


Lecture Notes in Artificial Intelligence 6119
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science



Mohammed J. Zaki Jeffrey Xu Yu
B. Ravindran Vikram Pudi (Eds.)

Advances in
Knowledge Discovery
and Data Mining

14th Pacific-Asia Conference, PAKDD 2010
Hyderabad, India, June 21-24, 2010
Proceedings
Part II

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Mohammed J. Zaki
Rensselaer Polytechnic Institute
Troy, NY, USA
E-mail: zaki@cs.rpi.edu

Jeffrey Xu Yu
The Chinese University of Hong Kong
Hong Kong, China
E-mail: yu@se.cuhk.edu.hk

B. Ravindran
IIT Madras, Chennai, India
E-mail: ravi@cse.iitm.ac.in

Vikram Pudi
IIIT, Hyderabad, India
E-mail: vikram@iiit.ac.in

Library of Congress Control Number: 2010928262

CR Subject Classification (1998): I.2, H.3, H.4, H.2.8, I.4, C.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-13671-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13671-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

The 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining was
held in Hyderabad, India during June 21–24, 2010; this was the first time the
conference was held in India.

PAKDD is a major international conference in the areas of data mining (DM)
and knowledge discovery in databases (KDD). It provides an international fo-
rum for researchers and industry practitioners to share their new ideas, original
research results and practical development experiences from all KDD-related
areas including data mining, data warehousing, machine learning, databases,
statistics, knowledge acquisition and automatic scientific discovery, data visual-
ization, causal induction and knowledge-based systems.

PAKDD-2010 received 412 research papers from over 34 countries includ-
ing: Australia, Austria, Belgium, Canada, China, Cuba, Egypt, Finland, France,
Germany, Greece, Hong Kong, India, Iran, Italy, Japan, S. Korea, Malaysia,
Mexico, The Netherlands, New Caledonia, New Zealand, San Marino, Singapore,
Slovenia, Spain, Switzerland, Taiwan, Thailand, Tunisia, Turkey, UK, USA, and
Vietnam. This clearly reflects the truly international stature of the PAKDD
conference.

After an initial screening of the papers by the Program Committee Chairs, for
papers that did not conform to the submission guidelines or that were deemed
not worthy of further reviews, 60 papers were rejected with a brief explana-
tion for the decision. The remaining 352 papers were rigorously reviewed by
at least three reviewers. The initial results were discussed among the reviewers
and finally judged by the Program Committee Chairs. In some cases of con-
flict additional reviews were sought. As a result of the deliberation process, only
42 papers (10.2%) were accepted as long presentations (25 mins), and an addi-
tional 55 papers (13.3%) were accepted as short presentations (15 mins). The
total acceptance rate was thus about 23.5% across both categories.

The PAKDD 2010 conference program also included seven workshops: Work-
shop on Data Mining for Healthcare Management (DMHM 2010), Pacific Asia
Workshop on Intelligence and Security Informatics (PAISI 2010), Workshop on
Feature Selection in Data Mining (FSDM 2010), Workshop on Emerging Re-
search Trends in Vehicle Health Management (VHM 2010), Workshop on Behav-
ior Informatics (BI 2010), Workshop on Data Mining and Knowledge Discovery
for e-Governance (DMEG 2010), Workshop on Knowledge Discovery for Rural
Systems (KDRS 2010).

The conference would not have been successful without the support of the
Program Committee members (164), external reviewers (195), Conference Orga-
nizing Committee members, invited speakers, authors, tutorial presenters, work-
shop organizers, reviewers, authors and the conference attendees. We highly
appreciate the conscientious reviews provided by the Program Committee
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members, and external reviewers. The Program Committee members were
matched with the papers using the SubSift system (http://subsift.ilrt.bris.ac.uk/)
for bid matching; we thank Simon Price and Peter Flach, of Bristol University,
for developing this wonderful system. Thanks also to Andrei Voronkov for host-
ing the entire PAKDD reviewing process on the easychair.org site.

We are indebted to the members of the PAKDD Steering Committee for their
invaluable suggestions and support throughout the organization process. We
thank Vikram Pudi (Publication Chair), Pabitra Mitra (Workshops Chair), Ka-
mal Karlapalem (Tutorials Chair), and Arnab Bhattacharya (Publicity Chair).
Special thanks to the Local Arrangements Commitee and Chair R.K. Bagga, and
the General Chairs: Jaideep Srivastava, Masaru Kitsuregawa, and P. Krishna
Reddy. We would also like to thank all those who contributed to the success of
PAKDD 2010 but whose names may not be listed.

We greatly appreciate the support from various institutions. The conference
was organized by IIIT Hyderabad. It was sponsored by the Office of Naval Re-
search Global (ONRG) and the Air Force Office of Scientific Research/Asian
Office of Aerospace Research and Development (AFOSR/AOARD).

We hope you enjoy the proceedings of the PAKDD conference, which presents
cutting edge research in data mining and knowledge discovery. We also hope
all participants took this opportunity to share and exchange ideas with each
other and enjoyed the cultural and social attractions of the wonderful city of
Hyderabad!

June 2010 Mohammed J. Zaki
Jeffrey Xu Yu
B. Ravindran
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Subclass-Oriented Dimension Reduction with
Constraint Transformation and Manifold

Regularization

Bin Tong and Einoshin Suzuki

Graduate School of Systems Life Sciences, Kyushu University, Japan
{bintong,suzuki}@i.kyushu-u.ac.jp

Abstract. We propose a new method, called Subclass-oriented Dimension Re-
duction with Pairwise Constraints (SODRPaC), for dimension reduction on high
dimensional data. Current linear semi-supervised dimension reduction methods
using pairwise constraints, e.g., must-link constraints and cannot-link constraints,
can not handle appropriately the data of multiple subclasses where the points of a
class are separately distributed in different groups. To illustrate this problem, we
particularly classify the must-link constraint into two categories, which are the
inter-subclass must-link constraint and the intra-subclass must-link constraint,
respectively. We argue that handling the inter-subclass must-link constraint is
challenging for current discriminant criteria. Inspired by the above observation
and the cluster assumption that nearby points are possible in the same class, we
carefully transform must-link constraints into cannot-link constraints, and then
propose a new discriminant criterion by employing the cannot-link constraints
and the compactness of shared nearest neighbors. For the reason that the local
data structure is one of the most significant features for the data of multiple sub-
classes, manifold regularization is also incorporated in our dimension reduction
framework. Extensive experiments on both synthetic and practical data sets illus-
trate the effectiveness of our method.

1 Introduction

In various applications, such as gene expression, image retrieval, etc., one is often con-
fronted with high dimensional data [1]. Dimension reduction, which maps data points
in a high-dimensional space into those in a low-dimensional space, is thus viewed as
one of the most crucial preprocessing steps of data analysis. Dimension reduction meth-
ods can be divided into three categories, which are supervised ones [2], unsupervised
ones[3], and semi-supervised ones[4]. The input data in these three categories are la-
beled data, unlabeled data, and both of them, respectively. In a typical real-world ap-
plication, only a small number of labeled data points are available due to the high cost
to obtain them [4]. Hence the semi-supervised dimension reduction may be considered
to fit into the practical setting. Instead of labeled data points, some semi-supervised
methods assume pairwise constraints, for it is easier for experts to specify them than to
assign the class labels of data points. More specifically speaking, pairwise constraints
consist of must-link constraints and cannot-link constraints. The pair of data points in
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a must-link constraint shares the same class label, while the pair of data points in a
cannot-link constraint is given different class labels.

From another viewpoint, dimension reduction methods can be divided into nonlinear
and linear ones. The former allows a nonlinear transformation in the mapping while
the latter restricts itself to linear transformation. We consider a complex distribution
of points that are distributed in multiple subclasses. In other words, the data points of
one class form several separated clusters. A nonlinear method has a higher degree of
freedom and hence can handle data with complex distribution effectively while a linear
method tends to be incompetent in such a case.

In this paper, we restrict our attention to the linear semi-supervised dimension re-
duction for the data of multiple subclasses with pairwise constraints. Previously rele-
vant methods [5] [6] [7] [8] implicitly assume that a class consists of a single cluster.
If the points are of multiple subclasses, handling the pairwise constraints to project
the points into multiple subclasses in the transformed space is challenging for linear di-
mension reduction. For a deep analysis, we particularly classify the must-link constraint
into two categories. If two points in a must-link constraint reside in a single subclass,
we define such a must-link constraint as an intra-subclass must-link constraint. On the
contrary, if two points in a must-link constraint come from different subclasses, we
define such kind of must-link constraint as an inter-subclass must-link constraint. We
attribute the reason of the improper behavior of current linear methods to the fact that
the inter-subclass must-link constraint most probably confuses the discriminant criteria
of existing methods. The problem resulted from the inter-subclass must-link constraint
is also encountered by the constraint transformation. For instance, a method in [9] trans-
forms multiple must-link constraints, which are connected via points in two different
classes, into a cannot-link constraint between the centroids of the points of two classes.
This method fails to give a comprehensible meaning if the points belong to different
subclasses because the centroids may fall into the region of another class.

To overcome above problems, we propose SODRPaC, which consists of two steps. In
the first step, must-link constraints which satisfy several conditions are transformed into
cannot-link constraints and the remaining must-link constraints are deleted. The idea
behind this step is to reduce the harmfulness of the inter-subclass must-link constraints
while exploiting the must-link constraint information as much as possible by respecting
the cluster assumption [10]: nearby points on the same manifold structure in the original
space are likely to belong to the same class. In the second step, we obtain a projection
mapping by inventing a new discriminant criterion for dimension reduction, which is
suitable for the data of multiple subclasses, and employing the manifold regularization
[11], which is helpful for discovering the local structure of data.

2 Problem Setting and Motivation

The problem setting is defined as follows. We are given a set of N points X = {x1,x2,
. . . ,xN}, where xi represents a point in a d-dimensional space, a set of must-link
constraints M = {m1, m2, . . . , mNML}, and a set of cannot-link constraints C =
{c1, c2, . . . , cNCL}. Here mi consists of a pair of points belonging to the same class
while ci consists of a pair of points belonging to different classes. The output is a
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d× l transformation matrix W which consists of l projective vectors {w1,w2, . . . ,wl}
(l � d). W maps x1,x2,...,xN to a set of lower dimensional points Y = {y1, ...,yN}.
Hence yi = WTxi where yi represents a point in a l-dimensional space. After mak-
ing data projection, we only consider the classification task in the transformed space.
For avoiding the bias caused by the choice of the classification method, the accuracy of
nearest neighborhood (1-NN) classifier is considered as a measurement for the good-
ness of dimension reduction with the 20×5-fold cross validation.
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Fig. 1. Motivating examples. The data points are of Gaussian distribution. In (a), the blue and
red points are distributed in different clusters. In (b), the red points reside in different subclasses.
Must-link constraints and cannot-link constraints are denoted by black solid and dashed lines,
respectively.

Fig. 1 presents the motivating examples, where d = 2 and l = 1. The task for di-
mension reduction here is thus to project the two dimensional data onto a line, where
the points from different classes can be differentiated. A horizontal line is supposed to
be the best projection while a vertical one is the worst projection. To better illustrate
the motivation of our method, previously relevant methods are firstly retrospected. In
the aspect of pairwise constraints, SSDR [5] and CMM [6] are to maximize the aver-
age distance between the points in cannot-link constraints, and to minimize the average
distance between the points in must-link constraints simultaneously. We can see that
minimizing the average distance between the points in must-link constraints is reason-
able in the case shown in Fig. 1a, where all the must-link constraints are intra-subclass
must-link constraints. However, it disturbs to maximize the average distance between
the points in cannot-link constraints in the case shown in Fig. 1b, where all the must-
link constraints are inter-subclass must-link constraints. CLPP [7] builds an affinity
matrix, each entry of which indicates the similarity between two points. To utilize the
constraint information, the affinity matrix is revised by setting the similarity degree be-
tween non-neighboring points involved in pairwise constraints. For example, given a
must-link constraint, the similarity degree between two points is revised to be 1, indi-
cating two points are close (similar) to each other, no matter the two points are distant
(dissimilar) or not. Suppose that the must-link constraint is inter-subclass must-link
constraint, it implies that the two points are not geometrically nearby each other. This
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arbitrary updating may damage the geometrical structure of data points. This problem
is also confronted by NPSSDR [8]. The above analysis explains the reason why CMM,
SSDR, CLPP and NPSSDR are capable of obtaining excellent performance as shown
in Fig. 1a, while they fail to reach the same fine performance in the multiple subclass
case shown in Fig. 1b.

In the light of observations, we argue that the inter-subclass must-link constraint is
probably harmful for the discriminant criteria of existing methods. For this reason, we
attempt to design a new discriminant criterion that is able to behave appropriately in the
case of multiple subclasses. The new discrimination criterion marked as ‘Discriminant
Criterion’ is able to obtain almost the same performance as others, as shown in Fig.
1a, and can even outperform previous methods, as shown in Fig. 1b. Moreover, the
manifold regularization is helpful for discovering the local structure of data which is
considered as one of the most principle characteristics of the data of multiple subclasses
[12]. We therefore consider to make the new discriminant criterion and the manifold
regularization work together in a collaborative way. Fig. 1b also demonstrates that our
method SODRPaC, which is the combination of the new discrimination criterion and
the manifold regularization, can obtain the best performance.

3 Subclass-Oriented Dimension Reduction with Pairwise
Constraints

The overview of our SODRPaC involves two steps described as follows:

(1) Transformation. This step transforms must-link constraints into cannot-link con-
straints under the cluster assumption.

(2) Dimension reduction. This step includes two components. The first component
is the new discriminant criterion suitable for the case of multiple subclasses. The
other one is the manifold regularization, which helps discovering the local structure
of data.

3.1 Transformation from Must-Link Constraints

Although a method that transforms must-link constraints into cannot-link constraints
is provided in [9], we would point out that its purpose that the plentiful amount of
constraints are reduced is substantially different from ours. Moreover, it becomes in-
effective due to the inter-subclass must-link constraint. In a high dimensional space,
the boundaries of subclasses and the number of subclasses within one class can not be
explicitly detected by using the unlabeled data and link constraints. Thus, it is difficult
to identify whether a must-link constraint is of inter-subclass must-link constraint or
not. To reduce the harmfulness of inter-subclass must-link constraints, removing all the
must-link constraints is, therefore, the most straightforward way. However, it can be
regarded as a waste of must-link constraint information. Preserving the useful must-
link constraints as much as possible in the form of cannot-link constraints is then the
fundamental idea behind the transformation.

In our method, the transformation from must-link constraints into cannot-link con-
straints basically occurs when a must-link constraint and a cannot-link constraint are
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connected. Under the cluster assumption, it is natural to consider two nearby points as
another form of must-link constraint, so that we have more opportunities to transform
must-link constraints into cannot-link constraints. In this paper, we employ shared near-
est neighbor (SNN) [13] to formulate the sense of ‘nearby’ points. A set of shared near-
est neighbors is denoted by NS = {Nx1

S ,Nx2
S , . . . ,NxN

S }where Nxi

S ={{xi,xj}|xi ∈
N(xj), xj ∈ N(xi)}. N(xi) denotes the k nearest neighbors set of xi. Let |NS | be the
number of the pairs of shared nearest neighbors, where |·| denotes the cardinality of a
set. The value of SNN between xi and xj is defined as the number of points shared by
their neighbors SNN(i, j) = |N(xi) ∩N(xj)|. The larger the value of SNN between
two points is, the closer the two points are. It should be noted that we design a N × N
matrix L to specify a kind of reliability for cannot-link constraints, which could be also
deemed as the trustiness to them. Suppose that all the previously specified constraints
are correct, for the previously given cannot-link constraints and the generated cannot-
link constraints by using must-link constraints, their reliabilities are set to be 1. For the
generated cannot-link constraints by using shared nearest neighbors, their reliabilities
are equal to the similarities between the shared nearest neighbors. It is because that
transformation by employing shared nearest neighbors are considered to be less trustful
than that by using must-link constraints. We believe it is natural to take the similarity
between the shared nearest neighbors as a measurement for the trustiness. For exam-
ple, given a pair of shared nearest neighbors {xi,xj}, we represent the reliability of
a generated cannot-link constraint by using it as a Gaussian kernel, which is a simple
kernel and has been widely applied in research fields. The reliability is formulated as
θ(xi,xj) = exp(−‖xi − xj‖2 /γ), where ‖·‖ denotes the Euclidian norm and γ is the
kernel parameter. Note that, for the convenient access to the matrix L, given a cannot-
link constraint c = {xi,xj}, we use L(c) to denote the entries of Lij and Lji, thus L
is a symmetric matrix.
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Fig. 2. Four simple cases for the transformation. The previously specified must-link constraints
and cannot-link constraints are denoted by the black solid and dashed lines, respectively. The
shared nearest neighbor is presented as the blue dotted line. The red dash-dotted line specifies the
new cannot-link constraint.

Fig. 2 shows four fundamental scenarios of the transformation. The set {a, b, e, f},
and {c, d} represent different classes of data points. We explain these four scenarios in a
metaphorical way where the must-link constraint is taken as a friend relationship while
the cannot-link constraint is considered as an enemy one. Standing from the viewpoint
of point ‘a’, it is given a friend relationship, say {a, e}, as shown in Fig. 2a, which is
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called as a basic form. If ‘d’ is my enemy, instead of keeping my friend ‘e’, consider
that ‘e’ is the enemy of my enemy ‘d’. Fig. 2b shows an extension of the basic form
with an enemy’s friend rule. If my enemy ‘d’ has a friend ‘c’, ‘c’ is the enemy of my
friend ‘e’ and me. In these two cases, the reliabilities for the new enemy relationships
are set to be 1. Fig. 2c presents an extension of the basic form, which is called as a
proximity form. If I have no enemy but my neighbor ‘b’ has an enemy ‘d’, ‘d’ is the
enemy of my friend ‘e’ and me. Fig. 2d shows an extension of the proximity form with
the enemy’s friend rule. Note that, in the latter two cases, the reliabilities for the new
enemy relationships are set to be the similarity between my neighbor ‘b’ and me. The
pseudo code for the summary of these four cases is illustrated in Algorithm 1.

Algorithm 1. Transformation from Must-link Constraints into Cannot-link Constraints

Input: M, C, k, γ.
Output: C, L.
1: create a N ×N zero matrix L.
2: for each c ∈ C do
3: L(c) = 1.
4: end for
5: if ∃ c ∈ C, m ∈M s.t. m ∩ c �= ∅ then
6: define a ∈ m ∩ c, e ∈ m−m ∩ c, d ∈ c−m ∩ c.
7: create a new cannot-link constraint c′ = {d, e}; if c′ /∈ C then C← C∪{c′}, L(c′) = 1.
8: if ∃m′ ∈M s.t. d ∈ m′, m′ �= {d, e} then
9: define c ∈ m′ −m′ ∩ c.

10: create two new cannot-link constraints c′1 = {a, c}, c′2 = {e, c}; for each c′i, i = 1, 2,
if c′i /∈ C, then C← C ∪ {c′i}, L(c′i) = 1.

11: end if
12: end if
13: if ∃m ∈M, c ∈ C, ∀a ∈ m, ∀na

S ∈ Na
S s.t. c /∈ Na

S , c ∩ na
S �= ∅, a /∈ c ∩ na

S then
14: define d ∈ c− c ∩ na

S , e ∈ m−m ∩ c.
15: create two new cannot-link constraints c′1 = {a, d}, c′2 = {e, d} and r = θ(a, b); for

each c′i, i = 1, 2, if c′i /∈ C, then C← C ∪ {c′i}, L(c′i) = r.
16: if ∃m′ ∈M s.t. d ∈ m′ and m′ �= {d, e} then
17: define c ∈ m′ −m′ ∪ c.
18: create two new cannot-link constraints c′1 = {a, c}, c′2 = {e, c} and r = θ(a, b); for

each c′i, i = 1, 2, if c′i /∈ C, then C← C ∪ {c′i}, L(c′i) = r.
19: end if
20: end if

3.2 Dimension Reduction

In this section, we explain the dimension reduction which is based on a novel discrim-
inant criterion and the manifold regularization. As mentioned in section 2, minimizing
the average distance between the points in must-link constraints is inappropriate when
the must-link constraints are inter-subclass must-link constraints. Under the cluster as-
sumption, the shared nearest neighbors could be naturally deemed as another kind of
intra-subclass must-link constraints. Thus, minimizing the average distance between
the points in intra-subclass must-link constraints could be relaxed as making the shared
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nearest neighbors closer in the transformed space. Furthermore, the pair of points in
the shared nearest neighbors probably resides in the same subclass, such that this re-
laxation would not suffer from the harmfulness of inter-subclass must-link constraints.
Therefore, the discriminant criterion, which maximizes the average distance between
the points in cannot-link constraints and minimizes the average distance between the
shared nearest neighbors, is expected to be suitable for the data of multiple subclasses.

