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Abstract. The siphon-trap property, also known as Commoner-Hack
property, establishes a relation between structural entities within a Petri
net – the eponymous siphons and traps. The property is linked to the
behavior of a Petri net, for instance to deadlock freedom and liveness of
the net. It is nevertheless nontrivial to decide the property as a net can
have exponentially many siphons and traps even if only minimal siphons
are considered. Consequently, the value of the property depends on the
availability of powerful decision procedures.

We contribute to this issue by proposing two new methods for deciding
the siphon-trap property. One is a plain translation of the property into
a Boolean satisfiability (SAT) problem, which exploits the fact that in-
credibly powerful SAT solvers are available. The second procedure has a
divide-and-conquer nature which builds upon a decomposition of a Petri
net into open nets and projects information about siphons and traps onto
the interfaces of the components.

Keywords: Petri nets, Traps, Siphons, Commoner-Hack, Liveness, SAT,
Divide-and-Conquer.

1 Introduction

The siphon-trap property [5,2] is a classical structural property of Petri nets. It
states that every siphon (a set of places that cannot switch from unmarked to
marked) includes a marked trap (a structure that cannot switch from marked to
unmarked). The property can be used for deciding liveness in free choice Petri
nets and as a sufficient condition for deadlock freedom in general Petri nets.
According to common belief, the main advantage of structural techniques is that
they avoid the generation of a state space which is subject to the state explosion
problem. In fact, the siphon-trap property involves the investigation of only
finitely many finite siphons in the net even for unbounded Petri nets, i.e. infinite
state systems. Nevertheless, evaluating the property is far from trivial. Existing
tools like INA [6] enumerate potentially exponentially many siphons and may
thus run into severe run time and space problems.

We propose two new approaches for evaluating the siphon-trap property of
place-transition nets. The first approach translates the property into a Boolean
satisfiability problem. Our translation improves results in [10,1] where the prop-
erty was translated into a Horn-satisfiability problem for bounded free-choice and
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other subclasses of Petri nets. The translation as such can be done in polynomial
time resulting in a formula with n(n + 1) propositions, where n is the number
of places. The subsequent satisfiability problem is NP-complete but there is a
number of tools available which are capable of solving incredibly large instances
in reasonable time.

The second approach follows the divide-and-conquer paradigm. We decom-
pose a Petri net into open net components where an open net is a place bordered
subnet such that each place on the border (we shall call them interface places)
represents unidirectional asynchronous communication with exactly one other
component. We improve an existing decomposition technique in two directions.
First, we present a more efficient algorithm. Second, we propose a net transfor-
mation which allows us to divide a net into arbitrarily small components. For
each component, information about siphons, traps, and their mutual relation is
condensed into constraints for the interface places. Upon composition of compo-
nents, information of the components is aggregated to corresponding information
about the composite open net. Since the size of the condensed information has a
stronger correlation to the number of interface places than to the overall number
of places in a component, the approach has the potential of outperforming tradi-
tional algorithms at least for a significant class of nets. This in turn is sufficient
for including an algorithm into a tool as present day computing environments
support the parallel execution of several tasks.

2 Basic Definitions

Definition 1 (Petri net). An (unmarked) net is a triple (S, T, F ) where S and
T are finite sets with S∩T = ∅, and F is a mapping F : (S×T )∪(T×S)→ {0, 1},
i.e. we consider nets without arc weights.

For any unmarked net (S, T, F ) and any x ∈ S∪T , let •x := {y |F (y, x) �= 0}
and x• := {y |F (x, y) �= 0} be the preset and postset of x, respectively. We
extend this notion to sets X ⊆ S ∪ T by •X :=

⋃
x∈X

•x and X• :=
⋃

x∈X x•.
We assume nets have no isolated places, i.e. places s with •s ∪ s• = ∅.

A marking of (S, T, F ) is a function m: S → N. We say that a place s has k
tokens under m if m(s) = k. For S′ ⊆ S we introduce the abbreviation m(S′) :=∑

s∈S′ m(s) and say that S′ is marked under m iff m(S′) > 0, otherwise it is
unmarked.

A marked net is a tuple (S, T, F, m0) consisting of an unmarked net (S, T, F )
and an (initial) marking m0. An open net (S, T, F, m0, Si, So) contains a marked
net (S, T, F, m0), a set Si of input places with Si ⊆ S and •Si = ∅, a set of output
places So with So ⊆ S and So

• = ∅ = Si ∩ So. The set I := Si ∪ So is called the
interface of the net, places in S\I are called inner places. Nets with an empty
interface or without an interface at all are called closed nets.

Open nets can be seen as partial nets mergeable via parts of their interfaces
using a composition operator ⊕.

Definition 2 (Composition of open nets). For k ∈ {1, 2} let Nk = (Sk, Tk,
Fk, mk, Si,k, So,k) be open nets such that T1∩T2 = ∅, Si,1∩Si,2 = ∅ = So,1∩So,2,
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and S1 ∩ S2 = (Si,1 ∩So,2)∪ (Si,2 ∩ So,1), i.e. common elements of the two open
nets are non-inner places only, and these must be input in one and output in
the other open net. Furthermore, for all s ∈ S1 ∩ S2: m1(s) = m2(s) must hold.
Then we define N1 ⊕ N2 := (S1 ∪ S2, T1 ∪ T2, F1 ∪ F2, m1 ∪ m2, Si, So), where
Si = (Si,1 ∪ Si,2)\(S1 ∩ S2) and So = (So,1 ∪ So,2)\(S1 ∩ S2).

Note that m1∪m2 is well-defined since m1 and m2 are equal for common places.
The composition ⊕ is obviously commutative. Associativity is also easy to see,
we notice that a place may appear in the open nets of a well-defined expression
of the form N1 ⊕N2 ⊕N3 ⊕ . . . either twice (once as input and once as output
place, to be merged to one inner place) or once (as input, output or inner place)
or not at all. Matching input and output places in different ways depending on
the order of nets is therefore impossible and we can conclude:

Proposition 1. The composition ⊕ is commutative and associative.

Our main consideration are traps and siphons. A trap is a set of places that
cannot be emptied once it contains a token, no matter which transitions fire. A
siphon is a set of places that cannot obtain new tokens once it has been emptied
of tokens.

Definition 3 (Traps and siphons). A trap Q of an (unmarked or marked) net
(S, T, F, m0) is a set Q ⊆ S with Q �= ∅ and Q• ⊆ •Q. Analogously, a siphon is a
set D ⊆ S with D �= ∅ and •D ⊆ D•. A trap Q is marked if ∃s ∈ S: m0(s) > 0.
For a set X of places of an open net (S, T, F, m0, Si, So), call I(X) = X∩(Si∪So)
the interface of X. Let such a set be closed if I(X) = ∅, otherwise open. Let a
siphon (or trap, resp.) M be X-minimal iff X ⊆ M and no other siphon D (or
trap, resp.) fulfills X ⊆ D ⊂M . For a net N let Q(N) denote the set of all traps
in N and D(N) the set of all siphons in N .

