

Lecture Notes in Computer Science 6128
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Johan Lilius Wojciech Penczek (Eds.)

Applications
and Theory
of Petri Nets

31st International Conference, PETRI NETS 2010
Braga, Portugal, June 21-25, 2010
Proceedings

13

Volume Editors

Johan Lilius
Åbo Akademi University, Department of Information Technologies
Joukahainengatan 3-5, 20520 Turku, Finland
E-mail: johan.lilius@abo.fi

Wojciech Penczek
Polish Academy of Sciences, Institute of Computer Science
Ordona 21, 01-237 Warsaw, Poland
E-mail: penczek@ipipan.waw.pl

Library of Congress Control Number: 2010928055

CR Subject Classification (1998): F.1.1, D.2, F.3, H.4, D.1, F.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-13674-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13674-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume consists of the proceedings of the 31th International Conference
on Applications and Theory of Petri Nets and Other Models of Concurrency
(PETRI NETS 2010). The Petri Net conferences serve as annual meeting places
to discuss the progress in the field of Petri nets and related models of concur-
rency. They provide a forum for researchers to present and discuss both appli-
cations and theoretical developments in this area. Novel tools and substantial
enhancements to existing tools can also be presented. The satellite program of
the conference comprised five workshops and three tutorials. This year, the con-
ference was co-located with the 10th International Conference on Application of
Concurrency to System Design (ACSD 2010). The two conferences shared five
invited speakers. Detailed information about PETRI NETS 2010 can be found
at http://petrinets2010.di.uminho.pt. The PETRI NETS 2010 conference was
organized by the Universidade du Minho and the Instituto Polytécnico de Beja.
It took place in Braga, Portugal during June 21-25, 2010. We would like to
express our deepest thanks to the Organizing Committee, chaired by João M.
Fernandes, for the time and effort invested in the conference and for all the help
with local organization. We are also grateful for the financial support by Centro
de Ciências e Tecnologias de Computação.

This year the number of submitted papers amounted to 50, which included 43
full papers and 7 tool papers. The authors of the papers come from 20 different
countries. We thank all the authors who submitted their papers. Each paper was
reviewed by at least four referees. The Program Committee (PC) meeting took
place in Warszawa, Poland. At the PC meeting, 14 PC members were present
who selected 16 papers, classified as: theory papers (10 accepted), application
papers (2 accepted), and tool papers (4 accepted). After the conference, some
authors were invited to publish an extended version of their contribution in the
journal Fundamenta Informaticae. We wish to thank the PC members and other
reviewers for their careful and timely evaluation of the submissions before the
meeting. Special thanks are due to Frank Holzwarth (Springer) and Stephan
Windmüller (University of Dortmund) for their friendly attitude and technical
support with the Online Conference Service. Finally, we wish to express our
gratitude to the invited speakers David Harel, who gave the first Distinguished
Carl Adam Petri lecture, and Kim Gulstrand Larsen, Gabriel Juhás, Maciej
Koutny, and Lars M. Kristensen for their contribution. As usual, the Springer
LNCS team provided high-quality support in the preparation of this volume.

April 2010 Johan Lilius
Wojciech Penczek

Organization

Steering Committee

Wil van der Aalst, The Netherlands Chuang Lin, China
Jonathan Billington, Australia Wojciech Penczek, Poland
Gianfranco Ciardo, USA Carl Adam Petri, Germany
Jörg Desel, Germany (honorary member)
Susanna Donatelli, Italy Lucia Pomello, Italy
Serge Haddad, France Wolfgang Reisig, Germany
Kunihiko Hiraishi, Japan Grzegorz Rozenberg, The Netherlands
Kurt Jensen, Denmark (Chair) Manuel Silva, Spain
H.C.M. Kleijn, The Netherlands Antti Valmari, Finland
Maciej Koutny, UK Alex Yakovlev, UK

Program Committee

M. Bednarczyk, Poland M. Koutny, UK
M. Bonsangue, The Netherlands L.M. Kristensen, Norway
R. Bruni, Italy C. Lakos, Australia
D. Buchs, Switzerland J. Lilius, Finland (Co-chair)
P. Chrzastowski-Wachtel, Poland C. Lin, China
G. Ciardo, USA T. Miyamoto, Japan
J. Desel, Germany D. Moldt, Germany
R. Devillers, Belgium M. Mukund, India
J.M. Fernandes, Portugal W. Penczek, Poland (Co-chair)
G. Franceschinis, Italy L. Petrucci, France
Q.W. Ge, Japan L. Pomello, Italy
S. Haddad, France O-H. Roux, France
M. Heiner, Germany N. Sidorova, The Netherlands
R. Janicki, Canada V. Valero, Spain
G. Juhas, Slovak Republic A. Valmari, Finland
J. Júlvez, Spain K. Wolf, Germany
E. Kindler, Denmark A. Yakovlev, UK

Organizing Committee Chair

João M. Fernandes Universidade do Minho, Portugal

Tools Exhibition Chair

Ricardo J. Machado Universidade do Minho, Portugal

VIII Organization

Publicity Chair

João Paulo Barros Instituto Politecnico de Beja, Portugal

Website Manager

Rui Pais Instituto Politecnico de Beja, Portugal

Referees

Paolo Baldan
Kamel Barkaoui
João Paulo Barros
Marco Beccuti
Béatrice Bérard
Robin Bergenthum
Giovanni Bernardi
Luca Bernardinello
Jonathan Billington
Filippo Bonchi
Anne Bouillard
Olivier Boutin
Carmen Bratosin
Lawrence Cabac
Javier Campos
Andrea Corradini
Anikó Costa
Philippe Darondeau
David De-Frutos
Zuohua Ding
Boudewijn van Dongen
Michael Duvigneau
Stefan Dziembowski
Johan Ersfolk
Jude Ezeobiejesi
Dirk Fahland
Carlo Ferigato
Fabio Gadducci
Guy Gallasch
Gilles Geeraerts
Luís Gomes
Susumu Hashizume
Kees van Hee
Marcin Hewelt

Lom Hillah
Kunihiko Hiraishi
Steve Hostettler
Kathrin Kaschner
Kais Klai
Jetty Kleijn
Michael

Koehler-Bussmeier
Fabrice Kordon
Christian Krause
Ivan Lanese
Slawomir Lasota
Didier Lime
Alban Linard
Fei Liu
Lin Liu
Alberto Lluch Lafuente
Niels Lohmann
Juan-Pablo Lopez-Grao
Levi Lucio
Ricardo Machado
Hermenegilda Macià
Cristian Mahulea
Elisabetta Mangioni
Alexis Marechal
Marco Mascheroni
Thierry Massart
Shiro Masuda
Robin Bergenthum
Hernán Melgratti
José Merseguer
Andrey Mokhov
Patrice Moreaux
Morikazu Nakamura

Tatsushi Nishi
Olivia Oanea
Atsushi Ohta
Sérgio Oliveira
Vincent Peng
G. Michele Pinna
Jean-François

Pradat-Peyre
José Quenum
Ashur Rafiev
Óscar Ribeiro
Matteo Risoldi
Christian Rohr
Fernando Rosa
Martin Schwarick
Christian Stahl
Shigemasa Takai
Satoshi Taoka
Louis-Marie Traonouez
Nikola Trcka
Jean-Baptiste Voron
Thomas Wagner
Daniela Weinberg
Jan Martijn van der Werf
Matthias

Wester-Ebbinghaus
Michael Westergaard
Harro Wimmel
Fei Xia
Jin Xiaoqing
Shingo Yamaguchi
Samir Youcef
Yang Zhao

Table of Contents

Invited Papers

Instance Deadlock: A Mystery behind Frozen Programs 1
Gabriel Juhás, Igor Kazlov, and Ana Juhásová

Some Thoughts on Behavioral Programming – Distinguished Carl
Adam Petri Lecture (Abstract) . 18

David Harel

Petri Nets with Localities and Testing . 19
Jetty Kleijn and Maciej Koutny

A Perspective on Explicit State Space Exploration of Coloured Petri
Nets: Past, Present, and Future . 39

Lars M. Kristensen

Full Papers

Can Stubborn Sets Be Optimal? . 43
Antti Valmari and Henri Hansen

Efficient Computation of Causal Behavioural Profiles Using Structural
Decomposition . 63

Matthias Weidlich, Artem Polyvyanyy, Jan Mendling, and
Mathias Weske

Canonical Transition Set Semantics for Petri Nets . 84
Yunhe Wang and Li Jiao

A Characterization of Combined Traces Using Labeled Stratified Order
Structures . 104

Dai Tri Man Lê

Integrated Process Planning and Supply Chain Configuration for
Commodity Assemblies Using Petri Nets . 125

Oleg Gusikhin and Erica Klampfl

The NEO Protocol for Large-Scale Distributed Database Systems:
Modelling and Initial Verification . 145

Christine Choppy, Anna Dedova, Sami Evangelista, Silien Hong,
Kais Klai, and Laure Petrucci

Factorization Properties of Symbolic Unfoldings of Colored Petri
Nets . 165

Thomas Chatain and Eric Fabre

X Table of Contents

Forward Analysis for Petri Nets with Name Creation 185
Fernando Rosa-Velardo and David de Frutos-Escrig

Learning Workflow Petri Nets . 206
Javier Esparza, Martin Leucker, and Maximilian Schlund

Process Mining from a Basis of State Regions . 226
Marc Solé and Josep Carmona

Separability in Persistent Petri Nets . 246
Eike Best and Philippe Darondeau

New Algorithms for Deciding the Siphon-Trap Property 267
Olivia Oanea, Harro Wimmel, and Karsten Wolf

Tool Papers

AlPiNA: A Symbolic Model Checker . 287
Didier Buchs, Steve Hostettler, Alexis Marechal, and Matteo Risoldi

Wendy: A Tool to Synthesize Partners for Services 297
Niels Lohmann and Daniela Weinberg

GreatSPN Enhanced with Decision Diagram Data Structures 308
Junaid Babar, Marco Beccuti, Susanna Donatelli, and Andrew Miner

PNML Framework: An Extendable Reference Implementation of the
Petri Net Markup Language . 318

L.M. Hillah, F. Kordon, L. Petrucci, and N. Trèves

Author Index . 329

Instance Deadlock: A Mystery behind Frozen Programs

Gabriel Juhás, Igor Kazlov, and Ana Juhásová

Faculty of Electrical Engineering and Information Technology
Slovak University of Technology, Bratislava, Slovakia

gabriel.juhas@stuba.sk

Abstract. In the paper we discuss the event-driven reactive programs and sys-
tems, which does not deadlock for one instance, but because of shared resources,
can deadlock for several instances. We focus on event-driven programs, where
instances have a correct finish, and resources can be used by single instances,
but can neither be destroyed nor created by instances. Typical examples include
workflow processes, where each case creates an instance of the process and in-
stances share resources used to execute single activities. Formally, we model such
event-driven programs and systems by workflow nets, enriched by so called static
places, introduced in [3] as resource constrained workflow nets (rcwf-nets). We
investigate, whether an rcwf-net, which is sound for a single instance is sound for
multiple instances (dynamically sound) or whether it contains an instance dead-
lock for a number of instances. We show that the detection of instance deadlock
and the dynamic soundness of rcwf-nets is decidable by transforming the problem
to bounded place/transition Petri nets.

1 Introduction

When you enter the key words ”frozen computer” into the Google search engine, the
first link you get is a web page eHow dealing with how to fix computer freezes. As one
of the suggestions it writes: ”Close applications, run only what you need to. Computer
freezes happen when too many software programs run at the same time.” In fact, not
only computer programs, but event-driven reactive systems in general, such as com-
munication networks and workflow processes often hang/crash because of a deadlock,
even if each running instance of a program itself is deadlock-free. The reason is that the
programs/processes/threads use shared resources (memory, ports, processors, buses etc.
in case of computers and networks, people or machines in case of bussines processes
or flexible manufacturing systems). Thus, in this paper we focus on a special case of
a deadlock. We consider event-driven reactive systems, which does not deadlock for a
single instance, but because of shared resources, can deadlock for multiple instances.

In terminology of object-oriented programs, we restrict ourselves to event-driven
programs implemented by a class consisting of a set of attributes (variables) and a set
of methods that change the attributes, and an event listener. Shared resources are im-
plemented via static variables. Using the event listener, an instance of the program is
reacting to an event occurrence by calling some of the enabled methods. Thus, a method
can be called by the event listener just if attributes have defined values, otherwise it is
disabled. Furthermore, we focus on event-driven systems, where instances have a cor-
rect finish, and resources can be used by single instances, but can neither be destroyed

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 1–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 G. Juhás, I. Kazlov, and A. Juhásová

nor created by instances. During the run time of the system, instances are created and
after correct finish they are closed, thus none or several instances can be running. We
consider that a system itself is correct for one instance, i.e. any single instance can be
finished without deadlocking before correct finish. We investigate the question, whether
the system deadlocks for multiple instances, i.e. we ask whether there is a number of in-
stances, for which each running instance deadlocks without finishing correctly, i.e. the
values of static variables and variables of each running instance cause that all methods
of all running instances are disabled. Typical examples include workflow processes,
where each processed case creates a new instance of the process and instances share
resources used to execute single activities. Workflow nets (wf-nets) are a prominent
formalism to model and analyze workflow processes [1]. Their main power in compar-
ison with other modelling techniques for workflow processes is the possibility to find
errors in processes in a formal way [4]. Classical wf-nets do not consider soundess anal-
ysis and detection of a deadlock for multiple instances (cases) and constrained number
of resources. In practice, the question of soundness considering multiple instances and
constrained number of resources remains crucial. To formalize the problem we follow
the concept of static and non-static places introduced in [3] resulting in resource con-
strained workflow nets.

When understood as a simple program, an rcwf-net can be understood as a class
definition, with static places corresponding to the static variables shared by all instances
(i.e. static places are holders for different types of shared resources) and non-static
places as well as transitions corresponding to the non-static variables and methods of
instances, which are no more shared by single instances. Thus, each case creates a
new instance with its own copy of non-static places, transitions and respective arcs.
Following [3], we consider a situation, where a marking of a static place is bounded
by the initial value and it remains unchanged after processing a single instance. We
provide a definition which is fully based on place/transition nets (low-level Petri nets)
[5], in comparison to [3], where coloured nets (high level Petri nets) [6] with token id-s
are used.

In the paper we investigate, whether an rcwf-net, which is sound for a single instance
is sound for multiple instances (dynamically sound) or whether it contains an instance
deadlock for a number of instances. We show that the detection of instance deadlock
and the dynamic soundness of rcwf-nets is decidable by transforming the problem to
bounded place/transition Petri nets.

2 Place/Transition Nets and Workflow Nets

In this section we introduce basic notions for place/transition nets and workflow nets
following [5] and [1]. As usual, we use N to denote the nonnegative integers and N+ to
denote positive integers and by a ÷ b for given integers a, b we denote the quotient of
integer division. Given two sets A and B we use BA to denote all functions from A to
B. Given a set A, a number n ∈ N, and a (nonempty) sequence σ : {1, . . . , n} → A of
elements from A, we define |σ| = n to denote the number of elements of σ.

A sequence f : {1, . . . , k} → {1, . . . , n} such that k, n ∈ N+, 1 ≤ k ≤ n and i <
j ⇒ f(i) < f(j) for every i, j ∈ {1, . . . , k} is called a subsequence of a sequence with
n elements. We denote Ψn the set of all subsequences of a sequence with n elements.

Instance Deadlock: A Mystery behind Frozen Programs 3

Definition 1. (Place/transition net)
A place/transition net (shortly a p/t net) is a quadruple (P, T, F,W), where P is a finite
set of places, T is a finite set of transitions such that P ∩T = ∅, F ⊆ (P ×T)∪(T ×P)
is a flow relation and W : F → N is a weigth function.

As usual, we extend the weight function W to pairs of net elements (x, y) satisfying
(x, y)
∈ F by W (x, y) = 0.

Let (P, T, F,W) be a p/t net and let x ∈ P ∪T . Then •x = {y ∈ P ∪T | (y, x) ∈ F}
is called preset of x and similarly x• = {y ∈ P ∪ T | (x, y) ∈ F} is called postset of
x. Marking of a p/t net (P, T, F,W) is a function m : P → N.

A pair (N,m0), where N = (P, T, F,W) is a p/t net and m0 : P → N is its
marking, is called a marked p/t net and m0 is reffered as the initial marking of the
marked p/t net.

Places are graphically depicted by circles, transitions by boxes, elements of the flow
relation by arcs, values of the weigth function by labels of arcs and values of a marking
of a place by the appropriate number of black tokens in the place. As usual, labels of
the arcs corresponding to the values of the weigth function equal to 1 are ommited.

Definition 2. (Occurrence rule, Deadlock)
Let N = (P, T, F,W) be a p/t-net. A transition t ∈ T is enabled to occur in a marking
m of N if m(p) ≥ W (p, t) for every place p ∈ •t, and then we say that m enables t in
N , otherwise t is said to be disabled to occur in the marking m of N and we say that
m disables t in N .

If a marking m disables any t ∈ T in N then we say that m is a deadlock of N .
If a transition t is enabled to occur in a marking m, then its occurrence leads to the

new marking m′ defined by m′(p) = m(p) − W (p, t) + W (t, p) for every p ∈ P . We

write m
t−→ m′ to denote that t is enabled to occur in m and that its occurrence leads

to m′.

Definition 3. (Occurrence sequence, Reachability)
Let N = (P, T, F,W) be a p/t-net and m be a marking of N . Then m is said to be
reachable from m. A finite and nonempty sequence of transitions σ : {0, . . . , n} → T
is called an occurrence sequence enabled in m and leading to m′ if there exists a
sequence of markings ρ : {1, . . . , n − 1} → NP such that

m
σ(1)−→ ρ(1)

σ(2)−→ . . . ρ(n − 1)
σ(n)−→ m′.

Then the marking m′ is said to be reachable from the marking m. We write m
σ−→ m′

to denote that σ is enabled to occur in m and that its occurrence leads to m′.
In a marked p/t-net, the markings reachable from the initial marking m0 are shortly

called reachable markings. The set of all markings reachable from m0 is denoted by
[m0〉. The set of all reachable markings which are deadlocks is denoted by [m0〉dead.

Definition 4. (Workflow net)
A p/t net PN = (P, T, F,W) is called a workflow net (shortly a wf-net) iff: There exist
a place in ∈ P with •in = ∅ ∧ in•
= ∅ called an input place and a place out ∈ P

4 G. Juhás, I. Kazlov, and A. Juhásová

with out• = ∅ ∧ •out
= ∅ called an output place. Moreover, ∀p ∈ P \ {in, out} :
•p
= ∅ ∧ p•
= ∅. Let min denote the marking of the wf-net such that min(in) = 1 and
m(p) = 0 for each p ∈ P \ {in} and mout denote the marking of the wf-net such that
mout(out) = 1 and m(p) = 0 for each p ∈ P \ {out}.

In the following definition of soundness we relax the requirement that each transition
has to be used at least in one branch of the process, as this requirement is not important
for our further discussion.

Definition 5. (Soundness of a wf-net): A wf-net PN = (P, T, F,W) is sound if for
each m reachable from min there holds

– mout is reachable from m and
– if m(out) = 1 then m = mout, i.e. mout is the only marking reachable from min

with marked output place.

A well known fact is that whenever a wf-net is sound then it has finite number of
reachable markings, see e.g. [1].

Lemma 1. Let PN be a wf-net. If PN is sound then the number of markings reachable
from min in PN is finite.

3 Resource Constrained Workflow Nets

In this section we introduce resource constrained workflow nets motivated by [3]. In
comparison to [3] we allow more types of resources. Following [3], we require that
the number of resources is bounded by the initial value and it remains unchanged after
processing any single instance.

Definition 6. Let PN = (P, T, F,W) be a wf-net. Let P = S ∪ D with S ∩ D = ∅
and in, out ∈ D. Set D denotes non-static places and set S denotes the static places
(shared resource holders). Let m0 be a marking of PN such that m0(d) = 0 for each
d ∈ D \ {in} and m0(in) = 1. Then marked p/t net (PN,m0) is called resource-
constrained wf-net (shortly rcwf-net). By mf we denote the marking of rcwf-net called
final marking given by: mf (d) = 0 for each d ∈ D \ {out}, mf (out) = 1 and
mf (s) = m0(s) for each s ∈ S.

Static places (also called resource places in [3]) are depicted in figures by circles with
shadow.

An example of an rcwf-net is given in Figure 1. It models a simple process of treat-
ing patient in an emergency department. Marking of the static place s1 stands for the
number of available doctors. Transition t1 stands for a decision that a case is compli-
cated and two doctors are necessary to treat the patient, therefore it produces 2 tokens
to place d1. Transition t3 means that a doctor goes to treat a patient who needs two doc-
tors. Number of tokens in place d3 stands for the number of doctors treating the patient.
Transition t5 means that two doctors finished to treat the patient and are available again.
The branch with places and transitions indexed by even numbers model the treating of
a patient where only one doctor is needed.

Instance Deadlock: A Mystery behind Frozen Programs 5

2 2

2

d1

s1

d3

d2 d4

in out

t2

t1 t3 t5

t4 t6

Fig. 1. an rcwf-net

Definition 7. (Single instance soundness of an rcwf-net)
An rcwf-net (PN,m0) is sound for a single instance if for each m reachable from m0
there holds:

– mf is reachable from m, and
– ∀s ∈ S : m(s) ≤ m0(s), and
– if m(out) = 1 then m = mf .

Using lemma 1 we get that a necessary condition for dynamic soundess of an rcwf-net
is that it has a finite number of reachable markings.

Corollary 1. Let (PN,m0) be an rcwf-net. If (PN,m0) is sound for a single instance
then the number of markings reachable from m0 in (PN,m0) is finite.

Obviously, at a given moment of time several instances (cases) of a process described
by an rcwf-net can be handled. This is expressed by so called run-time nets of rcwf-nets.

Definition 8. (Run-time nets of an rcwf-net)
Let (PN = (P = (S ∪D), T, F,W),m0) be an rcwf-net and n ∈ N+.
Let Pn = S ∪ (D × {1, . . . , n}), T n = T × {1, . . . , n},
Fn

1 = {((x, i), (y, i)) ∈ ((Pn \ S) × T n) ∪ (T n × (Pn \ S)) | (x, y) ∈ F},
Fn

2 = {(x), (y, i)) ∈ (S × T n) | (x, y) ∈ F},
Fn

3 = {(x, i), (y)) ∈ (T n × S) | (x, y) ∈ F},
Fn = Fn

1 ∪ Fn
2 ∪ Fn

3
and let Wn : Fn → N be given by:
∀((x, i), (y, i)) ∈ Fn

1 : Wn((x, i), (y, i)) = W (x, y)
∀((x), (y, i)) ∈ Fn

2 : Wn(x, (y, i)) = W (x, y)
∀((x, i), (y)) ∈ Fn

3 : Wn((x, i), y) = W (x, y).
Let mn

0 : Pn → N denote a marking satisfying:
mn

0 (s) = m0(s) for each s ∈ S and mn
0 (d, i) = m0(d) for each (d, i) ∈ D×{1, .., n}).

Then the marked p/t net (PNn = (Pn, T n, Fn,Wn),mn
0) is called the run-time net of

rcwf-net (PN,m0) for n instances.
By mn

f we denote the marking of run-time net (PNn,mn
0) of rcwf-net (PN,m0)

called final marking given by: mn
f (d) = 0 for each d ∈ Pn\(S∪({out}×{1, . . . , n}),

mn
f (out, i) = 1 for each i ∈ {1, . . . , n} and mn

f (s) = m0(s) for each s ∈ S.

6 G. Juhás, I. Kazlov, and A. Juhásová

2 2

2

22

22

2

2

s1

(d4,1)(d2,1)

(d1,1)

(in,1) (out,1)

(d3,1)

(out,2)

(d3,2)

(d2,2)

(d1,2)

(d4,2)

(in,2)

(out,3)

(d3,3)

(d4,3)

(in,3)

(d1,3)

(d2,3)

(t1,1)

(t6,1)(t2,1)

(t5,1)

(t4,1)

(t3,1)

(t4,2) (t6,2)

(t5,2)(t3,2)

(t2,2)

(t1,2)

(t4,3)(t2,3)

(t1,3)

(t6,3)

(t3,3) (t5,3)

Fig. 2. Run-time net for 3 instances

Dynamic soundness expresses the property saying that for any number of instances the
process modelled by respective run-time net will terminate properly, i.e. the process is
sound for a single instance and has no instance deadlock.

Definition 9. (Instance deadlock of rcwf-nets)
Let n ∈ N+ and (PN,m0) be an rcwf-net sound for a single instance. Let (PNn,mn

0)
be the run-time net of rcwf-net (PN,m0) for n instancess. A marking mn : Pn → N is
called an instance deadlock of rcwf-net (PN,m0) for n instances if mn ∈ [mn

0 〉dead \
{mn

f}. If [mn
0 〉dead = {mn

f } then we say that rcwf-net (PN,m0) has no instance
deadlock (is instance deadlock free) for n instances.

An rcwf-net (PN,m0) has no instance deadlock (is instance deadlock free) if for
each n ∈ N there holds: (PN,m0) has no instance deadlock for n instances.

Definition 10. (Dynamic soundness of rcwf-nets)
Let (PN,m0) be an rcwf-net sound for a single instance. (PN,m0) is sound for n
instances if it has no instance deadlock for n instances. (PN,m0) is dynamically sound
if it has no instance deadlock.

As it is illustrated in Figure 3, the rcwf-net from Figure 1, which is sound for 1 instance
is not dynamically sound as it has the instance deadlock for 3 instances depicted in
Figure 3. The question is, whether the dynamic soundess is decidable in general.

Instance Deadlock: A Mystery behind Frozen Programs 7

2 2

2

22

22

2

2

s1

(d4,1)(d2,1)

(d1,1)

(in,1) (out,1)

(d3,1)

(out,2)

(d3,2)

(d2,2)

(d1,2)

(d4,2)

(in,2)

(out,3)

(d3,3)

(d4,3)

(in,3)

(d1,3)

(d2,3)

(t1,1)

(t6,1)(t2,1)

(t5,1)

(t4,1)

(t3,1)

(t4,2) (t6,2)

(t5,2)(t3,2)

(t2,2)

(t1,2)

(t4,3)(t2,3)

(t1,3)

(t6,3)

(t3,3) (t5,3)

Fig. 3. Deadlock of the run-time net for 3 instances after firing (t1, 1), (t1, 2), (t1, 3) and
(t3, 1), (t3, 2), (t3, 3)

The problem is caused by the fact that one has to check infinitely many run-time
nets. Obviously, they all can be modelled by a single coloured Petri net [6] with in-
finitely many token colours. However, the problem of reachability in coloured nets with
infinitely many tokens is undecidable. One naive approach is to model multiple in-
stances by multiple tokens in the initial place of the rcwf-net. As the example in Figure
4 illustrates, this can cause that tokens of different instances will be mixed and there-
fore a transition can occur which cannot occur for any single instance. Thus, an existing
instance deadlock for 3 instances illustrated in Figure 3 would not be detected using 3
tokens in the place pin (Figure 4), because after firing tree times t1 and t3 we get the
3 tokens representing different instances in place d3 and the transition t5 can occur,
which cannot occur for any single instance.

As the example in Figure 5 illustrates, a nonexisting instance deadlock could be de-
tected. Namely, the model of an (artifical) wokflow process of correcting and publishing
a manuscript on a web page is described. The web page has one editor. We suppose un-
limited number of correctors. For short manuscripts, only one corrector is necessary,
corresponding to an occurrence of transition one representing the decision of the editor.
A corrector corrects the manuscript (transition first), and if there were not many er-
rors, transition enough occurs and finally the editor publishes the manuscript (transition
publish occurs). If there were namy errors, the manuscript is corrected once again (tran-
sitions more and other). After that the manuscript is sent to the editor who publishes

8 G. Juhás, I. Kazlov, and A. Juhásová

22

2

2

22

d1

s1

d3

d2 d4

in out

t2

t1 t3 t5

t4 t6

d2

d3t1

s1

t4

d1

t6

t3

out

d4t2

in

t5

Fig. 4. Deadlock of the system for 3 instances after firing t1 three times and t3 three times will
not be detected

2
2

in

correction

outtwo

one first

second merge publish

enough

sendmoreother

Fig. 5. An instance deadlock free net

it. If a manuscript is longer, the editior decides to require two corrections (transition
two), first performed by a corrector (transition first) and after it is finished the second
correction is performed by the editor himself (transition second). After the corrections
are finished, the editor immediately merges them to one document (transition merge)
and publishes it (transition publish).

Observe that the process is dynamically sound, i.e. it has no instance deadlock. But
if one consider for the instance deadlock detection the same net with two tokens in the
input place in (Figure 6), then for example the firing sequence of transitions one, two,
first, second, first enables transition send by mixing tokens from two instances in
place correction, which causes the deadlock depicted in Figure 7. Such deadlock will
never happen in the system.

Instance Deadlock: A Mystery behind Frozen Programs 9

2
2

in

correction

outtwo

one first

second merge publish

enough

sendmoreother

Fig. 6. Modelling two instances with low level tokens

Thus, modelling multiple instances with several low level tokens in the original net
does not work in general.

The paper [3] gives an algorithm for the decision of dynamic soundness for a re-
stricted class of rcfw-nets with just one static place. The paper [3] also mentions that an
rcwf-net with one static place can be transformed to a state machine via its reachability
graph and claims that the original net is sound iff the transformed is. Unfortunately,
[3] does not formalize the transformation. Moreover, the mentioned result and the al-
gorithm for checking soundess is provided for state machines with one static place
only and the general case with more than one static place is left in [3] to be a prob-
lem for future work. Here we formalize the transformation mentioned in [3] and show
that dynamic soundness is decidable in general. Actually, in the transformed net each
reachable marking is replaced by a place, each transition of the rcwf-net enabled in a
marking of the reachability graph is replaced by a copy transition in the transformed net
and the static places are connected to a copy transition whenever they are connceted to
the original transition of the rcwf-net. In comparison to [3], we add to the transformed
net a constructor transition new, a marked place source, which serves as a source for
the constructor transition, and a transition stop, which removes a token from source
and disables new.

2
2

in

correction

outtwo

one first

second merge publish

enough

sendmoreother

Fig. 7. Finding non existing deadlock

10 G. Juhás, I. Kazlov, and A. Juhásová

Definition 11. (Transformed rcwf-net)
Let (PN = (P = S∪D,T, F,W),m0) be an rcwf-net with a finite number of markings
reachable from m0. Let source, new, stop /∈ S ∪ [m0〉 ∪ ([m0〉 × T × [m0〉).
Define P tr = S ∪ [m0〉 ∪ {source},

T tr = {(m1, t,m2) ∈ [m0〉 × T × [m0〉 | m1
t−→ m2} ∪ {new, stop},

F tr = {(m, (m1, t,m2)) ∈ ([m0〉 × T tr) | m = m1}∪
{((m1, t,m2),m) ∈ (T tr × [m0〉) | m = m2}∪
{(s, (m1, t,m2)) ∈ (S × T tr) | (s, t) ∈ F}∪
{((m1, t,m2), s) ∈ (T tr × S) | (t, s) ∈ F}∪
{(source, stop), (source, new), (new, source), (new,m0)}.
Let W tr : F tr → N be given as follows:
W tr(x, (m1, t,m2)) = W (x, t) and W tr((m1, t,m2), x) = W (t, x) whenever x ∈ S,
otherwise W tr(f) = 1.
Let μ0 : P tr → N be defined by: μ0(s) = m0(s) for each s ∈ S, μ0(source) = 1 and
μ0(m) = 0 for each m ∈ [m0〉 .
Then the marked p/t net (PN tr = (P tr,T tr, F tr,W tr), μ0) is called the transformed
net of the rcwf-net (PN,m0).
By Φtr we denote the set of final markings of (PN tr, μ0) given by
Φtr = {μ ∈ [μ0〉 | (∀s ∈ S : μ(s) = m0(s))∧(∀x ∈ P tr\S : μ(x)
= 0 ⇒ x = mf)}.

The example of the transformed net of the rcwf-net from Figure 1 is in Figure 8.
Markings of places from [m0〉 represent how many instances are in the given state.
For the rest of the paper let us consider that an rcwf-net (PN,m0) sound for a

single instance and its transformed net (PN tr, μ0) are given using the notation from
Definition 11. To avoid confusion, we will use μ for markings of the transformed net
and τ to denote transitions of the transformed net. From the defintion of transformed
nets we get the following result.

Lemma 2
(PN,m0) is dynamically sound (i.e. it has no instance deadlock) iff [μ0〉dead = Φtr.

In fact, the transformed net is unbounded, but its structure can be used for a further
simplification of the problem. Namely, one can ask whether there exists for a given

2

2d1+3s1

s1

2d3+s1

d2+3s1 d4+2s1

in+3s1 out+3s1

d1+d3+2s1

source

(in+3s1,t2,d2+3s1)

(in+3s1,t1,2d1+3s1) (d1+d3+2s1,t3,2d3+s1) (2d3+s1,t5,out+3s1

(d2+3s1,t4,d4+2s1) (d4+2s1,t6,out+3s1)

(2d1+3s1,t3,d1+d3+2s1)

new

stop

Fig. 8. The transformed rcwf-net

Instance Deadlock: A Mystery behind Frozen Programs 11

rcwf-net a number of instances n such that the net is dynamically sound if and only if
it is sound for n instances. We show that the answer is positive and show one simple
and one more complicated way to determine the sufficient number of instances to check
the dynamic soundness. In other words, we show that the lemma 2 holds also if we
replace the transformed net by a bounded transformed net. It means that the detection
of instance deadlocks and the dynamic soundness of an rcwf-net can be investigated
using the set of reachable markings of a bounded place/transition Petri net. Further, we
provide a simple algorithm to determine dynamic soundness without determining the
number of the instances sufficient to check it.

Because the sum of tokens in places from [m0〉 of the transformed net is increased
by one whenever the constructor transition new occurs, but will never decrease, we get
that the reachability of a marking with total n tokens distributed in places from [m0〉
can be determined by firing only sequences with n occurences of the constructor new.

Lemma 3. Let μ ∈ [μ0〉, σ : {1, . . . , n} → T tr and μ0
σ−→ μ. Then the number |{i ∈

{1, . . .n} | σ(i) = new}| of occurences of new in σ equals the sum
∑

m∈[m0〉 μ(m)
of tokens in places from [m0〉.

Another consequence of the structure is that each occurrence sequence σ of the trans-
formed net is given by an interleaving of a set of occurrence sequences of the original
rcwf-net, where the number of tokens in places from [m0〉 gives the number of sub-
sequences of σ. Obviously, not each interleaving of a set of occurrence sequences of
the original net must be enabled in the transformed net, because the static places can
disable some transitions.

Lemma 4. Let μ ∈ [μ0〉, σ : {1, . . .n} → T tr and μ0
σ−→ μ. Then there exists a

sequence f : {1, . . . ,
∑

m∈[m0〉 μ(m)} → Ψ|σ| of subsequences of σ such that

–
∑

i∈{1,...,|f |} |f(i)| = |σ|, i.e. the sum of the transitions in all subsequences equals
the number of transitions of σ, and

– for each i, j ∈ {1, . . . , |f |} there holds:
i
= j ⇒ (∀k ∈ {1, . . . , |f(i)|}, ∀l ∈ {1, . . . , |f(j)|} : f(i)(k)
= f(j)(l)), i.e.
different subsequences do not contain the same elements of σ, and

– for each i ∈ {1, . . . , |f |} there holds: ∀a ∈ {2, . . . , |f(i)|} : π3(σ(f(i)(a−1))) =
π1(σ(f(i)(a))) where π1, π3 : [m0〉 × T × [m0〉 → [m0〉 are projections given by
π1(m, t,m′) = m and π3(m, t,m′) = m′ for each (m, t,m′) ∈ [m0〉×T × [m0〉,
i.e. the subsequences determine the occurence sequences of the original net and
finally,

– ∀m ∈ [m0〉 : μ(m) = |{i ∈ {1, . . . , |f |} | π3(σ(f(i)(|f(i)|))) = m}|, i.e. the
number of subsequences finishing in m equals the number of tokens in m.

Using the fact that the static places are bounded by their initial value, i.e. for each s ∈ S
and each m ∈ [m0〉 there holds: m0(s) − m(s) ≥ 0, we get the following statement.

Lemma 5. For each μ ∈ [μ0〉 and each s ∈ S there holds:
0 ≤ μ(s) = μ0(s) −

∑
m∈[m0〉 μ(m) · (m0(s) − m(s)) ≤ μ0(s) = m0(s).

12 G. Juhás, I. Kazlov, and A. Juhásová

The previous statement says, that the static places are bounded by the initial value also
in the transformed net. Moreover, it says that the markings of static places are fully
determined by the markings of non-static places of the transformed net which means
that there cannot be two different reachable markings of the transformed net which
differs only in static places.

However, because of the previous lemmas, whenever a marking of the transformed
net is reachable, than any marking of the transformed net with less or equal tokens in
non-static places and with static places marked as given by lemma 5 is reachable.

Theorem 1. Let μ ∈ [μ0〉 and let μ′ : P tr → N be such that

– ∀m ∈ [m0〉 ∪ {source} : μ′(m) ≤ μ(m) and
– ∀s ∈ S : μ(s) = μ0(s) −

∑
m∈[m0〉 μ(m) · (m0(s) − m(s)).

Then μ′ ∈ [μ0〉.

Our detection of the instance deadlocks will be based on so called dangerous markings
of the original rcwf-net. A dangerous marking is any marking m reachable from m0 sat-
isfying that there exists a static place s such that m(s) is less than m0(s) and whenever
a transition enabled in m consumes a token from m then it also consumes something
from a static place.

Definition 12. (Dangerous marking, Basic deadlock)
Let m ∈ [m0〉 such that for each τ ∈ m• there holds •τ ∩ S
= 0 and there exists s ∈ S
such that m0(s) − m(s) > 0. Then m is called dangerous.
The set of all dangerous markings of (PN,m0) will be denoted by [m0〉dg.
Whenever [m0〉dg
= ∅, we define a simple bound function b : [m0〉dg → N by
b(m) = mins∈{s∈S|m0(s)−m(s)>0}(m0(s) ÷ (m0(s) − m(s))) for each m ∈ [m0〉dg.
We define [μ0〉dg = {μ ∈ [μ0〉 | ∀m ∈ (([m0〉 ∪ {source}) \ [m0〉dg) : μ(m) = 0}
to be the set of all markings of (PN tr, μ0) that do not mark any place of PN tr except
dangerous markings of PN and static places.
Finally, we define [μ0〉bid = ([μ0〉dg ∩ [μ0〉dead) \ Φtr to be the set of basic deadlocks
of (PN tr, μ0) determining the instance deadlocks of (PN,m0).

Obviously, because of the lemma 5, we get that the dangerous markings are bounded
when used as places in the transformed net.

Lemma 6
Let m is a dangerous marking. Then for each μ ∈ [μ0〉 there holds μ(m) ≤ b(m).

We have the following property of the instance deadlocks, i.e. deadlocks of the trans-
formed net different from a final marking: Given a deadlock μ of PN tr reachable from
μ0 and different from any marking from Φtr, there exists a dangerous marking m such
that m is marked in μ and each τ consuming from m needs to consume from a static
place s but there are not enough tokens in s to enable τ .

More precisely, we get the following lemma.

Lemma 7. Let μ ∈ [μ0〉 \ Φtr be a deadlock of PN tr. Then there exists a dangerous
marking m such that μ(m) > 0 and for each τ ∈ m• there exists s ∈ S such that
μ(s) < W tr(s, τ).

Instance Deadlock: A Mystery behind Frozen Programs 13

2

2d1+3s1

s1

2d3+s1

d2+3s1 d4+2s1

in+3s1 out+3s1

d1+d3+2s1

source

(in+3s1,t2,d2+3s1)

(in+3s1,t1,2d1+3s1) (d1+d3+2s1,t3,2d3+s1) (2d3+s1,t5,out+3s1

(d2+3s1,t4,d4+2s1) (d4+2s1,t6,out+3s1)

(2d1+3s1,t3,d1+d3+2s1)

new

stop

Fig. 9. The 3-bounded transformed net (PN tr
3 , μ3

0) with the only dangerous marking d1 + d3 +
2s1 of (PN, m0)

Thus, dangerous markings are necessary for the existence of an instance deadlock.

Corollary 2. If [m0〉dg = ∅ then (PN,m0) has no instance deadlock.

In fact, dangerous markings are enough to detect the existence of an instance deadlock.

Lemma 8. Let μ ∈ [μ0〉dead \ Φtr. Let μdg be given as follows:

– ∀m ∈ [m0〉dg : μdg(m) = μ(m) and
– ∀m ∈ (([m0〉 \ [m0〉dg) ∪ {source}) : μdg(m) = 0 and
– ∀s ∈ S : μdg(s) = μ0(s) −

∑
m∈[m0〉dg

μ(m) · (m0(s) − m(s)).

Then μdg ∈ [μ0〉bid.

This gives the following result.

Theorem 2
(PN,m0) is dynamically sound (i.e. it has no instance deadlock) iff [μ0〉bid = ∅.

Joining the previous results together, we get that it is enough to investigate at most so
many instances (each instance represented by an occurrence of the constructor transition
new in the transformed net) as many tokens can be put in dangerous markings in the
tranformed net. In order to simulate behaviour for a bounded number of instances, we
will slightly modify the transformed net by removing the arc from new to source and
increasing the number of tokens in source in the initial marking.

Definition 13. (Bounded transformed net): Given n ∈ N, n-bounded tranformed net
is the marked p/t net (PN tr

n = (P tr, T tr, F tr
n = F tr \ {(new, source)},W tr

n =
W tr|F tr

n
), μn

0) with μn
0 (source) = n and μn

0 (x) = μ0(x) for each x ∈ P tr\{source}.
We define [μn

0 〉dg = {μ ∈ [μn
0 〉 | ∀m ∈ (([m0〉 ∪ {source}) \ [m0〉dg) : μ(m) = 0}.

Finally, let Φtr
n = Φtr ∩ [μn

0 〉 and [μn
0 〉bid = ([μn

0 〉dg ∩ [μn
0 〉dead) \ Φtr

n .

By the simple bound function we already determined the maximal number of tokens
for any single dangerous marking. Obviously, a simple sum of those bounds gives a

14 G. Juhás, I. Kazlov, and A. Juhásová

sufficient number of instances for detection of an instance deadlock. Denoting by n
this sum of bounds of dangerous markings, we get that an rcwf-net is sound iff its
n-bounded transformed net has no basic deadlocks, i.e. deadlocks with marked only
dangerous markings and static places.

Theorem 3. Let [m0〉dg
= ∅ and n =
∑

m∈[m0〉dg
b(m). Then [μ0〉bid = [μn

0 〉bid and

(PN,m0) is dynamically sound (i.e. has no instance deadlock) iff [μn
0 〉bid = ∅.

However, as the dangerous places can consume from the same static places, better
bounds can be found by solving the proper optimization problem using integer lin-
ear programming. To get such a better bound one pays by the fact that the integer linear
programming is NP-hard.

Theorem 4. Let [m0〉dg
= ∅ and let x : [m0〉dg → N be such nonnegative integer
soultion of the ineqation

∑
m∈[m0〉dg

(m0(s) − m(s)) · x(m) ≤ m0(s) for each s ∈
S, that maximizes the sum

∑
m∈[m0〉dg

x(m). Denote n =
∑

m∈[m0〉dg
x(m). Then

[μ0〉bid = [μn
0 〉bid and (PN,m0) is dynamically sound (i.e. has no instance deadlock)

iff [μn
0 〉bid = ∅.

Finally, the previous results gives the following direct algorithm for the instance dead-
lock detection without previous computing of a bound for the number of instances.
The algoritm has an rcwf-net (PN,m0) which is sound for a single instance as an in-
put and decides whether it is instance deadlock free. If not, it returns also the set of
all basic deadlocks of (PN tr, μ0) determining the instance deadlocks of (PN,m0).
The algorithm computes dangerous markings [μn

0 〉dg for n-bounded transformed nets,

starting with n = 1, and increasing n until the sets of dangerous markings
[
μn−1

0

〉
dg

and [μn
0 〉dg equal. Because

[
μn−1

0

〉
dg

⊆ [μn
0 〉dg ⊆ [μ0〉dg and the number [μ0〉dg of

dangerous markings of the transformed net is bounded, the algorithm terminates.

Algorithm 1

1. load an rcwf-net (PN,m0) sound for a single instance
2. compute [m0〉dg
3. if [m0〉dg = ∅ return ”(PN,m0) has no instance deadlock”
4. set n = 1
5. compute [μn

0 〉dg
6. set previousdg = [μn

0 〉dg
7. set n = n + 1
8. compute [μn

0 〉dg
9. if previousdg = [μn

0 〉dg go to 11
10. go to 6
11. compute [μn

0 〉bid
12. if [μn

0 〉bid = ∅ return ”(PN,m0) has no instance deadlock”
13. if [μn

0 〉bid
= ∅ return ”(PN,m0) has instance deadlocks determined by the basic
deadlocks [μn

0 〉bid”

We conclude with the following corollary.

Instance Deadlock: A Mystery behind Frozen Programs 15

2

22

d1

s1

d3

d2 d4

in out

t2

t1 t3 t5

t4 t6

s2

Fig. 10. A corrected minimally restrictive dynamically sound rcwf-net

2

22

2

m1

s1

m5

m2 m4

m0 mf

m3

source

s2

m7

d1

s1

in

s2

d4d2

d3

out

d5

m0,t2,m2

m0,t1,m1 m3,t3,m5 m5,t5,mf

m2,t4,m4 m4,t6,mf

m1,t3,m3

new

stop
m0,t7,m7

m7,t8,mf

t1 t5

t2

t3

t4 t6

t7

t8

Fig. 11. A net with an unbounded static place and its transformed net

Corollary 3. Testing instance deadlock freeness and dynamic soundness of rcwf-nets
is decidable.

16 G. Juhás, I. Kazlov, and A. Juhásová

2

m1

s1

m5

m2 m4

m0 mf

m3

source

s2

m7

m0,t2,m2

m0,t1,m1 m3,t3,m5 m5,t5,mf

m2,t4,m4 m4,t6,mf

m1,t3,m3

new

stop
m0,t7,m7

m7,t8,mf

Fig. 12. A deadlock situation for 5 instances. No submarking with 3 tokens in the dangerous
marking m3 and no token in other non-static places is reachable.

4 Further Research

One line of further research is to find an algorithm constructing a minimally restrictive
dynamically sound rcwf-net PNmin for an original rcwf-net PN , which is not dynam-
ically sound. By minimally restrictive dynamically sound net we mean a net PNmin

constructed just by adding static places, such that there is no other net PN ′ obtained by
adding static places, which is dynamically sound and includes all occurrence sequences
of PNmin and at least one sequence which cannot occur in PNmin. An example of
such a net for the net from Figure 1 is given in Figure 10.

Another line of future research is to study instance deadlocks in more general setting,
relaxing for example boundedness of static places, or allowing different number of to-
kens in static places in the initial and the final marking, which would correspond to the
production and/or the consumption of tokens in static places by single instances. As we
illustrate by the net in Figure 11, even relaxing the boundedness of static places causes
that many of the results shown in this paper are not longer valid. For example, Theorem
1 is not valid anymore. Figure 12 shows the marking in which the net from Figure 11
deadlocks for 5 instances. However, the net will never deadlock for 3 instances, as no
submarking with 3 tokens in the place m3 and no token in other non-static places is
reachable.

Acknowledgement

Supported by the project APVV-0618-07 of the Slovak Research and Development
Agency.

Instance Deadlock: A Mystery behind Frozen Programs 17

References

1. van der Aalst, W.M.P., van Hee, K.: Workflow Management, Models Methods and Systems.
The MIT Press, Cambridge (2002)

2. Esparza, J., Nielsen, M.: Decidability issues for Petri nets–a survey. J. Inform. Process. Cy-
bernet. 30(3), 143–160 (1994)

3. van Hee, K.M., Serebrenik, A., Sidorova, N., Voorhoeve, M.: Soundness of Resource-
Constrained Workflow Nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS,
vol. 3536, pp. 250–267. Springer, Heidelberg (2005)

4. Medling, J., van der Aalst, W.M.P.: Errors in the SAP Reference Models. BPTrends (June
2006)

5. Desel, J., Juhás, G.: What is a Petri Net? In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G.
(eds.) APN 2001. LNCS, vol. 2128, pp. 1–25. Springer, Heidelberg (2001)

6. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use I II III.
Springer, Heidelberg (1997)

Some Thoughts on Behavioral Programming
Distinguished Carl Adam Petri Lecture

David Harel

Dept. of Computer Science and Applied Mathematics
The Weizmann Institute of Science

Rehovot 76100, Israel
dharel@weizmann.ac.il

This talk starts from a dream/vision paper I published in 2008, whose title is
a play on that of John Backus’ famous Turing Award Lecture (and paper); see
[3]. I will propose that — or rather ask whether — programming can be made
to be a lot closer to the way humans think about dynamics, and the way they
manage to get others (e.g., their children, their employees, etc.) to do what they
have in mind. Technically, the question is whether we can liberate programming
from its three main straightjackets: (1) having to produce a tangible artifact
in some language; (2) having actually to produce two separate artifacts (the
program and the requirements) and having then to pit one against the other; (3)
having to program each piece/part/object of the system separately. The talk will
then get a little more technical, providing some modest evidence of feasibility
of the dream, via LSCs and the play-in/play-out approach to scenario-based
programming [1,2]. The entire body of work around these ideas can be framed
as a paradigm that one may term behavioral programming [4].

References

1. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design 19(1), 45–80 (2001); Ciancarini, P., et al. (eds.): Prelimi-
nary version in Proc. 3rd IFIP Int. Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS 1999), pp. 293–312. Kluwer, Dordrecht (1999)

2. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003)

3. Harel, D.: Can Programming be Liberated, Period? IEEE Computer 41(1), 28–37
(2008)

4. Harel, D., Marron, A., Weiss, G.: Behavioral Programming (to appear)

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, p. 18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Petri Nets with Localities and Testing

Jetty Kleijn1 and Maciej Koutny2

1 LIACS, Leiden University
Leiden, 2300 RA The Netherlands

kleijn@liacs.nl
2 School of Computing Science, Newcastle University

Newcastle upon Tyne NE1 7RU, United Kingdom
maciej.koutny@ncl.ac.uk

Abstract. In this survey paper, we discuss how to enhance the mod-
elling power of Place/Transition-nets with the notions of ‘locality’ of
individual transitions and token ‘testing’ using inhibitor and activator
arcs (or, more generally, range arcs). As motivation for these extensions
we consider membrane systems – a computational model inspired by the
way chemical reactions take place in cells that are divided by membranes
into compartments. We explain how key features of membrane systems
can be in a natural way captured by transitions with localities (to model
compartments) and range arcs (to model inhibitors and promoters). For
the resulting model of PTRL-nets, we discuss the synchrony and asyn-
chrony in their behaviours and outline how their causal processes can be
defined. Both localities and range arcs render problems, such as bound-
edness, undecidable in the general case. We therefore present conditions
under which one can still decide whether a net is bounded.

Keywords: Petri nets, Place/Transition nets, localities, testing, range
arcs, GALS systems, membrane systems, causality, processes, barb-events,
boundedness, coverability tree.

1 Introduction

Extending Petri nets with novel features is a risky endeavour. Usually, it leads to
a significant increase of the expressive power and, as a result, existing tools are
no longer applicable and important properties become undecidable. On the other
hand, when simulating and analysing realistic situations and contexts using Petri
nets as a model, it is often absolutely necessary to provide faithful descriptions
of complex features which are not directly supported by the standard concepts
and notions. This paper focuses on two specific extensions of Petri nets, namely
localities allowing to distinguish closely linked components within a system, and
testing features allowing one to check for resources without having to claim them
for exclusive use.

Petri nets [10,46,47] provide a graphical and mathematically precise frame-
work appropriate for the modelling of distributed systems in which events may
happen concurrently and resources may be shared. Place/Transition nets (PT-
nets), a typical kind of Petri nets, have places and transitions that are connected

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 19–38, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

20 J. Kleijn and M. Koutny

by directed arcs. Places as local states can be marked by a number of tokens to
indicate the current availability of resources. Transitions are local actions which
when they occur consume tokens from their input places and produce tokens in
their output places. Membrane (or P) systems (cf. [42,43,44,45,55]) on the other
hand are a computational approach to describe biochemical processes taking
place in living cells. The structure of a cell is modelled as a nested structure of
membranes delineating its compartments. The reactions which are associated to
compartments, are abstracted to rules that specify what new objects are created
out of existing ones including possible transfers to neighbouring compartments.
Hence there is a direct structural relationship between molecules and rules in
a membrane system on the one hand and tokens in places and transitions in
a PT-net on the other hand. In particular, potential synchronous or simulta-
neous execution of of reaction rules corresponds to concurrently enabled tran-
sitions ([23]). This forms the basis of a translation from membrane systems to
PT-nets which faithfully reflects the dependencies and independencies between
executions of reaction rules as well as the availability of resources and which
thus opens the way to adapting Petri net tools and techniques to the analysis of
membrane systems.

To represent compartments, we proposed in [32] to associate localities to tran-
sitions (not to places since these — by their very nature — already explicitly
support the local aspects of resources). Assigning localities to transitions is rele-
vant in case there is some behavioural significance in the fact that two transitions
are co-located or not. Membrane systems are often assumed to evolve in a fully
synchronous fashion, which means that at each tick of a global clock as many
reaction rules as possible occur, depending on the availability of molecules in
the current configuration (the distribution of molecules over the compartments).
In this case one would consider for the PT-nets a maximal step semantics (as
in [5,19]) in which localities play no role, However, this global synchronicity is
not always reasonable from a biological point of view ([43]). It is often more
natural to assume that synchronicity is restricted to the compartments with the
reactions taking place in synchronised pulses restricted to compartments. In that
case, the PT-net would execute under a locally maximal step semantics, i.e., for
each locality active in that step, as many transitions as possible are executed.
This feature is actually quite common in systems with distributed local control
operating under a GALS (globally asynchronous locally synchronous) paradigm,
like hardware systems-on-a-chip [52]. Thus localities allow us to define local
synchronicity giving rise to a new and interesting locally maximal concurrent
semantics for PT-nets.

Another property of chemical reactions which has been considered in the con-
text of membrane systems, is the blocking or triggering of reactions by the pres-
ence of certain molecules. Actually, testing for the absence of resources (tokens
in places) by means of so-called inhibitor arcs is one of the earliest extensions
of the standard Petri net theory, first introduced in [1] in 1973 and discussed
in, e.g., [17,34,46]. Other forms of testing come in the form of context [40],
activator [18] and read [54] arcs. They all have a slightly different semantical

Petri Nets with Localities and Testing 21

interpretation, but in essence they test for presence of tokens in specific places.
Both kinds of testing have been subsumed and generalised through the concept
of range arcs [25] which allow one to test whether the amount of tokens in a
place is in-between two given threshold values.

Testing features and locally maximal concurrency (even in case of only one
locality, i.e., maximal concurrency) are both proper extensions of the modelling
power of PT-nets. Each of them makes it possible to simulate Turing machines
and thus lead to undecidable reachability and boundedness problems [5,1,16,50].
Consequently, we have to reconsider and possibly adapt the analysis tools and
techniques developed for PT-nets if we want to transfer them to membrane
systems and the area of GALS systems in general.

In the remainder of this paper, we focus on PT nets with localities and (local)
maximal concurrency issues. Moreover, we will combine them with testing facil-
ities in the form of range arcs. It is our aim not only to define precisely all these
notions and concepts, but also to outline to what extent important Petri net ap-
proaches can still be applied. In particular, we will look at a process semantics of
the resulting net models that should be useful to describe the causality structure
of ongoing behaviour, and at adapted coverability graphs that should support
the investigation of capacity and boundedness issues. The idea is that we provide
a sketch of the progress that has been made. Most of the definitions and results
discussed have already been published and are quoted without proofs.

2 Preliminaries

This section introduces the notation and terminology used throughout.
A multiset over a set X is a function μ : X → N, and an extended multiset

a function μ : X → N ∪ {ω}. We assume that ω + α = ω − α = k · ω = ω,
n − ω = 0 · ω = 0, and n < ω, for n ≥ 0, k > 0, and α ∈ N ∪ {ω}. In this paper,
X will always be finite. Clearly, sets can be regarded as special multisets and,
in turn, multisets can be regarded as special extended multisets.

For two distinct extended multisets μ and μ′ over X , we denote μ < μ′ if
μ(x) ≤ μ′(x) for all x ∈ X . Moreover, μ ≤ μ′ if μ < μ′ or μ = μ′. The addition
(μ+μ′) and subtraction (μ−μ′) of extended multisets (in the latter case satisfying
μ′ ≤ μ) as well as multiplication (α · μ) of an extended multiset by α ∈ N ∪ {ω}
are defined point-wise.

If μ is a multiset, μ′ an extended multiset, both over X , and k ∈ N, then
μ �k μ′ if, for all x ∈ X , μ(x) = μ′(x) if μ′(x) < ω, and otherwise μ(x) > k.
Intuitively, this means that μ approximates the ω values in μ′ with integers
greater than k.

A Place/Transition net (or PT-net) is a tuple N
df= (P, T,W,M0) such that

P and T are disjoint finite sets of places and transitions, respectively; W :
(T × P) ∪ (P × T) → N is the weight function; and M0 → N is the initial
marking. In general, any multiset of places is a marking.

In diagrams, places are drawn as circles and transitions as rectangles. The
marking M(p) of a place is indicated by drawing M(p) small black tokens inside

22 J. Kleijn and M. Koutny

the circle representing p. If W (x, y) ≥ 1 for some (x, y) ∈ (T × P) ∪ (P × T),
then (x, y) is an arc leading from x to y. As usual, arcs are annotated with their
weight if this is 2 or more. We assume that, for every t ∈ T , there is a place p
such that W (p, t) ≥ 1 (i.e., the net is T-restricted).

Given a transition t, we denote by post(t) the multiset of places given by
post(t)(p) df= W (t, p), and by pre(t) the multiset of places given by pre(t)(p) df=
W (p, t). These notations extend to finite multisets U of transitions in the fol-
lowing way: post(U) df=

∑
t∈U U(t) · post(t) and pre(U) df=

∑
t∈U U(t) · pre(t)

are multisets of places.
We define an execution semantics of PT-nets in terms of concurrently occur-

ring transitions. A step of N is a multiset of transitions, U : T → N. It is is
enabled, at a marking M if pre(U) ≤ M . An enabled step U can executed lead-
ing to the marking M ′ df= M − pre(U) + post(U), denoted M [U〉M ′. Thus the
effect of executing U is the accumulated effect of executing each of its transitions
(taking into account their multiplicities in U). Note that the empty step is al-
ways enabled and that its execution has no effect, i.e., M ′ = M . A step sequence
from a marking M to marking M ′ is a possibly empty sequence σ = U1 . . .Un

of non-empty steps Ui such that

M = M0 [U1〉M1 [U2〉M2 · · · Mn−1 [Un〉Mn = M ′ ,

for some markings M1, . . . ,Mn−1. We then denote M [σ〉M ′ and call M ′ reach-
able from M . The set of reachable markings of N is given by [M0〉 df= {M | ∃σ :
M0[σ〉M}, and N is bounded if this set is finite.

Finally, the sequential (or interleaving) semantics of N is obtained by the
restriction to singleton steps.

3 Extending PT-Nets with Localities and Range Arcs

Membrane systems are a computational model inspired by the compartmentisa-
tion and functionality of living cells (cf. [42,43,44,45,55]). Biochemical reactions
take place in the compartments of a cell and membrane systems represent these
(stoichiometric) reactions through rules specifying what new molecules can be
produced from existing ones, and then possibly transferred to neighbouring com-
partment(s). In its basic form, a membrane system consists of nested membranes
which in turn determine compartments, and each distribution of molecules over
the compartments determines a configuration. The dynamics of a membrane
system derived from its reaction rules, is a form of multiset rewriting [8].

There is an obvious connection between biochemical reactions and net tran-
sitions (see, e.g., [49]). This correspondence thus forms a natural basis for a
translation from membrane systems to Petri nets (see, e.g., [48]). In [32], also
the compartments are taken into account. This is illustrated in Figure 1. Here,
the compartments 1–4 are indicated by varying shading. Each kind of molecule
(a, b, c) in a compartment is represented by a (labelled counter) place, while
each reaction rule is represented by a transition. For example, transition r rep-
resents the rule ab → ccain 2ain 3 in compartment 1, which specifies that (in

Petri Nets with Localities and Testing 23

a

b

c

a

b

c
a b c

a b c

r′′

r

r′

2 34
1

(2 , 3)2

Fig. 1. A PTRL-net modelling a membrane system

compartment 1) two molecules, a and b, can react to produce four molecules:
two molecules c remain in the same compartment, one molecule a is moved to
compartment 2, and another molecule a is moved to 3. Transition r′ represents
the more complicated rule a → coutbin4|cc,¬ccc belonging to compartment 3
which states that molecule a can split into molecule c sent out of compartment
3 to the immediately enclosing compartment 1, and molecule b sent into com-
partment 4. However, the rule also stipulates that this can happen only if there
are in compartment 3, at least 2 molecules c and, at the same time, no more
than 3 molecules c. This constraint is represented by a special range arc [25]
between transition r′ and the place for molecules c in compartment 3. It means
that r′ is enabled only if the number of tokens in this place is in the range [2, 3].
Transition r′′ represents the rule b → c|a,¬c belonging to compartment 2, which
changes molecule b into molecule c provided that there is at least one a and no
c’s in compartment 2. These constraints are captured by two arcs, an activator
arc and an inhibitor arc, joining r′′ with the appropriate molecule counters in
compartment 2.

In this way, arcs of various types (with activator and inhibitor arcs as special
instances of range arcs) precisely determine the execution of single transitions
in a manner which directly reflects the multiset rewriting rules of the membrane
system. In turn, these arcs imply dependencies, such as causality and conflict,
between executed transitions and hence also between the reaction rules of the
original membrane system. By assigning each transition to a unique locality, the
comparmentisation of the system is modelled. (It is not necessary to introduce
explicit localities for places.)

Membrane systems are often assumed to evolve in a synchronous fashion
meaning that as many instances of reaction rules as possible are executed at a
time. Thanks to the faithful, structural translation, such behaviour corresponds
directly to a maximal step semantics in the associated Petri net. In case, that
synchronicity is restricted to compartments (meaning that, for each currently
active compartment, as many instances of the reaction rules it comprises as pos-
sible are executed at a time), we take advantage of the fact that each transition
is assigned to a unique locality and modify the step execution rule to enforce
locally maximal parallelism, i.e., for each active locality as many transitions as
possible are executed.

Thus, membrane systems are linked in a direct way to PT-nets with localities
and range arcs; in particular the transition systems generated are preserved

24 J. Kleijn and M. Koutny

(modulo isomorphism). As a result, tools and techniques developed for Petri
nets can be used (perhaps after a suitable adaptation) to describe, analyse, and
verify behavioural properties of membrane systems.

Formally, a PT-net with range arcs and localities (or PTRL-net) is a tuple
NRL df= (P, T,W,R,L,M0) such that (P, T,W,M0) is a PT-net, R : P × T →
N× (N∪ {∞}) is the mapping defining range arcs, and L : T → N is the locality
mapping.

In diagrams, transitions belonging to the same locality either have the same
shade or are displayed on a gray background of the same shade. A range arc
R(p, t) is drawn as an arrow from p to t with a small gray circle as arrowhead
and annotated with R(p, t). If R(p, t) = (0,∞) then the range arc has no impact
on the enabledness of t and is omitted. If R(p, t) = (0,m) with m ∈ N, then
the range arc is a (weighted) inhibitor arc and p an inhibitor place (t is enabled
provided that p does not contain more than m tokens); moreover, an arrow is
drawn from p to t with a small open circle as arrowhead and annotated with
the weight m if m > 0. If R(p, t) = (k,∞) with k > 0, then the range arc is a
(weighted) activator arc and p an activator place (t is enabled provided that p
contains at least k tokens); moreover, an arrow is drawn from p to t with a small
black circle as arrowhead and annotated with the weight k if k > 1.

Given a marking M , a step U is enabled if it is enabled in the underlying
PT-net and, for every place p and transition t ∈ U , we have k ≤ M(p) ≤ m,
where R(p, t) = (k,m). Moreover, U is lmax-enabled if U cannot be extended by
a transition t satisfying L(t) ∈ L(U) to yield a step which is enabled at M . Such
a definition of enabledness is based on an a priori condition: the adherence to
range arc constraints is checked before the step is executed which seems to be the
natural approach for membrane systems. In the a posteriori approach (see [7]),
one would also require that the range arc constraints are true after executing
U . Yet another definition for enabling when activator arcs (or rather read arcs)
are involved is given in [54].

In what follows, if we ignore all the aspects relating to range arcs, then NRL is
a PTL-net. Similarly, if we ignore all the aspects relating to the locality mapping
then the net is a PTR-net. Moreover, it is a PTI-net if all non-trivial range arcs
are inhibitor arcs.

To explain some issues relating to localities, let us consider the PTL-net in
Figure 2(a) modelling a system consisting of one producer (modelled by the

(a)

p

r

sq
a t u a b c

(b)

Fig. 2. A PTL-net NL0 modelling a one-producer/two-consumers system (a), and a
conflict situation between localities (b)

Petri Nets with Localities and Testing 25

token in p) and two co-located consumers (indicated by two tokens in the single
place r). The buffer-like place q in the middle holds items produced by the
producer using the ‘add’ transition a, and consumed by the consumers using the
‘take’ transition t. Transitions t and u (for ‘use’) belong to the same locality and
a to another one. Under the PT-net semantics this net could execute the step
sequence {a}{t}{a}{t}, but not under the PTL-net lmax-step semantics since
after {a}{t}{a} the step {t, u} comprising two co-located transitions is enabled,
violating maximal parallelism w.r.t. the locality of transition t. A possible legal
step sequence is {a}{t}{a}{t, u} as well as {a}{t}{a}{t, u, a}.

Note that steps which are lmax-enabled do not necessarily consist of maximal
steps w.r.t. the individual localities. For example, in Figure 2(b), {a, c} is lmax-
enabled, but {c} is not lmax-enabled as there is a conflict between transitions
coming from two different localities, a and b.

4 Processes

Processes of PT-nets [3,4,14,51] are a convenient way of representing concur-
rent histories by recording explicitly the causal relationships between executed
transitions. Each process is a labelled acyclic net, called occurrence net, which
through the labelling of its nodes can be seen as an unwinding of the original
PT-net along a single concurrent history in which all conflicts between transi-
tions have been resolved. Processes are the basis of a model checking technique
based on so-called net unfoldings [13,21,39] as they tend to provide a very com-
pact representation of net behaviour. Moreover, they can be used to directly
capture crucial relationships between executed transitions (called events) and
places (called conditions) as well as behavioural properties, such as: (i) causality
which corresponds to directed paths in the process net; (ii) concurrency which
corresponds to the lack of directed paths between two events; (iii) reachability:
any maximal set of conditions for which there is no directed path from one to
another corresponds to a reachable marking of the original PT-net; and (iv) ex-
ecutability: any step sequence from the default initial marking (i.e., exactly one
token in each of the conditions without incoming arcs) of the process net defines
a step sequence of the original PT-net. The latter criterion is also a proof of
consistency of the set-up, as it imposes the condition that any execution of a
process corresponds to an execution of the original PT-net.

The paper [22] introduced a general semantical framework using which one
can define and study in a systematic way process semantics of different classes of
Petri nets. The framework links together their step semantics with the process
semantics as described above for PT-nets, and describes how processes are to be
underpinned by abstract causality structures. In the rest of this section, we will
outline the main results of applying the semantical framework to the extensions
of the PT-net model we are concerned with in this paper.

Processes of PTL-nets. Let us consider the PTL-net NL0 shown in Figure 2(a)
and take one of its step sequences, σ0

df= {a}{a, t}{u, t}. Following the standard

26 J. Kleijn and M. Koutny

process construction developed for PT-nets, we generate from σ0 by unwinding
NL0, the process net π0 shown in Figure 3(a). However, π0 does not satisfy
the important ‘executability’ property, for it allows one to lmax-execute from
the default initial marking M0 = {p, r, r} a step sequence corresponding to
step sequence σ1

df= {a}{a}{t, t}{u} of NL0. Clearly, σ1 is legal under the PT-
net semantics, but illegal under the rules of the PTL-net semantics as the last
executed step is not maximal w.r.t. the only active locality.

(a)

r s r
q

q

p p p

r s

t u

a a

t

(b)

r s r
q

q

p p p

r s

t u

a a

t �

Fig. 3. Two processes constructed for NL0 and σ0: π0 in (a) follows the standard
PT-net approach, and π1 in (b) follows the PTL-net approach

An intuitive reason why π0 is not satisfactory is that it does not record that u

is enabled twice after σ2
df= {a}{a}{t, t}, and so the step {u} is not lmax-enabled.

To make things work again, [33] proposed to augment the standard construction
with information about the presence of potentially executable events (including
events that were not chosen due to being in conflict with some of the chosen
events). Such information comes in the form of special barb-events.

For NL0 and σ0, a suitable modification is given by the barb-process π1 shown
in Figure 3(b). It contains a single barb-event labelled with the special symbol
� and having the same locality and input condition as the ‘missing’ instance
of transition u (output arcs are omitted as barb-events are not meant to be
executed). The problem now disappears since after the execution of a step se-
quence corresponding to σ2, the step consisting of a single u-labelled event is
not lmax-enabled as it can be extended with the barb-event.

The construction of barb-processes for PTL-nets proceeds as for the standard
PT-nets with as only difference that we use barb-events to signal enabledness of
transitions from the original PTL-net. In each stage of the construction, already
existing and candidate barb-events are considered. Such barb-event is deleted or
rejected, respectively, if there is an existing or new event with the same locality
whose input conditions are contained in those of the barb-event. This barb-
process semantics ‘works’ for the whole class of PTL-nets. In particular, one can
show that all step sequences generated by barb-processes correspond to legal
step sequences of the original PTL-net.

The construction is illustrated in Figure 4 which depicts the generation of a
barb-process π3 for the step sequence σ3

df= {a}{u, t} of the PTL-net NL1 shown
there as well. In the first stage, we have three barb-events representing the three
transitions which can be included in steps lmax-enabled at the initial marking.
In the second stage, one of these barb-events disappears due to the execution of

Petri Nets with Localities and Testing 27

a, but a new barb-event is added. Note that a candidate barb-event with pre-
conditions labelled by r and q and the same locality as t has not been added due
to the presence of the topmost barb-event. In the final stage, another barb-event
disappears and two new barb-events are added.

p

r

sq

z

a t u c

r

p

s

�

�

�

r
q

p p

s

a

�

�

�

r
q

p p

s

s

r

t

a

u

�

�

�

�

Fig. 4. A PTL-net NL1, and the derivation of the barb-process π3 for NL1 and σ3

It is worth noting that barb-events are needed also for safe PTL-nets (i.e.,
PTL-nets whose reachable markings never have more than one token in any
place). An example is given in Figure 5.

a

b

c

d

e

f

(a)

a

b

c

d

f

(b)

a

b

c

d

f

�

(c)

Fig. 5. A PTL-net NL2 (a); a process net π4 constructed for σ4
df= {a, b, c}{d, f} using

the standard PT-net construction (b); and a barb-process π5 for σ4 (c). Note: π4 has
a step sequence corresponding to {b, c}{a, f}{d} which is not allowed by NL2. This
happens because π4 ‘forgot’ that e was enabled when d was selected. The barb-event
in π5 rectifies the problem.

Processes of PTR-nets. To simplify the presentation, we will only consider a
subclass of PTR-nets, called PTCR-nets, such that if R(p, t) ∈ N × N then
there is another place p′ (a complement of p) such that pre(p) = post(p′) and
post(p) = pre(p′). Thus the total number of tokens in p and p′ is the same in
all the reachable markings. Testing whether p contains no more than m tokens
can now be replaced by testing for the presence of (at least) β − m tokens in
p′, where β is the total number of tokens in p and p′ at the initial marking, In
this way we can use activator arcs in the processes of PTCR-nets to reflect the
constraints implied by the range arcs.

28 J. Kleijn and M. Koutny

For the PTCR-net NR0 in Figure 6(a) and its possible step sequence σ5
df=

{u, n}{f}{t, t, t}{c}, the resulting process π5 is shown in Figure 6(b). In this
case, there is just one place, r, which can inhibit the enabledness of transitions
(n and c). This place does have a complement place, s, and in this case the
total number of tokens in places r and s in all reachable markings is β = 3. The
inhibitor arc between r and c means that c is enabled provided that r contains
zero tokens. In the process construction this is replaced by a check that the
complement place s contains β − 0 = 3 tokens. Similarly, the range arc between
r and n implies that n is enabled provided that r contains no more than two
tokens. In the process construction this is replaced by a check that s contains at
least β − 2 = 1 token.

p
r

sq

v

f

n

t uc

2

(1 , 2)
3

(a)

r

r

p

s

q

p

r

q

p

q

s

s

s

vn

u

f

t

t

t

c

(b)

Fig. 6. A PTCR-net NR0 (a), and a process π5 for NR0 and σ5 (b).

When one cannot rely on the presence of complements p′ of places p inhibiting
the execution of transitions, another feature is needed to test that such places
do not contain too many tokens. The solution introduced in [22,25], was to add
‘on demand’ new artificial conditions to fulfill this role.

Processes of PTRL-nets. The general case of a process semantics for PT-nets
with localities and weighted inhibitor/activator arcs has been discussed in [26].
This has led to a process semantics combining activator arcs and barb-events
and fulfilling the executability criterion: the lmax-step sequences of the processes
associated with a PTRL-net all correspond to an lmax-step sequence of that
PTRL-net.

Causality and Concurrency. The underlying causality structures of processes of
PT-nets are (labelled) partial orders. These are defined by the directed acyclic
graphs which result by abstracting from the places of processes. Thus each pro-
cess of a PT-net defines a labelled partial order of events based on production

Petri Nets with Localities and Testing 29

and consumption of resources and thus reflecting their intrinsic causality and
concurrency. Consequently, unorderedness corresponds to independence.

However, representing the causal relations in the behaviour of a PT-net with
inhibitor arcs by no more than a partial order is problematic because in the
presence of inhibitor arcs, simultaneity and independence are not the same
(see [18,22]). To distinguish between them, [18] uses stratified order structures
consisting of a partial order and an additional weak partial order. This is reflected
in the corresponding processes with activator arcs which not only provide infor-
mation on production and consumption of resources, but also on testing for the
presence of tokens. Abstracting from the places now leads to a structure with
a partial order defined as before on basis of the ordinary arcs and describing
pairs of events of which one should occur before the other. In addition, there is a
weak partial order derived from the combination of ordinary and activator arcs
which defins a not-later-than relation. For example, in Figure 6, the n-labelled
transition cannot occur later than the u-labelled transition.

Another related approach to describe the causality and concurrency in Petri
net behaviour is provided by trace theory. Trace theory has an algebraic, for-
mal language background and as such may contribute new tools and insights.
The basic idea relevant here, is that sequential observations that can be asso-
ciated to a common execution of a Petri net are seen as equivalent. Originally,
for Mazurkiewicz traces [38], a binary independence relation is used to define
which events do not have to occur in a particular order. Replacing the inde-
pendence relation by separate notions of simultaneity and serialisability leads to
comtraces (equivalence classes of step sequences) which correspond to stratified
order structures in the same way as Mazurkiewicz traces correspond to partial
orders. Mazurkiewicz traces and comtraces correspond directly to the labelled
partial orders defined by the process semantics of subclasses of PT-nets and
PTI-nets, respectively (to be precise, Elementary Net Systems and Elementary
Net Systems with inhibitor arcs). Extending this trace point of view to more
general net classes could be based on their process semantics (see [29] for more
details of this approach).

Reachability. In ordinary occurrence nets, slices, i.e., maximal sets of incom-
parable conditions, are exactly those markings which can be reached from the
default initial marking. Consequently, with the reachability criterion satisfied by
the process semantics, various verification questions, such as marking reacha-
bility, can be easily treated using these processes. However, in case of processes
with activator arcs (activator occurrence nets), the situation is more complicated
(see [22]). First of all one has to take the dependencies induced by the activator
arcs into account when defining the concept of a slice. Then, it turns out that
even though all slices correspond to configurations reachable from the default
initial marking, there may be slices from which the default final marking of the
process net is not reachable. This leads in general to more involved proofs.

Still, as pointed out in [25], this process semantics could provide a basis for
an efficient verification technique for PTR-nets just like occurrence nets pro-
vide a basis for unfolding based model checking for the class of PT-nets (in the

30 J. Kleijn and M. Koutny

style of, e.g., [13,21,39]). This follows from the observation that when conflicts
are included (leading to branching processes with activator arcs similar to the
branching processes of [12]), the problem of finding whether a given set of con-
ditions is a marking reachable from the default initial marking is NP-complete.

Infinite processes. What we have presented here concerns finite behaviours and
structures. Everything, however, can be extended to the infinite case where most
of the proofs developed for the finite case still apply after fairly standard addi-
tions and modifications. This is essentially due to the well-foundedness of the
objects we deal with, making it possible to carry over arguments from the finite
case to the infinite case (see [24,25]).

5 Coverability

An extended marking M (i.e., an extended multisets of places) is covered by an
extended marking M ′ if M(p) ≤ M ′(p) for every place p.

Coverability is generally regarded as an important tool for the behavioural
analysis of distributed dynamic systems whose states may contain certain kinds
of (unbounded) resources. In particular, coverability can be used to verify the
boundedness of a PT-net which amounts to saying that there are finitely many
reachable markings. This can be done by constructing a ‘coverability tree’ (CT)
introduced in [20] and investigated in, e.g., [11,15,46]. Such a tree, rather than
giving the exact state space (of reachable markings), provides approximations
in terms of extended markings covering reachable markings of PT-nets. CTs
can be used to answer also questions related to the boundedness of local states
(resources) such as ‘will there be enough resources available?’ (e.g., to avoid
deadlocks) or ‘is the amount of resources generated unbounded?’ (hence requiring
unlimited capacity of certain parts of the system). CTs can be a tool for deciding
behavioural properties even in the case of infinite state spaces as the constructed
CT is always finite, with the termination of the construction being based on a
‘monotonicity’ property implying that no behaviour is lost (and can thus be
repeated) when more resources become available.

The standard CTs are defined for the sequential (interleaving) semantics of
PT-nets and, as a consequence, issues relating to a step-based semantics may not
be reflected accurately. To address this issue, [27] considered step coverability
trees (SCTs) which directly represent the step sequence semantics of PT-nets.
While doing so, [27] introduced extended steps (i.e., extended multisets of tran-
sitions) covering executable steps of PT-nets. This allows one, in particular, to
use SCTs to answer questions concerned with, e.g., bandwidth which can now be
seen as a resource (steps may be unbounded). One may be also be interested in,
e.g., whether restricting the throughput can lead to a restricted or even incorrect
behaviour.

Crucially, representing (covers of) executable steps seems to be unavoidable if
one wants to treat models supporting localities and the (a priori) range testing
as both features are inseparable from the notions of steps and step sequence

Petri Nets with Localities and Testing 31

Table 1. An algorithm generating a step coverability tree SCT of a PT-net N

SCT = (V, A,μ, v0) with initially V = {v0}, A = ∅ and μ[v0] = M0

unprocessed = {v0}
while unprocessed �= ∅

let v ∈ unprocessed

if μ[v] /∈ μ[V \unprocessed] then [v not terminal]

for every M and U such that μ[v][U〉M with U ∈ select(μ[v])
V = V � {w} [add new node]

A = A ∪ {(v, U, w)}
unprocessed = unprocessed ∪ {w}
if there is u such that u � v and μ[u] < M (*)
then μ[w](p) = (if μ[u](p) < M(p) then ω else M(p))
else μ[w] = M

unprocessed = unprocessed \ {v}

semantics. Thus SCTs can be regarded as a natural tool for analysing coverability
in PTRL-nets, and in the rest of this section we will first present the SCTs and
outline results reported in [27,30,31] which can be seen as initial studies in the
area of (step) coverability for PTRL-nets. We will look at PTI-nets [27], as well
as PTL-nets with one locality [30,31]. In each case, the construction of SCTs
will be done for a sub-class of the general model as boundedness is in general
undecidable for PTI-nets [16] and PTL-nets with single localities [5].

Step coverability trees. The standard CT construction for a PT-net generates
extended markings in which the ω-entries indicate unboundedness of places.
As a consequence, an extended marking may enable infinitely many steps even
though a PT-net marking never does so. To build a finite SCT one therefore
has to introduce means of representing infinite sets of enabled steps. Following
the definition of an extended marking, [27] introduced extended steps and so
ω-components can label both arcs and nodes of a generated SCT.

Table 1 presents an algorithm for constructing an SCT for a PT-net N =
(P, T,W,M0) which is a modification of the standard sequential CT construction.
The nodes V and arcs A are successively added to the initial v0. Each node v is
labelled by an extended marking μ[v], and each arc is a triple (v, U,w), where
v, w are nodes and U is an extended step. An extended step U is enabled at an
extended marking M if pre(U) ≤ M , and its execution leads to the extended
marking (M − pre(U)) + post(U). The notation u � v indicates that there is
a path from node u to v. Finally, select(M) is the set of all extended steps U
enabled at M with U(t) = ω for each transition t such that the extended step
ω · {t} is enabled at M .

As shown in [27], the resulting SCT is always finite and extends the be-
havioural information conveyed by the sequential CT, by providing a more
concurrency-oriented view of the behaviour of the original PT-net. It satisfies
the soundness criteria expected of a coverability tree (see, e.g., [15,11,6]). In

32 J. Kleijn and M. Koutny

particular, each reachable marking of N is covered by an extended marking oc-
curring as a label in SCT , in a ‘tight’ way. That is, for every node v of SCT
and k ≥ 0, there is a reachable marking M of N such that M �k μ[v]. Thus the
ω-entries of an extended marking indicate that there are reachable markings of
N which simultaneously grow arbitrarily large on the corresponding places and
have, for other places, exactly the same entries as the extended marking. As a
result, boundedness of N can be read off from SCT by checking that it does not
involve any ω-entries.

It might not seem to be a good idea to use SCTs for the investigation of
properties of PT-nets, as the CTs would in general exhibit a much lower degree
of branching. However, this is no longer the case if we consider step based rather
than marking based properties. For example, if step U is enabled at a reachable
marking M of N , then there is an arc (v,W,w) in SCT such that M ≤ μ[v] and
U ≤ W . Moreover, for every k ≥ 0 and every W labelling an arc in SCT , there
is a step U enabled at a reachable marking of N satisfying U �k W .

A key reason why the construction of SCT for PT-nets works is that their
semantics is monotonic in the sense that if a step U is enabled at a marking M
and M ′ is a marking satisfying M < M ′ then U is also enabled at M ′. This key
property no longer holds when we add localities or range arcs.

PTL-nets with single localities. PTL-net semantics can be viewed as monotonic
in the weaker sense that adding resources can enable larger steps without inval-
idating already enabled transitions. This weak form of monotonicity was used
in [30,31] to construct SCTs for PTL-nets with single localities which, in essence,
are PT-nets executed under the maximally concurrent execution rule [5].

Let us assume that N is a PT-net executed under the maximally concurrent
rule. The problem is to find criteria for terminating the development of a cov-
erability tree along an infinite path from the root. To achieve the desired effect,
[30,31] introduced a criterion based on a repeated execution of the same sequence
of steps. This key result states that κτ, κττ, κτττ, . . . are step sequences of N iff
the following hold (below τ = U1 . . .Un, and M i is the marking reached after
executing κU1 . . .Ui):

– κττ is a step sequence of N ;
– executing τ can only add tokens to places; and
– for all transitions t and i < n, there is a place p to which the sequence of

steps τ does not add any tokens, and which stops the enabledness of the step
{t} + Ui+1 at M i (i.e., M i(p) − pre(U)(p) < W (p, t)).

Thus two repetitions of the same sequence of steps τ can be enough to infer
an infinite repetition of τ . The above is a sufficient but not necessary condition
characterising situations which may lead to unboundedness, and to make it also
a necessary condition [30,31] restricted the class of PT-nets underlying N . The
idea was to define a class of PTL-nets modelling acyclic networks of finite state
components communicating by means of buffered channels.

Individual components in [31] are live and bounded PT-nets such that each
reachable (in the PT-net sense) marking enables a unique maximally concurrent

Petri Nets with Localities and Testing 33

step and, for all cycles in the reachability graph, the relative execution rates of
the transitions are constant. (The weighted strongly connected marked graphs
[53] used in [30] satisfy these conditions.) The PTL-nets for which [31] develops
SCTs are then obtained by taking any number of individual components and
connecting them in a network-acyclic manner using arbitrarily many additional
places and transitions. The key behavioural property of the resulting PT-nets
is that when executed under the maximally concurrent rule, their individual
components eventually synchronise, and the net as a whole assumes a cyclic
behaviour. More precisely, the step sequences of N are finite prefixes of a certain
infinite sequence of steps of the form κτττ

The algorithm in Table 1 needs to be amended in the following way. First, the
mapping select(.) is as as before, but it only takes into account (extended) steps
enabled by the maximally concurrent rule. Then the line (*) is replaced by:

if there are u, u′ and τ = U1 . . .Un such that:
– u � u′ � v and μ[u] < μ[u′] < M ;
– τ labels the paths from u to u′ and from u′ to v; and
– for all transitions t and i < n, there is a place p to which the sequence

of steps τ does not add any tokens, and which stops the enabledness
of the step {t}+Ui+1 at the marking labelling the node reached from
u following the arcs labelled by U1 . . .Ui

Thus, rather than an inequality on markings, double inequalities with the same
maximal step sequences in-between are needed together with the additional con-
dition guaranteeing the repeatability of that step sequence. One then can then
show that the algorithm always terminates and the expected soundness criteria
do hold.

Primitive PTI-nets. Inhibitor arcs destroy completely the monotonicity in net
executions which, intuitively, makes PTI-nets even more difficult to handle than
PTL-nets. To ensure the termination of the coverability construction in the se-
quential case, [6] introduced ‘primitive’ PTI-nets which include PT-nets yet still
have more expressive power. Intuitively, when an inhibitor place in such a PTI-
net contains more than a certain threshold of tokens (its emptiness limit), no
transition which tests it for emptiness can occur anymore.

The class of primitive PTI-nets was reconsidered in [27], but this time under
the a priori step sequence semantics. It is important to emphasize at this point
that for PTI-nets executed under the a priori step sequence semantics, marking
reachability cannot be reduced to marking reachability under the sequential
sequential semantics. This provided an additional motivation to develop SCTs
for PTI-nets.

A PTI-net N = (P, T,W,R,M0) with unweighted ordinary arcs is primitive
if there is an integer EL (the ‘emptiness limit’) such that for every reachable
marking M and every inhibitor place p, if M(p) > EL then for every marking M ′

reachable from M and transition t enabled at M ′, it is the case that M ′(p) > m,
where R(p, t) = (0,m).

34 J. Kleijn and M. Koutny

1 2

a

b

(0 , 1)

(1 , 1)

(0 , 0)

(1 , 0)

(ω, 1)

(ω, 0)

(ω, 0)

{a}

{b}

{a} {aω}

{aω} {b}

Fig. 7. A primitive PTI-net with EL = 1 and its step coverability tree. Note that the
pair (x, y) labelling a node of the latter represents an extended marking M such that
M(1) = x and M(2) = y.

To work as required for a primitive PTI-net N , the algorithm in Table 1
needs to be instantiated with a new select(.) function. In this case, select(μ[v])
is the set of all extended steps of transitions U enabled at μ[v] such that
U(t) ∈ {0, 1, . . . ,EL, ω}, for each transition t such that ω · {t} is enabled at
μ[v]. Moreover, to compare extended markings, < is replaced by another order-
ing � such that for any two distinct extended markings, M and M ′, we have
M � M ′ if M(p) ≤ M ′(p), for all places p, and M(p) = M ′(p) for all inhibitor
places p, whenever M(p) ≤ EL. Figure 7 shows an example application of the
modified construction.

Intuitively, select(μ[v]) is defined in such a way that if a non-selected extended
step enabled at μ[v] inserts some tokens into an inhibitor place p, then it nec-
essarily inserts at least EL+1 tokens, making from this point on the inhibiting
features of p void. And the step itself will be covered by at least one step in
select(μ[v]). The ordering � was introduced in [6] and is intended to ensure that
inhibitor places are treated as such (and their marking is not replaced by ω’s)
until the threshold value EL has been passed. One then can then show that the
algorithm always terminates and the expected soundness criteria still hold.

6 Further Issues

The model of PTRL-nets discussed in this paper has wider applicability within
the general field of membrane systems, in particular, if one allows reaction rules
which can dissolve and/or thicken the membranes. In such a case, a membrane sys-
tem may dynamically change its structure due to the execution of specific reaction
rules. As shown in [28], the extended model of membrane structures can still be
treated using behaviourally equivalent PTRL-nets. In this case, inhibitor and ac-
tivator arcs are the key devices allowing one to model the change of the membrane
structure i.e., they are used to implement control structures in the model.

So far we have discussed ways of ensuring correctness of systems with localities
through the behavioural analysis of the corresponding PTRL-nets. An alterna-
tive approach aimed at ensuring correctness is to provide means to construct

Petri Nets with Localities and Testing 35

such systems through automated synthesis from behavioural specifications. Pa-
pers such as [35,36] considered a particular instance of this approach which aims
at constructing PTRL-nets from specifications given in terms of a finite transi-
tion systems with arcs labelled by steps of executed transitions (with or without
knowing the localities of individual transitions).

One might argue that the expressiveness ofPTRL-nets is somewhat constrained
by the fact that each transition belongs to a unique locality, and so the localities
are all non-overlapping. In [37] this assumption has been dropped resulting in a
net model which could provide a greater scope for faithful (or direct) modelling
features implied by the complex nature of, for example, modern VLSI systems or
biological systems. For such an extended model, it is again possible to automati-
cally construct nets from finite step transition systems. Note that [35,36,37] pro-
posed solutions to the synthesis problem using the notion of a region of a transition
system (see, e.g., [2,41]) and the notion of a step firing policy [9].

7 Concluding Remarks

Petri nets with localities and range arcs are a model capable of modelling a
wide range of increasingly sophisticated man-made systems as well as biological
processes which occur in living tissue and the development of organisms. Already,
the PTRL-net model offers a flexible modelling technique in which, for example,
membrane systems with dynamic structure can be specified and analysed.

We feel that there are two major directions for future research in this area.
Firstly, there is the continuation of the investigation into and the development of
implementable efficient analytical techniques, for instance, based on the process
semantics or step coverability trees. Secondly, it seems worthwhile to investigate
the possibilities of a further, careful enhancement of the modelling features of
PTRL-nets, such as the introduction of overlapping localities (which perhaps
then should be called vicinities), and testing the new extended net model using
representative case studies.

Acknowledgements

This research was supported by the Rae&Epsrc Davac, Epsrc Verdad and
Casino and EU Rodin projects.

References

1. Agerwala, T.: A Complete Model for Representing the Coordination of Asyn-
chronous Processes. Hopkins Computer Research Report 32, Johns Hopkins Uni-
versity (1974)

2. Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G.
(eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

3. Best, E., Devillers, R.: Sequential and Concurrent Behaviour in Petri Net Theory.
Theoretical Computer Science 55, 87–136 (1988)

36 J. Kleijn and M. Koutny

4. Best, E., Fernández, C.: Nonsequential Processes. A Petri Net View. EATCS Mono-
graphs on Theoretical Computer Science. Springer, Heidelberg (1988)

5. Burkhard, H.-D.: On Priorities of Parallelism: Petri Nets Under the Maximum
Firing Strategy. In: Salwicki, A. (ed.) Logic of Programs 1980. LNCS, vol. 148, pp.
86–97. Springer, Heidelberg (1983)

6. Busi, N.: Analysis Issues in Petri Nets with Inhibitor Arcs. Theoretical Computer
Science 275, 127–177 (2002)

7. Busi, N., Pinna, G.M.: Process Semantics for Place/transition Nets with Inhibitor
and Read Arcs. Fundamenta Informaticae 40, 165–197 (1999)

8. Calude, C.S., Păun, G., Rozenberg, G., Salomaa, A. (eds.): Multiset Processing.
LNCS, vol. 2235. Springer, Heidelberg (2001)

9. Darondeau, P., Koutny, M., Pietkiewicz-Koutny, M., Yakovlev, A.: Synthesis of
Nets with Step Firing Policies. Fundamenta Informaticae 94, 275–303 (2009)

10. Desel, J., Reisig, W., Rozenberg, G. (eds.): Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098. Springer, Heidelberg (2004)

11. Desel, J., Reisig, W.: Place/Transition Petri Nets. In: Reisig, W., Rozenberg, G.
(eds.) APN 1998. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998)

12. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28, 575–591
(1991)

13. Esparza, J., Heljanko, K.: Unfoldings: A Partial-order Approach To Model Check-
ing. Springer, Heidelberg (2008)

14. Goltz, U., Reisig, W.: The Non-sequential Behaviour of Petri Nets. Information
and Control 57, 125–147 (1983)

15. Hack, M.: Decision Problems for Petri Nets and Vector Addition Systems. Technical
Memo 59, Project MAC, MIT (1975)

16. Hack, M.: Petri Net Languages. Technical Report 159, MIT (1976)
17. Hack, M.: Decidability Questions for Petri Nets. PhD Thesis, MIT (1976)
18. Janicki, R., Koutny, M.: Semantics of Inhibitor Nets. Information and Computa-

tion 123, 1–16 (1995)
19. Janicki, R., Lauer, P.E., Koutny, M., Devillers, R.: Concurrent and Maximally

Concurrent Evolution of Nonsequential Systems. Theoretical Computer Science 43,
213–238 (1986)

20. Karp, R.M., Miller, R.E.: Parallel Program Schemata. J. Comput. Syst. Sci. 3,
147–195 (1969)

21. Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged Processes: a New
Condensed Representation of Petri Net Behaviour. Acta Informatica 43, 307–330
(2006)

22. Kleijn, H.C.M., Koutny, M.: Process Semantics of General Inhibitor Nets. Infor-
mation and Computation 190, 18–69 (2004)

23. Kleijn, J., Koutny, M.: Synchrony and Asynchrony in Membrane Systems. In:
Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS,
vol. 4361, pp. 66–85. Springer, Heidelberg (2006)

24. Kleijn, H.C.M., Koutny, M.: Infinite Process Semantics of Inhibitor Nets. In: Do-
natelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 282–301.
Springer, Heidelberg (2006)

25. Kleijn, J., Koutny, M.: Processes of Petri Nets with Range Testing. Fundamenta
Informaticae 80, 199–219 (2007)

26. Kleijn, J., Koutny, M.: Processes of Membrane systems with Promoters and In-
hibitors. Theoretical Computer Science 404, 112–126 (2008)

Petri Nets with Localities and Testing 37

27. Kleijn, J., Koutny, M.: Steps and Coverability in Inhibitor Nets. In: Lodaya, K.,
Mukund, M., Ramanujam, R. (eds.) Perspectives in Concurrency Theory, pp. 264–
295. Universities Press, Hyderabad (2008)

28. Kleijn, J., Koutny, M.: A Petri Net Model for Membrane Systems with Dynamic
Structure. Natural Computing 8, 781–796 (2009)

29. Kleijn, J., Koutny, M.: Formal Languages and Concurrent Behaviours. In: Bel-
Enguix, G., Dolores Jiménez-López, M., Mart́ın-Vide, C. (eds.) New Developments
in Formal Languages and Applications, pp. 125–182. Springer, Heidelberg (2008)

30. Kleijn, J., Koutny, M.: Applying Step Coverability Trees to Communicating
Component-Based Systems. In: Sirjani, M. (ed.) FSEN 2009. LNCS, vol. 5961,
pp. 178–193. Springer, Heidelberg (2010)

31. Kleijn, J., Koutny, M.: Step Coverability Algorithms for Communicating Systems.
To appear in Science of Computer Programming (2010)

32. Kleijn, J., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for Mem-
brane Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)

33. Kleijn, J., Koutny, M., Rozenberg, G.: Process Semantics for Membrane Systems.
Journal of Automata, Languages and Combinatorics 11, 321–340 (2006)

34. Kosaraju, S.R.: Limitations of Dijkstra’s Semaphore Primitives and Petri Nets.
Operating Systems Review 7, 122–126 (1973)

35. Koutny, M., Pietkiewicz-Koutny, M.: Synthesis of Elementary Net Systems with
Context Arcs and Localities. Fundamenta Informaticae 88, 307–328 (2008)

36. Koutny, M., Pietkiewicz-Koutny, M.: Synthesis of Petri Nets with Localities. Sci-
entific Annals of Computer Science 19, 1–23 (2009)

37. Koutny, M., Pietkiewicz-Koutny, M.: Synthesis of General Petri Nets with Lo-
calities. Report CS-TR-1195, School of Computing Science, Newcastle University
(2010)

38. Mazurkiewicz, A.W.: Trace Theory. In: Rozenberg, G. (ed.) APN 1987. LNCS,
vol. 266, pp. 279–324. Springer, Heidelberg (1987)

39. McMillan, K.L.: Using Unfoldings to Avoid State Explosion Problem in the Verifi-
cation of Asynchronous Circuits. In: Probst, D.K., von Bochmann, G. (eds.) CAV
1992. LNCS, vol. 663, pp. 164–174. Springer, Heidelberg (1993)

40. Montanari, U., Rossi, F.: Contextual Nets. Acta Informatica 32, 545–586 (1995)
41. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary Transition Systems.

Theoretical Computer Science 96, 3–33 (1992)
42. Păun, G.: Computing with Membranes. Journal of Computer and System Sci-

ences 61, 108–143 (2000)
43. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
44. Păun, G., Rozenberg, G.: A Guide to membrane computing. Theoretical Computer

Science 287, 73–100 (2002)
45. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford (2010)
46. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall,

Englewood Cliffs (1981)
47. Petri, C.A.: Fundamentals of a Theory of Asynchronous Information Flow. In:

Proc. of IFIP Congress 1962, pp. 386–390. North Holland, Amsterdam (1962)
48. Qi, Z., You, J., Mao, H.: P Systems and Petri Nets. In: Mart́ın-Vide, C., Mauri,

G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp.
286–303. Springer, Heidelberg (2004)

49. Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L.: Qualitative Analysis of Bio-
chemical Reaction Systems. Comput. Biol. Med. 26, 9–24 (1996)

38 J. Kleijn and M. Koutny

50. Reinhardt, K.: Reachability in Petri Nets with Inhibitor Arcs. Technical Report
WSI-96-30, Wilhelm Schickard Institut für Informatik, Universität Tubingen (1996)

51. Rozenberg, G., Engelfriet, J.: Elementary Net Systems. In: Reisig, W., Rozenberg,
G. (eds.) APN 1998. LNCS, vol. 1491, pp. 12–121. Springer, Heidelberg (1998)

52. Stahl, C., Reisig, W., Krstić, M.: Hazard Detection in a GALS Wrapper: A Case
Study. In: ACSD 2005, pp. 234–243. IEEE Computer Society, Los Alamitos (2005)

53. Teruel, E., Chrzastowski-Wachtel, P., Colom, J.M., Silva, M.: On Weighted T-
Systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 348–367. Springer,
Heidelberg (1992)

54. Vogler, W.: Partial Order Semantics and Read Arcs. Theoretical Computer Sci-
ence 286, 33–63 (2002)

55. Membrane systems web page, http://ppage.psystems.eu/

http://ppage.psystems.eu/

A Perspective on Explicit State Space
Exploration of Coloured Petri Nets:

Past, Present, and Future

Lars M. Kristensen

Department of Computer Engineering
Bergen University College, Norway

lmkr@hib.no

Abstract. We provide a chronological research perspective on the de-
velopment and application of methods and supporting computer tools for
state space exploration and model checking of Coloured Petri Nets. We
discuss how the lessons learned from practical applications have influ-
enced current and envisioned future research directions concentrating on
the ongoing development of the ASAP state space exploration platform.

Explicit state space exploration is one of the main approaches to model-based
verification of concurrent systems and it has been one of the most successfully
applied [8] analysis methods for Coloured Petri Nets (CPNs) [10,13,14]. Our
work on the development and application of state space methods for CPNs and
their supporting computer tools has spanned several years, and it has included
the development of three generations of computer tools. State space methods has
also generally been a highly active area of research resulting in a vast variety of
storage techniques, verification algorithms, and computer tools. The large suite
of state space methods available today combined with the power of modern com-
puting platforms allows for the validation of industrial-sized concurrent systems
– despite the inherent presence of the state explosion problem [27].

A fundamental guideline governing our research approach has been the de-
velopment of state space methods that supports the complete CPN modelling
language. In particular this means that we do not rely on restrictions on the net
structure or inscription language, nor on unfolding to the underlying low-level
Petri net. Most state space methods and model checking techniques can be for-
mulated at the level of transitions systems, and are hence transferable between
modelling languages. The rich set of data types and associated inscription lan-
guage which are fundamental building blocks of the CPN modelling language
however pose specific challenges for state space methods in the context of CPNs.

Early work concentrated on the development of computer tool support for full
state space exploration [2,24] and initial experiments with the equivalence [11],
symmetry [4,5,9,12], and the stubborn set methods [26,27]. The symmetry method
exploits inherent symmetries in systems to compute a condensed state space where
each node represents an equivalence class of states and each arc represents an

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 39–42, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

40 L.M. Kristensen

equivalence class of events. The equivalence method is a generalisation of the sym-
metry method in which there is no requirement on the origin of the equivalence
relations on states and events. Both of these methods showed difficult to apply in
practice [16,15,21] as they require a manual soundness proof for the user-provided
symmetry (equivalence). Furthermore, applications of the symmetry method
showed that the time required to compute canonical representatives of equivalence
classes was excessive – even with the use of advanced group algebraic techniques
[22]. The stubborn set method analyses the dependencies between transitions to
explore only a subset of the full state space while preserving enough behaviour
to answer the verification question being considered. Computing stubborn sets of
CPNs requires in worst case time proportional to the size of the underlying low-
level Petri net [20]. Hence, restrictions on the modelling language is required to
apply the stubborn set method without relying on unfolding.

The difficulties with the practical application of the symmetry, equivalence,
and stubborn set methods in the context of CPNs prompted a change in research
direction towards methods that aim at making more economical use of memory
resources when exploring the ordinary state space. Memory is (in most cases)
the limiting factor in state space exploration of CPN models due to the large
state vectors. This work resulted in the development of the sweep-line method [3]
and the comback method [30,7]. The sweep-line suite of methods [3,18,17,1,23] is
aimed at on-the-fly verification and exploits a notion of progress found in many
concurrent systems. Exploiting progress allows for the deletion of states from
memory during a progress-first traversal of the state space. This in turn reduces
peak memory usage. The comback method can be viewed as an exploration-order
independent storage mechanism based on hash compaction [25,31]. It allows the
usually large state vectors of CPN models to be stored in compact form, and
the full state vector of a state is reconstructed when needed for comparison
with newly generated states. Unlike the classical hash compaction method, the
comback method guarantees full coverage of the state space.

Ongoing work has concentrated on the development of the ASAP state space
exploration platform [28] which is intended to constitute the next generation of
computer tool support for state space exploration of CPN models. The design
of the ASAP platform takes into account many of the lessons learned through
the development and application of state space methods outlined above. An
important vision of ASAP is to provide the user with coherent support for a
large suite of state space methods. ASAP relies on a graphical language for
specification of verification jobs allowing users to work on different abstraction
levels when applying state space methods. Furthermore, ASAP has a software
architecture [29] that allows researchers to extend the tool with new state space
methods and have these integrated as first class citizens in the tool. Recent work
has also included investigations of state space partitioning schemes [6] targeting
distributed [19] and external memory state space exploration of CPN models.

Acknowledgements. The work on state space methods for CPNs has involved
research collaboration with several co-authors and colleagues. The author is
grateful for the contributions of: Jonathan Billington, Gerth S. Brodal, Søren

A Perspective on Explicit State Space Exploration of Coloured Petri Nets 41

Christensen, Paul Fleischer, Louise Elgaard, Sami Evangelista, Guy Gallasch,
Kurt Jensen, Jens B. Jørgensen, Mads K. Kjeldsen, Charles Lakos, Thomas
Mailund, Laure Petrucci, Surayya Urazimbetova, Antti Valmari, Michael West-
ergaard, Karsten Wolf, and Lin Zhang.