Suppose that xi and xj are projected to the image yk
i and yk

j along the direction wk,
the new discriminant criterion is defined as follows:

∂(wk) =
∑

i,j:{xi,xj}∈C

Lij

∥∥yk
i − yk

j

∥∥2
2|C| −

∑
i,j:{xi,xj}∈NS

Hij

∥∥yk
i − yk

j

∥∥2

2|NS|
(1)

where the elements of H are given below:

Hij =
{

SNN(i, j),
0,

{xi,xj} ∈ Nxi

S

otherwise (2)

Inspired by the local scatter [14], the intuition behind the latter part of the right side
of Eq. 1 could be regarded as the compactness of shared nearest neighbors, since two
points are more likely to be close if the value of SNN between them is large. The differ-
ence from the local scatter lies in the fact that a weighted matrix H which handles the
similarity degree between shared nearest neighbors is employed. Since SNN provides
a robust property that the side effect caused by the noisy points could be reduced to
some degree, the compactness of shared nearest neighbors is more reliable than that of
local scatter. The compactness of shared nearest neighbors could be also re-written as
follows:

∑
i,j:{xi,xj}∈NS

Hij

∥∥yk
i − yk

j

∥∥2
2|NS|

=
1

2|NS|
∑

i

∑
j

Hij(wT
k xi −wT

k xj)2

= wT
k

⎡⎣ 1
2|NS|

∑
i

∑
j

Hij(xi − xj)(xi − xj)T

⎤⎦wk

= wT
k S1wk (3)

where S1 = 1
2|NS |

∑
i

∑
j

Hij(xi − xj)(xi − xj)T . S1 then could be computed as

follows:

S1 =
1

2|NS|

⎛⎝∑
i

∑
j

HijxixT
i +

∑
i

∑
j

HijxjxT
j − 2

∑
i

∑
j

HijxixT
j

⎞⎠
=

1
|NS |

⎛⎝∑
i

DiixixT
i −

∑
i

∑
j

HijxixT
j

⎞⎠
=

1
|NS |

(
XDXT −XHXT

)
(4)
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where D is a diagonal matrix whose entries are column sums of H, Dii =
∑
j

Hij .

Similarly, the first part of right hand of Eq. 1 could be reformulated as:∑
i,j:{xi,xj}∈C

Lij

∥∥yk
i − yk

j

∥∥2
2|C| =

1
2|C|

∑
i

∑
j

Lij(wT
k xi −wT

k xj)2

= wT
k S2wk (5)

where S2 = 1
|C|
(
XGXT −XLXT

)
where G is a diagonal matrix whose entries are

column sums of L, Gii =
∑
j

Lij . Then, ∂(wk) can be briefly written as:

∂(wk) = wT
k X(P−Q)XTwk (6)

where P = D−H, and Q = G− L. For all the wk, k = 1, ..., l, we can arrive at

∂ = tr
[
WT X(P−Q)XT W

]
(7)

where tr denotes the trace operator. As illustrated in Fig. 1b, the manifold regularization
[11] is helpful for enhancing the performance obtained by the new discriminant crite-
rion. We therefore incorporate it into our dimension reduction framework. The manifold
regularization is defined as:

ξ = tr
[
WT XMXT W

]
(8)

where M = I−K−1/2UK−1/2 is defined as a normalized graph Laplacian. I is a unit
matrix, and K is a diagonal matrix whose entries are column sums of U, Kii =

∑
j

Uij ,

where U is defined as follows:

Uij =
{

exp(‖xi − xj‖2
/γ),

0,

xi ∈ N(xj)
otherwise. (9)

ξ is expected to be minimized in order to preserve the sub-manifold of data. At last,
the final objective function that combines Eq. 7 and Eq. 8 together is expected to be
maximized, and is derived as

argmax
W∈Rd×l

s.t.W T W=I

tr
[
WT X(P−Q− λM)XT W

]
(10)

where λ is a parameter to control the impact of manifold regularization. By introducing
the Lagrangian, the objective function is given by the maximum eigenvalue solution to
the following generalized eigenvector problem:

X(P−Q− λM)XTw = φw (11)

where φ is the eigenvalue of P − Q − λM , and w is the corresponding eigenvector.
One may argue that, when the graph of SNN is equal to the k-NN graph of the manifold
regularization, Q is almost equivalent to M on preserving the local structure. As shown
in [13], this situation would rarely happen since the two types of graph are dramatically
different from each other in the general case. Moreover, to minimize the average dis-
tance between the shared nearest neighbors, which are considered as another form of
must-link constraints, is conceptually distinct from preserving the local structure.
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4 Evaluation by Experiments

4.1 Experiments Setup

We use public data sets to evaluate the performance of SODRPaC. Table 1 summarizes
the characteristics of the data sets. All the data come from the UCI repository [15]
except for GCM [16] that is of very high dimensionality. For the ‘monks-1’, ‘monks-2’,
and ‘monks-3’ data, we combined the train and test sets into a whole one. For the ‘letter’
data, we chose ‘A’, ‘B’, ‘C’, and ‘D’ letters from the train and test sets respectively by
randomly picking up 100 samples for each letter, and then assembled them into a whole
set.

Table 1. Summary of the benchmark data sets

Data set Dimension Instance Class Data set Dimension Instance Class
monks-1 6 556 2 monks-2 6 601 2
monks-3 6 554 2 letter(ABCD) 16 800 4

heart 13 270 4 GCM 16063 198 14

As shown in Eq. 10, λ is the parameter that controls the balance between P − Q
and M. In this experiments setting, the parameter λ is searched from 2α, where α ∈
{α| − 5 ≤ α ≤ 10, α ∈ Z}. A weighted 5-nearest-neighbor graph is employed to
construct the manifold regularizer. In addition, the kernel parameter γ follows the sug-
gestion in [17] that it is searched from the grid { δ2

16 , δ2

8 , δ2

4 , δ2

2 ,δ2, 2δ2,4δ2,8δ2,16δ2},
where δ is the mean norm of data. The parameter λ and the manifold regularizer are
then optimized by means of the 5-fold cross-validation. As to the parameter settings
of other competitive methods, we follow the parameters recommended by them, which
are considered to be optimal. Without specific explanation, the number of must-link
constraints is always set to be equal to that of cannot-link constraints, as the equal
equilibrium between must-link constraints and cannot-link constraints is favorable for
the existing methods. In addition, the value of k for searching shared nearest neigh-
bors is set to be 3. The reason of this setting is to guarantee that the pairs of points
in shared nearest neighbors reside in the same subclass, and to make the constraint
transformation have more opportunities to be performed. In our experiments, must-link
constraints and cannot-link constraints are selected according to the ground-truth of
data labels.

4.2 Analysis of Experiments

First, the effectiveness of SODRPaC is exhibited by changing the number of constraints.
Apart from the semi-supervised dimension reduction methods, we also take PCA as the
baseline. As illustrated in Fig. 3, SODRPaC always keeps the best performance when
the number of available constraints increases from 10 to 150. As seen in Fig. 3a, Fig. 3b,
Fig. 3d, and Fig.3f, CLPP is inferior to PCA even if the number of constraints is small.
The side effect of inter-subclass must-link constraints, in this case, can be neglected.
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(b) monks-2 (d=4)

20 40 60 80 100 120 140
0.78

0.8

0.82

0.84

0.86

0.88

0.9

Number of Constraints

A
cc

u
ra

cy

 

 

(c) monks-3 (d=5)
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(e) letter(abcd) (d=10)
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(f) GCM (d=150)

Fig. 3. The performance with different numbers of constraints (d: reduced dimensionality)

The reason is probably that the feature of discovering the local structure of data points
could not help CLPP to outperform PCA. However, our SODRPaC, which also utilizes
the manifold regularization due to its property of discovering the local structure, ob-
tains the best performance. We can judge that the new discriminant criterion boosts the
performance. It is also presented in Fig. 3d that the performance of SSDR decreases
to some extent with the increase of the number of constraints. The possible reason is
that increasing the number of available constraints makes the opportunity higher that
inter-subclass must-link constraints exist, which deteriorates the optimization on the
fine dimension reduction. It should be also pointed out that SODRPaC does not sig-
nificantly outperform other methods. A possible reason is that the Euclidean distance,
which is employed to formulate the similarity between points in the original space, is
likely to be meaningless in the high dimensional space.

We then examine the relative impact between must-link constraints and cannot-link
constraints on the performance of SODRPaC. In this experiment, given 150 available
constraints, the ratio of must-link constraints to cannot-link constraints is varied from 0
to 1. Fig. 4 presents that SODRPaC has a much smoother behavior than others with the
change of ratio. It indicates that SODRPaC is more robust than other semi-supervised
methods in terms of the imbalance between must-link constraints and cannot-link con-
straints. As shown in Fig. 4b and Fig. 4f, SODRPaC presents an obvious degradation of



Subclass-Oriented Dimension Reduction 11

0 0.2 0.4 0.6 0.8 1
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Rate of Must−link Set

A
cc

u
ra

cy

 

 

SODRPaC
NPSSDR
SSDR
CLPP
CMM
PCA

(a) monks-1 (d=2)

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Rate of Must−link Set
A

cc
u
ra

cy

 

 

(b) monks-2 (d=4)

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

Rate of Must−link Set

A
cc

u
ra

cy

 

 

(c) monks-3 (d=5)

0 0.2 0.4 0.6 0.8 1
0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

Rate of Must−link Set

A
cc

u
ra

cy

 

 

(d) heart (d=10)

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

Rate of Must−link Set

A
cc

u
ra

cy

 

 

(e) letter (abcd) (d=10)

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rate of Must−link Set

A
cc

u
ra

cy

 

 

(f) GCM (d=150)

Fig. 4. The performance with the change of rate for must-link set (d: reduced dimensionality)

performance when all constraints are must-link ones. The most probable reason would
be that the transformation from must-link constraints into cannot-link constraints can
not be performed when the necessary cannot-link constraints lack. This behavior is
consistent with the conclusion demonstrated in [9] that cannot-link constraints are more
important than must-link constraints in guiding the dimension reduction.

As implicated in the previous sections, the parameter λ that controls the balance
between P − Q and M, and the factor γ that is related to computing the similarity
between two points would influence the performance of SODRPaC. An analysis on
the two parameters is necessary to provide the guideline about how to choose their
values. PCA is employed as the baseline because existing methods can not hold such
two parameters simultaneously. Because of the different scale between λ and γ, λ-axis
and γ-axis are thus plotted as λ/(1 + λ) and γ/(1 + γ), respectively. The axis values
are then in the interval (0, 1). We empirically uncover two interesting patterns for most
of data sets and reduced dimensions as well. There are two regions where SODRPaC
are more likely to obtain its best performance. The first region is where λ/(1 + λ) is
small, as shown Fig. 5a, Fig. 5b, Fig. 5c, Fig. 5d, Fig. 5e and Fig. 5g. In this situation,
the variation of γ/(1 + γ) would not cause the dramatic change for the performance
of SODRPaC. The second region is where both λ/(1 + λ) and γ/(1 + γ) are large, as
shown in Fig. 5b, Fig. 5e, Fig. 5f, and Fig. 5h.
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Fig. 5. The analysis for λ and γ (d: reduced dimensionality)

5 Conclusions and Future Works

In this paper, we have proposed a new linear dimension reduction method with must-
link constraints and cannot-link constraints, called SODRPaC, that can deal with the
multiple subclasses data. Inspired by the observation that handling the inter-subclass
must-link constraint is challenging for the existing methods, a new discriminant crite-
rion is invented by primarily transforming must-link constraints into cannot-link con-
straints. We also combine the manifold regularization into our dimension reduction
framework. The results of extensive experiments show the effectiveness of our method.

There are some other aspects of this work that merit further research. Although the
empirical choice of λ and γ is suggested, we do not as yet have a good understanding
of how to choose these two parameters which are also correlated with choice of the
number of the reduced dimensionality. Therefore, we are interested in automatically
identifying these three parameters and uncovering relationships among them. Another
possible would be to integrate the semi-supervised dimension reduction and clustering
in a joint framework with automatic subspace selection.
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Abstract. Data mining tasks results are usually improved by reducing
the dimensionality of data. This improvement however is achieved harder
in the case that data lay on a non linear manifold and are distributed
across network nodes. Although numerous algorithms for distributed di-
mensionality reduction have been proposed, all assume that data reside
in a linear space. In order to address the non-linear case, we introduce
D-Isomap, a novel distributed non linear dimensionality reduction al-
gorithm, particularly applicable in large scale, structured peer-to-peer
networks. Apart from unfolding a non linear manifold, our algorithm
is capable of approximate reconstruction of the global dataset at peer
level a very attractive feature for distributed data mining problems. We
extensively evaluate its performance through experiments on both arti-
ficial and real world datasets. The obtained results show the suitabil-
ity and viability of our approach for knowledge discovery in distributed
environments.

Keywords: distributed non linear dimensionality reduction, distributed
data mining.

1 Introduction

During the last decade, the evolution of the internet as well as the emergence of
novel applications, such as peer-to-peer (P2P) systems, has led to an unprece-
dented information explosion. Information is distributed among network nodes,
making the cost of centralizing and processing data prohibitive. Consequently,
distributed data mining (DDM) has emerged as a highly challenging task.

Dimensionality reduction (DR) is an important step of data mining as high
dimensional data lead to the degradation of query processing performance, a
phenomenon known as the curse of dimensionality [8]. Thus typical tasks, such
as clustering or classification, become ineffective. DR is then required in order to
decrease the number of dimensions and reveal potentially interesting structures
in data. With the advent of DDM, distributed dimensionality reduction (DDR)
has emerged as a necessity in many applications.

A prominent such application is knowledge discovery from text collections dis-
tributed in a P2P network. Latest theoretical and experimental evidence point
out that documents lay on a non linear high dimensional manifold ([5],[3]). Con-
sequently, non linear dimensionality reduction (NLDR) is necessary in order to

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 14–26, 2010.
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recover the low dimensional structure. Although numerous DDR algorithms have
been proposed, all assume that data lay on a linear space. Thus there is the need
for definition of distributed NLDR techniques.

To this end, we introduce Distributed Isomap (D-Isomap). D-Isomap corre-
sponds to the decentralized version of the well known NLDR algorithm Isomap
[18]. D-Isomap has been specifically designed and tuned in order to be appli-
cable in large scale, structured P2P networks. We evaluate its performance and
assess its viability and suitability for distributed environments through extensive
experiments on artificial and real world datasets.

The contribution of this work is manifold. In section 2, we provide a review
of the Isomap and DDR families of algorithms. In section 3 we introduce D-
Isomap, a distributed NLDR algorithm which to the best of our knowledge is
the first of its genre. Furthermore, we provide a cost model that assesses the
computational and network resources required for the embedding of a dataset in
a low dimensional space with D-Isomap. Finally, in section 4, we demonstrate the
non linear nature of our approach through extensive experiments on well known
non linear manifolds and justify its applicability in mining document collections
distributed in P2P networks.

2 Related Work

DR algorithms are usually classified with respect to the way they manage data
([16]). Linear algorithms assume that high dimensional data lay on a linear or
approximately linear manifold of significantly lower dimensionality. On the other
hand, non linear methods assume that such linearity does not exist and operate on
small fractions of the high dimensional manifold that can be perceived as locally
linear. Due to space limitations, in the remaining of this section, we focus on the
Isomap algorithm and its variations while in the end we provide a short overview of
prominentDDR methods andmotivate the need for a distributed NLDR approach.

Isomap [18] is a non linear technique that operates on points’ pairwise geodesic
distances. Isomap first constructs a nearest neighbor (NN) graph, where each
point is represented as a node having edges to its k NN points. Edges are weighted
according to the Euclidean distance of the points connecting. Global pairwise
distances are calculated based on the shortest paths between all points (geodesic
distances). The low dimensional mapping is derived by applying classic metric
multidimensional scaling [19](MDS) on the geodesic distance matrix.

Isomap deficiencies to deal with curved manifolds or project large datasets
gave rise to extensions such as C-Isomap and L-Isomap [16]. C-Isomap employs
a different edge weighting scheme taking into account the mean distance of each
point from its NNs. L-Isomap on the other hand attempts to address the ex-
cessive memory requirements of MDS by introducing Landmark MDS (LMDS).
LMDS applies MDS on a set of sampled points and uses triangulation for the
projection of the remaining dataset. Another problem of Isomap is the defini-
tion of non connected NN graphs. In such cases the algorithm operates on the
largest connected component and discards the rest. A solution is provided by
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Incremental Isomap [20] (I-Isomap) which guarantees the construction of a fully
connected graph and is able to update the embedding when data is inserted or
deleted.

DDR algorithms assume data distributed across a set of nodes and the ex-
istence of some kind of network organization scheme. The simplest case, where
organization exists by construction, are structured P2P networks. In such net-
works, a protocol (usually based on distributed hast tables - DHT) ensures that
any peer can efficiently route a search to a peer that has a specific file. Examples
include Chord [17] and CAN [15]. In unstructured networks, the organization
may be induced by means of physical topology (i.e. a router) or by means of
self-organization [11]. In both cases however, a node undertakes all computa-
tions that have to be done centrally. The most prominent approaches in the
area are adaptations of PCA ( [9], [13], [14]). Two distributed alternatives of
Fastmap [1] have also been proposed, but their application relies heavily on the
synchronization of the network elements thus can only be applied in control-
lable laboratory environments. Recently, K-Landmarks [11] has appeared as a
promising solution for DDR in unstructured P2P networks.

Unfortunately, all these methods are linear, in the sense that they assume that
data lay on a linear or approximately linear low dimensional manifold. However,
latest results point out that data usually lay on a non linear manifold ( [5], [3])
thus linear methods fail to provide adequate results. Consequently, there is an
apparent need for decentralized NLDR techniques. To the best of our knowledge,
D-Isomap is the first attempt towards this direction.

3 Distributed Non Linear Dimensionality Reduction

D-Isomap capitalizes on the basic steps of Isomap and applies them in a net-
work context, managing to successfully retrieve the underlying manifold while
exhibiting tolerable network cost and computational complexity. In the rest of
this section we present in details each step of the algorithm and review the cost
induced by its application in a structured P2P network. Throughout the analysis
we assume that N points, residing in Rd, are distributed in a P2P network of
M peers. Each peer stores Ni points (

∑M
i=1 Ni = N). The objective is to recover

the manifold residing in Rn using a graph defined by the k NNs of each point.

3.1 Data Indexing and Nearest Neighbours Retrieval

The first step of Isomap necessitates the definition of a kNN graph for each point.
The latter, although applied in a distributed environment, should yield results
of accuracy approximating that of a centralized approach. This, in conjunction
with our initial goal for low network cost, highlights the need for a structured,
DHT based, P2P network like Chord. Chord is a P2P lookup protocol where
peer identifiers are arranged in a circle. Each node has a successor and a pre-
decessor. The successor of a peer is the next node in the identifier circle when
moving clockwise. On the other hand, the predecessor, is the next peer in the
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identifier circle when moving counter-clockwise. A message in Chord may require
to traverse O(logM) hops before reaching its destination.

In order to enable rapid lookup of points similar to each peer’s local data
we consider locality sensitive hashing [2] (LSH) that hashes similar points to
the same bucket with high probability. LSH defines L hash tables, each related
with a mapping function gi, i = 1...L. Each gi is defined by f hash functions
hj(), j = 1...f , randomly chosen from the same family of LSH functions H.
Every hi,j() maximizes the collision probability for data points that are close
to each other in the original space. Since we measure similarity based on the
euclidean distance, we use hr,b(x) = � rx+b

w 	, where x is the point under process,
r is a random vector which coordinates are defined by the Gaussian distribution
and w, b random numbers with the property b ∈ [0, w).

The mapping of hash identifiers to peer identifiers is accomplished by em-
ploying a similarity preserving transformation that depicts a vector from Rf in
R1 [6]. For a given vector x, LSH produces an f -dimensional vector; the l1 norm
of this vector defines a similarity preserving mapping to R1. Additionally, it can
be proved that the obtained l1 values are generated from the normal distribution
N (f

2 , f
w μl(xi)), where μl(xi) is the mean value of all points’ Euclidean norm. Con-

sequently, each hash value v is indexed by peer pi = ( l1(v)−μl1+2σl1
4∗σl1

∗M)modM .
The simplest way to retrieve the kNNs of a point p is to aggregate from all

hash tables the points hashed in the same bucket as p. Afterwards, retrieve the
actual points, calculate their distances from p and retain the kNNs. In order to
reduce the required messages we halt the procedure as soon as ck points have
been retrieved (in our experiments we set c = 5). Additionally, for each point,
we define a range boundp that enables a queried peer to return only a subset of
the points that indexes using Theorem 1. We use as bound the mean distance
that a point exhibits from the points of its local dataset.

Theorem 1. Given f hash functions hi = � rix
T +bi

w 	 where ri is an 1xn random
vector, w ∈ N , bi ∈ [0, w), i = 1...f , the difference δ of the l1 norms of the

projections xf ,yf of two points x, y ∈ Rn is upper bounded by ‖∑f
i=1 |ri|‖‖x−y‖

w
where ‖x − y‖ is the points’ euclidean distace.