A net N = (S, T, F, . . .) is called a free-choice net if for each pair t, t′ ∈ T ,
•t ∩ •t′ �= ∅ implies •t = •t′. For these free-choice nets there is a well known
relation between traps/siphons and liveness, i.e. whether all transitions can be
enabled from all reachable markings.

Proposition 2 (Commoner-Hack [5,2]). Let N be a marked free-choice net.
Then N is live if and only if every siphon of N contains a marked trap.

If we consider general nets we can only conclude:

Proposition 3. Let N be a marked net.

(1) If N is live then every siphon of N contains a marked trap.
(2) If every siphon of N contains a marked trap then N does not contain dead-

locks (i.e. all reachable markings enable at least one transition).

In the sequel, we shall refer to the property “every siphon contains a marked
trap” as the siphon-trap property (STP). The remainder of this article is devoted
to new decision procedures for the property.
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3 Evaluating the Siphon-Trap Property Using SAT

In this section we propose a reduction of STP to the famous SAT problem [3].
We aim at a formula that is satisfiable if and only if there is a siphon which does
not contain a marked trap. Our starting point is a formula which operates on
the places as propositions and whose satisfying assignments correspond exactly
to the siphons of a given net. Such formula is well known.

Lemma 1 ([10,7]). A set D of places of a net N is a siphon if and only if the
assignment β with β(s) = true if and only if s ∈ D satisfies

∨

s∈S

s ∧
∧

t∈T

∧

s∈t•
(s =⇒

∨

s′∈•t

s′).

The first part of the formula states the non-emptiness while the second part is
the siphon condition •D ⊆ D•. A dual formula is capable of describing traps
but can not immediately be used for formulating the STP. The reason is that
there is a change of quantifiers: there exists a siphon D such that every included
trap is unmarked. Hence we use another approach exploiting the fact that every
siphon D containing traps has a unique maximal trap (which is the union of all
traps included in D). Beginning with a siphon D, its maximal included trap can
be computed by a repeated removal of places s where some post-transition has
no post-place in the so far remaining set. Let n be the number of places in N .
We represent the repetition of the procedure by introducing (n + 1) variables
s(0), . . . , s(n) for each place s. The variables s(0) represent a non-empty siphon
as mentioned above. The variables s(i) represent intermediate stages Di of the
procedure for generating the maximal included trap. Di+1 is obtained from Di

by removing all places for which some post-transition does not have any post-
place in Di. Since there are only n places, the procedure converges after at most
n iterations, so Dn is either empty or the maximal trap included in D. The
relation between Di and Di+1 can be expressed for each place s individually as
follows:

s(i+1) ⇐⇒ (s(i) ∧
∧

t∈T

∧

s∈•t

∨

s′∈t•
s′(i)).

As we want to have the formula satisfied iff the maximal trap is unmarked or
non-existent, we add the formula

∧

s∈S:m0(s)>0

¬s(n+1).

From these considerations, the following theorem is evident.

Theorem 1. In a given net N with n places, there exists a siphon which does
not include a marked trap if and only if the following formula is satisfiable:

φ ::=
∨

s∈S s(0) ∧∧
t∈T

∧
s∈t•(s

(0) =⇒ ∨
s′∈•t s′(0)) (1)

∧∧n
i=0

∧
s∈S(s(i+1) ⇐⇒ (s(i) ∧∧

t∈T

∧
s∈•t

∨
s∈t• s(i))) (2)

∧∧
s∈S:m0(s)>0 ¬s(n+1) (3)
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Table 1. Evaluating STP: SAT vs. INA

ID |P | |T | |F | SAT INA

phils10 50 40 120 0.05 sec 3 sec
phils20 100 80 240 0.24 sec ≥2h
phils50 250 200 600 2.29 sec n.a.
phils100 500 400 1200 12 sec n.a.
phils150 750 600 1800 40 sec n.a.
phils200 1000 800 2400 119 sec n.a.

data1010 50 40 300 0.12 sec 8 sec
data1212 60 48 408 0.19 sec 16 sec
data1515 75 60 600 0.36 sec 28 sec

The formula contains n(n + 1) different propositions, one for each place and
iterative step (counted by t), and has obviously a length that is polynomial in
card(S) + card(T ) + card(F ).

We have implemented an ad-hoc translation from a Petri net to the mentioned
formula and shipped it to the state-of-the-art SAT checker MiniSat [9] and com-
pared our results with the STP check done by INA [6]. We obtained the results
listed in Table 1. As experimental data, we used the k dining philosophers ex-
amples and the semaphore based scheme for concurrent read and exclusive write
access to a database with k writing and k reading processes. Observe that the
INA check time explodes for the 20 philosophers example while the SAT check
has a significant time increase for the 200 philosophers example.

4 Evaluating the Siphon-Trap Property Using a
Divide-and-Conquer Approach

Deciding liveness is co-NP-complete for free-choice nets according to Esparza and
Nielsen [4], so a general fast algorithm is impossible. In the following, we develop an
algorithm for evaluating the STP using a divide-and-conquer strategy. The com-
plexity of this algorithm depends more on the size of interfaces during the conquer
part than on the size of the nets. Managing to keep the interfaces small may thus
lead to a fast algorithm. The general algorithm will look like this:

1. Decompose a (marked) net N = (S, T, F, m0) into a set of open net
components.

2. Calculate traps and siphons for each such component. For closed siphons,
the STP is evaluated using any traditional algorithm.

3. Condense information about open siphons and included traps such that it
only refers to the interface.

4. Aggregate components step by step. From the information provided by the
components, reason about siphons that become closed through the aggrega-
tion and derive information about open siphons and included traps of the
aggregated open net.
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In Subsection 4.1, we propose a procedure that is able to decompose a Petri
net into arbitrarily small open nets. How far to break down a Petri net is op-
tional though. Subsection 4.2 studies the relations between siphons and traps on
one hand and open net composition on the other. In Subsection 4.3 we define
a structure that is later on used for representing the information about open
siphons and traps. Then, we take this information for reasoning about siphons
and traps that are closed by aggregation. Finally, we deal with the generation
of information about open siphons and traps in an aggregation.

4.1 Decomposition into Open Nets

So far we have talked about some aspects of components but we have not defined
them yet. Thanks to the composition ⊕, this is easy to do.

Definition 4 (Components). Let N be a marked net and N1 be an open net.
We call N1 a component of N if there is some open net N2 with N = N1 ⊕N2.

For our divide-and-conquer approach we are usually interested in small compo-
nents, i.e. we would like to split a net into as many components as possible.
Zaitsev [11] presented an algorithm to obtain the unique set of smallest compo-
nents into which a net can be decomposed. Later, the algorithm was improved
by Mennicke et al. [8]. Its idea is to start at some transition and recursively tag
necessary net elements until a component is completed:

Definition 5 (Building components). Let N = (S, T, F, m0, Si, So) be an
open net and t ∈ T a transition. The component C(t) = (S′, T ′, F |(S′×T ′∪T ′×S′),
m0|S′ , S′

i, S′
o) is the smallest (wrt. set inclusion) open net fulfilling the following

criteria:

(1) t ∈ T ′,
(2) if t′ ∈ T ′ then •t′ ∪ t′• ⊆ S′,
(3) if t′ ∈ T ′ then (•t′)• ∪ •(t′•) ⊆ T ′,
(4) for s ∈ S′: (s ∈ Si ∨ ∃t′ ∈ T \T ′ : t′ ∈ •s) =⇒ s ∈ S′

i,
(5) for s ∈ S′: (s ∈ So ∨ ∃t′ ∈ T \T ′ : t′ ∈ s•) =⇒ s ∈ S′

o.

