di−2

PR . Figure 5 is depicting Charlie when he is using Oscar as a black-box
to distinguish between a random value and ρi−1. This reduction implies that
|Succi

SPR − Succi−1
SPR| is the advantage for distinguishing Di−1

PR from Di−2
PR .

We conclude like in the proof of Theorem 1. ��

2.3 Existential Unforgeable MACs Are i-EU

In this section, given a pseudorandom functions F and a secure message authen-
tication code MAC, we show that MAC is also degree-i existentially unforgeable.

392 A. Mashatan and S. Vaudenay

Oscar Charlie Challenger

Choose b ∈R {i − 1, i − 2}.
ρ←−−−−− Pick ρ ∈ {0, 1}s according to Db

PR.

ρ, r←−−−−− Pick r ∈R {0, 1}k.

Find π of size s + k. π−−−−−→ If F (ρ, r) = F (π),

then b′ = i − 1,
else b′ = i − 2.

b′−−−−−→

Fig. 5. Degree-i Distinguishing Game

Theorem 3. Consider a message authentication code MAC : {0, 1}s×{0, 1}∗ →
{0, 1}c and a function F : {0, 1}s+k → {0, 1}s, where k ≥ 2s. If i is polynomial
in s and k, and F is a pseudorandom function, then, the notions of existential
unforgeability and F -degree-i existential unforgeability are equivalent.

Proof. For a variable x, of size s, we define the following distribution

Di
ρ(x) = Pr

r
[F (ρ, r) = x].

We need to show that for all ρ, Di
ρ is indistinguishable from the uniform distri-

bution, using a single sample. This comes from (F (., r))r∈{0,1}k being a pseudo-
random function. As in the analysis in the previous proofs, i-EU is equivalent
to 1-EU. We now show that 1-EU is equivalent to EU.

Let Oscar be a player who finds standard existential forgeries, and Charlie be
a player who is trying to distinguish between D1

ρ and the uniform distribution.
Now, Charlie uses Oscar as a black box, as illustrated in Figure 6. Note that
with b = 1, Oscar is a 1-EU adversary. On the other hand, with b = 0, Oscar
is a regular EU adversary (who is given a useless x). Let Succb=0(Oscar) be
the success probability of Oscar when b = 0 and Succb=1(Oscar) be his success
probability when b = 1.

For every ρ, the advantage of Charlie in distinguishing between D1
ρ and the

uniform distribution is negligible. Hence, on average, the advantage is negligible
too. As a result, |Succb=0(Oscar)−Succb=1(Oscar)| is negligible. Thus, we obtain
that Succb=1(Oscar) is negligible if and only if Succb=0(Oscar) is negligible, that
is if MAC is existentially unforgeable. ��

2.4 Separation between PR and i-PR

We show that there is a separation between preimage resistance and degree-i
preimage resistance. This implies that considering both assumptions is necessary.
Let
 : {0, 1}s → {1, 2, . . . , s} be defined as
(x) = the number of leading zeros
of x. Consider a preimage resistant hash function H and define

F (x, r) := truncs(0
	(x)+11‖H(x‖r)),

A Message Recognition Protocol Based on Standard Assumptions 393

Oscar Charlie Challenger

Choose ρ ∈R {0, 1}s.
Choose b ∈R {0, 1}.
Choose r ∈R {0, 1}k.
If b = 1
then x := F (ρ, r)
else pick x ∈R {0, 1}s

x, ρ←−−−−−
x←−−−−− Set a MAC oracle to key ρ.

m, c−−−−−→ If MACρ(m) = c

then b′ = 1,
else b′ = 0.

b′−−−−−→

Fig. 6. Reducing 1-EU to EU

where truncs outputs the first s bits of the input. Since H is preimage resistant,
F is also preimage resistant. However, F is not degree-s preimage resistant. One
can make similar constructions for degree-i second preimage resistance.

3 A Message Recognition Protocol Based on
Pseudorandom Functions

Consider a pseudorandom function F : {0, 1}s+k → {0, 1}s and a message au-
thentication code MAC : {0, 1}s × {0, 1}∗ → {0, 1}c with typical parameters
s ≥ 80, k ≥ 2s, and c ≥ 30. Moreover, let the maximum number of messages to
be authenticated be fixed to be n.

Alice randomly chooses a0, a1, . . . , an−1 of size k and α0 of size s, and forms
a chain of the form αi = F (αi−1, ai−1), i = 1, . . . , n. Analogously, Bob chooses
random b0, b1, . . . , bn−1 of size k and β0 of size s, and forms his chain of the form
βi = F (βi−1, bi−1), i = 1, . . . , n.

They start with index n and go downward in the α and β chains, revealing
elements of hash chains and the random keys in a descending order. In each
session i, Alice and Bob, respectively, use the random ai and bi as keys for the
MAC values they compute. On the other hand, they use αi and βi in session
i + 1 to commit to ai and bi of session i.

The protocol starts with an initialization phase, illustrated in Figure 7, in
which Alice and Bob exchange αn and βn over an authenticated channel. Eve is
passive at this stage, hence, the channel is denoted by ⇒.

We first present a high level description of our protocol, depicted in Figure 8
based on the logic of the Jane Doe protocol. Although this high level presentation
does not include the details of our proposal, it helps in signifying the differences
and it gives a better big picture on how the hash chaining technique is modified
in order to obtain a security proof based on standard assumptions.

394 A. Mashatan and S. Vaudenay

Alice Bob

Choose random α0, a0, a1, . . . , an−1. Choose random β0, b0, b1, . . . , bn−1.
For i = 1, . . . , n, compute For i = 1, . . . , n, compute.

αi = F (αi−1, ai−1).
αn====⇒ βi = F (βi−1, bi−1).

βn⇐====

Set the internal state. Set the internal state.

Fig. 7. Initialization Phase

Alice Bob

Input (m, Bob)

di = MACαi
(m)

m, di−−−−−−−−−−→ Receive m′, d′

βi, bi←−−−−−−−−−−

Receive β′, b′ and
If βi+1 = F (β′, b′)
then

accept-key(β′, b′) and

send (αi, ai)
αi, ai−−−−−−−−−−→ Receive α′, a′

else If αi+1 = F (α′, a′)
wait for a new (βi, bi) then

accept-key(α′, a′)
If d′ = MACα′ (m′) then accept-message(m′).

else wait for a new αi, ai.

Fig. 8. High Level Description of our Message Recognition Protocol

Alice uses αi as the key for the MAC value, but also to make Bob recognize
her. Bob uses βi, so Alice will recognize him. However, bis are not used to send
a message. Note that the role of Alice, as the claimant, and the role of Bob,
as the verifier are not reversible. In other words, if Bob wishes to authenticate
messages to Alice, they should fix another pair of random keys. Indeed, if the
same αi and βi are used, a man-in-the-middle attack is possible.

In order to present the details of the logic of our proposed protocol, we adapt
the approach of Goldberg et al. [GMS09] to obtain a self-recoverable MRP.
Note that our building blocks are different from theirs and, more importantly,
our security assumptions are different. The point in adapting the logic of the
protocol is to ensure self-recoverability of the protocol.

The internal state of Alice includes (along with each variable’s initial value):
- iA := n− 1: the position of Alice in her chain.
- iaccA := n: the last index of Bob’s chain that was accepted by Alice.
- βA := βn: the last value of Bob’s chain that was accepted by Alice.
- bA := Null: the last value for Bob’s randomness accepted by Alice.
- M := Null: the input message to be authenticated in the current session.
- a one-bit flag, to distinguish the program states A0 and A1.

A Message Recognition Protocol Based on Standard Assumptions 395

Similarly, Bob’s internal state is as follows:
- iB := n− 1: the position of Bob in his chain.
- iaccB := n: the last index of Alice’s chain that was accepted by Bob.
- αB := αn: the last value of Alice’s chain that was accepted by Bob.
- aB := Null: the last value for Bob’s randomness accepted by Alice.
- e′ := Null: the MAC value received in the current session, supposedly from
Alice.
- M ′ := Null: the message received in the current session, supposedly from Alice.
- a one-trit flag, to distinguish the program states B0, B1, and B2.

We write commit-message(M, iA) to indicate that Alice is committing herself
to sending the message M to Bob in session iA. We let T be the maximum
amount of time Alice waits to receive a response from Bob, and vice versa. Alice
and Bob start in program states A0 and B0.

A0 is executed as follows:

If iA ≤ 0 then Abort.
Receive input (M).
Compute eiA := MACαiA

(iA‖M).
Send [eiA , M] to Bob and goto A1.

B0 is executed as follows:

If iB ≤ 0 then Abort.
Wait to receive [e′, M ′], then goto B1.

B1 has the following description:

Send [iB, βiB−1, biB] to Alice and goto B2.

A1 is performed in the following manner:

Wait at most time T to receive [i′B, β′, b′].
If [i′B, β′, b′] is received, then

If iaccA = i′B, βA = β′, and bA = b′ (Bob has not received the last flow
of the previous session) then

Let N := Null.
Send [iaccA, αiaccA−1, aiaccA , N] and goto A0.

If iA = i′B and βA = F (β′, b′) then (Alice and Bob seem to be synchro-
nized.)

Let N := M .
Send [iA, αiA−1, aiA , N] to Bob.
Let iaccA := i′B, iA := iA − 1, βA := β′, bA := b′. (Alice updates her
state.)
goto A0.

else Resend [eiA , M] to Bob and goto A1.
If timeout then
Resend [eiA , M] to Bob and goto A1.

396 A. Mashatan and S. Vaudenay

B2 is performed as follows:

Wait at most time T to receive [i′A, α′, a′, N ′].
If [i′A, α′, a′, N ′] is received, then

If i′A = iB and αB = F (α′, a′) then (Alice and Bob seem to be synchro-
nized.)

If N ′ = M ′ and e′ = MACα′(i′A‖M ′) then
Accept(M ′, iB).

else Accept(Null).
Let iaccB := i′A, iB := iB − 1, αB := α′, aB := a′. (Bob updates his
state.)
goto B0.

else goto B1.
If timeout, then goto B1.

Alice Bob
Internal state: iA, iaccA, βA, bA, M Internal state: iB , iaccB , αB , aB , e′, M ′

A0: B0:
If iA ≤ 0 then Abort. If iB ≤ 0 then Abort.
Receive and set M .
Compute eiA

:= MACαiA
(iA‖M).

Send [eiA
, M].

eiA
, M

−−−−−−−−−−−−−→ Receive [e′, M ′].

A1: B1:

Receive [i′B , β′, b′].
iB , βiB−1, biB←−−−−−−−−−−−−− Send [iB , βiB−1, biB

].

If iaccA = i′B , βA = β′, and bA = b′

then
Let N := Null.
Send [iaccA, αiaccA−1, aiaccA

, N]
goto A0.

If iA = i′B and βA = F (β′, b′)
then

Let N := M . B2:

Send [iA, αiA−1, aiA
, N].

iA, αiA−1, aiA
, N

−−−−−−−−−−−−−→ Receive [i′A, α′, a′, N ′].

Let iaccA := i′B , iA := iA − 1 and If i′A = iB and αB = F (α′, a′) then
βA := β′, bA := b′. If N ′ = M ′ and e′ = MACα′(i′A‖M ′)
goto A0. then Accept(M ′, iB).

else Resend [eiA
, M] and goto A1. else Accept(Null).

Let iaccB := i′A, iB := iB − 1 and
aB := a′, αB := α′.
goto B0.

else goto B1.

Fig. 9. Proposed Message Recognition Protocol

Figure 9 illustrates the common case of our protocol. It is worth mentioning
that since we are basing our protocol on the logic of the message recognition
protocol of Goldberg et al. [GMS09], the security analysis, specially the reduc-
tions, are similar to those presented in their paper. For example, our protocol
directly inherits the self-recoverability property of their protocol. Hence, we do

A Message Recognition Protocol Based on Standard Assumptions 397

not discuss self-recoverability. On the other hand, we stress that we are using
different assumptions and primitives to start with. Hence, we obtain a different
protocol and it deserves its own security analysis.

3.1 Security Result

In Appendix A, we prove the following theorem which is analogous to the Secu-
rity and Self-recoverability Theorem of Goldberg et al. [GMS09].

Theorem 4. A successful adversary against the protocol of Section 3 who ef-
ficiently deceives Bob into accepting (M ′,i), where M ′ is not Null and Alice
did not send M ′ in session i, implies an efficient algorithm that finds degree-i
preimages or degree-i second preimages, or creates degree-i existential forgeries.
Moreover, the adversary cannot stop Alice and Bob from successfully executing
the protocol unless she is actively disrupting the communication for the lifetime
of Alice and Bob.

The above theorem together with the theorems of Section 2, namely Theorems
1, 2, and 3, imply the following theorem.

Theorem 5 (Final result). Consider a pseudorandom function F : {0, 1}s+k →
{0, 1}s, k ≥ 2s, and a message authentication code MAC : {0, 1}s × {0, 1}∗ →
{0, 1}c. Moreover, let i be polynomial in s and k. If F is preimage resistant and
second preimage resistant, and if MAC is existentially unforgeable, then there is
no efficient adversary against the ith session of the protocol of Section 3.

The condition on i being a polynomial in s and k is unavoidable to get negligible
advantage for the distinguishers in Theorems 1, 2, and 3. On the other hand,
note that i ≤ n to begin with and, hence, this assumption is reasonable.

3.2 Discussion

Our MRP shares some similarities with protocols based on hash chains (e.g.,
TESLA [HPJ02], OTP (S/Key) [HMNS98], Lamport authentication [Lam81]).
These protocols can adapt to different data structures such as hash trees (see
for example, Merkle signatures [Mer89] and Merkle tree traversal [Szy04]) and
can be turned into dynamic ones (consult Naor and Yung [NY89]).

Once our MRP is in place in both directions, using two separate pairs of
chains, we can use the last two iterations to authenticate some new αn and βn

to be able to continue. Note that using the same pair of hash chains in both
directions results in man-in-the-middle type of attacks.

4 Conclusion

Incorporating random coins in every step of a hash chain, we proposed the first
MRP which is provably secure in the standard model and based on standard

398 A. Mashatan and S. Vaudenay

assumptions. Our protocol uses two primitives, a pseudorandom function F :
{0, 1}s+k → {0, 1}s and an existential unforgeable message authentication code
MAC : {0, 1}s × {0, 1}∗ → {0, 1}c.

We defined new notions of security for our primitives, F and MAC, namely
degree-i preimage resistance and degree-i second preimage resistance for F , and
F -degree-i existential unforgeability for MAC. Then, we showed that these new
properties are equivalent to the standard notions of preimage resistance, second
preimage resistance, and existential unforgeability under the assumption that F
is a pseudorandom function.

References

[ABC+98] Anderson, R., Bergadano, F., Crispo, B., Lee, J.-H., Manifavas, C.,
Needham, R.: A new family of authentication protocols. In: ACMOSR:
ACM Operating Systems Review, vol. 32, pp. 9–20 (1998)

[Geh98] Gehrmann, C.: Multiround unconditionally secure authentication. De-
signs, Codes, and Cryptography 15(1), 67–86 (1998)

[GKL93] Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudoran-
dom generators. SIAM J. Comput. 22(6), 1163–1175 (1993)

[GMS09] Goldberg, I., Mashatan, A., Stinson, D.R.: A new message recognition
protocol with self-recoverability for ad hoc pervasive networks. In: Ab-
dalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 219–237. Springer, Heidelberg (2009)

[GN04] Gehrmann, C., Nyberg, K.: Security in personal area networks.In: IEE
Security for Mobility, London, pp. 191–230 (2004)

[HMNS98] Haller, N., Metz, C., Nesser, P., Straw, M.: A One-Time Password Sys-
tem. RFC 2289 (February 1998)

[HPJ02] Hu, Y.-C., Perrig, A., Johnson, D.B.: Ariadne: a secure on-demand rout-
ing protocol for ad hoc networks. In: Akyildiz, I.F., Lin, J.Y.-B., Jain, R.,
Bharghavan, V., Campbell, A.T. (eds.) MOBICOM, pp. 12–23. ACM,
New York (2002)

[HWGW05] Hammell, J., Weimerskirch, A., Girao, J., Westhoff, D.: Recognition in a
low-power environment. In: ICDCSW ’05: Proceedings of the Second In-
ternational Workshop on Wireless Ad Hoc Networking (WWAN), Wash-
ington, DC, USA, pp. 933–938. IEEE Computer Society, Los Alamitos
(2005)

[Lam81] Lamport, L.: Password authentification with insecure communication.
ACM Commun. 24(11), 770–772 (1981)

[Lev85] Levin, L.A.: One-way functions and pseudorandom generators. In:
STOC ’85: Proceedings of the seventeenth annual ACM symposium on
Theory of computing, pp. 363–365. ACM, New York (1985)

[LZWW08] Lucks, S., Zenner, E., Weimerskirch, A., Westhoff, D.: Concrete security
for entity recognition: The Jane Doe protocol. In: Chowdhury, D.R.,
Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp.
158–171. Springer, Heidelberg (2008)

[Mer89] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg
(1990)

A Message Recognition Protocol Based on Standard Assumptions 399

[Mit03] Mitchell, C.J.: Remote user authentication using public information. In:
Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898,
pp. 360–369. Springer, Heidelberg (2003)

[MS08] Mashatan, A., Stinson, D.R.: A new message recognition protocol for
ad hoc pervasive networks. In: Franklin, M.K., Hui, L.C.K., Wong, D.S.
(eds.) CANS 2008. LNCS, vol. 5339, pp. 378–394. Springer, Heidelberg
(2008)

[MS09] Mashatan, A., Stinson, D.R.: Interactive two-channel message authenti-
cation based on interactive-collision resistant hash functions. Int. J. Inf.
Secur. 8(1), 49–60 (2009)

[NY89] Naor, M., Yung, M.: Universal one-way hash functions and their cryp-
tographic applications. In: STOC, pp. 33–43. ACM, New York (1989)

[SA99] Stajano, F., Anderson, R.: The resurrecting duckling: Security issues for
ad-hoc wireless networks. In: Malcolm, J.A., Christianson, B., Crispo,
B., Roe, M. (eds.) Security Protocols 1999. LNCS, vol. 1796. Springer,
Heidelberg (2000)

[Szy04] Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–
554. Springer, Heidelberg (2004)

[Vau05] Vaudenay, S.: Secure communications over insecure channels based on
short authenticated strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 309–326. Springer, Heidelberg (2005)

[WW03] Weimerskirch, A., Westhoff, D.: Zero common-knowledge authentication
for pervasive networks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC
2003. LNCS, vol. 3006, pp. 73–87. Springer, Heidelberg (2004)

A Proof of Theorem 4

We list all possible attacks against our protocol and show that they are all
infeasible when the assumptions listed in Section 2 hold. This discussion is similar
to what is presented by Goldberg et al. [GMS09].

Eve remains passive for a period of time and, at some point, she gets active
to carry out her attack. Since Eve was a passive observer before the attack, it
holds that iA = iB before she starts her attack. Let i := iA = iB and observe
that at the start of session i we have iaccA = iaccB = i+1, aB = ai+1, bA = bi+1,
αB = αi, βA = βi.

We adapt the approach of Gehrmann [Geh98] in listing all possible attacks by
considering different orderings of the flows. Gehrmann labels a flow by A when
the recipient is Alice. Analogously, a flow is labelled as B, if the recipient is Bob.
One distinguishes between the attacks that are started in one session and are
completed in the same session versus the attacks that are started in one session
and completed in a later session, named multi-session attacks.

We first analyze single-session attacks. Recall that Eve has been passive be-
fore the session the attack takes place and was only observing the activities.
Hence, the attack is started and completed in session i. Gehrmann [Geh98] has
showed that there are only

(4
2

)
= 6 different single-session attacks for a three flow

protocol. In his notation, these attacks are labelled as AABB, ABAB, BBAA,

400 A. Mashatan and S. Vaudenay

ABBA, BABA, and BAAB. We will reduce the AABB and BBAA attack scenar-
ios to degree-i preimage resistant or degree-i second preimage resistant games.
Moreover, we reduce the ABAB attack scenario to degree-i existential forgeries,
degree-i preimage resistant, or degree-i second preimage resistant games.

Alice Eve Bob

M←−−−−−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−−−−−→

i′B, β′, b′
←−−−−−−−−−−−−−−− A

iA, αiA−1, aiA
, N

−−−−−−−−−−−−−−−→ B
e′, M′

−−−−−−−−−−−−−−−→

iB, βiB−1, biB←−−−−−−−−−−−−−−−

B
i′A, α′, a′, N′

−−−−−−−−−−−−−−−→

Fig. 10. AABB Attack

AABB Attack. This attack scenario is depicted in Figure 10. Recall that up
until the start of this session, Alice and Bob were synchronized having iA = iB =
i. Hence, Eve has to set i′A := i, otherwise Bob will detect Eve, and i′B := i,
otherwise Alice will detect Eve. Moreover, recall that βA = βi and αB = αi.
Alice sends iA, αiA−1, aiA , N to Eve if and only if i′B, β′, b′ are verified. It implies
that unless βA = F (β′, b′), Alice will not cooperate with Eve. Hence, having seen
βi and not having seen βi−1, bi, Eve has to find β′ and b′ such that βi = F (β′, b′).
That is, Eve has to win the degree-i preimage resistant game of Definition 1.

BBAA Attack. This scenario is shown in Figure 11. For Eve not to be detected
by Bob, she has to find i′A, α′, a′, and N ′ such that they get verified by Bob.
Note that Eve has αB = αi from the previous session. This implies that, not
having seen αi−1, ai, Eve has to find α′ and a′ such that αi = F (α′, a′). Again,
if Eve successfully finds such α′ and a′, then she can win the degree-i preimage
resistant game of Definition 1.

ABAB Attack. Figure 12 illustrates this scenario. Eve first receives βiB−1 =
βi−1 and biB = bi. Then, she has the choice between setting (β′, b′) = (βi−1, bi)
or (β′, b′) �= (βi−1, bi). Let us assume that she sets (β′, b′) �= (βi−1, bi). In or-
der for Eve not to get detected by Alice, Eve must find β′ and b′ such that
F (β′, b′) = F (βi−1, bi). This implies that she has to win the degree-i second
preimage resistant game of Definition 2.

Now, assume that (β′, b′) = (βi−1, bi). Alice will verify β′ and b′ and, then,
send iA, αiA−1, aiA , N . Again, Eve has the choice between setting (α′, a′) =
(αi−1, ai) or (α′, a′) �= (αi−1, ai). In order to set (α′, a′) �= (αi−1, ai) and not
get detected by Bob, she has to win the degree-i second preimage resistant game
of Definition 2. Let us now assume that she chooses (α′, a′) = (αi−1, ai). For Eve
not to get detected by Bob, she has to first set N ′ := M ′. Moreover, not knowing

A Message Recognition Protocol Based on Standard Assumptions 401

Alice Eve Bob

B
e′, M′

−−−−−−−−−−−−−−−→

iB, βiB−1, biB←−−−−−−−−−−−−−−−

M←−−−−−−−−−−−−−−− A B
i′A, α′, a′, N′

−−−−−−−−−−−−−−−→

eiA
, M

−−−−−−−−−−−−−−−→

i′B, β′, b′
←−−−−−−−−−−−−−−− A

iA, αiA−1, aiA
, N

−−−−−−−−−−−−−−−→

Fig. 11. BBAA Attack

Alice Eve Bob

M←−−−−−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−−−−−→ B
e′, M′

−−−−−−−−−−−−−−−→

i′B, β′, b′
←−−−−−−−−−−−−−−− A

iB, βiB−1, biB←−−−−−−−−−−−−−−−

iA, αiA−1, aiA
, N

−−−−−−−−−−−−−−−→ B
i′A, α′, a′, N′

−−−−−−−−−−−−−−−→

Fig. 12. ABAB Attack

a′, Eve must have set e′ := MACα′(i′A‖M ′), for M ′ to be verified by Bob. Hence,
Eve has to perform a degree-i existential forgery, introduced in Definition 3.

It can be shown that the remaining three attack scenarios are reduced to the
former three scenarios. In particular, one can reduce the BABA attack to the
ABBA attack. Next, the ABBA attack is reduced to the ABAB attack. Last,
but not least, one reduces the BAAB attack to the ABAB attack. It remains to
take care of multi-session attacks against our protocol. Analogous to the analysis
presented by Goldberg et.al [GMS09], one can show that multi-session attacks
and show that they reduce to single-session attacks. The reductions for our
protocol are analogous to the reductions presented by Goldberg et.al [GMS09],
hence, we do not repeat them here.

Affiliation-Hiding Key Exchange
with Untrusted Group Authorities

Mark Manulis1, Bertram Poettering1, and Gene Tsudik2

1 Cryptographic Protocols Group, TU Darmstadt & CASED, Germany
mark@manulis.eu, bertram.poettering@cased.de
2 Computer Science Department, UC Irvine, USA

gts@ics.uci.edu

Abstract. Privacy-preserving techniques are increasingly important in
our highly computerized society where privacy is both precious and elu-
sive. Affiliation-Hiding Authenticated Key Exchange (AH-AKE) proto-
cols offer an appealing service: authenticated key agreement coupled with
privacy of group memberships of protocol participants. This type of ser-
vice is essential in privacy-conscious p2p systems, mobile ad hoc net-
works and social networking applications. Prior work has succeeded in
constructing a number of secure and efficient AH-AKE protocols which
all assume full trust in the Group Authority (GA) — the entity that
sets up the group as well as registers and (optionally) revokes members.
In this paper, we argue that, for many anticipated application scenarios,
the trusted GA model should be relaxed to allow for certain types of
malicious behavior. We examine the consequences of malicious GAs and
explore the design of stronger AH-AKE protocols that withstand GA
attacks. Our results demonstrate that such protocols are both feasible
and practical.

1 Introduction

Privacy-Preserving Authentication. Secret Handshakes (SH) [2,8,23,22,21,
1,16,17] and Affiliation-Hiding Authenticated Key Exchange (AH-AKE) proto-
cols [14,15] offer privacy-preserving authentication among members of the same
group. A user joins a group and obtains its membership credential by registering
with the Group Authority (GA). In some schemes, the GA can later revoke these
credentials [2, 8, 23, 15, 17]. Possession of valid credentials by both participants
is a requirement for a successful handshake. Privacy of the authentication pro-
cess is defined as the requirement to hide the affiliations (group memberships)
of protocol participants from outsiders, as well as from each other, unless their
respective affiliations match. Since the authentication process is usually followed
by a communication session, AH-AKE protocols [14, 15] combine secret hand-
shakes with session key establishment. Although session keys are also provided
by many secret handshake schemes, the distinguishing feature of AH-AKE pro-
tocols is ensuring that session key leakage does not reveal any information about
affiliations of session participants. Additionally, AH-AKE protocols guarantee

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 402–419, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Affiliation-Hiding Key Exchange with Untrusted Group Authorities 403

the usual security requirements, i.e., authenticated key exchange security with
forward secrecy [7].

Both secret handshakes and AH-AKE protocols can be linkable or unlink-
able, depending on whether sessions of the same group member can be related.
Linkable secret handshakes and AH-AKE protocols [2, 8, 14, 15] are useful if
participants wish to be recognized across different sessions, while keeping their
affiliations hidden. This property is typically realized via reusable pseudonyms
obtained by members during the registration process. Unlinkable secret hand-
shakes and AH-AKE protocols [23,16,1,17] prevent any correlation among mul-
tiple sessions.

Untrusted Group Authorities. Current secret handshakes and AH-AKE
protocols assume that group authorities are trusted. This assumption is appar-
ent in the security models of [16,15,17] where corruptions of GAs are not consid-
ered. We believe that there are two main reasons for the trusted GA assumption:
(a) anticipated applications of secret handshakes were in the domain of home-
land security (e.g. intelligence agencies, police) where GA trustworthiness is not
questioned, and (b) the GA’s role has been considered as being similar to that of
a certification authority (CA) in classical PKI-based scenarios where such cor-
ruptions are counter-intuitive as they would allow the CA to certify new users
at will. However, we consider a more general context of open and commercial
applications, such as p2p systems or social networks that allow for the creation
of multiple groups, each administrated by its own GA.

In such settings, unconditional trust in the GA is problematic because, unlike a
CA only trusted with security, a GA is trusted with both security and privacy. We
argue that it is reasonable to trust a GA not to register members frivolously or
fraudulently, whereas trusting a GA to maintain and respect privacy of members
is a matter that should be treated separately. We now informally discuss the
impact of untrusted GAs on security of AH-AKE protocols.

In general, a malicious GA might attempt any of the following: generate pub-
lic group parameters in a rogue way, create phantom group members, misbehave
during the registration process of honest members, and mount active attacks
on sessions involving honest members. The resulting challenge is: Which secu-
rity requirements of AH-AKE protocols can be preserved in a meaningful way?
For example, if a malicious GA creates a phantom member and participates on
its behalf in an AH-AKE protocol with another party, then this GA would be
able to check whether that someone is a member of its group. Moreover, if the
protocol succeeds, the GA would also compute the corresponding session key.
However, this is an unavoidable consequence of trusting the GA with the security
of registration. In fact, it is conceivable that all registration processes are logged
and are auditable by some higher authority, thus dis-incentivizing the GA from
registering phantom members.

Therefore, we claim that it is meaningful to restrict GA misbehavior to attacks
on affiliation-hiding and key secrecy for sessions involving honest members. To
this end, our goal is to explore approaches to preserve both of these properties
even in the face of a misbehaving GA. In linkable AH-AKE protocols, hiding

404 M. Manulis, B. Poettering, and G. Tsudik

affiliations of participants appears to be especially challenging due to the use of
pseudonyms created during the registration phase. Indeed, none of the linkable
AH-AKE protocols we are aware of can attain this goal. There are also some
protocols, e.g. [2,8,1], where knowledge of GA secrets would immediately reveal
session keys. Additionally, consideration of malicious GAs leads us to a new
privacy goal, which we call untraceability — the infeasibility for a malicious
GA to learn real identities of honest members through their AH-AKE sessions.
This requirement is beneficial even for sessions executed with phantom members
introduced by the GA. Intuitively, untraceability is related to the GA’s ability to
obtain information during the registration phase of an honest member that allows
it to later link AH-AKE sessions of that member to the registration process,
and thus, to the real identity. We observe that many current linkable protocols
[2, 8, 22, 15] do not provide this property. This may have serious impact on user
privacy. Consider for example an anti-government social network that operates in
an oppressive regime. The social network controls the GA and issues credentials
to its members. Members can then identify each other and hold discrete meetings
and conversations. However, if the government raids the social network and
confiscates the GA, then all parameters and records become exposed and the
government can thereafter trace and identify all members.

Contributions and Organization. In this paper, we address the challenge
posed by untrusted GAs in linkable AH-AKE (LAH-AKE) protocols. This re-
search direction is particularly interesting, since it is counter-intuitive to tolerate
linkability of AH-AKE sessions and provide meaningful support for revocation,
while offering untraceability against malicious GAs. Our work models untrusted
GAs in LAH-AKE protocols and yields stronger LAH-AKE schemes with mean-
ingful security guarantees. Specifically, we extend work by Jarecki, et al. [15],
which constructed a LAH-AKE protocol in the trusted GA model.

In Section 2, we propose some updates to the syntax of LAH-AKE protocols
and to their security model in order to accommodate corruptions of GAs. More
precisely, we extend the adversary model to allow adversarial control of GAs,
and define the aforementioned untraceability property. We also update former
definitions of authenticated key exchange (AKE) security and linkable affiliation-
hiding (LAH) security from [15] to take into account malicious GAs.

In Section 3, we show how the protocol from [15], with security proven under the
RSA assumption on safe moduli [13, 12] in the random oracle model (ROM) [4],
can be fortified to provide new security properties without increasing the round
complexity of the original protocol. Our modifications involve several “tricks”.
First, the initial generation of group parameters is extended with slightly modi-
fied (non-interactive) zero-knowledge proofs from [6] to prevent rogue values from
being chosen by the GA. Second, we construct an anonymized registration pro-
cess using the blind RSA signature scheme [9, 3] to ensure privacy of obtained
pseudonyms and membership credentials. This modification is essential to achieve
untraceability. In order to prevent impersonation attacks in AH-AKE sessions
we link pseudonyms to public keys of some existentially-unforgeable signature
scheme. The idea is to let new members choose their corresponding private

Affiliation-Hiding Key Exchange with Untrusted Group Authorities 405

signature keys during the registration process and use them during each AH-AKE
session to sign key confirmation messages. This allows us to ensure that each mem-
ber proves ownership of the pseudonym used during protocol execution. By link-
ing pseudonyms to public signature keys we also allow members to use the same
pseudonym in different groups. Similar to [15], we can still support revocation of
pseudonyms via revocation lists.

The security and efficiency analysis of our protocol is given in Section 4. We
stress that security of our scheme no longer relies solely on the RSA problem
(since GA knows the factors of the modulus n) but also on the Decisional Diffie-
Hellman assumption [5] in subgroups of Z∗

n of maximal order.

Related Work. Early secret handshake schemes [2,8,22] provided group mem-
bers with pseudonyms and secret credentials, as part of the registration process.
Such schemes are linkable since the same pseudonym is used in multiple hand-
shakes. Unlinkability can be trivially obtained by using one-time pseudonyms;
however, this is clearly unscalable. In [2], a credential is a secret element of a
bilinear group; [8] uses special CA-oblivious PKI-enabled encryption realized via
Schnorr signatures; and [22, 15] use blinded verification of RSA signatures.1 As
the next step, [15] introduced an LAH-AKE protocol that offers both linkable
affiliation-hiding and key exchange security with forward secrecy.

Unlinkable secret handshake schemes [1,16,21,17] support reusable credentials
while precluding correlation of multiple sessions involving the same participant.
However, [1] does not support revocation; [16] requires users to synchronize re-
vocation epochs, and [21] is a complex scheme based on group signatures and
broadcast encryption, which complicates revocation. Another flavor of unlinka-
bility (k-anonymity) was explored in [23]. Based on some group signature-related
techniques, Jarecki and Liu [17] recently proposed another construction with re-
vocation and unlinkable reusable credentials. However, this scheme is hardly
practical as it is based on pairings and has linear computation complexity in the
number of revoked users.

The only current work on privacy-protection against group authorities is due
to Kawai, et al. [18], who deviate from the classical setting and split the role of
the group authority among two entities: the issue authority responsible for the
registration of users and issue of certificates, and the tracing authority that can
trace users from their handshakes. Of particular interest is the new notion of co-
traceability, which is supposed to prevent authorities from identifying users upon
their handshake sessions. The crucial assumption for this property in [18] is that
the issue and tracing authorities do not collude. In contrast, our setting is more
consistent with prior work, since we treat the group authority as a monolithic
entity. Also, our model considers security of session keys and their impact on user
privacy, whereas, [18] builds upon [8] where these issues are not modeled. [18]
requires group signatures with message recovery and its operation is based on
pairings, which significantly decreases the efficiency of the scheme (note that no
performance analysis is given in [18]).

1 Note that the protocol in [22] was shown to be insecure in [15].

406 M. Manulis, B. Poettering, and G. Tsudik

2 Untrusted GA Model for Linkable AH-AKE Protocols

We now define and model the security of LAH-AKE protocols while considering
malicious GA behavior.

2.1 Linkable Affiliation-Hiding Key Exchange Syntax

An LAH-AKE scheme is a four-tuple {CreateGroup, AddUser, Handshake, Revoke}
with components defined as follows:

CreateGroup(1κ). This probabilistic algorithm sets up a new group G and is
executed by the corresponding GA. On input of the security parameter 1κ it
generates a public/private group key pair (G.pk, G.sk), initializes the group’s
pseudonym revocation list G.prl to ∅ and outputs public group parameters
G.par = (G.pk, G.prl) and private key G.sk.

AddUser(U, G). This protocol is executed between the prospective group mem-
ber U and the GA of G. The algorithm on U ’s side is denoted AddUserU(U, G.
par), the algorithm on GA’s side by AddUserG(U, G.sk). Let π be a session
of either the AddUserU or the AddUserG algorithm. The state of π is de-
fined through the session variable π.state and can take running, accepted,
or rejected values. For both algorithms initially π.state = running. Once
AddUserU session π reaches π.state = accepted its variable π.result contains
a pair (id, id.cred) where id is a pseudonym and id.cred is a membership cre-
dential enabling U to authenticate as id in group G in future Handshake
sessions. A user can have several registered pseudonyms in the same group,
and the same pseudonym may be registered in different groups.

Handshake(params1, params2). This is a protocol (handshake) executed between
two users U1 and U2 on inputs paramsi = ((idi, idi.cred), Gi.par, ri), i ∈ {1, 2},
with Gi.par = (Gi.pk, Gi.prl), r1 = init and r2 = resp. We assume that
each Ui executes the corresponding interactive algorithm Handshake′(parami).
Note that idi is the pseudonym previously registered to group Gi using the
AddUser algorithm. The protocol verifies that both users are affiliated to the
same group (i.e. G1 = G2) and possess valid membership credentials. If so,
the protocol accepts with an established shared session key. Otherwise, it re-
jects. Users keep track of the state of created Handshake protocols π through
session variables that are initialized as follows: π.state← running, π.key← ⊥,
π.id← id (where id is the pseudonym used) and π.partner ← ⊥. At some point,
the protocol will complete and π.state is then updated to either rejected or
accepted. In the latter case π.key is set to the established session key (of length
κ) and the pseudonym of the handshake partner is assigned to π.partner. The
accepted state cannot be reached if the protocol partner is revoked from the
group (π.partner ∈ G.prl).

Revoke(G.sk, G.prl, id). This algorithm is executed by the GA of G and results
in the update of G’s pseudonym revocation list: G.prl← G.prl ∪ {id}.

Affiliation-Hiding Key Exchange with Untrusted Group Authorities 407

Definition 1 (Correctness of LAH-AKE). Assume that two users, U1 and
U2, register as members of groups G1 and G2, and obtain their credentials (id1,
id1.cred) and (id2, id2.cred), respectively, through corresponding AddUser execu-
tions. Assume that U1 and U2 participate in a Handshake protocol and let π1 and
π2 denote the corresponding sessions of U1 and U2. The LAH-AKE scheme is
called correct if (a) π1 and π2 complete in the same state, which is accepted iff
G1 = G2 and id1 �∈ G2.prl and id2 �∈ G1.prl and r1 �= r2, and (b) if both sessions
accept then (π1.key, π1.partner, π1.id) = (π2.key, π2.id, π2.partner).

2.2 Security Model and Extended Goals

We now present our security model that takes into account malicious GAs. After
describing adversarial queries we define three security properties: authenticated
key exchange (AKE) security (with forward secrecy), linkable affiliation-hiding
(LAH) security, and untraceability. Our model and definitions build upon [15],
which considered the first two properties in the trusted GA model.

Adversary Model. The adversary A is modeled as a PPT machine that inter-
acts with protocol participants via the set of the following basic queries. Unless
explicitly noted, we assume that A always has access to up-to-date exhaustive
(system-wide) lists of groups GLi and pseudonyms IDLi (these lists do not disclose
the mapping between pseudonyms and groups).

CreateGroup(). This query sets up a new group G and publishes its public pa-
rameters G.par. The group is added to GLi.

AddUserU(U, G.par). This query models the actions of U initiating the AddUser
protocol with given target group G. A new protocol session π is started.
Optionally, a first protocol message M is output. G is also added to GLi
if it is a new group; this allows A to create its own groups with arbitrary
(possibly malicious) public parameters.

AddUserG(G, U). This query differs from AddUserU in that it models GA’s ac-
tions on the AddUser protocol. We require that G has been already estab-
lished through the CreateGroup query.

Handshake(id, G.par, r). This query lets pseudonym id start a new session π of the
Handshake protocol. It receives as input the public parameters of the group
G wherein the handshake shall take place (given that id has credentials for
that group) and a role identifier r ∈ {init, resp} that determines whether
the session will act as protocol initiator or responder. Optionally, this query
returns a first protocol message M .

Send(π, M). Message M is delivered to session π. After processing M , the even-
tual output is given to A. This query is ignored if π is not waiting for input.
Note that π is either an AddUserU, an AddUserG or a Handshake protocol
session. If π is an AddUserU session and accepts after processing M then id
from π.result is added to IDLi.

Reveal(π). This query is defined only if π is a handshake session. Then, if π.state �=
running it returns π.state and π.key; otherwise the query is ignored.

408 M. Manulis, B. Poettering, and G. Tsudik

Corrupt(∗). The input is either a pseudonym id or a group identifier G:
Corrupt(id): If id ∈ IDLi then, for any group G where id is registered, the
corresponding credential id.cred is given to A.
Corrupt(G): For a group G created by CreateGroup() this query hands G’s
long term secret G.sk and control over G’s revocation list G.prl over to A.

Revoke(G, id). This query lets the GA of G include id ∈ IDLi in its pseudonym
revocation list G.prl.

Definition 2 (Honest Generation of Pseudonyms and Groups). A pseu-
donym id is called honestly generated if it was established through an AddUserU
query. It is called honest if thereafter no Corrupt(id) query has been asked.
Similarly, group G is called honestly generated if it was established through
a CreateGroup query. It is called honest if thereafter no Corrupt(G) query has
been asked.

Definition 3 (Session IDs and Partnered Sessions). Session id π.sid of a
Handshake session π that was initiated by pseudonym id and is in state accepted
is a value that uniquely identifies π in the set of all protocol sessions of id. Two
Handshake sessions π, π′ are called partnered if π.state = π′.state = accepted
and (π.sid, π.id, π.partner) = (π′.sid, π′.partner, π′.id).

Authenticated Key Exchange Security. AKE-security of LAH-AKE pro-
tocols is determined by analyzing the statistical distribution of resulting session
keys: A’s task is to distinguish a key established in a protocol run from a ran-
domly generated value of the same length.

In order to formalize the corresponding indistinguishability game we first in-
troduce two new flags π.revealed and π.tested, that are initially set to false, and
define the Reveal∗ query (as a slightly modified version of Reveal) and the aux-
iliary Test query with secret parameter b ∈ {0, 1}.

Reveal∗(π). This query is answered as the regular Reveal(π) query (and π.revealed
is set to true) unless π.tested = true or π′.tested = true for any session π′

that is partnered with π. In the latter case the query is ignored.
Test(π). This query is ignored if π is not fresh (see Definition 4). Otherwise

π.tested is set to true and a key is returned, obeying the following rule: Let
b ∈ {0, 1} denote a bit chosen in advance. In case b = 1 π.key is returned.
In case b = 0 a random element drawn uniformly from {0, 1}κ is returned
instead. The Test query may be invoked at most once.

The following notion of freshness is useful to exclude trivial attacks and simplify
the definition of AKE-security.

Definition 4 (Session Freshness). A session π that is invoked in response to
Handshake(id, G.par, r) for an honestly generated id is called fresh if all of the
following hold:

Affiliation-Hiding Key Exchange with Untrusted Group Authorities 409

(a) π.state = accepted and π.revealed = false;
(b) for any existing session π′ that is partnered with π, π′.revealed = false and

Corrupt(π′.id) was not invoked prior to setting π′.state = accepted. Note that
in this case π′.id = π.partner;

(c) π.partner was honestly generated and Corrupt(π.partner) was not invoked
prior to setting π.state = accepted OR π.partner was not honestly gener-
ated and prior to setting π.state = accepted both G was honest and no
AddUserG(G, ·) has been asked;

We now provide some rationale: Conditions (a) and (b) prevent A from reveal-
ing the session key computed by π or its partnered session π′ and also model
forward secrecy by allowing A to corrupt the corresponding members after the
computation of the session key. Condition (c) states meaningful requirements
on π.partner: on the one hand, it prevents the corruption of honestly generated
π.partner during the execution of the handshake (otherwise A can trivially act
in the session on behalf of π.partner and compute the key); on the other hand,
it prevents the trivial attack where π.partner was introduced either by the mali-
cious GA of G or as a consequence of the AddUserG query with which A could
otherwise obtain regular credentials for G. Note that we allow A to corrupt π.id
at any time (even before protocol acceptance) without considering π as not fresh.
Essentially this also models resilience against Key Compromise Impersonation
(KCI) attacks [19]. We are now ready to formally define AKE-security.

Definition 5 (AKE-Security with Forward Secrecy). Let LAH-AKE =
{CreateGroup, AddUser, Handshake, Revoke}, b be a bit chosen at random, and
Q = {CreateGroup, AddUserU, AddUserG, Handshake, Send, Reveal∗, Test, Corrupt,

Revoke} denote the set of queries available to A. By Gameake,b
A,LAH-AKE(κ) we denote

the following game:

– AQ(1κ) interacts with all participants using the queries in Q;
– at some point AQ asks Test(π∗) to a session π∗ which is fresh;
– AQ continues interacting via queries until it terminates and outputs bit b′,

which is the output of the game.

We define: Advake
A,LAH-AKE(κ) :=

∣∣∣2 Pr[Gameake,b
A,LAH-AKE(κ) = b]− 1

∣∣∣
and denote with Advake

LAH-AKE(κ) the maximum advantage over all PPT adver-
saries A. We say that LAH-AKE is AKE-secure if this advantage is negligible.

In contrast to [15] we do not assume that GAs remain uncorrupted. We do not
even restrictA from setting up a group on its own (presumably by choosing some
‘odd’ parameters) or from letting honest users register in such groups. Thus, we
allow A to invoke Test query to a session of an honest user that registered with
some malicious GA (as long as that session satisfies the freshness conditions).

410 M. Manulis, B. Poettering, and G. Tsudik

Linkable Affiliation-Hiding Security. In order to define linkable affiliation-
hiding (LAH) security we adopt the simulation-based approach from [15]. The
idea is to require that the real protocol execution remains indistinguishable from
an idealized one performed by a simulator SIM that simulates handshake ex-
ecutions without knowing participants’ affiliation. This indistinguishability can
be defined through a game played between A and the challenger Cb initialized
with a secret bit b ∈R {0, 1}. C1 answers all queries of A honestly following the
real protocol specification. C0 answers the queries of A with help of SIM as
shown below.

We call a group G trivially intrudable if G was not setup honestly through a
CreateGroup() query or if an AddUserG(G, ·) query has been posed by A or if A
corrupted some pseudonym id′ generated in response to some AddUserU(·, G.par)
query. This means that for all trivially intrudable groups A can obtain valid
membership credentials in a trivial way. Therefore, the idea is to let SIM simu-
late sessions on behalf of honest pseudonyms only if they belong to groups that
are not trivially intrudable.

CreateGroup(), AddUserU(U, G.par), Revoke(G, id). These queries are answered
honestly without involving SIM.

AddUserG(G, U),Corrupt(). These queries are answered honestly without involv-
ing SIM unless there exists some still running handshake session π invoked
for a group G which is not trivially intrudable. In this latter case AddUserG
and Corrupt queries are ignored if their input is such that after processing
these queries the group G would become trivially intrudable.

Handshake(id, G.par, r). We distinguish between two cases:
Case 1 if G is trivially intrudable then C0 correctly answers the query. We
call the invoked session a Case 1-session.
Case 2 if G is not trivially intrudable then C0 invokes SIM.Handshake(id, r)
and relays its reply. Note that, in this case, SIM doesn’t learn the group
parameters G.par from this query. We call the invoked session a Case 2-
session.

Send(π, M). If π is an AddUserU or AddUserG session then C0 answers the query
itself. If π is a Case 1-session then C0 correctly answers the query, whereby,
if after processing M session π accepts then C0 sets the corresponding π.key
as follows: If there exists a session π′ partnered to π then π.key ← π′.key is
set; Otherwise, if “π is fresh”, i.e., if π.partner was honestly generated and
Corrupt(π.partner) was not asked OR π.partner was not honestly generated
and both G is honest and AddUserG(G, ·) was not asked, then pick π.key ∈R

{0, 1}κ; Otherwise, set π.key according to the protocol specification. If π is
a Case 2-session then C0 invokes SIM.Send(π, M) and relays its reply.

We let C0 create sessions π and process corresponding Send(π, ·) queries correctly,
without involving SIM (Case 1-sessions), in all cases for which A would be able
to break the secrecy of π.key in the real protocol execution (during the interaction
with C1) anyway, by the means of some trivial attack. In cases where A is not
supposed to break the secrecy of π.key in the real protocol (the conditions are
equivalent to those for session freshness in Definition 4) π.key is chosen randomly.

Affiliation-Hiding Key Exchange with Untrusted Group Authorities 411

Before describing how C0 answers the Reveal(π) queries of A we define the
auxiliary notion of compatible sessions.

Definition 6 (Compatible Sessions). Two protocol sessions π, π′ initiated
by Handshake queries are called compatible if the groups associated with π, π′

are identical, and the concatenation of the messages received by π is a prefix of
the concatenation of messages sent by π′ and vice versa. If π is a session that
received enough messages to complete and there exists a compatible session π′

then π.id and π.partner are set to the pseudonyms of the initiators of π and π′.

Reveal(π). If π is a Case 1-session and π.state = accepted then C0 replies
with (accepted, π.key), however if π.state = rejected then C0 replies with
(rejected,⊥).

If π is a Case 2-session then C0 first checks whether π received all mes-
sages to complete the protocol (C0 knows this since it observes the messages
passed to SIM). If not, C0 ignores the query. Otherwise, let Handshake(id, G.
par, r) be the query which invoked π. C0 checks whether there exists a session
π′ which is compatible to π. If no such session π′ exists then C0 replies with
(rejected,⊥). Otherwise, C0 replies with (accepted, π.key) according to the
following rules: If π.key is not set but π′.key is then π.key ← π′.key. If both
π.key and π′.key are not set then π.key ∈R {0, 1}κ is chosen randomly.

Compatibility of sessions π and π′ means that the corresponding members id
and id′ satisfy all requirements for the acceptance in the handshake protocol. In
this case, it is clear that, by revealing the session key, A will learn that id and
id′ belong to the same group. As noticed in [15], this is unavoidable and, even in
this case, A is not supposed to learn the affiliation of these members. Now we
are ready to formally define LAH-security.

Definition 7 (LAH-Security). Let LAH-AKE = {CreateGroup, AddUser,
Handshake, Revoke}, b a randomly chosen bit, and Q = {CreateGroup, AddUserU,

AddUserG, Handshake, Send, Corrupt, Reveal, Revoke}. Let Gamelah,b
A,LAH-AKE(κ) de-

note the interaction of AQ(1κ) with the challenger Cb via queries until AQ out-
puts bit b′ which is the output of the game.

We define: Advlah
A,LAH-AKE(κ) :=

∣∣∣2 Pr[Gamelah,b
A,LAH-AKE(κ) = b]− 1

∣∣∣
and denote with Advlah

LAH-AKE(κ) the maximum advantage over all PPT adver-
saries A. We say that LAH-AKE is LAH-secure if this advantage is negligible.

Untraceability. The idea behind untraceability is that, even in the presence of
a malicious GA, any member remains untraceable throughout its AH-AKE ses-
sions. As discussed in Section 1, this is a new (individual) privacy requirement,
distinct from AKE- and LAH-security. We formalize it using the indistinguisha-
bility approach: we let A specify group parameters for a group G and pick two
users U0 and U1 that are then enrolled into G by the challenger that obtains
their respective pseudonyms id0 and id1. Untraceability means the inability of
A, given idb for b ∈R {0, 1}, to identify user Ub.

412 M. Manulis, B. Poettering, and G. Tsudik

Definition 8 (Untraceability). Let LAH-AKE = {CreateGroup, AddUser,
Handshake, Revoke}, b a randomly chosen bit, and Q = {CreateGroup, AddUserU,
AddUserG, Handshake, Send, Reveal, Corrupt, Revoke} the set of queries available
to A. By Gametrace,b

A,LAH-AKE(κ) we denote the following interaction of A with par-
ticipants, where, for obvious reasons, we prevent A from accessing the up-to-date
pseudonym list IDLi:

– AQ(1κ) interacts with all participants using the queries in Q and outputs a
triple (G.par, U0, U1) where G.par are public parameters of a group G and U0
and U1 are two distinct users.

– U0 and U1 are admitted to G through the execution of AddUser(U0, G) and
AddUser(U1, G) protocols such that the corresponding pseudonyms id0 and
id1 are generated. Note that, during this process, the protocol sessions on
behalf of G (AddUserG) can be executed by A, however, the game does not
proceed until the corresponding protocol sessions executed on behalf of U0 and
U1 (AddUserU) accept.

– A is given idb and continues to interact with all participants via queries until
it terminates and outputs bit b′, which is also the output of the game.

We define: Advtrace
A,LAH-AKE(κ) :=

∣∣∣2 Pr[Gametrace,b
A,LAH-AKE(κ) = b]− 1

∣∣∣
and denote by Advtrace

LAH-AKE(κ) the maximum advantage over all PPT adversaries
A. We say that LAH-AKE is untraceable if this advantage is negligible (in κ).

In game Gametrace,b
A,LAH-AKE(κ) the corruption of idb is not forbidden. Therefore,

untraceable LAH-AKE schemes hide the real identity of group members even if
their membership credentials are leaked.

Revocation and its Relationship to Untraceability and Affiliation-
Hiding. Our model raises some concerns about the relationship between the
revocation procedure and the untraceability property. We notice that in linkable
AH-AKE and SH protocols such as [15, 8], where GA learns the pseudonym id
of a user U during the registration phase, revocation can be understood in two
ways: The first approach is what we call revocation of users, i.e., GA may want
to revoke some particular user U . The second approach is what we call revo-
cation of pseudonyms, i.e., GA may want to revoke some pseudonym id. In the
trusted GA model [15], i.e. without untraceability, there is no difference between
these two approaches, since GA knows the mapping between U and its id, and
can add id in both cases to G.prl. In contrast, our model with untraceability
ensures that, during the registration of U , GA does not get any information
about the pseudonym id. Therefore, revocation of users is no longer possible.
However, users participate in group applications via pseudonyms. Therefore, if
some misbehavior is noticed, the responsible pseudonym can be identified and
revoked. This type of revocation is still meaningful, since, if GA revokes some
pseudonym id that is owned by some user U , then U cannot communicate in that
group anymore, unless it obtains a new pseudonym. To do so, U would have to

Affiliation-Hiding Key Exchange with Untrusted Group Authorities 413

re-register to the same group, which might be forbidden by the admission policy
of the GA.

3 LAH-AKE Protocol Secure against Malicious GAs

We now describe our LAH-AKE scheme that provides security against malicious
GAs. Our construction is based on the scheme from [15]. The modifications apply
to the generation of group parameters, the registration process, and the actual
key exchange protocol. Revocation of pseudonyms is handled via revocation lists
similar to [15].

3.1 Number-Theoretic Assumptions and Building Blocks

Definition 9 (RSA Assumption on Safe Moduli). Let RSA-G(κ′) be a prob-
abilistic algorithm that outputs pairs (n, e) where (a) n = pq for random κ′-bit
(safe) primes p �= q, (b) p = 2p′+1, q = 2q′+1 for primes p′, q′, and (c) e ∈ Zϕ(n)
is coprime to ϕ(n). The RSA-success probability of a PPT solver A is defined as

Succrsa
A (κ′) := Pr

[
(n, e)← RSA-G(κ′); z ←R Z∗

n; m← A(n, e, z) with me = z
]
.

The RSA assumption on safe moduli states that the maximum RSA-success prob-
ability Succrsa(κ′) (defined over all PPT solvers A) is negligible in κ′.

Definition 10 (CDH Assumption in QR(p)). Let QR(p) denote the group of
quadratic residues modulo a safe prime p = 2p′+1 of length κ′. The CDH-success
probability of a PPT adversary A is defined as

Succcdh
A (κ′) := max

safe prime p
|p|=κ′,〈g〉=QR(p)

Pr
[
x, y ←R Zp′ ; h← A(p, g, gx, gy) with h = gxy

]
.

The CDH assumption in QR(p) states that the maximum CDH-success probabil-
ity Succcdh(κ′) (defined over all PPT solvers A) is negligible in κ′.

Our scheme uses the following additional building blocks. Let κ, κ′ be security
parameters. We use cryptographic hash functions modeled as random oracles:
H1 : {0, 1}∗ → {0, 1}2κ and, for any n ∈ N with |n| = 2κ′, a specific hash
function Hn : {0, 1}∗ → Zn. Note that Hn can be constructed as Hn(x) :=
H(n ‖ x)mod n using some hash function H : {0, 1}∗ → {0, 1}2κ′+κ. By Σ :=
(KGen, Sign, Verify) we denote a digital signature scheme which is assumed to be
existentially unforgeable under chosen message attacks (EUF-CMA).

Camenisch and Michels [6] show how to prove in zero-knowledge (ZK) the
correct generation of an RSA modulus n = pq for some safe primes p and q,
including the necessary primality tests and without revealing any further infor-
mation about the factors. We use an extended version of these ZK proofs: In
Appendix A we show how to additionally prove in ZK that an element g ∈ Z∗

n

has maximum order in Z∗
n.

414 M. Manulis, B. Poettering, and G. Tsudik

3.2 New LAH-AKE Scheme

We now proceed with the description of algorithms and protocols.

Algorithm CreateGroup(1κ). This algorithm generates parameters for a new
group G as follows: it picks two κ′-bit primes p, q with p = 2p′+1 and q = 2q′+1
for prime numbers p′ and q′, sets n = pq, picks an exponent e ∈ Zϕ(n) which is
coprime to ϕ(n) = (p − 1)(q − 1) = 4p′q′, and computes d = e−1 (mod ϕ(n)).
Note that n is a Blum integer, i.e., p ≡ q ≡ 3 (mod 4).