References

1. Billington, J., Gallasch, G., Kristensen, L.M., Mailund, T.: Exploiting Equivalence
Reduction and the Sweep-Line Method for Detecting Terminal States. IEEE Trans-
actions on Systems, Man, and Cybernetics. Part A: Systems and Humans 34(1),
23–38 (2004)

2. Christensen, S., Jørgensen, J.B., Kristensen, L.M.: Design/CPN – A Computer
Tool for Coloured Petri Nets. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217,
pp. 209–223. Springer, Heidelberg (1997)

3. Christensen, S., Kristensen, L.M., Mailund, T.: A Sweep-Line Method for State
Space Exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 450–464. Springer, Heidelberg (2001)

4. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting Symmetries in Temporal
Logic Model Checking. Formal Methods in System Design 9, 77–104 (1996)

5. Emerson, E.A., Sistla, A.P.: Symmetry and Model Checking. Formal Methods in
System Design 9, 105–131 (1996)

6. Evangelista, S., Kristensen, L.M.: Dynamic State Space Partitioning for External
Memory Model Checking. In: Alpuente, M. (ed.) FMICS 2009. LNCS, vol. 5825,
pp. 70–85. Springer, Heidelberg (2009)

7. Evangelista, S., Westergaard, M., Kristensen, L.M.: The ComBack Method Revis-
ited: Caching Strategies and Extension with Delayed Duplicate Detection. Trans-
actions on Petri Nets and Other Models of Concurrency 3, 189–215 (2009)

8. Examples of Industrial Use of CP-Nets,
http://www.cs.au.dk/CPnets/intro/example/indu.html

9. Ip, C.N., Dill, D.L.: Better Verification Through Symmetry. Formal Methods in
System Design 9, 41–75 (1996)

10. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practi-
cal Use. Basic Concepts. Monographs in Theoretical Computer Science, vol. 1.
Springer, Heidelberg (1992)

11. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practi-
cal Use. Analysis Methods. Monographs in Theoretical Computer Science, vol. 2.
Springer, Heidelberg (1994)

12. Jensen, K.: Condensed State Spaces for Symmetrical Coloured Petri Nets. Formal
Methods in System Design 9, 7–40 (1996)

13. Jensen, K., Kristensen, L.M.: Coloured Petri Nets – Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009)

14. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Soft-
ware Tools for Technology Transfer (STTT) 9(3-4), 213–254 (2007)

15. Jørgensen, J.B., Kristensen, L.M.: Computer Aided Verification of Lamports Fast
Mutual Exclusion Algorithm Using Coloured Petri Nets and Occurrence Graphs
with Symmetries. IEEE Transactions on Parallel and Distributed Systems 10(7),
714–732 (1999)

http://www.cs.au.dk/CPnets/intro/example/indu.html

42 L.M. Kristensen

16. Jørgensen, J.B., Kristensen, L.M.: Verification of Coloured Petri Nets Using State
Spaces with Equivalence Classes. In: Petri Net Approaches for Modelling and Val-
idation, ch. 2. LINCOM Studies in Computer Science, vol. 1, pp. 17–34. Lincoln
Europa (2003)

17. Kristensen, L.M., Mailund, T.: A Generalised Sweep-Line Method for Safety Prop-
erties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp.
549–567. Springer, Heidelberg (2002)

18. Kristensen, L.M., Mailund, T.: Efficient Path Finding with the Sweep-Line Method
using External Storage. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS,
vol. 2885, pp. 319–337. Springer, Heidelberg (2003)

19. Kristensen, L.M., Petrucci, L.: An Approach to Distributed State Space Explo-
ration for Coloured Petri Nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004.
LNCS, vol. 3099, pp. 474–483. Springer, Heidelberg (2004)

20. Kristensen, L.M., Valmari, A.: Finding Stubborn Sets of Coloured Petri Nets With-
out Unfolding. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp.
104–123. Springer, Heidelberg (1998)

21. Lorentsen, L., Kristensen, L.M.: Modelling and Analysis of a Danfoss Flowmeter
System using Coloured Petri Nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN
2000. LNCS, vol. 1825, pp. 346–366. Springer, Heidelberg (2000)

22. Lorentsen, L., Kristensen, L.M.: Exploiting Stabilizers and Parallelism in State
Space Generation with the Symmetry Method. In: Proc. of ICACSD 2001, pp.
211–220. IEEE Computer Society, Los Alamitos (2001)

23. Mailund, T.: Analysing Infinite-State Systems by Combining Equivalence Reduc-
tion and the Sweep-Line Method. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002.
LNCS, vol. 2360, pp. 314–333. Springer, Heidelberg (2002)

24. Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S.,
Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulat-
ing, and Analysing Coloured Petri Nets. In: van der Aalst, W.M.P., Best, E.
(eds.) ICATPN 2003. LNCS, vol. 2679, pp. 450–462. Springer, Heidelberg (2003),
http://www.cs.au.dk/CPNTools

25. Stern, U., Dill, D.L.: Improved Probabilistic Verification by Hash Compaction. In:
Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206–224.
Springer, Heidelberg (1995)

26. Valmari, A.: Stubborn Sets of Coloured Petri Nets. In: Proc. of ICATPN 1991, pp.
102–121 (1991)

27. Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)

28. Westergaard, M., Evangelista, S., Kristensen, L.M.: ASAP: An Extensible Platform
for State Space Analysis. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009.
LNCS, vol. 5606, pp. 303–312. Springer, Heidelberg (2009),
http://www.daimi.au.dk/~ascoveco/download.html

29. Westergaard, M., Kristensen, L.M.: The Access/CPN Framework: A Tool for Inter-
acting with the CPN Tools Simulator. In: Franceschinis, G., Wolf, K. (eds.) PETRI
NETS 2009. LNCS, vol. 5606, pp. 313–322. Springer, Heidelberg (2009),
http://www.daimi.au.dk/~ascoveco/accesscpn/

30. Westergaard, M., Kristensen, L.M., Brodal, G.S., Arge, L.A.: The ComBack
Method – Extending Hash Compaction with Backtracking. In: Kleijn, J., Yakovlev,
A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 445–464. Springer, Heidelberg (2007)

31. Wolper, P., Leroy, D.: Reliable Hashing without Collision Detection. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 59–70. Springer, Heidelberg (1993)

http://www.cs.au.dk/CPNTools
http://www.daimi.au.dk/~ascoveco/download.html
http://www.daimi.au.dk/~ascoveco/accesscpn/

Can Stubborn Sets Be Optimal?

Antti Valmari and Henri Hansen

Tampere University of Technology, Department of Software Systems
PO Box 553, FI-33101 Tampere, Finland
{antti.valmari,henri.hansen}@tut.fi

Abstract. Literature on the stubborn set and similar state space re-
duction methods presents numerous seemingly ad-hoc conditions for se-
lecting the transitions that are investigated in the current state. There
are good reasons to believe that the choice between them has a signifi-
cant effect on reduction results, but not much has been published on this
topic. This article presents theoretical results and examples that aim at
shedding light on the issue. Because the topic is extensive, we only con-
sider the detection of deadlocks. We distinguish between different places
where choices can be made and investigate their effects. It is usually im-
practical to aim at choices that are “best” in some sense. However, one
non-trivial practical optimality result is proven.

Keywords: Partial order verification, stubborn sets.

1 Introduction

In this article we investigate methods for constructing a subset of the state
space of a concurrent system in such a way that the deadlocks of the system
are preserved. That is, every deadlock of the system is present in the reduced
state space, and every deadlock of the reduced state space is a deadlock of the
system. We only investigate methods where, when constructing the immediate
successor states of a state in the reduced state space, a subset of the (structural)
transitions of the system is computed and only the transitions in it are used for
computing the successor states.

Consider a concurrent program. If some process is ready to execute a state-
ment that does not in any way depend on or interact with other processes and
non-local variables, then it is intuitively obvious that no deadlocks are lost if only
that statement is investigated in the current state. This observation is so obvious
that it seems impossible to find out who made it first and when. However, its
potential for preventing state explosion is limited.

More complicated but also more powerful methods of that kind have been
published since 1988, such as stubborn sets [10], persistent sets [5], and ample
sets [7]. Many variants of them have been developed in at least three dimen-
sions: the set of preserved properties has varied from just deadlocks to full-
fledged stuttering-insensitive temporal logics; different notions of dependency or

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 43–62, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

44 A. Valmari and H. Hansen

interaction between transitions have been used; and different methods for con-
structing the sets have been proposed. In this article we restrict our attention
to deadlocks but analyse the variability in the other two dimensions.

Many methods are available even if the set of preserved properties is restricted
to deadlocks. Although they are based on the same overall principles, their details
vary. Little is known on their relative reduction power. It can be investigated
experimentally or theoretically. Some experimental results made with a computer
were presented in [4]. In this article we tackle the issue theoretically and with
examples.

Detecting deadlocks is computationally demanding. It is usually at least
PSPACE-hard [2]. As a consequence, it is not reasonable to expect that a
reduced state space method always runs quickly and produces good reduction
results. It is more reasonable to expect that there is a range of methods, some of
which yield better reduction results but are also more complicated and perhaps
also consume more time than the others. This is precisely the situation with
stubborn set and similar methods.

It is important to understand that stubborn set and similar methods are based
on approximating in a safe direction. That is, they use concepts whose precise
values are too expensive to find out, but for which approximations that preserve
correctness are available. This is one way of coping with the high computational
complexity. However, the approximations may reduce the amount of reduction
obtained from the methods. This is a major, but not the only, issue in which the
methods in the literature differ from each other: some use more time to compute
more precise approximations than the others.

For instance, sometimes it is easy to see that a disabled Petri net transition
can occur in the future; sometimes it is easy to see that it cannot; and sometimes
its future is not easy to see. If we see that it cannot occur in the future, we exploit
that fact, but in the two remaining cases we write “as far as we know, it may
occur in the future”, and continue accordingly. Please keep in mind that when
we write “as far as we know” in the sequel, it is not a vague statement but
indicates the direction of approximation.

Section 2 introduces concurrent systems and their state spaces. The next two
sections present so-called dynamic and static deadlock-preserving stubborn set
methods using dependency graphs that have both and- and or-type of vertices.
These are mostly known results, but they are presented in a general framework
that is suitable for the rest of this article. Although we use stubborn set termi-
nology, most similar methods can be understood in terms of dependency graphs.
(So-called weak stubborn sets seem to need something more general than the
dependency graphs of Section 4. The stubborn sets in this article are “strong”).

Section 5 investigates variability first in the choice and then in the definition
of the so-called dependency relation. It is argued that there is no natural “most
general” notion of dependency. The next section focuses on an issue that has been
given little attention in the literature, namely the control of disabled transitions
in the stubborn or similar set. Section 7 briefly discusses algorithms for actually
constructing stubborn or similar sets.

Can Stubborn Sets Be Optimal? 45

Section 8 focuses on whether a stubborn set can be “best” in some non-trivial
practical sense. We argue that it is not practical to define “best” as “yields small-
est possible deadlock-preserving state spaces”, but it is practical, reasonable and
non-trivial to define it as “in each state, expands as few transitions as the in-
formation provided by the dependency graph allows”. This means that better
reduction may be possible, but not without using some idea that goes beyond de-
pendency graphs. Of the techniques presented in the literature on stubborn sets
and similar methods, most can be understood in terms of dependency graphs. As
a consequence, new ideas are needed to defeat this notion of optimality. Then,
using model-theoretic reasoning, a theorem is proven that states that a certain
method is optimal in this sense.

2 Petri Nets, Concurrent Systems, and State Spaces

In this section we introduce the concurrency-related formalisms needed in this
article. Let us start by specifying the kind of Petri nets we use, that is, place/
transition nets, together with some related concepts.

Definition 1. A Petri net (or place/transition net) is a tuple (P, T,W,MI)
where P ∩ T = ∅, W is a function from (P × T) ∪ (T × P) to N, and MI is
a function from P to N. The elements of P , T , and W are places, transitions,
and weights, respectively. MI is the initial marking.

A marking is a function from P to N.
An arc is a pair (x, y) where x ∈ P ∧ y ∈ T or x ∈ T ∧ y ∈ P such that

W (x, y) > 0. If x ∈ P ∪ T , then •x = {y ∈ T ∪ P | W (y, x) > 0} and x• = {y ∈
T ∪ P | W (x, y) > 0}.

Transition t ∈ T is enabled in marking M , denoted by M [t〉, if and only if
∀p ∈ P : M(p) ≥ W (p, t). If t is enabled in M , then t may occur yielding the
marking M ′ where ∀p ∈ P : M ′(p) = M(p)−W (p, t) + W (t, p). This is denoted
with M [t〉M ′.

M [t1t2 · · · tn〉M ′ means that there are M0, . . . , Mn so that M0 = M , Mn =
M ′, and Mi−1 [ti〉Mi for 1 ≤ i ≤ n. M [t1t2 · · · tn〉 means that there is an M ′

such that M [t1t2 · · · tn〉M ′.
M ′ is reachable from M , if and only if there are t1, t2, . . . , tn such that

M [t1t2 · · · tn〉M ′. The set of all such M ′ is denoted by [M〉. M is reachable if
and only if M ∈ [MI〉.

Petri nets are an example of concurrent systems. We will not define concurrent
systems formally. Instead, we will rely on an analogy with Petri nets, introduce
some terminology, and define two kinds of state spaces formally.

A concurrent system has a set SS of syntactic states. Intuitively, it is the set of
all possible combinations of values of the elements that store information, such
as program counters, local and global variables, and buffered communication
channels. In the case of Petri nets, SS consists of all functions from P to N. The
set of syntactic states is a superset of all other sets of states that we will discuss.
If we say “state” without specifying its kind, then it is a syntactic state.

46 A. Valmari and H. Hansen

A concurrent system also has a set SI of initial states. They are the possible
syntactic states of the system when it is started. With Petri nets it is customary
to specify precisely one initial state, the initial marking. However, multiple initial
states are sometimes needed to model concurrent systems appropriately. This is
the case, for instance, with uninitialised program variables. Multiple initial states
are common in the context of temporal logics.

The set of reachable states SA consists of those syntactic states that can be
obtained by running the system starting at some initial state. In the case of
Petri nets it is the reachable markings. Obviously SI ⊆ SA ⊆ SS. We chose the
subscript “A” instead of “R”, because we will later need “R” for “reduced”.

The term “syntactic states” is much less widely used than the other two.
Syntactic states that are not reachable are irrelevant for the behaviour of a
system. However, often it is only known after constructing the reduced state
space whether some state is reachable or not. As a consequence, when checking
whether two transitions depend on each other, one cannot in practice directly
appeal to reachable states but must use some superset. This is why we need to
discuss syntactic states.

Having introduced three sets of states, we will introduce two sets of transitions:
structural and semantic. Semantic transitions are changes of the state of the
system, and structural transitions are structural entities whose occurrences cause
those changes. Transitions of a Petri net are an example of structural transitions.
Another example is atomic statements in a concurrent programming language.
Semantic transitions are triples of the form (s, t, s′), where s and s′ are states, t
is a structural transition, and s [t〉 s′.

The notation s [t〉 s′ is extended to s [t1 · · · tn〉 s′, s [t1 · · · tn〉, and [s〉 like with
Petri nets, and similarly with the terms “enabled” and “occur”.

We assume in this article that structural transitions are deterministic. That is,
if s [t〉 s1 and s [t〉 s2, then s1 = s2. It is common in concurrency formalisms that
structural transitions are deterministic. For instance, Petri net transitions are
deterministic. However, in process algebras, if actions are interpreted as struc-
tural transitions (as is reasonable), then structural transitions are not necessarily
deterministic.

The following definition summarises the above notions.

Definition 2. A syntactic state space is a triple (SS, T, δS), where δS is a partial
function from SS ×T to SS. The elements of SS, T , and δS are syntactic states,
structural transitions, and semantic transitions, respectively. By s [t〉 we mean
that δS(s, t) is defined, and by s [t〉 s′ we mean that δS(s, t) = s′.

Let (SS, T, δS) be a syntactic state space and SI ⊆ SS. The tuple (SA, T, δA, SI)
is a full state space if and only if SA and δA are the smallest subsets of SS and
δS that satisfy

– SI ⊆ SA, and
– if s ∈ SA and s [t〉 s′, then s′ ∈ SA and (s, t, s′) ∈ δA.

The elements of SI, SA, and δA are initial states, reachable states, and reachable
transitions, respectively.

Can Stubborn Sets Be Optimal? 47

3 Reduced State Spaces That Preserve Deadlocks

In this section we develop the theory of reduced state spaces up to a theorem
that promises that deadlocks are preserved if certain conditions are met. The
conditions are dynamic, meaning that they refer to the future states of the cur-
rent state, and thus cannot be easily evaluated in the current state. Therefore,
they do not immediately yield a method for constructing reduced state spaces.
However, they are an intermediate step towards such a method. Sets that sat-
isfy the conditions are called deadlock-preserving strong dynamic stubborn sets
in [11], and strongly dynamically stubborn sets in [12].

The construction of the state space of a concurrent system maintains a set of
found states. Initially the initial states are found. Each found state s is expanded
by finding all structural transitions t and states s′ such that s [t〉 s′. If s′ has not
yet been found, it is marked as found and will be expanded later. In general,
unexpanded found states may be picked for expansion in any order, and the
expansion of a state may interleave with the expansion of another state.

In the stubborn set and similar methods, not necessarily all enabled structural
transitions are used when expanding a state. This motivates the notion of reduced
state space, defined next.

Definition 3. Let (SS, T, δS) be a syntactic state space. A reduced state space
generator is a function from SS to 2T .

Let R be a reduced state space generator and SI ⊆ SS. The reduced state space
generated by R is the tuple (SR, T, δR, SI), where SR and δR are the smallest
subsets of SS and δS that satisfy

– SI ⊆ SR, and
– if s ∈ SR, t ∈ R(s), and s [t〉 s′, then s′ ∈ SR and (s, t, s′) ∈ δR.

Let en(s) = {t | s [t〉}. If R1 and R2 are two reduced state space generators such
that R1(s)∩en(s) ⊆ R2(s)∩en(s) for every s ∈ SS, then R1 obviously generates
a smaller or the same state space as R2 for the same set of initial states.

In this article we are interested in reduced state spaces that have precisely
the same deadlocks as the corresponding full state spaces. Furthermore, a state
that looks like a deadlock in a reduced state space must indeed be a deadlock.

Definition 4. Let (SS, T, δS) be a syntactic state space. A deadlock is an s ∈ SS
such that s [t〉 holds for no t ∈ T .

Let (SA, T, δA, SI) be a full and (SR, T, δR, SI) a reduced state space. The latter
preserves deadlocks if and only if

– every deadlock that is in SA is in SR, and
– if s ∈ SR and s is not a deadlock, then there is t ∈ R(s) such that s [t〉.

Theorem 1. Let (SS, T, δS) be a syntactic state space. Assume that R satisfies
the following for every s ∈ SS, t ∈ R(s), t1 ∈ T \ R(s), . . . , tn ∈ T \ R(s).

48 A. Valmari and H. Hansen

D0 If s is not a deadlock, then there is t′ ∈ R(s) such that s [t′〉.
D1 If s [t1 · · · tnt〉 s′, then s [tt1 · · · tn〉 s′.
D2 If s [t〉 and s [t1 · · · tn〉 s′, then s′ [t〉.

Then the reduced state spaces generated by R preserve deadlocks.

Proof. We prove first by induction that if s [t1 · · · tn〉 s′, s ∈ SR, and s′ is a
deadlock, then s′ ∈ SR. This is obvious when n = 0. If n > 0, then s [t1〉. This
implies by D0 that there is t ∈ R(s) such that s [t〉. If none of t1, . . . , tn is
in R(s), then D2 yields s′ [t〉, which contradicts the assumption that s′ is a
deadlock. Therefore, there is 1 ≤ i ≤ n such that ti ∈ R(s). By choosing the
smallest such i we get t1 /∈ R(s), . . . , ti−1 /∈ R(s). Now D1 yields an s′′ such
that s [ti〉 s′′ [t1 · · · ti−1ti+1 · · · tn〉 s′. We have s′′ ∈ SR, from which the induction
assumption gives s′ ∈ SR.

If s′ is a deadlock in the full state space, then there are s ∈ SI and t1 ∈ T , . . . ,
tn ∈ T such that s [t1 · · · tn〉 s′. By Definition 3 s ∈ SR, so by the above result
s′ ∈ SR. On the other hand, if s ∈ SR and s is not a deadlock, then D0 implies
that s [t〉 for some t ∈ R(s). ��

Theorem 1 is from [9]. As was mentioned towards the beginning of this section,
sets that satisfy D0, D1, and D2 are called deadlock-preserving strong dynamic
stubborn sets in [11]. “Strong” refers to the fact that there is also a weak stubborn
set theory where D0 and D2 have been replaced by a weaker requirement [10,9].
Weak stubborn sets provide better reduction results than strong stubborn sets.
However, they are more difficult to construct and have found little use. Therefore,
we ignore them in this article. The weak version of stubborn sets is explored
in [12], in which they are called simply dynamically stubborn sets.

As was mentioned above, “dynamic” refers to the fact that the conditions
talk about states that are in the future of s, and cannot thus be easily eval-
uated if only the current state is known. In the next section we will introduce
“static” conditions whose evaluation only needs the current state. The use of the
words “static” and “dynamic” resembles their use in the theory of programming
languages.

The word “stubborn” reflects the intuition that the stubborn set does not let
the outside world affect what it will do. Letting t1, . . . , tn occur first does not
enable or disable t, and the state after they all have occurred does not depend
on whether t occurred first or last.

4 Dependency Graphs and Static Stubborn Sets

In this section we aim at static concepts of stubborn sets, that is, such concepts
that the set can be constructed on the basis of the current state, without knowing
its future states. This is important, because the future states are not known when
the state is expanded.

Many concepts of that kind have been presented in the literature. Most of
them use some kind of dependency relation, defined next.

Can Stubborn Sets Be Optimal? 49

Definition 5. Let (SS, T, δS) be a syntactic state space and S ⊆ SS. A depen-
dency relation with respect to S is any symmetric binary relation D ⊆ T × T
such that for every t1 ∈ T , t2 ∈ T , and s ∈ S, if (t1, t2) /∈ D, s [t1〉, and s [t2〉,
then there is some s′ ∈ SS such that s [t1t2〉 s′ and s [t2t1〉 s′.

The definition differs from the commonly presented in that it has the S to which
the “commutativity requirement” is restricted. In the literature, commutativity
is usually required for “all states”, meaning either that S = SS or S = SA.
We will also discuss other choices of S in Section 5. Another difference is that
we do not require that the relation is reflexive. Whether or not it is reflexive is
irrelevant in this article.

It is natural to require that the relation is symmetric, because the commu-
tativity requirement in it is symmetric. Even if the symmetry requirement were
removed, either both (t1, t2) ∈ D and (t2, t1) ∈ D would have to hold to satisfy
the definition, or it would not matter whether both or one or the other or neither
holds.

Please notice that D need not be the smallest relation that has the properties
mentioned in the definition. This is an example of approximating in the safe
direction. It would be correct to let D consist of all pairs of structural transitions,
but then the method would not give any reduction of the state space.

The dependency relation is used in various ways in the literature, and there is
also another important issue: the controlling of disabled structural transitions.
To discuss a wide range of possibilities, we introduce an abstract notion of depen-
dency graphs. The intuition underlying the definition is explained immediately
after it.

Definition 6. A dependency graph (E,D,C, “�”) is a directed graph that has
three kinds of vertices, enabled (E), disabled (D), and condition (C), and sat-
isfies the following.

1. E ∩D = E ∩C = D ∩ C = ∅.
2. “�” ⊆ ((E∪C)×(E∪D))∪(D×C). By v � v′ we mean that (v, v′) ∈ “�”.
3. If v ∈ E, then v
� v. (Part 2 implies v
� v when v ∈ D ∪C.)
4. If v1 ∈ E, v2 ∈ E, and v1 � v2, then v2 � v1.
5. If v1 ∈ D, then there is at least one v2 such that v1 � v2.

Let (E,D,C, “�”) be a dependency graph. If V1 ⊆ E∪D∪C and V2 ⊆ E∪D∪C,
then V1 � V2 denotes that V1∩E ⊆ V2∩E. If v ∈ E∪D∪C, then •v = {u | u � v}
and v• = {u | v � u}.

The idea is that enabled and disabled vertices correspond to enabled and disabled
structural transitions of the concurrent system. Condition vertices correspond
to reasons why a structural transition is disabled. An empty input place of a
Petri net transition is a good example of such a reason. The edge d � c where
d ∈ D and c ∈ C represents the situation that d is disabled because the condition
represented by c does not hold in the current state. There may be many such
c for each d. For instance, a Petri net transition may have many empty input

50 A. Valmari and H. Hansen

places. The edge c � t models the fact that, as far as we know, an occurrence
of the structural transition t may make c hold. We will make these and the
succeeding ideas precise in Definition 7.

Part 2 of the definition stipulates that all output edges of disabled vertices
lead to condition vertices and all input edges of condition vertices come from
disabled vertices. This is in harmony with the role of condition vertices.

Definition 6 reflects the thinking that the enabling condition of a structural
transition is a conjunction of individual conditions. With Petri nets this is nat-
urally the case. With other formalisms, if we do not know how to divide the
enabling condition to more than one conjunct, we can let d have precisely one
output vertex, from which there is an edge to each structural transition that,
as far as we know, can enable d. Part 5 requires that each disabled structural
transition has at least one conjunct. It simplifies part 3 of Definition 8 that will
be presented later. It does not imply loss of generality, because, if necessary, one
may add an extra c that does not have output edges. Such a c represents the
conjunct “False”.

An edge e � t where e is an enabled vertex and t
= e models the fact that the
occurrence of transition t may, roughly speaking, modify the effect of e or disable
e. More precisely, there is some dependency relation D, and the edge is drawn if
and only if (e, t) ∈ D. (Dependency graphs will be used in such a way that the
current state is in the S of the dependency relation.) Dependency relations are
symmetric. Therefore, if the edge e � t is drawn and also t is enabled, then also
the edge t � e must be drawn. This motivates part 4 of Definition 6.

Part 3 is because, as we will see in Definition 8, the edge e � e where e ∈ E
would represent a requirement of the form “if e is in V then e must be in V ”.
The requirement obviously holds automatically and thus need not be stated.

The following definition makes it precise what it means that a dependency
graph is “correct” for a concurrent system.

Definition 7. A dependency graph (E,D,C, “�”) respects the syntactic state
space (SS, T, δS) in s ∈ SS if and only if the following hold:

1. E = {t ∈ T | s [t〉}
2. D = T \ E
3. If d ∈ D and s [t1t2 · · · tnd〉, then, for each c such that d � c, there is

1 ≤ i ≤ n such that c � ti.
4. There is a dependency relation D with respect to the states that are reachable

from s such that if e ∈ E, t
= e, and (e, t) ∈ D, then e � t.

The goal of the dependency graph is to make it possible to compute a set that
does not necessarily contain all enabled structural transitions, but, even so, to
find deadlocks, it suffices to let the enabled structural transitions in the set occur.
The next definition characterises such a set, and the theorem after the definition
states that it indeed does so.

Definition 8. A stubborn set of a dependency graph is a collection V of vertices
such that the following hold:

Can Stubborn Sets Be Optimal? 51

1. If E
= ∅ then V ∩ E
= ∅.
2. If v ∈ V \ D then v• ⊆ V .
3. If v ∈ V ∩ D then v• ∩ V
= ∅.

That is, it contains all output vertices of its enabled and condition vertices, and
at least one output vertex of each of its disabled vertices. It also contains at least
one enabled vertex, if there are any.

Theorem 2. Let (SS, T, δS) be a syntactic state space. For each s ∈ SS, let
V (s) be a stubborn set of a dependency graph that respects (SS, T, δS) in s, and
let R(s) = V (s)∩T . Then R has the properties D0, D1, and D2 in Theorem 1,
and the reduced state spaces generated by R preserve deadlocks.

Proof. By Definitions 7(1) and 8(1), if s is not a deadlock, then E(s), V (s)∩E(s),
and R(s) contain an enabled structural transition. So D0 holds.

During the rest of the proof, let s0 = s, t ∈ R(s0), t1 /∈ R(s0), . . . , tn /∈ R(s0),
and s0 [t1〉 s1 [t2〉 · · · [tn〉 sn.

Assume that s0 [t〉 s′0. By Definitions 7(1), 8(2), and 6(2), t ∈ E(s0) and
t• ⊆ V (s0)∩T . Because ti /∈ R(s0) for 1 ≤ i ≤ n, we have t
� ti. If D(s0) is the
dependency relation in Definition 7(4), then (t, ti) /∈ D(s0). Repeated application
of Definition 5 yields s′1, . . . , s′n such that s′0 [t1〉 s′1 [t2〉 · · · [tn〉 s′n and si [t〉 s′i for
1 ≤ i ≤ n. So D2 holds.

Assume that sn [t〉. If t ∈ E(s0), then D1 holds by what was proven above
because t is deterministic. We show that the opposite case t ∈ D(s0) is not
possible, by assuming it and deriving a contradiction. By Definitions 8(3), 8(2),
and 6(2), there is a c ∈ t• such that c ∈ V (s0) and c• ⊆ R(s0). By Definition 7(3),
there is 1 ≤ i ≤ n such that ti ∈ c•. But this contradicts ti /∈ R(s0). This
completes the proof of D1. ��

We conclude this section by defining and commenting on three dependency
graphs. We skip the (simple) proofs that they indeed are dependency graphs
and respect the syntactic state space of the Petri net or concurrent program as
promised.

Example 1. Let (P, T,W,M) be a Petri net. The following graph (E,D,C, “�”)
is a dependency graph that respects (P, T,W,M). (That is, it respects the syn-
tactic state space of (P, T,W,M) in M .)

– E = {t ∈ T | M [t〉}
– D = T \ E
– C = {p ∈ P | ∃t ∈ T : M(p) < W (p, t)}
– (t1, t2) ∈ D if and only if •t1 ∩ •t2
= ∅.
– t � t′ where t ∈ E and t′ ∈ T if and only if t′
= t and (t, t′) ∈ D.
– t � p where t ∈ D and p ∈ C if and only if M(p) < W (p, t).
– p � t where p ∈ C and t ∈ T if and only if t ∈ •p. ��

52 A. Valmari and H. Hansen

Example 2. Let everything be like in Example 1, except the following:

– (t1, t2) ∈ D if and only if
∃p ∈ P : min(W (t1, p),W (t2, p)) < min(W (p, t1),W (p, t2)).

– p � t where p ∈ C and t ∈ T if and only if
W (p, t) < W (t, p) ∧ W (p, t) ≤ M(p).

The resulting graph is a dependency graph that respects (P, T,W,M). ��

It is not difficult to check that the edges of the graph in Example 2 are a subset
of the edges of the graph in Example 1. This implies that all stubborn sets of
Graph 1 are stubborn sets of Graph 2, but not necessarily vice versa. Graph 2
may have stubborn sets that yield smaller R(s) ∩ E(s) than any stubborn set
of Graph 1. Therefore, Graph 2 has the potential of yielding better reduction
results than Graph 1. On the other hand, Graph 1 has a simpler definition. This
is an example of the trade-off between simplicity and reduction power mentioned
in the introduction.

Example 3. Consider a concurrent program consisting of sequential processes
and shared variables. Each sequential process has a program counter pci. Each
atomic statement of process i has an enabling condition of the form pci = c ∧ ϕ,
where c is a constant and ϕ is a Boolean expression on values of shared variables.
If a shared variable occurs in ϕ, we say that the statement tests the variable.
When executed, a statement may read and write values of shared variables.
It also may (and usually does) modify the value of the program counter. It is
assumed that atomic statements are deterministic.

To construct a dependency graph for a program in a given state, let E and D
be the enabled and disabled atomic statements, respectively. Let C consist of the
program counters together with one condition ct for each atomic statement t.
Every atomic statement t whose pci = c does not hold has t � pci, and pci � t′

for every atomic statement t′ of process i. Every atomic statement t whose ϕ
does not hold has t � ct, and ct � t′ for every atomic statement t′ that writes
to any shared variable that t tests. Two atomic statements depend on each other
if and only if they belong to the same process and expect its program counter
have the same value, or they belong to different processes and one of them writes
to a shared variable that the other tests, reads, or writes. ��

Example 3 uses coarse approximations. A better, but more complicated, depen-
dency graph may be obtained by dividing each ϕ to more than one conjunct
where possible, and by analysing more carefully whether a transition can really
make a condition hold or interfere with the execution of another transition. We
will discuss the latter in Example 4.

All three examples have the important property that to construct a depen-
dency graph, no information on other states than the current state is needed.
This implies that a stubborn set can be computed and the state can be ex-
panded without knowledge of future states, as is necessary when constructing a
reduced state space in practice. Algorithms for computing a stubborn set given
a dependency graph are briefly discussed in Section 7.

Can Stubborn Sets Be Optimal? 53

1: [csi = free]→ csi := taken
2: [csi⊕1 = free]→ csi⊕1 := taken
3: csi := free
4: csi⊕1 := free; goto 1

1i

tl i

2i tr i 3i

rl i
4i rr i

csi

csi⊕1

Fig. 1. One dining philosopher as program code and Petri net

5 The Effect of Dependency Relations

In this section we first present an example that demonstrates that the replace-
ment of a dependency relation by a more precise one may have a dramatic effect
on reduction results. Furthermore, the way in which the system is modelled de-
termines how easy it is to find the better dependency relation. Then we discuss
options for the set with respect to which dependency relations are defined.

Example 4. The well-known dining philosophers’ system consists of n philoso-
phers and n chop sticks. Figure 1 shows one philosopher in two formalisms. In
the figure, i ⊕ 1 denotes (i mod n) + 1, cs refers to a chop stick, tl abbreviates
“take left”, rr is “return right”, and tr and rl follow the same logic. Although
the last four abbreviations are only shown in the Petri net model, they can also
be interpreted as statement names in the other model. To simplify the discussion
we assume that n ≥ 2. Let 1 � 1 = n and i � 1 = i − 1 if 2 ≤ i ≤ n.

Let xi denote 2i or pci. We denote the initial state with 1n. In it, tl i⊕1 �

tr i � xi � tl i in every correct dependency graph, implying that all enabled
transitions must be investigated. In the next state, one philosopher is in state 2.
To avoid notational problems, we assume that it is philosopher 1; the other cases
are symmetric. The state is thus 21n−1. In this and all other states of the form
2i1n−i, where 0 < i < n, {tr i, tl i⊕1} is a stubborn set, and it is the best possible.
There are algorithms that find it. If tl i⊕1 occurs, the resulting state is of the same
form or it is the deadlock state 2n. If tr i occurs, the state 2i−131n−i is obtained.
Here things become different depending on the dependency relation.

With the Petri net model and the dependency relation of Example 1 or 2,
{rl i} is stubborn. Typical algorithms find it and construct the state 2i−141n−i.
There {rr i} is stubborn and found by typical algorithms, yielding 2i−11n−i+1.
It is of a form that we have already analysed. Altogether 3n2 − 3n+ 2 states are
constructed [10].

On the other hand, with the concurrent program model and the dependency
relation in Example 3, rl i, tr i�1, and rr i�1 write to the same shared variable.
As a consequence, rl i � tr i�1 and rl i � rr i�1 in 2i−131n−i. This does not

54 A. Valmari and H. Hansen

happen with Petri nets, because introducing more tokens to a place cannot
disable transitions, and if two transitions occur, the joint effect is independent
of the order. This does happen with concurrent programs, because, in general,
a write access to a shared variable may disable another statement that accesses
the variable, and the joint effect of two write accesses may depend on their order.

The precise effect of these extra “�”-edges depends on the stubborn set con-
struction algorithm. With typical algorithms, all enabled transitions are investi-
gated in all states where each philosopher is in state 1 or 3, because then each
philosopher “pays attention” to her or his left. The state 2i−131n−i is such when
i = 1. This leads to the construction of many states, including, if n is even, all that
are of the form x11x21 · · ·xn/21, where each xi is either 1 or 3. There are 2n/2 such
states. The reduced state space has grown from quadratic to exponential.

This growth could be avoided by doing more precise dependency analysis.
That could be made relatively easy by modelling the system in a different way.
Reading from a bounded or unbounded fifo queue can be considered independent
of writing to it, so one possibility is to model the chop sticks with fifo queues.
This solves rl i � tr i�1, but not rl i � rr i�1. A complete solution is to model
the states of the chop sticks with three values: free, taken left, and taken right;
and to add the guards “[csi = taken left]→” and “[csi⊕1 = taken right]→” to
lines 3 and 4, respectively. Then rl i, tr i�1, and rr i�1 are never simultaneously
enabled, and can thus be considered independent of each other. ��

Definition 5 has a set S, with respect to which the dependency relation is defined.
Until now we have had S = SS in our examples. However, Definition 7 only
requires that S contains the states that are reachable from the current state.
This can be exploited when the program code of a process does not consist of
one big loop. When the process has executed or bypassed a statement to which
it can never return, the statement can be declared independent of all statements,
because from then on it is never enabled. This kind of an idea was applied to
Büchi automata type of verification in [8].

If we look carefully at the proof of Theorem 2, it is not even necessary that
S covers all states that are reachable from the current state. It suffices that
it covers those states which may be reached without occurrences of transitions
from the stubborn set. Therefore, S could be made smaller, potentially reducing
the number of “�”-edges and improving reduction results.

Unfortunately, this idea has a drawback as we show next. It is obvious from
Definition 5 that for each fixed S, there is a unique “most precise” dependency
relation that only spans the “�”-edges that are absolutely necessary. As we will
show, when S is made smaller than in Definition 7, it is not any more fixed and
uniqueness is lost. This makes it complicated to fully exploit this idea.

The Petri net in Figure 2 does not have disabled transitions, so its depen-
dency graph and stubborn sets are determined solely by the dependency relation.
Clearly {c} and {a, c} are not its stubborn sets, because bb disables c, violating
D2. Neither is {a}, because s [bca〉 but ¬(s [abc〉), violating D1. That s [acb〉
but ¬(s [bac〉) rules out {b}. However, {b, c} satisfies D2 and D1: the only out-
side transition is a, it cannot occur twice, it does not disable b or c, and there

Can Stubborn Sets Be Optimal? 55

2 3

a b c

b c b b

b c b b
a a a a a

c

Fig. 2. An example Petri net and its state space

are states sab and sac such that s [ab〉 sab, s [ba〉 sab, s [ac〉 sac, and s [ca〉 sac. A
similar analysis shows that also {a, b} satisfies D2 and D1. There is no unique
minimum stubborn set, so there cannot be any unique minimum dependency
relation either.

If S is not liberated beyond Definition 7, then c depends both on a and on b,
because after b, a and b disable c. Then the only stubborn set is {a, b, c}.

In conclusion, liberating S can improve reduction results. However, the rela-
tion that justifies the improved results is sensitive to what other transitions are
in the stubborn set. It is perhaps better not to call such a relation “dependency”.

6 Controlling Disabled Transitions

In this section we discuss conditions with which part 3 of Definition 7 is es-
tablished. This topic has not received enough attention in the literature. Many
algorithms, including the ample set algorithm of [1], “algorithm 2” in [6], and
even [3], do not utilise the information needed to handle disabled transitions and
their enabling conditions. Many other publications address the topic as a side is-
sue that is not made particularly explicit. We are not aware of any research that
measures reduction gains from using finer-grained information about enabling
conditions, aside from [4].

The first remark has a message similar to Example 4: more careful analysis of
which structural transitions can make a condition hold yields better reduction
results. Consider a structural transition that is disabled because a shared variable
v has a wrong value. In the absence of additional information, every write access
to v potentially enables the transition. However, if the test is of the form “v = 3”,
then only those writing accesses whose result may be 3 need to be taken into
account. In Section 4 we discussed the division of the enabling condition into
more than one conjunct, which also relies on analysing the semantics of individual
statements more carefully.

Some stubborn set and similar methods base the controlling of disabled tran-
sitions on the assumption that the concurrent system is a collection of sequential
processes. They find a subset of processes and use their enabled transitions for
expanding the current state. They rely on the notion of “next” transitions of a
process, that is, those whose test on the program counter evaluates to True. For
each process i that is in the set, also those processes must be in the set that
may enable disabled next transitions of process i or that have transitions that
are dependent with enabled next transitions of process i.

56 A. Valmari and H. Hansen

Such methods can use dependency graphs whose vertices are processes and
conditions instead of (enabled and disabled) transitions and conditions. However,
they can also be understood in terms of the dependency graphs of this article.

The “next” transitions of a process usually depend on each other, because
the execution of any of them changes the value of the program counter and thus
disables the others. Even when this is not precisely true, assuming that they all
depend on each other is an approximation in the safe direction. The structural
transitions that are not “next” are disabled by the program counter. So they
can be controlled by taking all structural transitions that write to the program
counter – that is, all structural transitions of the process – into the stubborn
set. Therefore, it is correct, although not necessarily optimal regarding reduction
results, to use processes instead of individual transitions as the basic units of
stubborn set construction.

Using processes instead of structural transitions is faster, because computa-
tion proceeds in bigger steps. In particular, with a typical Petri net model using
individual transitions, the analysis may follow long chains backwards the con-
trol structure of the process until it finds the place where the control token is,
consuming time. An example of such a chain is rr i � 4i � rl i � 3i � tr i �

2i � tl i � 1i in Figure 1.
On the other hand, the use of processes as basic units also has drawbacks. It

introduces a “�”-path to the enabled transitions of the process even if there is
no path from them to the disabled transition in question in the control structure
of the process. The use of transitions as basic units avoids that, because then
the “�”-paths need not exit the disabled transitions of the process. The same
benefit could be obtained by somehow detecting that the disabled transition in
question cannot be enabled any more, so it can be declared independent of all
other transitions according to Definition 5.

The use of individual transitions also has the advantage that “�”-paths along
disabled transitions may exit the process. If a structural transition is disabled
both because of the program counter and because of a shared variable, the path
may choose either one. Consider Figure 1 modified so that csi⊕1 is empty. Then
tl i⊕1 � cs i⊕1 � rr i � 4i � rl i � 3i � tr i. Because both input places of
tr i are empty, we may choose to continue either with csi⊕1 or with 2i. If we
choose 2i as methods using processes as basic units would implicitly do, then we
would have to take the enabled transition tl i and continue to tr i�1. However, if
we choose csi⊕1, then we are back where we were a moment ago and need not
investigate more transitions and places. We had to take the transitions rr i, rl i,
and tr i, but it does not matter, because they are all disabled.

More options imply potentially more stubborn sets and better chances that
there is a good one among them. However, it may be difficult to exploit the
possibilities. Part 2 of Definition 8 is easy to use: if v is considered, then every
v′ ∈ v• must be considered. On the other hand, part 3 forces to choose one
element from v• for consideration. It may be difficult to find out which element
is the best choice. Fixing the choice in advance, like methods using processes
as basic units do, saves us from the pain of choosing, but the pre-determined

Can Stubborn Sets Be Optimal? 57

choice is not necessarily the best possible. Furthermore, when a “next” structural
transition is disabled by two different shared variables, we have to choose between
them even if we use processes as basic units.

It is reasonable to ask whether there are good stubborn set construction algo-
rithms that can exploit the possibility to choose. It is the time to discuss briefly
the algorithm issue.

7 Algorithms

Consider two stubborn sets that do not have enabled transitions in common.
Little is known about how to find out which one is better. It depends not only
on the behaviour of the system, but also on what stubborn sets are used in other
states. If a stubborn set has ten enabled transitions and they all lead to states
that have already been found via other paths, then it is better than another
stubborn set that has one enabled transition that leads to a new state. This is
a potentially good topic for future research.

On the other hand, it is obvious that if V1 � V2, then V1 is better, where
“�” was defined in Definition 6. (The situation may be different with methods
that preserve properties other than deadlocks, because there an extra transition
in one state may save many transitions in other states.) We will concentrate on
this guideline in the rest of this article.

If the choices involved in part 3 of Definition 8 are fixed, then the problem is
theoretically simple: compute a “�”-closed set of vertices such that an enabled
vertex is included. “�”-minimal closed sets can be found in linear time with
strong component algorithms (see, e.g., [11]). However, often it is possible to find
a small stubborn set faster by computing a closed set starting with an enabled
transition until either it is complete or computation becomes “too difficult”. In
the latter case, the set of all enabled transitions is used. Let us call such methods
fallback methods. “Too difficult” may mean, for instance, that computation enters
a disabled transition in a process that has not yet been considered.

The next example demonstrates that fallback methods run a risk.

Example 5. Consider a banquet where there are m tables, each with n > 2 dining
philosophers like in Example 4. Dependency analysis is assumed precise enough to
yield 3n2−3n+2 states when m = 1. Assume that the tables are ordered, and the
first table that is not deadlocked is used as the starting point of the computation
of stubborn sets. Then the above-mentioned strong component algorithms inves-
tigate one table at a time, the previous tables being deadlocked and the succeeding
tables in their initial states. This yields m(3n2 − 3n + 1) + 1 states.

Now consider a fallback method that tries each process in turn until it finds a
stubborn set that consists of at most two processes, or runs out of processes. It
yields otherwise the same results as the previous method but, when every table is
deadlocked or in its initial state, it reverts to the fallback and uses every table that
is not deadlocked. It is still the case that at most one table can be in a state other
than the initial or deadlock state, but now any table can be in its initial or deadlock
state independently of the others. This yields m2m−1(3n2 − 3n) + 2m states.

58 A. Valmari and H. Hansen

Both methods in this example only use information provided by the depen-
dency graph. It is clear that the former method makes better use of that infor-
mation than the latter. In the next section we prove that it is possible to fully
exploit the information in a dependency graph. ��

A quadratic algorithm is known for computing “�”-minimal stubborn sets in the
presence of the choices involved in part 3 of Definition 8 (see, e.g., [11,12]). It
starts with some stubborn set (such as E∪D∪C) and tries to remove one enabled
vertex at a time. Removal consists of traversing the “�”-edges backwards and
removing each encountered enabled and condition vertex, and each disabled
vertex whose every immediate successor has been removed. If the set does not
contain any enabled vertices after the removal, the removal is cancelled.

This algorithm is somewhat expensive. However, its cost is less of a problem,
if it is used to fine-tune a stubborn set that has been constructed with cheaper
means.

8 An Optimality Result

In this section we first develop a non-trivial practical notion of optimal stubborn
sets, and then prove that certain stubborn sets are such.

It is obvious that to obtain maximal reduction, we should prefer stubborn
sets that are minimal with respect to “�”. However, there may be sets that
are smaller still with respect to “�”, not stubborn, yet still suffice to preserve
deadlocks in the sense of the following definition.

Definition 9. Let (SS, T, δS) be a syntactic state space and let s ∈ SS. The set
T ′ ⊆ T is deadlock-preserving in s, if and only if either s is a deadlock, or T ′

contains an enabled transition and, for every n ∈ N and every deadlock sd that
is reachable from s by n transition occurrences, there are t ∈ T ′ and s′ such that
s [t〉 s′ and sd is reachable from s′ by less than n transition occurrences.

Stubborn sets are deadlock-preserving, but not necessarily vice versa. In Fig-
ure 2, {a} is deadlock-preserving but not stubborn. Unfortunately, in practice
we cannot build a reduced state space generation method on finding minimal
deadlock-preserving sets. The following theorem tells that they are too hard to
find. A Petri net is 1-safe if and only if each of its places never contains more
than one token.

Theorem 3. Let T ′ be a subset of the transitions of a 1-safe Petri net. The
problem of testing whether T ′ is deadlock-preserving is PSPACE-hard.

Proof. Testing whether a 1-safe Petri net has deadlocks is PSPACE-hard [2].
Assume that a 1-safe Petri net whose transitions are t1, . . . , tm has been given.
Extend it by adding places p̂, p, and p′, transitions t and t′, and arcs (p̂, t), (t, p),
(p̂, t′), (t′, p′), and (p′, ti) and (ti, p′) for each 1 ≤ i ≤ m. Of the added places, p̂
is marked initially and the others are not. Now {t} is deadlock-preserving if and
only if the given net does not have deadlocks. ��

Can Stubborn Sets Be Optimal? 59

Minimal deadlock-preserving sets would be a very appropriate notion of opti-
mal sets, but they are too difficult to find in practice. Declaring “�”-minimal
stubborn sets as optimal because they are “�”-minimal would not be partic-
ularly informative. There is, however, a meaningful non-trivial sense in which
“�”-minimal stubborn sets are optimal. It is given in the next definition.

Definition 10. Let (E,D,C, “�”) be a dependency graph. A set V ⊆ E∪D∪C
is DG-optimal if and only if V ∩E is minimal among those sets that are deadlock-
preserving for all Petri nets that are respected by (E,D,C, “�”).

Before proving that “�”-minimal stubborn sets are DG-optimal, let us com-
ment on why the result is interesting. DG-optimal sets are the best that can
be constructed using only information given by the dependency graph. Smaller
deadlock-preserving sets may be possible, but to find any, a mechanism stronger
than dependency graphs is needed to extract information about the behaviour of
the system. Therefore, new ideas are needed to develop such a state space reduc-
tion method. Also, if one is puzzled why stubborn set rules take some transition,
building the net in the proof reveals the reason.

We now start proving the optimality result. Let (E,D,C, “�”) be a depen-
dency graph and V a “�”-minimal stubborn set of it. By Theorem 2, V ∩ E
is deadlock-preserving for all Petri nets in Definition 10. We will prove its min-
imality by, for every ê ∈ V ∩ E, constructing a Petri net (P, T,W,M) that
(E,D,C, “�”) respects, but (V ∩ E) \ {ê} is not deadlock-preserving. Because
the proof is long, we proceed via a series of constructions and lemmas.

First we define recursively the sets Ui, U , Wi, W , and X , where i ∈ N.
Intuitively, U will be the transitions that may be enabled and the conditions
that may be made hold without any enabled transition in V occurring, with the
twist that the transitions are not while the conditions are allowed to be in V .
The set W will contain the remaining transitions that may be enabled, and X
the transitions of which the dependency graph proves that they are permanently
disabled. The construction implies U ∩W = U ∩ X = W ∩ X = ∅.

– U0 = E \ V
– Ui+1 = Ui ∪ {d ∈ D \ V | d• ⊆ Ui} ∪ {c ∈ C | c• ∩ Ui
= ∅}
– U = U0 ∪ U1 ∪ U2 ∪ · · ·
– W0 = {ê}
– Wi+1 = Wi ∪ {d ∈ D \U | d• ⊆ U ∪Wi} ∪ {v ∈ (C ∪E) \U | v• ∩Wi
= ∅}
– W = W0 ∪ W1 ∪ W2 ∪ · · ·
– X = (E ∪ D ∪ C) \ (U ∪W)

The next lemma states an important property of these sets.

Lemma 1. X satisfies parts 2 and 3 of Definition 8, and E ⊆ U ∪ W .

Proof. We show that X satisfies part 3 of Definition 8. Let d ∈ X ∩ D. Then
d ∈ D \ U . If d• ⊆ U ∪W , then d ∈ W by the construction of W . But this is in
contradiction with d ∈ X . Therefore, d•
⊆ U ∪ W , that is, d• ∩ X
= ∅.

60 A. Valmari and H. Hansen

We show next that X also satisfies part 2. Let c ∈ X ∩C. Then c ∈ C \U and
c /∈ W , so c• ∩ W = ∅ by the construction of W . The definition of U and c /∈ U
imply c•∩U = ∅. So c• ⊆ X . Let e ∈ X ∩E. We conclude e•∩W = ∅ like above
with c. The definition of U0 and e ∈ E \U imply e ∈ V . Because V is a stubborn
set we have e• ⊆ V . Definition 6 implies e• ⊆ E ∪ D and the construction of U
guarantees that U ∩ V ∩ (E ∪ D) = ∅, so e• ∩ U = ∅. In conclusion, e• ⊆ X .

We saw above that X ∩ E ⊆ V , that is, X � V . It is immediate from the
construction that ê /∈ X , implying X � V . Thus, and because V is a “�”-
minimal stubborn set, X cannot be stubborn. So X must violate part 1 of
Definition 8. That is, X ∩ E = ∅, giving the claim. ��

To continue the construction, we need two orderings of vertices. The first one,
whose “less than” relation is denoted with “<”, may be chosen arbitrarily. The
second one is defined by u ≺ v if and only if either u is in an earlier set in the
following list than v, or they are in the same set and u < v:

{ê}, U0, U1 \ U0, U2 \ U1, . . . , W1 \ W0, W2 \ W1, . . . , X .

We are now ready to construct the Petri net (P, T,W,M). Its transitions are
T = D ∪ E. For every t ∈ T we introduce a place pt such that M(pt) = 1,
W (pt, t) = 1, and pt has no other adjacent arcs. Because of these places, each
transition can occur at most once. If M1 is reached via a transition sequence
that contains some transition t and M2 is reached via a transition sequence that
does not contain t, then M1
= M2 because M1(pt) = 0 and M2(pt) = 1.

For every c ∈ C we introduce a place pc such that M(pc) = 0. For every
d ∈ D such that d � c we let W (pc, d) = 1. For every t ∈ T such that c � t we
let W (t, pc) = |{d | d � c}| + 1. The place pc has no other adjacent arcs. The
occurrence of any t such that c � t marks pc with so many tokens that they
suffice for one occurrence of each transition that consumes a token from pc. The
“+ 1” ensures that an arc from t to pc is drawn even if there is no d such that
d � c.

For every e ∈ E and t ∈ T such that t ≺ e and e � t we introduce a place
pt,e such that M(pt,e) = 1 and W (pt,e, e) = W (pt,e, t) = W (t, pt,e) = 1, and pt,e

has no other adjacent arcs. This guarantees that if e occurs before t, then t will
never occur, but the occurrence of t does not affect e in a similar way. For every
e ∈ E and d ∈ D such that e ≺ d and e � d we introduce a place pe,d such that
M(pe,d) = 1, W (pe,d, d) = W (pe,d, e) = W (e, pe,d) = 1, and pe,d has no other
adjacent arcs. This completes the construction of the net (P, T,W,M).

Our next duty is to show that (E,D,C, “�”) respects (P, T,W,M). Accord-
ing to Definition 7, condition vertices that have no input edges are irrelevant.
Knowing that, the following lemma gives the claim.

Lemma 2. The dependency graph of (P, T,W,M) that is constructed as in Ex-
ample 2 is (E,D,C, “�”) with those c ∈ C and their output edges removed that
have no input edges.

Proof. The proof mostly consists of easy checks. The only case deserving a com-
ment is e1 � e2, where e1 ∈ E and e2 ∈ E. The constructed net fragment

Can Stubborn Sets Be Optimal? 61

induces also the edge e2 � e1. This is, however, what it should do, because of
part 4 of Definition 6. ��

The next lemma states that the transitions in U ∪ W can occur in the order
specified by “≺”.

Lemma 3. Let t1, t2, . . . , tn be the elements of (U ∪ W) \ C sorted so that
ti ≺ tj if i < j. Then M [t1t2 · · · tn〉.

Proof. Obviously ê can occur first. It is easy to check from the construction
that when an originally enabled transition occurs, the tokens that it consumes
and does not put back are not needed by the transitions that should occur later.
When an originally disabled transition occurs, it may consume tokens from input
places of other originally disabled transitions. However, when a token was put
into such a place, so many tokens were put that every transition that inputs from
the place can occur once. Therefore, occurrences of originally disabled transitions
do not disable transitions that should occur later.

We still have to show that each originally disabled transition d is enabled by
the time it should occur. If d ∈ Ui+1 \ Ui, then all of its empty input places are
in Ui, and each of them has an input transition in Ui−1. So d is enabled when
it is its time to occur. Similar but slightly more complicated reasoning applies
when d ∈ Wi+1 \ Wi. ��

Let Md be the marking that satisfies M [t1t2 · · · tn〉Md. Lemma 1 implies that
the transitions in X are permanently disabled. Therefore, Md is a deadlock. The
next lemma states the last detail that is missing from our proof.

Lemma 4. Let M [t〉M ′, where t ∈ V \ {ê}. Md cannot be reached from M ′.

Proof. Obviously t is enabled in M , that is, t ∈ E. Lemma 1 and the fact that
U ∩ V ∩ E = ∅ imply t ∈ W . Because t
= ê, we have t /∈ W0. There is thus
some i > 0 such that t ∈ Wi \ Wi−1, and some v ∈ Wi−1 such that t � v and
v ≺ t. Because t ∈ E we have v ∈ D ∪ E, that is, v is a transition. By the
construction, t consumes a token that v needs, and no transition can put that
token back. Therefore, any occurrence sequence that starts at M ′ lacks v, and
every marking M ′′ to which such an occurrence sequence leads has M ′′(pv) = 1.
On the other hand, Md(pv) = 0, because v ∈ Wi−1. So M ′′
= Md. ��

We have completed the proof of the following theorem.

Theorem 4. “�”-minimal stubborn sets are DG-optimal sets.

9 Conclusions

We discussed the effects of different dependency relations and ways of controlling
disabled transitions, conjuncts in enabling conditions, and the use of processes
or transitions as basic units of constructing stubborn sets. We discussed different
sets of states with respect to which dependency relations are defined, and pointed

62 A. Valmari and H. Hansen

out that there is no natural “best” dependency relation. We also briefly discussed
algorithms. We proved that “�”-minimal stubborn sets are the best that can be
obtained without using information other than that in dependency graphs.

We saw that a small change in the method may lead to a dramatic growth
in the size of the reduced state space. It seems that state explosion has many
sources, and if they are not all kept in control, state spaces explode easily.

Obvious topics for future work are comparison of stubborn sets that are not
in the “�”-relation to each other, the usefulness of algorithms that exploit the
choices offered by part 3 in Definition 8, the many issues that arise in methods
that preserve other properties than deadlocks, and weak stubborn sets.

References

1. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

2. Esparza, J.: Decidability and Complexity of Petri Net Problems – An Introduction.
In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998)

3. Flanagan, C., Godefroid, P.: Dynamic Partial-Order Reduction for Model Checking
Software. In: Proceedings of the 32nd Annual ACM Symposium on Principles of
Programming Languages, pp. 110–121 (2005)

4. Geldenhuys, J., Hansen, H., Valmari, A.: Exploring the Scope for Partial Order
Reduction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 39–53.
Springer, Heidelberg (2009)

5. Godefroid, P.: Using Partial Orders to Improve Automatic Verification Methods.
In: Proceedings of CAV 1990. AMS–ACM DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, vol. 3, pp. 321–340 (1991)

6. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996)

7. Peled, D.: All from One, One for All: On Model Checking Using Representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Hei-
delberg (1993)

8. Peled, D., Valmari, A., Kokkarinen, I.: Relaxed Visibility Enhances Partial Order
Reduction. Formal Methods in System Design 19, 275–289 (2001)

9. Rauhamaa, M.: A Comparative Study of Methods for Efficient Reachability Anal-
ysis. Lic. Tech. Thesis, Helsinki University of Technology, Digital Systems Labora-
tory, Research Report A-14. Espoo, Finland (1990)

10. Valmari, A.: Error Detection by Reduced Reachability Graph Generation. In: Pro-
ceedings of the 9th European Workshop on Application and Theory of Petri Nets,
pp. 95–122 (1988)

11. Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)

12. Varpaaniemi, K.: On the Stubborn Set Method in Reduced State Space Genera-
tion. PhD Thesis, Helsinki University of Technology, Digital Systems Laboratory
Research Report A-51. Espoo, Finland (1998)

Efficient Computation of Causal Behavioural
Profiles Using Structural Decomposition

Matthias Weidlich1, Artem Polyvyanyy1, Jan Mendling2, and Mathias Weske1

1 Hasso Plattner Institute at the University of Potsdam, Germany
{Matthias.Weidlich,Artem.Polyvyanyy,Mathias.Weske}@hpi.uni-potsdam.de

2 Humboldt-Universität zu Berlin, Germany
Jan.Mendling@wiwi.hu-berlin.de

Abstract. Identification of behavioural contradictions is an important
aspect of software engineering, in particular for checking the consistency
between a business process model used as system specification and a cor-
responding workflow model used as implementation. In this paper, we
propose causal behavioural profiles as the basis for a consistency notion,
which capture essential behavioural information, such as order, exclu-
siveness, and causality between pairs of activities. Existing notions of be-
havioural equivalence, such as bisimulation and trace equivalence, might
also be applied as consistency notions. Still, they are exponential in com-
putation. Our novel concept of causal behavioural profiles provides a
weaker behavioural consistency notion that can be computed efficiently
using structural decomposition techniques for sound free-choice workflow
systems if unstructured net fragments are acyclic or can be traced back
to S- or T-nets.

1 Introduction

Process modelling has recently become one of the most extensively used ap-
proaches for capturing business requirements [1]. These requirements are typ-
ically refined and modified in an engineering process, resulting in a workflow
model and software artefacts. A workflow model often defines activities of the
business process model in more detail, neglects steps that are or do not need to
be supported by the system, or adjusts behaviour to the specifics of the work-
flow system. This raises the question to which degree a process model used as
specification and a workflow model used as implementation are behaviourally
consistent.

Fig. 1 illustrates this problem. Model (a) assumes a business perspective,
whereas (b) shows the workflow implementation of the process. Activities (or
sets thereof) that correspond to each other are connected by dash-dotted lines.
For this paper, we assume that such correspondences are given. They may stem
from a system analyst inspecting the models or from automatic matching. Re-
cently, techniques including structural analysis and natural language processing
to automatically identify such correspondences have been introduced for the
domain of business process models [2,3]. Moreover, techniques known from the

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 63–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

64 M. Weidlich et al.

(a)

(b)

Get Project
Details (A)

Establish
Contact (F)

Request Offer from
Subcontractor (B)

Get Detailed
Requirements (H)

Create Project (G)

Clarify Requirement
Issues (J)

Negotiate
Contract (K)

Sign Precontract with
Subcontractor (D)

Create
Record

Get Project Details
from Marketing Module

Get Project Details
from Pre-Sales Module

Enter Contact
Details

Load Request for Quote

Enter Project
Requirements

Attach Contract
& Close Record

Enter Project
Planning

Provide Technical Presentation (I)

Update Request for Offer (C) Schedule Internal Resources (E)

Fig. 1. Example of two Petri net process models, (a) focussing on the business perspec-
tive, (b) depicting the workflow implementation

area of schema matching [4] can be exploited as activities might be regarded as
elements of a process model schema.

In order to reason about the relation between two process models, existing
notions of behavioural equivalence might be used as a consistency measure. For
instance, bisimulation and trace equivalence assume the set of all traces or the
branching structure as essential behavioural characteristics that have to be pre-
served. However, these notions are computationally hard [5], which is particularly
a problem for process models including many activities. Furthermore, these no-
tions only provide information whether behaviour is equivalent or not, but do
not describe how strong a deviation is in case of a mismatch.

In this paper, we argue that for the use case of comparing business process
models and workflow models, a criterion of behavioural equivalence might be
weakened in order to compensate for computational efficiency. We define the
notion of a causal behavioural profile, which includes dependencies in terms of
order, exclusiveness, or causality between pairs of activities. It is computed effi-
ciently using structural decomposition techniques for sound free-choice workflow
systems if unstructured net fragments are acyclic or can be traced back to S-
or T-nets. We also illustrate how these profiles form the basis of a consistency
notion that is weaker than existing notions of behavioural equivalence. Note that
proofs not given in this paper are available in a separate technical report [6].

This paper is structured accordingly. Section 2 introduces our formal frame-
work. Causal behavioural profiles are defined in Section 3. Section 4 elaborates
on graph decomposition and introduces their application to workflow nets. Their
application for computing causal behavioural profiles along with experimental
results is presented in Section 5. Finally, Section 6 reviews related work, before
Section 7 concludes the paper.

2 Preliminaries

We use workflow (WF-) systems [7] as our formal grounding, a class of Petri nets
used for process modelling and analysis. Note that Petri net based formalisations

Efficient Computation of Causal Behavioural Profiles 65

have been presented for (parts of) common process modelling languages, such as
BPEL, EPCs, and UML, e.g., [8,9,10]. Based on [7,11], we recall basic definitions.

Definition 1 (WF-net Syntax)
◦ A net is a tuple N = (P, T, F) with P and T as finite disjoint sets of places

and transitions, and F ⊆ (P × T) ∪ (T × P) as the flow relation. We write
X = (P ∪ T) for all nodes. The transitive closure of F is denoted by F+.

◦ For a node x ∈ X, •x := {y ∈ X | (y, x) ∈ F}, x• := {y ∈ X | (x, y) ∈ F},
•(x•) := {z ∈ X | y ∈ X ∧ (x, y) ∈ F ∧ (z, y) ∈ F}.

◦ A tuple N ′ = (P ′, T ′, F ′) is a subnet of a net N = (P, T, F), if P ′ ⊆ P ,
T ′ ⊆ T , and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)); N ′ is a partial subnet of N ,
if F ′ ⊆ F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)).

◦ A net N is a T-net, if ∀ p ∈ P [| • p| = 1 = |p • |], and an S-net, if
∀ t ∈ T [| • t| = 1 = |t • |].

◦ A net N is free-choice, iff ∀ p ∈ P with |p • | > 1 holds •(p•) = {p}.
◦ A path is a non-empty sequence x1, . . . , xk of nodes, k > 1, denoted by

πN (x1, xk), which satisfies (x1, x2), . . . , (xk−1, xk) ∈ F . We write xi ∈ πN ,
if xi is part of the path πN . A subpath π′

N of a path πN is a subsequence
that is itself a path. A path πN (x1, xk) is a circuit, if (xk, x1) ∈ F and no
node occurs more than once in the path.

◦ For a net N = (P, T, F) and a partial subnet N ′ a path πN (x1, xk), k > 1
and all xi are distinct, of N is a handle of N ′, iff πN ∩ (P ′ ∪T ′) = {x1, xk}.

◦ For a net N = (P, T, F) and two partial subnets N ′, N ′′ a path πN (x1, xk)
(k > 1 and all xi are distinct) of N is a bridge from N ′ to N ′′, iff πN ∩
(P ′ ∪ T ′) = {x1} and πN ∩ (P ′′ ∪ T ′′) = {xk}.

◦ A Petri net N = (P, T, F) is a workflow (WF-) net, iff N has an initial place
i ∈ P with •i = ∅, N has a final place o ∈ P with o• = ∅, and the short-ciruit
net N ′ = (P, T ∪ {tc}, F ∪ {(o, tc), (tc, i)}) of N is strongly connected.

Note that we speak of PP-,TT-,PT-,TP- handles and bridges, depending on the
type (place or transition, respectively) of the initial and the final node of the
respective path. Further on, we define semantics for WF-nets according to [7].

Definition 2 (WF-net Semantics). Let N = (P, T, F) be a WF-net with
initial place i and final place o.
◦ M : P �→ N is a marking of N , M denotes all markings of N . M(p) re-

turns the number of tokens in place p. [p] denotes the marking when place
p contains just one token and all other places contain no tokens.

◦ For any transition t ∈ T and any marking M ∈ M, t is enabled in M ,
denoted by (N,M)[t〉, iff ∀ p ∈ •t [M(p) ≥ 1].

◦ Marking M ′ is reached from M by firing of t, denoted by (N,M)[t〉(N,M ′),
such that M ′ = M − •t + t•, i.e., one token is taken from each input place
of t and one token is added to each output place of t.

◦ A firing sequence of length n ∈ N is a function σ : {0, . . . , n − 1} �→ T . For
σ = {(0, tx), . . . , (n − 1, ty)}, we also write σ = t0, . . . , tn−1.

◦ For any two markings M,M ′ ∈ M, M ′ is reachable from M in N , denoted
by M ′ ∈ [N,Mi〉, if there exists a firing sequence σ leading from M to M ′.

66 M. Weidlich et al.

◦ A net system, or a system, is a pair (N,Mi), where N is a net and Mi is the
initial marking of N . A WF-system is a pair (N,Mi), where N is a WF-net
with initial place i and Mi = [i].

Note that the final marking is denoted by Mo. Without stating it explicitly,
we assume a net of a system to be defined as N = (P, T, F). Moreover, when
the context is clear, we refer to WF-systems and short-circuit nets as WF-nets.
Finally, we recall the soundness property, which requires WF-systems (1) to
always terminate, and (2) to have no dead transitions (proper termination is
implied for WF-systems) [12].

Definition 3 (Liveness, Boundedness, Soundness)
◦ A system (N,Mi) is live, iff for every reachable marking M ∈ [N,Mi〉 and

t ∈ T , there exists a marking M ′ ∈ [N,M〉 such that (N,M ′)[t〉.
◦ A system (N,Mi) is bounded, iff the set [N,Mi〉 is finite.
◦ A WF-system (N,Mi) is sound, iff the short-circuit system (N ′,Mi) is live

and bounded.

3 The Notion of a Causal Behavioural Profile

This section introduces causal behavioural profiles. They are based on the notion
of behavioural profiles, which we recall in Section 3.1. We introduced these pro-
files in an earlier work [13] to reason on execution ordering constraints only. Thus,
optionality of transition execution or causality between transitions is not cap-
tured. These aspects are addressed by the novel concept of a causal behavioural
profile introduced in Section 3.2. Section 3.3 discusses our concepts in the light
of existing behavioural models defined for Petri nets. Finally, we discuss the
application of causal behavioural profiles for consistency checking in Section 3.4.

3.1 Execution Order Constraints: The Behavioural Profile

Behavioural profiles aim at capturing behavioural aspects in terms of order con-
straints of a process in a fine-grained manner [13]. They are grounded on the set
of possible firing sequences of a WF-system and the notion of weak order.

Definition 4 (Weak Order). Let (N,Mi) be a WF-system. A pair (x, y) is in
the weak order relation � ⊆ T×T , iff there exists a firing sequence σ = t1, . . . , tn
with (N,Mi)[σ〉, j ∈ {1, . . . , n−1}, j < k ≤ n, for which holds tj = x and tk = y.

Thus, two transitions t1, t2 are in weak order, if there exists a firing sequence
reachable from the initial marking in which t1 occurs before t2. Depending on
how two activities of a process model are related by weak order, we define three
relations forming the behavioural profile.

Definition 5 (Behavioural Profile). Let (N,Mi) be a WF-system. A pair
(x, y) ∈ (T × T) is in at most one of the following relations:

Efficient Computation of Causal Behavioural Profiles 67

◦ The strict order relation �, if x � y and y
� x.
◦ The exclusiveness relation +, if x
� y and y
� x.
◦ The interleaving order relation ||, if x � y and y � x.

Given a set T ′ ⊆ T , the set of all relations BPT ′ = {�,+, ||} defined over T ′×T ′

is the behavioural profile of (N,Mi) for T ′.
Computing the behavioural profile for all transitions of the system (a) in

Fig. 1, for instance, it holds C � E as there exists no firing sequence, such that
E occurs before C. However, strict order does not imply the actual occurrence.
That is, there are firing sequences containing only one of the two transitions,
or even none of them. It holds D + E as both transitions will never occur in
a single firing sequence and B||G as both transitions can occur in any order.
Note that the three relations are mutually exclusive and (together with reversed
strict order) partition the Cartesian product of transitions over which they are
defined [13]. With respect to itself, a transition is either in the exclusive relation
(if it can occur at most once, e.g., D + D) or in the interleaving order relation
(if it can occur more than once, e.g., B||B).

3.2 Occurrence Constraints: The Causal Behavioural Profile

A

B C

D

(a)

A

B C

D

(b)

Fig. 2. Optionality

Behavioural profiles as introduced above relate
pairs of transitions according to their order of
potential occurrence. It is important to see that
for the case of validating a workflow implemen-
tation against a process model specification, the
relation associating corresponding transitions of
both models to each other is typically partial.
That is, certain transitions of one model are with-
out counterpart in the other model, cf., Fig. 1.
As a consequence, information on ordering constraints is not sufficient to draw
conclusions on optionality and causality of transition occurrences.

Optionality of a transition is given, if there is a firing sequence leading from
the initial to the final marking of the system that does not contain the transition.
Optionality can be lifted from single transitions to sets of transitions. A set of
transitions is considered to be jointly optional, if any firing sequence from the
initial to the final marking contains all or none of the transitions. As illustrated
by Fig. 2(a) and Fig. 2(b) this property cannot be derived from the knowledge
about optionality of single transitions. In both systems, B and C are optional,
but only in Fig. 2(b) the set {B,C} is jointly optional.

Closely related to optionality is causality, which requires that one transition
can only occur after the occurrence of another transition. Thus, causality com-
prises two aspects, a certain order of occurrences and a causal coupling of oc-
currences. While the former is addressed by the behavioural profile in terms

68 M. Weidlich et al.

A DCB

(a)

A D
B

C

(b)

Fig. 3. No causality for transi-
tions (B,C) in a cycle

of the strict order relation, the latter is not cap-
tured. For instance, B is a cause of C in Fig. 2(b),
but not in Fig. 2(a). Note that two transitions
in interleaving order cannot show causality ac-
cording to our definition. For both systems in
Fig. 3, it holds B||C, as there is no distinct order
relation between all occurrences of both transi-
tions. Thus, interleaving order is interpreted as
the absence of any dependency regarding the
order of occurrence. Thus, it is reasonable to
define causality as a dependency between all oc-
currences of two transitions, instead of consider-
ing causal dependencies between their single occurrences (cf., response/leads-to
dependencies [14]). There is no causality between B and C in either system in
Fig. 3.

In order to copewith the aforementionedaspects,we introduce the co-occurrence
relation and the causal behaviouralprofile. Two transitions are co-occurring, if any
firing sequence from the initial to the final marking that contains the first transition
contains also the second transition.

Definition 6 (Causal Behavioural Profile). Let (N,Mi) be a WF-system.
◦ A pair (x, y) ∈ (T × T) is in the co-occurrence relation �, if for all firing

sequences σ with (N,Mi)[σ〉(N,Mo), it holds x ∈ σ ⇒ y ∈ σ.
◦ Given a set T ′ ⊆ T , the set of all relations CBPT ′ = {�,+, ||,�} defined

over T ′ × T ′ is the causal behavioural profile of (N,Mi) for T ′.

Trivially, it holds t � t for all t ∈ T . We derive optionality and causality as
follows. A single transition t ∈ T is optional, if ti
� t for some ti ∈ i• with i as the
initial place. A set T1 ⊆ T of transitions is optional, if all transitions themselves
are optional and they are pairwise co-occurring to each other ((T1 × T1) ⊆ �).

Further on, there is a causal dependency between two transitions t1, t2 ∈ T , if
they are in strict order (t1 � t2) and occurrence of the first implies occurrence
of the second (t1 � t2). Note that, in contrast to the behavioural profile, the
causal behavioural profile differs for both systems in Fig. 2.

3.3 Relation to Existing Behavioural Models

There is a large body of research on behavioural relations for formal models spec-
ifying dynamic systems in general, and for Petri nets in particular. Focussing on
the order of occurrence, the relations proposed in [15] for workflow mining are
close to our relations, yet different. We base our definitions on the notion of an
indirect weak order dependency, whereas the relations in [15] are grounded on
a direct sequential order. As a result, the notion of exclusiveness is restricted
to ‘pairs of transitions that never follow each other directly’ [15], whereas we
capture exclusiveness for transitions that might occur at different stages of a
firing sequence. While the notion of direct sequential order is appropriate for

Efficient Computation of Causal Behavioural Profiles 69

workflow mining, it leads to undesired effects in our setting. Consider, for in-
stance, transitions G and K of model (a) in Fig. 1. They are exclusive according
to the relations proposed in [15], whereas their counterparts in model (b) are
in a sequential order. The behavioural profile, in turn, yields equal relations in
both models. The respective transitions are in strict order in both models, (a)
and (b).

Obviously, the well-known notions of conflicting and concurrent transitions
are related to our observed relations as well. In a sound free-choice WF-system,
two transitions in conflict, which are not part of a common control flow cycle
will be exclusive in the behavioural profile. This follows from Lemma 3 in [13]
and the fact that sound free-choice WF-systems are safe (a place carries at
most one token in all markings, cf., Lemma 1 in [24]). Similarly, all transitions
that are enabled concurrently in some reachable marking (cf., the concurrency
relation [16]) are in interleaving order in the behavioural profile.

In order to cope with concurrency and the interleaving problem, the unfold-
ing of a Petri net (or its prefix, respectively) might be exploited for behaviour
analysis [17,18]. That is, a true concurrent model is created in which a transition
(i.e., an event) corresponds to a certain occurrence of a transition in the original
net. Events can be related as being in a weak causal predecessor, conflict, or
concurrency relation. While these relations resemble the relations of our casual
behavioural profile, they are defined for transition occurrences instead of transi-
tions. Thus, we might derive our relations by lifting these relations to the level
of transitions again. For instance, if all events representing two transitions are
in conflict in the (potentially infinite) unfolding, both transitions are exclusive
according to the behavioural profile. However, an algorithm for the derivation of
causal behavioural profiles from the prefix of an unfolding is beyond the scope of
this paper. Usage of unfoldings is also inappropriate w.r.t. the class of systems
we address in this paper, as the construction of unfoldings is computationally
much harder than the approach introduced in the remainder of this paper.

With respect to common notions of behavioural equivalence, we see that two
WF-systems with equal causal profiles are not necessarily trace equivalent. For
instance, both systems in Fig. 3 have the same causal profile, whereas they are
not trace equivalent. Evidently, the same holds true for bisimulation equivalences,
as the profile neglects the branching structure of a system. However, it is easy to
see that trace equivalence of two WF-systems implies equivalence of their causal
behavioural profiles for all transitions, as all behavioural relations formulate
statements about the existence of firing sequences.

3.4 Application of Causal Behavioural Profiles

We motivated the definition of causal behavioural profiles with the need for a
notion of behavioural consistency that enables analysis of related process models
in an efficient manner. Under the assumption of an alignment relation between
transitions of two WF-systems, we define a degree of consistency as follows.

Definition 7 (Degree of Consistency). Let (N1,Mi1) and (N2,Mi2) be two
WF-systems and ∼ ⊆ T1 × T2 a correspondence relation with ∼
= ∅.

70 M. Weidlich et al.

◦ The set T∼
1 = {t1 ∈ T1 | ∃ t2 ∈ T2 [t1 ∼ t2]} contains all aligned transitions

of (N1,Mi1). T∼
2 is defined analogously.

◦ With R1 and R2 as the relations of the causal behavioural profile for the
WF-systems, the set CT∼

1 ⊆ (T∼
1 × T∼

1) contains all consistent transition
pairs (tx, ty), such that
◦ if tx = ty, then ∀ ts ∈ T∼

2 with tx ∼ ts it holds txR1tx ⇒ tsR2ts,
◦ if tx
= ty, then ∀ ts, tt ∈ T∼

2 with ts
= tt, tx ∼ ts, and ty ∼ tt it holds
either txR1ty ⇒ tsR2tt or tx ∼ tt and ty ∼ ts.

The set CT∼
2 is defined analogously.

◦ The degree of consistency of ∼ is defined as D∼ = |CT∼
1 |+|CT∼

2 |
|(T∼

1 ×T∼
1)|+|(T∼

2 ×T∼
2)| .

The general idea behind this degree can be summarised as follows. For each pair
of transitions, for which there are corresponding transitions in the other model,
we check whether they share the same constraints. Since there can be complex
1:n correspondences as in Fig. 1, we have to count these correspondences from
the perspective of each model. Applying this degree to the scenario in Fig. 1, we
see that the order of potential occurrence is preserved for all aligned transitions.
However, transition (A) is mandatory in model (a), whereas its counterparts
are optional in model (b). Consequently, causality between transition (A) and,
for instance, transition (K) is not preserved in model (b) either, which is taken
into account in the causal behavioural profile. For our example, the degree of
consistency is D∼ = 28+27

36+36 ≈ 0.76, as both models (a) and (b) contain six
transitions with correspondences yielding 36 transition pairs in the profile, while
the profile relations are preserved for 28 (or 27, respectively) pairs.

The degree of consistency as defined above shows the characteristics of a
semimetric for the comparison of two causal behavioural profiles. That is, the
degree of consistency is non-negative and symmetric measure that equals one
(or zero if it is subtracted from one, respectively), if and only if both profiles
are equal. For the assessment of two profiles, however, the degree of consistency
is not a metric as it does not satisfy the triangle inequality. That is due to the
fact that the degree is a criterion for the quality of an alignment, i.e., a set of a
correspondences. Hence, it is normalised by the size (the number of transitions)
of the alignment but independent of the size of the respective WF-systems and,
therefore, causal behavioural profiles. Still, we see that the relations of the causal
behavioural profile are transitive in the sense that equal relations between a first
and a second model, and the second and a third model imply the equivalence
for the relations between the first and the third model. Thus, triangle inequality
holds for the comparison of the degree of consistency of different alignments
when considering solely those pairs of transitions that are part of all alignments.

For our proposal of assessing the consistency between business process models
and their implementation as a workflow model, we got positive feedback from
process analysts. Currently, we are evaluating the results of an empirical study
that relates our degree of consistency to the consistency perception of process
experts in a broader setting. Here, preliminary findings confirm a good approx-
imation of perceived consistency by our degree. Clearly, there is a need for a
multitude of consistency criteria in order to be able to graduate consistency

Efficient Computation of Causal Behavioural Profiles 71

requirements for a concrete setting. Nevertheless, an interval scale and efficient
computation methods have to be seen as core requirements on such notions.

It is worth to mention that we already showed how behavioural profiles can
be applied to support change propagation between related process models [19].

4 Graph Decomposition Techniques for WF-Systems

First, Section 4.1 introduces the Refined Process Structure Tree (RPST), a struc-
tural decomposition technique for workflow graphs. Second, Section 4.2 enriches
the RPST for WF-systems with behavioural annotations.

4.1 The Refined Process Structure Tree

The RPST [20,21] is a technique for detecting the structure of a workflow graph.
A workflow graph can be parsed into a hierarchy of fragments with a single entry
and a single exit, such that the RPST is a containment hierarchy of canonical
fragments of the graph. The RPST is unique for a given workflow graph and can
be computed in linear time [20,21]. Although the RPST has been introduced for
workflow graphs, the technique can be applied to other graph based behavioural
models such as WF-systems in a straight-forward manner. Basic terms of the
RPST are defined for WF-nets as follows.

Definition 8 (Edges, Entry, Exit, Canonical Fragment)
Let N = (P, T, F) be a WF-net.
◦ For a node x ∈ X of a net N = (P, T, F), inN(x) = {(n, x) | n ∈ •x} are

its incoming edges and outN (x) = {(x, n) | n ∈ x•} are its outgoing edges.
◦ A node x ∈ X ′ of a connected subnet N ′ = (P ′, T ′, F ′) of a net N is a

boundary node, if ∃ e ∈ inN (x) ∪ outN (x) [e /∈ F ′]. If x is a boundary
node, it is an entry of N ′, if inN (x) ∩ F ′ = ∅ or outN (x) ⊆ F ′, or an exit
of N ′, if outN (x) ∩ F ′ = ∅ or inN(x) ⊆ F ′.

◦ Any connected subnet ω of N , is a fragment, if it has exactly two boundary
nodes, one entry and one exit denoted by ω� and ω�, respectively.

B

A

C

D

E

I

F

H

K

P1B1P2

P3

P5

P4 B2 P6

P7

B3

P8

P9

P10

P11

P12

R1

G

J

(a)

P1

B1

P4 P5 P6 P7

B2 B3

P2

P8

P9 P10 P11

R1

P3

P12

(b)

Fig. 4. (a) A WF-system and its canonical fragments, (b) the RPST of (a)

72 M. Weidlich et al.

◦ A fragment is place bordered if its boundary nodes are places.
◦ A fragment is transition bordered if its boundary nodes are transitions.
◦ A fragment ω = (Pω , Tω, Fω) is canonical in a set of all fragments Σ of N ,

iff ∀ γ = (Pγ , Tγ , Fγ) ∈ Σ [ω
= γ ⇒ (Fω∩Fγ = ∅)∨(Fω ⊂ Fγ)∨(Fγ ⊂ Fω)].

Fig. 4 exemplifies the RPST for the WF-system from Fig. 1(a). Fig. 4(a) illus-
trates its canonical fragments, each of them formed by a set of edges enclosed in
or intersecting the region with a dotted border. Fig. 4(b) provides an alternative
view, where each node represents a canonical fragment and edges hint at con-
tainment relation of fragments. Observe that one obtains a tree structure—the
RPST. For instance, fragment B1 has two boundary transitions: entry A and
exit K, is contained in fragment P1, and contains fragments P2 and P3.

If the RPST is computed for a normalized workflow graph, i.e., a workflow
graph that does not contain nodes with multiple incoming and multiple outgoing
edges, each canonical fragment can be classified to one out of four structural

Fig. 5. Node-splitting

classes [21,22]: A trivial (T) fragment consists of a
single edge. A polygon (P) represents a sequence of
nodes (fragments). A bond (B) stands for a collection
of fragments that share common boundary nodes. Any
other fragment is a rigid (R). Note that we use frag-
ment names that hint at their structural class, e.g.,
R1 is a rigid fragment. Every workflow graph can be
normalized by performing a node-splitting pre-processing step, illustrated for
WF-nets in Fig. 5. The WF-system in Fig. 4(a) is normalized.

4.2 An Annotated RPST: The WF-Tree

The structural patterns derived by the RPST can be related to behavioural
properties of the underlying WF-system. In this section, we concretise RPST
fragments by annotating them with behavioural characteristics. We refer to the
containment hierarchy of annotated canonical fragments of a WF-system as the
RPST with behavioural annotations, or WF-tree for short. The WF-tree is de-
fined for sound free-choice WF-systems. It is well-known that the free-choice
and soundness properties are required to derive behavioural statements from
the structure of a system, as both together imply a tight coupling of syntax and
semantics (cf., [23,24]).

Definition 9 (WF-Tree). Let (N,Mi) be a sound free-choice WF-system. The
RPST with behavioural annotations, the WF-Tree of N , is a tuple TN = (Ω,χ, t, b),
where:

◦ Ω is a set of all canonical fragments of N ,
◦ χ : Ω → P(Ω) is a function that assigns to fragment its child fragments,
◦ t : Ω → {T, P,B,R} is a function that assigns a type to a fragment,
◦ b : ΩB → {B◦, B
, L}, ΩB = {ω ∈ Ω | t(ω) = B}, is a function that assigns

a refined type to a bond fragment, where B◦, B
, and L types stand for place
bordered, transition bordered, and loop bonds, respectively.

Efficient Computation of Causal Behavioural Profiles 73

Further on, we define auxiliary concepts for the WF-tree.

Definition 10 (Parent, Child,Root,Ancestor,Descendant, LCA,Path).
Let TN = (Ω,χ, t, b) be the WF-tree.

◦ For any fragment ω ∈ Ω, ω is a parent of γ and γ is a child of ω, if γ ∈ χ(ω).
By χ+ we denote the transitive closure of χ.

◦ The fragment ω ∈ Ω is a root of T , denoted by ωr, if it has no parent.
◦ The partial function ρ : Ω \ {ωr} → Ω assigns parents to fragments.
◦ For any fragment ω ∈ Ω, ω is an ancestor of ϑ and ϑ is a descendant of ω,

if ϑ ∈ χ+(ω).
◦ For any two fragments {ω, γ} ∈ Ω their lowest common ancestor (LCA),

denoted by lca(ω, γ), is the shared ancestor of ω and γ that is located farthest
from the root of the WF-tree. By definition, lca(ω, ω) = ω.

◦ For any fragment ω0 ∈ Ω and its descendant ωn ∈ Ω, a downward path
from ω0 to ωn, denoted by πT (ω0, ωn), is a sequence (ω0, ω1, . . . , ωn), such
that ωi is a parent of ωi+1 for all i ∈ N0. In addition, πT (ω0, ωn, i) = ωi and
πT {ω0, ωn} is a set which contains all fragments of πT (ω0, ωn).

P1

B 1

P4 P5 P6 P7

L1 B 1

P2

P8

P9 P10 P11

R1

P3

P12

Fig. 6. The WF-tree

Fig. 6 shows the WF-tree of the WF-system from
Fig. 4(a). Note that trivial fragments are not vi-
sualised. The WF-tree is isomorphic to the RPST
of the WF-system, cf., Fig. 4(b). Given the RPST,
adding the behavioural annotation is a trivial task
for most fragments, except of the following cases:
A bond fragment γ = (Pγ , Tγ , Fγ) ∈ dom(b)
of TN = (Ω,χ, t, b) is assigned the L type, if
γ� = ω� with ω being a child of γ. Otherwise,
b(γ) = B◦ if γ� ∈ Pγ , or b(γ) = B
 if γ� ∈ Tγ .

Children of a polygon fragment are arranged with respect to their execution
order. A partial function order : Ω′ → N0, Ω′ = {ω ∈ Ω \ {ωr} | t(ρ(ω)) =
P} assigns to children of polygon fragments their respective order positions;
order(ω) = 0, if ω� = γ� with γ = ρ(ω) being the parent, and order(ω) = i,
i ∈ N, if ω� = ϑ� for some ϑ ∈ Ω, such that order(ϑ) = i − 1. Observe that
the orders of two nodes are only comparable if they share a common parent.
For instance, in Fig. 6, order(L1) = 1 and order(B◦1) = 2. This means that
fragment L1 is always executed before fragment B◦1 inside of polygon P2. The
layout of child fragments of polygon fragments hints at their order relations.

Children of a loop fragment are classified as forward (⇒) or backward (⇐).
A partial function � : Ω′′ → {⇐,⇒} with Ω′′ = {ω ∈ Ω \ {ωr} | b(ρ(ω)) = L}
assigns an orientation to children of loop fragments. �(ω) =⇒ if ω� = γ� with
γ = ρ(ω), otherwise �(ω) =⇐. In Fig. 6, P4 and P5 are forward and backward
fragments, respectively, which is visualised by the direction of edges.

We introduce two lemmas that prove the completeness of the codomain of func-
tion b by showing that a bond fragment is either place or transition bordered, and
that each loop fragment is place bordered. Note that a rigid fragment bordered
with a place and a transition can still be free-choice and sound (see [25]).

74 M. Weidlich et al.

Lemma 1. Let TN = (Ω,χ, t, b) be the WF-tree of a sound free-choice WF-
system (N,Mi), N = (P, T, F). No bond fragment ω ∈ Ω, t(ω) = B, has {p, t}
boundary nodes, where p ∈ P and t ∈ T .

Proof. Assume ω is a bond fragment with {p, t} boundary nodes. There exists
a circuit Γ in a short-circuit net of N that contains {p, t}. Let Γω be a subpath
of Γ inside ω. There exists a child fragment γ of ω that contains Γω. A bond
fragment has k ≥ 2 child fragments, cf., [21,22]. Let ϑ be a child of ω, ϑ
= γ.
We distinguish two cases:

◦ Let H be a path from p to t contained in ϑ. H is a PT-handle of Γ . In a live
and bounded free-choice system, H is bridged to Γω through a TP-bridge K,
cf., Proposition 4.2 in [26]. This implies that ϑ = γ; otherwise bond fragment
ω contains path K that is not inside of a single child fragment, cf., [22,21].
Thus, ω has a single child fragment, a contradiction with the assumption of
ω being a bond fragment.

◦ Let H be a path from t to p contained in ϑ. H is a TP-handle of Γ . In a
live and bounded free-choice system, no circuit has TP-handles, cf., Propo-
sition 4.1 in [26], which yields a contradiction with our assumptions. ��

Lemma 2. Let TN = (Ω,χ, t, b) be the WF-tree of a sound free-choice WF-
system, (N,Mi), N = (P, T, F). A loop fragment ω = (Pω , Tω, Fω) ∈ Ω, b(ω) =
L, is place bordered, i.e., {ω�, ω�} ∈ P .

Proof. Because of Lemma 1, ω is either place or transition bordered. Assume ω
is transition bordered. There exists place p such that p ∈ •ω� ∩ Pω, Mi(p) = 0.
Transition ω� is enabled if there exists a marking M ∈ [(N,Mi)〉 with M(p) > 0.
Since ω is a connected subnet, for all t ∈ Tω \ {ω�, ω�} all edges are in ω, i.e.,
(inN (t)∪outN (t)) ⊆ Fω. Thus, every path from i to p visits ω�. Thus, M(p) > 0
is only possible, if ω� has fired before. We reached a contradiction. Transition
ω� is never enabled and N is not live, and hence, not sound. Since any loop
fragment is not transition bordered, it is place bordered (Lemma 1). ��

For sound free-choice WF-systems, the WF-tree can be derived efficiently.

Corollary 1. The following problem can be solved in linear time.
Given a sound free-choice WF-system, to compute its WF-tree.

Proof. Given a workflow graph, its RPST can be computed in time linear to
the number of edges of the graph [20,21]. The number of canonical fragments
in the RPST is linear to the number of edges in the workflow graph [21,27,28].
Given the RPST of a WF-system, we iterate over all bond fragments and assign
the behavioural annotations. Here, it suffices to check the type of the entry
node, either a place or transition, and to determine whether the entry is also the
exit of a child fragment. That can be decided in constant time for each fragment.
Finally, child fragments of a polygon can be ordered in linear time. We introduce
a hash function that returns a child fragment with the given node as an entry
and iterate over the children of the polygon. ��

Efficient Computation of Causal Behavioural Profiles 75

5 Efficient Computation of Causal Behavioural Profiles

This section shows how a WF-tree is applied to compute the causal behavioural
profile. Section 5.1 introduces the approach for transition pairs that do not re-
quire analysis of rigid fragments. Afterwards, we discuss analysis of rigid frag-
ments in Section 5.2 and present experimental performance results in Section 5.3.

5.1 Computation without Analysis of Rigid Fragments

For the computation of the causal behavioural profile for a pair of transitions,
we assume that each transition has one incoming and one outgoing flow arc.
If this is not the case, we apply the pre-processing illustrated in Fig. 5, which
preserves the behaviour of the system (cf., [29]) and, therefore, does not change
the causal behavioural profile. Given a pre-processed WF-system (N,Mi) with
N = (P, T, F) and its WF-tree TN = (Ω,χ, t, b), each transition t ∈ T is a bound-
ary node of at most two trivial fragments of TN . Thus, it suffices to show how
the behavioural relations are determined for the entries of two trivial fragments.

Fig. 7. Pre-processing

Our computation is based on two elementary proper-
ties of free-choice sound WF-systems. If (N,Mi) is free-
choice and sound, it is safe (cf., Lemma 1 in [24]), i.e.,
∀ p ∈ P , M(p) < 2 in all reachable markings. Thus, a sin-
gle transition cannot be enabled concurrently with itself.
In addition, if (N,Mi) is free-choice and sound, the exis-
tence of a path πN (x, y) between places x and y implies the existence of a firing
sequence containing all transitions on πN (x, y) (cf., Lemma 4.2 in [23]). While
the implication actually requires the marking My = [y] to be a home marking (a
marking reachable from every marking that is reachable from the initial state),
it can be lifted to all home markings with My(y) > 0. Due to soundness of the
system (N,Mi), the short-circuit system (N ′,Mi) is live and bounded, such that
all markings M ∈ [N,Mi〉 are home markings in (N ′,Mi). Thus, all markings
My(y) > 0 are reachable from markings Mx(x) > 0, if My,Mx ∈ [N ′,Mi〉.

In the absence of rigid fragments on certain paths, the execution ordering
relations and the co-occurrence relation of the causal behavioural profile are
computed as follows. Proofs of both propositions can be found in [6].

Proposition 1. Let TN = (Ω,χ, t, b) be the WF-tree and α, β ∈ Ω two trivial
fragments. Let γ = lca(α, β) and ∀ ω ∈ πT {ωr, γ} [t(ω)
= R].

1. If α = β, then α�||β�, iff ∃ ω ∈ πT {ωr, γ} [b(ω) = L]. Otherwise, α� + β�.
2. If α
= β,

◦ α� � β�, iff (1) t(γ) = P ∧ order(πT (γ, α, 1)) < order(πT (γ, β, 1)), and
(2) ∀ ω ∈ πT {ωr, γ} [b(ω)
= L].

◦ α� + β�, iff (1) b(γ) = B◦, and (2) ∀ ω ∈ πT {ωr, γ} [b(ω)
= L].
◦ α�||β�, iff (1) b(γ) ∈ {B
, L}, or (2) ∃ ω ∈ πT {ωr, γ} [b(ω) = L].

Proposition 2. Let TN = (Ω,χ, t, b) be the WF-tree and α, β ∈ Ω two trivial
fragments, α
= β. Let γ = lca(α, β), Π = πT {γ, β}, and ∀ ω ∈ Π [t(ω)
= R].
Then, α� � β�, iff for all ω ∈ (Π \ {β}) one of the following conditions holds:

76 M. Weidlich et al.

1. t(ω) = P ,
2. t(ω) = B and b(ω) = B
, or
3. t(ω) = B, b(ω) = L, and with Θ = {ϑ ∈ χ(ω) | �(ϑ) =⇒} it holds ∀ ϑ ∈

Θ [β ∈ χ+(ϑ)].

We illustrate both propositions using our example from Fig. 4(a). For instance,
transitions B and E are in strict order, B � E, as the LCA of the trivial
fragments that have B and E as entries is the polygon fragment P2, cf., Fig. 4(b)
and Fig. 6. Here, the order value for the child fragment of P2 containing B is
lower than the one for the child fragment that contains E, while the path from the
root of the tree P1 to P2, i.e., πT (P1, P2), does not contain any loop fragment.
It holds D + E for transitions D and E due to the LCA being fragment B3 in
Fig. 4(b) or B◦1 in Fig. 6, respectively. The fragment B◦1 is a place bordered
bond and, again, the path πT (P1, B◦1) does not contain any loop fragments.
Transitions B and C, in turn, are an example for interleaving order, B||C, as
their LCA is fragment B2 in Fig. 4(b). This fragment corresponds to the loop
type fragment L1 in Fig. 6. Derivation of the co-occurrence is illustrated using
transitions B and C. We see that the path from the respective LCA (i.e., B2
in Fig. 4(b), L1 in Fig. 6) to the trivial fragments having B and C as entries
contains solely polygon fragments (P4 and P5, respectively). However, the LCA
itself is a loop fragment, such that the orientation of its child fragments P4 and
P5 needs to be considered. There is only one child with forward orientation,
namely P4. It contains transition B. Therefore, we derive C � B, but B
� C
according to Proposition 2.

Using these propositions, computation of the causal behavioural profile for a
pair of transitions in a sound free-choice WF-system is very efficient.

Corollary 2. The following problem can be solved in linear time.
Given a sound free-choice WF-system (N,Mi) and its WF-tree TN , to compute
the causal behavioural profile for a pair of transitions (a, b) if b is not contained
in any rigid fragment.

Proof. Let a and b be two transitions and β be a trivial fragment of TN with
b = β�. Each of the behavioural relations, cf., propositions 1 and 2, requires
analysis of fragments on a subpath from the root of TN to β. The analysis of a
single fragment is performed in constant time. In the worst case, the length of
the subpath is linear in size to the number of fragments in TN . The number of
fragments in TN is linear to the number of flows in the WF-system [21,27,28]. ��

5.2 Computation for Rigid Fragments

Given the WF-tree, the computation of the causal behavioural profile for two
transitions a and b of a WF-system as introduced above assumes that there is
no rigid fragment on the path from the root of the tree to b. If b is part of a rigid
fragment, derivation of the behavioural relations is more costly.

In [13], we introduced a computation of the (non-causal) behavioural profile
for all transitions in O(n3) time for sound free-choice WF-systems with n as

Efficient Computation of Causal Behavioural Profiles 77

the number of nodes. This approach, however, has the drawback that the be-
havioural profile cannot be calculated for a single pair of transitions, but solely
for the Cartesian product of transitions leading to increased computational com-
plexity. For the problem of this paper, this implies computational overhead as
various transitions are irrelevant for consistency analysis. Not in all cases, such ir-
relevant transitions might be removed in a pre-processing step without changing
semantics.

While for the behavioural profile computation in polynomial time complexity
is possible for sound free-choice WF-systems, the co-occurrence relation of the
causal behavioural profile imposes serious challenges. In the following, we show
how this relation can be derived efficiently for three subclasses, namely sound
workflow T- and S-systems, and sound free-choice WF-systems that are acyclic.

First, we need an auxiliary lemma for the relation between (forwards and
backwards) conflict-free paths and the co-occurrence relation. As usual, given
a WF-net N = (P, T, F) a path πN (x1, xk) is forwards conflict-free, iff xi ∈ P
implies |xi • | = 1 for 1 ≤ i < k. The path πN (x1, xk) is backwards conflict-free,
iff xi ∈ P implies | • xi| = 1 for 1 < i ≤ k. The proof can be found in [6].

Lemma 3. For two transitions x and y in a sound WF-system holds,
– if there is a forwards conflict-free path from x to y, then x � y.
– if there is a backwards conflict-free path from x to y, then y � x.

The co-occurrence relation for sound workflow T-systems is derived as follows.

Lemma 4. All pairs of transitions of a sound workflow T-system are in the
co-occurrence relation.

Proof. Let (N,Mi) be a sound workflow T-system. Let i• = {ti} be the initial
transition (there is only one due to the structure of T-systems). For any transition
t ∈ T any path πN (ti, t) is forwards conflict-free. Thus, ti � t (Lemma 3).
Consequently, all firing sequences starting with ti imply the occurrence of every
t ∈ T . Due to soundness, such firing sequences lead to the final marking Mo.
Thus, all firing sequences σ with (N,Mi)[σ〉(N,Mo) contain all transitions t ∈ T .

��

Regarding our example in Fig. 4(a), we see that Lemma 4 suffices to derive the co-
occurrence relation for all pairs of transitions that can not be treated according
to Proposition 2 introduced before as they are part of a rigid fragment. The
subnet represented by fragment R1 in Fig. 4(b) and Fig. 6 is a T-Net, such that
all transitions inside are pairwise co-occurring (e.g., F � J and J � F). This
knowledge, in turn, is used to derive co-occurrence for pairs of transitions, in
which one transition is outside the rigid. For instance, we already know D � K,
as the trivial fragment having transition K as entry is directly contained in
fragment P1 (Proposition 2 can be applied to decide co-occurrence for D and K).
As K is also the exit of the rigid fragment R1, it is co-occurring to all transitions
inside R1. Thus, D is co-occurring to all these transitions, e.g., D � H .

For sound workflow S-systems, the co-occurrence relation can be traced back
to the notion of dominators and post-dominators known from graph theory. For

78 M. Weidlich et al.

a WF-net N = (P, T, F), i and o as its initial and final place, and two nodes
x, y ∈ X , x is a dominator of y, iff for all paths πN (i, y) it holds x ∈ πN (i, y). x
is a post-dominator of y, iff for all paths πN (y, o) it holds x ∈ πN (y, o).

Lemma 5. For two transitions x and y of a sound workflow S-system holds,
x � y, iff y is dominator or post-dominator of x.

Proof. Let (N,Mi) be a sound workflow S-system and x, y ∈ T two transitions.
In a workflow S-system, every reachable marking M ∈ [N,Mi〉 marks exactly
one place, as only i is marked initially and for all transitions t ∈ T we know
| • t| = 1 = |t• |. Therefore, for every firing sequence σ = t1, . . . , tn we know that
there is a path πN (t1, tn) containing all transitions of σ in the respective order.

⇒ Let y be a dominator or a post-dominator of x, assume x
� y. If y is a
dominator of x, then y ∈ πN (i, x) for every path πN (i, x). Thus, any firing
sequence σ with (N,Mi)[σ〉(N,M1) with (N,M1)[x〉 is required to contain
y, i.e., x � y. If y is a post-dominator of x, the argument can be turned
around. for all paths πN (x, o).

⇐ Let x � y and assume that y is neither a dominator nor a post-dominator of
x. x � y implies that any firing sequence σ with x ∈ σ and (N,Mi)[σ〉(N,Mo)
contains y as well. Thus, all paths πN (i, o) that contain x also contain y, i.e,
y is a dominator (if y F+ x) or post-dominator (if x F+ y) of x. ��

For the more generic case of sound free-choice WF-systems that are acyclic, the
co-occurrence relation can be traced back to the exclusiveness relation. Note
that it is easy to see that two transitions that are exclusive to each other are not
co-occurring. Therefore, this case is not considered in the following lemma.

Lemma 6. In a sound free-choice WF-system holds, two transitions x and y
that are not exclusive (x�+y), while y is not part of a control flow cycle (y ��F+ y)
are co-occurring, if and only if, all transitions exclusive to y are exclusive to x.

Again, the proof of Lemma 6 is detailed in [6]. Based thereon, computation of
the causal behavioural profile is efficient for the respective system classes.

Corollary 3. The following problem can be solved in O(n3) time with n as the
number of nodes of the system. For a sound WF-system that is a T- or S-system,
or free-choice and acyclic, to compute the causal behavioural profile for a pair of
transitions.

Proof. Given any sound free-choice WF-system, the relations of the behavioural
profile can be computed in O(n3) time [13] (T- and S-systems are free-choice).
The co-occurrence relation for the causal profile is set directly in case of a T-
system (cf., Lemma 4). In case of an S-system, dominators and post-dominators
are determined in linear time [30]. Based thereon, co-occurrence is decided based
on Lemma 5. For the case of acyclic free-choice WF-systems, co-occurrence is
traced back to exclusiveness according to Lemma 6. That requires an iteration
over the Cartesian product of transitions, while for each pair all other transi-
tions are analysed, which yields a time complexity of O(n3). Thus, overall time
complexity is O(n3) with n as the number of nodes of the system. ��

Efficient Computation of Causal Behavioural Profiles 79

5.3 Implementation and Experimental Results

In order to validate our approach of deriving behavioural characteristics, we
implemented the computation of the causal behavioural profiles based on WF-
trees and conducted an experiment using the SAP reference model [31]. This
reference model describes the functionality of the SAP R/3 system and comprises
737 EPC models. From these models, we selected those that are non-trivial (more
than one element), syntactically correct, free of deadlocks or livelocks (cf., [32]),
and have unambiguous instantiation semantics (cf., [33]). We also normalised
multiple start and end events, and replaced OR-split and OR-join connectors
with AND connectors (which does not impact on the behavioural profile, but on
the causal behavioural profile). For 493 EPC models, these pre-processing steps
led to a model that could be transformed into a sound free-choice WF-system
following on common EPC formalisations (eg., [9]).

In our experiment, we computed the (non-causal and causal) behavioural pro-
files for all transitions of all 493 WF-systems separately. We grouped the models

R2 = 0,97

R2 = 0,96

R2 = 0,97

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of EPC Model Elements

C
om

pu
ta

tio
n

Ti
m

e
(m

s)

BP - Net BP - Tree CBP RG
BP - Net (Pol.) BP - Tree (Pol.) CBP (Pol.) RG (Exp.)

R2 = 0,76

Fig. 8. Computation time relative to the size of the EPC
model (Intel Core 2 Duo, 1.2 GHz, 4 GB RAM, Java 1.6)

according to their size,
i.e., the number of EPC
nodes (the WF-systems
are larger in size). Fig. 8
shows the average com-
putation time for each
model group in three
experiment runs. First,
we computed the be-
havioural profile using
the approach introduced
in [13] (BP-Net). Sec-
ond, we derived the
same profile using the
WF-trees as introduced
in this paper (BP-Tree).
Third, we computed the
causal behavioural profile (including co-occurrence) using WF-trees (CBP). Note
that two WF-systems contained a rigid fragment. Both could be mapped to an
S-system and, therefore, be handled as introduced in Section 5.2. To illustrate
the extent to which the models of our collection suffer from the state explosion
problem [34], Fig. 8 shows the average computation time for a naive creation
of the reachability graph (RG). While all reachability graphs are finite (due to
soundness of the WF-systems), computation takes up to tens of seconds. For all
four computations, Fig. 8 depicts the polynomial (or exponential for RG) least
squares regression.

We see that the usage of WF-trees as introduced in this paper, speeds up
the computation of the behavioural profile significantly compared to the exist-
ing approach. In addition, the overhead implied by our extension of the be-
havioural profile yielding the causal behavioural profile is negligible. Moreover,

80 M. Weidlich et al.

any trace-based consistency assessment would have to explore the state space
and, therefore, deal with the same computational complexity as the creation of
the reachability graphs. Despite the availability of state space reduction tech-
niques, the applicability of such an approach for real-world scenarios seems
questionable.

6 Related Work

Clearly, our work relates to other behavioural models that have been defined for
Petri nets. While we discussed causal behavioural profiles in the light of relations
proposed for workflow mining [15], the well-known concurrency relation [16], and
Petri net unfoldings [17,18] already in Section 3.3, their relation to common
notions of behavioural equivalence deserves further explanation.

When applied in the context of model refinement and adaptation, the multi-
tude of equivalence criteria from the linear time – branching time spectrum [35,5]
has three major drawbacks. First and foremost, these notions yield a true or false
answer, which has been criticised in [36]. Such notions cannot be applied to as-
sess the amount of potential behavioural deviation. Second, it is well-known
that interleaving equivalences are not invariant under forgetful refinements of
activities [37], i.e., projection of activities. However, our initial example shows
that projections are a substantial part of refining and adapting a process model
towards a workflow model. These phenomena, in turn, can be quantified using
the causal behavioural profile. Moreover, work on equivalence-preserving refine-
ments for Petri nets, refer to [38] for a thorough survey, illustrates that common
notions of equivalence are preserved solely under certain refinement operators.
Similarly, work on net morphisms [39] and behaviour inheritance [40,41] shows
that any extension of a net has to be done in a structured manner in order
to preserve common equivalences. Third, notions of behavioural equivalence are
computationally hard, which precludes an application for large scale industrial
process models. As discussed in Section 3.3, equivalence of causal behavioural
profiles is weaker than trace equivalence in order to compensate for computa-
tional efficiency.

Relations similar to those of the behavioural profile have been proposed to rea-
son on the consistency of hardware specifications and requirements imposed by
operational modules [42]. To this end, transitions of a Petri net can be classified
as being sequential or parallel depending on whether there is an order between
all their occurrences in all traces. In addition, these relations along with an exclu-
siveness relation are also defined for operations of a programming language. The
authors of [42] derive these relations from the parse of an acyclic program. This,
in turn, is very similar to our approach of leveraging the RPST decomposition
technique. Still, the causal behavioural profile comprises further details and our
approach is also applicable for cyclic nets.

