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7.1	 �Introduction

A model is a representation of objects and pro-
cesses that, when analysed, may reveal their 
properties and behaviour (Dym and Ivey 1980). 
A familiar example in medical research is the 
animal model. For an animal of sufficient like-
ness to human anatomy (objects), physiology and 
pathological response (processes), the outcomes 
of experiment may be extrapolated to human 
medicine. The model may refer to the animal 
itself, especially if purpose bred, or its combi-
nation with the treatment protocol to reproduce 
the desired pathology. For example, animal 
models of human posttraumatic syringomyelia 
have been developed using injections of kaolin 
and quisqualic acid in rats (Stoodley et al. 1999; 
Brodbelt et al. 2003a). Likewise, physiological or 
pathophysiological processes acting on normal or 
abnormal anatomy may be expressed in terms of 
force and mass balances, according to the laws of 
mechanics, which are most naturally formulated 
as mathematical equations. By careful manipu-
lation of these equations, using well-established 
rules, one may construct a mathematical model—
a theoretical representation of a physical system.

Neurosurgeons regularly make judgments 
involving the mechanical properties of the spinal 
cord and brain, as part of routine diagnosis and 
treatment. For example, when examining com-
puted tomography (CT) and static magnetic 
resonance (MR) images of a Chiari malforma-
tion, clinicians will make some estimate of the 
pressure acting upon and the deformation of the 
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hindbrain. The opening pressure of the cerebro-
spinal fluid (CSF) is taken during lumbar punc-
ture using a column manometer. The protein 
concentration of the CSF subsequently collected 
gives an indication of viscosity. During a spinal 
procedure, the surgeon may gently palpate the 
exposed spinal cord, in order to determine the 
degree of scar tissue build-up or the size and 
location of syrinxes or tumours and may thereby 
be making an estimate of compliance. Dynamic 
MR imaging is used to identify CSF flow obstruc-
tions, which are areas of high resistance, and the 
pulse-wave speed of the cerebrospinal fluid can 
also be appreciated from this imaging modality.

The uncertain surgical prognosis for syringo-
myelia and the difficulties of carrying out experi-
mental work make mathematical modelling of 
the mechanics of this condition very attractive 
for research. Such models do, however, rely upon 
accurate measurement of mechanical properties 
of the cerebrospinal system, but these are diffi-
cult to obtain due to both the delicate nature of 
neurological tissues and their inaccessibility in 
situ. The risks to the patient of making such mea-
surements may also outweigh any benefit gained. 
Further, the more realistically one attempts to 
represent the cerebrospinal fluid system, the 
more complex the mathematics become. For all 
these reasons, mathematical models of syringo-
myelia have been slow to evolve. Nonetheless, 
useful insights are now being made, with models 
that are consistent with the pathology and adhere 
to the laws of mechanics (Elliott et al. 2013).

7.2	 �Background

7.2.1	 �The Laws of Mechanics

In our everyday lives, we observe and experience 
certain physical phenomena that occur in a pre-
dictable way. For example, if a car breaks down 
and needs to be pushed, it requires a lot of effort 
to get going, but this becomes easier once the car 
is moving. While driving, applying the brakes in 
an emergency will cause the passengers to be 
thrown forwards against their seatbelts. The 
harder a golf ball is struck, the more rapidly it 

will gain speed. When standing on solid ground, 
we feel our own weight through the soles of our 
feet. These events all involve force, motion and 
strength of materials—‘mechanics’ as termed by 
Galileo (Fung 1993)—and may be described by 
the laws of mechanics, a subset of the so-called 
physical laws of nature. In 1687, Sir Isaac 
Newton, the English mathematician, physicist 
and astronomer,1  published his monograph 
Philosophiæ Naturalis Principia Mathematica, 
in which he stated three laws of motion:
	1.	 In the absence of any external forces, an object 

that is still will remain still, and an object that 
is in motion will continue with constant speed 
in a fixed direction. An object is thus said to 
possess inertia (Latin ‘iners’: idle), a tendency 
to resist any change in its state of rest or 
motion. A measure of an object’s inertia is its 
mass, i.e. how much ‘stuff’ the object is made 
of, which is equal to its density times its vol-
ume. The above example of a car braking can 
be explained by the inertia of the car and its 
occupants, respectively.

	2.	 Force is equal to mass multiplied by accelera-
tion, where the resulting acceleration is in the 
same direction as the applied force. So, a golf 
ball correctly driven down the fairway will 
reach great speed, whereas it will move much 
slower when gently putted on the green, even 
ignoring the friction of the air and grass.

	3.	 For every action, there is an equal and oppo-
site reaction. A person’s weight is the force 
produced by their mass being subjected to the 
acceleration of gravity towards the centre of 
earth. Opposing this is a force exerted by the 
earth of equal size but directed back into the 
person’s feet.
When objects change shape as a result of 

applied forces—a good example being flowing 
liquids—we also need to consider the law of con-
servation of mass. This states that the total 
amount of matter in an isolated system will 
remain constant over time. Similarly, when tem-
perature changes become appreciable, the law of 
conservation of energy2 is called into play; e.g. 

1 Also natural philosopher, alchemist and theologian.
2 A generalisation of the laws of thermodynamics.
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freshly poured coffee warms the cup (and cools 
the coffee) due to the transfer of thermal energy.