Any open net can be disassembled into a set of at most |T | different components
(one for each transition, but t′ ∈ C(t) implies C(t) = C(t′)). Different compo-
nents have disjoint sets of transitions and inner places. Interface places may be
shared by components, but each such place may appear only once as input place
and once as output place in all components together. Clearly,

⊕
t C(t) = N if

we add only one of C(t), C(t′) whenever C(t) = C(t′).
Example. There are nets which can be split up into components with only one
transition in each. Take e.g. a cycle of alternating places and transitions, with
two places before and after each transition, and one transition before and after
each place. All components look alike, the first two being N1 and N2 of Fig. 1.
Composing further components to the resulting net N1 ⊕ N2 may prolong the
strand until the final component with output places a and b is added to complete
the cycle.
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t1

a

b

c

d

N1

t2

c

d

e

f

N2

t1

a

b

c

d

t2

e

f

N1 ⊕N2

Fig. 1. Two components N1 and N2 and their composition N1 ⊕N2. Input places have
stripes going upwards, output places downwards.

Since the components are so small, we can easily determine all traps and
siphons, e.g. for N1: Q = {{c}, {d}, {c, d}, {a, c}, {b, c}, {a, b, c}, {a, d}, {b, d},
{a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}} and D = {{a}, {b}, {a, b}, {a, c}, {a, d},
{a, c, d}, {b, c}, {b, d}, {b, c, d}, {a, b, c}, {a, b, d}, {a, b, c, d}}.

If we restrict ourselves e.g. to {s}-minimal traps and siphons for some place
s ∈ S, we get the even smaller sets Q1 = {{c}, {d}, {a, c}, {b, c}, {a, d}, {b, d}}
and D1 = {{a}, {b}, {a, c}, {a, d}, {b, c}, {b, d}}.

The conquer part of our divide-and-conquer strategy should later show the
siphons and traps of N1 ⊕N2 to be Q′ = {{e}, {f}, {c, e}, {d, e}, {c, f}, {d, f},
{a, c, e}, {b, c, e}, {a, d, e}, {b, d, e}, {a, c, f}, {b, c, f}, {a, d, f}, {b, d, f}} and
D′ = {{a}, {b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, c, e}, {a, c, f}, {a, d, e}, {a, d, f},
{b, c, e}, {b, c, f}, {b, d, e}, {b, d, f}} (again with the reduction to s-minimal ele-
ments for s ∈ S). ��
Size reduction of components. If the components are not as small as those
in Fig.1 we might like to split them up even more as the number of siphons
and traps of a component may grow exponentially with its size, i.e. the number
of places. Two transitions with a common place in either their presets or in
their postsets always belong to the same component. To force them to different
components we need to split up the place before we dissolve the net into its
components. We propose the following operation, which will replace one place
by a circle of alternating places and transitions.

Definition 6 (Replacing places). Let N = (S, T, F, m0, Si, So) be an open
net and p an inner place of S. Take any partition P = {Ti | 1 ≤ i ≤ n}
of •p ∪ p• where n is the number of the sets Ti in P . We define N(p, P ) :=
(S′, T ′, F ′, m′

0, Si, So) by the following algorithm:

– Start with S′ = S\{p}, T ′ = T , F ′ = F |(S′×T )∪(T×S′) and m′
0 = m0|S′ .

– For each Ti add a place pi and for each t ∈ Ti connect it like p: F ′(pi, t) =
F (p, t) and F ′(t, pi) = F (t, p).

– If exists t ∈ Ti with F ′(t, pi) > 0 add pe
i and tei with F ′(pe

i , t
e
i )=F ′(tei , pi)=1.

– If exists t ∈ Ti with F ′(pi, t) > 0 add px
i and txi with F ′(pi, t

x
i )=F ′(txi , px

i )=1.
– For each i ∈ {1, . . . , n} identify the last existing place of the list pe

i , pi, px
i

with the first one of the list pe
(i mod n)+1, p(i mod n)+1, px

(i mod n)+1, forming a
circle of all the newly added places and transitions.
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s

c1

x1

p1

e1

c2

x2

p2

e2

Fig. 2. A semaphore net N . For the two processes p1 and p2 on the left and right,
transitions e and x mean entry to and exit from the critical section c, the semaphore
is place s. Note that N has an empty interface.

p1

e1

c1

s1 t1 s2
A s2

t2

s3 c2

x2

p2

B

p2

e2

c2

s3t3s4

C
s4

t4

s1c1

x1

p1

D

Fig. 3. The semaphore place s has been replaced by a circle (consisting of the si and
ti). The semaphore net dissolves into four components A, B, C, and D, where places
to be identified when rejoining the components have been given the same label.

– Set m′
0(p1) = m0(p) and m′

0(s) = 0 for all other places on the newly formed
circle.

Example. Consider the semaphore net of Fig. 2 with the two processes p1-e1-
c1-x1 and p2-e2-c2-x2 being in their critical section at c1 and c2, respectively,
and the semaphore place s. The net only has two components, one with the
transitions e1 and e2, the other with x1 and x2. We cannot split it along the
process boundaries, as both processes need read and write access to the place s.

If we replace s by a circle of four places and transitions, we obtain four com-
ponents A, B, C, and D as shown in Fig. 3. It becomes possible now to merge
components such that we get subnets A ⊕ D and B ⊕ C consisting of one full
process each. These compositions have the smallest number of traps and siphons
of all combinations of two components, which reduces time and space needed
for the conquer part of our algorithm. Accidentally (or not), these are also the
compositions with the smallest interfaces. ��
The question is now what will happen to the traps and siphons if we replace a
place by a complete circle. We find the nice property that traps and siphons are
bijectively mapped between the two nets.
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Proposition 4 (Unchanged traps and siphons). Let N be an open net with
an inner place p and P a partition of •p∪p•. For N(p, P ) according to definition 6
let r be a map with r(pe

i ) = r(pi) = r(px
i ) = p for all places added in the

construction of N(p, P ) and r(s) = s for all places s of N except p. Then, for all
subsets X of places of N : X is a trap of N iff r−1(X) is a trap of N(p, P ) and
X is a siphon of N iff r−1(X) is a siphon of N(p, P ). Furthermore, all traps
and siphons of N(p, P ) have the form r−1(X).

Proof. We show this for traps only; for siphons the proposition then follows from
symmetry. Let r−1(X) ∈ Q(N(p, P )) and t ∈ X• a transition of N . Then, t is
also a transition in N(p, P ) and t ∈ r−1(X)• by Def. 6. As r−1(X) is a trap,
t ∈ •r−1(X) in N(p, P ) and therefore also t ∈ •X in N . We conclude X ∈ Q(N).
The same argument holds for X ∈ Q(N) and t ∈ r−1(X)• in N(p, P ) if we just
swap X with r−1(X) and N with N(p, P ). We conclude r−1(X) ∈ Q(N(p, P ))
then.