Proof: Since |a| − |b| ≤ |a − b| ≤ |a + b| ≤ |a| + |b| we derive l1(xf ) ≤
1
w

∑f
i=1(|rix

T |+|bi|) ≤ 1
w (
∑f

i=1 |ri|)|x|T + 1
w

∑f
i=1 |bi|. We assume A=(

∑f
i=1 |ri|)

and employ the inequality in order to derive δ = |l1(xf )− l1(yf )| ≤ | 1
w A(|x|T −

|y|T )| ≤ | 1
w A||(|x|T − |y|T )| ≤ | 1

wA||(xT − yT )| = | 1
wA||x − y|T = 1

wA|x − y|T
since w and |ri| are positive. In parallel, for any two vectors a, b we know that
‖abT‖ ≤ ‖a‖‖b‖. Consequently, δ ≤ 1

w‖A|x − y|T ‖ ≤ 1
w‖A‖‖x − y‖. Based on

the latter we obtain δ ≤ ‖A‖‖x−y‖
w �

The first part of the procedure is presented in Algorithm 1. At first, Each peer,
hashes its local points and transmits the derived l1 values to the corresponding
peers. This procedure yields a network cost of O(NiL) messages per peer or a
total of O(NL) messages. The process of recovering the kNNs of a point requires
ck messages thus is upper bounded by O(ckN). Time requirements on peer level
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Algorithm 1. Data indexing and kNN retrieval
Input: Local dataset in Rd(D), � peers (M), � hash tables L, hash functions g, �
NNs (k), peer identifier (id), parameter c (c)
Output: The local neighbourhood graph of peer id (X)
for i = 1 to Nid, j = 1 to L do

hashj(pi) = gj(pi) - where pi is the i-th point of D

peerind = (
l1(hashj(pi))−μl1+2σl1

4∗σl1
∗M)modM

Send message (l1(hashj(pi)), id) to peerind and store (peerind, pi, j)
end for
if peer is creating its local NN graph then

for i = 1 to Nid, j = 1 to L do
Send message (id, hashj(pi), boundpi) to (peerind, pi, j)
Wait for response message (host, pind, l1(pind))
If total number of received points is over ck, request points from host nodes,
sort them according to their true distance from pi and retain the k NNs of pi

end for
else

Retrieve message (id, hashj(pi), boundpi) from peerid

Scan local index and retrieve relevant points according to Theorem 1
Forward retrieved points’ pointers to querying node

end if

are O(NiLf + Niklogk) induced by the hashing and ranking procedure. Finally
memory requirements are O(Nik), due to retaining the NNs of each point.

3.2 Distributed Geodesic Distances Definition

Each point p has successfully recovered the location of its kNNs and created the
corresponding graph Gp. Now, each peer should identify the shortest paths (SP)
from its local points to all points in the dataset using only local information
(∪Ni

j=1Gj). For this, we will use distributed SP computation techniques, exten-
sively used for network routing purposes. A well known algorithm is the Distance
Vector Routing (DVR) or Distributed Bellman-Ford (DBF) which is core part
of many internet routing protocols such as RIP, BGP, ISO and IDRP [10].

For every point p, its host peer maintains a distance vector DIST [p] that
stores the distances from p to all points of the dataset. Initially, only the cells
corresponding to p’s NNs are populated while the rest are set to ∞. The proce-
dure is initiated by sending the DIST [p] to all peers maintaining p’s NNs. Each
receiver evaluates its current SPs to points appearing in DIST [p] and if a new
SP is identified updates distance vector DIST [q] -where q is a point in p’s set of
NNs- and goes back to the sending step. The process is repeated until no update
takes place, thus SPs have been computed.

The algorithm is asynchronous and does not have an explicit termination
criterion. However it is self-terminating ( [10]) since message transmissions will
halt as soon as no updates take place. Consequently, each peer, after waiting time
t to receive a message considers the process finalized. In order to guarantee the
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Algorithm 2. Definition of geodesic distances
Input: peer id (id), local dataset (D), distances from NNs (DIST ), time (t)
Output: SP distances of local points to the rest of the dataset (DIST )
for i = 1 to Ni do

Send (DIST [i], i, id) to peers hosting NNs of pi

end for
while Time to receive a message < t do

Receive message (DIST [n], p, peerj) - distances of pp’s NN n residing in peerj

if d(p, j) > d(p, n) + d(n, j) for any j ∈ DIST [n] then
DIST [p][j] = d(p, n) + d(n, j)

end if
if update took place then

Send (DIST [p], p, id) to peers hosting NNs of pp

end if
end while
Substitute ∞ with 5 ∗max(DIST )

creation of a connected SP graph we substitute in the end all remaining ∞ values
with five times the largest local geodesic distance. Based on the description, the
algorithm is presented in Algorithm 2.

DBF resembles a progressive range search where each point p learns in loop
i distance information from points that are i edges away in the graph. There-
fore, DBF execution requires O(kDN2) messages, where D is the diameter (the
longest path) of the network. In our case, D depicts the number of peers that
maintain parts of a single shortest path (from any point p to any point q), thus
D = M and the network cost is upper bounded by O(kMN2). Although the
latter is relatively large, efficient implementation of the procedure can signif-
icantly reduce the total overhead. This can be accomplished by transmitting
only updated SP information in the form (psource, pdestination, dist). Memory re-
quirements are low, O(NiN) due to retaining the local points’ distances in main
memory throughout computations. Finally, time requirements are O(M).

3.3 Approximating the Multidimensional Scaling

At this point, each peer has retrieved the SP distances of its own points to the
rest of the dataset. The final step is to apply eigendecomposition on the global
distance matrix, which is essentially the MDS step of Isomap. Although several
methods for parallel computation of this procedure exist (i.e. [7]), they exhibit
excessive network requirements, making their application infeasible. An approach
that yields zero messages yet rather satisfactory results is the approximation of
the global dataset at peer level with landmark based DR techniques. Instead
of trying to map all data simultaneously to the new space, landmark-based DR
algorithms use a small fraction of points and project them in the new space.
Based on the assumption that these points remain fixed (landmarks in the new
space), the rest of the dataset is projected using distance preservation techniques.



20 P. Magdalinos, M. Vazirgiannis, and D. Valsamou

Algorithm 3. Distributed Isomap
Input: Local dataset in Rd(D), � peers (M), � hash tables (L), hash functions (g),
� NNs (k), peer identifier (p), lower dimensionality (n), parameter c (c), aggregator
peer (pa), � landmarks (a),time (t)
Output: The embedding of the global dataset in Rn (GL)
Set X = Define local neighbourhoods(D, M, L, g, k, p, c) - Algorithm 1
Set Y = Distributed Bellman-Ford(p, D, X, t) - Algorithm 2
LAN = local points (set of landmark points)
if Ni < a then

if p <> pa then
Randomly select a subset of local points and transmit them to pa

Retrieve global landmarks LAN from pa

else
Receive LANi from peer i
Define LAN by selecting a landmarks and transmit it to all peers

end if
end if
GL = LMDS(Y ,LAN ,n) or FEDRA (Y ,LAN ,n)

Two approaches directly applicable in our case are LMDS [16] and FEDRA
[12]. LMDS operates by selecting a set of a landmark points, with the constraint
a > n and projects them in the new space with the use of MDS. Afterwards, a
distance-based triangulation procedure, which uses as input distances to already
embedded landmark points, determines the projection of the remaining points.
FEDRA behaves similarly to LMDS however selects exactly n landmarks. LMDS
requires O(naNi + a3) time and O(aNi) space while FEDRA requires O(nNi)
and O(n2) respectively. The salient characteristic of this step is that by using as
landmarks the local points of a peer we manage to kill two birds with one stone.
On one hand we embed the local dataset in Rn while simultaneously each peer
derives an approximation of the global dataset. Consequently, each node is able
to access global knowledge locally.

A potential failure may appear if the landmarks in a peer are not sufficient for
the embedding to take place (i.e. for LMDS a < n). In such case, a network wide
landmark selection process can be applied. The simplest way, is to assign a peer
with the role of aggregator and then all peers transmit at least  n

M � local points.
Landmarks are randomly selected from the accumulated points and transmitted
back to all nodes thus inducing O(nNM) network load. Based on the previous
analysis we derive D-Isomap and present it in Algorithm 3. The application of
D-Isomap requires O(NiLf + Niklogk) time and O(n2 + Ni(N + k)) space per
peer and a total of O(NL + kMN2) messages from all peers.

A final issue is related to the addition or deletion of data. Upon the arrival
of a point, we apply Algorithm 1 and derive its kNNs. Afterwards, the SPs
can be easily obtained using the fact that given a set of nodes in a graph, i.e
(s, n1, n2, ..., nk, e), the distances from s to each ni and from each ni to e, the
shortest path from s to e is the one minimizing the overall distance. Therefore, we
relay on the retrieved k-NNs and calculate the SPs of the new point from all local
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Fig. 1. The Swiss Roll, Helix and 3D Clusters datasets

landmarks. Finally, we obtain its embedding through LMDS or FEDRA. The
procedure requires O(ck) messages. The case of deletion is much simpler, since
the host node will only transmit message (pointid, del) and force the deletion of
the point from the bucket of the indexing peer. On the other hand, the arrival
or departure of peers is handled by the Chord protocol itself.

4 Experiments

In this section we present the experimental evaluation of D-Isomap, which indeed
verifies the expected performance and promotes it as an attractive solution for
hard DDR and DDM problems. We carried out two types of experiments. First,
we compared the manifold unfolding capability of D-Isomap in a distributed
context against Isomap and L-Isomap in various network settings. In the second
set of experiments, we evaluated D-Isomap’s performance against Isomap, L-
Isomap and LSI [4] in numerous supervised and usupervised DDM experiments
using a medium sized text collection. The obtained results prove the suitability
and viability of our algorithm for DDM problems, where each node holds a subset
of the available information.

In the first set of experiments we employed three 3D non linear manifolds,
namely the Swiss Roll, Helix and 3D Clusters each consisting of 3000 points
(Figures 1(a), 1(b), 1(c)). In the case of the Swiss Roll an NLDR algorithm
should unfold the roll into a parallelogram while in the case of Helix it should
extract a circle. Concerning the 3D Clusters, we target in retaining the cluster
structure in the new space. Each dataset was randomly distributed in a network
of M peers (M = 10, 15, 20, 25 and 30). Depending on the dataset, we varied the
value of k; for the Swiss Roll we set k = 8 and progressively augmented it by 2
until 14. For the 3D Clusters we started from k = 6 and reached 12 using the
same step. For Helix we ranged k from 2 to 6 with a step of 1. In all experiments
we set c = 5, L = 10, f = 10 and w = 16.

We assess the quality of D-Isomap by comparing the produced manifold (on
peer level) against those produced centrally by Isomap and L-Isomap. For L-
Isomap we set a = 300 in all experiments. In the subsequent graphs, DF -Isomap
or DF indentifies D-Isomap configured with FEDRA and DL-Isomap or DL,
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Fig. 2. Network cost reported as a fraction of the worst case bound RequiredMessages
WorstCaseBound

D-Isomap deployed with LMDS. We used MATLAB R2008a for the implemen-
tation of the algorithms and E2LSH [2] for LSH. Due to space limitations, we
report only a subset of the experiments1.

In Figure 2 we present the required number of messages for the projection
of each dataset with D-Isomap as a fraction of the worst case network cost
(RequiredMessages

WorstCaseBound ) as derived by Section 3.3. First we validated the bound of
Theorem 1 with the Swiss Roll. The results (Figures 2(a), 2(b)) indicate a re-
duction in the number of messages; consequently we employed the bounded
version of the algorithm for all experiments. Figures 2(b), 2(c) and 2(d) provide
the network load for the projection of each dataset with D-Isomap. The results
highlight that D-Isomap behaves better in terms of network cost as the network
size grows. The reason is simple; as the network grows, the buckets retained
by each peer are smaller, therefore the messages are reduced. Moreover, mes-
sages are not affected seriously by changes in k so we observe a reduction in the
percentage as k grows larger.

Figures 3(a), 3(b) depict the results obtained from Isomap and L-Isomap when
applied on Swiss Roll for k = 8. Both algorithms have successfully revealed the
underlying manifold. DL-Isomap also recovered the correct 2D structure (Figure
3(c)) without being affected by the limited size of local data (only 3.3% of the
global dataset). We report only one case of failure, for M = 30 and k = 14 where
the embedding was skewed due to inappropriate selection of NNs. DF -Isomap
produces acceptable results however of lower quality compared to DL-Isomap

1 All experiments accompanied by the source code, the datasets and the graphs ob-
tained from each peer are available at
http://www.db-net.aueb.gr/panagis/PAKDD2010

http://www.db-net.aueb.gr/panagis/PAKDD2010
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Fig. 3. Isomap, L-Isomap and D-Isomap on Swiss Roll (top), Helix (middle) and 3D
Clusters (bottom)

(Figure 3(d)). This is due to the fact that FEDRA operates using only 2 points
while LMDS employs the whole local dataset at each node.

Similar quality results were obtained from DL-Isomap during the evaluation
of Helix. Our algorithm managed to recover the circle structure of Helix (Figures
3(g), 3(h)) providing results comparable to L-Isomap (Figure 3(f)) and Isomap
(Figure 3(e)). The inability of DF -Isomap to work with a limited number of
landmark points was more evident this time, producing an arc instead of a circle.
The effectiveness of D-Isomap was proved when it was applied on the 3D Clusters
dataset. Unlike Isomap and L-Isomap that failed to produce a connected graph
(Figures 3(i), 3(j)), DL-Isomap successfully managed to replicate the cluster
structure in the new space (Figures 3(k)-3(l)) since by construction produces
connected graphs. Again, DF -Isomap failed to recover the whole cluster structure
and preserved only three out of five clusters.

The results obtained from 3D Clusters inspired the application of D-Isomap
on a DDM problem. As evaluation dataset, we used the titles of all papers pub-
lished in ECDL, ECML/PKDD, FOCS, KDD, SIGMOD, SODA and VLDB
conferences between 2006 and 2008 2. The dataset consists of 2167 papers, rep-
resented as 4726-dimensional vectors using a TF-IDF populated vector space
model [4]. We randomly distributed the dataset among M peers (M = 10, 15,

2 The authors would like to thank Dr. G. Tsatsaronis who kindly provided the dataset.
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Table 1. Experiments on text. Is, LIs are used for Isomap,L-Isomap respectively

(a) Clustering experiments using k-Means

Number of peers (M)
10 15 20 25 30

DF DL DF DL DF DL DF DL DF DL LSI Is LIs

Low Dim (n)

10 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.95 0.73 0.88
15 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.98 0.70 0.85
20 0.96 0.95 0.96 0.95 0.96 0.95 0.95 0.95 0.96 0.95 0.97 0.73 0.76
25 0.95 0.95 0.95 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.90 0.71 0.81
30 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.66 0.78

(b) Classification experiments using k-NN

Number of peers (M)
10 15 20 25 30

DF DL DF DL DF DL DF DL DF DL LSI Is LIs

Low Dim (n)

10 1.11 1.04 1.10 1.07 1.11 1.08 1.10 1.08 1.10 1.08 1.14 0.84 0.76
15 1.11 1.05 1.10 1.07 1.10 1.08 1.10 1.08 1.10 1.09 1.20 0.90 0.76
20 1.10 1.05 1.10 1.07 1.10 1.08 1.10 1.09 1.10 1.09 1.24 0.90 0.80
25 1.10 1.06 1.10 1.07 1.10 1.08 1.10 1.09 1.10 1.09 1.25 0.89 0.81
30 1.10 1.06 1.10 1.07 1.10 1.08 1.10 1.09 1.10 1.09 1.24 0.90 0.79

20, 25 and 30) and embedded it in 10, 15, 20, 25 and 30 dimensions. We used
the same values for L,f ,a,c and w as before and ranged k from 8 to 14 with a
step of 2. The embedded datasets from each peer were used as input for clas-
sification and clustering. We employed F -measure ( [4]) in order to assess the
quality of the results. In all experiments we report the relative quality amelio-
ration R = Fm,new

Fm,orig
. R represents the ratio of the F -measure (Fm,new) obtained

in the low dimensional dataset over the F -measure (Fm,orig) obtained in the
original case.

DF -Isomap and DL-Isomap were compared against Isomap, L-Isomap and
LSI. For the central algorithms, reported values correspond to the mean of 10
executions. All results have been validated with a 10-fold cross validation. For
D-Isomap we applied the same methodology on each peer level and report the
mean value obtained across nodes. The statistical significance of D-Isomap’s
results has been verified by a t-test with confidence level 0.99. We employed
k-Means and k-NN [4] for clustering and classification respectively; for k-NN we
set kNN = 8 in all experiments. Although this may not be optimal, it does not
affect our results, since we report the relative performance of the classifier.

Table 1(a) provides the clustering results obtained using k = 8 for the defini-
tion of the NNs for D-Isomap, Isomap and L-Isomap. The results highlight the
applicability of D-Isomap in DDM problems as well as the non linear nature of
text corpuses. Both flavours of our algorithm produce results marginally equal
and sometimes superior to central LSI. The low performance of Isomap and
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L-Isomap should be attributed to the definition of non-connected NN graphs.
Table 1(b) provides the classification results obtained for the same value of k.
D-Isomap is outperformed only by central LSI while in cases ameliorates the
quality of k-NN. The latter comprises an experimental validation of the curse
of dimensionality. The network load induced by D-Isomap in this experiment is
provided in 2(e).

5 Conclusion

In this paper we have presented D-Isomap, a novel distributed NLDR algorithm
which to the best of our knowledge is the first attempt towards this direction.
We presented in details each step of the procedure and assessed the requirements
posed to each network node by its application. Through extensive experiments we
validated the capability of D-Isomap to recover linear manifolds from highly non
linear structures. Additionally, we highlighted its applicability in DKD problems
through experiments on a real world text dataset. The high quality results inspire
us to pursue the extension D-Isomap towards P2P document retrieval and web
searching.
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Abstract. The progressive sequential pattern mining problem has been
discussed in previous research works. With the increasing amount of
data, single processors struggle to scale up. Traditional algorithms run-
ning on a single machine may have scalability troubles. Therefore, mining
progressive sequential patterns intrinsically suffers from the scalability
problem. In view of this, we design a distributed mining algorithm to ad-
dress the scalability problem of mining progressive sequential patterns.
The proposed algorithm DPSP, standing for Distributed Progressive Se-
quential Pattern mining algorithm, is implemented on top of Hadoop
platform, which realizes the cloud computing environment. We propose
Map/Reduce jobs in DPSP to delete obsolete itemsets, update current
candidate sequential patterns and report up-to-date frequent sequential
patterns within each POI. The experimental results show that DPSP
possesses great scalability and consequently increases the performance
and the practicability of mining algorithms.

1 Introduction

Based on the earlier work [7], the sequential pattern mining problem [1] can
be categorized as three classes according to the management of correspond-
ing databases. They are static sequential pattern mining, incremental sequential
mining and progressive sequential pattern mining. It is noted that the progressive
sequential pattern mining is known as a general model of the sequential pattern
mining. The static and the incremental sequential pattern mining can be viewed
as special cases of the progressive sequential pattern mining. The progressive se-
quential pattern mining problem can be described as “Given an interesting time
period called period of interest (POI) and a minimum support threshold, find the
complete set of frequent subsequences whose occurrence frequencies are greater
than or equal to the minimum support times the number of sequences having
elements in the current POI in a progressive sequence database.” In fact, mining
progressive sequential patterns intrinsically suffers from the scalability problem.
In this work, we propose a distributed data mining algorithm to address the
scalability problem of the progressive sequential pattern mining. The proposed
algorithm DPSP, which stands for Distributed Progressive Sequential Pattern
mining algorithm, is designed on top of Hadoop platform [6], which implements
Google’s Map/Reduce paradigm [5].

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 27–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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We design two Map/Reduce jobs in DPSP. At each timestamp, the candi-
date computing job computes candidate sequential patterns of all sequences and
updates the summary of each sequence for the future computation. Then, us-
ing all candidate sequential patterns as the input data, the support assembling
job accumulates the occurrence frequencies of candidate sequential patterns in
the current POI and reports frequent sequential patterns to users. Finally, all
up-to-date frequent sequential patterns in the current POI are reported. DPSP
not only outputs frequent sequential patterns in the current POI but also stores
summaries of candidate sequential patterns at the current timestamp. As time
goes by, DPSP reads back summaries of all sequences and combine them with
newly arriving itemsets to form new candidate sequential patterns at the new
timestamp. Obsolete candidate sequential patterns are deleted at the same time.
DPSP is thus able to delete obsolete itemsets, update summaries of all sequences
and report up-to-date frequent sequential patterns. It is noted that DPSP does
not need to scan the whole database many times to gather occurrence frequencies
of candidate sequential patterns. DPSP, instead, reads newly arriving data and
the summary of each sequence once. In addition, DPSP utilizes cloud comput-
ing techniques. It is easy to scale out using Hadoop platform to deal with huge
amounts of data. The experimental results show that DPSP can find progressive
sequential patterns efficiently and DPSP possesses great scalability. The dis-
tributed scheme not only improves the efficiency but also consequently increases
the practicability.