The degree to which causal behavioural profiles of two related Petri nets
are preserved can be used as a behavioural similarity measure. Therefore, work
on causal footprints as a behavioural abstraction for determining the similarity

Efficient Computation of Causal Behavioural Profiles 81

between processes [43] or on a trace-based similarity metric for process min-
ing [36] is related. Further references on behavioural similarity can be found
in [44].

Related work includes further applications of the tree-based decomposition for
behavioural models, e.g., model transformation [20] or model abstraction [22].

7 Conclusions

In this paper, we addressed the problem of finding a behavioural consistency no-
tion that is weaker than existing notions of behavioural equivalence, but can be
computed efficiently. Our contribution is the definition of a causal behavioural
profile that captures essential behavioural characteristics of a process. Further
on, we showed the efficient computation of these profile for sound free-choice
workflow systems using structural decomposition techniques under the assump-
tion that unstructured net fragments are acyclic or can be traced back to S- or
T-nets. Note that this assumption still allows the system to be cyclic, either in a
structured way (bond loop fragment) or in an unstructured way (rigid fragment
is a cyclic S-net). We also demonstrated the efficiency by presenting experimen-
tal results. The low polynomial complexity of our algorithms opens reasoning on
behavioural consistency to industrial applications where trace based approaches
do not scale.

In future research, we aim at techniques for computing causal behavioural
profiles for a broader class of behavioural models, that is, systems that do not
meet our assumptions on free-choiceness, soundness, and the characteristics of
rigid fragments. While we addressed the suitability of our degree of consistency
in a recent survey, further empirical investigations on the human perception of
behavioural consistency are needed and will be tackled in future work.

References

1. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners
use conceptual modeling in practice? Data Knowl. Eng. 58(3), 358–380 (2006)

2. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching and
merging of statecharts specifications. In: ICSE, pp. 54–64. IEEE CS, Los Alamitos
(2007)

3. Dijkman, R., Dumas, M., Garćıa-Bauelos, L., Kääriky, R.: Aligning business pro-
cess models. In: EDOC. IEEE CS, Los Alamitos (2009)

4. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

5. Glabbeek, R.: The Linear Time – Brancing Time Spectrum I. The semantics of con-
crete, sequential processes. In: Handbook of Process Algebra. Elsevier, Amsterdam
(2001)

6. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient Computation
of Causal Behavioural Profiles using Structural Decomposition. Technical report
10-2010, Hasso Plattner Institute (January 2010),
http://bpt.hpi.uni-potsdam.de/pub/Public/MatthiasWeidlich/

cbp report.pdf

http://bpt.hpi.uni-potsdam.de/pub/Public/MatthiasWeidlich/cbp_report.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/MatthiasWeidlich/cbp_report.pdf

82 M. Weidlich et al.

7. Aalst, W.: The application of Petri nets to workflow management. Journal of Cir-
cuits, Systems, and Computers 8(1), 21–66 (1998)

8. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Du-
mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

9. Kindler, E.: On the semantics of EPCs: A framework for resolving the vicious circle.
In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 82–97.
Springer, Heidelberg (2004)

10. Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE
Trans. Software Eng. 30(7), 437–447 (2004)

11. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, Cam-
bridge (1995)

12. Aalst, W.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

13. Weidlich, M., Mendling, J., Weske, M.: Computation of behavioural profiles of
process models. Technical report 08-2009, Hasso Plattner Institute (June 2009)

14. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Ardis, M.A., Atlee, J.M. (eds.) FMSP, pp. 7–15. ACM,
New York (1998)

15. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)

16. Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency
relation of free-choice signal transition graphs. In: WODES, The Institution of
Electrical Engineers, pp. 1–6 (1996)

17. McMillan, K.L.: A technique of state space search based on unfolding. Formal
Methods in System Design 6(1), 45–65 (1995)

18. Esparza, J., Heljanko, K.: Unfoldings: a partial-order approach to model checking.
Springer, Heidelberg (2008)

19. Weidlich, M., Weske, M., Mendling, J.: Change propagation in process models
using behavioural profiles. In: SCC. IEEE CS, Los Alamitos (2009)

20. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100–115.
Springer, Heidelberg (2008)

21. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generaliza-
tion of the refined process structure tree. Technical Report RZ 3745, IBM (2009)

22. Polyvyanyy, A., Smirnov, S., Weske, M.: The triconnected abstraction of process
models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS,
vol. 5701, pp. 229–244. Springer, Heidelberg (2009)

23. Kiepuszewski, B., Hofstede, A., Aalst, W.: Fundamentals of control flow in work-
flows. Acta Inf. 39(3), 143–209 (2003)

24. Aalst, W.: Workflow verification: Finding control-flow errors using petri-net-based
techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business
Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)

25. Aalst, W., Hirnschall, A., Verbeek, H.: An alternative way to analyze workflow
graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE
2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

26. Esparza, J., Silva, M.: Circuits, handles, bridges and nets. In: Rozenberg, G. (ed.)
APN 1990. LNCS, vol. 483, pp. 210–242. Springer, Heidelberg (1991)

27. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks,
J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

Efficient Computation of Causal Behavioural Profiles 83

28. Battista, G.D., Tamassia, R.: On-line maintenance of triconnected components
with SPQR-trees. Algorithmica 15(4), 302–318 (1996)

29. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

30. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time.
SIAM J. Comput. 28(6), 2117–2132 (1999)

31. Curran, T.A., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding
the Business Process Reference Model. Prentice-Hall, Englewood Cliffs (1997)

32. Dongen, B., Jansen-Vullers, M., Verbeek, H., Aalst, W.: Verification of the SAP
reference models using EPC reduction, state space analysis, and invariants. Com-
puters in Industry 58(6), 578–601 (2007)

33. Decker, G., Mendling, J.: Process instantiation. Data Knowl. Eng. 68 (2009)
34. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)

APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)
35. Pomello, L., Rozenberg, G., Simone, C.: A survey of equivalence notions for net

based systems. In: Rozenberg, G. (ed.) APN 1992. LNCS, vol. 609, pp. 410–472.
Springer, Heidelberg (1992)

36. de Medeiros, A.K.A., Aalst, W., Weijters, A.: Quantifying process equivalence
based on observed behavior. Data Knowl. Eng. 64(1) (2008)

37. Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for concur-
rent systems. Acta Inf. 37(4/5), 229–327 (2001)

38. Brauer, W., Gold, R., Vogler, W.: A survey of behaviour and equivalence preserving
refinements of petri nets. In: Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp.
1–46. Springer, Heidelberg (1991)

39. Winskel, G.: Petri nets, algebras, morphisms, and compositionality. Inf. Com-
put. 72(3), 197–238 (1987)

40. Basten, T., Aalst, W.: Inheritance of behavior. JLAP 47(2), 47–145 (2001)
41. Schrefl, M., Stumptner, M.: Behavior-consistent specialization of object life cycles.

ACM Trans. Softw. Eng. Methodol. 11(1), 92–148 (2002)
42. Rosenblum, L., Yakovlev, A.: Analyzing Semantics of Concurrent Hardware Spec-

ifications. In: ICPP, vol. 3, pp. 211–218 (1989)
43. Dongen, B., Dijkman, R.M., Mendling, J.: Measuring similarity between busi-

ness process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

44. Dumas, M., Garćıa-Bañuelos, L., Dijkman, R.M.: Similarity search of business
process models. IEEE Data Eng. Bull. 32(3), 23–28 (2009)

Canonical Transition Set Semantics for Petri Nets�

Yunhe Wang1,2 and Li Jiao1

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

2 Graduate University of Chinese Academy of Sciences
{yunhe,ljiao}@ios.ac.cn

Abstract. A new partial order semantics called canonical transition set (CTS for
short) semantics is proposed for P/T nets. We first prove that it is well-defined,
sound and complete, and then give a state space exploring method based on it.
CTS semantics provides a compressed representation for the interleaving tran-
sition sequences of finite length. Compared with other methods, the state space
exploration based on CTS semantics can avoid many redundant branches and
reach all states in less steps. Furthermore, we show that CTS semantics coincides
with step semantics in Foata normal form [8] for pure 1-safe nets, which gives
an experimental support that CTS semantics is more efficient for state space ex-
ploration. As for a special property, deadlock, we show that all deadlocks can be
detected by a method combining CTS semantics with persistent set method.

Keywords: Petri nets, partial order reduction, canonical transition set semantics,
state space exploration, step semantics.

1 Introduction

Partial order method, which is used as an efficient technique for relaxing the state space
explosion problem, has attracted much attention for many years. Briefly speaking, it
uses the relationship between events (e.g., concurrency) in a model and either explores
only the desirable executions ([15,6,17,4]) w.r.t certain property being checked or com-
presses some execution paths into one equivalence class (e.g., one trace [11,3]). As to
the latter, the authors in [1] mapped equivalence classes of execution paths to equiva-
lence classes of processes for finite synchronization systems, i.e., equivalent processes
correspond to equivalent execution paths. For 1-safe nets particularly, an equivalence
class of processes becomes a singleton, which brings great practical usage for state
space exploration. Based on this, the authors in [7,8,9] improved the efficiency of prop-
erty checking, such as reachability, deadlock, or some properties expressed by LTL.
In [8] Heljanko used constrained Boolean circuits to verify reachability with process
semantics–step executions in Foata normal form and showed good performance. For
n-safe nets (n > 1), however, it seems very difficult to find a form of execution that can
represent an equivalence class of execution paths (or processes) in the sense of [1]. The

� This research was financially supported by the National Natural Science Foundation of China
(Grants No. 60721061, No. 60633010 and No. 60970029) and the 863 program of China
(Grant No. 2009 AA01Z148).

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 84–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Canonical Transition Set Semantics for Petri Nets 85

reason lies in that the individualities of tokens on the same place are distinguished and
regarded as different conditions in process semantics.

In this paper we ignore such differences and tweak the equivalent occurrence se-
quences into one transition set sequence – the canonical transition set sequence, with
the restriction that the net is finite and all occurrence sequences under consideration
are finitely long. First we define a basic relation between transitions in the net in a
static way, based on which transition set sequences are generated. We find that all the
canonical transition set sequences have grounded mathematical properties, such as well-
definedness, soundness and completeness w.r.t occurrence sequences in corresponding
equivalence classes. Intuitively, the semantics combines some transitions into one step
and makes them executed as early as possible. We apply this semantics in the state space
exploration and find that many branching explorations can be avoided. Finally, for pure
1-safe nets, we find that all the equivalence classes of occurrence sequences based on
the semantics coincide with these in [1] and the canonical transition set sequences are
just the step executions in Foata norm form in [8]. As for the deadlock detection, we
combine our method with persistent set method, and a comparison is drawn between
canonical transition set (CTS) semantics and the CSG method [16,14].

The idea of “executing as much as possible in parallel” comes from [2] and the foata
normal form of sequences (words) in [3]. In this paper, a new relation between tran-
sitions in finite Petri nets (with finite places and transitions) called order-ir is given,
which concretizes the ‘indep’ one in [11,3]; our semantics is based on a framework of
shift strategy, which constructs the canonical form for occurrence sequences of finite
length and leads to much contribution in the exploring of state space; and furthermore,
it can be found that the semantics can be combined with persistent set method for dead-
lock detection.

The paper is organized as follows: next in Section 2 some basic definitions for the
net systems are given; then we propose the CTS semantics in Section 3 and prove its
well-definedness, soundness and completeness; in Section 4 a state space exploration
technique is proposed based on CTS and a deadlock detection method is given as well;
after that, we discuss related work in Section 5; we finish with the conclusion in Section 6.

2 Basic Concepts

In this section, we introduce some basic concepts (some may be new) of Petri nets.
Other definitions and properties are available in [13,12,5].

Definition 1. A Petri netN is a 3-tuple andN = (P, T, F), where:

– P is a finite set of places and P � ∅;
– T is a finite set of transitions such that T � ∅ and P ∩ T = ∅;
– F is a set of directed arcs (flow relation), F ⊆ (P × T) ∪ (T × P);

Let x, y ∈ P ∪ T , then •x = {y |(y, x) ∈ F} and x• = {y |(x, y) ∈ F} are called pre-set and
pos-set of x, respectively. In this paper we require that •x � ∅ ∧ x• � ∅ for x ∈ T and
•x � ∅ ∨ x• � ∅ for x ∈ P. Sometimes F is regarded as a function: (P× T) ∪ (T × P)
→
{0, 1}. F(x, y)=1 iff (x, y) ∈ F. Note that we restrict our nets to those with places having
unlimited capacities and arcs having only unit weights.

86 Y. Wang and L. Jiao

A marking of a net N is a mapping M : P
→ N, where N = {0, 1, 2, . . .} denotes
the token number. A marking is always denoted as a vector, where the values of the
coordinates are the token numbers in the corresponding places. A place p is marked
by a marking M if M(p) > 0. A transition t is enabled at a marking M, denoted by
M [t 〉, if each input place p ∈ •t is marked with at least 1 token. All the transitions
enabled at M are denoted by a set enabled(M). An enabled transition t can be chosen
to fire and its occurrence transforms M into a new marking M′ (symbols: M [t〉M′, or
M t M′ for short), and for each place p: M′(p) = M(p) − F(p, t) + F(t, p). Transitions
may fire again at M′, to generate new markings; repeat this process, then an occurrence
sequence σ can be generated.

A net with an initial marking M0 forms a system (N ,M0) and the occurrence se-
quences firing at M0 constitute the system’s behavior. A marking M is called reachable
from M0 if there is an occurrence sequence M0 t1 M1 t2 · · · tk Mk and M = Mk for some
k. All the reachable markings from M0 constitute the reachability set of the net system.
A marking M is called dead if enabled(M) = ∅. A net system (N ,M0) is called n-safe
(n ≥ 1) if M(p) � n holds for every place p and every reachable marking M.

Throughout only finite net systems with finite reachability set are considered; the
net system with an initial marking (M0) is underlying and will not be mentioned if no
confusion can arise according to the context. Note that our definition of occurrence
sequence is a full version (with markings in it), in order to conform to that in [1]. Ad-
ditionally, we use symbols p, t,M, σ and the corresponding symbols with subscript to
denote a place, a transition, a marking, and an occurrence sequence (or a transition se-
quence), respectively. Sometimes for an occurrence sequence, the markings are omitted
for simplification, then we use the same symbolσ to denote the transition sequence. For
each firing M [t〉M′ we sometimes denote it shortly by M t M′. The number of times a
transition t happens in an transition sequence σ is denoted by σ(t). Let T ′ be a multiset
of transitions, and T ′(t) is used to denote the number of times t appears in T ′. We call
transition sequence σ a permutation on T ′ if for each transition t: σ(t) = T ′(t) holds. In
particular, if T ′ is a set, then T ′(t) = 1 iff t ∈ T ′.

3 Canonical Transition Set Semantics

In this section we will introduce the canonical transition set (CTS) semantics, which is
based on the relationships between transitions in the net system.

3.1 The Order-ir Relation, Order-ir Sets and Enable-Exchangeable Sets

Definition 2. Two different transitions t1 and t2 are called order irrelevant to each other
iff for every possible marking M: M [t1〉 ∧ M [t2〉 → M [t1 t2〉 ∧ M [t2 t1〉.
This definition determines a binary relation order-ir : order − ir(t1, t2) holds iff t1, t2
are order irrelevant. Intuitively, this binary relation indicates that the occurrence of one
transition does not disable another and their occurrences are commutative if they are
enabled at the same marking. Note that in the definition the term ‘every possible’ means
all the possible distributions of tokens in places, so marking M is arbitrary , i.e., M can

Canonical Transition Set Semantics for Petri Nets 87

be an unreachable marking and it is irrelevant to the initial marking, which indicates
that the order-ir relation depends only on the structure of the net. This binary relation is
conventionally regarded as the so-called diamond structure as in [10], and very similar
to the accord with relation in [15]. For the order-ir relation, the following property is
true.

Property 1. In a Petri net, two different transitions t1, t2 satisfy order − ir(t1, t2) iff:

– •t1 ∩ •t2 = ∅, or else
– ∀p ∈ •t1 ∩ •t2 : p ∈ t•1 ∩ t•2.

Proof. ⇐: If •t1 ∩ •t2 = ∅ and M [t1〉 and M [t2〉, then let M t1 M′, and for each p,
we get: M(p) ≥ F(p, t1) ∧ M′(p) = M(p) − F(p, t1) + F(t1, p) ∧ M(p) ≥ F(p, t2). If
p ∈ •t2 then p � •t1, i.e., F(p, t1) = 0, and then M′(p) = M(p) − F(p, t1) + F(t1, p) ≥
M(p) ≥ F(p, t2), which means M′ [t2〉 and M [t1 t2〉. Similarly M [t2 t1〉 can be proved.
If •t1 ∩ •t2 � ∅, let p ∈ •t1 ∩ •t2, thus p ∈ t•1 ∩ t•2. Therefore, for each p ∈ •t2, it
holds that p � •t1 ∨ (p ∈ •t1 ∧ p ∈ t•1), which indicates F(t1, p) − F(p, t1) ≥ 0, i.e.,
M′(p) = M(p) − F(p, t1) + F(t1, p) ≥ M(p) ≥ F(p, t2). So M′ [t2〉 and thus M [t1 t2〉.
Similarly, M [t2 t1〉 can be proved.
⇒: For marking M: M [t1〉 ∧ M [t2〉 → M [t1 t2〉 ∧ M [t2 t1〉 equivalent to M(p) ≥

F(p, t1)∧ M(p) ≥ F(p, t2)→ M(p)− F(p, t1)+ F(t1, p) ≥ F(p, t2)∧ M(p)− F(p, t2)+
F(t2, p) ≥ F(p, t1) for each p. If •t1∩•t2 � ∅, let p ∈ •t1∩•t2, i.e., F(p, t1) = F(p, t2) = 1,
then for marking M: M(p) ≥ 1 implies M(p)−1+F(t1, p) ≥ 1∧M(p)−1+F(t2, p) ≥ 1,
that is to say, F(t1, p) ≥ 2 − M(p) ∧ F(t2, p) ≥ 2 − M(p) holds for all such marking
M with M(p) ≥ 1. We can choose M(p) = 1 and get F(t1, p) ≥ 1 ∧ F(t2, p) ≥ 1, i.e.,
p ∈ t•1 ∩ t•2. ��
When the first condition in Property 1 is satisfied, t1 and t2 are said to be strongly order
irrelevant (SOI for short). Note that SOI implies order-ir but not the other way round.
However, for some special nets, such as pure ones (i.e., without self-loops), the order-
ir relation is just the SOI relation. Note that our definition about the order-ir relation is
quite different from the concurrency relation in [1], which is defined w. r. t. to markings,
i.e., in a dynamic way. Another similar relation is the indep relation in trace theory. As
pointed out in [3], the transitions in the indep relation act on disjoint sets of resources,
intuitively; and in [1] it is described by the condition (•t ∪ t•) ∩ (•t′ ∪ t′•) = ∅ whenever
(t, t′) ∈ indep for 1-safe nets. In this sense, therefore, the order-ir relation concretizes
indep for our nets.

In this paper we deal mainly with occurrence sequences with finite length. The order-
ir relation induces a division for occurrence sequences with the same length.

Definition 3. Let σ1 and σ2 be two occurrence sequences. Then (σ1, σ2) ∈� iff σ1 =

M0 t0 M1 t1 · · · Mi ti Mi+1 ti+1 · · · Mk tk and σ2 = M0 t0 M1 t1 · · · Mi ti+1 M′i+1 ti · · ·
Mk tk such that ti is order irrelevant with ti+1 (0 ≤ i < k).

We define relation �0 = id; �1 =�; �i+1 =�i · � and �∗ =
⋃

i≥0(�i). Then �∗ is an
equivalence relation obviously. Each equivalence class is like a trace in the sense of
Mazurkiewicz [11], but in a weaker way such that the adjacent-exchangeable transi-
tions are in the relation of order-ir instead of independence. In comparison with the

88 Y. Wang and L. Jiao

equivalence class of occurrence sequences in [1], the definition above cares only about
occurrence sequences with finite length and the order-ir relation is used in place of the
concurrency relation (w .r. t. the markings).

In the next, some notions on transition sets are given.

Definition 4. Transition set T ′ is called an order irrelevant set (OIS for short) iff ∀t1, t2
∈ T ′ : t1 � t2 → order− ir(t1, t2); an OIS is called maximal if it is not properly included
by any other OIS for the same net.

Note that any subset of an OIS is still an OIS. Because OIS’s and maximal OIS’s are
only relevant to the structure of the net, they can be pre-computed. It is very straight-
forward that the computation of OIS’s is equivalent to the computation of cliques in
a graph, where the nodes and edges correspond to the transitions and order-ir relation
of the net, respectively. In the following we suppose that all the maximal OIS’s of the
underlying net are T o

1 , T
o
2 , · · · , T o

s .

Definition 5. Let M be a marking and S an OIS, then S is called an enabled and
exchangeable transition set (EET for short) at M iff S ⊆ enabled(M). If S is not
properly included by any other EET at M, we call it maximal (MEET for short). Let
EET (M) = {S |S is an EET at M} and MEET (M) = {S |S is a MEET at M}.
Note that a marking M may have one or more EET’s and MEET’s; the empty set ∅ is
trivially an EET of any marking; when M is a dead marking, there is only one EET, i.e.,
EET (M) = MEET (M) = {∅}. MEET (M) can be determined in such a way below:

Property 2. Let M be a marking, then MEET (M) ⊆{T o
1 ∩ enabled(M), T o

2 ∩ enabled
(M), · · · , T o

s ∩ enabled(M)}.
Proof. Let S be a MEET at M. By Definition 5, S is an OIS and S ⊆ enabled(M);
then by Definition 4, S ⊆ T o

i for some i (1 ≤ i ≤ s). Therefore S ⊆ T o
i ∩ enabled(M).

Assume (T o
i ∩enabled(M))−S � ∅ and let t ∈ (T o

i ∩enabled(M))−S , then S ∪{t} is an
EET at M by Definition 5. This leads to a contradiction since S is maximal. Therefore
S = T o

i ∩ enabled(M). Then all the MEET’s at M are among these sets. ��
Note that the sets T o

1∩enabled(M), T o
2∩enabled(M), · · · , T o

s ∩enabled(M) may contain
some transition sets that are EET’s, but not MEET’s; some empty sets or reduplicate
sets may be among them as well. All such sets are redundant and can be removed for
simplifying further consideration. It is clear that a MEET T ′ contains 2|T ′| −1 nonempty
EET’s.

We show in the following that the execution of transitions in an EET at M can be in
an arbitrary order.

Property 3. Let T ′ be an EET at marking M and σ be a permutation on T ′, then
M [σ 〉.
Proof. Let σ = t0 t1 · · · tn be a permutation on T ′, and σi = t0 t1 · · · ti be the prefix
of σ with length i + 1 (0 ≤ i ≤ n). Induction is made on i. If i = 0, it is trivially
obvious that M [σi〉. When i < n, assume M [σi〉, i.e., there is an occurrence sequence
M t0 M1 t1 M2 · · · ti Mi+1. Since t0 and ti+1 are both enabled at M and order− ir(t0, ti+1)

Canonical Transition Set Semantics for Petri Nets 89

holds, then M [t0 ti+1〉, i.e., M1 [ti+1〉. Repeat this process and we get ti+1 is enabled at
Mi+1, and then M [σi+1〉. By induction hypothesis, for all i with 0 ≤ i ≤ n: M [σi〉, and
thus M [σ 〉. ��
Because of the arbitrariness ofσ in Property 3 above, we use the transition set T ′ instead
of σ to represent this occurrence and denote it by M T ′ (or exists M′ : M T ′ M′). We
call such an occurrence a weak step. Note that it is not necessary that the transitions in
T ′ can concurrently occur at M. The following corollary is obvious by Property 3.

Corollary 1. Let M T ′ M′ be a weak step. If transition t is order irrelevant to all the
transitions in T ′ and M [t〉, then M [T ′ ∪ {t}〉.

3.2 Canonical Transition Set Sequence, Standard Shift Operation Order, and
Well-Definedness

Similar to the definition of transition occurrence sequence, we can easily define the
transition set sequence (TSS for short). Let M0 T0 M1,M1 T1 M2, · · · ,Mk Tk Mk+1, · · ·
be all weak steps, and we get a TSS as follows: M0 T0 M1 T1 M2 · · · Mk Tk Mk+1 · · · .
Let σ = M0 t0 M1 t1 · · · Mn tn be an occurrence sequence and we can easily get a trivial
TSS: δ0 = M0 T0 M1 T1 · · · Mn Tn, where Ti = {ti} (0 ≤ i ≤ n). There may be many
TSS’s for an occurrence sequence because of the order-ir relation between transitions in
the sequence. In the following, we will consider the canonical TSS’s with finite length.

Definition 6. A TSS δ = M0 T0 M1 T1 · · · Mn Tn is called canonical if for each i (1 ≤
i ≤ n), no transition t ∈ Ti satisfies the following condition:

Mi−1 [t 〉 ∧ ∀t′ ∈ Ti−1(order − ir(t, t′)) . (1)

According to Corollary 1, the transition t satisfying (1) can be absorbed by Ti−1, which
indicates that a shift of transitions can occur from Ti to Ti−1. Intuitively, a canonical
TSS indicates no shift of transitions. For TSS’s, the shift operations can be formalized
as follows:

Definition 7. Let δ = M0 T0 M1 T1 · · · Mi−1 Ti−1 Mi Ti Mi+1 · · · Mn Tn be a TSS. A
shift function fi (1 ≤ i ≤ n) is defined as fi(δ) = M0 T0 M1 T1 · · · Mi−1 T ′i−1 M′i T ′i Mi+1

· · · Mn Tn, where:

– if Ti = ∅, fi(δ) = δ; otherwise
– make the assignment: Ti− := {t |t ∈ Ti and t satisfies (1)}, then T ′i−1 = Ti−1∪Ti− and

T ′i = Ti − Ti− .

Intuitively, function fi moves the transitions in Ti− from Ti to Ti−1. Note that when
Ti−1 = ∅, we get Ti− = Ti and the function actually exchanges the values of Ti−1 and
Ti, or in other words, ∅ is moved backward. Fig. 1 is an example. A TSS can be changed

by shift functions as follows (markings omitted): {t1} {t3} {t4} f1−→ {t1, t3} ∅ {t4} f2−→ {t1, t3}
{t4} ∅.
Theorem 1. A TSS δ = M0 T0 M1 T1 · · · Mn Tn is canonical iff f1(f2(· · · (fn(δ)) · · ·)) =
δ holds.

90 Y. Wang and L. Jiao

p1

p2

p3

p4

p6

p5

t1

t4 t2 t3

Fig. 1. A net system with initial marking M0 = (100110)

Proof. ⇒: Obviously true.
⇐: If δ is not canonical, then there is a transition t in Ti satisfying (1). Assume Ti is the
most backward transition set that makes (1) satisfied. Then fi+1(fi+2(· · · (fn(δ)) · · ·)) = δ,
and fi(δ) = δ′ � δ, i.e., some transition t is moved from Ti to Ti−1. The sequence
fi−1, · · · , f2, f1 after fi can only move t and other transitions forward, and it is not re-
versible. Therefore, f1(f2(· · · (fn(δ)) · · ·)) = f1(f2(· · · (fi−1(δ′)) · · ·)) � δ. ��
The trivial TSS for σ = M0 t0 M1 t1 · · · Mn tn is δ0 = M0 T0 M1 T1 · · · Mn Tn, where
Ti = {ti} (0 ≤ i ≤ n). Theorem 1 above gives an indication that shift operations
fn, fn−1, · · · , f2, f1 can be made on δ0 many times and if a fixpoint is reached then we
can get its canonical form. Because the shift operation is unidirectional and there are
finitely many permutations, a fixpoint will eventually be reached. However, this shift
strategy may include many redundancies. Additionally, one can choose other orders of
shift operations and reach a fixpoint. We give a standard one as follows.

Shift Strategy (SSOO). δ0 = M0 T0 M1 T1 · · · Mn Tn is a trivial TSS. A standard shift
operation order (SSOO for short) is given as follows:

– Step 1, make shift operations fn, fn−1, · · · , f2, f1 in sequence;
– Step 2, make shift operations fk, fk−1, · · · , f2 in sequence, where k is the subscript

of the hindmost transition set that is not empty after Step 1;
– Step 3, make shift operations fk′ , fk′−1, · · · , f3 in sequence, where k′ is the subscript

of the hindmost transition set that is not empty after Step 2;
– · · · · · ·
– Step m, terminate the operation if the mth transition set and all the transition sets

following it are empty.

We introduce some notations and symbols. After Step j or before Step j + 1 the TSS
is denoted by δ j (0 ≤ j ≤ m); after the whole SSOO operation, a TSS is got, denoted
by S S OO(δ0) or S S OO(σ) (S S OO(δ0) = δm−1 = δm). The ith transition set (marking)
in δ j is denoted by T j, i(M j, i). According to the SSOO operation, after Step 1, the 0th
transition set will not be changed any more in the subsequent operation, i.e., T1, 0 =

T2, 0 = · · · = Tm−1, 0 and correspondingly M1, 1 = M2, 1 = · · · = Mm−1, 1; generally, after
Step i+1 the ith transition set will not be changed any more , i.e., Ti+1, i = Ti+2, i = · · · =

Canonical Transition Set Semantics for Petri Nets 91

Tm−1, i and correspondingly Mi+1, i+1 = Mi+2, i+1 = · · · = Mm−1, i+1; we call them stable
after the corresponding steps. The locations of transitions may change with the shift
operations. In σ (or δ0) a subscript of the transition represents its corresponding order
in the sequence. Note that although two transitions ti and t j with different subscripts
(i � j) may be the same transition in the underlying net (namely ti = t j), we still regard
them as different appearances. We do not change the subscripts of transitions even when
shift operations are made. Fig. 2 shows another net.σ = t0 t1 t1 t2 t5 t4 (markings omitted
here) is an occurrence sequence and consider the SSOO operation on it:

p0

p2 p3

p4

p5

t1

t4

t2 t3

p1

t0

t5

Fig. 2. A net system with initial marking M0 = (200001)

1. δ0 = M0 {t0}M0, 1 {t1}M0, 2 {t1}M0, 3 {t2}M0, 4 {t5}M0, 5 {t4}, where M0 = (200001),
M0, 1 = (200001),M0,2 = (110001),M0,3 = (020001),M0,4 = (011101),M0,5 =

(011111);
2. Step 1, make shift operations f5, f4, · · · , f1 in sequence and get δ1 = M0 {t0, t5}M1, 1

{t1}M1, 2 {t1, t2}M1, 3 ∅M1, 4 ∅M1, 5 {t4}, where M1, 1 = (200011) becomes stable
and M1, 2 = (110011),M1,3 = (011111) = M1, 4 = M1, 5;

3. Step 2, make shift operations f5, f4, · · · , f2 in sequence and get δ2 = M0 {t0, t5}M2, 1

{t1}M2, 2 {t1, t2}M2, 3 {t4}M2, 4 ∅M2, 5 ∅, where M2, 2 = (110011) becomes stable
and M2, 3 = (011111),M2,4 = (021001) = M2, 5;

4. Step 3, only the shift operation f3 can be made, but no change happens because t4
is not enabled at M2, 2. Then δ3 = δ2;

5. Step 4, since the 4th transition set and all the transition sets following it are empty,
then terminate the operation.

Finally we get S S OO(σ) = δ2 = δ3 = δ4 = {t0, t5} {t1} {t1, t2} {t4}.
Definition 8. Let δk be the TSS after Step k in SSOO. An order of the transition sets in
δk is defined as follows: Tk, i �k Tk, j iff i ≤ j. Similarly, ti �k t j iff ti ∈ Tk, k1 ∧ t j ∈
Tk, k2∧k1 ≤ k2, where i, j are the subscripts (orders) of ti and t j inσ (or δ0). In particular,
ti �0 t j (or Ti �0 T j) iff i ≤ j.

Intuitively, ti �k t j means that ti appears not later than t j in δk. From the definition we
can conclude that ti �k t j ∧ t j �k ti implies that ti and t j are in the same transition set
in δk. Then the definition of the order can be easily extended between a transition and a
set: Tk, k1 �k t j iff t j ∈ Tk, k2 ∧ k1 ≤ k2.

92 Y. Wang and L. Jiao

Corollary 2. Suppose δ0 = M0 T0 M1 T1 · · · Mn Tn is a trivial TSS. Let T c
0 = {t j |t j ∈

enabled(M0) ∧ ∀ti(ti �0 t j ∧ i � j → order − ir(ti, t j))}. Then T1,0 = T2, 0 = · · · =
Tm−1, 0 = T c

0 (w. r. t. SSOO).

Proof. Let t j ∈ T c
0. If j = 0, it trivially holds that t j ∈ T1,0. When j > 0 we get

t0 �0 t j and order − ir(t0, t j). Since t j ∈ enabled(M0), then t j ∈ enabled(M1) holds
according to Corollary 1. For the same reason, we can deduce that t j ∈ enabled(Mi)
for all i(i ≤ j). Then the succession of shift operations f j, f j−1, · · · , f2, f1 in Step 1
(in SSOO) makes t j passe through T j−1, T j−2, · · · , T1, T0 in sequence, i.e., t j ∈ T1, 0.
Conversely, if t j ∈ T1, 0 and j > 0, then t j ∈ enabled(M0) (otherwise it cannot be moved
to T0). The serial movements of t j from T j to T0 indicate that t j is order irrelevant to all
the transitions that appear not later than it in δ0 according to condition (1), i.e., ti �0 t j

implies order − ir(ti, t j). ��
After Step 1 in SSOO, we get δ1 = M1, 0 T1, 0 M1, 1 T1,1 · · · M1, k1 T1, k1 , and similarly,
we construct T c

1 = {t j |t j ∈ enabled(M1,1) ∧ ∀ti(T1,1 �1 ti �1 t j ∧ i � j → order −
ir(ti, t j))}. For the same reason, T2, 1 = T3, 1 = · · · = Tm−1, 1 = T c

1. Similarly, T c
k ={t j |t j ∈ enabled(Mk, k) ∧ ∀ti(Tk, k �k ti �k t j ∧ i � j → order − ir(ti, t j))} is con-

structed for all steps and then Tk+1, k = Tk+2, k = · · · = Tm−1, k = T c
k . Note that after

Step m − 1, there is no nonempty transition set following Tm−1,m−1, and T c
m−1 is defined

to be equal to Tm−1,m−1. Therefore, the SSOO operation actually provides a procedure
to iteratively compute T c

k , i.e., Step k + 1 computes T c
k (k ≥ 0), and then S S OO(δ0) =

Mm−1, 0Tm−1, 0 Mm−1, 1Tm−1,1 · · ·Mm−1, m−1Tm−1,m−1=M0 T c
0 M1,1 T c

1 · · ·Mm−1,m−1 T c
m−1.

Lemma 1. Let T c
k (0 ≤ k ≤ m − 1) be the transition sets constructed by the SSOO

operation. For each k > 0, there is no transition in T c
k that makes (1) satisfied , therefore

S S OO(δ0) is a canonical TSS.

Proof. Suppose that there is a transition ts in T c
k satisfying (1), then ts is not absorbed

by T c
k−1 in Step k but absorbed by T c

k in Step k + 1, and ts satisfies condition (1) which
implies ts ∈ enabled(Mk−1, k−1). Then there exists a transition tr such that Tk−1, k−1 �k−1

tr �k−1 ts ∧ r � s holds but order − ir(ts, tr)) not, according to the definition of T c
k−1.

Note that in all the following shifts in SSOO, ts cannot pass through tr to move forward.
The fact that Step k + 1 can make ts absorbed by T c

k indicates that tr is in T c
k−1 after

Step k, which gives a contradiction that ts can be moved into T c
k−1. Therefore, there is

no transition that can move forward in S S OO(δ0) and then, S S OO(δ0) is a canonical
TSS. ��
Lemma 2. S S OO(δ0) (S S OO(σ)) is the unique canonical TSS for σ.

Proof. S S OO(δ0)=M0 T c
0 M1, 1 T c

1 · · ·Mm−1,m−1 T c
m−1 is the canonical TSS constructed

by SSOO and we assume that δ′ = M0 T c′
0 M′1 T c′

1 · · · Mk T c′
k is another canonical

TSS for σ, which is constructed by shift operations of another order. We will prove
δ′ = S S OO(δ0). Firstly we prove T c

0 = T c′
0 . For each transition t j ∈ T c

0 = {t j |t j ∈
enabled(M0) ∧ ∀ti(ti �0 t j ∧ i � j → order − ir(ti, t j))}, note a fact that t j is order
irrelevant with all the transitions appearing not later than it in all the intermediate TSS’s
in the construction of δ′: in δ0 it is obvious; afterwards, all the transitions that jump
over t j in the process are order irrelevant with t j according to (1). In other words, t j

Canonical Transition Set Semantics for Petri Nets 93

keeps this property, and in the canonical δ′ it cannot shift, thus t j ∈ T c′
0 . On the other

hand, if transition t j is not in T c
0, then it is not enabled at M0 or there exists a transition

ti that makes ti �0 t j ∧ i � j hold but order − ir(ti, t j) not. The former case implies
t j � T c′

0 and the latter case indicates that t j will never jump over ti in the process of shift
operation, which also means t j cannot be in T c′

0 . Then T c
0 = T c′

0 and M′1 = M1, 1 as well.
The suffixes attained from S S OO(δ0) and δ′ by deleting the heads M0 T c

0 and M0 T c′
0

(respectively) are also two canonical TSS’s, but for the occurrence sequence attained
by deleting the transitions in T c

0 (T c′
0) from σ. Then by induction hypothesis, we get

δ′ = S S OO(δ0). ��
The two lemmas above show that for each occurrence sequence, its canonical TSS is
unique and it is irrelevant to the shift operation order. This determines a function as
follows.

Theorem 2 (well-definedness). There exists a canonical function ϕ that maps each
occurrence sequence σ of finite length to its canonical TSS , i.e., ϕ(σ) = S S OO(σ).

3.3 Soundness and Completeness

Let δ = M0 T c
0 Mc

1 T c
1 · · · Mc

k T c
k be a canonical TSS and σ0, σ1, · · · , σk are permuta-

tions on T c
0, T

c
1 , · · · , T c

k , respectively. According to Property 3, σ = σ0 σ1 · · · σk is an
occurrence sequence (called the permutations on δ) and it is obvious that ϕ(σ) = δ.
However, there are some occurrence sequences σ′ that cannot be constructed in such
a way but also have ϕ(σ′) = δ. For example, consider the occurrence sequence σ =
t0 t1 t1 t2 t5 t4 in Fig. 2, with its canonical TSS S S OO(σ) = {t0, t5} {t1} {t1, t2} {t4}. Note
that transition t5 jumps over the middle two sets to T0 and then makes σ not be any
permutation on S S OO(σ).

In the following we determine when two occurrence sequences have the same canon-
ical TSS. The theorem below shows that the canonical function ϕ is sound and complete
with respect to �∗.

Theorem 3 (soundness and completeness). Letσ andσ′ be two occurrence sequences
with the same finite length, then ϕ(σ) = ϕ(σ′) iff (σ, σ′) ∈�∗.
Proof. ⇐(completeness): Assumeσ �i σ′, i.e., there exist occurrence sequencesσ1, σ2,
· · · , σi such that σ � σ1, σ1 � σ2, · · ·σi−1 � σi and σi = σ

′. When i = 0, we get σ =
σ′ and ϕ(σ) = ϕ(σ′) trivially. If i ≥ 1, then for σ � σ1, by the definition of �, we have
σ = M0 t0 M1 t1 · · · M j t j M j+1 t j+1 · · · Mk tk, σ1 = M0 t0 M1 t1 · · · M j t j+1 M′j+1 t j · · ·
Mk tk such that t j is order irrelevant with t j+1. We adopt such a shift operation order that
shift function f j+1 is applied first for both trivial TSS’s. Because transitions in T j and
T j+1 in the trivial TSS’s are both enabled at M j and order irrelevant to each other, we
get the same resultant TSS after shift operation f j+1, which implies ϕ(σ) = ϕ(σ1). Then
by transitivity, we get ϕ(σ) = ϕ(σ1) = ϕ(σ2) = · · · = ϕ(σi) = ϕ(σ′).
⇒(soundness): Let δs be an arbitrary TSS for σ and fi (i > 0) a shift function on δs.

First we prove that the permutations on δs are all �∗-equivalent to those on fi(δs). It is
apparent that permutations on the same TSS are�∗-equivalent to each other according to
the definition of �. By the definition of fi, we have δs = M0T0 M1T1 · · ·Mi−1Ti−1 Mi Ti

94 Y. Wang and L. Jiao

Mi+1 · · · Mk Tk, fi(δs) = M0 T0 M1 T1 · · · Mi−1 T ′i−1 M′i T ′i Mi+1 · · · Mk Tk such that
Ti− = {t |t ∈ Ti and t satisfies (1)}, T ′i−1 = Ti−1∪Ti− and T ′i = Ti−Ti− (Note that it can be
concluded trivially for Ti = ∅). Then it is also apparent that the permutations on both δs

and fi(δs) are all �∗-equivalent to permutations on TSS δ− = M0T0 M1T1 · · ·Mi−1 Ti−1

Mi Ti− M T ′i Mi+1 · · · Mk Tk, then they are �∗-equivalent to each other by transitivity.
Therefore, the permutations on all the TSS’s in the process of constructing ϕ(σ) are �∗-
equivalent by transitivity of �∗, which indicates that σ and σ′ are both �∗-equivalent to
permutations on ϕ(σ) (ϕ(σ′)), and then they are �∗-equivalent to each other as well. ��
Theorem 3 indicates that the canonical function ϕ actually determines an equivalence
partition for all the occurrence sequences with the same finite length: occurrence se-
quences are in the same equivalence class iff they are �∗-equivalent to each other. We
use ϕ−1(δ) to denote such an equivalence class for each canonical TSS δ.

4 State Space Exploration Based on CTS

Intuitively, CTS always tries to execute the transitions as early as possible. If a transi-
tion chosen to fire at a marking is exchangeable with (i.e., absorbed by, w.r.t order-ir)
the transitions that have fired to reach that marking, then it can be inferred that this
transition has been chosen by another canonical TSS. For example in Fig. 1, a canon-
ical TSS is M0 {t1, t3}M1 (where M1 = (010101)) and at M1 transition t2 is enabled.
However, t2 is exchangeable with t1 and t3 (w.r.t order-ir) and cannot be chosen to fire
at M1 in this TSS. There is another canonical TSS in which t2 is chosen to fire, i.e.,
M0 {t1, t3, t2}M (where M = (010002)). In other words, in order to explore the state
space based on CTS, we should choose transitions that cannot be absorbed by the tran-
sition set that precedes it in the TSS. In the example, only t4 is chosen at M1 to generate
a new canonical TSS: M0 {t1, t3}M1 {t4}M2 (where M2 = (001001)). Essentially, CTS
compresses some transitions into one step and gives up some branches to be explored. In
the following we first compute the canonical TSS’s in a dynamic perspective to achieve
a complete state exploring, and then combine CTS semantics with the persistent set
method to detect deadlock in a more compressed way.

4.1 Complete State Exploring Based on CTS

Definition 9. Let M0 T0 M1 T1 · · · Mk Tk M be a canonical TSS. Transition t is called
under-chosen (UC for short) at M if t ∈ enabled(M) and Tk ∪ {t} is not an EET at
Mk (i.e., t cannot be absorbed by Tk). An EET T ′ at M is called under-chosen if each
transition in T ′ is UC. An UC set T ′ is called maximal (MUC for short) if it is not
properly included by any other UC set at that marking.

The UC sets are closely related to canonical TSS’s.

Theorem 4. A TSS M0 T0 M1 T1 · · · Mk Tk M is canonical iff for all i (0 ≤ i ≤ k) Ti is
an UC set at Mi.

Proof. It can be easily concluded by the definitions of canonical TSS and UC sets. ��

Canonical Transition Set Semantics for Petri Nets 95

Note that in Definition 9, all the transitions that can be absorbed by Tk can be easily
determined. We denote such a transition set associated with M by sleep set(M)1, and
sleep set(M) = {t |t ∈ enabled(Mk) ∧ ∀t′ ∈ Tk(order − ir(t, t′))}. Then for a canon-
ical TSS M0 T0 M1 T1 · · · Mk Tk M all the UC transitions at M just constitute the set
enabled(M) − sleep set(M).

Theorem 5. Let T o
1 , T

o
2 , · · · , T o

s be all the maximal OIS’s of the underlying net. A TSS
M0 T0 M1 T1 · · · Mk Tk M can be constructed iteratively as follows for all i (0 ≤ i ≤ k):

– if i = 0, then choose T0 as one EET at M0;
– if i > 0 and Ti−1 is an UC set at Mi−1, then let Tc = enabled(Mi) − sleep set(Mi)

and get the sets T o
1 ∩ Tc, T o

2 ∩ Tc, · · · , T o
s ∩ Tc. Choose Ti such that Ti ⊆ T o

j ∩ Tc

for some j (1 ≤ j ≤ s).

Then for all i (0 ≤ i ≤ k) Ti is an UC set at Mi and therefore M0 T0 M1 T1 · · · Mk Tk M
is a canonical TSS.

Proof. It can be proved by induction on i. When i = 0, T0 is an EET at M0, which is
also an UC set since no transition set precedes it. When i > 0, assume Ti−1 is an UC set
at Mi−1, then Tc = enabled(Mi)− sleep set(Mi) includes exactly all the UC transitions
at Mi. However, Tc is not necessarily an UC set because the transitions in it may be
not order irrelevant with each other. When an intersection is made between Tc and the
maximal IOS’s, we get all the MUC sets among the sets T o

1 ∩ Tc, T o
2 ∩ Tc, · · · , T o

s ∩ Tc,
similar to Property 2. Some sets among T o

1 ∩ Tc, T o
2 ∩ Tc, · · · , T o

s ∩ Tc may be not
maximal, but they are still UC sets. Ti is chosen as a subset of them, then Ti is an UC
set at Mi. Therefore M0 T0 M1 T1 · · · Mk Tk M is a canonical TSS. ��
Since the sets T o

1 ∩ Tc, T o
2 ∩ Tc, · · · , T o

s ∩ Tc cover all the possible UC sets at Mi, then
we have the following corollaries.

Corollary 3. In Theorem 5, the construction strategy for canonical TSS M0 T0 M1 T1 · · ·
Mk Tk M explores all the possible canonical TSS’s within length k+1 in the state space.

Corollary 4. If the state space is finite and the transition sets Ti is chosen by the strat-
egy in Theorem 5, then there exists a bound k such that all the canonical TSS’s of length
k explore all the reachable markings in the state space.

Proof. Assume M′ is a reachable marking, then there exists an occurrence sequence
σ of finite length such that M0 σM′ and all the markings in σ appear only once (this
sequence can be always acquired by deleting the subsequences between any two ap-
pearances of the same markings). Make SSOO operation on M0 σM′ and we can get a
canonical TSS δ = M0 T0 M1 T1 · · · Mi Ti M′. According to Corollary 3, δ is explored
by length i + 1, which cannot exceed the length of σ. As to all the reachable markings,
let k be the maximal value of the lengths of such δ’s. Then we get the conclusion. ��
Note that k cannot exceed the number of states in the space in the worst case. Since
all the reachable markings in the state space are explored by such a strategy, we call

1 This notion is borrowed from [6], where sleep set is used as a transition set to be excluded in
the exploring. We use it in a similar way.

96 Y. Wang and L. Jiao

it a complete-state exploring. Note that by the strategy in Theorem 5, when a marking
is visited more than once (i.e., reached from the initial marking by different canonical
TSS’s), all the possible next UC sets are explored. This can preserve all the possible
canonical paths (of the bounded length) from the initial marking.

The state space exploration based on CTS is different from that traditional one based
on interleaving semantics since it tries to make transitions fire as early as possible: many
transitions fire at one step as a transition set. Therefore, the CTS exploration can reduce
the number of steps besides avoiding the exploration of some redundant branches. The
drawback is obvious as well. The complexity of CTS lies in the computation of UC
sets at each reachable marking and there are often exponentially many UC sets w. r.
t. the number of UC transitions at each marking. Below is a comparison between the
CTS exploration and the traditional one for the net in Fig. 1. In Fig. 3 markings are
represented by solid dots and the numbers on arcs are the indexes of the corresponding
transitions. The two graphs are the trails of the two explorations, respectively. The CTS
exploring reaches all the states within bound 2 (see the right figure in Fig. 3). Note
that the traditional exploring exhibits a lattice shape while the CTS exploring exhibits
a tree shape in the drawing. The net has two maximal OIS’s: {t1, t2, t3}, {t1, t3, t4} and
the initial marking is M0 = (100110) and enabled(M0) = {t1, t2, t3}. The intersections
between enabled(M0) and the sets in maximal OIS’s are {t1, t2, t3} and {t1, t3}. Then we
get 7 EET’s at M0. Assume {t1} is chosen to fire (i.e., T0 = {t1}) so that M0 {t1}M1.
Then enabled(M1) = {t4, t2, t3}. Note that t2, t3 can be absorbed by T0, then only t4
is an UC transition and T1 = {t4}. Afterwards we get a sequence M0 {t1}M1 {t4}M2,
where M2 = (001010). Similarly, enabled(M2) = {t3} and t3 can be absorbed by T1, so
there is no transition that can be chosen to fire at M2. Note that if there is no outgoing
arc from a vertex in the CTS exploring graph, it does not necessarily indicates that the
corresponding marking is dead. Fig. 3 illustrates that the two explorations both reach
all the reachable markings but the CTS one is more efficient since it combines several
transitions into one step and avoids some redundant branches.

The CTS semantics travels less edges to reach all the states and the number of edges
is at least the number of states minus 1 when each state is visited only once. It is often
the case that some states are visited only once because the redundant branches are not
explored to reach these states one more time, such as the exploration in Fig. 3. This
situation depends on how many transitions can occur together. In the worst case, when

4

3
2

1

1

1

1

2

2

2

3

3

3

3
4

1

4

2

3

1
2
3

2
3

1
31

2

4

M0

M0

M1
M1

M2 M2

Fig. 3. The traditional state space exploring strategy and the one based on CTS for net in Fig. 1

Canonical Transition Set Semantics for Petri Nets 97

no two transitions can occur together, the CTS exploring degenerates into the traditional
one. Note that if the graph (trails) for the CTS exploring is completely constructed (i.e.,
the bound k is big enough to explore all the states), then not all the paths in the graph
are canonical since one node can be visited more than once. Besides, it makes little
sense to construct the graph since all the states are preserved and only some edges are
abandoned. However, if a specific property (e.g., deadlock) is considered, some states
(and more branches) will be abandoned to make the exploration more efficient, as this
will be demonstrated in the next subsection.

4.2 Deadlock Detection Based on CTS

First we introduce the notion of persistent set [17,4] and show how it can be combined
with CTS to detect deadlocks.

Definition 10. A nonempty set PM associated with a marking M is persistent iff:

– PM ⊆ enabled(M), and
– for any occurrence sequence σ = M t0 M1 t1 · · · Mn tn (n ≥ 0) starting from M, if
{t0, t1, ..., tn} ∩ PM = ∅, then for ∀t ∈ {t0, t1, ..., tn}, ∀t′ ∈ PM : order − ir(t, t′).

In other words, the occurrences of transitions not in PM cannot change the enabledness
of transitions in PM; transitions in PM keep their enabledness from M until some tran-
sition in PM is chosen to fire. We denote the set of all the persistent sets associated with
marking M by PS (M), i.e., PS (M) = {PM |PM is a persistent set associated with M}.
Note that ∅ is not regarded as a persistent set; if M is not a dead marking, then enabled
(M) is trivially a persistent set; if T1, T2 ∈ PS (M) then T1∪T2 ∈ PS (M). The persistent
set has the property of transitivity:

Property 4. Let PM ∈ PS (M), T ′ be an EET at M such that M T ′M′. If T ′ ∩ PM = ∅
then PM ∈ PS (M′).

Proof. It can be easily proved by Definition 10. ��
Theorem 6. Let σ be an occurrence sequence such that M0 σD, where D is a dead
marking. ϕ(σ) = M0 T0 M1 T1 · · · Mi−1 Ti−1 Mi Ti Mi+1 · · · Mn Tn D is the canonical
TSS for σ. Then for all i (0 ≤ i ≤ n) and ∀PMi ∈ PS (Mi): Ti ∩ PMi � ∅.
Proof. Assume there is an i (0 ≤ i ≤ n) and a persistent set PMi associated with Mi such
that Ti ∩ PMi = ∅. If i = n, then by Property 4, PMn is also a persistent set associated
with D, contradicting that D is a dead marking. Then there is a j such that i < j ≤ n
and T j ∩ PMi � ∅; otherwise, the same contraction can be induced by the transitivity
of persistent set. Let T j be the first transition set after Ti such that T j ∩ PMi � ∅ holds,
and let t ∈ T j ∩ PMi . Since PMi is persistent at M j−1 and T j−1 ∩ PMi = ∅, then t is order
irrelevant to all the transitions in T j−1 by Definition 10. Therefore, t can be moved from
T j to T j−1. This leads to a contradiction since ϕ(σ) is a canonical TSS. ��
Theorem 6 indicates that to preserve all the dead markings and the corresponding se-
quences, it is not necessary to explore all the UC sets Ti at marking Mi: if Ti ∩ PMi = ∅

98 Y. Wang and L. Jiao

for some PMi ∈ PS (Mi), then the exploring of Ti can be ignored. This method avoids
many branches to be explored. In the following, we use NS (PS (Mi)) to denote the set
of all the next necessary steps at Mi, i.e., all the T ′i ’s in Theorem 6. In particular, if
there are some persistent sets that are singletons associated with marking Mi, then all
the steps in NS (PS (Mi)) should include all the transitions in these singletons. Also note
that if there exists a PMi ∈ PS (Mi) such that PMi ⊆ sleep set(Mi), then it follows that
NS (PS (Mi)) = ∅, which indicates that Mi can never reach a deadlock by a canonical
path and Mi itself is a ‘fake’ deadlock.

Then when the bound k (by Corollary 4) is big enough, all deadlocks can be detected.
However, it is very complicated and not practical to compute PS (Mi). We hope to obtain
a set that is easy to compute and at the same time can eliminate as many branches as
possible. First note that for any marking M, if T1, T2 ∈ PS (M) and T1 ⊆ T2, then T2

is redundant in the detection of deadlocks by Theorem 6. All such redundant persistent
sets can be eliminated from PS (M). Additionally, we have a tradeoff:

Corollary 5. S ⊆ PS (M) implies NS (PS (Mi)) ⊆ NS (S).

Proof. By Theorem 6, all the steps T ′ in NS (PS (Mi)) satisfies the condition: T ′∩PM �
∅ for each PM ∈ PS (M). Since S is a subset of PS (M), the same condition is satisfied
with respect to S , and then T ′ ∈ NS (S). This completes the proof. ��
At each reachable marking M, if S is used in place of PS (M), then more branches will
be explored and of course all the deadlocks are preserved (assume the bound k is big
enough). In particular, if S = ∅, then it is just the complete state exploring and achieves
no more reduction for the exploring. Here is a tradeoff between the computation of
persistent sets and the reduction of exploration. We recommend a subset of PS (M)
for each marking M, in which each persistent set is induced by an enabled transition.
We denote it by PS S (M) (the second ‘S ’ means ‘subset’) and it has at most as many
elements as enabled(M). More details on how to induce a persistent set by an enabled
transition and more methods to compute them can be referred to in [4]. There may be
many alternatives for PS S (M): some transition in enabled(M) can induce more than
one persistent set and different choices lead to different variants of PS S (M). PS S (M)
is recommended mainly for two reasons:

1. There are some ready-made algorithms on how to induce a persistent set from an
enabled transition, such as those in [4];

2. It is often the case that PS S (M) is very close or even equal to PS (M) and achieves
great reductions in the exploring.

A Graph (i.e., the trails of the exploring for deadlocks) for the net in Fig. 1 within bound
k = 2 is constructed based on PS S (M), as shown in Fig. 4. At the initial marking M0,
PS S (M0) = {{t1}, {t1, t2}, {t3}}, in which the three persistent sets are induced by t1, t2, t3,
respectively. Note that {t1, t2} is redundant. Then only UC sets {t1, t2, t3} and {t1, t3} are
chosen to fire (i.e., NS (PS S (M0)) = {{t1, t3}, {t1, t2, t3}}). Finally, the graph becomes
very small and two deadlocks are detected within two steps.

Canonical Transition Set Semantics for Petri Nets 99

t1
t2 t3

t1

t3

t4

Fig. 4. The PS S (M) exploration for the net in Fig. 1

5 Related Work and Experimental Support for CTS

In this section, we introduce three related work: the first two from [1] and [8], where
some equivalent results are given for pure 1-safe nets; the second from [16], where
a covering step graph (CSG for short) is constructed for the state space reduction. We
prove for the former work that the equivalence classes of occurrence sequences coincide
with those classes in [1], and the canonical TSS’s coincide with the foata normal form
of step executions in [8], for pure 1-safe nets. Then an experimental support is got for
CTS from [8]. Finally, a comparison is drawn between CSG and CTS when both are
combined with the persistent set method for deadlock detection.

5.1 Step Executions in Foata Normal Form for 1-Safe Nets

In [1] the authors showed that there exists a bijective function between the equivalence
classes of occurrence sequences and the equivalence classes of processes for finite syn-
chronization systems. A process exposes a partial ordering on the set of its conditions
and events, which are labeled by places and transitions in the net, respectively. Two
processes are equivalent iff they can be transformed to each other by the operations of
‘swap’ of the concurrent conditions that are labeled by the same place [1] . In other
words, the differences of processes in the same equivalence class lie in that the indi-
vidualities of several tokens on the same place are distinguished. The CTS semantics
ignores the differences and makes an equivalence class of occurrence sequences com-
pressed into one canonical TSS. Here note that the two kinds of equivalence classes of
occurrence sequences (i.e., in the sense of [1] and the CTS semantics) may be quite
different. An example is given in Fig. 5.

p1t1 t2

... ...

Fig. 5. A net system with initial marking M0 = (1 · · ·)

Consider the occurrence sequence σ = t1 t2 (markings omitted). By CTS semantics,
it has an equivalent sequence σ′ = t2 t1 since both have the canonical TSS δ̄ = {t1, t2}.
However, they are not equivalent in the sense of [1] because t1, t2 cannot be concur-
rently enabled by M0. But when place p1 has two tokens (i.e., M0 = (2 · · ·)), the two

100 Y. Wang and L. Jiao

sequences are equivalent in both senses. Further, if the arrow from t1 to p1 is deleted
(and M0 = (2 · · ·)), then the result goes towards the opposite: the occurrence sequence
t1 t2 and t2 t1 are not equivalent in CTS semantics but equivalent in the sense of [1].

Therefore, the result depends on two aspects: the number of tokens in places and
self-loops in the net. Therefore, if the net under consideration is restricted to the class
of pure 1-safe nets, the result may become very positive. In [1], the equivalence classes
of occurrence sequences are based on a relation ≡0 and two occurrence sequences σ1 =

M0 t0 M1 t1 · · · Mi ti Mi+1 ti+1 · · · Mk tk, σ2 = M0 t0 M1 t1 · · · Mi ti+1 M′i+1 ti · · · Mk tk
are in ≡0 iff (•ti ∪ t•i) ∩ (•ti+1 ∪ t•i+1) = ∅ for 1-safe nets. Then we have the theorem
below:

Theorem 7. Letσ1 = M0 t0 M1 t1 · · · Mi ti Mi+1 ti+1 · · · Mk tk,σ2 = M0 t0 M1 t1 · · · Mi

ti+1 M′i+1 ti · · · Mk tk be two occurrence sequences of a pure 1-safe net, then σ1 ≡0 σ2

iff σ1 � σ2.

Proof. By Definition 3, it is equivalent to prove: (•ti∪ t•i)∩ (•ti+1∪ t•i+1) = ∅ iff (ti, ti+1) ∈
order− ir. For pure nets, the order-ir relation is just the strong order-ir, then by Property
1 it is sufficient to prove: •ti ∩ •ti+1 = ∅ implies (•ti ∪ t•i) ∩ (•ti+1 ∪ t•i+1) = ∅. Note
that both ti, ti+1 are enabled by Mi, then for ∀p ∈ •ti,∀p′ ∈ •ti+1 it holds that p �
p′ ∧Mi(p) = Mi(p′) = 1. If there exists a place p such that p ∈ •ti ∩ t•i+1 (i.e., F(p, ti) =
F(ti+1, p) = 1), then M′i+1(p) = Mi(p) − F(p, ti+1) + F(ti+1, p) = 2 (because the net is
pure, F(ti+1, p) = 1 implies F(p, ti+1) = 0), contradicting 1-safeness. Then •ti∩ t•i+1 = ∅.
Similarly, •ti+1 ∩ t•i = ∅. t•i+1 ∩ t•i = ∅ holds for the same reason: if there exists a place
p in t•i+1 ∩ t•i then it will have two more tokens after both ti and ti+1 fire (i.e., at Mi+2).
This completes the proof. ��
Then for pure 1-safe nets, all the equivalence classes of occurrence sequences of finite
length in [1] coincide with these based on the CTS semantics. In [1], each equivalence
class corresponds to a process and in the CTS semantics all the occurrence sequences in
the class are mapped to their common canonical TSS. Then there is a bijective function
between the processes and canonical TSS’s. Moreover, a construction for how to get the
corresponding canonical TSS from a process can be found in [8].

When the net system is 1-safe, there is a construction in [8] to get step executions in
Foata normal form from a process. A step for 1-safe nets at a marking M corresponds to
an execution of one transition set, in which all the transitions are concurrently enabled at
M. This coincides with the definition of EET if the net is a pure one. Correspondingly,
a step execution in Foata normal form coincides with a canonical TSS. Intuitively, step
semantics is an uncomplete combination of transitions. It avoids the computation of UC
sets and meanwhile includes more branches in the exploring of state space. We will give
some formal explanations in the following.

Lemma 3. Every step execution is a TSS for pure 1-safe nets, and vice versa.

Below is the version of definition of step executions in Foata normal form for 1-safe
nets from [8].

Definition 11. A step execution δ = M0 T0 M1 T1 · · · Mn Tn is in Foata normal form
iff:

Canonical Transition Set Semantics for Petri Nets 101

– δ = ε (i.e., δ is an empty one), or
– for each 1 ≤ i ≤ n and for each t ∈ Ti there exists a transition t′ in Ti−1 such that

t′• ∩ •t � ∅.
We show in the following that for pure 1-safe nets the notion of step execution in Foata
normal form coincides with that of canonical TSS, and then we can get an experimental
support for the CTS semantics.

Theorem 8. For pure 1-safe nets, a step execution δ = M0 T0 M1 T1 · · · Mn Tn is in
Foata normal form iff it is a canonical TSS.

Proof. ⇒: The case for δ = ε is trivial. Assume in Definition 11, p ∈ t′• ∩ •t, then
p � •t′. If t is enabled at Mi−1 then p has one token at Mi−1. If we choose t′ to fire at
Mi−1 then p gets another token because p � •t′ ∧ p ∈ t′•, which contradicts 1-safeness.
Therefore, t is not enabled at Mi−1 and condition (1) is not satisfied. Since this is for all
the i with 1 ≤ i ≤ n, then δ is a canonical TSS.
⇐: It is trivially true for δ = ε. If δ is a canonical TSS, then for each i (1 ≤ i ≤ n)

and for each t ∈ Ti, condition (1) is not satisfied. If t is enabled at Mi−1, then there
exists a transition t′ in Ti−1 such that (t, t′) � order − ir. Since the net is pure, then
there exists a place p such that p ∈ •t ∩ •t′; since t and t′ are enabled at Mi−1, then p
is marked at Mi−1. Because the transitions in Ti−1 are order irrelevant, we can make t′
fire at last. Then the occurrence of t′ consumes the token in p, and it can not generate
a new one to p because of the pureness of the net. This contradicts the enabledness of
t at Mi−1. Therefore, t is not enabled at Mi−1, then some place p ∈ •t is not marked at
Mi−1. However, p is marked again at Mi, which indicates that there exists a transition
t′ in Ti−1 whose occurrence generates a token in p, i.e., p ∈ t′• ∩ •t. ��
Thanks to Theorem 8, we do not distinguish the notions canonical TSS and step ex-
ecution in Foata normal form for pure 1-safe nets. In [8] Heljanko transformed the
bounded reachability problem for 1-safe nets (most experimental cases are for pure
nets) into constrained Boolean circuit satisfiability and made some experimental obser-
vations that CTS gives a better performance than step executions (not necessarily in
Foata normal form) and interleaving semantics (i.e., only one transition fires for each
step): CTS and step semantics find states in less steps than interleaving semantics; CTS
finds states in less time than step semantics.

5.2 Deadlock Detection Based on Covering Step Graph and Persistent Sets

The notion of Covering step graph was introduced in [16]. It can be combined with the
persistent set method (called PSG) to detect deadlocks [14]. A hybrid PSG shows more
efficient performance than others according to the experimental analysis in [14]. We do
not give details on how this method works, and more can be referred to in [14]. How-
ever, an example is given to illustrate the differences between it and the CTS method
for deadlock detection. The hybrid PSG for the net in Fig. 1 is shown in Fig. 6. A
comparison is drawn between Fig. 6 and Fig. 4, and we can find that:

1. The hybrid PSG always puts common conflict-free (conflict with no transition)
transitions forwards to fire, such as the step {t1, t3} in Fig. 6;

102 Y. Wang and L. Jiao

t2

t3

t1

t4

Fig. 6. Hybrid PSG for the net in Fig. 1

2. The PS S (M) exploration of CTS semantics manages to reach all the deadlocks by
using as few steps as possible, such as the deadlock by one step {t1, t2, t3} in Fig. 4.

The latter point is actually the most essential feature of the CTS semantics. The over-
head of CTS semantics for deadlock detection is apparent: it cost much to compute the
UC sets and the persistent sets. It seems a good suggestion that it can be applied in an
uncomplete way, such as the bounded model checking, to achieve an effective use of its
short steps to search for one deadlock.

6 Conclusions

We propose a semantics of canonical transition set sequence for Petri nets and give
proofs for its well-definedness, soundness and completeness, then a bijection between
the canonical transition set (CTS) sequences and occurrence sequences of finite length
is found, by which a complete state space exploring method is proposed if the reachabil-
ity set of the net system is finite. Furthermore, for the analysis of deadlocks, a method
combining the CTS semantics and the persistent set method is proposed to efficiently
detect deadlocks. For pure 1-safe nets, we find that CTS coincides with the step seman-
tics in Foata normal form [8], which gives an experimental support for our method. We
find the most notable feature of CTS semantics lies in that it makes state exploration to
reach a (dead) state within a very few steps.

In the future, we may resort to bounded model checking method for the analysis
of system behaviors based on CTS. Then deadlocks reached in very few steps can be
detected quickly. We will also consider more properties to be checked and try to deal
with infinite occurrence sequences.

Acknowledgment. The authors would like to thank the anonymous referees for their
valuable comments and suggestions, which led to a substantial improvement of this
paper.

References

1. Best, E., Devillers, R.: Sequential and Concurrent Behaviour in Petri Net Theory. Theoretical
Computer Science 55(1), 87–136 (1987)

2. Davillers, R., Janicki, R., Koutny, M., Lauer, P.E.: Concurrent and Maximally Concurrent
Evolution of Non-sequential Systems. Theoretical Computer Science 43, 213–238 (1986)

Canonical Transition Set Semantics for Petri Nets 103

3. Diekert, V., Metivier, Y.: Partial commutation and traces. In: Handbook of formal languages,
vol. 3, pp. 457–534. Springer, Berlin (1997)

4. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032. Springer, Heidelberg (1996)

5. Girault, C., Valk, R.: Petri nets for systems engineering: A guide to modeling, verification,
and applications. Springer, Heidelberg (2003)

6. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of deadlock free-
dom and safety properties. Formal Methods in System Design 2(2), 149–164 (1993)

7. Heljanko, K.: Using logic programs with stable model semantics to solve deadlock and reach-
ability problems for 1-safe Petri nets. Fundamental Informaticae 37(3), 247–268 (1999)

8. Heljanko, K.: Bounded reachability checking with process semantics. In: Larsen, K.G.,
Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 218–232. Springer, Heidelberg
(2001)

9. Heljanko, K., Niemela, I.: Bounded LTL model checking with stable models. Theory and
Practice of Logic Programming 3(4), 519–550 (2003)

10. Hoogeboom, H.J., Rozenberg, G.: Diamond properties of elementary net systems. Funda-
mental Informaticae 14(3), 287–300 (1991)

11. Mazurkiewicz, A.: Trace Theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986.
LNCS, vol. 255, pp. 279–324. Springer, Heidelberg (1987)

12. Murata, T.: Petri nets: Properties, analysis, and applications. Proceedings of the IEEE 77(4),
541–580 (1989)

13. Reisig, W.: Petri nets: An introduction. Springer, Heidelberg (1985)
14. Ribet, P.O., Vernadat, F., Berthomieu, B.: On combining the persistent sets method with

the covering steps graph method. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS,
vol. 2529, pp. 344–359. Springer, Heidelberg (2002)

15. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) APN
1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)

16. Vernadat, F., Azema, P., Michel, F.: Covering step graph. In: Billington, J., Reisig, W. (eds.)
ICATPN 1996. LNCS, vol. 1091, pp. 516–535. Springer, Heidelberg (1996)

17. Wolper, P., Godefroid, P.: Partial-order methods for temporal verification. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 233–246. Springer, Heidelberg (1993)

A Characterization of Combined Traces Using Labeled
Stratified Order Structures

Dai Tri Man Lê

Department of Computer Science, University of Toronto
10 King’s College Road, Toronto, ON, M5S 3G4 Canada

ledt@cs.toronto.edu

Abstract. This paper defines a class of labeled stratified order structures that
characterizes exactly the notion of combined traces (i.e., comtraces) proposed by
Janicki and Koutny in 1995. Our main technical contributions are the represen-
tation theorems showing that comtrace quotient monoid, combined dependency
graph (Kleijn and Koutny 2008) and our labeled stratified order structure charac-
terization are three different and yet equivalent ways to represent comtraces.

Keywords: Causality theory of concurrency, combined traces monoids, step se-
quences, stratified order structures, label-preserving isomorphism.

1 Introduction

Partial orders are a principle tool for modelling “true concurrency” semantics of con-
current systems (cf. [29]). They are utilized to develop powerful partial-order based
automatic verification techniques, e.g., partial order reduction for model checking con-
current software (see, e.g., [1, Chapter 10] and [8]). Partial orders are also equipped
with traces, their powerful formal language counterpart, proposed by Mazurkiewicz
[28]. In The Book of Traces [5], trace theory has been used to tackle problems from
diverse areas including formal language theory, combinatorics, graph theory, algebra,
logic, and concurrency theory.

However, while partial orders and traces can sufficiently model the “earlier than”
relationship, Janicki and Koutny argued that it is problematic to use a single partial
order to specify both the “earlier than” and the “not later than” relationships [17]. This
motivates them to develop the theory of relational structures, where a pair of relations
is used to capture concurrent behaviors. The most well-known among the classes of
relational structures proposed by Janicki and Koutny is the class of stratified order
structures (so-structures) [12,16,18,19,15]. A so-structure is a triple (X ,≺,�), where
≺ and � are binary relations on X . They were invented to model both the “earlier than”
(the relation ≺) and “not later than” (the relation �) relationships, under the assumption
that system runs are described by stratified partial orders, i.e., step sequences. They
have been successfully applied to model inhibitor and priority systems, asynchronous
races, synthesis problems, etc. (see for example [18,20,24,23,25,26] and others).

The combined trace (comtrace) notion, introduced by Janicki and Koutny [18], gen-
eralizes the trace notion by utilizing step sequences instead of words. First the set of

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 104–124, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Characterization of Combined Traces Using Labeled Stratified Order Structures 105

all possible steps that generates step sequences are identified by a relation sim, which is
called simultaneity. Second a congruence relation is determined by a relation ser, which
is called serializability and in general not symmetric. Then a comtrace is defined as a
finite set of congruent step sequences. Comtraces were introduced as a formal language
representation of so-structures to provide an operational semantics for Petri nets with
inhibitor arcs. Unfortunately, comtraces have been less often known and applied than
so-structures, even though in many cases they appear to be more natural. We believe
one reason is that the comtrace notion was too succinctly discussed in [18] without a
full treatment dedicated to comtrace theory. Motivated by this, Janicki and the author
have devoted our recent effort on the study of comtraces [21,27,22], yet there are too
many different aspects to explore and the truth is we can barely scratch the surface. In
particular, the huge amount of results from trace theory (e.g., from [5,6]) desperately
needs to be generalized to comtraces. These tasks are often non-trivial since we are re-
quired to develop intuition and novel techniques to deal with the complex interactions
of the “earlier than” and “not later than” relations.

This paper gives a novel characterization of comtraces using labeled so-structures.
Such definition is interesting for the following reasons.

First, it defines exactly the class of labeled so-structures that can be represented by
comtraces. It is worth noting that this point is particularly important. Even though it
was shown in [18] that every comtrace can be represented by a labeled so-structure,
the converse could not be shown because a class of labeled so-structures that defines
precisely the class of comtraces was not known. The closest to our characterization is
the combined dependency graph (cd-graph) notion (analogous to dependence graph
representation of traces) introduced recently by Kleijn and Koutny [26], but again a
theorem showing that combined dependency graphs can be represented by comtraces
was not given. Our approach is quite different and based on some new ideas discussed
in Section 4 of this paper.

Second, even though the step sequence definition of comtraces is more suitable when
dealing with formal language aspects of comtraces, the labeled so-structure represen-
tation is more suitable for a variety of powerful order-theoretic results and techniques
available to us (cf. [11,3,15]).

Finally, the labeled so-structure definition of comtrace can be easily extended to infi-
nite comtraces, which describe nonterminating concurrent processes. The labeled poset
representation of infinite traces is already successfully applied in both theory and prac-
tice, e.g., [31,9,10,14]. Although such definition is equivalent to the one using quotient
monoid over infinite words [13,4], we believe that infinite labeled posets are sometimes
simpler. Indeed the celebrated work by Thiagarajan and Walukiewicz (cf. [31]) on lin-
ear temporal logic for traces utilizes the labeled poset characterization of infinite traces,
where configurations of a trace are conveniently defined as finite downward closed sub-
sets of the labeled poset representation. We will not analyze infinite comtraces or logics
for comtraces in this paper, but these are fruitful directions to explore using the results
from this paper.

The paper is organized as follows. In Section 2, we recall some preliminary defi-
nitions and notations. In Section 3, we give a concise exposition of the theory of so-
structures and comtraces by Janicki and Koutny [18,19]. In Section 4, we give our

106 D.T.M. Lê

definition of comtraces using labeled so-structure and some remarks on how we arrived
at such definition. In Section 5, we prove a representation theorem showing that our
comtrace definition and the one by Janicki and Koutny are indeed equivalent; then us-
ing this theorem, we prove another representation theorem showing that our definition
is also equivalent to the cd-graph definition from [26]. In Section 6, we define composi-
tion operators for our comtrace representation and for cd-graphs. Finally, in Section 7,
some final remarks and future works are presented.

2 Notations

2.1 Relations, Orders and Equivalences

The powerset of a set X will be denoted by ℘(X), i.e. ℘(X) � {Y | Y ⊆ X}. The set of
all non-empty subsets of X will be denoted by ℘\{ /0}(X). In other words, ℘\{ /0}(X) �
℘(X)\ { /0}.

We let idX denote the identity relation on a set X . If R and S are binary relations on
a set X (i.e., R,S ⊆ X ×X), then their composition R◦ S is defined as R◦ S � {(x,y) ∈
X ×X | ∃z ∈ X . (x,z) ∈ R∧ (z,y) ∈ S}. We also define

R0 � idX Ri � Ri−1 ◦R (for i ≥ 1) R+ �
⋃
i≥1

Ri R∗ �
⋃
i≥0

Ri

The relations R+ and R∗ are called the (irreflexive) transitive closure and reflexive tran-
sitive closure of R respectively.

A binary relation R ⊆ X ×X is an equivalence relation relation on X if and only if
(iff) R is reflexive, symmetric and transitive. If R is an equivalence relation, then for
every x ∈ X , the set [x]R � {y | y R x∧ y ∈ X} is the equivalence class of x with respect
to R. We also define X/R � {[x]R | x ∈ X}, i.e., the set of all equivalence classes of X
under R. We drop the subscript and write [x] when R is clear from the context.

A binary relation ≺⊆ X ×X is a partial order iff R is irreflexive and transitive. The
pair (X ,≺) in this case is called a partially ordered set (poset). The pair (X ,≺) is called
a finite poset if X is finite. For convenience, we define:

!≺ �
{
(a,b) ∈ X ×X | a
≺ b ∧ b
≺ a

}
(incomparable)

�≺ �
{
(a,b) ∈ X ×X | a !≺ b ∧ a
= b

}
(distinctly incomparable)

≺� �
{
(a,b) ∈ X ×X | a ≺ b ∨ a �≺ b

}
(not greater)

A poset (X ,≺) is total iff �≺ is empty; and stratified iff !≺ is an equivalence relation.
Evidently every total order is stratified.

2.2 Step Sequences

For every finite set X , a set S ⊆℘\{ /0}(X) can be seen as an alphabet. The elements of
S are called steps and the elements of S∗ are called step sequences. For example, if the
set of possible steps is S =

{
{a,b,c},{a,b},{a},{c}

}
, then {a,b}{c}{a,b,c}∈ S∗ is a

A Characterization of Combined Traces Using Labeled Stratified Order Structures 107

step sequence. The triple (S∗,∗,ε), where ∗ denotes the step sequence concatenation
operator (usually omitted) and ε denotes the empty step sequence, is a monoid.

Let t = A1 . . .Ak be a step sequence. We define |t|a, the number of occurrences of an
event a in w, as |t|a �

∣∣{Ai | 1 ≤ i ≤ k∧a ∈ Ai
}∣∣, where |X | denotes the cardinality of

the set X . Then we can construct its unique enumerated step sequence t as

t � A1 . . .Ak, where Ai �
{

e(|A1...Ai−1|e+1)∣∣e ∈ Ai

}
.

We will call such α = e(j) ∈ Ai an event occurrence of e. For instance, if we let t =
{a,b}{b,c}{c,a}{a}, then t =

{
a(1),b(1)}{b(2),c(1)}{a(2),c(2)}{a(3)}.

We let Σt =
⋃k

i=1 Ai denote the set of all event occurrences in all steps of t. For
example, when t = {a,b}{b,c}{c,a}{a}, Σt =

{
a(1),a(2),a(3),b(1),b(2),c(1),c(2)}. We

also define � : Σt → E to be the function that returns the label of α for each α ∈ Σt . For
example, if α = e(j), then �(α) = �(e(j)) = e. Hence, from an enumerated step sequence
t = A1 . . .Ak, we can uniquely reconstruct its step sequence t = �(A1) . . .�(Ak).

For each α ∈ Σu, we let post(α) denote the consecutive number of a step where α
belongs, i.e., if α ∈ Ai then post(α) = i. For our example, post(a(2)) = 3, post(b(2)) =
post(c(1)) = 2, etc.

It is important to observe that step sequences and stratified orders are interchangeable
concepts. Given a step sequence u, define the binary relation �u on Σu as

α �u β df⇐⇒ posu(α) < posu(β).

Intuitively, α �u β simply means α occurs before β on the step sequence u. Thus, α ��
u

β iff (α
= β ∧ posu(α)≤ posu(β)); and α !u β iff posu(α) = posu(β). Obviously, the
relation �u is a stratified order and we will call it the stratified order generated by the
step sequence u.

Conversely, let � be a stratified order on a set Σ . The set Σ can be represented as a
sequence of equivalence classes Ω� = B1 . . .Bk (k ≥ 0) such that

� =
⋃
i< j

Bi ×B j and !� =
⋃

i

Bi ×Bi.

The sequence Ω� is called the step sequence representing �. A detailed discussion on
this connection between stratified orders and step sequences can be found in [22].

3 Stratified Order Structures and Combined Traces

In this section, we review the Janicki – Koutny theory of stratified order structures and
comtraces from [18,19]. The reader is also referred to [26] for an excellent introductory
survey on the subject with many motivating examples.

3.1 Stratified Order Structures

A relational structure is a triple T = (X ,R1,R2), where X is a set and R1, R2 are binary
relations on X . A relational structure T ′ = (X ′,R′

1,R
′
2) is an extension of T , denoted as

T ⊆ T ′, iff X = X ′, R1 ⊆ R′
1 and R2 ⊆ R′

2.

108 D.T.M. Lê

Definition 1 (stratified order structure [19]). A stratified order structure (so-structure)
is a relational structure S = (X ,≺,�), such that for all α,β ,γ ∈ X, the following hold:

S1: α
� α S3: α � β � γ ∧ α
= γ =⇒ α � γ
S2: α ≺ β =⇒ α � β S4: α � β ≺ γ ∨ α ≺ β � γ =⇒ α ≺ γ

When X is finite, S is called a finite so-structure. �

The axioms S1–S4 imply that ≺ is a partial order and α ≺ β ⇒ β
� α. The axioms S1
and S3 imply � is a strict preorder. The relation≺ is called causality and represents the
“earlier than” relationship while the relation � is called weak causality and represents
the “not later than” relationship. The axioms S1–S4 model the mutual relationship
between “earlier than” and “not later than” relations, provided that the system runs are
stratified orders. Historically, the name “stratified order structure” came from the fact
that stratified orders can be seen as a special kind of so-structures.

Proposition 1 ([17]). For every stratified poset (X ,�), the triple S� = (X ,�,��) is a
so-structure. ��

We next recall the notion of stratified order extension. This concept is extremely impor-
tant since the relationship between stratified orders and so-structures is exactly analo-
gous to the one between total orders and partial orders.

Definition 2 (stratified extension [19]). Let S = (X ,≺,�) be a so-structure. A strati-
fied order � on X is a stratified extension of S if and only if (X ,≺,�) ⊆ (X ,�,��).

The set of all stratified extensions of S is denoted as ext(S). �

Szpilrajn’s Theorem [30] states that every poset can be reconstructed by taking the
intersection of all of its total order extensions. Janicki and Koutny showed that a similar
result holds for so-structures and stratified extensions:

Theorem 1 ([19]). Let S = (X ,≺,�) be a so-structure. Then

S =
(

X ,
⋂

� ∈ ext(S) �,
⋂

� ∈ ext(S) �
�
)

. ��

Using this theorem, we can show the following properties relating so-structures and
their stratified extensions.

Corollary 1. For every so-structure S = (X ,≺,�),

1.
(
∃� ∈ ext(S), α � β

)
∧
(
∃� ∈ ext(S), β � α

)
=⇒

(
∃� ∈ ext(S), β �� α

)
.

2.
(
∀� ∈ ext(S), α � β ∨β � α

)
⇐⇒ α ≺ β ∨β ≺ α.

Proof. 1. See [19, Theorem 3.6]. 2. Follows from 1. and Theorem 1. ��

3.2 Combined Traces

Comtraces were introduced in [18] as a generalization of traces to represent so-structures.
The comtrace congruence is defined via two relations simultaneity and serializability.

A Characterization of Combined Traces Using Labeled Stratified Order Structures 109

Definition 3 (comtrace alphabet [18]). Let E be a finite set (of events) and let ser ⊆
sim ⊂ E ×E be two relations called serializability and simultaneity respectively and
the relation sim is irreflexive and symmetric. The triple θ = (E,sim,ser) is called a
comtrace alphabet. �

Intuitively, if (a,b) ∈ sim then a and b can occur simultaneously (or be a part of a
synchronous occurrence in the sense of [24]), while (a,b)∈ ser means that a and b may
occur simultaneously or a may occur before b. We define Sθ , the set of all possible
steps, to be the set of all cliques of the graph (E,sim), i.e.,

Sθ �
{

A | A
= /0 ∧ ∀a,b ∈ A,
(
a = b∨ (a,b) ∈ sim

)}
.

Definition 4 (comtrace congruence [18]). For a comtrace alphabet θ = (E,sim,ser),
we define ≈θ ⊆ S∗

θ ×S∗
θ to be the relation comprising all pairs (t,u) of step sequences

such that

t = wAz and u = wBCz,

where w,z ∈ S∗
θ and A, B, C are steps satisfying B∪C = A and B×C ⊆ ser.

We define comtrace congruence ≡θ �
(
≈θ ∪ ≈−1

θ
)∗

. We define the comtrace con-
catenation operator 	 as [r] 	 [t] � [r ∗ t]. The quotient monoid (S∗/≡θ ,	, [ε]) is
called the monoid of comtraces over θ . �

Note that since ser is irreflexive, B×C ⊆ ser implies that B∩C = /0. We will omit the
subscript θ from the comtrace congruence ≈θ , and write ≡ and ≈ when it causes no
ambiguity. To shorten our notations, we often write [s]θ or [s] instead of [s]≡θ to denote
the comtrace generated by the step sequence s over θ .

Example 1. Let E = {a,b,c} where a, b and c are three atomic operations, where

a : y ← x + y b : x ← y + 2 c : y ← y + 1

Assume simultaneous reading is allowed. Then only b and c can be performed simul-
taneously, and the simultaneous execution of b and c gives the same outcome as exe-
cuting b followed by c. We can then define the comtrace alphabet θ = (E,sim,ser),
where sim =

{
{b,c}

}
and ser = {(b,c)}. This yields Sθ =

{
{a},{b},{c},{b,c}

}
.

Thus, t = [{a}{b,c}] =
{
{a}{b,c},{a}{b}{c}

}
is a comtrace. But {a}{c}{b} /∈ t. �

Even though traces are quotient monoids over sequences and comtraces are quotient
monoids over step sequences, traces can be regarded as special kinds of comtraces
when the relation ser = sim. For a more detailed discussion on this connection between
traces and comtraces, the reader is referred to [22].

Definition 5 ([18]). Let u ∈ S∗
θ . We define the relations ≺u,�u⊆ Σu ×Σu as:

1. α ≺u β df⇐⇒ α �u β ∧ (�(α), �(β)) /∈ ser,

2. α �u β df⇐⇒ α ��
u β ∧ (�(β), �(α)) /∈ ser. �

110 D.T.M. Lê

It is worth noting that the structure (Σu,≺u,�u, �) is exactly the cd-graph (cf. Defini-
tion 11) that represents the comtrace [u]. This gives us some intuition on how Koutny
and Kleijn constructed the cd-graph definition in [26]. We also observe that (Σu,≺u,�u)
is usually not a so-structure since ≺u and �u describe only basic “local” causality and
weak causality invariants of the event occurrences of u by considering pairwise serial-
izable relationships of event occurrences. Hence, ≺u and �u might not capture “global”
invariants that can be inferred from S2–S4 of Definition 1. To ensure all invariants are
included, we need the following ♦-closure operator.

Definition 6 ([18]). For every relational structure S = (X ,R1,R2) we define S♦ as

S♦ �
(
X ,(R1 ∪R2)∗ ◦R1 ◦ (R1 ∪R2)∗,(R1 ∪R2)∗ \ idX

)
. �

Intuitively ♦-closure is a generalization of transitive closure for relations to relational
structures. The motivation is that for appropriate relations R1 and R2 (see assertion (3)
of Proposition 2), the relational structure (X ,R1,R2)♦ is a so-structure. The ♦-closure
operator satisfies the following properties:

Proposition 2 ([18]). Let S = (X ,R1,R2) be a relational structure.

1. If R2 is irreflexive then S ⊆ S♦.
2. (S♦)♦ = S♦.
3. S♦ is a so-structure if and only if (R1 ∪R2)∗ ◦R1 ◦ (R1 ∪R2)∗ is irreflexive.
4. If S is a so-structure then S = S♦.
5. If S be a so-structure and S0 ⊆ S, then S♦

0 ⊆ S and S♦
0 is a so-structure. ��

Definition 7. Given a step sequence u∈ S∗
θ and its respective comtrace t = [u]∈ S∗

θ/≡,
we define the relational structures St as:

St =
(
Σt,≺t,�t

)
�
(
Σu,≺u,�u

)♦
. �

The relational structure St is called the so-structure defined by the comtrace t = [u],
where Σt, ≺t and �t are used to denote the event occurrence set, causality relation and
weak causality relation induced by the comtrace t respectively. The following nontriv-
ial theorem and its corollary justifies the name by showing that step sequences in a
comtrace t are exactly stratified extension of the so-structure St, and that St is uniquely
defined for the comtrace t regardless of the choice of u ∈ t.

Theorem 2 ([18]). For each t∈ E∗/≡θ , the relational structure St is a so-structure and
ext
(
St
)

=
{
�u | u ∈ t

}
. ��

Corollary 2. For all t,q ∈ E∗/≡θ ,

1. t = q =⇒ St = Sq

2. St =
(
Σt,≺t,�t

)
= (Σt,

⋂
w∈t �w,

⋂
w∈t �

�
w) ��

A Characterization of Combined Traces Using Labeled Stratified Order Structures 111

4 Comtraces as Labeled Stratified Order Structures

Even though Theorem 2 shows that each comtrace can be represented uniquely by
a labeled so-structure, it does not give us an explicit definition of how these labeled
so-structures look like. In this section, we will give an exact definition of labeled so-
structures that represent comtraces. To provide us with more intuition, we first recall
how Mazurkiewicz traces can be characterized as labeled posets.

A trace concurrent alphabet is a pair (E, ind), where ind is a symmetric irreflexive
binary relation on the finite set E . A trace congruence ≡ind can then be defined as the
smallest equivalence relation such that for all sequences uabv,ubav∈ E∗, if (a,b)∈ ind,
then uabv ≡ind ubav. The elements of E∗/≡ind are called traces.

Traces can also be defined alternatively as posets whose elements are labeled with
symbols of a concurrent alphabet (E, ind) satisfying certain conditions.

Given a binary relation R⊆X , the covering relation of R is defined as Rcov � {(x,y) |
x R y∧¬∃z, x R z R y}. An alternative definition of Mazurkiewicz trace is:

Definition 8 (cf. [31]). A trace over a concurrent alphabet (E, ind) is a finite labeled
poset (X ,≺,λ), where λ : X → E is a labeling function, such that for all α,β ∈ X,

1. α≺cov β =⇒ (λ (α),λ (β))
∈ ind, and
2. (λ (α),λ (β))
∈ ind =⇒ α ≺ β ∨β ≺ α . �

A trace in this definition is only identified unique up to label-preserving isomorphism.
The first condition says that immediately causally related event occurrences must be
labeled with dependent events. The second condition ensures that any two event occur-
rences with dependent labels must be causally related. The first condition is particularly
important since two immediately causally related event occurrences will occur next to
each other in at least one of its linear extensions. This is the key to relate Definition 8
with quotient monoid definition of traces. Thus, we would like to establish a similar re-
lationship for comtraces. An immediate technical difficulty is that weak causality might
be cyclic, so the notion of “immediate weak causality” does not make sense. However,
we can still deal with cycles of a so-structure by taking advantage of the following
simple fact: the weak causality relation is a strict preorder.

Let S = (X ,≺,�) be a so-structure. We define the relation ≡�⊆ X ×X as

α ≡� β df⇐⇒ α = β ∨
(
α � β ∧β � α

)
Since � is a strict preorder, it follows that ≡� is an equivalence relation. The relation
≡� will be called the �-cycle equivalence relation and an element of the quotient set
X/≡� will be called a �-cycle equivalence class. We then define the following binary
relations ≺̂ and �̂ on the quotient set X/≡� as

[α]≺̂[β]
df⇐⇒ ([α]× [β]) ∩ ≺
= /0 and [α]�̂[β]

df⇐⇒ ([α]× [β]) ∩ �
= /0 (4.1)

Using this quotient construction, every so-structure, whose weak causality relation might
be cyclic, can be uniquely represented by an acyclic quotient so-structure.

112 D.T.M. Lê

Proposition 3. The relational structure S/≡� � (X/≡�,≺̂,�̂) is a so-structure, the
relation �̂ is a partial order, and for all x,y ∈ X,

1. α ≺ β ⇐⇒ [α]≺̂[β]
2. α � β ⇐⇒ [α]�̂[β]∨ (α
= β ∧ [α] = [β])

Proof. Follows from Definition 1. ��
Using (4.1) and Theorem 1, it is not hard to prove the following simple yet useful
properties of �-cycle equivalence classes.

Proposition 4. Let S = (X ,≺,�) be a so-structure. We use u and v to denote some step
sequences over ℘\{ /0}(X). Then for all α,β ∈ X,

1. [α] = [β] ⇐⇒ ∀� ∈ ext(S), α !� β
2. ∃� ∈ ext(S), Ω� = u[α]v
3. [α]�̂cov [β] =⇒ ∃� ∈ ext(S), Ω� = u[α][β]v ��

Each �-cycle equivalence class is what Juhás, Lorenz and Mauser called a synchronous
step [24,23]. They also used equivalence classes to capture synchronous steps but only
for the special class of synchronous closed so-structures, where (� \ ≺)∪ idX is an
equivalence relation. We extend their ideas by using �-cycle equivalence classes to
capture what we will call non-serializable sets in arbitrary so-structures. The name
is justified in assertion (1) of Proposition 4 stating that two elements belong to the
same non-serializable set of a so-structure S iff they must be executed simultaneously in
every stratified extension of S. Furthermore, we show in assertion (2) that all elements
of a non-serializable set must occur together as a single step in at least one stratified
extension of S. Assertion (3) gives a sufficient condition for two non-serializable sets to
occur as consecutive steps in at least one stratified extension of S.

Before we proceed to define comtrace using labeled so-structure, we need to define
label-preserving isomorphisms for labeled so-structures more formally. A tuple T =
(X ,P,Q,λ) is a labeled relational structure iff (X ,P,Q) is a relational structure and λ is
a function with domain X . If (X ,P,Q) is a so-structure, then T is a labeled so-structure.

Definition 9 (label-preserving isomorphism). Given two labeled relational structures
T1 = (X1,P1,Q1,λ1) and T2 = (X2,P2,Q2,λ2), we write T1

∼= T2 to denote that T1 and
T2 are label-preserving isomorphic (lp-isomorphic). In other words, there is a bijection
f : X1 → X2 such that for all α,β ∈ X1,

1. (α,β) ∈ P1 ⇐⇒ (f (α), f (β)) ∈ P2
2. (α,β) ∈ Q1 ⇐⇒ (f (α), f (β)) ∈ Q2
3. λ1(α) = λ2(f (α))

Such function f is called a label-preserving isomorphism (lp-isomorphism). �

Note that all notations, definitions and results for so-structures are applicable to labeled
so-structures. We also write [T] or [X ,P,Q,λ] to denote the lp-isomorphic class of a
labeled relational structure T = (X ,P,Q,λ). We will not distinguish an lp-isomorphic
class [T] with a single labeled relational structure T when it does not cause ambiguity.

We are now ready to give an alternative definition for comtraces. To avoid confusion
with the comtrace notion by Janicki and Koutny in [18], we will use the term lsos-
comtrace to denote a comtrace defined using our definition.

A Characterization of Combined Traces Using Labeled Stratified Order Structures 113

Definition 10 (lsos-comtrace). Given a comtrace alphabet θ = (E,sim,ser), a lsos-
comtrace over θ is (an lp-isomorphic class of) a finite labeled so-structure [X ,≺,�,λ]
such that λ : X → E and for all α,β ∈ X,

LC1: [α](�̂cov ∩≺̂)[β] =⇒ λ ([α])×λ ([β]) � ser
LC2: [α](�̂cov \ ≺̂)[β] =⇒ λ ([β])×λ ([α]) � ser
LC3: ∀A,B ∈℘\{ /0}([α]), A∪B = [α] =⇒ λ (A)×λ (B)
⊆ ser
LC4: (λ (α),λ (β))
∈ ser =⇒ α ≺ β ∨β � α
LC5: (λ (α),λ (β))
∈ sim =⇒ α ≺ β ∨β ≺ α

We write LCT(θ) to denote the class of all lsos-comtraces over θ . �

Example 2. Let E = {a,b,c}, sim =
{
{a,b},{a,c},{b,c}

}
and ser = {(a,b),(b,a),

(a,c)}. Then we have S = {{a},{b},{c},{b,c}}. The lp-isomorphic class of the la-
beled so-structure T = (X ,≺,�,λ) depicted in Figure 1 (the dotted edges denote � re-
lation and the solid edges denote both ≺ and � relations) is a lsos-comtrace. The graph
in Figure 2 represents the labeled quotient so-structure T/≡� = (X/≡�,≺̂,�̂,λ ′) of T ,
where we define λ ′(A) =

{
λ (x) | x ∈ A

}
.

�������	a

���
�

�
�

� ��

��

�������	c

��

�
�
��
�
�
	

�������	c

��

���
��

��
��

��

�������	b

�����������
��

��

�������	b

��

�
�
�

�
�
�
	

Fig. 1. lsos-comtrace [T]

a

��

		
c

 b,c

b

����������

��

Fig. 2. the quotient structure T/≡� of T

The lsos-comtrace [T] actually corresponds to the comtrace [{a,b}{c}{b,c}], and
we will show this relationship formally in Section 5. �

Remark 1. Definition 10 can be extended to define infinite comtrace as follows. Instead
of asking X to be finite, we require a labeled so-structure to be initially finite (cf. [19]),
i.e.,

{
α ∈ X | α � β

}
is finite for all β ∈ X . The initially-finiteness not only gives us a

sensible interpretation that every event only causually depends on finitely many events,
but also guarantees that the covering relations of ≺̂ and �̂ are well-defined. �

Since each lsos-comtrace is defined as a class of lp-isomorphic labeled so-structures,
dealing with lsos-comtrace might seem tricky. Fortunately, the auto-concurrency prop-
erty, i.e., the relation ser is irreflexive, gives us a canonical way to enumerate the events
of a lsos-comtrace very similar to how the events of a comtrace are enumerated.

Given a step sequence s = A1 . . .Ak and any function f defined on
⋃k

i=1 Ai, we de-
fine map(f ,s) � f (A1) . . . f (Ak), i.e., the step sequence derived from s by applying the
function f successively on each Ai. Note that f (Ai) denotes the image of Ai under f .

Given a lsos-comtrace T = [X ,≺,�,λ] over a comtrace alphabet θ = (E,sim,ser),
a stratified order � ∈ ext(T) can be seen as a step sequence Ω� = A1 . . .Ak.

114 D.T.M. Lê

Proposition 5. 1. For every i (1 ≤ i ≤ k), |Ai| = |λ (Ai)|
2. map(λ ,Ω�) = λ (A1) . . .λ (Ak) ∈ S∗

θ . ��

Proposition 5 ensures that u = map(λ ,Ω�) is a valid step sequence over θ . Recall that
u = A1 . . .Ak denotes the enumerated step sequence of u and Σu denotes the set of event
occurrences. Define a bijection ξu : Σu → X as

ξu(α) = x
df⇐⇒ α ∈ Ai ∧ x ∈ Ai ∧ λ (x) = �(α)

By Proposition 5, the function ξu is well-defined. Moreover, we can show that ξu is
uniquely determined by T regardless of the choice of � ∈ ext(T).

Proposition 6. Given �1,�2 ∈ ext(T), let v = map(λ ,Ω�1) and w = map(λ ,Ω�2).
Then ξv = ξw. ��

Henceforth, we will ignore subscripts and reserve the notation ξ to denote the kind
of mappings as defined above. We then define the enumerated so-structure of T to be
the labeled so-structure T0 = (Σ ,≺0,�0, �), where Σ = Σu for u = map(λ ,Ω�) and
� ∈ ext(T); and the relations ≺0,�0⊆ Σ ×Σ are defined as

α ≺0 β df⇐⇒ ξ (α) ≺ ξ (β) and α �0 β df⇐⇒ ξ (α) � ξ (β)

Clearly, the enumerated so-structure T0 can be uniquely determined from T using the
preceding definition. From our construction, we can easily show the following impor-
tant relationships:

Proposition 7. 1. T0 and T are lp-isomorphic under the mapping ξ .
2. The labeled so-structures (Σ ,�u,�

�
u , �) and (X ,�,��,λ) are lp-isomorphic un-

der the mapping ξ and �u ∈ ext(T0). ��

In other words, the mapping ξ : Σ → X plays the
role of both the lp-isomorphism from T0 to T and
the lp-isomorphism from the stratified extension
(Σ ,�u) of T0 to the stratified extension (X ,�) of
T . These relationships can be best captured using
the commutative diagram on the right.

(Σ ,≺0,�0, �)
ξ

� �

idΣ

(X ,≺,�,λ)� �

idX

(Σ ,�u,�
�
u , �)

ξ

 (X ,�,��,λ)

We can even observe further that two lsos-comtraces are identical if and only if they
define the same enumerated so-structure. Henceforth, we will call an enumerated so-
structure defined by a lsos-comtrace T the canonical representation of T .

Recently, inspired by the dependency graph notion for Mazurkiewicz traces (cf. [5,
Chapter 2]), Kleijn and Koutny claimed without proof that their combined dependency
graph notion is another alternative way to define comtraces [26]. In Section 5, we will
give a detailed proof of their claim.

Definition 11 (combined dependency graph [26]). Given an comtrace alphabet θ =
(E,ser,sim), a combined dependency graph (cd-graph) over θ is (a lp-isomorphic class
of) a finite labeled relational structure D = [X ,−→,���,λ] such that λ : X → E, the
relations −→,��� are irreflexive, D♦ is a so-structure, and for all α,β ∈ X,

A Characterization of Combined Traces Using Labeled Stratified Order Structures 115

CD1: (λ (α),λ (β))
∈ sim =⇒ α −→ β ∨β −→ α
CD2: (λ (α),λ (β))
∈ ser =⇒ α −→ β ∨β ��� α
CD3: α −→ β =⇒ (λ (α),λ (β))
∈ ser
CD4: α ��� β =⇒ (λ (β),λ (α))
∈ ser

We will write CDG(θ) to denote the class of all cd-graphs over θ . �

Cd-graphs can be seen as reduced graph-theoretic representations for lsos-comtraces,
where some arcs that can be recovered using ♦-closure are omitted. It is interesting
to observe that the non-serializable sets of a cd-graph are exactly the strongly con-
nected components of the directed graph (X ,���) and can easily be found in time
O(|X |+ | ��� |) using any standard algorithm (cf. [2, Section 22.5]).

Remark 2. Cd-graphs were called dependence comdags in
[26]. But this name could be misleading since the directed
graph (X ,���) is not necessarily acyclic. For example, the
graph on the right is the cd-graph that corresponds to the
lsos-comtrace from Figure 1, but it is not acyclic. (Here,
we use the dotted edges to denote ��� and the solid edges
to denote only −→.) Thus, we use the name “combined
dependency graph” instead. �

�������	a

���
�

�
�

�

��

�������	c

��

�
�
��
�
�
	

�������	c

�����������

���
��

��
��

��

�������	b

����������� ��

��

�������	b

��

�
�
�

�
�
�
	

5 Representation Theorems

This section contains the main technical contribution of this paper by showing that for
a given comtrace alphabet θ , S∗/≡θ , LCT(θ) and CDG(θ) are three equivalent ways
of talking about the same class of objects. We will next prove the first representation
theorem which establishes the representation mappings between S∗/≡θ and LCT(θ).

5.1 Representation Theorem for Comtraces and lsos-Comtraces

Proposition 8. Let S0 = (X ,≺0,�0) and S1 = (X ,≺1,�1) be stratified order structures
such that ext(S0) ⊆ ext(S1). Then S1 ⊆ S0.

Proof. Follows from Theorem 1. ��

For the next two lemmata, we let T be a lsos-comtrace over a comtrace alphabet θ =
(E,sim,ser). Let T0 = (Σu,≺0,�0, �) be the canonical representation of T . Let �0 ∈
ext(T0) and u = map(�,Ω�0). Since u is a valid step sequence in S∗ (by Proposition 5),
we can construct S[u] = (Σu,≺[u],�[u]) from Definition 7. Our goal is to show that the
stratified order S[u] defined by the comtrace [u] is exactly (Σu,≺0,�0).

Lemma 1. S[u] ⊆ (Σu,≺0,�0).

Proof. By Proposition 2, to show S[u] = (Σu,≺u,�u)♦ ⊆ (Σu,≺0,�0), it suffices to
show that (Σu,≺u,�u) ⊆ (Σu,≺0,�0). Since T0 is the canonical representation of T , it
is important to observe that �0 = �u.

116 D.T.M. Lê

(≺u⊆≺0): Assume α ≺u β . Then from Definition 5, α �u β ∧ (�(α), �(β)) /∈ ser.
Since (�(α), �(β)) /∈ ser, it follows from Definition 10 that α ≺0 β or β �0 α . Suppose
for a contradiction that β �0 α , then by Theorem 1, ∀� ∈ ext(T0), β �� α . But since
we assume that �0 ∈ ext(T0), it follows that �u ∈ ext(T0) and α �u β , a contradiction.
Hence, we have shown α ≺0 β .

(�u⊆�0): Can be shown in a similar way. ��

Lemma 2. S[u] ⊇ (Σu,≺0,�0).

In this proof, we will include subscripts for equivalence classes to avoid confusing
the elements from quotient set Σu/≡�0 with the elements from the quotient comtrace
monoid S∗/≡θ . In other words, we write [α]≡�0

to denote an element of the quotient
set Σu/≡�0 , and write [u]θ to denote the comtrace generated by u.

Proof (of Lemma 2). Let S′ = (Σu,≺0,�0). To show S[u] ⊇ S′, by Proposition 8, it
suffices to show ext(S[u]) ⊆ ext(S′). From Theorem 2, we know that ext(S[u]θ) = {�w |
w ∈ [u]θ}. Thus we only need to show that for all w ∈ [u]θ , �w ∈ ext(S′).

We observe that from u, by Definition 4, we can generate all the step sequences in
the comtrace [u]θ in stages using the following recursive definition:

D0(u) � {u}
Dn(u) � {w | w ∈ Dn−1(u) ∨ ∃v ∈ Dn−1(u), (v ≈θ w ∨ v ≈−1

θ w)}

Since the set [u]θ is finite, [u]θ = Dn(u) for some stage n ≥ 0. For the rest of the proof,
we will prove by induction on n that for all n ∈ N, if w ∈ Dn(u) then �w ∈ ext(S).

Base case: When n = 0, D0(u) = {u}. Since �0 ∈ ext(T), it follows from Proposition 7
that �u ∈ ext(S′).

Inductive case: When n > 0, let w be an element of Dn(u). Then either w ∈ Dn−1(u) or
w ∈ (Dn(u)\Dn−1(u)). For the former case, by inductive hypothesis, �w ∈ ext(S′). For
the latter case, there must be some element v ∈ Dn−1(u) such that v ≈θ w or v ≈−1

θ w.
By induction hypothesis, we already known �v ∈ ext(S′). We want to show that �w ∈
ext(S′). There are two cases to consider:

Case (i)
When v ≈θ w, by Definition 4, there are some y,z ∈ E∗

θ and steps A,B,C ∈ S such that
v = yAz and w = yBCz where A, B, C satisfy B∩C = /0 and B∪C = A and B×C ⊆ ser.
Let v = yAz and w = yBCz be enumerated step sequences of v and w respectively.