As Z∗
n
∼= Z∗

p×Z∗
q the largest element order in Z∗

n is lcm(ϕ(p), ϕ(q)) = 2p′q′ =
ϕ(n)/2, and hence Z∗

n is not cyclic. For elements g ∈ Z∗
n with ord(g) ≥ p′q′ and

gp′q′ �= ±1 it follows that ord(g) = 2p′q′ and that −1 �∈ 〈g〉. In this case, we have
Z∗

n
∼= 〈−1〉 × 〈g〉. Let the CreateGroup algorithm pick such an element g. Since

about a half of the elements in Z∗
n has the desired properties [15], g can easily

be found by just random sampling and testing.
Our security model treats GAs as untrusted parties. This even includes lack of

trust in the honest generation of group parameters. Appendix A sketches a tech-
nique based on [6] that constructs a ZK proof for (n, g) showing that n is a safe
RSA modulus and that Z∗

n = 〈−1〉 × 〈g〉. By Πn,g we denote its non-interactive
version that can be obtained via the classical Fiat-Shamir transformation [11].

Finally, the algorithm sets G.prl = ∅ and outputs G.par = (G.pk, G.prl, Πn,g)
with G.pk = (n, e, g) and the private key G.sk = d.

Protocol AddUser(U, G). Member admission is implemented using a proto-
col between U and GA, as specified in Figure 1. Communication between U
and GA is assumed to be authentic, yet it does not need to be confidential as
in [15], mainly because membership credentials in our registration process are not
transported from GA to U but computed through interaction, which need not be
private. Some details follow. It is assumed that U obtains public group parame-
ters G.par = (G.pk, G.prl, Πn,g) prior to the protocol execution. Then, in a first
step, U examines the validity of the group parameters (n, e, g) by checking the
NIZK proof Πn,g. Then, U generates a signature key pair (pk, sk)← Σ.KGen(κ).
The verification key pk is hereafter used by U as its pseudonym id in group G,
i.e., we set id := pk. Using the standard blind RSA signature scheme [9, 3] U
obtains an RSA signature σid = Hn(id)d on Hn(id), as depicted in Figure 1 (all
computations are modn). Note that the blinding factor re effectively hides id
and Hn(id) from G. The output of U is (id, id.cred) with id.cred = (σid, sk).

Protocol Handshake((idA, idA.cred, GA, init), (idB, idB.cred, GB, resp))
The handshake protocol is executed between two users, say A and B, hold-
ing pseudonyms idA and idB, public group keys GA.pk = (nA, eA, gA) and
GB.pk = (nB , eB, gB), and credentials idA.cred = (σidA , skA) and idB.cred =
(σidB

, skB), respectively. The protocol is specified in Figure 2. We assume that
all computations are performed modnA on the left and modnB on the right,
except the assignments containing the padding function pad (line 5). The aim of

Affiliation-Hiding Key Exchange with Untrusted Group Authorities 415

1

2

3

4

5

6

7

8

9

User U

validate (n, e, g)
(id, sk) ← Σ.KGen(κ)
r ←R Z

∗

n

m1 ← Hn(id)re

σid ← m2/r
ˆ
= Hn(id)d

˜

abort if (σid)e �= Hn(id)
id.cred ← (σid, sk)
output (id, id.cred)

m1−−−−−−→

m2←−−−−−−

Authority G

m2 ← (m1)d

ˆ
= Hn(id)dr

˜

Fig. 1. Specification of AddUser(U,G)

the latter is to hide the moduli nA and nB from observers. The technique dates
back to [10]. A leakage could allow A to make conclusions about the players’ af-
filiations. The padding function pad is a probabilistic mapping that transforms
θ′ ∈ Zn into an integer θ in the interval [0, 22κ′+κ − 1] by choosing a random
k ←R [0, �22κ′+κ/n�− 1] and returning θ ← θ′ + kn. Note that θ ≡ θ′ mod n and
that
{
(−1)bgt | (b, t) ∈ {0, 1} ×Zn/2

}
= Zn.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

User A (Initiator)

let (nA, eA, gA) = GA.pk

let (σidA
, skA) = idA.cred

(bA, tA) ←R Z2 ×ZnA/2

θ′

A ← (−1)bA (gA)tAσidA

θA ← pad(θ′

A, nA, κ, κ′)

sidA ← m1 ‖m2

rA ←
`
(θB)eAHnA

(idB)−1
´2tA

(KA, cA) ← H1(rA ‖sidA)
sA ← Σ.Sign(skA, cA ‖sidA ‖ init)

vA ← Σ.Verify(idB, sB , cA ‖sidA ‖ resp)
if idB �∈ GA.prl and vA = true then

(key, partner, state) ← (KA, idB, accepted)
else (key, partner, state) ← (⊥,⊥, rejected)

m1 = (idA, θA)
−−−−−−−−−−−→
m2 = (idB , θB)
←−−−−−−−−−−−−

sA−−−−→
sB←−−−−

User B (Responder)

let (nB , eB , gB) = GB .pk

let (σidB
, skB) = idB .cred

(bB, tB) ←R Z2 ×ZnB/2

θ′

B ← (−1)bB (gB)tB σidB

θB ← pad(θ′

B , nB , κ, κ′)

sidB ← m1 ‖m2

rB ←
`
(θA)eB HnB

(idA)−1
´2tB

(KB, cB) ← H1(rB ‖sidB)
sB ← Σ.Sign(skB, cB ‖sidB ‖ resp)

vB ← Σ.Verify(idA, sA, cB ‖sidB ‖ init)
if idA �∈ GB.prl and vB = true then

(key, partner, state) ← (KB, idA, accepted)
else (key, partner, state) ← (⊥,⊥, rejected)

Fig. 2. Specification of Handshake((idA, idA.cred, GA, init), (idB , idB .cred, GB , resp))

Remark 1. There is an important difference between our Handshake protocol and
that from [15]: The key confirmation message sent in the second round of our
protocol is a signature; its validity confirms not only the equality of the session
key but also serves as a proof for the ownership of claimed id by the partici-
pant (i.e. through the knowledge of the corresponding secret key). This way we
thwart active impersonation attacks where A exploits the blinding feature of the
AddUser protocol and obtains credentials for ids of honest users. Note that the
possibility of such pseudonym impersonation by insiders (group members) would

416 M. Manulis, B. Poettering, and G. Tsudik

violate AKE security as defined in Section 2.2 (see part (c) of Definition 4). In
contrast, the handshake protocol in [15] computes key confirmation messages as
hash values computed using the established session key.

Algorithm Revoke(G.sk, G.prl, id). Revocation of pseudonyms is handled by
the GA of G by placing the pseudonym into the corresponding pseudonym re-
vocation list G.prl. We assume that this list is distributed using authenticated
channels.

4 Security and Efficiency

Correctness of the described LAH-AKE protocol follows by inspection. Note that
the intermediate values rA and rB have the form

rA =
(
(θ′B)2eAHn(idB)−2)tA

=
(
(gB)2eAtB (σidB

)2eAHn(idB)−2)tA

=
(
(gB)2eAtB Hn(idB)2eAdAHn(idB)−2)tA

= (gB)2eAtAtB (mod nA)

and, analogously, rB = (gA)2eBtBtA . Presuming that (nA, eA, gA) = (nB, eB, gB),
i.e. that users A and B are members of the same group, rA and rB evaluate to
the same value, and KA = KB follows.

Remark 2. Protocol correctness requires that the Hn(id) values are indeed in-
vertible mod n. In fact, this is not the case for Hn(id) ∈ Zn \ Z∗

n and then the
protocol will fail. However, this occurs with negligible probability. We stress that
this remark also applies to the original protocol in [15].

We now state that our LAH-AKE construction satisfies the AKE- and LAH-
security and untraceability goals defined in Section 2.2. The corresponding proofs2

(with estimated attack probabilities) are provided in the full version of this
paper.

Theorem 1 (AKE-Security). Our LAH-AKE scheme is AKE-secure (Def. 5)
in the random oracle model under the RSA (Def. 9) and CDH (Def. 10) assump-
tions if Πn,g is sound and zero-knowledge, and Σ is EUF-CMA secure.

Theorem 2 (LAH-Security). Our LAH-AKE scheme is LAH-secure (Def. 7)
in the random oracle model under the RSA (Def. 9) and CDH (Def. 10) assump-
tions if Πn,g is sound and zero-knowledge, and Σ is EUF-CMA secure.

Theorem 3 (Untraceability). Our LAH-AKE scheme is untraceable (Def. 8)
in the random oracle model if Πn,g is sound.
2 It might initially seem, that, due to the utilization of blind signatures in the AddUser

protocol, security of LAH-AKE cannot be shown without relying on the hardness of
some One-More RSA-Inversion problem [3]. However, careful examination of the
constraints for session freshness in Definition 4 shows that the AddUserG query (i.e.
the adversary’s access to the blind signature oracle) is available only in cases where
the corresponding GA may be corrupted anyway. Hence, the RSA assumption suffices
to prove the protocol’s security.

Affiliation-Hiding Key Exchange with Untrusted Group Authorities 417

Efficiency. The cost of our handshake protocol is dominated by the computa-
tions of θ′A/B, rA/B , generation of sA/B and verification of sB/A. The first two

involve exponentiations (of size log n = 2κ′) and the cost of the last two depends
on the balance between Σ.Sign and Σ.Verify. Many current signature schemes
involve either low verification and high generation costs (e.g, RSA) or vice versa
(e.g., DSA). In any case, suffice it to say that, for each participant, the overall
computation cost amounts to approximately 3 full-blown exponentiations. Con-
sidering the high degree of security offered by our scheme, the overhead is very
low.

The NIZK proof Πn,g in the AddUser protocol is the most expensive opera-
tion. In fact, the verifier would have to compute about 24κt logn (multi-) ex-
ponentiations, where 2−t is the error-probability for the primality tests (see [6],
Sections 4.3 and 5.1). Note that [6] suggests two optimizations on the protocol:
the first one in [6, Section 5.2] that effectively removes factor t from the above
equation; and the second one [6, Section 2.2] that is applicable only to interactive
ZK proofs and eliminates factor κ. Nevertheless, the complexity for verifying the
correctness of the group parameters remains relatively high. However, this proof
is necessary (in theory) for the security in our model. In practice, it is conceivable
to completely omit the verification of Πn,g, since the set of public parameters
of a group is fixed once, upon the initialization. Therefore, its verification by
a single trusted auditing authority would suffice. An appropriate (weaker) se-
curity model is easily derived from that given in Section 2.2 by modifying the
AddUserU query such that only group parameters G.par are accepted that were
established by a CreateGroup query before. Note that, in this relaxed model, the
untraceability of our LAH-AKE scheme becomes unconditional (since there is no
longer any need to assume soundness of Πn,g in Theorem 3).

5 Conclusion

AH-AKE protocols are powerful privacy-preserving authentication mechanisms
usable in various collaborative and group-based applications, such as p2p sys-
tems, mobile ad-hoc groups, and social networks. Prior protocols require a high
degree of trust in the GA. In this work, we considered untrusted GAs in linkable
AH-AKE protocols. We developed a model containing meaningful definitions of
security and designed a concrete protocol for mitigating GA misbehavior, guar-
anteeing the valuable privacy goals for the users.

Acknowledgement

The authors wish to thank Marc Joye for the discussion about the hardness
of the CDH assumption in the safe RSA setting, and Andreas Peter for general
discussions on number-theoretic assumptions used in this paper and relationships
among them.

418 M. Manulis, B. Poettering, and G. Tsudik

References

1. Ateniese, G., Kirsch, J., Blanton, M.: Secret Handshakes with Dynamic and Fuzzy
Matching. In: Network and Distributed System Security Symposium, NDSS 2007
(2007)

2. Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong, H.-C.:
Secret Handshakes from Pairing-Based Key Agreements. In: IEEE Symposium on
Security and Privacy 2003, pp. 180–196. IEEE CS, Los Alamitos (2003)

3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The Power of RSA In-
version Oracles and the Security of Chaum’s RSA-Based Blind Signature Scheme.
In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 309–328. Springer, Heidel-
berg (2002)

4. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: 1st ACM Conference on Computer and Communications
Security (CCS 1993), pp. 62–73. ACM, New York (1993)

5. Boneh, D.: The Decision Diffie-Hellman Problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

6. Camenisch, J., Michels, M.: Proving in Zero-Knowledge that a Number is the Prod-
uct of Two Safe Primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 107–122. Springer, Heidelberg (1999)

7. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

8. Castelluccia, C., Jarecki, S., Tsudik, G.: Secret Handshakes from CA-Oblivious
Encryption. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 293–307.
Springer, Heidelberg (2004)

9. Chaum, D.: Blind Signatures for Untraceable Payments. In: CRYPTO 1982, pp.
199–203. Plenum Press, New York (1983)

10. Desmedt, Y.: Securing Traceability of Ciphertexts — Towards a Secure Software
Key Escrow System (Extended Abstract). In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 147–157. Springer, Heidelberg (1995)

11. Fiat, A., Shamir, A.: How To Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

12. Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and Efficient Sharing
of RSA Functions. J. Cryptology 20(3), 393 (2007)

13. Gennaro, R., Rabin, T., Krawczyk, H.: RSA-Based Undeniable Signatures. J. Cryp-
tology 20(3), 394 (2007)

14. Jarecki, S., Kim, J., Tsudik, G.: Group Secret Handshakes or Affiliation-Hiding
Authenticated Group Key Agreement. In: Abe, M. (ed.) CT-RSA 2007. LNCS,
vol. 4377, pp. 287–308. Springer, Heidelberg (2006)

15. Jarecki, S., Kim, J., Tsudik, G.: Beyond Secret Handshakes: Affiliation-Hiding Au-
thenticated Key Exchange. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 352–369. Springer, Heidelberg (2008)

16. Jarecki, S., Liu, X.: Unlinkable Secret Handshakes and Key-Private Group Key
Management Schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 270–287. Springer, Heidelberg (2007)

17. Jarecki, S., Liu, X.: Private Mutual Authentication and Conditional Oblivious
Transfer. In: Halevi, S. (ed.) Advances in Cryptology — CRYPTO 2009. LNCS,
vol. 5677, pp. 90–107. Springer, Heidelberg (2009)

Affiliation-Hiding Key Exchange with Untrusted Group Authorities 419

18. Kawai, Y., Yoneyama, K., Ohta, K.: Secret Handshake: Strong Anonymity Defini-
tion and Construction. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS,
vol. 5451, pp. 219–229. Springer, Heidelberg (2009)

19. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

20. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

21. Tsudik, G., Xu, S.: A Flexible Framework for Secret Handshakes. In: Danezis, G.,
Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 295–315. Springer, Heidelberg
(2006)

22. Vergnaud, D.: RSA-Based Secret Handshakes. In: Ytrehus, Ø. (ed.) WCC 2005.
LNCS, vol. 3969, pp. 252–274. Springer, Heidelberg (2006)

23. Xu, S., Yung, M.: k-Anonymous Secret Handshakes with Reusable Credentials. In:
11th ACM Conference on Computer and Communications Security (CCS 2004),
pp. 158–167. ACM, New York (2004)

A About the Construction of Πn,g

Camenisch and Michels [6] describe a cryptographic protocol where a prover P
holding the factorization n = pq of a public safe RSA modulus n proves in Zero-
Knowledge to a verifier V that n is indeed a safe RSA modulus. This is done by
sending randomized Pedersen commitments [20] C(p), C(q), . . . of p, q and some
intermediate variables to V , and by proving in ZK arithmetical relationships
between them. Within others, probabilistic primality tests for p and q are run
and ZK-verified step by step by V . In the full version of this paper we describe
the deployed techniques in more detail.

The protocol given in [6] is not directly applicable to the CreateGroup/AddUser
algorithms of our AH-AKE scheme (see Section 3.2) as not only the fact that n
is a safe RSA modulus has to be proven, but in addition also the equality Z∗

n =
〈−1〉 × 〈g〉. A necessary condition for the latter is that ord(g) = ϕ(n)/2 = 2p′q′

and gp′q′ �= ±1. As n is a Blum integer there are exactly four elements a ∈ Z∗
n

with a2 = 1, namely ±1 and ±ω for some ω ∈ Z∗
n. It is hence sufficient if P

proves to V that gp′q′
= ±ω. In the following, we sketch how this can be done.

The Euclidean algorithm finds integers x, y satisfying px + qy = 1. For ω =
px− qy (mod n) the Chinese Remainder Theorem shows that ω2 = 1 (mod n). In
a first step, P publishes commitments C(x), C(y) for x and y, respectively, and
proves (in ZK) C(1) = C(p) ·C(x) + C(q) · C(y). It then computes ω, publishes
C(ω) and proves C(ω) = C(p) · C(x) − C(q) · C(y). After computing g′ = gp′q′

,
it publishes C(g′) and proves C(g′) = C(g)C(p′)·C(q′), concluding the proof by
revealing either C(g′) = C(ω) or C(g′) = C(−ω).

Privacy-Preserving Group Discovery
with Linear Complexity

Mark Manulis1, Benny Pinkas2,�, and Bertram Poettering1

1 Cryptographic Protocols Group, TU Darmstadt & CASED, Germany
mark@manulis.eu, bertram.poettering@cased.de

2 Department of Computer Science, University of Haifa, Israel
benny@pinkas.net

Abstract. Affiliation-Hiding Authenticated Key Exchange (AH-AKE)
protocols enable two distrusting users, being in possession of membership
credentials for some group, to establish a secure session key without
leaking any information about this group to non-members. In practice,
users might be members of several groups, and such protocols must be
able to generate session keys between users who have one or more groups
in common. Finding efficient solutions for this group discovery problem
has been considered an open research problem, inherent to the practical
deployment of these protocols.

We show how to solve the privacy-preserving group discovery prob-
lem with linear computational and communication complexity, namely
O(n) complexity where n is the number of groups per user. Our generic
solution is based on a new primitive — Index-Hiding Message Encoding
(IHME), for which we provide definitions and an unconditionally secure
construction. Additionally, we update the syntax and the security model
of AH-AKE protocols to allow multiple input groups per participant and
session. Furthermore, we design a concrete multi-group AH-AKE proto-
col by applying IHME to a state-of-the-art single-group scheme.

1 Introduction

Privacy-Preserving Key Establishment. Affiliation-Hiding Authenticated Key
Exchange (AH-AKE) protocols [12, 13] combine the privacy-preserving authen-
tication properties of Secret Handshakes (SH) [2, 6, 21, 20, 19, 1, 14, 16] with se-
cure establishment of session keys. The typical setting of AH-AKE assumes that
participants are registered members of some groups, whereby each group is ad-
ministrated by a separate Group Authority (GA). Each GA is responsible for
the admission of users to its group and for the issue of corresponding mem-
bership credentials. Most protocols also support revocation of users, which is
also performed by the GA. The actual privacy of authentication stems from
the requirement to hide the affiliations (i.e. groups) of users participating in a
handshake protocol from outsiders, and also from each other, as long as their

� Research partially supported by EU project CACE and by the ERC project
SFEROT.

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 420–437, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Privacy-Preserving Group Discovery with Linear Complexity 421

groups do not satisfy some predefined matching relationship, such as equality or
dynamic matching [1].

Linkability vs. Unlinkability. AH-AKE and SH protocols come in two flavors:
Linkable protocols such as [2, 6, 12, 13] are realized using pseudonyms and al-
low users to recognize each other across multiple sessions. In many applications
linkability is essential, e.g. in social networks it is necessary for distinguishing
amongst different members of the community. Linkable protocols enjoy very ef-
ficient forms of revocation where pseudonyms are simply added to revocation
lists authenticated by the GAs. In contrast, unlinkable AH-AKE and SH proto-
cols such as [21, 14, 1, 16] preclude the ability to link communication sessions of
the same user. To handle revocation these protocols usually deploy less efficient
group management schemes. In addition, the practical usage of unlinkable AH-
AKE protocols for many envisioned group-oriented applications seems further
away than that of protocols that support linkability.

Group Discovery Problem. The affiliation-hiding property provided by AH-AKE
protocols is meaningful only if multiple groups are present in the system. Since
users may belong to several groups at the same time, the inherent problem in
practice is not to decide whether two given users are members of the same single
group, but rather whether there is a non-empty intersection between the two
sets of groups to which the users belong. Current AH-AKE and SH protocols
ignore the latter problem by design, i.e. the handshake execution is performed
typically with respect to only a single input group per participant and session.
Little attention has been paid so far to possible solutions for the more general
problem, termed as the group discovery problem in [13, p. 356]. A protocol that
solves the group discovery problem would take as input a (sub)set of groups
per participant and session, output the intersection of these sets, and, in the
case that this intersection is not empty, provide a session key to the users for
their subsequent communication. One of the main challenges here is to prevent
the event that participants inadvertently reveal non-matching groups from their
input sets to each other or to outsiders. A trivial solution for group discovery is
to execute a single-group protocol for all possible combinations of membership
groups, and whenever some session is successful its input group is added to the
intersection set. Clearly, this solution is highly inefficient (see also discussion in
Section 2). Another challenge would be the computation of the session key in a
way that ensures that leakage of this key does not reveal any information about
groups in the intersection set. Motivated by the importance of group discovery
for the practical use of AH-AKE protocols we highlight in this paper the main
challenges and explore various solutions.

1.1 Related Work

The concept of linkable Secret Handshakes [2,6] evolved into linkable Affiliation-
Hiding Key Exchange [13]. These protocols commonly consider user pseudonyms
as part of their group membership credentials. These pseudonyms are sent in the

422 M. Manulis, B. Pinkas, and B. Poettering

clear and allow for linking the sessions of the same user. Membership credentials
in [2] are further bound to secret elements of a bilinear group, in [6] they are
derived from private/public key pairs of a CA-oblivious PKI-enabled encryption
that is realized via Schnorr signatures, and in [20, 13] they are given by full
domain hash RSA signatures on the pseudonyms. All linkable protocols can be
tweaked to support unlinkability through the use of one-time credentials (and
pseudonyms). Due to the impracticality of this approach several unlinkable Se-
cret Handshakes [1,14,19,16] based on reusable credentials have been proposed.
However, these schemes suffer from a rather complicated group management,
e.g. [1] does not support revocation, [14] requires synchronization of revocation
epochs amongst members, [19] is a heavy-weight framework scheme that involves
the use of group signatures and broadcast encryption techniques, while the state-
of-the-art scheme in [16] uses group signatures with verifier-local revocation for
group management and private conditional oblivious transfer for the handshake
session in the pairing-based setting. In Section 2 we discuss in more detail why
known flavors of Private Set Intersection (PSI) protocols do not give solutions
to the group discovery problem.

1.2 Contribution and Organization

To this end, our goal is to explore implicit and efficient solutions for the group
discovery problem in AH-AKE protocols (and consequently also in pure Secret
Handshake schemes where the computation of secure session keys is not amongst
the necessary requirements). We start in Section 2 by commenting on the rela-
tionship of this problem to different flavors of Private Set Intersection protocols.
We show that group discovery has a more complicated setting compared to
the latter (although this may not appear so at first sight). We then continue
by describing potential solutions with varying efficiency and security based on
probabilistic hashing.

In Section 3 we introduce Index-Hiding Message Encoding (IHME) — our new
technique that allows for efficient group discovery in AH-AKE protocols with
linear communication and computation complexity. We give a perfectly secure
construction of IHME using polynomial interpolation and relate the performance
of IHME-based group discovery to the mentioned hashing-based approaches.

In Section 4 we then introduce a group-discovering linkable AH-AKE protocol
by applying IHME to the state-of-the-art linkable AH-AKE protocol from [13],
which admits only one input group per user and session. The index-hiding prop-
erty is hereby essential to preserve the affiliation-hiding property in the multi-
group setting.

In Section 5 we formalize the security of linkable AH-AKE protocols by adopt-
ing a model from [13] to the setting that admits group discovery. In particular,
in the definition of affiliation hiding we resolve the challenge of relating the out-
come of the protocol containing the intersection of input group (sub)sets to the
knowledge of the adversary that may have valid membership credentials for some
of these groups. Following the model we finally give the security analysis of our
scheme in Section 6.

Privacy-Preserving Group Discovery with Linear Complexity 423

2 The Group Discovery Problem and Potential Solutions

In this section we focus on various solutions for the group discovery problem
in AH-AKE protocols. One of these solutions is trivial but inefficient, whereas
some other solutions, while being more sophisticated, may be less secure.

In order to illustrate different approaches we briefly introduce the setting for
the group discovery problem in AH-AKE protocols. Consider N different groups
G1, . . . , GN managed by distinct group authorities. We assume that user U1 is
a registered member of n1 groups, i.e. U1 holds a set of n1 different membership
credentials {(Gi, cred

1
i)}i. Similarly, U2 is a registered member of n2 groups hold-

ing own set of n2 credentials {(Gj , cred
2
j)}j . To simplify the exposition, let us

further assume that n1 = n2 and use the notation n = n1 = n2. At a high level,
the goal of the group discovery problem in AH-AKE protocols is to execute a
handshake session between U1 and U2 such that at the end of the session (a) the
users identify the subset of groups for which both have respective membership
credentials (without disclosing information about any other credentials they pos-
sess), and (b) if this subset of groups is non-empty, then the two users agree on
a secret key. Current AH-AKE (and SH) protocols admit only one input group
per handshake participant and session, basically allowing for privacy-preserving
matching of some input groups Gi and Gj used by U1 and U2, respectively. In our
description we will utilize this ability of U1 and U2 to execute such single-group
AH-AKE protocols using any of their membership credentials.

2.1 Relationship to (Authorized) Private Set Intersection

We investigate first whether the group discovery problem can be solved in a more
general way using Private Set Intersection (PSI) protocols such as [9, 17, 10, 15,
8, 11]. In a typical PSI setting users execute the protocol using sets of elements
as inputs. Each user has its own input set and the main goal of a PSI protocol
is to allow users to learn the intersection of their input sets without disclosing
any information about further elements. One might attempt to design a group
discovery protocol by simply letting group credentials be random nonces from a
large domain (but identical for all members of the group) and use a PSI protocol
to check if the two users have nonces of the same group. With this solution,
however, a number of problems arise: (a) providing the same credential to all
group members precludes member revocation since users can trivially create
and admit new members to their groups without the GA noticing it, simply by
revealing their nonces to other users, (b) the proposed technique leads to an AH-
AKE protocol which is not affiliation-hiding in the sense defined in Section 5 as
shown in our full version, and (c) although PSI protocols with linear computation
overhead are known [8, 11], our group discovery protocol presented in Section 4
can be implemented more efficiently as it relies on simpler building blocks.

A related class of protocols [7, 8], called Authorized PSI (APSI), strength-
ens the requirements of PSI protocols in that the computed intersection of the
users’ inputs must contain authorized elements only, i.e. elements that have been
previously certified by some trusted authority. A technique for computing the

424 M. Manulis, B. Pinkas, and B. Poettering

intersection of certified sets has been introduced in [4]. One may think that au-
thorization of elements in APSI corresponds to the registration process of users
to groups in AH-AKE protocols. However, the APSI setting assumes that the
same authority certifies all elements in the input sets. In contrast, the AH-AKE
setting explicitly requires existence of multiple independent group authorities
providing users with membership certificates. In addition, problem (a) in the
PSI setting (support for revocation) also applies here. Since neither PSI nor
APSI protocols help to solve the group discovery problem directly, we discuss in
the following several alternatives before coming to our most efficient solution.

2.2 Possible Solutions

Näıve Approach. The trivial solution is for U1 and U2 to use a single-group
AH-AKE protocol for any possible combination of their membership groups. This
requires n2 different AH-AKE sessions, which might be too high in practice.

Reducing the Overhead by Using Hashing. A possible improvement that
decreases the overhead involves the usage of hashing. We describe here only the
basic ideas of this solution, since the focus of this paper is on a more efficient
solution based on a new encoding technique, which we introduce in Section 3.

In the hashing-based approach, the parties use a random hash function h,
which is either chosen in advance or jointly defined by the two parties. The hash
function maps arbitrary values to an output in the range [1, B], B ∈ �, namely
into one of B bins. Each party then assigns its membership credentials in group
Gi into bin h(i). Now, when U1 and U2 meet, they need not run the AH-AKE
protocol between each of the n2 combinations of their potential input groups.
Instead, the protocol must only be run between the membership credentials that
were mapped by both parties to the same bin. Indeed, for every group Gi for
which both U1 and U2 have membership credentials, both parties map these
credentials to the same bin h(i) and will, therefore, run the AH-AKE protocol
with these credentials.

The basic idea described above succeeds in finding every match between mem-
bership credentials of the two parties. However, in order to protect privacy, a
protocol which is based on this approach must hide from each party how many
credentials were mapped by the other party to each of the bins (otherwise some
data is leaked; for example, if the first bin of U1 is empty then U2 learns that
U1 in not a member of any group Gi for which h(i) = 1). Hiding the number of
items in every bin can be done (following [9]) by finding a bound M such that
the following property holds with high probability: when n items are mapped by
a random hash function to B bins, then no more than M items are mapped to
any single bin. Given this bound M , each party first maps its credentials to the
B bins, and then adds to each bin that has less than M credentials, additional
“dummy” values, which are indistinguishable from real credentials, so that the
total number of items in the bin is M . The protocol now requires to run M2

handshakes of the single-group AH-AKE protocols for every bin, resulting in

Privacy-Preserving Group Discovery with Linear Complexity 425

the total of BM2 sessions. In order to set the right parameters, we can use the
following well known fact [18, Theorem 1]:

Fact 1. If n items are mapped at random to B = n/ log n bins, then the proba-
bility that there is a bin with more than M = O(log n) items is o(1).

The communication overhead of the protocol is obviously O(BM2). Also, the
computation requires each party to run the single-group handshake BM2 times.
Plugging in the parameters B = n/ logn and M = O(log n), we get that the
communication and computation overheads are both O(n log n). (An even more
efficient variant of this technique, based on balanced allocation hashing, is ex-
plored in the full version of this paper. Its communication and computation
complexity is O(n log log n). That variant leaks however some additional infor-
mation about group affiliations.)

3 Index-Hiding Message Encoding

The main tool we will use in our protocol is a new primitive called Index-Hiding
Message Encoding (IHME). By this term we understand a technique that pools
a set of input messages m1, . . . , mn ∈ M (where M is a message space) into
a single data structure S. Any message can be recovered from S individually
by addressing it via its index which is arbitrarily chosen from an index set
I and specified at encoding-time. If it is impossible for an adversary to reveal
information about the deployed indices by inspecting S then the scheme is called
index-hiding. This notion is now formalized by first presenting the syntax of the
related concept of index-based message encoding and its correctness definition,
and then by giving a game-based definition of the index-hiding property.

Definition 1 (Index-Based Message Encoding). An index-based message
encoding scheme (iEncode, iDecode) over an index space I and a message space
M consists of two efficient algorithms:

iEncode(P) On input consisting of a tuple of index-message pairs P = {(i1, m1),
. . . , (in, mn)} ⊆ I×M with distinct indices i1, . . . , in, this algorithm outputs
an encoding S.

iDecode(S, i) On input of an encoding S and an index i ∈ I this algorithm
outputs a message m ∈ M.

An index-based message encoding scheme is correct if iDecode(iEncode(P), ij) =
mj for all j ∈ {1, . . . , n} and all tuples P = {(i1, m1), . . . , (in, mn)} ⊆ I ×M
with distinct indices ij.

An index-based message encoding scheme is called index-hiding if it hides the in-
dices in which the messages are encoded. That is, it ensures that an attacker, who
sees an encoding S and might even know some of the indices and corresponding
messages, cannot identify any other indices in which messages are encoded.

Given this property, which is formalized below, an index-hiding message en-
coding can be used for solving group discovery in AH-AKE in the following way:

426 M. Manulis, B. Pinkas, and B. Poettering

The first party, U1, IHME-encodes its first messages mj of each of the AH-AKE
protocols in the groups it belongs to, using fixed indices ij assigned to these
groups. The resulting encoding S is sent to the second party, U2, which can
retrieve and answer the messages encoded in the indices corresponding to U2’s
credentials. However, messages corresponding to other groups cannot be recog-
nized by U2, since it does not have the credentials required to participate in the
AH-AKE protocols of the corresponding groups, and therefore it is in the same
situation as someone participating in a one-on-one AH-AKE protocol without
being a member of the relevant group. U2 therefore cannot identify neither these
messages nor the deployed indices.

We note that our construction of IHME, presented below, has the attractive
property that encodings S are of the same size (in bits) as the sets of embedded
messages. Given this property one can pass n messages associated with n specific
indices in an encoding S which is only as large as the original set of messages,
and with the following two properties: (a) for each index known to the receiving
party, decoding is possible in a single attempt (since the receiving party knows
where to look for the message), and (b) the indices of messages which the other
party is not authorized to decode are kept hidden.

Definition 2 (Index-Hiding Message Encoding (IHME)). Let IHME =
(iEncode, iDecode) denote a correct index-based message encoding scheme over
index space I and message space M. Let b ∈ {0, 1} be a randomly chosen bit
and let A = (A1,A2) be a PPT adversary that participates in the following game.

Gameihide,b
A,IHME(κ) :

– (I0, I1, M
′, St) ← A1(1

κ) such that I0, I1 ⊆ I with |I0| = |I1| = n, and
M ′ = (m′

1, . . . , m
′
|I0∩I1|) with each m′

j ∈ M; (the adversary chooses two
subsets of n indices each, as well as a message m′

j for each index ij in
the intersection of the sets);

– denote the indices in Ib\I1−b as {i1, . . . , ir} and define m1, . . . , mr
$←M,

(additional r = n − |I0 ∩ I1| messages are chosen uniformly at random
in the message space),
let S ← iEncode({(ij, m′

j) | ij ∈ I0 ∩ I1} ∪ {(ij, mj) | ij ∈ Ib \ I1−b}),
(the messages are encoded for the indices in Ib);

– b′ ← A2(St,S) (the adversary is given S and attempts to find b);
– if b′ = b then return 1 else return 0.

The advantage of A is defined as

Advihide
A,IHME(κ) :=

∣∣∣Pr[Gameihide,0
A,IHME(κ) = 1]− Pr[Gameihide,1

A,IHME(κ) = 1]
∣∣∣ .

By Advihide
IHME(κ) we denote the maximum advantage over all PPT adversaries A.

We say that IHME provides index-hiding if this advantage is negligible in κ.
Moreover, if Advihide

IHME(κ) = 0 for all κ, the IHME-scheme is called perfect.

The definition above enables the adversary to choose the sets of indices, and the
messages corresponding to the intersection of the sets. The other messages are

Privacy-Preserving Group Discovery with Linear Complexity 427

chosen at random. The adversary is given one of the two sets and its goal is
to identify which set it is. The definition requires that the adversary’s success
probability be negligible.

An Implementation of Perfect IHME. One way to efficiently implement
IHME is by using polynomial interpolation in a finite field �. The index and
message spaces are then specified as I = M = �. Algorithms iEncode and
iDecode are specified as follows:

iEncode(P) On input of P = {(i1, m1), . . . , (in, mn)} ⊆ I ×M = �
2, the en-

coding is defined as the list S = (an−1, . . . , a0) of coefficients of the (unique)

polynomial f =
∑n−1

k=0 akxk ∈ �[x] which satisfies ∀(ij , mj) ∈ P : f(ij) =
mj . This polynomial can easily be determined by Lagrange interpolation.

iDecode(S, i) On input of S = (an−1, . . . , a0) and index i ∈ I this algorithm

outputs the evaluation m = f(i) =
∑n−1

k=0 akik of f at position i.

The correctness of the proposed IHME scheme is obvious. Its index-hiding ability
is assured by the following theorem, proven in the full version of this paper based
on the fact that the distributions of the encodings of I0 and I1 are identical.

Theorem 1 (Index-Hiding Property of our IHME Construction). The
proposed IHME scheme provides perfect index-hiding.

In our solution for the group discovery problem in AH-AKE protocols, the index
set I is identified with the set of all possible groups. U1 follows, for each of the n
groups that it is affiliated with, the computation rules of a single-group AH-AKE
handshake. The computed first messages from all these handshake instances are
then encoded into a single structure using the IHME approach by considering
the identifiers of the n groups (e.g. hashes of the public parameters) as indices
for the corresponding messages. The encoding is sent over to U2 which extracts
the handshake messages for only the groups it is affiliated with. Note that for all
matching groups Gi (i.e. groups in which both U1 and U2 are members) the first
messages of handshake instances are correctly transferred from U1 to U2. The
IHME technique is then applied independently to all subsequently exchanged
handshake messages. Observe that for the secure deployment of IHME (as per
Definition 2) it is essential that messages exchanged between users in the given
single-group AH-AKE handshake are polynomially indistinguishable from ran-
dom in M = �. This property is satisfied by some protocols, in particular by
the linkable AH-AKE protocol from [13] that is underlying our construction with
implicit group discovery, as presented in Section 4.

On General Performance of IHME. The IHME technique suggested above
has the nice property of zero message expansion: in iEncode(), the length of
the input messages is equal to the length of the output IHME encoding S. The
communication complexity of our protocol is therefore O(n). Since users perform
computations of a single-group handshake only for groups in which they are

428 M. Manulis, B. Pinkas, and B. Poettering

members, they need to participate in only n group handshakes. Thus, in contrast
to possible solutions from Section 2.2 our IHME technique with perfect index-
hiding can solve the group discovery problem with linear communication and
computation complexity1 as summarized in Table 1.

Table 1. Solutions for the group discovery problem with n input groups per participant

Technique Computation Communication Remarks
(AH-AKE invocations)

Näıve approach O(n2) O(n2)
Hashing into bins O(n log n) O(n log n)

Balanced allocation hashing O(n log log n) O(n log log n) not privacy preserving
Our perfect IHME O(n) O(n)

We notice that the general technique for solving group discovery in AH-AKE
schemes based on our IHME construction clearly outperforms all other solutions
suggested above.

4 Affiliation-Hiding Key Exchange with Group Discovery

In this section we illustrate how the IHME technique can be used to construct a
concrete AH-AKE protocol with implicit solution to the group discovery prob-
lem. Our protocol is based on the state-of-the-art linkable AH-AKE (LAH-AKE)
scheme from [13], which allows to privately check the match of a single group
per user and handshake session only. This protocol has the nice property that its
messages remain indistinguishable from random strings to anyone who is not a
group member. Therefore, we can directly apply IHME to compress the complex-
ity of group discovery without assuming any further building blocks. However,
in order to address the group discovery problem implicitly we have to update
the syntax of LAH-AKE protocols.

4.1 Syntax of LAH-AKE with Implicit Group Discovery

A LAH-AKE scheme, which admits multiple group credentials as input per user
and session, denoted MLAH-AKE, consists of four algorithms:

CreateGroup(1κ). This probabilistic algorithm sets up a new group G and is
executed by the corresponding group authority (GA). On input of security
parameter 1κ it generates a public/private group key pair (G.pk, G.sk), ini-
tializes the group’s pseudonym revocation list G.prl to ∅ and outputs public
group parameters G.par = (G.pk, G.prl), and private key G.sk. It is assumed
that public key G.pk may serve as a non-ambiguous identifier for group G.

1 The overhead of interpolating the polynomial in the IHME method is O(n2) mul-
tiplications. However, the overhead of these operations is negligible compared with
the overhead of computing exponentiations in the AH-AKE handshake protocols.

Privacy-Preserving Group Discovery with Linear Complexity 429

AddUser(U, G). This is a protocol that is executed between a prospective group
member U and the group authority of G. User U presents a pseudonym id
and is issued a private membership credential credG.pk for id in group G. It
is legitimate for users to register the same pseudonym id in different groups.
The communication channel between U and G is assumed to be authentic.

Handshake(Ui, Uj). This is the key exchange protocol (handshake), executed
between two users Ui and Uj . The input for Ui is (idi,Gi, ri) where idi is
his pseudonym, Gi is a set of triples of the form (G.pk, credG.pk, G.prl), and
ri ∈ {init, resp}. All values credG.pk in Gi are credentials previously registered
in the respective group G.pk by using the AddUser algorithm on pseudonym
idi. By G.prl we denote the respective pseudonym revocation list. For user
Uj the protocol’s input (idj ,Gj , rj) is defined analogously.

Users keep track of the state of created Handshake(id,G, r) protocol sessions
π through session variables that are initialized as follows: π.state← running,
π.id ← id, π.G ← G and (π.key, π.partner, π.groups) ← (⊥,⊥, ∅). At some
point the protocol will complete and π.state is then updated to either rejected
or accepted. In the latter case π.key is set to the established session key (of
length κ), the handshake partner’s pseudonym is assigned to π.partner, and
π.groups holds a non-empty set of group identifiers.

Revoke(G, id). This algorithm is executed by the group authority of G and results
in the update of G’s pseudonym revocation list: G.prl← G.prl ∪ {id}.

Definition 3 (Correctness of MLAH-AKE). Assume that users Ui and Uj

participate in a Handshake protocol with inputs (idi,Gi, ri) and (idj ,Gj , rj), re-
spectively, and let πi and πj denote the corresponding sessions. By G∩ we denote
the set of groups that appear in both Gi and Gj with the restriction that nei-
ther idi nor idj are contained in the respective groups’ revocation lists. The
MLAH-AKE scheme is called correct if (1) πi and πj complete in the same
state, which is accepted iff (G∩ �= ∅ ∧ ri �= rj), and (2) if both sessions ac-
cept then (πi.key, πi.partner, πi.id) = (πj .key, πj .id, πj .partner) and πi.groups =
πj .groups = G∩.

4.2 Number-Theoretic Assumptions and Building Blocks

Assumptions. The security of our protocol builds on the hardness of the fol-
lowing RSA problem, which is a standard RSA assumption for safe moduli, also
used in the design of AH-AKE and SH protocols from [20,12, 13].

Definition 4 (RSA Assumption on Safe Moduli). Let RSA-G(κ′) be a prob-
abilistic algorithm that outputs pairs (n, e) where (a) n = pq for random κ′-bit
primes p �= q, (b) p = 2p′ + 1, q = 2q′ + 1 for primes p′, q′, and (c) e ∈ �ϕ(n) is
coprime to ϕ(n). The RSA-success probability of a PPT solver A is defined as

Succrsa
A (κ′) = Pr

[
(n, e)← RSA-G(κ′); z

$← �
∗
n; m← A(n, e, z) with me = z

]
.

The RSA assumption on safe moduli states that the maximum RSA-success prob-
ability Succrsa(κ′) (defined over all PPT solvers A) is negligible in κ′.

430 M. Manulis, B. Pinkas, and B. Poettering

Perfect IHME. Let κ, κ′ be security parameters (where κ′ is polynomially
dependent on κ) and p be the smallest prime number satisfying p > 22κ′+κ. A
central building block of our MLAH-AKE protocol is the perfect IHME scheme
presented in Section 3, defined over finite field � = GF (p). (As alternative, finite
field GF (22κ′+κ) could be used. However, in this paper we use GF (p) to simplify
notations.)

Hash Functions. The protocol makes use of three different hash functions
(modeled as random oracles):

H : {0, 1}∗ → [0, p− 1] H ′ : {0, 1}∗ → {0, 1}κ H∗ : {0, 1}∗ → [0, p− 1]

For convenience, for each n ∈ � of length 2κ′ we define

Hn : {0, 1}∗ → �n; x �→ H∗(n‖x)mod n.

4.3 The Protocol Specification

CreateGroup(1κ) Algorithm. Group authorities setup new group parameter sets
as follows: in a first step, two κ′-bit primes p, q ∈ � with p = 2p′ + 1 and
q = 2q′ + 1 for prime numbers p′ and q′ are picked. For n = pq an exponent
e ∈ �ϕ(n) which is coprime to ϕ(n) = (p − 1)(q − 1) = 4p′q′ is chosen, and
d = e−1 (mod ϕ(n)) is computed.

As �∗
n
∼= �

∗
p×�∗

q the largest element order in �∗
n is lcm(ϕ(p), ϕ(q)) = 2p′q′ =

ϕ(n)/2, and hence �∗
n is not cyclic. Let the CreateGroup algorithm pick an ele-

ment g ∈ �∗
n with ord(g) ≥ p′q′ and gp′q′ �= ±1. It follows that ord(g) = 2p′q′

and that −1 �∈ 〈g〉, and we may infer �∗
n
∼= 〈−1〉 × 〈g〉. As about a half of the

elements in �∗
n have the desired two properties [13], g can easily be found by

random sampling and testing.
The algorithm sets G.pk ← (n, g, e), G.prl ← ∅ and G.sk ← d, and outputs

G.par = (G.pk, G.prl) and G.sk as public and private key, respectively.

AddUser(U, G) Protocol. To admit a new member to a group the corresponding
GA issues as credential credG.pk the full domain hash RSA signature [3] on
the pseudonym id specified by the user, i.e. credG.pk = Hn(id)G.sk mod n. The
communication between U and G is assumed to be authentic and confidential.

Handshake((idi,Gi, init), (idj ,Gj , resp)) Protocol. The handshake protocol is exe-
cuted between two users Ui and Uj holding corresponding pseudonyms idi and
idj as well as membership lists Gi and Gj , respectively. Each user’s membership
list contains triples (G.pk, credG.pk, G.prl) for all affiliations of that user. The
handshake protocol is detailed in Figure 1.

The lines where the numbering is formatted in bold face coincide with those
from [13]; in particular this includes the calculation of the θ = (−1)bgtcred + kn
values (lines 4–8), the partial keys r = (θeHn(id)−1)2t and the confirmation
messages c (lines 19–20). Lines 17 and 22 effectively implement user revocation.

Privacy-Preserving Group Discovery with Linear Complexity 431

Innovative in this protocol is the parallel transmission of multiple θ and c values
encoded as IHME-structures S and S′, respectively. Note the usage of RSA
moduli n as group specific indices. The lists T and R are not transmitted, but
hold the inner state of the protocol.

Note that protocol correctness demands that the string X in the third code
block (lines 26–32) is mounted in the same order for both Ui and Uj. This
can be achieved by letting the corresponding for-loop iterate in the order of
ascending ni.

Revoke(G, id) Algorithm. The revocation of pseudonyms is handled by the partic-
ular group authority of G by including the pseudonym id into the corresponding
pseudonym revocation list G.prl. We assume that this list is distributed authen-
tically to all members of the group.

4.4 Protocol Correctness, Efficiency Analysis, and Optimizations

In the following we show why the protocol is correct and discuss its concrete
efficiency, including possible optimizations. The actual security analysis of the
protocol is postponed to Section 6 after the specification of the security model
with regard to the group discovery problem.

Correctness. Let (n, g, e) = G.pk denote a group to which Ui and Uj are both
registered, i.e. Ui owns a credential credG.pk = Hn(idi)

d mod n for pseudonym
idi, while Uj possesses credential Hn(idj)

d mod n for idj. Then, by construction,
the value iDecode(Si, n) has the form θi = (−1)bigtiHn(idi)

d mod n. The value
rj computed by Uj for group G.pk is

rj = (θi
eHn(idi)

−1)2tj = (((−1)bigtiHn(idi)
d)eHn(idi)

−1)2tj = g2etitj (mod n).

Symmetrically, for group G.pk user Ui computes the same value ri = g2etitj from
iDecode(Sj , n) and idj . The protocol’s correctness is now verifiable by inspection.
The case that Hn(id)−1 is not defined occurs only with negligible probability.

Efficiency Analysis. The computational costs of the Handshake protocol mainly
consist of the exponentiations by ti (resp. tj), which are executed twice per group.
Precisely, the computational effort a user Ui starting a Handshake(idi,Gi, init)
protocol session has to stem can be estimated by 2|Gi| exponentiations with
modulus size 2κ′, where |Gi| denotes the number of groups Ui is member in.
That is, the computational overhead scales linearly with the number of affili-
ations. Also the size of IHME-encodings S,S′ grows linearly with the number
of affiliations. More precisely, the total communication complexity of the hand-
shake amounts to 2(2κ′ + κ)(|Gi| + |Gj |) bits (without considering pseudonyms
that can be short).

432 M. Manulis, B. Pinkas, and B. Poettering

1

2

3

4
5
6
7
8
9

10

11

12

13
14

15

16
17
18

19
20
21

22
23

24

25

26

27

28
29

30
31

32

33

34

35
36
37

38

39

40

Ui on inputs (idi,Gi, init)
Pi ← ∅, Ti ← ∅
for all (G.pk, credG.pk, G.prl) ∈ Gi:

let (ni, gi, ei) = G.pk

(bi, ti) ←R Z2 ×Zni/2

θ′

i ← (−1)bi(gi)ticredG.pk mod ni

ki ←R [0, �p/ni� − 1]
θi ← θ′

i + kini

Pi ← Pi ∪ {(ni, θi)}
Ti ← Ti ∪ {(G.pk, ti, G.prl)}

Si ← iEncode(Pi)

sidi ← mi ‖mj

P ′

i ← ∅, Ri ← ∅
for all (G.pk, ti, G.prl) ∈ Ti:

let (ni, gi, ei) = G.pk

if idj 	∈ G.prl:

θj ← iDecode(Sj , ni)
ri ← (θj

eiHni
(idj)−1)2ti mod ni

ci ← H(G.pk‖ri ‖sidi ‖ init)
Ri ← Ri ∪ {(G.pk, ri)}

else: ci ←R [0, p − 1]
P ′

i ← P ′

i ∪ {(ni, ci)}
S ′

i ← iEncode(P ′

i)

Xi ← "", groups
i
← ∅

for all (G.pk, ri) ∈ Ri:

let (ni, gi, ei) = G.pk

cj ← iDecode(S ′

j , ni)
if cj = H(G.pk‖ri ‖sidi ‖ resp):

groups
i
← groups

i
∪ {G.pk}

Xi ← Xi ‖G.pk‖ri

if groups
i
	= ∅ then

key
i
← H ′(Xi ‖sidi)

partner
i
← idj

terminate with “accept”

else

(key
i
, partner

i
) ← (⊥,⊥)

terminate with “reject”

mi = (idi,Si)
−−−−−−−−−−−−−−−→

mj = (idj ,Sj)
←−−−−−−−−−−−−−−−

S ′

i−−−−−−−−−→
S ′

j

←−−−−−−−−−

Uj on inputs (idj ,Gj , resp)
Pj ← ∅, Tj ← ∅
for all (G.pk, credG.pk, G.prl) ∈ Gj :

let (nj , gj , ej) = G.pk

(bj , tj) ←R Z2 ×Znj/2

θ′

j ← (−1)bj (gj)tj credG.pk mod nj

kj ←R [0, �p/nj� − 1]
θj ← θ′

j + kjnj

Pj ← Pj ∪ {(nj , θj)}
Tj ← Tj ∪ {(G.pk, tj , G.prl)}

Sj ← iEncode(Pj)

sidj ← mi ‖mj

P ′

j ← ∅, Rj ← ∅
for all (G.pk, tj , G.prl) ∈ Tj:

let (nj , gj , ej) = G.pk

if idi 	∈ G.prl:

θi ← iDecode(Si, nj)
rj ← (θi

ej Hnj
(idi)−1)2tj mod nj

cj ← H(G.pk‖rj ‖sidj ‖ resp)
Rj ← Rj ∪ {(G.pk, rj)}

else: cj ←R [0, p − 1]
P ′

j ← P ′

j ∪ {(nj , cj)}
S ′

j = iEncode(P ′

j)

Xj ← "", groups
j
← ∅

for all (G.pk, rj) ∈ Rj :

let (nj , gj , ej) = G.pk

ci ← iDecode(S ′

i, nj)
if ci = H(G.pk‖rj ‖sidj ‖ init):

groups
j
← groups

j
∪ {G.pk}

Xj ← Xj ‖G.pk‖rj

if groups
j
	= ∅ then

key
j
← H ′(Xj ‖sidj)

partner
j
← idi

terminate with “accept”

else

(key
j
, partner

j
) ← (⊥,⊥)

terminate with “reject”

Fig. 1. Specification of Handshake((idi,Gi, init), (idj ,Gj , resp))

Further Optimizations. The following optimization idea would render the
Handshake protocol slightly more efficient. It is based on the observation that
in the Handshake protocol both the θ values and the confirmation tags c are
transferred by IHME using the same finite field � = GF (p). The protocol would
stay secure if the confirmation tags c would be shortened from 2κ′ + κ bits to
just κ bits. To implement this, the confirmation tags c have to be computed
by an auxiliary hash function whose range is �′, where �′ is a finite field of
order ≈ 2κ, and the IHME scheme for transferring S′ would have to be defined
over �′ instead of �. The deployment of this idea would save 2κ′(|Gi| + |Gj |)
communication bits, resulting in the total complexity of (2κ′ + 2κ)(|Gi|+ |Gj |).

Privacy-Preserving Group Discovery with Linear Complexity 433

5 Security Model for LAH-AKE with Group Discovery

In this section we introduce the security model for LAH-AKE protocols while
taking into account various challenges implied by the group discovery problem
and the updated syntax of such protocols, by modifying the current state-of-the-
art model from [13].

5.1 Adversary Model

After describing the basic set of adversarial queries we define two security prop-
erties: Linkable Affiliation-Hiding security and Authenticated Key Exchange se-
curity (with forward secrecy). Both requirements are defined with regard to
multiple input groups per user and session. The following definition is helpful to
keep track on executed handshake sessions:

Definition 5 (Session IDs and Partnered Session). For a Handshake ses-
sion π with π.state = accepted the session id π.sid is a value that uniquely
identifies π in the set of all protocol sessions started by π.id. Two sessions π, π′

are called partnered if π.state = π′.state = accepted and (π.sid, π.id, π.partner) =
(π′.sid, π′.partner, π′.id).

The adversary A is modeled as a PPT machine that interacts with protocol
participants and can mount attacks via the following set of queries.

Handshake(id,G, r). This query lets the holder of pseudonym id start a new ses-
sion π of the Handshake protocol. It receives as input a set G of public group
keys G.pk and a role identifier r ∈ {init, resp} that determines whether the
session will act as protocol initiator or responder. Session variable π.revealed
is initialized to false. If there is a group G.pk listed in G for which id has no
private credential credG.pk then this query is ignored. Optionally, this query
returns a first protocol message M .

Send(π, M). Message M is delivered to session π. After processing M the even-
tual output is given to A. This query is ignored if π is not waiting for input.

Reveal(π). If π.state = running then this query is ignored. Otherwise the flag
π.revealed is set to true and (π.state, π.key, π.groups) is returned.

Corrupt(id, G). Membership credential credG.pk of pseudonym id in group G is
passed to the adversary. Note that this query models the possibility of se-
lective corruptions.

Revoke(G, id). This query lets the GA of G include id in its revocation list G.prl.

5.2 Linkable Affiliation-Hiding Security

We start with the property of Linkable Affiliation-Hiding (LAH). At a high
level the goal here is to protect the disclosure of non-matching affiliations of
handshake participants. We model LAH-security using the indistinguishability
approach (similar to that used for encryption schemes). The goal of the adversary

434 M. Manulis, B. Pinkas, and B. Poettering

is to decide which of the two sets of affiliations G∗
0 or G∗

1 some challenge session
π∗ is using. The adversary can also invoke any number of handshake sessions,
and ask Reveal and Corrupt queries at will. This intuition is formalized as follows.

Definition 6 (LAH-Security). Let MLAH-AKE = {CreateGroup, AddUser,
Handshake, Revoke}, b be a randomly chosen bit, and Q = {Handshake, Send,
Reveal, Corrupt, Revoke} denote the set of queries the adversary A has access to.
We consider the following game between a challenger and the adversary A:

Gamelah,b
A,MLAH-AKE(κ, n, m) :

– the challenger creates users U1, . . . , Un and pseudonyms ID = {id1, . . . , idn};
– the challenger creates m groups G = {G1, . . . , Gm} and registers user Ui with

pseudonym idi in group Gj for all (i, j) ∈ [1, n]× [1, m];
– AQ interacts with all participants using the queries in Q; at some point AQ

outputs a tuple (id∗,G∗
0 ,G∗

1 , r∗) where id∗ ∈ ID, G∗
0 ,G∗

1 ⊆ G with |G∗
0 | = |G∗

1 |,
and r∗ ∈ {init, resp}. The set D∗ = (G∗

0 \G∗
1)∪(G∗

1 \G∗
0) = (G∗

0 ∪G∗
1)\(G∗

0 ∩G∗
1)

is called the distinguishing set;
– the challenger invokes a Handshake(id∗,G∗

b , r∗) session π∗ (and provides all
needed credentials);

– AQ continues interacting via queries (including on session π∗) until it ter-
minates and outputs bit b′;

– the output of the game is 1 if all of the following hold; else the output is 0:
(a) b = b′,
(b) if π∗ accepted and there is a Handshake session π′ with D∗ ∩ π′.G �=

∅ which was in state running while π∗ was in state running, then no
Reveal(π∗) query was asked,

(c) no Reveal(π′) query was asked for any Handshake session π′ with D∗ ∩
π′.G �= ∅ and π′.partner = id∗ that was in state running while π∗ was in
state running,

(d) no Corrupt(id, G) query with (id, G) ∈ ID × D∗ was asked before π∗ left
running state.

We define Advlah
A,MLAH-AKE(κ, n, m) :=∣∣∣Pr[Gamelah,0

A,MLAH-AKE(κ, n, m) = 1]− Pr[Gamelah,1
A,MLAH-AKE(κ, n, m) = 1]

∣∣∣
and denote with Advlah

MLAH-AKE(κ, n, m) the maximum advantage over all PPT
adversaries A. We say that MLAH-AKE is LAH-secure if this advantage is neg-
ligible in κ (for all n, m polynomially dependent on κ).