The rest of this work is organized as follows. We will derive some preliminaries
in Section 2. The proposed algorithm DPSP will be introduced in Section 3. Some
experiments to evaluate the performance will be shown in Section 4. Finally, the
conclusion is given in Section 5.

2 Related Works

After the first work addressing the sequential pattern mining problem in [1],
many research works are proposed to solve the static sequential pattern min-
ing problem [2], and the incremental sequential pattern mining problem [10].
As for the progressive sequential pattern mining problem, new data arrive at
the database and obsolete data are deleted at the same time. In this model,
users can focus on the up-to-date database and find frequent sequential patterns
without being influenced by obsolete data. To deal with a progressive database
efficiently, a progressive algorithm, Pisa, is proposed in [7]. However, traditional
algorithms running on a single processor struggle to scale up with huge amount
of data. In view of this, many researchers work on distributed and parallel data
mining algorithms [4] [3] [12] [9] [11] [8]. In recent days, many researchers and
corporations work on developing the cloud computing technology, which utilizes
clusters of machines to cope with huge amount of data. The platform allows
developers to focus on designing distributed algorithms whereas routine issues
like data allocation, job scheduling, load balancing, and failure recovery can be
inherently handled by the cloud computing framework. Hadoop [6] is an open
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Fig. 1. Algorithm DPSP and system model

source project aiming at building a cloud infrastructure running on large clusters,
which implements Google’s Map/Reduce paradigm [5]. By means of the map
function, the application can be divided into several fractions. Each fraction
is assigned to a single node in large clusters and executed by the node. After
the execution, the reduce function merges these partial results to form the final
output. As such, developers need only to design a series of Map/Reduce jobs to
split data and merge results.

3 Distributed Progressive Sequential Pattern Mining

We utilize Hadoop platform to design a distributed algorithm for the progressive
sequential pattern mining. The proposed algorithm is named as Distributed Pro-
gressive Sequential Pattern mining algorithm, abbreviated as DPSP. In essence,
DPSP consists of two Map/Reduce jobs, the candidate computing job and the
support assembling job. As shown in the left of Figure 1, for each timestamp, the
candidate computing job reads input data, which arrives at timestamp t, of all
sequences. Itemsets from different sequences are distributed to different nodes in
the cloud computing environment. Each node in the cloud computes candidate
sequential patterns of each sequence within the current POI. Meanwhile, the
candidate computing job also updates the summary for each sequence. Obsolete
data are deleted in the candidate computing job and the up-to-date candidate
sequential patterns are output. Then, support assembling job reads all candidate
sequential patterns as input data. Different candidate sequential patterns are dis-
tributed to different nodes. Each node accumulates the occurrence frequencies
of candidate sequential patterns and reports frequent sequential patterns whose
supports are no less than the minimum support threshold in the current POI
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to users. When time goes to the next timestamp, DPSP keeps executing these
Map/Reduce jobs. As such, DPSP is able to report the most up-to-date frequent
sequential patterns in each POI.

The system model of DPSP is shown in right of Figure 1. The upper part is the
candidate computing job while the support assembling job is at the lower part.
In the candidate computing job, input data at timestamp t and the candidate
set summaries at timestamp t-1 are split and transferred to several CCMap-
pers. CCMapper generates many pairs of <sequence number, input itemset>.
Then, pairs with the same sequence number are sent to the same CCReducer.
CCReducer computes candidate sequential patterns of the given sequence and
outputs pairs of <candidate sequential patterns, null>. In addition, CCReducer
updates the summary of each sequence and deletes obsolete data at the same
time. Candidate set summaries at the current timestamp are output for the com-
putation at the next timestamp as well. Next, each SAMapper in the support
assembling job reads input data and accumulates local occurrence frequencies
for each candidate sequential patterns. SAMapper generates pairs of <candidate
sequential pattern, local supports of the candidate> as outputs. Then, the pairs
containing the same candidate sequential pattern are sent to the same SARe-
ducer. SAReducer aggregates supports of the same candidate sequential pattern
and outputs those frequent patterns in the current POI. After the computation
at the timestamp, t, DPSP moves to the next timestamp, t+1.

3.1 Candidate Computing Job

The objective of the candidate computing job is to compute all candidate se-
quential patterns from all sequences within the current POI as shown in Figure 2.
In CCMapper, itemsets of all sequences arriving at the current timestamp and
the candidate set summaries at the previous timestamp are used as input data.
As shown in lines 2 to 3 of CCMapper, if CCMapper reads the input from candi-
date set summaries, CCMapper generates <sequence number, candidate itemset
with the corresponding timestamp> pairs. On the other hand, if CCMapper
reads the input data from a sequence, CCMapper outputs <sequence number,
arriving itemset> pairs as shown in lines 4 to 5. These output pairs are dis-
tributed to CCReducers as their inputs. Pairs with the same key are sent to
the same CCReducer. By means of the summary at the previous timestamp and
the arriving itemset at the current timestamp, each CCReducer is able to gen-
erate candidate sequential patterns of each sequence in the current POI. In line
2 of CCReducer, the multiple output variable is used to output candidate set
summary at the current timestamp for the future computation. In lines 6 to 15,
CCReducer enumerates each value in the receiving pairs. If the value is a can-
didate set summary at the previous timestamp, CCReducer puts the candidate
into cand set. In lines 9 to 10, if the timestamp is bigger than the start time
of the current POI, which means this candidate will still be valid at the next
timestamp, CCReducer outputs the candidate in the summary of the current
timestamp for the computation at the next timestamp. In lines 11 to 12, if the
candidate contains more than 1 item, the candidate is put in the result set as
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Fig. 2. Candidates Computing Job and Supports Assembling Job

a candidate sequential pattern. In lines 13 to 14, if the value is the arriving
itemset of a sequence, CCReducer stores the input itemset for the generation of
new candidate itemsets in the following lines. It is noted that there is only one
newly arriving itemset of a specific sequence number at a timestamp.

CCReducer has to compute all combinations of items in the arriving itemset in
order to generate the complete set of different sequential patterns. For example,
if the incoming itemset is (ABC), all combinations for generating candidate
sequential patterns are A, B, C, (AB), (AC), (BC), and (ABC). In lines 17 to
22, CCReducer first appends each combination to each candidate itemset in the
cand set summary to form new candidate sequential patterns. Then, the newly
generated candidate sequential pattern is put into the result set as an output
in line 19. Meanwhile, if the timestamp of the candidate sequential pattern is
bigger than the start time of the current POI, the newly generated candidate
itemset is put in the summary of the current timestamp for further computation
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at the next timestamp in lines 20 to 21. Note that the candidate itemsets whose
timestamps equal to the start time are not stored. In other words, the obsolete
data at the next timestamp are pruned away. In addition to the newly generated
candidates, CCReducer stores each combination with the current timestamp in
the summary at the current timestamp in line 23. The summary of the cur-
rent timestamp will be used to compute candidate sequential patterns at the
next timestamp. Finally, all candidate itemsets in the result set are output as
<candidate itemset, null> pairs in lines 25 to 26. After the collection of output
pairs of each CCReducer, the candidate computing job has dealt with all incom-
ing itemsets at the current timestamp, generated candidate sequential patterns
of all sequences in the current POI, and updated candidate set summaries of all
sequences for the computation at the next timestamp.

3.2 Support Assembling Job

As shown in Figure 2, the support assembling job calculate supports for each can-
didate sequential patterns. The support assembling job reads all candidate sequen-
tial patterns from the outputs of the candidate computing job. SAMapper utilizes
a local map to aggregate occurrence frequencies of different candidate sequential
patterns locally in lines 2 to 6 and outputs <candidate sequential pattern, its local
supports> pairs in lines 7 to 8. Pairs with the same candidate sequential pattern
are sent to the same SAReducer. In lines 2 to 3 of SAReducer, SAReducer accumu-
lates supports of the same candidate sequential pattern again and gathers the final
supports. For those candidate sequential patterns whose supports are no less than
the minimum support threshold, SAReducer reports them as frequent sequential
patterns in the current POI in lines 4 to 5. Then, DPSP algorithm moves to the
next timestamp and repeats these Map/Reduce jobs.

4 Performance Evaluation

4.1 Experimental Designs

To assess the performance of DPSP, we conduct several experiments to evaluate
the performance and the effects of input parameters. DPSP is implemented in Java
and runs on top of Hadoop version 0.19.1. Hadoop cluster consists of 13 nodes and
each node contains 2 intel Xeon(TM) CPU 3.20GHz, 2GB RAM and 32GB SCSI
harddisk. The synthetic datasets are generated the same as [7]. In our experiments,
every point in the figures is the total execution time of 40 timestamps and the POI
is set as 10 timestamps unless specified otherwise.The minimum support threshold
is set to 0.02 and there are 10000 different items in the synthetic datasets.

4.2 Experimental Results

First, we examine the performance of DPSP with large numbers of sequences
as shown in Figure 3. Note that both X-axis and Y-axis are in log scale in (a).
The total execution time does not vary a lot when the number of sequences is
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Fig. 3. Experiments

smaller than 500k. The reason is that most of the execution time comes from
the overhead of Hadoop scheme such as disk I/O and communication costs.
When the number of sequences is bigger than 500k, the total execution time
increases linearly. We show the linear part of Figure 3(a) in more details in
Figure 3(b). The linear equation of the regression line is y = 0.0005x + 1057.8,
which means DPSP possesses very good scalability. Therefore, DPSP shows great
practicability with large number of sequences. In the second experiment, we
demonstrate the effect of increasing the length of POI. As shown in Figure 3(c),
the total execution time goes up very quickly. The reason is that the number of
candidate sequential patterns generated by each sequence grows exponentially
as the length of POI increases. Therefore, the processing time of DPSP increases
accordingly. The distributed nature of DPSP helps a little.

Finally, we show the advantages of the distributed scheme of our proposed al-
gorithm DPSP. The datasets contain 1000k to 10000k sequences. As shown in
Figure 3(d), the total execution time drops as the number of nodes increases from
1 to 8. This shows the merits of the distributed scheme. It is noted that both X-axis
and Y-axis are in log scale. However, the overheads of disk I/O and message com-
munication retard the reduction rate of the total execution time when the number
of nodes equals to 13. Nevertheless, the decrease of the total execution time is re-
markable. It is still worth to include more computing nodes in the cluster if we
want to deal with more sequences. By utilizing Hadoop platform, it is extremely
easy to extend the scale of the cluster to acquire better performance.

5 Conclusions

We proposed a distributed algorithm DPSP to address the inevitable scalability
problem of the progressive sequential pattern mining. DPSP is running on top
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of Hadoop. We designed two Map/Reduce jobs in DPSP to efficiently compute
candidate sequential patterns, update summaries of sequences, and assemble
supports of candidate sequential patterns within each POI. As such, DPSP is
able to report the most up-to-date sequential patterns. The experimental results
show that DPSP possesses great scalability and thus increases practicability
when the number of sequences become larger. In addition, by utilizing Hadoop
platform, it is easy to increase the number of computing nodes in the cluster to
acquire better performance.
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Abstract. Graphics Processing Units in today’s desktops can well be thought 
of as a high performance parallel processor. Each single processor within the 
GPU is able to execute different tasks independently but concurrently. Such 
computational capabilities of the GPU are being exploited in the domain of 
Data mining. Two types of Hierarchical clustering algorithms are realized on 
GPU using CUDA. Speed gains from 15 times up to about 90 times have been 
realized. The challenges involved in invoking Graphical hardware for such 
Data mining algorithms and effects of CUDA blocks are discussed. It is 
interesting to note that block size of 8 is optimal for GPU with 128 internal 
processors.  

Keywords: CUDA, Hierarchical clustering, High performance Computing, 
Computations using Graphics hardware, complete linkage. 

1   Introduction 

High performance computing on various multi-core processors remains as a challenge 
in the software industry.  Amidst the presence and growth of CPU based parallel and 
distributed computing, the field of General Purpose Computation on Graphics 
Processing Unit (GPGPU) has shown tremendous achievements in increasing the 
computational speed by few folds. [1, 2, 9, 10, 11]. 

1.1   Computing Trends and Challenges Using GPU 

The launch of NVIDIA’s Compute Unified Device Architecture (CUDA) technology 
is a catalyst to the phenomenal growth of the application of Graphics Processing Units 
to various scientific and data mining related computations. The skills and techniques 
needed in invoking the internal parallel processors of a GPU should be viable to Data 
mining programmers who might not be expert Graphics Programmers. The intension 
of this work is to implement Hierarchical Agglomerative Clustering (HAC) 
algorithms using CUDA and demonstrate the speed gains.  
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1.2   Graphics Processors and CUDA Technology 

The GPU is designed to perform computations with extreme speed. The raw 
computational power of GPU can be expressed and compared with that of the CPU in 
terms of ‘Peak floating-point operations per second’ and ‘Memory Bandwidth’. Fig. 1 
shows the growth trend of computational power of the GPU and the CPU in terms of 
Peak Giga Flops (GFlops). The NVIDIA 8800 GTS GPU has a Peak performance of 
624 GFlops and Memory Bandwidth of 62 Giga Bytes per second whereas a 3.0GHz 
Dual Core Intel CPU has a Peak Floating point rate of 12 GFlops and Memory 
Bandwidth of 12.8 Giga Bytes per second. Such form of raw power of the Graphics 
hardware is thus available to be utilized for non-image processing related computations 
[4, 8, 10]. 

 

Fig. 1. Growth trend of NVIDIA GPU vs. CPU (Courtesy: NVIDIA) 

2   Choice of HAC Algorithms and Implementation 

2.1   HAC Algorithms  

HAC is a common and important algorithm used in Data mining in the domains of 
micro array analysis, genome clustering, image processing and web page clustering. 
Hierarchical clustering seeks to build up a hierarchy of clusters. In the agglomerative 
approach each data vector is considered as a cluster in its own and pairs of such 
clusters are merged and the hierarchy moves up [3]. A measure of similarity between 
the clusters is required to decide which clusters should be merged. We use the 
Euclidean distance as the metric to determine the similarities between pair of clusters. 
[7, 8] where the vector norms ai and bi can be calculated using Equation (1), where n 
is the number of cluster vectors to be merged. Selection of a pair of clusters to merge 
depends on the linkage criteria. There are two commonly used linkage criteria and the 
type of HAC depends on the linkage criteria used to merge the pair of clusters.  

∑
=
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2
ii2 )b(a  ||ba||  .         (1) 
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The criteria used by the complete linkage clustering and the single linkage clustering 
are given in Equation (2) and Equation (3) respectively.   

}Bb,Aa:)b,a(dist{Maximum ∈∈  .                        (2) 

}Bb,Aa:)b,a(dist{Minimum ∈∈  .                       (3) 

The pair of clusters selected based on a criteria are merged and a cluster vector is 
updated. The centroid of the individual cluster vectors within the merged pair is 
computed to replace the original cluster vectors.  The centroid Cj of k cluster vectors 
to be merged can be computed using Equation (4). 

k

a....aa
Cj k21 +++

=                        (4) 

The resultant hierarchy of clusters can be presented as a dendrogram. In this research 
paper, we intend to implement and analyze the results of HAC based on complete 
linkage and the single linkage methods. The HAC single linkage method has been 
previously implemented using CUDA [3]. We find that the merging of clusters was 
not done by computing the centroid of all the individual clusters within the pair of 
clusters selected for the merge and that short coming is rectified. 

2.2   HAC Implementations Using CUDA  

The computational steps that can be made parallel are implemented on the Graphics 
processor. Table 1 summarizes the functions used in the implementation of HAC 
complete linkage method using CUDA on GPU. This implementation architecture is 
common for both the single linkage with Centroids and the complete linkage methods. 
Understanding the CUDA architecture is vital in effectively implementing 
computational algorithms on the GPU and is well explained. [1, 3, 5] 

Table 1. CUDA functions in HAC Complete Linkage 

Computational Steps in HAC GPU CUDA functions Kernel in GPU? 
Compute distances calculateDistance(); Yes 
Compute Centroid updateArray0(); Yes 
Update similarity half matrix updateArray1(); All distances 

from jth cluster are set at d. 
Yes 

Identify maximum distance vectors updateArray2(); Yes 
Update similarity half matrix updateArray3();  ith cluster 

distances are recalculated. 
Yes 

Update the ith and jth cluster vectors updateArray4(); Yes 

3   HAC Implementation Results and Discussions 

The CUDA implementations of the HAC Algorithms are executed and tested on a 
NVIDIA GeForce 8800 GTS GPU with a memory of 512MB. The corresponding 
CPU implementation is run on a desktop computer with Pentium Dual Core CPU, 1.8 
GHz. 1.0GB RAM on MS Windows Professional 2002. Gene expressions of Human 
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Mammary Epithelial Cells (HMEC) with 60000 Genes and 31 features each were 
used to evaluate the performance compared to the CPU implementation. This 
microarray dataset has been obtained from experiments conducted on HMEC. The 
performance of the GPU over the CPU is expressed as computational ‘Speed Gain’, 
which is simply the ratio between the CPU computational time and the GPU 
computational time. The GPU computational time includes the time taken to transfer 
the input vectors from the CPU to the GPU and transfer cluster results back to CPU. 

3.1   Determination of Optimal Block Size Based on Speed Gains 

One of the parameter that affects the computational performance of GPU is the Block 
size. Block size in CUDA determines the number of threads to be invoked during run 
time. A block size of 8 invokes 8 x 8 = 64 threads during runtime which could be run 
in parallel. Each thread independently operates on a vector and thus exploits the 
parallel computing power of the GPU. Fig. 2 shows the results obtained by 
implementing the complete linkage HAC algorithm on the GPU with various block 
sizes using 5000 genes versus different dimensions. Results show that the block size 
of 8 is optimal for any selected number of dimensions which was used further. 

3.2   Speed Gain Profile Using the Gene Expression Data Set 

Fig. 3 shows the Speed Gain versus the number of Genes with 31 features for both the 
single linkage with Centroids and the complete linkage method. It can be noted that 
the single linkage method can be about 44 times faster than the CPU implementation 
when there are 10000 Genes to be clustered, whereas the complete linkage method 
reaches only about 20 times the speed of the CPU implementation above which the 
CPU took too long to complete, hence aborted. 

3.3   Effect of Gene Size and Dimensions on Speed Gain in HAC Single Linkage 

Significant resources of the GPU are utilized for the calculation of half distance 
matrices. For this experiment with single linkage HAC algorithm, the number of 
dimensions is artificially increased and the computational time taken is measured for 
10000 Genes. Fig. 4 shows the effect of increase in dimensions of Genes on 
computational Speed Gains and the % of time taken to compute the half similarity 
matrices. It can be noticed that speed up to about 90 times is gained at low dimensions 
and it drops as the dimensions increase to about 13 to 15 times. Fig. 5 contrasts the 
performance with 6 and 31 dimensions. 

4   Research Issues with Clustering Algorithms on CUDA 

Data mining algorithms are often computationally intense and repetitive in nature 
which exhibit rich amounts of data parallelism. Data parallelism is a characteristic of 
a computational program whereby arithmetic operations can be performed on data 
vectors simultaneously. The inherent parallelism in the graphics hardware is invoked 
by CUDA features. Fig. 6 shows the CUDA architecture and the hardware resources 
which are used in the invocation of HAC computations on the GPU [5]. 
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Fig. 2. HAC Complete linkage Speed Gains vs. Dimensions and CUDA Block sizes 
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Fig. 3. GPU Performance: Single link – Centroid and Complete link vs. number of Genes 

4.1   CUDA Process Block Size and Threads 

Each CUDA processing block is run on one Multiprocessor (MP). In an 8800 GTS 
GPU there are 16 such MPs with 8 internal processors each that makes the total 
number of internal processors to 128. Thus while using a block size of 8, the use of 8 
* 8 = 64 threads is referred to. Each thread is associated with an internal processor 
during runtime. Internal processors which do not belong to a block cannot be accessed 
by that block. So there will be a maximum of 8 execution cycles to process 64 threads 
while the block size is 8. If 8 such blocks can be used simultaneously, then all the 128 
internal processors can be used simultaneously, thus fully harnessing the power of the 
GPU. This also explains why the Speed Gains with block size of 8 is high. 

There is no direct control possible at block-level for the programmer and the block 
allocation to internal processors cannot be determined. When a grid is launched, 
CUDA automatically allocates blocks into the processors. There will be ‘n*n/(2*k)’ 
threads created per block, where n is the number of observations and k is the possible 
number of threads per block. In Hierarchical clustering, ‘n*n/2’ is the size of the half-
similarity matrix, which is also the number of threads needed to simultaneously 
operate the entire matrix. In this HAC implementation only one block is used per grid. 
Hence only 1 MP is used and thus for block size 8, the number of threads invoked per 
block is 64. For the total number of threads generated to be invoked in the block, only  
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Fig. 5. HAC Single linkage Speed Gains: Gene Dimensions vs. number of Genes 

‘k*number of blocks’ will be executed simultaneously. Though the total number of 
blocks required is ‘n*n/(2*k)’, there will be queuing while only one block is used. 
Within a grid, a number of blocks used will be queued up with threads and allocated 
to processors in a MP. 