Suppose for a contradiction that �w
∈ ext(S′). By Definition 2, there are α ∈C and
β ∈ B such that α �0 β . We now consider the quotient set A/≡�0. By Proposition 4 (1),
A/≡�0 ⊆ Σu/≡�0 . Since α �0 β , it follows that [α]≡�0

�̂0[β]≡�0
. Thus, from the fact

that �̂0 is partial order, there must exists a chain

[α]≡�0
= [γ1]≡�0

�̂cov
0 [γ2]≡�0

�̂cov
0 . . . �̂cov

0 [γk]≡�0
= [β]≡�0

(5.1)

Then by Theorem 1 and the fact that �v ∈ ext(S′), we know that γi ∈ A for all i. In other
words, since the chain (5.1) implies that every γi must always occur between α and β in

A Characterization of Combined Traces Using Labeled Stratified Order Structures 117

all stratified extensions of S′ and α,β ∈ A, we also have γi ∈ A. Hence, by Proposition 4
(1), we have [γi]≡�0

⊆ A for all i, 1 ≤ i ≤ k. Also from LC3 of Definition 10 and that

B×C ⊆ ser, we know that for each γi, either [γi]≡�0
⊆ B or [γi]≡�0

⊆C. Now we note

that the first element on the chain [γ1]≡�0
= [α]≡�0

⊆ C and the last element on the

chain [γk]≡�0
= [β]≡�0

⊆ B. Thus, there exist two consecutive elements [γi]≡�0
and

[γi+1]≡�0
on the chain such that [γi]≡�0

⊆C and [γi+1]≡�0
⊆ B. But then it follows that

(a) [γi+1]≡�0
× [γi]≡�0

⊆ ser and [γi]≡�0
�̂cov

0 [γi+1]≡�0

(b) ¬
(
[γi]≡�0

≺̂0[γi+1]≡�0

)
since �v ∈ ext(S′) and γi ��v γi+1

These contradict LC2 of Definition 10 since T0 is a lsos-comtrace.

Case (ii)
When v ≈−1

θ w, by Definition 4, there are some y,z ∈ E∗
θ and steps A,B,C ∈ S such that

v = yBCz and w = yAz where A, B, C satisfy B∩C = /0 and B∪C = A and B×C ⊆ ser.
Let v = yBCz and w = yAz be enumerated step sequences of v and w respectively.

Suppose for a contradiction that �w
∈ ext(S′). By Definition 2, there are α ∈ B and
β ∈ C such that α ≺0 β . By Proposition 4 (1), A/≡�0 ⊆ Σu/≡�0 . Thus, using a dual
argument to the proof of Case (i), we can build a chain

[α]≡�0
= [γ1]≡�0

�̂cov
0 [γ2]≡�0

�̂cov
0 . . . �̂cov

0 [γk]≡�0
= [β]≡�0

(5.2)

We then argue that there are two consecutive elements on the chain such that [γi]≡�0
⊆B

and [γi+1]≡�0
⊆C, which implies

(a) [γi]≡�0
× [γi+1]≡�0

⊆ ser and [γi]≡�0
�̂cov

0 [γi+1]≡�0

(b) [γi]≡�0
≺̂0[γi+1]≡�0

since �v ∈ ext(S′) and γi �v γi+1

These contradict LC1 of Definition 10. ��

We also need to show that the labeled so-structure defined from each comtrace is indeed
a lsos-comtrace. In other words, we need to show the following lemma.

Lemma 3. Let θ = (E,sim,ser) be a comtrace alphabet. Given a step sequence u∈ S∗
θ ,

the lp-isomorphic class
[
Σ[u],≺[u],�[u], �

]
is a lsos-comtrace over θ . ��

The proof of this lemma is straightforward by checking that
[
Σ[u],≺[u],�[u], �

]
satisfies

all conditions LC1–LC5.

Definition 12 (representation mappings ct2lct and lct2ct). Let θ be a comtrace al-
phabet.

1. The mapping ct2lct : S∗
θ/≡θ → LCT(θ) is defined as

ct2lct(t) � [Σt,≺t,�t, �] ,
where the function � : Σs → E is defined in Section 2.2 and St = (Σt,≺t,�t) is the
so-structure defined by the comtrace t from Definition 7.

2. The mapping lct2ct : LCT(θ) → S∗
θ /≡θ is defined as

lct2ct
(
(X ,≺,�,λ)

)
�
{

map(λ ,Ω�) | � ∈ ext
(
(X ,≺,�)

)}
. �

118 D.T.M. Lê

Intuitively, the mapping ct2lct is used to convert a comtrace to lsos-comtrace while the
mapping lct2ct is used to transform a lsos-comtrace into a comtrace. The fact that ct2lct
and lct2ct are valid representation mappings for S∗

θ/≡θ and LCT(θ) will be shown in
the following theorem.

Theorem 3 (The 1st Representation Theorem). Let θ be a comtrace alphabet.

1. For every t ∈ S∗
θ/≡θ , lct2ct◦ ct2lct(t) = t.

2. For every T ∈ LCT(θ), ct2lct◦ lct2ct(T) = T .

Proof. 1. The fact that ran(ct2lct)⊆ LCT(θ) follows from Lemma 3. Now for a given
t ∈ S∗

θ/≡θ , we have ct2lct(t) = (Σt,≺t,�t, �). Thus, it follows that

lct2ct(ct2lct(t)) =
{

map(�,Ω�) | � ∈ ext(St)
}

=
{

map(�,Ω�) | � ∈ {�s | s ∈ t}
}

〈 by Theorem 2 〉
=
{

map(�,Ω�s) | s ∈ t
}

= t

2. Assume T0 = (Σ ,≺0,�0, �) is the canonical representation of T . Observe that
since T0

∼= T , we have
{

map(�,Ω�) | � ∈ ext(T0)
}

=
{

map(λ ,Ω�) | � ∈ ext(T)
}
.

Let Δ =
{

map(�,Ω�) | � ∈ ext(T0)
}

. We will next show that Δ ∈ S∗
θ/≡θ and

ct2lct
(
Δ
)

= [T0]. Fix an arbitrary u ∈ Δ , from Lemmas 1 and 2, S[u] = (Σ ,≺0,�0).
From Theorem 2, Δ =

{
map(�,Ω�) | � ∈ ext(S[u])

}
= [u]. And the rest follows. ��

The theorem says that the mappings ct2lct and lct2ct are inverses of each other and
hence are both bijective.

5.2 Representation Theorem for lsos-Comtraces and Combined Dependency
Graphs

Using Theorem 3, we are going to show that the combined dependency graph notion
proposed in [26] is another correct alternative definition for comtraces. First we need to
define several representation mappings that are needed for our proofs.

Definition 13 (representation mappings ct2dep, dep2lct and lct2dep). Let θ be a
comtrace alphabet.

1. The mapping ct2dep : S∗
θ/≡θ → CDG(θ) is defined as

ct2dep(t) � (Σt,≺u,�u, �),
where u is any step sequence in t and ≺u and �u are defined as in Definition 5.

2. The mapping dep2lct : CDG(θ) → LCT(θ) is defined as dep2lct(D) � D♦.
3. The mapping lct2dep : LCT(θ) → CDG(θ) is defined as

lct2dep(T) � ct2dep◦ lct2ct(T). �

Before proceeding futher, we want to make sure that:

Lemma 4. 1. dep2lct : CDG(θ) → LCT(θ) is a well-defined function.
2. ct2dep : S∗

θ/≡θ → CDG(θ) is a well-defined function.

A Characterization of Combined Traces Using Labeled Stratified Order Structures 119

Proof. 1. Given a cd-graph D1 = [X ,−→1,���1,λ] ∈ CDG(θ), let T = [X ,≺,�,λ] =
D♦

1 . We know that T is uniquely defined, since by Definition 11, (X ,≺,�) is a so-
structure, and so-structures are fixed points of ♦-closure (by Proposition 2 (4)). We will
next show that T is a lsos-comtrace by verifying the conditions LC1–LC5 of Defini-
tion 10. Conditions LC4 and LC5 are exactly CD1 and CD2.

LC1: Suppose for contradiction that there exist two distinct non-serializable sets [α],
[β] ⊂ X such that [α](�̂cov ∩ ≺̂)[β] and λ ([α])× λ ([β]) ⊆ ser. Clearly, this implies
that α ≺ β , and thus by the ♦-closure definition, β is reachable from α on the directed
graph G = (X ,�), where �=−→∪ ���. Now we consider a shortest path P

α = δ1 � δ2 � . . . � δk−1 � δk = β

on G that connects α to β . We will prove by induction on k ≥ 2 that there exist two
consecutive δi and δi+1 on P such that δi ∈ [α] and δi+1 ∈ [β] and (λ (δi),λ (δi+1))
∈ ser,
which contradicts with λ ([α])×λ ([β])⊆ ser.

Base case: when k = 2, then α � β . Since [α](�̂cov ∩≺̂)[β], we have α −→ β , which
by CD3 implies (λ (α),λ (β))
∈ ser.

Inductive case: when k > 2, we consider δ1 and δ2. If δ1 ∈ [α] and δ2 ∈ [β], then
by [α](�̂cov ∩≺̂)[β], we have δ1 −→ δ2, which immediately yields (λ (δ1),λ (δ2))
∈
ser. Otherwise, we have δ2
∈ [α]∪ [β] or

{
δ1,δ2

}
⊆ [α]. For the first case, we get

[α]�̂[δ2]�̂[β], which contradicts that [α]�̂cov [β]. For the latter case, we can apply in-
duction hypothesis on the path δ2 � . . . � δk−1 � δk.

LC2 and LC3 can also be shown similarly using “shortest path” argument as above.
These proofs are easier since we only need to consider paths with edges in ���.

2. By the proof of [18, Lemma 4.7], for any two step sequences t and u in S∗
θ , we have

u ≡ t iff ct2dep([u]) = ct2dep([t]). Thus the mapping ct2dep is well-defined. ��

Lemma 5. The mapping dep2lct : CDG(θ) → LCT(θ) is injective.

Proof. Assume that D1,D2 ∈ CDG(θ), such that dep2lct(D1) = dep2lct(D2) = T =
[X ,≺,�,λ]. Since ♦-closure operator does not change the labeling function, we can
assume that Di = [X ,−→i,���i,λ] and (X ,−→i,���i)♦ = (X ,≺,�). We will next show
that (X ,−→1,���1) ⊆ (X ,−→2,���2).

(−→1 ⊆ −→2): Let α,β ∈ X such that α −→1 β . Suppose for a contradiction that
¬(α −→2 β). Since α −→1 β , by CD3, (λ (α),λ (β))
∈ ser. Thus, by CD2, β ���2 α .
But since (X ,−→i,���i)♦ = (X ,≺,�), it follows that (X ,−→i,���i) ⊆ (X ,≺,�) (by
Proposition 2). Thus, α ≺ β and β � α , a contradiction.

(���1 ⊆ ���2): Can be proved similarly.
By reversing the role of D1 and D2, we have (X ,−→1,���1)⊇ (X ,−→2,���2). Thus,

we conclude D1 = D2. ��

We are now ready to show the following representation theorem which ensures that
lct2dep and dep2lct are valid representation mappings for LCT(θ) and CDG(θ).

120 D.T.M. Lê

Theorem 4 (The 2nd Representation Theorem). Let θ be a comtrace alphabet.

1. For every D ∈ CDG(θ), lct2dep◦dep2lct(D) = D.
2. For every T ∈ LCT(θ), dep2lct◦ lct2dep(T) = T .

Proof. 1. Let D ∈ CDG(θ) and let T = dep2lct(D). Suppose for a contradiction that
E = lct2dep ◦ dep2lct(D) and E
= D. From how ct2lct is defined, ct2lct = dep2lct◦
ct2dep. Thus, it follows that dep2lct(E) = T = dep2lct(D). But this contradicts the
injectivity of dep2lct from Lemma 5.

2. Let T ∈ LCT(θ) and let D = lct2dep(T). Suppose for a contradiction that Q=
dep2lct◦ lct2dep(T) and Q
= T . Since lct2dep=ct2dep◦ lct2ct, if we let t= lct2ct(T),
then Q=dep2lct◦ct2dep(t)
= T . Thus, we have shown that t=lct2ct(T) and ct2lct(t)=
dep2lct◦ ct2dep(t)
= T , contradicting Theorem 3 (2). ��

This theorem shows that lsos-comtraces and cd-graphs are equivalent representations
for comtraces. The main advantage of cd-graph definition is its simplicity while the lsos-
comtrace definition is stronger and more convenient to prove properties about labeled
so-structures that represent comtraces.

We do not need to prove another representation theorem for cd-graphs and comtraces
since their representation mappings are simply the composition of the representation
mappings from Theorems 3 and 4.

6 Composition Operators

Recall for a comtrace monoids (S∗/≡θ ,	, [ε]), the comtrace operator 	 is defined as
[r]	 [t] = [r ∗ t]. We will construct analogous composition operators for lsos-comtraces
and cd-graphs. We will then show that lsos-comtraces (cd-graphs) over a comtrace al-
phabet θ together with its composition operator form a monoid isomorphic to the com-
trace monoid (S∗/≡θ ,	, [ε]).

Given two sets X1 and X2, we write X1 'X2 to denote the disjoint union of X1 and
X2. Such disjoint union can be easily obtained by renaming the elements in X1 and X2

so that X1 ∩X2 = /0. We define the lsos-comtrace composition operator as follows.

Definition 14 (composition of lsos-comtraces). Let T1 and T2 be lsos-comtraces over
an alphabet θ = (E,sim,ser), where Ti = [Xi,≺i,�i,λi]. The composition T1 (T2 of T1

and T2 is defined as (a lp-isomorphic class of) a labeled so-structure [X ,≺,�,λ] such

that X = X1 'X2, λ = λ1 ∪λ2, and (X ,≺,�) =
(
X ,≺〈1,2〉,�〈1,2〉

)♦
, where

≺〈1,2〉 = ≺1 ∪ ≺2 ∪
{
(α,β) ∈ X1 ×X2 | (λ (α),λ (β))
∈ ser

}
�〈1,2〉 = �1 ∪ �2 ∪

{
(α,β) ∈ X1 ×X2 | (λ (β),λ (α))
∈ ser

}
�

Observe that the operator is well-defined since we can easily check that:

Proposition 9. For every T1,T2 ∈ LCT(θ), T1 (T2 ∈ LCT(θ). ��

We will next show that this composition operator (properly corresponds to the
operator 	 of the comtrace monoid over θ .

A Characterization of Combined Traces Using Labeled Stratified Order Structures 121

Proposition 10. Let θ be a comtrace alphabet. Then

1. For every R,T ∈ LCT(θ), lct2ct(R(T) = lct2ct(R)	 lct2ct(T).
2. For every r, t ∈ S∗

θ/≡θ , ct2lct(r 	 t) = ct2lct(r)(ct2lct(t).

Proof. 1. Assume R = [X1,≺1,�1,λ1], T = [X2,≺2,�2,λ2] and Q = [X1 'X1,≺,�,λ].
We can pick �1 ∈ ext(R) and �2 ∈ ext(T). Then observe that a stratified order � satis-
fying Ω� = Ω�1 ∗Ω�2 is an extension of Q. Thus, by Theorem 3, we have lct2ct(R)	
lct2ct(T) = [map(λ1,�1)]	 [map(λ2,�2)] = [map(λ ,�)] = lct2ct(Q) as desired.

2. Without loss of generality, we can assume that r = [r], t = [t] and q = [q] = r	 t,
where q = r∗ t. By appropriate reindexing, we can also assume that Σq = Σr'Σt. Under
these assumptions, let ct2lct(r) = T1 = [Σr,≺r,�r, l1], ct2lct(t) = T2 = [Σt,≺t,�t, l2]
and ct2lct(q) = T = [Σq,≺q,�q, l], where l = l1 ∪ l2 is simply the standard labeling
functions. It will now suffice to show that T1 (T2 = T .

(⊆): Let T1 (T2 = (Σr 'Σt,≺〈r,t〉,�〈r,t〉, l)♦. By Definitions 5 and 7, we have
≺〈r,t〉 = ≺r ∪ ≺t ∪

{
(α,β) ∈ Σr ×Σt | (λ (α),λ (β))
∈ ser

}
⊆≺q

�〈r,t〉 = �r ∪ �t ∪
{
(α,β) ∈ Σr ×Σt | (λ (β),λ (α))
∈ ser

}
⊆�q

Thus, by Proposition 2 (5), we have (Σr 'Σt,≺〈r,t〉,�〈r,t〉, l)♦ ⊆ (Σq,≺q,�q, l) as de-
sired. Furthermore, by Proposition 2 (5), (Σr 'Σt,≺〈r,t〉,�〈r,t〉)♦ is a so-structure.

(⊇): By Definitions 5 and 7, we have ≺q⊆≺〈r,t〉 and �q⊆�〈r,t〉. Since we already
know (Σr 'Σt,≺〈r,t〉,�〈r,t〉)♦ is a so-structure, it follows from Proposition 2 (5) that

(Σq,≺q,�q, l) = (Σq,≺q,�q, l)♦ ⊆ (Σr 'Σt,≺〈r,t〉,�〈r,t〉, l)
♦ = T1 (T2. ��

Let I denote the lp-isomorphic class [/0, /0, /0, /0]. Then we observe that ct2lct([ε]) = I
and lct2ct(I) = [ε]. By Proposition 10 and Theorem 3, the structure (LCT(θ),(,I)
is isomorphic to the monoid (S∗

θ/≡θ ,	, [ε]) under the isomorphisms ct2lct : S∗
θ/≡θ →

LCT(θ) and lct2ct : LCT(θ)→ S∗
θ /≡θ . Thus, the triple (LCT(θ),(,I) is also a monoid.

We can summarize these facts in the following theorem:

Theorem 5. The mappings ct2lct and lct2ct are monoid isomorphisms between two
monoids (S∗

θ /≡θ ,	, [ε]) and (LCT(θ),(,I). ��

Similarly, we can also define a composition operator for cd-graphs.

Definition 15 (composition of cd-graphs). Let D1 and D2 be cd-graphs over an al-
phabet θ = (E,sim,ser), where Di = [Xi,−→i,���i,λi]. The composition D1 D2 of D1

and D2 is defined as (a lp-isomorphic class of) a labeled so-structure [X ,−→,���,λ]
such that X = X1 'X2, λ = λ1 ∪λ2, and

−→ = −→1 ∪ −→2 ∪ {(α,β) ∈ X1 ×X2 | (λ (α),λ (β))
∈ ser}
��� = ���1 ∪ ���2 ∪ {(α,β) ∈ X1 ×X2 | (λ (β),λ (α))
∈ ser} �

From this definition, it is straightforward to show the following propositions, which we
will state without proofs.

122 D.T.M. Lê

Proposition 11. For every D1,D2 ∈ CDG(θ), D1 D2 ∈ CDG(θ). ��

Proposition 12. Let θ be a comtrace alphabet. Then

1. For every R,T ∈ LCT(θ), lct2dep(R(T) = lct2dep(R) lct2dep(T).
2. For every D,E ∈ CDG(θ), dep2lct(D E) = dep2lct(D)(dep2lct(E). ��

Putting the two preceding propositions and Theorem 4 together, we conclude:

Theorem 6. The mappings lct2dep and dep2lct are monoid isomorphisms between two
monoids (LCT(θ),(,I) and (CDG(θ),,I). ��

7 Conclusion

The simple yet useful construction we used extensively in this paper is to build a quo-
tient so-structure modulo the �-cycle equivalence relation. Intuitively, each �-cycle
equivalence class consists of all the events that must be executed simultaneously with
one another and hence can be seen as a single “composite event”. The resulting quo-
tient so-structure is technically easier to handle since both relations of the quotient so-
structure are acyclic. From this construction, we were able to give a labeled so-structure
definition for comtraces similar to the labeled poset definition for traces. This quotient
construction also explicitly reveals the following connection: a step on a step sequence
s is not serializable with respect to the relation ser of a comtrace alphabet if and only
if it corresponds to a �-cycle equivalence class of the lsos-comtrace representing the
comtrace [s] (cf. Proposition 4).

We have also formally shown that the quotient monoid of comtraces, the monoid
of lsos-comtraces and the monoid of cd-graphs over the same comtrace alphabet are
indeed isomorphic by establishing monoid isomorphisms between them. These three
models are formal linguistic, order-theoretic, and graph-theoretic respectively, which
allows us to apply a variety of tools and techniques.

An immediate future task is to develop a framework similar to the one in this paper
for generalized comtraces, proposed and developed in [21,27,22]. Generalized com-
traces extend comtraces with the ability to model events that can be executed earlier
than or later than but never simultaneously. Another direction is to define and analyze
infinite comtraces (and generalized comtraces) in a spirit similar to the works on infinite
traces, e.g., [13,4]. It is also promising to use infinite lsos-comtraces and cd-graphs to
develop logics for comtraces similarly to what have been done for traces (cf. [31,7]).

Acknowledgments. I am grateful to Prof. Ryszard Janicki for introducing me comtrace
theory. I also thank the Mathematics Institute of Warsaw University and the Theoretical
Computer Science Group of Jagiellonian University for their supports during my visits.
It was during these visits that the ideas from this paper emerge. This work is financially
supported by the Ontario Graduate Scholarship and the Natural Sciences and Engineer-
ing Research Council of Canada. The anonymous referees are thanked for their valuable
comments that help improving the readability of this paper.

A Characterization of Combined Traces Using Labeled Stratified Order Structures 123

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
2. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 2nd edn. MIT Press,

Cambridge (2001)
3. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press,

Cambridge (2002)
4. Diekert, V.: On the Concatenation of Infinite Traces. In: Jantzen, M., Choffrut, C. (eds.)

STACS 1991. LNCS, vol. 480, pp. 105–117. Springer, Heidelberg (1991)
5. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)
6. Diekert, V., Métivier, Y.: Partial Commutation and Traces. In: Handbook of Formal Lan-

guages, Beyond Words, vol. 3, pp. 457–533. Springer, Heidelberg (1997)
7. Diekert, V., Horsch, M., Kufleitner, M.: On First-Order Fragments for Mazurkiewicz Traces.

Fundam. Inform. 80(1-3), 1–29 (2007)
8. Esparza, J., Heljanko, K.: Unfoldings – A Partial-Order Approach to Model Checking.

Springer, Heidelberg (2008)
9. Farzan, A., Madhusudan, P.: Causal Dataflow Analysis for Concurrent Programs. In: Ball, T.,

Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 315–328. Springer, Heidelberg (2006)
10. Farzan, A., Madhusudan, P.: Causal Atomicity. In: Grumberg, O., Huth, M. (eds.) TACAS

2007. LNCS, vol. 4424, pp. 102–116. Springer, Heidelberg (2007)
11. Fishburn, P.C.: Interval Orders and Interval Graphs. J. Wiley, New York (1985)
12. Gaifman, H., Pratt, V.: Partial Order Models of Concurrency and the Computation of Func-

tion. In: Proc. of LICS 1987, pp. 72–85 (1987)
13. Gastin, P.: Infinite Traces. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 277–308.

Springer, Heidelberg (1990)
14. Gazagnaire, T., Genest, B., Hélouët, L., Thiagarajan, P.S., Yang, S.: Causal Message Se-

quence Charts. Theor. Comput. Sci. 410(41), 4094–4110 (2009)
15. Janicki, R.: Relational Structures Model of Concurrency. Acta Informatica 45(4), 279–320

(2008)
16. Janicki, R., Koutny, M.: Invariants and Paradigms of Concurrency Theory. In: Aarts, E.H.L.,

van Leeuwen, J., Rem, M. (eds.) PARLE 1991. LNCS, vol. 506, pp. 59–74. Springer, Hei-
delberg (1991)

17. Janicki, R., Koutny, M.: Structure of Concurrency. Theoretical Computer Science 112(1),
5–52 (1993)

18. Janicki, R., Koutny, M.: Semantics of Inhibitor Nets. Information and Computation 123(1),
1–16 (1995)

19. Janicki, R., Koutny, M.: Fundamentals of Modelling Concurrency Using Discrete Relational
Structures. Acta Informatica 34, 367–388 (1997)

20. Janicki, R., Koutny, M.: On Causality Semantics of Nets with Priorities. Fundamenta Infor-
maticae 34, 222–255 (1999)

21. Janicki, R., Lê, D.T.M.: Modelling Concurrency with Quotient Monoids. In: van Hee, K.M.,
Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 251–269. Springer, Heidelberg
(2008)

22. Janicki, R., Lê, D.T.M.: Modelling Concurrency with Comtraces and Generalized Comtraces
(submitted in 2009), http://arxiv.org/abs/0907.1722

23. Juhás, G., Lorenz, R., Mauser, S.: Causal Semantics of Algebraic Petri Nets distinguishing
Concurrency and Synchronicity. Fundamenta Informatica 86(3), 255–298 (2008)

24. Juhás, G., Lorenz, R., Mauser, S.: Synchronous + Concurrent + Sequential = Earlier Than
+ Not Later Than. In: Proc. of ACSD 2006, Turku, Finland, pp. 261–272. IEEE Press, Los
Alamitos (2006)

http://arxiv.org/abs/0907.1722

124 D.T.M. Lê

25. Kleijn, H.C.M., Koutny, M.: Process Semantics of General Inhibitor Nets. Information and
Computation 190, 18–69 (2004)

26. Kleijn, J., Koutny, M.: Formal Languages and Concurrent Behaviour. Studies in Computa-
tional Intelligence 113, 125–182 (2008)

27. Lê, D.T.M.: Studies in Comtrace Monoids, Master Thesis, Dept. of Computing and Software,
McMaster University, Canada (August 2008)

28. Mazurkiewicz, A.: Concurrent Program Schemes and Their Interpretation, TR DAIMI PB-
78, Comp. Science Depart., Aarhus University (1977)

29. Pratt, V.: Modeling concurrency with partial orders. International Journal of Parallel Pro-
gramming 15(1), 33–71 (1986)

30. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fund. Mathematicae 16, 386–389 (1930)
31. Thiagarajan, P.S., Walukiewicz, I.: An expressively complete linear time temporal logic for

Mazurkiewicz traces. Inf. Comput. 179(2), 230–249 (2002)

Integrated Process Planning and Supply Chain
Configuration for Commodity Assemblies Using

Petri Nets

Oleg Gusikhin and Erica Klampfl

Ford Research and Advanced Engineering, Dearborn, MI 48124, USA

Abstract. We present a methodology for integrated process planning
and supply chain configuration for commodity assemblies. Although the
supply chain configuration problem for commodity assemblies is relatively
straightforward using math programming, developing a commodity-
dependent math program with precedence constraints can be a very daunt-
ing and time-consuming process. We use Petri net techniques to support
the development of such a math program. Our modeling approach is based
on a series of stepwise Petri net transformations that transform the Petri
net model of the assembly process into a supply chain configuration rep-
resentation. We use the matrix representation as a basis for the integer
program formulation. We present a small example commodity from the
automotive industry to illustrate the proposed methodology.

1 Introduction

In this paper, we present a methodology for integrated process planning and
supply chain design for commodity assemblies. Commodity assemblies are items
where the technological operations are relatively simple, primarily manual, and
well-known: the jobs can be outsourced to many suppliers or performed in-house.
Outsourcing commodity assembly jobs to suppliers typically does not require
elaborate know-how or substantial capital investment in tooling and infrastruc-
ture. Original Equipment Manufacturer (OEM)s might even use the spot market
(i.e., a one time buy, in contrast with a long term contract, of parts or capacity
immediately available) for the components and/or capacity. Consequently, cost
is the primary consideration for such a supply chain. Designing the supply chain
for commodity items is often performed by the OEM, itself, to ensure a mini-
mum cost supply chain. The first question asked in the design process is whether
and which jobs should be outsourced or performed in-house: this is referred to
as the “make” or “buy” decision. In the case of the “buy” decision for the entire
assembly and/or subassemblies, the OEM must decide on the specific supplier
in which to source the jobs. Although in the case of the “buy” decision, the
design of the upstream supply chain is usually the responsibility of the suppli-
ers; however, it is beneficial for the OEM to have an idea of the potential cost
implications to the entire supply chain.

Setting up a supply chain for commodity items is not necessarily a trivial task.
Even for relatively small assemblies, the number of possible process alternatives

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 125–144, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

126 O. Gusikhin and E. Klampfl

may be very high. In addition, the number of sourcing alternatives for each
operation could be high, as well. This is especially true in the case of emerging
economies, such as Asia-Pacific or Latin America, where consideration needs to
be given not only to labor and transportation cost, but also to border tariffs,
currency fluctuations, and local taxes.

Mathematical programming is commonly used to model the design of distri-
bution networks, where whole units flow through the network [1]. This does not
involve the additional product build-up through the network or the representa-
tion of precedence constraints (i.e., constraints that define which parts must be
assembled before other parts). While it is not necessarily difficult to formulate
supply chain choices for a commodity as a math program for a specific part, to
generate the math program for any product with varying precedence constraints,
potential suppliers, etc. is a much more daunting task, often customized for each
individual case. Additionally, while network modeling has been proven to be
efficient for representing supply chain problems, classical network models allow
for only one type of node that can be used either to represent an assembly or an
alternative.

To overcome the math program set-up issues, we present a Petri net rep-
resentation that provides two types of nodes, allowing us to capture both the
assembly and the alternative. Petri nets have been broadly used for both pro-
cess planning and supply chain configuration problems. Assembly planning has
been extensively addressed in the literature, especially relative to automatic
robot planning. Rosell summarizes autonomous robotics assembly problems and
reviews the approaches that use Petri nets as a formalism to develop the cor-
responding planners [2]. Petri nets’ clear graphical representation of complex
assembly relations has led to many applications in manufacturing and supply
chain analysis and design. Gusikhin and Kulinitch discuss integrated process
planning, routing, and scheduling for flexible manufacturing system using Petri
nets [14]. Viswanadham and Ragavhan present modeling techniques for analyz-
ing the supply chain process using generalized stochastic Petri nets: they develop
a methodology to compare the performance of make-to-stock and assemble-to-
order policies in terms of total cost and to locate supply chain push-pull decou-
pling points [3]. You et. al. present a set of formalisms based on color Petri-nets
to model and evaluate supply chain configurations considering product, process,
and logistics design [4]. Li et.al. discuss supply route optimization based on Petri
Net models [5]. Zimmerman et. al. describe a variant of the colored stochastic
Petri Net model used by General Motors’ supply chain to evaluate vehicle order-
to delivery time [6].

In this paper, we propose a method to formulate the integrated process plan-
ning and design of the supply chain for commodity assemblies problem using
Petri Net techniques. The advantage of using Petri Nets is that their graphi-
cal nature provides an unambiguous and concise representation of the problem,
which is directly transferable to an integer program (IP) representation utilizing
the Petri net state equation. In the next section, we present the general problem
formulation and discuss terminology. In Section 3, we discuss and illustrate a

Integrated Process Planning and Supply Chain Configuration 127

Petri Net model for the simple product assembly process and demonstrate how
the model development is carried out as a series of stepwise net transforma-
tions [9]. Section 3.1 provides an example of Petri net modeling of the assembly
process. Section 3.2 describes the transformation rules from a generic assembly
process model to a product variation assembly process model. In Section 3.3,
we present the transformation from the assembly process to the supply chain
model. Section 3.4 outlines the formulation of the IP using the state equation
of the supply chain Petri Net model as a basis. We conclude the paper with a
summary in Section 4.

2 Problem Formulation

In this section, we present the parameter definitions that will be used throughout
the paper and provide an overview of the problem. This paper focuses on how to
design the supply chain for a product (i.e., commodity). A product is made up
of several components, some standard and some with variation. Each component
needs to be fabricated at a fabrication supplier, assembled at some point in the
supply chain, and the final product shipped to the assembly plants to meet the
plants’ demands for the different product variations. The problem we address
is to find the lowest cost way to assemble and ship the different products from
the fabrication suppliers through the supply chain to the assembly plants. This
entails a selection of the subset of fabrication and assembly suppliers capable of
performing respective operations (subject to assembly precedence constraints)
and the assignment of the production volumes at each of the chosen suppliers
(subject to supplier capacity limitations). At this stage of the supply chain design
for commodity assemblies, the primary consideration is given to manufacturing
and transportation costs that are used to select the set of candidate solutions
for further analysis.

The first few parameters listed in Table 1 define the components in a final
product and the unique final product variants.

Table 1. This table contains parameters that define the components in a final product
and the unique final product variants

Parameter Description

κ number of component types in a final product
K = {1, . . . , κ} set of component types
β number of unique components (includes component varieties)
B = {1, . . . , β} set of unique components
ν number of final product variants
Vi ⊆ B set that defines the product variant composition for variant

i = 1, . . . , ν such that | Vi |= κ

V = {Vi : i = 1, . . . , ν} set of the set of product variations (i.e., the finished products)

128 O. Gusikhin and E. Klampfl

A typical sized commodity has on the order of twenty components, fifteen
product variations, and twenty operations, with a choice of up to six potential
suppliers for each assembly operation. Figure 1 shows the engine compartment
side module (ECSM), which is a representative commodity example. In this
paper, we introduce a smaller example commodity (see the tube assembly in
Fig. 2) to use as a running illustration to describe the methodology.

Fig. 1. Example commodity: ECSM

Fig. 2. Example commodity: tube assembly

Figure 3 shows the components that constitutive the given tube assembly.
There are κ = 5 component types: tube surface (tube surf), front horn (frt horn),
mid horn (mid horn), rear horn (rear horn), and lower coupler (lwr cplr). There
are two types of lwr cplr, which we refer to as L1 and L2 and two types of
mid horns, which we refer to as MH1 and MH2. Table 2 shows the feasible
products and their associated components for the tube assembly: the number
of final product variants ν = 3. We define our product variant sets as fol-
lows: V1 = {T, L1, FH,RH,MH1}, V2 = {T, L1, FH,RH,MH2}, and V3 =
{T, L2, FH,RH,MH2}. Note that V1, V2, and V3 correspond to the columns in
Table 2 under A, B, and C, respectively. Hence, V = {V1,V2,V3} = {{T, L1, FH,
RH,MH1}, {T, L1, FH,RH,MH2}, {T, L2, FH,RH,MH2}}.

lwr_cplr

tube_surf

frt_horn

rear_hornmid_horn

lwr_cplr

tube_surf

frt_horn

rear_hornmid_horn

Fig. 3. Five component types in the tube assembly

Integrated Process Planning and Supply Chain Configuration 129

Table 2. Tube assembly product variations

ProductsComponents
A B C

tube surf T T T
lwr cplr L1 L1 L2
frt horn FH FH FH
rear horn RH RH RH
mid horn MH1 MH2 MH2

Next, we introduce the parameters that describe the subassemblies and their
relations to the assembly operations in Table 3.

Table 3. Parameters describing the subassemblies and their relations to the assembly
operations

Parameter Description

η number of valid subassemblies
Hi ⊆ B set of unique components that make up a valid subassembly for i = 1, . . . , η

H = {Hi : set of all valid subassemblies
i = 1, . . . , η}
θ number of valid assembly operations (i.e., satisfy precedence constraints)
Oi a pair consisting of a subassembly Hj ∈ H and a component b ∈ B that

together form a new subassembly for i = 1, . . . , θ. Note that for fabrication
operations, the pair consists just of the component and the empty set.

O = {Oi : set of fabrication and assembly operations
i = 1, . . . , θ}
Of ⊆ O set of fabrication operations
γ number of possible assembly sequences
Gi ⊆ B set that defines the order of components in a possible assembly sequence,

for i = 1, . . . , γ such that | Gi |= κ

G = {Gi : set of possible assembly sequences
i = 1, . . . , γ }

Consider the subassemblies for product “A” in Table 2, which is comprised
of five components (T, L1, FH, RM, MH1) and is produced by fabrication op-
erations O1 through O5. Note that the components for tube surf (T), frt horn
(FH), rear horn (RH), and their corresponding fabrication operations are com-
mon for the entire product family, while lwr cplr (L1) is used for products “A”
and “B,” and mid horn (MH1) is unique for product “A.” Figure 4 shows a key
for valid subassemblies for product “A.” Note that the component “T” appears
in all subassemblies because it has precedence over all other components, no
other components have precedence over each other, and the elements within a
set are not ordered.

Assembly operations are defined between one subassembly and a component,
and fabrication operations consist of production of individual components. For
product “A” in Table 2, there are 32 possible assembly operations: the the com-
ponents for tube surf, frt horn, and rear horn can be assembled to tube surf in

130 O. Gusikhin and E. Klampfl

Fig. 4. Example assembly sequence for product “A” and a list of possible assembly
operations

Table 4. Parameters associated with facilities

Parameter Description

α number of assembly plants
A = {1, . . . , α} set of assembly plants: these plants receive the final subassemblies

(i.e., products)
σ number of fabrication suppliers
F = {1, . . . , σ} set of fabrication suppliers: these suppliers make the individual

components
Fb ⊂ F set of fabrication suppliers that can make component b ∈ B
ξ number of assembly suppliers
S = {1, . . . , ξ} set of assembly suppliers: these suppliers assemble the individual

components
So ⊂ S set of assembly suppliers that can perform assembly operations o ∈ O
dav demand of assembly plant a ∈ A for product v ∈ V
D = {dav} set of demands for assembly plant a ∈ A for product v ∈ V
cF
bf cost to fabricate component o ∈ Of at fabrication supplier f ∈ Fb

cA
os cost for assembly operation o ∈ O \ Of at assembly supplier s ∈ So

transportation cost to ship z ∈ B ∪H (where z is a unique component
cT
zs1,s2 or a sub assembly) from supplier s1 ∈ F ∪ S (either a fabrication

supplier or an assembly supplier) to s2 ∈ S ∪ A (either an assembly
supplier or assembly plant).

lom load factor for operation o ∈ O at fabrication and assembly suppliers
m ∈ F ∪ So

qs capacity of fabrication and assembly supplier m ∈ F ∪ S

Integrated Process Planning and Supply Chain Configuration 131

any sequence. Figure 4 shows one possible assembly process for product “A” and
provides a key for the assembly operations.

For each product variant in Table 2, there are many possible assembly se-
quences: these are ordered sequences and must each contain κ = 5 component
types. We provide a few assembly sequences for product variant “A” to illustrate
the terminology:

G1 = {T, L1, FH,RH,MH1}, G2 = {T, L1, RH,FH,MH1},G3 = {T, L1,MH1,
FH,RH}, G4 = {T, L1, FH,MH1, RH}, and G5 = {T, L1,MH1, RH,FH}.
Note that any possible assembly sequence for a particular product must contain
the same components as defined in its product variant. For example, G1

⋂
V1 =

∅, . . . ,G5
⋂
V1 = ∅ because G1 through G1 are all possible assembly sequences

for product variant “A,” and V1 is the product variant composition for product
variant “A.”

The next several parameters listed in Table 4 are associated with facilities:
assembly plants, assembly suppliers, and fabrication suppliers.

3 Petri Net Modeling of the Supply Chain Configuration
Problem

In this section, we describe the steps in the modeling process that lead to the
IP formulation of the supply chain configuration problem. Figure 5 shows the
process overview. The process commences with the development of the Petri net
model representation of the assembly process for a given product. This model
allows us to obtain all possible assembly sequences associated with the set of
minimal t-invariant of the assembly net. Next, we iterate over all possible as-
sembly sequences to obtain the subnet of the assembly net that corresponds to
the given assembly process. Then, we transform this subnet into a product vari-
ation net that represents the assembly process model: this expands the generic
assembly sequence for a given product family to specific assembly operations
and components. The next step is to transform the product variation net to
the supply chain configuration net: this substitutes transitions corresponding to
assembly operations and places corresponding to product configuration with op-
erations at specific suppliers and specific products at the supply chain locations
augmented by the transitions to represent the logistics infrastructure. Using an
algebraic linear representation for this Petri net, we directly formulate the IP,
which can be solved using any IP solver, such as IBM CPLEX [12].

3.1 Assembly Process Net

The modeling process starts with designing a model that represents the generic
assembly sequence of a given product type. There has been extensive research
in automatically obtaining assembly sequences from the geometric relationships
between the components of the part derived from the mechanical computer aided
design (CAD) of the part. Mello and Sanderson present an algorithm that takes

132 O. Gusikhin and E. Klampfl

Select Individual Assembly Process i from N0

Develop Assembly Net N0 for the given Product

Transform N0
i into Product Variation Net N1

i

Formulate IP problem using N2
i state equation and solve the problem

Select minimum cost solution

Iterated through all
processes i

No

Create subnet N0
i for process i

Transform N1
i into Supply Chain Configuration N2

i

Select Individual Assembly Process i from N0

Develop Assembly Net N0 for the given Product

Transform N0
i into Product Variation Net N1

i

Formulate IP problem using N2
i state equation and solve the problem

Select minimum cost solution

Iterated through all
processes i

No

Create subnet N0
i for process i

Transform N1
i into Supply Chain Configuration N2

i

Fig. 5. The modeling process

a representation of the product as input and generates the set of all feasible
assembly sequences, which is represented as an AND/OR graph [10]. Cao and
Sanderson introduce an AND/OR net as a framework for representation and
reasoning about geometric constraints in a robotic work cell system and provide
a method for mapping the AND/OR net to a Petri net [11]. Other research has
been done on how an assembly Petri net (APN) can be built from a set of prece-
dence constraints or from an AND/OR representation [8], [7]. Furthermore, these
authors demonstrate how to use a Petri net state equation to formulate process
planning optimization (to minimize disassembly energy or maximize parallelism)
as a Linear Programming problem that can be solved using any of the standard
methods.

In building our assembly Petri net model, we follow the same assumptions as
in [7]:

– Exactly two subassemblies are joined at each assembly task.
– After parts have been put together, they remain together until the end of

the assembly process.
– Whenever two parts are joined, all contacts between them are established.
– Assembly operations and disassembly operations are invertible with respect

to each other.
– Assembly and disassembly operations do not exist simultaneously in one

sequence.

We define the assembly net graph by the tuple N = (P, T,W), where

– P is a finite set of places associated with component types or subassemblies
of the given product.

– T = Tf ∪ Ta ∪ {tc} is a set of transitions that represents the manufacturing
operations (fabrication, assembly, and product consumption), where

Integrated Process Planning and Supply Chain Configuration 133

• Tf is a finite set of transitions associated with component fabrication
operations: these are source transitions that have exactly one output
place;

• Ta is a finite set of transitions associated with assembly operations: these
transitions have exactly two input places and one output place; and

• tc is a transition associated with the product consumption operation:
this is a sink transition with one input place that represents the final
assembly.

– W : (P × T) ∪ (T × P) → {0, 1} defines the set of directed arcs in the net.

Consider the tube assembly presented in Fig. 2. This is a very small product
consisting of five component types: tube surface, front horn, mid horn, rear
horn, and lower coupler. The latter four component types can be assembled
to the tube surface in any sequence. We present the resulting assembly net
for this example in Fig. 6: the squares with the component names represent
the fabrication of the component, the squares with the “t’s” are the transitions
representing assembly operations (the square marked tube assembly corresponds
to the product consumption operation), and the circles represent components
and subassemblies. We generated Fig. 6 and Fig. 7 from a Petri net markup
language file using the PN Kernel tool [17].

M0 : P → {0, 1} is a marking of the assembly net that represents the current
status of the assembly process. Assume that our initial marking of each place is
zero. In order to start the assembly process, we assume that we have all individual
fabrication components on hand that correspond to the marking that has one
token in every output place of the fabrication transitions, Tf . This marking

Fig. 6. Assembly Petri net model for the tube assembly

134 O. Gusikhin and E. Klampfl

can be obtained by a single firing of transitions from Tf . At every point in the
assembly process, the set of possible next assembly operations is defined by the
set of enabled transitions from Ta (i.e., transitions from Ta that have tokens
in all their input places). When the next assembly operation is selected, the
corresponding transition is fired, removing the tokens from its input places and
adding a token to its output place. The last operation is the consumption firing,
tc, which removes the token from the net. Any firing sequence that includes a
single firing of every transition from Tf and a single firing of a transition tc
corresponds to a valid assembly sequence. This firing sequence is equivalent to
the minimal t-invariant of N . Consequently, all possible assembly sequences can
be obtained by generating the set of all minimal t-invariants of N (see [13] for
an overview of methods for obtaining the t-invariant). Figure 7 shows one such
t-invariant overlayed on the Petri net model.

Fig. 7. Example t-invariant for the tube assembly overlayed on the Petri net model

3.2 Product Variation Net

The assembly net described in the previous section provides a generic assembly
process for a given product. However, in most cases, products may have several
variations and/or options for different component types. These variations are
defined by the engineering bill of material (EBOM) that lists all the unique
components constituting different variations of the same product. Note that
the EBOM is different from the manufacturing bill of material (MBOM): the
EBOM lists all the specific components that constitute a given variant of the
product, and the MBOM captures the specific assembly sequence represented by
a multilevel structure where each intermediate level corresponds to the specific
subassembly.

Integrated Process Planning and Supply Chain Configuration 135

One of the requirements of process planning and supply chain configuration
is to ensure that the assembly sequence is kept the same across all product
variants and supply chain paths. In order to address this, we iterate over each
assembly process plan (the set of minimum t-invariants): at each iteration, we
formulate and solve the supply chain configuration optimization problem. This
guarantees that all product variants and supply chain product paths will follow
the same assembly sequence and ensures the single MBOM. We compare the
optimal solutions for each individual process and select the best set of solutions
for further analysis.

At each iteration i, we use the t-invariant to create a subnet Ni from N that
consists of all the transitions constituting the given t-invariant together with
their input and output places and connecting arcs. Figure 8 shows an example
of the t-invariant based net, Ni, for the tube assembly.

Fig. 8. Example t-invariant based net, Ni, for the tube assembly

The product variation net graph is defined by the 3-tuple N1 = (P 1, T 1,W 1),
where P 1 is a finite set of places that represent specific components or sub-
assemblies. Each place is associated with the set Hj for j ∈ 1, . . . , η that de-
fines the unique components comprising the subassembly at a given point in the
process. T 1 is a finite set of transitions corresponding to Oj for j = 1, . . . , θ.
W 1 : (P 1 × T 1) ∪ (T 1 × P 1) → {0, 1} defines the set of directed arcs in the net.

The transformation of the subnet Ni into a product variation net is an iter-
ative process of unfolding the transitions and their output places into a set of
transitions and a set of output places associated with the specific assembly op-
erations from O and specific variants of the subassembly from H. The procedure
starts by exploring the source transitions corresponding to component fabrica-
tion operations. Each transition is replaced by a set of transitions with output
places corresponding to the fabrication operations that produce individual vari-
ants of the given component. The output place, pj , of the transition tr ∈ Ni

is replaced by the set of new places P 1
j ⊆ P 1 that corresponds to the specific

variants of the given component type (see Fig. 9). In order to demonstrate the
transformation process from one net to another net, from this point forward, we

136 O. Gusikhin and E. Klampfl

Fig. 9. Transformation corresponding to the fabrication operations

Fig. 10. Ni marking in the first step of the transformation to the product variation
net

use dashed lines to represent elements of the net being replaced and solid lines
for the new net. We omit the superscripts corresponding to the specific net type
to avoid overcrowding the figure: the number of subscript indices indicates the
specific model.

The rest of the process is guided by the execution of Ni, starting with the mark-
ing that is obtained by firing all the source transitions corresponding to fabrication
operations. Figure 10 shows the Ni marking at this point of the process. At each
step of the execution, we select the enabled transition in Ni (excluding transitions
from Tf), and we unfold this transition and its output place into a set of transi-
tions for specific assembly operations inO anda set of output places of subassembly

Integrated Process Planning and Supply Chain Configuration 137

variants inH. Next, we fire the transition Ni by removing the tokens from the tran-
sition input places and adding a token to the output place.

The only enabled transition at the stage shown in Fig. 10 is t30, which corre-
sponds to the assembly operation. When the transition to be unfolded represents
a subassembly operation, we replace it with a set of transitions that correspond
to valid assembly operations in O. Assume that we replace transition tr from
Ni and that pk and pn are the input places of tr, and pf is an output place.
Next, P 1

k and P 1
n are the sets of the new places that replaced pk and pn. Then,

the set of transitions replacing tr corresponds to all valid combinations of input
places where p1

u,y ∈ P 1
k and p1

r,y ∈ P 1
n , such that Hpu,y ∪ Hpr,y ∈ H. Figure 11

shows the result of replacing t30 with two corresponding transitions, t130,1 and
t130,2, whose output places correspond to the specific subassemblies. Figure 12

p1,1

p5,1

P13,1
t30,1

T

MH1

p5,2MH2

t30,2 P13,2

p2,1

p3,1

p4,1

L1

FH

RH

p2,2L2

p17 p19 p20
t26 t20 t13 tube assembly

t30

p1,1p1,1

p5,1p5,1

P13,1P13,1
t30,1t30,1

TT

MH1MH1

p5,2p5,2MH2MH2

t30,2t30,2 P13,2P13,2

p2,1p2,1

p3,1p3,1

p4,1p4,1

L1L1

FHFH

RHRH

p2,2p2,2L2L2

p17 p19 p20
t26 t20 t13 tube assembly

t30

Fig. 11. Example transformation of the transition t30 corresponding to the assembly
operation

Fig. 12. Ni marking at the second step in transforming to the product variation net

138 O. Gusikhin and E. Klampfl

presents the status of Ni at this stage. The next enabled transition is t26, and
so on. When the transformation process reaches the transition tc that represents
the consumption operation, we replace this transition with a set of transitions
representing the consumption of the specific product variants. Figure 13 shows
the final product variant net.

The size of the resulting product variation net depends on the product complex-
ity as it defined by the EBOM and the selected t-invariant. Although the number
of Petri net elements associated with component fabrications will be the same for
all product variation nets, the number of places and transitions associated with
intermediate subassemblies, in general, will be different for different t-invariants.
For example, the product variation net in Figure 13 is based on the t-invariant that
includes source transitions, sink transition, and t30, t26, t36, t20, t13 transtions, has
a total of sixteen places (7 associated with fabrication components, 3 associated
with 3 different finished products, and 6 associated with intermediate subassem-
blies). However, the product variation net based on the t-invariant that includes
the source transitions, sink transition, and t22, t16, t36, t13 has a total of fourteen
places because there are only 4 places associated with intermediate subassemblies.
The supply chain design implication is that the assembly process for the latter case
facilities postponement of product differentiation.

3.3 Supply Chain Configuration Net

This section describes the transformation from the product variation net to the
supply chain configuration net. We define the supply chain configuration net
graph as a 3-tuple N2 = (P 2, T 2,W 2), where

A

B

C

p1,1

p5,1

p13,1
t30,1

T

MH1

p5,2MH2

t30,2 p13,2

p2,1

p3,1

p4,1

L1

FH

RH

p2,2L2

p17,1 p19,1
t26,1 t20,1

p17,2 p19,2

t26,2
t20,2

p20,1t13,1

p20,2
t13,2

p20,3t13,3

AA

BB

CC

p1,1

p5,1

p13,1
t30,1

T

MH1

p5,2MH2

t30,2 p13,2

p2,1

p3,1

p4,1

L1

FH

RH

p2,2L2

p17,1 p19,1
t26,1 t20,1

p17,2 p19,2

t26,2
t20,2

p20,1t13,1

p20,2
t13,2

p20,3t13,3

p1,1p1,1

p5,1p5,1

p13,1p13,1
t30,1t30,1

TT

MH1MH1

p5,2p5,2MH2MH2

t30,2t30,2 p13,2p13,2

p2,1p2,1

p3,1p3,1

p4,1p4,1

L1L1

FHFH

RHRH

p2,2p2,2L2L2

p17,1p17,1 p19,1p19,1
t26,1t26,1 t20,1t20,1

p17,2p17,2 p19,2p19,2

t26,2
t20,2t20,2

p20,1p20,1t13,1t13,1

p20,2p20,2
t13,2

p20,3p20,3t13,3t13,3

Fig. 13. Final product variant net derived from Ni

Integrated Process Planning and Supply Chain Configuration 139

– P 2 is a finite set of places corresponding to a specific product component,
subassembly, or final assembly at the given supply chain site.

– T 2 = T M ∪ T T , where T M is a finite set that is composed of transitions
associated with manufacturing (fabrication, assembly, and consumption) op-
erations at a given supply chain site, and T T is a set of transitions associated
with transportation of the given component or subassembly between supply
chain sites.

– W 2 : (P 2 × T 2) ∪ (T 2 × P 2) → {0, 1} defines the set of directed arcs in the
net.

We implement the transformation from the product variation net to the sup-
ply chain configuration net by sequentially applying the two rules below. We
illustrate the application of these rules using Fig. 14, which shows an example
product variation net for two product variants.

P1,1

P2,1

P1,2

t1,1

t2,1

t4,1

t1,2

t4,2

P3,1

P3,2

t5,1

t5,2

P1,1

P2,1

P1,2

t1,1

t2,1

t4,1

t1,2

t4,2

P3,1

P3,2

t5,1

t5,2

Fig. 14. Example of a product variation net N1 for two product variants

– Rule 1: Replace each transition t1i,j in the product variation net N1 that cor-
responds to the given fabrication, assembly or consumption operation with
the subnets that correspond to the given operation at a specific fabrication
supplier f ∈ F , assembly supplier s ∈ S, or assembly plant a ∈ A: the in-
dex i refers to the transitions in the assembly, fabrication, and consumption
operations, and j refers to the specific variant of the component or sub-
assembly. Each of these subnets includes the new transition t2i,j,h together
with input and output places as defined for transition t1i,j in N1: the index
h refers to the specific manufacturing facility (i.e., fabrication or assembly
supplier). We use p2ω

k,l−i,j,h to denote the output place (ω = +) or input place
(ω = −) for the transition (i, j, h). The transition (i, j) in N1 corresponds
to a specific manufacturing operation, while (i, j, h) is the transition in N2

that corresponds to the assignment of this operation to a specific supplier or
assembly plant: the indices (k, l) refer to the corresponding place from N1.
Figure 15 illustrates the result of applying Rule 1 to the product variation
net in Fig. 14.

140 O. Gusikhin and E. Klampfl

p+
1,1-1,1,1

P2,1

P1,2

t1,1,1

t1,1,2

t4,1,1

t4,1,2

t4,2,1

p+
1,1-1,1,2

t2,1,1

t1,2,1

t5,1,1

t5,2,1

p+
2,1-2,1,1

P1,1

p+
1,2-1,2,1

p-
1,1-4,1,1

p-
2,1-4,1,1

p-
2,1-4,2,1

p+
3,1-4,1,1

p+
3,1-4,1,2

p+
3,2-4,2,1

P3,1

P3,2

p-
3,1-5,1,1

p-
3,1-5,1,2

p-
3,2-5,2,1

t5,1,2
p-

1,1-4,1,2

p-
2,1-4,1,2

p-
1,2-4,2,1

p+
1,1-1,1,1

P2,1

P1,2

t1,1,1

t1,1,2

t4,1,1

t4,1,2

t4,2,1

p+
1,1-1,1,2

t2,1,1

t1,2,1

t5,1,1

t5,2,1

p+
2,1-2,1,1

P1,1

p+
1,2-1,2,1

p-
1,1-4,1,1

p-
2,1-4,1,1

p-
2,1-4,2,1

p+
3,1-4,1,1

p+
3,1-4,1,2

p+
3,2-4,2,1

P3,1

P3,2

p-
3,1-5,1,1

p-
3,1-5,1,2

p-
3,2-5,2,1

t5,1,2
p-

1,1-4,1,2

p-
2,1-4,1,2

p-
1,2-4,2,1

Fig. 15. Demonstration of the transformation step of the product variation net by
replacing transitions corresponding to manufacturing operations with transitions cor-
responding to the assignment of these operations to specific facilities

– Rule 2: Iterate through the places in the set P 1 of N1: for each pk,l in N1,
create transitions linking each p2+

k,l−i,j,h to p2−
k,l−m,n,g in N2 for all (i, j, h) and

(m,n, g). Here, (i, j, h) refers to suppliers capable of performing assembly or
fabrication operations producing components or subassemblies correspond-
ing to transition t1i,j in N1, and (m,n, g) refers to the supply chain sites
(assembly plants or assembly suppliers) capable of performing operations
represented by t1m,n in N1. Figure 16 shows the final supply chain configu-
ration net.

3.4 Integer Program Supply Chain Configuration Formulation

In the previous section, we discussed how to generate the supply chain configu-
ration net for each individual assembly process. Recall that N2 = (P 2, T 2,W 2).
We define P 2

d ⊆ P 2 as the set of all input places for the transitions that corre-
spond to the consumption operations at a given assembly plant. Next, we define
the supply chain configuration net markings as follows:

– M : P 2 → N is the supply chain configuration net markings that represents
different parts at different supply chain sites.

– M0 : P 2 → {0} is the initial marking, which consists of all zeros.
– Md : (P 2

d → D) ∪ (P 2 \ P 2
d) → {0} is the target marking that associates the

demand of each assembly plant for the given product variant to the input
places of the transitions associated with assembly consumption, while the
rest of the places have zero marking.

In terms of Petri nets, the supply chain configuration problem consists of finding
the number of firings for each transition in our net that will change the state of

Integrated Process Planning and Supply Chain Configuration 141

p+
1,1-1,1,1t1,1,1

t1,1,2

t4,1,1

t4,1,2

t4,2,1

p+
1,1-1,1,2

t2,1,1

t1,2,1

t5,1,1

t5,2,1

p+
2,1-2,1,1

p+
1,2-1,2,1

p-
1,1-4,1,1

p-
2,1-4,1,1

p-
2,1-4,2,1

p+
3,1-4,1,1

p+
3,1-4,1,2

p+
3,2-4,2,1

p-
3,1-5,1,1

p-
3,1-5,1,2

p-
3,2-5,2,1

t5,1,2
p-

1,1-4,1,2

p-
2,1-4,1,2

p-
1,2-4,2,1

t1,1,1-4,1,1

t1,1,2-4,1,2

t1,1,2-4,1,1

t1,1,2-4,1,2

t2,1,1-4,1,2

t2,1,1-4,2,1

t2,1,1-4,21

t1,2,1-4,2,1

t4,1,1-5,1,1

t4,1,1-5,1,2

t4,1,2-5,1,1

t4,1,2-5,1,2

t4,2,1-5,2,1

p+
1,1-1,1,1t1,1,1

t1,1,2

t4,1,1

t4,1,2

t4,2,1

p+
1,1-1,1,2

t2,1,1

t1,2,1

t5,1,1

t5,2,1

p+
2,1-2,1,1

p+
1,2-1,2,1

p-
1,1-4,1,1

p-
2,1-4,1,1

p-
2,1-4,2,1

p+
3,1-4,1,1

p+
3,1-4,1,2

p+
3,2-4,2,1

p-
3,1-5,1,1

p-
3,1-5,1,2

p-
3,2-5,2,1

t5,1,2
p-

1,1-4,1,2

p-
2,1-4,1,2

p-
1,2-4,2,1

t1,1,1-4,1,1

t1,1,2-4,1,2

t1,1,2-4,1,1

t1,1,2-4,1,2

t2,1,1-4,1,2

t2,1,1-4,2,1

t2,1,1-4,21

t1,2,1-4,2,1

t4,1,1-5,1,1

t4,1,1-5,1,2

t4,1,2-5,1,1

t4,1,2-5,1,2

t4,2,1-5,2,1

Fig. 16. Final supply chain configuration net for the example in Figure 14

the net from an M0 marking to an Md marking. Using a Petri net linear algebra
representation, this problem can be formulated as

WT τ = μd − μ0, (1)

where W is the incidence matrix of N2, τ is a firing vector, and μd and μ0 are the
initial and target marking vectors, respectively, of the supply chain configuration
net. In general, the solution for τ is only a necessary condition of reachability
from μ0 to μd. However, our supply chain configuration net, N2, is acyclic be-
cause the net model represents the progressive stages of the product assembly. In
the case of an acyclic net, the solution to (1) is both necessary and sufficient [15].

We can easily augment this system of linear equations with the following
capacity constraints. The capacity load for a supplier can be represented by the
sum of all or a subset of the transition firings of the transitions corresponding
to the operations at the given supplier multiplied by the load factor associated
with this operation. Let L be a 0/1 ((σ + α)× | T 2 |) matrix representing the
supplier transition relationship, where

Lo,m =
{

lo,m if the transition τi represents the operation o at supplier m
0 otherwise

(2)
for every τi ∈ T 2, o ∈ O, and m ∈ S ∪ F . As a result, our supplier capacity
constraint is as follows:

Lτ ≤ qs ∀s ∈ S . (3)

Finally, we can assign the cost for each transition with the corresponding com-
ponent fabrication cost (cF

b), assembly operation (cA
os), and transportation costs

(cT
zs1,s2) to the cost vector, c. Note that all costs are piece costs for fabrica-

tion, subassembly, or transportation. They are constant inputs, resulting in a

142 O. Gusikhin and E. Klampfl

linear objective function. Costs for assembly or fabrication are typically pro-
vided by supplier quotes or can be estimated from historical costs of similar
parts and supplier profile. Transportation costs are derived based on distance
and transportation rates for a given pair of locations divided by the part quan-
tity per truck, which can be estimated using packaging tools (e.g. Design for
Density [16]).

The resulting integer linear program is as follows:

min
τ

cT τ (4)

subject to
WT τ = μd − μ0 (5)

Lτ ≤ qs ∀ s ∈ S (6)
τ ∈ N

The solution to this IP provides minimum cost supply chain configuration al-
ternatives for each process plan. Based on this initial minimum cost estimate,
we can filter a subset of the best solutions for further decision analysis: we can
use the generated Petri net models for the selected solutions to analyze other
parameters that may be involved in the decision making.

4 Summary

This paper discusses a Petri net methodology for modeling and analysis of inte-
grated process planning and supply chain configuration for assembly products.
This development was inspired by a need in the automotive industry for efficient
and effective tools to analyze and design supply chains for commodity assem-
blies; however, this methodology can be adopted for a wide variety of products
involving assembly operations.

In this paper, we discussed our modeling approach based on a Petri net tech-
niques. We started with a Petri net model representation of the assembly process
for a given product. All feasible assembly sequences can be obtained as the set
of minimal t-invariants of this net model. To ensure a single assembly sequence
for different product variants and paths, we iterated over all feasible assembly
sequences. Then, we take each individual t-invariant based subnet through a
set of stepwise transformations starting with the Petri net model representing
the product variation assembly net. Alternatively, this transformation could be
represented by a color Petri net: this is a common approach for concise represen-
tation of systems with multiple products. However, in our development, we used
one P/T net class because it simplified our software development process, and
the modeling process is carried out automatically. From the product variation
net, we transform to the detailed supply chain configuration model. Using an
algebraic linear representation for this Petri net, we directly formulate the IP:
the IP solution provides the minimal cost.

Integrated Process Planning and Supply Chain Configuration 143

Petri net representations provide the following substantial advantages:

1. a clear and concise representation of the assembly sequence search space;
2. analysis and generation of feasible assembly sequences through t-invariants;
3. the capability to refine the model from a generic assembly sequence to a de-

tailed supply chain configuration through a set of stepwise transformations;
4. an algebraic representation that automatically formulates the IP.

Furthermore, Petri net modeling provides us with a powerful analytical and
simulation framework for studying a multitude of additional parameters, such
as inventory, supply chain risk, or responsiveness.

This methodology has been incorporated into a decision support system that
analyzes supply chain commodity assemblies to assist material planning, logis-
tics, and purchasing. This system enables optimization analysis to be applied to
a broad number of commodity assemblies: only a handful of critical or complex
commodities can be analyzed in detail without an automated support system.
Leveraging Petri net techniques allowed us to reduce the modeling effort and
improve the interactive analysis capability.

References

1. Geunes, J., Pardalos, P.: Applied Optimizaiton 98, 265–305 (2005)
2. Rosell, J., Munoz, N., Gambin, A.: Robot Tasks sequence Planning using Petri

Nets. In: Proceedings of the 5th IEEE International Symposium on Assembly Task
Planning, Besancon, France, July 10-11, pp. 24–29 (2003)

3. Viswanadham, N., Ragavhan, N.: Performance analysis and design of supply chains:
a Petri net approach. J. Oper. Res. Soc., 1158–1169 (2000)

4. You, X., Zhang, L., Jiao, J.: Supply chain configuration modeling based on colored
Petri-nets. In: Proceedings of IEEE International Conference on Management of
Innovation and Technology, pp. 921–925 (2006)

5. Li, Y., Tang, D., Hu, S., Chen, Y.: Route Choice to Supply Chain Based on Petri
Net. In: Proceedings of the 6th World Congress on Intelligent Control and Au-
tomation, Dalian, China, June 21-23, pp. 6836–6839 (2006)

6. Zimmermann, A., Knoke, M., Yee, S., Tew, J.: Model-Based Performance Engi-
neering of General Motors’ Vehicle Supply Chain. In: IEEE Int. Conf. on Systems,
Man and Cybernetics, Montreal, October 2007, pp. 1415–1420 (2007)

7. Kanehara, T., Suzuki, T., Inaba, A., Okuma, S.: On Algebraic and Graph Struc-
tural Properties of Assembly Petri Nets. In: Proceedings of 1993 Int’l. Conf. on
Intelligent Robotics and Systems, pp. 2286–2293 (1993)

8. Caselli, S., Zanichelli, F.: On Assembly Sequence Planning using Petri Nets. In:
Proceeding of the IEEE International Symposium on Assembly and Task Planning,
pp. 239–244 (1995)

9. Urbášek, M.: Modeling Petri Net Based Systems by Net Transformations: New De-
velopments. Electronic Notes in Theoretical Computer Science 82(7), 16–33 (2003)

10. de Mello, L., Sanderson, A.: A Correct and Complete Algorithm for the Generation
of Mechanical Assembly Sequences. IEEE Transactions on Robotics and Automa-
tion 7(2), 228–240 (1991)

144 O. Gusikhin and E. Klampfl

11. Cao, T., Sanderson, A.: AND/OR Net Representation for Robotic Task Sequence
Planning. IEEE Transactions on Systems, Man, and Cybernetics–Part C: Appli-
cations and Reviews 28(2), 204–218 (1998)

12. IBM ILOG CPLEX (2010),
http://www-01.ibm.com/software/integration/optimization/cplex/

13. Martinez, J., Silva, M.: A Simple and Fast Algorithm to Obtain All Invariants of
a Generalized Petri Nets. In: Application and Theory of Petri Nets, Informatik-
Fachberichte, vol. 52, pp. 301–310. Springer, Berlin (1982)

14. Gusikhin, O., Kulinitch, A.: Animated AI-Based Simulation in Production Schedul-
ing. In: Metzgar, I., Bertok, P. (eds.) IFIP Transactions on Knowledge Based Hy-
brid Systems, pp. 165–177. North-Holland, Amsterdam (1993)

15. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

16. Filev, O., Devarajan, V., Angotti, S., Taverna, J.: System and Method of Interac-
tively Optimizing Shipping Density For a Container. Patent application number:
20090299790 (2009)

17. Weber, M., Kindler, E.: The Petri Net Kernel. In: Ehrig, H., Reisig, W., Rozenberg,
G., Weber, H. (eds.) Petri Net Technology for Communication-Based Systems.
LNCS, vol. 2472, pp. 109–124. Springer, Heidelberg (2003)

http://www-01.ibm.com/software/integration/optimization/cplex/

The NEO Protocol for Large-Scale Distributed Database
Systems: Modelling and Initial Verification�

Christine Choppy1, Anna Dedova1, Sami Evangelista1, Silien Hong2,
Kais Klai1, and Laure Petrucci1

1 LIPN — Laboratoire d’Informatique de l’Université Paris Nord
99, av. J-B Clément, 93430 Villetaneuse, France
{firstname.lastname}@lipn.univ-paris13.fr

2 LIP6 — Laboratoire d’Informatique de Paris 6
104 av. du Pdt Kennedy, 75016 Paris, France

silien.hong@lip6.fr

Abstract. This paper presents the modelling process and first analysis results
carried out within the NEOPPOD project. A protocol, NEO, has been designed
in order to manage very large distributed databases such as those used for bank-
ing and e-government applications, and thus to handle sensitive data. Security of
data is therefore a critical issue that must be ensured before the software can be
released on the market.

Our project aims at verifying essential properties of the protocol so as to guar-
antee such properties are satisfied. The model was designed by reverse-engineering
from the source code, and then initial verification was performed. This modelling
work requires choices of adequate abstraction levels both at the modelling and ver-
ification stages. In particular, the overall system is so large that the model should
be carefully built in order to make verification possible without getting too far
from the actual protocol implementation. This paper focuses on the modelling
and initial validation of the election process launched at the system initialisation.

1 Introduction

The evolution of nowadays systems is characterised by an increasing complexity and
an increasingly critical role. E-government, banks, internet information systems, com-
merce registries, . . . Computers play an essential and growing role in these sensitive
sectors and must access and maintain huge databases. In these activities, where the
slightest defect may lead to a disaster, safety is paramount. They are characterised not
only by the huge amount of data they manipulate, but also by a mandatory high level
of security and reliability. The development of such applications is a complex problem
which requires to elaborate reliable and safe distributed database management soft-
ware. Thus, it is advisable to use formal description techniques to clearly specify the
behaviour of the considered applications. It is also recommended to have automatic or
semi-automatic verification tools to validate these applications.

ZODB, the Zope Object Database [4], has become within a few years the most used
object database. This free software, associated with the Zope application server is used

� This work is supported by FEDER Île-de-France/ System@tic—libre software.

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 145–164, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

146 C. Choppy et al.

for a Central Bank, to manage the monetary system of 80 million people in 8 coun-
tries [7]. It is also used for accounting, ERP, CRM, ECM and knowledge management.
It is now a major free software as PHP or MySQL is.

However, the current Zope architecture does not yet handle data as huge as those
mentioned above. In order to attain such performances, the architecture had to be revis-
ited. It led to the design of an original peer-to-peer transaction protocol named NEO.
This protocol must also ensure both safety and reliability, which is not easy to achieve
for distributed systems using traditional testing techniques.

The aim of our work is to formally design and check the safety and the reliability
of the NEO protocol. Designing an appropriate specification is a first challenge. Start-
ing from the protocol description, a reverse-engineering process allows for extracting
step-by-step a corresponding symmetric Petri net model [6]. Since the original program
description is very large and well structured, it is mapped to a modular and hierarchical
specification. However, in order to mimic different configurations of the cluster archi-
tecture deployed, as well as the different roles of the servers involved, w.r.t. the protocol
operation, the model must also be highly parametrised. Regarding the verification step,
two main problems arise: which properties of the protocol should be checked and are
existing model checking approaches efficient enough?

In this project, we are interested in some critical properties of (a part of) the protocol,
such as data consistency, fault recovery, detection of bottlenecks. The verification is then
ensured using dedicated techniques (with CPN-AMI platform [2]) taking advantage of
the characteristics of distributed systems. We experimented several tools exploiting a
variety of reduction paradigms like modularity, symbolic representation (i.e. decision
diagrams) and parametrisation in order to tackle the well-known state explosion prob-
lem. In fact, the NEO protocol is expected to handle clusters of 100 to 10,000 nodes,
most of them being dedicated to storage. Therefore, safety and reliability are critical
issues and explicit state space techniques have no chance to overcome the explosion of
the state space.

This paper is organised as follows. In Section 2 we describe the general functioning
of the NEO protocol, and in Section 3 our modelling approach from the code. Our
model of the key feature of the NEO protocol, the election protocol, is presented in
Section 4 in some detail, including the modelling of a crash, and of exception handling.
A preliminary analysis of the desired properties is explained in Section 5, before a
conclusion and some perspectives of this work in Section 6.

2 The NEO Protocol

The general context of the NEO protocol was described in [5], and recalled in Section 1.
This section informally describes the general functioning of the protocol.

Different kinds of nodes play dedicated roles in the protocol, as depicted by the
architecture on Figure 1:

– storage nodes handle the database itself. Since the database is distributed, each
storage node cares for a part of the database, according to a partition table. To
avoid data loss in case of a node failure, data is duplicated, and is thus handled by
at least two storage nodes.

The NEO Protocol for Large-Scale Distributed Database Systems 147

– master nodes handle the transactions requested by the client nodes and forward
them to the appropriate storage nodes. A distinguished master node, called primary
master handles the operations while the secondary masters (i.e. the other master
nodes) are ready to become primary master in case of a failure of this node. They
also inform the other nodes of the identity of the primary master (light grey arrows
in Figure 1).

– the administration node is used for manual setup when necessary (dashed arrow
in Figure 1).

– client nodes correspond to the machines running applications concerned with the
database objects. They thus request either read or write operations. They first ask
the primary master which storage nodes are concerned with their data, and can then
contact them directly.

Secondary Masters

Primary Master

Administration Node

Client Nodes Storage Nodes

Fig. 1. The NEO-protocol topology

This repartition of roles raises several is-
sues. The physical architecture is highly recon-
figurable: nodes can fail and become unavailable,
they can restart or new nodes can be added. In all
cases a new configuration is computed.

First, the primary master is elected among all
master nodes. The election part of the protocol is
the main focus of this paper. Even though elec-
tion algorithms are well-known, a complex elec-
tion mechanism has been designed as part of the
NEO protocol so as to handle node failures or ar-
rival of new nodes during the election process.

The primary master node maintains the key in-
formation for the protocol to operate:

– the partition table indicates which parts of the database are assigned to the differ-
ent storage nodes. This allows for duplication which is vital in case of a crash. It
can be updated dynamically when new nodes join the system or nodes crash. The
total number of partitions is fixed when the system starts. The partition table, al-
though maintained by the primary master, is duplicated on all nodes for recovery
purposes after a system crash.

– the last transaction identifier is used after a system failure to recover a consistent
database configuration.

After the election of a primary master, a verification phase takes place, checking
that all transactions were completely processed, and thus that the database is consistent
across the different storage nodes.

Finally, the system enters its operational state, where requests from the clients are
processed.

3 The Modelling Approach

When the project started, only a prototype version of the protocol was available and no
associated RFC (Request For Comments) existed. Therefore, the model we developed
relies on the sole implementation.

148 C. Choppy et al.

3.1 Reverse-Engineering

Since the source code of the prototype implementation was the starting point, the mod-
elling task followed a reverse-engineering approach.

The source code is now available as free software, under a GPL license. It consists in
24,200 lines of Python code. The source code follows good programming practices: the
code is structured in different files, each of them having a particular concern, e.g. a type
of node. The code inside each file contains a few comments giving a description of what
the methods are supposed to achieve, with highlights on potential subtleties. Finally, the
function, object and variable names are explicit enough to ease the comprehension of
the program.

The reverse-engineering approach to the Petri net model construction sticks to the
program structure. This allows for:

– focusing on specific parts of the protocol;
– building a structured model, which is a key issue for verification purposes;
– an easy mapping between protocol code and Petri net model, which is necessary

when verification results in undesired behaviour;
– a clear separation of concerns between the stakeholders.

Section 4 describes the model of the election part of the NEO protocol, including
pieces of code and the associated Petri nets (see e.g. Figure 6).

Note that, during the model construction, the code evolved from a prototype im-
plementation to a more robust, distributable version. Some rather important changes
hampered our modelling process since a few design choices were revisited. To avoid
such problems, we propose in Section 6, code tagging to track changes.

3.2 Abstraction Levels

Choosing adequate levels of abstraction is a key issue. First, it is necessary to select
which data structures should be modelled, and which should not. In the NEO protocol,
the nodes exchange a lot of messages. Although it is obvious that the actual data to
be stored in the database should not be modelled, it is not always the case for other
kinds of information contained in messages, such as the partition tables. These can
be exchanged for update purposes, and such messages are important. Modelling these
kinds of message easily results in state space explosion.

Second, the analysis of the protocol is conducted in several stages: we start by check-
ing that the system without faults behaves as expected ; then faults are introduced to
check the recovery procedures after a node failure. Of course, there again, it is neces-
sary to identify the relevant phases of the protocol for the fault to occur. If a failure is
considered to be susceptible to happen anytime, we face state space explosion without
gaining additional relevant behaviour.

The choices of abstraction levels are illustrated for the election of primary master
part of the protocol, in Section 4. Moreover, Section 4.4 details the addition of faults
handling to the model.

The NEO Protocol for Large-Scale Distributed Database Systems 149

4 The Election Protocol Model

The election protocol is a key feature of the NEO system. It is triggered at the bootstrap
of the cluster in order to designate among all master nodes a primary master. This one
will play a central role in subsequent steps of the NEO protocol since it will process
requests of clients to access data kept on the storage nodes. After the election, all other
masters become secondary masters. Their role is only to be ready to replace the primary
master in case it crashes. A primary master failure is immediately followed by a new
election launched by the secondary master that first detects this failure.

Due to the critical aspect of this component, we developed a detailed model of the
election phase in order to be able to simulate it and perform state space analysis. Since
the protocol is designed to be (to some extent) fault tolerant we first focused on the ideal
scenario where no fault (e.g. a master node failure, a connection loss) can occur.

Although the code of the election protocol is relatively small (around 400 lines of
Python code) it turned out to be a tedious task to extract a Petri net model from it. Many
high-level data structures are maintained by master nodes for synchronisation issues
and a manual slicing step could only remove a small fraction of the code. Therefore,
we had to make various abstractions with the primary motivation of obtaining a model
amenable to state space analysis.

The Coloane environment [1] was used for modelling. It was chosen for its graphical
interface, its analysis facilities using various platforms, e.g., CPN-AMI [2], and Prod
[14], and its independence with respect to the underlying formalism for reasons stated
in Section 4.5.

4.1 Overview of the Election Protocol and Its Implementation

The goal of the election is to select among all alive masters the one with the greatest
uuid, a unique identifier chosen randomly by each node at its startup.

The election proceeds in two steps: a negotiation step performed by a master node
to discover if it is the primary master or not; followed by an announcement step during
which all masters discover the identity of the primary master and check for its liveness.

Initially, a master node only knows the network addresses (IP address + port number)
of its peers provided to it through a configuration file. During the negotiation step it
will learn the uuids of all its peers. First it asks the other nodes if they know a primary
master by broadcasting an AskPrim message. Other masters answer with an AnswerPrim
message possibly containing the uuid and the network address of the elected primary
master. The purpose of this first exchange is mainly related to fault tolerance as will
be highlighted by the example below. Upon reception of the AnswerPrim message, the
master asks its peer its uuid by sending a RequestId message to it. The answer to this
message is an AcceptId containing the uuid of the contacted node. This process ends
when the master has negotiated with all other master nodes, i.e., it knows the uuid of
all its peers. A master node which did not receive any AcceptId message with an uuid
greater than its own knows it is itself the primary master.

Note that, although a master may know the identity of the primary before the end of
this step (i.e., if it received an AnswerPrim containing the uuid of the primary master)
it will still contact other masters. Indeed, the purpose of the election protocol is not

150 C. Choppy et al.

only to negotiate on the identity of a primary master but also to exchange data that are
required for subsequent stages of the protocol.

During the announcement step, the primary master announces to its peers that it is
actually the primary master by broadcasting an AnnouncePrim message containing its
uuid. Secondary masters wait for this message that they interpret as a confirmation of
the existence of an alive primary master. All masters can then exit the election protocol.
The cluster is operational and ready to process client requests.

A message of type ReelectPrim may also be sent by a master if it detects a problem
during the election, e.g., two primary masters have been designated. Upon its reception,
a master will cancel its current work, and restart the election process from the beginning.
In a faultless scenario this situation should however not occur.

Figure 2 is a message sequence chart describing a typical election scenario. We
only depicted the message exchanges from the perspective of master M2 which will
be elected as the primary master. Masters M1 and M3 naturally also have to ask for the
same information. In the first exchange M2 asks M1 and M3 if they know a primary
master (messages AskPrim). Since all masters are executing the protocol, the primary
is not yet designated and they answer to M2 with a AnswerPrim(nil) message. M2 then

Master M1
uuid = 132

Master M2
uuid = 897

Master M3
uuid = 657

AnswerPrim(nil)

RequestId

AcceptId(132)

AnnouncePrim(897)

AskPrim

AnswerPrim(nil)

RequestId

AcceptId(657)

AnnouncePrim(897)

AskPrim

AskPrim
AskPrim

AnswerPrim(M2,897)

AnswerPrim(M2,897)

Fig. 2. Message sequence chart describing an elec-
tion scenario followed by a crash and reboot of
master M1

requests from M1 and M3 their uuid
(messages RequestId) which are sent
back in messages AcceptId. Upon re-
ception of these two messages, M2
knows it is itself the primary since all
uuids requested are smaller than its
uuid. It can then announce its election
to M1 and M3 using an AnnouncePrim
message. Later on, master M1 crashes.
After its reboot, it asks M2 and M3 if
they know a primary. They both reply
that M2 is the master with uuid 897.

This example highlights the fact that
entering the election phase is a local
decision made by a master at its startup
or if it detects the primary crash (or if
it loses its connection to it). Thus some
master(s) may be in election mode
while others are executing the normal
protocol.

The electPrimary method of Figure 3 implements the election algorithm1. It basically
consists of four parts: the initialisation of some data structures used in the election
process (ll. 2–11); the negotiation part (ll. 12–15); and the code executed by the primary
master (ll. 16–21) and by secondary masters (ll. 22–24) as soon as they know their roles.

Among initialised data structures we notice an event manager em (l. 6) used to poll
the network, a boolean primary specifying if the node is the primary master (l. 7) and,

1 As mentioned above, we dealt with 400 lines of Python code which we do not entirely provide
here due to space constraints.

The NEO Protocol for Large-Scale Distributed Database Systems 151

1 def e l e c t P r i m a r y (s e l f) :
2 s e l f . u n c o n n e c t e d = s e t ()
3 s e l f . n e g o t i a t i n g = s e t ()
4 s e l f . l i s t e n i n g c o n n . s e t H a n d l e r (e l e c t i o n .

S e r v e r E l e c t i o n H a n d l e r (s e l f))
5 c l i e n t h a n d l e r = C l i e n t E l e c t i o n H a n d l e r (s e l f)
6 em = s e l f . em
7 s e l f . p r i m a r y = None
8 s e l f . p r i m a r y m a s t e r = None
9 f o r node in node . nm . g e t M a s t e r L i s t () :

10 i f node . i s R u n n i n g () :
11 s e l f . u n c o n n e c t e d . add (node . g e t A d d r e s s ())
12 whi le l e n (s e l f . u n c o n n e c t e d) + l e n (s e l f . n e g o t i a t i n g)>0:

13 f o r add r in l i s t (s e l f . u n c o n n e c t e d) :
14 C l i e n t C o n n e c t i o n (em , c l i e n t h a n d l e r , a dd r =addr ,

c o n n e c t o r h a n d l e r = s e l f . c o n n e c t o r h a n d l e r)
15 em . p o l l ()
16 i f s e l f . p r i m a r y i s None :
17 s e l f . p r i m a r y = True
18 f o r conn in em . g e t C l i e n t L i s t () :
19 conn . n o t i f y (AnnouncePrimary ())
20 whi le em . g e t C l i e n t L i s t () :
21 em . p o l l ()
22 e l s e :
23 whi le s e l f . p r i m a r y m a s t e r i s None :
24 em . p o l l ()

Fig. 3. The electPrimary method of the Master class

otherwise, the network address of the primary (primary master, l. 8). In addition, two
sets identify all masters the node is not connected to and has to do so (unconnected, l. 2)
or is negotiating with (negotiating, l. 3). The termination of the negotiation step (l. 12)
is conditioned by the emptiness of these two sets: at that point, the node has contacted
all its peers and received all their uuids. To have a better understanding of the contents
of these sets, it seems necessary to mention the different events that have an impact on
these two sets (the corresponding code of these events is not fully shown in this paper):

– initially ⇒ m puts in the unconnected set all masters it considers as alive (ll. 9–11
of method electPrimary).

– connection (attempted at ll. 13–14 of method electPrimary) of m is accepted by n
⇒ m moves n from set unconnected to set negotiating.

– m receives an AcceptId message from n ⇒ m discards n from set negotiating.
– m detects the crash of master n ⇒ m automatically deletes n from both sets.

The negotiation is done by repeatedly attempting to connect other master nodes to send
them an AskPrim message (ll. 13–14); and handling received messages (l. 15).

Once the negotiation is finished, self.primary is still equal to None if the master did
not receive any AcceptId message with a greater uuid and the node knows it is the pri-
mary master. It broadcasts an AnnouncePrim message to its peers (ll. 18–19) and keeps
treating requests of other masters until all are aware of its existence (ll. 20–21). Other-
wise, if the node is a secondary master, it keeps polling the network until it receives the
announcement of the primary (ll. 23–24) and then disconnects itself from the primary
master (not shown on the figure).

4.2 Model Architecture

The model consists of 18 modules, each of them modelling a specific part of the code.
Among them, the most important ones are the three modules listed below.

electPrimary models the method of Figure 3 implementing the election protocol.
poll models the polling method used to wait for and handle incoming packets.
electionFailure models the handling of an exception raised when some synchronisa-

tion fault is detected. The election process ends and the masters start a new election.

Modules are dependent and composed using two classical rules [11]: place fusion
that merges two instances of the same homonym place; and transition substitution that
refines a meta-transition via its replacement by a subnet modelling the details of the

152 C. Choppy et al.

transition. Such subnets always have two specific transitions start and end correspond-
ing to the start and the end of the activity.

In all figures meta-transitions appear in red (see transitions in Figures 5(b), 7(a)
— except for transition die, and 8(b)). Guards are put in small notes linked to the the
corresponding transition (see Figure 6). Finally, some arc labels, markings or guards are
dependent on the parameters of our model although they are automatically generated
by a pre-processing of the net. The number of masters was set to 2 in the configuration
used for this paper. Lastly, places are coloured in such a way that all instances of the
same place have the same colour.

A composition tool has been developed within this project that can assemble several
modules through different transformations including the two mentioned above. From
several modules and a composition file describing how to combine these, this tool pro-
duces a single net resulting from the composition.

An example of composition file can be seen on Figure 4. A composition file consists
of a series of net definitions, the resulting net being the last one defined. Other nets are
only used to ease the definition of the final one. The figure only depicts the definition
of the electPrimary net that can be seen on Figure 7(a). The first step is to define the
subnets that will be used to define the net (ll. 4–23). A subnet can be loaded from a file
(tag fromFile) or from a previously defined net (tag fromNet). Following these subnet
definitions, we have the list of operations performed to produce the net (ll. 24–38).
The first operation substitutes the meta-transition poll of net electPrimary by its subnet
poll loaded at l. 6 from a previously defined net. The tool is also flexible in that all
operations can be conditioned by the definition (or non-definition) of some symbol(s).
Here, we can see that transitions crash and primCrash modelling the crash of a master
are removed from the net if the symbol faults is not defined (l. 29 and l. 33) when the tool
is invoked. The last operation performed (l. 38) fuses all places sharing the same name.
It is specified that initial markings of instances are composed using the sum operator.
Other possibilities are available: min, max, etc.

Note that the tool is quite generic except for the fuseHomonymPlaces operation
which requires to know how the fusion should operate. Hence, the tool is largely in-
dependent on the type of coloured nets.

1 <netComposit ion>
2 <!−− d e f i n i t i o n o f some n e t s −−>
3 <d e f i n e N e t id =” e l e c t P r i m a r y”>
4 <subNet id =” e l e c t P r i m a r y”>
5 <fromFile>e l e c t P r i m . model</fromFile></subNet>
6 <subNet id =” p o l l”>
7 <fromNet>p o l l </fromNet></subNet>
8 <subNet id =” s e c P o l l”>
9 <fromNet>s e c p o l l </fromNet></subNet>

10 <subNet id =” p r i m P o l l”>
11 <fromNet>p r i m p o l l </fromNet></subNet>
12 <subNet id =” sendAnnPs”>
13 <fromFile>sendAnnPs . model</fromFile></subNet>
14 <subNet id =” sendAskPs”>
15 <fromFile>sendAskPs . model</fromFile></subNet>
16 <subNet id =” e l e c t i o n F a i l u r e ” i f d e f =” f a u l t s”>
17 <fromNet>e l e c t i o n F a i l u r e </fromNet></subNet>
18 <subNet id =” c r a s h ” i f d e f =” f a u l t s”>
19 <fromNet>c r a s h </fromNet></subNet>
20 <subNet id =” pr imCrash ” i f d e f =” f a u l t s”>

21 <fromNet>c r a s h </fromNet></subNet>
22 <subNet id =” r e b o o t ” i f d e f =” f a u l t s”>
23 <fromNet>r e b o o t </fromNet></subNet>
24 <s u b s t i t u t e T r a n s>
25 <net>e l e c t P r i m a r y </net>
26 <trans>p o l l </trans>
27 <subNet>p o l l </subNet>
28 </s u b s t i t u t e T r a n s>
29 <d e l e t e T r a n s i f n d e f =” f a u l t s”>
30 <net>e l e c t P r i m a r y </net>
31 <trans>c r a s h </trans>
32 </de le teTrans>
33 <d e l e t e T r a n s i f n d e f =” f a u l t s”>
34 <net>e l e c t P r i m a r y </net>
35 <trans>pr imCrash </trans>
36 </de le teTrans>
37 <!−− s u b s t i t u t e o t h e r meta− t r a n s i t i o n s −−>
38 <fuseHomonymPlaces method=”sum”/>
39 </def ineNet>
40 </netComposit ion>

Fig. 4. Part of the composition file for the net of Figure 7(a)

The NEO Protocol for Large-Scale Distributed Database Systems 153

4.3 Detailed Specification of Some Key Elements

General Declarations. Figure 5(a) introduces the main colour classes we have used
during the modelling of the election protocol and some places that are shared by all
modules of our net. Class M ranging from 0 to MN (the number of master nodes) is used
to identify masters with constant 0 specifying a null value2.

Message types are defined by the MSG TYPE class. Finally, items of class NEG
specify the state of a negotiation between a master m and one of its peers p:

NONE ⇔ p has not been contacted, i.e., p ∈ m.unconnected.
CO ⇔ m has contacted p and is waiting for its uuid, i.e., p ∈ m.negotiating.

DONE ⇔ m knows the uuid of p, i.e., p /∈ m.negotiating ∪ m.unconnected.

Place masterState models the current knowledge that any master m has of the pri-
mary master. An invariant property states that for any m ∈ 1..MN there is a unique token
〈m,iam,pm〉 in this place. Thus:

iam = F ∧ pm = 0 ⇔ m is a secondary master and does not know the primary.
iam = F ∧ pm
= 0 ⇔ m is a secondary master and thinks pm is the primary.
iam = T ∧ pm = m ⇔ m is the primary master.
iam = T ∧ pm = 0 ⇔ m is maybe the primary master but is still negotiating.

Tokens in place negotiation specify the content of sets unconnected and negotiating
of all masters. For any pair of master (m,n) with m
= n, there is always a unique to-
ken 〈m,n,neg〉 that specifies the current status of the negotiation between m and n as
specified above in the description of class NEG.

For each message sent and not treated yet there is a token 〈r,s,t,d〉 in place network
with r the receiver, s the sender, t (of type MSG TYPE) the type of the message, and d
the uuid encapsulated in the message (meaningful only if t = AnsP).

Lastly, places electionInit (marked with Σm∈{1..MN}〈m〉), electedPrimary and elected-
Secondary model different stages of the electPrimary method: start of the negotiation
(l. 12), start of the election in “primary mode” (l. 16) or in “secondary mode” (l. 22).

Main Net Modelling the electPrimary method. The net of Figure 5(b) is a high-
level view of the electPrimary method. Red transitions are meta-transitions to be later
substituted by the appropriate net modelling the details of the transitions. The subnet
on the left-hand side of the figure models the negotiation process with the broadcast
of AskPrim messages (transition sendAskPs) and the network polling (transition poll).
Since we do not consider faults for now, the sendAskPs transition is not in a loop with
transition poll: it is useless to retry a connection that can be made at the first attempt. As
soon as a master m knows it is a secondary master a token 〈m〉 is present in place elect-
edSecondary. It then keeps polling the network (transition secPoll) until it knows the
identity of the primary master. The subnet on the right-hand side models the behaviour
of the primary master. Message announcePrim is broadcasted (transition sendAnnPs)
and then the primary master keeps processing the messages received (transition prim-
Poll). Note that we do not model here the exit of method electPrimary since messages

2 Note that we do not distinguish in our model the uuid from the network address. It may how-
ever be worth modelling, in a future version, situations where a master reboots and is assigned
a greater new uuid, as it may impact on the current election process.

154 C. Choppy et al.

1 parameter
2 MN = 2 ;
3 c l a s s
4 BOOL i s [F , T] ;
5 M i s 0 . . MN;
6 MSG TYPE i s [AskP , AnsP , RI , AI , AnnP , RP] ;
7 NEG i s [NONE, CO, DONE] ;

(a) Colour classes and places shared by all modules.

(b) Main net modelling the method of Figure 3. (c) Model of the poll method.

(d) Master m has negotiated with all other masters and can decide of its role.

Fig. 5. The election protocol model

sent during this election phase may be handled during a call to the poll function made
once the server master has exited the method.

A key element of the election algorithm is the poll method called by masters to han-
dle messages received from the network. This method is called with an event manager
that is attached several handlers — one for each message type — and only handles
a single packet at each call by invoking the appropriate handler. It is modelled by an
input transition start putting a token in place pollStart. This place is then merged with
homonym places in the handler nets of Figure 6. A token 〈m〉 is present in place pollEnd
if master m has finished processing a message. It can then exit the method (transition
end). Specifically for the case of meta-transition poll, we also include in its subnet the
nodes of Figure 5(d). These model the exit condition of the negotiation step. The ne-
gotiation is over for master m if it is not negotiating anymore with any other master:
there must not be any token 〈m,n,neg〉 with neg
= DONE in place negotiation. Depend-
ing on the content of place masterState, the token 〈m〉 in pollStart will move to place
electedPrimary or electedSecondary — both fused with their homonym places of net
electPrimary (Figure 5(b)). If m has not received an AcceptId with an uuid greater than
its own (see the corresponding handler in Figure 6), then a token 〈m,T,0〉 is still present
in place masterState and changed to 〈m,T,m〉 since m learns it is the primary master
(transition iAmPrimary). Otherwise, masterState is marked with token 〈m,F,pm〉 and m
knows it is a secondary master (transition iAmSecondary).

The NEO Protocol for Large-Scale Distributed Database Systems 155

Message Handlers. Nets modelling message handlers are presented in Figure 6 along
with the corresponding Python code. These nets follow the same general pattern. Their
transitions model the reception and handling of messages by removing one token from
place network (the message received) and moving one token 〈m〉 (the identity of the
receiving master) from place pollStart to place pollEnd, hence specifying the message
has been treated and the master can exit the poll function (see the net of Figure 5(c)).
The variable s of each transition identifies the sender of the message. Alternatively, the
master token can be put in place electionFailed if the processing of the message raises
the ElectionFailure exception.

Handlers of types RequestId and AskPrim are rather straightforward. Therefore, we
have chosen to focus on types AnswerPrim, AcceptId and AnnouncePrim.

For messages of type AnswerPrim (Figure 6(a)) we distinguish three cases.

– The peer s does not know any primary master (transition handleAnsP1). Local data
are not changed by master m that replies to master s with a RequestId message (arc
from handleAnsP1 to network).

– Transition handleAnsP2 is fired if s knows a primary (p<>0) and m does not know
any or knows the same one (pm=0 or pm=p). The local data of m held in place
masterState is updated and, once again, m replies to s with a RequestId message.

– At last, an ElectionFailure exception (ll. 6–9) is raised if m and s both know a
different primary master. This is modelled by transition handleAnsP3.

At the reception of an AcceptId message (Figure 6(b)), master m ignores the message
if the enclosed uuid s is smaller than its uuid (transition handleAI1) or, if s>m (transi-
tion handleAI2), updates its local data by setting its primary field to False (ll. 8–9). In
both cases, the content of place negotiation is changed to specify that m has finished
negotiating with s: s is removed from the negotiating set of m (ll. 10–11). This will
possibly trigger the exit by master m from the negotiation phase and enable one of the
two transitions of the net of Figure 5(d).

Finally, a message of type AnnouncePrim can be handled in two ways (Figure 6(c))
depending on the local data of the receiver m:

– m does not think it is the primary master. It thus accepts the sender s as the primary
master and updates its local data: the token 〈m,iam,pm〉 becomes 〈m,F,s〉.

– m also considers itself as the primary master (ll. 7–8 modelled by transition han-
dleAnnP2) and thus raises exception ElectionFailure.

We mentioned that some synchronisation problems trigger the raise of exception
ElectionFailure caught in the body of the electPrimary method. One of the requirements
of the protocol is that, in the absence of faults, this exception is not raised. Therefore, in
that first modelling step, we left out the handling of this exception and verified through
state space analysis that this exception may not be raised.

4.4 Injecting Faults in the Model

Up to now, we only considered in our models the ideal situation where no malfunction
may occur. Since the NEO system is intended to tolerate faults it is a primary concern

156 C. Choppy et al.

1 def an swerPr i mary (s e l f ,
2 conn , p ack et , p r i m a r y u u i d ,
3 k n o w n m a s t e r l i s t) :
4 app = s e l f . app
5 i f p r i m a r y u u i d i s not None :
6 i f app . p r i mary i s not None and \
7 app . p r i m a r y m a s t e r . getUUID () != \
8 p r i m a r y u u i d :
9 r a i s e E l e c t i o n F a i l u r e

10 app . p r i mary = F a l s e
11 app . p r i m a r y m a s t e r = \
12 app . nm . getByUUID (p r i m a r y u u i d)
13 conn . ask (R e q u e s t I d e n t i f i c a t i o n (
14 NodeTypes . MASTER,
15 app . uuid ,
16 app . s e r v e r ,
17 app . name))

(a) Handler for message type AnswerPrim.

1 def a c c e p t I d e n t i f i c a t i o n (s e l f ,
2 conn , p ack et , n o d e t y p e ,
3 uuid , a d d r e s s , n u m p a r t i t i o n s ,
4 n u m r e p l i c a s , y o u r u u i d) :
5 app = s e l f . app
6 # e r r o r management
7 # . . .
8 i f app . u u i d < u u i d :
9 app . p r i mary = F a l s e

10 app . n e g o t i a t i n g \
11 . d i s c a r d (conn . g e t A d d r e s s ())

(b) Handler for message type AcceptId.

1 def an n o u n cePr i mar y (
2 s e l f , conn , p a c k e t) :
3 u u i d = conn . getUUID ()
4 # e r r o r management
5 # . . .
6 app = s e l f . app
7 i f app . p r i mary :
8 r a i s e E l e c t i o n F a i l u r e
9 node = app . nm . getByUUID (u u i d)

10 app . p r i mary = F a l s e
11 app . p r i m a r y m a s t e r = node

(c) Handler for message type AnnouncePrim.

Fig. 6. Message handlers and their respective models

to enhance our models in order to analyse such scenarios. This injection of faults in
the model raises several issues. First, we have to define the nature of the faults we are
interested in. Both for modelling and state explosion issues we need to focus on some
specific kinds of faults. Second, we must — for the same reasons — abstract the way
these faults may occur. If we choose, for instance, to model packet losses, this means
focusing on the loss of some specific “strategic” packets, even if any packet may be lost.
Last, starting from the faults we choose to model we need to reinvestigate the election
program in order to determine which pieces of code that were abstracted away in our
first modelling step now need to be considered.

It appeared, during several meetings with the system designers, that the system
should be able to recover from the crash of a master. The election protocol should
also tolerate other types of faults, e.g., the loss of message, but since most of these are
directly handled by lower level layers, they were not considered here. We then decided
to restrain the occurrence of such events to two specific situations: the beginning of the
election (when any master may be “allowed” to crash), and when a master learns it is
the primary master, i.e., when transition iAmPrimary of the net of Figure 5(d) is fired.

The NEO Protocol for Large-Scale Distributed Database Systems 157

The first scenario is the most realistic one: in most cases, the election begins precisely
because of a primary master failure. The second one is due to the specific role of the pri-
mary master: it announces its existence to other masters, announcement that will cause
the exit from the election protocol. Therefore, its failure is a critical event compared
to the crash of a secondary master that has (almost) no consequence. As previously
mentioned, a look at the election code reveals that these events would typically raise
ElectionFailure, exception caught in the main method of the election algorithm. Other
exceptional cases are managed in the election code, but most of these deal with errors
that are out of the scope of our study, or are defensive programming issues. Therefore
these were left out.

Modelling the Crash of a Master. The net of Figure 7(a) is the main net of Figure 5(b)
modified to include the crash of a master. A fault is simply modelled by transition crash
(resp. primCrash) moving token 〈m〉 from place electionInit (resp. electedPrimary) to
place crashed.

After its crash, a master may reboot and join again the election (transition reboot)
or be considered as permanently dead (transition die) — at least during the election
process. The details of the meta-transition reboot are not given due to lack of space.
It consists of reinitialising all the internal data of the master, i.e., the content of places
masterState and negotiation, and setting back the token 〈m,F〉 in place live (described
below) to 〈m,T〉.

Transitions crash and primCrash are substituted by the net of Figure 7(b) modelling
the effect of a crash on the global system. In order to be visible by other masters, a
crash must have two side effects. First, the token 〈m,T〉 in place live modelling the fact
that master m is alive (and considered as such by other masters) is changed to 〈m,F〉.
Second, the network must be purged from all the messages sent by (or to) master m.
Otherwise, if m recovers from its crash, it may handle a message received prior its crash,
an impossible scenario that we should not model. Also, a message is automatically
ignored by the receiving master if it detects the crash of the sender. So, rather than
changing the message handler nets we decided to also purge the network from messages
sent by m. This is the purpose of transitions removeRec and removeSent3. If transition
end becomes enabled, the network does not contain any message with the identity of
master m. To guarantee that no message that has to be removed from the network place is
received meanwhile by another master we ensured this treatment is atomic by protecting
it with place lock. The meta-net of the poll function has naturally been changed in such
a way that this lock has to be grabbed before a message is handled.

Faults Detection. The detection by a master m of the crash of one of its peers p is
modelled by the net of Figure 7(c). Depending on the state of m this detection has
different consequences.

3 In order to ease the readability we have used inhibitor arcs to check the completion of the
network purge. Since the verification tools we use do not support inhibitor arcs, the actual
model includes a place counting the number of messages sent by (or to) any master. Zero-test
is made via this place. Moreover, note that, due to the additional combinatorics this would
generate, we do not model the possibility that a packet is received and handled between a
sender crash and this crash detection by the receiver.

158 C. Choppy et al.

(a) The electPrimary method extended with crashes. (b) Side effects of a crash.

(c) Detection of the crash of a master.

Fig. 7. Insertion of master crashes in the model

If m initiated a negotiation with p and is still waiting for its uuid, it aborts the ne-
gotiation as soon as it detects its failure. From the code perspective this consists of
removing p from both s.unconnected and s.negotiating. This first situation is modelled
by transition peerCrashed that replaces token 〈m,p,neg〉 by 〈m,p,DONE〉 if master p is
dead, i.e., 〈p,F〉 ∈ live.

Alternatively, if m is a secondary master waiting for the announcement of the primary
master election it can consider this one as dead if it does not receive an AnnouncePrim
message after some amount of time. The expiration of this timeout is followed by the
raise of exception ElectionFailure. The transition timeout models this second scenario.
One of its pre-conditions is the token 〈m,F,0〉 to be in place masterState to specify that
m is a secondary master not aware of the identity of the primary master.

At last, a secondary master m will raise exception ElectionFailure if it detects the
failure of the primary master. This is the purpose of transition primCrashed. The master
must be aware of the identity of the primary master to raise this exception, i.e., 〈pm,F〉
∈ live (with pm
= 0).

All these transitions are waiting for a token to be in place pollStart to become firable.
Hence, they will be included in the appropriate meta-transition of the main net: transi-
tion peerCrashed will be put in the subnet of the meta-transition poll while transitions
primCrashed and timeout will appear in the subnet of transition secPoll.

Handling of Exception ElectionFailure. Modelling the handling of this exception is
essential if one wants to analyse the election protocol in the presence of faults. Indeed,
most synchronisation issues or fault detections will be followed by this exception raise.
The code for handling this exception that we had voluntarily hidden in the previous sec-
tion can be seen on Figure 8(a). It consists of three parts: the broadcast of a ReelectPrim
message intended to ask all peers to stop the current election process and start a new one

The NEO Protocol for Large-Scale Distributed Database Systems 159

1 def e l e c t P r i m a r y (s e l f) :
2 . . .
3 ex cept E l e c t i o n F a i l u r e :
4 f o r conn i n em . g e t C l i e n t L i s t () :
5 conn . n o t i f y (R e e l e c t P r i m a r y ())
6 conn . a b o r t ()
7 t = t i me ()
8 whi l e em . g e t C l i e n t L i s t ()
9 and t i me () < t + 1 0 :

10 t ry :
11 em . p o l l (1)
12 ex cept E l e c t i o n F a i l u r e :
13 pa ss
14 f o r conn i n em . g e t C l i e n t L i s t () :
15 conn . c l o s e ()
16 f o r conn i n em . g e t S e r v e r L i s t () :
17 conn . c l o s e ()
18 # r e s t a r t t h e n e g o t i a t i o n

(a) Handler of exception
ElectionFailure in the electPri-
mary method.

(b) Net modelling the
exception handler.

(c) Handler of message type
ReelectPrim.

Fig. 8. Modelling the handler of exception ElectionFailure

(ll. 4–6); the processing of incoming messages for some amount of time (ll. 7–13); and
the closing of all connections (ll. 14–17). After that, the master restarts the negotiation
by broadcasting an AskPrim message, waiting for uuids, and so on.

The corresponding net is depicted on Figure 8(b). Its structure reflects roughly the
code. The transition sendRps (of which we do not show the details here) puts a token
〈n,m,RP,0〉 in place network for each alive master n
= m. We then close connections
(transition closeConnections). The subnet implementing this transition is exactly the
one corresponding to the crash of a master (see Figure 7(b)). Indeed, from the view-
point of another master, closing connections is equivalent to consider the master as
crashed. This has the consequence of removing all messages of master m from the net-
work. At last, the firing of transition initData reinitialises the internal data of the master
and makes it alive to other masters in order to restart the negotiation. The subnet im-
plementing this transition is the same as the subnet of transition reboot of the net of
Figure 7(a). We see that the handler of this exception is quite equivalent to the crash
and reboot of a master. We have left out the call to the poll method at l. 11. Indeed,
its purpose is mainly to ensure that all peers have received the ReelectPrim message
before closing the connections, and to ignore other ReelectPrim messages that could be
received meanwhile (see ll. 12–13). Handling other messages is useless insofar as the
election will be triggered again. This kind of timing issues need not to be modelled.

At last, Figure 8(c) depicts the net of the handler of ReelectPrim messages. At the
reception of this message a master simply raises the electionFailure exception.

4.5 Alternative Modelling

Although we have presented a symmetric net modelling the election algorithm, we actu-
ally created two models of this protocol. The second model has exactly the same module
structure but is written in the language of the Helena tool [8]. The purpose of conceiv-
ing two models is twofold. First, language Helena is richer than that of symmetric nets.
Helena allows, for instance, for the use of list or set types whereas types of symmetric
nets are bound to finite discrete types, e.g., enumerate types. The possibility of inserting
user-defined functions in arc labels is also a useful way to easily model some problems

160 C. Choppy et al.

1 t y pe i d : range 1 . . 3 ;
2 t y pe msgType : enum (AskP , AnsP , RI , AI , AnnP , RP) ;
3 t y pe msg : s t r u c t { msgType t ; i d p ; } ;
4 t y pe msg Li s t : l i s t [i n t] o f msg with c a p a c i t y 1 0 ;
5 t y pe co n n s : v e c t o r [mid , mid] o f b o o l ;
6 t y pe ch an s : v e c t o r [mid , mid] o f msg Li s t ;
7 pl a ce n et wo r k {dom : ch an s ; i n i t : <([empty])> } ;
8 pl a ce co n n s {dom : co n n s ; i n i t : <([t r u e])> } ;
9 f u n c t i o n b r o a d c a s t (mid s , msg m, ch an s c , co n n s co) −> ch an s {

10 f o r (r i n mid)
11 i f (s != r and co [s , r])
12 c [s , r] : = c [s , r] & m;
13 return c ;
14 }

(a) Some type and function declarations (b) Broadcast of a ReelectPrim message

Fig. 9. Sample of the Helena model

that could, with symmetric nets, only be modelled with the use of additional transitions,
irrelevant from a verification perspective. Figure 9 presents a sample of the final model.
The place network always contains a single token c of type chans. For each pair of
masters (s,r), c[s,r] is the list of messages sent by s to r. The broadcast by master s of
a message m is achieved by function broadcast. One of its parameters is the matrix co
specifying which masters s is connected to. The broadcast of ReelectPrim messages can
then be modelled with a single transition (Figure 9(b)), instead of performing a loop.