Conditions (b)–(d) exclude some trivial attacks on affiliation hiding. Condi-
tion (b) thwarts the attack where A starts a Handshake(id′,G′, r′) session π′ with
G′ ∩ D∗ �= ∅, relays all messages between π∗ and π′ and finally asks Reveal(π∗).
By protocol correctness π∗.groups would contain elements from D∗ and it would
be trivial to correctly decide about b. Condition (c) handles the same attack, but
from the point of view of π′. Condition (d) prevents A to corrupt a pseudonym
in a group from D∗, to impersonate that user and to decide about bit b from the
output of its protocol run.

Privacy-Preserving Group Discovery with Linear Complexity 435

5.3 Authenticated Key Exchange Security

Authenticated Key Exchange (AKE) security of MLAH-AKE schemes is modeled
similarly to [13] where the goal of the adversary A is to distinguish the session
key computed by some test session π∗ from a random value. A may invoke
any number of handshake sessions, corrupt pseudonyms, and reveal established
sessions keys at will as long as it does not obtain the session key computed by
π∗ in some trivial way. For the formal definition of AKE-security we introduce
two further queries Reveal′ and Test (the latter with secret parameter b ∈ {0, 1})
and the new session variable π.tested, which is initially set to false.

Reveal′(π). This query is like the original Reveal query except that it is ignored
if π.tested = true or π′.tested = true for any session π′ partnered with π.

Test(π). If π is fresh (see Definition 7) then π.tested is set to true and a key K is

returned, where K = π.key if b = 1 and K
$← {0, 1}κ otherwise. In addition,

π.groups is returned. This query may be asked at most once.

Definition 7 (Session Freshness). A session π invoked in response to a
Handshake(id,G, r) query is called fresh if all of the following hold:

(a) π.state = accepted and π.revealed = false.
(b) π′.revealed = false for any session π′ that is partnered with π.
(c) there exists a group G ∈ π.groups such that neither Corrupt(π.id, G) nor

Corrupt(π.partner, G) has been asked before π.state was set to accepted.

Conditions (a)–(c) imply the usual constraints of key secrecy models that include
forward secrecy [5]. Condition (c) demands that a single group G for which π.id
and π.partner remain uncorrupted until protocol acceptance suffices for the tested
session to be considered fresh.

Definition 8 (AKE-Security with Forward Secrecy). Let MLAH-AKE =
{CreateGroup, AddUser, Handshake, Revoke}, b be a randomly chosen bit, and Q =
{Handshake, Send, Corrupt, Revoke, Reveal′, Test} denote the set of queries the ad-
versary A has access to. We consider the following game between a challenger
and the adversary A:

Gameake,b
A,MLAH-AKE(κ, n, m) :

– the challenger creates users U1, . . . , Un and pseudonyms id1, . . . , idn;
– the challenger creates m groups G1, . . . , Gm and registers Ui with pseudonym

idi in group Gj for all (i, j) ∈ [1, n]× [1, m];
– AQ interacts with all participants using the queries in Q;
– at some point AQ asks Test(π∗) to a fresh session π∗;
– AQ continues interacting via queries until it terminates and outputs bit b′,

which is the output of the game.

We define Advake
A,MLAH-AKE(κ, n, m) :=

∣∣∣2 Pr[Gameake,b
A,MLAH-AKE(κ, n, m) = b]− 1

∣∣∣
and denote with Advake

MLAH-AKE(κ, n, m) the maximum advantage over all PPT
adversaries A. We say that MLAH-AKE is AKE-secure if this advantage is neg-
ligible in κ (for all n, m polynomially dependent on κ).

436 M. Manulis, B. Pinkas, and B. Poettering

6 Security Analysis of Our Protocol

Following the extended definitions from the previous sections we prove that our
MLAH-AKE protocol from Section 4 satisfies the desired goals. The respective
proofs are provided in the full version of this paper.

Theorem 2 (Linkable Affiliation-Hiding Security). The MLAH-AKE pro-
tocol from Section 4 is LAH-secure under the RSA assumption on safe moduli
in the random oracle model.

Theorem 3 (Authenticated Key Exchange Security). The MLAH-AKE
protocol from Section 4 is AKE-secure under the RSA assumption on safe moduli
in the random oracle model.

The dependence on the RSA assumption and the random oracle model stems
from the underlying LAH-AKE protocol [13] (which is proven secure under these
assumptions). Note that our IHME approach can be deployed independently of
any number-theoretical or non-standard assumption.

7 Conclusion

We discussed several solutions to the open problem of efficient group discovery in
AH-AKE protocols. We stress that without efficient group discovery, existing AH-
AKE schemes (that provide support for only one input group per user and proto-
col session) would remain of very limited use. Throughout the paper we described
how to perform group discovery more efficiently than by the näıve combinatorial
approach, for which the computational and communication complexity is O(n2)
(where n is the number of input groups per participant). Our most efficient solu-
tion came from the use of a new primitive, called Index-Hiding Message-Encoding
(IHME). In addition to the definition of IHME and its index-hiding property we
gave a construction for which the property holds unconditionally. We then demon-
strated how IHME can be applied to the state-of-the-art linkable AH-AKE proto-
col from [13] in order to discover groups in linear complexity O(n). Our construc-
tion is supported by appropriate definitions of security and proofs.

References

1. Ateniese, G., Kirsch, J., Blanton, M.: Secret Handshakes with Dynamic and Fuzzy
Matching. In: Network and Distributed System Security Symposium (NDSS 2007).
The Internet Society (2007)

2. Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong, H.-C.:
Secret Handshakes from Pairing-Based Key Agreements. In: IEEE Symposium on
Security and Privacy 2003, pp. 180–196. IEEE CS, Los Alamitos (2003)

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: 1st ACM Conference on Computer and Communications
Security (CCS 1993), pp. 62–73. ACM, New York (1993)

4. Camenisch, J., Zaverucha, G.M.: Private Intersection of Certified Sets. In: Din-
gledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer,
Heidelberg (2009)

Privacy-Preserving Group Discovery with Linear Complexity 437

5. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

6. Castelluccia, C., Jarecki, S., Tsudik, G.: Secret Handshakes from CA-Oblivious
Encryption. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 293–307.
Springer, Heidelberg (2004)

7. Cristofaro, E., Jarecki, S., Kim, J., Tsudik, G.: Privacy-Preserving Policy-Based
Information Transfer. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS,
vol. 5672, pp. 164–184. Springer, Heidelberg (2009)

8. Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with Linear
Computational and Bandwidth Complexity. Cryptology ePrint Archive, Report
2009/491. To appear in Financial Cryptography and Data Security. LNCS, vol.
6052. Springer, Heidelberg (2010)

9. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set In-
tersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

10. Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching
with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

11. Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adver-
saries. Cryptology ePrint Archive, Report 2009/594. In: Nguyen, P.Q., Pointcheval,
D. (Eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010)

12. Jarecki, S., Kim, J., Tsudik, G.: Group Secret Handshakes or Affiliation-Hiding
Authenticated Group Key Agreement. In: Abe, M. (ed.) CT-RSA 2007. LNCS,
vol. 4377, pp. 287–308. Springer, Heidelberg (2006)

13. Jarecki, S., Kim, J., Tsudik, G.: Beyond Secret Handshakes: Affiliation-Hiding Au-
thenticated Key Exchange. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 352–369. Springer, Heidelberg (2008)

14. Jarecki, S., Liu, X.: Unlinkable Secret Handshakes and Key-Private Group Key
Management Schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 270–287. Springer, Heidelberg (2007)

15. Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications
to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

16. Jarecki, S., Liu, X.: Private Mutual Authentication and Conditional Oblivious
Transfer. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. LNCS,
vol. 5677, pp. 90–107. Springer, Heidelberg (2009)

17. Kissner, L., Song, D.X.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

18. Raab, M., Steger, A.: Balls Into Bins — A Simple and Tight Analysis. In: Rolim,
J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170.
Springer, Heidelberg (1998)

19. Tsudik, G., Xu, S.: A Flexible Framework for Secret Handshakes. In: Danezis, G.,
Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 295–315. Springer, Heidelberg
(2006)

20. Vergnaud, D.: RSA-Based Secret Handshakes. In: Ytrehus, Ø. (ed.) WCC 2005.
LNCS, vol. 3969, pp. 252–274. Springer, Heidelberg (2006)

21. Xu, S., Yung, M.: k-Anonymous Secret Handshakes with Reusable Credentials. In:
11th ACM Conference on Computer and Communications Security (CCS 2004),
pp. 158–167. ACM, New York (2004)

Two New Efficient PIR-Writing Protocols

Helger Lipmaa1,2 and Bingsheng Zhang1,3

1 Cybernetica AS, Estonia
2 Tallinn University, Estonia

3 University of Tartu, Estonia

Abstract. Assume that a client outsources his database to a remote
storage-provider (the server), so that for privacy reasons, the client’s
database is encrypted by his secret key. During a PIR-writing proto-
col, the client updates one element of the encrypted database without
revealing to the semi-honest server which element was updated and, of
course, to which value. The best previous PIR-writing protocols had
square-root communication complexity. In this paper, we propose two
new PIR-writing protocols. The first one can be based on (say) the
Damg̊ard-Jurik additively homomorphic public-key cryptosystem, and
it has (amortized) polylogarithmic communication for a limited number
of updates. The second one is based on a fully-homomorphic public-key
cryptosystem, a much stronger primitive, but it achieves optimal loga-
rithmic communication.

Keywords: Cryptocomputing, binary decision diagram, circuits, fully-
homomorphic encryption, PIR-writing, PrivateBDD.

1 Introduction

With the progress of network facilities, an increasing number of services are
based on remote storage (also known as online disks), such as Google Doc,
virtual OS and many other other web applications. Meanwhile, the clients of such
services do not always trust the storage provider to keep their privacy. Therefore,
any client would like to only outsource an encrypted database that only he
can decrypt. On the other hand, most applications require that the storage
provider should allow clients to add, retrieve, modify and delete documents of
their encrypted databases. In particular, in a PIR-writing protocol (also known
as private database modification, [2]), the client updates one element of the
encrypted database so that the semi-honest server does not get to know which
element was updated and to which value.

More precisely, assume that the unencrypted database is f = (f0, . . . , fn−1)
of �-bit elements, the client’s private index is x and the private update value is
y. After executing a PIR-writing protocol, the server updates the x-th element
of the client’s database to y. Since server’s part in the PIR-writing protocol
can be executed without knowing the secret key, it also possibly allows a third
party to (homomorphically) modify the client’s database without compromising

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 438–455, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Two New Efficient PIR-Writing Protocols 439

the client’s privacy, and this property makes it possible to combine PIR-writing
protocols with other client-server protocols.

In a trivial PIR-writing protocol with Θ(n) communication, the server trans-
fers the encrypted database to the client, who replaces the x-th element by an
encryption of y, and then re-encrypts the database and sends the new database
back. The first non-trivial solution to this problem was recently proposed in [2].
Their protocol has communication complexity O(

√
n) when modifying 1 bit of

the database. By repeating the protocol, one has a PIR-writing protocol with
the communication complexity O(�

√
n) for modifying � bits.

Another—and strongly related—protocol was proposed in a yet unpublished
eprint [3]. They propose a pair of amortized protocols with communication com-

plexity O(
√

�1+α · n · polylog(n)) (where α ∈ (0, 1) is a constant) for modifying
� bits of the database. One protocol achieves this amortized communication
complexity for arbitrary bit modifications, while the second one achieves this
amortized communication complexity only when flipping a 0 bit into a 1 bit.
Both square-root communication solutions use the BGN cryptosystem [1] as the
underlying cryptographic primitive, so their security is based on the hardness of
the Subgroup Decision assumption [1]. A drawback of the protocols of [2,3] is that
they require the client to precompute the increment between the new value and
the original one of the xth element, by say using an additional communication-
efficient CPIR protocol to first retrieve the current value of this element. This
adds complexity to their protocols, and in particular the PIR-writing protocols
of [2,3] consist of more than one message. In this paper, we propose two new
nontrivial PIR-writing protocols.

First New, PrivateBDD-Based PIR-Writing Protocol. The first new
PIR-writing protocol is based on the cryptocomputing protocol PrivateBDD of
Ishai and Paskin [9], or more precisely on an efficient variation of it as described
in [11]. As described in [11], the PrivateBDD cryptocomputing protocol is based
on an efficient binary decision diagram (BDD) together with an efficient (2, 1)-
CPIR protocol. See Sect. 2.1 for background about the BDDs (a very well known
computational model) and the PrivateBDD protocol in general.

In the first new PIR-writing protocol, the server constructs a (multi-terminal)
binary decision diagram (BDD, also known us branching program, [15]) for the
function

gi(x, y, m) :=

{
y , x = i ,

m , x �= i .

The corresponding BDD has size and length !log2 n". In the nonprivate version of
the PIR-writing protocol, the server just sets in parallel fi ← gi(x, y, fi) for every
i ∈ {0, . . . , n − 1}. In the actual new PIR-writing protocol, the server uses the
PrivateBDD protocol to update the encrypted version of fi, given encryptions
of x, y and a (multiple-)encryption of the old version of fi.

Now, the output of the PrivateBDD protocol is a multiple-encryption of the
actual value of the protocol, where the number of multiples is equal to the length
of the BDD, that is, to !log2 n" in this concrete case. Therefore, after every

440 H. Lipmaa and B. Zhang

update, the length of every (multiple-encrypted) database element kept by the
server increases by !log2 n" · κ bits, where κ is the security parameter. More
precisely, for some upper bound u on the number of updates, this PIR-writing
protocol achieves amortized communication complexity Θ(u�·log n+u2κ·log2 n).

This improves upon the protocol of [3] for u = o(
4
√

�1+α · n · polylog(n)). In
addition, since the working time of the PrivateBDD is proportional to the size
of the BDD, the working time of this new PIR-writing protocol is Θ(n · log n)
public-key operations, where the cost of public-key operations depends on � and
increases after every update.

We also construct a slight modification of this protocol, where the server does
not update the database elements but instead just stores all the client’s write
requests. This makes the server’s computational complexity during the PIR-
writing protocol very small. However, when the client requests to read some
element of the database, the server executes all write requests on the original
database. Therefore, this modification is useful in applications where updating
is much more frequent than reading.

Importantly, this protocol does not use pairings. In particular, it relies on
the classical DCR assumption which is by far the weakest security assumption
under which a nontrivial PIR-writing protocol is known. Clearly, even in the
trivial PIR-writing protocol, the database has to be encrypted by using a CPA-
secure public-key cryptosystem. It is conceivable that this cryptosystem must
be additively homomorphic to allow some simple cryptocomputing protocols on
encrypted database. In such a case, the PrivateBDD-based PIR-writing protocol
comes “free” in the sense of security, adding no extra security assumptions.

Second New, FH-Based PIR-Writing Protocol. The second new PIR-
writing protocol is based on the (leveled) fully-homomorphic public-key cryp-
tosystem proposed recently by Gentry [7]. (Equivalently, one could also use the
cryptosystem from [5]) The idea behind this protocol is similar to the first new
PIR-writing protocol. This time we write down a Boolean circuit for gi(x, y, fi),
which happens to have exactly the same size as the corresponding BDD but has
depth ≈ log2 log2 n. We now use the fully-homomorphic cryptosystem to evalu-
ate in parallel n copies of this circuit for i ∈ {0, . . . , n− 1}. Importantly, (1) this
circuit only has multiplicative depth log log n (as compared to the length log n
of the corresponding BDD), and (2) this process does not increase the size of the
server’s database. The actual FH-based PIR-writing protocol has communica-
tion complexity O((log n+�)·κ), and computation complexity of O(n · log n+�n)
evaluations of the fully-homomorphic cryptosystem.

However, since every multiplication (or Boolean AND) increases dramatically
the noise used in encryption, some care has to be taken to bootstrap the stored
database values, see [7]. Since the multiplicative depth of n parallel applications
of the circuit for g is !log2!log2 n"" (which is never larger than 5 in practice),
we can just assume that the security parameter is big enough to accommodate
the evaluation of circuits of multiplicative depth Θ(log log n). However, a boot-
strapping should be done at the end of the PIR-writing protocol. See [7,6] for
more discussion.

Two New Efficient PIR-Writing Protocols 441

Table 1. Comparison of previous PIR-writing protocols and our two new protocols.
In the case of the protocol from Sect. 3 (and Sect. 3), u is the number of updates, and
we give amortized communication over the first u updates. Note that the meaning of
the unit computation depends on the protocol.

Scheme Communication
Complexity

Computation
Complexity

Security Assumption Increase
Database
Size

Trivial n(�+ κ) O(�n) CPA-security of underlying
cryptosystem

None

[2] O(�
√
n) O(�n) subgroup decision [1] +

polylog-communication
CPIR [8,10]

None

[3]
√
�1+α · n ·

polylog(n)
O(n · polylog(n)) subgroup decision [1] +

polylog-communication
CPIR [8,10]

None

Sect. 3 Θ(u�·log n+u2κ·
log2 n)

O(n · log n) DCR assumption Increased
by κ log n

Sect. 3.1 Θ(u�·log n+u2κ·
log2 n)

Trivial DCR assumption None

Sect. 4 O(κ log n+ κ�) O(n · log n+ �n) CPA-security of fully-
homomorphic cryptosystem

None

In particular, if we use leveled fully-homomorphic cryptosystem, then the length
of the public key is linear in U , where U is the maximal number of imagined up-
dates. Since this basically means that one element of the public key has to be
transfered to the server per every update, it does not increase the amortized com-
munication cost significantly. Moreover, if we assume that the fully-homomorphic
cryptosystem is secure against key-dependent message (KDM) attacks, then it is
fully-homomorphic (and not leveled fully-homomorphic) and we can just use a
constant-in-U -size public key. Since the security of the cryptosystems from [7,5]
has not been well-studied with or without KDM attacks, we will not mention the
cost of maintaining and transferring the public key anymore.

Comparison. In Table 1, we compare the trivial solution, two previously known
sublinear-communication protocols, and the two new protocols. Note that in the
protocol from Sect. 3, the cost of a single public-key operation depends on �,
and on the number of the update.

2 Preliminaries

Notation. Within this paper, κ is always the security parameter. The client
has outsourced a database f = (f0, . . . , fn−1) to the server. Client’s private
inputs are an m = !log2 n"-bit index x = (x0, . . . , xm−1) and an �-bit value
y = (y0, . . . , y	−1). All logarithms are taken on basis 2. For a set(or possibly a
probabilistic algorithm) S, x ← S means a uniformly random assignment of an

442 H. Lipmaa and B. Zhang

element from S to x. Linearity and polylogarithmicity is usually measured with
respect to n, while in security proofs polynomiality and negligibility is measured
with respect to #.

2.1 PrivateBDD Protocol

Additively-Homomorphic Cryptosystems. Let P = (G, E, D) be a length-
flexible additively-homomorphic public-key cryptosystem [4], where G is a ran-
domized key generation algorithm, E is a randomized encryption algorithm and
D is a decryption algorithm. Here, both E and D receive an additional length
parameter �, so that Epk(�, ·) encrypts plaintexts from some set {0, 1}≤	. In the
case of the DJ01 cryptosystem from [4], for every integer � > 0, Epk(�, ·) is a
valid plaintext of Epk(!�/κ" · κ + κ, ·), and therefore one can multiple-encrypt
messages as say in

C ← Epk(� + 2κ, Epk(� + κ, Epk(�, M))) ,

and then recover M by multiple-decrypting,

M ← Dsk(� + 2κ, Dsk(� + κ, Dsk(�, C))) .

If N is the public key of the DJ01 cryptosystem. then 2	 < N . Addition-
ally, in any length-flexible additively-homomorphic cryptosystem, Epk(�, M1) ·
Epk(�, M2) = Epk(�, M1 + M2), where the addition is modulo the public key N .
We will explicitly need the existence of a compression function C that, given
pk, �′ and � for �′ ≥ �, and Epk(�

′, M) for M ∈ {0, 1}	, returns Epk(�, M) ∈
{0, 1}�	/κ�·κ+κ.

In the CPA (chosen-plaintext attack) game, the challenger first generates a
random (sk, pk) ← G(1κ), and sends pk to the attacker. Attacker chooses two
messages (M0, M1) (such that |M0| = |M1|) and a length parameter �, and sends
them to the challenger. Challenger picks a random bit b, and sends a ciphertext
Epk(�, Mb) to attacker. Attacker outputs a bit b′, and wins if b = b′.

In the LFCPA (length-flexible chosen-plaintext attack) game [10], the chal-
lenger first generates a random (sk, pk) ← G(1κ), and sends pk to the attacker.
Attacker chooses a polynomial number of message pairs (Mj0, Mj1) (such that
|Mj0| = |Mj1|) and length parameters �j, and sends them to the challenger.
Challenger picks a random bit b, and sends all ciphertexts Epk(�j , Mjb) to at-
tacker. Attacker outputs a bit b′, and wins if b = b′. Because of the existence
of the compress function, LFCPA security follows from the CPA security [11].
Thus, the DJ01 cryptosystem [4] is LFCPA-secure under the Decisional Com-
posite Residuosity Assumption.

Cryptocomputing. Let m and � be public parameters, and let F a class of
functions {0, 1}m → {0, 1}	. In a cryptocomputing protocol for F between a
client and a server, the client has an input x ∈ {0, 1}m and the server has an input
f ∈ F . The client obtains f(x). Every cryptocomputing protocol Γ = (Q, R, A)

Two New Efficient PIR-Writing Protocols 443

has two messages, where the client sends Q(�, x) to the server, the server replies
with R← R(�, f, Q), and then finally the stateful client recovers fx by computing
A(�, x, R). Here, Q, R and A are (probabilistic) polynomial-time algorithms.

Client-Privacy of Cryptocomputing Protocols. Let Γ = (Q, R, A) be a
2-message cryptocomputing protocol. Within this work we use the convention of
many previous papers to only require (semisimulatable) privacy in the malicious
model. In particular, client’s privacy is guaranteed in the sense of indistinguisha-
bility (CPA-security), That is, for the the privacy of the client, no malicious
nonuniform probabilistic polynomial-time server should be able to distinguish,
with non-negligible probability, between the distributions Q(�, x0) and Q(�, x1)
that correspond to any two of client’s inputs x0 and x1 that are chosen by herself.
Within this paper, we are not interested in server-privacy.

Computationally-Private Information Retrieval. A two-message 1-out-
of-n computationally-private information retrieval protocol, (n, 1)-CPIR, is a
special type of cryptocomputing protocol. In a (n, 1)-CPIR protocol for �-bit
strings, the client has an index x ∈ {0, . . . , n− 1} and the server has a database
f = (f0, . . . , fn−1) with fi ∈ {0, 1}	. The client obtains fx. An (n, 1)-CPIR
protocol Γ = (Q, R, A, C) is BDD-friendly if it satisfies the next four assumptions:

1. Γ has two messages, a query Q(�, x) from the client and a reply R(�, f, Q)
from the server, such that the stateful client can recover fx by computing
A(�, x, R(�, f, Q)). Note that A(�, x, R(�, f, Q(�, x))) = fx.

2. Γ is uniform in �, that is, it can be easily modified to work on other values
of �.

3. |Q(�, ·)|, |R(�, ·, ·)| ≤ � + Θ(κ) (with possibly Q(�, ·) being even shorter).
4. The compress function C maps Q(�′, x) to Q(�, x) for any �′ ≥ � and any x.

Here Q, R, A and C are (probabilistic) polynomial-time algorithms. The only
known BDD-friendly (2, 1)-CPIR was proposed by Lipmaa in [10], see [11] for
a compact description. Importantly for us, in Lipmaa’s (2, 1)-CPIR protocol,
Q(�, x) consists of a public key and an additively homomorphic encryption of x
under this key.

Any (n, 1)-CPIR protocol Γ must be client-private, that is, CPA-secure. Lip-
maa’s (2, 1)-CPIR protocol [10], when based on the DJ01 cryptosystem [4],
is CPA-secure and thus LFCPA-secure (which is defined in the same way as
LFCPA-security for public-key cryptosystems) under the Decisional Composite
Residuosity Assumption.

Binary Decision Diagrams. A binary decision diagram (BDD, also known as
a branching program, [15]) is a fanout-2 directed acyclic graph (V , E), where the
non-terminal nodes are labeled by variables from some set {x0, . . . , xm−1}, the
sinks are labeled by �-bit strings and the two outgoing edges of every internal
node are respectively labeled by 0 and 1. If � > 1, then the BDD is called
multi-terminal. A BDD computes some function f : {0, 1}m → {0, 1}	. Every
assignment of the variables selects one path from the source to some sink as

444 H. Lipmaa and B. Zhang

follows. The path starts from the source. If the current version of path does not
end at a sink, test the variable at the endpoint of the path. Select one of the
outgoing edges depending on the value of this variable, and append this edge
and its endpoint to the path. If the path ends at a sink, return the label of this
sink as the value of the corresponding source. The BDD’s value is then equal to
the source value. For a BDD P , let len(P) be its length (that is, the length of
its longest path), and let size(P) be its size (that is, the number of non-terminal
nodes).

PrivateBDD Protocol. In [9], Ishai and Paskin proposed a new cryptocom-
puting method (PrivateBDD) that uses a BDD-representation of the target
function in conjunction with a communication-efficient strong oblivious transfer.
In [11], the authors noted that the strong oblivious transfer protocol can be re-
placed by a BDD-friendly (2, 1)-CPIR protocol. We now briefly recall the main
properties of PrivateBDD, as instantiated by Lipmaa’s (2, 1)-CPIR from [10].
See [11] for the full details of the PrivateBDD protocol.

Theorem 1. Assume that the Decisional Composite Residuosity Assumption is
true. Let F be a set of functions f : {0, 1}m → {0, 1}	, and for any f ∈ F let
Pf be some (multi-terminal) BDD with �-bit sink labels that computes f . Let
len(F) := maxf∈F len(f). Then F has a CPA-secure cryptocomputing protocol
with communication upperbounded by κ + m · (� + (len(F) + 2) · κ), and server’s
online computation dominated by size(f) public-key operations.

Briefly, client’s inputs to the PrivateBDD (when instantiated by Lipmaa’s (2, 1)-
CPIR from [10]) are encrypted bitwise by using a length-flexible additively homo-
morphic public-key cryptosystem like DJ01 [4]. Moreover, let V be any internal
node of the BDD such that the longest path between V and any sink has length
len(V) > 0. Let V0 and V1 be the successors of V by the 0-edge and 1-edge, corre-
spondingly. Then V ’s value val[V] as recursively computed by the PrivateBDD
protocol is

R(� + (len(V)− 1)κ, Q(� + (len(V)− 1)κ, xj), (val[V0], val[V1])) ,

where xj is V ’s label, and val[Vi] is the already known value of the node Vi.
Moreover, sink values are equal to their labels. Therefore, val[V] is equal to an
encryption of val[Vxj]. Inductively, val[V] is equal to an len(V)-times encryption
of some sink value, and |val[V]| ≈ (len(V) + 1)κ. In particular, server’s message
in the PrivateBDD protocol is equal to a len(Pf)-times encryption of some sink
value, and this sink value by itself is the output of the PrivateBDD protocol.
See [11] for more details.

2.2 Fully-Homomorphic Cryptosystem

In this subsection, we give a brief description of the recent fully-homomorphic
cryptosystem by Gentry [7]. We omit all the details of Gentry’s cryptosystem

Two New Efficient PIR-Writing Protocols 445

that are not relevant to the current paper. In particular, all given details are
also true for the more recent cryptosystem of van Dijk, Gentry, Halevi and
Vaikuntanathan [5].

Let P = (G, E, D) be the initial version of Gentry’s cryptosystem [7]. The
length � of plaintext space P is fixed. Similarly to the previous subsection, G
is a randomized key generation algorithm such that (sk, pk) ← G(1κ); E is ran-
domized encryption algorithm such that for any M ∈ P , C ← Epk(M); D is
decryption algorithm such that for any C ∈ C, where C is ciphertext space,
M ← Dsk(C).

While encrypting, Gentry’s cryptosystem masks the plaintext in particular
with an additive noise R from some “small” set R0, and correct decrypting is
guaranteed when the noise belongs to some “large” set R1, R0 ⊂ R1. Since the
noise is additive, one has

Epk(M1; R1) + Epk(M2; R2) = Epk(M1 + M2; R1 + R2)

and

Epk(M1; R1) · Epk(M2; R2) = Epk(M1 ·M2; R1 ·R2) .

Here, the addition of plaintexts is modular, while the noise increases unbound-
edly. Thus, one can evaluate arbitrary +/· (or alternatively, ⊕/∧) circuits of
only some bounded length before the noise has increased to the level where cor-
rect decryption is not anymore possible. Therefore, this simple version of Gen-
try’s cryptosystem is only somewhat homomorphic [7], that is, homomorphic for
small-depth circuits.

However, as shown in [7], the somewhat homomorphic version of Gentry’s
cryptosystem is sufficient to homomorphically evaluate its own decryption cir-
cuit augmented with basic Boolean operations. Hence, one can strengthen the
somewhat homomorphic version with a bootstrapping step. Assume that the
plaintexts have been encrypted by using some public key pk1. Now, just before
the circuit depth has reached the level where decryption becomes incorrect, one
encrypts the ciphertexts Epk1(·) by using a different public key pk2, and then
homomorphically decrypts the results, obtaining new encryptions of the same
plaintexts but under the new key pk2 and with decreased noise. This step is
called bootstrapping. After that, one can homomorphically execute another few
levels of the circuit, until one needs to bootstrap again.

Thus, given the somewhat homomorphic cryptosystem, Gentry constructed a
leveled fully-homomorphic cryptosystem that enables one to homomorphically
evaluate circuits of any bounded and a priori fixed depth d. In such a leveled fully-
homomorphic cryptosystem, the public-key size is linear in d, and in particularly
it includes encryptions of all bits of ski under the public key pki+1, for linear-in-d
needed public/secret key pairs (ski, pki).

To overcome this restriction, one can assume that Gentry’s cryptosystem is se-
cure against key-dependent message (KDM) attacks. In this case, one can, given
a single valid key pair (sk, pk)← G(1κ), circularly encrypt the bits of sk by using
pk. Therefore, after every few levels of the circuit, one can use the same public

446 H. Lipmaa and B. Zhang

key pk to bootstrap the circuit. In particularly, Gentry showed [7,6] that his lev-
eled fully-homomorphic cryptosystem is fully-homomorphic under the random
oracle assumption. Therefore, within this paper, we will assume that Gentry’s
cryptosystem is fully-homomorphic (and not leveled fully-homomorphic).

Finally, since we only need to encrypt Boolean plaintexts 0 and 1, other de-
tails of Gentry’s cryptosystem—for example, the fact that it is lattice-based—
are not important for our purposes. We refer an interested reader to [7,6] for
many further details. In particular, we will only assume that Gentry’s fully-
homomorphic cryptosystem is CPA-secure (and KDM-secure). The underlying
assumptions that are needed for CPA-security (and KDM-security) can again be
found from [7].

2.3 PIR-Writing

Assume that the client has outsourced his database to the server. To protect
his privacy, the database is encrypted by using client’s public key. In a PIR-
writing protocol (also known as a private database modification protocol, [2]), the
client updates a single element of the database so that the server does not know
which element was changed. More precisely, the database f = (f0, . . . , fn−1)
has n elements fi ∈ {0, 1}	. The client has private inputs (sk, x, y), where sk
is his secret key, x ∈ {0, . . . , n − 1} is the element to be changed, and y ∈
{0, 1}	 is its new version. The server has an encrypted version (c0, . . . , cn−1) =
(Epk(f0), . . . , Epk(fn−1)) of the database and a copy of client’s public key pk.
Ideally, the protocol consists of only a single message, from the client to the
server. The client has no private output, while server obtains a new encrypted
database c′ = (c′0, . . . , c

′
n−1), such that c′i and ci decrypt to the same value if

i �= x, while c′x decrypts to y.
The privacy definition of a PIR-writing protocol is formalized by the following

PIR-writing game. Let A be a semi-honest probabilistic-polynomial time adver-
sary (that is, the server), and let C be the challenger. The game consists of the
following steps:

1. The challenger C generates a pair of keys (sk, pk) ← G(1κ), and sends pk
to A.

2. A picks and sends to C a database f = (f0, . . . , fn−1) of n elements with
length �.

3. C encrypts the database with pk and sends it back to A.
4. (Challenge phase:) A picks and sends to C two index and value pairs

(x∗
0, y

∗
0), (x∗

1, y
∗
1). C picks bc ← {0, 1}, and executes the PIR-writing proto-

col with input (x∗
b , y

∗
b), with A playing the role of the server.

5. A outputs her guess b∗c ∈ {0, 1} for bc.

Note that here we do not have a query phase, since in our one-message protocols
the malicious server can just play the PIR-writing part with herself. (Recall that
the database she has is encrypted by using client’s public key.) The situation is

Two New Efficient PIR-Writing Protocols 447

different in say [2] where the client of the PIR-writing protocol had to known
the current value of the modified database element.

Definition 1 (Client-privacy of PIR-writing). Let the adversary’s advan-
tage in the previous game be

AdvA(1κ) :=

∣∣∣∣Pr[b∗c = bc]−
1

2

∣∣∣∣ .

We say that a PIR-writing protocol is client-private, if for all probabilistic-
polynomial time adversaries A, AdvA(1κ) is a negligible function (in κ).

Previous PIR-Writing Protocols. In a trivial (two-message) linear-com-
munication protocol, the server sends the encrypted database back to the client,
who updates the xth element, re-encrypts other elements, and sends the new en-
crypted database back to the server. Another linear-communication PIR-writing
protocol can be based on an arbitrary additively homomorphic public-key cryp-
tosystem as follows. The client and the server first execute an (n, 1)-CPIR pro-
tocol, so that the client obtains the current value of fx. Then client forwards to
the server n ciphertexts cj , where cx decrypts to y − fx and other cj-s decrypt
to 0. The server multiplies the encryptions of fj with the ciphertexts cj , this
clearly correctly updates the database.

The first sublinear-communication PIR-writing protocol was proposed in [2].
Essentially, it uses the bilinear-pairing based cryptosystem of [1] to send 2 · √n
ciphertexts c′j and c′′j —such that the decryption of cj is equal to the product of
decryptions of c′j and c′′j —instead of n ciphertexts as in the previous protocol.
Thus, this protocol has communication complexity O(

√
n) to modify one bit

of a database. Clearly, by repeating the protocol, one will have a PIR-writing
protocol with communication complexity O(� ·

√
n) for modifying � bits.

A way to decrease the communication complexity for larger � was proposed in
an unpublished eprint [3]. The solution consists of a pair of amortized protocols

that have communication complexity O(
√

�1+α · n ·polylog(n)) (where α ∈ (0, 1)
is a constant) for modifying � bits of the database. The idea is to encode an n-bit
database as a Dn-bit “virtual database” shared on M different servers by using
unbalanced lossless expander graphs. One of their protocol achieves the claimed
amortized communication complexity for any arbitrary bit modifications, while
the other one achieves the same amortized communication complexity only when
flipping a 0 bit into a 1 bit. All protocols from [2,3] use the BGN cryptosystem [1]
as cryptographic primitive, so their security is based on the hardness of subgroup
decision problem [1].

A drawback of the protocols from [2,3] is that the client has to know the
current value of fx before applying their protocols. Thus, the client has to use a
communication-efficient CPIR protocol [10,8] first to retrieve fx. This increases
both the computational and communication complexity. Most importantly, this
means that the protocols of [2,3] have more than one message.

Finally, in [13], the authors studied the same problem in a different, infor-
mation-theoretic setting with multiple databases.

448 H. Lipmaa and B. Zhang

3 New PrivateBDD-Based PIR-Writing Protocol

The first new PIR-writing protocol is based on the cryptocomputing protocol
PrivateBDD of Ishai and Paskin [9]. Thus, it is based on an (2, 1)-CPIR protocol
of Lipmaa [10] and in particularly on a length-flexible additively-homomorphic
cryptosystem P = (G, E, D). Briefly, in this protocol the server constructs a
binary decision diagram (BDD) Pi(x, y, m) for the function

gi(x, y, y′) :=

{
y , x = i ,

y′ , x �= i .

(Here, we assume that n is implicitly fixed.) Denote m := !log2 n". Recall that
x = (x0, . . . , xm−1 and y = (y0, . . . , y	−1).

Lemma 1. Let i be known and fixed. Then the functionality gi(x, y, y′) can be
implemented by a BDD Pi(x, y, y′) of size and length m = (1 + o(1)) log2 n.

Proof. Formally, Pi(x, y, y′) consists of m nodes Vi, i ∈ {0, . . . , m−1}, such that
the ith node is labeled by xi. It also has two sinks labeled by y and y′. Moreover,
there is an xi-edge from Vi to Vi+1 for i < m− 1, and an xi-edge from Vm−1 to
the sink labeled by y. Finally, there is an (1− xi)-edge from every Vi to the sink
labeled by y′. ��

As an example, P6(x, y, f6) is depicted by Fig. 1, left.
In the nonprivate version of the resulting PIR-writing protocol, the server just

sets in parallel fi ← gi(x, y, fi) for every i ∈ {0, . . . , n − 1}. (She can do it by
using the BDD Pi, or by any other means.)

In the new PrivateBDD-based PIR-writing protocol, the server has to use a
slightly different BDD P̃i, as depicted by Fig. 1, right. Namely, due to the design
of the PrivateBDD protocol, the siblings of any internal node have to have the
same length. This is necessary to protect client’s privacy. See Sect. 2.1 and [11]
for more discussion. Since the value of the 0-sibling of the source on Fig. 1 is of
form Epk(Epk(Epk(·))), the easiest way to achieve the same length for the 1-sibling

y

x3

x2

x0

1

0

0

x1

f6

1

1

0

0

1

Epk(Epk(f6))

Epk(f6)

f6

x1

0

0

1

1

x0

x2

x3

y

1

0

0

1

Epk(Epk(Epk(f6)))

Fig. 1. Left: the BDD P6(x, y, f6) that returns y if x = 6, and returns f6 otherwise.
The BDD outputs y only if x0 = 0, x1 = 1, x2 = 1 and x3 = 0. Right: the BDD P̃6

that is actually used in the new PIR-writing protocol. Here n = 16 and m = 4.

Two New Efficient PIR-Writing Protocols 449

is to use Epk(Epk(Epk(f6))) as the value of its 1-sibling. The formal description

of P̃i follows straightforwardly, and we will omit it.
Now, the server uses the PrivateBDD protocol with P̃i to update the encrypted

version of fi, given encryptions of x, y and an encryption of the old version of
fi. Thus, instead of sending the output back to the client, as in the original
PrivateBDD protocol, the server uses it to update a value that is privately held
by herself.

A formal protocol description of the new PrivateBDD-based PIR-writing pro-
tocol follows. Note that since we use a length-flexible cryptosystem, we can have
� > κ.

PrivateBDD-Based New PIR-Writing Protocol

Common inputs: Database size n, m← !log2 n", element length �.
Client’s inputs: Secret key sk, x = (x0, . . . , xm−1), y ∈ {0, 1}	.
Server’s inputs: Public key pk, c = (c0, . . . , cn−1), where cj is a multiple-
encryption of fj.
Server’s private output: Updated database c′ = (c′0, . . . , c

′
n−1), where c′j is

a multiple-encryption of updated f ′
j .

1. Client sends to the server Epk(xi), for i ∈ {0, m− 1}, and Epk(y).
2. The server does:

(a) For i ∈ {0, . . . , n − 1}, the server executes PrivateBDD by using
P̃i(x, y, ci), and sets c′i to be equal to its output.

(b) The server stores c = (c′0, . . . , c
′
n−1) as the new database with elements

having length �′ ← � + κ · !log2 n".

Security. We claim the client-privacy only in the special case when the Pri-
vateBDD protocol is based on Lipmaa’s (2, 1)-CPIR protocol from [10]. Obvi-
ously, this result can be generalized if other communication-efficient (2, 1)-CPIR
protocols were to be constructed.

Theorem 2. 1) The PrivateBDD-based PIR-writing protocol is correct. 2) If the
Decisional Composite Residuosity assumption [14] holds, then the PrivateBDD-
based PIR-writing protocol is client-private in the presence of a computationally-
bounded malicious server.

Proof (Sketch.)
1) The correctness of the PrivateBDD-based PIR-writing protocol follows

from the correctness of the PrivateBDD protocol by Ishai and Paskin [9], and
from the correctness of the BDDs P̃i.

2) The DJ01 cryptosystem used in the this PIR-writing is known [4] to be
CPA-secure under Decisional Composite Residuosity Assumption [14]. Because
Lipmaa’s (2, 1)-CPIR is BDD-friendly and CPA-secure, the CPA-security of the
PrivateBDD follows from a standard hybrid argument. ��

450 H. Lipmaa and B. Zhang

Efficiency. Assume that the database elements have length �. Recall that we
are using the Damg̊ard-Jurik cryptosystem [4]. Then before the first run of the
PIR-writing protocol, the server has a database of once-encrypted elements that
have size (s + 1)κ, where s = !�/κ". The output of the PrivateBDD protocol, as
modified by Lipmaa [11], is a multiple encryption of the actual value of corre-
sponding BDD sink value, where the number of multiples is equal to the depth
of the BDD, that is, to m = !log2 n" in this concrete case. Therefore, after every
update, the (multiple-encrypted) database elements kept by the server increases
by m · κ bits.

More precisely, the first run of the PIR-writing protocol has communication
complexity

≤ (m + 1) · (len(P)κ + �) = (m2 + m) · κ + (m + 1)� .

The new database has elements of size

(s + m + 1) · κ ≤ (m + 1) · κ + �

and thus the next update protocol has communication

(m2 + m) · κ + (m + 1) · (mκ + κ + �) .

Analogously, the jth update protocol has communication

(m2 + m) · κ + (m + 1)(jmκ + jκ + �) ,

and thus the first u protocols have total communication

u(m2 + m) · κ + (m + 1)

u−1∑
j=0

(jmκ + jκ + �) = O(mu� + m2u2κ) .

Since the working time of the PrivateBDD protocol is proportional to the size of
the BDD, the computation of the new PrivateBDD-based PIR-writing protocol
is dominated by n · (2m− 1) public-key operations, where the cost of public-key
operations increases after every update. Here, m− 1 public-key operations come
from the need to multiple-encrypt every database element fi, so that it would
have correct length to be on the correct layer of P̃i. However, since we do not
care about server’s privacy at all, P̃i can be simplified: instead of an j-times
encryption of fi we just use a suitably padded once-encryption of fi. Thus, we
have proven the next result:

Lemma 2. The amortized communication complexity of the first u updates of
the PrivateBDD-based PIR-writing protocol is O(u� · log n+u2κ · log2 n), and its
computational complexity is dominated by nm ≈ n · log2 n public-key operations,
where the cost of a single public-key operation depends in �, and increases with
every update.

Two New Efficient PIR-Writing Protocols 451

Comparison to Previous Work. The PrivateBDD-based PIR-writing pro-
tocol is more communication-efficient than the PIR-writing protocols of [2,3] if

u = o(
4
√

�1+α · n · polylog(n)). Unfortunately, during this protocol the database
kept by the server will increase in length, and therefore every new update will
be more and more expensive. This can be partially solved by letting the client
and the server refresh the database after every (say) 4

√
n updates.

However, importantly, this new PrivateBDD-based PIR-writing protocol does
not use pairings. In particular, it relies on the classical Decisional Composite
Residuosity assumption [14] which is by far the weakest security assumption
under which a nontrivial PIR-writing protocol is known. Even in the trivial
PIR-writing protocol, the database has to encrypted by using a CPA-secure
public-key cryptosystem. It is conceivable that this cryptosystem must be addi-
tively homomorphic to allow the client and the server to execute some additional
simple cryptocomputing protocols on encrypted database. In such a case, the
PrivateBDD-based PIR-writing protocol comes “free” in the sense of security,
adding no extra security assumptions.

3.1 Write-Optimized PrivateBDD-Based PIR-Writing Protocol

Clearly, the client’s write requests can be seen as program code that modifies the
database. In the previously presented PrivateBDD-based PIR-writing protocol,
the server applies the client’s program (BDD) to her database and stores the
program outputs as the new database. Unfortunately, the program’s outputs are
multiple-encrypted and thus the new database will have longer elements.

Given this interpretation, it is easy to see that one can optimize the presented
PIR-writing protocol as follows. The server will not run the client’s program
(BDD) at every run of the PIR-writing protocol. Instead, she will append it
to the list of previous “programs”. More precisely, the server will just store all
client’s messages as follows.

Write-Optimized PrivateBDD-Based PIR-Writing Protocol

Common inputs: Database size n, m← !log2 n", element length �.
Client’s inputs: Secret key sk, x = (x0, . . . , xm−1), y ∈ {0, 1}	.
Server’s inputs: Public key pk, c = (c0, . . . , cn−1), where cj is an encryption
of fj.
Server’s private output: Updated state state. Initially state is empty string.

1. Client sends to the server C ← Epk(xi), for i ∈ {0, m−1}, and D ← Epk(y).
2. The server does: Set state← state||C.

In the corresponding CPIR protocol (that later reads an element from the
database), the client sends his query to the server, who then applies all stored
programs to it, and to the database:

452 H. Lipmaa and B. Zhang

CPIR Protocol Corresponding to Write-Optimized PIR-Writing

Common inputs: Database size n, m← !log2 n", element length �.
Client’s inputs: Secret key sk, x.
Server’s inputs: Public key pk, c = (c0, . . . , cn−1), where cj is an encryption
of fj, and state = (C1, D1)|| . . . ||(Cu, Du).
Client’s private output: Current value of fx.

1. Client sends to the server the query of CPIR protocol.
2. The server does:

(a) For i ∈ {0, . . . , n− 1}:
i. Let c′0,i ← ci.

ii. For j ∈ {1, . . . , u}: execute PrivateBDD by using P̃i(x, y, c′j−1,i),
and set c′j,i to be equal to its output.

3. The server executes server’s part in the CPIR protocol by using database
c′u = (c′u1, . . . , c

′
un).

Note that this variant achieves very fast writing (and also, good memory effi-
ciency) by offloading computational cost to the reading phase. This solution is
good, for example, when the client updates his database often but needs to read
its values quite rarely.

4 New FH-Based PIR-Writing Protocol

In this section, we describe another PIR-writing protocol that is based on a
fully-homomorphic cryptosystem P = (G, E, D). First, we need the next result.

Lemma 3. Assume i is known. Let eqi(x) = 1 if i = x, and let eqi(x) = 0 oth-
erwise. Then a server who knows Epk(xj), for 0 ≤ j < m, can homomorphically
evaluate Epk(eqi(x)) by using a circuit of size m− 1 and of depth !log2 m".

Proof. The circuit has m leaves, labeled by x
ij

j for 0 ≤ j < m, where x0
j = ¬xj =

1− xj , and x1
j = xj . This can implemented with almost no cost: if ij = 1, then

the server inputs Epk(xj) to the gate; if ij = 0, then the server inputs Epk(1−xj)
to the gate. After that the server “AND”-s all m inputs together by using m− 1
AND-gates arranged in a circuit of depth !log2 m", as depicted by Fig. 2. Finally,
a 2-fan-in AND-gate can be implemented by setting Epk(a ∧ b) = Epk(a) · Epk(b).

��
The server then cryptocomputes the value of

Epk(f
′
i)← (Epk(y)− Epk(fi)) · Epk(eqi(x)) + Epk(fi) , (1)

and then replaces Epk(fi) with Epk(f
′
i).

This idea can be obviously extended to �-bit database elements, although
then every bit fij , 0 ≤ j < �, of every database element fi, 0 ≤ i < n, has to be
encrypted separately. On the other hand, the circuit eqi has only to be evaluated
once per every i ∈ {0, . . . , n− 1}. The full protocol description follows.

Two New Efficient PIR-Writing Protocols 453

xi3
3xi2

2xi1
1xi0

0

∧

∧

∧

Fig. 2. Circuit eqi for comparing x and i. Here, n = 16 and thus m = 4. Moreover,
xi = x if i = 1, and xi = 1 − x if i = 0.

FH-Based New PIR-Writing Protocol

Common inputs: Database size n, m← !log2 n", element length �.
Client’s inputs: Secret key sk, x = (x0, . . . , xm−1), y ∈ {0, 1}	.
Server’s inputs: Public key pk, c = (c00, . . . , cn−1,	−1) where cij = Epk(fij).
Server’s private output: New updated database c′ = (c′00, . . . , c

′
n−1,	−1).

1. The client sends (Epk(x0), . . . , Epk(xm−1)) and (Epk(y0), . . . , Epk(y	−1)) to
the server.

2. The server does in parallel for i ∈ {0, . . . , n− 1}:
(a) The server runs encrypted circuit bi ← Epk(eqi(x)).
(b) For 0 ≤ j ≤ �, the server computes and stores

c′ij ← (Epk(yj)− cij) · bi + cij .

(c) (If needed,) the server bootstraps all values c′ij to decrease the noise.

Theorem 3. Assume that the underlying fully-homomorphic cryptosystem is
correct and CPA-secure. Then the new FH-based PIR-writing protocol is correct
and client-private. Moreover, it has communication complexity O(κ · log n + κ�),
and its computational complexity is dominated by O(n · log n+ � ·n) applications
of Gentry’s cryptosystem. (Here we do not count the cost of bootstrapping.)

Proof (Sketch.). Correctness follows from the correctness of the fully-homomor-
phic cryptosystem, and from the correctness of the circuit for eqi. Moreover, since
the depth of the circuit used inside the FH-based protocol is only ≈ log2 log2 n
(which is never larger than 5 is practice), we can freely assume that there is no
need to bootstrap the circuit before the end of the PIR-writing protocol.

The client-privacy of the FH-based PIR-writing protocol follows from the
CPA-security of the fully-homomorphic cryptosystem by a standard hybrid ar-
gument with m+ � games. Again, the security is even achieved for computation-
ally bounded malicious server. The efficiency is clear. ��

Comparison to Previous Work. The FH-based protocol has (asymptotically)
optimal communication complexity, and differently from the PrivateBDD-based

454 H. Lipmaa and B. Zhang

protocol, the database elements do not grow in length after every update. On
the other hand, it is based on a fully-homomorphic cryptosystem, and all ex-
isting fully-homomorphic cryptosystems rely on relatively new security assump-
tions. Moreover, the necessary bootstrapping step makes it computationally less
efficient.

Further Work. The concept of PIR-writing is somewhat similar to the con-
cept of oblivious RAM, where the client (a CPU) wants to make a number of
read/write queries to the client (a RAM). It is required that the distribution
of client’s executed read/write queries must be completely independent of the
read/write queries the client actually intends to do. More precisely, for every
“program” of the same length, the distribution of executed queries must be the
same. The adversary is positioned inbetween the client and (honest) server, but
has read access to all the executed queries. It was shown in [12] that one can
implement oblivious RAM with a polylogarithmic overhead (in the size of the
“program”). We leave it as an interesting open question whether the techniques
of [12] can be used to construct (even more) efficient PIR-writing protocols, or
alternatively, our techniques can be used to construct more efficient oblivious
RAM protocols.

Acknowledgments. The authors were supported by Estonian Science Foun-
dation, grant #8058, and European Union through the European Regional De-
velopment Fund.

References

1. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

2. Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public Key Encryption
That Allows PIR Queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 50–67. Springer, Heidelberg (2007)

3. Chandran, N., Ostrovsky, R., Skeith III, W.E.: Public-Key Encryption with Effi-
cient Amortized Updates. Tech. Rep. 2008/429, International Association for Cryp-
tologic Research (2008), http://eprint.iacr.org/2008/429

4. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications
of Paillier’s Probabilistic Public-Key System. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

5. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic
Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, Springer, Heidelberg (2010)

6. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford
(September 2009)

7. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Mitzen-
macher, M. (ed.) STOC 2009, May 31-June 2, pp. 169–178. ACM Press, Bethesda
(2009)

http://eprint.iacr.org/2008/429

Two New Efficient PIR-Writing Protocols 455

8. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with
Constant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815.
Springer, Heidelberg (2005)

9. Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

10. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication.
In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005)

11. Lipmaa, H.: First CPIR Protocol with Data-Dependent Computation. In: Lee, D.,
Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984. Springer, Heidelberg (2009)

12. Ostrovsky, R.: Efficient Computation on Oblivious RAMs. In: STOC 1990, Balti-
more, Maryland, USA, May 14-16, pp. 514–523 (1990)

13. Ostrovsky, R., Shoup, V.: Private Information Storage. In: STOC 1997, pp. 294–
303 (1997)

14. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

15. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Ap-
plications. Monographs on Discrete Mathematics and Applications. Society for
Industrial Mathematics (2000)

Regulatory Compliant Oblivious RAM

Bogdan Carbunar1 and Radu Sion2

1 Motorola Labs
carbunar@motorola.com

2 Stony Brook Network Security and Applied Cryptography Lab
sion@cs.stonybrook.edu

Abstract. We introduce WORM-ORAM, a first mechanism that com-
bines Oblivious RAM (ORAM) access privacy and data confidentiality
with Write Once Read Many (WORM) regulatory data retention guar-
antees. Clients can outsource their database to a server with full con-
fidentiality and data access privacy, and, for data retention, the server
ensures client access WORM semantics. In general simple confidentiality
and WORM assurances are easily achievable e.g., via an encrypted out-
sourced data repository with server-enforced read-only access to existing
records (albeit encrypted). However, this becomes hard when also access
privacy is to be ensured – when client access patterns are necessarily hid-
den and the server cannot enforce access control directly. WORM-ORAM
overcomes this by deploying a set of zero-knowledge proofs to convince
the server that all stages of the protocol are WORM-compliant.

1 Introduction

Regulatory frameworks impose a wide range of policies in finance, life sciences,
health-care and the government. Examples include the Gramm-Leach-Bliley Act
[1], the Health Insurance Portability and Accountability Act [2] (HIPAA), the
Federal Information Security Management Act [3], the Sarbanes-Oxley Act [4],
the Securities and Exchange Commission rule 17a-4 [5], the DOD Records Man-
agement Program under directive 5015.2 [6], the Food and Drug Administration
21 CFR Part 11 [7], and the Family Educational Rights and Privacy Act [8].
Over 10,000 regulations are believed to govern the management of information
in the US alone [9].

A recurrent theme to be found throughout a large part of this regulatory
body is the need for assured lifecycle storage of records. A main goal there is to
support WORM semantics: once written, data cannot be undetectably altered
or deleted before the end of its regulation-mandated life span. This naturally
stems from the perception that the primary adversaries are powerful insiders
with superuser powers coupled with full access to the storage system. Indeed
much recent corporate malfeasance has been at the behest of CEOs and CFOs,
who also have the power to order the destruction or alteration of incriminating
records [10].

Major storage vendors have responded by offering compliance storage and
WORM products, for on-site deployment, including IBM [11], HP [12], EMC

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 456–474, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Regulatory Compliant Oblivious RAM 457

[13]. Hitachi Data Systems [14], Zantaz [15], StorageTek [16], Sun Microsystem
[17] [18], Network Appliance [19]. and Quantum Inc. [20].

However, as data management is increasingly outsourced to third party “clouds”
providers such as Google, Amazon and Microsoft, existing systems simply do not
work. When outsourced data lies under the incidence of both mandatory data re-
tention regulation and privacy/confidentiality concerns – as it often does in out-
sourced contexts – new enforcement mechanisms are to be designed.

This task is non-trivial and immediately faces an apparent contradiction. On
the one hand, data retention regulation stipulates that, once generated, data
records cannot be erased until their “mandated expiration time”, even by their
rightful creator – history cannot be rewritten. On the other hand, access privacy
and confidentiality in outsourced scenarios mandate non-disclosure of data and
patterns of access thereto to the providers’ servers, and can be achieved through
“Oblivious RAM” (ORAM) based client-server mechanisms [21,22]. Yet, by their
very nature, existing ORAM mechanisms allow clients unfettered read/write
access to the data, including the full ability to alter or remove previously written
data records – thus directly contradicting data retention requirements.

Basic confidentiality and WORM assurances are achievable e.g., via traditional
systems that could encrypt outsourced data and deploy server-enforced read-
only access to data records once written. Yet, when also access privacy is to be
ensured, client access patterns become necessarily hidden and the server cannot
enforce WORM semantics directly.

In this paper we introduce WORM-ORAM, a first mechanism that combines
the access privacy and data confidentiality assurances of traditional ORAM with
Write Once Read Many (WORM) regulatory data retention guarantees. Clients
can outsource their database to a server with full confidentiality and data access
privacy, and, for data retention, the server ensures client access WORM seman-
tics, i.e., specifically that client access is append-only: – once a data record has
been written it cannot be removed or altered even by its writer.

WORM-ORAM is built around a set of novel efficient zero knowledge (ZK)
proofs. The main insight is to allow the client unfettered ORAM access with full
privacy to the server-hosted encrypted data set while simultaneously proving to
the server in zero-knowledge – at all stages of the ORAM access protocol – that
no existing records are overwritten and WORM semantics are preserved.

Specifically, clients can add encrypted data records to the database (“the
ORAM”) hosted by a service provider. Each record will be associated with a
regulatory mandated expiration time. Once stored, the client can read all data
obliviously, (and add new records) – only leaking that access took place and
nothing else. No access patterns or data records or any other information is
leaked. The server, without having plaintext access to the data or the client
access patterns then ensures – in a client-server interaction – that any client
access is WORM compliant: it is either a read of an existing record, or an
addition of a new record (with a new index – no overwriting permitted).

To achieve the above, at an overview level, the solution outlines as follows.
The server hosts two ORAMs, one storing the actual data items (the W-ORAM)

458 B. Carbunar and R. Sion

and one allowing the private retrieval of items expiring at any given time (the E-
ORAM). The E-ORAM is effectively a helper data structure allowing the client
to determine which items to expire at given time intervals. Client access to the
E-ORAM needs to be private, but does not need to be proved correct.