The CUDA program should use 16 or 12 or 4 blocks to fill the GPU depending on 
the number of internal processors in the GPU used. To be effective we need to use 
more blocks within the grid. When a grid is launched, the number of blocks 
processing is equal to ‘number of MP used*8’. The number of block is designated as 
twice as the number of MP because computations in some of the blocks may finish 
earlier than the others. When a computational queue is complete, the processor will be 
idle and that is a waste. One way to overcome this issue is to use multiple blocks thus 
managing and utilizing the hardware resources of the GPU more effectively. 

4.2   Analysis of Threads in CUDA for Data Parallelism 

The number of threads invoked via a program is dependent on the algorithmic design. 
For example, for computing the vector distance of array A and array B of size n, there 
would be at least n threads operating on a pair of element (ai, bi), where 1 ≤ i ≤ n. This 
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Fig. 6. GPU hardware model based on CUDA architecture (Courtesy: NVIDIA) 

design theoretically would provide maximum parallelization. In the distance 
computations, n threads are arranged in a way to naturally group into blocks of similar 
size, satisfying the relation: ‘n = number of threads = (number of blocks) * (number of 
threads per blocks)’. 

Each thread in a block is given a unique thread-index, in order to identify threads 
in different blocks. Therefore, to differentiate any two threads a thread ID can be 
conceived as follows: ‘thread ID = (block-index, thread-index)’ where block-index is 
unique among any block. Blocks are organized into a grid. Thread-index and block-
index may be formed of one, two or three dimensions. For the computations in HAC 
methods, it is found easier to conceive a one-dimensional grid [3]. 

5   Conclusion 

We implemented single linkage centroid and the complete linkage HAC methods. 
Speed Gains about 15 to 90 times than the CPU have been achieved. The 
computational speed gain on HAC single linkage method is almost twice as obtained 
for the complete linkage method. This is due to the fact that the identifying maximum 
distance pair needs a custom developed function whereas the identification of 
minimum distance pair uses the built in CUDA library (cublasIsamin) function. The 
issues rising from the implementation of HAC methods using CUDA have been 
discussed and generalized. The optimal block size for CUDA processing on GPU with 
128 internal processors should be 8. Maximum number of observations that can be 
currently clustered is limited by the size of distance matrix. Future plans include the 
use of ‘Multiple Blocks’ and implementing variants of HAC algorithm.  
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Abstract. In this paper, we present a method for identifying correspondences, 
or mappings, between alternative features of brainwave activity in event-
related potentials (ERP) data. The goal is to simulate mapping across results 
from heterogeneous methods that might be used in different neuroscience 
research labs. The input to the mapping consists of two ERP datasets whose 
spatiotemporal characteristics are captured by alternative sets of features, that 
is, summary spatial and temporal measures capturing distinct neural patterns 
that are linked to concepts in a set of ERP ontologies, called NEMO (Neural 
ElectroMagnetic Ontologies) [3, 6]. The feature value vector of each 
summary metric is transformed into a point-sequence curve, and clustering is 
performed to extract similar subsequences (clusters) representing the neural 
patterns that can then be aligned across datasets. Finally, the similarity 
between measures is derived by calculating the similarity between 
corresponding point-sequence curves. Experiment results showed that the 
proposed approach is robust and has achieved significant improvement on 
precision than previous algorithms. 

Keywords: Schema Matching, Sequence Similarity Search, ERP Data.  

1   Introduction 

Over the last two decades, neuroscience has witnessed remarkable advances in the 
development of methods for research on human brain function, including high-density 
electroencephalography (EEG) and event-related potentials (ERP). The ERP 
("brainwave") method is a direct measure of neuronal activity.. ERP methods have 
yielded a large number of patterns that are associated with various behavioral and 
cognitive functions [12, 13]. Remarkably, however, there are few quantitative 
comparisons ("meta-analyses") of ERP data from different studies.. The inability to 
compare results across experiments has made it difficult to achieve a high-level 
synthesis and understanding of the vast majority of ERP results.  
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To address this problem, we have been working to design a system, called Neural 
ElectroMagnetic Ontologies, or NEMO [3, 6], for data sharing and integration of 
results across different ERP analysis methods, experiment paradigms, and research 
sites with the help of formal ontologies. In the present paper, we extend this prior 
work by introducing a method for identifying correspondences, or mappings, between 
alternative sets of ERP spatial and temporal measures. These alternative measures 
reflect different ways that ERP pattern features can be summarized. For example, one 
research group might use a measure of peak latency (time of maximum amplitude) to 
summarize the timecourse of the "P100" pattern in a visual object processing 
experiment [14, 15], while another group might use measures of pattern onset and 
offset to characterize the same data. Given that different analysis methods may yield 
distinct and complementary insights, it is likely that this "embarrassment of riches" in 
ERP analysis will persist. The challenge then becomes how to develop an automatic 
way to find valid correspondences between features of ERP datasets that are derived 
from different analysis methods.  

To this end, we create simulated ERP data using a tool that we develop, called 
NEMOautolabel1. We extract alternative measures of latency and scalp topography 
(see Appendix in [5] for example) to simulate heterogeneities that arise when distinct 
measure generation techniques are adopted by two different research groups. Our goal 
is then to discover mappings between the alternative measures. This is essentially a 
schema mapping (or matching, we use them interchangeably in the present paper) 
problem as the alternative sets of measures are served as features in different ERP 
datasets. Due to the nature of the ERP data, we face several unique challenges: 

1. Useful schema information is limited, since the data under study is semi-structured. 
2. Language-based or linguistic schema-level matcher that makes use of name and 

text similarity is not suitable, since alternative features of ERP datasets often use 
totally different names (see experiments in Section 4 for example). 

3. Values of alternative measures are numerical. Conventional instance-level matcher 
that handles mapping between numerical elements based on extraction of statistical 
characterization, such as range, mean and standard deviation, are not appropriate, 
since they are too rough to capture patterns that are crucial in determining the 
correspondence. 

To address these challenges, we propose a novel method that explores sequence 
similarity search techniques and the NEMO ontologies, resulting in a framework for 
ontology-based mining of ERP data. Ontology-based mining has recently emerged as 
a new area of data mining, in which ontologies are used as formal domain knowledge 
to guide the data mining process in order to enhance performance and to represent the 
data mining result. Our method starts by transforming the vector of values of each 
measure into a point-sequence curve, and then evaluates similarities of the curves 
across datasets to determine the appropriate mapping across measures. The key 
problem then becomes to align subsequences of values in a principled way, thus 
enabling valid comparisons among instances of spatial and temporal measures across 
datasets. If the correspondence between two measures is not known a priori (as 
assumed in the present study), and if the values for these two measures are plotted 

                                                           
1 http://nemo.nic.uoregon.edu/wiki/NEMO_Analysis_Toolkit 
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against the arbitrary instance numbers associated with the two datasets, the resulting 
graph will show no clear pattern and thus no correspondence between alternative 
measures (see Fig. 1, left frame). Our solution is to introduce structure into these 
(initially random) point-sequence curves by applying clustering to extract similar 
subsequences, which are further labeled using terms defined in the NEMO ontologies. 
These subsequences can then be aligned across the datasets, and correspondences 
between measures established using standard techniques for time-sequence similarity 
search (see Fig. 1, right frame). This approach exploits prior (domain) knowledge of 
the patterns that are commonly seen in ERP experiments of a particular type (e.g., 
visual perception) while asserting no prior knowledge about the measures. 

The rest of this paper is organized as follows: In Section 2 we give a brief 
overview of prior work on schema matching with a focus on instance-level 
approaches, and time-sequence similarity search. In Section 3 we present the 
simulated ERP data design and methods for point-sequence matching. In Section 4, 
we present the ERP mapping results. Finally, in Section 5, we consider the 
assumptions and constraints of these methods and discuss future research directions, 
highlighting the contributions of this work to future research on schema matching and 
meta-analysis of ERP data. 

2   Related Works and Background  

2.1   Schema Matching  

Our study of mapping alternative measure sets is closely related to the schema 
matching problem. A schema matching algorithm may use multiple matching 
methods or matchers. It generally falls into one of two categories based on if it 
considers instance data or only schema information. Our ontology-based mining 
approach should be considered as one kind of instance-level method. According to the 
type of instance value, various instance-based approaches have been developed in 
previous research. For example: 

• For textual attributes, a linguistic characterization based on information retrieval 
techniques can be applied [18]. 

• For nominal attributes, evaluation of the degree of overlap of instance values is a 
preferred approach. Larson et al. [10] and Sheth et al. [11] discussed how 
relationships and entity sets could be integrated primarily based on their domain 
relationships: EQUAL, CONTAINS, OVERLAP, etc. Similarity of partially 
overlapped instance set can be also calculated based on measures such as 
Hamming distance and Jaccard coefficient. 

• For numeric attributes, typically one can use their values to compute statistics to 
characterize the attributes—e.g., ‘SSN’ and ‘PhonNo’ can be distinguishable since 
their data patterns, such as value distributions, and averages, are different [18]. 

Hybrid systems that combine several approaches to determine matching often achieve 
better performance. For example, SemInt [16, 17] is a comprehensive matching 
prototype exploiting up to 15 constraint-based and 5 content-based matching criteria. 
Instance data is used to enhance schema-level information by providing actual value 
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distributions, numerical averages, etc. SemInt determines a match signature for each 
attribute for either all or a selected subset of the supported criteria. Then neural 
networks or distance-based similarity measures over signatures can be used for 
determining an ordered list of match candidates. 

The LSD (Learning Source Descriptions) system uses machine-learning techniques 
to match a new data source against a previously determined global schema [18]. It 
represents a composite match scheme with an automatic combination of match 
results. In addition to a name matcher they use several instance-level matchers 
(learners) that are trained during a preprocessing step. Given an initial user-supplied 
mapping from a data source to the global schema, the system trains multiple learners, 
thereby discovering characteristic instance patterns. These patterns and rules can then 
be applied to match other data sources to the global schema. 

The iMAP [9] system can semi-automatically discover one-to-one and even 
complex mappings between relational database schemas. The goal is to reformulate 
the matching problem as a search in a match space, To perform the search effectively, 
iMAP uses multiple basic matchers, called searches, e.g., text, numeric, category, unit 
conversion, each of which addresses a particular subset of the match space.  

An important limitation of the above instance-based matching methods is their 
inability to properly handle numerical instances in some certain domain application. 
They use statistical characterization extracted from the numerical instances, such as 
range, mean and standard deviation, to determine match. However such information is 
too rough to capture patterns in ERP data that are crucial in determining the 
correspondence. By contrast, our proposed sequence similarity search technique is 
specifically designed to handle attributes with numerical values for ERP data: a 
spatial distance measure is used to calculate the similarity between point-sequence 
curves representing the numerical attributes after subsequence reordering based on 
clustering, as described in Section 3.  

2.2   Subsequence Similarity Search  

We assume that similarity between point-sequence curves implies similarity between 
the metrics they represent. Therefore, we view the discovery of mappings between 
metric sets as a similarity search among two sets of point-sequence (time series) data. 

Sequence similarity search has emerged as an active area of research. In general, 
methods for sequence similarity search belong to one of two categories [1]: 1) Whole 
Matching—the sequences to be compared have the same length (after interpolation or 
offset adjustment if necessary); and 2) Subsequence Matching—the query sequence is 
smaller; we look for a subsequence that best matches the query sequence.  

The ERP metric mapping problem is a whole matching problem. Furthermore, we 
consider the cross spatial distance join [4] problem as a special case of whole 
matching. The spatial distance join is defined using two datasets, A and B, and a 
distance function L. For a given radius r, the spatial distance join computes the 
following set:  |  .  

The term cross spatial join emphasizes that the two point sets A and B are distinct. 
The distance function L represents a similarity measure.  
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Performing the sequence similarity search task consists primarily of making the 
following choices: 1) a distance function L; 2) a method to generate cross pairs (a, b); 
and 3) a usage of approximations of objects as an index to the exact representation 
(i.e., to calculate L). Agrawal et al. [1] point out that the choice of L is clearly 
application-dependent. Although a wide spectrum of similarity measures has been 
proposed, a comprehensive survey by Keogh et al [7], which carried out extensive 
performance tests on different similarity measures, demonstrated that Euclidean 
distance outperformed other distance metrics. Therefore, we chose Euclidean distance 
as the distance function L in our study.  

The problem of performing efficient spatial joins in relational database systems has 
been studied by Brinkho et al. [2]. They point out that spatial join is a kind of 
multiple-scan query where objects have to be accessed several times and therefore, 
execution time is generally not linear but superlinear in the number of objects. They 
propose to use the R-tree family to support efficient spatial queries and manage to 
achieve almost optimal I/O time.  

For performance issues, indexing is also essential for similarity searches in 
sequence databases. Indexing is a technique that extracts k features from every 
sequence, maps them to a k-dimensional space, and then discovers how to store and 
search these points. This method can help alleviate the "curse of dimensionality" and 
to preserve spatial locality in disk pages for I/O optimization.  

In the present study, we adopt a "naïve" approach that computes similarity on 
every cross-join pair of conjugate sequences. The cross join is performed by multiple 
sequential scans of the two datasets, and we do not perform indexing on the original 
sequences. The rationale is that scalability is not a major concern since the number of 
sequences (i.e., number of measures) in most ERP datasets is relatively small (<20).  

3   Methods  

We propose to view the feature value vector of each ERP summary metric as 
forming a point-sequence curve. The problem of matching discovery between metric 
sets can then be framed as a sequence similarity search task. To identify structured 
subsequences in each feature vector, we use clustering and label discovered clusters 
with respect to the simulated ERP patterns or "components" (e.g., P100, N100, N3, 
MFN, and P300. All of them are defined in the NEMO ontologies). By labeling the 
feature instances in this way, we can group them in each dataset based on their 
pattern labels and then align the instance groups across datasets accordingly. This 
step can be viewed as a subsequence reordering process. We then apply a sequence 
post-processing step to achieve better performance in the similarity search, 
leveraging the rich collection of sequence similarity search algorithms presently 
available. The final step is to evaluate the similarity of the structured point-sequence 
curves that now represent our two simulated ERP datasets as quantified by their 
respective measures. This evaluation is achieved by using the cross-spatial join to 
calculate the distance between all pairs of sequences from the two datasets. In this 
way, we can discover matching pairs of measures. Each of these steps is described in 
the following sections.  
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3.1   Simulated ERPs  

The raw data for this study consist of 80 simulated event-related potentials (ERPs), 
where each ERP comprises simulated measurement data at 150 time samples and 129 
channels (electrodes) for a particular subject (n=40) and experiment condition (n=2). 
The 40 simulated subjects are randomly divided into two datasets, SG1 and SG2, each 
comprising 40 ERPs (20 subjects and 2 experimental conditions). Each ERP consists 
of a superposition of 5 latent spatiotemporal patterns that represent the scalp 
projections of distinct neuronal groups (dipoles). To create these patterns of neural 
activity, 9 dipoles are located and oriented within a 3-shell spherical model to simulate 
the topographies of 5 ERP components commonly seen in studies of visual word 
recognition. Each dipole is then assigned a 600 ms activation consistent with the 
temporal characteristics of its corresponding ERP. Simulated "scalp-surface" electrode 
locations are specified with a 129-channel montage, and a complex matrix of simulated 
noise is added to mimic known properties of human EEG. Because of volume 
conduction and the overlap of their temporal activity, the dipole activations induce a 
complex spatial and temporal superposition of the 5 modeled ERP patterns.  

Spatiotemporal components are extracted from the two datasets, SG1 and SG2, 
using two techniques: temporal Principal Components Analysis (tPCA) and spatial 
Independent Components Analysis (sICA), two data decomposition techniques that 
are widely used in ERP research. Two alternative metric sets, m1 and m2, are 
subsequently applied to the two tPCA and the two sICA derived datasets to quantify 
the spatiotemporal characteristics of the extracted patterns.  

 

Fig. 1. (Left) IN-LOCC and IN-O1 point-sequence curves prior to grouping and reordering. 
(Right) Labeled curves for metrics IN-O1 and IN-LOCC after grouping/reordering. 
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3.2   Data Partitioning and Reordering  

In the present study, we perform clustering on the spatial and temporal values of the 
two alternative sets of measures using Expectation Maximization (EM) algorithm. 
The resulting clusters represent candidate ERP patterns, characterized by the central 
tendencies of their cluster attributes (i.e., mean values for the spatial and temporal 
metrics). We label the resulting clusters with pattern labels defined in the NEMO 
ontologies (P100, N100, etc.) using rules specified by domain experts.  

Following clustering and labeling, the pattern labels are used to align groups of 
instances across datasets, resulting in subsequence reordering. As illustrated in the 
right-hand graphs of Fig. 1, the point-sequence curves for metrics IN-O1 and IN-
LOCC (plotted using their original orderings prior to grouping/reordering on the left-
hand side) are manifestly more similar after reordering subsequences in the two 
curves by aligning instances that belong to the same (or similar) patterns.  

3.3   Sequence Post-processing  

After alignment of the subsequences according to pattern labels defined in the NEMO 
ontology, we carry out three post-processing steps: (1) Normalization, i.e., scaling all 
the sequence values to unit range; (2) Smoothing, using a moving average method to 
reduce within cluster variance; and (3) Interpolation of curves, if the number of points 
in two point-sequence curves is different. Fig. 2 illustrates the results of normalization, 
smoothing and interpolation to the point-sequence curves of IN-O1 and IN-LOCC in 
Fig. 1. 

 

Fig. 2. After normalization, smoothing, and interpolation of point-sequence curves in Fig. 1 
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3.4   Sequence Similarity Search  

The following heuristic assumptions are adopted in our sequence matching procedure.  
First, we assume that the two datasets from which these alternative measures are 

extracted contain the same or similar ERP patterns. This assumption is critical, since 
it permits us to reorder the two point-sequence curves by aligning subsequences that 
are associated with the same ERP pattern labels. 

Second, we assume that there exists a 1-to-1 mapping between pairs of metrics 
from the alternative sets of metrics. In other words, there must be no cells selected 
within the same column. 

Table 1. Example for violation of the 1-1 mapping assumption and the solution 

 IN-O1 IN-O2   IN-O1 IN-O2 
IN-LOCC 4.08 3.74 IN-LOCC 4.08 3.74 
IN-ROCC 4.01 3.57 IN-ROCC 4.01 3.57 

(a) (b)  
For example, Table 1(a) illustrates a scenario where the 1-to-1 mapping 

assumption is violated: the value in each cell is the Euclidean distance between two 
point-sequence curves denoted by the row and column header of the cell. If we select 
cells with minimum distance value in each row, we end up with two cells within the 
same column being selected, suggesting that both IN-LOCC and IN-ROCC are 
mapped to IN-O2 in the present case. Table 1(b) illustrates the solution: cells are 
selected using the 1-to-1 mapping heuristic coupled with the global minimum 
heuristic (see below).  

Finally, we assume a global minimum heuristic: we select those cells whose 
Euclidean distance values sum up to a minimum value.  

Table 2. Solution to Table 1 using global minimum heuristic 

IN-O1 IN-O2   IN-O1 IN-O2 
IN-LOCC 4.08 3.74 IN-LOCC 4.08 3.74 
IN-ROCC 4.01 3.57 IN-ROCC 4.01 3.57 

(a) (b)  
For example, Table 2 shows two alternative cell selections that do not violate the 

1-to-1 mapping heuristic. The global minimum heuristic requires us to favor 2(b) 
because 4.08 + 3.57 < 3.74 + 4.01. The cell selections that achieve the global 
minimum suggest the most stable mapping result. The global minimum heuristic 
requires a non-greedy implementation that should take into consideration all possible 
selections. When the number of metrics is large, this implementation becomes more 
computationally challenging. 
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4   Results  

The experiment is conducted on the simulated datasets described in Section 3.1. The 
test cases for the matching discovery experiment are derived as follows: each test case 
contains a source and target dataset that are derived respectively from one subject 
group (SG1 or SG2) characterized with one metric set (m1 or m2) and formulated 
under one decomposition method (sICA or tPCA), and from the other subject group 
with the alternative metric set and decomposition method. This yields 2 (subject 
groups) × 2 (metric sets) × 2 (decomposition method) = 8 test cases, each of which 
includes two different datasets, two alternative metric sets and two decomposition 
methods. In order to test the robustness of the proposed methods, we replicate the 
datasets for each test case into five copies with different random ordering of the 
instances, thus resulting in a total of 40 enriched test cases.  

We test our method on each of these test cases. Table 3, for example, shows a 
distance table calculated by cross-spatial join of tPCA-derived data from SG1-m1 
and SG2-m2. The highlighted cells indicate similarity pairs between two point-
sequence curves representing two measures (row header and column header which 
meet at this cell) and are selected by using the 1-to-1 mapping and global minimum 
heuristics described in Section 3.4. A similarity pair represents a potential mapping 
discovered by our methods. For example, from this table we derive the following 
mappings: IN-O1↔IN-LOCC, IN-O2↔IN-ROCC, IN-C3↔IN-LPAR, etc. Note that 
the orders of the row and column header labels are such that the golden standard 
mapping falls along the diagonal cells. Therefore we can easily conclude that the 
precision of mapping in this test case is 9/13=69.2% since 4 out of 13 cells are 
shifted off from the diagonal.  