This language allowed us to model some features more concisely and to relax some
constraints we had with symmetric nets that prevented us from modelling some parts
of the protocol. Table 1 lists the features and extensions to the initial model (without

Table 1. Comparison of the different
features provided by both models

N
od

e
cr

as
h

N
od

e
re

bo
ot

C
on

ne
ct

io
n

lo
ss

A
to

m
ic

br
oa

dc
as

t
FI

FO
ch

an
ne

ls

Symmetric Net ✓ ✓ ✕ ✕ ✕

Helena Net ✓ ✓ ✓ ✓ ✓

faults) with both languages. The connection loss
between masters is another type of faults that
could be easily modelled in this new model. Al-
though the system is not expected to tolerate such
faults, the system designers were still interested
to have some feedback on how the system could
behave in the presence of disconnections and to
which extent it could tolerate such faults. Atomic
broadcast is modelled as shown by Figure 9(b).
At last, FIFO channels are implemented in the
model through a list type.

We were also motivated by the fact that sym-
bolic and explicit model checking both have their
strengths and weaknesses and tools usually im-
plement different reduction techniques to fight
the state explosion. For example, although Helena can clearly not manage huge state
spaces as a symbolic model checker does, it implements some form of partial order
reduction which limits the exploration of redundant executions.

Lastly, this additional modelling effort was relatively small since the modelling tools
we use are largely independent of the type of high-level net (this is mainly the case
for Coloane, but also for our composition tool used to assemble different modules
through place fusion and transition substitution). Therefore, in many cases, we only had
to rewrite arc labels from one language to another, an easy task, although a bit tedious.

The NEO Protocol for Large-Scale Distributed Database Systems 161

5 Preliminary Analysis

5.1 Specification of Desired Properties

To ensure the system works as expected, the desired properties have to be specified.
Hence, the engineers who implemented the protocol provided us with an informal de-
scription of what they consider as essential properties the protocol should satisfy.

The set of properties we were given contained 70 properties expressed in English.
These had first to be refined. In particular, some properties were written in a loose
manner that had to be made precise. Some terms had different meanings according to
the context. Therefore the statements were re-written in order to make a consistent lot.

Analysis of the different statements allowed for characterising them:

– some of the statements were not actual properties. E.g. “the number of out-of-date
cells per partition is greater than or equal to 0”. Here nothing can be checked since
a number of cells cannot be negative.

– the model does not handle all concerns. E.g. the data is not modelled and thus it is
impossible to prove “data consistency across partitions at all times”.

– some statements were not accurate. E.g. “there is a positive number of partitions”.
Actually, this number is a constant fixed by the system administrator at the boot-
strap and we can easily check that it is never changed.

– part of the properties concern a particular kind of node. E.g. “there is no more
than 1 primary master node”. The master nodes participate in the election of one
of them. This election phase must result in selecting a single primary master node.
Note that the other types of nodes do not participate in the election, and therefore
the verification can be achieved by concentrating on the master nodes model only,
as described in Section 4.

– some tricky properties are expressed on a particular kind of node, but actually also
concern the other nodes. E.g. “there is at least one master node for the system to
operate”. If all master nodes are down, the system should stop, and thus the other
kinds of nodes should not operate anymore. Hence this is a global property.

– some properties concern a particular stage of the protocol. For their verification, it
is only necessary to focus on this particular part of the protocol operation.

Part of the properties are also only relevant at a specific abstraction level. For in-
stance, we made a distinction between the normal operating mode and the faulty one
(see Section 4.4). E.g. “after a primary master failure an election takes place”. In the
normal operating mode, there is a single election at the system bootstrap. When consid-
ering primary master faults, an additional election phase occurs.

5.2 State Space Analysis of the Election Protocol

State space analysis has been conducted on the election model described in Section 4.
Symmetric net modules were first assembled to produce a single net describing the
protocol. In order to use symbolic tools of the CPN-AMI platform [2], this net was then
unfolded in a low-level one using optimised techniques [9] and finally reduced [10] to
produce a smaller net (but equivalent with respect to specified properties).

162 C. Choppy et al.

The Helena model briefly described in Section 4.5 was also analysed using a slightly
different procedure: since Helena can directly analyse high-level nets, the unfolding
step was not performed, and the reduction was directly applied to the high-level net.

For the election protocol we formulated four requirements R0–R3. First, we have
seen that, if we do not consider faults, it is important that no exception is ever raised
(R0). Two requirements are also logically required for the election protocol (R1 and
R2). At last, we want to be sure the cluster can enter its operational state (R3).

R0 - The ElectionFailure exception is not raised.
R1 - A single primary master is elected.
R2 - All masters are aware of the identity of the elected primary master.
R3 - The election eventually terminates.

Both R0, R1 and R2 can be expressed as a safety property while R3 reduces to the
absence of cycles in the reachability graph.

Next, we give some elements on the analysis of different configurations we experi-
mented with, and present two suspicious election scenarios encountered.

Analysis of some instances. State space analysis has been performed on some in-
stances of the election model listed in Table 2. It also gives statistics we have gathered
on their reachability graphs. A configuration is characterised by the number of mas-
ters (column Masters) joining the election, the possibility of observing master crashes
(column Crashes), and the number of disconnections that may occur (column Discon-
nections). The table gives for each configuration the number of markings and arcs of its
state space, together with the number of terminal markings, i.e., with no outgoing arcs.

For each listed configuration we have checked whether or not requirements R0–R3
are verified. Our observations are the following ones:

- In the faultless configurations ((2,no,0) and (3,no,0)), the election behaves as expected.
- The possibility of a master crash does not break requirements R1 and R2 but does
not guarantee the termination of the protocol even if put aside trivial infinite scenarios
during which a master keeps crashing and rebooting.
- Connection loss between two masters is a severe kind of fault in the sense that the
protocol does not show any guarantee in their presence. We actually found out very few
situations where requirements R1–R3 are still verified despite a disconnection.

Table 2. State space analysis of some configurations

Configuration Markings Arcs Terminal Analysis Results
Masters Crashes Disconnections markings R0 R1 R2 R3

2 no 0 78 116 1 ✓ ✓ ✓ ✓

1 102 165 6 ✕ ✕ ✕

yes 0 329 650 6 ✓ ✓ ✕

1 434 968 10 ✕ ✕ ✕

3 no 0 49,963 169,395 1 ✓ ✓ ✓ ✓

1 57,526 206,525 52 ✕ ✕ ✕

yes 0 1,656,002 6,446,764 31 ✓ ✓ ✕

1 2,615,825 10,313,162 84 ✕ ✕ ✕

The NEO Protocol for Large-Scale Distributed Database Systems 163

Faulty Scenarios. The first scenario is quite straightforward and could be discovered
by simulating any configuration that includes a disconnection possibility. Let us assume
that the protocol is executed by two masters. If they get disconnected, then two elections
will take place. Each master is isolated and thus declares itself as the primary master.
Some storage nodes will then connect to one master and others will connect to the other
master. Hence, there will really be two NEO clusters running separately and the data on
the storage nodes will progressively diverge. This scenario is actually not unrealistic if
we remember that nodes can be distributed worldwide.

A second suspicious scenario is due to lower level implementation details related to
the handling of exception ElectionFailure. It can be reproduced with 3 master nodes M1,
M2 and M3. Let us assume that M3 gets elected but crashes immediately after being
elected. M2 (or M1) then detects this crash, raises exception ElectionFailure and sends a
ReelectPrim message to M1. M1 receives this message and automatically proceeds the
same way. Now let us assume that meanwhile M2 closes all its connections and restarts
the election before M1 sends its ReelectPrim message. The ReelectPrim message is
therefore not received in the handling of exception ElectionFailure (in which case it
would be ignored) but after the restart of the election process. This will again cause M2
to raise an ElectionFailure exception, send a ReelectPrim message to M1. If M1 receives
its message after it restarts the election (as M2 did), it will proceed exactly the same
way. Hence, we can observe situations where M1 and M2 keep exchanging ReelectPrim
messages that cancel the current election and restart a new one, thus constituting a
livelock. The election will never terminate.

Both problems have been reported to the system designers. They are considering
some extensions that could prevent the first scenario. It was not clear whether the sec-
ond scenario is an actual bug or if it is a spurious error due to an over-abstraction in
our modelling. Tests were carried out in order to reproduce this situation. Actually, a
programming language side effect avoids this problem. The engineers will work on the
code to remove this ambiguity.

6 Conclusion and Perspectives

In this paper we presented our work to model the NEO protocol and to verify some
critical properties. The modelling is achieved by reverse-engineering from the code,
and required to devise appropriate choices to work on relevant and useful levels of ab-
straction at different steps. Large applications require a modular modelling with some
composition mechanisms, and we use the place fusion and transition substitution mecha-
nisms, while a composition tool was developed to put this into practice. We also worked
on non-nominal situations by injecting faults and on the way exceptions are handled,
such as the crash of a primary master and checking their adequate detection. While the
modelling is achieved using symmetric nets, an alternative modelling in language He-
lena allows for some additional checks. The work done on the properties started with
analysing the properties provided in natural language so as to produce relevant and
adequate properties that then could be checked.

While this work was going on, the code was changed by the developers (who did not
realise that it could impact our work). This raised the traceability issue of our work. We

164 C. Choppy et al.

plan to address it by “tagging” the code with references to the corresponding parts of
our model, thus maintaining a clear correspondence between code and model.

Further analysis has still to be made on the election process. Developers are gradu-
ally integrating various optimisations in the code. Some are really straightforward and
should not impact the properties of the protocol while a few are rather tricky and have
to be integrated in our model for verification purposes.

Although we only used CPN-AMI and Helena to analyse the election protocol (as de-
tailed in Section 5.2), we plan to use other analysis techniques. This can be done through
the facilities provided by Coloane which can interface with several tools: GreatSPN [3]
which can build the symbolic reachability graph [6]; Prod [14] which implements the
stubborn set technique [13] to avoid the exploration of the full state space; and Mod-
SOG, a modular and symbolic model checker based on observation graphs [12].

References

1. The Coloane tool Homepage, https://coloane.lip6.fr/
2. The CPN-AMI Homepage, http://move.lip6.fr/software/CPNAMI/
3. The GreatSPN tool Homepage, http://www.di.unito.it/˜greatspn/index.html
4. The ZODB Homepage, http://wiki.zope.org/ZODB/FrontPage
5. Bertrand, O., Calonne, A., Choppy, C., Hong, S., Klai, K., Kordon, F., Okuji, Y., Paviot-Adet,

E., Petrucci, L., Smets, J.-P.: Verification of Large-Scale Distributed Database Systems in the
NEOPPOD Project. In: PNSE 2009, pp. 315–317 (2009)

6. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: A Symbolic Reachability Graph for
Coloured Petri Nets. Theoretical Computer Science 176(1-2), 39–65 (1997)

7. ERP5. Central Bank Implements Open Source ERP5 in Eight Countries after Proprietary
System Failed, http://www.erp5.com/news-central.bank

8. Evangelista, S.: High Level Petri Nets Analysis with Helena. In: Ciardo, G., Darondeau, P.
(eds.) ICATPN 2005. LNCS, vol. 3536, pp. 455–464. Springer, Heidelberg (2005)

9. Kordon, F., Linard, A., Paviot-Adet, E.: Optimized Colored Nets Unfolding. In: Najm, E.,
Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 339–
355. Springer, Heidelberg (2006)

10. Haddad, S., Pradat-Peyre, J.-F.: New Efficient Petri Nets Reductions for Parallel Programs
Verification. Parallel Processing Letters 1, 16 (2006)

11. Huber, P., Jensen, K., Shapiro, R.M.: Hierarchies in Coloured Petri Nets. In: Rozenberg, G.
(ed.) APN 1990. LNCS, vol. 483, pp. 313–341. Springer, Heidelberg (1991)

12. Klai, K., Petrucci, L.: Modular Construction of the Symbolic Observation Graph. In: ACSD
2008, pp. 88–97. IEEE, Los Alamitos (2008)

13. Valmari, A.: A Stubborn Attack on State Explosion. In: Clarke, E., Kurshan, R.P. (eds.) CAV
1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

14. Varpaaniemi, K., Heljanko, K., Lilius, J.: Prod 3.2: An Advanced Tool for Efficient Reacha-
bility Analysis. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 472–475. Springer,
Heidelberg (1997)

https://coloane.lip6.fr/
http://move.lip6.fr/software/CPNAMI/
http://www.di.unito.it/~greatspn/index.html
http://wiki.zope.org/ZODB/FrontPage
http://www.erp5.com/news-central.bank

Factorization Properties of Symbolic Unfoldings
of Colored Petri Nets

Thomas Chatain1 and Eric Fabre2

1 LSV, ENS Cachan, CNRS, France
thomas.chatain@lsv.ens-cachan.fr

2 INRIA Rennes - Bretagne Atlantique, France
eric.fabre@irisa.fr

Abstract. The unfolding technique is an efficient tool to explore the
runs of a Petri net in a true concurrency semantics, i.e. without con-
structing all the interleavings of concurrent actions. But even small real
systems are never modeled directly as ordinary Petri nets: they use many
high-level features that were designed as extensions of Petri nets. We fo-
cus here on two such features: colors and compositionality. We show
that the symbolic unfolding of a product of colored Petri nets can be ex-
pressed as the product of the symbolic unfoldings of these nets. This is a
necessary result in view of distributed computations based on symbolic
unfoldings, as they have been developed already for standard unfoldings,
to design modular verification techniques, or modular diagnosis proce-
dures, for example. The factorization property of symbolic unfoldings is
valid for several classes of colored or high-level nets. We derive it here for
a class of (high-level) open nets, for which the composition is performed
by connecting places rather than transitions.

1 Introduction

Although they offer a satisfactory representation of concurrency, Petri nets are
often difficult to use to model even small real systems. Their drawback is that
the state of the system is only represented by the position of the tokens in the
places. Consequently, in order to distinguish between the different values that a
variable of the system can take, the simplest way is often to use one place per
value. Even if more subtle codings are possible, the number of necessary places
and transitions becomes very large, or even infinite, which makes the system
very hard to comprehend. For this reason several extensions of Petri nets have
been proposed, like the well-known colored Petri nets [15].

In [17], Khomenko and Koutny, developed a notion of unfoldings for high-
level Petri nets, which is based on a transformation of the high-level model into
a low-level model, in order to reuse the unfolding technique that was developed
for low-level models. We call this method expanded unfolding. Our method yields
a much more compact structure, where the executions are grouped into symbolic
processes that reflect the generic aspect of the model. Symbolic unfoldings were
already studied in [11] and [9]. Here we focus on their factorization properties: we

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 165–184, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

166 T. Chatain and E. Fabre

show how the symbolic unfolding of a large system described as a composition
of several components, can be computed from the symbolic unfoldings of the
components. Some factorization properties are obtained in [10], but only for
high-level processes, not for branching processes or symbolic unfoldings.

We choose a framework where nets are composed via shared places, called
interface places or open places when seen from one component. This way of
composing nets is very popular because it matches nicely the graphical nature
of Petri nets. And it has indeed been introduced in different formalisms. For ex-
ample in net algebras, where nets can be composed by fusion of places [6,19,5,14].
Petri nets with interface of [21,22] use a similar construction. The composition
operator of [23] is motivated by the popularity of this kind of compositions and
remarks that net process are built by assembling tiles via fusion of places. Closer
to our work, [18] defines a partial order semantics for Petri net components that
communicate via interface places with an environment. A categorical formaliza-
tion of open nets was proposed in [2,3], where open net processes are defined,
but no unfolding. We discuss later the differences between this work and ours.

The paper is organized as follows. Next section introduces the net family that
is used in this paper: a variant of colored Petri nets, enriched with interface
places that are used to compose them. We call such nets colored puzzle nets. We
introduce an adequate category setting for them and study their compositionality
properties. Our morphisms differ clearly from those of [2,3], which is crucial to
prepare our main result on unfoldings. Section 3 reviews and adapts a standard
expansion procedure for colored nets, that separates colors in order to transform
a colored net into an equivalent uncolored one. Section 4 contains the main
contribution of the paper. It examines the notion of symbolic unfolding for a
colored puzzle net, and studies its relation both to composition and to expansion.
It is stated there that the symbolic unfolding of a product puzzle net is the
product of the unfoldings of its components.

The detailed proofs can be found in [8].

2 Colored Puzzle (Petri) Nets and Their Composition

Colored Petri nets were defined by Jensen in [15], as one possible formalism to
enhance the flexibility of Petri nets and facilitate the modeling of real systems.
In these nets, each token carries some information, traditionally called the color
of the token. Of course, transitions can test the color of the tokens they consume,
and the color of the created tokens may depend on the color of the consumed
tokens. These constraints on the values of the tokens are called guards. In this
paper we are not interested in giving a precise syntax to the guards, therefore we
simply describe them as sets of possible firing modes, each firing mode assigning a
color to each input and output place of the transition. Of course our results about
factorization of unfoldings remain valid in presence of syntactical restrictions for
the guards.

This section introduces colored puzzle nets, or puzzle nets for short, a variant
of colored nets where extra interface places are introduced. These interface places

Factorization Properties of Symbolic Unfoldings of Colored Petri Nets 167

are used for connectivity purposes. They model the communication between a
component and other components or its environment, as it is the case in reactive
systems. As long as the environment is not modeled, it may consume or create
tokens at any time in interface places. Then it is meaningless to remember the
marking in these places or to test the presence of a token in an interface place
when a transition needs it to fire. For this reason interface places have a special
status: they are neutral in most operations, like the computation of trajectories,
the computation of unfoldings, etc. They only become active when they are
connected to another component, in which case they change status and start
behaving as ordinary places, and thus impose new constraints on the behavior
of the component.

Labels are used for the composition, like in [13] or [1].

2.1 Colored Puzzle Nets

A (possibly infinite) set V of colors is given once for all, and is used in all the
nets of the paper.

Definition 1 (colored puzzle (Petri) net). A colored puzzle net is a tuple
N

def= (P, P+, P−, T, pre, post , Λ, λ, γ,M0) where

– P , P+ and P− are disjoint (possibly infinite) sets of internal places, posi-
tive places and negative places respectively (think of magnet polarities); We
denote P± def= P+ ∪ P− the interface places; The polarities are needed when
nets are composed by product (see Section 2.3).

– T is a (possibly infinite) set of transitions;
– pre, post : T −→ 2P∪P±

map each transition t ∈ T to a preset often denoted
•t

def= pre(t) and a postset often denoted t•
def= post(t) respectively;

– γ maps each transition t ∈ T to a guard γ(t), that is a set of pairs (α, β) ∈
(•t −→ V)× (t• −→ V) called firing modes ;

– the initial marking M0 is a multiset of pairs (p, v) ∈ (P ∪ P±) × V . We
sometimes write M0(p) for the multiset of colors in place p.

– Λ is a label set;
– λ : P ∪ P± −→ Λ assigns a label to each place, such that only internal

places can share the same label, i.e. for all p1, p2 ∈ P ∪ P±, if p1 �= p2 and
λ(p1) = λ(p2), then p1 and p2 are internal places;

The tokens in the interface places P± are not considered in the semantics of
a single component, since they may be created or consumed freely by the en-
vironment. In particular, when a token of an interface place is needed to fire
a transition, one must always consider that the token may have been created
by the environment. Thus, a marking M for the puzzle net N is a multiset
M : P × V → N.1 Transition t is firable from M with firing mode (α, β) ∈ γ(t)
1 Remark that in the definition of the net, the initial marking is defined also on the

interface places. The reason for this is that when we compose two nets, they have
to agree on the initial marking of their shared places, that become internal places of
the product.

168 T. Chatain and E. Fabre

p1

p2

p3−

p4−

c c

t1{pa
2}, {pc

1} t2
{pc

1, pc
3−}, {pa

2 , pa
4−}

{pc
1, pc

3−}, {pb
2, pb

4−}

p3+

p4+

p5

p6

c c

t3
{pa

4+, pc
5}, {pc

3+, pa
6}

{pb
4+, pc

5}, {pc
3+, pb

6}
t4 {pb

6}, {pc
5}

N1 N2

p1

p2

p3

p4

c c

t1 t2

p5

p6

c

t3 t4

N0 = N1 ×N2

Fig. 1. Two components (on top) and their composition via the product (bottom). The
firing modes of the transitions are omitted on the picture of N0. They are the same as
those of the corresponding transitions of N1 and N2.

iff ∀p ∈ •t ∩ P , M(p, α(p)) ≥ 1. This firing produces the marking

M ′ def= M − {(p, α(p)) | p ∈ •t ∩ P}+ {(p, β(p)) | p ∈ t• ∩ P} .

We denote M [(t, α, β)〉M ′. In other words, α represents the colored tokens that
are consumed, and β represents those that are produced.

In the standard sequential semantics, a run of N is a sequence of transition
firings M0 [(t1, α1, β1)〉M1 . . .Mn−1 [(tn, αn, βn)〉Mn. Naturally, we will move to
a true concurrency semantics for runs, in the sections devoted to unfoldings.

Figure 1 illustrates puzzle nets. Consider N1: it has two internal places p1
and p2, and two interface places p3, p4 that are both of negative sign (mentioned
in subscript). The initial marking has placed a token of color c in p1 and p3,
while p2 and p4 are empty. The transition modes are represented close to each
transition. t1 has a single firing mode: it consumes a token of color a in p2, and
produces a token of color c in p1. By contrast, t2 has two firing modes. Both
consume a token of color c in p1 and in p3. But the first mode places a token of
color a in p2 and p4, while the second mode places a token of color b in these
places.

Factorization Properties of Symbolic Unfoldings of Colored Petri Nets 169

Consider now N0, that also obeys the above constraints. Only two maximal
executions are possible. t2 fires first and produces two tokens of the same color
(a or b), one in p2 and one in p4. Then, if these tokens are of color a, t1 and
t3 can fire concurrently and the net stops; otherwise, t3 and t4 fire in sequence.
Notice that because of the guards, no execution contains both t1 and t4. Without
colors these two transitions could have fired concurrently. This phenomenon will
be formalized later as the notion of color conflict.

2.2 Morphisms

Before moving to the definition of composition for colored puzzle nets, we need
the extra notion of morphism between two colored puzzle nets. Morphisms are
relations between nets that ensure the preservation of the behaviors.

Definition 2 (morphism). Let N1 and N2 be two nets such that Λ2 ⊆ Λ1
(we add subscript i to elements of Ni). A morphism φ from N1 to N2 is a pair
(φT , φP) of partial functions (the symbol ∗ is used when the function is undefined)

φT : T1 −→ T2 ∪ {∗}

φP :

⎧⎨⎩
P1 −→ P2 ∪ P±

2 ∪ {∗}
P+

1 −→ P+
2 ∪ {∗}

P−
1 −→ P−

2 ∪ {∗}

such that

– ∀p1 ∈ P1 ∪ P±
1

{
φP (p1) = ∗ iff λ1(p1) �∈ Λ2
λ1(p1) ∈ Λ2 =⇒ λ2(φP (p1)) = λ1(p1)

– ∀t1 ∈ T1 φT (t1) = ∗ =⇒ φP (•t1 ∪ t1
•) ⊆ P±

2 ∪ {∗};
– for all t1 ∈ T1 such that φT (t1) = t2 �= ∗,

• ∗ �∈ φP (•t1 ∪ t1
•)

• the restriction of φP to •t1 is a bijection from •t1 to •t2
• the restriction of φP to t1

• is a bijection from t1
• to t2

•

• ∀(α1, β1) ∈ γ1(t1), ∃(α2, β2) ∈ γ2(t2) : ∀p1 ∈ •t1, α2(φP (p1)) = α1(p1),
and ∀p1 ∈ t1

•, β2(φP (p1)) = β1(p1),
– ∀p2 ∈ P2 ∪ P±

2 , M0
2 (p2) =

∑
p1: φP (p1)=p2

M0
1 (p1).

In words, φP is defined exactly on places that carry a label of the image net,
and preserves these place labels. φP also preserves the polarity of an interface
place, and may assign a polarity to an internal place. This change of status must
occur for places connected to a transition t1 that is removed by φT , unless if
such places vanish through φP . When a transition t1 is preserved by φT , all its
connected places are preserved as well, and firing modes of this transition t1 are
mapped into the modes of its image t2. Notice in particular that N1 and N2
may be identical up to their firing modes, and the identity mapping is then a
morphism as soon as γ1 ⊆ γ2.

From this definition, it is clear that a run of N1 is naturally mapped by φ into
a run of N2.

170 T. Chatain and E. Fabre

The composition of two morphisms φ1
def= (φT

1 , φP
1) from N1 to N2 and φ2

def=
(φT

2 , φP
2) from N2 to N3 is φ2 ◦ φ1

def= (φT
2 ◦ φT

1 , φP
2 ◦ φP

1). The identity morphism
for N is 1N

def= (1T , 1P∪P±).

Theorem 1. The family of colored puzzle nets equipped with the above notion
of morphism forms a category.

Proof sketch. Associativity and identity are straightforward. The proof of the
composition can be found in [8]. ��

To simplify the notations we often write φ instead of φT or φP . We also denote
by N1 ∼ N2 the fact that N1 and N2 are isomorphic, i.e. the existence of two
morphisms φ12 from N1 to N2 and φ21 from N2 to N1 such that φ21 ◦φ12 = 1N1

and φ12 ◦ φ21 = 1N2 .

Comparison with the category of open nets [2,3]. Forgetting high-level
features like colors and guards, our puzzle nets are close to the open nets pro-
posed in [2,3]. But the morphisms between them are quite different. Apart from
technical aspects (we use partial functions, rather than total ones), a significant
difference is that they preserve runs in the opposite direction: in our category, a
morphism from N1 to N2 maps every run of N1 to a run of N2 (i.e. N2 simulates
N1), whereas in open nets, a morphism from N1 to N2 maps every run of N2 to
a run of N1 (i.e. N1 simulates N2).

The composition operations defined for open net and for puzzle nets are very
similar in their principle: they both amount to identifying places that carry the
same label. In the case of open nets, this labeling comes from the injection of a
common interface net into the two components that must be assembled. In both
categories, the two components that are assembled both simulate the resulting
composed net. However, as morphisms and simulation relations do not have the
same directions in the two settings, the composition is expressed as a pushout
for open nets (a colimit), and as a product for puzzle nets (a limit).

This difference becomes crucial when coming to the construction of processes,
and more generally unfoldings. In the category of open nets, there is a morphism
from a process to the net N , expressing that this process simulates net N . By
contrast, in the category of puzzle nets, the similar morphism from the (branch-
ing) process O to the net N expresses that net N simulates the branching process
O, or more generally the unfolding of N . This choice of direction is crucial to
obtain a universal property on unfoldings, which is the key to transport compos-
tion operations from nets to unfoldings. Notice that this morphism architecture
reproduces the one followed in [24].

2.3 Product

The meaning of interface places appears in the compositon of puzzle nets, that
we are going to express as a categorical product. The composition mechanism is
governed by the following idea, that mimics the one proposed for open nets [2,3]:

Factorization Properties of Symbolic Unfoldings of Colored Petri Nets 171

when two components are connected, interface places with identical labels will be
merged, provided they have complementary polarities, just like magnets. Once
two places are merged, the resulting pair becomes an ordinary internal place of
the composed (product) net, i.e. the polarity vanishes. Notice that this notion of
polarity has no relation with any idea of input or output place: interface places
can communicate with the environment in any direction.

Polarities represent the part of the interface place that is owned by each
component. This is why morphisms must respect polarities: an interface place
can only be simulated by an interface place with the same polarity. It would be
possible to deal with more than two polarities, meaning that some interface place
could be shared by more than two components. An interface place could then be
seen as a pie-chart, each component owning a part of the pie-chart; as long as the
pie-chart would not be full, the place would keep its status of interface. When
full, the place would become an internal place. This idea of multiple polarities
can help one convince himself that interface places do not need to be used only
as inputs or only as outputs.

Definition 3 (product). Let N1 and N2 be two nets such that

– ∀p1, p2 λ1(p1) = λ2(p2) =⇒
{

(p1, p2) ∈ (P+
1 × P−

2) ∪ (P−
1 × P+

2)
M0

1 (p1) = M0
2 (p2)

– ∀ti ∈ Ti (•ti ∪ ti
•) ∩ Pi �= ∅.

We define their product N0, denoted N1×N2 and the associated morphisms π1
and π2 as:

places:
P0

def= (P1 × {∗}) ∪ ({∗} × P2) ∪ {(p1, p2) | λ1(p1) = λ2(p2)}
P+

0
def= {(p1, ∗) | p1 ∈ P+

1 ∧ λ1(p1) �∈ Λ2} ∪ {(∗, p2) | p2 ∈ P+
2 ∧ λ2(p2) �∈ Λ1}

P−
0

def= {(p1, ∗) | p1 ∈ P−
1 ∧ λ1(p1) �∈ Λ2} ∪ {(∗, p2) | p2 ∈ P−

2 ∧ λ2(p2) �∈ Λ1}
πP

i ((p1, p2))
def= pi (even when pi = ∗).

labels:
Λ0

def= Λ1 ∪ Λ2
λ0((p1, p2))

def= λi(pi) when pi �= ∗.
Notice that the restriction of πP

i to λ−1
0 (Λi) is a bijection to Pi ∪ P±

i .
initial marking:

M0
0 ((p1, p2))

def= M0
i (pi) when pi �= ∗

transitions:
T0

def= (T1 × {∗}) ∪ ({∗} × T2)
πT

i ((t1, t2))
def= ti (even when ti = ∗)

•(t1, t2)
def= πi

−1(•ti) and (t1, t2)
• def= πi

−1(ti•) when ti �= ∗
γ(t0)

def= {(α ◦ πi
−1
|•t0

, β ◦ πi
−1
|t0•) | (α, β) ∈ γ(πi(t0))} when πi(t0) �= ∗

Observe that this composition takes the disjoint union of transitions, by con-
trast with several alternate notions of product for Petri nets that rather syn-
chronize transitions. Since transitions remain private, their flow is preserved, as

172 T. Chatain and E. Fabre

p1

p2

p3−

p4−

c c

t1{pa
2}, {pc

1} t2
{pc

1, pc
3−}, {pa

2 , pa
4−}

{pc
1, pc

3−}, {pb
2, pb

4−}

N1

p1

p2a p2b

p3−

p4−

c c

t1a t2a t2b

Exp(N1)

Fig. 2. A colored puzzle net (left) and its expansion (right)

well as their firing modes, up to the reshaping of place names performed by the
composition.

Figure 1 illustrates the composition by product. Places labeled p3 in N1 and
N2 are merged in the product, because they have complementary polarities (the
product would be undefined if they had identical polarities). The same holds for
places labeled p4. So nets N1 and N2 are assembled by these interface places,
that now change their status to internal places.

Theorem 2. Definition 3 corresponds to the categorical product in the category
of puzzle nets (Definitions 1 and 2).

Proof sketch. One has to check that N0 is a net: the non-trivial part is to show
that only internal places share labels. Then we show easily that πi is a morphism
from N0 to Ni.

Finally it remains to check the universal property of the product in this cate-
gory: for any N and any pair of morphisms φi : N −→ Ni, there exists a unique
morphism ψ from N to N0 = N1 × N2 that makes the diagram commutative,
i.e. that satisfies φi = πi ◦ ψ. This ψ is necessarily defined by:

∀x ∈ P ∪ P± ∪ T ψ(x) def=
{
∗ if φ1(x) = φ2(x) = ∗
(φ1(x), φ2(x)) otherwise.

It is straightforward to check that ψ satisfies Definition 2. ��

3 Expansion

There exists a classical method to expand colored Petri nets into ordinary (or
low-level) nets, which sometimes motivated the use of high-level nets as conve-
nient generators of low-level models. This expansion operation is called unfolding
by some authors [6]. In this paper, we prefer to call it expansion, and reserve the
term unfolding for its standard meaning, since both operations will be simulta-
neously applied to colored puzzle nets.

Factorization Properties of Symbolic Unfoldings of Colored Petri Nets 173

Definition 4 (expanded net). An expanded net is a colored puzzle net N such
that:

– ∀t ∈ T, |γ(t)| = 1 (the unique element of γ(t) is denoted (αt, βt))
– ∀p ∈ P |{αt(p) | p ∈ •t}∪ {βt(p) | p ∈ t•}| = 1 (the unique color in this set

is denoted col(p))

In other words, transitions have a single firing mode, and places can carry tokens
of a single color of V , which coincides with the mode of all connected transitions.
Notice that the second condition doesn’t apply to interface places: they are
not expanded into their different colors, which corresponds to the idea that a
puzzle net should not restrict the set of colors in a place that will eventually be
shared with another component. Anticipating a little, interface places will not
be duplicated either by the unfolding procedure.

Definition 5 (expansion). Given a colored puzzle net N , we define its ex-
pansion Exp(N) def= (P ′, P+, P−, T ′, pre ′, post ′, Λ, λ′, γ′,M0′) and the associated
compression morphism χN : Exp(N) → N as:

places:
P+ and P− are the sets of interface places of N

P ′ def= {(p, v) ∈ P × V | ∃t ∈ T, (α, β) ∈ γ(t)
(p ∈ •t ∧ α(p) = v) ∨ (p ∈ t• ∧ β(p) = v)}

col(p, v) = v
transitions and flow:

T ′ def= {(t, (α, β)) | t ∈ T ∧ (α, β) ∈ γ(t)}
•(t, (α, β)) def= {(p, α(p)) | p ∈ •t ∩ P} ∪ (•t ∩ P±)
(t, (α, β))• def= {(p, β(p)) | p ∈ t• ∩ P} ∪ (t• ∩ P±)

initial marking:
∀(p, v) ∈ P± × V, M0′(p, v) = M0(p, v)

∀p′ = (p, v) ∈ P ′, ∀v′ ∈ V, M0′(p′, v′) =
{

M0(p, v) if v = v′

0 otherwise

firing modes: for all t′ = (t, (α, β)) ∈ T ′

∀p′ = (p, v) ∈ P ′,

{
α′

t′(p
′) def= v iff p′ ∈ •t′

β′
t′(p

′) def= v iff p′ ∈ t′
•

∀p ∈ P±, α′
t′(p) def= α(p) and β′

t′(p) def= β(p)
labels and morphism:

Λ is the label set of N

∀p ∈ P±, χN (p) def= p and λ′(p) def= λ(p)
∀p′ = (p, v) ∈ P ′, χN (p′) def= p and λ′(p′) def= λ(p)
∀t′ = (t, (α, β)) ∈ T ′, χN (t′) def= t

Proposition 1. The expansion of a colored puzzle net yields an expanded net,
and the mapping χN : Exp(N) → N is a (compression) morphism of colored
puzzle nets.

174 T. Chatain and E. Fabre

Proof. We have to show that Exp(N) is an expanded net. The only non-trivial
part here concerns the condition about the colors in internal places (second item
of Definition 4): it is ensured by the definition of the internal places P ′ through
the pre- and post-sets of the expanded transitions.

Checking that χN is a morphism from Exp(N) to N is straightforward. ��

Theorem 3 (expansion). The Exp functor establishes a coreflection between
the category of colored puzzle nets, and the full subcategory of expanded nets.

Proof sketch. We have to prove the universal property of each expanded net
Exp(N), associated to its compression morphism χN , i.e. for every morphism φ
from an expanded net N ′ to a puzzle net N , there exists a unique morphism
ψ from N ′ to Exp(N) such that φ = χN ◦ ψ. If such a morphsim ψ exists, this
latter condition imposes the following definition:

– ψ(x) = ∗ iff φ(x) = ∗
– φ(p) ∈ P± =⇒ ψ(p) def= φ(p)
– φ(p) ∈ P =⇒ ψ(p) def= (φ(p), col (p))
– ψ(t) def= (φ(t), (αt ◦ φ−1

|•t , βt ◦ φ−1
|t•))

It remains to show that ψ does satisfy the conditions for being a morphism from
N ′ to Exp(N), and that φ = χ ◦ ψ. ��
A nice consequence of this coreflection is that expansion and product commute.
One has first that there exists a product in the subcategory of expanded nets,
defined by N1 ×E N2 = Exp(N1 × N2), where N1 × N2 is the product in the
sense of colored puzzle nets. Notice that the expansion operator in the right
hand side term is necessary in order to expand as well the interface places that
become internal after the standard product of colored nets. Now, since products
are special cases of categorical limits (theorem 2), and given that limits are
preserved by functors that have a left adjoint, one has:

Exp(N1 ×N2) ∼ Exp(N1)×E Exp(N2)

This relation would be tedious to prove directly, so it is interesting to obtain it
by standard structural derivations (that exactly reproduce those of [24] in their
structure).

4 Symbolic Unfolding and Its Properties

Unfoldings provide a compact data structure to encode sets of runs of a Petri
net in a true concurrency semantics. By their ability to avoid the combinato-
rial explosion due to the interleaving of concurrent events, they are particularly
suited to analyse properties of distributed systems. And they have indeed been
used in this sense, to check the absence of deadlocks, or for reachability anal-
ysis. Unfoldings have been defined for ordinary (low-level) safe nets, and more
generally for semi-weighted nets. Some authors have extended this construction

Factorization Properties of Symbolic Unfoldings of Colored Petri Nets 175

p3− c

p4−

p1 c

t2ae1a

p2a

t2be1b

p2b

t1e2

p1

t2ae3a

p2a

t2be3b

p2b

...
U(Exp(N1)) ∼ ExpO(U(N1))

Fig. 3. The expanded unfolding of the colored puzzle net N1 of Figure 1

to colored (or high-level) nets by first performing what is called an expansion in
this paper, and then applying a standard unfolding procedure, as illustrated in
Fig. 3. This is the approach of [17,16] for a model of high-level Petri nets called
M-nets [7].

In this paper, we propose to go further in this direction, and define directly
the unfolding of a colored puzzle net as a symbolic unfolding, that is as some
form of “colored puzzle branching process.” The principles are the same as in
[11] or [9], where we also advocated the interest of symbolic unfoldings for the
diagnosis of distributed systems. We then study the relations between symbolic
unfolding and expansion. The main contribution of this section is the derivation
of a factorization property of symbolic unfoldings, as it was already derived by
Winskel [24] for ordinary unfoldings. Namely, the symbolic unfolding of a product
of puzzle nets is the product (in a specific sense) of the symbolic unfoldings of
the components. This derivation follows the same principles as for the expansion,
by producing an adequate coreflection between categories.

Generic Executions for a Generic Model. In high-level processes we definitely
want to benefit from the generic aspects of the colored puzzle net that we are
considering. Indeed in a colored puzzle net, if several states share the same mark-
ing (that is the tokens are in the same places but do not carry the same values),
we can view these states as instances of a generic family of states. Similarly each

176 T. Chatain and E. Fabre

transition is a generic representation of a family of actions, that differ only by the
values/colors of the tokens that are consumed and created. And we consider that
grouping several states into a generic state or several actions into a high-level
transition, results from a choice that was done when the system was modeled.

With respect to this choice, we can identify families of executions of a colored
puzzle net N based on the generic aspects related to its places and transitions.
To do this, our approach is based on the fact that each execution of N can be
mapped to an execution of the underlying low-level Petri net obtained by simply
removing the colors and the guards.

Definition 6 (symbolic occurrence net). A symbolic occurrence net is a
colored puzzle net O

def= (B,P+, P−, E, pre, post , Λ, λ, γ,M0) where the internal
places, denoted B here, are called conditions and the transitions, denoted E here,
are called events, which satisfies:

– →+ is acyclic, where → denotes the causality relation, defined as (e1 →
e2)

def⇐⇒ (e1
• ∩ •e2 ∩ B �= ∅). Notice that the interface places induce no

causality, since they are not “unfolded”.
– ∀b ∈ B{ ∑

v∈V M0(b, v) = 0 ∧ ∃!e ∈ E b ∈ e• (then this e is denoted •b)
∨
∑

v∈V M0(b, v) = 1 ∧ �e ∈ E b ∈ e• (then we define •b
def= ⊥)

– ∀e ∈ E

⎧⎨⎩�e�
def= {f ∈ E | f →∗ e} is finite

�e1, e2 ∈ �e� e1 �= e2 ∧ •e1 ∩ •e2 ∩B �= ∅
valid colorings(�e�) �= ∅

where, for every set F of events, valid colorings(F) denotes the set of colorings
Col : (•F ∪ F •) ∩ B −→ V of the input and output conditions of the events in
F , that are compatible with the firing modes of these events and with the color
of the tokens in the initial conditions:{

∀e ∈ F ∃(α, β) ∈ γ(e) (α|•e∩B, β|e•∩B) = (Col |•e∩B,Col |e•∩B)
∀b, v M0(b, v) = 1 =⇒ Col (b) = v .

In an occurrence net, places are usually called conditions, and transitions are
called events. Concerning conditions, the second point in the definition requires
that each of them is created (i.e. immediately preceded) by a unique event, or
it is minimal, and marked with a single token. On events, the requirements are
standard. The first line expresses the well-foundedness (configurations are finite),
and the second line expresses that no node should be in (structural) self-conflict.
Or equivalently that there is no immediate conflict in the past of each event.

Treatment of Interface Places. Note that the interface places are not treated
like the internal places. The idea is that only the behaviour of the component
is represented in the occurrence net, and no assumption is made about the
components it will be connected to. In particular, the events can freely use
tokens from the interface places, considering that they may be filled with any
number of tokens of any kind.

Factorization Properties of Symbolic Unfoldings of Colored Petri Nets 177

Color Conflict. Processes of a colored Petri net have to satisfy both structural
conditions and conditions imposed by the guards on the possible values for the
firing modes. The structural conditions only depend on the underlying low-level
process and express:

– the causal dependencies (noted →+), which induce a partial ordering on
events,

– the structural conflicts, identified by the consumption of a condition by two
different events, which implies that these two events cannot occur in the
same execution, as well as their successors for the causal relation (conflict is
inherited by causality),

– the concurrency relation: when two events are neither causally related nor
in conflict, they are said to be concurrent. They can then occur in any order
in an execution.

But these structural conditions are not sufficient when we deal with symbolic
occurrence nets: a set of events can be made incompatible by the fact that there
exists no suitable value for the firing modes of the events in their past, even if
they would be concurrent in the underlying low-level process.

We can say that a set E of events of O are in color conflict if they are not in
conflict, but the constraints on the values of the firing modes, coming from the
guards of the transitions, prevent the events of E to appear in the same process
of N .

Observe that in the example of Figure 5 the symbolic unfolding of N0 is finite
because e2 and e5 are in color conflict: they impose contradictory constraints
on the token in p4 after e1 fires: e2 can fire only if it is a, but e5 only if it is b.
Nevertheless, without colors, the unfolding would have been infinite.

Unlike the structural conflict due to the consumption of a single condition by
several events, color conflicts are not binary in general. That is, the minimal sets
of events that are in conflict may have more than two elements.

In the definition of symbolic occurrence nets, color conflicts are treated in
the valid colorings function, which deals both with colors and with the symbolic
aspects. The existence of a valid coloring expresses that, for each event e, there
is a way of coloring the configuration �e� leading to e in a coherent manner.
This coloring assigns a color to every condition and ensures that these colors are
compatible with the firing modes of the events.

We are now equipped to define symbolic unfoldings U(N) of a colored puzzle
net N . A minor and classical restriction on the structure of a Petri net is neces-
sary in order to define its unfolding: we require that every transition consumes at
least one token from an internal place. Interface places do not really participate
in the unfolding and are not duplicated. Moreover the initial marking must not
contain more than one token per place (even if they have different colors).

Remark: when dealing with weighted arcs, another condition is also required: the
output arcs of the transitions must be simple, i.e. no transition should produce
more than one token per output place. These nets are called “semi-weighted

178 T. Chatain and E. Fabre

p3− c

p4−

p1 c

t2e1

p2

t1e2

p1

t2e3

p2

...

U(N1)

p3+c

p4+

p5c

t3 e4

p6

t4 e5

p5

t3 e6

p6

...

U(N2)

Fig. 4. The symbolic unfolding of each component of the colored puzzle net of Figure 1

nets” in [20,4]. Here we did not consider weighted arcs, so this condition is
satisfied by construction.

In our definition of symbolic unfoldings, we use the canonical coding of events
and conditions introduced in [12], based on a backward chaining principle. As
the unfoldings are occurrence nets, each condition b ∈ B is created by a single
event e denoted •b, if we take the convention that •b may be either an event of
E or the virtual initial event ⊥ when b represents a token of the initial marking.
Moreover, as each event e of the unfolding of a net N represents an occurrence of
a transition t of N , then the output conditions of e represent the tokens created
in the internal places of t• ∩ P . Thus each of these conditions is identified by a
pair (e, p) with p ∈ t•∩P . Similarly, every event e of the unfolding is itself a pair
(C, t) where t is a transition of N , and C ⊆ B is the set of conditions that are
consumed by e. As an example, in Figure 5, the coding of the events is written
on the right.

The folding morphism φN from the unfolding U(N) to the net N reflects also
the correspondence between the events (respectively conditions) of the unfolding
and the transitions (respectively places) of the net. It is defined as:

– ∀e = (C, t) ∈ E φN (e) = t ,
– ∀b = (e, p) ∈ B φN (b) def= p and
– ∀p ∈ P± φN (p) = p , since the interface places are not unfolded.

Factorization Properties of Symbolic Unfoldings of Colored Petri Nets 179

p1 c p3c

p5c

t2e1

p2 p4

t1e2

p1

t3 e3

p3 p6

t2e4

p2 p4

t4 e5

p5

t1e6

p1 U(N0) ∼ U(N1)×O U(N2)

e1
def= ({(⊥, p1), (⊥, p3)}, t2)

e2
def= ({(e1, p2)}, t1)

e3
def= ({(e1, p4), (⊥, p5)}, t3)

e4
def= ({(e2, p1), (e3, p3)}, t2)

e5
def= ({(e3, p6)}, t4)

e6
def= ({(e4, p2)}, t1)

Fig. 5. The symbolic unfolding of the colored puzzle net N0 = N1 ×N2 of Figure 1

Definition 7 (symbolic unfolding). Let N be a colored puzzle net such that

– ∀p ∈ P
∑

v∈V M0((p, v)) ≤ 1 and
– ∀t ∈ T •t ∩ P �= ∅.

We define its symbolic unfolding

U(N) def= (B,P+, P−, E, preU , postU , Λ, λU , γU ,M0
U)

as follows: (B and E are defined inductively)

1. P+ and P− are the sets of interface places of N
2. initial conditions:
⊥• ⊆ B, with ⊥• def= {(⊥, p) | p ∈ P, ∃v ∈ V, M0(p, v) = 1}

3. initial marking:
∀p ∈ P± ∀v ∈ V M0

U (p, v) def= M0(p, v)
∀(⊥, p) ∈ ⊥• ∀v ∈ V M0

U ((⊥, p), v) def= M0(p, v)
∀b ∈ B \ ⊥• ∀v ∈ V M0

U (b, v) def= 0

180 T. Chatain and E. Fabre

4. input and output of an event:

∀e = (C, t) ∈ E

{
•e

def= C ∪ (•t ∩ P±) and
e•

def= {(e, p) | p ∈ t• ∩ P} ∪ (t• ∩ P±)
5. firing modes (only those that are compatible with a valid coloring of �e�):
∀e = (C, t) ∈ E

γ(e) def= {(α ◦ φN |•e, β ◦ φN |e•) | (α, β) ∈ γ(t) ∧
∃Col ∈ valid colorings(�e�) Col |C = α ◦ φN |C}

6. insertion of new events:
∀e = (C, t) ∈ 2B × T, e ∈ E iff⎧⎨⎩

φN |C is a bijection from C to •t ∩ P

�e1, e2 ∈ �e� e1 �= e2 ∧ •e1 ∩ •e2 ∩B = ∅
∃(α, β) ∈ γ(e) ∃Col ∈ valid colorings(�e�) Col |C = α|C

7. insertion of new conditions created by an event:
∀e ∈ E e• \ P± ⊆ B

8. labels:
Λ is the set of labels of N ;
∀x ∈ B ∪ P± λU (x) = λ(φN (x))

Proposition 2. U(N) is a symbolic occurrence net, and the folding φN :
U(N)→ N is a morphism.

See the proof in [8].

Theorem 4 (symbolic unfolding). The U functor establishes a coreflection
between the category of (unfoldable) colored puzzle nets and the full subcategory
of symbolic occurrence nets.

Proof sketch. We have to prove the universal property of symbolic unfoldings:
Let φ be a morphism from a symbolic occurrence net O to an unfoldable net N .
There exists a unique morphism ψ : O → U(N) such that φ = φN ◦ψ. We prove
easily that if ψ exists, it is unique and defined as:

– φ(x) ∈ P± =⇒ ψ(x) def= φ(x)
– ψ(x) = ∗ iff φ(x) = ∗
– ψ(e) def= (ψ(•e) \ P±, φ(e)) if φ(e) �= ∗

– φ(b) ∈ P =⇒
{

ψ(b) def= (⊥, φ(b)) if •b = ⊥
ψ(b) def= (ψ(•b), φ(b)) otherwise

It remains to show that ψ is a morphism from O to UN . The difficult part is to
show that ψ maps the events of O to valid events of U(N). ��

By the same arguments as for the expansion, one derives immediately the ex-
istence of a product in the subcategory of symbolic occurrence nets, given by
O1 ×O O2

def= U(O1 × O2). And, again, product is preserved by the symbolic
unfolding functor:

U(N1 ×N2) ∼ U(N1)×O U(N2)

Factorization Properties of Symbolic Unfoldings of Colored Petri Nets 181

p1 c

p2

p3

t1
{pc

1}, {pa
2}

{pc
1}, {pb

2}

t2
{pa

2}, {pc
3}

{pb
2}, {pc

3}

N ∼ U(N)

p1 c

p2a p2b

p3

t1a t1b

t2a t2b

Exp(N)

p1 c

p2a p2b

p3 p3′

t1a t1b

t2a t2b

ExpO(U(N)) ∼ U(Exp(N))

Fig. 6. A colored Petri net N , which is isomorphic to its unfolding U(N), the expansion
Exp(N) of N and the expansion ExpO(U(N)) of the unfolding

which was the announced result. This is illustrated in Figure 5. Notice that
the factored form on the right hand side is by nature more compact than the
symbolic unfolding of the product, since interface places between N1 and N2 are
not expanded.

4.1 Expanded Unfoldings and Expansion of Colored Occurrence
Nets

Remark that the symbolic unfolding of an expanded puzzle net is an expanded
occurrence net. Actually, when applied to expanded puzzle nets, our definition of
symbolic unfolding matches the usual definition of unfoldings for low-level Petri
nets [24] (up to interface places). This object forms a coreflection from expanded
nets to expanded occurrence nets, and we call it the expanded unfolding.

We are looking for a relation between the symbolic unfolding and the expanded
unfolding of a colored puzzle net. The idea is that expanding the symbolic un-
folding should yield the expanded unfolding. But actually the expansion of an
occurrence net is not an occurrence net in general. This fact is illustrated in
Figure 6, where transition t1 of N produces either a token of color a or b in
place p2, and transition t2 consumes it anyway and produces a token of color c
in place p3. If U(N) is expanded as a net, then the two versions of transition t3
converge to the same place p3, which is not suitable for an occurrence net.

The correct expansion functor ExpO for occurrence nets is defined naturally
as ExpO(O) = U(Exp(O)). Composing the two coreflections built in the previ-
ous sections allows one to establish one more between the category of symbolic
occurrence nets and the category of expanded occurrence nets, the former being

182 T. Chatain and E. Fabre

Puzzle Nets

⊆

⊆

Exp = U o Exp
O

U U⊆ ⊆

Exp

Occurrence Nets
Expanded

Occurrence Nets
Symbolic (Colored)

Expanded
Nets

Colored

Fig. 7. Coreflections between categories derived from colored puzzle nets by symbolic
unfolding and by expansion

viewed as a subcategory of colored puzzle nets (see Fig. 7). In addition, one has
that the expanded unfolding U(Exp(N)) is isomorphic to the expansion by ExpO

of its symbolic unfolding U(N), that is U(Exp(N)) ∼ ExpO(U(N)).
All this results in the commutative diagram in Fig. 7, that displays the

four categories derived from colored puzzle nets by expansion and by symbolic
unfolding. The coreflections illustrated in this figure naturally transport cat-
egorical limits. For example, for two symbolic occurrence nets O1, O2, one has
ExpO(O1×OO2) ∼ ExpO(O1)×EO ExpO(O2) where the product ×EO in the cat-
egory of expanded occurrence nets is obtained by applying ExpO to the product
×O in the category of symbolic occurrence nets.

5 Conclusion

We have studied the unfoldings of colored puzzle nets, a formalism of high-level
Petri nets using the popular composition mechanism based on shared places. An
adequate categorical framework has been proposed for this family of nets, based
on run-preserving morphisms. Symbolic unfoldings have been also adapted to
colored puzzle nets, and related to previous notions of unfoldings for low-level
nets, through the notion of expansion. In this adequate categorical framework, we
have also illustrated an important property of the symbolic unfolding operation,
namely that it commutes with product. The factorization property of unfoldings
forms the basis of distributed processing methods for distributed systems (for
example distributed diagnosis). We will now explore the interest of symbolic
unfoldings for this purpose.

Let us mention that all derivations are presented for the family of colored
puzzle nets, because we are convinced of the practical interest of composing nets
via shared places. However, the same results remain valid with more ordinary
categories of colored nets, where composition is performed by synchronizing
transitions carrying identical labels.

Factorization Properties of Symbolic Unfoldings of Colored Petri Nets 183

References

1. Baldan, P., Chatain, T., Haar, S., König, B.: Unfolding-based diagnosis of systems
with an evolving topology. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008.
LNCS, vol. 5201, pp. 203–217. Springer, Heidelberg (2008)

2. Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Compositional se-
mantics for open Petri nets based on deterministic processes. Technical report,
University of Pisa, Tech. Rep. TR-01-21 (2001)

3. Baldan, P., Corradini, A., Ehrig, H., König, B.: Open Petri nets: Non-deterministic
processes and compositionality. In: ICGT 2008. LNCS, vol. 5214, pp. 257–273.
Springer, Heidelberg (2008)

4. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event
structures, and processes. Information and Computation 171(1), 1–49 (2001)

5. Best, E., Devillers, R., Koutny, M.: The box algebra = Petri nets + process ex-
pressions. Inf. Comput. 178(1), 44–100 (2002)

6. Best, E., Fleischhack, H., Fraczak, W., Hopkins, R.P., Klaudel, H., Pelz, E.: A
class of composable high level Petri nets with an application to the semantics of
B(PN)2. In: DeMichelis, G., Dı́az, M. (eds.) ICATPN 1995. LNCS, vol. 935, pp.
103–120. Springer, Heidelberg (1995)

7. Best, E., Fraczak, W., Hopkins, R.P., Klaudel, H., Pelz, E.: M-nets: An algebra of
high-level Petri nets, with an application to the semantics of concurrent program-
ming languages. Acta Inf. 35(10), 813–857 (1998)

8. Chatain, T., Fabre, E.: Factorization properties of symbolic unfoldings of colored
Petri nets. Research Report LSV-10-07, Laboratoire Spécification et Vérification,
ENS Cachan, France (April 2010)

9. Chatain, T., Jard, C.: Symbolic diagnosis of partially observable concurrent sys-
tems. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 326–342. Springer, Heidelberg (2004)

10. Ehrig, H., Hoffmann, K., Gabriel, K., Padberg, J.: Composition and independence
of high-level net processes. Electr. Notes Theor. Comput. Sci. 242(2), 59–71 (2009)

11. Ehrig, H., Hoffmann, K., Padberg, J., Baldan, P., Heckel, R.: High-level net pro-
cesses. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and
Natural Computing. LNCS, vol. 2300, pp. 191–219. Springer, Heidelberg (2002)

12. Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28(6), 575–591 (1991)
13. Fabre, E.: On the construction of pullbacks for safe Petri nets. In: Donatelli, S.,

Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 166–180. Springer,
Heidelberg (2006)

14. Groote, J.F., Voorhoeve, M.: Operational semantics for Petri net components.
Theor. Comput. Sci. 379(1-2), 1–19 (2007)

15. Jensen, K.: Coloured Petri nets: basic concepts, analysis methods and practical
use. Springer, Heidelberg (1995)

16. Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
thesis, School of Computing Science, University of Newcastle upon Tyne (2003)

17. Khomenko, V., Koutny, M.: Branching processes of high-level Petri nets. In: Gar-
avel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 458–472. Springer,
Heidelberg (2003)

18. Kindler, E.: A compositional partial order semantics for Petri net components. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 235–252. Springer,
Heidelberg (1997)

184 T. Chatain and E. Fabre

19. Koutny, M., Best, E.: Operational and denotational semantics for the box algebra.
Theor. Comput. Sci. 211(1-2), 1–83 (1999)

20. Meseguer, J., Montanari, U., Sassone, V.: On the semantics of place/transition
Petri nets. Mathematical Structures in Computer Science 7(4), 359–397 (1997)

21. Nielsen, M., Priese, L., Sassone, V.: Characterizing behavioural congruences for
Petri nets. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp.
175–189. Springer, Heidelberg (1995)

22. Priese, L., Wimmel, H.: A uniform approach to true-concurrency and interleaving
semantics for Petri nets. Theor. Comput. Sci. 206(1-2), 219–256 (1998)

23. Reisig, W.: Simple composition of nets. In: Franceschinis, G., Wolf, K. (eds.)
PETRI NETS 2009. LNCS, vol. 5606, pp. 23–42. Springer, Heidelberg (2009)

24. Winskel, G.: Categories of models for concurrency. In: Brookes, S.D., Winskel,
G., Roscoe, A.W. (eds.) Seminar on Concurrency. LNCS, vol. 197, pp. 246–267.
Springer, Heidelberg (1985)

Forward Analysis for Petri Nets
with Name Creation�

Fernando Rosa-Velardo and David de Frutos-Escrig

Dpto. de Sistemas Informáticos y Computación
Universidad Complutense de Madrid
{fernandorosa,defrutos}@sip.ucm.es

Abstract. Pure names are identifiers with no relation between them,
except equality and inequality. In previous works we have extended P/T
nets with the capability of creating and managing pure names, obtain-
ing ν-APNs and proved that they are strictly well structured (WSTS), so
that coverability and boundedness are decidable. Here we use the frame-
work recently developed by Finkel and Goubault-Larrecq for forward
analysis for WSTS, in the case of ν-APNs, to compute the cover, that
gives a good over approximation of the set of reachable markings. We
prove that the least complete domain containing the set of markings is
effectively representable. Moreover, we prove that in the completion we
can compute least upper bounds of simple loops. Therefore, a forward
Karp-Miller procedure that computes the cover is applicable. However,
we prove that in general the cover is not computable, so that the proce-
dure is non-terminating in general. As a corollary, we obtain the analo-
gous result for Transfer Data nets and Data Nets. Finally, we show that
a slight modification of the forward analysis yields decidability of a weak
form of boundedness called width-boundedness.

1 Introduction

Pure names have been extensively studied in the fields of security and mobility,
because they can be used to represent different entities widely used in them.
For instance, names can represent communicating channels in π-calculus terms,
computing boundaries in the Ambient Calculus or ciphering keys in the spi
Calculus [13]. In previous works we have extended P/T nets with a primitive to
create fresh names, defining ν-APNs. Names are represented as tokens, that are
no longer indistinguishable. These tokens can move along the places of the net
and be used to restrict the firing of some transitions, imposing for instance that
two certain names at the preconditions match.

In [17] we proved that ν-APNs are Well Structured Transition Systems
(WSTS). For WSTS it is possible to perform a backward analysis that com-
putes the set ↑Pre∗(↑M) [1,8], the set of predecessors of an upward-closed set

� Work partially supported by the Spanish projects DESAFIOS10 TIN2009-14599-
C03-01, UCM-BSCH GR58/08/910606 and PROMETIDOS S2009/TIC-1465.

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 185–205, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

186 F. Rosa-Velardo and D. de Frutos-Escrig

↑M . An effective representation of that set allows us to decide the coverability
problem, by checking whether the initial marking M0 ∈ ↑Pre∗(↑M). However,
the construction of such sets is extremely expensive, with a non primitive recur-
sive complexity [20].

Very recently, Finkel and Goubault-Larrecq have laid the foundation of a
theory supporting forward analysis of WSTS [10,11], computing ↓Post∗(↓M0),
the so called cover of the transition system. The cover provides a good over
approximation of the set of reachable states, and its construction is generally
more efficient in practice than that of ↑Pre∗(↑M). However, it is not always
possible to obtain an effective representation of the cover [3]. The paper [10]
establishes a theory for the completion of well quasi orders (wqos), so that we
can always represent downward-closed sets by means of their least upper bounds.
There it is proved that the least completion of X (that contains an adequate
domain of limits, in the sense of [12]) is the so called ideal completion of X , or
equivalently, the sobrification of X [14].

We will see here that the ideal completion of the set of markings can be
effectively represented by mapping markings to the domain MS(MS(P)) of finite
multisets of finite multisets of places. For that purpose we introduce the domain
of ω-markings (analogous to the classical notion of ω-markings for P/T nets). In
an ω-marking, not only some identifiers may appear an unbounded number of
times in some places, as happens in classical ω-markings, but also an unbounded
number of different identifiers may occur in a marking.

Assuming a complete domain (thus containing an adequate domain of limits),
a generic Karp-Miller procedure to compute the cover is presented in [11]. This
procedure is correct provided the WSTS is ∞-effective, which intuitively means
that we can accelerate simple loops (flat loops, in the sense of [4]). We will see
that ν-APNs are ∞-effective when we restrict the non-determinism arising in
loops, so that we can apply to them the generic Karp-Miller procedure. Unfor-
tunately, when applied to this kind of systems, the procedure is not guaranteed
to terminate. We will see that this is unavoidable, since we can reduce the prob-
lem of boundedness for reset nets, which is known to be undecidable [7], to the
computation of the cover.

Data nets [16] are Petri nets in which tokens are taken from a linearly ordered
and dense domain, and capable of performing whole place operations, such as
transfers or resets. Transfer Data Nets is the subclass of Data nets in which no
resets are allowed, and Petri Data Nets is the subclass of Data Nets (and of
Transfer Data Nets) in which no whole-place operation is allowed. Petri Data
nets subsume ν-APNs [16], so that as a corollary, there cannot be an algorithm
computing (a finite basis of) the cover of a Petri Data net, and therefore neither
for a Transfer Data net, thus answering negatively to a question posed in [11].

But even if there is no algorithm for the computation of the cover, we can
use a slight modification of the forward Karp-Miller procedure to decide width-
boundedness of ν-APNs [18,5]. A net is width-bounded if only a bounded number
of different names appear in each reachable marking. The paper [5] also estab-
lishes the decidability of width-boundedness (called m-boundedness there), but

Forward Analysis for Petri Nets with Name Creation 187

we claim that the algorithm presented there does not properly work in all the
cases. This is because the algorithm stops whenever unboundedness is detected.
However, width-unbounded nets may be bounded or not, so that we need to
further explore the reachability graph to decide width-boundedness. For that
purpose, we need ways to finitely represent downward-closed sets of reachable
markings, our ω-markings. We already knew [18] that width-boundedness is de-
cidable, but we obtain the result here as a simple application of our forward
analysis.

The rest of the paper is structured as follows. Section 2 introduces our nota-
tions and some basic concepts. In Section 3 we present ν-APNs. In Section 4 we
show how ν-APNs fit in the general framework for forward analysis of WSTS
in [10,11]. Section 5 contains our main results: the viability of a forward Karp-
Miller procedure for ν-APNs, non-computability of the cover and decidability of
width-boundedness. Finally, Section 6 presents our conclusions and some direc-
tions for further work.

2 Preliminaries

wqos, dcpos. A quasi order ≤ is a reflexive and transitive binary relation on a
set X . A partial order is an antisymmetric quasi order. A poset is a set endowed
with a partial order. We write a < b if a ≤ b and b �≤ a. A quasi order is simply
said well (wqo) [9], if for every infinite sequence a0, a1, . . . there are i and j with
i < j such that ai ≤ aj . Equivalently, an order is a wqo if every sequence has an
increasing subsequence.

The downward closure ↓E of E ⊆ X is {y ∈ X | y ≤ x for some x ∈ E}. A
set is downward closed iff ↓E = E. A basis of a downward closed set E is a set
A such that ↓A = E. An element x ∈ X is an upper bound of E if y ≤ x for all
y ∈ E. We write lub(E) to denote the least upper bound of E, when it exists.
An element x ∈ E is maximal if x = y whenever x ≤ y ∈ E; MaxE is the set of
maximal elements of E. A subset D of X is said to be directed if lub({x, y}) exists
for all x, y ∈ D. A poset is directed complete (dcpo) if every directed subset has
a least upper bound. For an arbitrary subset E, Lub(E) = {lub(D) | D directed,
D ⊆ E}. The set Lub(E) can be thought of as E together with all its limits. For a
dcpo X , we write x� y whenever y ≤ lub(D) implies x ≤ z for some z ∈ D, for
all directed subset D. X is continuous if for all x ∈ X , x = lub{y ∈ X | y � x}.

WSTS. A labelled transition system is a tuple N = (X,→,Act) with a set
X of states, Act a set of actions and a transition relation →=

⋃
a∈Act

a→, with

a→ ⊆ X ×X . We denote by a→∗ (resp. →∗) the reflexive and transitive closure
of a→ (resp. →). Posta,N(M) (or just Posta(M)) is the set {M ′ | M

a→M ′} of
immediate a-successors of M . Post∗(M) = {M ′ | M →∗ M ′} is the set of
reachable states. Both Posta and Post∗ are extended pointwise to sets of states.
A Well Structured Transition System (WSTS) is a tuple N = (X,→,Act ,≤),
where (X,→,Act) is a labelled transition system, and (X,≤) is a wqo, satisfying

188 F. Rosa-Velardo and D. de Frutos-Escrig

the following monotonicity condition1: M1 ≥ M2
a→M ′

2 implies the existence of
M ′

1 such that M1
a→M ′

1 ≥ M ′
2. Given a state M , the cover of M is the set

↓Post∗(M) (or equivalently, ↓Post∗(↓M) because of monotonicity), and we will
denote it by CoverN (M) (or just Cover (M) if there is no confusion). Given an
initial state M0, the cover of N is the cover of M0. N is said to be effective
if Posta(M) is finite and computable for all M , and ≤ is decidable. A WSTS
(X,→,Act ,≤) is complete whenever (X,≤) is a continuous dcpo and for every
a ∈ Act , Posta(Lub(E)) = Lub(Posta(E)) for every set E.

An ideal is a downward closed directed subset. The ideal completion X
of a wqo X is the set of ideals of X , ordered by inclusion. Given a WSTS
N = (X,→,Act ,≤), the ideal completion of N is the transition system N =
(X, �→,Act), where F

a�→ F ′ =↓{s′ | s a→s′, s ∈ F}. (X,⊆) is a continuous dcpo.
However, N is not a WSTS in general. A wqo is an ω2-wqo if it does not con-
tain the Rado’s structure, and an ω2-WSTS is a WSTS with an underlying
ω2-wqo [15]. Then, N is a WSTS iff N is a ω2-WSTS [11].

Multisets. Given an arbitrary set A, we will denote by MS(A) the set of finite
multisets of A, that is, the mappings m : A→ N. When needed, we identify each
set with the multiset defined by its characteristic function, and use set notation
for multisets when convenient. We denote by S(m) the support of m, that is, the
set {a ∈ A | m(a) > 0} and by |m| =

∑
a∈S(m)

m(a) the cardinality of m. Given

two multisets m1,m2 ∈ MS(A) we denote by m1 + m2 the multiset defined by
(m1 + m2)(a) = m1(a) + m2(a). We will write m1 ⊆ m2 if m1(a) ≤ m2(a) for
every a ∈ A. Then, we can define m2−m1, taking (m2−m1)(a) = m2(a)−m1(a).
We will denote by ∅ ∈ MS(A) the empty multiset. If f : A → B and m ∈MS(A),
we define f(m) ∈MS(B) by f(m)(b) =

∑
f(a)=bm(a).

Every partial order ≤ defined over A induces a partial order � in the set
MS(A), given by {a1, . . . , an} � {b1, . . . , bm} if there is an injective function
ι : {1, . . . , n} → {1, . . . ,m} such that ai ≤ bι(i) for all i. If we do not demand
ι to be injective we obtain the powerdomain order ≤∀

∃. We write �ι and ≤∀
ι to

stress the use of the mapping ι. It is well known that if ≤ is a wqo then so is �.

3 ν-APNs

In this section we present ν-APNs; the reader is referred2 to [19] for more details.
In ν-APNs names can be created, communicated and matched. We can use
this mechanism to deal with authentication issues [17], correlation or instance
isolation [6]. We formalize name management by replacing ordinary tokens by
distinguishable tokens. We fix a set Id of names, that can be carried by tokens of
any ν-APN. In order to handle these colors, we need matching variables labelling

1 Different monotonicy notions are considered in [9].
2 We present here a more general version, that allows weights in arcs and check for

inequality. The results in [17,19,18] can be easily transferred to this extended version.

Forward Analysis for Petri Nets with Name Creation 189

a a

a

b b

p1 q1

p2 q2

x x

y ν

→ a a

a

b c
(c fresh)

p1 q1

p2 q2

x x

y ν

a a

a

b b

p1 q1

p2 q2

x x

x ν

�→

Fig. 1. Two simple ν-APN

the arcs of the nets, taken from a fixed set Var . Moreover, we add a primitive
capable of creating new names, formalized by means of special variables in a set
Υ ⊂ Var , ranged by ν, ν1, . . ., that can only be instantiated to fresh names.

As an example, the net in the top of Fig. 1 is a simple ν-APN with a single
transition. When fired, it moves one token from p1 to q1 (because of variable x
labelling both arcs), removes a token from p2 (variable y does not appear in any
outgoing arc) and a new name is created in q2 (because of variable ν). Instead,
the net in the bottom of Fig. 1 uses the same variable x to label the two arcs
incoming its only transition. In that case, the transition must take two tokens
carrying the same name from p1 and p2, so that the transition is not enabled.

Definition 1. A ν-APN is a tuple N = (P, T, F), where P and T are finite
disjoint sets, F : (P × T) ∪ (T × P) → MS(Var) is such that for every t ∈ T ,
Υ ∩ pre(t) = ∅ and post(t) \ Υ ⊆ pre(t), where pre(t) =

⋃
p∈P S(F (p, t)) and

post(t) =
⋃

p∈P S(F (t, p)).

The set of pairs (x, y) such that F (x, y) �= ∅ defines the set of arcs of N . We also
take Var(t) = pre(t) ∪ post(t), fVar(t) = Var(t) ∩ Υ and nfVar(t) = Var(t) \
fVar(t). To avoid tedious definitions, along the paper we will consider a fixed
ν-APN N = (P, T, F).

Definition 2. A marking of N is a function M : P →MS(Id). We denote by
Id(M) the set of names in M , that is, Id(M) =

⋃
p∈P S(M(p)).

Like for other classes of higher-order nets, transitions are fired with respect to a
mode, that chooses which tokens are taken from the preconditions and which are
put in the postconditions. Given a transition t of N , a mode for t is an injection
σ : Var(t) → Id that instantiates each variable to a different identifier. Thus, by
using the same variable we force the equality of names taken from preconditions,
and because modes are injections, we also check the inequality of names by using
different variables. We will use σ, σ′, σ1 . . . to range over modes.

Definition 3. Let M be a marking, t a transition and σ a mode for t. We say
t is enabled with mode σ if for all p ∈ P , σ(F (p, t)) ⊆ M(p) and σ(ν) /∈ Id(M)
for all ν ∈ fVar(t). The reached state after the firing of t with mode σ is the
marking M ′, given by M ′(p) = (M(p)− σ(F (p, t))) + σ(F (t, p)) for all p ∈ P .

190 F. Rosa-Velardo and D. de Frutos-Escrig

In the definition of firing we demand that σ(ν) /∈ Id(M), for every special vari-
able ν, that is, that every such ν is instantiated to a different fresh name, not
in the current marking. Moreover (and unlike in [19]) we demand modes to be
injective, which amounts to being able to check for inequality of names (not only
for equality, by using the same variable in different arcs). We will write M

t→M ′,

M
t(σ)→M ′, M → M ′ and M

τ→M ′ with τ = t1(σ1) · · · tn(σn), saying that τ is a
transition sequence, with their obvious meanings.

Let us now define the natural order between markings, that induces the
coverability problem in ν-APN. We define M1 �α M2 if there is an injection
ι : Id(M1)→ Id(M2) such that ι(M1(p)) ⊆M2(p), for all p ∈ P . We take ≡α as
�α ∩ α" and identify markings up to ≡α, that allows renaming of names. The
relation �α is a wqo [17]. We will sometimes write M1 �ι M2 to emphasize the
use of ι.

4 Forward Analysis for ν-APNs

The state space of a P/T net is the set Nk. However, that set is not complete.
For instance, the increasing chain (n)∞n=1 does not have a least upper bound in
N. For that purpose, the classical Karp-Miller construction for P/T nets works
instead with the domain (N∪{ω})k, which is the completion of Nk. In particular,
the least upper bound of the previous chain is just ω. In general, a generic Karp-
Miller procedure needs to work with the completion of the domain of the WSTS,
in case it is not already complete.

In this section we build the completion of the transition system defined by
a ν-APN. In [10] it is proved that the ideal completion3 of a poset is effective
(ideals can be finitely represented, and inclusion is decidable) whenever the poset
is built up from some basic data type constructions, among which are finite
domains, with any order, and multisets of elements in a domain with effective
ideal completion. Let us see that we can build our markings using these two
constructions.

The behavior of ν-APNs is invariant under ≡α [17]. When working mod-
ulo ≡α we can represent markings as multisets of multisets of places, where
each multiset represents the projection of the marking over some identifier. For
instance, the marking M given by M(p) = {a} and M(q) = {a, b} can be equiv-
alently represented by the multiset {{p, q}, {q}} in MS(MS(P)). In general, for
a marking M , its multiset representation is given by {Ma | a ∈ Id(M)}, where
Ma(p) = M(p)(a). We can also denote the previous multiset by the expression
pq + q, where pq represents the identifier a, which is both in p and in q, and q
represents the identifier b, which is only in q. In the following, � will denote the
natural order over MS(MS(P)) (induced by the equality in P).

Lemma 1. Let M1 and M2 be two markings, and M1 and M2 their multiset
representation. Then we have M1 �α M2 iff M1 �M2.

3 Actually, the authors work with the equivalent concept of sobrification.

Forward Analysis for Petri Nets with Name Creation 191

In particular, M1 ≡α M2 iff their multiset representations coincide. Since we are
interested in the abstract treatment of pure names, our set of configurations will
be just the set of finite multisets of finite multisets of places4.

Next we define ω-markings, the analogous concept of the classical ω-markings
of P/T nets in the case of ν-APN. We use a terminology inspired by the Simple
Regular Expressions of [3]. We denote by Nω the set N ∪ {ω}, and extend the
natural order and the usual arithmetic to Nω. Next we will consider a fixed
enumeration of the places of the net, P = {p1, . . . , pn}.

Definition 4. A product is an expression pi1
1 · · · pin

n with i1, . . . , in ∈ Nω. A
sum is an expression of the form E1 + . . . +Em, where each Ei is a product. An
ω-marking is an expression A +∞(B), with A and B sums.

Intuitively, ω-markings are markings (modulo ≡α) in which some identifiers may
appear an unbounded number of times, and also an unbounded number of differ-
ent identifiers may appear. Notice that each product corresponds to an ordinary
ω-marking of a P/T net. For instance, the ω-marking pqω +∞(pω) represents the
marking in which an identifier appears once in p and infinitely often in q, and in-
finitely many other different identifiers appear infinitely often in p. Clearly, plain
markings are a particular class of ω-markings, those in which B is the empty
expression and Ei = pi1

1 · · · pin
n with i1, . . . , in ∈ N for all Ei in A. Sometimes,

for an ω-marking M = A +∞(B) we will refer to A as the bounded part of M

and to B as the unbounded part of M.
We denote by ∅ the empty sum, and we will simply write A instead of A+∞(∅)

and∞(B) instead of ∅+∞(B). We will often omit places p with a null exponent,
and expand exponential factors, writing for instance qq instead of p0q2 (assuming
P = {p, q}).

We define |pi1
1 · · · pin

n |ω = |{k | ik = ω}|, and (pi1
1 · · · pin

n)ω = pj1
1 · · · pjn

n , where
jk = 0 if ik = 0, and jk = ω otherwise (e.g., (ppqω)ω = pωqω). Given two
products E1 = pi1

1 · · · pin
n and E2 = pj1

1 · · · pjn
n we take E1 � E2 ⇔ ik ≤ jk

for all k ∈ {1, . . . , n}, and we define E1 ⊕ E2 = pi1+j1
1 · · · pin+jn

n , and whenever
E2 � E1, E1 % E2 = pi1−j1

1 · · · pin−jn
n , provided jk �= ω for all k ∈ {1, . . . , n}.

Finally, (A +∞(B)) + (A′ +∞(B′)) is the ω-marking (A + A′) +∞(B + B′).
Let us now define the order between ω-markings, that extends the natural

one for markings.

Definition 5. Given two ω-markings M = E1 + . . .+Em +∞(Em+1 + . . .+Ek)
and M′ = E′

1 + . . . + E′
m′ +∞(Em′+1 + . . . + Ek′) we define M � M′ if there is

ι : {1, . . . , k} → {1, . . . , k′} such that:

– If ι(i) = ι(j) and ι(j) ≤ m′ then i = j (it is partially injective),
– If i > m then ι(i) > m′,
– Ei � Eι(i) for all i ∈ {1, . . . , k}.

4 Notice that MS(P) is isomorphic to N|P |, so that alternatively we could have con-
sidered MS(N|P |) instead of MS(MS(P)).

192 F. Rosa-Velardo and D. de Frutos-Escrig

As for multisets, we use a mapping ι to specify which product of M′ is used to
bound each product in M. Products in the bounded part of M can be mapped
to products in the bounded or in the unbounded part of M′, though products
in the unbounded part of M can only be mapped to products that are also in
the unbounded part of M′. Intuitively, infinitely many copies of a product can
only be bounded by an infinite number of products. Products in the bounded
part of M′ can only be used once to bound products in M, while this is not the
case for products in the unbounded part. Alternatively, we could have defined
A +∞(B) � A′ +∞(B′) if we can split A into A1 and A2 so that5 A1 � A′,
A2 ≤∀

∃ B′, and B ≤∀
∃ B′. The products in A1 are mapped to the bounded part,

while the ones in A2 and in B are mapped to the unbounded part. Notice that,
in this case, we are using the order ≤∀

∃ since, intuitively, we have infinitely many
copies of the products in B′, so that we can choose any of them to bound as
many sums as needed, so that the mapping needs not be injective. For instance,
it holds p + q + qq + ∞(q) � pq + ∞(qq) because p � pq, q + qq ≤∀

∃ qq and
q ≤∀

∃ qq.
We take ≡ as � ∩ " and identify ω-markings up to ≡. We take as ω-Markings

the set of ω-markings identified up to ≡. As for plain markings, we will also use
the notation �ι. When there is no confusion, we will write ι(Ei) instead of Eι(i).
For instance, p+qq+∞(q) �ι p+∞(qq) with ι(p) = p, ι(qq) = qq and ι(q) = qq.
The following equivalences will be used along the rest of the paper.

Lemma 2. If E1 � E2 then E1 +∞(E2) ≡ ∞(E2) and ∞(E1 + E2) ≡ ∞(E2).

Thus, for instance we have that p + q + ∞(pq) ≡ ∞(pq) ≡ ∞(p + q + pq).
Though ω-markings can be intuitively seen as markings in which some identifiers
appear infinitely often, and in which an infinite number of different identifiers
can appear, technically they represent sets of markings, those bounded by them
as expressed by their denotations.

Definition 6. The denotation of a product E = pk1
1 · · · pkn

n is the set of multisets
of places �E� = {A ∈MS(P) | A(pi) ≤ ki for all i = 1, . . . , n}. The denotation of
a sum A =

∑m
i=1 Ei is given by �A� = {{Ai | Ai ∈ �Ei�, i ∈ I} | I ⊆ {1, . . . ,m}}.

We define the denotation of an ω-marking M = A+∞(B) as the set of markings
�M� = {M +

∑k
i=1 Mi | k ≥ 0,M ∈ �A�,Mi ∈ �B�}.

Take the ω-marking pq + ∞(qq). The denotation of pq is the set {∅, p, q, pq},
and �qq� = {∅, q, qq}. Thus, �pq + ∞(qq)� is the set of markings of the form
M + q + . . . + q︸ ︷︷ ︸

n1

+ qq + . . . + qq︸ ︷︷ ︸
n2

with n1, n2 ≥ 0 and M ∈ �pq�. Notice that �M�

is a downward closed and directed set, that is, an ideal.

Proposition 1. The ideal completion of (MS(MS(P)),�) can be effectively rep-
resented as (ω-Markings,�).

5 Abusing notation, we are considering sums to be multisets of products.

Forward Analysis for Petri Nets with Name Creation 193

In particular, given two ω-markings M1 and M2 it holds that M1 � M2 ⇔
�M1� ⊆ �M2�, so that (ω-Markings,�) is a continuous dcpo.

Now we need to lift the transition relation to the completed domain of
ω-markings. More precisely, for each ω-marking M we need to effectively com-
pute the set ↓Post(�M�). First, let us introduce some notations: Given a tran-
sition t and a variable x, we will denote by pret(x) the product pi1

1 · · · pin
n , with

ik = F (pk, t)(x), and post t(x) = pi1
1 · · · pin

n , with ik = F (t, pk)(x). In particular,
the products post t(ν), that correspond to the special variables ν ∈ Υ , are the
“fresh” products created by the transition t. For instance, the net in the bottom
of Fig. 1 satisfies pret(x) = p1p2, post t(x) = q1 and post t(ν) = q2.

Definition 7. Let M = E1 + · · ·+ Em +∞(Em+1 + · · ·+Ek) be an ω-marking,
and t a transition. An ω-mode for t is any mapping σ : nfVar(t)→ N such that:

– If σ(x) = σ(y) and σ(y) ≤ m then x = y, and
– pret(x) � Eσ(x) for all x ∈ Var(t).

Then we write M
t(σ)→A +∞(B), where B = Em+1 + · · ·+ Ek and

A =
∑

x∈nfVar(t)

((Eσ(x) % pret(x)) ⊕ post t(x)) +
∑

i/∈σ(Var(t))

Ei +
∑

ν∈fVar(t)

post t(ν)

We define Post t(M) = {M′ | M
t(σ)→M′ for some σ}, and extend it pointwise to

sets of ω-markings.

We will write σ(x) = E to denote that the product E is used by variable x in
mode σ. For all x ∈ Var(t), we will write ∇t(x) = (σ(x) % pret(x)) ⊕ post t(x).
Notice that for ν ∈ fVar(t) then ∇t(ν) is simply post t(ν). We will also write
M

t→M′, M → M′, M
τ→M′ and M →∗ M′ as with plain markings, with their

obvious meanings. Moreover, if the product E in M evolves to E′ in M′ we will

also write E
t(σ)→E′ or E → E′. Notice that whenever M → M′ the unbounded

part of M and M′ coincide. However, new products may appear in the bounded
part of M′, like those in the unbounded part of M involved in the firing of the

transition. For instance, the net in Fig. 8 can fire p+∞(q)
t2(σ)→ p+qq+∞(q) with

σ(x) = q. Intuitively, one of the infinitely many names in q has been chosen, and
put twice in q by the transition.

Let us see that we can use Post t(M) to compute ↓ Post t(�M�). For that
purpose, we need the following lemma. From now on, we will denote just by
�Post t(M)� the set

⋃
M′∈Postt(M)

�M′�.

Lemma 3. The following conditions hold:

– If M ∈ �M� and M
t→M ′ then we have M ′ ∈ �Post t(M)�.

– If M ∈ �Post t(M)� then there are M ′ ∈ �M� and M ′′ ∈ �Post t(M)� such
that M �M ′′ and M ′ t→M ′′.

194 F. Rosa-Velardo and D. de Frutos-Escrig

M

�

M ′′

M

�M�

Post(M)

Post(�M�)

M ′

Fig. 2. Computation of Post(�M�)

The first part of the previous lemma states that Post t(�M�) ⊆ �Post t(M)�).
For a better insight of the second part, see Fig. 2. Both allow us to prove the
following result.

Proposition 2. ↓Post t(�M�) = �Post t(M)�

Corollary 1. The completion N of a ν-APN N is an effective complete WSTS.

For a complete WSTS, the clover [11] of a state M is defined by Clover (M) =
Max Lub(Cover(M)). The clover of a state is finite because our order is well.
It holds that ↓Clover (M) = Lub(Cover(M)), so that the clover is a finite basis
of the cover (together with all the limits). Moreover, if N is the completion of
N = (X,→,≤) then CoverN (M) = CoverN (M) ∩X = ↓CloverN (M) ∩ X , so
that the clover of the completion is a basis of the cover (once we remove the
limits by intersecting with X).

Now let us see that we can apply a forward Karp-Miller algorithm to compute
the clover of N (although, as we will see, it will not terminate in general). For that
purpose, we will need to compute the least upper bounds of all the ω-markings
produced in a loop, that is, we need to accelerate loops.

5 Accelerations

In the previous section we have mostly seen how ν-APNs fit in the general
framework of [10,11]. In the classic construction of the Karp-Miller tree for P/T
nets, every time a transition sequence τ such that M

τ→M ′ with M(p) ≤ M ′(p)
for all p and M(q) < M ′(q) for some q, we know that the transition sequence
τ can be repeated arbitrarily often, so that the number of tokens in q can be
considered to be unbounded. In other words, we can replace M ′ by the least
upper bound of the markings obtained by repeating τ an arbitrary number of
times.

In order to translate the Karp-Miller procedure to ν-APNs, we need to prove
that the completion of a ν-APN is∞-effective, meaning that we can compute the
least upper bound of the markings obtained by repeating a transition sequence,
that is, that we can accelerate loops. In the previous section we have shown
how we can effectively represent the completed domains, so that the limit of an
increasing chain (and more generally, of a directed set) always exists. However,

Forward Analysis for Petri Nets with Name Creation 195

a

b

b

c

c

d

d

e

ι1 ι2 ι3

Id(M1) Id(M2) Id(M3) Id(M4)
a b a b

b a b a

c d e f

ι1 ι2 ι3

Id(M1) Id(M2) Id(M3) Id(M4)

Fig. 3. Example of construction of the sequences (ιi)∞i=1

the double infiniteness in ω-markings makes the task of computing those limits
a non trivial one. We now specify what will it mean in our setting to repeat a
transition sequence.

We will discuss the case in which τ is a single transition t, because the general
case would only obscure the presentation. Later we will see how the general

case can also be considered. Let us suppose that M1
t(σ1)→ M2 and M1 �ι1 M2.

Intuitively, because of monotonicity we can repeat the firing of t in M2. However,
the occurrence of a token a in p is bounded by the occurrence of ι1(a) in p.
Therefore, if t used a token a because σ1(x) = a for some variable x, then
now t must use ι(a) instead, thus taking σ2(x) = ι(a). We define the sequences
(σi)∞i=1, (Mi)∞i=1 and (ιi)∞i=1 of ω-modes, ω-markings and mappings, respectively,
as follows:

– σi+1(x) = ιi(σi(x)), for i ≥ 1,

– Mi
t(σi)→ Mi+1 for i ≥ 1, and

– ιi+1(E) =

⎧⎪⎨⎪⎩
E′ if F ′t(σi)→ E and ιi(F ′)

t(σi+1)→ E′ for F ′ in Mi

E and E′ in the bounded part,
E otherwise

for i ≥ 1.

σi+1 is defined following the previous intuitions: if a variable x is first instantiated
by a product E, in the next step it is instantiated by ιi(E). Mi+1 is simply
obtained by letting Mi evolve with mode σi. The definition of the mappings ιi
require further explanations. The mappings ιi map products to products, but
perhaps their definition is better understood by considering not the products
themselves, but the identifier that each product represents. Consider the left
handside of the diagram in Fig. 3, where a is mapped to b by ι1, and b is
mapped to a fresh identifier c. The definition of ι2 above simply states that
now (the product representing) b is mapped to (the product representing) c,
because b was mapped to c by ι1. Accordingly, since ι1 mapped b to a fresh
identifier (represented by a product E = post t(ν) for some ν ∈ Υ), ι2 must
map c to another fresh identifier (which is represented by the same product
E = post t(ν)). Finally, if E is in the unbounded part of Mi then it is also in the
unbounded part of Mi+1, and ιi+1(E) = E.

We will denote by t(σ1)k
ι the sequence t(σ1) · · · t(σk). In general, for a tran-

sition sequence τ we can define as above the sequences of ω-modes, ω-markings
and mappings. This is because we can always simulate the effect of the firing of a
transition sequence using some given modes with the firing of a single transition.

196 F. Rosa-Velardo and D. de Frutos-Escrig

a b

t1

t2

p q

x xν

yy

xyzx

Fig. 4. From transition sequences to transitions

a btp q
x

x

yy

y

N1 N2

a btp q
x

y y

νν

Fig. 5. w-accelerations and d-accelerations

Lemma 4. Let τ be a transition sequence of a ν-APN N = (P, T, F). Then there

is a ν-APN N ′ = (P, {t̄}, F ′) such that M1
τ→M2 in N if and only if M1

t̄(σ)→M2
in N ′ for some mode σ of t̄.

We will call τ -contraction of N to the net N ′ given by the previous result. We
will also write τk

ι to denote the transition sequence t̄(σ)k
ι , where t̄(σ) is the only

transition of its τ -contraction. Consider for instance the net in Fig. 4 and the
transition sequence τ = t1(σ1)t2(σ2), where σ1(x) = a, σ1(ν) = c, σ2(x) = b,
σ2(y) = c and σ2(z) = a. The τ -contraction of that net is the net N2 depicted in
Fig. 5. Notice that the modes σ1 and σ2 are such that σ1(x) = σ2(z). Accordingly,
since t1 puts once σ1(x) in q, and t2 removes σ2(z) from q, in N2 the token a is
neither put nor removed from q.

We are now ready to define in our setting what it means to accelerate a simple
loop. The sequence (Mi)∞i=1 is an increasing sequence, so that the following
definition makes sense.

Definition 8. Let N be the completion of a ν-APN N . We say N is ∞-effective
if it is effective and whenever M1

τ→M2 with M1 �ι M2 we can compute

accι(M1
τ→M2) = lub{M |M1

τn
ι→M, n > 0}

Let us see that we can compute that least upper bound. In the first place, we
can compute the τ -contraction of the net, and work with it instead. Therefore,
we can always assume that we want to accelerate a single transition. Let us
consider the nets N1 and N2 in Fig. 5. Notice that both nets can fire the run
p+q

t→p+qq, and p+q �ι p+qq with ι(p) = p and ι(q) = qq. However, the result
of an acceleration in both cases is very different: for N1, every marking of the
form p + qn is reachable; for N2, every marking p + qq + q + · · ·+ q is reachable.
Intuitively, the difference between both situations is that in N1 each product is
mapped to itself (the product p evolves to ι(p) = p and the product q evolves
to ι(q) = qq). However, that is not the case for N2, where the product q evolves
to ι(p) = p. If we consider not products, but the identifiers they represent, then

Forward Analysis for Petri Nets with Name Creation 197

the difference becomes clearer. In N1 both a and b are mapped to themselves
by ι, while in N2, a is mapped to b, and b is mapped to a fresh identifier. We
formalize the behavior of N1 in the following definition.

Definition 9. We say M1
t(σ)→M2 is properly increasing if M1 �ι M2 and for

all products E2 in M2 there are no different products E1 and E′
1 in the bounded

part of M1 such that E1
t(σ)→E2 and ι(E′

1) = E2.

The firing p + q
t→p + qq is properly increasing in N1, but not in N2, because

there is a product p in p + qq, and two different products in p + q, namely p and
q, such that p is mapped to p by ι1 and q evolves to p. However, every increasing
firing can be unrolled into a properly increasing one. Indeed, consider again the
diagrams in Fig. 3. In both parts of the diagrams, there is a natural k so that
each identifier is mapped in k steps either to itself, or to a fresh identifier. In
the left handside, after two steps, both a and b are mapped to fresh identifiers.
In the right handside, after three steps, both a and b are mapped to themselves,
but c is mapped to a fresh identifier. This happens in general, as we will see in
the next lemma.

Lemma 5. If M
t(σ)→M′ and M �ι M′ then there is k > 0 such that the firing of

the t̄(σ)k
ι -contraction of N is properly increasing.

We call order of ι, that we will denote as o(ι), to the natural k given by the
previous result, which can be effectively computed. Moreover, we will write t̄(σ)

instead of t(σ)o(ι)
ι , when it is clear from the context. Clearly, accι(M1

t(σ)→M2) =

accι(M1
t(σ)k

ι→ M) for any k > 0 so that, in particular, we can take k = o(ι).
Moreover, by Lemma 4 we can work with the t̄(σ)-contraction of the net instead.

As an example, consider the nets in Fig. 5. In N1 after one step each identifier

can be mapped to itself, that is, M1
t(σ)→M2 with M1 �ι M2, ι(a) = a and ι(b) = b,

so that o(ι) = 1. In N2 we find the situation in the left of Fig. 3, so that o(ι) = 2.
Thus, we need to consider the transition sequence τ = t(σ)t(σ′), with σ′(x) = b
and σ′(y) = σ(ν). In turn, in order to compute the acceleration we can consider
its τ -contraction, depicted in Fig. 6.

d-acceleration. Using properly increasing sequences has the advantage that
whenever a product Ex (with σ(x) = Ex) evolves to some E′

x in the range of
ι, then necessarily Ex � E′

x. Then, by repeating the firing of t we will obtain
products of the form Ex ⊕Δt(x)k, for some increment Δt(x), with least upper
bound Ex ⊕ Δt(x)ω . This is the situation for N1 in Fig. 5 and p + q

t→p + qq,
that is properly increasing. Using the previous notations, Ex = p and Ey = q,

so that Δt(x) = ∅ and Δt(y) = q. Therefore, accι(p + q
t(σ)→ p + qq) = p + qω.

w-acceleration. However, in N2 we cannot apply the previous acceleration. In
this case the t̄(σ)-contraction of N2 is given by the net in Fig. 6. In it, every

198 F. Rosa-Velardo and D. de Frutos-Escrig

a bt̄p q
x ν1ν2ν2

yν1

Fig. 6. Contraction of the net N2 in Fig. 5

product is mapped to a fresh one, and every marking of the form pq+qq+q+. . .+q
is reachable. If we take Δι

t(x) = post t(ν1) % pret(x) and Δι
t(y) = post t(ν2) %

pret(y) then accι(p + q
t(σ)→ p + qq) = pq + qq +∞(q) ≡ post t(ν1) + post t(ν2) +

∞(Δι
t(x) + Δι

t(y)).
A simpler case in which a w-acceleration can be applied appears in the net in

Fig. 8. The first firing that takes place is p
t1→p+q, so that p �ι p+q with ι(p) = p.

Notice that there is a fresh product, namely q, not in the range of ι, so that any
marking of the form p + q + . . . + q is reachable, and accι(p

t1→p + q) = p +∞(q).

Following the previous intuitions, if M1
t(σ)→M2 is properly increasing we par-

tition nfVar(t) as follows:

Vun = {x ∈ nfVar(t) | σ(x) in the unbounded part},
Vd = {x ∈ nfVar(t) | σ(x)

t(σ)→ ι(σ(x))},
V ν

w = {x ∈ nfVar(t) | ι(x) = post t(νx) for νx ∈ fVar(t)},
V un

w = {x ∈ nfVar(t) | ι(σ(x)) = ∇t(yx) for some yx ∈ Vun}.
Moreover, there are two injections: hν : V ν

w → fVar(t) and hun : V un
w → Vun

given by hν(x) = νx and hun(x) = yx. Let us write V ν
r (t) = fVar(t) \ hν(V ν

w),
V un

r = Vun \ hun(V un
w), Vw = V ν

w ∪ V un
w , Vb = Vd ∪ Vun and Vr = V ν

r ∪ V un
r .

For all x ∈ Vun, σ(x) is a product in the unbounded part. For all x ∈ Vd, the
products σ(x) are mapped to themselves by ι, so that ∇x will be used instead in
the following firing of t. They will be responsible for d-accelerations. Products
σ(x) with x ∈ V ν

w are those mapped by ι to fresh products. Therefore, post t(νx)
will be used instead in the next firing, so that it will leave some garbage that
will cause a w-acceleration. Other products of the form post t(ν) will not be used
later, those with ν ∈ V ν

r , so that they will also contribute to the w-acceleration.
Variables in V un

w and V un
r have an effect analogous to those in V ν

w and V ν
r .

Products σ(x) with x ∈ V un
w are mapped by ι to a product ∇yx that has evolved

from a product in the unbounded part. As before, ∇yx will be used instead in the
next firing, leaving again some garbage. Moreover, some products ∇y that come
from a product in the unbounded part (those with y ∈ V un

r) will also remain
and contribute to the w-acceleration.

Definition 10. Let M1
t(σ)→M2 be a properly increasing sequence. We define the

following products:

– For all x ∈ Vd, Δt(x) is any product such that σ(x)
t(σ)→ σ(x) ⊕Δt(x),

– For all x ∈ V ν
w , Δι

t(x) = post t(hν(x)) % pret(x),
– For all x ∈ V un

w , Δι
t(x) = ∇t(hun(x))) % σ(x).

Forward Analysis for Petri Nets with Name Creation 199

Procedure Clover(M0)
Θ ← {M0}
while Post(Θ) �� Θ do

Choose fairly M ∈ Θ, τ and ι

such that M
τ
→M′

if M ��ι M′ then
Θ ← Θ ∪ {M′}

else
Θ ← Θ ∪ {accι(M

τ
→M′)}

return Max Θ

Procedure width-Clover(M0)
Θ ← {M0}, bounded ←true
while Post(Θ) �� Θ and bounded do

Choose fairly M ∈ Θ, τ and ι such that M
τ
→M′

if M ��ι M′ then
Θ ← Θ ∪ {M′}

else
M′ ← accι(M

τ
→M′)

if x-bounded(M′) then
Θ ← Θ ∪ {M′}

else
bounded ←false

return (bounded ,Max Θ)

Fig. 7. Karp-Miller procedure (left) and algorithm deciding width-boundedness (right)

Proposition 3. If M1
t(σ)→M2 is properly increasing with M1 �ι M2 then there

is M such that M1 ≡
∑

x∈Vb

σ(x) +∞(
∑

x∈Vun

σ(x)) + M, and accι(M1
t(σ)→M2) is

∑
x∈Vd

(σ(x)⊕Δt(x)ω) +
∑

x∈V ν
w

(post t(hν(x)) +
∑

x∈V un
w

(σ(x)⊕Δι
t(x)) +

∑
x∈Vw

∇t(x)+

∞(
∑

x∈V ν
w

(post t(x)⊕Δι
t(x)))+

∑
x∈V un

w

(∇t(x)⊕Δι
t(x))+

∑
x∈Vr

∇t(x)+
∑

x∈Vun

σ(x))+M

Morevoer, the computation of the acceleration does not depend on the increment
Δt(x) chosen.

Corollary 2. The completion of a ν-APN is an ∞-effective (complete) WSTS.

Because it is ∞-effective, it makes sense to apply the Karp-Miller procedure
Clover(M0) in the left of Fig. 7. Fairness in the choosing of the tuples (M, τ, ι)
ensures that in every infinite run, every such tuple will be eventually chosen at
a later stage. We know that the cover is effectively representable, so that there
is a finite set of ω-markings Θ such that ↓Post∗(↓M0) =

⋃
M∈Θ

�M�.

Example 1. Let us see with detail how the algorithm behaves for the ν-APN N2
in Fig. 5. The initial ω-marking is M0 = p + q, that is, Θ = {M0}. The only
possible mode that enables t is given by σ1(x) = p and σ(y) = q, which produces
the ω-marking p + qq. Notice that:

– p + q �ι1 p + qq, with ι1(p) = p and ι1(q) = qq,
– the product p in M0 disappears,
– the product q in M0 evolves to p,
– the product qq in p + qq is fresh.

Therefore, the firing is not properly increasing, because there is a product p in
p+ qq, and two different products in M0, namely p and q, such that p is mapped

200 F. Rosa-Velardo and D. de Frutos-Escrig

a at1 t2
x ν

xx

x
p

q

Fig. 8. dw-accelerations

to p by ι1 and q evolves to p. Actually, we are exactly in the situation of the
diagram in the left of Fig. 3. Therefore, we need to unroll the transition sequence
t(σ1), with contraction depicted in Fig. 6. There, the firing p + q → pq + qq can
take place, which is properly increasing. Moreover, Vd = Vun = V un

w = ∅ and
V ν

w = {x, y} with hν(x) = ν1 and hν(y) = ν2.

– Δt(x) = post t(ν1)% pret(x) = q,
– Δt(y) = post t(ν2)% pret(y) = q,
– ∇t(x) = (σ(x) % pret(x)) ⊕ post t(x) = ∅,
– ∇t(y) = (σ(y) % pret(y))⊕ post t(y) = ∅.

Then, according to Prop. 3, the acceleration is pq + qq +∞(q + q) ≡ pq + qq +
∞(q) = M1, so that Θ = {M0,M1}. Starting from M1 we could fire t(σ) with
σ(x) = pq and σ(y) = qq, that produces again the ω-marking M1. We can also
fire t from M1 with a different mode σ, with σ(x) = pq and σ(y) = q, which
yields the ω-marking M2 = p + qq + qq +∞(q). Since M1 ��M2 no acceleration
is performed, and Θ = {M0,M1,M2}.

Let us now see what happens if we fire the transition starting from M2. We
could fire it using a mode such that σ(x) = p and σ(y) = qq. The corresponding
firing is increasing, but not properly increasing. As happened before, the order of
the mapping ι is 2, and the contraction of the unrolling is given again by Fig. 6.
The acceleration is analogous to the one obtained from M0, and produces again
the ω-marking M1.

The other way in which t can be fired from M2 is more interesting, namely in a
mode σ with σ(x) = p and σ(y) = q. Notice that y is instantiated to a product in
the unbounded part of M2. Using that mode, the firing p+qq+∞(q)→ p+qq+
qq+∞(q) can happen. Moreover, that firing is properly increasing. Indeed, ι(p) =
p, ι(qq) = qq (for both occurrences of qq) and ι(q) = q and, although the product
ι(p) = p is the result of the evolution of a product different from p, namely q, that
product is in the unbounded part. Now we have Vd = V ν

w = V un
r = ∅, Vun = {y},

V un
w = {x} and V ν

r = {ν}, with hun(x) = y. Moreover, Δι
t(x) = ∇t(x) = ∅, so

that the acceleration is (p⊕∅)+∅+∞(∅⊕∅+qq+q)+qq+qq ≡ p+∞(qq) = M3.
Similarly, from M3 we can obtain the ω-marking M4 = pq+∞(qq), and obtain

Θ = {M0,M1,M2,M3,M4}. From Θ, no other ω-marking can be obtained.
Thus, the algorithm returns the maximal ω-marking M4 (because Mi � M4
for all i), so that the cover is the set of markings �pq +∞(qq)�. In particular,
every reachable marking M has one identifier a and a (possibly empty) set of
identifiers {b1, . . . , bm} such that Ma ⊆ {p, q} and M bi ⊆ {q, q}.

It is easy to see that the procedure Clover(M0) does not terminate in general.
Consider the net in Fig. 8. First, p

t1→p + q and we can apply a w-acceleration
as previously explained, thus obtaining p +∞(q). Now we can fire transition t2,

Forward Analysis for Petri Nets with Name Creation 201

••

••

ktp q

r

�
aa

a

bb b

k

c
t

xp

xp

xr
ν

xq

xq

p

pnow

r rnow

q

qnow×

Fig. 9. Simulation of reset nets

p +∞(q) t2→p + qq +∞(q). Notice that p +∞(q) �ι p + qq +∞(q) with ι(p) = p
and ι(q) = q. The algorithm could then replace p+ qq +∞(q) by its acceleration
p +∞(qq). In the same way, all the ω-markings p +∞(qn) are produced by the
algorithm.

We could consider yet another type of acceleration, that we could call dw-
acceleration. Instead of firing t2 again using one of the infinitely many q’s, we

could fire it using qq. If we repeat this process, every marking p +
m∑

i=1
qi +∞(q)

becomes reachable, and their least upper bound is p +∞(qw).
It is true that dw-accelerations give a better approximation of the clover.

However, they are not enough, neither any other acceleration we could imagine,
since, in general, it is not possible to compute the clover.

Proposition 4. There is a ν-APN for which the clover is not computable.

Proof (sketch). Let us suppose that the clover is always computable. Let us see
that, in that case, we could decide boundedness of reset nets, which we know to
be undecidable [7]. Given a reset net N we build a ν-APN N∗ that simulates
it. For each place p of N we consider a new place pnow in N∗. The construction
of N∗ is such that pnow contains a single token at any time. The firing of any
transition ensures (by matching) that the token being used in p coincides with
that in pnow. Every time a transition resets a place p, the content of pnow is
replaced by a fresh token, so that no token remaining in p can be used. In this
way, our simulation introduces some garbage tokens, that once become garbage,
always stay like that. Fig. 9 depicts a simple reset net and its simulation.

Moreover, if M0 is the initial marking of N , we consider a different identifier ap

for each place p of N . Then, we define the initial marking of N∗ as M∗
0 (pnow) =

{ap} and M∗
0 (p) = {ap,

M0(p). . . , ap}, for each p ∈ P . Let us suppose that we can
compute the clover Θ. Then N is unbounded iff there is M ∈ Θ containing a
product pnowpω, for some p ∈ P , and boundedness would turn decidable. ��

In particular, since Petri Data Nets [16] subsume ν-APN, there is no procedure
computing the cover of a Petri Data Net, neither for a Transfer Data Net, thus
answering negatively to a question posed in [11].

Accelerations and non-determinism. In Def. 8 we are fixing by means of the
mapping ι the relation between names in M1 and names in M2. In particular, we

202 F. Rosa-Velardo and D. de Frutos-Escrig

a t
xxν

x
p

Fig. 10. Accelerations and non-determinism

are choosing among one of such possible relations, and forcing that the chosen
relation is kept between all the markings in the generated increasing chain. Thus,
we are removing part of the inherent non-determinism in ν-APN that arises in
the non-deterministic choosing of consumed names by transitions. For instance,
the net in Fig. 10 can fire its only transition p

t→p + pp and p � p + pp, but we
can choose two different ways to map products to products, namely ι1(p) = p
and ι2(p) = pp. In the first case, the result of accelerating is the ω-marking
M1 = ∞(pp) (we are always consuming the just created name), while in the
second case we obtain M2 = pω +∞(p) (we are always taking the name that
appeared already in the initial marking).