The server exports an access API to the W-ORAM to the client consisting
of four types of operations: write, read, expire and compliance verification. For
access pattern privacy purposes as in the traditional ORAM protocols, the data
set stored at the server contains both “real” and “fake” items – this is discussed
later. Then, during any legitimate access to the W-ORAM the client will prove
in ZK to the server that the item written is real, “well formed” and can be
decrypted later in the case of an audit. Moreover she also proves that the access
does not in fact overwrite any existing database item. Similarly, in the expiration
operation, the client proves in ZK that the element to be removed from the W-
ORAM has indeed expired. Finally, at audit time, the data has to be accessible
to an authorized auditor, even in the case of a non-cooperating client (e.g., that
could refuse to reveal encryption keys).

We show that our solution does not change the computational complexity of
existing ORAM implementations. However, we warn that the constants involved
are non-negligible and render this result of theoretical interest only for now.
Future work focuses on reducing these overheads towards true practical efficiency.

2 Related Work

2.1 Oblivious RAM

Oblivious RAM [21] provides access pattern privacy to clients (or software pro-
cesses) accessing a remote database (or RAM), requiring only logarithmic stor-
age at the client. The amortized communication and computational complexities
are O(log3n). Due to a large hidden constant factor, the ORAM authors offer
an alternate solution with computational complexity of O(log4n), that is more
efficient for all currently plausible database sizes.

In ORAM, the database is considered a set of n encrypted blocks and sup-
ported operations are read(id), and write(id, newvalue). The data is organized
into log4(n) levels, as a pyramid. Level i consists of up to 4i blocks; each block is
assigned to one of the 4i buckets at this level as determined by a hash function.
Due to hash collisions each bucket may contain from 0 to log n blocks.

ORAM Reads. To obtain the value of block id, the client must perform a
read query in a manner that maintains two invariants: (i) it never reveals which
level the desired block is at, and (ii) it never looks twice in the same spot
for the same block. To maintain (i), the client always scans a single bucket in
every level, starting at the top (Level 0, 1 bucket) and working down. The hash
function informs the client of the candidate bucket at each level, which the client
then scans. Once the client has found the desired block, the client still proceeds
to each lower level, scanning random buckets instead of those indicated by their
hash function. For (ii), once all levels have been queried, the client re-encrypts

Regulatory Compliant Oblivious RAM 459

the query result with a different nonce and places it in the top level. This ensures
that when it repeats a search for this block, it will locate the block immediately
(in a different location), and the rest of the search pattern will be randomized.
The top level quickly fills up; how to dump the top level into the one below is
described later.

ORAM Writes. Writes are performed identically to reads in terms of the data
traversal pattern, with the exception that the new value is inserted into the top
level at the end. Inserts are performed identically to writes, since no old value
will be discovered in the query phase. Note that semantic security properties
of the re-encryption function ensure the server is unable to distinguish between
reads, writes, and inserts, since the access patterns are indistinguishable.

Level Overflow. Once a level is full, it is emptied into the level below. This
second level is then re-encrypted and re-ordered, according to a new hash func-
tion. Thus, accesses to this new generation of the second level will hence-forth
be completely independent of any previous accesses. Each level overflows once
the level above it has been emptied 4 times. Any re-ordering must be performed
obliviously: once complete, the adversary must be unable to make any correla-
tion between the old block locations and the new locations. A sorting network
is used to re-order the blocks.

To enforce invariant (i), note also that all buckets must contain the same
number of blocks. For example, if the bucket scanned at a particular level has no
blocks in it, then the adversary would be able to determine that the desired block
was not at that level. Therefore, each re-order process fills all partially empty
buckets to the top with fake blocks. Recall that since every block is encrypted
with a semantically secure encryption function, the adversary cannot distinguish
between fake and real blocks.

Oblivious Scramble. In [22] Williams et al.introduced an algorithm that per-
forms an oblivious scramble on a array of size n, with c

√
n local storage, in

O(n log log n) time with high probability. Informally, the algorithm is a merge
sort, except a random number generator is used in place of a comparison, and
multiple sub-arrays are merged simultaneously. The array is recursively divided
into segments, which are then scrambled together in groups. The time complex-
ity of the algorithm is better than merge sort since multiple segments are merged
together simultaneously. Randomly selecting from the remaining arrays avoids
comparisons among the leading items in each array, so it is not a comparison
sort.

2.2 Oblivious Transfer with Access Control

Camenish et al. [23] study the problem of performing k sequential oblivious
transfers (OT) between a client and a server storing N values. The work makes
the case that previous solutions tolerate selective failures. A selective failure
occurs when the server may force the following behavior in the ith round (for
any i=1..k): the round should fail if the client requests item j (of the N items)

460 B. Carbunar and R. Sion

and succeed otherwise. The paper introduces security definitions to include the
selective failure problem and then propose two protocols to solve the problem
under the new definitions.

Coull et al. [24] propose an access control oblivious transfer problem. Specif-
ically, the server wants to enforce access control policies on oblivious transfers
performed on the data stored: The client should only access fields for which it
has the credentials. However, the server should not learn which credentials the
client has used and which items it accesses.

Note that the above oblivious transfer flavors do not consider by definition
the problem of obliviously enforcing WORM semantics as well as writing to the
data. Our regulatory compliant problem is complicated by the fact that we also
allow clients to add to the database while proving that operations performed on
the data do not overwrite old records. One can trivially extend OT with an add
call, by imposing O(N) communication and computation overheads. However,
by building our solution on ORAM we can perform both read and add operations
with only poly-logarithmic complexity and traffic overheads.

3 Model and Preliminaries

3.1 Deployment and Threat Model

In the deployment model for networked compliance storage, a legitimate client
creates and stores records with a (potentially untrusted) remote WORM storage
service. These records are to be available later to both the client for read as well
as to auditors for audits. Network layer confidentiality is assured by mechanisms
such as SSL/IPSec. Without sacrificing generality, we will assume that the data
is composed of equal-sized blocks (e.g., disk blocks, or database rows).

At a later time, a previously stored record’s existence is regretted and the
client will do everything in her power – e.g., attempt to convince the server to
remove the record – to prevent auditors from discovering the record. The main
purpose of a traditional WORM storage service is to defend against such an
adversary.

Moreover, numerous data regulations feature requirements of “secure dele-
tion” of records at the end of their mandated retention periods. Then, in the
WORM adversarial model the focus is mainly on preventing clients from “rewrit-
ing” history, rather than “remembering” it. Additionally, we prevent the rushed
removal of records before their retention periods. Thus, the traditional Write-
Once Read-Many (WORM) systems have the following properties:

– Data records may be written by clients to the server once, read many times
and not altered for the duration of their life-cycle.

– Records have associated mandatory expiration times. After expiration, they
should not be accessible for either audit or read purposes.

– In the case of audits, stored data should be accessible to auditors even in
the presence of a non-cooperating client refusing to reveal encryption keys.
Compliant record expiration of inaccessible records should be easily proved
to auditors.

Regulatory Compliant Oblivious RAM 461

Additionally, when records and their associated access patterns are sensitive they
need to be concealed from a curious server. The main purpose of WORM-ORAM
is to enable WORM semantics while preserving data confidentiality and access
pattern privacy. This inability of the server to “see” data and associated ac-
cess patterns prevents the deployment of conventional file/storage system access
control mechanisms or data outsourcing techniques. Thus, we have the following
additional requirements:

– Data records are encrypted from the server (confidentiality).
– The server cannot distinguish between different read operations targeting

the same or different data records (access privacy).
– During a read, in the ORAM protocol, to enforce WORM semantics, clients

will need to prove to the server that any access did not remove data records.
Specifically, when re-inserting one of the read elements back into the root of
the ORAM pyramid, the client needs to prove to the server in ZK that the
inserted element is a correct re-encryption of the previously removed “real”
element (see Section 2.1 for details).

– During a re-shuffle, in the ORAM protocol, clients can prove that no “real”
elements were converted into “fake” ones.

Additionally, in the WORM-ORAM scenario, we assume the following:

– The server is allowed to distinguish between record expiration, read and
write operations.

– Clients participate correctly in any record expiration protocol. This is rea-
sonable to assume because the regulatory compliance scenario allows clients
always to by-pass the server-enforced storage service and store select records
elsewhere.

Several participants are of concern. First, clients have incentives to rewrite his-
tory and alter or completely remove previously written records. We note that in
the regulatory scenario, there exists an apparent imbalance – clients are assume
to correctly store records at the time of their creation – only later does regretting
the past becoming a concern. Thus the main focus of WORM assurances is not to
prevent history but rather just its rewriting. In reality, the “regret” time interval
between the creation/storage and regretting of a record is non-zero, application-
specific, and often quite large. To remove any application dependency, here we
consider the strongest WORM guarantees, in which records are not to be altered
as soon as they are written.

Second, the storage provider (server) is curious and has incentives to illicitly
gain information about the stored data and access patterns thereto. As the
regulatory storage provider, the server is the main enforcer of WORM semantics
and record expiration. Naturally, the server is assumed to not collude with clients
illicitly desiring to alter their data. In summary, the server is trusted to run
protocols correctly yet it may try to use information obtained from correct runs
to obtain undesired information. This assumption is natural and practical as
otherwise one can easily imagine a server simply deleting stored records in a

462 B. Carbunar and R. Sion

denial of service attack. Basic denial of service on the client or server side is not
of interest here.

We consider a server S with O(N) storage and a client C with O(
√

N log N)
local storage. The client stores O(N) items on the server. We denote the regu-
latory compliance auditor by A.

3.2 Cryptography

We require several cryptographic primitives with all the associated semantic se-
curity [25] properties including: a secure, collision-free hash function which builds
a distribution from its input that is indistinguishable from a uniform random
distribution, a semantically secure cryptosystem (Gen, Enck, Deck), where the
encryption function Enc generates unique ciphertexts over multiple encryptions
of the same item, such that a computationally bounded adversary has no non-
negligible advantage at determining whether a pair of encrypted items of the
same length represent the same or unique items, and a pseudo random number
generator whose output is indistinguishable from a uniform random distribution
over the output space.

The Decisional Diffie-Hellman (DDH) assumption over a cyclic group G of or-
der q and a generator g states that no efficient algorithm can distinguish between
two distributions (ga, gb, gab) and (ga, gb, gc), where a, b and c are randomly cho-
sen from Zq.

An integer v is said to be a quadratic residue modulo an integer n if there
exists an integer x such that x2 = v mod n. Let QRA be the quadratic residuosity
predicate modulo n. That is, QR(v, n) = 1 if v is a residue mod n and QR(v, n) =
0 if v is a quadratic non-residue.

Given an odd integer n = pq, where p and q are odd primes, the quadratic
residuosity (QR) assumption states that given n but not its factorization and
an integer v whose Jacobi symbol (v|n) = 1 it is difficult to determine whether
QR(v, n) is 1 or 0.

The Goldwasser, Micali and Rackoff [26] zero knowledge proof of quadratic
non-residuosity proceeds roughly as follows. Given two parties A and B, A claims
knowledge of QR(v, n) = 0, for (v|n) = 1. A proves this in zero knowledge to
B, that is, without revealing n’s factorization. To achieve this, B selects m
random values r1, .., rm and flips m coins. For each coin ci, if ci = 0 B computes
xi = r2

i mod n to A, otherwise it computes xi = vr2
i mod n. B sends all computed

xi values to A. A needs to send back the square roots of the quadratic residues it
detects in the list x1, ..xm. If QR(v, n) = 0, then A correctly detects the residues.
If QR(v, n) = 1, all the values received by A will be quadratic residues. A can
then cheat only with probability 1/2m.

Notations: Let n = pq be a large composite, where p and q are primes. Let
φ(n) denote the Euler totient of n. We will use x ∈R A to denote the random
uniform choice of x from the set A. Given a value m, let P(m) denote the group
of permutations over the set {0, 1}m. Let k < |n| be a security parameter. Let

Regulatory Compliant Oblivious RAM 463

N denote the set of elements stored in the ORAM. Let Wm be the universe of
all sets of m quadratic residues.

4 Solution Overview

A WORM-ORAM system, consists of two ORAMs (W-ORAM,E-ORAM) and
a set of operations (Gen, Enc, Dec, RE, Write, Read, Expire, Shuffle, Audit)
that can be used to access the ORAMs. The client needs to store elements at
the server while preserving the privacy of its accesses and allowing the server to
preserve the data’s WORM semantics. W-ORAM serves this purpose: it is used
by the client to store (label, element) pairs.

We organize time into epochs: each element stored at the server expires in
an integer number of epochs, as determined by the client. The client needs to
remember the expiration time of each element stored in the W-ORAM. The
client uses the E-ORAM to achieve this, to store expiration times of labels used
to index elements stored in W-ORAM. When queried with a time epoch, E-
ORAM provides a list of labels expiring in that epoch. The labels are then used
to retrieve the expiring elements from the W-ORAM.

The E-ORAM is stored and accessed as a regular ORAM [27]. It is used as an
auxiliary storage structure by the client and it needs not be WORM compliant.
The W-ORAM on the other hand stores actual elements and needs to be made
WORM compliant. The W-ORAM stores two types of elements: ”reals” and
”fakes”. A real element has a quadratic non-residue component, whereas a fake
has a quadratic residue. Each time the ORAM is accessed, elements are re-
encrypted to ensure access privacy. The client has then to prove in ZK that
(i) an element is real or fake and (ii) a re-encrypted element decrypts to the
same cleartext as the original element. We now provide a brief overview of each
operation described above and follow with a detailed description in the next
section.

Gen. Operation executed initially, to generate system parameters for each par-
ticipant: client, server, auditor.

Enc, Dec, RE. Enc and Dec provide the basic encryption and decryption
operations for elements to be stored in the W-ORAM. RE is the W-ORAM
element re-encryption operation. RE is needed to ensure that the server cannot
distinguish the same W-ORAM element accessed multiple times, while allowing
the server to prove in zero knowledge the element’s correctness.

Write. Operation used by the client to store an element on the server. The
client needs to label the element and determine its expiration time. The client
stores the element indexed by the label on the W-ORAM and the label indexed
by the element’s expiration time in the E-ORAM.

Read. Allows the client to retrieve from the W-ORAM an element indexed by
an input label. The operation is based on existing ORAM reading techniques.
In addition, it obliviously ensures that the client cannot remove or alter any real
element from the W-ORAM.

464 B. Carbunar and R. Sion

Shuffle. Re-shuffles a level (provided as input) in the W-ORAM. Based on
existing ORAM shuffling techniques, it needs to ensure that the client cannot
remove or alter existing W-ORAM elements.

Expire. This operation makes use of both the E-ORAM and W-ORAM to
remove all elements from the W-ORAM whose expiration time equals an input
expiration time epoch. The operation needs to obliviously convince the server
that only expiring elements are removed and no other W-ORAM elements are
altered.

Audit. Enables an auditor to access the entire W-ORAM and search for key-
words of interest.

5 Solution

Gen(k). Generate p = 2p′ + 1, q = 2q′ + 1 such that p, p′, q, q′ are primes. Let
n = pq. Let G be the cyclic subgroup of order (p− 1)(q− 1). DDH is believed to
be intractable in G [28]. Let g be a generator of G. Let a be a random value and
let d = a−1 mod φ(n). Let k be a random key in a semantically secure symmetric
cryptosystem. Gen gives k, n, g, h = ga ∈ G, p, q, a and d to the client and n,
g, h to the server. Gen also gives k, p, q, a and d to the auditor.

Enc((x,Texp),k,g,h,G,f). Encrypt an element of value x with expiration time
Texp, using the client’s view of Gen’s output as input parameters. The output
of the operation is a tuple (A, B) ∈ G×G that can be stored on the W-ORAM.
If f = 0, Enc generates a “real” W-ORAM element: the first field of such
elements is a quadratic non residue, QR(A, n) = 0. The tuple is computed as
follows. First, generate a random r ∈ {0, 1}k and use it to compute M(x) =
{Ek(x), Texp, “real′′, r} where Ek(x) denotes the semantically secure encryption
of item x with symmetric key k and “real” is a pre-defined string. The random
r is chosen (using trial and failure) such that QR(M(x), n) = 0 (quadratic non
residue mod n) whose Jacobi symbol is 1. Second, generate a random odd value
b ∈R {0, 1}k and output the tuple S(x) ∈ G×G as

S(x) = (A, B) = (M(x)g2b, h2b)).

S(x) is said to be an “W-ORAM element”, whose first field is the “encrypted
element” and second field is called the “recovery key”. Notice that since M(x)
is a QNR, QR(M(x)g2b, n) = 0 with (Jacobi symbol) (M(x)g2b|n) = 1.

If f = 1, Enc generates a “fake” W-ORAM element: the first field of fake
elements is a quadratic residue, QR(A, n) = 1. To compute a fake element, Enc
generates random s, k ∈R {0, 1}k and outputs the tuple (s2 mod n, k).

Dec((A,B),d,k). Decrypt a real W-ORAM element, given the secret key d =
a−1. Compute M = AB−d. M has format {E, Texp, “real′′, r}. The operation
outputs the tuple Deck(E), Texp.

Regulatory Compliant Oblivious RAM 465

RE(A,B). Re-encrypt element (A, B). Choose u ∈R {0, 1}k, called re-encryption
factor. Output pair (A′, B′) = (Ag2u, Bh2u). Note that knowledge of the mes-
sage M encoded in (A, B) is not required. Alternatively, if M is known such that
A = Mg2b and B = h2b, then output (A′, B′) = (Mg2u, h2u). Note that u may
also be used as an input parameter by RE((A, B), u).

RE(L). Generalization of RE((A, B)), where L = {(A1, B1), .., (Am, Bm)} is a
list of W-ORAM elements. Choose ū = {u1, .., um}, such that ui ∈R {0, 1}k. ū is
called the re-encryption vector. Output L′ = {RE((Ai, Bi), ui)}i=1..m. We also
use the notation L′ = Lū and call L′ a “correct re-shuffle” of L.

We now prove the semantic security of Enc.

Theorem 1. Enc is IND-CPA secure.

Proof. Let Q be an adversary that can break the semantic security of Enc with
advantage ε. We then build an adversary Q∗ that can break the DDH assumption
in G without knowing n’s factors, with probability ε. Let CH be a challenger.
CH interacts with Q∗ by sending the triple (A = ga, B = gb, C = gc). Q∗ needs
to decide whether c = ab or is randomly distributed.

Q∗ sends A to Q as the public key (h in our protocol). A then sends to Q∗

two messages M0 and M1. Q∗ picks a bit α ∈R {0, 1} randomly and sends back
to Q the tuple (MαB2, C2). Q sends back its guess for α. If Q guesses correctly,
Q∗ sends to CH the value 1 (c = ab) or 0 (c is random).

When c = ab, the tuple (MαB2, C2) is a correct ciphertext of Mα. Then, the
interaction between Q∗ and Q is correct and the probability of Q∗ to output 1 is
1/2 + ε. When c is distributed randomly, the tuple (MαB2, C2) is independent
of α. The probability of Q∗ outputting 1 is then 1/2. Thus, Q∗ has advantage ε
in the DDH game.

Note that we can similarly prove that RE is IND-CPA. That is, given two encryp-
tions (A0, B0) and (A1, B1) of any two messages and a re-encryption RE(Ab, Bb),
b ∈R {0, 1} of one of the two encryptions, an attacker cannot guess b with
non-negligible probability over 1/2. In the following, we describe first the main
E-ORAM operations and then the W-ORAM accessing operations.

5.1 Accessing E-ORAM

The E-ORAM is a standard ORAM, storing labels indexed under expiration
time epochs. The E-ORAM needs to provide C with the means to determine
how many and which labels expire at a given time epoch and also to insert a
new (epoch, label) pair. This is achieved in the following manner. For each Texp

value used to index labels in E-ORAM, a head value is used to store the number
of labels expiring at Texp: (Texp, (label, counter)). label is the first label that
was indexed under Texp. Each of the remaining c − 1 labels is stored under a
unique index: The ith label’s index is (Texp, i), that is, the label’s expiration
time concatenated with the label’s counter at its insertion time.

466 B. Carbunar and R. Sion

Algorithm 1. E-ORAM: Write a
new label under an expiration time
and enumerate all labels indexed un-
der an expiration time.

1.Write(E− ORAM : ORAM, Texp : int, lbl : id)
2. (e, A) := ReadORAM(E− ORAM, Texp);
3. if (e = null) then
4. e′ := Ek(lbl, 1);
5. WriteORAM(Texp, e′);
6. else
7. (l, c) := Dk(e);
8. WriteORAM(Texp, Ek(l, c + 1));
9. WriteORAM((Texp, c + 1), Ek(lbl));
10. fi
11.end

12.Enumerate(E− ORAM : ORAM, Texp : int)
13. L : id[]; #store result labels
14. L := ∅;
15. (e, A) := ReadORAM(E− ORAM, Texp);
16. if (e! = null) then
17. (l, c) := Dk(e);
18. L := L ∪ l;
19. for (i := 2; i ≤ c; i + +) do
20. (e, A) := ReadORAM(E− ORAM, (Texp, i));
21. l := Dk(e);
22. L := L ∪ l;
23. od
24. fi
25. return L;
26.end

As mentioned in Section 2, ReadORAM denotes the standard ORAM read
operation, taking as input the ORAM and a label and returns an element stored
under that label along with the list of all elements removed from the ORAM
(including the one of interest). WriteORAM is the standard ORAM write opera-
tion, which takes as input a label and an element and stores the element indexed
under the label. Note that in the standard ORAM implementation, both oper-
ations are performed in the same manner. Their operation is only different for
the client. Let ObliviousScramble be the standard ORAM re-shuffle operation
(see Section 2), which takes as input a level id and generates a pseudo-random
permutation of the re-encrypted elements at that level. We now present the most
important operations for accessing the E-ORAM, Write and Enumerate.

Write(E-ORAM,Texp,label). The pseudo-code of this operation is shown in
Algorithm 1, lines 1-11. It allows the client to record the fact that label expires
at time Texp. It first reads the element currently stored under Texp (line 2). If no
such element exists (line 3), it generates an element encoding the fact that this
label is the first to be stored under Texp (line 4) and writes it on the E-ORAM
(line 5). If however a label is already stored under Texp (line 6), retrieve that label
l along with the counter c that specifies how many labels are currently expiring
(stored in E-ORAM) at Texp (line 7). Note that the read operation performed
on line 2 removes this element from the E-ORAM. Then, since now c + 1 labels
expire at Texp, store label l and the incremented counter in the E-ORAM under
Texp (line 8). Finally, store the input label under an index consisting of a unique
value: Texp concatenated with c+1. This will allow the client to later enumerate
all labels expiring at Texp (see next).

Enumerate(E-ORAM,Texp). This operation enables C to retrieve all the la-
bels in E-ORAM that expire at Texp. Its pseudo-code is shown in Algorithm 1,
lines 12-26. First, initialize the result label list (line 13). Then, read the head
label stored under Texp along with the counter of labels expiring at Texp (lines

Regulatory Compliant Oblivious RAM 467

14,16). If such an element exists (line 15), record the head label (line 17). Then,
for each of the c− 1 (i = 2, .., c) remaining labels, retrieve their actual value by
reading from E-ORAM the element stored under a unique index consisting of
Texp concatenated with i. Note that Enumerate removes all labels expiring at
Texp from E-ORAM (ReadORAM removes accessed elements).

5.2 Generating Labels

Elements in the standard ORAM model are stored as a pair (label, value),
where label may denote a memory location or the subject of an e-mail. In our
case to prevent the server from launching a dictionary attack, we use the a
Label(label, lkey) operation to generate labels. Besides the input label, Label also
uses a (random) labeling key, which is used to define a pseudo-random function
Flkey . The output of Label coincides then with the output of Flkey(label).

In the following we describe the main W-ORAM accessing operations.

5.3 Writing on the Server

Write((W-ORAM,E-ORAM,v,l,Texp,params). Insert a value v under a la-
bel l, with expiration time Texp on the server (on the W-ORAM and E-ORAM).
It takes as input also C’s view of Gen’s output, params = k, g, h, G. Algorithm 2
shows the pseudo-code of this operation. It first generates a new label (line 2)
and calls Enc to produce a W-ORAM tuple (A, B) (line 3). It then generates
a non-interactive zero knowledge proof of QR(A, n) = 0 (A’s quadratic non-
residuosity). If the proof verifies (line 5) the server inserts the tuple (A, B) in
the top level of the W-ORAM (line 6) and stores label under the tuple’s expira-
tion time Texp in E-ORAM (see Section 5.1).

Algorithm 2 W-ORAM: Write
value v expiring at Texp.

1.Write(W− ORAM : ORAM, E− ORAM : ORAM,
v : string, l : id, Texp : int)

2. label := newLabel(l, lkey);
3. (A, B) := Enc(label, v, Texp, params);
4. ZKP := getQNRProof(A, n);
5. if (verify(ZKP, A) = 1) then
6. T0 := getLevel(W − ORAM, 1);
7. insert(T0, (A, B));
8. Write(E− ORAM, Texp, label);
9. else
10. return error;
11. fi
12.end

Algorithm 3 W-ORAM: Read
label.
1.Read(W− ORAM : ORAM, label : id)
2. (R, L) := ReadORAM(W− ORAM, label);
3. U := (Au, Bu) := RE(R);
4. Proof := ZK− POR(L, U);
5. if (verifyQNR(Au , n)

& verify(Proof, L, U)) then
6. T0 := getLevel(W − ORAM, 1);
7. insert(T0 , U);
8. return Dec(R, d, k);
9. else
10. undo(W − ORAM);
11. return error;
12. fi end

. .

468 B. Carbunar and R. Sion

5.4 Reading from the Server

Read(W-ORAM,label). Read takes as input the W-ORAM and a label and
returns an element of format (label, x, Texp). Algorithm 3 shows the pseudo-code
for this operation. Read first performs on W-ORAM a standard ORAM read
on the desired label (line 2). This returns both the W-ORAM element R of
interest and the list L of elements (containing R) removed from the W-ORAM.
C computes U = (Au, Bu), a re-encryption of R (line 3) and calls ZK-POR to
prove in zero knowledge that U is a re-encryption of the only real element in
L (line 4). ZK-POR is described in detail in Section 5.4. S verifies in ZK that
QR(Au, n) = 0 and also the validity of the ZK-POR proof. If the proofs are valid
(line 5), S inserts U in the first level of the W-ORAM (lines 6-7). C decrypts
the desired element R and returns the result (line 8). If any proof fails (line 9)
S restores the W-ORAM to the state before the start of Read and returns error
(lines 10-11).

Zero Knowledge Proof of ORAM Read. We now present ZK-POR, the
zero-knowledge proof of WORM compliance of the read operation performed on
the W-ORAM. ZK-POR takes as argument the list L of elements removed from
W-ORAM in line 2 of Algorithm 3 and U , the re-encryption of the real element
from L. ZK-POR is executed by the client C and the server S. Let m denote
the number of levels in the W-ORAM, m = log N .

Let L = {(s2
1, k1),...,(s

2
r−1, kr−1),S(xr),(s

2
r+1, kr+1),.., (s2

m, km)} where the el-
ements are listed in the order in which they were removed from the W-ORAM.
C is interested in the item from the rth ORAM layer, R = S(xr). Let S(xr) =
(M(xr)g

2tr , h2tr) = (Ar, Br). Its first field is a quadratic non-residue. All other
elements from L are fakes – their first field is a quadratic residue. Let U =
RE(R) = (M(xr)g

2u, h2u) = (Au, Bu) be the re-encryption of S(xr). The fol-
lowing steps are executed s times by C and S.

Step 1: Proof Generation. C selects a random permutation π ∈R P(m). C
generates w̄ = {w1, ..wm}, where each wi ∈R {0, 1}m is odd and generates the
proof list P = π(Lw̄). That is, P = π{(s2

1g
2w1 , k1h

2w1),..,(Arg
2wr , Brh

2wr),
..,(s2

mg2wm , kmh2wm)}, where, (Arg
2wr , Brh

2wr) is a re-encryption of S(xr). C
sends P to S. The client locally stores wi, i = 1..m. As assumed in the model,
C has O(

√
N log N) storage which is sufficient to store m = O(log N) values.

Step 2: Proof Validation. S flips a coin b. If b is 0, C reveals w1, .., wm. S
verifies that all wi are odd and ∀(Ai, Bi) ∈ L, (Aig

2wi , Bih
2wi) ∈ P . If b is 1, C

sends to S the values sig
wi , i = 1..m, i �= r along with the value Γ = (tr+wr−u).

Note that given s2
i mod n and n’s factorization, C can easily recover si. S verifies

first that (sig
wi)2, i = 1..m, i �= r occurs in the first field of exactly one tuple

in P . That is, m − 1 of the elements from P are fakes. S then verifies that
(Arg

2wr , Brh
2wr) = RE((Au, Bu), Γ). If any verification fails, S outputs ”error”

and stops.

Theorem 2. A correct execution of Read from W-ORAM has O(log N) com-
plexity.

Regulatory Compliant Oblivious RAM 469

Theorem 3. ZK-POR is a zero knowledge proof system of Read ∈ WORM.
That is, Read is WORM compliant.

Due to lack of space, the proofs will be included in the journal version of the
paper.

Note that the soundness property of ZK-POR ensures that a cheating client
can remove an element from the ORAM during the Read operation without
being detected with probability at most 1/2s.

5.5 Shuffling the W-ORAM

When the l − 1th level of W-ORAM stores more than 4l−1, due to element
insertions occurring during Read operation, the level needs to be spilled over
into level l. Let T [l] denote the list of elements stored in the W-ORAM at the
l-th level. The l-th level then needs to be filled with fakes. The fakes are needed
to ensure that subsequent Read accesses will not run out of fakes (see [27] for
more details). The l-th level then needs to be obliviously permuted, using only
O(
√

N log N) client space. Let T new[l] denote the re-shuffled l-th level elements.
Due to the WORM semantics, the client also needs to prove that the reshuffle is
correct: (i) T new[l] is a re-encryption of the old T [l] and (ii) |T new[l]| − |T [l]| −
|T [l− 1]| elements from T new[l] are fakes. Shuffle performs this operation.

Algorithm 4 Shuffle of level l.

1.Shuffle(W− ORAM : ORAM, l : int)
2. Tnew[l] : string[]#new level l array

#spill T[l− 1] into T[l]
3. T[l− 1] := getLevel(W − ORAM, l− 1);
4. T[l] := getLevel(W − ORAM, l);
5. T[l] := T[l− 1] ∪ T[l];
6. T[l− 1] := ∅;
#re− encrypt elements from T[l]
7. for (i := 1; i ≤ |T[l]|; i + +) do
8. e := T[l][i];
9. u[i] := genRandom();
10. Tnew[l][i] := Ek(RE(e, u[i]));
11. for (j := 1; j ≤ s; j + +) do
12. w[i] := genRandom();
13. Pj[i] := Ek(RE(e, w[i]),

”mv”, u[i], u[i] − w[i]);
#add fakes
14. f := fakeCount(T[l]);
15. for (i := 1; i ≤ f; i + +) do
16. (s[i], k[i]) := genRandom();
17. e := (s[i]2, k[i]);
18. append(Tnew [l], Ek(e));

19. for (j := 1; j ≤ s; j + +) do
20. w[i] := genRandom();
21. re := RE(e, w[i]),

”add”, s[i]gw[i], u[i] − w[i]);
22. append(Pj[i], Ek(re));

#Shuffle Tnew[l] and proofs
23. Tnew[l] := ObliviousScramble(Tnew [l]);
24. for (j := 1; j ≤ s; j + +) do
25. Pj := ObliviousScramble(Pj);
#decrypt shuffled elements
26. for (i := 1; i ≤ |Tnew[l]|; i + +) do
27. e := Tnew[l][i];
28. Tnew[l][i] := Dk(e);
29. for (j := 1; j ≤ s; j + +) do
30. e := Pj[i];
31. (A, B, str, C, D) := Dk(e);
32. Pj[i] := (A, B, Ek(str, C, D));
#proof verification step
34. for (j := 1; i ≤ s; i + +) do
35. if (!verify(T[l], Tnew[l], Pj)) then
36. undo(W− ORAM, l− 1, l);
37. return error;

#commit new level
38. T[l] := Tnew[l];

.

470 B. Carbunar and R. Sion

Shuffle(W-ORAM,l). This operation takes as input the W-ORAM and the
index of its level that needs to be reshuffled. Algorithm 4 shows the pseudo-code
of this operation. It first spills the content of level l − 1 into level l (lines 3-6).
Then, it needs to compute the oblivious permutation and build its ZK proof
of correctness. We call this procedure ZK-PRS and describe it in detail in the
following.

Zero Knowledge Proof of Re-Shuffle. The pseudo-code of ZK-PRS is in
Algorithm 4, lines 7-38. Similar to ZK-POR (see Section 5.4), ZK-PRS consists
of s rounds executed by the client C and the server S. During each round, a
proof list Pj is built by C (line 14 of Algorithm 4). Pj has the same number of
elements as T new[l], O(N). The client builds the list T new[l] and each of the s
proofs P in the following steps. Initially, T new[l] and each proof list Pj is stored
as an empty list at the server S. The client C generates a symmetric key k for
the (G, E, D) cryptosystem.

Step 1: Element Re-Encryption. First, C takes each element from T [l] and
stores a re-encrypted version in T new[l] and in each proof Pj (lines 7-13). That
is, for each element Si = (Ai, Bi) ∈ T [l] (stored at S), C generates fresh random
odd values ui, wi ∈ {0, 1}k (lines 9 and 12) and produces one element S′

i to
be inserted in T new[l] (line 10) S′

i = Ek(Aig
2ui , Bih

2ui) and one element P
to be inserted in Pj (line 13) P = Ek(Aig

2wi , Bih
2wi , ”mv”, Γ1[i], Γ2[i]) where

Γ1[i] = −wi and Γ2[i] = (ui − wi). The string ”mv” denotes that this proof
element corresponds to an element from T [l] moved to T new[l].

Step 2: Fake Insertion. C adds f fake elements (lines 14-22). For each of the
f fakes to be inserted in T new[l], C generates two random values si, ki ∈R {0, 1}k
(line 16), i = 1..f , where wi is odd. C then adds an element Ek(s2

i , ki) in T new[l]
(lines 17-18). It then generates a random value wi ∈R {0, 1}k (line 20) for each
proof list Pj and appends an element Ek(s2

i g
2wi , kih

2wi , ”add”, Γ1[i], Γ2[i]) to Pj

(lines 21-22). Γ1[i] = sig
wi , Γ2[i] = (ui − wi) mod φ(N) and the string ”add”

denotes that this proof element is a fake added to level l.
Note that Γ1[i] and Γ2[i] are used to keep track of the correspondence between

the ith element of each Pj and its re-encryptions in T [l] and T new[l] after the
list reshuffle step (see next).

Step 3: List Reshuffle. At the end of the set generation step, C (and S) have
a one-to-one correspondence between each element in T new[l], each element in
each Pj and each element in T [l]. C then calls the ObliviousScramble procedure
using T new[l] and each Pj as inputs (lines 23-25). During the ObliviousScramble
call, elements read from T new[l] and P are decrypted (using k) and re-encrypted
before being written back. Due to the semantic security properties of the encryp-
tion scheme employed, at the end of the ObliviousScramble, S can no longer map
elements from T [l] to elements in the reshuffled T new[l] and Pj sets.

Regulatory Compliant Oblivious RAM 471

Step 4: Decryption. C reads each element from the reshuffled T new[l] list,
decrypts the element and writes it back in-place (lines 26-28). C reads each
element from each proof list Pj , decrypts it and writes back (Aig

2wi , Bih
2wi ,

Ek(str, Γ1[i], Γ2[i])), where str is either ”mv” or ”add” – moved or added fake
(lines 29-32).

Step 5: Proof Verification. S verifies each proof list Pj (lines 34-37). If any
verification fails, restore the W-ORAM to the state at the beginning of the
operation and return error (lines 36-37). Each verification, for a proof list P ,
works as follows.

S flips a coin b. If b = 0, S asks C to prove that P is a valid reshuffle of T [l]
and all the remaining elements in P are fakes. For this, C reads each element of
P , (Aig

2wi , Bih
2wi , Ek(str, Γ1[i], Γ2[i])), retrieves Γ1[i] and sends to S, Aig

2wi ,
Bih

2wi , str and Γ1[i]. If str = ”mv”, S first verifies that indeed Γ1[i] is an odd
number, then verifies that RE((Aig

2wi , Bih
2wi), Γ1[i]) appears in T [l] exactly

once. If str = ”add”, S verifies that Γ1[i]
2 is the first field of exactly one tuple in

T new[l]. If b = 1, C needs to prove that P is a valid reshuffle of T new[l]. For this,
C reads each element from P , recovers Γ2[i] and sends to S the values Aig

2wi ,
Bih

wi and Γ2[i]. S verifies that RE((Aig
2wi , Bih

2wi), Γ2[i]) occurs in T new[l]
exactly once.

Algorithm 5 Operation that re-
moves all W-ORAM elements that
expire at time T .

1.Expire(E− ORAM, W− ORAM : ORAM, T : int
2. L : id[]; #expiring labels
3. E : string[]; #removed from W− ORAM
4. L := Enumerate(E − ORAM, T);
5. for each label in L do
6. (R, E) := ReadORAM(W− ORAM, label);
7. Proof := ZK− PEE(R, E);
8. if (verify(Proof, E) = 0) then
9. undo(W− ORAM);
10. return error;
11. fi od
12.end

.

The following result holds. Due to
lack of space we omit the proof, which
will be included in the journal version
of the paper.

Theorem 4. A correct execution of
ZK-PRS has O(log N log log N) amor-
tized complexity.

Due to lack of space we omit the
proof, which will be included in the
journal version of the paper. The jour-
nal version also includes the proof
that ZK-PRS is a zero knowledge
proof system of Shuffle ∈ WORM.

5.6 Element Expiration

Expire(T). The operation takes as input a time epoch T and removes all the
elements from the W-ORAM that expire in that epoch. The pseudo-code of the
operation is shown in Algorithm 5. It first uses the E-ORAM to enumerate all
the labels that expire at T (line 4). Then, for each such label (line 5) it reads
(and removes) from the W-ORAM the corresponding element (line 6). Note
that the ReadORAM operation also returns the entire list E of elements removed
from the W-ORAM – containing log N elements. It then builds a zero knowledge
proof of the fact that E contains one real element that expires at T and the rest
(log N − 1 elements) are fakes (line 7). If the proof verifies, the server accepts

472 B. Carbunar and R. Sion

the expiration, otherwise restores the W-ORAM to the state before the Read of
line 6 (line 9) and returns error (line 10).

Zero Knowledge Proof of Element Expiration. We present a sketch of
ZK-PEE, which is called in Algorithm 5, line 7. ZK-PEE takes as input the
element to be expired, R and the list of all elements that were removed from
W-ORAM when R was read (line 6). Let m = log N be the number of elements
in E. ZK-PEE consists of s rounds run between C and S. During each round C
generates w̄ = {w1, .., wm}, where wi ∈R {0, 1}k are odd. C computes a proof
list P = π(Ew̄), where π ∈R Pm is a random permutation. S then flips a bit
b. If b = 0, C needs to provide w̄. S verifies that all wi ∈ w̄ are odd and that
P = π(Ew̄).

If b = 1, C reveals Dec(R, d, k) = M(x) = (Ek(x), Texp, ”real”, r) to S along
with the encryption factor u and the square roots of all the other log N − 1 ele-
ments in P . S verifies the revealed element: (i) its correctness, (M(x)g2u, h2u) =
R and (ii) its format, that is, Texp = T and the third field is ”real”. It also
verifies that the remaining (log N − 1) elements of P are fakes.

5.7 Audit

Audit(d,k). The basic auditing operation takes as input the decryption keys d
and k. It calls Dec((A, B), d, k), for all elements (A, B) in the ORAM. Once all
the elements are recovered, they can be searched for desired keywords.

6 Conclusions

In this paper we introduce WORM-ORAM, a solution that provides WORM
compliant Oblivious RAMs. Our solution is based on a set of zero knowledge
proofs that ensure that all ORAM operations are WORM compliant. The pro-
tocol features the same asymptotic computational complexity as ORAM.

Acknowledgments

We would like to thank Dan Boneh and Peter Williams for early comments and
suggestions. We thank the reviewers for their excellent feedback. Sion is sup-
ported by the U.S. National Science Foundation through awards CCF 0937833,
CNS 0845192, CNS 0708025, IIS 0803197, and CNS 0716608, as well as by grants
from CA, Xerox, IBM and Microsoft Research.

References

1. National Association of Insurance Commissioners. Graham-Leach-Bliley Act
(1999), http://www.naic.org/GLBA

2. U.S. Dept. of Health & Human Services. The Health Insurance Portability and
Accountability Act (HIPAA) (1996), www.cms.gov/hipaa

http://www.naic.org/GLBA
www.cms.gov/hipaa

Regulatory Compliant Oblivious RAM 473

3. U.S. Public Law 107-347. The E-Government Act (2002)
4. U.S. Public Law No. 107-204, 116 Stat. 745. Public Company Accounting Reform

and Investor Protection Act (2002)
5. The U.S. Securities and Exchange Commission. Rule 17a-3&4, 17 CFR Part 240:

Electronic Storage of Broker-Dealer Records (2003),
http://edocket.access.gpo.gov/

6. The U.S. Department of Defense. Directive 5015.2: DOD Records Management
Program (2002),
http://www.dtic.mil/whs/directives/corres/pdf/

50152std 061902/p50152s.p%df

7. The U.S. Department of Health and Human Services Food and Drug Administra-
tion. 21 CFR Part 11: Electronic Records and Signature Regulations (1997),
http://www.fda.gov/ora/compliance ref/part11/FRs/background/

pt11finr.p%df
8. The U.S. Department of Education. 20 U.S.C. 1232g; 34 CFR Part 99:Family

Educational Rights and Privacy Act (FERPA) (1974),
http://www.ed.gov/policy/gen/guid/fpco/ferpa

9. The Enterprise Storage Group. Compliance: The effect on information management
and the storage industry (2003), http://www.enterprisestoragegroup.com/

10. Enron email dataset, http://www.cs.cmu.edu/enron/
11. IBM Corp. IBM TotalStorage Enterprise (2007),

http://www-03.ibm.com/servers/storage/

12. HP. WORM Data Protection Solutions (2007),
http://h18006.www1.hp.com/products/storageworks/wormdps/index.html

13. EMC. Centera Compliance Edition Plus (2007), http://www.emc.com/centera/,
http://www.mosaictech.com/pdf_docs/emc/centera.pdf

14. Hitachi Data Systems. The Message Archive for Compliance Solution, Data
Retention Software Utility (2007),
http://www.hds.com/solutions/data life cycle archiving/

achievingregcomp%liance.html
15. Zantaz Inc. The ZANTAZ Digital Safe Product Family (2007),

http://www.zantaz.com/
16. StorageTek Inc. VolSafe secure tape-based write once read many (WORM) storage

solution (2007), http://www.storagetek.com/
17. Sun Microsystems. Sun StorageTek Compliance Archiving system and the Vi-

gnette Enterprise Content Management Suite (White Paper) (2007),
http://www.sun.com/storagetek/white-papers/

Healthcare Sun NAS Vignette EHR 080806 Final.p%df

18. Sun Microsystems. Sun StorageTek Compliance Archiving Software (2007),
http://www.sun.com/storagetek/management software/data protection/

comp%liance archiving/

19. Network Appliance Inc. SnapLock Compliance and SnapLock Enterprise Software
(2007), http://www.netapp.com/products/software/snaplock.html

20. Quantum Inc. DLTSage Write Once Read Many Solution (2007),
http://www.quantum.com/Products/TapeDrives/DLT/SDLT600/

DLTIce/Index.aspx, http://www.quantum.com/pdf/DS00232.p%df
21. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious ram.

Journal of the ACM 45, 431–473 (1996)
22. Williams, P., Sion, R., Carbunar, B.: Building Castles out of Mud: Practical Access

Pattern Privacy and Correctness on Untrusted Storage. In: ACM Conference on
Computer and Communication Security, CCS (2008)

http://edocket.access.gpo.gov/
http://www.dtic.mil/whs/directives/corres/pdf/50152std_061902/p50152s.p%df
http://www.dtic.mil/whs/directives/corres/pdf/50152std_061902/p50152s.p%df
http://www.fda.gov/ora/compliance_ref/part11/FRs/background/pt11finr.p%df
http://www.fda.gov/ora/compliance_ref/part11/FRs/background/pt11finr.p%df
http://www.ed.gov/policy/gen/guid/fpco/ferpa
http://www.enterprisestoragegroup.com/
http://www.cs.cmu.edu/enron/
http://www-03.ibm.com/servers/storage/
http://h18006.www1.hp.com/products/storageworks/wormdps/index.html
http://www.emc.com/centera/
http://www.mosaictech.com/pdf_docs/emc/centera.pdf
http://www.hds.com/solutions/data_life_cycle_archiving/achievingregcomp%liance.html
http://www.hds.com/solutions/data_life_cycle_archiving/achievingregcomp%liance.html
http://www.zantaz.com/
http://www.storagetek.com/
http://www.sun.com/storagetek/white-papers/Healthcare_Sun_NAS_Vignette_EHR_080806_Final.p%df
http://www.sun.com/storagetek/white-papers/Healthcare_Sun_NAS_Vignette_EHR_080806_Final.p%df
http://www.sun.com/storagetek/management_software/data_protection/comp%liance_archiving/
http://www.sun.com/storagetek/management_software/data_protection/comp%liance_archiving/
http://www.netapp.com/products/software/snaplock.html
http://www.quantum.com/Products/TapeDrives/DLT/SDLT600/DLTIce/Index.aspx
http://www.quantum.com/Products/TapeDrives/DLT/SDLT600/DLTIce/Index.aspx
http://www.quantum.com/pdf/DS00232.p%df

474 B. Carbunar and R. Sion

23. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Hei-
delberg (2007)

24. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database
using stateful anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) Public Key
Cryptography – PKC 2009. LNCS, vol. 5443, Springer, Heidelberg (2009)

25. Goldreich, O.: Foundations of Cryptography I. Cambridge University Press, Cam-
bridge (2001)

26. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1) (1989)

27. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: CCS ’08: Proceedings of
the 15th ACM conference on Computer and communications security (2008)

28. Boneh, D.: The decision diffie-hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

Revisiting Unpredictability-Based RFID Privacy
Models

Junzuo Lai1,2, Robert H. Deng2, and Yingjiu Li2

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200030, China

laijunzuo@sjtu.edu.cn
2 School of Information Systems,

Singapore Management University, Singapore 178902
{robertdeng,yjli}@smu.edu.sg

Abstract. Recently, there have been several attempts in establishing
formal RFID privacy models in the literature. These models mainly fall
into two categories: one based on the notion of indistinguishability of two
RFID tags, denoted as ind-privacy, and the other based on the unpre-
dictability of the output of an RFID protocol, denoted as unp-privacy.
Very recently, at CCS’09, Ma et al. proposed a modified unp-privacy
model, referred to as unp′-privacy. In this paper, we first revisit the ex-
isting RFID privacy models and point out their limitations. We then
propose a new RFID privacy model, denoted as unp∗-privacy, based on
the indistinguishability of a real tag and a virtual tag. We provide jus-
tification for the new model and formally clarify its relationship with
ind-privacy model. Finally, we modify Ma et al.’s 2-round RFID proto-
col to a 3-round mutual authentication RFID protocol and prove that it
is of unp∗-privacy.

Keywords: RFID, privacy, security.

1 Introduction

Radio Frequency Identification (RFID) has been widely envisioned as an in-
evitable replacement of barcodes and other consumer labeling techniques for
automatic object identification. An RFID system consists of small devices called
RFID tags, one or more RFID readers and a back-end database. Unlike bar-
codes, each RFID tag records a sufficiently long bitstring to uniquely identify
the tag or its bearer. RFID readers communicate with RFID tags using RF
signals at a distance from a few inches to several feet. Since RF signals are invis-
ible and penetrating, RFID systems provide a perfect environment for attackers.
The prevalence of RFID technologies introduces various serious risks and poses
unique security concerns [9,15].

Security problems in RFID systems can be classified into two types. The first
is concerned with attacks which aim to wipe out the functioning of the system.
The second type, the one which interests us here, is related to privacy. In particu-
lar, unauthorized tracking of RFID system users and RFID tag bearers has been

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 475–492, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

476 J. Lai, R.H. Deng, and Y. Li

recognized as one of the most imperative privacy concerns in the deployments
of RFID systems. A privacy-preserving RFID system should therefore provide
anonymity (i. e., confidentiality of a tag’s identity) as well as unlinkability of
the protocol transcripts of a tag [17]. Much attention has been devoted to RFID
security, and various schemes have been proposed. The research for secure RFID
systems can be mainly categorized into physical technologies [11,5] and protocol-
based techniques [21,7,14,19,10,18,6,1]. Juels provides a survey of much of the
related literature in [9] and Avoine maintains a current online bibliography at
[2]. Nevertheless, most of the existing RFID security research efforts lack formal
analysis and mainly offer ad hoc notions of security. In this paper, we are con-
cerned with formal provable privacy models for RFID systems, with a focus on
protocol-based techniques.

1.1 Related Work

Avoine [3] first formalizes the adversary model in RFID systems and proposes
very general and flexible definitions of RFID privacy. Based on the formal ad-
versary model, Juels and Weis [12] define the notion of strong privacy. The aim
of Avoine [3] is to capture a range of adversarial abilities, while Juels and Weis
[12] seek to characterize a very strong adversary with a relatively simple def-
inition. In other words, Juels and Weis [12] aim for specificity and simplicity
over flexibility. The privacy notion in [12] is based on the indistinguishability of
two RFID tags, denoted as ind-privacy. However, to our knowledge, there is no
RFID protocol that has been directly proven to be of ind-privacy; On the other
hand, if an RFID protocol is not of ind-privacy, it can be checked against the
ind-privacy model easily.

Vaudenay [20] considers side-channel attacks in his RFID privacy model and
proposes eight privacy classes which are later consolidated to three by Ng et al.
[22]. Paise and Vaudenay [16] extend the definitions in [20] to address mutual
authentication. However, the privacy definitions in [20,22,16] contradict reader
authentication for any privacy notion that allows tag corruption.

In [8], Ha et al. propose a different privacy model based on the unpredictabil-
ity of tag outputs, denoted as unp-privacy. Unfortunately, this model was later
shown to have some deficiencies in its definition [4]. Recently, Ma et al. [13] pro-
pose a refined unp-privacy model for RFID systems, denoted as unp′-privacy,
and investigate the relationship between ind-privacy and unp′-privacy.

1.2 Our Contributions

In this paper, we address formal RFID privacy models with the following main
contributions:

1. We revisit the unp′-privacy model in [13] and point out its limitation. Specif-
ically, though the unp′-privacy model is robust for 2-round RFID protocols
but falls short in dealing with 3-round (i. e., mutual authentication) proto-
cols. We demonstrate this by presenting a 3-round RFID protocol which has
a flaw with respect to privacy but can be proven to be of unp′-privacy.

Revisiting Unpredictability-Based RFID Privacy Models 477

2. We propose a new privacy model, denoted as unp∗-privacy, based on the
indistinguishability of a real tag and a virtual tag. We clarify the relationship
between the ind-privacy and the unp∗-privacy by formally proving that the
former is weaker than the latter. To understand which level of privacy an
RFID system provides, it is critical to clarify the relationship between the
privacy notions.

3. We modify and extend the RFID protocol in [13] to 3-round mutual authen-
tication protocol and show that it is of unp∗-privacy.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we briefly discuss the
formal definitions for the ind-privacy and the unp-privacy models. We revisit
and re-examine the unp′-privacy model in Section 3. In Section 4, we introduce
our privacy model, establish its relation with the ind-privacy model and show
that an improved version of the protocol in [13] is of unp∗-privacy. We conclude
in Section 5.

2 Preliminaries

If S is a set, then s ∈R S indicates that s is chosen uniformly at random from
S. If x1, x2, . . . are strings, then x1‖x2‖ . . . denotes their concatenation. Let y ←
AO1,...,On(x1, x2, . . .) denote that y be assigned with the output of the algorithm
A which takes x1, x2, . . . as inputs and has accesses to oracles O1, . . . ,On.

2.1 Pseudorandom Functions

A pseudorandom function is a family of functions with the property that the
input-output behavior of a random instance of the family is “computationally
indistinguishable” from that of a random function. Let F : Keys(F)×D→ R be
a family of functions and let RandD→R be the family of all functions with domain
D and range R, where Keys(F) is the set of keys (or indexes) of F . Consider the
following game between an attack algorithm A and a challenger.

Gameprf
A

� β ∈R {0, 1};
� If β = 0 then g ∈R RandD→R, else g ∈R F ;
� β′ ← Ag.

Throughout the game, we assume that A makes at most q oracle queries. We
define A’s advantage in the above game as

AdvA(q) =

∣∣∣∣Pr[β = β′]− 1

2

∣∣∣∣ .

478 J. Lai, R.H. Deng, and Y. Li

Definition 1. An adversary A (t, q, ε)-breaks the pseudorandomness of the func-
tion family F if the advantage AdvA(q) of A in the above game is at least ε and
the running time of A is at most t.

Definition 2. A function family F is said to be (t, q, ε)-pseudorandom if there
exists no adversary who can (t, q, ε)-break the pseudorandomness of F .

2.2 An RFID System Model

Without loss of generality, we assume a fixed, polynomial-size tag set T =
{T1, . . . , Tn}, a reader R and a back-end database DB as the elements of our
RFID system, denoted as S = {T ,R,DB}. Typically, each tag is a passive
transponder identified by a unique ID and has only limited memory which can
be used to store several keys and/or state information. The reader R is com-
posed of one or more transceivers and a processing subsystem. The database DB
maintains T ’s authentication data such as tag IDs, secret keys, states and session
identifiers. Communications between R and T take place over an insecure air
interface, while communications between R and DB are assumed to be over a
secure channel.

In addition, the RFID system S includes a tuple of algorithms described
bellow.

Initialize(κ): It takes as input a security parameter κ, generates key ki for each
tag Ti ∈ T and sets the tag’s initial state; it also associates Ti with its
unique IDi and setups the back-end database DB for R to store necessary
information for tag identification.

ReaderStart(): It invokes R to output a new session identifier sid and the first
protocol message m1 of the session.

TagCompute(sid, m1, Ti): It takes as input a session identifier sid, a protocol
message m1 and Ti, outputs a message m2. This algorithm is run by Ti.

ReaderCompute(sid, m2): It takes as input a session identifier sid and a protocol
message m2, outputs a protocol message m3. This algorithm is run by R.

Execute(R, Ti): It takes as input R and Ti, runs the interactive authentication
protocol between R and Ti and outputs the entire protocol transcript. For
the three-round canonical RFID protocol shown in Fig 1, we have

(m1, m2, m3)← Execute(R, Ti),

Reader R Tag Ti
m1∈{0,1}l1

−−−−−−−−−−−−−−−→
m2∈{0,1}l2

←−−−−−−−−−−−−−−−
m3∈{0,1}l3

−−−−−−−−−−−−−−−→

Fig. 1. The canonical RFID Protocol

Revisiting Unpredictability-Based RFID Privacy Models 479

where (sid, m1)← ReaderStart(), m2 ← TagCompute(sid, m1, Ti) and m3 ←
ReaderCompute(sid, m2).

2.3 Adversaries

An adversary A is a probabilistic polynomial time (PPT) algorithm and is as-
sumed to have complete control over all communications between R and T .
The interaction between A and the protocol participants occurs only via or-
acle queries, which model the adversary’s capabilities in a real attack. In the
following, we specify oracles A is permitted to query.

Launch(R): It invokes R to start a session of the protocol and responds with
a session id sid and the first protocol message m1.

SendTag(sid, m′
1, Ti): It invokes Ti and responds with a protocol message m2.

SendReader(sid, m′
2): It invokes R and responds with a protocol message m3.

Reveal(Ti): It invokes Ti and returns the tag’s current secret key and internal
state.

Queries to SendTag and SendReader model active attacks, in which the ad-
versary may tamper with the message being sent over the insecure RF channel.
Queries to Reveal model the leakage of tags’ secret information.

Let O1,O2,O3 and O4 denote Launch, SendTag, SendReader and Re-
veal oracles, respectively. All privacy models in this paper are defined using a
game between an adversary A and a challenger. Throughout a game, we assume
that A is allowed to launch O1,O2,O3 and O4 oracle queries without exceeding
qini, qst, qsr and qrv overall calls, respectively.

2.4 The ind-Privacy and unp-Privacy Models

2.4.1 The ind-Privacy Model
Juels and Weis [12] present an indistinguishability-based RFID privacy model
which is reminiscent of the classic indistinguishability under chosen-plaintext at-
tack (IND-CPA) and under chosen-ciphertext attack (IND-CCA) cryptosystem
security.

Figure 2 illustrates the ind-privacy game Gameind
A [κ, n, qini, qst, qsr, qrv], in

which A is comprised of a pair of algorithms (A1,A2). The game proceeds as
follows. At first, the challenger initializes the RFID system S by producing a
readerR and a set of tags T = {T1, ..., Tn} according to the security parameter κ.
Then, A1 issues O1,O2,O3 and O4 oracle queries, and outputs two uncorrupted
tags {Ti, Tj} (i.e., tags to which no Reveal queries have been issued) as challenge
candidates. It also outputs a state information st which will be transmitted to
algorithm A2. One of the two candidates Tc is then selected based on the value
of a random bit and presented to A (effectively as a tag oracle). A2 is allowed to
query O1,O2,O3 and O4 oracles on R, Tc and the tag set T ′ = T −{Ti, Tj} with
the restriction that it cannot query Reveal(Tc). Finally, A2 is asked to guess
the random bit.