Conservation appears to be a principle that all 
laws of nature follow. Newton’s laws of motion 
may be reformulated in terms of momentum, i.e. 
mass multiplied by velocity, which, it turns out, 
is also conserved. When working with conserva-
tion laws, one is essentially keeping a running 
tally of the various quantities to make sure the 
budgets balance.

When considering the everyday functioning 
of the human body, the above laws generally suf-
fice. When working on the very large scales of 
the cosmos or the very small scales of atoms, 
additional phenomena become important. These 
are described by laws of gravitation (Newton, 
Einstein) and quantum electrodynamics 
(Feynman), respectively. Laws, however, are 
simply generalisations of physical behaviour, 
based on empirical observations. What is so spe-
cial about them, to earn the title ‘law’, is their 
simplicity, universal nature and lasting truth, 
despite being falsifiable3 through the possibility 
of contradictory observations. Newton once said 
“I have told you how it moves, not why” 
(Feynman 1965). Laws describe what happens, 
but theories seek an explanation.

7.2.2	 �Fundamentals 
of Biomechanics

Living creatures populate the physical world and 
are thus subject to the same mechanical laws 
as inanimate objects. Biomechanics is a rela-
tively modern term applied to a long-established 
practice, the application of mechanics to biology.4  
In fact, medicine and mechanics evolved sym-
biotically out of the joint efforts of physical and 

3 For its relevance as a demarcation criterion between sci-
ence and pseudoscience, a hotly debated topic, see, for 
example, Popper (1998).
4 At the cellular level is the emerging subdiscipline of 
mechanobiology, which is attempting to uncover the 
molecular mechanism by which cells sense and respond to 
mechanical signals. For a recent overview of this topic, 
specific to the nervous system, see Bilston and Stucky 
(2011).

biological scientists, and it was once not uncom-
mon to be educated and active in both disciplines 
(Fung 1993; Ethier and Simmons 2007). We con-
sider two notable examples:
	1.	 Thomas Young (1773–1829) was a London 

physician with a doctorate in physics (Fung 
1993). Amongst his numerous contributions 
was his characterisation of the elastic nature 
of solid materials, which followed his studies 
of the human voice. When a force pushes on 
an object, it will exert a pressure on its surface 
(pressure equals force divided by area) that 
will be transmitted as stress (σ) and cause the 
object to become compressed. Likewise, if the 
force pulls on the surface, the stress causes the 
object to stretch, producing a state of tension. 
The ratio of the stress to the fractional change 
in length, or strain (ε), is termed Young’s 
modulus of elasticity (E) and is a fundamental 
property of the material, i.e.

	 E = s e/ . 	 (7.1)

Hard vertebrae have a much larger Young’s 
modulus than the soft dura mater, as a greater 
stress (about 100 times) is required to produce 
the same strain. The concept of elasticity is at 
the foundation of solid mechanics.

	2.	 The Frenchman Jean Louis Marie Poiseuille 
(1797–1869) was an experimental physiolo-
gist with formal training in mathematics and 
physics (Sutera and Skalak 1993). He was first 
interested in ‘the force of the aortic heart’ and 
so invented the U-tube mercury manometer to 
measure arterial blood pressure in horses and 
dogs. Continuing his study of haemodynam-
ics, Poiseuille next turned his attention to the 
microcirculation. On observing frog mesen-
teric blood vessels, he noted that red cells 
would stream in the centre of the vessels, 
whereas white blood cells tended to stick to 
the vessel walls. To understand the nature of 
these flow patterns, he subsequently con-
ducted an extensive series of experiments in 
small-diameter glass tubes. Fluid flows from 
high to low pressure, and Poiseuille estab-
lished the relationship between the fall in driv-
ing pressure along the tube (Δp), the length 
(L) and diameter (D) of the tube and the 
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subsequent volumetric flow rate (Q). The fluid 
property connecting these four quantities is 
the viscosity (μ), and their relation is known 
as Poiseuille’s law:

	
Q D L p= ( )p m4 128/ .D

	
(7.2)

Thus, for a given pressure drop, there will be a 
greater volumetric flow rate through vessels hav-
ing a larger diameter or a lower viscosity. Such 
differences come into play when we compare the 
calibres of subarachnoid and perivascular spaces 
and the viscosities of CSF and blood. Mathematics 
also gives us the converse relation, in that a 
greater drop in pressure will result from a larger 
flow rate.

7.2.3	 �Constructing a Mathematical 
Model

What mathematics is and its utility are widely 
misunderstood (Stewart 2011). Mathematics 
(Greek ‘máthēma’, to learn) is a branch of sci-
ence that deals with concepts of quantity, space, 
structure and change. It is often referred to as the 
‘language of nature’ for its ability to communi-
cate the ideas of physical phenomena. 
Mathematics has symbols and a grammar for 
arranging them, but over and above a traditional 
language, it also includes a system of reasoning. 
We can explain equations in words but seldom 
the connection between them; herein lies the 
power of mathematics (Feynman 1965).