If we do not impose any particular relation between the names, then at any
point any token could be chosen, so that starting from the initial marking, any
marking of the form pn1 + . . . + pnk can be reached, with least upper bound
∞(pω). Therefore, any acceleration schema that does not impose any mapping
ι relating names should compute ∞(pω) as acceleration.

In general, if we can choose between several mappings ι1, . . . , ιk, because of
monotonicity, in each of the limits M1, . . . ,Mk we can again choose between
those mappings. Actually, if we choose again the mapping ιi starting from Mi,
the obtained marking is again Mi, by definition of acceleration. However, we
could use a different ιj to accelerate starting from Mi, with i �= j. In our previous
example, we can again accelerate starting from M1 = ∞(pp) and from M2 =
pω +∞(p). In the case of M1, we reach M3 = ppp +∞(pp), and ppp is obtained
from one of the infinitely-many pp. If we apply a dw-acceleration we obtain
∞(pω). Moreover, this is also what we obtain if we accelerate starting from M2.
Indeed, we could choose to fire t starting from M2 in a mode σ1(x) = pω, but the
reached marking would be again M2. However, if we consider a mode σ2(x) = p,
then we reach pω + pp+∞(p), where pp is obtained from one of the p. Thus, we
can again apply a dw-acceleration to obtain the same ω-marking M2.

In the previous example we havemanaged to accelerate (using dw-accelerations)
without restricting ourselves to a given mapping ι. However, it remains to see that
we can do it in general, that is, that we can still accelerate any loop even if we re-
move the hypothesis of accelerating with respect to a given mapping ι.

Width-boundedness. We have proved that the cover is not computable in
general. To conclude the section we will use the generic Karp-Miller procedure
(or a slight variation) to decide a property related to boundedness, called width-
boundedness in [18].

Definition 11. We say N is width-bounded if there is n ∈ N such that for all
reachable M , |Id(M)| ≤ n.

Forward Analysis for Petri Nets with Name Creation 203

Let us see that the forward analysis, though non-terminating in general,
can decide width-boundedness. Let us define the predicate over ω-markings
width-bounded, given by width-bounded(M) iff M = A + ∞(∅). To detect
width-boundedness it is enough to stop whenever an ω-marking M such that
¬width-bounded(M) is found. In this way we can slightly modify the proce-
dure Clover, obtaining the algorithm in the right of Fig. 7, width-Clover(M0).
The modified algorithm always terminates, returning true iff the net is width-
bounded, in which case the clover is computed.

Proposition 5. Width-boundedness is decidable and the clover is computable
for width-bounded ν-APN.

6 Conclusions and Future Work

In this paper we have established a forward analysis for ν-APNs, an extension of
P/T nets with pure name management and creation, with the goal of computing
a finite basis of its cover, that is, of the set ↓Post∗(M0). For that purpose, we
have applied the results and techniques developed in [10,11] for WSTS. We have
defined a friendly presentation of the completion of a ν-APN by means of ω-
markings, a natural extension of the analogous concept for P/T nets. We have
seen that the transition relation, lifted to the completion, is effective (we can
compute successors) and ∞-effective (we can compute the least upper bounds
of the sets of ω-markings produced by simple loops). This ensures that it makes
sense to apply a forward Karp-Miller procedure. Unfortunately, we have proved
that such procedure cannot terminate in general, or we could decide boundedness
in reset nets, which is undecidable. As a corollary, a finite basis of the cover is
not computable for the class of Transfer Data Nets, not even for the class of
Petri Data Nets. Nevertheless, we can slightly modify that algorithm to get a
procedure to decide width-boundedness and to compute a finite basis of the
cover of a width-bounded net.

The d-accelerations and w-accelerations in Sect. 5 appear naturally when com-
puting the least upper bound of simple loops. However, the dw-accelerations have
been sketched in a rather ad-hoc way. It would be interesting to formalize the
type of loops they accelerate, and possibly to characterize a subclass of ν-APNs
(larger than width-bounded nets) for which Clover terminates. In general, it
would be interesting to see if a non-deterministic version of accelerations, in
which we do not restrict the modes by the relation between the different names
involved represented by the mapping ι, is computable. More precisely, it would

be interesting to study the structure of the set of markings {M |M1
tk

→M} (with-
out restricting the modes), to see if it is a directed set, and computing its least
upper bound in that case.

Acknowledgments. The authors would like to thank the anonymous referees
for their valuable comments.

204 F. Rosa-Velardo and D. de Frutos-Escrig

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: Algorithmic Analysis of Programs
with Well Quasi-ordered Domains. Inf. and Comp. 160(1-2), 109–127 (2000)

2. Abdulla, P.A., Nylén, A.: Better is Better than Well: On Efficient Verification of
Infinite-State Systems. In: 15th Annual IEEE Symp. on Logic in Computer Science,
LICS 2000, pp. 132–140 (2000)

3. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using Forward
Reachability Analysis for Verification of Lossy Channel Systems. Formal Methods
in System Design 25(1), 39–65 (2004)

4. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat Acceleration in Symbolic
Model Checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 474–488. Springer, Heidelberg (2005)

5. Dietze, R., Kudlek, M., Kummer, O.: Decidability Problems of a Basic Class of
Object Nets. In: Fundamenta Informaticae, vol. 79, pp. 295–302. IOS Press, Ams-
terdam (2007)

6. Decker, G., Weske, M.: Instance Isolation Analysis for Service-Oriented Architec-
tures. In: Int. Conference on Services Computing, SCC 2008, pp. 249–256. IEEE
Computer Society, Los Alamitos (2008)

7. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset Nets Between Decidability and Un-
decidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

8. Finkel, A., Schnoebelen, P.: Fundamental Structures in Well-Structured Infinite
Transition Systems. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS,
vol. 1380, pp. 102–118. Springer, Heidelberg (1998)

9. Finkel, A., Schnoebelen, P.: Well-Structured Transition Systems Everywhere! The-
oretical Computer Science 256(1-2), 63–92 (2001)

10. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, Part I: Completions.
In: Proceedings of the 26th International Symposium on Theoretical Aspects of
Computer Science, STACS’09, pp. 433–444 (2009)

11. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, Part II: Com-
plete WSTS. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 188–199. Springer, Hei-
delberg (2009)

12. Geeraerts, G., Raskin, J.-F., van Begin, L.: Expand, enlarge and check: New algo-
rithms for the coverability problem of WSTS. J. Comp. Sys. Sci. 72(1), 180–203
(2006)

13. Gordon, A.: Notes on Nominal Calculi for Security and Mobility. In: Focardi, R.,
Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 262–330. Springer, Heidel-
berg (2001)

14. Goubault-Larrecq, J.: On Noetherian spaces. In: 22nd IEEE Symposium on Logic
in Computer Science, LICS 2007, pp. 453–462. IEEE Computer Society, Los Alami-
tos (2007)

15. Jančar, P.: A note on well quasi-orderings for powersets. Information Processing
Letters 72(5-6), 155–160 (1999)

16. Lazic, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with Tokens
which Carry Data. Fundamenta Informaticae 88(3), 251–274 (2008)

Forward Analysis for Petri Nets with Name Creation 205

17. Rosa-Velardo, F., de Frutos-Escrig, D., Marroqúın-Alonso, O.: On the expressive-
ness of Mobile Synchronizing Petri Nets. In: 3rd International Workshop on Secu-
rity Issues in Concurrency, SecCo 2005. ENTCS, vol. 180(1), pp. 77–94. Elsevier,
Amsterdam (2007)

18. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in Petri Net
systems. Fundamenta Informaticae 88(3), 329–356 (2008)

19. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in Petri Net
systems. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp.
402–422. Springer, Heidelberg (2007)

20. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-
plexity. Inf. Process. Lett. 83(5), 251–261 (2002)

Learning Workflow Petri Nets

Javier Esparza, Martin Leucker, and Maximilian Schlund

Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
{esparza,leucker,schlund}@in.tum.de

Abstract. Workflow mining is the task of automatically producing a
workflow model from a set of event logs recording sequences of workflow
events; each sequence corresponds to a use case or workflow instance. For-
mal approaches to workflow mining assume that the event log is complete
(contains enough information to infer the workflow) which is often not
the case. We present a learning approach that relaxes this assumption:
if the event log is incomplete, our learning algorithm automatically de-
rives queries about the executability of some event sequences. If a teacher
answers these queries, the algorithm is guaranteed to terminate with a
correct model. We provide matching upper and lower bounds on the num-
ber of queries required by the algorithm, and report on the application
of an implementation to some examples.

1 Introduction

Modern workflow management systems offer modelling capabilities to support
business processes [vdAvH04]. However, constructing a formal or semi-formal
workflow model of an existing business process is a non-trivial task, and for this
reason workflow mining has been extensively studied (see [vdAvDH+03] for a
survey). In this approach, information about the business processes is gathered
in form of logs recording sequences of workflow events, where each sequence
corresponds to a use case. The logs are then used to extract a formal model.
Workflow mining techniques have been implemented in several systems, most
prominently in the ProM tool [vdAvDG+07], and successfully applied.

Most approaches to process mining use a combination of heuristics and formal
techniques, like machine learning or neural networks, and do not offer any kind
of guarantee about the relationship between the business process and the mined
model. Formal approaches have been studied using workflow graphs [AGL98] and
workflow nets [vdA98, BDLM07] as formalisms. These approaches assume that
the logs provide enough information to infer the model, i.e., that there is one
single model compatible with them. In this case we the call the logs complete.
This is a strong assumption, which often fails to hold, for two reasons: first,
the number of use cases may grow exponentially in the number of tasks of the
process, and so may the size of a complete set of logs. Second, many processes
have “corner cases”: unusual process instances that rarely happen. A complete
set of logs must contain at least one instance of each corner case.

In this paper we propose a learning technique to relax the completeness as-
sumption on the set of logs. In this approach the model is produced by a Learner

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 206–225, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Learning Workflow Petri Nets 207

that may ask questions to a Teacher. The Learner can have initial knowledge in
the form of an initial set of logs; if the log contains enough information to infer
the model, the Learner produces it. If not, it iteratively produces membership
queries of the form: Does the business process have an instance (a use case)
starting with a given sequence of tasks? For instance, in the standard example
of complaint processing (see Figure 1 and [vdA98]), a membership query could
have the form “Is there a use case in which first the complaint is registered
and then immediately rejected?” The Teacher would answer no, because a deci-
sion on acceptance or rejection is made only after the customer has been sent a
questionnaire.

Notice that the Learner does not guess the queries, they are automatically
constructed by the learning algorithm. Under the assumption that the Teacher
provides correct answers, the learning process is guaranteed to terminate with
a correct model: a model whose executions coincide with the possible event
sequences of the business process. In other words, we provide a formal framework
with a correctness and completeness guarantee which only assumes the existence
of the Teacher.

It could be objected that if a Teacher exists, then a workflow model must
already exist, and there is no need to produce it. To see the flaw in this argu-
ment, observe that Teachers can be employees, databases of client records, etc.,
that have knowledge about the process, but usually lack the modelling expertise
required to produce a formal model. Our learning algorithm only requires from
the Teacher the low-level ability to recognize a given sequence of process actions
as the initial sequence of process actions of some use case.

It is useful to draw an analogy. Witnesses of a crime can usually answer
questions about the physical appearance of the criminal, but they are very rarely
able to draw the criminal’s portrait: this requires interaction with a police expert.
This interaction can be seen as a learning process: the Teacher is the witness, and
the Learner is the police expert. The teacher has knowledge about the criminal,
but is unable to express it in the form of a portrait. The Learner has the expertise
required to produce a portrait, but needs input from the Teacher.

Like [vdA98, KRS06, BDLM07, RGvdA+07], we use workflow nets, intro-
duced by van der Aalst, as formal model of business processes. Loosely speaking,
a workflow net is a Petri net with a distinguished initial and final marking. Van
der Aalst convincingly argues that well-formed business processes (an informal
notion) correspond to sound workflow nets (a formal concept). A workflow net is
sound [vdA98] if it is live and bounded. In this paper we follow van der Aalst’s
ideas. Given a Teacher, we wish to learn a sound workflow net for the business
process. It is easy to come up with a naive correct learning algorithm. However,
a first naive complexity analysis yields that the number of queries necessary to
learn a workflow net can be triple exponential in the number of tasks of the busi-
ness process in the worst case. This seems to indicate that the approach is useless.
However, we show how the special properties of sound workflow nets, together
with a finer complexity analysis, lead to WNL, a new learning algorithm requir-
ing a single exponential number of queries in the worst case. We also provide

208 J. Esparza, M. Leucker, and M. Schlund

an exponential lower bound, showing that WNL is asymptotically optimal. Fi-
nally, in a number of experiments we show that despite the exponential worst-
case complexity the algorithm is able to synthesize interesting workflows. Notice
also that the complexity is analysed for the case in which no initial event log is
provided, that is, the case in which all knowledge has to be extracted from the
Teacher by asking membership queries.

Technically, the triple exponential complexity of the naive algorithm is a con-
sequence of the following three facts:

(a) the size of a deterministic finite automaton (DFA) recognizing the language
of a net with n transitions can be a priori double exponential in n;

(b) learning such a DFA using only membership queries requires exponentially
many queries in the size of the DFA (follows from [Ang87] and [Vas73,
Cho78]); and

(c) the algorithms of Darondeau et al. for synthesis of Petri nets from regular
languages [BBD95] are exponential in the size of the DFA.

In the paper we solve (a) by proving that the size of the DFA is only single
exponential; we solve (b) by exhibiting a better learning algorithm for sound
workflow nets requiring only polynomially many queries; finally, we solve (c)
by showing that for sound workflow nets the algorithms for synthesis of Petri
nets from regular languages can be replaced by the algorithms for synthesis of
bounded nets from minimal DFA, which are of polynomial complexity. Notice
that our solution very much profits from the restriction to sound workflow nets,
but that this restriction is given by the application domain: that sound workflow
nets are an adequate formalization of well-formed business processes has been
proved by the large success of the model in both the workflow modelling and
Petri net communities.

Outline. In the next section, we fix the notation of automata, recall the notion
of Petri nets and workflow nets, and cite results on synthesis of Petri nets from
automata. Our learning algorithm WNL is elaborated in Section 3. Section 4
reports on our implementation and experimental results. Finally, we sum up our
contribution in the conclusion.

2 Preliminaries

We assume that the reader is familiar with elementary notions of graphs, au-
tomata and net theory. In this section we fix some notations and define some
less common notions.

Automata and Languages. A deterministic finite automaton (DFA) is a 5-
tuple A = (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is a finite alphabet,
q0 ∈ Q is the initial state, δ : Q×Σ → Q is the (partial) transition function and
F ⊆ Q is the set of final states. We denote by δ̂ the function δ̂ : Q × Σ∗ → Q
inductively defined by δ̂(q, ε) = q and δ̂(q, wa) = δ(δ̂(q, w), a). The language

Learning Workflow Petri Nets 209

L(q) of some state q ∈ Q is the set of words w ∈ Σ∗ such that δ̂(q, w) ∈ F .
The language recognized by a DFA A is defined as L(A) := L(q0). A language
is regular if it is accepted by some DFA.

Myhill-Nerode’s theorem and minimal DFAs. Given a language L ⊆ Σ∗, we say
two words w,w′ ∈ Σ∗ are L-equivalent, denoted by w ∼L w′, if wv ∈ L⇔ w′v ∈
L for every v ∈ Σ∗. The language L is regular iff L-equivalence partitions Σ∗

into a finite number of equivalence classes. Given a regular language L, there
exists a unique DFA A up to isomorphism with a minimal number of states such
that L(A) = L; this automaton A is called the minimal DFA for L. The number
of states of this automaton is equal to the number of equivalence classes.

Given a DFA A = (Q,Σ, δ, q0, F), we say two states q, q′ ∈ Q are A-equivalent
if L(q) = L(q′). We can quotient A with respect to this equivalence relation. The
states of the quotient DFA are the equivalence classes of ∼A. The transitions
are defined by “lifting” the transitions of A: for every transition q

a−→ q′, add
[q] a−→ [q′] to the transitions of the quotient DFA, where [q] and [q′] denote
the equivalence classes of q and q′. The initial state is [q0], and the final states
are {[q] | q ∈ F}. The quotient DFA recognizes the same language as A, and is
isomorphic to the minimal DFA recognizing L.

It is easy to see that the minimal automaton for a prefix-closed regular lan-
guage has a unique non-final state (a trap state). For simplicity, we sometimes
identify this automaton with the one obtained by removing the trap state to-
gether with its ingoing and outgoing transitions.

Petri Nets. A (marked) Petri net is a 5-tuple N = (P, T, F,W,m0) where P is
a set of places, T is a set of transitions with P ∩ T = ∅, F ⊆ (P × T)∪ (T × P)
is a flow relation, W : (P × T) ∪ (T × P) → N is a weight function satisfying
W (x, y) > 0 iff (x, y) ∈ F , and m0 : P → N is a mapping called the initial
marking.

For each transition or place x we call the set •x := {y ∈ P ∪ T : (y, x) ∈ F}
the preset of x. Analogously we call x• := {y ∈ P ∪ T : (x, y) ∈ F} the postset
of x. A net is pure if no transition belongs to both the pre- and postsets of some
place.

Given an arbitrary but fixed numbering of P and T , the incidence matrix of
N is the |P | × |T |-matrix C given by: C(pi, tj) = W (tj , pi)−W (pi, tj).

A transition t ∈ T is enabled at a marking m, if ∀p ∈ •t : m(p) ≥ W (p, t). If
a transition t is enabled it can fire to produce the new marking m′, written as
m

t−→ m′.
m′(p) := m(p) +

∑
p′∈P

C(p′, t)

Given w = t1 · · · tn ∈ T ∗ (i.e. ti ∈ T), we write m0
w−→ m if there exist markings

m1, . . . ,mn−1 such that m0
t1−→ m1

t2−→ m2 . . .mn−1
tn−→ m. Then, we say

that m is reachable. The set of reachable markings of N is denoted by M(N)
and defined by M(N) = {m : ∃w ∈ T ∗. m0

w−→ m}. It is well-known that if

210 J. Esparza, M. Leucker, and M. Schlund

m0
w−→ m, then m = m0 + C ·P (w), where P (w), the Parikh vector of w, is the

vector of dimension |T | having as i-th component the number of times that ti
occurs in w. We call this equality the marking equation.

A net N is k-bounded if m(p) ≤ k for every reachable marking m and every
place p of N , and bounded if it is k-bounded for some k ≥ 0. A 1-bounded net is
also called safe. A net is reversible if for every firing sequence m0

w−→ m there is
a sequence vw leading back to the initial state, i.e. m

vw−→ m0. N is live if every
transition can fire eventually at every marking, i.e. ∀m ∈ M(N)∃wm.m

wmt−→ m′

for some m′.
The reachability graph of a net N = (P, T, F,W,m0) is the directed graph

G = (V,E) with V = M(N) and (x, y) ∈ E iff x
t−→ y for some t ∈ T . If

G is finite, then the five-tuple A(N) = (Q,Σ, δ, q0, F) given by Q = M(N),
Σ = T , q0 = m0, F = Q and δ(m, t) := m′ if m t−→ m′ is a DFA, and undefined
otherwise. (Note that δ is well-defined, because if m

t−→ m′ and m
t−→ m′′ then

m′ = m′′.) We call it the marking-DFA of N . The language of N , denoted by
L(N), is defined as the language of A(N).

Workflow nets. Loosely speaking, a workflow net is a Petri net with two
distinguished input and output places without input and output transitions re-
spectively, and such that the addition of a “reset” transition leading back from
the output to the input place makes the net strongly connected (see Figure 1, for
example). Formally, a net N = (P, T, F,W,m0) is a workflow net if there exist
places i, o ∈ P such that •i = ∅ = o•, m0(p) = 1 for p = i and m0(p) = 0, oth-
erwise, and the net Ñ = (P, T ∪ {r}, F ∪ {(o, r), (r, i)},W ∪ {(o, r) �→ 1, (r, i) �→
1},m0), where r /∈ T , is strongly connected.

A firing sequence w of a workflow net N is a run if m0
wr−→ m0 in Ñ . The

runs of N are the formalization of the use cases of the business process modelled
by the workflow net. A workflow net N is sound if Ñ is live and bounded. It
is argued in [vdA98] that a well-formed business process can be modelled by
a sound workflow net (at a certain level of abstraction). The workflow net in
Figure 1 is a very simple model for processing complaints (a slightly altered
example, taken from [vdAvH04]).

The following lemma characterizes soundness. In the paper we work with this
characterization as definition.

Lemma 1. A workflow net N is sound iff Ñ is bounded, reversible, and for
every transition t there is a reachable marking m such that m enables t.

Proof. Let N = (P, T, F,W,m0) be workflow net.
(⇒): Assume N is sound. Then Ñ is bounded and live. We show Ñ is reversible.
Let m be an arbitrary reachable marking of Ñ . Then m0

w−→ m for some w ∈
(T ∪ {r})∗. Since Ñ is live, there is a firing sequence w such that m

wr−→ m′ for
some marking m′. We claim m′ = m0. Assume m′ �= m0. Then, since m′(i) > 0,
we have m′(p) ≥ m0(p) for every place p, and m′(p) > m0(p) for some p. So m′

strictly covers m0, and so N is not bounded.

Learning Workflow Petri Nets 211

i o

register

contact customer

contact department

collect

accept

reject

pay refund

send rejection

archive

need more info

acquire info

Fig. 1. An example for a sound workflow net (drawn without the reset transition r)

(⇐): Assume Ñ is bounded, reversible and every transition is enabled at some
reachable marking. We show that Ñ is live, which implies that N is sound. Let
m be an arbitrary reachable marking of Ñ , and let t ∈ T ∪ {r}. Since Ñ is
reversible, m

w−→ m0 for some w ∈ (T ∪ {r})∗, and since t occurs in some firing
sequence m0

vt−→ m′ for some v ∈ (T ∪ {r})∗ and some m′. So Ñ is live (and
bounded by assumption) and therefore N is sound.

Synthesis of Petri nets from Languages and from Automata. In [BBD95],
Darondeau et al. address two synthesis problems of Petri nets from a minimal
DFA A over an alphabet T :

(S1) Decide if there is a bounded net N with T as set of transitions such that
L(N) = L(A), and if so return one. We call this problem synthesis up to
language equivalence.

(S2) Decide if there is a bounded net N with T as set of transitions such that
the reachability graph of N is isomorphic to A, and if so return one. We
call this problem synthesis up to isomorphism.

The algorithm of [BBD95] for synthesis up to language equivalence works
in two phases: firstly, A is transformed into an equivalent automaton A′ in a
certain normal form. In the worst case, A′ can be exponentially larger than A.
The second phase constructs the net N , if it exists, in polynomial time in A′. The
algorithm requires exponential time in A. The algorithm of [BBD95] for synthesis
up to isomorphism, on the contrary, needs only polynomial time in A. Notice
that, in general, if one knows the language L(N) of a net, one does not know
directly its reachability graph. In particular, the minimal automaton recognizing
L(N) may not be the reachability graph of any net. The basic algorithm in
[BBD95] can only handle pure nets, but there is also a generalization to non-
pure nets to be found in [BDBM96].

Hints on how to obtain nets that are more “visually appealing” (i.e. have few
arcs, no redundant places, etc.) than those generated by standard synthesis al-
gorithms can be found in [BDKM08], where net synthesis was applied to process
mining from event logs.

212 J. Esparza, M. Leucker, and M. Schlund

3 A Learning Algorithm for Sound Workflow Nets

Our goal is to develop a learning algorithm for sound workflow nets which is
guaranteed to terminate, and in which a teacher only needs to answer member-
ship queries.

The precise learning setting is as follows. We have a Leaner and a Teacher.
The Learner is given a set T of transitions, where each transition corresponds to
a dedicated task (in the sense of [vdA98]) of the business process. The Learner
repeatedly asks the Teacher workflow membership queries. A query is a sequence
σ ∈ T ∗, and is answered by the Teacher as follows: if σ can be extended to a
use case (i.e., a sequence corresponding to a complete instance of the business
process), then the Teacher returns this use case in the form of a transition se-
quence στr, where τ ∈ T ∗. Otherwise, the Teacher answers “no”. In our running
example the Learner is given the set of transitions of the net of Figure 1, and
the Teacher’s answers are compatible with this net, i.e., acts as if it knew the
net. Note that in practice, this only means that the Teacher can either extend
the query to a use case of the net to learn or can reject the query. Two possible
queries are

register contact customer contact department
register contact customer collect

A possible answer to the first query is the run

register contact customer contact department collect accept pay refund archive

while the answer to the second query is “no”.
Assuming that the Teacher’s answers are compatible with a k-bounded and

reversible net N , the goal of the Learner is to produce a net N ′ such that
L(N) = L(N ′). It is easy to see that a (very inefficient) learning algorithm
exists:

(1) A net with n transitions has at most c1 := 2(n+1) places, because a place is
determined by its pre- and post-sets of transitions.

(2) By (1), N has at most c2 := (k + 1)c1 reachable markings. Therefore, there
exists a minimal DFA A with at most c2 states such that L(N) = L(A).

(3) Since any two prefix-closed minimal DFAs with c2 states differ in some word
of length c2, the automaton A can be learned by querying all words over T
of length 2c2, i.e., after at most c3 := n2c2 queries.
This follows easily from Myhill-Nerode’s theorem. The DFA A can be con-
structed from the answers to the queries as follows. The states of A are the
equivalence classes of words of L(N) of length up to c2, where two words
w, v are equivalent if for every word u of length up to c2 either wu and vu
belong to L(N), or none of them does [Vas73, Cho78]. The initial state is
the equivalence class of the empty word, and all states are final. There is a
transition [w] a−→ [wa] for every word w of length at most c2.

(4) The net N is obtained from A by means of the algorithm of [BBD95] for
synthesis up to language equivalence (see problem (S1) in Section 2). The
algorithm runs in 2O(p(c2)) time for some polynomial p.

Learning Workflow Petri Nets 213

The query complexity of this naive algorithm, i.e. the number of queries it
needs to ask, is triple exponential in the number n of transitions. In this section
we prove a series of results ending in an improved algorithm with single exponen-
tial query and time complexity (notice that single exponential time complexity
implies single exponential query complexity, but not vice versa).

3.1 An Upper Bound on the Number of Reachable Markings

We show that the naive bound on the number of states of A obtained in (2)
above, which is double exponential in n, can be improved to a single exponential
bound.

Given a net N = (P, T, F,W,m0) with incidence matrix C, we denote by
C(p) the vector (C(p, t1), . . . , C(p, t|T |). We say that a place p is a linear com-
bination of the places p1, . . . , pk if there are real numbers λ1, . . . , λk such that
C(p) =

∑k
i=1 λi · C(pi).

The following lemma is well known.

Lemma 2. Let N = (P, T, F,W,m0) be a net with incidence matrix C, and let
C(p) =

∑k
i=1 λiC(pi). Then for every reachable marking m: ∀p ∈ P. m(p) =

m0(p) +
∑k

i=1 λi(m(pi)−m0(pi)) .

Proof. Since m is reachable, there is w ∈ T ∗ such that m0
w−→ m. By the marking

equation m = m0 + C · P (w), and so in particular m(p) = m0(p) + C(p) · P (w),
and m(pi) = m0(pi) + C(pi) · P (w) for every 1 ≤ i ≤ k. So m(p) = m0(p) +∑k

i=1 λiC(pi) · P (w) = m0(p) +
∑k

i=1 λi(m(pi)−m0(pi))

Theorem 1. Let N = (P, T, F,W,m0) be a k-bounded net with n transitions.
Then N has at most (k + 1)n reachable markings.

Proof. The incidence matrix C has |P | rows and n columns, and so it has rank
at most n. So there are l places p1, . . . , pl, l ≤ n, such that C(p1), . . . , C(pl) are
linearly independent. So every place p is a linear combination of p1, . . . , pl. It
follows from Lemma 2 that for every two reachable markings m,m′, if m(pi) =
m′(pi) for every 1 ≤ i ≤ l, then m(p) = m′(p) for every place p. In other words,
if two markings coincide on all of p1, . . . , pl, they are equal. Since for every
reachable marking m we have 0 ≤ m(pi) ≤ k, the number of projections of the
reachable markings onto the places p1, . . . , pl is at most (k + 1)l ≤ (k + 1)n. So
N has at most (k + 1)n reachable markings.

3.2 Minimality of the Marking-DFA

We show that the marking-DFA of a bounded and reversible net is minimal.
Since our goal is to construct a bounded and reversible net model N of the
business process, after we learn the minimal DFA A with L(A) = L(N) in step
(3), we can can synthesize N by applying the algorithm of [BBD95] for synthesis
up to isomorphism (Problem (S2)), instead of the algorithm for synthesis up to

214 J. Esparza, M. Leucker, and M. Schlund

language equivalence (Problem (S1)). This eliminates one exponential from step
(4) of the naive algorithm.

The proof is based on Lemma 3 below. Readers familiar with Myhill-Nerode’s
theorem (see also Section 2) will probably need no proof, but we include one for
completeness. Recall that we identify a DFA with a single trap state with the
one obtained by removing the trap state together with its ingoing and outgoing
transitions.

Lemma 3. A DFA A = (Q,Σ, δ, q0, F) is minimal iff the following two condi-
tions hold:

(1) every state lies in a path leading from q0 to some state of F , and
(2) L(q) �= L(q′) for every two distinct states q, q′ ∈ Q.

Proof. (⇒): We prove the contrapositive. For (1), if some state q does not lie in
any path from q0 to some final state, then it can be removed without changing
the language, and so A is not minimal. For (2), if two distinct states q, q′ of A
satisfy L(q) = L(q′), then [q] = [q′], and so the quotient automaton has fewer
states than A. So A is not minimal.

(⇐): Assume (1) and (2) hold. We prove that for every state q the language
of the words w such that δ(q0, w) = q is an equivalence class of L-equivalence.
It follows that the number of states of A is at most as large as the number of
equivalence classes of L-equivalence, which implies that A is the minimal DFA
for L.

It suffices to show:

– If δ̂(q0, w) = q = δ̂(q0, v), then w ∼L v.
This follows immediately from the definition of L-equivalence.

– If δ̂(q0, w) = q and δ̂(q0, v) = q′ for some q′ �= q, then w �∼L v.
Since L(q) �= L(q′), w.l.o.g. there is a word u ∈ L(q) \ L(q′). So wu ∈ L and
vu /∈ L, which implies w �∼L v.

Theorem 2. Let N = (P, T, F,W,m0) be a bounded and reversible Petri net.
The marking-DFA A(N) of N is a minimal DFA.

Proof. Assume that A(N) is not minimal. Since every state of A(N) is fi-
nal, by Lemma 3 there are two states of A(N), i.e., two reachable markings
m1 �= m2 of N , such that L(m1) = L(m2). As m1 �= m2 there exists p ∈ P
with m1(p) �= m2(p). Assume w.l.o.g. m1(p) < m2(p). Let m be a reachable
marking such that m(p) is minimal, i.e. there is no other reachable marking m′

s.t. m′(p) < m(p). Since m is reachable and N is reversible, there is w ∈ T ∗ such
that m2

w−→ m. Since L(m1) = L(m2), there is a reachable marking m′ such
that m1

w−→ m′. It follows

m′(p) = m1(p) + C(p) · P (w) < m2(p) + C(p) · P (w) = m(p)

contradicting the minimality of m(p).

Learning Workflow Petri Nets 215

3.3 Learning the Reachability Graph by Exploration

The final step towards a single exponential learning algorithm consists of im-
proving the naive algorithm in step (3) for learning the minimal DFA A. Recall
that we assume that the Teacher’s answers are compatible with a k-bounded
and reversible net N . If n and r are the number of transitions and reachable
markings of N , then the naive algorithm requires nr membership queries. We
present a new algorithm that requires only O(n · r2) queries.

Recall the standard search approach for constructing the reachability graph
of a net if the net is known. We maintain a queue of markings, initially con-
taining the initial marking, and two sets of already visited markings and tran-
sitions (transitions between markings). While the queue is non-empty, we take
the marking m at the top of the queue, and check for each transition a whether
a is enabled at m. If so, we compute the marking m′ such that m

a−→ m′, and
proceed as follows: if m′ has been already visited, we add m

a−→ m′ to the set of
visited transitions; if m′ had not been visited yet, we add m′ to the set of visited
markings and to the queue, and add m

a−→ m′ to the set of visited transitions.
Our learning algorithm closely mimics this behaviour, but works with firing

sequences of N instead of reachable markings (the Learner does not know the
markings of the net, it does not even know its places). We maintain a queue of
firing sequences, initially containing the empty sequence, and two sets of already
visited firing sequences and transitions. While the queue is non-empty, we take
the firing sequence w ∈ (T ∪ {r})∗ at the top of the queue, and ask the Teacher
for each transition a whether wa is also a firing sequence of N . If so, we proceed
as follows. We first determine whether each already visited firing sequence u
leads to the same marking as wa. Notice that it is not obvious how to do this—
this is the key of the learning algorithm. If some firing sequence u leads to the
same marking as wa, then we add w

a−→ u to the set of visited transitions;
otherwise, we add wa to the set of visited firing sequences and to the queue,
and add w

a−→ wa to the set of visited transitions. The algorithm in pseudo
code can be found below (Algorithm 1), where Equiv(u, v) denotes that there is
a marking m such that m0

u−→ m and m0
v−→ m.

The correctness of the algorithm is immediate: we just simulate a search
algorithm for the construction of the reachability graph, using a firing sequence
u to represent the marking m such that m0

u−→ m. The check Equiv(u,wa)
guarantees that each marking gets exactly one representative.

The problem is to implement Equiv(u,wa) using only membership queries.
In general this is no easy task, but in the case of reversible nets it can be easily
done as follows. When checking Equiv(u,wa) the word u has been already added
to V , and so the Learner has established that u ∈ L(N). So in particular the
Teacher has answered positively a query about u and, due to the structure of
workflow membership queries, it has returned a run uuc, where ucr is a transition
sequence leading back to the initial marking.

We prove that Equiv(x, y) holds if and only if the sequence xyc is a run of N :

216 J. Esparza, M. Leucker, and M. Schlund

Algorithm 1. Learning the reachability graph
Output: graph (V, E) isomorphic to the reachability graph of N

V ←− ∅; E ←− ∅
F ←− {ε} // queue of firing sequences

while not F .empty() do
w ←− F .dequeue()
forall a ∈ T do

if wa is accepted by the Teacher then
/* This means wa ∈ L(N) */

σ ← wa
forall u ∈ V do

if Equiv(u, wa) then σ ← u
end
if σ = wa then F .enqueue(wa)
add σ to V and w

a−→ σ to E
end

end

end

Proposition 1. In Algorithm 1, Equiv(u,wa) = true if and only if uwc is a run
of N , where wawc is the run reported by the Teacher when positively answering
the query about wa ∈ L(N).

Proof. If Equiv(u,wa) = true, then there is a marking m such that m0
u−→ m

and m0
wa−→ m. Because m0

wa−→ m
wcr−→ m0, we have m0

u−→ m
wcr−→ m0, which

implies that uwc is a run.
If u · wc is a run, then we have m0

wawcr−→ m0 and m0
uwcr−→ m0. Let m be

the marking such that m0
wa−→ m. We then have m

wcr−→ m0. Moreover, m is
the only marking such that m

wcr−→ m0 (Petri nets are backward deterministic:
given a firing sequence and its target marking, the source marking is uniquely
determined). Since m0

uwcr−→ m0, we then necessarily have m0
u−→ m

wcr−→ m0,
and so in particular m0

u−→ m. So both wa and u lead to the same marking m,
and we have Equiv(u,wa) = true.

We can now easily show that checking Equiv(u,wa) reduces to one single mem-
bership query.

Proposition 2. The check Equiv(u,wa) can be performed by querying whether
uwc ∈ L(N): Equiv(u,wa) holds if and only if the Teacher answers positively
and returns the sequence uwc itself as a run.

Proof. There are three possible cases:

– The answer is negative.
Then uwc /∈ L(N), and so in particular it is not a run of N . So Equiv(u,wa)
= false.

Learning Workflow Petri Nets 217

– The answer is positive and the Teacher returns uwc as run.
Then Equiv(u,wa) = true by Proposition 1.

– The answer is positive, but the Teacher returns uwcv for some v �= ε as run.
Since the Teacher returns a run uwcv such that no proper prefix uwcv

′ is
a run, we have in particular by taking v′ = ε that uwc is not a run. By
Proposition 1 we have Equiv(u,wa) = false.

Remark 1. In anticipation to the experiments described in Section 4, let us men-
tion that in many cases the queries for uwc do not even have to be submitted
to the teacher (recall that wa labels the potentially new state and u labels a
known state). Often we can deduce that uwc is not fireable by observing that
uwc /∈ L(A) where A is the part of the DFA that is already known. If we would
query wauc instead (which would also tell us if Equiv(u,wa) = true) we would
not be able to discard any query because the neighbourhood of wa has not yet
been explored. This is one of the reasons why this algorithm is so efficient in
practice (cf. Section 4).

Example 1. We now provide an example run of our algorithm, applied to the
first part of the net in Figure 1. To simplify presentation we grouped together
some queries which correspond to the interesting stages of the algorithm, i.e.
after the teacher has answered a query with ”yes”. Furthermore we write w · A
for all queries wa with a ∈ A.

i o
0

1

2

3

Query Answer Possible Automata

1-4 ε · {0, 1, 2, 3} 0(123) 0
0

5 Equiv(ε, 0)? no 0
� ε · 123

6-8 0 · {0, 1, 3} 01(23)
0

1
0

1

0 1

9 Equiv(ε, 01)? no 0
1

0 1� ε · 23

10 Equiv(0, 01)? no 0 1
� 0 · 23

11 02 02(13) (4 Possiblities)

12-14 Equiv? no
0 1

2({ε, 0, 01}, 02)

15-18 01 · {0, 1, 2, 3} 012(3) (5 Poss.)

19-22 Equiv?
no

0 1

2

2
({ε, 0, 01, 02}, 012)

23-26 02 · {0, 1, 2, 3} 021(3) (6 Poss. - naive)

27 [Equiv(021,012)?] yes
0 1

2

2

1

28-31 012 · {0, 1, 2, 3} 0123(ε) (7 Poss. - naive)

32 [Equiv-Queries] no
0 1

2

2

1

3

The “Answer”-column contains the run wwc returned by the teacher, if w ∈
L(N)—we put the continuations wc in brackets. As observed in Remark 1, many
queries (like ”ε · 23” in #9) do not really have to be asked—either because we
already asked a prefix of the query that was rejected, or because the query is a
prefix of a run supplied by the teacher and therefore we already know that it is
accepted. We also do not need to ask query #27 because 021 and 012 have the
same Parikh vector and therefore must lead to the same marking.

There is a technical issue that should be mentioned at this point. The algorithm
delivers a net N ′ such that the reachability graphs of N and N ′ are isomorphic.

218 J. Esparza, M. Leucker, and M. Schlund

It follows that N ′ is reversible and bounded. However, we cannot guarantee that
N ′ has the same bound as N . We consider this a minor problem, since N ′ and
N are for behavioural purposes equivalent models.

Complexity. It follows clearly from the description of Algorithm 1 that the
number of firing sequences added to the queue is equal to the number of reachable
markings r of N . For the i-th sequence taken from the queue, say w, and for
each transition, say a, we perform at most i membership queries: one to check
if wa ∈ L(N), and at most (i − 1) for checks Equiv(u,wa), because at that
point V contains at most i − 1 elements. So the algorithm performs at most∑r

i=1 n · i = nr(r + 1)/2 ∈ O(n · r2) queries.
The following theorem sums up the results of the section.

Theorem 3 (Learning by Exploration). We can learn a k-bounded and re-
versible net N with a number of workflow membership queries and a running
time that are single exponential in the number of transitions of N .

The proof follows easily form our discussion. The overall algorithm, that we call
WNL, uses the learning technique of Section 3.3 to learn a minimal DFA A
such that L(A) = L(N). Section 3.1 shows that A is single exponential in the
number of transitions of N , and so it can be learned with a single exponential
number of queries. Section 3.2 shows that this minimal DFA is (isomorphic to)
the reachability graph of N . We can then apply the polynomial algorithm of
[BBD95] for synthesis up to isomorphism (S2).

A final question is what happens if the Teacher’s answers are not compatible
with any k-bounded and reversible net N . In this case there are two possibilities:
they are not compatible with any minimal DFA having at most (k + 1)n states,
or they are compatible with some such DFA, but this DFA is not the marking-
DFA of any net. In the first case the algorithm can stop when the number of
generated states exceeds (k + 1)n. In the second case, the algorithm terminates
and produces a DFA, but the synthesis algorithm of [BBD95] does not return a
net.

3.4 Mixing Process Mining and Learning

The algorithm we have just presented does not assume the existence of an event
log: the Learner only gets information from membership queries. However, as ex-
plained in the introduction, we consider our learning approach as a way of com-
plementing log-based process mining. In this section we explain how to modify
the algorithm accordingly.

We assume the existence of an event log consisting of use cases. Given the
set of tasks T of the business process, we can think of each use case as a word
w ∈ T ∗, such that w corresponds to a run of the reversible net to be learnt. The
event log then corresponds to a language L ⊆ T ∗.

In a first step we construct a minimal DFA for the language L. This can be
done space-efficiently in a number of ways. For instance, we can divide the set of

Learning Workflow Petri Nets 219

runs in two halves L1, L2, recursively compute minimal DFAs A1, A2 recognizing
L1 and L2, and then compute the minimal DFA for L from A1, A2 using an
algorithm very similar to the one that computes the union of two binary decision
diagrams [And99]. Once this is done, we easily get the minimal DFA A for the
language of prefixes of (Lr)∗ (this requires to add one extra state and make all
states final).

Once A is computed, we assign to each state q of A a word wq such that
q0

wq−→ q. For every two states q1, q2, we check whether the states correspond to
the same reachable marking by calling Equiv(wq1 , wq2). After this step we are in
the same situation we would have reached if the algorithm would have queried
all the words wq.

From a practical point of view, notice that it is very inefficient to ask the
Teacher for each pair of states q1, q2 whether Equiv(wq1 , wq2). A better procedure
is to ask the Teacher, given a sequence w, which are the letters a such that wa
can be extended to a use case. We call them the possible extensions of w. The
test Equiv(wq1 , wq2) need only be carried out for sequences wq1 , wq2 having the
same set of extensions. Note that the teacher does not have to provide full runs
for any of these possible extensions so this is quite a simple task.

We can even further reduce the number of calls to Equiv() by first merging
states for which we can already deduce that they have to be equivalent. Some
criteria, which are easy properties of Petri nets, and can be directly used to trim
a DFA that was generated from event logs are:

– The DFA is backward deterministic: if m1
a−→ m3 and m2

a−→ m3 for some
a ∈ T then m1 = m2

– If two words w1,w2 only differ in the order of their letters (i.e. their Parikh
vectors coincide P (w1) = P (w2)) then they lead to the same state

– Given a k-bounded net N , if vwk+1 ∈ L(N) for some words v, w then w
describes a cycle in the reachability graph of N

A further criterion for pure nets is the “diamond property”: We can add transi-
tions that have to be present due to basic Petri net properties. A diamond is a
subgraph in the reachability graph of a net with four states that are connected
in the following way: m1

a−→ m2, m1
b−→ m3, m2

b−→ m4, m3
a−→ m4. A dia-

mond is incomplete if it is missing exactly one transition (see Figure 2). One can
easily see that incomplete diamonds can always be completed with the missing
transition (in the case of pure nets), i.e., if an incomplete diamond is found in
the DFA, we can add the missing transition. This diamond property can also be
used to merge states as indicated in Figure 2.

3.5 A Lower Bound for Petri Net Learning

We now show that we cannot in general solve the learning problem in subex-
ponential time, by providing a hard-to-learn instance. We will show with the
help of an adversary argument that any learning algorithm has to ask at least
Ω(2n) membership queries to derive the correct net, where n is the number of
transitions.

220 J. Esparza, M. Leucker, and M. Schlund

merge()

merge()

m1

m2

m3

m4

a

b

b

a

a

b

b

a

a

b

b

a

Fig. 2. Incomplete diamond (left), states merged because of equal parikh-vectors (mid-
dle) or by using the diamond property (middle and right)

Consider the following set N of workflow nets. All the nets in N have the
same number n + 3 of transitions: two transitions init and final, transitions
called a1, . . . , an, and a transition t (see Figure 3). The pre- and postsets of all
transitions but t, which are identical for all nets of N , are shown in the figure.
The postset of t is always the place o. The preset of t always contains for each
i exactly one of the places pi or qi, and the only difference between two nets in
N is their choice of pi or qi. Clearly, the set N contains 2n workflow nets, all of
them sound.

p1 p2

· · ·

· · ·
pn

i

init

q1 q2

· · ·
qn

a1 a2 an

o

final

t

Fig. 3. Hard-to-learn instance for
Petri net learning

For each net N ∈ N there is exactly one
subset of {a1, . . . , an} such that t can fire
after the transitions of the set have fired.
We call this subset SN . Notice that if we
know SN then we can infer •t.

We ease the task for the Learner by as-
suming she knows that the net to be learned
belongs to N . Her task consists only of find-
ing out •t, or, equivalently, the set SN .

A query of an optimal Learner has always
the form ai1ai2 · · · aik

t, because querying
any ai after t does not provide the Learner
with any information. Furthermore the or-
der of the ai is not important—all these
transitions are independent and the Learner
already knows this. So we can view a query
just as a subset S of the set of all transi-
tions. A negative answer to a query S al-

ways rules out exactly one of the nets of N , namely the one in which •t = S.
The worst case appears when the Learner ask queries “in the worst possible
order”, eliminating all nets of N but the right one. This requires 2n− 1 queries.

4 Practical Experiences

To get insights in the practical feasibility of the derived algorithm WNL, we
have developed a prototype learning and synthesis tool for workflow nets and
examined its practical performance on a number of examples.

Learning Workflow Petri Nets 221

Implementation. Our prototype is written in C++ with approximately 3,000
lines of code and uses libALF for dealing with automata. libALF is part of
the automata learning factory currently developed jointly at RWTH Aachen and
TU München1 [BKK+10].

The synthesis algorithm (S2) of [BBD95] is implemented using the lp solve2

framework to efficiently solve the linear programs needed for computing the
places of the net. Furthermore lp solve is used for eliminating redundant places
after the net has been synthesized to reduce its size and to make it look more
appealing. The implementation is currently not tailored to user interaction but
consults pre-existing workflow nets for queries. Outputs are given in form of
dot-files that can be visualized using the graphviz toolkit.

Experimental Results. We tested our implementation on various examples of
pure, safe and reversible nets. The examples range from existing sound workflow
nets obtained in case studies performed by [Ver04] to more standard examples
like mutual exclusion between processes and an n-cell buffer with 2n reachable
markings. The latter example is especially suitable to understand scalability
issues of the algorithms. The ”absence” workflow is loosely modelled after an
example from [SAP01], the ”complaint” workflow is the example presented in
our background section (Figure 1).

We applied our implementation once without any event logs as initial knowl-
edge and then again with randomly generated logs as input and counted the
number of queries needed to learn the model. Besides counting the queries needed
for Equiv(), we only count queries answered positively by the Teacher, as these
correspond to runs supplied by him, and thus reflect the actual work to be done
by an expert in an adequate manner.

q

?

?

?a

c
b

Fig. 4. Querying exten-
sions at state q, possible
extensions: solid arrows

To illustrate this, consider the task of learning
the sequence of calendar months: instead of asking
twelve questions of the form “Does January, Febru-
ary, . . . come after July?” (we call these ”small-step”
queries) we would just ask “Which month comes after
July?”. So we count every continuation provided by
the teacher as one query. In the situation of Figure 4
we would count 2 workflow membership queries com-
pared to 3 “small-step” queries. We have also included
the number of “small-step” queries in the table below
for comparison.

We have first collected the number of membership queries needed by WNL
when learning a model “from scratch” with respect to the size of the alphabet
and the reachability graph, see Figure 5. On the chosen examples, the number of
membership queries ranges between 12 and 3100. The series of the n-cell buffer
examples from n = 2 to n = 8 suggests that the practical performance of WNL
is even better than quadratic in the number of reachable markings.

1 http://libalf.informatik.rwth-aachen.de/
2 http://lpsolve.sourceforge.net/

http://libalf.informatik.rwth-aachen.de/
http://lpsolve.sourceforge.net/

222 J. Esparza, M. Leucker, and M. Schlund

Model |T | |RG| ssq WNL
buf_2 3 4 19 12
buf_3 4 8 52 32
buf_4 5 16 137 85
buf_5 6 32 344 216
buf_6 7 64 842 538
buf_7 8 128 2008 1304
buf_8 9 256 4707 3107
mutex_2 6 8 74 40
mutex_3 9 20 300 168
mutex_4 12 48 1026 594

order_simp 9 7 77 23
absence 11 8 109 32

complaint 12 11 155 37
transit1 25 77 2256 474

Fig. 5. Membership queries needed
by WNL without any event logs; ssq
= number of “small-step” queries,
RG = reachability graph

Next, we studied the effect of learning
workflow nets in the presence of existing
logs. To this end, we used our tool to gener-
ate random event logs containing a varying
number of runs (see Figure 6 for an exam-
ple log). The runs in the generated log-files
are not unique—runs that are more likely
will probably appear multiple times, which
is also the case for real-world event logs. For
the random logs we calculated the average
number of queries over 100 executions.

We found out that for tiny models like
the buffer with two cells or the “complaint”
workflow a very small number of runs (< 10)
suffices to already construct the model. The
Teacher does not have to supply additional
runs for these. Clearly, for larger models, we
can only expect that the Teacher’s work is
reduced but not completely eliminated when
logs are given. To illustrate the impact of
event logs on the learning process we show
how the number of queries behaves for some

of the larger models with logs of different sizes (see Figure 7).3 We observe
that already quite small logs drastically reduce the number of queries to be an-
swered. At the same time, because our logs may not contain unique but many
identical entries, larger logs contribute less and less new knowledge. This reflects
the situation for real-life logs, which mostly contain common executions of a

.a.b.a.c.d.b.c.a.d.b.c.d.

.a.b.c.d.

.a.b.c.a.b.d.c.a.d.b.c.d.

.a.b.a.c.d.b.c.d.

.a.b.a.c.b.a.d.c.d.b.c.d.

.a.b.c.a.d.b.a.c.d.b.c.d.

.a.b.c.a.b.d.c.d.

.a.b.a.c.b.d.a.c.d.b.c.d.

.a.b.c.d.

.a.b.c.d.

1

a

b

1

c

1

d

Fig. 6. Example event log for 3-cell buffer

3 Also larger examples behave in the same way, yet, we depicted models requiring a
number of queries in the same order of magnitude to optimize the figure.

Learning Workflow Petri Nets 223

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 n
um

. o
f q

ue
rie

s

Number of runs in log

buffer_5
mutex_3
mutex_4

transit

Fig. 7. Average number of queries needed by WNL applied to event logs of different
sizes

workflow but lack less common runs. In other words, it seems most promising
for practical applications, to combine knowledge from (small) logs with that of
Teachers responsible for “corner cases” to actually learn the workflow net in
question efficiently.

The time needed for learning the nets in an applied setting is of course domi-
nated by the number of queries a user has to answer. Synthesizing the resulting
Petri net using the method proposed by Darondeau et al. (see Section 2) together
with some post-processing to remove redundant places needs just a few seconds
in the worst case and is therefore negligible.

The results depicted in Figures 5 and 7 suggest that, despite the seemingly
intimidating result in Section 3.5, learning of workflow models is quite feasible
for practical applications.

5 Conclusion

We have presented a new approach for mining workflow nets based on learning
techniques. The approach palliates the problem of incompleteness of event logs:
if a log is incomplete, our algorithm derives membership queries identifying the
missing knowledge. The queries can be passed to an expert, whose answers allow
to produce a model.

We have shown the correctness and completeness of our approach given a
teacher answering workflow membership queries. Starting with general combi-
natorial arguments showing that workflow models can in principle be learned,

224 J. Esparza, M. Leucker, and M. Schlund

we have derived a learning algorithm requiring a single exponential number of
queries in the worst case, and we have given a matching lower bound. We have
also shown experimental evidence indicating that the combination of an event
log, even of small size, and a Teacher responsible for providing information on
“corner cases” allows to efficiently produce models in practically relevant cases.

There are several promising paths for further research. One aspect is the ap-
plication of learning to the design of workflows. In this approach an expert on
business processes and a modelling expert (or an adequate software) cooperate.
The modelling expert asks queries about how the workflow should behave, which
are answered by the Teacher, until a model accepted by the business process ex-
pert is produced. We expect to transfer ideas from the field of learning models
of software systems [BKKL09] to workflow systems, and develop “teaching assis-
tants” that filter the queries, automatically answering those for which the answer
can be deduced from current information (for instance because it is known that
two tasks must be concurrent), and only passing to the expert the remaining
ones. Here we expect to profit from related work by Desel, Lorenz and others
[BDML09]. An important point for process mining and even more for process
design is designing fault tolerance techniques allowing to cope with false answers
by the Teacher. Finally, learning more general classes of Petri nets, and applica-
tions to modelling/reconstruction of distributed systems, or biological/chemical
processes, are also promising paths for future work.

References

[AGL98] Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models
from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso,
G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Hei-
delberg (1998)

[And99] Andersen, H.R.: An introduction to binary decision diagrams. Techni-
cal report (1999), http://www.itu.dk/people/hra/bdd-eap.pdf

[Ang87] Angluin, D.: Learning regular sets from queries and counterexamples.
Information and Computation 75(2), 87–106 (1987)

[BBD95] Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms
for the synthesis of bounded nets. In: Mosses, P.D., Schwartzbach,
M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995.
LNCS, vol. 915. Springer, Heidelberg (1995)

[BDBM96] Badouel, E., Darondeau, P.: On the synthesis of general petri nets.
Technical report, INRIA (1996)

[BDKM08] Bergenthum, R., Desel, J., Kölbl, C., Mauser, S.: Experimental results
on process mining based on regions of languages. In: CHINA 2008,
Workshop at the Applications and Theory of Petri Nets: 29th Inter-
national Conference (2008)

[BDLM07] Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining
based on regions of languages. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidel-
berg (2007)

http://www.itu.dk/people/hra/bdd-eap.pdf

Learning Workflow Petri Nets 225

[BDML09] Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of
process models from example runs. T. Petri Nets and Other Models of
Concurrency 2, 243–259 (2009)

[BKKL09] Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.: Learning communicat-
ing automata from MSCs. IEEE Transactions on Software Engineering,
TSE (in press, 2009)

[BKK+10] Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon,
D.: libalf: the Automata Learning Framework. In: Proceedings of the
22nd International Conference on Computer-Aided Verification (CAV
2010). LNCS. Springer, Heidelberg (to appear, 2010)

[Cho78] Chow, T.S.: Testing software design modeled by finite-state machines.
TSE 4(3), 178–187 (1978); Special collection based on COMPSAC

[KRS06] Kindler, E., Rubin, V., Schäfer, W.: Process mining and petri net syn-
thesis. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS,
vol. 4103, pp. 105–116. Springer, Heidelberg (2006)

[RGvdA+07] Rubin, V., Günther, C.W., van der Aalst, W.M.P., Kindler, E., van
Dongen, B.F., Schäfer, W.: Process mining framework for software pro-
cesses. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS,
vol. 4470, pp. 169–181. Springer, Heidelberg (2007)

[SAP01] SAP AG. SAP Business Workflow Demo Examples (BC-BMT-WFM)
(2001)

[Vas73] Vasilevski, M.P.: Failure diagnosis of automata. Cybernetic 9(4), 653–
665 (1973)

[vdA98] van der Aalst, W.M.P.: The application of petri nets to workflow man-
agement. Journal of Circuits, Systems, and Computers 8(1), 21–66
(1998)

[vdAvDG+07] van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S.,
de Medeiros, A.K.A., Rozinat, A., Rubin, V., Song, M. (Eric)Verbeek,
H.M.W., Weijters, A.J.M.M.: Prom 4.0: Comprehensive support for
real process analysis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007.
LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)

[vdAvDH+03] van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L.,
Schimm, G., Weijters, A.J.M.M.: Workflow mining: A survey of issues
and approaches. Data Knowl. Eng. 47(2), 237–267 (2003)

[vdAvH04] van der Aalst, W., van Hee, K.: Workflow Management. Models, Meth-
ods, and Systems. MIT Press, Cambridge (2004)

[Ver04] Verbeek, H.M.W.: Verification of WF-nets. PhD thesis, Technische
Universiteit Eindhoven (2004)

Process Mining from a Basis of State Regions

Marc Solé1 and Josep Carmona2

1 Computer Architecture Department, UPC
msole@ac.upc.edu

2 Software Department, UPC
jcarmona@lsi.upc.edu

Abstract. A central problem in the area of Process Mining is to ob-
tain a formal model that represents selected behavior of a system. The
theory of regions has been applied to address this problem, enabling the
derivation of a Petri net whose language includes a set of traces. How-
ever, when dealing with real-life systems, the available tool support for
performing such task is unsatisfactory, due to the complex algorithms
that are required. In this paper, the theory of regions is revisited to de-
vise a novel technique that explores the space of regions by combining
the elements of a region basis. Due to its light space requirements, the
approach can represent an important step for bridging the gap between
the theory of regions and its industrial application. Experimental results
improve in orders of magnitude state-of-the-art tools for the same task.

1 Introduction

Nowadays the formal reasoning of a system is sometimes restricted by the dif-
ficulty of having a formal model that describes its behavior. This problem may
appear at several stages of the life cycle: design, verification, and optimization.
Aware of the problem, some companies have started to incorporate tools to dis-
cover formal models from executions of a system. This was the driving force
that originated the area of Process Mining, where the goal is to obtain a formal
model (e.g., a Petri net) that includes the behavior of a system. In this work we
present a novel strategy for this problem.

The synthesis problem [1] is related to mining: it consists in building a Petri
net that has a behavior equivalent to a given transition system. The problem was
first addressed by Ehrenfeucht and Rozenberg [2] introducing regions to model
the sets of states that characterize marked places. In the area of synthesis, some
techniques have been proposed to take the theory of regions in to practice. In [3]
polynomial algorithms for the synthesis of bounded nets were presented. These
algorithms have been adapted for the problem of process mining in [4]. In [5], the
theory of regions was applied for the synthesis of safe Petri nets with bisimilar
behavior. Recently, the theory in [5] has been extended to bounded Petri nets [6].

Mining differs from synthesis in the knowledge assumption: while in synthesis
one assumes a complete description of the system, only a partial description
of the system is assumed in mining. However, synthesis can be adapted for

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 226–245, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Process Mining from a Basis of State Regions 227

mining in two ways: either the initial set of traces (called log) is encoded as a
transition system (introducing state information, as described in [7]) and state-
based methods for mining [8] are applied, or language-based methods are used
directly on the log [4,9]. In this paper we follow the first approach.

Due to its complexity, the theory of regions might become impractical for large
inputs. In this paper, we present methods to alleviate significantly the complexity
of the region-based approach. The main idea is based on the observation that
the set of regions necessary for deriving a Petri net might be obtained by linear
combinations of a small set of regions, i.e., from a basis of regions. This technique
deviates from previous state-based methods for computing regions [6,8], where
the full lattice of multisets of states was explored to find the regions. The main
contributions of this paper are:

– Methods to efficiently compute a basis of regions, based on the isomorphism
between the structural and state-based representation of regions. Moreover,
when the input transition system is derived from a language, the obtention
of a basis is shown to be simplified.

– An algorithm to explore the region space, that efficiently searches for minimal
regions using a very simple criterion to determine if a region is guaranteed
to be non-minimal.

– The theory of this paper has been implemented in a tool [10]. The experi-
ments demonstrate the capacity of handling systems for which related ap-
proaches fail. Moreover, for well-known benchmarks, the quality of the derived
results is shown to be similar to the one obtained for related approaches.

Organization. We start by giving the necessary background in Sect. 2. Meth-
ods to compute a region basis are presented in Sect. 3, and Sect. 4 provides a
strategy to explore the space of regions from a region basis to derive a Petri net.
Experiments and related work are presented in Sect. 5 and Sect. 6, respectively1.

2 Background

2.1 Finite Transition Systems and Petri Nets

Definition 1 (Transition system). A transition system (TS) is a tuple 〈S,Σ,
T, s0〉, where S is a set of states, Σ is an alphabet of actions, T ⊆ S ×Σ × S
is a set of (labelled) transitions, and s0 ∈ S is the initial state.

We use s
e−→s′ as a shortcut for (s, e, s′) ∈ T , and we denote its transitive clo-

sure as ∗−→. A state s′ is said to be reachable from state s if s
∗−→s′. We ex-

tend the notation to transition sequences, i.e., s1
σ−→sn+1 if σ = e1 . . . en and

(si, ei, si+1) ∈ T . We denote #(σ, e) the number of times that event e occurs in
σ. Let A = 〈S,Σ, T, s0〉 be a TS. We consider connected TSs that satisfy the
following axioms: i) S and Σ are finite sets, ii) every event has an occurrence
and iii) every state is reachable from the initial state. The language of a TS A,
L(A), is the set of traces feasible from the initial state.
1 An extended version of this paper including all the formal proofs can be found in [11].

228 M. Solé and J. Carmona

Definition 2 (Petri net [12]). A Petri net (PN) is a tuple (P, T,W,M0) where
the sets P and T represent finite sets of places and transitions, respectively, and
W : (P × T) ∪ (T × P)→ N is the weighted flow relation. The initial marking
M0 ∈ N|P | defines the initial state of the system.

A transition t ∈ T is enabled in a marking M if ∀p ∈ P : M [p] ≥W (p, t). Firing
an enabled transition t in a marking M leads to the marking M ′ defined by
M ′[p] = M [p]−W (p, t) + W (t, p), for p ∈ P , and is denoted by M

t→ M ′. The
set of all markings reachable from the initial marking M0 is called its Reachability
Set. The Reachability Graph of N , denoted RG(N), is a transition system in
which the set of states is the Reachability Set, the events are the transitions of
the net and a transition (M1, t,M2) exists if and only if M1

t→M2. We use L(N)
as a shortcut for L(RG(N)).

2.2 Generalized Regions

The theory of regions [2,1] provides a way to derive a Petri net from a transition
system. Intuitively, a region corresponds to a place in the derived Petri net. In
the initial definition, a region was defined as a subset of states of the transition
system satisfying an homogeneous relation with respect to the set of events.
Later extensions [13,14,6] generalize this definition to multisets, which is the
notion used in this paper.

Definition 3 (Multiset, k-bounded Multiset, Subset). Given a set S, a
multiset r of S is a mapping r : S → Z. The number r(s) is called the multiplicity
of s in r. Multiset r is k-bounded if all its multiplicities are less or equal than k.
Multiset r1 is a subset of r2 (r1 ⊆ r2) if ∀s ∈ S : r1(s) ≤ r2(s).

We define the following operations on multisets:

Definition 4 (Multiset operations)

Maximum power pow(r) = maxs∈S r(s)
Minimum power minp(r) = mins∈S r(s)
Scalar product (k · r)(s) = k · r(s), for k ∈ Z
Scalar sum (r + k)(s) = r(s) + k, for k ∈ Z
Sum (r1 + r2)(s) = r1(s) + r2(s)
Subtraction (r1 − r2)(s) = r1(s)− r2(s)

The operations described above have algebraic properties, e.g., r + r = 2 · r and
r1 − k · r2 = r1 + (−k) · r2.

Definition 5 (Gradient). Let 〈S,Σ, T, s0〉 be a TS. Given a multiset r and a
transition s

e−→s′ ∈ T , its gradient is defined as δr(s
e−→s′) = r(s′) − r(s). If all

the transitions of an event e ∈ Σ have the same gradient, we say that the event
e has constant gradient, whose value is denoted as δr(e).

Definition 6 (Region). A region r is a multiset defined in a TS, in which all
the events have constant gradient.

Process Mining from a Basis of State Regions 229

6
s0

4 s1

2 s2

0 s3

3
s4

1 s5 0 s6

a b

a

a

b

a b

(a)

a

2

b

3

(b)

Fig. 1. (a) Region in a TS: r(s0) = 6, r(s1) = 4, . . . , r(s6) = 0, (b) corresponding place
in the Petri net

Example 1. Fig. 1(a) shows a TS. The numbers within the states correspond to
the multiplicity of the multiset r shown. Multiset r is a region because both
events a and b have constant gradient, i.e. δr(a) = −2 and δr(b) = −3. There is
a direct correspondence between regions and places of a PN. The gradient of the
region describes the flow relation of the corresponding place, and the multiplicity
of the initial state indicates the number of initial tokens [6]. Fig. 1(b) shows the
place corresponding to the region shown in Fig. 1(a).

We say that region r is normalized if minp(r) = 0. Any region r can become
normalized by subtracting minp(r) to the multiplicity of all the states:

Definition 7 (Normalization). We denote by ↓r the normalization of a region
r, so that ↓r = r −minp(r).

It is useful to define a normalized version of the sum operation between regions,
since it is closed in the class of normalized regions.

Definition 8 (Normalized sum). Let r1 and r2 be normalized regions, we
denote by r1 ⊕ r2 their normalized sum, so that r1 ⊕ r2 =↓(r1 + r2).

Definition 9 (Gradient vector). Let r be a region of a TS whose set of events
is Σ = {e1, e2, . . . , en}. The gradient vector of r, denoted as Δ(r), is the vector
of the event gradients, i.e. Δ(r) = (δr(e1), δr(e2), . . . , δr(en)).

Proposition 1. Gradient vectors have the following properties:

Δ(r1 + r2) = Δ(r1) + Δ(r2) Δ(k · r) = k ·Δ(r)
Δ(r + k) = Δ(r) Δ(r1 − r2) = Δ(r1)−Δ(r2)

Δ(r1 ⊕ r2) = Δ(r1) + Δ(r2)

Regions can be partitioned into classes using Δ(r):

Definition 10 (Canonical region). Two regions r1 and r2 are said to be
equivalent if their gradient is the same, i.e. r1 ≡ r2 ⇔ Δ(r1) = Δ(r2). Given a
region r, the equivalence class of r, is defined as [r] = {ri| ri ≡ r}. A canonical
region is the normalized region of an equivalence class, i.e. ↓r.

230 M. Solé and J. Carmona

0
s0

?s1 ? s2

?s3 ? s4

a b

c c

(a)

0

-1 0

? ?

a b

c c

(b)

0

-1 0

-2 -1

a b

c c

(c)

2
s0

1s1 2 s2

0s3 1 s4

a b

c c

(d)

Fig. 2. Obtaining the region with gradient (−1, 0,−1) in a TS, using a breadth-first
search. (a) A zero multiplicity is assigned to the initial state. (b,c) Multiplicities after
the first and second iterations, respectively. Some of the multiplicities are negative.
To normalize them, the minimum power, in this case -2, is subtracted to all states,
yielding the region in (d).

An example of canonical region is provided in Fig. 3(b), where a TS is shown
in which some regions have been shadowed. The canonical region r1 = {s1, s2}
has gradient vector Δ(r1) = (+1,+1,−1). Under some conditions, the set of
minimal canonical regions is enough to guarantee some equivalence between the
TS and the derived PN [1].

Definition 11 (Subregion, Empty region, Minimal canonical region).
r1 is a subregion of r2, denoted as r1 � r2, if, for any state s, ↓r1(s) ≤ ↓r2(s).
We denote by ∅ the region in which all states have zero multiplicity. A minimal
canonical region r satisfies that for any other region r′, if r′ � r then r′ ≡ ∅.

2.3 Derivation of Regions from Gradient Vectors

A region corresponding to a gradient vector (c.f. Def. 9) can be obtained by
traversing the TS from the initial state, with an arbitrary multiplicity (0 for
instance), and giving a multiplicity to each discovered state based on the mul-
tiplicity of the source state of any incoming arc and the gradient of the event
that labels the arc. To obtain a normalized region, the smallest multiplicity com-
puted during the exploration (i.e. the minimum power of the region) is stored,
and then subtracted to all multiplicities. An example is shown in Fig. 2.

3 Finding a Region Basis

The goal of this section is to obtain a basis of regions, i.e. a set of linearly inde-
pendent regions B that can represent any other region by linear combinations
of the elements in B. In general, the size of B is significantly smaller than the
number of minimal canonical regions (see Theorem 1 below). The results of this
section are grounded in the theory presented in [15].

Process Mining from a Basis of State Regions 231

r2 region

r1 region

r0

a b

r1

c

(a)

s0

r0 region

s1 s2

s3 s4

a b

c c

(b)

Event Δ(r0) Δ(r1) Δ(r2)
a -1 +1 0
b -1 +1 +1
c 0 -1 0

(c)

Fig. 3. PN whose places, r0 and r1, have regions that cannot produce, by linear com-
bination, some of the regions present in its RG, for instance region r3

Definition 12 (Region basis). Given a TS, a region basis B = {r1, r2, . . . , rn}
is a minimal subset of the canonical regions of TS such that any region r can
be expressed as a linear combination of the elements in B (i.e. r =

∑n
i=1 ci · ri,

with ci ∈ Z, ri ∈ B).

The set of canonical regions of a TS, together with the normalized sum operation
(⊕), forms a free Abelian group [14]. Consequently, there exists a basis (i.e.
subset of the group) such that every element in the group can be rewritten as
a unique linear combination of the basis elements. In particular all the minimal
canonical regions can be generated from the basis. As the following theorem
states, the size of such a basis is bounded:

Theorem 1 ([14]). The size of a region basis for TS A = 〈S,Σ, T, s0〉 is less
or equal to min(|Σ|, |S| − 1).

Example 2. In TS of Fig. 3(b), the set of minimal canonical regions is formed
by r0 = {s0}, r1 = {s1, s2}, r2 = {s2, s4}, r3 = {s1, s3}, r4 = {s3, s4}. However,
we can express r3 and r4 in terms of the other regions: r3 = −r0 − r2 and
r4 = −r0 − r1. Note that, without normalizing the resulting regions it might
be difficult to see the equivalence. For instance −r0 − r1 = {−s0,−s1,−s2}
which requires to subtract −1 (add 1) to each state multiplicity to obtain a
normalized region, thus {−s0,−s1,−s2} + 1 = {s3, s4} = r4. Since any region
can be expressed as a sum of minimal canonical regions [14], and r3 and r4 are
linear combinations of the other regions, a possible basis is formed by only three
regions (as there are only three events), namely r0, r1 and r2, whose gradient
vectors appear in Fig. 3(c).

In the previous example we have found a basis from the set of minimal canonical
regions. In Sect. 4, the opposite process will be performed: from a basis, obtain
a set of minimal canonical regions. What remains in this section is to present
methods to obtain a basis.

232 M. Solé and J. Carmona

An efficient method to compute a region basis without requiring the set of
minimal canonical regions can be devised if we use the following observation: a
set of regions whose corresponding gradient vectors form a basis of the universe
of gradient vectors also forms a basis of the universe of regions.

Proposition 2. Given a TS A, let CGRA denote the set of canonical regions
of A and DA be the set of their gradient vectors. If BΔ = {d1, d2, . . . , dn} ⊆ DA

is a basis of the group (DA,+), then B = {r1, r2, . . . rn} ⊆ CGRA such that
Δ(ri) = di is a basis for the group (CGRA,⊕).

Proof. To prove that B is a basis, two properties must be shown. First, any
region has to be expressible as a linear combination of the elements in B. The Δ
function establishes an isomorphism between the free Abelian groups (CGRA,⊕)
and (DA,+). Thus any gradient vector in DA can be expressed as

∑
i cidi, which

is the gradient vector of the region
⊕

i ciri. Since any normalized region in A has
its gradient vector in DA, and any such vector is the gradient vector of a region⊕

i ciri, then any region in CGRA can be generated as a linear combination of
the elements in B. The second required property for B to be a basis is that
the elements in B are linearly independent. Since both groups (CGRA,⊕) and
(DA,+) are isomorphic, their basis has the same rank (i.e. have the same number
of elements), implying that all elements in B are linearly independent. ��
Hence, a region basis can be found by: (i) find a gradient basis, and then (ii)
generate the corresponding regions as explained in Sect. 2.3. Next section shows
how to do the first step.

3.1 Computing a Basis of Gradient Vectors

We extend the concept of gradient of an event to sequences of events:

Definition 13 (Gradient of a sequence). Let σ be a sequence of events, and
r a region. The gradient of σ in r, denoted δr(σ), is

∑
e∈Σ #(σ, e) · δr(e).

The following property is crucial for the method developed in this section to
compute a gradient basis:

Property 1. Any region r of a TS has gradients such that any two paths s
σ−→s′

and s
σ′
−→s′ satisfy that δr(σ) = δr(σ′).

Property 1 is automatically satisfied if there is only a single path connecting any
two states, or the only paths between two states fire exactly the same events the
same number of times (but possibly in different order). That is, if a state has
the same Parikh vector no matter the path used to reach it.

Definition 14 (Parikh vector, Parikh vector table). Given a TS A =
〈S,Σ, T, s0〉, the Parikh vector of a sequence σ is a vector pσ ∈ N|Σ| such that
pσ(e) = #(σ, e). The set of Parikh vectors of a state s, denoted Ps , contains the
Parikh vectors of all sequences σ that start from s0 and end in s. If all states in
S have a single Parikh vector, i.e. |Ps | = 1, the Parikh vector table of TS A is a
table with |S| columns, in which each column contains the Parikh vector of one
state in S.

Process Mining from a Basis of State Regions 233

s0

s1

s2

s3

a

b

c

d

d

(a)

Parikh vectors

pε = (0, 0, 0, 0)

pa = (1, 0, 0, 0)

pc = (0, 0, 1, 0)

pab = (1, 1, 0, 0)

pcd = (0, 0, 1, 1)

pcdd = (0, 0, 1, 2)

Conflicts

pab − pc = (1, 1,−1, 0)

pcdd − pε = (0, 0, 1, 2)

Any region r satisfies

(
1 1 −1 0
0 0 1 2

)
·

⎛⎜⎜⎝
δr(a)
δr(b)
δr(c)
δr(d)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠
Gradient basis: {(−1, 1, 0, 0), (−2, 0,−2, 1)} Region basis: {{s0, s2, s3}, {2s0, s3}}

Fig. 4. Computing the gradient basis of a TS. The symbol ε is used for the empty
sequence.

If Ps contains more than one element, by Property 1, any feasible gradient of
a region r must make these Parikh vectors compatible, i.e. the multiplicity in r
of state s must be the same no matter the path taken to reach it. In particular,

for any state s and any two sequences σ and σ′ such that s0
σ−→s, s0

σ′
−→s and

pσ �= pσ′ , it must be true that δr(σ) − δr(σ′) = 0. This is that∑
e∈Σ

(pσ′(e)− pσ(e)) · δr(e) = 0. (1)

We can use Eqn. 1 as a building block of an algorithm that computes a gradient
basis. The algorithm comprises two phases: (1) Traverse the TS, computing the
Parikh vectors assigned to each state and recording the conflicts (Algorithm 1
below), and (2) From the list of Parikh vector conflicts, build a system of equa-
tions using Eqn. 1 from which we can derive the gradient basis. Algorithm 1
shows the exploration phase of the algorithm. The function returns a set C of
Parikh vector differences. Following Eqn. 1, any feasible gradient of the system
must satisfy all these differences. We can write such condition in matrix form as
M ·Δ(r)T = 0, where Δ(r)T is the gradient vector written as a column vector,
and each row of matrix M contains one element of C.

Example 3. Consider the TS of Fig. 4. Starting from s0, Parikh vectors of each
state are computed. In some cases there are states that have different Parikh
vectors assigned (s2 and s0). Such cases are recorded as conflicts, and the dif-
ference in the Parikh vectors is used to construct the matrix that enforces the
equality of all conflicting Parikh vectors.

It is important to realize that in general (e.g. for cyclic TSs), Ps might be infinite
but only a finite subset is needed by our algorithm: consider that in the example
above the algorithm uses the conflict between pabdd and pε instead of the one
between pcdd and pε. The result would be the same since δr(ab) = δr(c) once the
conflict between pab and pc is solved.

234 M. Solé and J. Carmona

Algorithm 1. find Parikh vector conflicts
function find conflicts(TS A = 〈S, Σ, T, s0〉)

Ps0 ← {(0, 0, . . . , 0)} � Assign zero Parikh vector
for all s ∈ S − {s0} do Ps ← ∅ � Initialize the rest
E ← {s0} � Set of states to explore
V ← ∅ � Set of visited states (whose arcs have been visited)
while E �= ∅ do

select s in E
E ← E − {s} � Remove s from the set of states to explore
select p in Ps

for all s
e−→s′ ∈ T do

p′ ← p
p′(e)← p′(e) + 1 � p′ is one of the Parikh vectors of s′

Ps′ ← Ps′ ∪ {p′} � Update set of Parikh vectors
if s′ /∈ V then E ← E ∪ {s′}

end for
V ← V ∪ {s} � Mark s as visited

end while
C ← ∅ � Initialize set of conflicts
for all s such that |Ps | > 1 do

select p in Ps

for all p′ in Ps − {p} do C ← C ∪ {p− p′}
end for
return C

end function

Proposition 3. If M ·Δ(r)T = 0, then Δ(r) is the gradient of a region.

Proof. Let σ and σ′ be two sequences s
σ−→s′ and s

σ′
−→s′. If r is a region, then

δr(σ) = δr(σ′). Rewriting this expression we obtain (pσ−pσ′)·Δ(r)T = 0. If both
sequences have a common prefix/suffix, such that σ = αωβ and σ′ = αω′β, then
pσ−pσ′ = pω−pω′ , so without loss of generality we can assume σ and σ′ have no
state in common besides s and s′. Let γ be a sequence without cycles such that
s0

γ−→s. If γ is unique, then |Ps | = 1. Let ps ∈ Ps . Now (pσ − pσ′) ·Δ(r)T = 0 is
equivalent to ((ps +pσ)−(ps +pσ′)) ·Δ(r)T = 0, thus ((pγσ)−(pγσ′)) ·Δ(r)T = 0,
which is an equation in M ·Δ(r)T = 0 if pγσ−pγσ′ is not already 0. On the other

hand, if γ is not unique and another s0
γ′
−→s exists, then it is either possible that

Algorithm 1 adds ((pγσ)−(pγσ′))·Δ(r)T = 0, which has been already considered,
or ((pγσ)− (pγ′σ′)) ·Δ(r)T = 0 (or any other combination of the sequences). In
such case, if pγ = pγ′ , we are done. Otherwise, there is an equation guarantying
pγ = pγ′ in M , since we have a conflict. The induction is possible since the γ
sequences are always decreasing in size. ��

So the problem reduces to finding the solutions to the homogeneous linear system
M ·Δ(r)T = 0. Each solution of this equation system identifies a feasible gradient
in the TS. Note that the system requires to have solutions in the integer domain
because, by definition, all gradients have to be integers.

Process Mining from a Basis of State Regions 235

Homogeneous linear systems have one trivial solution (i.e. 0) and infinite non-
trivial solutions. If the homogeneous linear system is represented by a matrix
M , it is said that all these solutions form the nullspace of M . The nullspace
of a matrix has a basis of solutions, that is, every solution to the homogeneous
linear system can be obtained by linear combination of the solution vectors in
the basis. Formally, if the basis of the nullspace of M is formed by the vectors
{y1,y2, . . .}, then any solution x can be written as a unique linear combination
x =

∑
i λiyi, with λi ∈ Q. Consequently any integer basis of the nullspace of

matrix M is a valid gradient basis, since any valid gradient can be written as a
linear (rational) combination of these gradients.

There are several well-known methods to obtain a basis for the nullspace of a
matrix [16]. Basically they involve performing a Gaussian elimination on matrix
M . Since matrix M has |C| rows and |Σ| columns, the cost of such operation
is O(|C|2 · |Σ|). Once the basis has been computed, the only additional step
to perform is to check if some of the resulting vectors contains a non-integer
number. In such case, since all numbers are rational, the vector is multiplied by
the minimum common multiple of all denominators to obtain an integer gradient.

In the example of Fig. 4, the basis of the nullspace of matrix M is formed
by gradient vectors (−1, 1, 0, 0) and (−2, 0,−2, 1), from which we can obtain
(using the technique shown in Sect. 2.3) the regions {s0, s2, s3} and {2s0, s3},
respectively, which form a region basis.

The procedure presented in this section allows finding a region basis for any
arbitrary TS by generating first a gradient basis. In some cases, however, this
intermediate step can be avoided, as we will see in the next section.

3.2 Region Basis from a Language

In the area of Process Mining [17], the input object is typically a set of traces,
i.e. a language, rather than a TS. In [7] three conversions from a language to a TS
were proposed. The main difference between the conversions, namely sequence,
multiset and set, is how they decide if the occurrence of an event in a trace
produces a new state in the TS or just introduces an arc to an existing state. In
this paper we will focus on the first two conversions. In the sequence conversion,
two traces lead to the same state if they fire the same events in exactly the same
order. For instance if L = {abc, bad}, the TS obtained from this conversion is
shown in Fig. 5(a). In the multiset conversion events do not have to happen in
the same order, but still it is required that the number of occurrences of each
event to be equal. With the previous log, this yields the TS of Fig. 5(b).

Given a language, for the sequence and multiset conversions it is guaranteed
that all paths leading to a state will have the same Parikh vector. Then, when
computing the gradient basis there will be no conflict and we can chose an
arbitrary set of |Σ| linearly independent gradients as a gradient basis. A simple
option is to choose the standard basis, that is the basis formed by all the linearly
independent vectors in which only one event has gradient one, and the rest have
gradient zero (see an example below). Computing the corresponding regions
is very natural when the standard basis is used, since we only need the Parikh

236 M. Solé and J. Carmona

s0

s1 s2

s3 s4

s5 s6

a b

b a

c d

(a)

s0

s1 s2

s3

s4 s5

a b

b a

c d

(b)

s0

s1 s2

s3 s4

s5 s6

a1 b

b a2

c d

(c)

Fig. 5. (a) A TS. (b) Its quotient TS. The quotient TS accepts more traces, but their
PN without label splitting is the same. (c) If label splitting is performed (for synthesis
purposes), then the TS and it quotient TS coincide.

vector of each state, which has been already computed while searching for Parikh
vector conflicts.

Event s0 s1 s2 s3 s4
a 0 1 0 1 0
b 0 0 1 0 1
c 0 0 0 1 1

Example. The TS of Fig. 3(b) contains no Parikh
vector conflict. Thus we will use the regions with gra-
dients (1, 0, 0), (0, 1, 0) and (0, 0, 1), i.e. the standard
basis, as the basis. To compute their regions we use
the Parikh vector in each state, shown in the Parikh
vector table to the right. Each row corresponds to one of the regions, so that
region with gradient (1, 0, 0) is {s1, s3}, region with gradient (0, 1, 0) is {s2, s4},
and gradient (0, 0, 1) belongs to region {s3, s4}. Notice that this is a different
basis (analogously valid) than the one shown in Example 2.

Proposition 4. In a TS without Parikh vector conflicts, a row in the Parikh
vector table corresponds to a region.

Proof. For an event e, the value of the Parikh vector table for the row assigned
to event e and the column of state s is ps(e) = #(σ, e), being σ the unique path
from the initial state to s in the TS, thus the multiplicity of the corresponding
region r is r(s) = #(σ, e). We prove that r is a region by proving that the
gradient of all events is constant. First of all, the value assigned to a state s is
the same no matter which sequence σ is used to reach s, because the TS has
no Parikh vector conflicts. For an event a �= e the gradient is 0, since any arc
s

a−→s′ has a gradient r(s′)− r(s) = 0 as, if σ leads to s, then #(σa, e) = #(σ, e).
Similarly, event e has gradient 1, because #(σe, e) = #(σ, e) + 1. ��

Regions for sequential and multiset language representations
There can be significant differences when using either sequential or multiset
conversions, since typically the sequential conversion yields TSs with much more
states. So it is a relevant question to decide whether there is some advantage of
the sequential conversion over the multiset conversion. As we will prove, as far
as regions are concerned, there is no difference between both approaches.

Process Mining from a Basis of State Regions 237

Definition 15. States s and s’ in a TS are said to be equivalent, s ≡ s′, if, for
all region r of the TS, r(s) = r(s′). We denote the equivalence class of s as [s].

Proposition 5. States s and s’ in a TS A are equivalent if, for all region r in
the region basis of A, r(s) = r(s′).

The state equivalence relation partitions the set of states in equivalence classes.
The TS that abstracts the behavior of a given TS at the level of the equivalence
classes is called the quotient TS .

Definition 16 (Quotient TS). Let A = 〈S,Σ, T, s0〉 be a TS. The quotient
TS of A, denoted A/≡, is a TS 〈S/≡, Σ, T/≡, [s0]〉, where S/≡ = {[s] | s ∈ S} and
T/≡ = {[s] e−→[s′] | s

e−→s′ ∈ T }.

Let us construct the quotient TS of Fig. 5(a). To determine which states are
equivalent, we use Proposition 5 on a basis, which can be obtained by the method
shown in the previous section. Since the TS is acyclic and has no conflicts, by
Proposition 4, each row of the Parikh vector table below corresponds to one of
the regions in the standard basis.

Event s0 s1 s2 s3 s4 s5 s6
a 0 1 0 1 1 1 1
b 0 0 1 1 1 1 1
c 0 0 0 0 0 1 0
d 0 0 0 0 0 0 1

Using Proposition 5 any two states that have the
same multiplicity in all the regions of the basis must
have the same columns in the table. The only two
states fulfilling this condition are s3 and s4, which
can be merged obtaining the TS shown in Fig. 5(b).

Theorem 2. Let A = 〈S,Σ, T, s0〉 be a TS, and A/≡ = 〈S/≡, Σ, T/≡, [s0]〉 be the
quotient TS. For any canonical region r of A there is a canonical region r′ in
A/≡ such that Δ(r) = Δ(r′) and r(s0) = r′(s0), and vice versa.

Proof. Consider region r from A. Since it is a region we have that ∀s e−→s′ ∈
T, r(s′) − r(s) = δr(e). And because it is normalized we have that ∃s : r(s) = 0
and ∀s r(s) ≥ 0. Consider the multiset r′ such that r′([s]) = r(s), we will prove
that it is a canonical region with the same gradient and multiplicity in the
initial state as r. Consider an arc [s] e−→[s′] in T/≡, clearly r′([s′]) − r′([s]) =
r(s′)− r(s) = δr(e). Thus all gradients are constant and r′ is a region. Moreover,
since all equivalent states s ∈ [s] have the same multiplicity in any region, then
∃[s] : r([s]) = 0 and ∀[s] r([s]) ≥ 0, which proves that r′ is a canonical region.
The proof in the other direction follows the same reasoning. ��

Proposition 6. Let As and Am be two TSs obtained from language L using the
sequence conversion and the multiset conversion, respectively. Then Am = As/≡.

Proof. We will prove that all the states of As that are equivalent are the ones
that fire the same multiset of events. Consider the standard region basis for As

and build its Parikh vector table. By definition two states are equivalent if they
have the same multiplicity for all the regions in the basis. That is, if they have
the same columns in the Parikh vector table, i.e. the two states have the same
Parikh vector. As the Parikh vector is a representation of the multiset of events
fired to reach the state, both states will be the same in Am. ��

238 M. Solé and J. Carmona

s0

s1 s2

s3 s4

a b

c c

(a)

s0

s1 s2

{s3, s4}

a b

c c

(b)

s0

{s1, s2}

{s3, s4}

a b

c

(c)

Fig. 6. (a) A TS. (b) single sink version of (a), (c) merge of states s1 and s2 is possible
since they are equivalent

A consequence of Proposition 6 and Theorem 2 is that multiset conversion pro-
vides the same information, in terms of regions, as the sequence conversion.
This is relevant because the performance of some tools is specially affected by
the number of states in the TS. This result holds even if the quotient TS con-
tains more traces than the original TS. For instance, sequence abd is possible in
Fig. 5(b), but not in Fig. 5(a). However Theorem 2 shows that the derived PNs
are the same. Note that if label splitting [6] is allowed, then no extra behavior
might be accepted by the quotient TS, as shown in (c).

Beyond the multiset language representation
In the previous section we have seen conditions allowing to reduce the number
of states of a TS while obtaining the same net. This section proposes a more
powerful reduction technique that considerably diminishes the size of the TS at
the cost of forbidding some specific regions. The technique, named common final
marking (CFM) reduction, has two steps:

– From a TS A obtained by multiset conversion, create a TS A′ by merging
all sink states (states without outgoing arcs) into a single state. We say that
A′ is the single sink version of A.

– Merge equivalent states in A′, by merging all states that are either reachable
from a state s through the same event or reach the same state through a
common event, until no further state is mergeable.

Theorem 3. Let A be a TS obtained from a language and A′ its single sink
version. Consider a TS A′′ obtained from A′ by merging all states that are either
reachable from a state s through the same event or reach the same state through
a common event, until no further state is mergeable. Let N ′ and N ′′ be the PNs
including all the regions of A′ and A′′, respectively. Then, L(N ′) ⊇ L(A) and
N ′ = N ′′.

Proof. Merging the sink states of A does not introduce any new trace, so L(A′) =
L(A). However, A has no conflict while A′ can contain some of them. This yields
a smaller region basis, thus some regions of A are no longer feasible in A′,

Process Mining from a Basis of State Regions 239

consequently PN N ′ obtained from A′ satisfies L(N ′) ⊇ L(A). Now consider
two states s1 and s2 such that the transitions s

e−→s1 and s
e−→s2 exist in A′. In

any possible region r, both states will have the same multiplicity since r(s1) =
r(s) + δr(e) = r(s2). Thus, by Proposition 5, s1 ≡ s2, and both states can
be merged. The same applies if s1

e−→s and s2
e−→s. Since A′′ is simply A′ but

merging equivalent states, by Theorem 2, N ′′ and N ′ must be the same. ��

For instance in Fig. 6 we can see a TS (from Fig. 3), that could be derived
from L = {ac, bc}. Both the sequential and the multiset conversion yield the
same TS, shown in (a). This TS has two sink states s3 and s4, which can be
merged obtaining a TS, depicted in (b), with the same language. This merged
state has two incoming arcs with the same label, thus, the predecessors of such
arcs, namely s1 and s2 can be also safely merged, since they will be assigned the
same multiplicity in every possible region.

4 Generating a PN from a Basis

Once the region basis is available, we can generate a PN from it. A naive strategy
would be to use a brute-force approach and generate some amount of regions, and
then remove the redundant ones among them using, for instance, the techniques
in [4]. However this approach is clearly inefficient.

An alternative generation scheme is to try to find the minimal canonical re-
gions. The straightforward approach would be to have a set of the currently
minimal regions found so far in the exploration, and every time a new region is
generated, check against all the regions in the set whether it is minimal or not.
However, this method requires to perform many subregion checks per region,
and most of the times the regions checked are not minimal.

Our proposal (Algorithm 2), denoted minimal canonical region search, pre-
vents from checking the minimality of regions that are guaranteed not to be
minimal. If B = {r1, . . . , rn} is the region basis, the algorithm computes the
set of minimal canonical regions R in a DFS manner. It starts with the empty
region ∅ to whom normalized basis regions ↓(ci · ri), with ci �= 0, are added. The
first addition creates a normalized region r =↓(ci · ri) from a single basis region.
These type of regions are always checked for minimality since size is always 1
in such case. Thus, they are added into R if no smaller region is present in R
(line 14). This guarantees that R contains either r or one of its subregions. From
that point on, combinations including r are explored, by adding other normal-
ized basis regions (line 19). Let r′ =↓ r + ↓ (cj · rj) be one of such explored
regions. It is trivially true that r′ ⊇↓r. Since ↓r is a normalized region, if r′ is
also normalized, it follows that ↓r′ ⊇↓r, thus r′ " r and r′ is not minimal.

Consequently, the algorithm is devised to detect whether the addition of some
region basis (ci · ri) to a region r produces a non-normalized region. This check
is performed in line 3, based on the fact that, if r is already normalized, then
the multiplicity of any state must be the same in r or ↓r. In line 3 normalization
of r is tested in the initial state s0 with the condition ↓r(s0) �= r(s0). Only the

240 M. Solé and J. Carmona

regions satisfying this condition are possible minimal canonical regions, and are
checked against all the regions in the current set R.

Algorithm 2. mcr search
1: procedure mcr recursive(r, size, pos)
2: nr ←↓r � Normalize r
3: if size = 1 ∨ nr(s0) �= r(s0) then � Check r = ci · ri, or r non-normalized
4: if ∃e : δr(e) < 0 then � Regions with positive gradients are useless
5: useful ← true � Initially consider nr is minimal
6: for all mr ∈ R do
7: if mr ⊆ nr then
8: useful ← false � If nr is not minimal discard it
9: break

10: else
11: if nr ⊆ mr then R← R− {mr} � Remove mr (not minimal)
12: end if
13: end for
14: if useful then R← R ∪ {nr} � Add nr as minimal region
15: end if
16: end if
17: if size < agg then � Check aggregation factor
18: for all i ∈ [pos, |B|] and j ∈ [minval, maxval]− {0} do
19: mcr recursive(nr + ↓(j · ri), size + 1, pos + 1)
20: end for
21: end if
22: end procedure
23:
24: function mcr search
25: R← ∅ � Set of minimal canonical regions
26: mcr recursive(∅, 0, 1) � Call recursive function
27: return R
28: end function

The algorithm uses the following global variables: R is the set of minimal
canonical regions encountered so far, B is the region basis found by the methods
described in Sect. 3, agg is an aggregation factor that bounds the number of
different basis regions that can be used to obtain a new region. Finally, minval ≤
−1 and maxval ≥ 1 bound the number of times that a basis region can appear in
a combination. The last three variables are user defined parameters, that allow
the user to control the amount of exploration performed in the region space that
takes place in lines 17 to 19 of the algorithm. Formally, only regions r are explored
such that, for all event e, δr(e) =

∑
ciδri(e), where minval ≤ ci ≤ maxval and

|{ci | ci �= 0}| ≤ agg. Note that if the region basis comes from the standard
gradient basis, then −minval is the maximum allowed value for the weight of
an incoming arc to a transition, maxval is the maximum allowed value for the
weight of an outgoing arc of a transition and agg is the maximum number of
arcs that a place can have.

Process Mining from a Basis of State Regions 241

r0 = {s0, s2, s3} ↓(−r0) = {s1}
r1 = {2s0, s3} ↓(−r1) = {2s1, 2s2, s3}

↓(−r0)+ ↓(−r1) = {3s1, 2s2, s3} � ↓(−r0)

↓(−r0) + r1 = {2s0, s1, s3} � ↓(−r0)

↓(−r0) + 2r1 = {2s0, 2s1, s3} � ↓(−r0)

r0+ ↓(−r1) = {s0, 2s1, 3s2, 2s3} �=↓(r0+ ↓(−r1))

↓(r0+ ↓(−r1)) = {s1, 2s2, s3} �↓(−r0)

2r0+ ↓(−r1) = {2s0, 2s1, 4s2, 3s3} �=↓(2r0+ ↓(−r1))

↓(2r0+ ↓(−r1)) = {2s2, s3} ��↓(−r0)⇒ added to R

r1

a
2

−r0

b

c

2

2r0 − r1

2
2

d

Fig. 7. Some of the regions explored by the algorithm mining the TS in Fig. 4 (only
the shadowed regions are checked against regions in R), and the final PN obtained

Although the algorithm does not produce k-bounded nets, it is not difficult
to adapt it to fulfill such requirement. Similarly, the output of the algorithm are
pure PNs, however general PNs can be easily generated from the latter as shown
in [15].

To illustrate the behavior of the algorithm, we will follow the first steps of
the PN generation using the region basis obtained in Fig. 4. To exemplify the
impact of some of the parameters, we will use minval = −1 and maxval = 2,
without limiting the possible combinations of the regions in the basis (i.e. using
the size of the basis, in this case 2, as the aggregation factor agg). Some of the
regions explored and the final PN can be seen in Fig. 7. The values of the minval
and maxval parameters are loosely related to the weights in the arcs one would
expect in the set of minimal regions. In this example, using maxval = 1 would
prevent the algorithm from finding one of the places in the net.

Let us name r0 and r1 the two region basis in the example, namely {s0, s2, s3}
and {2s0, s3}. Since r0 and r1 are already normalized and to ease the notation,
we will simply write k · r0, when k is a positive scalar, instead of ↓(k · r0), since
these regions are normalized too. First region explored is ↓(−r0), which is added
into the R set of minimal canonical regions, because all regions formed using a
single region basis are always tested against the regions in R (variable size is
always 1 in such cases, and the condition in line 3 evaluates to true) and R is
initially empty. After that, regions ↓(−r0)+ ↓(−r1), ↓(−r0)+r1 and ↓(−r0)+2r1
are explored. None of them is non-normalized (see Fig. 7), thus are discarded
without been checked for minimality.

Next r0 is checked, and goes into the R list since it is obviously not a superset
of ↓(−r0). From the following combinations r0+ ↓(−r1), r0 + r1 and r0 + 2r1,
only the first one corresponds to a non-normalized region. However when checked
against the regions in R, it turns out that it is a superregion of ↓(−r0), thus
it is not included in the list. The 2r0 region (not shown in the figure) has the
trivial subregion r0, but one of its descendants, 2r0+ ↓(−r1) is minimal. Finally,

242 M. Solé and J. Carmona

regions ↓(−r1), r1 and 2r1 are checked and discarded with the exception of r1.
The exploration concludes after generating 15 regions with a list of four minimal
canonical regions. From this set, using the simplification techniques described in
[4], one of them is removed, yielding the PN shown in Fig. 7.

Proposition 7. Given a TS A, if a basis of its regions is used in Algorithm 2,
then the set of regions returned by the algorithm correspond to a PN N such that
L(N) ⊇ L(A).

5 Experiments

All the results were obtained on a PC with an Intel Core Duo at 2.10Ghz and
2Gb of RAM, running the 2.6 Linux kernel. For the experiments we limited the
amount of memory and time that could be used by the tools to 1Gb and 10000
seconds respectively. Table 1 shows some relevant information of the logs used in
the experiments. For each benchmark we give the number of traces it contains
(#cases), the number of different events present in the log (|Σ|), the number of
states of the corresponding execution tree obtained by the sequential conversion
(|Ss|), the number of states of the TS obtained by the multiset conversion (|Sm|),
and the number of states after CFM reduction (|Sc|). The time required to build
the TS by each type of conversion is given in columns Ts, Tm and Tc, respectively.
Column |C| indicates the number of conflicts present in the TS obtained by CFM
reduction, while |B| is the size of the corresponding region basis.

Table 1. Logs from [9] used in the experiments

Log #cases |Σ| |Ss| |Sm| |Sc| Ts Tm Tc |C| |B|
a12f0n00 1 200 12 25 18 13 0 0 0 2 10
a12f0n00 5 1800 12 25 18 13 0 0 0 2 10
a22f0n00 1 100 22 1309 751 86 0 0 0.1 10 16
a22f0n00 5 900 22 9867 3291 80 0.1 0.1 0.3 6 16
a32f0n00 1 100 32 2011 1378 614 0 0.1 0.1 28 26
a32f0n00 5 900 32 16921 5544 481 0.1 0.3 0.4 10 26
t32f0n00 1 200 33 7717 7167 5846 0.1 0.4 0.4 119 27
t32f0n00 5 1800 33 64829 50436 2870 0.4 3.6 4.8 35 27
a42f0n00 1 100 42 2865 2568 1864 0 0.1 0.2 74 35
a42f0n00 5 900 42 24366 15816 8221 0.1 1.1 1.1 192 35

As expected the number of states produced by the multiset conversion is
inferior to the sequential conversion, specially when combined with the CFM
reduction. Since savings can be dramatic in some cases, like the t32f0n00 5 log,
we have used the TSs obtained by the multiset conversion with CFM reduction.

We compare the performance and the quality of three tools: the Parikh miner
in the ProM tool, genet and rbminer. The Parikh miner [9] uses the language-
based theory of regions combined with ILP, genet implements the classical TS-
based approach with a symbolic representation of the TSs, and the rbminer

Process Mining from a Basis of State Regions 243

Table 2. Mining of large logs

genet Parikh rbminer

Log P/F Time App. P/F Time App. P/F Time App.
a12f0n00 1 11/25 0.1 1.0 11/25 1 1.0 11/25 0.1 1.0
a12f0n00 5 11/25 0.1 1.0 11/25 0.7 1.0 11/25 0.1 1.0
a22f0n00 1 19/49 0.3 0.95 19/49 3 0.95 19/49 0.1 0.93
a22f0n00 5 19/49 0.3 0.94 19/49 23 0.95 19/49 0.1 0.94
a32f0n00 1 32/75 718 0.94 31/73 25 0.93 32/75 2 0.94
a32f0n00 5 31/73 1 0.95 31/73 112 0.93 31/73 2 0.95
t32f0n00 1 memout 30/72 288 0.99 31/74 8 0.92
t32f0n00 5 memout 30/72 9208 0.99 30/72 5 0.92
a42f0n00 1 memout 44/109 154 1.0 52/131 10 1.0
a42f0n00 5 timeout 44/101 1557 1.0 46/107 33 1.0

tool implements the methodology described in this paper. For each method we
provide the number of places and arcs (column P/F) of the mined PN (the
number of transitions coincides with |Σ| since no label splitting is performed),
the time in seconds to obtain the PN from the TS, and the well-known quality
measure called appropriateness [18]. This metric quantifies to which extent the
model describes the observed behavior, combined with the clarity degree of the
model. It is normalized to be a real number between 0 (low) and 1 (high). All
the benchmarks were mined using an aggregation factor of 4 for rbminer, with
minval = −1, maxval = 1 and k = 1.

The benefits of using basis of regions are twofold. First, the memory con-
sumption is very low: in all the experiments the maximum amount of memory
used by rbminer was 10Mb. This is a clear advantage over other approaches,
notably genet, which is very memory demanding. Second, the running times
are, in general, much lower. The crucial step in obtaining such improvements is
the use of the CFM reduction2. In terms of quality the results are quite similar
across all tools. Note that in some cases PNs with the same number of places
and arcs have different appropriateness because they are not identical.

In addition to the experiments on mining logs, which always yield acyclic TSs,
we have conducted a number of additional experiments on cyclic TSs3, that were
obtained by computing the RG of several PNs. A comparison of the mining ca-
pabilities of the genet and rbminer tools4 shows that, in both cases, no extra
behavior was included in the derived PN (for the cases in which genet could
complete). However the resulting PNs were very different in terms of compact-
ness. In all cases rbminer could reconstruct the original PNs from which the
TSs were derived. The aggregation factor was set in each case to the value where
synthesis was achieved. Note that for some benchmarks the values are quite low,
showing that in many cases a very shallow partial exploration of the region space
is enough to obtain remarkable results.
2 We have repeated the experiments using the multiset conversion alone, and the

running times became similar to the ones obtained by the Parikh tool.
3 A description of these benchmarks can be found in [11].
4 The Parikh miner cannot handle cyclic TSs, thus it does not appear in Table 3.

244 M. Solé and J. Carmona

Table 3. Mining of cyclic TSs

genet rbminer

Bench. |S| |Σ| |C| |B| P/F Time Agg P/F Time
PC(8,3) 1024 17 8 9 27/86 2 9 18/50 0.1
PC(8,5) 1536 17 8 9 42/158 83 9 18/50 0.1
PC(9,6) 3584 19 9 10 62/256 332 10 20/56 1
SR(6,4) 4077 24 6 18 89/490 20 6 25/60 32
SR(7,5) 16362 28 7 21 241/1865 1190 7 29/70 1565
BP(8) 6561 10 1 8 16/32 1320 2 16/32 0
BP(9) 19683 11 1 9 18/36 4561 2 18/36 0
BP(10) 59049 12 1 10 timeout 2 20/40 0.1

6 Related Work

The work presented has some relations with the theory developed in [14,15],
being the contributions of this paper algorithms built on top of that theory.

Related approaches based on the language-based theory of regions are [4,9],
which are based in the seminal work presented in [3]. Informally, these approaches
build also a basis of regions (but only allowing positive combinations, thus finding
a basis formed by all minimal canonical regions) by solving an homogeneous
linear equation system that is proportional to the set of words (and prefixes of
the words) that appear in the language, and some of them are also proportional
with the set of wrong continuations of words, i.e. words not appearing in the
language. This makes the language-based approach to suffer for large inputs,
as it is demonstrated in the previous section. However, the TS that arises from
a language can be greatly simplified (as explained in Sect. 3.2), which in turn
alleviates drastically the size of the object needed for deriving a region basis,
thus making the approach of paper a good candidate for large inputs.

7 Conclusions

This paper presents a fresh look at the problem of deriving a PN from a TS
using the theory of regions. By combining ideas that has been applied in the
language-based theory of regions (i.e. the generation of a region basis), together
with drastic simplifications of the input TS, the approach handles inputs with
better run-time and similar quality than current approaches for Process Mining.
The theory has been implemented in the tool rbminer [10].

Acknowledgements

This work has been supported by projects FORMALISM (TIN2007-66523) and
TIN2007-63927.

Process Mining from a Basis of State Regions 245

References

1. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4), 297–315
(1996)

2. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I, II. Acta Infor-
matica 27, 315–368 (1990)

3. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.)
CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–383.
Springer, Heidelberg (1995)

4. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 375–383. Springer, Heidelberg (2007)

5. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets
from finite transition systems. IEEE Transactions on Computers 47(8), 859–882
(1998)

6. Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for
deriving bounded Petri nets. IEEE Transactions on Computers 59(3) (2009)

7. van der Aalst, W., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., Günther,
C.: Process mining: a two-step approach to balance between underfitting and over-
fitting. Software and Systems Modeling (2009)

8. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discov-
ering Petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

9. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.)
PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008)

10. Solé, M.: rbminer, http://www.lsi.upc.edu/~jcarmona/rbminer/rbminer.html
11. Solé, M., Carmona, J.: Process mining from a basis of state regions. Technical

Report LSI-09-35-R, Software Dept., Universitat Politécnica de Catalunya (2009)
12. Murata, T.: Petri Nets: Properties, analysis and applications. Proceedings of the

IEEE, 541–580 (April 1989)
13. Mukund, M.: Petri nets and step transition systems. Int. Journal of Foundations

of Computer Science 3(4), 443–478 (1992)
14. Bernardinello, L., Michelis, G.D., Petruni, K., Vigna, S.: On the synchronic struc-

ture of transition systems. In: Desel, J. (ed.) Structures in Concurrency Theory,
Proceedings of the International Workshop on Structures in Concurrency Theory
(STRICT), Berlin, May 11-13, pp. 69–84 (1995)

15. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

16. Kalman, D.: Basic null space calculations. The College Mathematics Journal 15(1),
42–47 (1984)

17. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

18. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

http://www.lsi.upc.edu/~jcarmona/rbminer/rbminer.html

Separability in Persistent Petri Nets

Eike Best1 and Philippe Darondeau2

1 Parallel Systems, Department of Computing Science
Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany

eike.best@informatik.uni-oldenburg.de
2 INRIA, Centre Rennes - Bretagne Atlantique
Campus de Beaulieu, F-35042 Rennes Cedex

Philippe.Darondeau@inria.fr

Abstract. We prove that plain, bounded, reversible and persistent Petri
nets are weakly and strongly separable.