480 J. Lai, R.H. Deng, and Y. Li

Gameind
A [κ, n, qini, qst, qsr, qrv]

� Setup the reader R and a set of tags T = {T1, . . . , Tn};
� {Ti, Tj , st} ← AO1,O2,O3,O4

1 (R, T);
� Set T ′ = T − {Ti, Tj};
� β ∈R {0, 1};
� If β = 0 then Tc = Ti, else Tc = Tj ;

� β′ ← AO1,O2,O3,O4
2 (R, T ′, Tc, st).

Fig. 2. The ind-Privacy Game

Definition 3. The advantage of an adversary A in the above game is defined
as

Advind
A (κ, n, qini, qst, qsr, qrv) = |Pr[β′ = β]− 1

2
|,

where the probability is taken over the choice of tag set T and the coin tosses
of A.

Definition 4. An adversary A (ε, t, n, qini, qst, qsr, qrv)-breaks the ind-privacy
of an RFID system S if the advantage Advind

A (κ, n, qini, qst, qsr, qrv) of A in the
above game is at least ε and the running time of A is at most t.

Definition 5. An RFID system S is said to be (ε, t, n, qini, qst, qsr, qrv)-ind-
privacy if there exists no adversary who can (ε, t, n, qini, qst, qsr, qrv)-break the
ind-privacy of S.

2.4.2 The unp-Privacy Model
The goal of the adversary in the above ind-privacy game is to distinguish two
different tags within its computational power and parameters. The idea is in-
tuitively appealing; however, the ind-privacy model is difficult to apply directly
in proving given a protocol is of ind-privacy. Juels and Weis [12] only prove
the ind-privacy of a simple randomized hash-lock RFID protocol. To our knowl-
edge, no mutual authentication RFID protocol has been proven directly to be
of ind-privacy. Ha et al. [8] propose a different privacy model based on the un-
predictability of tag outputs, denoted as unp-privacy. In fact, Juels and Weis
[12] prove the ind-privacy of the randomized hash-lock RFID protocol by show-
ing that no adversary can distinguish the real output of a tag from a random
value. In other words, Juels and Weis [12] in fact prove the unp-privacy of the
randomized hash-lock RFID protocol.

Figure 3 depicts the unp-privacy game Gameunp
A [κ, n, qini, qst, qsr, qrv], in

which an adversary A is comprised of a pair of algorithms (A1,A2). At first,
a challenger initializes the RFID system by producing a reader R and a set of
tags T = {T1, ..., Tn} according to the security parameter κ. Then, A1 issues
O1,O2,O3 and O4 oracle queries, and outputs an uncorrupted tag Tc as the
challenge tag. It also outputs a state information st which will be transmitted
to algorithm A2. Next, the challenger selects a random bit β and sends m∗

2 to

Revisiting Unpredictability-Based RFID Privacy Models 481

A2, where m∗
2 is taken from (m∗

1, m
∗
2, m

∗
3) ← Execute(R, Tc) if β = 1, and

m∗
2 ∈R {0, 1}l2 otherwise. Finally, A2 is asked to guess the random bit. Note

that A2 is not allowed to query any oracle.

Gameunp
A [κ, n, qini, qst, qsr, qrv]

� Setup the reader R and a set of tags T = {T1, . . . , Tn};
� {Tc, st} ← AO1,O2,O3,O4

1 (R, T);
� β ∈R {0, 1};
� If β=1 then m∗

2 is taken from (m∗
1, m

∗
2, m

∗
3)← Execute(R, Tc),

else m∗
2 ∈R {0, 1}l2;

� β′ ← A2(m
∗
2, st).

Fig. 3. The unp-Privacy Game

Definition 6. The advantage of an adversary A in the above game is defined
as

Advunp
A (κ, n, qini, qst, qsr, qrv) = |Pr[β′ = β]− 1

2
|,

where the probability is taken over the choice of tag set T and the coin tosses
of A.

Definition 7. An adversary A (ε, t, n, qini, qst, qsr, qrv)-breaks the unp-privacy
of RFID system S if the advantage Advunp

A (κ, n, qini, qst, qsr, qrv) of A in the
above game is at least ε and the running time of A is at most t.

Definition 8. An RFID system S is said to be (ε, t, n, qini, qst, qsr, qrv)-unp-
privacy if there exists no adversary who can (ε, t, n, qini, qst, qsr, qrv)-break the
unp-privacy of S.

3 The unp′-Privacy Model, Revisited

Note that in the unp-privacy game, the adversary A2 does not get the full
transcript of the protocol execution between the reader and the challenge tag,
but only m∗

2 which is either a random message or the message sent by the tag.
As a result, an RFID protocol may have known weakness in privacy but can
be shown to be of unp-privacy, as confirmed by Deursen and Radomirović [4].
At CCS’09, Ma et al. [13] propose an improved unp-privacy model, denoted as
unp′-privacy. In the unp′-privacy model, the adversary is given not only m∗

2, but
also the last message m∗

3 of the protocol. The unp′-privacy model is robust for
2-round RFID protocols, as demonstrated in [13]; however, we will show in this
section that the model has a deficiency when applied to 3-round protocols.

482 J. Lai, R.H. Deng, and Y. Li

3.1 The Model

Figure 4 presents the unp′-privacy game Gameunp′

A [κ, n, qini, qst, qsr, qrv], in
which an adversary A is comprised of a pair of algorithms (A1,A2). At the
start of the game, a challenger initializes the RFID system by producing R
and T = {T1, ..., Tn} according to the security parameter κ. Then, A1 issues
O1,O2,O3 and O4 oracle queries, and outputs an uncorrupted challenge tag
Tc and a message m∗

1. It also outputs a state information st which will be
transmitted to algorithm A2. Next, the challenger selects a random bit β and
sends (m∗

2, m
∗
3) to A2, where (m∗

1, m
∗
2, m

∗
3) ← Execute(R, Tc) if β = 1, and

(m∗
2, m

∗
3) ∈R {0, 1}l2 ×{0, 1}l3 otherwise. Finally, A2 has oracle accesses to tags

except Tc and is required to infer the value of β.

Gameunp′

A [κ, n, qini, qst, qsr, qrv]
� Setup the reader R and a set of tags T = {T1, . . . , Tn};
� {Tc, m

∗
1, st} ← A

O1,O2,O3,O4
1 (R, T);

� Set T ′ = T − {Tc};
� β ∈R {0, 1};
� If β = 1 then (m∗

1, m
∗
2, m

∗
3)← Execute(R, Tc),

else (m∗
2, m

∗
3) ∈R {0, 1}l2 × {0, 1}l3;

� β′ ← AO1,O2,O3,O4
2 (R, T ′, m∗

2, m
∗
3, st).

Fig. 4. The unp′-Privacy Game

Definition 9. The advantage of an adversary A in the above game is defined
as

Advunp′

A (κ, n, qini, qst, qsr , qrv) = |Pr[β′ = β]− 1

2
|,

where the probability is taken over the choice of tag set T and the coin tosses
of A.

Definition 10. An adversary A (ε, t, n, qini, qst, qsr, qrv)-breaks the unp′-privacy
of RFID system S if the advantage Advunp′

A (κ, n, qini, qst, qsr, qrv) of A in the
above game is at least ε and the running time of A is at most t.

Definition 11. An RFID system S is said to be (ε, t, n, qini, qst, qsr, qrv)-unp′-
privacy if there exists no adversary who can (ε, t, n, qini, qst, qsr, qrv)-break the
unp′-privacy of S.

3.2 A Counterexample

Ma et al. [13] introduce an efficient 2-round protocol and prove that it is of
unp′-privacy. We now modify the protocol to a 3-round mutual authentication
protocol and show that the new protocol has clear weakness with respect to

Revisiting Unpredictability-Based RFID Privacy Models 483

privacy but can be proven to be of unp′-privacy. This example therefore exposes
a deficiency of the unp′-privacy model when it is applied to 3-round mutual
authentication protocols.

Let F : {0, 1}lk × {0, 1}ld → {0, 1}lr be a PRF family. Let ctr ∈ {0, 1}lr
be a counter, pad1 ∈ {0, 1}lp1 and pad2 ∈ {0, 1}lp2 be two paddings such that
lr + lp1 = ld. The RFID system is constructed as follows.

Initialize(κ): It randomly chooses a key ki ∈ {0, 1}lk for each tag Ti ∈ T . Ti stores
ki, a counter ctri ∈ {0, 1}lr , and a 1-bit flag si in its memory. Initially, ctri =
1 and si = 0. It also associates Ti with a unique IDi, and stores the tuple
(Ii, ki, ctri, IDi) in the back-end database DB, where Ii = Fki (ctri‖pad1).

Execute(R, Ti): R first sends a challenge c ∈R {0, 1}lc to Ti, where lc + lr + lp2 =
ld. Upon receiving c, Ti executes the following steps:

1. Randomly choose r2 ∈ {0, 1}lp2 and compute Ii = Fki(ctri‖pad1);
2. Set r1 = Fki(c‖Ii‖pad2)⊕ ctri if si = 0, else set r1 = Fki(c‖Ii‖r2)⊕ ctri;
3. Respond with (r1‖Ii, r2), increment ctri by 1 and set si = 1.

Upon receiving the response (r1‖Ii, r2),R identifies the tag from its database
as follows:
1. Search for the tuple (Ii, ki, ctr

′
i, IDi) using Ii as an index. If such a tuple

exists, compute Fki(c‖Ii‖pad2) and then
(a) If ctr′i = Fki(c‖Ii‖pad2) ⊕ r1, update ctr′i = ctr′i + 1 and Ii =

Fki(ctr
′
i‖pad1), respond with f = Fki(c‖ctr′i‖r2) and accept the tag;

(b) Else abort the protocol.
2. Else look up the database for a tuple (I ′i , ki, ctr

′
i, IDi) in an exhaustive

search such that ctri = Fki(c‖Ii‖r2)⊕ r1 and Fki(ctri‖pad1) = Ii. Then
(a) If such a tuple exists, update ctr′i = ctri +1 and I ′i = Fki(ctr

′
i||pad1),

respond with f = Fki(c‖ctr′i‖r2) and accept the tag;
(b) Else abort the protocol.

Upon receiving f , Ti checks whether f = Fki(c‖ctri‖r2). If not, Ti rejects
the reader. Else, Ti sets si = 0 and accepts the reader.

Note that the ReaderStart, TagCompute and ReaderCompute algorithms are not
shown explicitly in the above description since they are embedded in the Execute
algorithm. The protocol is depicted in 5.

A flaw of the protocol is that an active attacker can find out whether a tag’s
state is s = 0 or s = 1. If a tag is in state s = 0, the reader does not verify
the integrity of r2; while if the tag is in state s = 1, this verification occurs
implicitly. Note that under normal circumstances tags will be in state s = 0.
Hence, an active attacker can flag a tag by setting its state to s = 1 and trace
the tag in subsequent protocol sessions. However, the following theorem states
that the protocol is of unp′-privacy.

Theorem 1. The above mutual authentication RFID protocol is of (ε, t, n, qini,
qst, qsr , qrv)-unp′-privacy, assuming the function family F : {0, 1}lk ×{0, 1}ld →
{0, 1}lr is (t′, q, ε′)-pseudorandom, where

t′ ≈ t, q ≈ qst + qsr, ε′ = ε/n.

484 J. Lai, R.H. Deng, and Y. Li

Reader R
{(Ii, ki, ctri, IDi)}

Tag Ti

(ki, ctri, si)
c ∈R{0,1}lc

−−−−−−−−−−→

r1‖Ii,r2

←−−−−−−−−−−

r2 ∈R {0, 1}lp2 ,
Ii = Fki

(ctri‖pad1),
If si = 0,

r1 = Fki(c‖Ii‖pad2)⊕ ctri;
Else,

r1 = Fki
(c‖Ii‖r2)⊕ ctri.

ctri = ctri + 1,
si = 1.

If find the tuple (Ii, ki, ctr
′
i, IDi), then

If ctr′i = Fki(c‖Ii‖pad2)⊕ r1, then
update ctr′i = ctr′i + 1 and Ii = Fk(ctr′i‖pad1),
compute f = Fki

(c‖ctr′i‖r2) and accept the tag.
Else abort.

Else If ∃(I ′i, ki, ctr
′
i, IDi) such that

ctri = Fki(c‖Ii‖r2) ⊕ r1 and Fki(ctri‖pad1) = Ii,
then

update ctr′i = ctri + 1 and I ′i = Fki
(ctr′i‖pad1)

compute f = Fki
(c‖ctr′i‖r2) and accept the tag.

Else abort.

f
−−−−−−−−−−→

If f = Fki
(c‖ctri‖r2),

set si = 0 and accept the reader.
Else,

reject the reader.

Fig. 5. The Counterexample RFID Protocol

Proof. Suppose there exists an adversary A (ε, t, n, qini, qst, qsr, qrv)-breaks the
unp′-privacy of the RFID protocol in Figure 5. We are going to construct another
PPT B that makes use of A to (t′, q, ε′)-break the pseudorandomness of the
function family F .
B is provided oracle access to a function g and tries to decide if g is drawn

at random from F , namely g ∈R F (which means that a key is chosen via k ∈R

{0, 1}lk and then g is set to Fk.), or is drawn at random from Rand{0,1}ld→{0,1}lr

,

namely g ∈R Rand{0,1}ld→{0,1}lr

. B’s goal is to output 0 if g ∈R Rand{0,1}ld→{0,1}lr

and 1 otherwise. B runs A as a subroutine and proceeds as follows.

Setup B randomly chooses an index j ∈ {1, . . . , n}. Without loss of generality,
we assume j = n. B then randomly chooses a key ki ∈ {0, 1}lk for each tag
Ti ∈ {T1, . . . , Tn−1}. Ti stores ki, a counter ctri ∈ {0, 1}lr , and a 1-bit flag si.
Initially, ctri = 1 and si = 0. B associates Ti with a unique IDi, and stores
the tuple (Ii, ki, ctri, IDi) in the database DB, where Ii = Fki(ctri‖pad1).
B associates tag Tn with a unique IDn. Tn keeps a counter ctrn and a 1-bit
flag sn with initially values 1 and 0, respectively. Note that, the key kn of Tn

is unknown to B. B queries its oracle on ctrn‖pad1 and gets the response of
the oracle In. B stores the tuple (In, ∗, ctrn, IDn) in the database DB.
In the following, we let x = ctrn‖pad1, m′

1‖In‖pad2 or m′
1‖In‖r2 depending

on the context. The basic idea is that B queries its oracle g on x and gets
either Fkn(x) or a random message as response .

Query phase 1 A issues Launch, SendTag, SendReader and Reveal queries
to which B answers as follows:

Revisiting Unpredictability-Based RFID Privacy Models 485

– Launch query on R: B responds according to the protocol.
– SendTag query on (sid, m′

1, Ti): Respond according to the protocol.
Note that B can do it for i ∈ {1, . . . , n − 1} because B knows the keys
and the internal information of Ti. For Tn, B also can do it by querying
its oracle on x whenever it needs to compute Fkn(x).

– SendReader query on (sid, m′
2): Respond according to the protocol.

Whenever B needs to compute Fkn(x), B queries its oracle on x.
– Reveal query on Ti: If Ti = Tn, abort and randomly output a bit; else,

forward the key ki and internal state (ctri, si) of Ti to A.
Challenge A submits a message m1 ∈ {0, 1}lc and an uncorrupted challenge

tag Tc to B which proceeds as follows:
– If Tc 	= Tn, abort and randomly output a bit.
– Else, randomly choose r2 ∈ {0, 1}lp2.
– Set x = ctrn‖pad1, query its oracle on x and get the response In.
– If sn = 0, query its oracle on x = m1‖In‖pad2, get the response y and

set r1 = y⊕ctrn; else query its oracle on x = m1‖In‖r2, get the response
y and set r1 = y ⊕ ctrn.

– Set m2 = (r1‖In, r2), update ctrn = ctrn + 1 and sn = 0.
– Query its oracle on m1‖ctrn‖r2, get the response m3, and send (m2, m3)

to A.
Query phase 2 Let T ′ denote the tag set T −Tc = {T1, . . . , Tn−1}. A continues

to issue Launch, SendTag, SendReader and Reveal queries. B answers
them in as follows:
– Launch query on R: Respond according to the protocol.
– SendTag query on (sid, m′

1, Ti ∈ T ′): Respond according to the proto-
col. B can do it because it knows the keys and the internal information
of the tags in T ′.

– SendReader query on (sid, m′
2): Respond according to the protocol. B

can do it because it knows DB.
– Reveal query on Ti ∈ T ′: Forward Ti’s key ki and internal state (ctri, si)

to A.
Guess A outputs a bit β′ which B also takes as its output.

If B does not abort during the simulation, B’s simulation is perfect and are
identically distributed as the real one from the construction. It is obvious that the
probability that B does not abort during the simulation is 1/n. In the simulation,
B needs to query its oracle in response to A’s SendTag and SendReader
queries. So, q ≈ qst + qsr. The running time of B is approximately that of A.
This completes the proof.

4 Our Model and Results

The limitation in the definition of the unp′-privacy model, as shown in the above
example, is due to the constraint imposed on the adversary A2, i. e., A2 only has
access to m∗

2 and m∗
3 as supplied by the challenger and is not allowed to query

486 J. Lai, R.H. Deng, and Y. Li

oracles on the challenge tag Tc. In this section, we propose a new RFID privacy
model, denoted as unp∗-privacy, as a remedy to this problem.

The intuition of the unp∗-privacy model is that no adversary should be able to
distinguish the output of a real tag from that of a virtual tag, which is defined
as a tag without any secret information. This implies that no adversary can
link a real tag and its behavior without learning its secret key. We emphasis
that our unp∗-privacy model does not impose any restrictions on the number
of rounds in an RFID protocol. In what follows, we introduce the unp∗-privacy
model, investigate the relationship between this new model and the ind-privacy
model. We also extend the 2-round RFID protocol in [13] to a 3-round mutual
authentication protocol and show that it is of unp∗-privacy.

4.1 The unp∗-Privacy Model

Figure 6 illustrates the unp∗-privacy game Gameunp∗

A [κ, n, qini, qst, qsr, qrv] be-
tween an adversaryA and a challenger, in whichA consists of a pair of algorithms
(A1,A2). The challenger initializes the RFID system S by producing a reader R
and a set of tags T = {T1, ..., Tn} according to the security parameter κ. Then,
A1 issues O1,O2,O3 and O4 oracle queries, and outputs an uncorrupted chal-
lenge tag Tc. It also outputs a state information st which will be transmitted to
algorithm A2. Next, the challenger selects a random bit β. Finally, A2 is asked
to guess the value of the random bit. A2 is allowed to query O1,O2 and O3
oracles on R and Tc. The challenger responds to A2 queries as follows:

– Launch query onR: If β = 0, generate a new session identifier sid, randomly
choose m1 ∈ {0, 1}l1 and forward (sid, m1) to A2; else, run the algorithm
ReaderStart, and forward the result to A2.

– SendTag query on (sid, m′
1, Tc): If β = 0, randomly choose m2 ∈ {0, 1}l2

and forward m2 to A2; else, run the algorithm TagCompute(sid, m′
1, Tc) and

forward the result to A2.
– SendReader query on input (sid, m′

2): If β = 0, randomly choose m3 ∈
{0, 1}l3 and forwardm3 toA2; else, run the algorithm ReaderCompute(sid, m3)
and forward the result to A2.

Definition 12. The advantage of an adversary A in the above game is defined
as

Advunp∗

A (κ, n, qini, qst, qsr, qrv) = |Pr[β′ = β]− 1

2
|,

where the probability is taken over the choice of tag set T and the coin tosses
of A.

Definition 13. An adversary A (ε, t, n, qini, qst, qsr, qrv)-breaks the unp∗-privacy
of an RFID system S if the advantage Advunp∗

A (κ, n, qini, qst, qsr, qrv) of A in the
above game is at least ε and the running time of A is at most t.

Definition 14. An RFID system S is said to be (ε, t, n, qini, qst, qsr, qrv)-unp∗-
privacy if there exists no adversary who can (ε, t, n, qini, qst, qsr, qrv)-break the
unp∗-privacy of S.

Revisiting Unpredictability-Based RFID Privacy Models 487

Gameunp∗

A [κ, n, qini, qst, qsr, qrv]
� Setup the reader R and a set of tags T = {T1, . . . , Tn};
� {Tc, st} ← AO1,O2,O3,O4

1 (R, T);
� β ∈R {0, 1};
� β′ ← AO1,O2,O3

2 (R, Tc, st).

Fig. 6. The unp∗-Privacy Game

4.2 Relationship with ind-Privacy Model

In order to clarify the relationship between the ind-privacy and unp∗-privacy,
we introduce another model, called ind∗-privacy model, as a “bridge” between
the two models. We first show that ind∗-privacy is equivalent to ind-privacy and
then prove that unp∗-privacy implies ind∗-privacy and hence ind-privacy.

Figure 7 shows the ind∗-privacy game Gameind∗

A [κ, n, qini, qst, qsr, qrv]. The
ind∗-privacy game is identical to the ind-privacy game given in Figure 2 except
that A2 in the former is only allowed to query O1,O2, and O3 oracles on R
and Tc.

Gameind∗

A [κ, n, qini, qst, qsr, qrv]
� Setup reader R and a set of tags T = {T1, . . . , Tn};
� {Ti, Tj , st} ← AO1,O2,O3,O4

1 (R, T);
� β ∈R {0, 1};
� If β = 0 then Tc = Ti, else Tc = Tj ;

� β′ ← AO1,O2,O3
2 (R, Tc, st).

Fig. 7. The ind∗-Privacy Game

Definition 15. The advantage of an adversary A in the above game is defined
as

Advind∗

A (κ, n, qini, qst, qsr, qrv) = |Pr[β′ = β]− 1

2
|,

where the probability is taken over the choice of tag set T and the coin tosses of
the adversary A.

Definition 16. An adversary A (ε, t, n, qini, qst, qsr, qrv)-breaks the ind∗-privacy
of RFID system S if the advantage Advind∗

A (κ, n, qini, qst, qsr, qrv) of A in the
above game is at least ε and the running time of A is at most t.

Definition 17. An RFID system S is said to be (ε, t, n, qini, qst, qsr, qrv)-ind∗-
privacy if there exists no adversary who can (ε, t, n, qini, qst, qsr, qrv)-break the
ind∗-privacy of S.

488 J. Lai, R.H. Deng, and Y. Li

Theorem 2. For an RFID system S, the ind-privacy and the ind∗-privacy are
equivalent.

Proof. It is obvious that ind-privacy =⇒ ind∗-privacy holds. Now we prove that
ind-privacy ⇐= ind∗-privacy also holds.

Suppose there exists an adversary A (ε, t, n, qini, qst, qsr, qrv)-breaks the ind-
privacy of the RFID system S. We are going to construct another PPT B that
makes use of A (ε, t, n, qini, qst, qsr, qrv + n − 1)-breaks the ind∗-privacy of the
RFID system S. Let C denote an ind∗-privacy challenger against B. B runs A
executing the following steps.

Setup B maintains a list KS-List. Initially the list is empty.
Query phase 1 A issuesLaunch, SendTag, SendReader andReveal queries.
B answers them in the following way:
– Launch query on R: Issue a Launch query on R to C and forward the

result to A.
– SendTag query on (sid, m′

1, Ti ∈ T): Issue a SendTag query on (sid, m′
1,

Ti) to C and forward the result to A.
– SendReader query on (sid, m′

2): Issue a SendReader query on (sid, m′
2)

to C and forward the result to A.
– Reveal query on Ti ∈ T : Issue a Reveal query on Ti to C and forward

the result to A.
Challenge Adversary A submits two uncorrupted tags Tc0, Tc1 ∈ T . B submits

the same two tags Tc0 and Tc1 to C which responds with a challenge tag
Tc ∈ {Tc0, Tc1}. Then B issues Reveal queries on the tag set T − {Tc0, Tc1}
and stores the results in the list KS-List. B forwards Tc to A. Let T ′ denote
the tag set T − {Tc0, Tc1}+ Tc.

Query phase 2 A continues to issue Launch, SendTag, SendReader and
Reveal queries. B answers them in the following way:
– Launch query on R: Issue a Launch query on R to C and forward the

result to A.
– SendTag query on (sid, m′

1, Ti ∈ T ′): If Ti = Tc, issue a SendTag query
on (sid, m′

1, Ti) and forward the result to A; else, use the list KS-List to
respond.

– SendReader query on (sid, m′
2): Use SendReader oracle and the list

KS-List to respond.
– Reveal query on Ti ∈ {T − {Tc0, Tc1}}: Use the list KS-List to respond.

Guess A outputs a bit β′ which B also takes as its output.

It is obvious that the simulation is perfect. Thus we have shown an adversary A
against the ind-privacy of the RFID system S with advantage ε can be used to
construct another adversary B against the ind∗-privacy of the same RFID system
with an identical advantage. Note that, the number of times that B queries the
Reveal oracle is qrv + n − 1. The running time of B is approximate to that of
A. This completes the proof.

Theorem 3. Assume that an RFID system S is of (ε, t, n, qini, qst, qsr, qrv)-
unp∗-privacy, then it is also of (ε, t, n, qini, qst, qsr, qrv)-ind∗-privacy.

Revisiting Unpredictability-Based RFID Privacy Models 489

Proof. Suppose there exists an adversary A (ε, t, n, qini, qst, qsr, qrv)-breaks the
ind∗-privacy of the RFID system S. We are going to construct another PPT B
that makes use of A (ε, t, n, qini, qst, qsr, qrv)-breaks the unp∗-privacy of the same
RFID system S. Let C denote an unp∗-privacy challenger against B. B runs A
executing the following steps.

Setup B does nothing.
Query phase 1 A issuesLaunch, SendTag, SendReader andReveal queries.
B answers them in the following way:
– Launch query on R: Issue a Launch query on R to C and forward the

result to A.
– SendTag query on (sid, m′

1, Ti ∈ T): Issue a SendTag query on (sid, m′
1,

Ti) to C and forward the result to A.
– SendReader query on (sid, m′

2): Issue a SendReader query on (sid, m′
2)

to C and forward the result to A.
– Reveal query on Ti ∈ T : Issue a Reveal query on Ti to C and forward

the result to A.
Challenge A submits two uncorrupted tags Tc0, Tc1 ∈ T . B selects a random

bit β ∈ {0, 1} and sets the challenge tag Tc = Tc0 if β = 0 and Tc = Tc1
otherwise. B submits Tc to C.

Query phase 2 The adversary continues to issue Launch, SendTag and Send
Reader queries. B answers them as follows:
– Launch query on R: Issue a Launch query on R to C and forward the

result to A.
– SendTag query on (sid, m′

1, Tc): Issue a SendTag query on (sid, m′
1, Tc)

to C and forward the result to A.
– SendReader query on (sid, m′

2): Issue a SendReader query on (sid, m′
2)

to C and forward the result to A.
Guess A outputs a bit β′. If β = β′, B outputs 1; else, B outputs 0.

The simulation of B is perfect. When the binary coin flipped by the unp∗-privacy
challenger C is equal to 1, the probability of β = β′ is equal to 1/2±ε; otherwise,
the probability of β = β′ is equal to 1/2, because in this case the challenge tag
Tc is in fact a virtual tag in adversary A’s view. Hence, the advantage of B is
equal to that of A (i. e., ε). The running time of B is exactly the same as that
of A. This completes the proof.

Theorem 4. There exists an RFID system that is of ind∗-privacy but is not of
unp∗-privacy.

Proof. Suppose an RFID system S = (R, T ,DB, Initialize, Execute) is of ind∗-
privacy, and the output of the algorithm Execute is (c, r, f). We construct a
new RFID system S′ = (R, T ,DB, Initialize, Execute′) such that (c, r‖r, f) ←
Execute′. It is easy to see that S′ is also of ind∗-privacy. Since every protocol
transcript of S′ is of the form (c, r‖r, f), an adversary can easily distinguish it
from a random tuple (c′, r1‖r2, f

′) by checking whether r1 = r2. Therefore, S′
is not of unp∗-privacy.

490 J. Lai, R.H. Deng, and Y. Li

4.3 A Protocol with unp∗-Privacy

We now present a 3-round mutual authentication protocol with unp∗-privacy by
modifying the 2-round protocol in [13]. This RFID protocol is shown in Figure
8. It is important to note that when the reader R fails to identify a tag, it does
not simply abort, but responds with a random message. A detailed description
of the protocol and its proof of unp∗-privacy are given in the full version.

Reader R
{(Ii, ki, ctri, IDi)}

Tag Ti

(ki, ctri)
c ∈R{0,1}lc

−−−−−−−−−−→

r1‖Ii,r2

←−−−−−−−−−−
r2 ∈R {0, 1}lp2 ,
Ii = Fki(ctri‖pad1),
r1 = Fki(c‖Ii‖r2)⊕ ctri.
ctri = ctri + 1.

If find the tuple (Ii, ki, ctr
′
i, IDi), then

If ctr′i = Fki
(c‖Ii‖r2)⊕ r1, then

update ctr′i = ctr′i + 1 and Ii = Fk(ctr′i‖pad1),
compute f = Fki(c‖ctr′i‖r2) and accept the tag.

Else f ∈R {0, 1}lr and reject the tag.
Else If ∃(I ′i, ki, ctr

′
i, IDi) such that

ctri = Fki
(c‖Ii‖r2) ⊕ r1 and Fki

(ctri‖pad1) = Ii,
then

update ctr′i = ctri + 1 and I ′i = Fki
(ctr′i‖pad1)

compute f = Fki(c‖ctr′i‖r2) and accept the tag.
Else f ∈R {0, 1}lr and reject the tag.

f
−−−−−−−−−−→

If f = Fki
(c‖ctri‖r2),

accept the reader.
Else,

reject the reader.

Fig. 8. The Mutual Authentication Protocol with unp∗-Privacy

5 Conclusions

In this paper we first revisited the formal privacy models for RFID systems ex-
isting in the literature, including the ind-privacy model [12], the unp-privacy
model [8] and the newly proposed unp′-privacy model [13]. In doing so, we have
highlighted their potential limitations or flaws. In particular, for the first time,
we pointed out that though the unp′-privacy model is robust when applied to
2-round RFID protocols but has a deficiency in dealing with 3-round mutual
authentication RFID protocols. This deficiency arises from the constraint that
the adversary in the guessing stage of the unp′-privacy game is not given any
oracle access to the challenge tag. We demonstrated this through a counterex-
ample protocol which has problem with respect to privacy but can be proven to
be of unp′-privacy.

We proposed a new privacy model, denoted as unp∗-privacy, based on the
indistinguishability of the output of a real tag from that of a virtual tag (e.
g., a tag without any secret key). The adversary in the unp∗-privacy game is
given multiple oracle accesses to the challenge tag in the guessing stage. The
new model does not suffer from the limitations of the unp-privacy and the unp′-
privacy models. Furthermore, we formally established the relationship between
the ind-privacy and the unp∗-privacy notions by proving that the former is

Revisiting Unpredictability-Based RFID Privacy Models 491

weaker than the latter. Finally, we extended the 2-round RFID protocol in [13]
to a 3-round mutual authentication RFID protocol and showed that it is of
unp∗-privacy.

Acknowledgement

We are grateful to the anonymous reviewers for their helpful comments. This
work is partly supported by the Office of Research, Singapore Management Uni-
versity, and also supported in part by A*Star SERC Grant No. 082 101 0022 in
Singapore.

References

1. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID Tags via Insub-
vertible Encryption. In: Conference on Computer and Communications Security,
CCS ’05, pp. 92–101 (2005)

2. Avoine, G.: Security and privacy in RFID systems (2006),
http://lasecwww.epfl.ch/~gavoine/rfid/

3. Avoine, G.: Adversary Model for Radio Frequency Identification. Technical Re-
port LASEC-REPORT-2005-001, Swiss Federal Institute of Technology (EPFL),
Security and Cryptography Laboratory (LASEC) (2005)

4. van Deursen, T., Radomirović, S.: On a New Formal Proof Model for RFID Loca-
tion Privacy. Cryptology ePrint Archive, Report 2008/477.

5. Fishkin, K., Roy, S., Jiang, B.: Some methods for privacy in RFID communication.
In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004.
LNCS, vol. 3313, pp. 42–53. Springer, Heidelberg (2005)

6. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for
mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004)

7. Henrici, D., Müller, P.: Hash-based enhancement of location privacy for radio-
frequency identification devices using varying identifiers. In: Workshop on Perva-
sive Computing and Communications Security-PerSec 2004, pp. 149–153. IEEE
Computer Society, Los Alamitos (2004)

8. Ha, J., Moon, S., Zhou, J., Ha, J.: A new formal proof model for RFID location
privacy. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
267–281. Springer, Heidelberg (2008)

9. Juels, A.: RFID Security and Privacy: A Research Survey. IEEE Journal on Se-
lected Areas in Communications 24(2), 381–394 (2006)

10. Juels, A., Pappu, R.: Squealing euros: Privacy protection in RFID-enabled ban-
knotes. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 103–121. Springer,
Heidelberg (2003)

11. Juels, A., Rivest, R., Szydlo, M.: The blocker tag: Selective blocking of RFID tags
for consumer privacy. In: CCS ’03, pp. 103–111. ACM Press, New York (2003)

12. Juels, A., Weis, S.A.: Defining strong privacy for RFID. ePrint, Report 2006/137,
2006, PerCom 2007

13. Ma, C., Li, Y., Deng, R.H., Li, T.: RFID Privacy: Relation Between Two Notions,
Minimal Condition, and Efficient Construction. In: ACM CCS 2009 (2009)

http://lasecwww.epfl.ch/~gavoine/rfid/

492 J. Lai, R.H. Deng, and Y. Li

14. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient Hash-Chain Based RFID Pri-
vacy Protection Scheme. In: International Conference on Ubiquitous Computing-
Ubicomp, Workshop Privacy: Current Status and Future Directions (2004)

15. Pedro, P.L., Cesar, H.C.J., Juan, M.E.T., Arturo, R.: RFID Systems: A Survey
on Security Threats and Proposed Solutions. In: Cuenca, P., Orozco-Barbosa, L.
(eds.) PWC 2006. LNCS, vol. 4217, pp. 159–170. Springer, Heidelberg (2006)

16. Paise, R.-I., Vaudenay, S.: Mutual authentication in RFID: Security and privacy.
In: Proc. of ASIACCS, pp. 292–299. ACM Press, New York (2008)

17. Sadeghi, A.-R., Visconti, I., Wachsmann, C.: Anonymizer-enabled security and
privacy for RFID. In: Miyaji, A., Echizen, I., Okamoto, T. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 134–153. Springer, Heidelberg (2009)

18. Saito, J., Ryou, J.-C., Sakurai, K.: Enhancing privacy of universal re-encryption
scheme for RFID tags. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.) EUC
2004. LNCS, vol. 3207, pp. 879–890. Springer, Heidelberg (2004)

19. Tsudik, G.: YA-TRAP: Yet Another Trivial RFID Authentication Protocol. In:
International Conference on Pervasive Computing and Communications, PerCom
2006, pp. 640–643 (2006)

20. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

21. Weis, S., Sarma, S., Rivest, R., Engels, D.: Security and Privacy Aspects of Low-
Cost Radio Frequency Identification Systems. In: International Conference on Se-
curity in Pervasive Computing-SPC 2003 (2003)

22. Yu Ng, C., Susilo, W., Mu, Y., Safavi-Naini, R.: RFID privacy models revisited.
In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 251–266.
Springer, Heidelberg (2008)

On RFID Privacy with Mutual Authentication
and Tag Corruption

Frederik Armknecht1, Ahmad-Reza Sadeghi2,
Ivan Visconti3, and Christian Wachsmann2

1 University of Mannheim, Germany
armknecht@math.uni-mannheim.de

2 Horst Görtz Institute for IT-Security (HGI), Ruhr-University Bochum, Germany
{ahmad.sadeghi,christian.wachsmann}@trust.rub.de

3 Dipartimento di Informatica ed Applicazioni, University of Salerno, Italy
visconti@dia.unisa.it

Abstract. RFID systems have become increasingly popular and are al-
ready used in many real-life applications. Although very useful, RFIDs
also introduce privacy risks since they carry identifying information that
can be traced. Hence, several RFID privacy models have been proposed.
However, they are often incomparable and in part do not reflect the
capabilities of real-world adversaries. Recently, Paise and Vaudenay pre-
sented a general RFID security and privacy model that abstracts and
unifies most previous approaches. This model defines mutual authen-
tication (between the RFID tag and reader) and several privacy no-
tions that capture adversaries with different tag corruption behavior and
capabilities.

In this paper, we revisit the model proposed by Paise and Vaude-
nay and investigate some subtle issues such as tag corruption aspects.
We show that in their formal definitions tag corruption discloses the
temporary memory of tags and leads to the impossibility of achieving
both mutual authentication and any reasonable notion of RFID privacy
in their model. Moreover, we show that the strongest privacy notion
(narrow-strong privacy) cannot be achieved simultaneously with reader
authentication even if the adversary is not capable of corrupting a tag
during the protocol execution.

Although our results are shown on the privacy definition by Paise and
Vaudenay, they give insight to the difficulties of setting up a mature
security and privacy model for RFID systems that aims at fulfilling the
sophisticated requirements of real-life applications.

Keywords: RFID, Security Model, Privacy, Mutual Authentication.

1 Introduction

Radio Frequency Identification (RFID) enables RFID readers to perform fully
automatic wireless identification of objects that are labeled with RFID tags,
and is widely deployed to many applications (e.g., access control [1,2], elec-
tronic tickets [2,3], e-passports [4]). As pointed out in previous publications (see,

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 493–510, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

494 F. Armknecht et al.

e.g., [5,6,7]), this prevalence of RFID technology introduces various risks, in
particular concerning the privacy of its users and holders. The most deterrent
privacy risk concerns the tracking of users, which allows the creation and mis-
use of detailed user profiles. Thus, it is desired that an RFID system provides
anonymity (confidentiality of the tag identity) as well as untraceability (unlink-
ability of the communication of a tag), even in case the state (e.g., the secret)
of a tag has been disclosed.

The design of a secure privacy-preserving RFID scheme requires a careful
analysis in an appropriate formal model. There is a large body of literature on
security and privacy models for RFID (see, e.g., [8,9,10,11,12,13]). Existing so-
lutions often do not consider important aspects like adversaries with access to
auxiliary information (e.g., on whether the identification of a tag was successful),
or the privacy of corrupted tags whose state has been disclosed. In particular,
tag corruption is usually considered to happen only before and after, but not
during a protocol execution. However, in practice there are a variety of side-
channel attacks (see., e.g., [14,15,16]) that extract the state of a powered tag
based on the observation of (e.g., the power consumption of) the tag while it is
executing a protocol with the reader. Since RFID tags are usually cost-effective
devices without expensive tamper-proof mechanisms [1,2], tag corruption is an
important aspect to be covered by the underlying (formal) model. Though in
literature, tag corruption during protocol execution is rarely considered. To the
best of our knowledge, the security and privacy model in [10] is the only one that
considers corruption of tags during protocol executions and proposes a proto-
col in this model. However, this model does not consider issues like the privacy
of tags after they have been corrupted and privacy against adversaries with
access to auxiliary information. Moreover, [10] only provides an informal secu-
rity analysis of the proposed protocol. Recently, tag corruption during protocol
executions has been informally discussed in [13]. However, the formal RFID se-
curity and privacy model proposed in [13] assumes that such attacks cannot
occur. Moreover, [13] indicates informally (without giving formal arguments and
proofs) that tag corruption during protocol execution may have an impact on the
formal definitions of [9] and [11,12], which is basis for many subsequent works
(see, e.g., [19,20,21,22,23,24,25,26]). The first papers addressing tag corruption
during protocol execution in the model of [11] are [24,25], where it is shown
that privacy can be achieved under the assumption that tag corruption during
protocol execution can be detected by the tag.

In this paper, we focus on the security and privacy model by Paise and Vau-
denay [12] (that is based on [11]), which we call the PV-Model (Paise-Vaudenay
Model) in the following. The PV-Model is one of the most comprehensive RFID
security and privacy models up to date since it captures many aspects of real
world RFID systems and aims at abstracting most previous works in a single
concise framework. It defines mutual authentication between RFID tags and
readers and several privacy notions that correspond to adversaries with different
tag corruption abilities. However, as we show in this paper, the PV-Model suffers

On RFID Privacy with Mutual Authentication and Tag Corruption 495

from subtle deficiencies and weaknesses that are mainly caused by tag corrup-
tion aspects: in the PV-Model, each tag maintains a state that can be divided
into a persistent and a temporary part.1 The persistent state subsumes all infor-
mation that must be available to the tag in more than one interaction with the
reader (e.g., the authentication secret of the tag) and can be updated during the
interaction with the reader. The temporary state consists of all ephemeral infor-
mation that is discarded by the tag after each interaction with the reader (e.g.,
the randomness used by the tag). The PV-Model shows that if the adversary can
obtain both the persistent and the temporary tag state by tag corruption, then it
is impossible to achieve any notion of privacy that allows tag corruption in their
model. They address this issue by assuming that each tag erases its temporary
state each time it gets out of the reading range of the adversary. However, this
assumption leaves open the possibility to corrupt a tag while it is in the reading
range of the adversary, i.e., before its temporary state is erased. In particular,
the PV-Model allows the adversary to corrupt a tag while it is executing the
authentication protocol with the reader.

Contribution. In this paper, we point out subtle weaknesses and deficiencies in
the PV-Model. First, we show that the assumption of erasing temporary tag
states whenever a tag gets out of the reading range of the adversary made by
the PV-Model is not strong enough. We prove that, even under this assumption,
it is impossible to achieve reader authentication and simultaneously any notion
of privacy that allows tag corruption. This implies that the PV-Model cannot
provide privacy along with mutual authentication without relying on tamper-
proof hardware, which is unrealistic for low-cost RFID tags. Consequently, we
show attacks on the privacy goals of two of the three schemes presented in [12].

Our second contribution is to show that even under the strong assumption
that the temporary tag state is not subject to corruption attacks, some privacy
notions still remain impossible in the PV-Model. This implies that the third
protocol of [12] does not achieve its claimed privacy goal. On the good side,
we prove that some privacy notions can be met under the assumption that
temporary tag states are not disclosed by tag corruption.

Although our results are shown on the privacy definition by Paise and Vau-
denay, we believe that our work is helpful for developing a mature security and
privacy model for RFID systems that fulfills the sophisticated requirements of
real-life applications.

2 RFID System and Requirement Analysis

System model. An RFID system consists of at least an operator I, a reader
R and a tag T . I is the entity that enrolls and maintains the RFID system.
Hence, I initializes T and R before they are deployed in the system. T and R
are called legitimate if they have been initialized by I. In many applications T
1 During a protocol execution, tags could store some temporary information that al-

lows them to verify the response of the reader.

496 F. Armknecht et al.

is a hardware token with constrained computing and memory capabilities that
is equipped with a radio interface [1,2]. All information (e.g., secrets and data)
stored on T is denoted as the state of T . Usually T is attached to some object
or carried by a user of the RFID system. R is a stationary or mobile computing
device that interacts with T when T gets into the reading range of R. The main
purpose of this interaction usually is the authentication of T to R. Depending on
the use case, R may also authenticate to T and/or obtain additional information
like the identity of T . R can have a sporadic or permanent online connection
to some backend system D, which typically is a database maintaining detailed
information on all tags in the system. D is initialized and maintained by I and
can be read and updated by R.

Trust and adversary model. The operator I maintains the RFID system, and
thus is considered to behave correctly. However, I may be curious since he may
collect user information (see, e.g., [5,6]). Since T and R communicate over a
radio link, any entity can eavesdrop and manipulate this communication, even
from outside the nominal reading range of R and T [27]. Thus, the adversary A
can be every (potentially unknown) entity. Besides the communication between
T and R, A can also obtain useful auxiliary information (e.g., by visual obser-
vation) on whether R accepted T as a legitimate tag [9,12]. Most commercial
RFID tags are cost-efficient devices without expensive protection mechanisms
against physical tampering [1,2]. Hence, A can physically attack (corrupt) T
and obtain its state. In practice, RFID readers are embedded devices that can
be integrated into mobile devices (e.g., mobile phones or PDAs) or computers.
The resulting complexity exposes them to sophisticated hard- and software at-
tacks (e.g., viruses and Trojans). This problem aggravates for mobile readers
that can easily be lost or stolen. Hence, A can get full control over R [28,29,30].

Security and privacy objectives. The most deterrent privacy risk concerns the
tracking of tag users, which allows the creation and misuse of detailed user
profiles in an RFID system [6]. For instance, detailed movement profiles can
leak sensitive information on the personal habits and interests of the tag user.
The major security threats are to create illegitimate (forge) tags that are ac-
cepted by honest readers, to simulate (impersonate) or to copy (clone) legitimate
tags, and to permanently prevent users from using the RFID system (denial-of-
service) [10]. Thus, an RFID system should provide anonymity (confidentiality
of the tag identity) as well as untraceability (unlinkability of the communica-
tion of a tag) even if the state of a tag has been disclosed. The main security
objective is to ensure that only legitimate tags are accepted by honest readers
(tag authentication). Most use cases additionally require R to determine the au-
thentic tag identity (tag identification). Moreover, there are several applications
(e.g., electronic tickets) where reader authentication is a fundamental security
property. However, there are also use cases (e.g., electronic product labels) that
do not require reader authentication.

On RFID Privacy with Mutual Authentication and Tag Corruption 497

3 Notation

For a finite set S, |S| denotes the size of S whereas for an integer n the term |n|
means the bit-length of n. The term s ∈R S means the assignment of a uniformly
chosen element of S to s. Let A be a probabilistic algorithm. Then y ← A(x)
means that on input x, algorithm A assigns its output to variable y. The term
[A(x)] denotes the set of all possible outputs of A on input x. AK(x) means
that the output of A depends on x and some additional parameter K (e.g., a
secret key). The term Prot[A : xA; B : xB; ∗ : xpub] → [A : yA; B : yB] denotes an
interactive protocol Prot between two algorithms A and B. Hereby, A (resp. B)
gets a private input xA (resp. xB) and a public input xpub . While A (resp. B)
is operating, it can interact with B (resp. A). After the protocol terminates, A
(resp. B) returns yA (resp. yB). Let E be some event (e.g., the result of a security
experiment), then Pr[E] denotes the probability that E occurs. Probability ε(l)
is called negligible if for all polynomials f it holds that ε(l) ≤ 1/f(l) for all
sufficiently large l. Probability 1− ε(l) is called overwhelming if ε(l) is negligible.

4 The PV-Model

In this section, we recall Paise and Vaudenay’s model (PV-Model) [12], which is
one of the most comprehensive RFID security and privacy models up to date.

4.1 System Model

The PV-Model considers RFID systems that consist of a single operator I, a
single reader R and a polynomial number of tags T . R is assumed to be capable
of performing public-key cryptography and of handling multiple instances of the
mutual authentication protocol with different tags in parallel. Each tag T is a
passive device, i.e., it does not have its own power supply but is powered by the
electromagnetic field ofR. Hence, T cannot initiate communication, has a narrow
communication range (i.e., a few centimeters to meters) and erases its temporary
state (i.e., all session-specific information and randomness) after it gets out of
the reading range of R. Each T is assumed to be capable of performing basic
cryptographic functions like random number generation, hashing and symmetric-
key encryption. The authors of [12] also use public-key encryption, although it
exceeds the capabilities of most currently available RFID tags.

The operator I sets up the reader R and all tags T . Hence, there are two
setup algorithms to generate the system parameters (e.g., keys) of R and T .
Mutual authentication is covered by a third protocol between T and R.

Definition 1 (RFID System [12]). An RFID system is a tuple of probabilistic
polynomial time (p.p.t.) algorithms (R, T , SetupReader, SetupTag, Ident) that are
defined as follows:

SetupReader(1l)→ (skR, pkR, DB) On input of a security parameter l, this algo-
rithm creates the public system parameters pkR that are known to all entities.

498 F. Armknecht et al.

Moreover, it creates the secret system parameters skR and a database DB that
can only be accessed by R.

SetupTagpkR
(ID)→ (K, S) uses pkR to generate a tag secret K and tag state

S, initializes TID with S, and stores (ID, K) in DB.
Ident[TID :S; R :skR, DB; ∗ :pkR]→ [TID :outTID

; R :outR] is an interactive pro-
tocol between TID and R. TID takes as input its current state S while R has
input skR and DB. The common input to all parties is pkR. After the protocol
terminates, R returns either the identity ID of TID or ⊥ to indicate that TID
is not a legitimate tag. TID returns either ok to indicate that R is legitimate
or ⊥ otherwise.

Correctness describes the honest behavior of legitimate tags and the reader R.

Definition 2 (Correctness [12]). An RFID system (Definition 1) is correct
if ∀ l, ∀ (skR, pkR, DB) ∈ [SetupReader(1l)], and ∀ (K, S) ∈ [SetupTagpkR

(ID)]

Pr
[
Ident[TID :S; R :skR, DB; ∗ :pkR]→ [TID :ok; R :ID]

]
is overwhelming.

4.2 Trust and Adversary Model

The PV-Model assumes the issuer I, the backend database D and the readers to
be trusted, whereas a tag T can be compromised. All readers andD are subsumed
to one single reader entity R that cannot be corrupted. The PV-Model defines
privacy and security as experiments, where an adversary A interacts with a set
of oracles that model the capabilities of A. These oracles are:

CreateTagb(ID) Allows A to set up a tag TID with identifier ID by internally
calling SetupTagpkR

(ID) to create (K, S) for TID. If input b = 1, then (ID, K)
is added to DB. If b = 0, then (ID, K) is not added to DB.

Draw(δ)→ (vtag1, b1, . . . , vtagn, bn) Initially,A cannot interact with any tag but
must query Draw to get access to a set of tags that has been chosen accord-
ing to a given probability distribution δ. A knows the tags he can interact
with by temporary tag identifiers vtag1, . . . , vtagn. Draw manages a secret
table Γ that links each temporary tag identifier vtag i to the corresponding
real tag identifier IDi (i.e., Γ [vtagi] = IDi). Moreover, Draw provides A with
information on whether the tags are legitimate (bi = 1) or not (bi = 0).

Free(vtag) Makes vtag inaccessible to A such that A can no longer interact with
vtag until it is made accessible again (under a new temporary identifier vtag ′)
by another Draw query.

Launch()→ π Makes R to start a new instance π of the Ident protocol.
SendReader(m, π)→ m′ Sends a message m to instance π of the Ident protocol

that is running on R. R interprets m as a protocol message of instance π of
the Ident protocol and responds with a message m′.

SendTag(m, vtag)→ m′ Sends a message m to the tag TID that is known as
vtag to A. TID interprets m as a protocol message of the Ident protocol and
responds with a message m′.

Result(π) Returns 1 if instance π of the Ident protocol has been completed and
the tag that participated in instance π has been accepted by R. Otherwise
Result returns 0.

On RFID Privacy with Mutual Authentication and Tag Corruption 499

Corrupt(vtag)→ S Returns the current state S (i.e., all information stored in
the memory) of the tag TID that is known as vtag to A.

The PV-Model distinguishes eight adversary classes, which differ in (i) their
ability to corrupt tags and (ii) the availability of auxiliary information (i.e., the
ability to access the Corrupt and Result oracle, respectively).

Definition 3 (Adversary Classes [12]). An adversary is a p.p.t. algorithm
that has arbitrary access to all oracles described in Section 4.2. Weak adversaries
cannot access the Corrupt oracle. Forward adversaries can no longer query any
other oracle than Corrupt after they made the first Corrupt query. Destructive ad-
versaries cannot query any oracle for vtag again after they made a Corrupt(vtag)
query. Strong adversaries have no restrictions on the use of the Corrupt oracle.
Narrow adversaries cannot access the Result oracle.

Tag corruption aspects. Depending on the concrete scenario one could have
that the temporary tag state is disclosed under tag corruption. In general, any
concrete scenario will range between the following two extremes: (i) corruption
discloses the full temporary tag state or (ii) corruption does not disclose any
information on the temporary tag state. In Sections 5 and 6, we will prove
that in both cases some privacy notions are impossible to achieve in the PV-
Model. Thus, independently of any possible interpretation of tag corruption,
impossibility results exist that revisit the claims of [12].

4.3 Security Definition

The security definition of the PV-Model focuses on attacks where the adversary
aims to impersonate or forge a legitimate tag T or the reader R. It does not
capture availability and security against cloning.

Tag authentication. The definition of tag authentication is based on a security
experiment ExpT -aut

Asec
, where a strong adversary Asec (Definition 3) must make

the readerR to identify some tag TID in some instance π of the Ident protocol. To
exclude trivial attacks (e.g., relay attacks), Asec is not allowed to simply forward
all the messages from TID to R in instance π nor to corrupt TID. This means that
at least some of the protocol messages that made R to return ID must have been
computed by Asec without knowing the secrets of TID. With ExpT -aut

Asec
= 1 we

denote the case where Asec wins the security experiment.

Definition 4 (Tag Authentication [12]). An RFID system (Definition 1)
achieves tag authentication if for every strong adversary Asec (Definition 3)
Pr[ExpT -aut

Asec
= 1] is negligible.

Note that tag authentication is a critical property and hence must be preserved
even against strong adversaries.

500 F. Armknecht et al.

Reader authentication. The definition of reader authentication is based on a
security experiment ExpR-aut

Asec
, where a strong adversary Asec (Definition 3)

must successfully impersonate the reader R to a legitimate tag TID. Also here,
to exclude trivial attacks, Asec must achieve this without simply forwarding the
protocol messages from R to TID. With ExpR-aut

Asec
= 1 we denote the case where

Asec wins the security experiment.

Definition 5 (Reader Authentication [12]). An RFID system (Definition 1)
achieves reader authentication if for every strong adversary Asec (Definition 3)
Pr[ExpR-aut

Asec
= 1] is negligible.

4.4 Privacy Definition

The privacy definition of the PV-Model is very flexible and, dependent on the
adversary class (see Definition 3), it covers different notions of privacy. It cap-
tures anonymity and unlinkability and focuses on the privacy leakage of the
communication of tags with the reader. It is based on the existence of a simu-
lator B, called blinder, that can simulate every tag T and the reader R without
knowing their secrets such that an adversary Aprv cannot distinguish whether it
is interacting with the real or the simulated RFID system.

The privacy definition can be formalized by the following experiment Expprv-b
Aprv

:
Let Aprv be an adversary according to Definition 3, l be a given security param-
eter and b ∈R {0, 1}. In the first phase of the experiment, R is initialized with
(skR, pkR, DB) ← SetupReader(1l). The public key pkR is given to Aprv and B.
Now, Aprv is allowed to arbitrarily interact with all oracles defined in Section 4.2.
Hereby, Aprv is subject to the restrictions of its corresponding adversary class
(see Definition 3). If b = 1, all queries to the Launch, SendReader, SendTag and
Result oracles are redirected to and answered by B. Hereby, B can observe all
queries Aprv makes to all other oracles that are not simulated by B and the
corresponding responses (“B sees what Aprv sees”). After a polynomial number
of oracle queries, the second phase of the experiment starts, where Aprv can no
longer interact with the oracles but is given the secret table Γ of the Draw oracle.
Finally, Aprv returns a bit b′, which we denote with Expprv-b

Aprv
= b′.

Definition 6 (Privacy [11]). Let C be an adversary class according to Defini-
tion 3. An RFID system (Definition 1) is C-private if for every adversary Aprv
of C there exists a p.p.t. algorithm B (blinder) such that the advantage

Advprv
Aprv

=
∣∣Pr
[
Expprv-0

Aprv
= 1
]
− Pr
[
Expprv-1

Aprv
= 1
]∣∣

of Aprv is negligible. B simulates the Launch, SendReader, SendTag and Result
oracles to Aprv without having access to skR and DB. Hereby, all oracle queries
Aprv makes and their corresponding responses are also sent to B.

Figure 1 summarizes all privacy notions defined in the PV-Model and shows the
relations among them. It has been shown that strong privacy is impossible while
the technical feasibility of destructive privacy currently is an open problem [11].

On RFID Privacy with Mutual Authentication and Tag Corruption 501

Strong ⇒ Destructive ⇒ Forward ⇒ Weak
⇓ ⇓ ⇓ ⇓

Narrow-Strong ⇒ Narrow-Destructive ⇒ Narrow-Forward ⇒ Narrow-Weak

Fig. 1. Privacy notions defined in the PV-Model and their relations

5 Corruption with Temporary State Disclosure

We now point out a subtle conceptual weakness of the PV-Model and revisit two
of the claims given in [12] about their protocols, that do not achieve the claimed
privacy properties. We first illustrate our adversarial strategy by showing how
tag corruption (as defined in the PV-Model) can be exploited to attack one of the
protocols proposed in [12]. Then we generalize our attack to the class of narrow-
forward private protocols, which finally leads to our first impossibility result: in
the PV-Model it is impossible to achieve any notion of privacy simultaneously
with reader authentication (under temporary state disclosure) except for the
weak and narrow-weak privacy notions.