The first step in constructing a mathematical 
model is to decide upon the level of detail. It is 
not feasible to include every physical feature that 
influences the phenomenon being studied. Nor, in 
fact, is this desirable as doing so would only 
reproduce the complexity inside the ‘black box’ 
that we did not understand in the first place. The 
aim, therefore, is to retain the features with the 
greatest influence and omit the rest. Every math-
ematical model is thus a deliberate idealisation of 
the phenomenon being studied. Choosing what to 
include is a process of trial and error, guided by 
the intuition of experience and the comparison of 
predictions with empirical data (Barenblatt 

2003). There is no one ‘correct’ model of a given 
system and what to include depends on the ques-
tion being asked. A useful starting point is to 
eliminate quantities that are relatively ‘small’. 
For example, the vertebrae are very hard and stiff 
compared to the meninges and spinal cord, so 
their shape is much less affected by typical 
subarachnoid fluid pressures; in mathematical 
notation, εbone will have a much smaller value 
than εsoft tissue. Thus, it may be reasonable to omit 
the elasticity of the vertebrae when, say, studying 
the effects of cough-based pressure pulses in the 
spinal canal. In contrast, if one were interested in 
spinal trauma, then the much higher forces 
involved would demand the bone be treated as an 
elastic material. By convention, mathematicians 
and engineers would tend to say “we assume the 
vertebrae are rigid”, rather than “we omit the 
elasticity of the vertebrae”; these statements 
mean the same thing, and what is being assumed 
is that omitting these features from the model so 
will not significantly change the outcome of sub-
sequent calculations and predictions.

Once all of the simplifying assumptions have 
been made, one can write down a set of equations 
that govern the system. This is the essence of the 
mathematical model. The next task is to solve the 
equations, for which there are two choices: (1) 
solve them by hand using pen and paper or (2) 
solve them on a computer. The former is called 
an analytical solution and yields great insight 
into the underlying phenomenon by obtaining a 
relation describing it explicitly, e.g. Eq. (7.2). 
While this approach is preferable, it is usually 
only possible for the very simplest equations, so 
instead one often employs computer programs to 
obtain a numerical solution. Computers are digi-
tal so they can only store information as a set of 
discrete samples. As a result, solving an equation 
on a computer may introduce error due to the 
continuums of time and space being approxi-
mated as a finite number of values. The finer the 
partitioning, the smaller the error will be but also 
the more demanding it becomes to compute. 
Thus, compromise must be made.

To demonstrate that a mathematical model 
makes reliable predictions, it should be validated 
against empirical data. For example, Eq. (7.2) was 
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derived mathematically from the laws of mechan-
ics by Eduard Hagenbach (1860), and it matched 
the relationship that Poiseuille obtained from his 
glass-tube experiments (Sutera and Skalak 1993). 
Unfortunately, it is often the case with problems 
in biomechanics that a controlled experiment, 
equivalent to that of Poiseuille, is not possible. 
Instead, in these situations, one deconstructs the 
model into sufficiently general components, such 
as water flow through a pipe that can be validated 
separately. Solutions that are obtained via com-
puter also need to be verified to ensure that no 
mistakes were made in the software; simpler ver-
sions of the equations can be computed and com-
pared to well-known analytical solutions, such as 
the speed of pressure waves in a fluid-filled elastic 
tube (e.g. Cirovic and Kim 2012). Thus, valida-
tion ensures that the correct equations are being 
solved, while verification ensures that the equa-
tions are being solved correctly.

7.2.4	 �Modelling Predictions

The real usefulness of a mathematical model lies 
in its predictive capabilities. Once validated, a 
mathematical model can be used to determine 
what happens in hypothetical situations and, most 
prominently, situations that are not amenable to 
physical observation and measurement. For 
example, in a model of posttraumatic syringomy-
elia, the efficacy of various shunt treatments have 
been evaluated (Elliott et  al. 2011). Crucially 
though, one must ensure that predictions are con-
sistent with the assumptions upon which the 
model is based (Dym and Ivey 1980). For biologi-
cal materials, the elasticity as defined in Eq. (7.1) 
is only applicable for small strains. This means 
that in a spinal canal model, one would likely 
have to choose small enough input pressures to 
ensure that this condition were not violated.

In clinical and animal studies, a sufficiently 
large cohort is required to make representative 
predictions. The empirical findings are analysed 
in terms of their statistical distribution (mean, 
standard deviation, confidence intervals, etc.) but 
may not be predicted precisely. In contrast, math-
ematical models based on Newton’s laws of 

mechanics are isolated from external influences, 
so there is no random variation, making them 
deterministic, rather than stochastic (Murthy 
et al. 1990). It is this ability to remove confound-
ing factors that permits analysis with absolute 
certainty. However, it is a certainty limited to the 
model itself. The relevance of mathematical pre-
dictions to the biological system depends on the 
degree to which the model is representative of the 
biological system.

7.3	 �Mechanics of the Healthy 
Cerebrospinal System

7.3.1	 �Solid and Fluid Components

The spinal cord and brain constitute a soft, elastic 
solid that is housed within the rigid confines of 
the vertebral canal and cranial cavity. The inter-
vening subarachnoid spaces, which also extend 
as cavities (ventricles) into the brain, are filled 
with cerebrospinal fluid (CSF), not unlike sea 
water. As the cord and brain themselves are also 
largely water by mass, they float within their 
bony container but are hitched in place, loosely 
by the arachnoid trabeculae and, in the case of the 
cord, more substantially by the denticulate liga-
ments and filum terminale (see Chap. 3). These 
elastic connections span the subarachnoid space 
which is lined by the pia mater along the cord and 
brain surface and by the arachnoid layer that is 
adherent to the dura mater that lines the vertebrae 
and skull (England and Wakeley 2006).