Let now Y be a trap of N(p, P ). If Y does not contain any of the pe
i/pi/px

i ,
then p /∈ r(Y ) and r is the identity on Y . We conclude Y = r−1(r(Y )). If Y
contains at least one of the pe

i /pi/px
i we get p ∈ r(Y ). By the trap property, if

a tei ∈ pe
i
• for some pe

i ∈ Y , also tei ∈ •Y must hold, i.e. pi ∈ Y . Analogously,
for txi ∈ pi

• with pi ∈ Y also txi
• = {px

i } ⊆ Y holds. In any case, if one of the
pe

i/pi/px
i belongs to Y , all of them do for all i. So again, Y = r−1(r(Y )). ��

Note that Def. 6 cannot be applied to interface places. This would change the
number of siphons and traps in the net, as the circle constructed in the definition
cannot contain interface places. Logically, the best time to apply Def. 6 is then
at the beginning, when we usually have a closed net and could replace all the
places. Then, components would all look like the one depicted in Fig. 4, where
for each place in the preset or postset of the main transition t one link of the
corresponding circle created by Def. 6 is added.

Not all of the sets of traps and siphons in figure 4 need to be considered for
our divide-and-conquer approach, since Prop. 4 tells us that the circles of Def. 6
appear either completely or not at all in any trap or siphon of the whole net.
That means, only the sets Q2, D2, Q7, D7, Q4× (Q2 ∪Q7), and D4× (D2 ∪D7)
and unions of two or more traps or two or more siphons from these sets will be
relevant subsets of traps and siphons of the overall net.

4.2 Composing Siphons and Traps

There is a good reason for using open net decomposition rather than any other
style of decomposition.

Lemma 2. Let N1 and N2 be open nets with Nk = (Sk, Tk, Fk, m0,k, Si,k, So,k)
for k = 1, 2.

– If D is a siphon (or trap, resp.) in N1 ⊕N2 then D ∩ S1 is either empty or
a siphon (or trap, resp.) in N1 and D ∩ S2 is either empty or a siphon (or
trap, resp.) in N2.
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t

sj,nj
tx
j,nj

sx
j,nj

sk,nkte
k,nk

se
k,nk

s�,n�

tx
�,n�

sx
�,n�

te
�,n�

se
�,n�

D1Q3

D3 Q1

D5

Q5

Q4D2
Q2D4

D6

Q6

Q7D7

Fig. 4. A component C(t) for some transition t with •t = {sj , s�} and t• = {sk, s�}
as given by definition 6. Ellipses show the traps and siphons. The dashed ellipses Q4

and D4 are not traps or siphons (due to t) and need to be unified with traps from
Q1/Q2/Q6/Q7 and siphons from D1/D2/D6/D7 first, respectively.

– If D1 is a siphon (or trap, resp.) in N1 and D2 is a siphon (or trap, resp.) in
N2 such that D1 ∩ S2 = D2 ∩ S1 (i.e. their interfaces to the respective other
component are equal) then D1 ∪D2 is a siphon (or trap, resp.) in N1 ⊕N2.

Proof. This follows easily from the constraints on interface places in open nets.
Empty sets occur if D lies completely in the inner part of either N1 or N2. ��
Example. In Fig. 1, {a, d, e} is a siphon and a trap of N1 ⊕ N2. It decomposes
into the siphons (and traps) {a, d} of N1 and {d, e} of N2. The other way round,
{a, c} is a siphon of N1, {c} is a siphon of N2. c and d are the shared places of
the interfaces of N1 and N2. Hence {a, c} is a siphon in N1 ⊕N2. ��
From Lemma 2, the general idea of our approach is obvious. We collect, for
each part of the interface of a component, the open siphons and the included
traps, together with their interface. Upon composition, we merge siphons and
traps with equal interface. Unfortunately, given an interface with k places, there
are 2k potential interfaces for siphons to be considered, and for each siphon, a
contained trap can have an interface that spans over any subset of the interface
of the siphon. Consequently, we need to further investigate regularities that arise
from the open net shape of the components. To this end, we shall heavily exploit
the following simple observations on siphons and traps.

Proposition 5 (Properties of Siphons)
(1) The union of siphons is a siphon.
(2) Let D be a siphon and X ⊆ D. There is an X-minimal siphon D′ ⊆ D.
(3) Let D be a ∅-minimal siphon in N1 ⊕N2. Then, if not empty, D ∩ S1 is a

(D ∩ S1 ∩ S2)-minimal siphon in N1 and D ∩ S2 is a (D ∩ S1 ∩ S2)-minimal
siphon in N2.

The same observations hold for traps.



New Algorithms for Deciding the Siphon-Trap Property 277

Proof. (1) and (2) are trivial. For (3) the places D ∩ S1 ∩ S2 are forced in the
siphons while the remaining places follow by the same reasoning as for D in
N1 ⊕N2, i.e. the structure of the net.

Let us first reduce the number of siphons to be considered. Consider two com-
ponents N1 and N2 and a set of shared places X ⊆ S1 ∩ S2. By Lemma 2, for
every pair of siphons D1 of N1 and D2 of N2 where D1 ∩ S2 = X = D2 ∩ S1,
D1 ∪ D2 is a siphon in N1 ⊕ N2. However, some of these siphons may contain
more or better (i.e. marked) traps than others.

Definition 7 (Worse siphons). Let N be an open net and X ⊆ Si ∪ So. Let
D1 and D2 be siphons with D1 ∩ (Si ∪ So) = X = D2 ∩ (Si ∪ So). Call D1 worse
than D2 iff, for every Y ⊆ X,

– If D1 contains a trap Q1 with Q1 ∩X = Y then D2 contains a trap Q2 with
Q2 ∩X = Y .

– If D1 contains a marked trap Q1 with Q1 ∩ X = Y then D2 contains a
marked trap Q2 with Q2 ∩X = Y .

Example. In N1⊕N2 of Fig. 1, siphons {a, c, e} and {a, d, e} are mutually worse
than each other, so only one of them has to be considered in larger compositions.
Assuming a token on d, {a, c, e} is worse than {a, d, e} but not vice versa. ��

Lemma 3. Let N1 and N2 be open nets. Let D1 be a siphon of N1 and let D2

be a siphon of N2 such that D1 ∩ S2 = D2 ∩ S1. Let D1 be worse than D′
1 and

D2 be worse than D′
2. Then D1 ∪D2 is worse than D′

1 ∪D′
2 in N1 ⊕N2.

In particular, if the union of the worse siphons includes a marked trap, so does
the union of the better siphons. Consequently, we may remove a siphon from
any consideration in a component as long as we keep a worse one. Although
worse than is only a preorder and no partial order, we shall sloppily refer to the
worst siphons as a (as small as possible) set of siphons that needs to be kept
according to Lemma 3. The next observation rephrases the well-known fact that
it is sufficient to check ∅-minimal siphons for evaluating the STP.

Corollary 1. Let D1 and D2 be siphons of an open net N with D1∩(Si∪So) =
D2 ∩ (Si ∪ So). If D1 ⊆ D2 then D1 is worse than D2.