Table 3. Cross-spatial join of data from SG1-m1 (tPCA) and SG2-m2 (tPCA) 

 IN-O1 IN-O2 IN-C3 IN-C4 IN-T7 IN-T8 IN-F7 IN-F8 IN-Fp1 IN-Fp2 IN-F3 IN-F4 TI-max2
IN-LOCC 2.76 2.76 8.59 8.52 9.68 10.44 11.52 11.61 11.56 11.56 7.92 7.90 12.93
IN-ROCC 2.75 2.75 8.58 847.00 9.69 10.47 11.55 11.64 11.60 11.60 7.91 7.86 12.95
IN-LPAR 8.57 8.58 4.13 5.12 9.29 8.91 9.24 9.07 8.98 8.97 5.58 6.07 9.39
IN-RPAR 7.97 7.97 3.55 4.38 8.97 8.66 9.10 8.93 8.88 8.85 4.99 5.39 9.43
IN-LPTEM 9.32 9.34 8.54 9.23 5.00 4.26 5.62 5.34 5.73 5.72 7.37 7.88 11.42
IN-RPTEM 7.81 7.81 7.66 8.05 4.18 3.84 5.61 5.39 5.85 5.78 6.24 6.56 11.28
IN-LATEM 11.00 11.00 8.40 8.96 3.20 2.74 2.30 2.09 2.52 2.43 6.89 7.35 10.95
IN-RATEM 11.19 11.19 8.53 9.03 3.33 2.45 2.51 2.08 2.80 2.64 6.99 7.41 11.30
IN-LORB 9.58 9.58 6.00 6.48 4.23 4.50 3.58 3.63 3.35 3.26 4.36 4.83 10.31
IN-RORB 11.19 11.20 8.36 8.93 3.44 3.33 2.15 2.12 2.21 2.16 6.85 7.33 10.83
IN-LFRON 6.72 6.71 4.05 4.01 6.30 7.10 6.91 7.06 6.76 6.71 2.74 2.20 9.99
IN-RFRON 6.36 6.33 4.58 4.03 7.09 7.94 8.01 8.15 7.96 7.88 3.42 3.06 10.67
TI-max1 11.72 11.71 7.18 7.74 12.12 11.74 12.02 11.88 11.89 11.87 9.36 9.61 8.58  

The performance of our methods among the 40 test cases is quite good. Table 4 
summarizes the precision for each test case. The table consists of eight divisions, each 
of which illustrates the precision measures for the datasets generated by five samples 
of replication to one of the original eight test schemes with random instance ordering. 
Since the fact that the precision of mapping by making a random guess is almost zero 
and that the results demonstrate consistent performance on randomly ordered data, the  
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Table 4. Precision results for 40 test cases 

(SG1, sICA, m1)  
vs. (SG2, sICA, m2) 

(SG1, tPCA, m1)  
vs. (SG2, tPCA, m2) 

Input Precision Input Precision
Sample 1 13/13 Sample 1 9/13 
Sample 2 13/13 Sample 2 9/13 
Sample 3 13/13 Sample 3 9/13 
Sample 4 13/13 Sample 4 9/13 
Sample 5 13/13 Sample 5 9/13 

(SG2, sICA m1)  
vs. (SG1, sICA, m2) 

(SG2, tPCA, m1)  
vs. (SG1, tPCA m2) 

Input Precision Input Precision
Sample 1 9/13 Sample 1 9/13 
Sample 2 9/13 Sample 2 9/13 
Sample 3 9/13 Sample 3 9/13 
Sample 4 9/13 Sample 4 9/13 
Sample 5 9/13 Sample 5 9/13 

(SG1, sICA, m1)  
vs. (SG2, tPCA, m2) 

(SG1, tPCA, m1)  
vs. (SG2, sICA, m2) 

Input Precision Input Precision
Sample 1 13/13 Sample 1 5/13 
Sample 2 13/13 Sample 2 5/13 
Sample 3 13/13 Sample 3 5/13 
Sample 4 13/13 Sample 4 5/13 
Sample 5 13/13 Sample 5 5/13 

(SG2, sICA, m1)  
vs. (SG1, tPCA, m2) 

(SG2, tPCA, m1)  
vs. (SG1, sICA, m2) 

Input Precision Input Precision
Sample 1 5/13 Sample 1 7/13 
Sample 2 8/13 Sample 2 7/13 
Sample 3 5/13 Sample 3 7/13 
Sample 4 5/13 Sample 4 7/13 
Sample 5 5/13 Sample 5 7/13  

precision of our method appears markedly robust. Combining the mapping results in the 
40 test cases into an ensemble model by a majority vote of each individual mapping, we 
obtain the ensemble mapping result. The overall precision is 11/13=84.6%. 

We compare the performance our algorithm with SemInt [16, 17] as the baseline. 
Since the data contains only numerical instances, SemInt extracts from each feature 
value vector 5 discriminators, namely, MIN, MAX, Average, Coefficient of variance, 
and Standard Deviation. The feature value vector is then projected to a match 
signature characterized by these discriminators. A neural network is trained based on 
datasets from the 40 test cases with one metric set and tested on the rest datasets with 
the alternative metric set to determine the match. The result shows 19.23% precision. 
As we point out in Section 1, the reason why our algorithm significantly outperforms 
SemInt is that we are able to systematically exploit prior knowledge about patterns in 
ERP data that is crucial to determine the matching. 

5   Conclusion and Future Work  

In this paper, we describe a method for identifying correspondences, or mappings, 
between alternative sets of ERP measures that might be used by different ERP 
research labs to characterize patterns of brain electrical activity. The contributions of 
this work include the following:  

• Use of an ontology to assign meaningful labels to ERP patterns (clusters) and 
thereby impose structure that is used to align alternative metrics across datasets;  

• Application of sequence similarity search in discovering mappings across 
alternative metrics;  

• Extension of the instance-level approach in schema matching, especially to handle 
numerical values; and  

• Articulation of a global minimum heuristic in selecting ‘similarity pairs’ from the 
distance table. This heuristic proved to be useful and empirically robust in our 
experiment.  
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Mappings between alternative spatial and temporal metrics can be used to link 
different representations of ERP data and thus to support representations of ERP 
results with the help of formal ontologies [6]. In this way, our work is closely related to 
schema/ontology matching, which has been an active research field for a number of 
years [8, 18]. In the course of developing and testing these methods, we have collected 
a corpus of real data from different experiments [5] and have observed a large number 
of different kinds of heterogeneities. The presence of these heterogeneities suggests 
that a method for identifying mappings between features or metrics across two datasets 
may have widespread applications for ontology-based integration, beyond the specific 
applications discussed in the present study. 

Following we summarize some basic assumptions and limitations of the current 
study and then discuss some possible directions for future work. 

The proposed method assumes some domain-specific knowledge, as well as certain 
features of the input data. First, the source and target datasets are assumed to contain 
the same or similar ERP patterns. If the two datasets contain dissimilar patterns, there 
will be few instances that can be aligned according to common pattern labels, 
resulting in a poor sequence similarity search result. Second, there is assumed to be a 
1-to-1 mapping between alternative data metrics. This assumption may be violated in 
many real-world cases. For example, in ERP data, the temporal metrics TI-begin and 
TI-end together capture the same information as the metric TI-duration. Our method 
will need to be modified in the future to handle these more complex mappings.  

Other challenges include the scalability of calculations for the global minimum in 
the distance table, which is essentially an NP-hard problem. It could be remedied by 
proper implementation such as dynamic programming, but remains computationally 
intractable when the number of metrics is very large. Future work will seek to find an 
appropriate approximation method that balances the interest in accuracy and 
scalability. In addition, the simulated ERP data used in the present study were 
carefully designed to mimic many, but not all, features of real ERP datasets. In 
particular, we minimized variability in latency and spatial distribution of patterns 
across the different ERPs so that the data decomposition and clustering of patterns 
would remain tractable and relatively straightforward to interpret. In future work, we 
plan to carry out more substantial tests on genuine ERP datasets, such as those that 
have been collected, analyzed, and stored in our NEMO ERP ontology database [20].  
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Abstract. This paper proposes a new gene selection (or feature selec-
tion) method for DNA microarray data analysis. In the method, the
t-statistic and support vector machines are combined efficiently. The re-
sulting gene selection method uses both the data intrinsic information
and learning algorithm performance to measure the relevance of a gene
in a DNA microarray. We explain why and how the proposed method
works well. The experimental results on two benchmarking microarray
data sets show that the proposed method is competitive with previous
methods. The proposed method can also be used for other feature selec-
tion problems.

1 Introduction

The advent of DNA microarray technology, such as the cDNA arrays and the high
density oligonucleotide chips, has revolutionized the field of molecular biology in
recent years. This new technology allows scientists to study thousands of genes
simultaneously in a single experiment. This is a significant improvement because
in the past, only several specific genes in an organism could be investigated at a
time.

While the revolution generates much hope, the large amount of data obtained
from microarray experiments, along with the structures of the resulting data sets,
also challenges the conventional ways of analysis and modeling. One particular
obstacle for analyzing a microarray data set is that often the number of genes
is much greater than the number of samples; typically, the number of samples is
less than a hundred, while the number of genes is usually in the thousands. In this
regard, modern machine learning techniques provide a valuable toolkit for gaining
insights into such data sets and extracting useful information from them.

Out of a large number of genes that exist in a microarray data set, it is often
the case that most of them are irrelevant for the diagnosis of a particular disease,
say, cancer, and hence are redundant. It is well-known that the performance of a
modeling procedure can be significantly degraded, when many redundant genes
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are included in the training. Finding relevant genes can not only improve the ac-
curacy of the resultant classifier for diagnosis purposes, but can also narrow down
the potential set of cancerous genes and help gain important discipline knowledge.

Several methods for gene selection are available in the literature. One state-
of-the-art technique is the method of Support Vector Machine Recursive Feature
Elimination (SVM-RFE), proposed in [1]. The ranking criterion of SVM-RFE
is constructed not by the intrinsic property of the data, but by the feedback
from the support vector machine (SVM) classifiers. Specifically, the magnitudes
of weights found by linear SVMs are used to rank the genes. At each iteration
of the algorithm, a linear SVM is fitted to the training data with the remaining
genes, and one or several genes are eliminated for their least significance in terms
of the ranking criterion.

In this paper, we propose an alternative SVM-based method for gene selection,
and call it TSVM-RFE. In particular, we consider selecting genes by combining
the classical t-statistic and the modern SVM-RFE method. By taking care of
the problems that may exist in either the univariate or multivariate worlds,
TSVM-RFE is more robust to noisy genes than SVM-RFE and other methods,
as confirmed by simulation studies.

2 Methods

In this section, we describe our gene selection method, TSVM-RFE, and illus-
trate its strengths, as well as giving a brief introduction to the support vector
machines and t-statistic as needed by our method.

2.1 Data

The results from the microarray experiments can be represented by a matrix
of expression levels. For microarray experiments having n tissue samples and p
genes, the results can be represented by a p × n matrix X . In this paper, we
shall focus on the classification problems with two classes, labeled by 1 and 2,
respectively, and let nk denote the sample size for class k; i.e., n1 + n2 = n. The
response variable yj , j = 1, . . . , n, takes on the values of +1 or −1 for the two
classes, respectively. For gene i, we use xki to denote the vector of values on the
ith row of X that belong the class k ∈ {1, 2}. The mean of the values in xki is
denoted by x̄ki , and the sample standard deviation by ski.

2.2 Support Vector Machines

The objective of SVMs is to find a classifier with the largest margin between the
observations belonging to two different classes, while minimizing the training
error. Here, the principle is that the classifier with the maximal margin is more
likely to have a better generalization ability. A remarkable feature of SVMs
is that the classifier is determined by only a few training samples, known as
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“support vectors”. These vectors are borderline samples, in the sense that they
are closest to the decision boundary or simply lie on the margin.

In the studies below, we shall simply use the linear support vector machines,
following [1], [3]. From these and other studies, linear SVMs appear to work
reasonably well for the purposes of gene selection; for nonlinear support vector
machines, we refer the reader to [4]. In order to select genes, the method of
support vector machine recursive feature elimination for gene selection uses the
absolute weight value |wi| given in the vector of parameters w to rank genes.

2.3 The t-statistic

The t-statistic measures the separability between classes using a standardized
distance for a single gene, which gives a relevance score for each gene. The
ranking criterion is given as

ti =
x̄1i − x̄2i√

s2
1i/n1 + s2

2i/n2

, (1)

where x̄ki, ski and nk are defined in Section 2.1.

2.4 TSVM-RFE

The basic idea of TSVM-RFE is to combine the t-statistic and SVM-RFE. The
recursive feature elimination (RFE) algorithm [1] is used as the search engine
of TSVM-RFE. In order to combine two different gene selection criteria, each
criterion is transformed into a comparable scale. In particular, denoting by v the
statistic used by a ranking criterion, the linear transformation

σ(v) =
v −min(v)

max(v) −min(v)
, (2)

is employed. Since σ(min(v)) = 0 and σ(max(v)) = 1, the range of σ(v) is [0, 1]
for the training data. It is also possible to use other transformations, such as the
sigmoid function or the probability function of a distribution, say, Gaussian.

From (2), the ranking statistic used for TSVM-RFE is

ri = ασ(|wi|) + (1 − α)σ(|ti|), 0 ≤ α ≤ 1 (3)

where wi the weight found by linear SVMs and ti the t-statistic. When α = 1,
TSVM-RFE is equivalent to SVM-RFE; when α = 0, TSVM-RFE is equivalent
to using the t-statistic.

To use (3), one problem remains to be solved, i.e., a value for α needs to
be provided. For this, we use the 10-fold cross-validation. Specifically, a grid
of αi values are tested on the training data by 10-fold cross-validation, and
the one that gives the lowest cross-validation error is deemed as “optimal”. In
our observation, using 11 equally spaced points for α between 0 and 1 (α =
0, 0.1, . . . , 1) seems enough. It is also possible to choose a finer grid, at a higher
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computational cost. When more than one α value produces the same cross-
validation error, we use the smallest of them if α = 0 gives a smaller cross-
validation error than α = 1; otherwise, we use the largest. In other words, the
weight in this case is determined in such a way that TSVM-RFE is as close as
possible to the better of the two individual methods.

2.5 An Illustration

The motivation for TSVM-RFE is to overcome the weaknesses of each individual
criterion. The t-statistic is a great criterion in measuring the class separability for
each individual gene. However, it can only summarize at most the patterns that
exist in the univariate world. Those multivariate patterns that are common in mi-
croarray data, such as correlation among genes, may never be represented by it.
By contrast, SVM-RFE is expected to capture multivariate patterns well due to its
foundation in the maximal margin principle, and could outperform the t-statistic
for a number of data sets. However, since support vector machines are prone to
overfitting when there exist a large number of noisy genes, the t-statistic can have
an advantage in such cases. It is typical in practice that both noisy genes and mul-
tivariate patterns exist in microarray data. Hence, a criterion that combines the
information provided by both the t-statistic and SVM-RFE is likely to preform
reasonably well: at least as well as the better of the two individuals.

The above consideration is illustrated in the following using two simple exam-
ples. As shown in the left panel of Figure 1, the two classes of a two-dimensional
data set are completely linearly separable. Here, according to SVM-RFE (using
C = 1), x2 is more relevant than x1, because |w1| < |w2|. From the t-statistic,
x1 is more relevant than x2, because |t1| > |t2|. In this example, gene selection
based on the t-statistic appears more reasonable than SVM-RFE. This is be-
cause statistically speaking, the variation of x2 for separating the two classes is
large, while x1 has none. This is a situation where the maximal margin principle
fails to work well.

The second example is shown in the right panel of Figure 1. In this example,
the data are two-dimensional and x1 and x2 are positively correlated. The two
classes are also linearly separable. Here, the magnitude of the t-statistic for the
two features are very different: |t1| = 0 and |t2| = 3.098. Due to the t-statistic,
x2 is relevant and x1 irrelevant. From SVM-RFE (C = 1), however, x1 and x2

are equally relevant, because |w1| = |w2| = 0.500. Since in this example x1 and
x2 appear to be equally important for identifying the pattern, the t-statistic fails
to select all relevant features while SVM-RFE performs well. This is a situation
where a multivariate pattern exists and the support vector machines work well,
but not the t-statistic.

Admittedly, the above two examples are rather crude, but they demonstrate
the difficulties that, if used individually, the support vector machines and t-
statistic may have for gene selection. It is not uncommon for microarray data that
genes are correlated and a large number of them are irrelevant. Given this, our
combined criterion is expected to perform better than each of the two individual
methods; in the worst scenario, it is simply equivalent to the better one.
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Fig. 1. Examples show the gene selection method using either the t-statistic or SVM-
RFE may not be reliable. In the left panel, the gene selection method using t-statistic
outperforms SVM-RFE. In the right panel, SVM-RFE outperforms the gene selection
method using the t-statistic.

3 Experiments

Experiments were conducted to compare different gene selection methods and
the results are given in this section. Two real data sets that are publicly available
were used. A few points need to be clarified here. First, as part of pre-processing,
we follow standardize each sample to mean zero and standard deviation one so
as to treat each sample with an equal weight and thus to reduce array effects.
Second, we follow [1] to select a fixed number of genes in the model a priori. In our
experiments for the real data, the number of the genes retained are 10, 20, . . . , 70
for each method. Third, we use external cross-validation errors for comparison
to avoid selection bias. Internal cross-validation errors are subject to selection
bias, which are typically too optimistic [5]. Fourth, the SVM-RFE algorithm due
to [3] was adopted. Fifth, a support vector machine classifier is constructed for
each method after the genes are selected to assess its classification accuracy.

In the experiments, three gene selection methods, the t-statistic, SVM-RFE,
and TSVM-RFE, are used to select genes. Classifiers based on linear SVM are then
built using all training data, and subsequently examined using the test data.

3.1 Leukemia Data

The acute leukemia data consists of 72 samples and 7129 genes. They were ob-
tained from Affymetrix oligonucleotide arrays. There are two types of leukemia:
ALL (acute lymphocytic leukemia) and AML (acute mylogenous leukemia). We
follow the procedure used in [5] to split the leukemia data set into a training set
of size 38 and a test set of size 34 by sampling without replacement from all the
samples, while ensuring that the training set has 25 ALL and 13 AML and the
test set has 22 ALL and 12 AML. Different gene selection methods combined
with linear SVMs are only applied to the training set, and then the methods
are used on the test set to estimate their accuracies. Twenty such random parti-
tions were carried out. Note that many proposed methods in the literature use a
test set with size 34 only, whereas the testing procedure used here is equivalent to
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use a test set with 680 samples, so it is much more reliable than using the
independent test set of size 34 only. In our observation, C = 1 is a reasonable
value for the penalty parameter of SVMs in this data set.

The results for the leukemia data are summarized in Figure 2. TSVM-RFE
gives the smallest minimal error of 3.68%, and strictly smaller errors than SVM-
RFE and the t-statistic-based method for 30, 40, . . . , 70 genes. The minimal test
error obtained by TSVM-RFE is also smaller than the test errors obtained by
using several other methods for this data set in the literature: the minimal test
error 5.00% from SVM-RFE, obtained based on fifty similar random partitions
[5]; the test error 7.00% from the nearest shrunken centroid method [7]; and the
minimal test error 6.00% using soft-thresholding combined with kNN classifier
obtained in [7]. Interestingly, all three methods give the lowest error when 60
genes are used. This provides a reasonable suggestion for the number of relevant
genes that should be used for the leukemia data.

3.2 Colon Data

The colon cancer data consists of 62 samples and 2000 genes. They were also
obtained from Affymetrix oligonucleotide arrays. The task is to distinguish be-
tween the normal and tumor samples. There are 22 normal samples and 40 tumor
samples in the given data. We follow the procedure used in [6] to randomly split
the colon data set into a training and test set by sampling without replacement
from all the samples, while ensuring that the training set has 15 normal and 27
tumor samples and the test set has 7 normal samples and 13 tumor samples.
Different methods are only applied to the training set, and the test set is used to
estimate the classification accuracy. Twenty such random partitions were carried
out. Note that it was suggested that there were some wrongly labeled data in
the training data set [5]. We follow [3] and use C = 0.01 for this data set.
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Fig. 2. Misclassification rates for the leukemia data
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Fig. 3. Misclassification rates for the colon data

The results for the colon data are summarized in Figure 3. TSVM-RFE and
SVM-RFE give the same minimal test error of 8.75%, and their performance is
similar in this data set. In this data set, TSVM-RFE is always better than the
method based on the t-statistic alone. The minimal test error obtained by TSVM-
RFE here is also smaller than the test errors obtained by several other methods:
the leave-one-out cross-validation error 9.68% obtained in [2], using correlation
metric combined with SVMs; the minimal test error 17.50% from SVM-RFE
obtained based on fifty similar random partitions [5]; the minimal jackknife error
12.50% obtained in [6] using weighted penalized partial least squares method;
the minimal test error 11.16% from SVM-RFE with various values of C [3]; the
test error 18.00% from the nearest shrunken centroid method [7]; the minimal
test error 13.00% obtained in [7], using Wilcoxon statistic combined with kNN
classifier; and the leave-one-out cross-validation error 8.90% obtained in [8], using
the top scoring pair method.