1 Introduction

Given a place/transition Petri net N = (N,M0) with initial marking M0 and
a number k ∈ N, one may consider the k-multiple net k·N = (N, k·M0), where
every place holds k times the number of tokens it holds in M0. This paper
investigates the relationship between N and k·N . The net k·N will be called
strongly separable if every firing sequence starting at k·M0 belongs to the shuffle
product of k firing sequences starting at M0, and weakly separable if the Parikh
vector of every firing sequence starting at k·M0 is the sum of the Parikh vectors
of k firing sequences starting at M0. Our notions of strong and weak separability
were called serializability and separability, respectively, in [7] where they were
first introduced (together with another notion also called weak separability but
even weaker than ours). Strong separability was proved in [7] for state machines
and acyclic marked graphs (with the workflow property). Weak separability was
proved in [2] for marked graphs, a strict subclass of persistent nets. In this
paper, we prove both weak and strong separability for plain, bounded, reversible
and persistent nets (pbrp-nets, for short), thus settling a conjecture made in [1].
Boundedness means that the set of reachable markings is finite. Reversibility
means that the initial marking is reachable from every other reachable marking.
Persistency means that at any reachable marking, an enabled transition is never
disabled by the firing of another transition.

The remaining sections of the paper are organized as follows. Section 2 presents
the technical background. Section 3 establishes two lemmata showing the stabil-
ity of pbrp nets k·N under division by k. Section 4 establishes a crucial result
stating that, if a pbrp net k·N with k ≥ 2 has a single minimal realizable T-
invariant X , then X ≤ 1. Section 5 introduces the properties of weak and strong
separability, which are shown to hold in sections 6 and 7, respectively, for pbrp
nets k·N with a single minimal realizable T-invariant. Both properties are ex-
tended to general pbrp nets k·N in section 8. A supplementary result and some
open questions are briefly mentioned in section 9.

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 246–266, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Separability in Persistent Petri Nets 247

2 Basic Definitions, and Earlier Results

We assume familiarity with the notation (P, T, F,M0) for marked Petri nets.

2.1 Petri Nets, Boundedness, Reversibility, and Persistency

A net N = (P, T, F,M0) is plain (or ordinary) if arc weights do not exceed 1
(i.e., cod(F) ⊆ {0, 1}). N is m-bounded if M(p) ≤ m for every place p in every
reachable marking M ∈ [M0〉, and bounded if it is m-bounded for some m ∈ N.
N is persistent, if whenever M [t1〉 and M [t2〉 for a marking M ∈ [M0〉 and
two transitions t1 �= t2, then M [t1t2〉. N is reversible if M0 ∈ [M〉 for every
M ∈ [M0〉. In the sequel, plain, bounded, reversible and persistent Petri nets are
called pbrp-nets. Figure 1 shows a pbrp-net and its reachability graph.

a

c

b

d

M0

a

c

b

d

b

d

a

c

Fig. 1. A pbrp net (l.h.s.) and its reachability graph (r.h.s.)

2.2 Parikh Vectors, Permutation Equivalence, and Keller’s
Theorem

For a finite sequence of transitions σ ∈ T ∗, the Parikh vector Ψ(σ) of this se-
quence is a vector of natural numbers with index set T , where Ψ(σ)(t) is the
number of occurrences of t in σ. The marking equation states that if M [σ〉M ′,
then M ′ = M + C · Ψ(σ).

Two transition sequences σ ∈ T ∗ and σ′ ∈ T ∗ are said to be permutations of
each other from marking M (written σ ≡M σ′) if they are both firable at M and
they have the same Parikh vector.

By τ−• σ, we denote the residue of τ left after cancelling successively in this
sequence the leftmost occurrences of all symbols from σ, read from left to right.
Formally, τ−• σ is defined by induction on the length of σ: τ−• ε = τ ; τ−• t = τ , if
there is no label t in τ , and the sequence obtained by erasing the leftmost t in
τ , otherwise; and τ−• (tσ) = (τ−• t)−• σ.

Keller’s theorem [8] states that in a persistent net, if τ and σ are two transition
sequences firable at some reachable marking M ∈ [M0〉, then τ(σ−• τ) and σ(τ−•σ
are also firable from M , and τ(σ−• τ) ≡M σ(τ−• σ). Furthermore, the marking
reached after τ(σ−• τ) equals the marking reached after σ(τ−• σ).

248 E. Best and P. Darondeau

2.3 T-Invariants and Cycles

The incidence matrix C of a net (P, T, F) is a P × T -matrix of integers where
the entry corresponding to a place p and a transition t is, by definition, equal to
the number F (t, p)−F (p, t). A T-invariant J is a vector of integers with index
set T satisfying C · J = 0. When comparing vectors with scalars, such as here,
we always mean this componentwise. J is called semipositive if J ≥ 0 and J is
not the null vector. Throughout the paper, we will only consider semipositive
T-invariants, and for succinctness, we will just call them “T-invariants”. Two
(semipositive) T-invariants J and J ′ are called transition-disjoint if J · J ′ = 0.

Two sequences τ, σ ∈ T ∗ are called Parikh-equivalent if Ψ(τ) = Ψ(σ). In any
Petri net, σ ≡M τ entails Ψ(σ) = Ψ(τ), and Ψ(σ) = Ψ(τ) entails also σ ≡M τ if
M is a reachable marking and both sequences σ and τ are firable at M .

Let M ∈ [M0〉. A sequence of transitions M [τ〉M is called a cycle. By the
marking equation, for any cycle M [σ〉M , the Parikh vector Ψ(σ) of this cycle is
a T-invariant. A T-invariant is called realizable if it coincides with the Parikh
vector of some cycle.

A cycle M [τ〉M is called simple if there is no permutation τ ′ ≡M τ such that
τ ′ = τ1τ2, M [τ1〉M , M [τ2〉M , and τ1 �= ε �= τ2. For example, in Figure 1(r.h.s.),
M0[ac〉M0 is simple, but M0[abcd〉M0 is not simple, in view of the permutation
M0[ac〉M0[bd〉M0.

The following results from [3] will be used in the sequel.

Theorem 1. Decomposing cycles of reversible persistent nets

Let N = (P, T, F,M0) be a bounded, reversible, and persistent Petri net. There
exists a finite set B of semipositive T-invariants such that they are transition-
disjoint and every cycle M [ρ〉M in the reachability graph of N can be decomposed,
up to permutations, to some sequence M [ρ1〉M [ρ2〉M . . . [ρn〉M of cycles with all
Parikh vectors Ψ(ρi) in B. Moreover, B can be chosen as the set of Parikh vectors
of simple cycles through any fixed state of N .

Theorem 2. Decomposing reversible persistent nets

Let N = (P, T, F,M0) be a bounded, reversible, and persistent net. Suppose that
B = {X1, . . . , Xn}, thus at any reachable marking, N generates n simple cycles
with transition disjoint Parikh vectors X1, . . . , Xn. Then there are n bounded,
persistent and reversible nets N1, . . . , Nn, such that each net Ni has exactly one
minimal realizable T-invariant Xi and the reachability graph of N is isomorphic
to the reachability graph of the disjoint sum of the nets N1, . . . , Nn.

‘Disjoint sum’ means that there is no place merging. The respective nets Ni

constructed for i = 1, . . . , n in the proof of Theorem 2 are defined as Ni =
(P, Ti, Fi,M0) where Ti = {t ∈ T |Xi(t) �= 0} and Fi is the induced restriction
of F on (P × Ti) ∪ (Ti × P). In particular, all nets Ni have the same initial
marking M0 as N . This remark is crucial to the use of Theorem 2 made later.

Separability in Persistent Petri Nets 249

3 Multiples of a Net, Persistency, and the pbrp
Properties

In this paper, we study k-multiples of nets as follows. Let N be a net and let k ≥ 1
be some positive integer number. For a marking M , the k-multiple marking k·M
is defined by (k·M)(s) = k·(M(s)) for every place s. The net k·N is the same as
the net N except that the initial marking k·M0 replaces the initial marking M0
of N (thus, 1·N is the same as N). The net k·N is called a k-net, for short. An
example is shown in Figure 2. A marking L which is of the form k·M , that is,
which assigns to every place a multiple of k as tokens, is called a k-marking.

s

a b c

s

a b c

Fig. 2. A persistent Petri net (l.h.s.) and its 2-multiple (r.h.s.)

In this section, we show that the pbrp properties are preserved under scalar
division of nets. Similar properties do not hold in general for multiplication. It is
easy to construct a net N which is bounded, or persistent, or reversible while k·N
is not. For persistency, Figure 2 can be taken as a counterexample. Plainness is
obviously preserved by division and will henceforth be assumed of all nets. The
proof of the first lemma below is easy and omitted (but a proof is in [4], the full
version of this paper).

Lemma 1. Division preserves boundedness and persistency

Let N be plain. Let k ≥ 1 and let k·N be bounded (persistent). Then N is also
bounded (respectively, persistent).

Lemma 2. Division preserves reversibility

Let k ≥ 1 and let k·N be pbrp. Then N is reversible.

Proof: Let M0 be the initial marking of N and suppose M0[α〉M . As k ≥ 1,
also k·M0[α〉L in k·N for the marking L = M + (k−1)·M0. Because k·N is
reversible, L[β〉k·M0 for some sequence β. Combining this with k·M0[α〉L, we
get k·M0[αβ〉k·M0.

Executing k times the cycle just found yields k·M0[(αβ)k〉k·M0. Let t1 be
the first transition of (αβ)k. Because k·M0[t1〉 and the net is plain, also M0[t1〉,

250 E. Best and P. Darondeau

say that M0[t1〉M1. Then also k·M0[tk1〉, and of course, k·M0[tk1〉k·M1. Keller’s
theorem applied in k·N yields k·M0[tk1〉k·M1[(αβ)k−• tk1〉k·M0. As (αβ)k contains
t1 a positive multiple of k times, the Parikh vector of the sequence (αβ)k−• tk1 is
again divisible by k. Continuing in this way, therefore, we find some sequence
of (not necessarily mutually distinct) transitions γ = t1 . . . tn ∈ T ∗ such that
Ψ(tk1 . . . tkn) = Ψ((αβ)k) and

k·M0[tk1〉k·M1[tk2〉k·M2 . . . k·Mn−1[tkn〉k·Mn with Mn = M0.

Moreover, Ψ(α) ≤ Ψ(γ) because Ψ(αk) ≤ Ψ((αβ)k) = Ψ(tk1 . . . tkn) = Ψ(γk).
By construction, also, M0[t1〉M1[t2〉M2 . . . Mn−1[tn〉M0. As N is persistent by
Lemma 1, Keller’s theorem can be applied at M0 in N . Since M0[α〉M and
M0[γ〉M0, one obtains both M0[α〉M [γ−• α〉M ′ and M0[γ〉M0[α−• γ〉M ′, for some
marking M ′. Since Ψ(α) ≤ Ψ(γ), we have α−• γ = ε, and hence M ′ = M0. Thus
we have found a sequence β′, namely β′ = γ−• α, leading back from M to M0:
M0[α〉M [β′〉M0. Since α was arbitrary, N is reversible.

4 The Minimal Cycles of a Reversible and Persistent
k-Net

Theorem 2 and Lemmas 1 and 2 imply that a pbrp k-net with n ≥ 2 minimal
realizable T-invariants can always be decomposed into n disjoint pbrp k-nets,
each of which has exactly one minimal realizable T-invariant X . The latter case is
scrutinized in this section, where we will establish the following theorem. Recall
that a transition t is weakly live at marking M if ∃M ′ ∈ [M〉 such that M ′[t〉.

Theorem 3. Simple cycles in k·N have Parikh vector 1
Let k ≥ 2 and let (N, k·M0) be a pbrp k-net with exactly one minimal realizable
T-invariant X. Then X ≤ 1 and for any transition t, X(t) = 0 if and only if t
is not weakly live at k·M0.

In the rest of the section, we assume w.l.o.g. that all transitions are weakly live,
and we show that X = 1 under this stronger assumption.

Plainness is important for Theorem 3 to hold. In Figure 3, all simple cycles
of the net on the right-hand side have Parikh vector X = Ψ(abb), but X �= 1,
contrary to the conclusion of Theorem 3.

Recall that in a (plain) connected marked graph N , all transitions occur an
equal number of times in any cycle [5,6]. Any such marked graph has thus ex-
actly one minimal realizable T-invariant, viz. the vector 1. Theorem 3 extends
this behavioural property of connected marked graphs to pbrp-nets k·N (k ≥ 2)
with exactly one minimal realizable T-invariant. It is worth noting that the
statement made in Theorem 3 would not hold under the weaker assumption
that N instead of k·N is persistent. For instance, let k = 2 and consider Figure
2. On the left-hand side, X = (a �→ 1, b �→ 1, c �→ 2) is the unique minimal
realizable T-invariant, and it can be realized by the firing sequence M0[acbc〉M0.

Separability in Persistent Petri Nets 251

a b

2

2

a b

2

2

Fig. 3. A weighted Petri net (l.h.s.) and its 2-multiple (r.h.s.)

Note that X �= 1. On the right-hand side, X is also the unique minimal realiz-
able T-invariant. However, the net shown on the right-hand side of Figure 2 is
not persistent. Executing a in the initial marking leads to a marking in which
both a and b are enabled although their shared input place s carries only one
token, hence producing a true conflict and destroying persistency. Thus, both
requirements that k·N be persistent and that k ≥ 2 are crucial for Theorem 3
to hold.

We shall now give the proof of Theorem 3, which is critical to all results
established in the remaining sections. By way of approaching this proof, let k·N
be a pbrp-net with exactly one minimal realizable T-invariant X . By assumption,
all transitions are weakly live, hence we want to show X = 1. As every weakly
live transition must occur at least once in any firing sequence realizing X , X ≥
1 in view of Theorem 1 and the unicity of X . If X is a k-multiple, then, a
contradiction of the assumption k ≥ 2 can be derived easily as we will see
later. The complicated case is when X is not a k-multiple. In this case, we will
i) construct a T-invariant which extends X and is a k-multiple; ii) show that
this new T-invariant is realizable in k·N ; and iii) show that a contradiction
to the minimality of X ensues unless X = 1. In order to construct this T-
invariant, we use the fact that X is realized by some firing sequence α in T ∗ and
we introduce an auxiliary function zipk : T ∗ → T ∗ which, given any sequence
α ∈ T ∗, constructs from α another sequence zipk(α) with Ψ(α) ≤ Ψ(zipk(α))
such that the latter is a k-multiple. Intuitively, zipk yields a “ceiling” operation
on Parikh vectors with respect to divisibility by k.

Definition 1. function zipk

Let zipk : T ∗ → T ∗ be the function inductively defined with the following equa-
tions, where t ∈ T :

zipk(ε) = ε

zipk(tα′) = tkzipk(α′−• tk−1)
(1)

It follows directly from this definition that Ψ(zipk(α)) is a k-multiple and more
precisely, the least k-multiple larger than or equal to Ψ(α). Moreover, if Ψ(α) ≤
k−1 then zipk(α) = ak

1 . . . ak
l , where a1 . . . al are all distinct letters of α, in the

order of their first occurrences. For example, zip5(ab4a3) = a5zip5(b
4) = a5b5.

252 E. Best and P. Darondeau

Lemma 3. enabling zipk(α)
Let k·N be plain and persistent, and let k·M be a reachable k-marking of k·N .
If a sequence α is enabled at k·M , then zipk(α) is also enabled at k·M .

Proof: We use Keller’s theorem and induction on the length of sequences. If
α = ε, the claim is obviously true.

Suppose now α = tα′ and k·M [tα′〉, with t ∈ T . By plainness, M [t〉M ′ and
hence k·M [tk〉k·M ′. By Keller’s theorem, also k·M [tk〉k·M ′[(tα′)−• (tk)〉, and
therefore k·M [tk〉k·M ′[α′−• tk−1〉. By induction hypothesis, k·M ′[zipk(α′−• tk−1)〉;
hence k·M [tk〉k·M ′[zipk(α′−• tk−1)〉. By the definition of zipk(α), k·M [zipk(α)〉.

In the sequel, we apply the zipk construction to cycles k·M0[γ〉k·M0 of k·N , and
we use the property that if γ̂ = zipk(γ), then the Parikh vector of γ̂ may be
computed from the Parikh vector of γ. We describe now this computation.

First, we note that the Parikh vector of γ splits (uniquely) as a sum:

Ψ(γ) = Yk + Yk−1 + . . . + Y1

where k|Yk (read k divides Yk) and for all k−1 ≥ h ≥ 1 and for all transitions
t, Yh(t) ∈ {h, 0}. Indeed, let dt = Ψ(γ)(t)div k (where div denotes integer
division) and ht = Ψ(γ)(t)modk for every transition t. Define Yk(t) = k·dt

(thus k|Yk(t)), and for k−1 ≥ h ≥ 1, define Yht(t) = ht and Yh(t) = 0 if h �= ht.
We claim that

Ψ(γ̂) = Yk +
∑k−1

h=1 (k
h ·Yh)

= Yk + k
k−1 ·Yk−1 + k

k−2 ·Yk−2 + . . . + k
2 ·Y2 + k·Y1

(2)

This can be seen by examining the zipk construction. In fact, zipk(γ) is computed
by first moving to the left dt subwords tk of γ for each transition t (this does not
affect the length of the sequence), and then moving to the left, for each transition
t still appearing on the right, all ht occurrences still untouched, augmented
with k−ht new occurrences of t if ht �= 0 (this may increase the length of the
sequence).

Example (with k = 5):

zip5(a
4ba3) = a5zip5(ba

2) (the first five a s are moved left)
= a5b5zip5(a2) (one b is moved left; four b s are added)
= a5b5a5. (two more a s are moved left; three a s are added).

Writing Parikh vectors as
(

x
y

)
to denote entries x for a and y for b, we have:

Ψ(a4ba3) =
(

7
1

)
=

(
5
0

)
︸︷︷︸

Y5

+
(

0
0

)
︸︷︷︸

Y4

+
(

0
0

)
︸︷︷︸

Y3

+
(

2
0

)
︸︷︷︸

Y2

+
(

0
1

)
︸︷︷︸

Y1

Ψ(a5b5a5) = Y5 + 5
4 ·Y4 + 5

3 ·Y3 + 5
2 ·Y2 + 5·Y1.

Separability in Persistent Petri Nets 253

We are now in a position to produce a proof of Theorem 3.

Proof: Let k·M0[γ〉k·M0 be a simple cycle in k·N , thus γ realizes X . We dis-
tinguish two exhaustive and mutually exclusive cases.

Case 1: k|Ψ(γ), that is, all entries of the Parikh vector of γ are divisible by k.
If γ = ε, then the net has no transitions and there is nothing to prove.
Otherwise, let t be the first transition in γ. Because Ψ(γ) is a k-multiple, t

occurs at least k times in γ, that is, Ψ(tk) ≤ Ψ(γ). As k·M0[t〉 and k·N is a plain
net, necessarily k·M0[tk〉k·M1 for some k-multiple marking k·M1. By Keller’s
theorem, k·M1[γ−• tk〉k·M0. Moreover, Ψ(γ−• tk) is another k-multiple since Ψ(tk)
is smaller than or equal to Ψ(γ) and thus, Ψ(γ−• tk) = Ψ(γ)− Ψ(tk).

Let t1 = t. Continuing in this way, we find t2, . . . , tn such that

k·M0[tk1〉k·M1[tk2〉 . . . [tkn〉k·M0.

As k·M0[tk1 . . . tkn〉k·M0, by plainness, M0[t1 . . . tn〉M0, and therefore, a fortiori,
k·M0[t1 . . . tn〉k·M0.

Seeing that Ψ(t1 . . . tn) is a realizable T-invariant in k·N , this Parikh vector
must be greater than or equal to X . Therefore,

Ψ(γ) = X ≤ Ψ(t1 . . . tn) =
1
k
Ψ(tk1 . . . tkn) =

1
k
Ψ(γ) ,

yielding a contradiction since k ≥ 2 (and γ is not empty).

Case 2: k� | Ψ(γ).
Define γ̂ = zipk(γ). Let Ψ(γ) = Yk +

∑k−1
h=1 Yh and Ψ(γ̂) = Yk +

∑k−1
h=1 (k

h ·Yh) be
the respective decompositions of these two vectors defined above, thus Yk is a
k-multiple and for every k − 1 ≥ h ≥ 1 and t ∈ T , Yht(t) = ht = Ψ(γ)(t)modk
and Yh(t) = 0 for h �= ht. Note that Yk−1 + . . . + Y1 is not the null vector, since
k� | Ψ(γ).

From k·M0[γ〉 and by Lemma 3, k·M0[γ̂〉L for some marking L. As k·M0 is a
k-marking and Ψ(γ̂) is a k-multiple, L is also a k-marking, say L = k·M1. Thus
k·M0[γ̂〉k·M1. Let γ and γ̂ be renamed γ1 and γ̂1, respectively. So far,

k·M0[γ̂1〉k·M1.

By Theorem 1 and the assumption that X is the only minimal realizable T-
invariant of k·N , k·M1[γ2〉k·M1 for some simple cycle with Parikh vector Ψ(γ2) =
X . One may now iterate the construction of γ̂i+1 and k·Mi+1 from γi+1 and k·Mi

(presented above for i = 0). By doing so, one obtains an infinite sequence

k·M0[γ̂1〉k·M1[γ̂2〉k·M2[γ̂3〉k·M3 . . .

where all γ̂i have the same Parikh vector as γ̂, namely the one given by (2), since
Ψ(γi) = Ψ(γ) for all i. As the net k·N is bounded, the markings k·M0, k·M1, . . .
cannot be all different, hence there exists some finite nonempty subsequence of
the form

k·Mi−1[γ̂iγ̂i+1 . . . γ̂j〉k·Mj , with 1 ≤ i ≤ j and k·Mi−1 = k·Mj .

254 E. Best and P. Darondeau

Between k·Mi−1 and k·Mj, there are (j − i + 1) ≥ 1 sequences with Parikh
vectors equal to Ψ(γ̂). Thus, (j − i + 1) · Ψ(γ̂) is a realizable T-invariant and
necessarily, Ψ(γ̂) also is, showing that k·M0[γ̂〉k·M0.

So far, we have constructed two T-invariants, Ψ(γ) and Ψ(γ̂), such that the
latter is a k-multiple and extends the former, which is not a k-multiple. The
remaining part of the proof contains an elaborate argument showing that this is
possible only when Ψ(γ) = 1.

Recall that k·M0[γ〉k·M0, and Ψ(γ) ≤ Ψ(γ̂). By Keller’s theorem, k·M0[γ̂−•γ〉,
and by Ψ(γ) ≤ Ψ(γ̂), Ψ(γ̂−• γ) = Ψ(γ̂) − Ψ(γ). The latter difference is not null,
since k|Ψ(γ̂) but k� | Ψ(γ) (assumption of Case 2). As Ψ(γ̂) and Ψ(γ) are T-
invariants, so is Ψ(γ̂) − Ψ(γ). Moreover, Ψ(γ̂−• γ) = Ψ(γ̂) − Ψ(γ) is realizable
since k·M0[γ̂−• γ〉.

Using equation (2) and X = Ψ(γ) = Yk + . . . + Y1, one obtains

Ψ(γ̂−• γ) = Ψ(γ̂)− Ψ(γ) =
k−1∑
h=1

(
k − h

h
· Yh). (3)

As Ψ(γ̂−• γ) is a realizable T-invariant and X (= Ψ(γ)) is the unique minimal
realizable T-invariant of k·N , Ψ(γ̂−• γ) = l·X for some positive integer l. Thus
Ψ(γ̂) = Ψ(γ̂−• γ) + X = (l+1)·X . Combining the above, one obtains:

k−1∑
h=1

(
k − h

h
·Yh) + X = Ψ(γ̂) = l·X + X = l·Yk + (l·

k−1∑
h=1

Yh) + X.

The first equation follows from (3) and from Ψ(γ) = X ; the second equation
follows from Ψ(γ̂) = (l+1)·X ; the third equation follows from X = Yk + . . .+Y1.
Comparing the rightmost and leftmost sums in this equation, one gets:

l·Yk =
k−1∑
h=1

k − (l + 1)·h
h

· Yh (4)

We show now that Yk must be the null vector. For contradiction, assume the
contrary. Then Yk(t) ≥ 1 for some transition t. As Yk is a k-multiple, even
Yk(t) ≥ k and l·Yk(t) ≥ l·k. As l > 0 and in view of equation (4), Yht(t) �= 0
since by definition of Y , Yh(t) = 0 for any 1 ≤ h ≤ k − 1 with h �= ht. Thus,
Yht(t) = ht. Combining these two properties and remembering that k ≥ 2,

0 < l·k ≤ l·Yk(t) = k − (l + 1)·ht , (5)

However, 1 ≤ ht and 1 ≤ l entail k − (l + 1)·ht ≤ k − 2, and with (5), one gets
l·k ≤ k− 2. As l is a positive integer, we have reached a contradiction. Thus, Yk

is indeed the null vector.
Yk being the null vector means that Ψ(γ) ≤ k − 1. Recall that γ̂ = zipk(γ).

By the definition of zipk (and the remark just after Definition 1), γ̂ = tk1 . . . tkn
where t1 . . . tn are all distinct transitions occurring in γ, with ti �= tj for i �= j. As
k·M0[γ̂〉k·M0, by plainness M0[t1 . . . tn〉M0, and a fortiori k·M0[t1 . . . tn〉k·M0.

Separability in Persistent Petri Nets 255

Seeing that Ψ(t1 . . . tn) is a realizable T-invariant, this Parikh vector must be
greater than or equal to X . As the transitions t1, . . . , tn are mutually distinct,
necessarily Ψ(t1 . . . tn) ≤ 1. Therefore, 1 ≤ X ≤ Ψ(t1 . . . tn) ≤ 1. Altogether,
X = 1 (and also Ψ(t1 . . . tn) = 1), as was to be shown.

As already mentioned, the property stated for pbrp nets k·N with k ≥ 2 in
Theorem 3 is a classical property of plain connected marked graphs. A natu-
ral question is whether any pbrp net k·N with exactly one minimal realizable
invariant X can be transformed to a marked graph by just erasing redundant
places. The answer to this question is negative; an example is provided in [4].

5 Definition of Separability

We distinguish two notions of separability.

Definition 2. Weak and strong separability

Let k ≥ 1 and let (N, k·M) be any net with k-marking k·M .
A firing sequence k·M [σ〉 is weakly k-separable from k·M (or just weakly

separable if k and M are understood from the context) if there exist k sequences
σ1, . . . , σk such that

(∀j, 1≤j≤k : M [σj〉 in (N,M)) and (
k∑

j=1

Ψ(σj)) = Ψ(σ). (6)

A firing sequence k·M [σ〉 is strongly k-separable from k·M if there exist k se-
quences σ1, . . . , σk such that

(∀j, 1≤j≤k : M [σj〉 in (N,M)) and σ ∈
⊔
|

k
j=1 σj , (7)

where �⊥ denotes the shuffle product (“arbitrary interleaving”) operator. A k-
net is weakly (strongly) separable if every sequence firable in its initial marking
is weakly (strongly) separable from this k-marking.

Example: The 2-net shown in Figure 4 is not strongly 2-separable from the
indicated marking 2·M since 2·M [aacbbc〉 cannot be obtained by shuffling two
firing sequences from M . However, this 2-net is weakly 2-separable from 2·M . In
particular, Ψ(aacbbc) = Ψ(abc)+ Ψ(abc), and clearly, M [abc〉. The considered 2-
net is neither reversible nor persistent; e.g., 2·M [acab〉 and 2·M [acac〉 but acacb
cannot be fired from 2·M .

a

b c

Fig. 4. A weakly but not strongly separable net

256 E. Best and P. Darondeau

6 Weak Separability

In this section and in section 7, we will establish the weak (strong, respectively)
separability of pbrp-nets under the special assumption that there exists exactly
one minimal realizable T-invariant X . In the rest of this section and in section 7,
this assumption applies implicitly to all k-nets under consideration. The results
will be extended to the general case in section 8.

As strong separability entails weak separability, one should explain why we ex-
amine first weak separability. When weak separability is considered, the freedom
to apply permutations to transitions whenever needed allows strong constraints
to be imposed on the decompositions of transition sequences into parallel pro-
cesses; this will later, in Table 1, be made more precise. Such strong constraints
will serve to determine at each stage in the inductive decomposition of a transi-
tion sequence which process should be extended by the last transition taken into
account. For strong separability, one cannot apply permutations to re-arrange
processes, and the mathematical structure under the decompositions gets partly
obscured. In order to show that inductive decompositions can be obtained with
respect to strong separation, and in particular that at each stage in the induction,
at least one process can be extended by the last transition taken into account,
we shall therefore rely crucially on weak separation.

In the sequel, we usually denote by N = (N,M0) the net with initial marking
M0 under consideration, by k·N the net (N, k·M0) with initial k-marking k·M0,
and by X the unique minimal realizable T-invariant of k·N . Note that if k·N is
a pbrp-net and k ≥ 2, then X ≤ 1 by Theorem 3.

Lemma 4. Shifting k-multiple subwords

Let N be plain. Let k ≥ 2 and let k·N , with initial marking k·M0, be bounded,
reversible, and persistent. Suppose k·M0[σ〉. Then there is some sequence of tran-
sitions t1 . . . tn such that

k·M0[tk1 . . . tkn〉k·M1[σ′〉 with Ψ(σ′) ≤ k − 1 and σ ≡k·M0 tk1 . . . tknσ′.

Proof: Choose a transition t1 which is enabled at M0 and satisfies Ψ(σ)(t1) ≥ k,
i.e., such that there are at least k occurrences of t1 in σ, if such a transition exists.
By plainness and by Keller’s theorem,

k·M0[tk1〉k·M ′
0[σ−• tk1〉.

Choose a transition t2 which is enabled at M ′
0 and satisfies Ψ(σ−• tk1)(t2) ≥ k, if

such a transition exists. Again by plainness and by Keller’s theorem,

k·M0[tk1〉k·M ′
0[t

k
2〉k·M ′′

0 [σ−• (tk1t
k
2)〉.

Repeating this reordering procedure as long as possible, one constructs a
sequence

k·M0[tk1 . . . tkn〉k·M1[σ′〉

Separability in Persistent Petri Nets 257

where σ′ = σ−• (tk1 . . . tkn) (possibly n = 0, in which case σ′ = σ and M1 = M0)
and Ψ(σ′)(t) ≤ k−1 for every transition t enabled at M1.

We show that no transition (not just the ones enabled at M1) can occur more
than k − 1 times in σ′. To this end, let k·M1[γ〉k·M1 be any cycle such that
Ψ(γ) ≤ 1. Such a cycle must exist because, on the one hand, X is a realizable
T-invariant of k·N and X ≤ 1 by Theorem 3, and on the other hand, this T-
invariant can be realized at every reachable marking of k·N (by Theorem 1).
Repeating this cycle k − 1 times gives a cycle k·M1[γk−1〉k·M1.

Applying now Keller’s theorem to k·M1[γk−1〉 and k·M1[σ′〉 yields

k·M1[σ′−• γk−1〉 (8)

If σ′−• γk−1 �= ε then the first transition of σ′−• γk−1 is firable at k·M1 (due to
(8)) and it occurs at least k times in σ′ (due to σ′−• γk−1 �= ε and the fact,
stated in Theorem 3, that Ψ(γ)(t) = 1 for any transition t firable at k·M1). This
contradicts the fact that the reordering procedure (extracting such tk from σ)
has been repeated as long as possible.

Hence σ′−• γk−1 = ε, which, by Ψ(γ) ≤ 1, implies that σ′ contains every tran-
sition at most k− 1 times. By construction, σ ≡k·M0 tk1 . . . tknσ′. This establishes
the claims of the lemma.

By applying Lemma 4, a sequence σ fired at k·M0 can be transformed into a
permutation-equivalent sequence, viz. tk1 . . . tknσ′, consisting of an initial segment
(leading to k·M1) in which every transition occurs a multiple of k times (where
the t1, . . . , tn are not necessarily all distinct), followed by a tail, denoted by σ′,
in which every transition occurs at most k − 1 times. The next lemma, applied
with j = k− 1 and L = M = M1 (thus L + j ·M = k ·M1[σ′〉), and with τ = σ′

and χ = ε (thus k ·M1[τ〉 and k ·M1[χ〉k ·M1), shows that σ′ can be further
transformed into an initial segment in which every transition occurs exactly k−1
times and a new tail in which every transition occurs at most k − 2 times.

Lemma 5. Shifting j-multiple subwords for 1 ≤ j < k

Let N be plain. Let k ≥ 2 and let k·N , with initial marking k·M0, be bounded,
reversible and persistent. Let j be a fixed number such that 1 ≤ j < k. Then the
following implication is valid:

if a transition sequence τ satisfying Ψ(τ) ≤ j is firable in k·N at a reachable
marking of the form L+j·M , and if moreover (L+j·M)[χ〉k·M for some sequence
χ such that τ and χ are transition-disjoint,

then M [t1 . . . tp〉 where t1 . . . tp is an enumeration of the set {t1, . . . , tp} =
{t |Ψ(τ)(t) = j}, and τ ≡L+j·M tj1 . . . tjp τ ′ for a sequence τ ′ satisfying Ψ(τ ′) ≤
j − 1 and not containing t1, . . . , tp. Moreover, L+j·M [tj1 . . . tjp〉L+j·M ′[χ′〉k·M ′

for some sequence χ′ such that τ ′ and χ′ are transition-disjoint.

For explaining the meaning of this lemma, examine the arrows τ and χ emanating
from the North-Western corner, labelled L + j·M , of Figure 5. According to the
lemma, all instances of the transitions t1, . . . , tp, which occur exactly j times
in τ , may be shifted towards the beginning, thus forming an initial segment

258 E. Best and P. Darondeau

tj1 . . . tjp after which the residual sequence τ ′ = τ−• (tj1 . . . tjp) is executed. In τ ′,
every transition occurs now at most j−1 times, and since τ ′ and χ′ are transition
disjoint, the lemma be be applied again to τ ′, j − 1 and χ′.

L + j·M L + j·M ′ =

L′

z }| {

L + M ′ + (j − 1)·M ′

k·M k·M ′

−−−−−−−−→
t
j

1 . . . tj
p

−
−
−
−
−
−
−−
→

χ

−
−
−
−
−
−
−−
→

χ′ = χ t
k−j
1 . . . tk−j

p

−−−−−−−−−−−−−−→
tk
1 . . . tk

p

τ with Ψ(τ) ≤ j

τ ′ = τ−• (tj
1 . . . tj

p)

Fig. 5. Explanation of Lemma 5

Proof: We use an induction on p. If p = 0, then Ψ(τ) ≤ j − 1, and apart from
setting τ ′ = τ , there is nothing to prove. Otherwise, if p > 0, we claim that some
transition t′ occurring j times in τ is enabled at M in N . We establish this claim
by producing such t′.

As (L+j·M)[τ〉 and (L+j·M)[χ〉k·M in k·N , (L+j·M)[χ〉k·M [τ−• χ〉 by
Keller’s theorem. Therefore, seeing that τ and χ are transition-disjoint, k·M [τ〉.

As k·M is a reachable marking of k·N and X ≤ 1 is the least realizable
T-invariant of k·N , by Theorem 1, k·M [γ〉k·M for some sequence γ satisfying
Ψ(γ) = X ≤ 1. Repeating this cycle j − 1 times yields the cycle k·M [γj−1〉k·M .

By Keller’s theorem (applied in k·M with k·M [τ〉 and k·M [γj−1〉), k·M [σ〉
with σ = τ−•γj−1, and since Ψ(τ)(t) �= 0 ⇒ X(t) = Ψ(γ)(t) = 1 (by Theorem 3),
Ψ(σ)(t) = max{0, Ψ(τ)(t)− (j − 1)} for all t. Now Ψ(τ)(t) = j for some t (since
p > 0), hence σ differs from the empty sequence. Let σ = t′σ′. Then k·M [t′〉,
hence M [t′〉 by plainness. Moreover, Ψ(τ)(t′) ≥ 1 + (j − 1), hence Ψ(τ)(t′) = j,
which establishes our claim.

Let t1 (= t′) be some transition enabled at M and occurring j times in τ .
Let M [t1〉M ′ in N , then (L + j·M)[tj1〉(L + j·M ′) in k·N . As also (L + j·M)[τ〉,
by Keller’s theorem, (L + j·M ′)[τ ′〉 with τ ′ = τ−• tj1. Thus, Ψ(τ ′)(t) = Ψ(τ)(t)
for t �= t1 and Ψ(τ ′)(t1) = 0, and if we let {t |Ψ(τ)(t) = j} = {t1, . . . , tp}, then
{t |Ψ(τ ′)(t) = j} = {t2, . . . , tp}.

In order to get a full proof of the lemma by the induction on p, it suffices to
construct χ′ such that (L + j·M ′)[χ′〉 k·M ′ and χ′ and τ ′ are transition disjoint.
We show that both conditions are fulfilled if we set χ′ = χ tk−j

1 . Transition
disjointness is clear since t1 does not occur in τ ′ = τ−• tj1 and τ and χ are
transition disjoint. Now (L+ j·M)[χ〉 k·M , (L+ j·M)[tj1〉 (L+ j·M ′), and t1 does

Separability in Persistent Petri Nets 259

not occur in χ since it occurs in τ . By Keller’s theorem and the fundamental
equation, (L + j·M ′)[χ〉 (L + j·M)′ + (k·M − (L + j·M)) = (k − j)·M + j·M ′.
As M [t1〉M ′, (k − j)·M + j·M ′[tk−j

1 〉 k·M ′. Thus, the proof is complete.

Iterating the application of Lemma 5 after one application of Lemma 4, is the
principle of the proof of our first separability result.

Theorem 4. Weak separability

Let N be plain. Let k ≥ 2 and let k·N , with initial marking k·M0, be bounded,
reversible, and persistent. If k·N has only one minimal realizable T-invariant,
then (N, k·M0) is weakly separable.

Note that both reversibility and plainness are important for Theorem 4 to hold.
Figure 6 shows on the left-hand side a plain, bounded, non-reversible, persistent
Petri net with a 2-marking 2·M0 such that the firing sequence 2·M0[bcac〉 is
not weakly 2-separable. The right-hand side of Figure 6 displays a non-plain,
bounded, reversible, persistent 2-net with a 2-marking 2·M0 in which the firing
sequence 2·M0[a〉 cannot be separated for obvious reasons.

b

a

c

a

2

2

Fig. 6. Two non-separable nets: not reversible (l.h.s.) and not plain (r.h.s.)

Proof: Let k·M0[σ〉 be given. We show that applying once Lemma 4 and k−1
times Lemma 5 produces a decomposition of k·M0[σ〉 into k sequences M0[σj〉
(j = 1, . . . , k) such that Ψ(σ) =

∑k
j=1 Ψ(σj). This decomposition is depicted in

Table 1, where the j-th horizontal line shows the “process” M0[σj〉. To give a
rough idea, the application of Lemma 4 produces the part of the tableau between
the first two columns M0+ . . .+M0 and M1+ . . . +M1. The l-th application of
Lemma 5 (1 ≤ l ≤ k− 1) produces the part of the tableau between the columns
Ml+ . . . +Ml and Ml+1+ . . . +Ml+1.

We describe now more precisely the successive phases of the decomposition.

Step 1: This step consists of applying Lemma 4 to k·M0[σ〉.
The lemma yields k·M0[tk1 . . . tkn〉k·M1[σ′〉, with Ψ(σ′) ≤ k−1 and σ ≡k·M0

tk1 . . . tknσ′. Putting n1=n and t1,1=t1, t1,2=t2, ..., t1,n1=tn, one obtains the part
of the tableau to the left of M1+ . . . +M1. (End of Step 1.)

Step 2: This step consists of k−1 successive applications of Lemma 5 (substeps
2.l for l = 1, . . . , k−1).

For every transition t, let ht = Ψ(σ)(t)mod k, thus ht is the remainder left
after dividing Ψ(σ)(t) by k. For each transition t occurring in σ′ (produced in
Step 1), if ht = k− l, then the k− l remaining occurrences of t in σ′ are grouped

260 E. Best and P. Darondeau

Table 1. A tableau explaining the weak separation of σ

σ1: M0

t1,1...t1,n1−−−−−−−−→M1

+ +

σ2: M0

t1,1...t1,n1−−−−−−−−→M1

t2,1...t2,n2−−−−−−−−→M2

+ + +

σ3: M0

t1,1...t1,n1−−−−−−−−→M1

t2,1...t2,n2−−−−−−−−→M2

t3,1...t3,n3−−−−−−−−→M3

+ + + +
...

...
...

...
... · · ·

+ + + +

σk: M0

t1,1...t1,n1−−−−−−−−→M1

t2,1...t2,n2−−−−−−−−→M2

t3,1...t3,n3−−−−−−−−→M3 · · ·
tk,1...tk,nk−−−−−−−−→Mk︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

τ1 τ2 τ3 τk

ht: ht = k−1 ht = k−2 ht = 1

and shifted to the left in the l-th application (substep 2.l) of Lemma 5, yielding
k − l subprocesses starting at Ml and stopping at Ml+1.

More precisely, in substep 2.1, Lemma 5 is applied to

(L + j·M)[τ〉 and (L + j·M)[χ〉k·M
with j = k − 1, L = M1, M = M1,

τ = σ′ = σ−• (tk1,1 . . . tk1,n1
),

and χ = ε.

The lemma yields M1[t1 . . . tp〉 where t1, . . . , tp is an enumeration of the set
{t |Ψ(σ′)(t) = k − 1}, i.e. of the set {t |ht = k − 1}. Putting n2=p and t2,1=t1,
..., t2,n2=tp, one obtains a decomposition

(k − 1)·(M1[t2,1 . . . t2,n2〉M2) of ((k − 1)·M1) [tk−1
2,1 . . . tk−1

2,n2
〉 ((k − 1)·M2).

In substep 2.l for l = 2 . . . , k−1, Lemma 5 is similarly applied to

(L + j·M)[τ〉 and (L + j·M)[χ〉k·M
with j = k − l, L = M1 + . . . + Ml, M = Ml,

τ = σ−• (tk1,1 . . . tk1,n1
tk−1
2,1 . . . tk−1

2,n2
. . . tk−l+1

l,1 . . . tk−l+1
l,nl

),

and χ = t2,1 . . . t2,n2 . . . t23,1 . . . t23,n3
. . . tl−1

l,1 . . . tl−1
l,nl

.

(End of Step 2.)

Finally, the sequences σ1, . . . , σk are defined in accordance with the lines 1 to k
of Table 1. More precisely, for 1 ≤ l ≤ k let

σl = (t1,1 . . . t1,n1) (t2,1 . . . t2,n2) . . . (tl,1 . . . tl,nl
) .

Then clearly, M0[σl〉Ml for l = 1, . . . , k and Ψ(σ) = Ψ(σ1) + . . . + Ψ(σk) by
construction. Thus, the σ1, . . . , σk provide the weak separation of σ that was
claimed to exist.

Separability in Persistent Petri Nets 261

a

b

c

d

σ to be separated: 3·M0[abbbbcaaacaadbac〉

σ1 : M0 [aabc〉M1

σ2 : M0 [aabc〉M1 [b〉 M2

σ3 : M0 [aabc〉M1 [b〉 M2 [da〉 M3

ht : 2 1

Fig. 7. A 3-net (l.h.s.) and a firing sequence together with a weak separation (r.h.s.)

An example with k = 3 is shown in Figure 7. Consider t = a. Since a occurs
seven times in σ and k = 3, we have ha = 1. Hence a occurs (once) in the column
determined by ht = 1. The remaining six occurrences of a are spread evenly in
the lines between M0 + M0 + M0 and M1 + M1 + M1. Similarly, b occurs five
times in σ. Thus hb = 2, and b occurs (twice, but only once per line) in the
column specified by ht = 2.

This example also shows that the weak separation which exists by Theorem 4
is not necessarily a strong separation, since σ �∈ (σ1 �⊥σ2 �⊥ σ3).

7 Strong Separability

Weak separability will now be used in an essential way in order to prove the
stronger version, viz. strong separability. In the remainder of this section, we
refer to the decomposition constructed in the proof of Theorem 4 and shown
in Table 1, relative to a firing sequence σ. In particular, M0, M1, M2, ...,
Mk refer to the markings shown in this table. To avoid excessive indexing, let
τi = ti,1 . . . ti,ni for i = 1, . . . , k. Thus Mi−1[τi〉Mi, and M0[σi〉Mi rewrites as
M0[τ1〉M1[τ2〉M2 . . .Mi−1[τi〉Mi.

Note that any two transitions ti,j and ti′,j′ with i, i′ ≥ 2 and i �= i′ or j �= j′

are different. In particular, also, Ψ(τi) ≤ 1 for every τi.
If some k-marking enables a transition t, then in view of the plainness as-

sumption, one k’th of this marking also enables t. We have used this argument
several times. The next two lemmata extend this property first from transitions
to cycles and next from k-markings to arbitrary reachable markings.

Lemma 6. Individual enabling part 1

Let N be plain. Let k ≥ 2 and let k·N be the multiple of N with initial marking
k·M0. Suppose that k·N is bounded, reversible and persistent, and that X ≤ 1 is
the unique minimal T-invariant realized in this net.

If k·M0[α〉k·M0 is a cycle in k·N and Ψ(α) ≤ 1, then also M0[α〉M0 in N .

Proof: Executing k times the cycle α in k·N yields k·M0[αk〉k·M0. Let t1 be
the first transition of αk and hence also of α. Since k·M0[t1〉, also M0[t1〉, and

262 E. Best and P. Darondeau

then also k·M0[tk1〉. By Keller’s theorem, k·M0[tk1(α
k−• tk1)〉. As t1 occurs exactly

k times in αk (because Ψ(α) ≤ 1), this firing sequence is of the form:

k·M0[tk1〉k·M1[αk−• tk1〉k·M0.

As Ψ(α) ≤ 1, the first transition of αk−•tk1 is also the second transition of α. Con-
tinuing as above, we get a sequence t1 . . . tn of transitions with k·M0[tk1 . . . tkn〉k·
M0, and then also M0[t1 . . . tn〉M0 in N , and by construction, t1 . . . tn = α.

Lemma 7. Individual enabling part 2

Under the same assumptions as in Lemma 6, let k·M0[σ〉L be any firing sequence
and let

M0[σ1〉M1 , . . . , M0[σi〉Mi , . . . , M0[σk〉Mk

be the weak separation of this firing sequence given by Table 1 (i.e., L = M1 +
. . . + Mk and σi = τ1 . . . τi with τi = ti,1 . . . ti,ni). If L[t〉 for some transition t,
then Mh[t〉 for some index 1 ≤ h ≤ k. Moreover, if t �= ti,l for all i ≥ 2 and
1 ≤ l ≤ ni then h = k, else t ∈ {th+1,1, . . . , th+1,nh+1}.

Proof: Suppose that L[t〉 with t �= ti,j for all i ≥ 2 and for all j. Let τ =
τ2(τ3)2 . . . (τk)k−1, then by construction, L[τ〉k·Mk (intuitively, τ is what is miss-
ing in the North-Eastern corner of Table 1). As t does not occur in τ , it follows
by persistency that k·Mk[t〉, hence Mk[t〉 by plainness.

Suppose that L[t〉 with t = ti,j and i ≥ 2. Then t occurs in the sequence τi

and in no other τi′ with i′ �= i. As all transitions ti′,j′ are different provided that
i′ ≥ 2, Ψ(τ2τ3 . . . τk) ≤ 1. As (N, k·M0) is pbrp, (N, k·M1) is pbrp. By Theorem
1, both nets have the same (unique) minimal realizable T-invariant X , and X
is realized at k·M1. By Lemma 6, the T-invariant X ≤ 1 (of k·N) is realized in
M1 (in N). By Theorem 3, Ψ(τ2τ3 . . . τk) ≤ X . By Keller’s theorem, there must
exist a sequence α such that Mk[α〉M1 and Ψ(τ2τ3 . . . τkα) = X ≤ 1. Since t
occurs in τi and hence also in τ2τ3 . . . τk, it does not occur in α.

We claim now that

L = M1 + . . . + Mk [τ ′〉 ((i−1)·Mi−1 + Mi + . . . + Mk)
[τ ′′〉 ((i−1)·Mi−1 + (k−i+1)·Mk)
[τ ′′′〉 ((i−1)·Mi−1 + (k−i+1)·M1)
[τ ′′′′〉 k·Mi−1

with τ ′ = τ2(τ3)2 . . . (τi−1)i−2 , τ ′′ = τi+1(τi+2)2 . . . (τk)k−i , τ ′′′ = αk−i+1 , and
τ ′′′′ = (τ2 . . . τi−1)k−i+1 .

This may be seen by inspecting Table 1. The sequence τ ′ produces i−1 copies
of Mi−1 out of M1 + M2 + . . . + Mi−1 in the first i− 1 lines of the table. Then
τ ′′ = τi+1(τi+2)2 . . . (τk)k−i produces k− i+1 copies of Mk on lines i to k of the
table. After this, k− i + 1 copies of M1 are produced by τ ′′′ = αk−i+1 on lines i
to k. Finally, k − i + 1 copies of Mi−1 are produced by τ ′′′′ on the same lines.

Now L[t〉 and if we let τ = τ ′τ ′′τ ′′′τ ′′′′, then L[τ〉k·Mi−1 and t does not
occur in τ since it appears neither in α nor in any τj for j �= i. By persistency,
k·Mi−1[t〉. By plainness, Mi−1[t〉.

Separability in Persistent Petri Nets 263

Theorem 5. Strong separability

Under the same assumptions as in Lemma 6, every firing sequence k·M0[σ〉L
has a strong separation.

Proof: We will prove by induction on σ that, if k·M0[σ〉L has the weak sepa-
ration M0[σ1〉M1, . . ., M0[σk〉Mk, where σi = τ1 . . . τi and τi = ti,1 . . . ti,ni as
indicated in Table 1 (cf. the proof of Theorem 4), then k·M0[σ〉L belongs to the
shuffle of k firing sequences M0[ζ1〉M1, . . . M0[ζk〉Mk, such that Ψ(σi) = Ψ(ζi)
for all i.

For σ with length 0, there is nothing to prove. Now let σ′ = σt and suppose
that the firing sequence k·M0[σ〉L matches both the weak separation M0[σ1〉M1,
. . ., M0[σk〉Mk (given by Theorem 4) and the strong separation M0[ζ1〉M1, . . .,
M0[ζk〉Mk (given by induction), such that Ψ(σi) = Ψ(ζi) for all i.

Note that Ψ(τ1) is the integer part of 1
k · Ψ(σ) and for l > 1, Ψ(τl)(t) = 1 if

and only if l is the rest of the integer division of Ψ(σ)(t) by k.
The properties under consideration hold clearly for σ with length 0. Assuming

they hold for σ, we show now that they hold for σ′ = σt. By Theorem 4 and its
proof, the firing sequence k·M0[σ′〉 has a similar weak decomposition M0[τ ′

1〉M ′
1,

. . ., M0[τ ′
1〉M ′

1[τ
′
2〉M ′

2 . . . [τ ′
k〉M ′

k, where Ψ(τ ′
1 . . . τ ′

l) = Ψ(τ1 . . . τl) for all l ≥ 1
except one, for which Ψ(τ ′

1 . . . τ ′
l) = Ψ(τ1 . . . τl) + Ψ(t). Fix this index l. By the

persistency of N (Lemma 1), and by Keller’s theorem, applied to M0[τ1 . . . τl〉 and
M0[τ ′

1 . . . τ ′
l 〉, necessarily M0[τ1 . . . τlt〉. Therefore, Ml[t〉, showing that one may

obtain a strong decomposition of k·M0[σt〉, i.e. of k·M0[σ′〉, by setting ζ′i = ζi

for i �= l and ζ′l = ζ lt. As ζ′j is a permutation of σ′
j = τ ′

1 . . . τ ′
j for all j, the proof

of the theorem follows by the induction on σ.

The reader may recall from Figure 7 that Theorem 4 does not necessarily yield
the sequences ζi whose shuffle realizes σ. On the other hand, the sequences ζi

yield a weak decomposition of σ, but this weak decomposition does not neces-
sarily enjoy the uniformity and orthogonality properties shown by Table 1.

As an example, consider Figure 8. It shows one step in the proof of Theorem
5, constructing a new strong separation ζ′j and then also a new weak separation
σ′

j (of σ′) from the given separations σj and ζj (of σ). Note that the initial
weak separation is also a strong one, while the new weak separation is no longer
strong.

The strong separation M0[ζj〉Mj of k · M0[σ〉L constructed in the proof of
Theorem 5 enjoys the following property, which is fundamental for the simulation
of k·N by k copies of N : whenever L[t〉 for some transition t, there exists an index
l such that Ml[t〉 and the extension of ζl by t gives again a strong separation
with this property. It is worth noting that some other possible decompositions
of firing sequences with respect to strong separation do not enjoy this property.
Consider e.g. the 2-net with the marking 2·M shown in Figure 9. Then 2·M [ab〉
may be decomposed into M [a〉 and M [b〉, but 2M [abc〉 and neither M [ac〉 nor
M [bc〉.

264 E. Best and P. Darondeau

a

b

c

d

Separate 3·M0 [

σ′︷ ︸︸ ︷
ab︸︷︷︸
σ

b 〉 with σ = ab and σ′ = abb

M0[ε〉M1

M0[ε〉M1[ε〉M2

M0[ε〉M1[ε〉M2[ab〉M3

�

M ′
0[ε〉M ′

1

M ′
0[ε〉M ′

1[b〉M ′
2

M ′
0[ε〉M ′

1[b〉M ′
2[a〉M ′

3

τ1 = ε, τ2 = ε, τ3 = ab τ ′
1 = ε, τ ′

2 = b, τ ′
3 = a

σ1 = ε, σ2 = ε, σ3 = ab σ′
1 = ε, σ′

2 = b, σ′
3 = ba

ζ1 = ε, ζ2 = ε, ζ3 = ab ζ′
1 = ε, ζ′

2 = b, ζ′
3 = ab

Fig. 8. Illustration of the proof of Theorem 5

a b

c

Fig. 9. A marked graph

8 The General Case

With the help of Theorem 2, we can now extend the strong separability result
to pbrp-nets with several incomparable realizable T-invariants.

Theorem 6. Strong separability (for general pbrp-nets)

Let N be plain. Let k ≥ 2 and let k·N , with initial marking k·M0, be bounded,
reversible, and persistent. Then (N, k·M0) is strongly separable.

Proof: Let {X1, . . . , Xn} be the set of mutually transition-disjoint T-invariants
of k·N given by Theorem 1. According to Theorem 2, there are n bounded,
reversible and persistent nets k·N1, . . . , k·Nn such that the reachability graph
of k·N is isomorphic to the reachability graph of the disjoint sum of the nets
k·N1, . . . , k·Nn. Moreover, these nets k·Ni are given by k·Ni = (P, Ti, Fi, k·M0)
where Ti = {t ∈ T |Xi(t) �= 0} and Fi is the induced restriction of F on (P ×
Ti) ∪ (Ti × P). Thus all nets k·Ni have similar initial markings k·M0 (but for
separate copies of the set of places P), and {T1, . . . , Tn} is a partition of the set
of transitions T .

Let k·M0[σ〉 be a given firing sequence of k·N . For i = 1, . . . , n, let σi be the
projection of σ on T ∗

i . Thus, σ ∈
⊔
|

n
i=1 σi, and in particular, Ψ(σ) =

∑n
i=1 Ψ(σi).

In view of the isomorphism of reachability graphs described above, there must
exist corresponding firing sequences k·M0[σi〉 of nets k·Ni.

Separability in Persistent Petri Nets 265

Consider some fixed net k·Ni. As k·Ni is the induced (subnet) restriction of
k·N on P and Ti, and both nets have the same initial marking, the reachability
graph of k·Ni embeds into the reachability graph of k·N , and it is isomorphic to
the reachable restriction of this labelled graph induced on the subset of labels Ti.
Therefore, the T-invariant Xi which is realized at k·M0 in k·N is also realized
at k·M0 in k·Ni. Moreover, it is the only minimal realizable T-invariant of k·Ni.
Indeed, any T-invariant which is realized in k·Ni is also realized in k·N due to
the embedding of reachability graphs, and we know from Theorem 1 that Xi is
the only minimal realizable Ti-invariant of k·N . Now, k·Ni is bounded, reversible
and persistent, and it is moreover a k-net since it has the initial marking k·M0.
By Theorem 5, k·Ni is strongly separable, hence there exist k firing sequences
M0[σi,1〉, . . . ,M0[σi,k〉 of the net Ni = (P, Ti, Fi,M0) such that σi ∈

⊔
| k

j=1 σi,j

for each i from 1 to n. Thus, σ ∈
⊔
|

n
i=1

⊔
|

k
j=1 σi,j . By associativity and

commutativity of the shuffle product, σ ∈
⊔
|

k
j=1

⊔
|

n
i=1 σi,j , hence one may

choose specific words τj ∈
⊔
|

n
i=1 σi,j (j = 1, . . . , k) such that σ ∈

⊔
|

k
j=1 τj . In

order to complete the proof of the theorem, it suffices to show that M0[τj〉 in N =
(P, T, F,M0) for each j from 1 to k. Fix j with 1 ≤ j ≤ k. As k·N is bounded,
reversible and persistent, by Lemmata 1 and 2, N enjoys similar properties. For
i = 1, . . . , n, as k·Ni is bounded, reversible and persistent, by Lemmata 1 and
2, Ni enjoys similar properties. Therefore, by Theorem 2, the reachability graph
of N (with initial marking M0) is isomorphic to the reachability graph of the
disjoint sum of nets N1 + . . . + Nn (each of them also with the initial marking
M0). In view of this isomorphism, as τj projects (on T ∗

i) to σi,j and M0[σi,j〉 in
(Ni,M0) for all i with 1 ≤ i ≤ n, necessarily, M0[τj〉 in N .

9 A Supplementary Result and Some Open Questions

We finally state a further structural result. For its proof, see [4].

Theorem 7. Let N be plain. Let k ≥ 2 and let k·N be the multiple of N with
initial marking k·M0. Suppose that k·N is reversible, bounded and persistent.
Then (k − 1)·N is weakly separable, pbrp, and strongly separable.

Several questions remain open. For a k-net satisfying the preconditions of The-
orem 3, does there exist a language-equivalent marked graph? Can Theorem 3
be generalised to initial markings putting either 0 or ≥ 2 tokens on each place?
Under which conditions can the reversibility assumption be weakened?

Another interesting question is to what extent our results may be used for the
simulation of systems. In some sense, they provide both a sequential simulation
of k parallel net systems N by a net system k · N , and a parallel simulation
of k · N by k parallel net systems N . What may limit the impact is that, at
present, we do not know how deciding or checking efficiently that k ·N is pbrp
(even knowing that N is pbrp), which is a precondition for the results to apply.

266 E. Best and P. Darondeau

Acknowledgements

The first author would like to thank the Université de Rennes 1 for inviting
him at IRISA during February 2009. The authors would also like to thank the
reviewers for their comments.

References

1. Best, E., Darondeau, P., Wimmel, H.: Making Petri Nets Safe and Free of Internal
Transitions. Fundamenta Informaticae, 1–16 (2007)

2. Best, E., Esparza, J., Wimmel, H., Wolf, K.: Separability in Conflict-free Petri
Nets. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 1–18.
Springer, Heidelberg (2007)

3. Best, E., Darondeau, P.: A Decomposition Theorem for Finite Persistent Transition
Systems. Acta Informatica 46, 237–254 (2009)

4. Best, E., Darondeau, P.: Separability in Persistent Petri Nets. TR 04/09, Dep.
Comp. Sci., Univ. Oldenburg (December 2009),
http://parsys.informatik.uni-oldenburg.de/~best/publications/

EB-PhD-sep-long.pdf

5. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked Directed Graphs. J. Com-
put. Syst. Sci. 5(5), 511–523 (1971)

6. Genrich, H.J., Lautenbach, K.: Synchronisationsgraphen. Acta Informatica 2(2),
143–161 (1973)

7. van Hee, K., Sidorova, N., Voorhove, M.: Soundness and Separability of Workflow
Nets in the Stepwise Refinement Approach. In: van der Aalst, W.M.P., Best, E.
(eds.) ICATPN 2003. LNCS, vol. 2679, pp. 337–356. Springer, Heidelberg (2003)

8. Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation. In:
Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Hei-
delberg (1975)

http://parsys.informatik.uni-oldenburg.de/~best/publications/EB-PhD-sep-long.pdf
http://parsys.informatik.uni-oldenburg.de/~best/publications/EB-PhD-sep-long.pdf

New Algorithms for Deciding the Siphon-Trap
Property

Olivia Oanea, Harro Wimmel, and Karsten Wolf

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
{olivia.oanea,harro.wimmel,karsten.wolf}@uni-rostock.de

Abstract. The siphon-trap property, also known as Commoner-Hack
property, establishes a relation between structural entities within a Petri
net – the eponymous siphons and traps. The property is linked to the
behavior of a Petri net, for instance to deadlock freedom and liveness of
the net. It is nevertheless nontrivial to decide the property as a net can
have exponentially many siphons and traps even if only minimal siphons
are considered. Consequently, the value of the property depends on the
availability of powerful decision procedures.

We contribute to this issue by proposing two new methods for deciding
the siphon-trap property. One is a plain translation of the property into
a Boolean satisfiability (SAT) problem, which exploits the fact that in-
credibly powerful SAT solvers are available. The second procedure has a
divide-and-conquer nature which builds upon a decomposition of a Petri
net into open nets and projects information about siphons and traps onto
the interfaces of the components.

Keywords: Petri nets, Traps, Siphons, Commoner-Hack, Liveness, SAT,
Divide-and-Conquer.

1 Introduction

The siphon-trap property [5,2] is a classical structural property of Petri nets. It
states that every siphon (a set of places that cannot switch from unmarked to
marked) includes a marked trap (a structure that cannot switch from marked to
unmarked). The property can be used for deciding liveness in free choice Petri
nets and as a sufficient condition for deadlock freedom in general Petri nets.
According to common belief, the main advantage of structural techniques is that
they avoid the generation of a state space which is subject to the state explosion
problem. In fact, the siphon-trap property involves the investigation of only
finitely many finite siphons in the net even for unbounded Petri nets, i.e. infinite
state systems. Nevertheless, evaluating the property is far from trivial. Existing
tools like INA [6] enumerate potentially exponentially many siphons and may
thus run into severe run time and space problems.

We propose two new approaches for evaluating the siphon-trap property of
place-transition nets. The first approach translates the property into a Boolean
satisfiability problem. Our translation improves results in [10,1] where the prop-
erty was translated into a Horn-satisfiability problem for bounded free-choice and

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 267–286, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

268 O. Oanea, H. Wimmel, and K. Wolf

other subclasses of Petri nets. The translation as such can be done in polynomial
time resulting in a formula with n(n + 1) propositions, where n is the number
of places. The subsequent satisfiability problem is NP-complete but there is a
number of tools available which are capable of solving incredibly large instances
in reasonable time.

The second approach follows the divide-and-conquer paradigm. We decom-
pose a Petri net into open net components where an open net is a place bordered
subnet such that each place on the border (we shall call them interface places)
represents unidirectional asynchronous communication with exactly one other
component. We improve an existing decomposition technique in two directions.
First, we present a more efficient algorithm. Second, we propose a net transfor-
mation which allows us to divide a net into arbitrarily small components. For
each component, information about siphons, traps, and their mutual relation is
condensed into constraints for the interface places. Upon composition of compo-
nents, information of the components is aggregated to corresponding information
about the composite open net. Since the size of the condensed information has a
stronger correlation to the number of interface places than to the overall number
of places in a component, the approach has the potential of outperforming tradi-
tional algorithms at least for a significant class of nets. This in turn is sufficient
for including an algorithm into a tool as present day computing environments
support the parallel execution of several tasks.

2 Basic Definitions

Definition 1 (Petri net). An (unmarked) net is a triple (S, T, F) where S and
T are finite sets with S∩T = ∅, and F is a mapping F : (S×T)∪(T×S)→ {0, 1},
i.e. we consider nets without arc weights.

For any unmarked net (S, T, F) and any x ∈ S∪T , let •x := {y |F (y, x) �= 0}
and x• := {y |F (x, y) �= 0} be the preset and postset of x, respectively. We
extend this notion to sets X ⊆ S ∪ T by •X :=

⋃
x∈X

•x and X• :=
⋃

x∈X x•.
We assume nets have no isolated places, i.e. places s with •s ∪ s• = ∅.

A marking of (S, T, F) is a function m:S → N. We say that a place s has k
tokens under m if m(s) = k. For S′ ⊆ S we introduce the abbreviation m(S′) :=∑

s∈S′ m(s) and say that S′ is marked under m iff m(S′) > 0, otherwise it is
unmarked.

A marked net is a tuple (S, T, F,m0) consisting of an unmarked net (S, T, F)
and an (initial) marking m0. An open net (S, T, F,m0, Si, So) contains a marked
net (S, T, F,m0), a set Si of input places with Si ⊆ S and •Si = ∅, a set of output
places So with So ⊆ S and So

• = ∅ = Si ∩ So. The set I := Si ∪ So is called the
interface of the net, places in S\I are called inner places. Nets with an empty
interface or without an interface at all are called closed nets.

Open nets can be seen as partial nets mergeable via parts of their interfaces
using a composition operator ⊕.

Definition 2 (Composition of open nets). For k ∈ {1, 2} let Nk = (Sk, Tk,
Fk, mk, Si,k, So,k) be open nets such that T1∩T2 = ∅, Si,1∩Si,2 = ∅ = So,1∩So,2,

New Algorithms for Deciding the Siphon-Trap Property 269

and S1 ∩ S2 = (Si,1 ∩So,2)∪ (Si,2 ∩ So,1), i.e. common elements of the two open
nets are non-inner places only, and these must be input in one and output in
the other open net. Furthermore, for all s ∈ S1 ∩ S2: m1(s) = m2(s) must hold.
Then we define N1 ⊕ N2 := (S1 ∪ S2, T1 ∪ T2, F1 ∪ F2,m1 ∪ m2, Si, So), where
Si = (Si,1 ∪ Si,2)\(S1 ∩ S2) and So = (So,1 ∪ So,2)\(S1 ∩ S2).

Note that m1∪m2 is well-defined since m1 and m2 are equal for common places.
The composition ⊕ is obviously commutative. Associativity is also easy to see,
we notice that a place may appear in the open nets of a well-defined expression
of the form N1 ⊕N2 ⊕N3 ⊕ . . . either twice (once as input and once as output
place, to be merged to one inner place) or once (as input, output or inner place)
or not at all. Matching input and output places in different ways depending on
the order of nets is therefore impossible and we can conclude:

Proposition 1. The composition ⊕ is commutative and associative.

Our main consideration are traps and siphons. A trap is a set of places that
cannot be emptied once it contains a token, no matter which transitions fire. A
siphon is a set of places that cannot obtain new tokens once it has been emptied
of tokens.

Definition 3 (Traps and siphons). A trap Q of an (unmarked or marked) net
(S, T, F,m0) is a set Q ⊆ S with Q �= ∅ and Q• ⊆ •Q. Analogously, a siphon is a
set D ⊆ S with D �= ∅ and •D ⊆ D•. A trap Q is marked if ∃s ∈ S: m0(s) > 0.
For a set X of places of an open net (S, T, F,m0, Si, So), call I(X) = X∩(Si∪So)
the interface of X. Let such a set be closed if I(X) = ∅, otherwise open. Let a
siphon (or trap, resp.) M be X-minimal iff X ⊆ M and no other siphon D (or
trap, resp.) fulfills X ⊆ D ⊂M . For a net N let Q(N) denote the set of all traps
in N and D(N) the set of all siphons in N .

A net N = (S, T, F, . . .) is called a free-choice net if for each pair t, t′ ∈ T ,
•t ∩ •t′ �= ∅ implies •t = •t′. For these free-choice nets there is a well known
relation between traps/siphons and liveness, i.e. whether all transitions can be
enabled from all reachable markings.

Proposition 2 (Commoner-Hack [5,2]). Let N be a marked free-choice net.
Then N is live if and only if every siphon of N contains a marked trap.

If we consider general nets we can only conclude:

Proposition 3. Let N be a marked net.

(1) If N is live then every siphon of N contains a marked trap.
(2) If every siphon of N contains a marked trap then N does not contain dead-

locks (i.e. all reachable markings enable at least one transition).

In the sequel, we shall refer to the property “every siphon contains a marked
trap” as the siphon-trap property (STP). The remainder of this article is devoted
to new decision procedures for the property.

270 O. Oanea, H. Wimmel, and K. Wolf

3 Evaluating the Siphon-Trap Property Using SAT

In this section we propose a reduction of STP to the famous SAT problem [3].
We aim at a formula that is satisfiable if and only if there is a siphon which does
not contain a marked trap. Our starting point is a formula which operates on
the places as propositions and whose satisfying assignments correspond exactly
to the siphons of a given net. Such formula is well known.

Lemma 1 ([10,7]). A set D of places of a net N is a siphon if and only if the
assignment β with β(s) = true if and only if s ∈ D satisfies∨

s∈S

s ∧
∧
t∈T

∧
s∈t•

(s =⇒
∨

s′∈•t

s′).

The first part of the formula states the non-emptiness while the second part is
the siphon condition •D ⊆ D•. A dual formula is capable of describing traps
but can not immediately be used for formulating the STP. The reason is that
there is a change of quantifiers: there exists a siphon D such that every included
trap is unmarked. Hence we use another approach exploiting the fact that every
siphon D containing traps has a unique maximal trap (which is the union of all
traps included in D). Beginning with a siphon D, its maximal included trap can
be computed by a repeated removal of places s where some post-transition has
no post-place in the so far remaining set. Let n be the number of places in N .
We represent the repetition of the procedure by introducing (n + 1) variables
s(0), . . . , s(n) for each place s. The variables s(0) represent a non-empty siphon
as mentioned above. The variables s(i) represent intermediate stages Di of the
procedure for generating the maximal included trap. Di+1 is obtained from Di

by removing all places for which some post-transition does not have any post-
place in Di. Since there are only n places, the procedure converges after at most
n iterations, so Dn is either empty or the maximal trap included in D. The
relation between Di and Di+1 can be expressed for each place s individually as
follows:

s(i+1) ⇐⇒ (s(i) ∧
∧
t∈T

∧
s∈•t

∨
s′∈t•

s′(i)).

As we want to have the formula satisfied iff the maximal trap is unmarked or
non-existent, we add the formula ∧

s∈S:m0(s)>0

¬s(n+1).

From these considerations, the following theorem is evident.

Theorem 1. In a given net N with n places, there exists a siphon which does
not include a marked trap if and only if the following formula is satisfiable:

φ ::=
∨

s∈S s(0) ∧
∧

t∈T

∧
s∈t•(s

(0) =⇒
∨

s′∈•t s′
(0)) (1)

∧
∧n

i=0
∧

s∈S(s(i+1) ⇐⇒ (s(i) ∧
∧

t∈T

∧
s∈•t

∨
s∈t• s(i))) (2)

∧
∧

s∈S:m0(s)>0 ¬s(n+1) (3)

New Algorithms for Deciding the Siphon-Trap Property 271

Table 1. Evaluating STP: SAT vs. INA

ID |P | |T | |F | SAT INA

phils10 50 40 120 0.05 sec 3 sec
phils20 100 80 240 0.24 sec ≥2h
phils50 250 200 600 2.29 sec n.a.
phils100 500 400 1200 12 sec n.a.
phils150 750 600 1800 40 sec n.a.
phils200 1000 800 2400 119 sec n.a.
data1010 50 40 300 0.12 sec 8 sec
data1212 60 48 408 0.19 sec 16 sec
data1515 75 60 600 0.36 sec 28 sec

The formula contains n(n + 1) different propositions, one for each place and
iterative step (counted by t), and has obviously a length that is polynomial in
card(S) + card(T) + card(F).

We have implemented an ad-hoc translation from a Petri net to the mentioned
formula and shipped it to the state-of-the-art SAT checker MiniSat [9] and com-
pared our results with the STP check done by INA [6]. We obtained the results
listed in Table 1. As experimental data, we used the k dining philosophers ex-
amples and the semaphore based scheme for concurrent read and exclusive write
access to a database with k writing and k reading processes. Observe that the
INA check time explodes for the 20 philosophers example while the SAT check
has a significant time increase for the 200 philosophers example.

4 Evaluating the Siphon-Trap Property Using a
Divide-and-Conquer Approach

Deciding liveness is co-NP-complete for free-choice nets according to Esparza and
Nielsen [4], so a general fast algorithm is impossible. In the following, we develop an
algorithm for evaluating the STP using a divide-and-conquer strategy. The com-
plexity of this algorithm depends more on the size of interfaces during the conquer
part than on the size of the nets. Managing to keep the interfaces small may thus
lead to a fast algorithm. The general algorithm will look like this:

1. Decompose a (marked) net N = (S, T, F,m0) into a set of open net
components.

2. Calculate traps and siphons for each such component. For closed siphons,
the STP is evaluated using any traditional algorithm.

3. Condense information about open siphons and included traps such that it
only refers to the interface.

4. Aggregate components step by step. From the information provided by the
components, reason about siphons that become closed through the aggrega-
tion and derive information about open siphons and included traps of the
aggregated open net.

272 O. Oanea, H. Wimmel, and K. Wolf

In Subsection 4.1, we propose a procedure that is able to decompose a Petri
net into arbitrarily small open nets. How far to break down a Petri net is op-
tional though. Subsection 4.2 studies the relations between siphons and traps on
one hand and open net composition on the other. In Subsection 4.3 we define
a structure that is later on used for representing the information about open
siphons and traps. Then, we take this information for reasoning about siphons
and traps that are closed by aggregation. Finally, we deal with the generation
of information about open siphons and traps in an aggregation.

4.1 Decomposition into Open Nets

So far we have talked about some aspects of components but we have not defined
them yet. Thanks to the composition ⊕, this is easy to do.

Definition 4 (Components). Let N be a marked net and N1 be an open net.
We call N1 a component of N if there is some open net N2 with N = N1 ⊕N2.

For our divide-and-conquer approach we are usually interested in small compo-
nents, i.e. we would like to split a net into as many components as possible.
Zaitsev [11] presented an algorithm to obtain the unique set of smallest compo-
nents into which a net can be decomposed. Later, the algorithm was improved
by Mennicke et al. [8]. Its idea is to start at some transition and recursively tag
necessary net elements until a component is completed:

Definition 5 (Building components). Let N = (S, T, F,m0, Si, So) be an
open net and t ∈ T a transition. The component C(t) = (S′, T ′, F |(S′×T ′∪T ′×S′),
m0|S′ , S′

i, S′
o) is the smallest (wrt. set inclusion) open net fulfilling the following

criteria:

(1) t ∈ T ′,
(2) if t′ ∈ T ′ then •t′ ∪ t′• ⊆ S′,
(3) if t′ ∈ T ′ then (•t′)• ∪ •(t′•) ⊆ T ′,
(4) for s ∈ S′: (s ∈ Si ∨ ∃t′ ∈ T \T ′ : t′ ∈ •s) =⇒ s ∈ S′

i,
(5) for s ∈ S′: (s ∈ So ∨ ∃t′ ∈ T \T ′ : t′ ∈ s•) =⇒ s ∈ S′

o.

Any open net can be disassembled into a set of at most |T | different components
(one for each transition, but t′ ∈ C(t) implies C(t) = C(t′)). Different compo-
nents have disjoint sets of transitions and inner places. Interface places may be
shared by components, but each such place may appear only once as input place
and once as output place in all components together. Clearly,

⊕
t C(t) = N if

we add only one of C(t), C(t′) whenever C(t) = C(t′).
Example. There are nets which can be split up into components with only one
transition in each. Take e.g. a cycle of alternating places and transitions, with
two places before and after each transition, and one transition before and after
each place. All components look alike, the first two being N1 and N2 of Fig. 1.
Composing further components to the resulting net N1 ⊕ N2 may prolong the
strand until the final component with output places a and b is added to complete
the cycle.

New Algorithms for Deciding the Siphon-Trap Property 273

t1

a

b

c

d

N1

t2

c

d

e

f

N2

t1

a

b

c

d

t2

e

f

N1 ⊕N2

Fig. 1. Two components N1 and N2 and their composition N1⊕N2. Input places have
stripes going upwards, output places downwards.

Since the components are so small, we can easily determine all traps and
siphons, e.g. for N1: Q = {{c}, {d}, {c, d}, {a, c}, {b, c}, {a, b, c}, {a, d}, {b, d},
{a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}} and D = {{a}, {b}, {a, b}, {a, c}, {a, d},
{a, c, d}, {b, c}, {b, d}, {b, c, d}, {a, b, c}, {a, b, d}, {a, b, c, d}}.

If we restrict ourselves e.g. to {s}-minimal traps and siphons for some place
s ∈ S, we get the even smaller sets Q1 = {{c}, {d}, {a, c}, {b, c}, {a, d}, {b, d}}
and D1 = {{a}, {b}, {a, c}, {a, d}, {b, c}, {b, d}}.

The conquer part of our divide-and-conquer strategy should later show the
siphons and traps of N1 ⊕N2 to be Q′ = {{e}, {f}, {c, e}, {d, e}, {c, f}, {d, f},
{a, c, e}, {b, c, e}, {a, d, e}, {b, d, e}, {a, c, f}, {b, c, f}, {a, d, f}, {b, d, f}} and
D′ = {{a}, {b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, c, e}, {a, c, f}, {a, d, e}, {a, d, f},
{b, c, e}, {b, c, f}, {b, d, e}, {b, d, f}} (again with the reduction to s-minimal ele-
ments for s ∈ S). ��
Size reduction of components. If the components are not as small as those
in Fig.1 we might like to split them up even more as the number of siphons
and traps of a component may grow exponentially with its size, i.e. the number
of places. Two transitions with a common place in either their presets or in
their postsets always belong to the same component. To force them to different
components we need to split up the place before we dissolve the net into its
components. We propose the following operation, which will replace one place
by a circle of alternating places and transitions.

Definition 6 (Replacing places). Let N = (S, T, F,m0, Si, So) be an open
net and p an inner place of S. Take any partition P = {Ti | 1 ≤ i ≤ n}
of •p ∪ p• where n is the number of the sets Ti in P . We define N(p, P) :=
(S′, T ′, F ′,m′

0, Si, So) by the following algorithm:

– Start with S′ = S\{p}, T ′ = T , F ′ = F |(S′×T)∪(T×S′) and m′
0 = m0|S′ .

– For each Ti add a place pi and for each t ∈ Ti connect it like p: F ′(pi, t) =
F (p, t) and F ′(t, pi) = F (t, p).

– If exists t ∈ Ti with F ′(t, pi) > 0 add pe
i and tei with F ′(pe

i , t
e
i)=F ′(tei , pi)=1.

– If exists t ∈ Ti with F ′(pi, t) > 0 add px
i and txi with F ′(pi, t

x
i)=F ′(txi , px

i)=1.
– For each i ∈ {1, . . . , n} identify the last existing place of the list pe

i , pi, px
i

with the first one of the list pe
(i mod n)+1, p(i mod n)+1, px

(i mod n)+1, forming a
circle of all the newly added places and transitions.

274 O. Oanea, H. Wimmel, and K. Wolf

s

c1

x1

p1

e1

c2

x2

p2

e2

Fig. 2. A semaphore net N . For the two processes p1 and p2 on the left and right,
transitions e and x mean entry to and exit from the critical section c, the semaphore
is place s. Note that N has an empty interface.

p1

e1

c1

s1 t1 s2
A s2

t2

s3 c2

x2

p2

B

p2

e2

c2

s3t3s4

C
s4

t4

s1c1

x1

p1

D

Fig. 3. The semaphore place s has been replaced by a circle (consisting of the si and
ti). The semaphore net dissolves into four components A, B, C, and D, where places
to be identified when rejoining the components have been given the same label.

– Set m′
0(p1) = m0(p) and m′

0(s) = 0 for all other places on the newly formed
circle.

Example. Consider the semaphore net of Fig. 2 with the two processes p1-e1-
c1-x1 and p2-e2-c2-x2 being in their critical section at c1 and c2, respectively,
and the semaphore place s. The net only has two components, one with the
transitions e1 and e2, the other with x1 and x2. We cannot split it along the
process boundaries, as both processes need read and write access to the place s.

If we replace s by a circle of four places and transitions, we obtain four com-
ponents A, B, C, and D as shown in Fig. 3. It becomes possible now to merge
components such that we get subnets A ⊕ D and B ⊕ C consisting of one full
process each. These compositions have the smallest number of traps and siphons
of all combinations of two components, which reduces time and space needed
for the conquer part of our algorithm. Accidentally (or not), these are also the
compositions with the smallest interfaces. ��
The question is now what will happen to the traps and siphons if we replace a
place by a complete circle. We find the nice property that traps and siphons are
bijectively mapped between the two nets.

New Algorithms for Deciding the Siphon-Trap Property 275

Proposition 4 (Unchanged traps and siphons). Let N be an open net with
an inner place p and P a partition of •p∪p•. For N(p, P) according to definition 6
let r be a map with r(pe

i) = r(pi) = r(px
i) = p for all places added in the

construction of N(p, P) and r(s) = s for all places s of N except p. Then, for all
subsets X of places of N : X is a trap of N iff r−1(X) is a trap of N(p, P) and
X is a siphon of N iff r−1(X) is a siphon of N(p, P). Furthermore, all traps
and siphons of N(p, P) have the form r−1(X).

Proof. We show this for traps only; for siphons the proposition then follows from
symmetry. Let r−1(X) ∈ Q(N(p, P)) and t ∈ X• a transition of N . Then, t is
also a transition in N(p, P) and t ∈ r−1(X)• by Def. 6. As r−1(X) is a trap,
t ∈ •r−1(X) in N(p, P) and therefore also t ∈ •X in N . We conclude X ∈ Q(N).
The same argument holds for X ∈ Q(N) and t ∈ r−1(X)• in N(p, P) if we just
swap X with r−1(X) and N with N(p, P). We conclude r−1(X) ∈ Q(N(p, P))
then.

Let now Y be a trap of N(p, P). If Y does not contain any of the pe
i/pi/px

i ,
then p /∈ r(Y) and r is the identity on Y . We conclude Y = r−1(r(Y)). If Y
contains at least one of the pe

i /pi/px
i we get p ∈ r(Y). By the trap property, if

a tei ∈ pe
i
• for some pe

i ∈ Y , also tei ∈ •Y must hold, i.e. pi ∈ Y . Analogously,
for txi ∈ pi

• with pi ∈ Y also txi
• = {px

i } ⊆ Y holds. In any case, if one of the
pe

i/pi/px
i belongs to Y , all of them do for all i. So again, Y = r−1(r(Y)). ��

Note that Def. 6 cannot be applied to interface places. This would change the
number of siphons and traps in the net, as the circle constructed in the definition
cannot contain interface places. Logically, the best time to apply Def. 6 is then
at the beginning, when we usually have a closed net and could replace all the
places. Then, components would all look like the one depicted in Fig. 4, where
for each place in the preset or postset of the main transition t one link of the
corresponding circle created by Def. 6 is added.

Not all of the sets of traps and siphons in figure 4 need to be considered for
our divide-and-conquer approach, since Prop. 4 tells us that the circles of Def. 6
appear either completely or not at all in any trap or siphon of the whole net.
That means, only the sets Q2, D2, Q7, D7, Q4× (Q2 ∪Q7), and D4× (D2 ∪D7)
and unions of two or more traps or two or more siphons from these sets will be
relevant subsets of traps and siphons of the overall net.

4.2 Composing Siphons and Traps

There is a good reason for using open net decomposition rather than any other
style of decomposition.

Lemma 2. Let N1 and N2 be open nets with Nk = (Sk, Tk, Fk,m0,k, Si,k, So,k)
for k = 1, 2.

– If D is a siphon (or trap, resp.) in N1 ⊕N2 then D ∩ S1 is either empty or
a siphon (or trap, resp.) in N1 and D ∩ S2 is either empty or a siphon (or
trap, resp.) in N2.

276 O. Oanea, H. Wimmel, and K. Wolf

t

sj,nj
tx
j,nj

sx
j,nj

sk,nkte
k,nk

se
k,nk

s�,n�

tx
�,n�

sx
�,n�

te
�,n�

se
�,n�

D1Q3

D3 Q1

D5

Q5

Q4D2
Q2D4

D6

Q6

Q7D7

Fig. 4. A component C(t) for some transition t with •t = {sj , s�} and t• = {sk, s�}
as given by definition 6. Ellipses show the traps and siphons. The dashed ellipses Q4

and D4 are not traps or siphons (due to t) and need to be unified with traps from
Q1/Q2/Q6/Q7 and siphons from D1/D2/D6/D7 first, respectively.

– If D1 is a siphon (or trap, resp.) in N1 and D2 is a siphon (or trap, resp.) in
N2 such that D1 ∩ S2 = D2 ∩ S1 (i.e. their interfaces to the respective other
component are equal) then D1 ∪D2 is a siphon (or trap, resp.) in N1 ⊕N2.

Proof. This follows easily from the constraints on interface places in open nets.
Empty sets occur if D lies completely in the inner part of either N1 or N2. ��

Example. In Fig. 1, {a, d, e} is a siphon and a trap of N1 ⊕ N2. It decomposes
into the siphons (and traps) {a, d} of N1 and {d, e} of N2. The other way round,
{a, c} is a siphon of N1, {c} is a siphon of N2. c and d are the shared places of
the interfaces of N1 and N2. Hence {a, c} is a siphon in N1 ⊕N2. ��
From Lemma 2, the general idea of our approach is obvious. We collect, for
each part of the interface of a component, the open siphons and the included
traps, together with their interface. Upon composition, we merge siphons and
traps with equal interface. Unfortunately, given an interface with k places, there
are 2k potential interfaces for siphons to be considered, and for each siphon, a
contained trap can have an interface that spans over any subset of the interface
of the siphon. Consequently, we need to further investigate regularities that arise
from the open net shape of the components. To this end, we shall heavily exploit
the following simple observations on siphons and traps.

Proposition 5 (Properties of Siphons)
(1) The union of siphons is a siphon.
(2) Let D be a siphon and X ⊆ D. There is an X-minimal siphon D′ ⊆ D.
(3) Let D be a ∅-minimal siphon in N1 ⊕N2. Then, if not empty, D ∩ S1 is a

(D ∩ S1 ∩ S2)-minimal siphon in N1 and D ∩ S2 is a (D ∩ S1 ∩ S2)-minimal
siphon in N2.

The same observations hold for traps.

New Algorithms for Deciding the Siphon-Trap Property 277

Proof. (1) and (2) are trivial. For (3) the places D ∩ S1 ∩ S2 are forced in the
siphons while the remaining places follow by the same reasoning as for D in
N1 ⊕N2, i.e. the structure of the net.

Let us first reduce the number of siphons to be considered. Consider two com-
ponents N1 and N2 and a set of shared places X ⊆ S1 ∩ S2. By Lemma 2, for
every pair of siphons D1 of N1 and D2 of N2 where D1 ∩ S2 = X = D2 ∩ S1,
D1 ∪ D2 is a siphon in N1 ⊕ N2. However, some of these siphons may contain
more or better (i.e. marked) traps than others.

Definition 7 (Worse siphons). Let N be an open net and X ⊆ Si ∪ So. Let
D1 and D2 be siphons with D1 ∩ (Si ∪ So) = X = D2 ∩ (Si ∪ So). Call D1 worse
than D2 iff, for every Y ⊆ X,

– If D1 contains a trap Q1 with Q1 ∩X = Y then D2 contains a trap Q2 with
Q2 ∩X = Y .

– If D1 contains a marked trap Q1 with Q1 ∩ X = Y then D2 contains a
marked trap Q2 with Q2 ∩X = Y .

Example. In N1⊕N2 of Fig. 1, siphons {a, c, e} and {a, d, e} are mutually worse
than each other, so only one of them has to be considered in larger compositions.
Assuming a token on d, {a, c, e} is worse than {a, d, e} but not vice versa. ��

Lemma 3. Let N1 and N2 be open nets. Let D1 be a siphon of N1 and let D2
be a siphon of N2 such that D1 ∩ S2 = D2 ∩ S1. Let D1 be worse than D′

1 and
D2 be worse than D′

2. Then D1 ∪D2 is worse than D′
1 ∪D′

2 in N1 ⊕N2.

In particular, if the union of the worse siphons includes a marked trap, so does
the union of the better siphons. Consequently, we may remove a siphon from
any consideration in a component as long as we keep a worse one. Although
worse than is only a preorder and no partial order, we shall sloppily refer to the
worst siphons as a (as small as possible) set of siphons that needs to be kept
according to Lemma 3. The next observation rephrases the well-known fact that
it is sufficient to check ∅-minimal siphons for evaluating the STP.

Corollary 1. Let D1 and D2 be siphons of an open net N with D1∩(Si∪So) =
D2 ∩ (Si ∪ So). If D1 ⊆ D2 then D1 is worse than D2.

While the previous result reduces the number of siphons to be considered for
a given interface, the following investigations concern the number of different
interfaces to be explicitly considered. We shall argue, that finally we only need
to consider elementary siphons and traps.

Definition 8 (Elementary siphons and traps). A siphon D of an open net
N is elementary iff there is a place s ∈ Si ∪ So such that D is {s}-minimal. A
trap Q is interface-elementary iff there is a place s ∈ Si ∪ So such that Q is
{s}-minimal. Q is token-elementary iff there is a place s where m0(s) > 0 and
Q is {s}-minimal.

278 O. Oanea, H. Wimmel, and K. Wolf

Example. In the open net N1 of Fig. 1, {a}, {b}, {a, c}, {a, d}, {b, c}, {b, d} are
the elementary siphons. Although {a} is included in {a, c}, we want to keep
both as {a, c} is {c}-minimal while {a} is not. The interface-elementary traps
are {a, c}, {a, d}, {b, c}, {b, d}, {c}, {d}. There are no token-elementary traps. As-
suming a token on a, {a, c}, {a, d} would become token-elementary. Assuming
instead a token on c, the only token-elementary trap would be {c}. In particular,
the definition states that {b, c} is not a token-elementary trap. ��
Note that a token-elementary trap may be closed (i.e. disjoint to the interface)
while an interface-elementary trap is always open. The following facts justify
this selection.

Lemma 4. Let N be an open net.
(1) For every open siphon D of N there is a worse union of elementary siphons.
(2) If a siphon D contains a trap Q then it contains some union of interface-

elementary traps Q1∪. . .∪Qk where Q∩(Si∪So) = (Q1∪. . .∪Qk)∩(Si∪So).
(3) If a siphon D contains a marked trap Q then it contains some union of traps

Q1 ∪ . . . ∪Qk ∪Qm where Q ∩ (Si ∪ So) = (Q1 ∪ . . . ∪Qk ∪Qm) ∩ (Si ∪ So),
Q1, . . . , Qk are interface-elementary, and Qm is token-elementary.

Proof. (1) Let X = D ∩ (Si ∪ So) �= ∅. For each s ∈ X , let Ds be an {s}-
elementary siphon included in D. Obviously,

⋃
s∈X Ds has the same interface as

D, is contained in D, and not empty. By Cor. 1, it is worse than D. Claims (2)
and (3) can be proven analogously, but note that k = 0 holds in the unions if Q
is closed. ��

In consequence, we only need to store information about elementary siphons,
elementary traps, and information about inclusion of elementary traps in unions
of elementary siphons. The advantage of using elementary traps and siphons is
their simple structure. The following is trivial.

Lemma 5. Let N be an open net.
(1) For s ∈ Si, {s} is the only {s}-minimal siphon of N . For s ∈ So, {s} is the

only {s}-minimal trap of N .
(2) For s ∈ So and an {s}-minimal siphon D, D ∩ So = {s}. For s ∈ Si and an

{s}-minimal trap Q, Q ∩ Si = {s}.

Definition 9 (Wrapping siphons). A family M = {D1, . . . , Dk} of sets of
places wraps a set Q of places iff Q ⊆ D1 ∪ . . . ∪Dk and this is not the case for
any proper subset of M.

Example. In the net N1 ⊕ N2 of Fig. 1, the family of siphons {{a, c}, {b, d, e}}
wraps the trap {c, e}. ��

Remark 1. Let M be a family of elementary siphons. The union of M includes
a trap Q if and only if Q is wrapped by some subset of M.

Even among the elementary siphons, some siphon D may be redundant. This is
the case if, for all siphons that can be constructed using D, a worse one can be
constructed without using D.

New Algorithms for Deciding the Siphon-Trap Property 279

Definition 10 (Redundant elementary siphon). Let N be an open net and
M a set of elementary siphons. Siphon D ∈ M is redundant iff, for all M1 ⊆
M there exists another subset M2 ⊆ M where

⋃
(M2 \ {D}) is worse than⋃

(M1 ∪ {D}). (
⋃

X without a subscript stands for
⋃

x∈X x.)

Example. In N1⊕N2 of Fig.1, any of the elementary siphons {a, c, e} and {a, d, e}
is redundant. In fact, any interface constellation of siphons and traps that can be
composed from elementary objects and {a, c, e} can as well be generated using
{a, d, e}. After removing one of them, the other one is no longer redundant as it
is then the only one remaining with interface {a, e}. If we put a token on d, only
{a, d, e} is redundant. For any constellation of siphons and included traps that
can be constructed using {a, d, e}, a worse one (particularly with some unmarked
traps instead of marked traps) can be generated using {a, c, e}. ��

4.3 Representing Information about Open Siphons and Traps

From the considerations of the previous subsection, we conclude that we need
to provide the following information about an open net.

Definition 11 (Information about components). Let N be an open net,
MD a set of elementary siphons that can be obtained from the set of all elemen-
tary siphons by removing (one by one) redundant ones, MQ the set of interface-
elementary traps in N , and MM the set of all token-elementary traps in N . Fix
a set Σ with elements from an arbitrary universe such that card(Σ) = card(MD)
and fix some bijection l between Σ and MD (elements of Σ serve as names for
elementary siphons). We keep track of the following information about N :

– The set Σ introducing names for elementary siphons;
– A mapping int : Σ → ℘(Si∪So), x �→ l(x)∩(Si∪So) recording the interfaces

of the elementary siphons;
– The set LQ = {Q ∩ (Si ∪ So) | Q ∈ MQ} introducing the interfaces of the

interface-elementary traps;
– The set LM = {Q ∩ (Si ∪ So) | Q ∈ MM} introducing the interfaces of the

token-elementary traps;
– The mapping wQ : LQ → ℘(℘(Σ)), X �→ {l−1(M) | ∃Q ∈ MQ : Q ∩ (Si ∪

So) = X,M wraps Q} recording the wrapping sets of elementary siphons for
all interface-elementary traps with a given interface;

– The mapping wM : LM → ℘(℘(Σ)), X �→ {l−1(M) | ∃Q ∈ MM : Q ∩ (Si ∪
So) = X,M wraps Q} recording the wrapping sets of elementary siphons for
all token-elementary traps with a given interface;

Example. The full information about N1 in Fig. 1 reads as follows.
– Σ1 = {1, 2, 3, 4, 5, 6};
– int1(1) = {a}, int1(2) = {b}, int1(3) = {a, c}, int1(4) = {a, d}, int1(5) =
{b, c}, int1(6) = {b, d};

– LQ1 = {{a, c}, {a, d}, {b, c}, {b, d}, {c}, {d}};
– LM1 = ∅;

280 O. Oanea, H. Wimmel, and K. Wolf

– wQ1({a, c}) = {{3}}, wQ1({a, d}) = {{4}}, wQ1({b, c}) = {{5}},
wQ1({b, d}) = {{6}}, wQ1({c}) = {{3}, {5}}, wQ1({d}) = {{4}, {6}};

– wM = ∅.
Assuming a token on c, we would obtain LM = {{c}} and wM ({c}) = {{3}, {5}}.
With a token on b instead, we would get LM = {{b, c}, {b, d}}, wM ({b, c}) =
{{5}}, and wM ({b, d}) = {{6}}. For later use, we provide the full information
for N2 although it does not provide new insights.
– Σ2 = {7, 8, 9, 10, 11, 12};
– int2(7) = {c}, int2(8) = {d}, int2(9) = {c, e}, int2(10) = {c, f}, int2(11) =
{d, e}, int2(12) = {d, f};

– LQ2 = {{c, e}, {c, f}, {d, e}, {d, f}, {e}, {f}};
– LM2 = ∅;
– wQ2({c, e}) = {{9}}, wQ2({c, f}) = {{10}}, wQ2({d, e}) = {{11}},

wQ2({d, f}) = {{12}}, wQ2({e}) = {{9}, {11}}, wQ2({f}) = {{10}, {12}};
– wM = ∅. ��

In the remainder of this section, we argue that this information for some open
nets N1 and N2 is sufficient for reasoning about siphons and traps of N1 ⊕ N2.
Let us first consider closed siphons in N1 ⊕ N2. If a closed siphon is already a
closed one in either N1 or N2, we assume that this siphon has been checked for
elementary components, or has been checked during an earlier composition step.
It is thus sufficient to consider those siphons D that spread over both N1 and
N2. By the considerations in the previous subsection, it is sufficient to check
those siphons for included marked traps which can be composed by elements
of MD. Concerning the included traps, it is sufficient to check traps that can
be composed by elements of MQ and a single element of MM . We propose to
execute the necessary checks simultaneously for all siphons by translating the
check into a Boolean formula. The formula is satisfied if and only if some siphon
of N1 ⊕N2 that spreads over both components does not contain a marked trap.
The propositions of the formula are elements of Σ1 and Σ2, i.e. the symbols
representing the elementary siphons of the two components (which we silently
assume to be disjoint). The satisfying assignment assigns true to the names of
those elementary siphons whose composition is a siphon that proves STP not to
hold.

The formula consists of three parts. In the first part, we state that the repre-
sented siphon is not empty. In the second part, we state that the projections of
the siphon to the components generate the same interface. In the third part, we
state that the composition does not include a marked trap. The trick for stating
the third part is to state that the siphon represented by the satisfying assign-
ment does not include any wrap for at least one elementary trap participating
in a trap of the composed system. Traps in the composed system are formed by
a union of traps of the components such that the union of elementary traps in
N1 have the same interface to N2 which the union of elementary traps of N2 has
to N1. The following definition boils this idea down to interface considerations.
As the same technique is later on needed for siphons as well, we already present
matching for siphons as well.

New Algorithms for Deciding the Siphon-Trap Property 281

Definition 12 (Matching). Let N1 and N2 be open nets with information at-
tached according to Def. 11. A token trap matching is a tuple [X1, Y1, X2, Y2]
such that X1 ⊆ LM 1, Y1 ⊆ LQ1, X2 ⊆ LM 2, Y2 ⊆ LQ2, card(X1) + card(X2) =
1,
⋃

(X1 ∪ Y1) =
⋃

(X2 ∪ Y2). An interface trap matching is a tuple [Y1, Y2] such
that Y1 ⊆ LQ1, Y2 ⊆ LQ2,

⋃
Y1 =

⋃
Y2. A siphon matching is a tuple [Z1, Z2]

such that Z1 ⊆ Σ1, Z2 ⊆ Σ2, and
⋃

σ1∈Z1
int(σ1) =

⋃
σ2∈Z2

int(σ2). A match-
ing is minimal iff no different matching is pointwise set-included. A token trap
matching is internal iff

⋃
X1∪

⋃
Y1 ⊆ S2 and

⋃
X2∪

⋃
Y2 ⊆ S1. The interface of

a trap matching is (
⋃

(X1∪Y1∪X2∪Y2))\(S1∩S2) resp. (
⋃

(Y1∪Y2))\(S1∩S2).

Example. There are no token-minimal matchings for N1 and N2 in Fig. 1. Exam-
ples of minimal siphon matchings are [{1}, ∅], [{3}, {7}], or [{3}, {9}]. Examples
for minimal trap matchings are [∅, {{e}}] or [{{c}}, {{c, e}}]. Assuming a token
on c in both components, [{{c}}, ∅, ∅, {{c, e}}] would be a minimal token trap
matching. ��
Minimal matchings can be easily determined by a saturation algorithm. Start
with an individual element. That may lead to interface places s that are not in the
respective other open net. Add (nondeterministically) an {s}-minimal object of
the other component and proceed until all interface places are matched. If there
is no {s}-minimal object, just backtrack.

The definition shows that a token trap matching represents the union of those
elementary traps that form a smallest marked trap in N1 ⊕ N2. A trap which
is fully contained in one of the components and does not touch interface places
leads to a trap matching where one Xi is non-empty while both Yi are empty.

Definition 13 (Formula assigned to N1 and N2). Let N1 and N2 be open
nets. Then the corresponding formula φ(N1, N2) is built as follows:

φ(N1, N2) = φ1 ∧ φ2 ∧ φ3

where, for i ∈ {1, 2}, Σ′
i = {σ | σ ∈ Σi, int(σ) ⊆ S2−i} and

φ1 =
∨

x∈Σ′
1∪Σ′

2
x

φ2 =
∧

x∈Σ′
1
(x =⇒

∧
s∈int(x)∩Si,1

∨
y∈Σ′

2:s∈int(y) y) ∧∧
x∈Σ′

2
(x =⇒

∧
s∈int(x)∩Si,2

∨
y∈Σ′

1:s∈int(y) y)
φ3 =

∧
[X1,Y1,X2,Y2]is internal minimal token trap matching

(
∨

N∈X1

∧
Σ∗∈wM 1(N)

∨
σ∈Σ∗ ¬σ ∨∨

N∈Y1

∧
Σ∗∈wQ1(N)

∨
σ∈Σ∗ ¬σ ∨∨

N∈X2

∧
Σ∗∈wM2(N)

∨
σ∈Σ∗ ¬σ ∨∨

N∈Y2

∧
Σ∗∈wQ2(N)

∨
σ∈Σ∗ ¬σ)

Example. For the composition of N1 and N2 in Fig. 1, we obtain Σ′
1 = ∅ and

Σ′
2 = {7, 8}, so any assignment satisfying φ1 ensures that the second part of φ2

and therefore φ2 overall will be false. Informally this means that all siphons in
N1 ⊕ N2 touch the interface of N1 ⊕ N2 so nothing needs to be checked. For
obtaining a nontrivial formula, rename e to a and f to b in Fig. 1. In that case,
we obtain

282 O. Oanea, H. Wimmel, and K. Wolf

– φ1 = 1 ∨ . . . ∨ 6 ∨ 7 ∨ . . . ∨ 12;
– φ2 = (1 =⇒ (9 ∨ 11)) ∧ (2 =⇒ (10 ∨ 12)) ∧ (3 =⇒ (9 ∨ 11)) ∧ (4 =⇒

(9 ∨ 11)) ∧ . . . ∧ (12 =⇒ (4 ∨ 6));
– φ3 = true

φ3 is true as there are no tokens in the system and the empty conjunction is
always true. This leads to satisfying assignments. For instance, assigning true to
3 and 9 would satisfy the whole formula. Indeed, the represented siphon {a, c, e}
does not contain a marked trap.

Assuming a token on c in both components, we would need to include formulas
for each internal minimal token trap matching. An example for such a matching
is [{{c}}, {{a, c}}, ∅, {{c, e = a}}]. This matching would contribute the following
subformula to φ3 = (¬3 ∧ ¬5) ∨ ¬3 ∨ ¬9. This subformula states that the trap
{a, c, e = a} be not included in any siphon represented by a satisfying assignment
of the formula. ��

Theorem 2. Let N1 and N2 be open nets. φ(N1, N2) is satisfiable if and only
if there exists a siphon D of N1⊕N2 such that D ∩S1 ∩S2 �= ∅ and D does not
contain any marked trap.

Proof. (→) Let β be a satisfying assignment of φ(N1, N2) and consider the set of
places D1∪D2 with D1 =

⋃
σ∈Σ1:β(σ)=true l1(σ) and D2 =

⋃
σ∈Σ2:β(σ)=true l2(σ).

Here, li are the mappings used in Def. 12 for Ni, resp. As we composed elementary
siphons, D1 is a siphon of N1 and D2 is a siphon of N2. By φ2, both siphons
share the same interface places, D1 ∪ D2 is a siphon of N1 ⊕ N2. φ1 tells us
that this siphon is not empty since it contains at least one elementary siphon
and elementary siphons cannot be empty. Assume D1 ∪D2 contains a marked
trap. By Lemma 4, it also contains a union of some interface-elementary and
one token-elementary trap of N1 or N2 or both. A minimal such union defines
a token trap matching for which a corresponding subformula is part of φ3. This
subformula asserts that for at least one trap participating in the considered union
of elementary traps (second level operator), D1∪D2 does not contain sufficiently
many elementary siphons to include that elementary trap. In consequence, the
whole trap cannot be contained in D1 ∪D2.

(←) Assume there is a siphon D in N1⊕N2 that contains places in S1∩S2 and
does not contain a marked trap. By Lemma 4, D includes a siphon D′ that is
the union of elementary siphons and which is obviously unmarked as well. Since
we only leave out redundant elementary siphons in Def. 11, a siphon D′′ can be
constructed from the elementary siphons in MD1 and MD2 such that D′′ ∩ S1
is worse than D′ ∩ S1 and D′′ ∩ S2 is worse than D′ ∩ S2. By Def.7, D′′ cannot
contain a marked trap either. Consider the assignment β that assigns true to all
symbols that represent elementary siphons participating in D′′. As D′′ has the
same (non-empty) set of places in S1 ∩ S2, D′′ is not empty. Consequently, D′′

includes at least one elementary siphon and thus φ1 must be satisfied. Further,
D′′ ∩ S1 and D′′ ∩ S2 share the same places in S1 ∩ S2, so φ2 must be satisfied.
Finally, since D′′ does not contain a marked trap, no union of a subset of the
used elementary siphons wraps a marked trap, Thus, each wrap of any marked

New Algorithms for Deciding the Siphon-Trap Property 283

trap must contain one siphon that is not used to form D′′. Consequently, φ3 is
satisfied. ��

Let us now shift our attention to the open siphons of N1⊕N2. We need to produce
the information (according to Def. 11) for N1 ⊕N2 from the information for N1
and the one for N2.

There are two kinds of open siphons and traps in N1⊕N2. First there are those
fully contained in one of the components, i.e. disjoint to either S1 or S2. They
are elementary if and only if they are elementary in their component, and they
are wrapped by elements of their own component only. They can be recognised
by having no interface places in common with the set of places of the other
component. Consequently, information about these siphons and traps can be
directly copied from the information provided by the respective component.

Second, there are siphons and traps that spread over both components. Such
a siphon (or trap, resp.) is composed of a set of elementary siphons (traps, resp.)
of both components. We only need to consider such a siphon if it also contains
places in Si ∪ So since otherwise it can be decomposed into disjoint siphons (or
traps) of the individual components. Thus, the strategy of composing elementary
siphons and traps of the components to siphons and traps of N1⊕N2 is to find the
smallest sets of individual siphons and traps of N1 and N2 that match at S1∩S2.
A composite trap is wrapped by a set of siphons if and only if each individual
elementary trap is wrapped within its own component and the resulting set of
siphons is minimal. All the described information can be computed from the
abstracted information that is provided by the components.