While the previous result reduces the number of siphons to be considered for
a given interface, the following investigations concern the number of different
interfaces to be explicitly considered. We shall argue, that finally we only need
to consider elementary siphons and traps.

Definition 8 (Elementary siphons and traps). A siphon D of an open net
N is elementary iff there is a place s ∈ Si ∪ So such that D is {s}-minimal. A
trap Q is interface-elementary iff there is a place s ∈ Si ∪ So such that Q is
{s}-minimal. Q is token-elementary iff there is a place s where m0(s) > 0 and
Q is {s}-minimal.
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Example. In the open net N1 of Fig. 1, {a}, {b}, {a, c}, {a, d}, {b, c}, {b, d} are
the elementary siphons. Although {a} is included in {a, c}, we want to keep
both as {a, c} is {c}-minimal while {a} is not. The interface-elementary traps
are {a, c}, {a, d}, {b, c}, {b, d}, {c}, {d}. There are no token-elementary traps. As-
suming a token on a, {a, c}, {a, d} would become token-elementary. Assuming
instead a token on c, the only token-elementary trap would be {c}. In particular,
the definition states that {b, c} is not a token-elementary trap. ��
Note that a token-elementary trap may be closed (i.e. disjoint to the interface)
while an interface-elementary trap is always open. The following facts justify
this selection.

Lemma 4. Let N be an open net.
(1) For every open siphon D of N there is a worse union of elementary siphons.
(2) If a siphon D contains a trap Q then it contains some union of interface-

elementary traps Q1∪. . .∪Qk where Q∩(Si∪So) = (Q1∪. . .∪Qk)∩(Si∪So).
(3) If a siphon D contains a marked trap Q then it contains some union of traps

Q1 ∪ . . . ∪Qk ∪Qm where Q ∩ (Si ∪ So) = (Q1 ∪ . . . ∪Qk ∪Qm) ∩ (Si ∪ So),
Q1, . . . , Qk are interface-elementary, and Qm is token-elementary.

Proof. (1) Let X = D ∩ (Si ∪ So) �= ∅. For each s ∈ X , let Ds be an {s}-
elementary siphon included in D. Obviously,

⋃
s∈X Ds has the same interface as

D, is contained in D, and not empty. By Cor. 1, it is worse than D. Claims (2)
and (3) can be proven analogously, but note that k = 0 holds in the unions if Q
is closed. ��
In consequence, we only need to store information about elementary siphons,
elementary traps, and information about inclusion of elementary traps in unions
of elementary siphons. The advantage of using elementary traps and siphons is
their simple structure. The following is trivial.

Lemma 5. Let N be an open net.
(1) For s ∈ Si, {s} is the only {s}-minimal siphon of N . For s ∈ So, {s} is the

only {s}-minimal trap of N .
(2) For s ∈ So and an {s}-minimal siphon D, D ∩ So = {s}. For s ∈ Si and an
{s}-minimal trap Q, Q ∩ Si = {s}.

Definition 9 (Wrapping siphons). A family M = {D1, . . . , Dk} of sets of
places wraps a set Q of places iff Q ⊆ D1 ∪ . . . ∪Dk and this is not the case for
any proper subset of M.

Example. In the net N1 ⊕ N2 of Fig. 1, the family of siphons {{a, c}, {b, d, e}}
wraps the trap {c, e}. ��
Remark 1. Let M be a family of elementary siphons. The union ofM includes
a trap Q if and only if Q is wrapped by some subset ofM.

Even among the elementary siphons, some siphon D may be redundant. This is
the case if, for all siphons that can be constructed using D, a worse one can be
constructed without using D.
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Definition 10 (Redundant elementary siphon). Let N be an open net and
M a set of elementary siphons. Siphon D ∈ M is redundant iff, for all M1 ⊆
M there exists another subset M2 ⊆ M where

⋃
(M2 \ {D}) is worse than⋃

(M1 ∪ {D}). (
⋃

X without a subscript stands for
⋃

x∈X x.)

Example. In N1⊕N2 of Fig.1, any of the elementary siphons {a, c, e} and {a, d, e}
is redundant. In fact, any interface constellation of siphons and traps that can be
composed from elementary objects and {a, c, e} can as well be generated using
{a, d, e}. After removing one of them, the other one is no longer redundant as it
is then the only one remaining with interface {a, e}. If we put a token on d, only
{a, d, e} is redundant. For any constellation of siphons and included traps that
can be constructed using {a, d, e}, a worse one (particularly with some unmarked
traps instead of marked traps) can be generated using {a, c, e}. ��

4.3 Representing Information about Open Siphons and Traps

From the considerations of the previous subsection, we conclude that we need
to provide the following information about an open net.

Definition 11 (Information about components). Let N be an open net,
MD a set of elementary siphons that can be obtained from the set of all elemen-
tary siphons by removing (one by one) redundant ones,MQ the set of interface-
elementary traps in N , andMM the set of all token-elementary traps in N . Fix
a set Σ with elements from an arbitrary universe such that card(Σ) = card(MD)
and fix some bijection l between Σ and MD (elements of Σ serve as names for
elementary siphons). We keep track of the following information about N :

– The set Σ introducing names for elementary siphons;
– A mapping int : Σ → ℘(Si∪So), x �→ l(x)∩(Si∪So) recording the interfaces

of the elementary siphons;
– The set LQ = {Q ∩ (Si ∪ So) | Q ∈ MQ} introducing the interfaces of the

interface-elementary traps;
– The set LM = {Q ∩ (Si ∪ So) | Q ∈ MM} introducing the interfaces of the

token-elementary traps;
– The mapping wQ : LQ → ℘(℘(Σ)), X �→ {l−1(M) | ∃Q ∈ MQ : Q ∩ (Si ∪

So) = X,M wraps Q} recording the wrapping sets of elementary siphons for
all interface-elementary traps with a given interface;

– The mapping wM : LM → ℘(℘(Σ)), X �→ {l−1(M) | ∃Q ∈ MM : Q ∩ (Si ∪
So) = X,M wraps Q} recording the wrapping sets of elementary siphons for
all token-elementary traps with a given interface;

Example. The full information about N1 in Fig. 1 reads as follows.
– Σ1 = {1, 2, 3, 4, 5, 6};
– int1(1) = {a}, int1(2) = {b}, int1(3) = {a, c}, int1(4) = {a, d}, int1(5) =
{b, c}, int1(6) = {b, d};

– LQ1 = {{a, c}, {a, d}, {b, c}, {b, d}, {c}, {d}};
– LM1 = ∅;
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– wQ1({a, c}) = {{3}}, wQ1({a, d}) = {{4}}, wQ1({b, c}) = {{5}},
wQ1({b, d}) = {{6}}, wQ1({c}) = {{3}, {5}}, wQ1({d}) = {{4}, {6}};

– wM = ∅.
Assuming a token on c, we would obtain LM = {{c}} and wM ({c}) = {{3}, {5}}.
With a token on b instead, we would get LM = {{b, c}, {b, d}}, wM ({b, c}) =
{{5}}, and wM ({b, d}) = {{6}}. For later use, we provide the full information
for N2 although it does not provide new insights.
– Σ2 = {7, 8, 9, 10, 11, 12};
– int2(7) = {c}, int2(8) = {d}, int2(9) = {c, e}, int2(10) = {c, f}, int2(11) =
{d, e}, int2(12) = {d, f};