4 Conclusions

We have proposed a new gene selection method, TSVM-RFE, for gene selec-
tion and classification. The criterion of TSVM-RFE combines the t-statistic and
SVM-RFE, due to the consideration that the t-statistic only summarizes well the
information in the univariate world and that SVM-RFE distinguishes the mul-
tivariate patterns better but is sensitive to noisy genes. We have chosen a linear
transformation so that individual criteria are combined on a comparable scale,
and the weight for each individual criterion is determined via cross-validation.

The proposed method was compared based on experiments with SVM-RFE
and the t-statistic, using two practical data sets. The method presented in this
paper gives competitive, if not better, results, compared to the other two. The
improvement of the method proposed here upon the better-known SVM-RFE
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method is significant. The method presented here seems to be rather suitable
for microarray data analysis, where it is likely that a large number of irrelevant
genes exist and the signal-to-noise ratio is fairly low. Experiments have shown
that TSVM-RFE is better than both SVM-RFE and the t-statistic, in terms of
reducing misclassification errors and lowering false discovery rates. It helps to
identify more accurately the truly cancerous genes.
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Abstract. Distributed classification aims to build an accurate classifier
by learning from distributed data while reducing computation and com-
munication cost. A P2P network where numerous users come together
to share resources like data content, bandwidth, storage space and CPU
resources is an excellent platform for distributed classification. However,
two important aspects of the learning environment have often been over-
looked by other works, viz., 1) location of the peers which results in vari-
able communication cost and 2) heterogeneity of the peers’ data which
can help reduce redundant communication. In this paper, we examine
the properties of network and data heterogeneity and propose a simple
yet efficient P2P classification approach that minimizes expensive inter-
region communication while achieving good generalization performance.
Experimental results demonstrate the feasibility and effectiveness of the
proposed solution.

keywords: Distributed classification, P2P network, cascade SVM.

1 Introduction

P2P networks contain large amounts of data naturally distributed among arbi-
trarily connected peers. In order to build an accurate global model, peers col-
laboratively learn [1,2,3,4] by sharing their local data or models with each other.
Though recent efforts aim to reduce this communication cost compromise, none
of them take into account heterogeneity in either the network or the data.

In order to build a global model representative of the entire data in the P2P
network, only dissimilar data (from different data subspaces) need to be shared.
While sharing similar data (from the same data subspace) adds no value to the
global model, it only adds to the communication cost which can be prohibitive
if the data were from geographically distant peers.

In this paper, we address the problem of learning in a P2P network where data
are naturally distributed among the massive number of peers in the network. In
addition, the location of these peers span across a large geographical area where
distant peers incur higher communication cost when they try to communicate.
Moreover, there is a possibility that the data of different peers overlap in the
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problem space. An approach that simply exchanges data of all peers will incur a
high communication cost in order to achieve high accuracy. On the other hand,
an approach that does not exchange data will achieve low prediction accuracy
in order to save communication costs. Hence, the objective would be to achieve
the best global accuracy-to-communication cost ratio.

In this paper, we describe a data and network heterogeneity aware adaptive
mechanism for peer-to-peer data-mining and study the relationship between the
trainingproblemspace andclassificationaccuracy.Ourproposedapproach, Satrap,

– achieves the best accuracy-to-communication cost ratio given that data ex-
change is performed to improve global accuracy.

– allows users to control the trade-off between accuracy and communication
cost with the user-specified parameters.

– is insensitive to the degree of overlapping data among peers.
– minimizes communication cost, as the overlapping data among different re-

gions increase.
– is simple, thus making it practical for easy implementation and deployment.

2 Background and Related Work

A P2P network consists of a large number of interconnected heterogeneous peers,
where each peer holds a set of training data instances. The purpose of classi-
fication in P2P networks is to effectively learn a classification model from the
training data of all peers, in order to accurately predict the class label of unla-
beled data instances.

Existing P2P classification approaches typically either perform local [5] or
distributed [1,2,4] learning. Local learning performs training within each peer
without incurring any communication between peers during the training phase.
Luo et al. [5] proposed building local classifiers using Ivotes [6] and performed
prediction using a communication-optimal distributed voting protocol. Unlike
training, the prediction process requires the propagation of unseen data to most,
if not all peers. This incurs a huge communication cost if predictions are frequent.
On the contrary, instead of propagating test instances, the approach proposed by
Siersdorfer and Sizov [4] propagates the linear SVM models built from local data
to neighboring peers. Predictions are performed only on the collected models,
which incur no communication cost.

Distributed learning approaches not only build models from the local training
data, but also collaboratively learn from other peers. As a trade-off to the com-
munication cost incurred during training, the cost of prediction can be signifi-
cantly reduced. In a recent work, Bhaduri et al. [2] proposed an efficient approach
to construct a decision tree in the P2P network. Over time, the induced deci-
sions of all peers converge, and as the approach is based on distributed majority
voting protocol, it incurs a lower communication cost compared to broadcast
based approaches.
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Fig. 1. Sequence diagram of Satrap (among two clusters of peers)

To reduce communication cost and improve classification accuracy, Ang et al.
[1] proposed to cascade the local RSVM models of all peers (AllCascade). RSVM
was chosen as it significantly reduces the size of the local model. However, All-
Cascade requires massive propagation of the local models and the cascading
computation is repeated in all peers, wasting resources due to duplications.

3 Approach

Figure 1 depicts the process for constructing a global classification model in
Satrap between two clusters of peers (i.e., communications are performed in
a pairwise manner between different regions). Rather than flooding the entire
network with models (as in AllCascade), here each peer builds an RSVM on
its local data, and propagates it only within its own geographic region. This is
feasible as intra-region communication is inexpensive.

Then one distinguished peer is elected from each region as the super-peer,
which combines (and compresses) the models received into a regional model,
and transfers them to other regions through their respective super-peers. These
super-peers serve as a single point of communication between regions1, thus
reducing expensive inter-regional communication. However, note that the use of
super-peers doesn’t lead to a single point of failure, since if one fails, another
peer from the same region can be dynamically assigned with location aware P2P
overlay networks [7]. The super-peer may also delegate actual communication
tasks to other peers for better load-balancing.

Here, we have another innovation to further reduce this cost. Instead of receiv-
ing all models from other regions, each regional super-peer requests for certain
models only. This is accomplished as follows. Every super-peer clusters its data,
and sends its cluster information (called Knowledge Spheres, c.f. Section 3.1) to
other super-peers. With this knowledge, each super-peer determines the overlap
in underlying data space (called Exclusion Spheres, c.f. Section 3.2) between itself
1 Hence the name Satrap - title for the governor of regional provinces in ancient Persia.
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and others, and requests only for models from non-overlapping spaces from an
owner super-peer. Upon receiving a request, the owner super-peer gathers sup-
port vectors (c.f. Section 3.3) from its model that are relevant to the requester’s
Exclusion Spheres, and transfers them.

Finally, each super-peer combines all the models received (as before) and then
propagates the resultant model to all the peers within its region (c.f. Section 3.4),
again with low intra-region cost.

Though this process requires communication of the compact data space repre-
sentation between regional super-peers, it significantly reduces the propagation
of models. In this paper, we omit detailed discussion on failure tolerance and
load distribution, and limit our scope to only the data-mining related issues.

3.1 Knowledge Sphere Creation

Unlike test instance propagation where information cannot be compressed or fil-
tered, model propagation in general, allows some form of compression or filtering
while enabling representative global models to be constructed.

Since the models of super-peers from different geographical regions may be
built on similar data (or data from the same data space), while creating a global
model, it is unnecessary for a super-peer to receive all information from others.
As we do not know a priori what data are overlapping between them, we need
a representation of every super-peer’s underlying data in the problem space.
For this purpose, we propose the use of high dimensional sphere, created from
clustering of the data.

After a super-peer cascades the models from its regional peers, we separate
the support vectors (SVs) into their separate classes and cluster them. The
separation allows more compact clusters to be generated, as SVs from different
classes may lie in slightly different input space. The knowledge of these clusters,
called the Knowledge Spheres, comprising the centroid (mean of all SVs), radius
(maximum distance of any SV in cluster to the centroid), and their density
(number of SVs within the cluster definition) is then propagated to all other
super-peers.

The reason for using clustering is that it creates groups of neighboring data
points which reside close to each other in the problem space, as represented by the
high dimensional spheres. Although spheres may not represent the data as well
as some other high dimensional shapes such as convex hulls or polygons, they are
computationally cheapest to generate and have the best compression ratio (single
centroid and radius). We have used agglomerative hierarchical clustering based
on single linkage for this task, because it preserves the neighborhood information
of the clusters. Another desirable property of this approach is that it produces
deterministic results. We also use Euclidean distance as the distance measure for
clustering, as it is shown to preserve the neighborhood property between input
and feature space [8].

The clusters generated can affect the detection of (non) duplicated data, how-
ever we don’t know a priori how many clusters would result in the most accurate
detection of duplicates. Hence, instead of specifying the number of clusters, peers
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choose the desired cluster-to-SV ratio R, depending on how many support vec-
tors they have. Note that as the number of clusters reduces, the input space
covered by at least one cluster also increases in order to cover the points of the
removed clusters. The increase in space covered also includes empty spaces. As
the neighborhood area of the input space is correlated to the feature space [8],
the feature space covered by the cluster also increases. If we were to filter from
such a larger neighborhood (either input or feature space), more points poten-
tially closer to the decision boundary would be filtered, leading to a possibly
larger error. It is obvious that as heterogeneity of the regional data increases,
the number of clusters required for a compact representation of the data also
increases. Moreover, an increase in number of clusters always maintains or im-
proves the cluster compactness (i.e., reduces the intra-cluster distance) but at
the cost of addition communication overheard.

3.2 Exclusion Sphere Creation

When a super-peer (say, rrequester) receives another super-peer’s (say, rowner’s)
knowledge spheres, it checks if it has as much knowledge about the data space as
rowner. It then informs rowner of the knowledge it lacks, so that corresponding
knowledge may be transferred. If the number of rrequester ’s SVs falling within the
space of an rowner sphere is less than the density of the sphere (times a threshold
T ), rrequester creates a exclusion sphere from those points. The information of the
exclusion sphere (centroid, radius, density) along with the corresponding sphere
that it overlapped with, is then sent to rowner as part of the data request.

Note that this process is order-dependent. Once rrequester has requested infor-
mation from rowner on a certain data space, it will not request information from
another super-peer on an overlapping space, unless of course the latter has sig-
nificantly larger density. We do not address the order dependency of overlapping
checks due to several reasons. Firstly, in order to check the order, a super-peer
has to wait for several super-peers to send their knowledge spheres, which is
impractical in a dynamic P2P network. Secondly, order dependency only affects
performance if there is a quality difference in the data of the different regions,
but currently there is no way to verify this difference in quality (unless data
points are sent for checking, which is what we want to avoid). Without addi-
tional knowledge on the data or communication cost, it would be infeasible to
optimize the ordering.

3.3 Gather Relevant SVs

When rowner receives the request, it chooses all SVs that are within the overlap-
ping spheres but outside the exclusion spheres for transfer. It also chooses SVs
that lie within the exclusion spheres with a probability of 1 - (number of SVs in
exclusion sphere for rrequester / number of SVs in exclusion sphere for rowner).
We use probabilistic sampling so that SVs within the exclusion sphere are cho-
sen only when the confidence (number of SVs, evidence) of the rrequester in the
exclusion data space is lower than that of rowner . All the chosen data points are
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then consolidated and sent to rrequester . This process marks the end of the cross
region data probing and exchange. At this stage, rrequester has received models
from the entire network if it has requested from all other super-peers. Since the
gathering of data is based on the clusters created from the local region cascaded
model, it is not order-dependent.

3.4 Global Model Construction and Prediction

Once rrequester receives the SVs from rowner, they are merged with the SVs of
the local regional cascaded model and the new global cascaded model is built.
The new global model can be propagated down-stream to other local regional
peers with cheap intra-regional communication. Since every peer now has the
global model, all predictions can be made locally without incurring any extra
communication cost. In addition, there is no need to wait for predictions from
other peers which also saves time. With feedback proposed in [9], the incremental
building of the global model at the super-peer is order invariant on the arrival
of the exchanged models.

4 Experimental Results

Here, we demonstrate how Satrap exploits data heterogeneity to reduce com-
munication overheads in presence of network heterogeneity, and achieves a good
balance between accuracy and communication cost.

We used the multi-class Covertype (581,012 instances, 54 features, 7 classes
and 500 peers) and multi-class Waveform (200,000 instances, 21 features, 3
classes and 100 peers) datasets [10]. The datasets were split into ten clusters,
each assigned to peers in a separate region to simulate the non-overlapping re-
gional data. To vary data heterogeneity, we overlapped the data in each region
with o percent of other regions’ data. Experiments were then conducted on these
different data distributions. We compared our approach with AllCascade [1], and
Individual Regional Cascaded model without cross region data exchange (IRC).
All these approaches were implemented in C++ and we used SVM and RSVM
implementations from [11,12]. The RBF kernel and penalty cost parameters were
selected using the procedure mentioned in [11] and their values are γ = 2, C = 32
for the Covertype, and γ = 2−7, C = 32 for the Waveform dataset. For Satrap,
the threshold value T is set to 0.75, and the cluster ratio R is set to 0.1. Results
were obtained using 10-fold cross validation.

4.1 Performance Evaluation

Figures 2 and 3 present the classification accuracy (in percentage) and commu-
nication cost (as a ratio of the total dataset size in the entire network ×104)
respectively. The plots in Figure 3 are normalized to the cost of IRC which
doesn’t incur any inter-region costs, and are shown using a conservative 1:1 ra-
tio between intra- and inter-region costs. This ratio can be upto 1:50 in real
environments [13], so Satrap’s benefits over AllCascade should be amplified.
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Fig. 2. Effect of data overlap on classification accuracy
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Fig. 3. Effect of data overlap on communication cost (normalized to that of IRC)

We varied the percentage o of overlapping data (from other regions) to simu-
late a varying degree of homogeneity between different regions. From Figure 2,
we can see that the varying distribution does not affect the accuracy of AllCas-
cade. However, IRC suffers as the overlap decreases. This is because IRC does
not perform any data exchange between different regions, and therefore achieves
reasonable accuracy only when data among different regions is homogeneous.
Moreover, we observe that the Satrap achieves accuracies close to AllCascade
and significantly better than IRC, with only a slight drop as the amount of over-
lapping data increases. However, this is accompanied by significant savings in
communication cost – showing acceptable trade-off between cost and accuracy.
We attribute this drop in Satrap’s accuracy to the probabilistic sampling for
overlapping data space (hence missing out some important data points) which
is critical for saving communication cost.

By comparing Figures 2 and 3, we observe that the competing approaches are
on the two extremes. IRC has the best accuracy-to-communication cost ratio,
but it does not fulfil the criteria to maximize the global accuracy as it does
not learn beyond the local region. Observe that the actual accuracy of IRC on
average is more than 15% worse than Satrap.

On the other hand, while AllCascade has the highest accuracy, it comes
with the lowest accuracy-to-communication cost ratio across all datasets. Satrap
closely approximates AllCascade’s accuracy while retaining a much superior
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accuracy-to-communication cost ratio. This ratio significantly improves as the
percentage of overlapping data increases. To summarize, we observe that Satrap
is able to achieve good accuracy-to-communication cost ratio in most situations.

5 Conclusion

This paper is the first effort that systematically studies the effect of network and
data heterogeneity on prediction accuracy and communication cost for learning
in P2P networks. Satrap, our network and data heterogeneity aware P2P classi-
fication approach, is based on a simple system of information sharing, and lends
itself to easy improvement as every module can be fine-tuned depending on
knowledge of the domain. Satrap achieves a better accuracy-to-communication
cost ratio than existing approaches, and is justified by extensive experiments.
The approach also allows users to trade off accuracy for communication cost and
vice-versa. In future work, we’re looking at how to mitigate the problem of low
data overlap, improve the detection of data overlaps and sampling.
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Abstract. In this study, we propose a comprehensive performance man-
agement tool for measuring and reporting operational activities of game
players. This study uses performance data of game players in EverQuest
II, a popular MMORPG developed by Sony Online Entertainment, to
build performance prediction models for game players. The prediction
models provide a projection of player’s future performance based on his
past performance, which is expected to be a useful addition to exist-
ing player performance monitoring tools. First, we show that variations
of PECOTA [2] and MARCEL [3], two most popular baseball home run
prediction methods, can be used for game player performance prediction.
Second, we evaluate the effects of varying lengths of past performance
and show that past performance can be a good predictor of future per-
formance up to a certain degree. Third, we show that game players do
not regress towards the mean and that prediction models built on buck-
ets using discretization based on binning and histograms lead to higher
prediction coverage.

1 Introduction

Massively Multiplayer Online Role-Playing Games (MMORPGs) are personal
computer or console-based digital games where thousands of players can simul-
taneously sign on to the same online, persistent virtual world to interact and
collaborate with each other through their in-game characters. This study is con-
cerned with forecasting of player performance in the game. While many games
today provide web and GUI-based reports and dashboards for monitoring player
performance, we propose a more comprehensive performance management tool
(i.e. player scorecards) for measuring and reporting operational activities of game
players. This study uses operational and process-oriented performance data of
game players in EverQuest II, a popular MMORPG developed by Sony Online
Entertainment, to build performance prediction models for game players. First,
we show that variations of PECOTA [2] and MARCEL [3], two most popular
baseball home run prediction methods, can be used for game player performance
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prediction. Second, we evaluate the effects of varying lengths of past performance
and show that past performance can be a good predictor of future performance
up to a certain degree. Third, we show that game players do not regress towards
the mean and that prediction models built on buckets using discretization based
on binning and histograms lead to higher prediction accuracy.

Systematic studies of game player performance is expected to yield the follow-
ing contributions. First, analysis of player performance in different dimensions
(i.e. player demographics, archetypes, classes, sub-classes) can help game devel-
opers understand whether their games and game characters are being played as
intended. Second, benefits for game players are two fold. a) Game players can not
only have a view of their past and current performance but also they can have a
view of their projected future performance. b) A recommendation engine can be
built to recommend character types and tasks to players in order to meet certain
objectives (i.e. move up to the next level as fast as possible, play safe by attempt-
ing easy tasks, play aggressively by attempting challenging tasks, play tasks that
encourage grouping with other players). Third, players can have a view of perfor-
mances of other players for the purposes of forming quest or raid teams.

2 EverQuest II Game Mechanics

2.1 Point-Scaling System in EverQuest II

In EverQuest II, there is a concept of Ding Points, which is the amount of points
one needs to obtain in order to move from one level to the next higher level [4].
For instance, to move from Level 2 to Level 3, one needs to obtain 1,000 points
whereas 20,000 points are required to move from Level 73 to 74. The amount
of ding points increases as one advances to the next level. As players gain more
experience with the game and advance to higher levels, the types of task they
can perform increase and the task difficulty also increases. The higher the task
difficulty, the higher the potential point gain.

2.2 Tasks in EverQuest II

EverQuest II is rich in types of task players can perform with monster kills being
one of the most popular. Monster kills are discussed in details in [1]. In addition to
monster kills, other sources of experience points exist in the game such as alternate
achievement points (AA) which can be obtained from quests, named mobs, and
discovery experience. A player can gain more experience points by having another
player mentor him. The mentor levels down to the level of the mentee. The mentee
receives a five percent bonus to adventuring experience points.

2.3 Archetypes, Classes, and Sub-classes in EverQuest II

In playing MMORPGs, selection of character type (i.e. archetype, class, sub-
class, and race) is considered an important decision as it defines the basis of
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opportunities and choices of roles and tasks within the game [5]. In EverQuest
II, there are four archetypes where each archetype consists of three classes each
of which in turn consists of two sub-classes [4]. Performance comparisons are
discussed in details in [7].

3 Baseball Home Run Prediction

Prediction of future performance of humans has long been studied in various dis-
ciplines over the years. Most notably, it has been well studied in sports. Baseball
has a long history of record keeping and statistical analyses that dates back to
the nineteenth century. Batting average, RBIs, and home runs are some of the
many statistics being kept track of today. There exists an enormous amount of
public and private interest in the projection of future performance. Major league
teams rely on the past statistics of a given player in deciding whether to acquire
him or not and for how many seasons under the assumption that his past success
is a good indicator of his future success.