7.3.2	 �Elastic Properties of the Soft 
Tissues

The elasticity of any material is determined by its 
microstructure, and in the case of soft biological 
tissues, this largely means the quantity and arrange-
ment of collagen and elastin fibres. The collagen 
protein molecule has a triple-helix structure, and 
when grouped into fibrils, and subsequently into 
fibres, it becomes a much stiffer structure than 
elastin fibres, which are rubbery, convoluted, thin 
strands (Fung 1993). The spinal dura mostly 
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consists of collagen fibres, densely arranged in lon-
gitudinal bundles but with a network of fine elastin 
fibres threading in all directions (Tunturi 1977; 
Maikos et al. 2008). In contrast, the spinal pia con-
sists of small bundles of collagenous fibres together 
with individual collagen and elastin fibres that are 
all loosely woven into a reticular pattern (Tunturi 
1978). The spinal cord parenchyma itself has a 
negligible amount of collagen and elastin so its 
elasticity instead depends on the axonal fibres and 
their myelin sheaths.

Estimates of the Young’s moduli for dura, pia 
and the spinal cord vary widely in the literature, 
but broadly speaking, the dura is about 100 times 
stiffer than the pia (i.e. greater E), which in turn 
is about 100 times stiffer than the soft cord tissue 
(Elliott et al. 2013). These tissues, like all materi-
als, can only withstand a certain amount of strain 
before they become permanently damaged; i.e. 
they no longer recover their original shape when 
the forces are removed and may, in fact, rupture. 
The stress corresponding to this ‘mechanical fail-
ure’ is referred to as the yield strength. Collagen, 
for example, has a Young’s modulus of 
1–1.5 GPa,5  but as it can only withstand a strain 
of 10–20  %, its yield strength is much lower, 
70–150  MPa (Meyers et  al. 2008).6 The pia’s 
greater stiffness than the spinal cord to which it is 
attached limits the strain that the cord endures, 
thereby performing a mechanically protective 
role (Bertram 2010; Ozawa et al. 2004).

7.3.3	 �Fluid Pathways

CSF is secreted from the choroid plexus and com-
mences a slow bulk flow from the ventricles, con-
tinuing through the subarachnoid space before 
the fluid is reabsorbed back into the superior sag-
ittal sinus and venous system via the arachnoid 
villi. The total volume of CSF (about 150 ml) is 

5 Pascals (Pa) is the S.I. unit of measure with the prefixes 
k, M and G denoting quantities of 103, 106 and 109, respec-
tively; pounds per square inch (psi) is the less-commonly 
used imperial unit of measure.
6 For E = 1.5 GPa and a maximum strain of ε = 0.1 (10 %) 
Eq. (7.2) can be expressed as σ = E ε, predicting a yield 
stress of 150 MPa.

replaced about three times daily (Bradbury 1993). 
Ill-defined amounts of CSF are also filtered from 
blood plasma and absorbed into the lymphatic 
system (Brodbelt and Stoodley 2007). In the 
human cranial subarachnoid space, the arteries 
and veins reside within pia-like tubular sheaths. 
The arterial sheaths continue into the brain paren-
chyma, while the veins lose their sheaths at the 
pia mater interface (Zhang et al. 1990). Although 
not proven, it seems likely that the situation is the 
same in the spinal canal. As the interstitial and 
cerebrospinal fluids may pass through pores and 
leaky gap junctions in the pia, the extracellular, 
perivascular and subarachnoid spaces thus form 
a single continuous fluid compartment (Rennels 
et al. 1985; Stoodley et al. 1996; Johanson 2008; 
Saadoun and Papadopoulos 2010). Superimposed 
on the bulk CSF flow is a reciprocating flow of 
more substantial magnitude—measurable with 
MRI—that is due to the periodic volume changes 
of the blood vessels with the cardiac and respira-
tory cycles.

7.3.4	 �Volume Compliance

The volume change of a distensible vessel is 
related to pressure change through compliance. 
However, there are two measures of compliance: 
static and dynamic (Bertram 2010).

Static compliance is defined as the change in 
vessel volume resulting from a given change in 
the pressure acting across the vessel walls:

	 C V P= D D/ . 	 (7.3)

i.e. the slope of the volume versus pressure curve, 
with which most clinicians are familiar. In the 
main fluid compartment of the cerebrospinal sys-
tem, the CSF reservoir, it is well established that 
static compliance is not constant but decreases 
as the compartment becomes distended. The 
cranial pressure-volume index (PVI)7 attempts 
to describe this filling-volume-dependent quan-
tity with a single value (Marmarou et al. 1975). 