We stress that this impossibility result is due to the fact that, according to the
formal definitions of the PV-Model, the adversary can obtain the full state (in-
cluding the temporary memory) of a tag by corrupting the tag while it is execut-
ing a protocol with the reader. In face of side-channel attacks (see, e.g., [15,16]),
such attacks can be feasible in practice (in particular against low-cost RFID tags)
and hence, must be formally considered. Although [12] informally discusses an
issue related to tag corruption during protocol execution, we show that such
attacks are not adequately captured by the formal definitions of the PV-Model.
Hence, the only achievable privacy notions are those where the adversary is not
allowed to corrupt tags at all. Since in practice tag corruption is realistic, this
implies that using the PV-Model is not helpful when reader authentication and
a reasonable notion of privacy are needed.

5.1 Illustrative Example

We first show our attack on protocol 3 of [12], which is claimed to provide reader
authentication while being narrow-strong private.2

Protocol description. Let l, k, α, β ∈ N be given security parameters.R is initial-
ized with the credentials database DB and the secret key skR of a CCA-secure
public-key encryption scheme, while TID is initialized with the corresponding
public key pkR, a given tag identifier ID and K ∈R {0, 1}k. The Ident protocol
is illustrated in Figure 2 and works as follows: Upon receipt of a, TID stores b in
its temporary memory and sends c to R.3 If TID is legitimate, R can identify TID
2 In the full version of this paper [31], we show that the same attack can be launched

on the second protocol of [12], which is claimed to be narrow-destructive private.
3 Note that TID interprets the protocol messages sent by R based on the value of b. If
b is empty (i.e., has been erased), then TID considers the message sent by R as the
first, and as the third protocol message otherwise.

502 F. Armknecht et al.

Tag TID Reader R
S = (pkR, ID,K) (skR, DB)

a ∈R {0, 1}αa
b ∈R {0, 1}β

c← EncpkR (ID,K, a, b) c
(ID,K, a′, b′)← DecskR (c)

if a = a′ and (ID,K) ∈ DB then

d← b′

outR ← ID

else d ∈R {0, 1}β

endif

return outR

outR ← ⊥

d
if b = d then outTID

← ok

else outTID
← ⊥

endif

return outTID

Fig. 2. Protocol 3 of [12]

by verifying that a = a′ and checking if DB contains(ID, K). If this is the case, R
sends d← b′ to TID and outputs ID. Otherwise, R sends a random d and returns
⊥. TID checks if b = d and returns ok if this is the case and ⊥ otherwise.

Attacking the protocol. Theorem 4 of [12] claims that the protocol shown in
Figure 2 provides mutual authentication (Definitions 4 and 5) and narrow-strong
privacy (Definition 6). Note that the proof of reader authentication given in [12]
(which we believe to be correct) requires the encryption scheme to be CCA-
secure and 2−β to be negligible. In the following we show that the protocol in
Figure 2 is not narrow-strong private.

Theorem 1. The RFID protocol shown in Figure 2 does not achieve narrow-
strong privacy (Definition 6), reader authentication (Definition 5) and correct-
ness (Definition 2) at the same time.

The full proof of Theorem 1 can be found in the full version of this paper [31].

Proof (Theorem 1, Sketch). The idea of the proof is to construct a narrow-
strong adversary Aprv that violates Definition 6 by corrupting a legitimate tag
TID during the Ident protocol. More precisely, Aprv corrupts TID right before it
receives d, which authenticatesR to TID. This allows Aprv to obtain the complete
state S = (pkR, ID, K, b) of TID, including its temporary state b. Hence, Aprv
can perform the computation TID would have done on receipt of d (i.e., Aprv can
check whether b = d). In case Aprv interacted with the real oracles, then (due
to correctness) with overwhelming probability this computation must result in
acceptance of R (i.e., it must hold that b = d). However, if Aprv interacted
with the blinder B, then the computation done by Aprv leads to rejection of R
(i.e., it holds that b �= d) with overwhelming probability. This is due to reader
authentication (Definition 5). Hence, Aprv can distinguish the real oracles from

On RFID Privacy with Mutual Authentication and Tag Corruption 503

the simulation by B with non-negligible advantage, which violates narrow-strong
privacy (Definition 6). �

5.2 Impossibility of Narrow-Forward-Privacy

Now we generalize the attack shown in Section 5.1. To prove our first impossi-
bility result, we need the following lemma, which we will prove further below.

Lemma 1. If for every narrow-forward adversary Aprv there is a blinder B
such that Advprv

Aprv
is negligible (Definition 6), then B can be used to construct

an adversary AB
sec such that Pr[ExpR-aut

AB
sec

= 1] is non-negligible (Definition 5).

Based on this lemma, we set up the following theorem, which we need later to
prove our main impossibility result:

Theorem 2. There is no RFID system (Definition 1) that achieves both reader
authentication (Definition 5) and narrow-forward privacy (Definition 6).

Proof (Theorem 2). Let Aprv be a narrow-forward adversary (Definition 3). Def-
inition 6 requires the existence of a blinder B such that Aprv cannot distinguish
between B and the real oracles. From Lemma 1 it follows that B can be used to
impersonate R to any legitimate tag T with non-negligible probability. Hence,
the existence of B contradicts reader authentication (Definition 5). �

Proof (Lemma 1). First, we show how to constructAB
sec from B. Second, we prove

that AB
sec violates reader authentication (Definition 5) if Advprv

Aprv
is negligible

for every narrow-forward Aprv (Definition 3).
Let qR ∈ N with qR > 0 be the (expected) number of SendReader queries as

specified by the Ident protocol and let SR
i be the state ofR after processing the i-

th SendReader query. The initial reader state SR
0 includes the public key pkR and

the secret key skR of R as well as a pointer to the credentials database DB. Note
that during the processing of a SendReader query, R can update DB. R can be
considered as a tuple of algorithms (R(1)

π , . . . ,R(qR)
π), where R(i)

π represents the
computation done by R when processing the i-th SendReader query in instance π

of the Ident protocol. More formally: (SR
1 , m1)←R(0)

π (SR
0) and (SR

i+1, m2i+1)←
R(i)

π (SR
i , m2i) for 1 ≤ i ≤ qR. Since tags are passive devices that cannot initiate

communication R must send the first protocol message. Thus, R generates all
protocol messages with odd indices whereas the tag T generates all messages
with even indices. In case the Ident protocol specifies that T sends the last
protocol message, then m2qR+1 is the empty string. Let qT ∈ N with qT > 0
be the (expected) number of SendTag queries as specified by the Ident protocol
and let ST

i be the state of T after processing the i-th SendTag query. T can
be represented as a tuple of algorithms (T (1), . . . , T (qT)) where T (i) means the
computation done by T when processing the i-th SendTag query in an instance of
the Ident protocol that involves T . More formally: (ST

i+1, m2i)← T (i)(ST
i , m2i−1)

for 1 ≤ i ≤ qT . Note that m2qT is the empty string if Ident specifies that R must
send the last protocol message.

504 F. Armknecht et al.

Alg. 1. Adversary AB
sec violating reader authentication

1: CreateTag(ID)
2: vtag ← Draw(Pr[ID] = 1)
3: π ← Launch() � simulated by B
4: m1 ← SendReader(−, π) � simulated by B
5: i← 1
6: while i < qR do
7: if i ≤ qT then m2i ← SendTag(m2i−1, vtag) � simulated by B
8: end if
9: m2i+1 ← SendReader(m2i, π) � simulated by B

10: i← i+ 1
11: end while
12: outTID ← SendTag(m2qR−1, vtag) � computed by TID

The idea of AB
sec is to internally use B as a black-box to simulate the final

response of R that makes a legitimate tag TID to accept AB
sec as R. AB

sec is
defined in Algorithm 1 and works as follows: First, AB

sec creates a legitimate
tag TID (step 1) and makes it accessible (step 2). Both steps are also shown
to B, which expects to observe all oracle queries. Then, AB

sec makes B to start
a new instance π of the Ident protocol with TID (step 3) and obtains the first
protocol message m1 generated by B (step 4). Now, AB

sec internally runs B that
simulates vtag and R until B returns the final reader message m2qR−1 (steps 5–
11). Finally, AB

sec sends m2qR−1 to the real tag TID (step 12). AB
sec succeeds if

TID accepts m2qR−1 and returns outTID
= ok, which means that TID accepts B as

R. More formally, this means that:

Pr
[
ExpR-aut

AB
sec

= 1
]

= Pr
[
Ident
[
TID :STID

0 ; AB
sec :−; ∗ :pkR

]
→
[
TID :ok; AB

sec : ·
]]

(1)

We stress that this indeed is a valid attack w.r.t. Definition 5 since Asec neither
corrupts TID nor just forwards the protocol messages between R and TID.

Next, we show that narrow-forward privacy (Definition 6) ensures that Eq. 1
is non-negligible. Therefore, we assume by contradiction that Eq. 1 is negligible,
which implies that with overwhelming probability p⊥ message m2qR−1 gener-
ated by B makes TID to return outTID

= ⊥. In the following, we show that if
p⊥ is non-negligible, then there is a narrow-forward adversary Aprv that has
non-negligible advantage Advprv

Aprv
, which contradicts narrow-forward privacy

(Definition 6). Aprv is defined in Algorithm 2 and works as follows: First, Aprv
creates a legitimate tag TID (step 1) and makes it accessible (step 2). Then, Aprv
makes R to start a new instance π of the Ident protocol with TID (step 3) and
obtains the first protocol message m1 from R (step 4). Now, Aprv eavesdrops on
the execution of the Ident protocol up to to the point after R has sent its last
protocol message m2qR−1 (steps 5–11) and corrupts TID just before TID received
m2qR−1 (step 12). Next, Aprv performs the computation TID would have done on
receipt of m2qR−1 (step 13). If this computation results in outTID

= ok, Aprv re-
turns 0 to indicate that he interacted with the real oracles (step 14). Otherwise,
Aprv indicates the presence of B by returning 1 (step 15). Note that Aprv indeed

On RFID Privacy with Mutual Authentication and Tag Corruption 505

Alg. 2. Narrow-forward adversary Aprv

1: CreateTag(ID)
2: vtag ← Draw(Pr[ID] = 1)
3: π ← Launch()
4: m1 ← SendReader(−, π)
5: i← 1
6: while i < qR do
7: if i ≤ qT then m2i ← SendTag(m2i−1, vtag)
8: end if
9: m2i+1 ← SendReader(m2i, π)

10: i← i+ 1
11: end while
12: STID

qR ← Corrupt(vtag)
13: outTID ← TID(qR)(STID

qR ,m2qR−1)
14: if outTID = ok then return 0
15: else return 1
16: end if

is a narrow-forward adversary (Definition 3) since Aprv never queries Result and
none of the oracles defined in Section 4.2 after corrupting TID.

Next, we determine Advprv
Aprv

. Therefore, we first consider the case where Aprv
interacts with the real oracles. Since TID is legitimate, it follows from correctness
(Definition 2) that outTID

= ok with overwhelming probability pok. Hence,

Pr
[
Expprv-0

Aprv
= 1
]

= 1− pok (2)

is negligible. Now, consider the case where Aprv interacts with B. Note that by
the contradicting hypothesis, B generates a protocol message m2qR−1 that makes
TID to return outTID

= ⊥ with overwhelming probability p⊥. Thus, we have

Pr
[
Expprv-1

Aprv
= 1
]

= p⊥ . (3)

From Eq. 2 and Eq. 3 it follows that Advprv
Aprv

=
∣∣1−pok−p⊥

∣∣. Note that both pok
(due to correctness) and p⊥ (by assumption) are overwhelming. Hence, Advprv

Aprv

is non-negligible, which contradicts narrow-forward privacy (Definition 6). In
turn, this means that narrow-forward privacy ensures that Eq. 1 is non-negligible,
which finishes the proof. �

Since the impossibility of narrow-forward privacy (see Theorem 2), implies the
impossibility of all stronger privacy notions (see Figure 1), we have the following
corollary, which corresponds to the first main claim of this paper.

Corollary 1. In the PV-Model, there is no RFID system (Definition 1) that
achieves both reader authentication (Definition 5) and any privacy notion that
is different from weak and narrow-weak privacy (Definition 6) under temporary
state disclosure.

506 F. Armknecht et al.

6 Corruption without Temporary State Disclosure

Our first impossibility result shows that the PV-Model requires further assump-
tions to evaluate the privacy properties of RFID systems where tag corruption
is of concern. A natural question therefore is, whether one can achieve mutual
authentication along with some form of privacy, if the temporary tag state is
not disclosed. Hence, in this section we consider the case where corruption only
reveals the persistent tag state but no information on the temporary tag state.

The attack and the impossibility result shown in Section 5 critically use the
fact that in the PV-Model an adversary Aprv can learn the temporary state of
a tag during the Ident protocol. This allows Aprv to verify the response of R
(that may have been simulated by B) and hence, due to reader authentication
(Definition 5), Aprv can distinguish with non-negligible advantage between the
real oracles and B. However, if an adversary cannot obtain temporary tag states,
he cannot perform this verification. Hence, the impossibility result we proved in
Section 5 does not necessarily hold if the temporary state is safe to corruption.

6.1 Privacy under Corruption without Temporary State Disclosure

To show that it is possible to achieve a notion of privacy in the PV-Model that
captures adversaries who can corrupt tags, we show that the protocol depicted in
Figure 2 achieves narrow-forward privacy if corruption only reveals the persistent
tag state but no information on the temporary tag state. Note that the attack
presented in Section 5.1 cannot be applied since we now consider the case that
the adversary cannot obtain the temporary tag state b.
Theorem 3. The RFID protocol shown in Figure 2 achieves narrow-forward
privacy (Definition 6) if the underlying encryption scheme is CCA-secure and
Corrupt does not reveal the temporary tag state b.
The full proof of Theorem 3 is given in the full version of this paper [31].
Proof (Theorem 3, Sketch). We construct a blinder B and show that Advprv

Aprv

is negligible for any narrow-forward adversary Aprv, as required by Definition 6.
More precisely, we prove that if there is an Aprv such that Advprv

Aprv
is non-

negligible, then Aprv can be used as a black-box to construct an adversary Acca
that violates the CCA-security of the underlying encryption scheme. �

6.2 Impossibility of Narrow-Strong Privacy

We now point out a second, conceptually different weakness of the claimed
narrow-strong private protocol of [12] (which is depicted in Figure 2). More
precisely, we show an attack on this protocol that does not require the adversary
to obtain temporary tag states. Moreover, we generalize this attack to prove our
second impossibility result: in the PV-Model, it is impossible to achieve narrow-
strong privacy along with reader authentication. This means that even in case
the adversary cannot obtain temporary tag states, the most challenging privacy
notion defined in [12] (narrow-strong privacy) remains unachievable.4 We stress
4 The impossibility of strong privacy has been shown in [11].

On RFID Privacy with Mutual Authentication and Tag Corruption 507

Alg. 3. Narrow-strong adversary Aprv on the protocol in Figure 2
1: CreateTag(ID)
2: vtag ← Draw(Pr[ID] = 1)
3: (pkR, ID, K) ← Corrupt(vtag)
4: Free(vtag)
5: π ← Launch()
6: a← SendReader(−, π)
7: b ∈R {0, 1}β

8: c← EncpkR(ID,K, a, b)
9: d ← SendReader(c, π)

10: if b = d then return 0
11: else return 1
12: end if

that introducing even stronger hardware assumptions to further restrict the abil-
ity of the adversary to corrupt tags would deviate from the capabilities of real
tags. Indeed, most RFID tags are low-cost devices that usually are not equipped
with mechanisms that ensure tamper-evidence or tamper-resistance.

Theorem 4. The RFID protocol shown in Figure 2 does not achieve narrow-
strong privacy (Definition 6), reader authentication (Definition 5) and correct-
ness (Definition 2) at the same time.

Note that the proof of reader authentication given in [12] (which we believe to be
correct) requires the underlying public-key encryption scheme to be CCA-secure.

Proof (Theorem 4, Sketch). The idea is that a narrow-strong adversaryAprv can
detect the presence of a blinder B by simulating a corrupt legitimate tag TID to
R. In contrast toR, B does not know the secret decryption key skR and thus will
fail to generate a correct response d with overwhelming probability. This allows
Aprv to distinguish between B and the real oracles. Note that in the following
attack Aprv corrupts TID before executing Ident with R and hence, the attack is
independent of the temporary state of TID. Aprv is defined in Algorithm 3: First,
Aprv creates a legitimate tag TID (step 1), makes it accessible (step 2), corrupts
it (step 3), and makes it inaccessible again (step 4). Then, Aprv makes R to
start Ident with TID (step 5) and obtains a from R (step 6). Now, Aprv simulates
TID to compute c (step 7–8) and sends c to R to obtain d (step 9). Next, Aprv
performs the computation TID would have done on receipt of d (step 10), i.e.,
Aprv checks if b = d. Finally, Aprv returns 0 to indicate that it interacted with
the real oracles (step 10), or 1 to indicate the presence of B (step 11).

Since TID is legitimate, due to correctness (Definition 2), SendReader must
respond with d = b. The real SendReader oracle can compute b with probability
1 by decrypting c with skR. Since, due to reader authentication (Definition 5),
the public-key encryption scheme is assumed to be CCA-secure and B does not
know skR, B can at most guess b with negligible probability. Hence, Aprv has
non-negligible advantage of distinguishing between B and the real oracles, which
violates narrow-strong privacy (Definition 6). �

508 F. Armknecht et al.

Now, we generalize this attack to our second impossibility result:

Theorem 5. In the PV-Model there is no RFID system (Definition 1) that ful-
fills both reader authentication (Definition 5) and narrow-strong privacy (Defi-
nition 6).

The full proof of Theorem 5 can be found in the full version of this paper [31].

Proof (Theorem 5, Sketch). We show that if there is a blinder B such that advan-
tage Advprv

Aprv
is negligible for every narrow-strong adversary Aprv (as required

by Definition 6), then we can use B as a black-box to construct an adversaryAsec,
who violates reader authentication (Definition 5). Note that Aprv can interact
with tags after corrupting them since Aprv is a narrow-strong adversary. Hence,
Aprv can corrupt a tag T after its creation and simulate it to R (that might be
simulated by B). This allows Aprv to verify the authentication messages of R.
Hence, Aprv can detect B since, due to reader authentication (Definition 5), B
should not be able to successfully authenticate to T as R. �

7 Conclusion

In this work we proved impossibility results that show that the RFID model
proposed by Paise and Vaudenay [12] cannot guarantee the most interesting
privacy notions and simultaneously reader authentication (which is the goal of
the model). Nevertheless, we pointed out that, by restricting the tag corruption
ability of the adversary, at least some, although weak, privacy notions can be
achieved.

Acknowledgments. We thank Paolo D’Arco and Alessandra Scafuro for several
useful discussions about RFID privacy notions. This work has been supported in
part by the European Commission through the FP7 programme under contract
216646 ECRYPT II, 238811 UNIQUE, and 215270 FRONTS, in part by the
Ateneo Italo-Tedesco under Program Vigoni and by the MIUR Project PRIN
2008 “PEPPER: Privacy E Protezione di dati PERsonali” (prot. 2008SY2PH4).

References

1. Atmel Corporation: Innovative IDIC solutions (2007),
http://www.atmel.com/dyn/resources/prod_documents/doc4602.pdf

2. NXP Semiconductors: MIFARE smartcard ICs (September 2008),
http://www.mifare.net/products/smartcardics/

3. Sadeghi, A.R., Visconti, I., Wachsmann, C.: User privacy in transport systems
based on RFID e-tickets. In: International Workshop on Privacy in Location-Based
Applications, PiLBA (2008)

4. I.C.A. Organization: Machine Readable Travel Documents, Doc 9303, Part 1 Ma-
chine Readable Passports, 5th Edn. (2003)

http://www.atmel.com/dyn/resources/prod_documents/doc4602.pdf
http://www.mifare.net/products/smartcardics/

On RFID Privacy with Mutual Authentication and Tag Corruption 509

5. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of
low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan,
W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 50–
59. Springer, Heidelberg (2004)

6. Juels, A.: RFID security and privacy: A research survey. Journal of Selected Areas
in Communication 24(2), 381–395 (2006)

7. Sadeghi, A.R., Visconti, I., Wachsmann, C.: Location privacy in RFID applications.
In: Bettini, C., Jajodia, S., Samarati, P., Wang, X.S. (eds.) Privacy in Location-
Based Applications. LNCS, vol. 5599, pp. 127–150. Springer, Heidelberg (2009)

8. Avoine, G.: Adversarial model for radio frequency identification. ePrint, Report
2005/049 (2005)

9. Juels, A., Weis, S.A.: Defining strong privacy for RFID. In: Proceedings of the
Fifth IEEE International Conference on Pervasive Computing and Communica-
tions Workshops (PERCOMW ’07), pp. 342–347. ACM Press, New York (2007)

10. Burmester, M., van Le, T., de Medeiros, B.: Universally composable and forward-
secure RFID authentication and authenticated key exchange. In: Proc. of ASI-
ACCS, pp. 242–252. ACM Press, New York (2007)

11. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

12. Paise, R.I., Vaudenay, S.: Mutual authentication in RFID: Security and privacy.
In: Proc. of ASIACCS, pp. 292–299. ACM Press, New York (2008)

13. Deng, R.H., Li, Y., Yao, A.C., Yung, M., Zhao, Y.: A new framework for RFID
privacy. ePrint, Report 2010/059 (2010)

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

15. Hutter, M., Schmidt, J.M., Plos, T.: RFID and its vulnerability to faults. In: Os-
wald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 363–379. Springer,
Heidelberg (2008)

16. Kasper, T., Oswald, D., Paar, C.: New methods for cost-effective side-channel
attacks on cryptographic RFIDs. In: Workshop on RFID Security, RFIDSec (2009)

17. D’Arco, P., Scafuro, A., Visconti, I.: Semi-destructive privacy in DoS-enabled RFID
systems. In: Workshop on RFID Security, RFIDSec (2009)

18. D’Arco, P., Scafuro, A., Visconti, I.: Revisiting DoS Attacks and Privacy in RFI-
DEnabled Networks. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804,
pp. 76–87. Springer, Heidelberg (2009)

19. Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: RFID privacy models revisited.
In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 251–266.
Springer, Heidelberg (2008)

20. Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: New privacy results on synchronized
RFID authentication protocols against tag tracing. In: Backes, M., Ning, P. (eds.)
ESORICS 2009. LNCS, vol. 5789, pp. 321–336. Springer, Heidelberg (2009)

21. Bringer, J., Chabanne, H., Icart, T.: Efficient zero-knowledge identification schemes
which respect privacy. In: Proceedings of ASIACCS ’09, pp. 195–205. ACM Press,
New York (2009)

22. Sadeghi, A.R., Visconti, I., Wachsmann, C.: Efficient RFID security and privacy
with anonymizers. In: Workshop on RFID Security, RFIDSec (2009)

23. Sadeghi, A.R., Visconti, I., Wachsmann, C.: Anonymizer-enabled security and pri-
vacy for RFID. In: Miyaji, A., Echizen, I., Okamoto, T. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 134–153. Springer, Heidelberg (2009)

510 F. Armknecht et al.

24. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game—A Com-
pleteness Theorem for Protocols with Honest Majority. In: Proc. of ACMSTOC,
pp. 218–229 (1987)

25. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems. SIAM J. on Computing 18(6), 186–208 (1989)

26. Sadeghi, A.R., Visconti, I., Wachsmann, C.: PUF-enhanced RFID security and
privacy. In: Workshop on Secure Component and System Identification (SECSI)
(2010)

27. Kirschenbaum, I., Wool, A.: How to build a low-cost, extended-range RFID skim-
mer. ePrint, Report 2006/054 (2006)

28. Avoine, G., Lauradoux, C., Martin, T.: When compromised readers meet RFID.
In: Workshop on RFID Security (RFIDSec) (2009)

29. Garcia, F.D., van Rossum, P.: Modeling privacy for off-line RFID systems. In:
Workshop on RFID Security (RFIDSec) (2009)

30. Nithyanand, R., Tsudik, G., Uzun, E.: Readers behaving badly: Reader revocation
in PKI-based RFID systems. Cryptology ePrint Archive, Report 2009/465 (2009)

31. Sadeghi, A.R., Visconti, I., Wachsmann, C.: On rfid privacy with mutual authen-
tication and tag corruption — Extended Version. ePrint (2010)

Social Network-Based Botnet
Command-and-Control: Emerging Threats and

Countermeasures

Erhan J. Kartaltepe1, Jose Andre Morales1, Shouhuai Xu2, and Ravi Sandhu1

1 Institute for Cyber Security, University of Texas at San Antonio
{erhan.kartaltepe,jose.morales,ravi.sandhu}@utsa.edu

2 Department of Computer Science, University of Texas at San Antonio
shxu@cs.utsa.edu

Abstract. Botnets have become a major threat in cyberspace. In
order to effectively combat botnets, we need to understand a botnet’s
Command-and-Control (C&C), which is challenging because C&C strate-
gies and methods evolve rapidly. Very recently, botmasters have begun
to exploit social network websites (e.g., Twitter.com) as their C&C in-
frastructures, which turns out to be quite stealthy because it is hard to
distinguish the C&C activities from the normal social networking traffic.
In this paper, we study the problem of using social networks as botnet
C&C infrastructures. Treating as a starting point the current generation
of social network-based botnet C&C, we envision the evolution of such
C&C methods and explore social networks-based countermeasures.

Keywords: Botnet, command-and-control, social networks, security.

1 Introduction

The critical difference between botnets and other malware is that botmasters
use a Command-and-Control (C&C) to coordinate large numbers of individ-
ual bots (i.e., compromised computers) to launch potentially much more dam-
aging attacks. Botmasters also evolve their C&C strategies and methods very
rapidly to evade defenders’ countermeasures. Therefore, from a defender’s per-
spective, it is always important to understand the trends and practices of bot-
net C&C [8,15,19,23,29,11,26]. Previous studies have mainly focused on two
approaches: host-centric [31,36] and network-centric [16,18,17,3,7,8,14,23,20,6].
The host-centric approach aims to detect suspicious host activities, such as the
use of incoming network data as system call arguments. The network-centric ap-
proach attempts to detect suspicious network activities by (for example) identi-
fying network traffic patterns. The fact that a social network-based botnet C&C
on Twitter.com was detected by “digging around” [25] suggests that we need to
pursue more detection approaches.

Our contributions. Throughanapplication-centricapproach,we study theprob-
lem of botnets that use social networkwebsites as their C&C infrastructures. First,

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 511–528, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

512 E.J. Kartaltepe et al.

we characterize the current-generation of social network-based botnet C&C, de-
scribing their strengths and weaknesses. Our characterization, while inspired by
[25], is broader and deeper. Second, we envision how current social network-based
botnet C&C might evolve in the near future, which capitalize on their strengths
while diminishing their weaknesses. Third, we explore countermeasures for deal-
ing with both current and future generations of social network-based botnet C&C.
Since social network providers as well as client machines are victims of a social
network-based botnet C&C, both server-side and client-side countermeasures are
demonstrated and tested for both effectiveness and performance. Fourth, we dis-
cuss the limitations of the application-centric approachdemonstrated in this paper,
which suggests the need to integrate it with the aforementioned host-centric and
network-centricmethods because the three approaches are complementary to each
other.

Paper outline. Section 2 discusses related prior work. Section 3 presents a
characterization of the current generation of social network-based botnet C&C.
Section 4 envisions the next-generation of social network-based botnet C&C.
Sections 5 and 6 investigate server-end and client-end solutions to detecting
social network-based botnet C&C, respectively. Section 7 discusses how to in-
tegrate them and how they can benefit from host-centric and network-centric
approaches. Section 8 describes future work and concludes the paper.

2 Related Work

Network-centric approach. This approach aims to detect botnets by corre-
lating the network traffic of a computer population, including destination IP
addresses, server names, packet content, event sequences, crowd responses, pro-
tocol graphs and spatial-temporal relationships [16,18,17,3,7,8,14,23,20,6]. This
approach is especially useful when only network traffic data is available.

Host-centric approach. This approach aims to differentiate malicious from
benign processes running on host computers by observing that bot processes
often use data received from the network as parameters in system calls [31].
A detection technique based on a high rate of failed connection attempts to
remote hosts was recently presented in [36], which does not necessarily apply to
the type of botnets we consider in the present paper because the connections are
to popular social networking sites and are generally successful. This approach
often looks deeply into the software stack [36].

Application-centric approach. This approach looks into the application-
specific interactions. Previously, the focus has been put on IRC-based botnets
(see, e.g., [14]). Recently, the possibility of exploiting emails as a botnet C&C
was investigated [30], and the feasibility of detecting such botnets through their
resulting spam traffic was presented in [35,34,37,22]. In this paper we consider a
specific class of applications, namely web-based social networking. The concept
of social network-based botnet C&Cs can be dated back to 2007 [21,12,28,13],
but such botnets became a reality only very recently [2,25]. In particular, [25]

Social Network-Based Botnet Command-and-Control 513

served as the starting point of the present study. It should be noted that the fo-
cus of the present paper is only remotely related to the abuse of social networks
for other purposes [1].

3 Characterizing Current Social Network-Based Botnet

How Does Current Social Network-Based Botnet C&C Work? Jose
Narario first reported the actual use of social network as a botnet C&C [25],
although the concept had been proposed as early as 2007 [21,28]. We call such a
bot Naz, after its discoverer. At a high-level, Naz’s botnet used accounts with the
name upd4t3 owned by the botmaster on social network sites Twitter.com and
Jaiku.com. These bots received Base64-encoded commands from these accounts
to download malicious payloads onto the victimized bot computers. Since then,
other C&Cs were discovered with variations of the botnet’s scheme, such as the
Twitter.com account Botn3tControl, which was shutdown days later.

RSS Feed Naz

Payload

http://twitter.com
1
2

Reroute
Service

http://bit.ly
3

4

Server

5
6

victim machine attacker site

Server

botmaster machine

7

success

connect to
h�p://twi�er .com

failure

connect to
h�p://jaiku.com

get RSS feed of
upd4t3's account

success

DNS query mansvelt.
freehos�a.com

decode
updates

failure

success

failure connect to
h�p://bit.ly

get
payload

success

failure

decode/
unzip

failure

end

replicate self
and payload files

success

Find gbpm.exe
and gbpm.dll

execute
gbpm.exe

success

end
failure

endstart

Fig. 1. Naz’s C&C attack flow (left) and control flow (right)

To understand the behavior of Naz’s botnet, we conducted two experiments.
The first confirmed and extended Naz’s C&C flow reported in [25]. Specifically,
we obtained and ran a Naz sample on a machine by replacing its references to
Twitter.com with a server under our control. This was necessary because the
Twitter.com account was shutdown by Twitter.com’s administrators shortly
after its detection. We used our own Base64-encoded messages with a bit.ly
URL we set up that redirected to the payload stored on our server. The payload
was a Base64-encoded, compressed archive containing two files: gbpm.exe and
gbpm.dll. These files were the originally identified payload package of Naz. In our
analysis, we reconstructed the original C&C flows described below and depicted
in the left-hand side of Figure 1.

1. The bot makes a HTTP GET request to upd4t3’s RSS (Really Simple Syndi-
cation) feed at Twitter.com.

2. Twitter.com returns the RSS feed, containing Base64-encoded text in the
description nodes.

514 E.J. Kartaltepe et al.

3. The bot decodes the Base64-encoded text, revealing one or more bit.ly
URLs, and makes a HTTP GET request to each. The bit.ly website provides
short aliases for long URLs.

4. Each bit.ly URL redirects to a malicious zip file hosted on an independent
attack server.

5. The bot downloads the malicious zip file as a payload.
6. The bot decodes and unzips the payload, replicates itself and the payload’s

uncompressed files, and then executes the payload’s contents.
7. The payload attempts to gather user information from the victim computer

and send it to a server selected by the botmaster.

To have a deeper understanding of the internal control flow of Naz, we con-
ducted further black-box testing using data provided by Network Monitor [9]
and CWSandbox [10], from which we draw the control flow details on the right-
hand side of Figure 1. We observed that the bot made a copy of itself and the
two files mentioned above in a temporary directory, and that when executing
gbpm.exe, the bot dynamically injected code into gbpm.exe’s process. Moreover,
we observed that Naz handled unexpected inputs as follows:

1. When we provided a URL to a bogus RSS feed, the bot failed to connect and in-
stead attempted to access an RSS feed from a Jaiku.com account. This
account name was hardwired in the bot program and had been deactivated by
Jaiku.com’s administrator. This second connection failure led the bot to issue
a DNS query on the domainname mansvelt.freehostia.com,after which the
bot stopped producing network traffic. The site mansvelt.freehostia.com
is currently unregistered and has no IP address.

2. When we placed plaintext sentences and URLs in our in-house RSS feed, the
bot read the RSS feeds but did not show evidence of decoding and using the
text in connection attempts.

3. When we modified the payload file to Base64-encoded only, compressed only,
and replaced it with an executable file, the bot did not attempt to unzip or
execute the file’s contents. When we renamed the two payload files gbpm.exe
and gbpm.dll, the bot did not attempt to execute the renamed gbpm.exe
file, implying that the bot was program name sensitive.

Finally, it is interesting to note that a dynamic analysis of gbpm.dll revealed
that the payload attempted to connect to a bank in Brazil. Moreover, both the
analysis in [25] and our independent experiments demonstrate that Naz’s botnet
C&C serves primarily as a Trojan downloader [32].

Strengths of Naz’s Botnet C&C. Naz’s botnet C&C has the following ad-
vantages when compared with other botnet C&C infrastructures and methods:

1. Abusing trusted popular websites as a C&C server. Social networks
and Web 2.0 sites such as Twitter.com, FaceBook.com, LinkedIn.com, and
YouTube.com are not only legitimate, with verifiable SSL or EV-SSL certifi-
cates, but also heavily used by millions of users. Due to this heavy usage,
light occasional traffic to one or more accounts is unlikely to be noticed

Social Network-Based Botnet Command-and-Control 515

compared to a user’s actual traffic pattern. This avoids any unnecessary and
sometimes suspicious DNS queries (e.g., for non-popular DNS names).

2. Exploiting popular port(s) for C&C communication. Port 80 is the
de facto standard for web traffic, and most network traffic will flow through
it. This helps bots blend in with benign traffic.

3. Abusing application features for automatic C&C. The botmaster
uses application features, such as RSS feeds, to automatically update bots.
Moreover, the commands are so light-weight that they cannot be easily dis-
cerned from normal social network traffic.

The above discussion demonstrates that botmasters have begun to exploit “hid-
ing in plain sight” to conduct stealthy botnet C&C. By piggybacking on the
reputation and legitimacy of social network websites, botnet C&C activities may
remain hidden, while defeating the “many eyes” defense [30].

Weaknesses of Naz’s Botnet C&C. We need to understand the weaknesses
of current generation of social network-based botnet C&Cs because these weak-
nesses will likely be absent in future generations. This is not meant to help the
attackers, rather it is meant to help the defenders look ahead. Our examination
shows that Naz’s botnet C&C has weaknesses, which are omitted due to space
limitation.

4 Envisioning Future Social Network-Based Botnet

In order to defeat future social network-based botnets, we must think ahead of
the attackers. For this purpose, we can show how the aforementioned weaknesses
of the current generation of social networks-based botnet C&Cs can be avoided.
Due to space limitation, details are omitted.

5 Server-Side Countermeasures

5.1 The Detection Mechanism

A key observation behind our detection mechanism is that, regardless of the
channel, provider, or account, social network messages are in text. Thus, if bot-
masters want to use social networks for their C&C, they would encode their
commands textually. Moreover, just like legitimate messages may include web
links, so might C&C messages (e.g., links for downloading payload). These ob-
servations inspired us to distinguish between encoded and plain texts and to
follow unencoded links to their destination. Our detection mechanism can be
adopted by the webserver as shown in Figure 2, and the resulting system would
operate as follows (with steps 2 and 3 relevant to our countermeasure):

1. Alice logs into her social network and updates her status display using a
content form.

2. The social network’s content updater sends the text content to our server-end
system.

516 E.J. Kartaltepe et al.

3. The detection mechanism, which will be implemented as a classifier in our
prototype system, determines if the text is suspicious and returns a result.

4. The content form updates the database with the message and whether it
was marked suspicious.

5. Bob check’s Alice content display, either through a feed like RSS or by vis-
iting the site.

6. The content display requests the content from the database.
7. The database returns non-suspicious content; if a threshold level of suspicious

messages (determined by policy) has been reached, the database returns a
“suspicious account” message.

8. The content display shows those retrieved messages to the user, or a “suspi-
cious account” message if the suspicious message threshold has been reached.

1

Social Network

Alice

3C

Bob

Content
Form

Content
Display

Database

2

4

5
8

6 7

Library or Service

Detec�on
Mechanism

Fig. 2. Example scenario using our server-side detection mechanism

The server-side detection mechanism has the following advantages. First, it
is account agnostic because it looks for text attributes that are shared with en-
coded text rather than individual behavioral patterns. Second, it is language
agnostic because it looks at text for attributes that are shared with encoded
text rather than individual words. As a result, the detection mechanism is effec-
tive for any language using Roman characters (English, Spanish, French, etc.).
Third, it is easy to deploy because it can take advantage of light-weight machine
learning algorithms and thus make decisions in real-time. Moreover, the code is
easy to deploy as a library or software-as-a-service. Fourth, it can follow unen-
coded links to determine if the destination is a trusted source, say by using SSL
authentication as a trust infrastructure. In the next two subsections we analyze
the effectiveness and performance of our approach.

5.2 Prototype Implementation and Its Effectiveness and Limitations

Prototype implementation. To demonstrate the effectiveness of our system,
we instantiated the detection mechanism as Weka’s [33] J48 decision tree algo-
rithm (because it is quick and readily usable, but other tailored algorithms can
be used instead in a plug-and-play fashion) to classify input messages so as to
distinguish between Base64- or Hexadecimal-encoded text and natural language

Social Network-Based Botnet Command-and-Control 517

text. For links in the clear, by following links to their destination, we can mark
the content as “suspicious” if it is an atypical file (e.g., an executable, library,
encoded, or compressed file, or a combination of these). To build a pool of “non-
suspicious” text, we screenscraped 200 Twitter.com accounts to build a list of
4000 messages. Our pool of bot commands were 400 short random commands of
fifteen to thirty characters that were then encrypted using RC4 stream cipher
and then encoded, giving a 10:1 set of normal to suspicious text. We then split
the messages into a training set with 70% of both types and a test set with the
remaining 30%. Recognizing that altering the natural Base64 or Hexadecimal
alphabet with alternate characters such as spaces or punctuation could be used
to obfuscate the text, we also ran our classifier against such alternate encoding
schemes.

Effectiveness. For standard Base64 and Hexadecimal encoding schemes, our
classifier was able to quickly distinguish between our “normal” and “suspicious”
text samples in an account-agnostic way, no false positives and no false negatives,
for both Base64 and Hexadecimal encoding (see Table 1). Moreover, our classifier
maintained this accuracy even when the commands were obfuscated with other
words—the distinctiveness of the encoded commands was readily apparent. The
results were so perfect because the attributes we used—number of spaces in
the text, longest word, and shortest word—cleanly divided the “normal” and
“suspicious” text. To produce non-standard Base64 and Hexadecimal encoding
schemes, we randomly swapped ten of the standard alphabet with alternate
ones from a pool of space and punctuation characters. Our profiler was able
to distinguish between them in an account-agnostic way, with a false positive
rate of 0.0% and false negative rate of 1.25% for Alternate Base64 encodings,
and a false positive rate of 3.25% and false negative rate of 12.5% for Alternate
Hexadecimal encodings (see Table 1).

Table 1. Results with respect to various Base64 and Hexadecimal encodings

Base64 Hexadecimal Alt. Base64 Alt. Hexadecimal
Actual Actual Actual Actual Actual Actual Actual Actual
Positive Negative Positive Negative Positive Negative Positive Negative

Tested Positive 100% 0% 100% 0% 100% 1.25% 96.75% 12.5%
Tested Negative 0% 100% 0% 100% 0% 98.75% 3.25% 87.5%

The classifier’s accuracy dropped significantly when the commands were ob-
fuscated with other words, especially with Hexadecimal encoding schemes and
with spaces as alternate characters. We note that with such an encoding mecha-
nism, a priori knowledge of words or characters to excise from the message would
be necessary to extract the non-command content from the meaningful botnet
commands. This form of steganography is essentially indistinguishable from typ-
ical steganography, where a botmaster would hide the bot commands in such a
way as to not attract attention to themselves, i.e., using natural language words
as code for commands or URLs.

518 E.J. Kartaltepe et al.

Limitations. Hiding commands in a social network-based C&C using steganog-
raphy makes it difficult for programs or even humans to identify the presence
of a command within a message. Since social network messages left by users
are unstructured content, a crafty adversary can hide a bot command within
a message in such a way that a human reading the message could not identify
the message as a command. Combined with encryption, reverse analysis—even
with a captured bot—may not yield the interpreted commands. Thus, running a
steganographic reversal algorithm on a C&C message would not return data that
was a clear bot command. [30]. However, our server-side solution coupled with
a client-side counterpart that detects when a process is acting on input from a
social network-based C&C would provide a complete solution to this emerging
threat. In Section 7 we will discuss how these limitations may be overcome in a
bigger solution framework.

5.3 Performance

Evaluation methodology and environment setup. In order to demonstrate
the efficiency of our server-side detection mechanism, we measured the perfor-
mance of our prototype. We implemented it into CompactSocial, a microblogging
service that emulates the constraints of Twitter.com. CompactSocial provides a
simple interface to both update a status message and view any account’s mes-
sages using a web browser. Moreover, an auto-updated RSS feed contains the
text of the last ten account updates. CompactSocial was written in Java 6, up-
date 11 and ran as a web application deployed to Apache Tomcat 6.0.20. When
used as a library, our server-end solution was deployed as a .jar file; when de-
ployed as a service, the classifier ran as a stand-alone web application deployed
to Apache Tomcat 6.0.20. The classifier and CompactSocial used shared crypto-
graphic keys for authentication. For processing incoming and outgoing messages,
Javas crypto library was used to compute any hash value or HMAC it needed,
in both cases using the SHA1 algorithm.

The system environment is depicted in Figure 3. Both servers reside within a
university campus network, and the CompactSocial clients are both within and
outside the campus network. The CompactSocial and text-classifier servers are
called mercury and apollo, respectively. There are two CompactSocial client
machines: minerva acted as an external computer within the LAN with autho-
rized access to mercury through a simple CompactSocial client, and mars was an
adversary client machine within the campus network, employing Naz+ to read

Local Area Network

Internet
mercury (server) apollo (server)

SpotBot
Compact

Social

venus (client)

Compact
Social Client

mars (adversary)

Naz+

minerva (client)

Compact
Social Client

Fig. 3. Integrating the server-side solution into real life systems

Social Network-Based Botnet Command-and-Control 519

updates made by minerva. A fifth machine, venus mimicked the minerva’s func-
tionality and tested the performance of the classifier on a non-dedicated internet
connection. The three servers, hermes, jupiter, and euclid recognized each other
by sharing some pair-wise keys. Table 2 reviews the concrete configurations of
the machines and networks.

Table 2. System settings (all machines use Intel Core 2 Duo, 2.93 GHz processor)

Machine Internet Connection Relevant Software

mercury Gigabit LAN Apache Tomcat 6.0.20, Sun JVM, CompactSocial

apollo Gigabit LAN Apache Tomcat 6.0.20, Sun JVM, classifier service
minerva Gigabit LAN Firefox 3.5, CompactSocial client
mars Gigabit LAN .NET 3.5 Framework, Naz+
venus 100 Megabit Cable Firefox 3.5, CompactSocial client

A CompactSocial client was developed in JavaScript to simulate a user up-
dating their status in the CompactSocial web application. The CompactSocial
client was developed as an addon and installed into Mozilla Firefox. Addition-
ally, Naz+ was developed as a Windows service and written in C#, targeting
the Microsoft .NET Framework, version 3.5. Naz+ periodically checked the RSS
feed for CompactSocial test account, parsed the XML for the description node
which contained the bot command as encrypted text (using a shared key with
mars who updated the status message), and executed the command.

Performance benchmarking. To examine the delay incurred by the classifier
when utilized by CompactSocial, time was marked before and after each trans-
action over 30000 requests at varying rates. We repeated this test ten times and
took the average over the runs. Figure 4 shows the results over varying requests
per second when the classifier was used as a library and a service.

When used as a library, our classifier performed roughly twice as fast than its
service counterpart, since no network traffic was required. At even 500 requests
per second, the classifier handled all requests without incident. In practice, a

1 10 50 100 500
0

25

50

75

100

125

Concurrent Requests/Second

Ti
m

e
(m

s)

Library Performance Analysis

1 10 50 100 500
0

50

100

150

200

250

Concurrent Requests/Second

Ti
m

e
(m

s)

Service Performance Analysis

Fig. 4. Classifier library (left) and service (right) performance analysis

520 E.J. Kartaltepe et al.

large-scale enterprise would use our server-side classifier as a service, whether
as an in-house server to make requests or a pay-as-you-go service to a third
party. In our preliminary testing, the classifier service handles 500 requests per
second on a non-dedicated machine with cycles to spare. In the advent that a
larger throughput was necessary, a load balancer can reduce the requests for a
particular machine to a manageable level.

Meeting the needs of real-life systems. For a social network provider like
Twitter.com, that has fifteen million users, and is increasing at roughly one mil-
lion users a month, we wondered how our classifier would stack up. A large per-
centage (85.3%) of Twitter.com accounts post less than once a day, whether due
to lost interest or not having much to post. We classify these accounts as “passive
users”. The vast majority (99.5%) of accounts post less than sixteen messages
daily, which would be a class of “active” users, who post regularly about events.
The remaining 0.5% post more than sixteen updates, although Twitter.com re-
stricts accounts to a 1000 updates per day limit. These are particularly engaged
users or are shared accounts by multiple people in an organization posting under
a common account. We classify these users as “explosive” users [5].

If all accounts hit their ceilings on Twitter.com, we’d have the posting rates in
Table 3. With fifteen million users, Twitter.com would handle a ceiling of 1410.7
messages per second (in actuality, most users do not hit these ceilings, so the
actual threshold is far less). In this worst case, assuming the one million account
per month growth rate and the same distribution of account usage, Twitter.com
will accommodate an uptick per month of nearly 100 messages per second.

Table 3. Twitter.com usage analysis

15000000 users Percentage Update Rate Messages Per Day Messages Per Second
Passive users 85.3% 1/day 12795000 148.1
Active users 14.2% 16/day 34080000 394.5
Explosive users 0.5% 1000/day 75000000 868.1
Total users 100% — 121875000 1410.7

Because our server-side approach is account agnostic, it does not need to build
an account history for each user and as a result, would only need to check a few
messages to determine if the account is being used in a suspicious way. Given
the above scenario and a policy that checks periodically verifies one message
daily and the first three messages for a new user’s account, then our classifier
would only need to check fifteen million messages per day, or 173.7 messages
per second, with a monthly increase of 12.1 messages per second. If only active
and explosive accounts were targeted (which would be more likely behavior for a
botnet C&C), this would decrease to 25.6 messages per second with an increase
of 2.1 messages per second. Thus, even with these simple non-discriminating
policies and worst-case Twitter.com usage scenario, our classifier as a service can
handle an enterprise-level throughput of requests, and different policy strategies
may be employed to throttle down the throughput further.

Social Network-Based Botnet Command-and-Control 521

6 Client-Side Countermeasures

6.1 The Detection Mechanism

Detection attributes. We propose detecting social network-based botnet C&Cs
using three attributes: self-concealing, dubious network traffic, and unreliable
provenance.

– Self-Concealing: A self-concealing process is one which attempts to avoid
detection with the use of stealth mechanisms. We consider two specific in-
stances of this type:
Graphical User Interface. Many applications that read RSS feeds interact with

a user via a graphical user interface. Bots and other malware will attempt
to avoid detection, and as a result may run in the background as a ser-
vice or hidden process without an explicit interface. A process without
a graphical user interface can be identified as possibly self-concealing.

Human Computer Interaction. Most benign software works by reacting to
user input via a keyboard or mouse. Malware processes tend to run hid-
den and independent of user input and don’t require explicit keyboard
or mouse events provided by a user to perform a nefarious act. A pro-
cess without human/computer interaction can be identified as possibly
self-concealing.

– Dubious Network Traffic: A process with dubious network traffic is one
which engages in network communication with another machine in a covert
or devious way. We consider three specific instances of this type:
Social Network Request. Exclusively visiting social networking sites is not

suspicious; however, social network-based botnet C&C craftily abuse the
popularity and good name of social networking sites; thus, exclusive
requests to social networking or web 2.0 sites is considered a possible
trigger event for dubious network traffic.

Encoded Text Processing. Since social network-based bots read commands
as encoded text, processes making connections to sources that provide
encoded or encrypted text is anomalous. Accepting connections with
encoded text and processing it by decoding or decrypting it can be con-
sidered as possibly dubious network traffic.

Suspicious File Downloading. In general, applications do not download suspi-
cious files such as executable, library, compressed, or encoded/encrypted
files without permission (though they may download image or text files).
Social network-based C&C bot processes, on the other hand, act as Tro-
jan downloaders and almost exclusively save executables or DLLs to the
filesystem as malicious payload. Downloading such suspicious files can
be considered as dubious network traffic.

– Unreliable Provenance: A process with unreliable provenance is one
which lacks a reliable origin. We consider three specific instances:

Self-Reference Replication. This is a feature malware uses to survive disin-
fection on a host machine, occurring when a process copies itself into a

522 E.J. Kartaltepe et al.

newly created file or an existent file (by modifying it) on the file system
[24]. An installed file with its installer not having a verified signature
can be identified as possibly having an unreliable provenance.

Dynamic Code Injection. This is used by malware to insert malicious code
into the memory space of an active process. Its end goal is to modify the
process to perform nefarious deeds, possibly by piggybacking on that ap-
plication’s authorization settings. A process whose injector lacks a digital
signature can be identified as possibly having an unreliable provenance
since the injector’s origin cannot be established.

Verifiable Digital Signature. Digital signatures may be considered a hallmark
of trust between users and well established software. Most organizations
that publish software provide a signature for their program and related
files. Malware authors typically do not employ digital signatures; as a
consequence, a process running without a verifiable digital signature can
be identified as possibly having an unreliable provenance.

Detection model. We say a process P has the self-concealing attribute (Psc)
if it lacks a graphical user interface (Pgui = false) and does not accept human
computer interaction (Phci = false). More formally,

(¬Pgui) ∧ (¬Phci)→ Psc.

We say a process P has the dubious network traffic attribute (Pdnt) if it performs
social network requests (Psnr = true) and encoded text processing (Petp = true)
or does suspicious file downloading (Psfd = true) (or both). More formally,

Psnr ∧ (Petp ∨ Psfd)→ Pdnt.

We say a process P has the unreliable provenance attribute (Pup) if it performs
self-reference replication (Psrr = true) or does dynamic code injection (Pdci =
true), and also lacks a verified digital signature (Pvds = false). More formally,

(Psrr ∨ Pdci) ∧ (¬Pvds)→ Pup.

Putting the above altogether, we classify a process P as being suspicious of being
a social network-based bot C&C process (Psnbb) if it is either self-concealing
(Psc = true) or has an unreliable provenance (Pup = true) (or both), and engages
in dubious network traffic (Pdnt = true). More formally,

(Psc ∨ Pup) ∧ Pdnt → Psnbb.

6.2 Effectiveness and Limitations

Evaluation methodology and environment setup. To examine the effec-
tiveness of the detection model described above, we collected data with respect
to our detection attributes for both benign and malicious processes in order to
distinguish them. For this purpose, we considered eighteen benign applications,

Social Network-Based Botnet Command-and-Control 523

Table 4. Client-side test set (“SN-Based Bot” stands for “Social Network-Based Bot”)

Application Type Application Type Application Type
AOL Explorer Web Browser Internet Explorer Web Browser RSS Bandit RSS Aggregator
Avant Web Browser K-Meleon Web Browser RSS Owl RSS Aggregator
Bobax Traditional Bot Maxthon Web Browser SeaMonkey Web Browser
BlogBridge RSS Aggregator Mercury RSS Aggregator Snarfer RSS Aggregator
FeedDemon RSS Aggregator Naz SN-Based Bot Tweetdeck Twitter Client
FireFox Web Browser Naz+ SN-Based Bot Twhirl Twitter Client
Flock Web Browser Opera Web Browser Virut Traditional Bot
Google Chrome Web Browser Ozdok Traditional Bot Waledac Traditional Bot

four traditional bots, and the malicious Naz and prototype Naz+ bots (listed
in Table 4). To provide a wide breadth, the benign applications are a broad
selection of the most popular web browsers, RSS aggregators, Twitter clients,
and RSS aggregators which read subscription feeds. Testing was performed using
VMWare Workstation running Microsoft Windows SP3 using NAT for Internet
access. Each application was executed separately for a period of four hours, fol-
lowed by post-analysis. During testing of the eighteen benign applications, we
interacted with each application by subscribing to and viewing different RSS
feeds; attempting to subscribe to bogus RSS feeds, updating all RSS feeds ev-
ery hour, reading individual feed articles. These tests were done to provide a
wide range of expected and unexpected scenarios for each application to deal
with while recording their behavior. In addition, we used a number of sensors to
gather information about each process. Tracing of the three detection attributes
described in Section 6.1 occurred from the moment a process starts executing.

Network traffic was collected using Windows Network Monitor [9]. Keyboard
and mouse input was collected with a modified version of GlobalHook. Digi-
tal signatures were verified using SigCheck. Self-reference replication and dy-
namic code injection were accomplished with kernel hooks implementing known
techniques [24]. The presence of a user interface was recorded by observing the
creation of any window upon executing each application using EasyHook. User
input, network traffic, graphical user interface interaction, self-reference replica-
tion and dynamic code injection were all recorded in real-time. For Virut and
Waledac, static analysis and previous executions of these bots yielded their du-
bious network traffic results. Digital signatures were verified after the four hour
testing of each process.

Effectiveness. The results are summarized in Table 5 and highlight some ob-
servations below. First, we observe that all benign applications lacked the self-
concealing attribute as they all utilized a graphical user interface and accepted
inputs from the user, such as reading an article, following a link, or updating
an RSS feed. All bots but Virut demonstrated the self-concealing attribute since
they did not have a graphical user interface or accept user input, although it
appears that the command prompt window Virut displays may be accidental.
Second, all applications but Naz and Naz+ possessed the dubious network traffic
attribute; RSS applications did not download suspicious files, but all of the bots
did. All bots but Virut read inordinate amounts of encoded text; legitimate RSS

524 E.J. Kartaltepe et al.

Table 5. Client-Side detection results (“IE” stands for “Internet Explorer”)

Application Self-Concealing Unreliable Provenance Dubious Network Traffic Result
Graphical Human Self- Dynamic Verifiable Social Encoded Suspicious Social

User Computer Reference Code Digital Network Text File Network-
Interface Interaction Replication Injection Signature Request Processing Download Based Bot?

AOL Explorer Y Y N N Y N N N N
Avant Y Y N N Y N N N N

BlogBridge Y Y N N Y N N N N
FeedReader Y Y N N Y N N N N

Firefox Y Y N N Y N N N N
Flock Y Y N N Y N N N N
IE Y Y N N Y N N N N

Chrome Y Y N N Y N N N N
K-Meleon Y Y N N Y N N N N
Maxthon Y Y N N Y N N N N
Mercury Y Y N N Y N N N N
Opera Y Y N N Y N N N N

RSS Bandit Y Y N N Y N N N N
RSS Owl Y Y N N Y N N N N

SeaMonkey Y Y N N Y N N N N
Snarfer Y Y N N Y N N N N

Tweetdeck Y Y N N N Y N N N
Twhirl Y Y N N N Y N N N

Bobax N N Y Y N N Y Y N
Ozdok N N Y Y N N Y Y N
Virut Y N Y Y N N N Y N

Waledac N N Y Y N N Y Y N

Naz N N Y Y N Y Y Y Y
Naz+ N N N N N Y Y Y Y

reader applications generally did not. Additionally, only Naz and Naz+ com-
municated nearly exclusively with social networking sites (benign processes read
from them only a fraction of the time, and traditional bots made no such commu-
nication requests). Third, all benign applications did not exhibit the unreliable
provenance attribute; none attempted to replicate itself or inject code into an-
other process, and they all possessed a verifiable digital signature. On the other
hand, all bots tested displayed this attribute, as they all copied themselves or
injected code into other processes (except Naz+), and lacked a verifiable digital
signature.

Of note is that no social network-based bot was misclassified as a benign
process and no benign application or traditional bot was misclassified as a so-
cial network-based bot. We reiterate that our goal is to detect social network-
based botnet C&C, which explains why the other bots Bobax, Ozdok, Virut and
Waledac were not classified as social network-based bots. These bots may be
detected by using complementary host-centric or network-centric approaches, or
by applying the relaxed dubious network traffic attribute described above. This
also justifies why the countermeasures presented in the paper need be integrated
into a comprehensive defense framework.

Limitations. A limitation of our effectiveness analysis is the lack of real-time
analysis of other social network-based botnet C&C, due to other botnets undis-
covered in the wild. Moreover, our analysis is conducted in post-analysis. We
plan to develop an implementation of this technique to provide real-time data
gathering and evaluation. Another limitation is that any one sensor can be de-
feated if the malware author knows the concrete details of its implementation;
knowledge of the high-level detection model is not enough. For example, if we
only seek .exe and compressed files, a malicious file can purposely be renamed
to .jpg or .html which would bypass our file download sensor. In this case, the

Social Network-Based Botnet Command-and-Control 525

bot’s internal logic will have extra overhead, possibly checking every file in the
network traffic with these file extension to identify the malicious one, thus mak-
ing this approach infeasible. Malware in general are known to have attributes
that trigger many of these sensors [32] and thus it is unlikely that a bot process
will effectively work and bypass all our sensors.