– LQ2 = {{c, e}, {c, f}, {d, e}, {d, f}, {e}, {f}};
– LM2 = ∅;
– wQ2({c, e}) = {{9}}, wQ2({c, f}) = {{10}}, wQ2({d, e}) = {{11}},

wQ2({d, f}) = {{12}}, wQ2({e}) = {{9}, {11}}, wQ2({f}) = {{10}, {12}};
– wM = ∅. ��

In the remainder of this section, we argue that this information for some open
nets N1 and N2 is sufficient for reasoning about siphons and traps of N1 ⊕ N2.
Let us first consider closed siphons in N1 ⊕ N2. If a closed siphon is already a
closed one in either N1 or N2, we assume that this siphon has been checked for
elementary components, or has been checked during an earlier composition step.
It is thus sufficient to consider those siphons D that spread over both N1 and
N2. By the considerations in the previous subsection, it is sufficient to check
those siphons for included marked traps which can be composed by elements
of MD. Concerning the included traps, it is sufficient to check traps that can
be composed by elements of MQ and a single element of MM . We propose to
execute the necessary checks simultaneously for all siphons by translating the
check into a Boolean formula. The formula is satisfied if and only if some siphon
of N1 ⊕N2 that spreads over both components does not contain a marked trap.
The propositions of the formula are elements of Σ1 and Σ2, i.e. the symbols
representing the elementary siphons of the two components (which we silently
assume to be disjoint). The satisfying assignment assigns true to the names of
those elementary siphons whose composition is a siphon that proves STP not to
hold.

The formula consists of three parts. In the first part, we state that the repre-
sented siphon is not empty. In the second part, we state that the projections of
the siphon to the components generate the same interface. In the third part, we
state that the composition does not include a marked trap. The trick for stating
the third part is to state that the siphon represented by the satisfying assign-
ment does not include any wrap for at least one elementary trap participating
in a trap of the composed system. Traps in the composed system are formed by
a union of traps of the components such that the union of elementary traps in
N1 have the same interface to N2 which the union of elementary traps of N2 has
to N1. The following definition boils this idea down to interface considerations.
As the same technique is later on needed for siphons as well, we already present
matching for siphons as well.
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Definition 12 (Matching). Let N1 and N2 be open nets with information at-
tached according to Def. 11. A token trap matching is a tuple [X1, Y1, X2, Y2]
such that X1 ⊆ LM 1, Y1 ⊆ LQ1, X2 ⊆ LM 2, Y2 ⊆ LQ2, card(X1) + card(X2) =
1,

⋃
(X1 ∪ Y1) =

⋃
(X2 ∪ Y2). An interface trap matching is a tuple [Y1, Y2] such

that Y1 ⊆ LQ1, Y2 ⊆ LQ2,
⋃

Y1 =
⋃

Y2. A siphon matching is a tuple [Z1, Z2]
such that Z1 ⊆ Σ1, Z2 ⊆ Σ2, and

⋃
σ1∈Z1

int(σ1) =
⋃

σ2∈Z2
int(σ2). A match-

ing is minimal iff no different matching is pointwise set-included. A token trap
matching is internal iff

⋃
X1∪

⋃
Y1 ⊆ S2 and

⋃
X2∪

⋃
Y2 ⊆ S1. The interface of

a trap matching is (
⋃

(X1∪Y1∪X2∪Y2))\(S1∩S2) resp. (
⋃

(Y1∪Y2))\(S1∩S2).

Example. There are no token-minimal matchings for N1 and N2 in Fig. 1. Exam-
ples of minimal siphon matchings are [{1}, ∅], [{3}, {7}], or [{3}, {9}]. Examples
for minimal trap matchings are [∅, {{e}}] or [{{c}}, {{c, e}}]. Assuming a token
on c in both components, [{{c}}, ∅, ∅, {{c, e}}] would be a minimal token trap
matching. ��
Minimal matchings can be easily determined by a saturation algorithm. Start
with an individual element. That may lead to interface places s that are not in the
respective other open net. Add (nondeterministically) an {s}-minimal object of
the other component and proceed until all interface places are matched. If there
is no {s}-minimal object, just backtrack.

The definition shows that a token trap matching represents the union of those
elementary traps that form a smallest marked trap in N1 ⊕ N2. A trap which
is fully contained in one of the components and does not touch interface places
leads to a trap matching where one Xi is non-empty while both Yi are empty.

Definition 13 (Formula assigned to N1 and N2). Let N1 and N2 be open
nets. Then the corresponding formula φ(N1, N2) is built as follows:

φ(N1, N2) = φ1 ∧ φ2 ∧ φ3

where, for i ∈ {1, 2}, Σ′
i = {σ | σ ∈ Σi, int(σ) ⊆ S2−i} and

φ1 =
∨

x∈Σ′
1∪Σ′

2
x

φ2 =
∧

x∈Σ′
1
(x =⇒ ∧

s∈int(x)∩Si,1

∨
y∈Σ′

2:s∈int(y) y) ∧
∧

x∈Σ′
2
(x =⇒ ∧

s∈int(x)∩Si,2

∨
y∈Σ′

1:s∈int(y) y)
φ3 =

∧
[X1,Y1,X2,Y2]is internal minimal token trap matching

(
∨

N∈X1

∧
Σ∗∈wM 1(N)

∨
σ∈Σ∗ ¬σ ∨∨

N∈Y1

∧
Σ∗∈wQ1(N)

∨
σ∈Σ∗ ¬σ ∨

∨
N∈X2

∧
Σ∗∈wM2(N)

∨
σ∈Σ∗ ¬σ ∨∨

N∈Y2

∧
Σ∗∈wQ2(N)

∨
σ∈Σ∗ ¬σ)

Example. For the composition of N1 and N2 in Fig. 1, we obtain Σ′
1 = ∅ and

Σ′
2 = {7, 8}, so any assignment satisfying φ1 ensures that the second part of φ2

and therefore φ2 overall will be false. Informally this means that all siphons in
N1 ⊕ N2 touch the interface of N1 ⊕ N2 so nothing needs to be checked. For
obtaining a nontrivial formula, rename e to a and f to b in Fig. 1. In that case,
we obtain
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– φ1 = 1 ∨ . . . ∨ 6 ∨ 7 ∨ . . . ∨ 12;
– φ2 = (1 =⇒ (9 ∨ 11)) ∧ (2 =⇒ (10 ∨ 12)) ∧ (3 =⇒ (9 ∨ 11)) ∧ (4 =⇒

(9 ∨ 11)) ∧ . . . ∧ (12 =⇒ (4 ∨ 6));
– φ3 = true

φ3 is true as there are no tokens in the system and the empty conjunction is
always true. This leads to satisfying assignments. For instance, assigning true to
3 and 9 would satisfy the whole formula. Indeed, the represented siphon {a, c, e}
does not contain a marked trap.