7 PVI is the notional volume (ml) which, when added to 
the craniospinal volume, causes a tenfold rise in intracra-
nial pressure (mmH2O).
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Heiss et  al. (1999) measured the static compli-
ance of the human craniospinal system as ranging 
between 3 and 15 ml/mmHg. Marmarou et  al.’s 
(1975) measurements on cats suggest that the 
spinal canal contributes about a third of the total. 
Conceptualising the cerebrospinal system as col-
lection of compartments (CSF, blood, brain, spi-
nal cord) allows it to be expressed mathematically 
as a hydraulic lumped-parameter model. The 
compliance and flow resistance between adjacent 
compartments are ‘lumped at’ (assigned to) their 
interface; i.e. these properties are spatially aver-
aged over each compartment and so do not vary 
within compartments. The solution consists of 
the discrete compartment pressures as they vary 
in time. This modelling technique has long been 
popular in studying disorders of the intracranial 
CSF system, such as hydrocephalus (e.g. Agarwal 
et  al. 1969; Ambarki et  al. 2007), but including 
intraspinal compartments to investigate syringo-
myelia has only been attempted in three studies 
(Chang and Nakagawa 2003, 2004; Elliott et al. 
2011). The reason for this disparity is that it is 
easier to measure the inter-compartmental com-
pliances and resistances of the head than the spi-
nal canal. The cranial volume may be considered 
constant due to the rigidity of the skull, the so-
called Monro-Kellie doctrine, which makes any 
internal volume (hence pressure) changes well 
defined. In the spinal canal, the dura mater is sur-
rounded by fluid (distensible veins) and fatty tis-
sue that are necessary for the mobility of the spine 
so the total compartment volume is variable.

Dynamic compliance is a measure of how 
time-varying changes in pressure and volume are 
related, as in pulsation. It governs the speed of 
pressure waves which feature prominently in the 
spinal canal. A cough elevates the pressure in the 
thorax that squeezes blood from the thoracic 
veins into the adjacent epidural veins. Distension 
of these veins transmits pressure to the spinal sub-
arachnoid space, leading to a travelling pressure 
wave (Lockey et al. 1975). Williams (1976) was 
the first to measure the speed of these waves using 
pressure transducers connected to lumbar punc-
ture needles. A non-invasive technique, using 
MRI, has recently been developed (Kalata et al. 
2009). Wave speeds are typically around 4 m/s.

The propagation of pressure waves in elastic, 
fluid-filled tubes is a well-studied problem of 
classical mechanics (Lamb 1898; Womersley 
1955). The spinal cord may be thought of as an 
annular, elastic, solid cylinder, containing an 
inner cylindrical central canal and sheathed in a 
tube of pia mater, which in turn is surrounded by 
an annular cylinder of fluid, the spinal subarach-
noid space that is contained by the outer tube of 
dura mater. A number of mathematical models of 
the spinal canal have been developed from vari-
ants of this system of coaxial tubes (Lockey et al. 
1975; Loth et  al. 2001; Berkouk et  al. 2003; 
Carpenter et al. 2003; Bertram et al. 2005, 2008; 
Cirovic 2009; Elliott et al. 2009; Bertram 2009, 
2010; Martin et al. 2012; Cirovic and Kim 2012; 
Elliott 2012; Cheng et al. 2012), elucidating the 
mechanics of a number of wave modalities.

The wave recorded by Williams (1976), nor-
mally described as the ‘CSF pulse wave’ or the 
‘subarachnoid pressure wave’, is made up of a 
moving section of cord constriction and an 
adjacent segment of dura distension. Of the 
known wave types, this one involves the largest 
cord motion and so is most easily observed with 
MRI. Another wave exists in which the cord dis-
tends, rather than constricts, but this vanishes as 
the central canal is obliterated by adulthood 
(Milhorat et  al. 1994). The healthy spinal canal 
supports at least two further waves, one similar to 
the previous but also involving lengthwise cord 
compression and a final wave, almost exclusively 
involving stretching of the dura (Cirovic 2009; 
Bertram 2009; Cirovic and Kim 2012). A cough 
will initiate a pressure pulse in the thoracolumbar 
region which will set up each of the above wave 
types in pairs, one wave travelling in the rostral 
direction and the other in the caudal direction 
(analogous to the way surface waves radiate from 
a stone dropped into a pond). These waves will 
successively reflect at the craniocervical junction 
and the lumbar cistern, respectively, and vice 
versa. This may amplify the fluid pressure, and 
tissue stresses in regions where opposite-moving 
wave components superimpose. Individual waves 
will not persist indefinitely though. The motion of 
fluid and solid spinal components involves kinetic 
energy (Greek kinētikos, ‘to move’) that will be 
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lost to internal friction. This friction is termed vis-
cosity8 in fluids and viscoelasticity in solids and is 
responsible for attenuating waves as they travel. 
Getting the speed of the CSF pulse wave in a 
mathematical model to match that measured in 
the human body has become a useful way of vali-
dating the model as it ensures that the dynamic 
compliance is anatomically realistic.

Although pressure waves are induced by 
abrupt percussive events, they do not induce a 
significant amount of CSF motion in the spinal 
subarachnoid space. The alterations in the shape 
of the cord and dura occur too quickly for the 
fluid to keep up so the tissue only has a ‘massag-
ing’ effect, gently stirring the fluid into motion 
(Bertram 2009). The reciprocating motion of 
CSF, well known to the clinician, is due to the 
lower-frequency pulsations of the cardiac cycle 
(Bertram 2010). The interdependence of pressure 
drop and flow rate means that the pressure drop 
along the spinal subarachnoid space changes 
from positive to negative, and vice versa, twice 
per cardiac cycle.