6.3 Performance Analysis

In order to measure the client-side countermeasure’s performance, we used Pass-
Mark’s PerformanceTest 7.0 benchmarking to gather information on its CPU
usage [27]. We benchmarked the baseline case with no data collection running,
and then ran the data collector tracking zero to five processes after an hour
of data collection had passed. Running the data collector added a 4.8% over-
head to the overall system, and running it to track one to five processes had
between a 13.3% and 28.9% overhead (See also Figure 5). With optimization,
these numbers could be lowered further.

0 1 2 3 4 5
0

10

20

30

Collecting Data on n Processes

O
ve

rh
ea

d
co

st
 (%

)

CPU Benchmarking

Fig. 5. CPU utilization for our client-side countermeasure process tracker

7 Integrating Server- and Client-Side Countermeasures

Integrated solution. As discussed above, the server-side and client-side coun-
termeasures are integral parts of our client/server solution to detecting social
network-based botnet C&C. When each type of countermeasures deployed alone,
they can be defeated in certain ways. Integrating our server-side classifier into a
social network webserver is straightforward whether it operates as a library or
service, and integrating the client-side detection algorithms into existing mal-
ware detection schemes or operating its sensors as its own detection framework
is equally as uncomplicated. Because both systems are stand-alone, there is no
need to have the systems interoperate. Indeed, a user that has the client-side so-
lution installed while using a social network that employs the server-side solution
gains the benefits of both.

526 E.J. Kartaltepe et al.

Limitations. Even when our classifier is utilized by a social network provider
and a machine has our client solution installed, using both still has some lim-
itations. Specifically, if the botmaster employs steganography into their social
network-based C&C, the server-side solution in its current form will not detect
that message being passed. Employing steganography in such a way will diffuse
the content in the message, essentially expanding the text [4]. In this case, if
using popular social networks like Twitter.com or FaceBook.com with character
length limitations, spreading a command over multiple messages would likely
be required. More specifically, our approach can benefit from host-centric and
network-centric approaches as follows.

– A bot that reads steganographic commands and can evade our
client-side sensors. One way for a bot to evade the client-side sensors is to
exist at the kernel level. Since some of the client-side solution sensors exist at
the user-level, the bot can effectively bypass enough of these sensors to mask
its presence on the machine. Additionally, a bot that with intimate knowl-
edge of the implementation details of the client-side sensors can maneuver
around our countermeasures, such as writing code that falsifies sensor data.
A host-centric approach to capture additional anomalous information at the
kernel level would help mitigate this attack.

– A bot that reads steganographic commands and masquerades as
a benign process. A bot that behaves as a benign process would have to
lack the self-concealing or unreliable provenance attribute. By masquerading
as a benign application, say by presenting itself as a graphical application
that masks its true purpose, a bot could exist with such an interface. This
bot would additionally have to trick the user into starting it and keeping
it running, which might prove difficult. To avoid possessing an unreliable
provenance, this bot would have to have a digital signature, which is diffi-
cult to forge. Additionally, it must not dynamically inject code into another
source or replicate itself, which are hallmark signs of bots, since they wish
to inculcate themselves into the host machine. A network-centric solution
is necessary to analyze network layer data for similar events occurring from
many machines in a network during a small timeframe.

– A bot that reads steganographic commands and runs scripts. A bot
that behaves as a social network-based bot but downloads text files instead
of executables will not be classified as a social network-based bot, although it
would be marked as a possibly suspicious bot. If the bot contains or is aware
of a scripting engine such as a Python interpreter, the bot can run the script
instead of an executable. A host-centric approach to contain general purpose
malware or prevent or alert the user of script/program execution would help
stop this attack. Additionally, a network-centric strategy to detect script
file downloads would help prevent the scripts from being downloaded to the
client machine.

Social Network-Based Botnet Command-and-Control 527

8 Conclusion and Future Work

We systematically studied a social network-based botnet and its C&C and dis-
cussed their future evolutions. We investigated, prototyped, and analyzed both
server-side and client-side countermeasures, which are integral parts of a solution
to the emerging threat of social network-based botnets. We also discussed how
our solution can benefit from host-centric and network-centric botnet detection
solutions so as to formulate a comprehensive defense against botnets.

Our future work includes: (1) implementing the client-side countermeasures
as real-time detection systems, (2) improving the server-side classifier to detect
steganography, (3) handling multiple stepping stones in payload redirection, and
(4) and porting the client-side countermeasures to other platforms.

Acknowledgments. This work is partially supported by grants from AFOSR,
ONR, AFOSR MURI, and the State of Texas Emerging Technology Fund.

References

1. Athanasopoulos, E., Makridakis, A., Antonatos, S., Antoniades, D., Ioannidis, S.,
Anagnostakis, K., Markatos, E.: Antisocial networks: Turning a social network into
a botnet. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS,
vol. 5222, pp. 146–160. Springer, Heidelberg (2008)

2. Balatzar, J., Costoya, J., Flores, R.: The real face of koobface: The largest web 2.0
botnet explained. Technical report, Trend Micro (2009)

3. Binkley, J.R., Singh, S.: An algorithm for anomaly-based botnet detection. In:
Proc. Reducing Unwanted Traffic on the Internet, SRUTI ’06 (2006)

4. Chapman, M., Davida, G.I.: Plausible deniability using automated linguistic stego-
nagraphy. In: Conference on Infrastructure Security (October 2002)

5. Cheng, A., Evans, M.: Inside twitter: An in-depth look inside the twitter world,
http://www.sysomos.com/insidetwitter

6. Collins, M., Reiter, M.: Hit-list worm detection and bot identification in large
networks using protocol graphs. In: Kruegel, C., Lippmann, R., Clark, A. (eds.)
RAID 2007. LNCS, vol. 4637, pp. 276–295. Springer, Heidelberg (2007)

7. Collins, M., Shimeall, T., Faber, S., Janies, J., Weaver, R., De Shon, M., Kadane,
J.: Using uncleanliness to predict future botnet addresses. In: Proc. IMC ’07 (2007)

8. Cooke, E., Jahanian, F., McPherson, D.: The zombie roundup: understanding,
detecting, and disrupting botnets. In: Proc. SRUTI ’05 (2005)

9. Microsoft Corporation. Network monitor 3.3,
http://go.microsoft.com/fwlink/?LinkID=103158&clcid=0x409

10. CWSandbox.org. Cwsandbox—behavior-based malware analysis,
http://www.cwsandbox.org

11. Dagon, D., Gu, G., Lee, C., Lee, W.: A taxonomy of botnet structures. In: Choi,
L., Paek, Y., Cho, S. (eds.) ACSAC 2007. LNCS, vol. 4697, Springer, Heidelberg
(2007)

12. DigiNinja. Kreiosc2: Poc using twitter as its command and control channel,
http://www.digininja.org

13. Easton, T., Johnson, K.: Social zombies. In: DEFCON ’09 (2009)

http://www.sysomos.com/insidetwitter
http://go.microsoft.com/fwlink/?LinkID=103158&clcid=0x409
http://www.cwsandbox.org
http://www.digininja.org

528 E.J. Kartaltepe et al.

14. Goebel, J., Holz, T.: Rishi: identify bot contaminated hosts by irc nickname eval-
uation. In: Proc. HotBots ’07 (2007)

15. Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D.: Peer-to-peer
botnets: overview and case study. In: Proc. HotBots ’07 (2007)

16. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In: Security ’08
(2008)

17. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting
malware infection through ids-driven dialog correlation. In: USENIX Security ’07
(2007)

18. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting botnet command and control
channels in network traffic. In: Proc. NDSS ’08 (2008)

19. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and mit-
igation of peer-to-peer-based botnets: a case study on storm worm. In: LEET ’08
(2008)

20. Hu, X., Knysz, M., Shin, K.G.: Rb-seeker: Auto-detection of redirection botnets.
In: Proc. NDSS ’09 (2009)

21. Finjan Software Inc. Web security trends report q4 2007. Technical report, Finjan
Software Inc. (2007), http://www.finjan.com/Content.aspx?id=827

22. John, J., Moshchuk, A., Gribble, S., Krishnamurthy, A.: Studying spamming bot-
nets using botlab. In: Proc. NSDI ’09 (2009)

23. Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-scale botnet detection and charac-
terization. In: Proc. HotBots ’07 (2007)

24. Morales, J.A., Clarke, P.J., Deng, Y., Kibria, B.G.: Identification of file infecting
viruses through detection of self-reference replication. Journal in Computer Virol-
ogy (2008)

25. Nazario, J.: Twitter based botnet command and control (2009), http://asert.

arbornetworks.com/2009/08/twitter-based-botnet-command-channel
26. Nazario, J., Holz, T.: As the net churns: Fast-flux botnet observations. In: Proc.

MALWARE ’08 (2008)
27. PassMark.com. Passmark performancetest 7.0,

http://www.passmark.com/products/pt.htm
28. Poland, S.: How to create a twitter bot (2007),

http://blog.stevepoland.com/how-to-create-a-twitter-bot/
29. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to un-

derstanding the botnet phenomenon. In: Proc. IMC ’06 (2006)
30. Singh, K., Srivastava, A., Giffin, J., Lee, W.: Evaluating email’s feasibility for

botnet command and control. In: Proc. DSN
31. Stinson, E., Mitchell, J.C.: Characterizing bots’ remote control behavior. In:

Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 89–108.
Springer, Heidelberg (2007)

32. Szor, P.: The Art of Computer Virus Research and Defense. Symantec Press (2005)
33. Weka 3 data mining software, http://www.cs.waikato.ac.nz/ml/weka/
34. Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., Osipkov, I.: Spamming bot-

nets: signatures and characteristics. In: Proc. SIGCOMM ’08, pp. 171–182 (2008)
35. Zhao, Y., Xie, Y., Yu, F., Ke, Q., Yu, Y., Chen, Y., Gillum, E.: Botgraph: large

scale spamming botnet detection. In: Proc. NSDI ’09 (2009)
36. Zhu, Z., Yegneswaran, V., Chen, Y.: Using failure information analysis to detect

enterprise zombies. In: Proc. Securecomm ’09 (2009)
37. Zhuang, L., Dunagan, J., Simon, D., Wang, H., Osipkov, I., Hulten, G., Tygar, J.:

Characterizing botnets from email spam records. In: Proc. LEET ’08 (2008)

http://www.finjan.com/Content.aspx?id=827
http://asert.arbornetworks.com/2009/08/twitter-based-botnet-command-channel
http://asert.arbornetworks.com/2009/08/twitter-based-botnet-command-channel
http://www.passmark.com/products/pt.htm
http://blog.stevepoland.com/how-to-create-a-twitter-bot/
http://www.cs.waikato.ac.nz/ml/weka/

COP: A Step toward Children Online Privacy

Wei Xu, Sencun Zhu, and Heng Xu

Pennsylvania State University
{wxx104,szhu}@cse.psu.edu, hxu@ist.psu.edu

Abstract. We propose COP, a client-side system for protecting children’s online
privacy and empowering parental control over children’s information disclosure
with little manual effort. COP is compliant with the Children’s Online Privacy
Protection Act (COPPA) in the United States and it implements acquisition of
parental consent before any private information submitted online by children,
e.g., registration to a Web service. Instead of restricting access to certain Web ser-
vices or blocking sensitive data from websites, COP employs perturbation tech-
niques over personal data with the goal of concealing the sensitive information
while providing certain usability of the data to the websites. We address several
challenges in the implementation of COP, e.g., perturbation of different types of
data, parsing user input and retaining transparency to children without obstruct-
ing their normal Web surfing activities. We apply COP in registrations to 23 most
popular websites. The results indicate COP’s effectiveness as a privacy protec-
tion tool. We also discuss some potential security attacks against COP’s design
and provide our countermeasures.

1 Introduction

1.1 Background

The Internet has evolved into a platform for communicating, exchanging information,
carrying out commerce, streaming media and social networking among many users.
Children, being part of the Internet users, have been given unprecedented opportunities
to communicate online with one another. Exposing themselves to the virtual world has
caused great concerns, especially considering the growing cases of children’s online
abuses [1], online predators [2], online children pornography [3] and other such mat-
ters. Moreover, many operators of websites are also interested in collecting children’s
personal information such as their names, ages, email addresses and phone numbers
for commercial purposes [4,5]. Release of such data jeopardizes children’s privacy. Ac-
cording to a study [6] over U.S. census data and its follow-up work [7], the combination
of gender, 5-digit ZIP code and full date of birth can uniquely or nearly uniquely iden-
tify 63% of the US population. Hence, it is not hard to imagine how much private
information will be compromised once it falls into the hands of malicious parties.

Compared to adults, children are more vulnerable to threats like re-identification be-
cause they are not mature enough to realize the harm of privacy divulgence. A study shows
that almost half of teens (47%) do not even worry about others using their personal infor-
mation [8]. Besides, children are not sophisticated enough to protect themselves against

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 529–544, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

530 W. Xu, S. Zhu, and H. Xu

such information leakage. For example, by exploiting the naivety of children, some web-
sites lure children to online prizes in exchange for their personal information [9]. Without
rational judgment of the websites, children intend to submit their private information to
access certain Web services. Due to these inherent vulnerabilities, children’s online pri-
vacy protection has become an imminent and challenging task.

To take a step toward children’s online privacy, we focus on personal information
gathering processes, a representative case of which is online registration. We will design
client-side privacy protection mechanisms for registration processes because it is not
realistic to assume that website operators will not violate children’s privacy in any way.
We cannot hope for full parental supervision whenever their children are online since
it places an extra burden on the parents who most likely do not have such time. This
calls for an automated technical solution to facilitate parental control without bothering
them or with little effort.

Our design of COP is compliant with Children’s Online Privacy Protection Act
(COPPA) [10], which governs the online collecting of personal information from chil-
dren under the age of 13 and further distribution of such information in the United
States. COPPA states that any website directed to children under 13 must post a link to
their privacy policy at any place where it collects personal information from children.
COPPA also requires the website to obtain verifiable parental consent for the collecting
action and any further use and disclosure of children’s personal information. The def-
inition of children’s personal information in COPPA includes individually identifiable
information such as full name, physical address, email address (or other online contact
information), telephone number, age, gender, social security number as well as other
auxiliary information such as hobbies, preference and information collected through
cookies.

1.2 Related Work

Most of the current technical solutions intend to protect users’ online privacy in gen-
eral. We will first introduce several such solutions and then focus on techniques for
protecting children’s privacy.

Cookies, a unique identifier that can be used for retrieving records from the databases,
authenticating users and tracking users’ activities, were seen as a major threat to users’
online privacy [11]. COPPA recognizes cookies as privacy-invasive and disallows oper-
ators from collecting cookies that can be linked to a child. As a countermeasure, most
Web browsers adopt cookie control to give users the option to disallow cookies from a
website. These cookie blocking features are effective but they only address a very small
portion of COPPA’s requirements because these solutions can not prevent websites from
explicitly collecting personal information from children under the age of 13.

Anonymizer [12] is a solution that protects user’s privacy by providing a way for
anonymous Web surfing. It redirects all Web traffic through intermediary proxy servers
to hide the user’s IP address. The Anonymizer serves as a good privacy solution to
fight against phishing and pharming attacks. However, it is not sufficient for protecting
children’s online privacy because it cannot prevent websites from collecting personal
information during online registration process. In addition, anonymous browsing may

COP: A Step toward Children Online Privacy 531

encourage children to access objectionable materials once they are aware that they are
not being identified as children.

Another popular approach to privacy assurance is through self-regulatory efforts
which involve the setting of standards either by the website itself or an industry group
and the voluntary adherence to the set standards or policies [13]. Under a self-regulatory
approach to regulating children’s online privacy, groups like TRUSTe [14] have been
active as the third party entities policing children’s privacy and promoting trustworthi-
ness to websites through seals of approval. By becoming a member of these private
watchdog groups, a website is permitted to post the seal of approval. These seal pro-
grams provide a means to guarantee that members abide by a set of clearly identified
self-regulatory standards [15]. However, research has shown that, most privacy poli-
cies posted online are written in jargon and ambiguous language and thus readability
is low [16,17,18]. For those parents who are not technically inclined or are unaware of
COPPA, they usually fail to make informed decisions for their children’s information
disclosure. In addition, it has been found that few users recognize privacy seals [17].
Thus, we conclude that the self-regulatory approach to children’s privacy through pri-
vacy policies or privacy seals cannot be adopted as a stand-alone solution but as an
additional protection layer complimentary to technical enforcement of COPPA.

A few tools were dedicated to protecting children’s online privacy. Parental Online
Consent for Kids Electronic Transactions (POCKET) [19] is one of such tools designed
to give parents control over children’s personal information disclosure. POCKET re-
quires both Web clients and merchant websites to maintain a privacy preference file
(PPF) stating their privacy policies. POCKET enables a trusted third party (TTP) server
to perform mutual authentication between clients and merchant websites. Children’s
privacy is preserved by comparing the PPF from a merchant website with a user’s
own PPF and disclosing only the mutual parts. Setup of a PPF on a client side reflects
the parental consent on children’s personal information disclosure. First problem with
POCKET is its avoidance of HTML forms, which generates inconsistency with users’
normal activities. For example, users normally submit their registration information by
filling out HTML forms, but when POCKET is enabled, users do not have any control
over what information will be submitted on a site by site basis. Another concern is that
merchant websites may not always follow their privacy policies and it should be the
users’ responsibility to protect their own privacy. Moreover, TTP might be the single
point of failure although it only works in the system registration phase.

Several other software packages have also been proposed to empower parental con-
trol over children’s online behavior. One of them is Windows Vista’s parental
control [20], which is designed to help parents to manage what their children can do
on computers. Another is Privo [21], which will suspend children’s online registration
and ask for parents’ opinions if the websites require privacy information. Other tools
such as icouldbe [22], Net Nanny [23] and Parental Control Bar [24] are also developed
to protect children’s online safety by filtering Web contents and blocking functions. The
problem with these tools is that they usually filter out outbound user inputs or change
them to asterisks to prevent children from divulging any privacy. This restraint on infor-
mation disclosure during registration may hinder children from gaining access to nor-
mal services. Maintaining the balance between protecting children and retaining their

532 W. Xu, S. Zhu, and H. Xu

accesses to appropriate Web contents has become the concern of industry practitioners
and government agencies [25]. It is also one of COP’s design goals.

1.3 Contributions

The main contributions of this paper include:

– We present COP, a light-weight client side solution to protect children’s online
privacy.

– We show that COP fulfills COPPA’s requirements by implementing verifiable
parental consent before collecting of children’s personal information.

– We demonstrate that COP achieves the balance between children’s privacy pro-
tection and usability of collected data set by leveraging concepts from privacy
preserving data mining (PPDM).

– We evaluate the effectiveness of COP in preserving children’s private information
during online registration.

The remainder of the paper is organized as follows. Section 2 describes COP’s de-
sign and implementation. Section 3 evaluates the effectiveness of COP serving as a
children’s privacy protection solution. Section 4 lists potential attacks from malicious
websites and our countermeasures. Section 5 discusses the limitation of COP as well as
our future work on COP. Section 6 concludes.

2 Design and Implementation of COP

COP is designed to prevent private information leakage in online registrations and is
implemented as a client-side Web browser extension. We rule out the usage of trusted
third party in COP to avert single point failure and to give parents maximal control over
COP.

To begin with, we define two types of users in the design of COP, namely, parent user
and child user. These two users are given different access rights to COP and involved
in different phases of COP’s operation. In the installation phase, only parent users who
have the administrator privilege should install COP in their computers and set up their
parent passwords to protect COP from being modified or disabled. After installation
is done, COP works as a browser extension and keeps itself transparent to child users.
The only information child users can see is the warnings prompted by COP prohibiting
registration to certain websites. Since only parent users have access to COP’s settings
after they verify themselves as parents to COP by inputting their passwords, it is the
parents’ responsibility to keep the password from being disclosed to others such as
their children.

Figure 1 illustrates the system level design of COP. Once COP has been installed,
configured and activated properly by a parent user, it starts to monitor the outgoing
traffic. When children intend to sign up in a website, the browser sends an HTTP request
to the Web server which responds with a Web page containing a registration form.
Children will fill out the form with their information such as age, firstname, lastname
and submit the form to the website (Here we assume that children always provide true

COP: A Step toward Children Online Privacy 533

information and we argue that if they provide false information either intentionally or
by mistake, their privacy will not be jeopardized since no real personal information is
disclosed). This submission will be intercepted by COP as shown in Figure 1. Then
COP will adopt data perturbation on the registration information sent to this website.
COP will also notify parents either immediately or at a pre-selected time depending
on the preference of parents. Upon receiving the registration information, the website,
which is assumed to conform to COPPA, would know the client is under 13, and it
should send back its privacy policy. This policy will be intercepted by COP and showed
to parents later. Once the registration is done, the name of the website as well as the
perturbed information submitted to the website will be logged by COP.

Child/User

Submit Modified Data

Send Privacy Policy

Registered

Parent

Web ServerCOP

Data
Perturbation

LOG:
www.abc.com
Info. submitted

Identified client
as children

Intercepted
by COP

Age = 12
FName = XXX
Lname = YYY

HTTP Request
HTTP Response
Register Request
Registration Form

Fig. 1. System design overview

2.1 Privacy Preference

In this section we discuss the implementation of privacy preference in COP. Instead of
applying simple rules such as allowing or prohibiting personal data being collected by
a website, COP establishes one privacy preference entry for each website. Each prefer-
ence entry indicates what categories of information can be collected and what cannot
be collected by that website. These categories of personal information are defined by
COPPA, e.g., ‘Name’, ‘Age’, ‘Date of Birth’, ‘Gender’, ‘Phone Number’, ‘Address’.
A preference entry is a reflection of parental consent on collecting of their children’s
information by the website in the entry. Some entries are pre-defined; others are auto-
matically generated by COP when that website is visited for the first time. For example,
when a user connects to “www.example.com”, COP first searches the preference entry
list for an entry of www.example.com. If a match is found, COP will apply that entry

534 W. Xu, S. Zhu, and H. Xu

to the personal information required by www.example.com in registration. If no match
is found, a pre-defined default privacy preference will be used for www.example.com.
Fully customizable feature of the preference list provides parents with a fine-grained
control over disclosure of their children’s personal information.

2.2 Privacy Preserving Data Perturbation

One feature distinguishing COP from other similar schemes is that COP treats personal
information as a set of privacy metrics instead of one single piece of information. Since
COP is a client-side solution, personal information is stored and processed in a dis-
tributed fashion. Without the knowledge of the population of a data set, existing privacy
measurements such as k-anonymity can not be applied here. To embody the privacy
protection from adopting COP in this work as well as to build a foundation for quan-
titatively analyzing privacy (discussed as future work in Section 5), we leverage the
concept of privacy preserving data perturbation to generate data that appear to be gen-
uine instead of random results and substitute these data for user inputs which contain
protected personal information.

One advantage of data perturbation over blocking user inputs is the avoidance of fail-
ure in registration. Web servers always perform extensive user inputs validation check
by either server-side examination or inline script functions. For example, when a regis-
tration form expects users to input an email address, it normally will not accept strings
like “John” or “test.com”. When a credit card number is required, a VISA card indi-
cated by user must at least have a starting digit of “4” and a 16 digits length in order
to pass the validation check. In some cases, only a valid credit card number can sur-
vive the examination (e.g., Luhn algorithm), not even one false digit is allowed and
these validations will keep bothering users until a genuine data is input. To this end,
data perturbation provides a solution to pass these checks without providing personal
information.

Another reason to use data perturbation is to retain the statistical properties of submit-
ted data when individually collected data records are put together as a data set by the Web
server. As long as COPPA is not violated, we should allow websites to analyze collected
data for their own purposes and consider users’ privacy preserved at the same time.

In practice, challenges arise from introducing data perturbation into COP. First we
need to process many different types of data, such as numerical, string and enumer-
ation. Clearly, there is no single algorithm suitable for perturbing all these kinds of
data. Second, as mentioned before, there exist constraints on the perturbed data for
passing validation checks to be accepted by Web servers. Third, conflicts might appear
between perturbed data, for example, the first three digits of a phone number might
give different geographical information than a ZIP code 1. In cases where such conflicts
impede user registrations, maintaining consistency between various perturbed data is a
necessity. Last but not least, some parts of personal information such as email address
cannot be automatically generated because a fake email account will not support further
communication between a user and a website.

1 This discrepancy might also happens within true data because some people use phone number
from other regions.

COP: A Step toward Children Online Privacy 535

To address these challenges, we borrow some approaches from PPDM, namely addi-
tive perturbation [26], multiplicative perturbation [27,28] and probability distortion [29].
In additive perturbation, noise is added to data in order to mask the attribute values of
records. The noise added is sufficiently large so that the individual record values cannot
be recovered from the perturbed data. Note that although there are known drawbacks of
additive perturbation such as additive noise may be easily filtered out through correla-
tion of the data points within a large data set, it will not be an issue for data processed
in COP because a website only has one data entry from each child. There are two basic
approaches to perform multiplicative perturbation. We only consider the first one. This
method is based on generating random numbers that have a truncated Gaussian distri-
bution with mean equal to one and a small variance. It multiplies each element of the
original data by this noise. Unlike the previous two approaches, probability distortion
perturbs the value of each data element (point distortion) and replaces it with another
sample from the same (estimated) distribution. The merit of this approach is the diffi-
culty to compromise perturbed data using repeated queries.

Table 1 shows four types of data that might be requested from a child during regis-
tration. For each data type, its related data items, potential perturbation methods, range
or formats and special notes are listed. For non-format numerical type of data such as

Table 1. Data Perturbation Approaches for different Data Types

Data Type Data Item Possible Perturbation Methods Format Notes

Numerical
Value

(non-format)
Age

1: Follow certain
predefined distribution;
2:ε, normal distribution

with μ = 1 and σ = 0.5.
α = (Age × ε)mod13,

if≥ 6, R(Age) = α,
else R(Age) = α + 6

6 ∼ 12

1: Assume we know
the distribution

of ages from
6 to 12;

2:Multiplicative
perturbation

Numerical
Value

Phone
Number

Reserve area code
generate other 7 digits 123-XXX-XXXX Certain Rules

SSN
Number Randomly Perturb XXX-XX-XXXX Certain Rules

Date of
Birth

1: Year must be in
accordance with age;

2:Month and day follow
age’s perturbation

XX-XX-(>1996)

ZIP Code
Reserve the first 3 digits,
perturb the last two digits 021XX

Consist with
Address

Credit Card
Follow the CCN rules,

randomly perturb or use
predefined dataset

16 or 15 digits -

String

Name
Choose from certain

data set like
cartoon names

Mickey Mouse -

Username
Do not perturb

unless real name
used

- -

Address

Keep state name
change door number

street name and
city name

1234, test
street, fake

city, PA

City name can
be preserved

if defined
by parents

E-mail
Change to parents’

email address - -

Enumeration Gender
change with probability

a% - -

536 W. Xu, S. Zhu, and H. Xu

age, there are two perturbation options. The first one applies probability distortion, and
the retention of existing distribution of ages is achieved by following that distribution
when generating perturbed age data. The other option exploits the idea of multiplicative
perturbation to conceal individual user’s age in a normal distribution. By default, COP
adopts the second perturbation approach for the reason that no such age distribution
is known worth following. For formatted numerical type of data, we first confirm the
potential information each format gives away, and then determine the extent to which
COP’s protection will cover. Take the ZIP code and phone number as examples, the
first three digits of these two numbers indicate users’ geographical information and
COP’s policy allow the disclosure of these information for the balance between user
anonymity and data usability. Perturbation policy of email address differs from others
for the consideration of possible usage of email account to retrieve password in future.
Unlike other data, validity of perturbed email addresses can not be assured by COP. For
enumeration type of data, it can be processed as numerical data with a certain range.

Another issue in data perturbation is the validation of perturbed data. For example,
when a ZIP code is perturbed from “02108” to “02107”, the perturbed value “02107”
is not a validate ZIP code thus it can not pass the validation check. To avert this issue,
COP prepare a list of all valid ZIP code, and the perturbation process can choose from
the list according to the rules in Table 1.

2.3 Parsing User Input

COP is designed to minimize its interference with users’ normal Web activities. To this
end, parsing user input in COP needs to distinguish online registration Web pages with
other Web pages in the first place. Generally, a registration Web page always contains
a form and a submit button, and the button is associated with an event handler (e.g.,
OnClick) to send out the form. Although many online shopping Web pages may also
have the similar structures, we assume that a child user under the age of 13 is unlikely
to shop online. Thus COP can discriminate registration Web pages from others by these
characteristics.

If the current Web page is considered as a non-registration page, COP follows each
user input and compares the content of the input with pre-stored personal information.
Upon a match is encountered, COP will retrieve id/name attributes of the input field and
the tag before the field. If this retrieved information indicates that the input field asks
for personal information. COP will treat this input field as a potential leakage of privacy
and perturb the user input. Otherwise, COP will just leave the input field unchanged.

In the case of registration Web pages, COP not only follows and compares each user
input with pre-stored personal information, but also considers the data type of the input
content. If the input is a string and matches one of the personal information stored as a
string such as name, address and email, the input is considered as personal information
and is perturbed. If the input is a numerical value with format and matches one the
following personal information: ZIP, Credit Number, Phone Number, SSN and Date of
Birth, it is also considered as personal information and is perturbed. However, if the
input is a numerical value with no format and matches the pre-stored age information,
for example, user inputs “12” and her age is also 12. In this case, COP will resort to
tag and id/name to recognize the meaning of this input. If the tag and id/name indicate

COP: A Step toward Children Online Privacy 537

that this input field does ask for user’s age, then COP will perturb this input to protect
privacy. Otherwise, COP will not change this input because many elements in an HTML
file are treated as input fields with a small numerical content. A simple example is a
dropdown-list. The selection on the list will be stored as a numerical value representing
the list index. If COP perturbs each input field that has the same numerical value as the
user’s age, a high false positive will be introduced and the user’s normal Web activities
will be interrupted.

However, there are cases where the input needs to be perturbed even the content of
the input does not match any personal information. Considering a child lying about his
age to access restricted content, the tag or id/name of the input field will indicate this
field asks for user’s age, but the content does not match stored age information. In this
case, COP will perturb the input to a number less than 13 to prevent the child from
lying.

2.4 Transparency to Children

Since COP is dedicated to protecting children under the age of 13, one of COP’s design
objectives is keeping their child-like innocence. We notice that children might con-
fuse perturbation with deceiving because they are not mature enough to understand the
privacy protection purpose of perturbation. To prevent this, COP keeps the data pertur-
bation operations unobserved to child users. After parsing a user’s input, COP generates
the perturbed data and marks the input field without changing its content immediately.
Only when the submission action is triggered, COP will change all the marked contents
with perturbed ones and submit the form. Obviously, reentry would be a problem for
users if their usernames have been changed by COP without notifying them. Since user-
name is not treated as personal information by COPPA, under normal circumstances,
COP will not interfere with username. However, there are cases where children use
their real names as username for login, the real names would be randomly perturbed
by COP and this would cause failure in logging into users’ accounts. COP addresses
this problem by implementing a logging facility. When children visit a website that
has been recorded in the log, COP first looks up the related perturbation data for this
website. Once found, COP will use these data when required instead of creating new
perturbed data. This means if a username has been perturbed during registration, COP
will provide it when users try to log in. With the assistance of logging function, COP
can preserve transparency to child users.

2.5 Verifiable Parental Consent

COPPA requires that “prior to collection, use, and/or disclosure of personal information
about a child, an operator must obtain from a parent of the child verifiable parental
consent...” [10]. Obtaining such content every time when information is required from
a child may get cumbersome both for the child and the parents. Therefore, we need a
way of delegating this responsibility to the tool for approving website policies. Note
that since COP will be enforcing the privacy preferences set by the parents, irrespective
of the website’s policy, COP is always ready to approve the website’s policy and to
release information that has been pre-approved by parents. The only technical issue

538 W. Xu, S. Zhu, and H. Xu

is to provide parental consent to the Web server in an automated way, which is not yet
implemented in the current version of COP. Nevertheless, in reality, automated approval
is not always necessary. Since websites with age censorship tend to acquire this consent
directly from parents (see Section 3.1). Common practice of websites is sending email
to parents and letting them click a link to give their approval.

2.6 Browser Extension Implementation

We implement COP as a Firefox extension (Firefox version 2.0.0.20). As an add-on
to Firefox’s functionality, COP is integrated into the browser’s main frame once in-
stalled. As discussed at the beginning of Section 2, only parent users with administrator
privilege should install COP. The installation involves three important steps, which are
setting password, specifying privacy preference and filling in children’s information.
Password is used to identify parent users before they are allowed to modify COP’s
configuration.

Figure 2 shows the panel where parents can specify privacy preferences in COP.
Parents can add any websites they know of into the list and set up the appropriate policy
for each of them. Specifically, parents can indicate which categories of their children’s
information should be withheld from the website by selecting the check-boxes below
the list. A checked one means COP will perturb this information before sending it out,
which is marked as ‘Y’ in list (otherwise ‘N’). For unknown websites, COP will apply
the default policy.

Figure 3 illustrates the user-interface for parents to add their children’s informa-
tion. This information is used as the reference for parsing user input as discussed in

COP-Preference SetupCOP-Preference Setup

Name

Either select a site from the list box, or type in new site in the textbox below to add/edit preference

输入文本URL NameType Age DOB Gender Phone Address ZIP CCN SSN Email

www.google.com S N N Y Y Y Y Y Y Y N
www.yahoo.com S N N Y Y N Y N Y Y N

Children Online Protection

Perturb the following information before being send out to:

Age Birth Date(DOB) ZIP Code Gender Address

Email Address Phone Number Social Security Number(SSN) Credit Card Information(CCN)

Exit Add new site Change Save

Default D N Y Y N Y Y N Y Y N

Fig. 2. Installation phase: specifying privacy preference

COP: A Step toward Children Online Privacy 539

Section 2.3. Parents need to fill out the form in this panel for each of their children. If
they have more than one child, they need to use “Add Child” button to generate a new
form for another child. All the information gathered in this step is considered to be pri-
vate and COP will prevent children from releasing any of this information to websites,
depending on the privacy preferences.

After installation, COP will be activated with an indication appearing in Firefox’s
status bar. Figure 4 shows the menu list of COP. “Activate/ Deactivate” option is pass-
word protected. This ensures COP can only be disabled by the parents but not the
children. “Parent Identification” option is used by parents to change the identification
information entered during the installation phase. “Preferences Setup” option enables
parents to change preferences as showed in Figure 2. “Log” option gives parents access
to logged activities, which include the websites visited by children and the perturbed
information submitted to those websites.

COP-Children InformationCOP-Children Information

Please enter your child’s information:
(The following information will NEVER be submitted to any website)

Children Online Protection

Exit Back Reset Add Child

First Name: Last Name:

Birth Date (mm/dd/yyyy):

Age: Gender: male female

Email Address:

Phone Number:

Parents’ Credit
Card Number:
Address Line 1:

Address Line 2:

ZIP:

Social Security Number: - -

/ /

- -

City: State:

Fig. 3. Installation phase: filling in children’s
information

Fig. 4. COP works as a Firefox extension

3 Evaluation

In this section, COP is evaluated for its effectiveness of protecting children’s online
privacy.

We test COP with registrations on 23 websites, as listed in table 2. Twelve of these
websites are selected from the top site list for kids and teens (suggested by Alexa [30]),
e.g., Skyrock, GameSpot, Hyves, Nick. Other sites are the representatives of most pop-
ular Web services, e.g., Yahoo, Google, MySpace and Facebook.

We examine the results from the following aspects. First, we look into the amount
of personal information required for registration. Numbers in the second column of
Table 2 indicate which pieces of information are required by a website among a total
of 11 categories. The average number of categories of information in this column is
4.48. The most wanted information is email, (82.6% of visited websites ask for email)

540 W. Xu, S. Zhu, and H. Xu

followed by full name (65.2%), date of birth (60.8%) and gender (56.5%). Considering
the threat of cross identification studied in [7,6], the required registration information
from 5 websites is enough for a malicious party to identify a person, which highlights
the importance of privacy protection scheme for online users especially children.

Table 2. Popular Websites Visted in COP’s Evaluation

Website Information Required for Registration a Age Verification

www.yahoo.com 2,4,5,6,9 Yes
www.live.com 2,3,4,5,6,9 Yes
www.google.com 4,5 No
www.kidscom.com 4,5,6,10 No
www.gzkidzone.com 3,4,5,10,11 No
dashboard.aim.com 1,2,3,4,5,6 No
www.facebook.com 1,2,3,4,5 Yes
www.livejournal.com 1,3 Yes
www.youtube.com 1,2,3,6,9 Yes
www.myspace.com 1,2,3,4,5 Yes
www.blogger.com 3 No
www.hi5.com 1,3,4,5 Yes
www.wordpress.com 3,4,5 No
www.skyrock.com 1,2,3,4,5,6 Yes
www.gamespot.com 1,2,3,4,5,6,7,8,9 Yes
www.hyves.nl 1,2,3,4,5,6,9 No
www.gamefaqs.com 1,2,3,4,5,6,7,8,9 Yes
www.neopets.com 1,2,4,6,7,9 No
www.nick.com 1,2,3 No
www.everythinggirl.com 3 No
www.stardoll.com 1,2,3 No
www.lego.com 1,3 No
www.timeanddate.com 3,4,5 No

a 1:birth date; 2:gender; 3:email; 4:first name; 5:last name 6:country; 7:state; 8:address; 9:ZIP; 10: age; 11:parent email.

Second, we evaluate the effectiveness of COP protecting personal information. By
using default privacy preference setting, all the 11 categories of personal information are
protected by COP. Data perturbation shields real information from disclosure. However,
in some rare cases such as KidsCom [31], where users provide personal information by
clicking pictures figuring preselected answers, COP could not intercept this informa-
tion. We consider this case as an example of covert information access and will discuss
the details in Section 4.1.

We take the registration process on www.yahoo.com as an example to demonstrate
how COP works. After COP has been installed in Firefox, “COP is activated” shows
up in the status bar. When the browser opens the registration page of Yahoo, personal
information such as first name, last name, gender, birthday, country, ZIP, alternative
email are required in a form. After we finish filling out all the fields in the registra-
tion form and click “Create My Account”, COP intercepts this action, performs data

COP: A Step toward Children Online Privacy 541

perturbation based on the local privacy preference setting, places all the perturbed data
into the corresponding fields and sends out the form. Since Yahoo has age censorship,
upon receiving this registration request from a user under 18, Yahoo requires an adult’s
Yahoo ID to proceed. We provide it to finish the registration. All the information Yahoo
gets from this registration is a subset of what we, as parent users, allow to release. The
most detailed information in this case is an area code in ZIP. This very limited private
information disclosure can effectively protect our identities online. From the perspec-
tive of child users, this registration process is no different than the one without COP,
only their privacy is preserved.

During our test, we notice that age censorship is quite common among current web-
sites. However, these censorships can be bypassed by children lying about their ages
to be over 18. Since in configuration COP already has the real age of the child, it can
change the filled age to a number less than 13 to make sure those censorships will be
invoked.

4 Attacks from Malicious Websites

Some websites may not favor COP for its data perturbation design. If COP is widely
deployed, those “untrustworthy” websites might try to exploit any design vulnerabilities
in COP. In this section, we discuss some of the attacks that malicious websites would
take against COP and our countermeasures.

4.1 Covert Information Access

Although COP spends a lot of efforts on preserving the usability of perturbed data
for collectors, it is not surprising to see that some websites which are aware of the
usage of COP would try to bypass COP. For example, in the KidsCom case, the website
acquires personal information from children by letting them choose from a group of
preselected pictures. In this way, no recognizable user input happens, and COP will not
be able to intercept any private information. Solution to this problem requires image
recognition techniques, which is beyond the scope of the current design of COP. On the
other hand, we believe that this information collection fashion is not a general practice
among websites, because it is inconvenient for both the users and the websites.

4.2 Embedded Code

One potential attack comes from special embedded JavaScript code. In normal cases, a
button control is embedded in a form; once clicked, the Web browser composes an http
request by putting together all user input data and sending it in the request. In this case,
COP is able to intercept this standard request. However, with JavaScript, a webpage
may link a button to an embedded JavaScript code, for example, <input key=“send”
onclick=“SendData()” value=“sendsecretly” type=“button”>, where SendData() is an
inline JavaScript function. This function can easily read all the data the user has pro-
vided so far, encode it in a specified secret way understandable to the Web server alone,

542 W. Xu, S. Zhu, and H. Xu

and finally send the data to the server. Thus, the browser (and COP) will not see the orig-
inal data fields as the values look random. This in turn could make perturbation of the
data an impossible task. To address this attack, we consider automatically adding a hook
JavaScript method before the JavaScript data submission method. For example, we may
implement COP inside the Web browser layout engine (e.g., Gecko for Firefox). When
it detects the above HTML source code, it can modify the code to <input... onclick=
“ICheckFirstHook(); SendData()”> instead. Here ICheckFirstHook() is a JavaScript
function, added by COP to the HTML source to check or perturb the user input data
before it is passed to the original JavaScript function defined by the Web server.

5 Discussion

COP’s mission is to reduce divulgence of children’s personal information to websites.
Despite COP’s effective protection, it is not realistic to solely rely on COP, a scheme
focus on registration process, to eliminate the possibility of any invasion of privacy. A
simple example would be a child posting his or her name, hobbies and maybe photos on
an online blog after registration. In another case, a child may release sensitive informa-
tion such as addresses to others during online chatting. These activities obviously vio-
late the privacy preserving requirements, but their diversity makes it challenging for a
single scheme to prevent all of them. Moreover, children might install other browsers to
bypass COP or they might be able to disable or uninstall the Firefox extension. To pre-
vent COP from being circumvented, a comprehensive implementation such as a proxy
is envisioned. The proxy will intercept all Web traffic. It is installed by system admin-
istrator and can only be uninstalled or disabled by users with the same privilege as the
administrator. As long as children are not given such privilege, the proxy scheme can
not be circumvented.

COP suggests default privacy preference avoiding exposure of “ZIP”, “Gender” and
“Date of Birth” information to the same website to defend against cross-identification
attacks. However, other forms of privacy intrusion might happen due to availability of
other auxiliary information. Solutions to this intrusion will include understanding of
the mechanisms of such attacks and a more conservative default privacy preference that
prevents disclosure of almost all the personal information.

One of our future works, as discussed in Section 2.2, is to propose an approach for
quantitatively analyzing data privacy under the distributed model, in which sensitive
data are collected from individuals where privacy control (E.g., COP) are placed. The
challenge in this problem is the definition and measurement of privacy from an indi-
vidual’s perspective without the knowledge of data possessed by others. The approach
adopted in this work, which considers each piece of personal information as a sepa-
rate privacy metric might suggest a possible direction for solving this problem. In our
future effort, we also plan to conduct a comprehensive survey with a sufficient large
sample size. The sample should consist of parents as well as their children to deliver
more representative feedbacks on the effectiveness of COP.

COP: A Step toward Children Online Privacy 543

6 Conclusion

COP offers a novel solution to address the ever-growing concern on children’s online
privacy divulgence. By concentrating on online registration process, the most common
way of user private information collection, COP preserves children’s privacy from re-
leasing to websites while trying to preserving their normal activities. COP can also fulfill
the requirements of COPPA and maximize parents control over their children’s online
activities. Moreover, parents’ real-time involvement is little if any except the easy config-
uration in the installation phase. COP manages to achieve these goals by implementing
functions like privacy preserving data perturbation, user input parsing and transparency
to children. We demonstrate COP’s effectiveness in serving its privacy protection pur-
pose by evaluating its performance in popular websites. We also believe COP is one of
the directions for protecting children from online threats. With further improvements,
COP can help parents to protect their children in a more effective way.

Acknowledgement. We thank the reviewers for their valuable comments and sugges-
tions. This work was partially supported by NSF CAREER 0643906.

References

1. Katz, L.: When ’digital bullying’ goes too far (June 2005),
http://news.cnet.com/when-digital-bullying-goes-too-far/
2100-1025 3-5756297.html (Retrived January 2010)

2. Online predators: Help minimize the risk (January 2007) (retrived January 2010)
3. BBC: Net blamed for rise in child porn (2004),

http://news.bbc.co.uk/1/hi/technology/3387377.stm (retrived January
2010)

4. FTC: Xanga.com to pay 1 million for violating children’s online privacy protection
rule (2006), http://www.ftc.gov/opa/2006/09/xanga.shtml (retrived Jan-
uary 2010)

5. FTC: mbee.com settles ftc charges social networking site for kids violated the chil-
dren’s online privacy protection act; settlement includes 130,000 civil penalty (2008),
http://www.ftc.gov/opa/2008/01/imbee.shtml (retrived January 2010)

6. Sweeney, L.: Uniqueness of simple demographics in the u.s. population. Technical report, LI-
DAPWP4, Carnegie Mellon University, Laboratory for International Data Privacy, Pittsburgh
(2000)

7. Golle, P.: Revisiting the uniqueness of simple demographics in the us population. In: 2006
Workshop on Privacy in the Electronic Society, pp. 77–80. ACM Press, New York (2006)

8. Cox communications teen internet safety survey wave ii. Technical report, Teen Research
Unlimited (March 2007)

9. Youn, S.: Teenagers’ perceptions of online privacy and coping behaviors: A risk-benefit ap-
praisal approach. Journal of Broadcasting & Electronic Media 49, 86–110 (2005)

10. Children’s online privacy protection act (1998) (Retrived January 2010)
11. Center, E.P.I.: Pretty poor privacy: An assessment of p3p and internet privacy (June

2000), http://epic.org/reports/prettypoorprivacy.html (retrived Jan-
uary 2010)

12. How anonymizers work (2007),
http://www.livinginternet.com/i/is_anon_work.htm (retrived January
2010)

http://news.cnet.com/when-digital-bullying-goes-too-far/2100-1025_3-5756297.html
http://news.cnet.com/when-digital-bullying-goes-too-far/2100-1025_3-5756297.html
http://news.bbc.co.uk/1/hi/technology/3387377.stm
http://www.ftc.gov/opa/2006/09/xanga.shtml
http://www.ftc.gov/opa/2008/01/imbee.shtml
http://epic.org/reports/prettypoorprivacy.html
http://www.livinginternet.com/i/is_anon_work.htm

544 W. Xu, S. Zhu, and H. Xu

13. Zwick, D., Dholakia, N.: Models of privacy in the digital age: Implications for marketing and
e-commerce. Technical report, Research Institute for Telecommunications and Information
Marketing (RITIM), University of Rhode Island (1999)

14. Truste, http://www.truste.org/ (retrived January 2010)
15. Culnan, M.J., Bies, R.J.: Consumer privacy: Balancing economic and justice considerations.

Journal of Social Issues 59(2), 104–115 (2003)
16. Milne, G.R., Culnan, M.J.: Strategies for reducing online privacy risks: Why consumers

read(or don’t read) online privacy notices. Journal of Interactive Marketing 18(3), 15–29
(2004)

17. Hsiao, M., Belanger, F., Hiller, J., Aggarwal, P., Channakeshava, K., Bian, K., Park, J.M.:
Parents and the internet: Privacy awareness, practices and control. In: Proceedings of Amer-
icas’ Conference on Information Systems (2007)

18. Culnan, M.J., Milne, G.R.: The culnan-milne survey on consumers & online privacy notices:
Summary of responses. In: Proceedings of Get Noticed: Effective Financial Privacy Notices,
Washington, DC, A Federal Trade Commission Workshop (2001)

19. Crossler, B., Belanger, F., Hiller, J., Aggarwal, P., Channakeshava, K., Bian, K., Park, J.M.,
Hsiao, M.: The development of a tool to protect children’s privacy online. In: Annual Work-
shop on Information Security and Assurance, Montral, Canada (2007)

20. Parental controls in windows vista,
http://www.microsoft.com/windows/windows-vista/features/
parental-controls.aspx (retrived January 2010)

21. Privo, http://www.privo.com/ (retrived January 2010)
22. icouldbe, http://www.icouldbe.org/ (retrived January 2010)
23. netnanny, http://www.netnanny.com/alt_rotate (retrived January 2010)
24. Parental control bar, http://www.parentalcontrolbar.org/ (retrived January

2010)
25. Thierer, A.: Social networking and age verification: Many hard questions; no easy solutions.

Progress & Freedom Foundation Progress on Point Paper No. 14.5 14(5) (2007)
26. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of

random data perturbation techniques. In: ICDM ’03: Proceedings of the Third IEEE Inter-
national Conference on Data Mining, Washington, DC, November 2003, pp. 99–106. IEEE
Computer Society, Los Alamitos (2003)

27. Kim, J.J., Kim, J.J., Winkler, W.E., Winkler, W.E.: Multiplicative noise for masking contin-
uous data. Technical report, Statistical Research Division, US Bureau of the Census, Wash-
ington, D.C. (2003)

28. Krishnamurty Muralidhar, D.B., Kirs, P.J.: Accessibility, security and accuracy in statis-
tical database: The case for the multiplicative fixed data perturbation approach. JSTOR-
Management Science 41(9), 1549–1564 (1995)

29. Liew, C.K., Choi, U.J., Liew, C.J.: A data distortion by probability distribution. ACM Trans.
Database Syst. 10(3), 395–411 (1985)

30. Alexa-top sites by category,
http://www.alexa.com/topsites/category/top/kids_and_teens
(retrived January 2010)

31. Safe kids chat rooms, http://www.my.kidscom.com/ (retrived January 2010)

http://www.truste.org/
http://www.microsoft.com/windows/windows-vista/features/parental-controls.aspx
http://www.microsoft.com/windows/windows-vista/features/parental-controls.aspx
http://www.privo.com/
http://www.icouldbe.org/
http://www.netnanny.com/alt_rotate
http://www.parentalcontrolbar.org/
http://www.alexa.com/topsites/category/top/kids_and_teens
http://www.my.kidscom.com/

A Hybrid Method to Detect Deflation Fraud in
Cost-Per-Action Online Advertising

Xuhua Ding

Singapore Management University
xhding@smu.edu.sg

Abstract. Web advertisers prefer the cost-per-action (CPA) advertise-
ment model whereby an advertiser pays a web publisher according to the
actual amount of transactions, rather than the volume of advertisement
clicks. The main obstacle for a wide deployment of this model is the defla-
tion fraud. Namely, a dishonest advertiser under-reports the transaction
count in order to discharge less. In this paper, we present a mechanism
to detect such a fraud using a hybrid of cryptography and probability
tools. With the assistance from a small number of users, the publisher
can detect deflation fraud with a success probability growing exponen-
tially with the fraud amount, and can estimate the amount of frauds.
Our scheme is amiable to both the advertiser and the users because the
existing transaction model remains unchanged. It is also efficient and
scalable as the incurred communication, computation and storage costs
are independent of the number of transactions.

1 Introduction

Cost-per-action (CPA) is gathering its popularity among online advertisers due
to its cost-effectiveness. Different from the cost-per-click model where an ad-
vertiser pays the web publisher for every user click, the payment in the CPA
model is based on the amount of predefined user action, e.g. downloading, sale
or sign-up. Nonetheless, such a model is not favored by the web publishers, be-
cause a dishonest advertiser may undercount the actions and consequently pays
less commission fee. This type of cheating is called deflation fraud. Such frauds
can also be found in other applications. For example, in publish-subscribe net-
works [7,14], an event publisher shares profits with the brokers, and a dishonest
broker can undercount the number of subscriptions. In online content distribu-
tion businesses, a content distributor may cheat a content provider in a similar
fashion.

A dual problem of deflation fraud is inflation fraud, whereby an entity cheats
by maliciously over-counting or over-reporting transactions for its financial ad-
vantages. Although there exist many schemes proposed to address the inflation
fraud as in [8,17,18,15,9,11,20], the deflation fraud has not caught sufficient at-
tention except in [10]. As explained in [10], the philosophy for all inflation fraud
detection schemes is knowledge proof. Intuitively, an inflation adversary is chal-
lenged to prove sufficient knowledge pertaining to the inflated count. Unfor-
tunately, the same tactic fails for deflation fraud detection, as no scheme can

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 545–562, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

546 X. Ding

challenge an adversary to present a proof on absence of knowledge. Therefore,
the general approach for deflation detection is that the verifier (e.g. the web
publisher in our context) gathers as much information as possible regarding the
claim made by the prover (e.g. the advertiser). The solutions used in [10] are
based on an online trusted third party (TTP) which mediates the transactions.
A similar approach taken by Google’s AdWords is that the verifier watches over
the transactions directly. Obviously, the more information the verifier gathers,
the stronger the detection scheme is.

Obviously, the aforementioned approaches are inefficient and unscalable as
they are intrusive to the advertiser’s business operation and involve an online
TTP. We observe that missing a few transactions is a tolerable counting error to
Ps as long as the fraction of fraud is sufficiently small. Therefore, we design an
efficient and flexible scheme by slightly relaxing the security. The main results
of this paper is a cryptography and probability based deflation-fraud detection
scheme with the following attractive features.

– It detects any z amount of deflation frauds with a success probability at
least growing exponentially with z. The web publisher can tune a security
parameter to strike a balance between a high security assurance and a low
cost.

– It allows the web publisher to estimate the expected transaction amount,
which provides a sound basis to detect any frauds in a large magnitude.

– It is not intrusive to the advertiser in the sense that the transactions only
involve the advertiser and its users only. It is also user-friendly as end-users
do not need to maintain any secret information.

– It is efficient and scalable. The communication, computation and storage
costs incurred by our scheme are independent of the amount of transactions.

The rest of the paper is organized as follows. We discuss related work in Sec-
tion 2 and the building blocks in Section 3. Then, we formulate the problem in
Section 4. Section 5 proposes the deflation fraud detection scheme. We analyze
its security and performance in Section 6, then conclude the paper in Section 7.

2 Related Work

The most relevant work is by Johnson and Staddon [10]. They considered de-
flation fraud in content distribution. Three schemes are proposed in [10]. In the
first scheme, the verifier impersonates regular users using different pseudonyms.
Then, it checks whether its pseudonyms appears in the content distributor’s re-
port. The second scheme involves a TTP to pre-issue a set of keys to users in
certain distribution. The content distributor must use a key known to all users,
which helps the auditor to estimate the user set size. The third scheme is similar
to the second one with the difference being a reduced user storage. The con-
structions of [10] has obvious architecture drawbacks and are not applicable to
online advertising.

The problem investigated in this paper is akin to the count integrity in publish-
subscribe networks [7,14]. A publish-subscribe system [7] involves a publisher

A Hybrid Method to Detect Deflation Fraud in CPA Online Advertising 547

which is the data source, a set of subscribers who receive their preferred data
items, and a broker network consisting of a set of broker nodes which disseminate
data from the publisher to the subscribers. The brokers report to the publisher
about the amount of data delivered to the subscribers. The approach to count
integrity proposed in [14] requires the publisher to participate in all data delivery
transactions. This approach obviously abandons the design principle of publish-
subscribe systems whose primary goal is to decouple publishers and subscribers
in order to be more scalable and to save the publisher from the heavy workload
of data delivery.

Web metering mainly deals with overcount fraud (a.k.a. inflation attacks).
Naor and Pinkas [17] proposed a secret sharing based scheme to verify the num-
ber of users served by a web server. Their scheme is not suitable for generic
online transactions since it requires the audit agency to initialize every user be-
fore running transactions. A special form of inflation attack is the well-known
click fraud, whereby the adversary cheats on the amount of website visits in-
stead of transactions. Gandhi et. al proposed in [9] countermeasures based on
construction of advertisement code. Similar works also include [11,20,18,15,9].

In [12], Markus Kuhn proposed a novel approach to probabilistically counting
a large collection of digital signatures, which may be used in applications like web
page metering or ranking mechanisms. Though very efficient, this scheme suffers
from inaccuracy, since it only provides an estimation on magnitude. However,
many business applications demand a more precise count. Moreover, it does not
address deflation fraud.

Another line of research related to our study is electronic voting schemes,
such as [6,5,16]. Among many security requirements such as receipt-freeness, a
fundamental requirement is that the ballots should be tallied correctly. Although
secure e-voting schemes can theoretically defeat inflation/deflation attacks, they
are not suitable for online advertising or content distribution, mainly because
e-voting has a special and expensive infrastructure and has a heavy toll on the
computation/communication costs.

3 Building Block and Notations

The cryptographic building block used in our scheme is the signature of knowl-
edge [4,13], a non-interactive form of the zero-knowledge proof. The most primi-
tive signature of knowledge is Schnorr signatures [19], whereby the signer proves
that she knows the discrete logarithm of y to the base g in a cyclic group G = 〈g〉.
An extension of Schnorr signatures can be used to prove the equality of two dis-
crete logarithms. Suppose that g and g′ are two generators of group G, and
y = gx, y′ = g′x. Knowing x, the signer produces a signature of knowledge prov-
ing that DLOG(y, g) = DLOG(y′, g′). In essence, the signer generates a tuple
which can be treated as two Schnorr signatures sharing the same challenge. We
denote it by SKELOG[x : y = gx ∧ y′ = g′x].

In [4], Camenisch and Stadler defined the signature of knowledge of a dou-
ble discrete logarithm of y to the base g and a. Let y = gax

. Knowing x,

548 X. Ding

the signer computes (c, s1, · · · , sl) as the signature of knowledge denoted as
SKLOGLOG(x : y = gax

), where l is a security related parameter. Their scheme
is essentially a non-interactive version of l rounds of zero-knowledge proof with
l binary challenges. Since the challenge used in each round is one bit, the signer
can successfully cheat the verifier in one round with a probability 1/2. Therefore,
an adversary can forge SKLOGLOG[x : y = gax

] with a probability 1/2l. When
l is sufficiently large, the probability is negligible.