Assuming a token on c in both components, we would need to include formulas
for each internal minimal token trap matching. An example for such a matching
is [{{c}}, {{a, c}}, ∅, {{c, e = a}}]. This matching would contribute the following
subformula to φ3 = (¬3 ∧ ¬5) ∨ ¬3 ∨ ¬9. This subformula states that the trap
{a, c, e = a} be not included in any siphon represented by a satisfying assignment
of the formula. ��
Theorem 2. Let N1 and N2 be open nets. φ(N1, N2) is satisfiable if and only
if there exists a siphon D of N1⊕N2 such that D ∩S1 ∩S2 �= ∅ and D does not
contain any marked trap.

Proof. (→) Let β be a satisfying assignment of φ(N1, N2) and consider the set of
places D1∪D2 with D1 =

⋃
σ∈Σ1:β(σ)=true l1(σ) and D2 =

⋃
σ∈Σ2:β(σ)=true l2(σ).

Here, li are the mappings used in Def. 12 for Ni, resp. As we composed elementary
siphons, D1 is a siphon of N1 and D2 is a siphon of N2. By φ2, both siphons
share the same interface places, D1 ∪ D2 is a siphon of N1 ⊕ N2. φ1 tells us
that this siphon is not empty since it contains at least one elementary siphon
and elementary siphons cannot be empty. Assume D1 ∪D2 contains a marked
trap. By Lemma 4, it also contains a union of some interface-elementary and
one token-elementary trap of N1 or N2 or both. A minimal such union defines
a token trap matching for which a corresponding subformula is part of φ3. This
subformula asserts that for at least one trap participating in the considered union
of elementary traps (second level operator), D1∪D2 does not contain sufficiently
many elementary siphons to include that elementary trap. In consequence, the
whole trap cannot be contained in D1 ∪D2.

(←) Assume there is a siphon D in N1⊕N2 that contains places in S1∩S2 and
does not contain a marked trap. By Lemma 4, D includes a siphon D′ that is
the union of elementary siphons and which is obviously unmarked as well. Since
we only leave out redundant elementary siphons in Def. 11, a siphon D′′ can be
constructed from the elementary siphons in MD1 and MD2 such that D′′ ∩ S1

is worse than D′ ∩ S1 and D′′ ∩ S2 is worse than D′ ∩ S2. By Def.7, D′′ cannot
contain a marked trap either. Consider the assignment β that assigns true to all
symbols that represent elementary siphons participating in D′′. As D′′ has the
same (non-empty) set of places in S1 ∩ S2, D′′ is not empty. Consequently, D′′

includes at least one elementary siphon and thus φ1 must be satisfied. Further,
D′′ ∩ S1 and D′′ ∩ S2 share the same places in S1 ∩ S2, so φ2 must be satisfied.
Finally, since D′′ does not contain a marked trap, no union of a subset of the
used elementary siphons wraps a marked trap, Thus, each wrap of any marked
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trap must contain one siphon that is not used to form D′′. Consequently, φ3 is
satisfied. ��
Let us now shift our attention to the open siphons of N1⊕N2. We need to produce
the information (according to Def. 11) for N1 ⊕N2 from the information for N1

and the one for N2.
There are two kinds of open siphons and traps in N1⊕N2. First there are those

fully contained in one of the components, i.e. disjoint to either S1 or S2. They
are elementary if and only if they are elementary in their component, and they
are wrapped by elements of their own component only. They can be recognised
by having no interface places in common with the set of places of the other
component. Consequently, information about these siphons and traps can be
directly copied from the information provided by the respective component.

Second, there are siphons and traps that spread over both components. Such
a siphon (or trap, resp.) is composed of a set of elementary siphons (traps, resp.)
of both components. We only need to consider such a siphon if it also contains
places in Si ∪ So since otherwise it can be decomposed into disjoint siphons (or
traps) of the individual components. Thus, the strategy of composing elementary
siphons and traps of the components to siphons and traps of N1⊕N2 is to find the
smallest sets of individual siphons and traps of N1 and N2 that match at S1∩S2.
A composite trap is wrapped by a set of siphons if and only if each individual
elementary trap is wrapped within its own component and the resulting set of
siphons is minimal. All the described information can be computed from the
abstracted information that is provided by the components.

Definition 14 (Information for N1⊕N2). Let, for i ∈ {1, 2}, [Σi, inti, LQi,
LM i, wQi, wM i] be the information for Ni. Define the information for N1 ⊕N2

as [Σ, int, LQ, LM , wQ, wM ] with

– Σ be the set of minimal siphon matchings between N1 and N2;
– for each [Z1, Z2] ∈ Σ, let int([Z1, Z2]) = (

⋃
σ1∈Z1

int(σ1)∪
⋃

σ2∈Z2
int(σ2))\

(S1 ∩ S2);
– LQ = {(⋃Y1 ∪

⋃
Y2) \ (S1 ∩ S2) | [Y1, Y2] is interface trap matching };

– LM = {(⋃ X1 ∪
⋃

X2

⋃
Y1 ∪

⋃
Y2) \ (S1 ∩ S2) | [X1, Y1, X2, Y2] is token trap

matching };
– wQ(X) = {{[Z11, Z21], . . . , [Z1k, Z2k]} ⊆ Σ | exists minimal interface trap

matching [Y1, Y2] s.t. (
⋃

Y1 ∪
⋃

Y2) \ (S1 ∩ S2) = X, and
∀X ′∈Y1∃M∈wQ(X ′): M⊆⋃k

i=1 Z1i, ∀X ′∈Y2∃M∈wQ(X ′): M⊆⋃k
i=1 Z2i}.

– wM (X) = {{[Z11, Z21], . . . , [Z1k, Z2k]} ⊆ Σ | exists minimal token trap
matching [X1, Y1, X2, Y2] s.t. (

⋃
Y1 ∪

⋃
Y2 ∪

⋃
X1 ∪

⋃
X2) \ (S1 ∩ S2) = X,

∀X ′∈Y1∃M∈wQ(X ′): M⊆⋃k
i=1 Z1i, ∀X ′∈Y2∃M∈wQ(X ′): M⊆⋃k

i=1 Z2i,
∀X ′∈X1∃M∈wM (X ′): M⊆⋃k

i=1 Z1i, ∀X ′∈X2∃M∈wM (X ′): M⊆⋃k
i=1 Z2i}

Within the values of wQ and wM , we silently assume that supersets of other
elements are removed.