7.4	 �Mechanics of Syringomyelia

7.4.1	 �Syrinxes

Mechanically, syrinxes provide the cord with 
additional localised compliance through displace-
ment of the contained fluid when the syrinx is 
squeezed into a different shape. Williams (1980) 
hypothesised that a CSF pulse wave would com-
press the syrinx at one end, causing the fluid to 
‘slosh’ to the other end, akin to squeezing a water 
balloon, with the syrinx subsequently extending 
by tissue dissection. In a computer-based mathe-
matical model, Bertram (2009) demonstrated that 
a CSF pulse wave travelling rostrocaudally 
induces axial motion of the syrinx fluid relative to 
the syrinx walls, leading to fluid pressure at the 
caudal end of the syrinx exceeding spinal sub-
arachnoid space pressure at the same level, and a 

8 For example, honey has more viscosity, or is said to be 
more viscous (‘thicker’), than water, and so loses kinetic 
energy more rapidly as it flows.

distending (tensile) stress at the caudal tip of the 
syrinx wall. The pulse wave slowed down as it 
passed the syrinx, agreeing with Cirovic’s (2009) 
analytical prediction, but not enough to induce 
the substantial sloshing motions of syrinx fluid 
proposed by Williams. Consequently, the incurred 
stress had relatively little potential for tearing the 
cord tissue and concomitant lengthening of the 
syrinx. It was acknowledged, though, that a 
higher-resolution model of the spinal cord is 
needed to better capture the large stress gradients 
at the ends of the syrinx.

An additional complication arises with the 
presence of a syrinx—partial wave reflection and 
refraction. When a pressure wave reaches a syr-
inx border, some of the wave continues ahead, 
and the remainder doubles back due to the 
change in cross-sectional constitution. Given 
that there are many types of wave, all moving at 
different speeds, and that overlapping waves 
sum together (either reinforcing or cancelling 
each other), the resulting state of fluid pressure/
velocity and tissue stress/displacement easily 
becomes complicated (e.g. see figure 10 in 
Bertram 2009). This, unfortunately, does not 
lend the wave mechanics to intuitive theorising, 
and some wave-based theories, while being 
admirable attempts to explain the pathophysiol-
ogy of syrinx filling, are conceptually unphysical 
(e.g. Greitz 2006).

7.4.2	 �Syrinxes with Associated  
CSF Obstruction

Stenosis occurs at the craniocervical junction in 
the presence of a herniated hindbrain. It also 
occurs elsewhere along the spinal subarachnoid 
space due to, most commonly, scar tissue build-
up following spinal trauma. These pathologies 
obstruct the CSF circulation and act as amplifica-
tion sites for pressure and stress through the wave 
reflections that they produce. Their frequent jux-
taposition with syrinxes has motivated several 
groups to pursue a mathematical line of enquiry 
(Berkouk et  al. 2003; Carpenter et  al. 2003; 
Bertram et al. 2005; Elliott et al. 2009; Bertram 
2010; Cirovic and Kim 2012; Elliott 2012).
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Carpenter and colleagues developed a patho-
genesis hypothesis based on the theory of shock-
waves (Berkouk et  al. 2003; Carpenter et  al. 
2003). They demonstrated in a mathematical 
model of coaxial tubes that a pulse wave will 
become steeper as it propagates, much like a 
beach wave does on reaching shallow water. If 
the concomitant elevation in pressure difference 
between the spinal subarachnoid space and the 
cord/syrinx reaches the maximal value, then a so-
called shock-like elastic jump occurs, which is 
mathematically similar to the beach wave break-
ing. When this pressure wave reaches a complete 
stenosis, the incident and reflected components 
superimpose, creating an abnormally large tissue 
stress/syrinx pressure that could potentially dam-
age the cord/expand a syrinx. Although the pre-
dictions make a fundamental contribution to the 
mathematical modelling community, subsequent 
analysis reveals that the proposed mechanism is 
unlikely to play a role in the human body; the 
gross dimensions of the spinal canal and its con-
tents only confer marginal shock-like stress/pres-
sure changes (Elliott et al. 2009). When additional 
features are included in the coaxial tube repre-
sentation of the spinal system, such as fluid vis-
cosity and the ability to capture a spectrum of 
frequencies, shock-like phenomena become even 
less likely. The pressure waves tend to spread out 
and attenuate rather than steepen and amplify 
(Bertram et al. 2005).

Numerous medical (Williams 1980, 1986; 
Oldfield et  al. 1994; Fischbein et  al. 1999; 
Brodbelt et al. 2003b) and engineering (Carpenter 
et  al. 2003; Martin et  al. 2005; Bertram 2010) 
investigators have hypothesised various scenar-
ios in which wave-induced fluid exchange across 
the pia mater could play a role in syrinx forma-
tion. In an analytical model with a permeable pia 
mater, Elliott (2012) showed that pressure waves 
will attenuate as they travel due to fluid crossing 
the pia mater, thereby alleviating the tissue stress 
therein. Furthermore, dilated perivascular spaces, 
spinal subarachnoid obstructions, and a stiffer 
and thicker pia mater—all associated with syrin-
gomyelia—will increase transpial flux and retard 
wave travel. An associated mechanism for syrinx 
formation remains to be investigated.