In this paper, we combine SKLOGLOG[x : y = gax

] and SKELOG[x : y =
gx∧y′ = hx], so that with the knowledge of x, the signer can produce a signature
of knowledge proving that the double discrete logarithm of y = gax

equals to the
discrete logarithm of y′ = hx. We denote it as SKELOGLOG[x : y = gax ∧ y′ =
hx]. Note that the computation of ax in computing y and the computation of hx

are in the same group. The details are shown in Section 5.

4 Problem Formulation

4.1 System Overview

A typical online advertisement system consists of three types of entities: a web
publisher Ps offering the advertising service through its web or search engines;
a (unknown-sized) set of users U ; and an advertiser Ad who offers services or
products to users. Ps displays to users the advertisement for Ad. By clicking the
advertisement, the user is redirected to Ad’s web site. The user is said to perform
a transaction if he signs up the service or downloads the product. The user
may or may not perform a transaction, solely depending on his own willingness.
Periodically, Ad reports to Ps the number of transactions contributed by Ps’s
advertisement. In deflation fraud, Ad under-reports to Ps in order to pay less
commission fee.

Our goal is to allow Ps to detect Ad’s cheating in an efficient fashion. In a
nutshell, the basic approach is to collect information from Ad and a tiny subset
of U . By analyzing the received data, Ps can discover (or suspect) the fraud in
a probability growing with the fraud amount. The proposed scheme consists of
the protocols/algorithms listed below.

– Initialization: Both Ps and Ad are initialized with the proper states. Ps au-
thorizes Ad to run n transactions in maximum within one billing cycle.

– Advertising: In this protocol, a user U ∈ U interacts with Ps, where an
advertisement of Ad is shown to U .

– Transaction: U may interact with Ad for an transaction, e.g. sign-up. It re-
ceives a receipt signed by Ad.

– Feedback: With a probability ρ, U runs this protocol with Ps to return his
receipt, where ρ is a system-wide parameter selected by Ps. (The choice of
ρ is discussed in Section 6.)

– Report: Ad reports to Ps about the amount of transactions performed. Ps
detects fraud based on both the receipts collected from users and the report
from Ad, and estimates the fraud amount (if any).

A Hybrid Method to Detect Deflation Fraud in CPA Online Advertising 549

4.2 Assumptions, Adversary Model and Security Notions

We assume that every user U ∈ U is independent, and their protocol executions
are regarded as independent events. We assume that all communication channels
are confidential and authentic, e.g. via SSL/TLS connections. Henceforth, we do
not consider attacks on the communication channels.

The adversary in our scheme is Ad. If there are in fact N transactions, Ad’s
objective is to report to Ps a fraudulent transaction count N ′ < N without
being detected. We assume that Ad is rational in the sense that it would not
risk the exposure of its long term secret and it sets a risk threshold for itself.
We do not consider collusion attacks between Ad and corrupted users. This is
because Ad can always run the transaction with its colluders without executing
the prescribed protocol1.

The security strength of our scheme is defined based on the upper bound of
the detection miss probability with regard to the amount of frauds.

Definition 1 (Deflation Resistance). A deflation fraud detection scheme in-
volving a publisher Ps and an advertiser Ad is said to be (z, ν)-secure for ν ∈ [0, 1]
and z ∈ N, if and only if the probability that Ad successfully undercounts x ≥ z
transactions without being detected is bounded by ν, i.e. Pr[detection fail |x ≥
δ] ≤ ν.

A perfect detection scheme should be (1, 0)-secure. Namely, Ps successfully de-
tects any amount of deflation fraud. This can only be achieved by supplying
Ps with the complete information about Ad’s transactions. The aforementioned
naive approaches, for instance, by introducing an online TTP, fall in this cate-
gory. Our goal is to construct an efficient and scalable scheme by relaxing the
security strength slightly, as long as z and ν are small enough to meet the
application needs.

5 The Scheme

A high level view of the proposed scheme is as follows. Ps delivers a sequence
of hash tokens to Ad. When Ad performs a transaction, a receipt derived using
a fresh token is returned to the user. A small set of users report their receipts
to Ps. The latter verifies whether Ad honestly runs the prescribed protocol and
detects any anomaly using the received data. The details are presented below.
In the sequel, we use the notations listed in Table 1.

5.1 Initialization

Given a system wide security parameter κ, all participants agree on the following
cryptographic setting. Let p, q, q′ be three large primes satisfying q|p − 1 and

1 Note that cryptography techniques alone can not detect collusion attacks. Promising
solutions could be based on trusted hardware or TTP. Nonetheless, we remark that
it is infeasible for Ad to collude with a large portion of Internet users.

550 X. Ding

Table 1. Table of Notations

Notations Description
(x, y) Ad’s private and public key pair for signing receipts to users;
(u, v) Ad’s another private and public key pair for token usage proof;
ti the i-th tokens issued to Ad;
C Ad’s transaction counter;

Iclick Ps’s click counter;
Cf the maximum transaction count received by Ps.
If the click count corresponding to Cf .
N the actual amount of transactions;
M the total number of advertisement clicks;
ρ the probability for a user to run Feedback after Transaction.

q = 2q′ + 1, and the discrete logarithm problem is intractable in both Z∗
p and

Z∗
q . Let g ∈R Z∗

p such that G = 〈g〉 is a cyclic subgroup of Z∗
p of order q. Let

h ∈R Z∗
q such that Gh = 〈h〉 is a cyclic subgroup of Z∗

q of order q′. Hereafter,
we omit the modulus p and q for group operations in G and Gh respectively, if
they are indicated from the bases in use. Let H :Zq→Zq be a collision resistant
hash function; and let H :{0, 1}∗ → {0, 1}k be a collision resistant hash function,
where k is a parameter determined by κ, e.g. k = 160. Let l be a parameter for
SKELOGLOG determined by κ as well, e.g. l = 80.

Ps authorizes Ad to generate a chain of n hash tokens for n transactions. The
benefits of using a hash chains are: 1) to save the communication and storage
cost (i.e. a seed can generate the entire chain.); 2) to model the hash function
as a random oracle for the provable security, because a hash token will be used
in Transaction to derive a random number for signing a receipt. Note that the
communication cost for the protocol is constant. The protocol of initialization is
shown in Figure 1.

5.2 Advertising

Ps displays Ad’s advertisements, e.g. a flash or a banner, on its web pages. It also
maintains a counter Iclick to keep track of the number of advertisement clicks.
Initially, Iclick = 0. Advertising begins when U clicks the advertisement. Then,
Ps sends the (Iclick, t0) to U . Then, Ps sets Iclick ← Iclick +1. To avoid confusion,
we use M to denote the final Iclick, i.e the total number of advertisement clicks.

5.3 Transaction

Ad maintains a counter denoted by C to count the number of transactions.
Initially, C = 0. After running Advertising, U may decide to run a transaction
with Ad. Similarly, a user can also decide not to run Transaction.

In the protocol, U first sends its Iclick to Ad requesting for a transaction. Ad
then signs Iclick using its receipt signature key x together with a random number
derived from the token tC . As a result, Ad responds to U with two parts: a receipt

A Hybrid Method to Detect Deflation Fraud in CPA Online Advertising 551

Initialization Protocol (by Ps and Ad)

1. Ps executes the following:
(a) Generate a random seed T ∈R Zq; choose n ∈ N as the maximum amount

of transactions Ad can perform;

(b) Set t0 ← Hn(T), where Hn(T)

= H(. . . H︸ ︷︷ ︸

n times

(T) · · ·);

(c) Send {T, t0, n} to Ad;
2. Ad executes the following:

(a) Select x ∈R Zq and set y ← gx mod p.
(b) Select u ∈R Zq′ and set v ← hu mod q
(c) Output PK := (y, v, p, q) as Ad’s public key and SK := (x, u) as its

private keys. Ad’s receipt signature key pair are (y, x).
(d) On receiving {T, t0, n}, check whether t0 = Hn(T). Abort if not equal.

Otherwise, accept them.

Fig. 1. The Initialization protocol

which is a Schnorr signature on Iclick, and a SKELOGLOG proof proving that
the randomness in the Schnorr signature is derived from a hash token in the
authorized hash chain. U completes the transaction if both the signature and
the proof are verified true. The protocol details are described below in Figure 2.

5.4 Feedback

After running Transaction, U may choose to run Feedback to send a feedback to
Ps. Let ρ denote the expected probability for a user to run Feedback after Trans-
action2. In the protocol, U simply returns its Iclick and its receipt (C, tC , γ, β)
to Ps. Let Λ denote all receipts received. Let Cf denote the largest C in Λ, and
If denote the Iclick paired with Cf . When a new receipt is inserted into Λ, Ps
runs the function Fraud(Λ) which returns 1 if there exist two distinct receipts
with the same hash token. The details are described in Figure 3. Initially, Λ = ∅
and Cf = 0.

Note that the first step in Fraud(Λ) does not require additional modular expo-
nentiations since gβyγ has been computed when verifying the Schnorr signature
(γ, β). To save the time cost for finding cheating, Ps can make use of a Bloom
Filter to test the membership of gβyγ .

5.5 Report

Report is run by Ad and Ps at the end of each billing cycle. In the protocol,
Ad reports to Ps with Ĉ as the number of transactions. In a deflation fraud, Ĉ

2 Ps sets ρ by using financial tools, e.g. receipt redemption or lucky draw, to attract
users to run the protocol.

552 X. Ding

Transaction Protocol (by Ad and U)

Ad’s input : {T, x, u}, the present transaction counter C; U ’s input: {Iclick, t0}.

1. Ad executes the following steps, when receiving Iclick from U .
(a) Compute tC ← Hn−C(T), and α← H(tC‖Ad).
(b) Compute r ← αu mod q.
(c) Compute a Schnorr signature (γ, β) as γ = H(tC‖y‖g‖Iclick‖gr) and

β = r − x · γ mod q.
(d) Randomly selecte r1, · · · , rl ∈R Zq′

(e) Compute wi ← hri and w′
i ← g(αri), for i = 1, · · · , l.

(f) Set ψ ← H(v‖h‖gr‖g‖tC‖w1‖ · · · ‖wl‖w′
1‖ · · · ‖w′

l).
(g) For i = 1, · · · , l, set

λi =

{
ri if ψ[i] = 0,

ri − u mod q′ otherwise.

(h) Send {C, tC , (γ, β), (ψ, λ1, · · · , λl)} to U ; then C ← C + 1.
2. U performs the following on receiving {C, tC , (γ, β), (ψ, λ1, · · · , λl)},

(a) Verify whether tC is in the hash chain rooted at t0. Namely, if t0 �=
HC(tC), return 0 and abort;

(b) Compute α← H(tC‖Ad).
(c) Evaluate the transaction verification function denoted by

V (tC , Iclick, γ, β, ψ, λ1, · · · , λl) as follows.
i. Compute W ← gβyγ .
ii. If γ �= H(tC‖y‖g‖Iclick‖W), return 0 and abort;
iii. For i = 1, · · · , l, compute

wi =

{
hλi if ψ[i] = 0,

vλi otherwise.
and w′

i =

{
g(αλi) if ψ[i] = 0,

W (αλi) otherwise.

iv. If ψ �= H(v‖h‖W‖g‖tC‖w1‖ · · · ‖wl‖w′
1‖ · · · ‖w′

l), return 0 and abort.
(d) Accept (C, tC , γ, β) as a receipt for this transaction and return 1.

Fig. 2. The Transaction Protocol

is less than the actual number of transactions (denoted by N). Since Feedback
is independent of the Report, the execution of Report implies that Ps does not
discover cheating from Feedback. Therefore, Ps assesses the credibility of Ĉ using
the data it receives.

The data includes M, Cf , If , where M is the total number of advertisement
clicks and is the result from Advertising; Cf and If are from Feedback. With
these data and ρ, Ps runs the following steps.

1. If Cf > Ĉ, then Ps claims that Ad cheats and the amount of deflation fraud

is at least Cf − Ĉ.

A Hybrid Method to Detect Deflation Fraud in CPA Online Advertising 553

Feedback Protocol (by Ps and U)

Ps’s input: Λ,Cf ; U ’s input: {C, tC , Iclick, γ, β, ψ, λ1, · · · , λl}.

1. U sends to Ps: {Iclick, C, tC , γ, β, ψ, λ1, · · · , λl}.
2. Ps executes the following steps.

(a) Verify the receipt using the same algorithm in Figure 2. Abort if
V (tC , Iclick, γ, β, ψ, λ1, · · · , λl) = 0.

(b) Set Λ← Λ ∪ {(C, Iclick, γ, β)}.
(c) Execute Fraud(Λ) as follows:

i. If ∃(C, I ′click , γ′, β′) ∈ Λ, s.t 1) I ′click �= Iclick and 2) gβyγ = gβ′
yγ′

,
compute x← (β−β′)/(γ′−γ). Claim Ad’s deflation fraud and return
1.

ii. If C > Cf , set Cf ← C, and If ← Iclick. Return 0.

Fig. 3. The Feedback Protocol

2. Ps may runs an anomaly detection using Ĉ, ρ, Cf , If , M . In short, Ps first

computes E[N]. An alarm will be raised if the difference between E[N] and Ĉ
is larger than a positive threshold selected by Ps. Furthermore, Ps evaluates
the probability that Ad cheats. If both are significantly large, Ps can seek for
the intervene of a trusted party for auditing. Note that anomaly detection
produces false positives and false negatives. More details are explained in
Section 6.2.

3. Ps and Ad settle the payment. If Ĉ = n, they reset the entire protocol.
Namely, Ps issues a new batch of hash tokens to Ad by running a new round
of Initialization. Otherwise, Ps and Ad continue to use the present batch of
tokens until n transactions are performed.

6 Analysis

Recall that we do not consider collusion attacks. Therefore in order to produce a
valid receipt, Ad has to either honestly execute all Transaction with fresh tokens
or to cheat by using duplicated tokens. For easiness of discussion, we refer to
the first type of attack by withholding attack and the second type of attack by
duplication attack. Let Pw,z denote the maximum probability of detection failure
when Ad runs withholding attacks for z transactions only; and Pd,z denote the
maximum probability of detection failure when Ad runs duplication attacks for
z transactions only.

Caveat. The withholding attack actually does not benefit Ad in the long run,
as it will not get new authorization tokens until the current batch of n tokens
are used up. If Ad undercounts for the present, it has to inflate the count back in
the future. Moreover, as shown later in Lemma 3, the duplication attack is more
advantageous to Ad. Although our scheme has such deterrence, we still include
the withholding attack into our analysis for the completeness of the discussion.

554 X. Ding

We now first proceed to analyze the success probability that Ps catches dupli-
cation attacks. We then analyze how Ps further detects fraud by finding anomaly.
Finally, we analyze other security properties and performance.

6.1 Token Duplication Detection

To prove the security strength of the scheme, we first show that one hash token
only results in one unique random number in Ad’s Schnorr signature (γ, β).

Lemma 1. Let σ =(t, M, γ, β, ψ, λ1, · · · , λl) and σ′ = (t′, M ′, γ′, β′, ψ′, λ′
1, · · · ,

λ′
l,) be the user receipts for two transactions. If t = t′ and V (σ) = V (σ′) = 1,

then Pr(gβyγ �= gβ̄yγ̄) is negligible.

Proof. The proof is trivial. We show that Pr(gβyγ �= gβ′
yγ′

) < 2ε, where ε
denotes the error probability of the signature of knowledge scheme.

Let W = gβyγ and W ′ = gβ′
yγ′

. Since V (σ) = V (σ′) = 1, we have

Pr[DLOGLOG(W,g,t)=DLOG(v,u)]=Pr[DLOGLOG(W ′,g,t′)=DLOG(v,u)]=1−ε

according to the soundness definition of signature of knowledge. Since t = t′,
we have Pr(W �= W ′) < 1− (1 − ε)2 < 2ε. Therefore, if the signature of knowl-
edge scheme is sufficiently sound, the probability that one hash token results in
different randomness is negligible. �

Thus, if two users have verified their receipts with the same hash token tC
in Transaction, the probability that Ad has used the same randomness gr in
generating two different Schnorr signatures is overwhelming. This serves as the
basis for Ps to catch Ad’s fraud. We summarize it in the following lemma.

Lemma 2. If ρ < 1/3, then Ad’s duplication attack with z tokens can escape
detection with the maximum probability being (1−ρ2)z. Namely, Pd,z = (1−ρ2)z.

Proof. (sketch) For each of the z duplication attacks, Ad computes a Schnorr
signature with a duplicated hash token which has been used in another signature.
According to Lemma 1, Ad will be caught if any two users return the same hash
token.

To cheat z times, Ad has two exclusive tactics. One is to use z distinct tokens
with each being used exactly twice, i.e. reused exactly once. The other approach
is that there exists at least one token which is used more than twice in total. The
first tactic is more optimal for Ad than the second one. It can be proved by using
an induction on z to compare the two probabilities of Ad’s successful evasion. A
rigorous proof is in Appendix A. The intuition is as follows. For the first tactic,
only when both users receiving the same hash token return their receipts to Ps,
can Ad be caught. In contrast, for the second one, it allows polynomially more
combinations of feedbacks. Therefore, the first tactic maximizes the likelihood
for Ad to evade detection.

A Hybrid Method to Detect Deflation Fraud in CPA Online Advertising 555

To be conservative, we evaluate the scheme’s resistance to Ad’s best tactic, i.e.
no hash token is used more than twice. Therefore, there are z pairs of Schnorr
signatures which share a common hash token. Note that every user runs Feedback
independently. Hence, the probability that two users with the same hash token
return is ρ2. As a result, Ad can escape after cheating z times with a probability
(1− ρ2)z . �

Next, we show that the duplication attack is more advantageous to Ad, as it al-
lows Ad to escape fraud detection with a higher probability than the withholding
the same amount of transactions.

Lemma 3. For a deflation fraud with z transactions, Ad has a higher probability
to escape detection by the duplication attack only than by the withholding attack
only for z transactions. Namely, Pw,z < Pd,z.

Proof. In proving Lemma 2, we have shown that Pd,z = (1−ρ2)z . The withhold-
ing attack can only be detected in Report, when there exists (C, Iclick , γ, β) in Λ
s.t. C > Ĉ. Thus, for withholding z transactions, Ad evades detection as long as
none of those z users ignored by Ad runs Feedback with Ps. The probability of
that event to occur is Prw,z = (1− ρ)z, which is less than Pd,z. �

From the lemmas above, we show the security strength of the proposed scheme
in the following theorem.

Theorem 1. The proposed scheme is (z, (1 − ρ2)z)-deflation-resistant for ρ <
1/3.

Proof. Suppose that Ad intends to deflate the transaction count by z in total.
Without loss of generality, suppose that Ad withholds z1 transactions and du-
plications z2 tokens, s.t. z = z1 + z2 and z1, z2 ≥ 0. Ad evades detection when
Ps fails to detect both attacks. Thus Pr[detection fail|z] = Pw,z1 · Pd,z2 . From
Lemma 3, Pr[detection fail|z] < Pd,z1 · Pd,z2 = Pd,z = (1− ρ2)z .

Alternative, we can prove this by showing Pr[detection fail|z] = (1− ρ)z1(1−
ρ2)z2 = (1− ρ)z(1 + ρ)z2 which reaches its upper bound when z2 = z. Thus, the
propose scheme is (z, (1− ρ2)z)-deflation-resistant. �

Remark 1. Our scheme deters deflation fraud by revealing Ad’s private key, in
a similar fashion as in offline detection of double-spending e-cash [3]. Suppose
that there exit two distinct user receipts (β1, γ1) and (β2, γ2) using the same
random number r, i.e. β1 = r − x · γ1 mod q and β2 = r − x · γ2 mod q. Thus,
it is straightforward to derive x by computing (β1 − β2)(γ2 − γ1)

−1 mod q. We
argue that the private key extraction is a deterrence to Ad’s duplication attacks.

Remark 2. It is an interesting challenge to design an efficient and practical
(1, 0)-deflation-resistant deflation fraud detection scheme. The difficulty stems
from the efficiency requirement. We observe that it seems infeasible to detect all
frauds by using cryptographic techniques alone, unless all transactions data are
known to Ps.

Remark 3. When ρ ≥ 1/3, the probability to detect fraud is even higher,
because Ps collects more information with a higher ρ. Nonetheless we do not

556 X. Ding

have a close form formula to describe the success probability. Therefore, the
constraint on ρ in the above theorem is not an advantage to the adversary. We
also argue that a practical ρ is typically small due to Ps’s expense constraints.

6.2 Anomaly Detection

Even though Ad’s attack possibly evades the token-duplication detection in both
Feedback and Report, Ps can also detect the fraud by using probability analy-
sis. Different from the previous detection which relies on the non-repudiable
evidences, the probability analysis only indicates the likelihood of Ad’s cheating.

Detection using Cf . Recall that from Feedback execution, Ps concludes that
there are at least Cf transactions. Based on Cf , Ps estimates the expected N
using the following theorem.

Theorem 2. Let N be the random variable denoting the total number of trans-
actions. Let X be the random variable denoting the maximum transaction count
received in Feedback, whose space is [0, N]. Then E[N] > E(X) + (1− ρ)/ρ.

Proof. Since every user is independent in running Feedback, thus Pr[X = c|N =
n] = ρ(1 − ρ)n−c. Thus, we have E[X |N = n] =

∑n
i=0 iρ(1 − ρ)n−i = n − (1 −

ρ)/ρ− (1− ρ)n+1/ρ. Therefore, we have

E[X] = E[E[X |N = n]] =
∑

n

E[X |N = n]Pr[N = n]

=
∑

n

(n− (1− ρ)/ρ− (1− ρ)n+1/ρ)Pr[N = n]

= E[N]− (1 − ρ)/ρ
∑

n

Pr[N = n]− 1

ρ

∑
n

(1− ρ)n+1Pr[N = n]

< E[N]− (1 − ρ)/ρ

Therefore, E[N] > E(X) + (1− ρ)/ρ which completes the proof. �
In fact, if N is known to be in the range (N0, +∞) where (1−ρ)N0+1 ≈ 0, Ps can
even conclude that E[N] ≈ E[X] + (1− ρ)/ρ. Next, we analyze how to estimate
E[X] from the known information.

Let εA be Ad’s risk threshold. Let Z be the total amount of duplication at-
tacks Ad feels safe to perform in order to evade the token-duplication detection.
Namely (1−ρ2)Z < εA. To maximize its deflation fraud, Ad attempts to minimize
Cf as much as possible. Since each user runs Feedback independently, Ad cannot
predict which user would return a receipt. We remark that for every transaction,
Ad’s cheating is prior to the user’s Feedback. Thus, Ad’s Z cheating is equivalent
to reduce the transaction count by Z, since Z tokens are duplicated. Thus, the
actual E[X] is only E[N]− Z − (1− ρ)/ρ.

As Ps knows ρ, it can estimate Z < z0 where (1 − ρ2)z0 ≈ εA. Then, it
estimates the expected N as Cf +z0 +(1−ρ)/ρ according to the above theorem.

If the difference between the calculated E[N] and Ĉ is much larger than a pre-
determined threshold, Ps suspects that Ad has deflation frauds.

A Hybrid Method to Detect Deflation Fraud in CPA Online Advertising 557

Detection using If . From the protocol execution, Ps observes that there exist
M − If users whose click counts are larger than If and none of them offers
feedback. Let d = M − If and let Ω denote this set of d users. According to Ad’s

report, there exist k = Ĉ − Cf transactions generated by Ω. Ps checks whether
Ad cheats by executing the following steps.

1. Ps computes ξ = Cf/If as the expected probability for one user making a
transaction following an advertisement click.

2. Let Pi denote the probability of the event that there are i users in Ω who
have run Transaction with Ad. Ps computes Pi =

(
d
i

)
ξi(1 − ξ)d−i.

3. Let a random variable A denote the number of feedbacks from Ω, and a ran-
dom variable B denote the number of transactions from Ω with no feedback
being sent to Ps. Let χ denote Pr[B > k|A = 0]. Essentially, χ is the condi-
tional probability that Ad has under-reported in the present circumstance.
Ps evaluates χ as

χ =

∑d
i=k+1 Pi(1− ρ)i∑d

i=0 Pi(1− ρ)i
=

∑d
i=k+1

(
d
i

)
ξi(1− ξ)d−i(1 − ρ)i

(1 − ξρ)d

If χ is larger than a positive threshold, e.g. 0.5, Ps suspects that Ad cheats.

020406080100120

k

0

0.2

0.4

0.6

0.8

1

Χ

ξ=0.1, ϱ=0.01
ξ=0.1, ϱ=0.05
ξ=0.03, ϱ=0.01
ξ=0.03, ϱ=0.05

Fig. 4. χ grows when k decreases, for d = 500, ξ = 0.1, 0.03, and ρ = 0.01, 0.05

In summary, Ps can detect deflation cheating according to Cf and If . With

a chosen ρ, the expected k = Ĉ − Cf is at least (1 − ρ)/ρ. If k is significantly
less than its expected value, Ps calculates χ. Figure 4 plots the relation between
k and χ for d = 500 and different ρ, ξ. It shows that if Ad under-reports Ĉ, a
smaller k will result in a larger χ. In the worst case, ρ = 0.01 and ξ = 0.03 where
the expected k is 99, Ad can hide about 80 transactions if the threshold for χ is
0.5. In the best case, ρ = 0.05 and ξ = 0.1 where the expected k is only 19, any
deflation will be detected since χ is almost 1 when k < 19.

558 X. Ding

Note that ξ is application specific. Ps can only tune ρ for the desired security
strength. Next, we show how to tune ρ by taking all factors into consideration.

Tuning Security and Cost. On the one hand, Ps prefers a larger ρ so that
more users return their receipts, and as a result, the chance of successful fraud
detection is higher; on the other hand, a larger ρ implies a higher financial cost
for more rewards. We show below how Ps strikes a balance between security
and cost by tuning ρ.3 Let τ denote the probability to successfully catch the
dishonest Ad by protocol execution, i.e. τ = 1− (1 − ρ2)z.

0 200 400 600 800 1000
Number of Frauds, z

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y o
f b

ein
g

ca
ug

ht
, τ

ρ=0.2
ρ=0.1
ρ=0.05
ρ= 0.02

(a) Exponential growth of τ with z using
different ρ.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

The probability to run Feedback, ρ

0

200

400

600

800

1000

M
ax

im
um

 n
um

be
r o

f f
ra

ud
s,

 z τ=0.3
τ=0.5
τ=0.7
τ=0.8

(b) Fraud deterrence with different ρ

Fig. 5. Balancing security and cost by tuning the redemption probability

Figure 5(a) depicts the exponential correlation between τ and the number of
frauds z, when different fixed ρ are chosen by Ps. As evident in the figure, a low ρ
results in a reasonably high probability in detecting a small amount of deflation
frauds. Note that in a large scale web advertising, the volume of transactions
is usually in thousands or even more. With around one tenth of all users run
Feedback, it is expected for our scheme to catch any fraud which accounts for
more than one percent of the total volume.

Suppose that Ad sets up a risk threshold τ and will not make frauds causing
a risk higher than τ . Figure 5(b) shows the maximum frauds Ad would have in
different risk profiles. The figure depicts the correlation between z and ρ with
respect to different constant risk profile τ . For instance, if 10% of the users
redeem their receipts, Ad can only cheat around 80 transactions to keep its risk
below 50%.

In summary, the anomaly detection has a weaker demand for ρ, than dupli-
cation detection does. Therefore, Ps can set ρ according to its own risk profile.
Generally, for applications with thousands of transactions, Ps only needs to set
ρ between 0.05 and 0.1, which provides sufficient security assurance.

3 The more rewards are offered by Ps, the higher ρ for user redemption. The exact
relation between ρ and financial cost is beyond the scope of this paper.

A Hybrid Method to Detect Deflation Fraud in CPA Online Advertising 559

6.3 Other Security Properties

Unforgeability and Non-repudiation. A malicious publisher Ps may collude
with corrupted users to forge Ad’s signatures so as to frame Ad. We show that
the Schnorr signature from Ad is still existentially unforgeable against chosen
message attacks. In other words, our scheme does not compromise the security
of the standard Schnorr signature scheme.

Theorem 3. With the discrete logarithm assumption in G and Gh, Ad’s Schnorr
signature in Transaction is secure against existential forgery attacks under the ran-
dom oracle model.

Proof. (sketch) Let A be the algorithm forging Ad’s Schnorr signature. A is
allowed to access a signature oracle Os with a query m, and is allowed to query
a random oracle O. A’s goal is to forge a signature (γ∗, β∗) on a message m∗

which is not sent to Os. We show that if A succeeds in forging a signature,
we can construct an algorithm B which uses A to solve the discrete logarithm
problem in G.
B is given (g, y, p, q, q′) where p, q, q′ are large primes satisfying q = 2q′ + 1

and q|p−1, and g’s order in Z∗
p is q. B’s goal is to find x such that y = gx mod p.

It simulates O and Os and interacts with A. B sets Ad’s public key as y. Then
it randomly chooses h ∈ Zq, picks u ∈ Zq′ and computes v = hu mod q. B
initializes A with (y, v, g, h, p, q). The hash function H() is modeled as a random
oracle.

– When A queries Os with t, M , B’s simulation is done as follows:
1. Select γ, β ∈R Zq; Select α ∈R {0, 1}k;
2. Set O such that γ = H(t‖y‖g‖M‖gβyγ) and α = H(t‖Ad). Namely, O

stores (t‖y‖g‖M‖gβyγ , γ) and (t‖Ad, α) into its local table.
3. Select ψ, λ1, · · · , λl ∈R Zq′ ;

4. For i = 1, · · · , l, set wi = hλi and w′
i = gαλi

if ψ[i] = 0; otherwise set

wi = vλi and w′
i = (gβyγ)αλi

;
5. Set O such that ψ = H(v‖h‖gβyγ‖g‖t‖w1‖ · · · ‖wl‖w′

1‖ · · · ‖w′
l), and

store (v‖h‖gβyγ‖g‖t‖w1‖ · · · ‖wl‖w′
1‖ · · · ‖w′

l, ψ) in the local table and
then return (α, γ, β, λ1, · · · , λl) to A.

Note that A is not able to distinguish whether the tuples returned by B are
simulated results or from a real protocol execution, because all are from the
same uniform distribution. Note that gβyγ in our construction is random as
well, because α is an output from the random oracle.

– When A queries O with a query m, B searches its table. If there is an entry
(m, mh), it returns mh to A. If no such entry is found, B randomly picks
mh ∈R {0, 1}k, returns mh and stores (m, mh) into the table.

Finally, A halts and outputs a Schnorr signature (γ∗, β∗ = r∗ − xh∗). By the
Forking Lemma, A can produce another valid signature (γ∗

1 , β∗
1 = r∗−xh∗

1) with
a non-negligible probability by rewinding the random oracle. Therefore, B can
solve the discrete logarithm problem by computing x = (β∗

1 − β∗)/(h∗ − h∗
1). �

560 X. Ding

Theorem 3 shows that neither Ps nor users can forge Ad’s Schnorr signatures.
This has twofold implications. On the one hand, it provides security assurance
for Ad since its signatures are not be forged; on the other hand it implies that
Ad cannot repudiate its fraud, if it is caught with two Schnorr signatures using
the same hash token.

Privacy. If Ad uses hash tokens along the hash chain, a user knows the count
of transactions. In case the exposure of transaction count is undesirable for Ad,
the following minor revision on the protocol can be applied.

In Initialization, both Ad and Ps can agree on a pseudo-random permutation
function Fs keyed by a shared secret s. For C ∈ [1, n], Fs(C) maps C into another
random number in [1, n]. In Transaction, Ad picks a hash token based on Fs(C).
Without knowledge of s, U cannot infer the total amount of hash tokens used
by Ad. In Feedback, Ps recovers C using the hash token and F−1

s (C). Note that
the revelation of unused hash tokens poses no threat to either Ad or Ps.

6.4 Performance

The amount of information stored by Ad are only its secret keys (x, u), a trans-
action counter C and a hash chain seed T . Therefore, the storage cost is constant
with respect to the amount of transactions. In terms of computation cost, Ad
makes 3l + 1 modular exponentiations. Nonetheless, if Ad needs to reduce its
real-time response time, it can pre-compute all the modular exponentiations,
then only performs modular additions and hash computations to issue receipts.
In terms of communication cost, Ad has a constant communication cost with Ps
during Initialization and Report, and sends (l + 3) · |q| bits in Transaction, which
is nearly two kilobytes in a practical setting.

The main cost of Ps is its storage overhead for Λ, whose expected size is
asymptotically linear with ρN . The main cost for users is their computations for
signature verification in Transaction, which involve 3l + 1 modular exponentia-
tions. Therefore, our scheme may not be suitable for devices with constraints in
computation resource, such as mobile phones.

7 Conclusion

In conclusion, we propose a deflation fraud detection scheme for the CPA ad-
vertising model, taking a hybrid approach based on cryptography and proba-
bility techniques. For any z amount of deflation cheating in the advertiser Ad’s
transactions, the web publisher Ps can detect it with a success probability at
least 1 − (1 − ρ2)z. As a deterrence, Ps can extract Ad’s secret signature key.
Although in the long run Ad does not benefit from the deflation fraud by with-
holding transactions, Ps can still detect it if the amount is over a prescribed
threshold. Furthermore, Ps can estimate the expected transaction amount N as
Cf + (1− ρ)/ρ + z0 where z0 is estimated according to Ad’s risk profile.

The proposed scheme preserves the simplicity of the existing advertising model,
without introducing any third party. It is user-friendly in the sense that users are

A Hybrid Method to Detect Deflation Fraud in CPA Online Advertising 561

not required to possess any secrets. Ad’s communication, computation, storage
cost are all constant. In addition, Ps can tune its security parameter ρ to balance
the security and cost.

Acknowledgement

We thank Robert Deng, Jian Wen and Junzhuo Lai for the valuable discussions.
We thank anonymous reviewers for their constructive comments. This work is
supported by the Office of Research, Singapore Management University.

References

1. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and veriably en-crypted
signatures from bilinear maps. In: Proceedings of Advances in Cryptology - EU-
ROCRYPTO (2003)

2. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In:
Proceedings of Advances in Cryptology- ASIACRYPTO (2007)

3. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)

4. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

5. Chaum, D.: Secret-ballot receipts: True voter-verifiable elections. In: IEEE Security
and Privacy (2004)

6. Chaum, D., Ryan, P.Y., Schneider, S.: A practical voter-verifiable election scheme.
In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.: The many faces of pub-
lish/subscribe. ACM Computing Surveys 35 (June 2003)

8. Franklin, M., Malkhi, D.: Auditable metering with lightweight security. Journal of
Computer Security 6(4) (1998)

9. Gandhi, M., Jakobsson, M., Ratkiewicz, J.: Badvertisements: Stealthy click-fraud
with unwitting accessories. Anti-Phishing and Online Fraud, Part I Journal of
Digital Forensic Practice 1 (November 2006)

10. Johnson, R., Staddon, J.: Deflation-secure web metering. International Journal of
Information and Computer Security 1 (2007)

11. Juels, A., Stamm, S., Jakobsson, M.: Combatting click fraud via premium clicks.
In: Proceedings of USENIX Security (2007)

12. Kuhn, M.: Probabilistic counting of large digital signature collections. In: USENIX
Security Symposium (2000)

13. Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: A scalable solution
to electronic cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197.
Springer, Heidelberg (1998)

14. Majumdar, S., Kulkarni, D., Ravishankar, C.: Addressing broker violations of count
integrity in publish-subscribe systems. In: Proceedings of ACM Infocom (2007)

15. Masucci, B., Stinson, D.: Efficient metering schemes with pricing. IEEE Transac-
tions on Information Theory 47(7) (2001)

562 X. Ding

16. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006)

17. Naor, M., Pinkas, B.: Secure and efficient metering. In: Nyberg, K. (ed.) EURO-
CRYPT 1998. LNCS, vol. 1403, pp. 576–590. Springer, Heidelberg (1998)

18. Ogata, W., Kurosawa, K.: Provably secure metering scheme. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, p. 388. Springer, Heidelberg (2000)

19. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

20. Zhang, L., Guan, Y.: Detecting click fraud in pay-per-click stream of online adver-
tising network. In: Proceedings of ICDCS (2008)

Appendix A

Theorem 4. Suppose that each user has a probability ρ to redeem a receipt. Let
Pk denote Ad’s escape probability of cheating k times by reusing k distinct hash
tokens. Let P ′

k denote Ad’s maximum escape probability of cheating k times by
reusing k′ distinct hash tokens, 0 < k′ < k. Therefore, if ρ < 1/3, then for all
k > 1, Pk > P ′

k.

Proof. We prove the theorem by using induction on k.
(i) k = 2. It is straightforward to see that P2 = (1− ρ2)2. In addition, we have
k′ = 1. In other words, Ad uses a hash token for three times, two out of which are
considered as cheating. Therefore, Ad’s fraud can be detected when any two of the
three corresponding users redeem their receipts. Thus, P ′

2 = (1−ρ)3+3ρ(1−ρ)2.
So, P2 − P ′

2 = ρ2 − 3ρ3 = ρ2(1− 3ρ) > 0.
(ii) k > 2. (Induction hypothesis) Suppose that Pk > P ′

k for some k. We prove
that Pk+1 > P ′

k+1. Clearly, we have Pk+1 = (1 − ρ2)k+1. Let U denote any
user among the k + 1 cheating victims and t denote the hash token in the
signature U receives. Suppose that there are c cheats whereby the token t is
used. Therefore, Ad can escape detection when these c cheats are not detected
and the remaining k + 1 − c cheats are not detected either. Hence, If c = 1,
P ′

k+1 = P ′
kP1 < PkP1 = Pk+1, due to the induction hypothesis. Otherwise,

P ′
k+1 ≤ P ′

k+1−cP
′
c < Pk+1−cPc = Pk+1. Thereby, P ′

k+1 < Pk+1 which completes
the proof. �

Author Index

Armknecht, Frederik 493
Asghar, Hassan Jameel 349

Bauer, Aurélie 1
Biryukov, Alex 139
Blazy, Olivier 218
Boyen, Xavier 35
Bringer, Julien 291
Brzuska, Christina 87
Busch, Heike 87

Cao, Zhenfu 19
Carbunar, Bogdan 456
Chabanne, Hervé 291
Chang, Ee-Chien 367
Collard, Baudoin 123
Coron, Jean-Sébastien 1

Dagdelen, Oezguer 87
Deng, Robert H. 475
den Hartog, Jerry 168
Ding, Xuhua 545

Fang, Chengfang 367
Fischlin, Marc 87
Franklin, Matthew 236
Franz, Martin 87
Fuchsbauer, Georg 218

Genelle, Laurie 200
Gennaro, Rosario 309

Hasan, M. Anwar 154

Icart, Thomas 291
Izabachène, Malika 218

Jakobsen, Thomas P. 255
Jambert, Amandine 218

Kartaltepe, Erhan J. 511
Katzenbeisser, Stefan 87
Kiayias, Aggelos 273
Krawczyk, Hugo 309

Lai, Junzuo 475
Lee, Pil Joong 53
Liang, Xiaohui 19
Li, Chao 105
Lin, Huang 19
Li, Ping 105
Lipmaa, Helger 438
Li, Qiming 367
Li, Yingjiu 475
Lu, Jiqiang 168

Makkes, Marc X. 255
Manulis, Mark 87, 402, 420
Mashatan, Atefeh 384
Méloni, Nicolas 154
Mohassel, Payman 236
Morales, Jose Andre 511

Naccache, David 1
Négre, Christophe 154
Nielsen, Janus Dam 255

Onete, Cristina 87

Pan, Jing 168
Pehlivanoglu, Serdar 273
Peter, Andreas 87
Pieprzyk, Josef 349
Pinkas, Benny 420
Poettering, Bertram 87, 402, 420
Priemuth-Schmid, Deike 139
Prouff, Emmanuel 200

Quisquater, Michaël 200

Rabin, Tal 309
Rückert, Markus 69

Sadeghi, Ahmad-Reza 493
Sandhu, Ravi 511
Schneider, Michael 69
Schröder, Dominique 69, 87
Seo, Jae Woo 53
Sibert, Hervé 218
Sion, Radu 456

564 Author Index

Standaert, François-Xavier 186
Standaert, Francois-Xavier 123
Sun, Bing 105

Tibouchi, Mehdi 1
Tsudik, Gene 402

Vaudenay, Serge 384
Vergnaud, Damien 1, 218
Veyrat-Charvillon, Nicolas 186
Visconti, Ivan 493

Wachsmann, Christian 493
Wang, Huaxiong 349
Waters, Brent 35

Wei, Yuechuan 105

Xing, Dongsheng 19
Xu, Heng 529
Xu, Shouhuai 511
Xu, Wei 529

Yao, Andrew C. 329
Yum, Dae Hyun 53

Zhang, Bin 139
Zhang, Bingsheng 438
Zhao, Yunlei 329
Zhou, Muxin 19
Zhu, Haojin 19
Zhu, Sencun 529

	Title
	Preface
	Organisation
	Table of Contents
	Public Key Encryption
	On the Broadcast and Validity-Checking Security of pkcs#1 v1.5 Encryption
	Introduction
	pkcs#1 v1.5 Encryption
	The pkcs#1 v1.5 Encoding Function
	Previous Attacks on pkcs#1 v1.5

	Onpkcs#1 v1.5’s OW-CPA-Security
	pkcs#1 v1.5 Malleability and Indistinguishability
	On pkcs#1 v1.5’s NM-CPA Security
	On pkcs#1 v1.5’s IND-VCA Security

	Broadcast Attacks on pkcs#1 v1.5
	The Multivariate Polynomial of Broadcast pkcs#1 v1.5

	Conclusion
	References
	Preliminaries
	Public-Key Encryption
	Security Definitions

	Finding Small Modular Roots of a Multivariate Polynomial
	Coppersmith’s Technique
	Lattice Construction

	Broadcast Attack Experimental Results
	Partial Information
	Practical Implementations

	How to Construct Interval Encryption from Binary Tree Encryption
	Introduction
	RelatedWork
	Our Contribution
	Organization

	Preliminaries
	Assumptions
	Security Definitions

	Binary Tree Encryption and a Different View on Forward Secure Encryption
	Notation
	Primitive Idea: A Generic Transformation from BTE to Interval Encryption
	Trivial Constructions
	Generic Transformation from BTE to Interval Encryption

	Basic Construction: A Concrete Instantiation Based on BBG HIBE
	Discussion on Efficiency and Security

	Inclusive Extended Interval Encryption
	Adaptively Secure Interval Encryption
	Extensions and Future Work
	Range Attribute Based Encryption
	Interval Encryption under Simpler Assumption
	Encryption under a Graph
	FutureWork and Open Problems

	References

	Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions
	Introduction
	Related Work

	Preliminaries
	Simplified Definition of Lossy TDFs

	Compact LTDFs from DBDH in the CRS Model
	Intuition
	Construction
	Security

	Compact LTDFs from DBDH in the Standard Model
	Intuition
	Construction
	Security

	Conclusion
	References

	Digital Signature
	Trapdoor Sanitizable Signatures Made Easy
	Introduction
	Preliminaries
	Trapdoor Sanitizable Signatures
	Definition
	Security Model

	Generic Construction from Ordinary Signatures
	References

	Generic Constructions for Verifiably Encrypted Signatures without Random Oracles or NIZKs
	Introduction
	Verifiably Encrypted Signatures
	Security Model
	Discussion

	Generic Construction
	Building Blocks
	Generic Construction
	Generic Construction Using One-Time Signatures
	Proof of Security

	Efficient Instantiations
	An Instantiation Based on Worst-Case Lattice Problems in Ideal Lattices (Construction 2)

	Conclusions
	References

	Redactable Signatures for Tree-Structured Data: Definitions and Constructions
	Introduction
	Preliminaries
	Structural Signatures for Trees
	Security of Structural Signature
	Unforgeability
	Hiding Properties
	Relationships of the Security Requirements

	Constructing Secure Structural Signatures
	Construction
	Proof of Security
	Dynamic Update of Signed Trees

	References
	Randomized Traversal Numbers
	Proof of Lemma

	Block Ciphers and Hash Functions
	Impossible Differential Cryptanalysis on FeistelCiphers with SP and SPS Round Functions
	Introduction
	Preliminaries
	Feistel Structure
	χ-Function

	Analysis of Round-Reduced Feistel Cipher with SP Structure
	Analysis of 6-Round Feistel Cipher with SP Structure
	Analysis of 7-Round Feistel Cipher with SP Structure
	Analysis of 8-Round Feistel Cipher with SP Structure

	Analysis of 6-Round Feistel Cipher with SPS Structure
	Conclusion
	References
	Appendix
	Brief Description of Camellia
	Brief Description of SNAKE(2)
	Brief Description of E2

	Multi-trail Statistical Saturation Attacks
	Introduction
	The Statistical Saturation Attack
	Principle of the Attack
	Extensions of the Attack

	Evaluating the Trail Distributions with Markov Chains
	Transition Matrix for an S-Box
	Transition Matrix for the Permutation Layer
	Transition Matrix for the Subkey Addition
	Composition of Transition Matrices
	Practical Example

	Heuristic Branch-and-Bound for Trail Search
	Description of the Algorithm
	Results
	Experimental Validation of the Estimated Data Complexity

	Multiple Trails
	(ext. 4) Multiple Trails Cryptanalysis
	Consequence for the Security of PRESENT-128

	Statistical Hull Effect
	Conclusion and Further Works
	References

	Multiset Collision Attacks on Reduced-Round SNOW 3G and SNOW 3G$^{\oplus}$
	Introduction
	Description of SNOW 3G and SNOW 3G$^{\oplus}$
	Chosen IV Attacks on Reduced Round SNOW 3G and SNOW 3G$^{\oplus}$
	Distinguishing Attack on 13-Round SNOW 3G
	Distinguishing Attack on 14-Round SNOW 3G$^{\oplus}$
	Key Recovery Attack on 14-Round SNOW 3G$^{\oplus}$
	Key Recovery Attack on 15-Round SNOW 3G$^{\oplus}$
	Key Recovery Attack on 18-Round SNOW 3G$^{\oplus}$

	Conclusions
	References
	Multiset Difference Propagation Table

	High Performance GHASH Function for Long Messages
	Introduction
	GHASH Authentication Function
	Authentication Function
	Underlying Computations

	Computing GHASH Using a Characteristic Polynomial
	Using χ_H
	Delay Reduction with Multiple PRUs

	Computation of the Characteristic Polynomial over $\mathbb{F}_{2^{128}}$
	Conclusions
	References

	Side-Channel Attacks
	Principles on the Security of AES against First and Second-Order Differential Power Analysis
	Introduction
	Preliminaries
	Notation
	The AES Block Cipher

	Principles on First and Second-Order DPA of AES
	Principles for Unprotected AES Implementations
	Principles for Protected AES Implementations

	Principle Details
	Explaining Principles (i) and (ii)
	Explaining Principles (iii) and (iv)
	Explaining Principle (v)

	Experimental Results
	Practical Attacks on Herbst et al.’s Implementation
	Practical Attacks on Tillich et al.’s Implementation

	Comparison with Related Work
	Principles on the Protection of AES against First and Second-Order DPA
	Conclusions
	References

	Adaptive Chosen-Message Side-Channel Attacks
	Introduction
	Terminology and Notations
	Adaptive Template Attacks
	Template Attacks
	Adaptive Selection of the Plaintexts
	Generalization to Non-profiled Attacks

	SimulatedExperiments
	Experiments Using Actual Measurements
	Discussion and Concluding Remarks
	References

	Secure Multiplicative Masking of Power Functions
	Introduction
	Related Work
	Our Results
	Paper Organization

	Theoretical Framework for Security Analysis
	Core Idea of Our Proposal
	Algorithmic of Our Proposal
	From Additive Masking (AM) to Multiplicative Masking (MM)
	Multiplicative Masking of Power Functions
	From Multiplicative to Additive Masking
	Optimization

	Application to the AES
	Conclusion
	References
	Appendix
	Proof of Proposition
	Proof of Proposition

	Zero Knowledge and Multi-party Protocols
	Batch Groth–Sahai
	Introduction
	Preliminaries
	Bilinear Groups
	Notation

	Groth-Sahai Proof Systems
	Batch Verification of Pairing Equations
	Instantiation 2: SXDH
	Pairing-Product Equation
	Multi-scalar Multiplication Equation in \G_1
	Quadratic Equation

	Instantiation 3: DLIN
	Pairing-Product Equation

	Application 1: Groth’s Group Signatures
	Description
	Batching Linear Pairing-Product Equations
	Batching the Equations for One Group Signature
	Batching Several Group Signatures

	Application 2: P-Signatures
	Description
	SXDH Instantiation
	DLIN Instantiation

	Conclusion
	References

	Efficient and Secure Evaluation of Multivariate Polynomials and Applications
	Introduction
	Our Results
	Related Work

	Preliminaries
	On Using Homomorphic Encryption Schemes
	Using the Goldwasser-Micali Encryption
	Using the Paillier’s Encryption Scheme
	Homomorphic Encryption Schemes That do Not Work

	Secure Evaluation of Degree 3 Multivariate Polynomials
	A Protocol against Semi-honest Adversaries
	Defending against Malicious Adversaries

	Better Amortized Efficiency
	Applications
	Secure Linear Algebra

	References

	Efficient Implementation of the Orlandi Protocol
	Introduction
	The Orlandi Protocol
	Implementation of the Orlandi Protocol
	Benchmarks
	Benchmark Results
	Performance Comparison

	High-Performance Paillier
	Description of the Paillier Schemes
	Paillier Performance Evaluation
	Results

	Related Work
	Conclusion and Future Work
	References

	Improving the Round Complexity of Traitor Tracing Schemes
	Introduction
	Multiuser Encryption Schemes
	Linear Length Multiuser Encryption Scheme

	Tracing Game: Definitions
	Traceability in Multiuser Encryption Schemes
	Formal Analysis of Linear Tracing Strategy
	Our New Tracing Technique Based on Fingerprinting Codes

	References

	Key Management
	Password Based Key Exchange Protocols on Elliptic Curves Which Conceal the Public Parameters
	Introduction
	Related Works
	Our Contribution

	Definitions
	Admissible Encoding and Admissible Representation
	BPR Security Model
	Classical Assumption

	A New Family of Complexity Assumptions
	Hard Problems Around the Discrete Logarithm of the Points Pi

	The EC-DH-EKE Protocol with an Admissible Encoding
	Parameters
	EC-DH-EKE

	Our Proposal of Password Based EC-DH Key Exchange without Encryption
	Parameters
	The EC-DH-ARKE Protocol
	Security Result
	Security Proof

	Conclusion and Further Works
	References

	Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman with Minimal Overhead
	Introduction
	Preliminaries
	The Modified Okamoto-Tanaka Protocol
	Proof of the {\sf mOT} Protocol

	Proof of the PFS Property of the {\sf mOT} Protocol
	References

	Deniable Internet Key Exchange
	Introduction
	Our Contributions

	Preliminaries
	DIKE Implementation and Advantageous Features
	Some Advantageous Features of DIKE

	Security Formulation and Analysis
	Formulating (Privacy-Preserving) TBRNM for DHKE Protocols
	KEA Assumption Revisited, and the CKEA Assumption
	Simulation with Restricted RO
	Security Results and Overview
	Discussions on the Resistance against Some Concrete Attacks

	Protocol Variants and Implications
	References

	Authentication and Identification
	A New Human Identification Protocol and Coppersmith’s Baby-Step Giant-Step Algorithm
	Introduction
	Related Work
	Preliminaries: Definitions and Threat Model
	Security Definitions

	Proposed Protocol
	User Friendly Implementations
	Different Ways of Computation

	Security Analysis
	Some Obvious Attacks
	Algebraic Interpretation
	Time-Memory Tradeoff
	Comparative Time Complexities
	Significance of the Jump Constant a

	Usability
	Suggested Parameters

	Conclusion
	References

	Secure Sketch for Multiple Secrets
	Introduction
	Related Work
	Formulations and Background
	Min-Entropy and Entropy Loss
	Secure Sketches and Fuzzy Extractors

	Secure Sketch for Two Secrets
	A Cascaded Mixing Approach

	Analysis
	Security of the Cascaded Mixing Approach

	Examples of Improper Mixing
	Randomness Invested in Sketch
	Redundancy in Sketch

	Further Discussions
	The Case of Two Fuzzy Secrets
	Cascaded Structure for Multiple Secrets
	Guidelines for Applying Mixing Functions on Two Secrets

	Conclusions
	References
	Appendix

	A Message Recognition Protocol Based on Standard Assumptions
	Introduction
	Literature Review
	Our Contribution

	Our Security Assumptions and Pseudorandom Functions
	Pseudorandom Functions Satisfy i-PR
	Pseudorandom Functions Satisfyi-SPR
	Existential Unforgeable MACs Are i-EU
	Separation between PR and i-PR

	A Message Recognition Protocol Based on Pseudorandom Functions
	Security Result
	Discussion

	Conclusion
	References
	Proof of Theorem

	Privacy and Anonymity
	Affiliation-Hiding Key Exchange with Untrusted Group Authorities
	Introduction
	Untrusted GA Model for Linkable AH-AKE Protocols
	Linkable Affiliation-Hiding Key Exchange Syntax
	Security Model and Extended Goals

	LAH-AKE Protocol Secure against Malicious GAs
	Number-Theoretic Assumptions and Building Blocks
	New LAH-AKE Scheme

	Security and Efficiency
	Conclusion
	References
	AbouttheConstructionof $\nizk{n}{g}$

	Privacy-Preserving Group Discovery with Linear Complexity
	Introduction
	Related Work
	Contribution and Organization

	The Group Discovery Problem and Potential Solutions
	Relationship to (Authorized) Private Set Intersection
	Possible Solutions

	Index-Hiding Message Encoding
	Affiliation-Hiding Key Exchange with Group Discovery
	Syntax of LAH-AKE with Implicit Group Discovery
	Number-Theoretic Assumptions and Building Blocks
	The Protocol Specification
	Protocol Correctness, Efficiency Analysis, and Optimizations

	Security Model for LAH-AKE with Group Discovery
	Adversary Model
	Linkable Affiliation-Hiding Security
	Authenticated Key Exchange Security

	Security Analysis of Our Protocol
	Conclusion
	References

	Two New Efficient PIR-Writing Protocols
	Introduction
	Preliminaries
	PrivateBDD Protocol
	Fully-Homomorphic Cryptosystem
	PIR-Writing

	New PrivateBDD-Based PIR-Writing Protocol
	Write-Optimized PrivateBDD-Based PIR-Writing Protocol

	New FH-Based PIR-Writing Protocol
	References

	Regulatory Compliant Oblivious RAM
	Introduction
	Related Work
	Oblivious RAM
	Oblivious Transfer with Access Control

	Model and Preliminaries
	Deployment and Threat Model
	Cryptography

	Solution Overview
	Solution
	Accessing E-ORAM
	Generating Labels
	Writing on the Server
	Reading from the Server
	Shuffling the W-ORAM
	Element Expiration
	Audit

	Conclusions
	References

	RFID Security and Privacy
	Revisiting Unpredictability-Based RFID Privacy Models
	Introduction
	Related Work
	Our Contributions
	Organization

	Preliminaries
	Pseudorandom Functions
	An RFID System Model
	Adversaries
	The ind-Privacy and unp-Privacy Models

	The unp'-Privacy Model, Revisited
	The Model
	A Counterexample

	Our Model and Results
	The unp^{*}-Privacy Model
	Relationship with ind-Privacy Model
	A Protocol with $unp^{*}-Privacy

	Conclusions
	References

	On RFID Privacy with Mutual Authentication and Tag Corruption
	Introduction
	RFID System and Requirement Analysis
	Notation
	ThePV-Model
	System Model
	Trust and Adversary Model
	Security Definition
	Privacy Definition

	Corruption with Temporary State Disclosure
	Illustrative Example
	Impossibility of Narrow-Forward-Privacy

	Corruption without Temporary State Disclosure
	Privacy under Corruption without Temporary State Disclosure
	Impossibility of Narrow-Strong Privacy

	Conclusion
	References

	Internet Security
	Social Network-Based Botnet Command-and-Control: Emerging Threats and Countermeasures
	Introduction
	Related Work
	Characterizing Current Social Network-Based Botnet
	Envisioning Future Social Network-Based Botnet
	Server-Side Countermeasures
	The Detection Mechanism
	Prototype Implementation and Its Effectiveness and Limitations
	Performance

	Client-Side Countermeasures
	The Detection Mechanism
	Effectiveness and Limitations
	Performance Analysis

	Integrating Server- and Client-Side Countermeasures
	Conclusion and Future Work
	References

	COP: A Step toward Children Online Privacy
	Introduction
	Background
	RelatedWork
	Contributions

	Design and Implementation of COP
	Privacy Preference
	Privacy Preserving Data Perturbation
	Parsing User Input
	Transparency to Children
	Verifiable Parental Consent
	Browser Extension Implementation

	Evaluation
	Attacks from MaliciousWebsites
	Covert Information Access
	Embedded Code

	Discussion
	Conclusion
	References

	A Hybrid Method to Detect Deflation Fraud in Cost-Per-Action Online Advertising
	Introduction
	Related Work
	Building Block and Notations
	Problem Formulation
	System Overview
	Assumptions, Adversary Model and Security Notions

	The Scheme
	Initialization
	Advertising
	Transaction
	Feedback
	Report

	Analysis
	Token Duplication Detection
	Anomaly Detection
	Other Security Properties
	Performance

	Conclusion
	References
	Appendix A

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