Example. Let us compose N1 with N2 in Fig. 1. We need to consider the following
14 siphon matchings. For convenience, we assign a number to each matching.
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13 = [{1}, ∅], 14 = [{2}, ∅], 15 = [{3}, {7}], 16 = [{3}, {9}], 17 = [{3}, {10}], 18 =
[{4}, {8}], 19 = [{4}, {11}], 20 = [{4}, {12}], 21 = [{5}, {7}], 22 = [{5}, {9}],
23 = [{5}, {10}], 24 = [{6}, {8}], 25 = [{6}, {11}], 26 = [{6}, {12}]. We can
represent the interfaces {a, e}, {a, f}, {b, e}, {b, f}, {e}, and {f} with interface
trap matchings, so these six sets form LQ. LM is empty as the components do
not provide elementary token traps. For computing the wrapping siphons for
{a, e}, we need to consider those trap matchings which generate this interface:
[{{a, c}}, {{c, e}}] and [{{a, d}}, {{d, e}}]. {a, c} is wrapped by {3}, {c, e} is
wrapped by {9}, {a, d} is wrapped by {4} , and {d, e} is wrapped by {11}.
Hence, we need to look into those siphon matchings which contain any of the
siphons 3, 4, 9, or 11. Siphon 3 is contained in 15, 16, and 17. Siphon 4 is
contained in 18, 19, and 20. In the second component, siphon 9 is contained in
16 and 22. Siphon 11 is contain in 19 and 25. These siphons need to be combined
in a minimal way such that either 3 and 9 or 4 and 11 are contained. Hence,
we result in wQ({a, e}) = {{15, 22}, {16}, {17, 22}, {18, 25}, {19}, {20, 25}}. The
remaining values of wQ can be computed similarly. wM is empty in the example
but the principal approach resembles the one for wQ. ��
Theorem 3. Let N1 and N2 be open nets. Then the information for N1 ⊕ N2

using Def. 14 is equivalent to the information for N1 ⊕N2 according to Def. 11.

Proof. It is easy to see that the definition implements the considerations on
siphons and traps of the composed system. ��
The construction of Def. 14 may introduce redundant information. The condi-
tions of Def. 10 can, however, be evaluated by the information available for
N1 ⊕ N2, so information about redundant elementary siphons can be removed
after having applied Def. 14.

Example. In the calculation of the previous example, siphons 15, 18, 19, 20, 21,
24, 25, and 26 can be removed through redundancy. Let us verify redundancy for
siphon 19. We have to exhibit, for every union U of elementary siphons containing
19, a worse one U ′ not containing 19. In the example it is quite obvious, that,
for each interface, there are two elementary siphons in the composition: one
that is obtained using common interface place c, and the other obtained using
interface place d. Call these siphons dual to each other. The dual to 19 is 16.
For a composition of elementary siphons that contains both 16 and 19, let U ′ =
U \{19}. U ′ has the same interface as U (since 16 and 19 have the same interface)
and it is worse than U as it is composed of less ingredients. Otherwise, let U ′

be the set of duals to the ones contained in U . 19 is not contained in U ′ as we
assumed that 16 /∈ U . U ′ has the same interface as U as dual elementary siphons
have the same interface. U ′ includes traps for the same interfaces as traps are
symmetric w.r.t. exchanging c and d. After having removed redundant siphons,
the remaining information for N1 ⊕N2 is

– Σ = {13, 14, 16, 17, 22, 23};
– int(13) = {a}, int(14) = {b}, int(16) = {a, e}, int(17) = {a, f}, int(22) =
{b, e}, int(23) = {b, f};
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– LQ = {{a, e}, {a, f}, {b, e}, {b, f}, {e}, {f}};
– LM1 = ∅;
– wQ({a, e}) = {{16}, {17, 22}}, wQ({a, f}) = {{17}, {16, 23}}, wQ({b, e}) =
{{22}, {16, 23}}, wQ({b, f}) = {{23}, {17, 22}}, wQ({e}) = {{16}, {22}},
wQ({f}) = {{17}, {23}};

– wM = ∅.
This means that the number of elementary siphons as well as the number of
interfaces to be considered for traps does not increase during composition. There
are only minor differences in wQ. ��

4.4 Discussion

The approach projects information about a component to its interface. The cal-
culations at the interface, e.g. finding matchings or redundancies, appear to be
complex, but their complexity depends much more on the size of the interface
than on the size of the net behind the interface. In the running example, we
may compose longer and longer chains or rings of components such as in Fig. 1.
As each resulting component has information similar to the one for single com-
ponents, the overall complexity grows linearly with the number of components
to be composed. In comparison, the resulting net has an exponentially growing
number of minimal siphons (since every circle where either the upper or the lower
place is taken forms a minimal siphon). We conclude that the divide-and-conquer
approach is beneficial at least in those cases where a decomposition exists such
that intermediate interfaces during re-composition remain small. How to obtain
such a decomposition in general remains to be seen. Since we may switch to the
original algorithm for computing elementary siphons and traps at any stage of
decomposition, it is possible to apply the divide-and-conquer strategy whenever
the size of the interface between components is significantly smaller than the
inner structure of a component. Consequently, we may judge that the proposed
strategy is rather valuable even though we cannot provide experimental evidence
at this time.

5 Conclusion

We proposed two new approaches to deciding the siphon trap property and thus
to getting information about important properties like liveness or deadlock free-
dom. One approach is a straight transformation to the SAT problem for which
we inherit the sophistication of existing SAT solvers. The second approach uses
the well known divide-and-conquer strategy. It is based on a known decomposi-
tion into open nets which we refined such that we may arrive at arbitrarily small
components, and on a projection of information about siphons and traps to the
interface of a component. This way, complexity expresses itself more in terms of
the size of interfaces than of the size of the component as such which makes the
procedure applicable at least for certain classes of nets with somewhat sparse
connectivity.
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For the first approach, the main remaining issue is to get to smaller for-
mulae. In particular, we frequently copy a certain subformula. There may be
structural considerations for reducing the number of required copies for cer-
tain net classes. In the divide-and-conquer approach, there are still some non-
deterministic choices. We need to provide a prototype implementation including
heuristics for these choices for further underpinning its usefulness. In addition,
we would like to have a reasonable criterion for verifying Def. 10.
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3. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

4. Esparza, J., Nielsen, M.: Decidability issues for Petri nets. Petri Nets Newsletter 52,
245–262 (1994)

5. Hack, M.H.T.: Analysis of Production Schemata by Petri Nets. Master’s thesis,
MIT, Dept. Electrical Engineering, Cambridge, Mass (1972)

6. INA. Integrated Net Analyzer (2003),
http://www2.informatik.hu-berlin.de/~starke/ina.html

7. Karatkevich, A.: Analysis by solving logical equations – calculation of siphons and
traps. In: Dynamic Analysis of Petri Net-based Discrete Systems. LNCIS, vol. 356,
pp. 87–93. Springer, Heidelberg (2007)

8. Mennicke, S., Oanea, O., Wolf, K.: Decomposition into open nets. In: AWPN 2009.
CEUR Workshop Proceedings, vol. 501, pp. 29–34. CEUR-WS.org (2009)

9. MiniSat. Minimalistic, open-source SAT solver (2007), http://www.minisat.se
10. Minoux, M., Barkaoui, K.: Polynomial algorithms for proving or disproving Com-

moner’s property in Petri nets. In: Proceedings 9th Workshop on Theory and Ap-
plications of Petri Nets, vol. 1, pp. 113–125 (1988)

11. Zaitsev, D.A.: Decomposition of Petri nets. Cybernetics and Systems Analysis (5),
131–140 (2004)

http://www2.informatik.hu-berlin.de/~starke/ina.html
http://www.minisat.se

	New Algorithms for Deciding the Siphon-Trap Property
	Introduction
	Basic Definitions
	Evaluating the Siphon-Trap Property Using SAT
	Evaluating the Siphon-Trap Property Using a Divide-and-Conquer Approach
	Decomposition into Open Nets
	Composing Siphons and Traps
	Representing Information about Open Siphons and Traps
	Discussion

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