A rather different situation arises during the 
cardiac cycle, unaided by pressure waves, when a 
partial CSF obstruction occurs at the same level 
as a syrinx. The obstruction itself acts as a flow 
resistor causing a localised drop in pressure. This 
was demonstrated in both simplified (Bilston 
et  al. 2006) and anatomically accurate (Cheng 
et  al. 2012) computer models of a rigid-walled 
spinal subarachnoid space with simulated sub-
arachnoid scar tissue. When one adds in tissue 
compliance, the partial obstruction is able to 
move in response to the reciprocating flow 
through the spinal subarachnoid space, driven by 
the cardiac cycle. The net effect is a resonant 
oscillation9 in pressure gradient about the obstruc-
tion, which lowers in frequency and attenuates 
more rapidly as the obstruction increases in sever-
ity. This has been demonstrated in both mathe-
matical modelling (Bertram 2010) and 
engineering experiments (Martin and Loth 2009; 
Martin et  al. 2010). The mechanical features of 
the trans-stenosis pressure gradient (including its 
time-varying nature and non-negligible viscous 
forces) meant that a Venturi effect,10  postulated 
elsewhere as being important (Greitz 2006), was 
in fact small (Bertram 2010) if not nonexistent 
(Martin and Loth 2009; Martin et al. 2010). More 
dramatically, the addition of a syrinx at the same 
level as the stenosis created a one-way valve. The 
pressure drop across the stenosis caused the syr-
inx to be compressed at one end and distended at 
the other, thereby narrowing the already 
obstructed spinal subarachnoid pathway. As the 
flow resistance past the obstruction was higher 
during (simulated) diastole than systole the result 
was a one-way valve, dissociating the CSF 

9 A natural frequency of the cerebrospinal system, coin-
ciding with the cardiac excitation frequency. One familiar 
example is a playground swing. Pushing a person in a 
swing at its resonant frequency will make the swing go 
higher, while pushing the swing at a faster or slower 
tempo will result in smaller arcs.
10 The reduction in pressure and increase in velocity that 
occurs, due to mass conservation alone, when a fluid flows 
through a narrowed section of pipe (and vice versa). 
Named after Giovanni Battista Venturi (1746–1822), an 
Italian physicist, this is an application of Bernoulli’s equa-
tion; for details see (Tritton 1988; Houghton and Carpenter 
2003).
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pressure caudal to the stenosis from that rostral to 
it (Bertram 2010). This longitudinal pressure dis-
sociation had two important ramifications. Firstly, 
the pressure in the spinal subarachnoid space cau-
dal to the stenosis was higher than that in the 
underlying syrinx when averaged over the cardiac 
cycle (also predicted by Chang and Nakagawa 
2004). This presents a pressure gradient favour-
ing CSF flow into the syrinx, potentially through 
the perivascular spaces of penetrating arteries; i.e. 
a filling mechanism. Secondly, the distending 
stress at the caudal end of the syrinx was much 
higher with the one-way valve in operation, in 
fact high enough (relative to the input pressure 
amplitude) to raise the possibility of cord tissue 
rupture and syrinx expansion (Bertram 2010).

While the existing models can predict stresses 
and strains near a fissure, it is the spinal cord’s 
microstructure that determines the critical condi-
tions for rupture and this has not yet been mod-
elled. The study of fracture mechanics provides 
the relevant mathematical techniques, a disci-
pline born out of the demand for reliable ships 
and aeroplanes in World War II (Anderson 2005). 
The empirical data needed to complete such a 
model (e.g. the material property ‘fracture tough-
ness’) have not, however, been obtained. A rat 
model of posttraumatic syringomyelia showed 
that there is a proliferation of cells following syr-
inx formation that are involved in glial scar for-
mation (Tu et al. 2010, 2011; Fehlings and Austin 
2011). This suggested a mechanism to limit syr-
inx enlargement, which is consistent with the 
principles of fracture mechanics.

7.4.3	 �Cord Tethering

In addition to obstructing CSF flow, subarachnoid 
scar tissue may tether the cord, constraining its 
movement. Bertram et al. (2008) mathematically 
predicted that CSF pulse wave transmission past a 
tethered section of cord could lead to a distending 
stress in the underlying tissue. The computed 
stress values were not large enough to conclude a 
damaging effect but the simulated tethering did 
not include flow obstruction and their simultane-
ous effect remains to be investigated.