Definition 14 (Information for N1⊕N2). Let, for i ∈ {1, 2}, [Σi, inti, LQi,
LM i, wQi, wM i] be the information for Ni. Define the information for N1 ⊕N2
as [Σ, int, LQ, LM , wQ, wM] with

– Σ be the set of minimal siphon matchings between N1 and N2;
– for each [Z1, Z2] ∈ Σ, let int([Z1, Z2]) = (

⋃
σ1∈Z1

int(σ1)∪
⋃

σ2∈Z2
int(σ2))\

(S1 ∩ S2);
– LQ = {(

⋃
Y1 ∪

⋃
Y2) \ (S1 ∩ S2) | [Y1, Y2] is interface trap matching };

– LM = {(
⋃

X1 ∪
⋃

X2
⋃

Y1 ∪
⋃

Y2) \ (S1 ∩ S2) | [X1, Y1, X2, Y2] is token trap
matching };

– wQ(X) = {{[Z11, Z21], . . . , [Z1k, Z2k]} ⊆ Σ | exists minimal interface trap
matching [Y1, Y2] s.t. (

⋃
Y1 ∪

⋃
Y2) \ (S1 ∩ S2) = X, and

∀X ′∈Y1∃M∈wQ(X ′): M⊆
⋃k

i=1 Z1i, ∀X ′∈Y2∃M∈wQ(X ′): M⊆
⋃k

i=1 Z2i}.
– wM (X) = {{[Z11, Z21], . . . , [Z1k, Z2k]} ⊆ Σ | exists minimal token trap

matching [X1, Y1, X2, Y2] s.t. (
⋃

Y1 ∪
⋃

Y2 ∪
⋃

X1 ∪
⋃

X2) \ (S1 ∩ S2) = X,
∀X ′∈Y1∃M∈wQ(X ′): M⊆

⋃k
i=1 Z1i, ∀X ′∈Y2∃M∈wQ(X ′): M⊆

⋃k
i=1 Z2i,

∀X ′∈X1∃M∈wM (X ′): M⊆
⋃k

i=1 Z1i, ∀X ′∈X2∃M∈wM (X ′): M⊆
⋃k

i=1 Z2i}

Within the values of wQ and wM , we silently assume that supersets of other
elements are removed.

Example. Let us compose N1 with N2 in Fig. 1. We need to consider the following
14 siphon matchings. For convenience, we assign a number to each matching.

284 O. Oanea, H. Wimmel, and K. Wolf

13 = [{1}, ∅], 14 = [{2}, ∅], 15 = [{3}, {7}], 16 = [{3}, {9}], 17 = [{3}, {10}], 18 =
[{4}, {8}], 19 = [{4}, {11}], 20 = [{4}, {12}], 21 = [{5}, {7}], 22 = [{5}, {9}],
23 = [{5}, {10}], 24 = [{6}, {8}], 25 = [{6}, {11}], 26 = [{6}, {12}]. We can
represent the interfaces {a, e}, {a, f}, {b, e}, {b, f}, {e}, and {f} with interface
trap matchings, so these six sets form LQ. LM is empty as the components do
not provide elementary token traps. For computing the wrapping siphons for
{a, e}, we need to consider those trap matchings which generate this interface:
[{{a, c}}, {{c, e}}] and [{{a, d}}, {{d, e}}]. {a, c} is wrapped by {3}, {c, e} is
wrapped by {9}, {a, d} is wrapped by {4} , and {d, e} is wrapped by {11}.
Hence, we need to look into those siphon matchings which contain any of the
siphons 3, 4, 9, or 11. Siphon 3 is contained in 15, 16, and 17. Siphon 4 is
contained in 18, 19, and 20. In the second component, siphon 9 is contained in
16 and 22. Siphon 11 is contain in 19 and 25. These siphons need to be combined
in a minimal way such that either 3 and 9 or 4 and 11 are contained. Hence,
we result in wQ({a, e}) = {{15, 22}, {16}, {17, 22}, {18, 25}, {19}, {20, 25}}. The
remaining values of wQ can be computed similarly. wM is empty in the example
but the principal approach resembles the one for wQ. ��

Theorem 3. Let N1 and N2 be open nets. Then the information for N1 ⊕ N2
using Def. 14 is equivalent to the information for N1 ⊕N2 according to Def. 11.

Proof. It is easy to see that the definition implements the considerations on
siphons and traps of the composed system. ��

The construction of Def. 14 may introduce redundant information. The condi-
tions of Def. 10 can, however, be evaluated by the information available for
N1 ⊕ N2, so information about redundant elementary siphons can be removed
after having applied Def. 14.

Example. In the calculation of the previous example, siphons 15, 18, 19, 20, 21,
24, 25, and 26 can be removed through redundancy. Let us verify redundancy for
siphon 19. We have to exhibit, for every union U of elementary siphons containing
19, a worse one U ′ not containing 19. In the example it is quite obvious, that,
for each interface, there are two elementary siphons in the composition: one
that is obtained using common interface place c, and the other obtained using
interface place d. Call these siphons dual to each other. The dual to 19 is 16.
For a composition of elementary siphons that contains both 16 and 19, let U ′ =
U \{19}. U ′ has the same interface as U (since 16 and 19 have the same interface)
and it is worse than U as it is composed of less ingredients. Otherwise, let U ′

be the set of duals to the ones contained in U . 19 is not contained in U ′ as we
assumed that 16 /∈ U . U ′ has the same interface as U as dual elementary siphons
have the same interface. U ′ includes traps for the same interfaces as traps are
symmetric w.r.t. exchanging c and d. After having removed redundant siphons,
the remaining information for N1 ⊕N2 is

– Σ = {13, 14, 16, 17, 22, 23};
– int(13) = {a}, int(14) = {b}, int(16) = {a, e}, int(17) = {a, f}, int(22) =
{b, e}, int(23) = {b, f};

New Algorithms for Deciding the Siphon-Trap Property 285

– LQ = {{a, e}, {a, f}, {b, e}, {b, f}, {e}, {f}};
– LM1 = ∅;
– wQ({a, e}) = {{16}, {17, 22}}, wQ({a, f}) = {{17}, {16, 23}}, wQ({b, e}) =
{{22}, {16, 23}}, wQ({b, f}) = {{23}, {17, 22}}, wQ({e}) = {{16}, {22}},
wQ({f}) = {{17}, {23}};

– wM = ∅.

This means that the number of elementary siphons as well as the number of
interfaces to be considered for traps does not increase during composition. There
are only minor differences in wQ. ��

4.4 Discussion

The approach projects information about a component to its interface. The cal-
culations at the interface, e.g. finding matchings or redundancies, appear to be
complex, but their complexity depends much more on the size of the interface
than on the size of the net behind the interface. In the running example, we
may compose longer and longer chains or rings of components such as in Fig. 1.
As each resulting component has information similar to the one for single com-
ponents, the overall complexity grows linearly with the number of components
to be composed. In comparison, the resulting net has an exponentially growing
number of minimal siphons (since every circle where either the upper or the lower
place is taken forms a minimal siphon). We conclude that the divide-and-conquer
approach is beneficial at least in those cases where a decomposition exists such
that intermediate interfaces during re-composition remain small. How to obtain
such a decomposition in general remains to be seen. Since we may switch to the
original algorithm for computing elementary siphons and traps at any stage of
decomposition, it is possible to apply the divide-and-conquer strategy whenever
the size of the interface between components is significantly smaller than the
inner structure of a component. Consequently, we may judge that the proposed
strategy is rather valuable even though we cannot provide experimental evidence
at this time.

5 Conclusion

We proposed two new approaches to deciding the siphon trap property and thus
to getting information about important properties like liveness or deadlock free-
dom. One approach is a straight transformation to the SAT problem for which
we inherit the sophistication of existing SAT solvers. The second approach uses
the well known divide-and-conquer strategy. It is based on a known decomposi-
tion into open nets which we refined such that we may arrive at arbitrarily small
components, and on a projection of information about siphons and traps to the
interface of a component. This way, complexity expresses itself more in terms of
the size of interfaces than of the size of the component as such which makes the
procedure applicable at least for certain classes of nets with somewhat sparse
connectivity.

286 O. Oanea, H. Wimmel, and K. Wolf

For the first approach, the main remaining issue is to get to smaller for-
mulae. In particular, we frequently copy a certain subformula. There may be
structural considerations for reducing the number of required copies for cer-
tain net classes. In the divide-and-conquer approach, there are still some non-
deterministic choices. We need to provide a prototype implementation including
heuristics for these choices for further underpinning its usefulness. In addition,
we would like to have a reasonable criterion for verifying Def. 10.

References

1. Barkaoui, K., Minoux, M.: A polynomial-time graph algorithm to decide liveness
of some basic classes of bounded Petri nets. In: Jensen, K. (ed.) ICATPN 1992.
LNCS, vol. 616, pp. 62–75. Springer, Heidelberg (1992)

2. Desel, J., Esparza, J.: Free Choice Petri nets. Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

3. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

4. Esparza, J., Nielsen, M.: Decidability issues for Petri nets. Petri Nets Newsletter 52,
245–262 (1994)

5. Hack, M.H.T.: Analysis of Production Schemata by Petri Nets. Master’s thesis,
MIT, Dept. Electrical Engineering, Cambridge, Mass (1972)

6. INA. Integrated Net Analyzer (2003),
http://www2.informatik.hu-berlin.de/~starke/ina.html

7. Karatkevich, A.: Analysis by solving logical equations – calculation of siphons and
traps. In: Dynamic Analysis of Petri Net-based Discrete Systems. LNCIS, vol. 356,
pp. 87–93. Springer, Heidelberg (2007)

8. Mennicke, S., Oanea, O., Wolf, K.: Decomposition into open nets. In: AWPN 2009.
CEUR Workshop Proceedings, vol. 501, pp. 29–34. CEUR-WS.org (2009)

9. MiniSat. Minimalistic, open-source SAT solver (2007), http://www.minisat.se
10. Minoux, M., Barkaoui, K.: Polynomial algorithms for proving or disproving Com-

moner’s property in Petri nets. In: Proceedings 9th Workshop on Theory and Ap-
plications of Petri Nets, vol. 1, pp. 113–125 (1988)

11. Zaitsev, D.A.: Decomposition of Petri nets. Cybernetics and Systems Analysis (5),
131–140 (2004)

http://www2.informatik.hu-berlin.de/~starke/ina.html
http://www.minisat.se

AlPiNA: A Symbolic Model Checker�

Didier Buchs, Steve Hostettler,
Alexis Marechal, and Matteo Risoldi

Software Modeling and Verification laboratory
University of Geneva

Route de Drize 7, 1227 Carouge, Switzerland
http://smv.unige.ch

Abstract. AlPiNA is a symbolic model checker for High Level Petri
nets. It is comprised of two independent modules: a GUI plugin for
Eclipse and an underlying model checking engine. AlPiNA’s objective is
to perform efficient and user-friendly, easy to use model checking of large
software systems. This is achieved by separating the model and its prop-
erties from the model checking-related concerns: the users can describe
and perform checks on a high-level model without having to master low-
level techniques. This article describes the features that AlPiNA provides
to the user for specifying models and properties to validate, followed by
the techniques that it implements for tuning validation performance.

Keywords: System design and verification, Higher-level Nets Models,
Algebraic Petri Nets, State Space Generation, Computer Tools for Nets,
Model Checking.

1 Introduction

Model checking consists of verifying whether a model satisfies a given prop-
erty, usually expressed using temporal or modal logic. Model checking implies
fully automated property proving. When a property does not hold on a model,
the user should get a counterexample. High-level formalisms [1,2] allow users
to specify complex models in an easier way. At the same time model checking
can benefit from the richness of information of such models. In our approach,
we use High-Level Petri nets (HLPNs) – more precisely, a class of HLPNs called
Algebraic Petri nets (APNs) [2]. In APNs, the model is composed of a Petri net –
expressing aspects related to causality, non-determinism and concurrency –
and of algebraic abstract data types (AADTs, commonly called ADTs with a
slight abuse) – describing the data and their manipulation.

This article explains how to perform model checking on APN using our tool
called AlPiNA, which stands for Algebraic Petri Net Analyzer. AlPiNA’s ob-
jective is twofold. First, to perform reachability analysis on finite models in a

� This work was partially funded by the COMEDIA project of the Hasler foundation,
ManCom initiative project number 2107.

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 287–296, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

288 D. Buchs et al.

Algebraic ClusteringProperties to be checked

Model Checking engine

Automatic User Driven Uses

Answer

High-Level model

ADTs+
Algebraic net Unfolding

User input

Performance improvementsModel validation

Fig. 1. Overview of the AlPiNA framework

user-friendly and efficient way. Second, to scale up these models without requir-
ing the end user to know the underlying model checking techniques used by
AlPiNA, like its decision diagrams-based symbolic representation [3].

The article is organized as follows: section 2 presents a general overview of the
framework. Section 3 describes the definition of models and properties. In section
4 we introduce two notions, algebraic clustering and partial net unfolding, that
can be used to improve model checking efficiency. Section 5 describes AlPiNA’s
architecture, and gives some hints about the tool development process. Section 6
shows the performance of our tool compared to two other well-known model
checkers, for some common examples found in the literature. Finally, section 7
draws conclusions and outlines future perspectives.

2 Framework Overview

Modeling with AlPiNA requires the user to treat two different concerns, shown
in Fig. 1. The first concern is specifying a model along with the properties to
be checked (left block). The model specification consists of algebraic data types
and a Petri net describing the system behavior. Properties are logical statements
concerning the model’s states, that can be either satisfied or not. In our case,
a property is said to be satisfied by a model if it evaluates to true for all of
the model’s states (and thus is called an invariant). Specifying a model and its
properties is already enough to perform checks if the model has a small number
of states.

However, for certain problems with high concurrency, the number of states
may quickly become too large to be represented as the model size increases if no
optimization is performed. Efficiently checking models with larger state spaces
requires the user to provide additional information about the model’s structure.
This constitutes the second user concern: specifying algebraic clustering and
algebraic net unfolding to improve model checking performance (right block of

AlPiNA: A Symbolic Model Checker 289

Fig. 2. Naturals ADT

Fig. 1). Both user-provided information are then merged by the engine to perform
a more compact computation of the state space.

3 Model Creation and Validation

AlPiNA is fully integrated in the Eclipse environment. Models are created in
a dedicated Eclipse project, and some example projects are provided with the
tool. The model and the properties to be checked are defined through a mix of
graphical and textual editors. This corresponds to the left block of Fig. 1.

3.1 Data Types Definition

APNs can be compared to the well-known colored Petri nets [1], but they re-
place colors with algebras defined using ADTs. Informally, an ADT allows the
definition of a set of values using inductive axiomatization. This axiomatization
enables some automatic processing on data types, which is very helpful for some
features presented here, like algebraic clustering. Every value has a given sort
and can be described with a term, i.e., a combination of the ADT’s operations
and generators. The behavior of operations is defined using a set of axioms. In
AlPiNA, axioms are treated as term-rewriting rules [4] – they are repeatedly
applied until a normal form is reached, i.e., no rules can be applied anymore.
AlPiNA offers a helper where one can specify a term and ask for its normal form.

Fig. 2 shows one of the most basic ADT defined in AlPiNA: naturals. The
naturals ADT defines a sort, called nat. There are two generators for this sort,
zero and suc, that are combined to represent all the values in the algebra. This
definition is similar to the Peano axiomatization. We also define one operation,
plus, with two axioms that define its behavior. AlPiNA’s data types offer more
than this example shows, like sub-sorting, polymorphism or data type modularity
similar to what is shown in [5].

290 D. Buchs et al.

Fig. 3. AlPiNA’s GUI for defining an APN

3.2 Control Flow Definition

Once the data types have been defined, one has to model the system’s behavior.
Petri nets are a widely used formalism to model concurrent systems like commu-
nication protocols. In short, a Petri net is made of Places, that represent system
resources, and Transitions, the firing of which represents system state evolution.
Places and Transitions are connected with arcs. AlPiNA offers both a graphical
and a textual interface to define algebraic Petri nets, where places, transitions
and arcs are annotated with algebraic terms. Fig. 3 shows the graphical interface.
A tool palette allows the user to create Petri net elements easily, and properties
of the net elements can be edited using the standard Eclipse properties view.

3.3 Property Checker

Once a model is complete, one can perform model checking. AlPiNA offers a
dedicated textual language for specifying reachability properties, equivalent to
first-order logic. This language was inspired by Helena’s [6], a well-known model
checker for HLPNs, but was adapted to profit from the flexibility of ADTs.

A property in AlPiNA is a boolean expression that must be evaluated to true
for every state of the model. If there is a reachable state where the property does
not hold, a textual representation of this state is returned as a counterexample.
Fig. 4 shows a property definition in the actual AlPiNA editor.

4 Performance Improvements

Due to the state space explosion problem, advanced techniques are needed to
perform checks on large models. We propose partial net unfolding and algebraic
clustering. These techniques correspond to the right block of Fig. 1.

AlPiNA: A Symbolic Model Checker 291

Fig. 4. Property definition example

4.1 Algebraic Clustering

Concurrency and non-determinism are major causes of the well known state
space explosion problem. This happens when model components have no causal
dependencies among them, i.e. when they may evolve independently. Algebraic
clustering exploits the inductive definition of data types to define these com-
ponents, improving model checking performance. The goal of clustering is to
calculate the state space of individual model components, and then to combine
them. To specify clustering, we assign each term and place of the net to a cluster.
Existing works already use control flow to perform clustering. We extend that
technique to data types.

Fig. 5. Clustering definition

In order to exploit the inductive nature of values, algebraic clustering can be
itself defined using induction. Criteria for choosing clusters are generally guided

292 D. Buchs et al.

by the structure of the model and the properties to be verified. In general,
the best results are obtained when independent elements are put in separate
clusters. A heuristic is to put processes in the same cluster as their resources,
while resources shared among several processes are put in another cluster. By
doing this, the operations that only affect one process can be performed within
a single cluster. This speeds up the computation.

AlPiNA provides a language for defining clustering. Consider a system with
ten processes identified by natural numbers. Each process has two states, mod-
eled by two places P1 and P2. Using the mentioned heuristic, each process is
assigned to its own cluster. Fig. 5 shows such a clustering function. Each of the
ten first natural numbers is added to its own cluster in both places P1 and P2.

From a user perspective, choosing the granularity of the clustering is a trade-
off between the independence of the components and the size of the cluster. A
too fine or too coarse clustering will lead to sub-optimal performance.

4.2 Algebraic Net Unfolding

Another feature designed to increase the model checking performance in AlPiNA
is algebraic net unfolding. Some data types, like naturals or lists, have a sort with
an infinite domain; others, like the booleans, are finite. Algebraic unfolding con-
sists of explicitly enumerating ADT values before computing the state space.
AlPiNA can use this information to improve the speed of state space generation.
From a user perspective, the novel aspect of this feature resides in the fact that
for each data type, users can choose whether or not they want the engine to un-
fold it (partial net unfolding) and if so whether the unfolding should be bounded
(bounded sort unfolding). This choice is a trade-off between the complexity re-
duction of the state space generation and the cost of the unfolding operation
itself, which is polynomial with respect to the size of the algebras.

AlPiNA is able, to a certain extent, to guess what a good unfolding combina-
tion could be, avoiding combinations that may lead to an incomplete state space
coverage. Fig. 6 shows the dialog for specifying unfolding.

Fig. 6. Algebraic unfolding example

AlPiNA: A Symbolic Model Checker 293

As it can be seen, some choices are grayed-out by the system in order to
prevent the user from specifying an incorrect unfolding. This system guess uses
the following rules:

– An enumerated data type can be totally unfolded (i.e. the bool in our
example).

– If a data type appears in the clustering definition, it must be unfolded.
– If a data type is infinite, it cannot be totally unfolded. If the system cannot

be sure whether an inductive data type is infinite a warning is displayed.
Fig. 6 shows this for the naturals nat.

The user must be careful when choosing a bound for unfolding. If the bound
is too big, the unfolding may become more expensive than the model checking
itself. On the other hand, if the bound is too small, the validation may become
incomplete. In this case, the result is inconclusive.

5 Architecture

One of AlPiNA’s goals is providing a synergy between usability and performance.
The EMF framework provides a good platform to create the user interface; a
powerful underlying model checking engine allows checking models with large
state spaces. To provide a great user experience we leverage the Eclipse platform.
It provides a well-known user interface model as well as very efficient tools to
develop new software. The most natural way to create a model is using a language
that is specifically tailored to the domain of the model – a Domain Specific
Language (DSL). The Eclipse platform provides several tools to develop DSLs,
one of the most relevant being the Eclipse Modeling Project (EMP) [7], which
follows a metamodeling approach. The EMP platform includes the following
technologies:

– EMF http://www.eclipse.org/modeling/emf/ : we used the Eclipse Mod-
eling Framework to define AlPiNA’s metamodels. The main advantage of
EMF is that the large palette of bundled tools makes the creation and ma-
nipulation of metamodels easy, while providing strong integration between
them.

– GMF http://www.eclipse.org/modeling/gmf/ : the Graphical Modeling
Framework allows the creation of a graphical editor for EMF metamodels.
The AlPiNA graphical editor is entirely based on GMF.

– XText http://www.eclipse.org/Xtext/ : XText allows the creation and
manipulation of textual DSLs, and generates a complete textual editor with
features like code completion, syntax highlighting and on-the-fly syntax
checking. AlPiNA’s textual editors were created using XText.

The real power of these tools is that, being based on the same building blocks,
they are well integrated. This allows the graphical editor to reference elements
from the textual editors (e.g. the terms can be used in the APN) and vice versa
(e.g. the places of the APN can be used in the clustering definition). Moreover,

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/Xtext/

294 D. Buchs et al.

Graphical User Interface Model Checker Engine

AlPiNA GUI

Meta-Model

Graphical + Textual Concrete Syntax

EMF/GMF/Xtext Metamodeling Tools
RMI

Decision Diagrams (JDD, DD)
Data structures

Property Checker

Algebraic Petri Nets Engine

Fig. 7. AlPiNA’s architecture

the metamodeling approach allows the integration with other projects that use
the same technology. As an example, we are currently working on the integration
of the PNML language [8]. PNML’s goal is to become a standard for defining
different types of Petri nets. It can be used as a platform for the interchange be-
tween different Petri net tools. Like AlPiNA, PNML was developed using EMF.
This allowed us to use metamodel transformations to perform the translation
between PNML and AlPiNA’s language.

As a research project, AlPiNA tries to be as modular as possible in order to
support the rapid evolution of technologies as well as new ideas.

Fig. 7 describes the layered architecture of AlPiNA. The left block represents
the structure of the graphical user interface (GUI). The first layer manages the
user interface itself. It leverages the code that has been produced by the tools
on the second layer, which presents the metamodeling tools used in AlPiNA:
the concrete syntaxes are defined with GMF and XText, based on metamodels
created with EMF.

The right block of Fig. 7 represents AlPiNA’s model checking engine, which
performs the actual computation. The first two layers are the property checker
and the APN engine. These two layers act as an interface to the engine: the
input is an APN and some properties to be checked; the output is the result of
the property checks and some information about the APN’s state space, such
as the computation time and the number of states. These two layers are based
on the underlying data structures, called Decision Diagrams [9,10,11], used to
calculate and represent the state space.

Communication between the blocks of Fig. 7 is done through Java Remote
Method Invocation (RMI). This ensures a strong independence between GUI
and engine, and allows experienced users to easily extend the tool: both the
interface and the engine can be substituted by different components or re-used
in other projects.

6 Benchmarks

To validate AlPiNA’s approach, we compared its results with Maria’s [12] and
Helena’s [6], two well-known model checkers. Table 1 shows some benchmarks for
the state space generation by the three tools. These benchmarks were performed

AlPiNA: A Symbolic Model Checker 295

Table 1. State space generation (empty=N/A; –=out of memory failure)

AlPiNA Maria Helena
Partial Unfold. Total Unfold.

Model States Mem Time Mem Time Mem Time Mem Time
Size # (MB) (s) (MB) (s) (MB) (s) (MB) (s)

Distributed Database
10 197E3 10 0.8 12.4 1.3 47 44.3 24 9
15 7.2E7 33 2.6 41 5.8 - - 1.4E3 7.5E3
35 5.8E17 544 69.4 789 278 - - - -

Leader Election
10 31302 10.3 0.72 20 3.4 10 7
15 399E4 27.7 1.4 795 361 107 142
50 1.7E21 702 76 - - - -

on a 2.5GHz Intel Core 2 Duo Macintosh, with a limit of 1GB RAM assigned.
All source codes are available at http://alpina.unige.ch. Maria and Helena
are cleary outperformed when clustering and unfolding are enabled. In the other
case (clustering disabled), AlPiNA’s results are of the same order of magnitude.

Both examples in Table 1 are well-known communication protocols often used
in the literature of the model checking field. The Distributed Database model
is very interesting because it proves that partial unfolding can be more efficient
if applicable. The Leader Election protocol does not have infinite domains, and
therefore partial unfolding does not make sense. We can see in these examples
that AlPiNA is able to handle a much bigger state space than the other tools.

The performance gain of AlPiNA is more evident on models that have very
strong concurrency. This is the case of the Leader Election protocol in Table1,
where the different processes are more independent than in the Distributed
Database protocol. In such models the state space is close to the cartesian prod-
uct of each model component’s state space. In the best case, memory consump-
tion is logarithmic with respect to the number of states.

7 Conclusion

This article provided an overview of AlPiNA, a high-level Petri nets based model
checker. We showed its user-friendly interface, and gave some details about the
tools used to create it. Bechmarks were given to show the state space compu-
tation performance. More detailed technical information and benchmarks were
published in [13].

The tool is in active development and will be significantly improved within
the next months. In the future we plan on adding the following features:

– Automatic test case generation [14] using the generated state space.
– CTL support. Currently, only reachability properties are allowed. Supporting

CTL would also allow us to build traces to a given counterexample.

http://alpina.unige.ch

296 D. Buchs et al.

– Object orientation and encapsulation as was done in [5]. A hierarchical view
of the model would simplify the modeling activity.

– A DSL for process properties for automatic cluster inference.

AlPiNA, its source code and metamodels are available under the GPL license as
an Eclipse plugin or a complete Eclipse package at http://alpina.unige.ch.

References

1. Jensen, K.: Coloured Petri Nets. Springer, Berlin (1996)
2. Reisig, W.: Petri nets and algebraic specifications. Theoretical Computer Sci-

ence 80, 1–34 (1991)
3. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model

structure. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer,
Heidelberg (2005)

4. Dick, A.J.J., Watson, P.: Order-sorted term rewriting. Comput. J. 34(1), 16–19
(1991)

5. Buchs, D., Guelfi, N.: A formal specification framework for object-oriented dis-
tributed systems. IEEE Transactions on Software Engineering 26(7), 635–652
(2000)

6. Pajault, C., Evangelista, S.: High level net analyzer, http://helena.cnam.fr/
7. Eclipse. Eclipse modeling project, http://www.eclipse.org/modeling/
8. Weber, M., Kindler, E.: The Petri Net Markup Language. In: Ehrig, H., Reisig, W.,

Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based
Systems. LNCS, vol. 2472, pp. 124–144. Springer, Heidelberg (2003)

9. Couvreur, J.-M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.-A.:
Data decision diagrams for Petri net analysis. In: Esparza, J., Lakos, C.A. (eds.)
ICATPN 2002. LNCS, vol. 2360, pp. 101–120. Springer, Heidelberg (2002)

10. Buchs, D., Hostettler, S.: Sigma Decision Diagrams: Toward efficient rewriting of
sets of terms. In: Corradini, A. (ed.) TERMGRAPH 2009: Preliminary Proceedings
of the 5th International Workshop on Computing with Terms and Graphs, num-
ber TR-09-05 in TERMGRAPH workshops, pp. 18–32. Università di Pisa (2009),
http://smv.unige.ch/publications/pdfs/termgraph09.pdf

11. Hostettler, S.: Java decisions diagrams library. Technical Report 201, CUI, Univer-
sité de Genève (June 2008),
http://smv.unige.ch/technical-reports/pdfs/TR201-JDD.pdf

12. Mäkelä, M.: Modular reachability analyzer,
http://www.tcs.hut.fi/Software/maria/

13. Buchs, D., Hostettler, S.: Toward Efficient State Space Generation of Algebraic
Petri Nets. Technical Report 206, CUI, Université de Genève (January 2009),
http://smv.unige.ch/technical-reports/pdfs/TR206-APNClustering.pdf

14. Buchs, D., Lucio, L., Chen, A.: Model checking techniques for test generation from
business process models. In: Kordon, F., Kermarrec, Y. (eds.) Ada-Europe 2009.
LNCS, vol. 5570, pp. 59–74. Springer, Heidelberg (2009)

http://alpina.unige.ch
http://helena.cnam.fr/
http://www.eclipse.org/modeling/
http://smv.unige.ch/publications/pdfs/termgraph09.pdf
http://smv.unige.ch/technical-reports/pdfs/TR201-JDD.pdf
http://www.tcs.hut.fi/Software/maria/
http://smv.unige.ch/technical-reports/pdfs/TR206-APNClustering.pdf

Wendy: A Tool to Synthesize Partners for
Services

Niels Lohmann1,2 and Daniela Weinberg1

1 Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
2 Department of Mathematics and Computer Science, Technische Universiteit

Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
wendy@service-technology.org

Abstract. Service-oriented computing proposes services as building
blocks which can be composed to complex systems. To reason about
the correctness of a service, its communication protocol needs to be an-
alyzed. A fundamental correctness criterion for a service is the existence
of a partner service, formalized in the notion of controllability.

In this paper, we introduce Wendy, a Petri net-based tool to synthe-
size partner services. These partners are valuable artifacts to support
the design, validation, verification, and adaptation of services. Further-
more, Wendy can calculate an operating guideline, a characterization of
the set of all partners of a service. Operating guidelines can be used in
many application scenarios from service brokerage to test case genera-
tion. Case studies show that Wendy efficiently performs on industrial
service models.

1 Objectives

The emerging field of service-oriented computing (SOC) proposes to build com-
plex systems by composing geographically and logically distributed services. A
service encapsulates a certain functionality and offers it through a well-defined
interface. As services are not executed in isolation, their communication protocol
has to be considered when reasoning about the correctness of a service. To this
end, controllability [20] has been introduced as a fundamental correctness crite-
rion for services. A service is controllable iff there exists a partner service such
that their composition is compatible, for instance free of deadlocks. Controlla-
bility not only proves correctness of a service, but a partner service also provides
insight into the communication behavior of the modeled service. Furthermore,
it is a useful artifact to validate [11] or document the service and is the basis of
adapter synthesis [3].

A controllable service usually has more than one partner service. An operating
guideline finitely characterizes the (possibly infinite) set of all partner services of
a service [12]. Operating guidelines are useful in a variety of applications includ-
ing test case generation [4], service correction [6], instance migration [5], or ser-
vice substitution [17]. They further allow to efficiently realize a service-oriented
architecture in which the service provider publishes his operating guideline at a

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 297–307, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

298 N. Lohmann and D. Weinberg

ω

a

b

c

de

x

y

z

p

t

p∗

(a) open net N

ω′

b

c

d

x

y

z

a

e

(b) partner N ′

PLACE
INTERNAL p0, p1, p2, p3, p4,

 p5, p6, p7, p8, p9,
 p10, omega;
INPUT a, b, c, d, e;
OUTPUT x, y;
SYNCHRONOUS z;

INITIALMARKING p0;
FINALMARKING omega;
TRANSITION t1
CONSUME p0, a;
PRODUCE p1;

TRANSITION t2
CONSUME p0;
PRODUCE p2, x;

...

TRANSITION t14
CONSUME p10;
PRODUCE omega;
SYNCHRONIZE z;

(c) open net file format for N

Fig. 1. Open net N (a), a partner open net N ′ of N (b)

service broker. A service requester then only needs to check whether his service is
one of the partner services which is characterized by the operating guideline [10].

In this paper, we introduce Wendy, a tool to synthesize partner services and
to calculate the operating guideline of a service. Wendy provides the basis of a
vast variety of applications which are essential in the paradigm of SOC. Case
studies show that Wendy can cope with industrial and academic service mod-
els. We continue with sketching the functionality and the used formalism. The
architecture of Wendy and the components it is built of are described in Sect. 3.
Section 4 shows how Wendy can be used in different use cases, provides exper-
imental results, gives information about how to obtain Wendy, and discusses
improvements with respect to a previous implementation. Section 5 concludes
the paper.

2 Functionality

2.1 Background

The theory [12,20,18] implemented by Wendy focuses on the behavior (both
control flow and communication protocol) of a service. We model a service as
an open net [13], a special type of Petri net with an interface. Open nets can
be automatically derived from industrial service description languages such as
WS-BPEL [7].

Figure 1(a) and 1(b) depict two open nets N and N ′. The interfaces (mod-
eling the message channels of the service) are depicted on the dashed frames.
We distinguish asynchronous input and output message channels (modeled as
places) and synchronous message channels (depicted as black rectangles). To
differentiate desired final markings from unwanted deadlocks, an open net has a

Wendy: A Tool to Synthesize Partners for Services 299

?x

?y #z

!b

!c!d

?x!d!c
?x

!c!d

?x
!c

?x !d

?y ?x #z

(a) no reduction

?x

?y #z

!b

!c

?x!d!c

?x ?x !d

?y ?x #z

(b) waitstates only

?x

?y

!b !c!d

?x !c !d

?y ?x #z

(c) receiving before sending

?x

?y #z

!b

!c!d

?x!d!c
?x

!c!d

!c
?x !d

?x #z

(d) sequentialize receiving
events

?x

?y

!b

?x

?y ?x

(e) succeeding sending event

?x

?y

!b

?x

(f) quit as soon as possible

Fig. 2. Different types of partners of N by applying a certain reduction rule

distinguished final marking ([ω] for N and [ω′] for N ′). We require the interface
places to be empty in the initial and final marking.

The open nets N and N ′ can be composed by merging the input places of N
with the output places of N ′ (and vice versa), and by fusing each pair of transi-
tions of N and N ′ which are connected to the same synchronous channel. Initial
and final markings are added element-wise. The composition N ⊕ N ′ is com-
patible: the only reachable deadlock [ω, ω′] is a final marking. If N and N ′ are
compatible, we call both N and N ′ controllable [20], and refer to N as a partner
service of N ′, and vice versa.

2.2 Partner Synthesis

Wendy analyzes controllability of an open net and synthesizes a partner as a
witness if the net is controllable. This partner is an automaton model which
can be transformed into an open net using known tools such as Petrify [2]. In
the automaton representation, asynchronous send actions, asynchronous receive
actions, and synchronous actions are preceded by “!”, “?”, and “#”, respectively.

The open net N is controllable, and Fig. 2(a) shows the partner synthesized by
Wendy. By design, this partner is most-permissive in the sense that it simulates
any other partner including N ′. This partner reveals that no compatible partner

300 N. Lohmann and D. Weinberg

of N will ever send an a-message. The transition connected to the input channel a
and the transition connected with channel x are in conflict. It can never be
ensured that N will always first receive an a-message whenever it is available. It
may as well send an x-message which leads the net into the right hand branch
where no a-message will ever be received. Consequently, the a-message remains
on the message channel and the final marking becomes unreachable.

The validation of N can be refined by applying behavioral constraints [11]
which filter the set of partners, for instance to only those partners sending a
b-message.

2.3 Operating Guidelines

Although every partner of N is simulated by the most-permissive partner, the
converse does not hold. To characterize exactly the set of all partners of N ,
we annotate the states of the most-permissive partner with Boolean formulae
(see [12] for details). This annotated most-permissive partner is called an oper-
ating guideline. Wendy can calculate an operating guideline by generating the
Boolean formulae in a postprocessing step.

2.4 Reduction Rules

Wendy synthesizes different types of partners depending on the analysis goal:
(1) by applying no reduction rules, it synthesizes a most-permissive partner
which serves as the basis for the calculation of the operating guideline; (2) for
checking controllability, the type of the synthesized partner is not of much in-
terest. Here, we focus on a quick answer about the mere existence of a partner;
(3) by combining the reduction rules in a certain way, Wendy generates a partic-
ular partner which will be used later on, for instance for generating an adapter
service [3].

The first three reduction rules (cf. Fig. 2(b)–(d)) focus on reducing the over-
head due to asynchronous communication, whereas the last two rules (cf. Fig. 2
(e)–(f)) always lead to small partners and hence a quick answer with respect to
controllability. See [18] for further information on the reduction rules.

– Waitstates only (WSO). Send a message or synchronize only if it is necessary
for N to move on. Messages are not sent in advance.

– Receiving before sending (RBS). Before sending a message or synchronization,
receive every asynchronous message sent by N .

– Sequentialize receiving events (SRE). Receive the messages sent by N in a
certain order again. This, however, does not necessarily have to be the order
the messages have been sent by N .

– Succeeding sending event (SSE). Quit any interaction as soon as one sent
message leads to a proper interaction with N .

– Quit as soon as possible (QSP). Quit the interaction if any (synchronous or
asynchronous) action has led the interaction with N to a proper end.

Wendy: A Tool to Synthesize Partners for Services 301

Petri Net API

LoLA Inner Markings

Interface

Node Builder

Static Analyzer

Hash Tree

Node Analyzer

Reduction Rules

service model
(open net)

service model
(automaton)

Output

Wendy

user

chooses

stores

controls

reads controls

control traversescall

reads

extracts

reads

reads

Fig. 3. Architecture overview

The reduction rules may be combined arbitrarily. However, only a few combi-
nations are reasonable, whereas other combinations are less appropriate. In the
following, we list a few types of partners which can be synthesized by combining
different reduction rules (shown in brackets at the end of each description).

– Chatty partners send as much as possible and receive as less as possible
(SRE). These partners are best suited for adapter synthesis [3], because they
hardly block the overall system, but send messages as early as possible.

– Good Listeners only send messages if it is necessary (WSO, RBS).
– Arrogant partners let service N do all the work for proper interaction and

only react if it is necessary (WSO, RBS, SRE).
– No-talker partners (1) only react to the actions of service N and quit as soon

as one sent message leads to a proper end (WSO, RBS, SSE).
– No-talker partners (2) listen, but as soon as one sent message leads to a

proper end, they quit (WSO, SSE).
– Lazy partners do not like to interact with N (WSO, RBS, SRE, QSP).

3 Architecture

Wendy is written in C++ and built up out of several components. Figure 3
sketches the overall architecture. To process the input open net, given in a file
format as sketched in Fig. 1(c), Wendy uses the Petri Net API1, a C++ library
encapsulating Petri net-related functions. It extracts the interface of the open
net and calls LoLA [19] as an external tool to generate the state space of the
inner of the open net (i. e., the open net without its interface).

These inner markings are then statically analyzed to detect deadlocks as early
as possible. For instance, open net N contains the deadlock [p∗] of the inner, be-
cause transition t is dead. To synthesize a partner, the node builder calculates an
overapproximation (see [20] for details), and the node analyzer removes “bad”
nodes. With the help of the information of the static analyzer, every node con-
taining a deadlock— as marking [p∗] in N — is declared “bad” right away, and
1 See http://service-technology.org/pnapi

http://service-technology.org/pnapi

302 N. Lohmann and D. Weinberg

Fig. 4. A screenshot of Wendy analyzing the running example

no more successor nodes of this node are calculated. Inner markings from which
a deadlock cannot be avoided anymore (e. g., marking [p] in N) are treated sim-
ilarly. This early deadlock detection has a great impact on the runtime in case
an open net contains several deadlocks, for instance due to the application of
behavioral constraints [11].

In addition to the node analyzer, the chosen reduction rules influence the
synthesis of the partner as well. The calculated nodes are compactly stored in
a hash tree to quickly detect already calculated nodes. Finally, the synthesized
partner is returned as either an automaton or an operating guideline.

The core design goals of Wendy are to (1) decrease the runtime by gathering
as much information about the service model as possible during preprocessing
(e. g., by analyzing the inner markings); (2) decrease the memory consumption
needed to synthesize partners by implementing very problem-specific abstract
data types and by keeping as little information as possible in memory.

4 Using Wendy

4.1 Use Cases

Wendy is a command-line tool implementing the following use cases. We assume
an open net is given as file “service.net” in the format sketched in Fig. 1(c).
Alternatively, Wendy can also process PNML files with an extension to model
interfaces and final markings.

– Partner synthesis. To check if the open net is controllable and to synthesize an
unreduced partner if one is present, call Wendy with wendy service.net --sa.

– Operating guidelines. By invoking Wendy with the following command, the
operating guideline of the given open net is calculated: wendy service.net --og

Wendy: A Tool to Synthesize Partners for Services 303

– Reduced partner synthesis. To synthesize a no-talker partner (2) by combin-
ing reduction rules waitstates only and succeeding sending event, call Wendy
with wendy service.net --sa --waitstatesOnly --succeedingSendingEvent.

In all three use cases, Wendy will print out whether the given open net is con-
trollable or not. If the net is controllable, Wendy generates a file “service.sa”
containing the respective partner service automaton or a file “service.og” which
contains the operating guideline of the service. With the command line parame-
ter --dot, a graphical representation of the output is created (cf. Fig. 4). For
uncontrollable nets, the diagnosis algorithm described in [8] is implemented in
Wendy. A full description of the command line parameters can be found by exe-
cuting wendy --help or in the manual2 which also describes the used file formats.

4.2 Case Studies

As a proof of concept, we synthesized unreduced and reduced partners of several
WS-BPEL services from a consulting company. Each process consists of about 40
WS-BPEL activities and models communication protocols and business processes
of different industrial domains. To use Wendy, we first translated the WS-BPEL
processes into open nets using the compiler BPEL2oWFN [7].

Table 1 lists details on the processes and the experimental results for the
unreduced partner synthesis. We see that the open nets derived from the WS-
BPEL processes have up to 15,000 inner markings. The interfaces consist of up
to 19 message channels. The number of states of the unreduced partner service
(i. e., the most-permissive partner or operating guideline) are sometimes much
larger than the original service. The number of transitions grows even faster. The
analysis takes up to 300 seconds on a 3 GHz computer with 2 GB of memory.
Given that operating guidelines are usually calculated only once and are to be
used by the service broker many times, this is satisfactory. It is noticeable that
the calculation of the operating guideline’s formulae took only a split of a second
for all models.

To further evaluate Wendy, we processed parametrized academic benchmarks
within a 2 GB memory limit. Figure 5 illustrates that Wendy is capable of
analyzing service models with up to 5,000,000 inner markings and to synthesize
partner services with up to 4,000,000 states. At the same time, we see that the
largest industrial models we analyzed (14,990 inner markings and 57,996 partner
states) do not come close to these bounds.

Table 2 summarizes the effect of the reduction rules. Depending on the applied
reduction rule, the analysis time can be dramatically reduced. Using the rule quit
as soon as possible, for instance, allows to calculate a partner service in at most
2 seconds for all services. This result can be generalized to any other open net
we analyzed so far: if the inner is bounded (controllability is undecidable if the
inner is unbounded [14]), Wendy could always decide controllability by applying
reduction rules.
2 Available at http://service-technology.org/files/wendy/wendy.pdf

http://service-technology.org/files/wendy/wendy.pdf

304 N. Lohmann and D. Weinberg

Table 1. Unreduced partner synthesis for industrial WS-BPEL services

analyzed service synthesized partner
service inner markings transitions interface states transitions time

Quotation 602 1,141 19 11,264 145,811 0
Deliver goods 4,148 13,832 14 1,376 13,838 2
SMTP protocol 8,345 34,941 12 20,818 144,940 29
Car analysis 11,381 39,865 15 1,448 13,863 49
Identity card 14,569 71,332 11 1,536 15,115 82
Product order 14,990 50,193 16 57,996 691,414 294

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000 100000 1000000 10000000

no
d

es
 o

f s
yn

th
es

iz
ed

 p
ar

tn
er

 (u
nr

ed
uc

ed
)

inner markings of analyzed open net

Philosophers (academic)
WS-BPEL Models (industrial)
Choreographies (academic)
Asynchronous Sequence (academic)

Fig. 5. Limits of the synthesis algorithm (2 GB of RAM). Beside some industrial WS-
BPEL models we processed several parametrized academic benchmarks: Asyn-
chronous sequence (×) is a family of services with exponential growth of states of
the partner services; Choreographies (�) are BPEL4Chor choreographies from [9] with
an exponential growth of inner markings; Philosophers (◦) is a benchmark set of the
WODES workshop, see http://www.wodes2008.org/pages/benchmark.php.

http://www.wodes2008.org/pages/benchmark.php

Wendy: A Tool to Synthesize Partners for Services 305

Table 2. Partner synthesis using reduction rules

WSO RBS SRE SSE QSP
service states t states t states t states t states t

Quotation 6,244 0 1,667 0 2,287 0 52 0 20 0
Deliver goods 1,328 2 89 0 154 0 65 0 16 0
SMTP protocol 3,270 11 4,872 0 16,837 18 30 0 30 0
Car analysis 1,448 47 108 1 96 11 78 28 38 2
Identity card 1,280 74 261 1 48 2 1,280 74 12 0
Product order 57,762 300 741 1 771 3 1,782 9 101 0

4.3 Comparison with Other Tools

Tools from classical controller synthesis [16] are hardly comparable to Wendy,
because (1) they consider only synchronous communication (whereas Wendy
also supports asynchronous communication which is crucial in SOC, (2) make
different assumptions on the observability of internal states and events, and
(3) do not support a concept such as an operating guideline to characterize sets
of compatible partners.

Both the partner synthesis algorithm and the algorithm to calculate an op-
erating guideline for a service have been previously implemented in the tool
Fiona [15]. The design goal of Fiona was the combination of several analysis and
synthesis algorithms for service behavior. This is reflected by a flexible architec-
ture which aims at the reusability of data structures and algorithms. Although
this design facilitated the quick integration and validation of new algorithms, the
growing complexity made optimizations more and more complicated. To over-
come these efficiency problems, Wendy is a reimplementation of the synthesis
algorithms as a compact single-purpose tool. This reimplementation incorporates
the experiments made by analyzing performance bottlenecks through improved
data structures and memory management, validation of case studies which gave
a deeper understanding of the parameters of the models which affect scalability,
and theoretical observations on regularities of synthesized strategies and oper-
ating guidelines.

In comparison, Fiona could only analyze three out of the six services presented
in Table 1 without taking more than 2 GB of memory. For the other services, the
analysis was between 5 and 70 times slower than Wendy. In addition to Fiona,
Wendy handles synchronous communication and implements two more reduction
rules (succeeding sending event and quit as soon as possible).

4.4 Obtain Wendy

Wendy is free software and is licensed under the GNU AGPL.3 The source
code and precompiled binaries can be downloaded from Wendy’s Web site at

3 GNU Affero Public License Version 3, http://www.gnu.org/licenses/agpl.html

http://www.gnu.org/licenses/agpl.html

306 N. Lohmann and D. Weinberg

http://service-technology.org/wendy. We tested several platforms includ-
ing Windows, Mac OS, Linux, FreeBSD, and Solaris. In addition, an online demo
version is accessible at http://service-technology.org/live/wendy where
the examples of this paper can be replayed in a Web browser.

5 Conclusion

The functionality provided by Wendy — the synthesis of partners for services—
is a basis of a variety of important applications in the paradigm of SOC. To this
end, Wendy is already integrated into tools realizing adapter synthesis [3] and
instance migration [5]. Case studies show that Wendy can be used in academic
and industrial settings.

In future work, we plan to adjust the synthesis algorithm to exploit the multi-
ple cores that are increasingly present in personal computers. In addition, sym-
bolic representations such as BDDs [1] may further help reducing the memory
consumption during the synthesis. At the same time, reduction techniques al-
ready implemented in LoLA may be applicable when calculating the inner mark-
ings of the given open net.

Acknowledgments. The authors thank Stephan Mennicke and Christian Sura
for their work on the Petri Net API and Karsten Wolf for sharing experience
made with LoLA and valuable discussions on the data structures.

References

1. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Computers C-35(8), 677–691 (1986)

2. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify:
A tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. Trans. Inf. and Syst. E80-D(3), 315–325 (1997)

3. Gierds, C., Mooij, A.J., Wolf, K.: Specifying and generating behavioral service
adapter based on transformation rules. Preprint CS-02-08, Universität Rostock,
Rostock, Germany (2008)

4. Kaschner, K., Lohmann, N.: Automatic test case generation for interacting services.
In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 66–78.
Springer, Heidelberg (2009)

5. Liske, N., Lohmann, N., Stahl, C., Wolf, K.: Another approach to service in-
stance migration. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC 2009. LNCS,
vol. 5900, pp. 607–621. Springer, Heidelberg (2009)

6. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 132–147. Springer, Heidelberg (2008)

7. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Du-
mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

http://service-technology.org/wendy
http://service-technology.org/live/wendy

Wendy: A Tool to Synthesize Partners for Services 307

8. Lohmann, N.: Why does my service have no partners? In: Bruni, R., Wolf, K.
(eds.) Web Services and Formal Methods. LNCS, vol. 5387, pp. 191–206. Springer,
Heidelberg (2009)

9. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verifi-
cation and participant synthesis. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007.
LNCS, vol. 4937, pp. 46–60. Springer, Heidelberg (2008)

10. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data Knowl. Eng. 64(1), 38–54
(2008)

11. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
271–287. Springer, Heidelberg (2007)

12. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

13. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

14. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Un-
decidablity of partner existence for open nets. Inf. Process. Lett. 108(6), 374–378
(2008)

15. Massuthe, P., Weinberg, D.: Fiona: A tool to analyze interacting open nets. In:
AWPN 2008. CEUR Workshop Proceedings, vol. 380, pp. 99–104. CEUR-WS.org
(2008)

16. Ramadge, P., Wonham, W.: The control of discrete-event systems. Proceedings of
the IEEE 77(1), 81–98 (1989)

17. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with
operating guidelines. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on
Petri Nets. LNCS, vol. 5460, pp. 172–191. Springer, Heidelberg (2009)

18. Weinberg, D.: Efficient controllability analysis of open nets. In: Bruni, R., Wolf, K.
(eds.) Web Services and Formal Methods. LNCS, vol. 5387, pp. 224–239. Springer,
Heidelberg (2009)

19. Wolf, K.: Generating Petri net state spaces (Invited lecture). In: Kleijn, J.,
Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer,
Heidelberg (2007)

20. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P.
(eds.) Transactions on Petri Nets. LNCS, vol. 5460, pp. 152–171. Springer,
Heidelberg (2009)

GreatSPN Enhanced with Decision Diagram
Data Structures

Junaid Babar1, Marco Beccuti2, Susanna Donatelli2, and Andrew Miner1

1 Department of Computer Science
Iowa State University

{junaid,asminer}@iastate.edu
2 Dipartimento di Informatica

Università di Torino
{beccuti,susi}@di.unito.it

Abstract. Decision diagrams (DDs) have made their way into Petri
net (PN) tools either in the form of new tools (usually designed from
scratch to use DDs) or as enhancements to existing tools. This paper
describes how an existing and established tool (GreatSPN) has been
enhanced through the use of DDs provided by an existing open-source
library (Meddly). We benchmark the enhanced tool and discuss lessons
learned while integrating DDs into GreatSPN.

Category: Tool paper.

1 Introduction

Generalized Stochastic Petri Nets (GSPNs) [1] and Stochastic Well-formed Nets
(SWNs) [4] are well-known extensions of Petri Nets (PNs). GSPNs are useful
in modeling stochastic delays where transitions are either immediate or timed,
i.e., they fire with a zero or an exponentially distributed delay. SWNs add token
identities to GSPNs and the possibility of automatically exploiting symmetries
for efficient state space generation.

GreatSPN is a suite of tools for the design and analysis (qualitative and
quantitative) of GSPNs and SWNs. First released by the University of Torino in
the late 1980’s, GreatSPN has been a widely used tool in the research community,
and remains so as it provides a breadth of solvers for computing net structural
properties, the reachable states (RS), the reachability graph (RG) with and
without symmetry exploitation, and performance evaluation indices using either
simulation or analytical solution for steady-state and transient measures. While
these solvers are efficient in enabling and firing operations and the underlying
data structures are optimized, they do not take advantage of symbolic (implicit)
storage techniques based on decision diagrams (DDs). A question then arises: can
the use of symbolic storage techniques improve GreatSPN’s performance while
retaining all of its features? And if so, by how much and at what cost? Our final
goal is to have a state-of-the-art tool that supports advanced data structures
for solving GSPN and SWN while saving memory and preserving or improving

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 308–317, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

GreatSPN Enhanced with Decision Diagram Data Structures 309

time. To limit costs and to ensure adequate implementation quality, we decided
to use an existing DD library that automatically handles the complex aspects of
using DDs such as caching and garbage collection. We selected Meddly [13], a
new DD library, which provides a simple interface (in addition to an expert-level
interface for low-level access). Our choice was motivated mainly by the variety
of types of DDs that Meddly supports, and by certain features of the library
(such as the ability to expand the set of possible values for a variable).

The contribution of this work is along two lines: to improve GreatSPN and to
show that, with limited effort and care, an existing, structurally complex tool,
can be enhanced with DDs through the use of a library. Being the first use of
Meddly inside an existing tool, this work can also be seen as a template for
integrating Meddly into existing tools.

There are a number of PN tools that use DDs as preferential data structures.
To limit the scope of the related work we shall only consider PN tools and in
particular (G)SPN tools since their solutions pose some additional challenges to
DDs (as discussed later). The interested reader may refer to [14] for an overview
of the different variations of DDs employed by different tools.

SMART [18] was the first SPN tool to use DDs for RS generation and, later,
for CTMC storage. It uses an efficient technique (saturation [5]) for state-space
generation, and can store CTMCs in a variety of compact representations (in-
cluding matrix diagrams and Kronecker algebra [14]). SMART has a number
of additional features, like a rich language for model definition (that extends
beyond classical PNs), a simulator, and a model checker for non-stochastic tem-
poral logics; however, it lacks a GUI for net definition.

IDD-CSL [10,17] is a tool targeted towards SPNs for system biology. It sup-
ports a rich language for transition rate definition but does not seem to allow im-
mediate transitions or inhibitor arcs. It supports model checking of the stochastic
logic CSL, and the computation of steady-state or transient performance indices.
It belongs to a suite of tools that provide a GUI for defining a PN, and a tool for
model checking non-stochastic logic and for computing a variety of structural
properties of PNs. IDD-CSL uses IDDs (interval DDs) augmented with state
indices (Labeled IDD) needed for computing performance indices. [17] discusses
the necessary changes made to IDD for CTMC solution.

The data structures and associated algorithms of tools like SMART and IDD-
CSL are very efficient in time and space; however, the DDs are embedded in the
tools, and are not available to the community through a public library. Also,
considering that these tools were designed with DDs in mind, they are usually,
and unsurprisingly, faster than the enhanced GreatSPN.

A relevant example of a tool that has been enhanced through the use of
DDs is Moebius [15], a tool for a superclass of GSPNs called Stochastic Activity
Networks. Moebius allows for easy integration of different solution methods (and
formalisms). A DD-based state space and CTMC generator and solver have been
added, but according to the manual, the DD solution saves space but has a very
high time penalty.

310 J. Babar et al.

LibDDD[7] is a publicly available SDD [9] library that we considered as an
alternative to Meddly. SDD is thought to be an effective data structure for
SWNs, and is well suited for cases in which there is insufficient knowledge of the
variables (number and domain) that define the state space to be generated. We
chose to use Meddly instead since SDDs are more powerful than necessary for
GSPNs and as stated by libDDD’s authors, this power comes at a price. Also,
libDDD only provides a low-level interface while Meddly provides (in addition
to a low-level interface) a simple non-expert interface (which is all we needed).

The rest of the paper is organized as follows: Sec. 2 recalls the analysis engines
of GreatSPN. Sec. 3 gives a brief overview of DDs and Meddly. Sec. 4 describes
how GreatSPN has been modified to use DDs using Meddly and discusses the
memory and time performance. Finally, Sec. 5 concludes the work, summarizes
the lessons learned, and describes our future plans.

2 Overview of GreatSPN

GreatSPN is a suite of tools for the design and analysis of GSPNs and SWNs.
Its analysis modules support the qualitative and quantitative analysis of GSPNs
and SWNs through operations like computation of structural properties, state
space generation and analysis, and analytical computation of performance in-
dices. The first modules we chose to optimize were the state space enumeration
algorithms, since they are common to both state space analysis and compu-
tation of performance indices. GreatSPN uses different solvers for GSPN and
SWN. We decided to start our enhancement work from the GSPN solvers for
two main reasons: first, although they are theoretically simpler than the ones
for SWN, they are a difficult test for the integration of Meddly into GreatSPN
as the data structures are optimized and not always trivial to manipulate and
understand; second, this code is more likely to suffer from software obsolescence,
so that a rewriting is definitely beneficial.

GreatSPN follows a classical fixed-point algorithm for reachability graph (RG)
generation, shown in Fig. 1, where S is the set of visited markings (the reach-
ability set RS at the end), while U is the set of unexplored markings. For each
marking m′ added to U , the list of enabled transitions Tm′ is stored along with
m′. The list Tm is utilized while constructing Tm′ , an important optimization for
nets with a large number of transitions. Note that line 12 can be removed if only
the reachability set, and not the reachability graph, is desired. The algorithm
used by GreatSPN is actually more involved: if the Petri net contains immediate
transitions, the vanishing markings are eliminated during generation, producing
the set of tangible reachable markings; these details are omitted to simplify the
presentation. GreatSPN keeps on a separate file a list of all tangible markings
reachable from a given vanishing marking, so it is unnecessary to recompute
them when re-entering a vanishing marking.

Major data structures for the algorithm include S and U , while crucial oper-
ations include addition to S, addition and removal of markings for U , the test
to decide if a marking already belongs to S, and the computation of enabled

GreatSPN Enhanced with Decision Diagram Data Structures 311

GenerateRG(marking m0, Petri net PN)
1: S ← {m0}; • m0 is the initial marking
2: U ← {m0};
3: while U �= ∅ do
4: Remove some m from U ;
5: Determine set Tm of enabled transitions in marking m;
6: for all t ∈ Tm do
7: Determine marking m′ reached from m when t fires;
8: if m′ /∈ S then
9: S ← S ∪ {m′};

10: U ← U ∪ {m′};
11: end if
12: Add edge (m, m′, t) to RG;
13: end for
14: end while
15: return S , RG;

Fig. 1. Traditional enumeration algorithm to build the reachability graph

transitions. GreatSPN uses a balanced binary tree (BBT) for S, and to further
reduce memory, S only contains indices to position in a file (called .mark) that
stores markings. To save disk space and I/O time, the markings are stored in a
compact way, using an encoding algorithm that exploits P-invariants. Each entry
in the BBT also contains the list of the transitions enabled in that marking. The
unexplored markings in U are stored as a list built on the nodes of the BBT,
so that for each marking in U the list of enabled transitions is readily available.
Thus, lines 4 and 5 in Fig. 1 can be executed very quickly, but line 10 requires
determining the enabled transitions in marking m′, as explained above.

GreatSPN builds the tangible reachability graph (TRG), i.e., the graph after
elimination of vanishing markings. During generation, the TRG edges (cf. line 12
in Fig. 1) are written to a file (called .wnrg), together with the associated rate
(computed from the timed transition rate, possibly multiplied by the weight of
the immediate path followed). The TRG file (.wnrg) and the compacted marking
file (.mark) are the only information (together with the net and performance
indices definitions) needed by the numerical solution engines.

To simplify these and other engines, each reachable marking is assigned a
unique integer index in the set {0, 1, . . . , |S| − 1}. GreatSPN uses “discovery or-
der” (the order in which markings are inserted into S) to index the markings.
Indices are required for CTMC construction and solution, and a mapping be-
tween each marking and its index is required in many contexts of the solution
process, a typical example being the need to compute performance indices from
the steady state solution vector of the CTMC. GreatSPN never stores explicitly
the mapping between a marking and its index: the ith marking is in the ith posi-
tion inside the .mark file, and the edges from the ith marking are listed in the ith

record of the .wnrg file. Note that indices are not required for (non-stochastic)
model checkers: as we shall see, keeping indices may have a significant price.

312 J. Babar et al.

3 Overview of Meddly

Decision diagrams are directed acyclic graphs used to represent functions on a
finite number K of variables, where each variable xk can assume a finite number
nk of values. Nodes are either terminal nodes, which have no outgoing edges,
or are non-terminal nodes, which are labeled with a variable. Different variable
types and ranges, and different rules for managing the graphs lead to various
forms of DDs. For instance, binary decision diagrams [3] represent boolean func-
tions on boolean variables, of the form f : {0, 1}K → {0, 1}.

Meddly, short for Multi-way and Edge-valued Decision Diagram Library, is an
open-source software library [13] that supports several types of DDs (varieties
relevant to this work are discussed below). All forms of DDs in Meddly eliminate
duplicate nodes (two nodes that represent the same function) and require order-
ing of nodes (there is a total ordering * on the function variables). Furthermore,
the set of possible values for variable xk is assumed to be Dk = {0, 1, . . . , nk−1}.
In Meddly, an ordered collection of variables with specified sizes is called a do-
main, which we write as D = DK × · · · × D1.

A named collection of nodes of a particular variety of DD, and associated with
a common domain, is called a forest. Within a given forest, Meddly automatically
eliminates duplicate nodes using a unique table [2], imposes other forest-specific
reduction rules, and handles memory management of the nodes (storing them
compactly, garbage collection, etc.). The following types of forests are relevant
to this work and are supported in Meddly.

MDD: multi-way DD [11], for functions of the form f : D → {0, 1}.
MTMDD: multi-terminal MDD for functions of the form f : D → R with

either R ⊂ IN or R ⊂ IR. The function “return values” are stored in the
forest within the terminal nodes [8].

EV+MDD: edge-valued MDD for functions of the form f : D → IN ∪ {∞}.
The function “return values” are stored in the forest along the edges and are
summed together along paths in the graph [12].

Other forms are already supported or are planned for future releases.
An important feature of any DD software is the ability to create new functions

through various operations. In Meddly, several operators are supported whose
arguments are functions with a common domain. Additionally, Meddly provides
operators to create, evaluate, and destroy functions in a forest. The operations
relevant to this work are described below, using simplified versions of the func-
tions (rather than the exact function prototypes) to clarify the presentation.

– createEdge() builds a function by explicitly stating a return value for a set
of variable assignments. Multiple variable assignments and return values may
be specified. Any unspecified assignments are assumed to return a default
value (normally 0 but dependent on the forest type). Thus, within a forest
F , a call to F.createEdge((aK, . . . , a1), a, (bK , . . . , b1), b) produces a
representation of function

GreatSPN Enhanced with Decision Diagram Data Structures 313

f(xK , . . . , x1) =

⎧⎨⎩
a if xK = aK ∧ · · · ∧ x1 = a1
b if xK = bK ∧ · · · ∧ x1 = b1
0 otherwise

within forest F .
– apply() builds a function by applying some operator on a set of operands.

In particular, for an element-wise binary operator ⊕, the function

f(xK , . . . , x1) = g(xK , . . . , x1)⊕ h(xK , . . . , x1)

can be obtained by calling apply(g, ⊕, h, f). This assumes that func-
tions f , g, and h have the same domain (they can be in different forests)
and that the operator ⊕ is defined for the range of g and h. Similarly, for an
element-wise unary operator %, the function

f(xK , . . . , x1) = %g(xK , . . . , x1)

can be obtained by calling apply(%, g, f). Meddly also provides symbolic
state space generation algorithms (including a traditional iteration [16] and
saturation [5]) by calling apply with an appropriate operator.

– evaluate()determines, for the representation of function f , the value of f for
a given set of variable assignments. Specifically, evaluate(f, (vK , . . . , v1))
gives the value of f(vK , . . . , v1).

Meddly automatically uses and maintains a computed table to reduce (often
significantly) the computational cost of the apply() operations [2]. Meddly also
allows for variables sizes to be increased as needed; this allows the user to start
building a DD without knowing the final variables sizes. Finally, Meddly provides
an expert-level interface so that users can define their own operations or access
advanced features of the library.

4 Enhancing GreatSPN

We have experimented with a few different methods, described below, that we
have developed (in an incremental manner) to evaluate the effectiveness of the
DDs at various stages. For each method, the goal is to replace the existing
representation of S, namely the BBT and/or the .mark file, with DDs.

4.1 Changing Only the RS

As a first step, we utilize the existing explicit state space generation algorithm in
GreatSPN, rather than discarding it in favor of an entirely “symbolic” algorithm
(such as [5,16]). We assign an ordering to the set of places P (based on the order
in which places are defined in the input file), and build the function

f(x|P|, . . . , x1) = 1 iff ∃m ∈ S : m(p|P|) = x|P| ∧ · · · ∧m(p1) = x1

314 J. Babar et al.

Table 1. Time and memory (Kb) required for generation

Original MDD for S MDD & N MTMDD EV+MDD
N |S| BBT File T. Mem. T. Mem. T. Mem. T. Mem. T.

Dining philosophers Petri net (PHIL)
7 2.4× 104 1,175 1,027 8s 51 8s 36 0.13s 3,449 9s 74 18s
8 1.0× 105 4,977 4,976 45s 75 50s 49 0.15s 14,607 38s 111 87s
9 4.3× 105 21,082 23,717 345s 103 411s 64 0.18s 61,872 210s 160 421s

10 1.8× 106 89,304 104,654 31m 139 28m 80 0.24s 262,092 18m 222 34m
11 7.8× 106 — — — 185 82m 99 0.35s 1,084,212 78m 299 156m
12 3.3× 107 — — — 235 7h 120 0.43s — — 392 8h
30 6.4× 1018 — — — — — 829 10s — — — —
40 1.1× 1025 — — — — — 1,576 32s — — — —
50 2.2× 1031 — — — — — 2,364 1m — — — —

Flexible manufacturing system Petri net (FMS)
4 1, 3× 105 6,627 3,037 11s 76 14s 363 6s 14,740 11s 2,397 22s
5 6.5× 105 31,466 14,421 134s 135 63s 775 27s 66,758 81s 9,744 212s
6 2.5× 106 120,940 55,430 7m 218 3m 1,470 1m 246,234 5m 33,068 42m
7 8.2× 106 — — — 353 12m 2,536 5m 625,221 19m 97,389 6h
8 2.3× 107 — — — 515 32m 4,070 13m — — — —
9 6.1× 107 — — — — — 6,179 31m — — — —

10 1.4× 108 — — — — — 8,997 1h — — — —
11 3.3× 108 — — — — — 12,688 2h — — — —

as an MDD. The MDD representation for S is built exactly as described in
the algorithm of Fig. 1: if evaluate(f, m′) is equal to 0, then m′ �∈ S; the
operation S ← S ∪ {m′} can be performed by building a function g with a
call to createEdge(m′, 1), where g represents the set {m′}, and then calling
apply(f, +, g, f) to union the sets.

To simplify changes in the implementation, we have kept the list structure for
U , which is now a list of pointers to the position in the .mark file. No indices are
stored for the markings and therefore it is not possible to generate the reacha-
bility graph and the CTMC. However, this method can be used for reachability
analysis, and more importantly, it allows us to check the efficiency of the MDD
representation with minimal changes to the implementation.

Results on two benchmark Petri nets are reported in Table 1. In the N dining
philosophers (taken from [16]), the numbers of places, transitions, and MDD
variables increase linearly with N , while in the flexible manufacturing system
[6], the model parameter N specifies the number of parts (initial tokens in cer-
tain places), and the number of possible values for the MDD variables increases
linearly with N . Experiments were run on an 2.4 GHz AMD Athlon 64-bit pro-
cessor with 4 GB memory capacity. In the table the “Original” columns refer
to the original GreatSPN implementation, and show the memory required in
Kilobytes for BBT and for the .mark file, while “MDD for S” refers to this first
enhancement (use of an MDD for S and a list for U). For the methods based
on DDs, the reported memory is the “peak” memory use; the “final” memory
use can be less (often substantially so). From the table it is clear that a first

GreatSPN Enhanced with Decision Diagram Data Structures 315

objective has been achieved, since memory consumption is significantly reduced,
while time is a bit better than with plain GreatSPN, but still it does not allow
us to obtain the huge state spaces that DDs can often achieve. For instance, we
cannot solve FMS with N = 9 due to the huge size of the .mark file.

A clear cause for the time bottleneck is that states are added to S one at a
time, so that execution time is at least linear in the number of states. To overcome
this limit, a “symbolic” firing has been implemented, based on a MDD represen-
tation of the next-state function N , that allows for the efficient determination of
all states reachable from the states in the current S set in a single firing. In par-
ticular, this requires to encode N with an MDD that has twice as many variables
as the MDD that encodes the RS, since it represents transitions between states.
In our implementation we use the inhibition, pre- and post- incidence matrices
(available in GreatSPN) to derive N for the model. The RS is then generated
by Meddly by calling apply(rsgen, m0, N, S), which invokes the traditional
symbolic algorithm [16] on initial marking m0 with next-state function N , and
stores the result in S.

Results are reported in columns “MDD & N ” of Table 1. Note the large
saving in time and space for the PHIL model, while for FMS the results are less
impressive, which in a way is not surprising: FMS includes priorities for transi-
tions, leading to a more involved implementation of the symbolic firing, which
also requires the use of some additional, intermediate, MDD. These intermediate
MDDs are included in the peak memory usage reported in the table.

4.2 MTMDD or EV+MDD for Reachability Graph

If we wish to build the reachability graph, and the CTMC, we need a new
mechanism for remembering the index of each discovered marking in S. This
can be done by constructing the function (with slight abuse of notation)

f(m) =
{

0 if m �∈ S
index of m if m ∈ S

where the marking indexes are distinct integers in the range 1 to |S|, assigned in
“discovery order”. This function can be represented either as a MTMDD or an
EV+MDD. In either case, the implementation follows the discussion in Sec. 4.1,
except when adding marking m′ to S, we call createEdge(m′, index). Note
that this means that we are back to generating one state at a time.

For both solutions (MTMDD and EV+MDD) we have also modified the im-
plementation of U to use an MDD. The operation “remove some m from U” is
implemented through a Meddly function findFirstElement(), that efficiently
finds a function’s “first” set of variable assignments that return a non-zero value;
this marking is then removed from U via apply() with the subtraction operator.

As a consequence the list of enabled transitions is not stored any longer (to
do so would require encoding a different function f with extra variables for the
set of enabled transitions). We therefore must determine the enabled transitions
by checking them all when exploring a marking, rather than by simply updating

316 J. Babar et al.

the known enabled transitions when a new marking is entered (in the algorithm
of Fig. 1 line 5 becomes more expensive, while line 10 becomes less expensive).

The performance of the implementation of RS with indices, using MTMDD
and EV+MDD, is reported in the last columns of Table 1. The MTMDD turns
out to be a worst-case scenario: since each marking has a unique index, there will
be no sharing of nodes in the MTMDD. The EV+MDD, instead, can be shown to
be never worse than the MTMDD, and for many functions, can be exponentially
better. However, manipulating EV+MDDs has a higher cost than MTMDDs,
since additional operations are required on the edge values. This classical time-
memory tradeoff is clearly seen in Table 1: the MTMDD implementation always
requires less time and more memory than the EV+MDD implementation. In-
terestingly, the MTMDD implementation usually outperforms the original one,
even without the faster mechanism to determine the enabled transitions.

5 Conclusion

In this paper, we described how an existing and established tool, GreatSPN,
was enhanced through the use of DDs as provided by an existing open-source
library (Meddly). Several important lessons can be taken away from this exercise.
The enhancement described has been implemented using only the non-expert
interface of Meddly, which implies a limited learning curve, an implementation
that is easier and therefore more likely to be error-free, and the possibility to
quickly exploit any future development of Meddly. To provide a feeling of how
easy it is to experiment with Meddly, the implementation for MTMDD and for
EV+MDD differ only in a single parameter in the forest creation.

Our first attempt using MDDs tells us that improvements can be achieved with
minimal changes, but that better improvements can be achieved if the generation
algorithm is changed to exploit DD strength (e.g., a symbolic algorithm using
N), since any savings gained through the optimal use of DDs may be enough to
offset the loss of any optimizations that must be discarded.

We have several plans for further enhancement of GreatSPN with DDs. The
issue of index storage for RG and CTMC generation and solution requires further
investigation. A possible modification is to store the reachability graph directly
in a DD; this would allow the use of MDDs (instead of MTMDDs or EV+MDDs)
since indexes would not be required until after generation. However, this would
require to either convert the DD representation of the CTMC back into the data
structure currently used by GreatSPN, or to completely re-implement all the
numerical solution engines to use DDs. Either of these requires advancements in
Meddly and substantial implementation in GreatSPN. A different line of work
is the extension from GSPN to SWN, this however will require the ability to
deal with markings that do not have a fixed, bounded structure, for which SDDs
may be a better choice than MDDs. As such, we plan to investigate the use of
libDDD[9] for state space generation of SWNs and compare with Meddly.

GreatSPN Enhanced with Decision Diagram Data Structures 317

Acknowledgment

This work is supported in part by the National Science Foundation under grant
CNS-0546041.

References

1. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. J. Wiley, Chichester (1995)

2. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: 27th ACM/IEEE Design Automation Conference, pp. 40–45. ACM Press,
New York (1990)

3. Bryant, R.E.: Graph–based algorithms for boolean function manipulation. IEEE
Trans. Comput. C-35(8), 677–691 (1986)

4. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed
coloured nets for symmetric modelling applications. IEEE Trans. Comput. 42(11),
1343–1360 (1993)

5. Ciardo, G., Lüttgen, G., Miner, A.S.: Exploiting interleaving semantics in symbolic
state–space generation. Formal Methods in System Design 31(1), 63–100 (2007)

6. Ciardo, G., Trivedi, K.S.: A decomposition approach for stochastic reward net
models. Perf. Eval. 18, 37–59 (1993)

7. LibDDD webpage, http://move.lip6.fr/software/DDD
8. Fujita, M., McGeer, P., Yang, J.Y.: Multi-terminal binary decision diagrams: An

efficient data structure for matrix representation. Formal Methods in System De-
sign 10(2-3), 149–169 (1997)

9. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Hierarchical set decision diagrams and
automatic saturation. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008.
LNCS, vol. 5062, pp. 211–230. Springer, Heidelberg (2008)

10. IDD-CSL webpage, http://www-dssz.informatik.tu-cottbus.de
11. Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.: Multi–valued decision

diagrams: theory and applications. Multiple-Valued Logic 4(1-2), 9–62 (1998)
12. Lai, Y.T., Pedram, M., Vrudhula, S.: Formal verification using edge-valued binary

decision diagrams. IEEE Trans. Comput. 45(2), 247–255 (1996)
13. MEDDLY webpage, http://sourceforge.net/projects/meddly
14. Miner, A., Parker, D.: Symbolic representations and analysis of large state spaces.

In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Val-
idation of Stochastic Systems. LNCS, vol. 2925, pp. 296–338. Springer, Heidelberg
(2004)

15. Moebius webpage, http://www.mobius.illinois.edu
16. Pastor, E., Roig, O., Cortadella, J., Badia, R.M.: Petri Net Analysis Using Boolean

Manipulation. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 416–435.
Springer, Heidelberg (1994)

17. Schwarick, M., Heiner, M.: CSL model checking of biochemical networks with inter-
val decision diagrams. In: Degano, P., Gorrieri, R. (eds.) Computational Methods
in Systems Biology. LNCS, vol. 5688, pp. 296–312. Springer, Heidelberg (2009)

18. SMART webpage, http://www.cs.ucr.edu/~ciardo/SMART

http://move.lip6.fr/software/DDD
http://www-dssz.informatik.tu-cottbus.de
http://sourceforge.net/projects/meddly
http://www.mobius.illinois.edu
http://www.cs.ucr.edu/~ciardo/SMART

PNML Framework: An Extendable Reference
Implementation of the Petri Net Markup Language

L.M. Hillah1, F. Kordon1, L. Petrucci2, and N. Trèves3

1 Université P. & M. Curie - Paris 6, CNRS UMR 7606 - LIP6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05, France

Fabrice.Kordon@lip6.fr, Lom-Messan.Hillah@lip6.fr
2 LIPN, CNRS UMR 7030, Université Paris XIII

99, avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France
Laure.Petrucci@lipn.univ-paris13.fr

3 Cedric, CNAM, 292, rue St Martin, F-75141 Paris Cedex 03, France
nicolas.treves@cnam.fr

Abstract. The International Standard on Petri nets, ISO/IEC 15909, provides a
formal semantics and syntax to enable model interchange and industrial dissem-
ination. Part 2 defines a concrete interchange format as an XML-based language:
PNML. This language is bound to evolve together with future developments of the
standard.

This paper presents PNML Framework, a companion implementation of the
standard. It provides developers of Petri net tools with a convenient and fast way
to implement support of PNML documents. It abstracts away from any XML ex-
plicit manipulation and ensures compliance with the standard by using APIs.

Keywords: PNML, Petri nets standardisation, metamodels, MDE.

1 Introduction and Goals

The International Standard on Petri nets is divided in three parts. The first one deals
with basic definitions of Place/Transition, Symmetric, and high-level nets.

The second part, ISO/IEC 15909-2, defines the interchange format for Petri net mod-
els: Petri Net Markup Language [8] (PNML, an XML-based representation). This part
of the standard was published on November 11, 2009. It is now ready to be used by tool
developers in the Petri Nets community.

Now, the standardisation group starts working on the third part. ISO/IEC 15909-3,
aims at defining extensions and variations on the whole family of Petri nets. Extensions
are for instance the support of modularity, time or probabilities. Variations consider less
important semantic changes such as inhibitor arcs, bounded places etc. This raises the
need to support such flexibility in the standard.

This paper presents PNML Framework: an API-based Framework to assist tool devel-
opers in achieving conformance with the standard. The motivations for PNML Frame-
work are twofold:

– First, it provides tool developers with a programmer-friendly set of APIs which al-
lows them to easily export/import compliant PNML documents. PNML Framework

J. Lilius and W. Penczek (Eds.): PETRI NETS 2010, LNCS 6128, pp. 318–327, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

PNML Framework: An Extendable Reference Implementation 319

has been designed as a companion to the standard; it allows tool designers to ma-
nipulate Petri Net concepts instead of XML constructs and frees them from XML

programming.
– Second, due to part 3, the standard is deemed to evolve and support different kinds

of Petri nets. PNML Framework will provide a middleware software layer to cope
with consistency of the required variations at the XML level.

The paper is structured as follows. Section 2 describes the Petri nets types metamodel-
ing framework around which PNML Framework is conceptually built. Then it presents
the architecture of PNML Framework and its use of the metamodels. Uses of the tool are
presented afterwards. Section 2 ends by showing how Petri net tools can interact with
PNML Framework. Section 3 reports a typical application example of model translation
from PNML to COQ format. Finally, section 4 discusses how the design principles of the
standard implemented by PNML Framework allows for flexibility and ability to evolve,
strongly required for compatibility with the upcoming Part 3 of the standard.

2 PNML Framework Architecture and Services

As a companion to the standard, PNML Framework must support numerous kinds of
Petri nets. So its design is based on a structured set of metamodels issued from the
standard and describing components in the family of Petri nets.

This section quickly recalls the metamodels architecture that are detailed in [3]. For
lack of space, we do not summarise the metamodels in this paper but [3] is available
online. We only focus on the overall architecture of PNML Framework and the way this
framework is intended to be used.

Metamodels for Petri nets. For the standard to be both robust and maintainable, the
interchange format should convey structural information for Petri nets while being re-
spectful of their semantic constraints. Thus, part 1 of the standard defines the semantics
of several Petri Net Types (i.e. P/T, symmetric and high-level nets), while part 2 provides
the associated metamodels.

Another challenge is the support of variations and extensions. To meet these issues,
a metamodel-based approach as well as associated model engineering techniques, were
chosen since they are tooled up and easily accessible. In addition they provide modular
and incremental features to handle variations and extensions of these Petri nets types in
an elegant manner, preserving their structural relationships.

PNML Core Model

Symmetric nets
Place/Transition

nets
High-level Petri net

Graphs

<<merge>>
<<merge>>

<<merge>>

Fig. 1. Overview of the UML packages of PNML

320 L.M. Hillah et al.

The choice of model engineering techniques is driven by the state of the art of re-
liable approaches dealing with such issues. Although UML is a semi-formal modelling
notation, its flexible levels of abstraction, expressivity, modularity and hierarchy make
it appropriate for our goals. This is enforced by the fact that no semantical interpretation
of Petri nets is required in an interchange format (only syntax is transferred).

So far, the standard provides a modular and incremental design of Petri net types
metamodels. The metamodels of these Petri Nets types are encapsulated in UML pack-
ages. Fig. 1 shows their relationships, outlining the incremental design approach.

The PNML Core Model package (see Fig. 2) contains the basic structural definition
of a Petri net as a labelled directed graph. All type specific information of the net is
embedded in the labels. Labels are associated with nodes, arcs or the net. The PNML

Core Model is intended to be the primary building block upon which concrete Petri
net types are defined. Therefore, it imposes no restriction on labels because it is not a
concrete Petri net type. For additional details concerning the metamodels, the reader is
referred to [3].

As shown in Fig. 1, each concrete Petri net type is built either upon the PNML Core
Model or upon another existing concrete Petri net type. The Place/Transition Nets pack-
age thus merges its definitions with the PNML Core Model ones, while the High-level
Petri Net Graphs package merges its own with the Symmetric Nets ones. Each concrete
Petri net type defines its legal labels by extending the primary definitions in the source
package (PNML Core Model for P/T nets and Symmetric Nets for High-level Petri Net
Graphs) and possibly adding some syntactic restrictions by means of OCL formulae
(e.g. connectivity between places and transitions). The metamodels of these labels are

PNML Core Model

PetriNet

Id
type

PetriNetDoc

Label

Name

net 1..*

ToolInfo

tool
version

AttributeAnnotation

Graphics

Object

Id

Page

PlaceNode

Node

XMLSchemaDataType::
String

TransitionNode

Arc

Place TransitionRefPlace RefTransition

toolspecific *

toolspecific *

toolspecific *

label *

label *

name {redefines label}
0..1

graphics 0..1

graphics 0..1

name
{redefines label}

0..1

page
1..*

object *

1 target

1 source

*

*

ref 1ref 1

* *

text 1

context Arc inv:
self.source.page = self.target.page

Fig. 2. Overview of the PNML Core Model package

PNML Framework: An Extendable Reference Implementation 321

<<merge>>

<<im
po

rt>
>

<<import>>

High-level Petri Net
Graphs

Terms

Symmetric Nets

Lists

Strings

Integers

ArbitraryDeclarations

<<import>>

<<import>>

<<import>>

<<import>>

<<merge>>

<<import>>

Fig. 3. High-level Petri Net Graphs reusing Symmetric Nets and importing type-specific labels

designed in specific packages so as to be reused as much as possible between related
Petri net types.

Fig. 3 illustrates this extension mechanism from Symmetric Nets to High-level Petri
Net Graphs. High-level Petri Net Graphs reuse Symmetric Nets definitions but extend
their terms by adding new concepts: lists, strings, integers and arbitrary declarations. A
more detailed presentation of the standardised Petri net types is provided in [3].

Architecture of PNML Framework. Components of PNML Framework are automat-
ically generated from the metamodels in the standard, and thus reuse their structure.
We chose to encode these metamodels using EMF [2] in Eclipse. EMF is one of the
most advanced and mature model-driven engineering framework, as it supports UML,
code generation and model transformation. These features are key characteristics for
developing PNML Framework, as well as providing clean modelling facilities and gen-
erated APIs (i.e. a set of APIs) for tool developers. Therefore, EMF constitutes a suitable
framework to rely on for constructing PNML Framework.

Place/Transition
Nets

<<component>>

Symmetric Nets
<<component>>

High-level Petri Net
Graphs

<<component>>

P/T Nets in high-
level notation

<<component>>
Third-party

libraries

<<component>>

Utilities
<<component>>

PNML Core Model
<<component>>

<<component>>

API.Utilities

PNML Framework

<<delegate>>

<<delegate>>

<<delegate>>

<<delegate>>

<<delegate>>

API.XMLUtilities

API.CoreModel

API.PTNet

API.SN

API.HLPN

API.PTHLPN

API.PNMLSave

API.PNMLLoad

<<delegate>>

<<delegate>>

API.BackEnd

C
re

at
e

an
d

na
vi

ga
te

 P
N

 m
od

el
s

of
 th

e
co

rr
es

po
nd

in
g

ty
pe

Trigger
export

Trigger
import

Fig. 4. PNML Framework architecture

322 L.M. Hillah et al.

Fig. 4 shows the structure of PNML Framework APIs. Each API (left part of the fig-
ure) manipulates a given Petri net type and is implemented by a dedicated component.
The APIs are named like the corresponding piece of metamodel in the standard. The
currently supported Petri net types are: Place/Transition nets, Symmetric nets, High-
level Petri nets and Place/Transition nets in high-level notation, as defined in part 1 of
the standard. Each component provides an API to be used to build models and navigate
their structure.

There is no noticeable duplication between the components thanks to the technical
UML merge operator (shown on Fig. 1) between the standardised Petri nets types in
the metamodels. The merge operator includes the definitions of an existing Petri nets
type into a new one. For instance High-level Petri Net Graphs merge Symmetric Nets in
Fig. 3. As a result, every element previously in Symmetric Nets will then be included in
the new type.

PNML Framework also embeds Utilities that tool developers can use to trigger the
loading and storing of models into PNML documents. They can also use this compo-
nent to turn on or off syntax validation for PNML Document. The Utilities component is
responsible for loading PNML documents and figuring out what type of Petri nets they
contain. It also sets up the export of Petri net models into PNML documents and their
syntactic validation. This component also provides a workspace (or in-memory reposi-
tory) where several Petri net models being handled can be stored. Third-party libraries
are runtime components used by Utilities, providing basic APIs to manipulate XML
trees. They are shown in grey in Fig. 4.

Most of the PNML Framework code is automatically generated. Manually developed
code only concerns the Utilities component, which represents 3600 lines of code. This
ensures maintainability in order to ease future developments resulting from part 3 of the
standard. The next paragraph shows how PNML Framework can be used.

Uses of PNML Framework. Creating, for example, a place in any type of Petri net
requires a single method call with the associated parameters such as name, marking and
position (the method is automatically generated). Then, PNML Framework performs all
the appropriate low-level EMF manipulations, in order to minimise the tool developers’
efforts. The APIs primitives implement export and import of PNML elements:

– Export. Petri net models stored in memory, built as instances of Petri net types
(w.r.t. their metamodels defined in the standard) are saved in a file compliant with
the PNML syntax. PNML Framework takes care of the process, performing the re-
quired checks to produce the PNML document.

– Import. Petri net models are loaded in memory, from PNML documents, as in-
stances of Petri net types. PNML compatibility checks are performed when loading
models.

Fig. 5 illustrates the export and import mechanisms. It shows a Petri net model on the
left-hand side as drawn by a tool user. A typical tool creates the object representation
depicted in the centre of the figure. It can be exported by the appropriate API into a
PNML file shown on the right-hand side. Importing PNML models is similar.

This process enjoys the independency between the tool internal representation and
the current version of PNML. Compatibility concerns are handled by PNML Framework.

PNML Framework: An Extendable Reference Implementation 323

Ready 4

In_Race

Podium

Start_Race

End_Race

Get_prepared

Starter
1

4

4

PN model to be
exchanged

id=1
:Net

id=pageId
:Page

id=2
:Place

value=Ready
:Name

........

........

PNML representation of
the PN model

<pnml xmlns="...">
 <net id="1">

 <page id="pageId">

 <place id="2">
 <name>
 <text>Ready</text>

 </name>

 <initialMarking>
 <text>4</text>
 </initialMarking

</pnml>

Standard UML object model
of the PN model in PNML Framework

export

import

create

(and fetch)

navigate

Fig. 5. Export and import of a Petri net model from PNML

Interaction schemes in using PNML Framework. PNML Framework is implemented
in Java on top of Eclipse. It is also distributed as a standalone library. In order to use
PNML Framework, a tool may be implemented in Java (not necessarily on top of Eclipse)
or in any language supporting Java bindings. Fig. 6 depicts the ways to use PNML Frame-
work in order to support the interchange standard.

Tool T1 directly uses the provided API to export/import models in PNML. T1 is the
typical example of a standard compliant Petri net tool that relies on PNML Framework.
This is the case of Coloane [4].

Tool T2 exemplifies the use of a standalone application that ensures the conversion of
PNML files from/to an existing tool. This converter must parse/produce the T2 internal
format. This is also the case of both the CPN-AMI [5] import/export facilities and the
PNML2COQ plug-in that is presented in section 3.

In contrast to T1 and T2, tool T3 relies on its own implementation of the standard.
Thus, support of PNML evolutions such as extensions and variations must be handled by
T3 developers (with a risk of not conforming to the standard). The PNML web site [8]
will be continuously maintained and provide updated versions of PNML.

export

import

PNML document

<pnml xmlns="....">
<net id= "net1"...>

..........................

..........................
 </net>

</pnml>

Ready 4

In_Race

Podium

Start_Race

End_Race

Get_prepared

Starter
1

4

4

Petri net tool T1

PNML Framework
Ready 4

In_Race

Podium

Start_Race

End_Race

Get_prepared

Starter
1

4

4

Petri net tool T2

PNML Framework

Ready 4

In_Race

Podium

Start_Race

End_Race

Get_prepared

Starter
1

4

4

Petri net tool T3

T3's own PNML
implementation

import

export

export import Standalone conversion
application

Fig. 6. Petri net tools exchanging PNML documents

324 L.M. Hillah et al.

ModelRepository.getInstance().createDocumentWorkspace("coqWksp");

PnmlImport pim = new PnmlImport();

HLAPIRootClass imported = (HLAPIRootClass) pim.importFile("pnmlDocument");

pim.setFallUse(true);

Processor proc = MainProcessor.getProcessor(imported);

proc.process(imported, new PrintWriter(new FileWriter("coqDocument")));

if (imported.getClass().equals(
fr.lip6.move.pnml.ptnet.hlapi.PetriNetDocHLAPI.class))
{ p = new PTProcessor(); return p;}

1

2

3

4

5

(5)

6

Fig. 7. Source code of the PNML2COQ main function

3 Typical Use: PNML to COQ Example

This section illustrates the use of PNML Framework through the export of a Petri net
in PNML format into a COQ theorem prover [7] representation as described in [1]. This
example is representative of the situation of tool T2 in the previous section, even if it
focuses on the import of models from PNML documents only (the export is very similar).

Overview of the process. The code snippets of Fig. 7 shows the key instructions to
program the import of a PNML Document. There are six steps to complete the design of
PNML2COQ (their numbers are shown on the right-hand side of the code):

1. create a workspace in PNML Framework where models can be manipulated (this is
an in-memory repository to allow developers to work on several models during the
same session),

2. create an Importer (from the Utilities package) to import a PNML Document, this
document remains untyped at this stage (i.e. it can be any type of Petri net),

3. decide what to do in case the loaded Petri net type is unknown; e.g. downgrade to
the closest type known by PNML Framework or to a specified one, or raise an error,

4. import the document (no work needed, this is provided by PNML Framework),
5. set the processor to be used for the loaded Petri net; this processor has to be written

by the tool designer (as presented later in this section),
6. the processor is called to perform the desired operations (here, generate a COQ file).

Design of the Processor. A PNML document can contain several Petri nets, each of
them composed of one or more pages. Hence, the process code (snippet on the left-
hand side of Fig. 8) first handles nets (code on the right-hand side of Fig. 8) and then

public void process(HLAPIRootClass rcl, PrintWriter pw){
 PetriNetDocHLAPI root = (PetriNetDocHLAPI) rcl;
for (PetriNetHLAPI net : root.getNetsHLAPI())

 processNets(net);
}

private void processNets(PetriNetHLAPI ptn) {
//Some printout into the output Coq file...
for (PageHLAPI page : ptn.getPagesHLAPI())

 processPages(page);
//Some printout in the output Coq file...

}

Fig. 8. Code snippets from the processor

PNML Framework: An Extendable Reference Implementation 325

private void processPages(PageHLAPI page) {
for (PageHLAPI pg : page.getObjects_PageHLAPI())

 processPages(pg);
for (PlaceHLAPI pl : pth.getObjects_PlaceHLAPI())

 processPlace(pl);
for (TransitionHLAPI tr : pth.getObjects_TransitionHLAPI())

 processTransition(tr);
for (ArcHLAPI arc : pth.getObjects_ArcHLAPI())

 processArc(arc);
}

Fig. 9. Code snippet showing how Pages are handled

private void processPlace(PlaceHLAPI pla) {
 StringBuffer sb = new StringBuffer();
nbplaces++;

 sb.append("Definition " + pla.getId() + " := mk" + "Place" + " " + nbplaces + ".");
allPlaces = allPlaces + pla.getName().getText() +"::";

 sb.append("\n");
 sb.append("Definition m" + pla.getId() + " := (" + pla.getId() + ",0).");

initMarking = initMarking + "m" + pla.getName().getText() +"::";
print(sb.toString());

}

Fig. 10. Code snippet showing how places are handled

pages (snippet of Fig. 9). The processor uses a writer class to output the resulting COQ

syntax into a COQ document (second argument in the process signature).
Fig. 9 details the processing of a page. It successively gets enclosed pages, places,

transitions and arcs. All processing functions are written by the tool developer, accord-
ing to his needs. This is eased by the iterators that PNML Framework provides for pages,
places, transitions and arcs.

Fig. 10 shows how places are translated into COQ. It handles an object corresponding
to a place, pla, accessing its attributes through the methods provided by PNML Frame-
work (e.g. pla.getId()) so as to construct the output string in the COQ format.

All the examples in the figures above show that models are handled through the
provided APIs only. Therefore, the tool developer using PNML Framework does not
manipulate any PNML code. The processing we have exposed is fully implemented in
PNML2COQ application. It can be reused for another export. In fact, PNML2COQ is in-
spired from the PNML2DOT tutorial available at [6].

The PNML2COQ application was implemented in one afternoon. The developer had
no programming practice with Java but is an experienced programmer.

4 Achieving PNML Flexibility and Ability to Evolve

The standard is deemed to evolve (i.e. able to support new Petri net types introduced in
part 3) and flexible (i.e. able to cope with additional information not in the standard). For
both, PNML Framework guarantees standard compliance and thus preserves the ability
of interchanging models with other tools.

Mechanisms for Ability to Evolve. The modular design of metamodels, as well as a
compositional and incremental ways to build new Petri net types provide PNML with

326 L.M. Hillah et al.

the ability to evolve. This capability is crucial for the work on part 3 of the standard —
addressing the definition of new Petri net types and structuring constructs.

Since PNML Framework has, from the start, been designed as a companion to the
standard, its future enhancements will also follow the advances on the standard. This
approach is both valuable for proof of concept purposes as well as future use by tool
developers.

The work on addressing the mechanisms for an evolving standard should be fed
by the Petri net community long-standing research achievements and recent results.
We are therefore actively seeking theoretical as well as practical contributions from
practitioners willing to share their new definitions and experiments.

Mechanisms for Flexibility. Moreover, flexibility of PNML allows tool developers to
cope with tool-specific information in their models which is, of course, not included in
the standard. For instance, if a tool associates C code with transitions, it can be intro-
duced as tool specific information in the PNML document. PNML Framework supports
this provision of the standard.

To do so, PNML Framework provides black box oriented PNML constructs, that allow
any non-standard but well-formed XML constructions to be included in a PNML doc-
ument. These can be included and retrieved by a tool-specific method (the non-PNML

XML sentence is encapsulated within tool-specific tags). PNML Framework ensures con-
sistent behaviours in import/export functions.

Thus, to embed some C code in a Petri net for instance, a tool must provide an XML

representation of C programs. It might just be the whole C code embedded in a opening
and closing XML tag, or a more elaborate syntax tree if the tool developer wants it to
have that form.

Impact on the end-user. PNML Framework is maintained so as to be standard compli-
ant and also to ensure backward compatibility with its former versions, starting from its
current version 2.1, which implements the international standard (2009 version). This
is possible thanks to the design choices.

So, if the metamodels evolve, the provided APIs will be regenerated so that the
former are backward compatible with the new ones. The management of flexibility is
orthogonal and thus not affected by evolution. So, maintenance is not impacted by stan-
dard evolution issues. Moreover, PNML Framework is designed to be upward compatible
when new upgrades of the standard will appear (e.g. when introducing new extensions
and/or variations in part 3 of the standard).

If tool developers want to implement their own Petri Net type or extend an existing
one, they must provide the framework with its PNML-annotated metamodel, as well as
its PNML grammar. Metamodels of the current Petri net types can be used as tutorials.
Then, the code handling the new models is automatically generated. We have proceeded
in this way to extend the P/T type with inhibitor, reset and read arcs.

5 Conclusion

PNML Framework has been designed as a companion and support of ISO/IEC-15909-2,
which defines the PNML interchange format. PNML Framework provides a set of APIs

PNML Framework: An Extendable Reference Implementation 327

to read and write PNML files. This software is developed thanks to model engineering
techniques (here EMF).

PNML Framework has been successfully used to quickly elaborate an export from
Petri nets to COQ. The main design steps to build this application demonstrated the
simple use of PNML Framework.

PNML Framework is open source and distributed under the Eclipse licence. It is im-
plemented in Java. But as shown in this paper, import/export functions can be quickly
developed as a standalone program for tools not being developed in Java.

PNML Framework enjoys flexibility capabilities and ability to evolve, which con-
stitute a major issue in further development of the standard and free tool developers
from maintenance issues due to its evolution. Initial successful experiments with small
extensions such as inhibitor arcs etc. have assessed these objectives.

Acknowledgements. The authors are very grateful to Ekkart Kindler for his support
and his comments on earlier versions of this paper.

References

1. Choppy, C., Mayero, M., Petrucci, L.: Experimenting formal proofs of Petri Nets refinements.
In: Proc. Workshop REFINE (associated with FM2008), Turku, Finland, May 2008. Electronic
Notes in Theor. Comp. Sci., vol. 214, pp. 231–254. Elsevier Science, Amsterdam (2008)

2. Eclipse Foundation. Eclipse Modeling Framework, http://www.eclipse.org/emf/
3. Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Trèves, N.: A primer on the Petri Net Markup

Language and ISO/IEC 15909-2. In: Petri Net Newsletter (originally presented at the 10th
International workshop on Practical Use of Colored Petri Nets and the CPN Tools – CPN
2009), October 2009, vol. 76, pp. 9–28 (2009),
http://www.cs.au.dk/CPnets/events/workshop09/assets/paper06.pdf

4. The Coloane home page (2009), http://coloane.lip6.fr/
5. The CPN-AMI home page (2009), http://www.lip6.fr/cpn-ami
6. The PNML Framework home page (2009), http://pnml.lip6.fr/
7. INRIA. The Coq Proof Assistant home page (2009), http://coq.inria.fr/
8. ISO/IEC/SC7/WG19. The Petri Net Markup Language home page (2009),

http://www.pnml.org

http://www.eclipse.org/emf/
http://www.cs.au.dk/CPnets/events/workshop09/assets/paper06.pdf
http://coloane.lip6.fr/
http://www.lip6.fr/cpn-ami
http://pnml.lip6.fr/
http://coq.inria.fr/
http://www.pnml.org

Author Index

Babar, Junaid 308
Beccuti, Marco 308
Best, Eike 246
Buchs, Didier 287

Carmona, Josep 226
Chatain, Thomas 165
Choppy, Christine 145

Darondeau, Philippe 246
Dedova, Anna 145
de Frutos-Escrig, David 185
Donatelli, Susanna 308

Esparza, Javier 206
Evangelista, Sami 145

Fabre, Eric 165

Gusikhin, Oleg 125

Hansen, Henri 43
Harel, David 18
Hillah, L.M. 318
Hong, Silien 145
Hostettler, Steve 287

Jiao, Li 84
Juhás, Gabriel 1
Juhásová, Ana 1

Kazlov, Igor 1
Klai, Kais 145
Klampfl, Erica 125

Kleijn, Jetty 19
Kordon, F. 318
Koutny, Maciej 19
Kristensen, Lars M. 39

Lê, Dai Tri Man 104
Leucker, Martin 206
Lohmann, Niels 297

Marechal, Alexis 287
Mendling, Jan 63
Miner, Andrew 308

Oanea, Olivia 267

Petrucci, L. 145, 318
Polyvyanyy, Artem 63

Risoldi, Matteo 287
Rosa-Velardo, Fernando 185

Schlund, Maximilian 206
Solé, Marc 226

Trèves, N. 318

Valmari, Antti 43

Wang, Yunhe 84
Weidlich, Matthias 63
Weinberg, Daniela 297
Weske, Mathias 63
Wimmel, Harro 267
Wolf, Karsten 267

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Papers
	Instance Deadlock: A Mystery behind Frozen Programs
	Introduction
	Place/Transition Nets andWorkflow Nets
	Resource Constrained Workflow Nets
	Further Research
	References

	Some Thoughts on Behavioral Programming
	References

	Petri Nets with Localities and Testing
	Introduction
	Preliminaries
	Extending PT-Nets with Localities and Range Arcs
	Processes
	Coverability
	Further Issues
	Concluding Remarks
	References

	A Perspective on Explicit State Space Exploration of Coloured Petri Nets: Past, Present, and Future
	References

	Full Papers
	Can Stubborn Sets Be Optimal?
	Introduction
	Petri Nets, Concurrent Systems, and State Spaces
	Reduced State Spaces That Preserve Deadlocks
	Dependency Graphs and Static Stubborn Sets
	The Effect of Dependency Relations
	Controlling Disabled Transitions
	Algorithms
	An Optimality Result
	Conclusions
	References

	Efficient Computation of Causal Behavioural Profiles Using Structural Decomposition
	Introduction
	Preliminaries
	The Notion of a Causal Behavioural Profile
	Execution Order Constraints: The Behavioural Profile
	Occurrence Constraints: The Causal Behavioural Profile
	Relation to Existing Behavioural Models
	Application of Causal Behavioural Profiles

	Graph Decomposition Techniques for WF-Systems
	The Refined Process Structure Tree
	An Annotated RPST: The WF-Tree

	Efficient Computation of Causal Behavioural Profiles
	Computation without Analysis of Rigid Fragments
	Computation for Rigid Fragments
	Implementation and Experimental Results

	Related Work
	Conclusions
	References

	Canonical Transition Set Semantics for Petri Nets
	Introduction
	Basic Concepts
	Canonical Transition Set Semantics
	The Order-ir Relation, Order-ir Sets and Enable-Exchangeable Sets
	Canonical Transition Set Sequence, Standard Shift Operation Order, and Well-Definedness
	Soundness and Completeness

	State Space Exploration Based on CTS
	Complete State Exploring Based on CTS
	Deadlock Detection Based on CTS

	Related Work and Experimental Support for CTS
	Step Executions in Foata Normal Form for 1-Safe Nets
	Deadlock Detection Based on Covering Step Graph and Persistent Sets

	Conclusions
	References

	A Characterization of Combined Traces Using Labeled Stratified Order Structures
	Introduction
	Notations
	Relations, Orders and Equivalences
	Step Sequences

	Stratified Order Structures and Combined Traces
	Stratified Order Structures
	Combined Traces

	Comtraces as Labeled Stratified Order Structures
	Representation Theorems
	Representation Theorem for Comtraces and lsos-Comtraces
	Representation Theorem for lsos-Comtraces and Combined Dependency Graphs

	Composition Operators
	Conclusion
	References

	Integrated Process Planning and Supply Chain Configuration for Commodity Assemblies Using Petri Nets
	Introduction
	Problem Formulation
	Petri Net Modeling of the Supply Chain Configuration Problem
	Assembly Process Net
	Product Variation Net
	Supply Chain Configuration Net
	Integer Program Supply Chain Configuration Formulation

	Summary
	References

	The NEO Protocol for Large-Scale Distributed Database Systems: Modelling and Initial Verification
	Introduction
	TheNEOProtocol
	The Modelling Approach
	Reverse-Engineering
	Abstraction Levels

	The Election Protocol Model
	Overview of the Election Protocol and Its Implementation
	Model Architecture
	Detailed Specification of Some Key Elements
	Injecting Faults in the Model
	Alternative Modelling

	Preliminary Analysis
	Specification of Desired Properties
	State Space Analysis of the Election Protocol

	Conclusion and Perspectives
	References

	Factorization Properties of Symbolic Unfoldings of Colored Petri Nets
	Introduction
	Colored Puzzle (Petri) Nets and Their Composition
	Colored Puzzle Nets
	Morphisms
	Product

	Expansion
	Symbolic Unfolding and Its Properties
	Expanded Unfoldings and Expansion of Colored Occurrence Nets

	Conclusion
	References

	Forward Analysis for Petri Nets with Name Creation
	Introduction
	Preliminaries
	$ν$-APNs
	Forward Analysis for $ν$-APNs
	Accelerations
	Conclusions and Future Work
	References

	Learning Workflow Petri Nets
	Introduction
	Preliminaries
	A Learning Algorithm for Sound Workflow Nets
	An Upper Bound on the Number of Reachable Markings
	Minimality of the Marking-DFA
	Learning the Reachability Graph by Exploration
	Mixing Process Mining and Learning
	A Lower Bound for Petri Net Learning

	Practical Experiences
	Conclusion
	References

	Process Mining from a Basis of State Regions
	Introduction
	Background
	Finite Transition Systems and Petri Nets
	Generalized Regions
	Derivation of Regions from Gradient Vectors

	Finding a Region Basis
	Computing a Basis of Gradient Vectors
	Region Basis from a Language

	Generating a {\sf PN} from a Basis
	Experiments
	Related Work
	Conclusions
	References

	Separability in Persistent Petri Nets
	Introduction
	Basic Definitions, and Earlier Results
	Petri Nets, Boundedness, Reversibility, and Persistency
	Parikh Vectors, Permutation Equivalence, and Keller’s Theorem
	T-Invariants and Cycles

	Multiples of a Net, Persistency, and the pbrp Properties
	The Minimal Cycles of a Reversible and Persistent k-Net
	Definition of Separability
	Weak Separability
	Strong Separability
	The General Case
	A Supplementary Result and Some Open Questions
	References

	New Algorithms for Deciding the Siphon-Trap Property
	Introduction
	Basic Definitions
	Evaluating the Siphon-Trap Property Using SAT
	Evaluating the Siphon-Trap Property Using a Divide-and-Conquer Approach
	Decomposition into Open Nets
	Composing Siphons and Traps
	Representing Information about Open Siphons and Traps
	Discussion

	Conclusion
	References

	Tool Papers
	AlPiNA: A Symbolic Model Checker
	Introduction
	Framework Overview
	Model Creation and Validation
	Data Types Definition
	Control Flow Definition
	Property Checker

	Performance Improvements
	Algebraic Clustering
	Algebraic Net Unfolding

	Architecture
	Benchmarks
	Conclusion
	References

	Wendy: A Tool to Synthesize Partners for Services
	Objectives
	Functionality
	Background
	Partner Synthesis
	Operating Guidelines
	Reduction Rules

	Architecture
	Using Wendy
	Use Cases
	Case Studies
	Comparison with Other Tools
	Obtain Wendy

	Conclusion
	References

	GreatSPN Enhanced with Decision Diagram Data Structures
	Introduction
	Overview of GreatSPN
	Overview of Meddly
	Enhancing GreatSPN
	Changing Only the RS
	MTMDD or EV+MDD for Reachability Graph

	Conclusion
	References

	PNML Framework: An Extendable Reference Implementation of the Petri Net Markup Language
	Introduction and Goals
	PNML Framework Architecture and Services
	Typical Use: PNML to COQ Example
	AchievingPNML Flexibility and Ability to Evolve
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