7.4.4	 �Perivascular Pumping

It is a commonly held view that syrinx fluid 
originates from CSF. This is based on their hav-
ing a similar chemical composition (Table 17.1) 
and physical properties (Kiernan 1998; 
Bloomfield et al. 1998) and is reinforced by the 
histological studies that establish the perivascu-
lar spaces around penetrating arteries as form-
ing a hydraulic connection between the syrinx 
cavity and the spinal subarachnoid space 
(Brodbelt and Stoodley 2007). On this premise, 
a computer model of fluid flow through a peri-
vascular space has been developed (Bilston 
et  al. 2010). The inner surface was cyclically 
distended to simulate the cardiac pulsation of 
the enclosed artery and the superficial end of the 
perivascular space was given a pressure signal, 
computed from flow-rate measurements in the 
human spinal subarachnoid space (Bilston et al. 
2006). The relative timing of these two cardiac-
based pulsations was varied. Provided the two 
pulses were not in synchrony, a net amount of 
fluid would be pumped into or out of the cord, 
with maximal inflow occurring when the pulses 
were out of phase. It was postulated that inter-
ruptions to the local blood supply, such as might 
be created by scar tissue, could lead to these 
phase differences (Bilston et  al. 2010). Martin 
et  al. (2012) demonstrated that, in fact, there 
may be a natural variation between the timing 
of the vascular and CSF pulses in the spinal 
canal. In a computer model that included the 
entire cardiovascular tree represented as a col-
lection of elastic tubes interacting with a like 
representation of the spinal subarachnoid space, 
the vascular-to-CSF pulse delay was found to 
vary a great deal along the length of the spinal 
canal depending on craniospinal compliance 
and vascular anatomy.

Elliott et  al. (2011) examined how effective 
the phasic-pumping mechanism would be when 
perivascular spaces are incorporated into a 
lumped-parameter model of the whole cerebro-
spinal system. The model had compartments rep-
resenting (1) the spinal cord, (2) the spinal 
subarachnoid space, (3) the venous bed of the 
spinal cord, (4) the venous bed of the spinal 
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subarachnoid space and epidural space and (5) a 
vascular pressure source. Fluid was permitted to 
exchange between the spinal subarachnoid space 
and the spinal cord (interstitium). Their pia mater 
interface was compliant, and similar compliances 
allowed for collapse of the cord’s venous bed and 
displacement of fluid in the epidural space. The 
phasic pumping of CSF into the cord was pre-
dicted. However, the pressure gradient driving 
fluid into the cord also constricts the cord, so the 
two effects are in competition. Thus, for the 
phasic-pumping mechanism to operate, the spi-
nal cord must have volume compliance due to 
displacement of blood from the cord venous bed, 
which is unlikely to be substantial.

7.5	 �Pathophysiology Yet  
to Be Modelled

Some aspects of spinal pathophysiology are less 
amenable to mathematical modelling than others, 
leaving their mechanics relatively uncharted. We 
highlight two notable examples.

Greitz proposed a syringogenesis mechanism 
in which the syrinx fluid is derived from blood 
plasma, rather than CSF, and that it involves a 
disruption to the blood-spinal cord barrier (e.g. 
Greitz 2006). While some mechanical features of 
the proposed event cascade may require further 
thought, the spinal arteries certainly provide a 
favourable pressure gradient for flow into a syr-
inx. In a recent paper on normal pressure hydro-
cephalus, Tully and Ventikos (2011) adapted a 
method from geomechanics for modelling the 
effects of porosity: the brain parenchyma was 
treated as an elastic solid matrix, permeated by 
low-porosity pores (interstitial spaces) and high-
porosity fissures (blood vessels) with fluid trans-
port permitted between them (the blood–brain 
barrier). Such an approach may also prove useful 
for the spinal cord and would permit investiga-
tion of the proposal of oedema as a ‘pre-syrinx 
state’ (Fischbein et al. 2000). Before attempting 
this, however, a better understanding is required 
of the mechanical interaction between the elastic 
cord tissue and fluid-filled interstitial pores. 
Harris and Hardwidge’s (2010) computer model 

of a porous spinal cord and Elliott’s (2012) ana-
lytical model of wave-induced fluid transport 
across the pia mater provide a mathematical 
starting point.

The herniated hindbrain features prominently 
in Chiari-based syringomyelia. Williams (1974) 
built a physical model of the cerebrospinal sys-
tem that simulated the hindbrain-plugging of the 
craniocervical junction following a cough. This 
has not yet been attempted mathematically but 
others have modelled the simpler problem, when 
the hindbrain is ‘frozen’ in position (Roldan et al. 
2009). The dynamic range of CSF velocities at 
the craniocervical junction makes obtaining 
accurate validation data an additional challenge 
(Santini et  al. 2009; Odéen et  al. 2011; Battal 
et al. 2011).

�Conclusions

In our everyday lives, we observe and experi-
ence certain physical phenomena that occur in 
a predictable way. These events may be 
described by the laws of mechanics which can 
be used to construct a mathematical model—a 
theoretical representation of a physical 
system.

The cerebrospinal system consists of solid 
and fluid components that interact through 
their volume compliance. From this single 
concept, we can gain an appreciation of how:
	1.	 Abrupt pressure impulses, such as from a 

cough, lead to wave propagation in the spi-
nal canal.

	2.	 Slower pulsation, due to the cardiac cycle, 
accelerates the fluid in the spinal subarach-
noid space back and forth.
An isolated syrinx increases the cord’s 

compliance but does not appear to lead to 
adverse pressures or stresses. When coupled 
with an overlying stenosis, however, a one-
way valve may be set up in the spinal sub-
arachnoid space that presents favourable 
circumstances for CSF flow into the syrinx 
and syrinx elongation by stress-induced tissue 
rupture. Another one-way valve, in the peri-
vascular spaces, also promotes CSF influx but 
is limited by the collapsibility of the cord’s 
venous reservoir.
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It is hoped that this chapter gives the cli-
nician greater accessibility to mathemati-
cal modelling concepts which will facilitate 
closer collaborations with mathematicians and 
engineers.
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