PECOTA [2] and MARCEL [3] are widely known methods in baseball home
run prediction. PECOTA [2] is considered a very sophisticated method for home
run prediction in baseball. For a given ball player at the age of X, the method uses
a nearest neighbor analysis of both minor and major league players from the past
that exhibited similar performance at age X. It uses the historical performance
of these past players to predict the given player’s future performance. MARCEL
[3] uses data from the three immediate past seasons of a given ball player, and
it assigns more weight to more recent seasons. One drawback of this approach is
that prediction models solely based on individual players cannot be generalized
to the global population. A variation of the MARCEL approach attempts to
regress predictions to the global population mean. One drawback of this approach
is that prediction models built on the global population can become too coarse.

We consider game player levels in EverQuest II similar to seasons in baseball.
Players perform tasks, gain points, and move up to the next level as ball players
would attain different types of achievement (i.e. home runs, single, double, triple
hits, run batted in, etc.) in each season and proceed to the next season. Unlike
in baseball where there is not necessarily a fixed number of home runs, triples,
doubles, etc. required to move to the next season, EverQuest II employs a point
scaling system where there exists a fixed number of experience points at each
level in order to move up to the next level. Because the ding point is a fixed
constant, we measure a game player’s total play time at each level and uses it
as a performance measure in this study.

4 Player Performance Prediction in EverQuest II

In this study, we develop performance prediction models for game players in
EverQuest II. The objective is to predict a given player’s play time at level i, a
future state, based on his past performance at levels i − 1, i − 2, and so forth,
where performance at any level is measured as the total play time spent at that
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level. Play time in EverQuest II excludes any idle periods where being idle is
defined as any contiguous time blocks of 30 minutes or beyond.

4.1 Methods

MARCEL [3] method uses data from the three immediate past seasons of a given
ball player, and it assigns more weight to more recent seasons. One drawback
of this approach is that prediction models solely based on individual players
cannot be generalized to the global population. A variation of the MARCEL
approach attempts to regress predictions to the global population mean. One
drawback of this approach is that prediction models built on the global popula-
tion can become too coarse. Algorithm 1 [7] delineates the steps taken to generate
MARCEL-like prediction models for game player performance prediction.

Our preliminary data analysis of the game data reports that play times at
each player level exhibit a skewed distribution [7]. EverQuest II game players do
not regress towards the mean, and therefore prediction models built under the
assumption that they do regress towards the mean will become too coarse and
will perform poorly for players whose performances deviate from the mean. To
overcome this problem, for a given player, PECOTA [2] uses past performance of
those players whose performance patterns are similar to that of the given player.

In this study, we perform data discretization based on two unsupervised tech-
niques, binning and histogram analysis, in order to create buckets of players
where all players in a given bucket are termed neighbors. Neighbors share simi-
lar performance patterns, and a prediction model is built for each bucket. This is
similar to the way PECOTA [2] uses a nearest neighbor analysis to group players
into buckets and builds a prediction model for each bucket. Algorithms 2 and 3
[7] delineate the steps taken to create buckets based on binning and histogram
analysis, respectively. Algorithms 4 and 5 [7] delineate the steps taken to cre-
ate MARCEL-like prediction models and Regression-based prediction models,
respectively, both using discretization.

4.2 Dataset

The study uses one month worth of performance data from March 1, 2006 to
March 31, 2006. The dataset contains over 36 million player-to-task records
where over four million of them are monster kills related tasks. The dataset
contains 24,571 distinct players across player levels 1 through 70. Since then,
Sony Online Entertainment has added an additional ten levels to the game,
making 80 the maximum level one can reach.

All of the players and their performance data has been extracted from XP ta-
ble in the EverQuest II database housed at National Center for Supercomputing
Applications (NCSA) at the University of Illinois. The dataset contains at the
minimum the following information about game players: character id, character
sub-class, race, task, timestamp of task completion, group size (whether a given
character grouped with one or more other characters), average group level (if a
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given character played with one or more other characters, this value represents
the average of player levels of all players involved in that group), experience
points, location (location in which the task was completed).

4.3 Evaluation

In prediction (i.e. regression, time series analysis, etc.), a common practice has
been to specify coverage probabilities by convention, 90%, 95%, and 99% being
typical choices. A previous study [6] reports that academic writers concentrate
on 95% intervals while practical forecasters prefer 50% intervals. In this study,
we compute prediction coverage at varying confidence intervals at 80% and 90%.
Algorithm 6 [7] delineates the steps taken to compute prediction coverage.

5 Experiments and Results

5.1 Past Performance as Indicator of Future Performance

A series of experiments have consistently shown that the three immediate past
levels contribute the most to the prediction of a player’s future performance.
Extending beyond the three immediate past levels does not positively contribute
to prediction coverage. One possible explanation might be that game players, in
playing tasks such as monster kills in EverQuest II, do not tend to degrade in
their performance suddenly, and therefore, a given player’s performance at the
most recent level (i − 1) should be most informative about his performance at
the current level (i). However, this may not necessarily be true in all cases such
as when a player all of a sudden decides to attempt monsters whose levels are
far beyond average, in which case, the player’s performance at the current level
may degrade due to the fact that his skill level is suddenly not matching the
task difficulty. Additionally, we try a variety of weighting schemes for use with
MARCEL [3] approach. Broadly, weighting functions are categorized into 1) even
weight distribution and 2) decaying weight distribution. The former assigns an
equal amount of confidence to each of the past levels whereas the latter assigns
more weight to more immediate past levels. Our findings suggest that with the
three immediate past levels, both even weight distribution and decaying weight
distribution produce comparative results.

5.2 Discretization Improves Prediction Coverage

Given the dataset used in our analysis, our findings suggest that the bucket
number of six leads to high prediction coverage. In some player levels though
we observe that a bucket number slightly lower or higher than six leads to even
higher prediction coverage.

Our results show that discretization using binning and histogram analysis
leads to higher prediction coverage overall across all 70 player levels where the
number of buckets is six. Figure 1 shows that MARCEL [3] approach produces



76 K.J. Shim, R. Sharan, and J. Srivastava

Fig. 1. Discretization Improves Prediction Coverage (MARCEL approach)

an average prediction coverage of 82.4% whereas the same approach employing
binning produces 84.7% and that employing histogram analysis produces 86%
prediction coverage (confidence interval of 80%). Figure 2 shows results consis-
tent with MARCEL approach where the base linear regression model produces
an average prediction coverage of 83.2% whereas the model employing binning
produces 85% and that employing histogram analysis produces 85.7% prediction
coverage (confidence interval of 80%).

Fig. 2. Discretization Improves Prediction Coverage (Linear Regression)

5.3 Comparison of Prediction Models

Figure 3 shows prediction coverage computed at confidence interval of 80%.
MARCEL [3] approach in combination with histogram-based discretization per-
forms the best while all other schemes produce results that are comparative to
that of MARCEL [3] approach.
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Fig. 3. Comparison of Prediction Models (80% Interval)

Fig. 4. Comparison of Prediction Models (80% Interval)

Figure 4 charts the average prediction coverage computed at confidence in-
terval of 80% across 70 player levels. MARCEL [3] approach in combination
with histogram-based discretization performs the best while all other schemes
produce results that are comparative to that of MARCEL [3] approach.

Figure 5 shows prediction coverage computed at confidence interval of 90%.
Linear regression model in combination with binning-based discretization per-
forms the best while all other schemes produce results that are comparative to
that of linear regression model.
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Fig. 5. Comparison of Prediction Models (90% Interval)

Fig. 6. Comparison of Prediction Models (90% Interval)

Figure 6 charts the average prediction coverage computed at confidence inter-
val of 90% across 70 player levels. Linear regression model in combination with
binning-based discretization performs the best while all other schemes produce
results that are comparative to that of linear regression model.

Our prediction models capture information essential about the relationship
between progression of player level and progression of player performance (as a
function of play time) over a range of three player levels. Our results consistently
show that the relationship is linear to a certain extent. This trend is observed
across all 70 player levels.
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6 Conclusion

In this paper, we show that variations of PECOTA [2] and MARCEL [3], two
most popular baseball home run prediction methods, can be used for game player
performance prediction. MARCEL approach in combination with bucketing in-
spired from PECOTA approach leads to high prediction coverage. The method
uses data from the three immediate past levels and assigns more weight to more
recent levels. In game player performance prediction, our findings suggest that
the results from even weight distribution and decay weight distribution are com-
parative. To account for an observation that game players in EverQuest II do
not regress towards the mean in terms of their play times, prediction models
are built on buckets using discretization based on binning and histograms. This
approach leads to higher prediction coverage. Further, we build regression-based
models and show that the relationship between progression of player level and
progression of player performance (as a function of play time) over a range of
time is linear to a certain extent. The regression-based models produce prediction
coverage comparative to that of existing methods.

Prediction models we propose in this study are expected to be a useful addition
to many existing player performance monitoring tools by providing a projection
of a given player’s future performance given his past performance. Game player
performance data such as that of EverQuest II is rich of not only outcome data
(i.e. number of monsters killed, number of experience points gained, number
of deaths occurred, number of quests completed in a given time duration) but
also process data, from which we can construct a progression of a given player’s
performance at any given time point. Existing player performance monitoring
tools can be greatly enhanced to dynamically capture player performance pro-
gression, provide instant feedback on player’s progress, and recommend tasks
tailored towards a given player’s objectives of playing the game (performance-
oriented tasks vs. social activity-oriented).

7 Future Directions

An extension to the current work involves investigating model dynamics by ex-
amining the balancing of past consistency with advancing player level. An is-
sue arises when a player performs way below the average for a couple of levels
and springs back up to a very good performance. All of the prediction models
discussed in this study so far lack the ability to integrate such dynamics into
prediction. Another extension to the present study seeks to define performance
in many dimensions of different granularity levels (i.e. task types, archetypes,
classes, sub-classes, races, roles, etc.). For instance, the present study defines
performance as a function of play time or active time. Another measure of per-
formance is the level of consistency and commitment. Results from such analyses
can reveal player behavioral patterns indicative of player churning. Yet another
addition to this study is to leverage a variety of social networks in EverQuest II
(i.e. housing network, trust network, raid group network, and guild network) to
measure the impact of social interactions on player performance.
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Abstract. Microarray cancer classification has drawn attention of re-
search community for better clinical diagnosis in last few years. Mi-
croarray datasets are characterized by high dimension and small sample
size. To avoid curse of dimensionality good feature selection methods
are needed. Here, we propose a two stage algorithm for finding a small
subset of relevant genes responsible for classification in high dimensional
microarray datasets. In first stage of algorithm, the entire feature space
is divided into k clusters using normalized cut. Similarity measure used
for clustering is maximal information compression index. The informa-
tive gene is selected from each cluster using t-statistics and a pool of non
redundant genes is created. In second stage a wrapper based forward
feature selection method is used to obtain a set of optimal genes for a
given classifier. The proposed algorithm is tested on three well known
datasets from Kent Ridge Biomedical Data Repository. Comparison with
other state of art methods shows that our proposed algorithm is able to
achieve better classification accuracy with less number of features.

Keywords: Cancer Classification, Microarray, Normalized Cut, Repre-
sentative Entropy, Gene Selection.

1 Introduction

DNA microarrays have provided the opportunity to measure the expression lev-
els of thousands of genes simultaneously. One of the most common application
of microarray is to classify the samples such as healthy versus diseased by com-
paring the gene expression levels. Microarray data which is characterized by
high dimension and small sample size suffers from curse of dimensionality[1].
For better classification there is a need to reduce the dimension. In general,
among thousands of genes(features) which are monitored simultaneously only a
fraction of them are biologically relevant. Therefore, efficient feature selection
methods are needed to identify a set of discriminatory genes that can be used for
effective class prediction and better clinical diagnose. In literature, various fea-
ture selection methods have been proposed. These methods broadly fall into two
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categories[2]: filter and wrapper methods. Most filter methods independently
measure the importance of features without involving any classifier. So, they
may not select the most relevant set of features for the learning algorithm. Also,
the features set selected by filter methods may contain correlated(redundant)
features which may degrade the performance of classifier. On the other hand,
wrapper methods directly use the classification accuracy of some classifier as the
evaluation criteria. They tend to find features better suited to the predetermined
learning algorithm resulting in better performance. But, they are computation-
ally more expensive . The conventional wrapper methods are hard to apply
directly to high dimensional datasets as they require large computation time.
Reducing the search space for wrapper methods will decrease the computation
time. This can be achieved by first selecting a reduced set of non-redundant
features from the original set of features without losing any informative feature.

In this paper, a novel two-stage approach is proposed to determine a subset of
relevant and non-redundant genes for better cancer classification. Our approach
first groups correlated genes and then select one informative gene from each one
of these groups to reduce redundancy. This requires partitioning of the original
gene set into some distinct clusters so that the genes within a cluster are highly
similar(correlated) while those in different clusters are dissimilar. At the second
stage a Sequential Forward Feature Selection(SFFS) method is applied to select
a smaller set of discriminatory genes which can provide maximum classification
accuracy.

This paper is organized as follows. Section 2 describes related work. In sec-
tion 3 we present our proposed algorithm for selecting a set of informative and
non-redundant genes. Experimental results on some well-known datasets are
presented in Section 4. Section 5 contains conclusions.

2 Related Work

In order to achieve better classification of high dimensional microarray data,
we need to determine a smaller set of discriminatory genes from a given set
of genes without loosing any information. In literature, many gene selection
methods have been proposed which are based on a gene ranking that assigns a
score for each gene which approximates the relative strength of the gene. These
methods return a set of top ranked genes and classifier is built on these genes.
Among them, Golub et. al.[3] selected top genes using measure of correlation
which emphasizes that a discriminatory gene must have close expression levels
in samples within a class, but significantly different expression levels in samples
across different classes. Other approaches that adopt the same principle with
modifications and enhancements include[4] and [5]. Using ranking method, one
cannot select a smallest set of discriminatory genes as the selected subset may
contain many correlated genes. Few wrapper based approaches are also suggested
in literature which works better for small and middle dimensional data. How-
ever they cannot be applied directly on high dimensional microarray dataset as it
is computationally expensive. We can overcome this by determining a smaller set
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of genes for wrapper approach. This is possible if we can group correlated or
similar genes into clusters and then select a gene from each cluster which can
provide us a reduced set of independent and informative genes.

In literature clustering has been employed for grouping correlated or simi-
lar genes. Many diverse clustering techniques have been suggested in literature.
The most widely used techniques include hierarchical[6], k-means clustering[7]
and Self-organized- maps(SOM)[8]. Each one of them is associated with advan-
tages and disadvantages. Shi and Malik[9] have proposed an efficient normalized
cut(NCUT) method based on graph theoretic approach for image segmentation.
The normalized cut criterion measures both the total dissimilarity between the
different groups as well as total similarity with in the groups. This can also be
used for clustering of correlated genes in microarray data. In NCUT a given
graph G=(V, E), where viε V represents a gene and e(vi, vj)ε E represents sim-
ilarity between two genes vi and vj , is divided into two disjoint sets A and B.
For partitioning of the genes into A and B, the capacity of the normalized cut,
Ncut is defined as

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)
assoc(B, V )

(1)

where cut(A, B) = ΣuεA,vεBw(u, v) and assoc(A, V ) = ΣuεA,tεV w(u, t)
To determine a better partition of a cluster the value of Ncut should be

minimized which is a NP-hard problem. Shi and Malik[9] have shown that this
problem can be reformulated as eigenvalue problem which is given by

D−1/2(D −W )D−1/2x = λx (2)

It has been shown by Shi and Malik[9] that second smallest eigenvector of the
above generalized eigenvalue system is the real valued solution to our minimum
normalized cut problem. Hence, the second smallest eigenvector can be used to
partition the original cluster into two clusters.

In general euclidean distance and Pearsons correlation are used as the distance
or similarity measure for clustering. However, euclidean distance is not suitable
to capture functional similarity such as positive and negative correlation, and
interdependency[10]. It is also pointed out that it is suitable only for a data
which follows a particular distribution[11]. On other hand, Pearson coefficient
is not robust to outliers and it may assign a high similarity score to a pair of
dissimilar genes[12]. Also both these measures are sensitive to scaling and rota-
tion. A similarity measures called maximal information compression index[13] is
suggested in literature for measuring redundancy between two features. Given
two random variables x1 and x2, the maximal information compression index
λ2(x1, x2) is defined as

λ2(x1, x2) =
σ1 + σ2 +

√
((σ1 + σ2)2 − 4σ1σ2(1 − ρ(x1, x2)2)

2
(3)

where σ1, σ2 are the variance of x1, and x2 respectively and ρ(x1, x2) is the
correlation between x1 and x2.
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The value of λ2 is zero when the features are linearly dependent and increases
as the amount of dependency decreases. The measure λ2 possesses several desir-
able properties such as symmetry, sensitivity to scaling and invariance to rotation
which are not present in the commonly used euclidean distance and correlation
coefficient.

Further splitting of a cluster, from a set of available clusters, can be decided on
the basis of representative entropy measure. Representative entropy measures the
amount of redundancy among genes in a given cluster. For a cluster containing p
genes with covariance matrix Σ, representative entropy, HR of a cluster is given
by

HR = −Σp
l=1λllog(λl) (4)

where λl = λl

Σp
l=1λl

and λl, l = 1, 2, . . . , p are the eigen values of the matrix Σ.
HR attains a minimum value(zero) when all the eigenvalues except one are

zero, or in other words when all the information is present along a single di-
rection. If all the eigenvalues are equal, i.e. information is equally distributed
among all the genes, HR is maximum. High value of HR represents low redun-
dancy in the cluster. Since we are interested in partitioning the original subspace
into homogeneous clusters, each cluster should have low HR. So we split a clus-
ter which has maximum HR among a given set of clusters as it contains more
non-redundant genes.

3 Proposed Method for Gene Selection

Here we propose a two stage algorithm to select a set of discriminatory genes
to achieve better classification. Our proposed algorithm consists of two phases.
The first phase involves partitioning of the original gene set into some distinct
clusters so that the genes within a cluster are highly correlated to each other
while those in different clusters are less correlated. The similarity measure used
in NCUT clustering algorithm is maximal information compression index. We
have used a hierarchical clustering in which we start with a single cluster. We
split the original cluster into two clusters such that the normalized cut value is
minimized. To determine which candidate cluster to further partition from the
existing set of clusters, we have used representative entropy. The cluster with
the maximum HR(low redundancy) is partitioned. This process is repeated till
we get the required number of clusters. Representative gene from each cluster
is chosen using t-statistics. In the second phase a Sequential Forward Feature
selection(SFFS) method is applied to select a smaller set of discriminatory genes
which provides maximum accuracy. The criterion used in the SFFS is the accu-
racy of the classifier. The outline of the proposed algorithm is the following:

Proposed Algorithm
Input : Initial Set of genes, Class Labels C, Classifier M,

Cluster_Size
PHASE 1 // to determine a subset of relevant and independent

genes S
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1. Intialization : Set G=initial set of genes ;
2. S = empty set; No of clusters=2; /*Set of Selected Attributes*/
3. Calculate the Similarity Matrix W using Maximal information compression

index.
4. Define D where D(i) = σjw(i, j)
5. Solve eigenvalue problem D−1/2(D −W )D−1/2x = λ
6. Use the eigenvector with second smallest eigenvalues to divide the original

cluster C into two clusters.
7. While (no of clusters≤Cluster Size)
8. Begin
9. For each cluster calculate the representative entropy HR

10. Choose the Cluster Ci having the maximum entropy
11. Repeat step (3)-(6) for Cluster Ci

12. No of clusters=No of clusters+1
13. End
14. For each cluster
15. Find the informative gene gi from cluster Ci using t-statistics
16. S=S U gi

PHASE 2 // to determine subset of genes which provides max accuracy

1.Initialization R=empty set
2.For each xj ∈ S calculate classification accuracy for classifier M.
3.[xk, max acc] = maxj Classification accuracy(xj);
4.R = R ∪ xk; S = S − xk; R min = R
5. For each xj calculate classification accuracy of S ∪ xj for classifier M
6. [xk, max acc] = maxj Classification accuracy(xj);
7. R = R ∪ xk; S = S − xk

8. If new max acc ≥ max acc then R min=R;max acc=new max acc;
9. Repeat 5-9 until max acc=100 or S = empty set
10. Retum R min, max acc

4 Experimental Setup and Results

To test the effectiveness of our proposed algorithm, we have carried out ex-
periments on three well known datasets from Kent Ridge Biomedical Data
Repository[14]. The details of these datasets are given in Table 1. Datasets are
normalized using Z-score before carrying out experiments.

Table 1. Datasets Used

Dataset Samples Genes Classes
Colon 62 2000 2
SRBCT 83 2308 4
Prostate 102 5967 2
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Table 2. Maximum classification accuracy along with number of genes for different
classifiers using different cluster size methods

No.of Clusters LDC QDC KNN SVM
30 93.54(18) 91.93(24) 95.16(13) 95.16(14)
40 91.93(4) 93.54(8) 95.16(6) 93.54(5)
50 91.93(4) 95.16(6) 96.77(11) 95.16(10)
60 98.38(32) 95.16(7) 95.16(8) 96.77(19)

a. Colon dataset
No.of Clusters LDC QDC KNN SVM
30 97.59 (20) 96.38 (10) 100 (7) 100 (4)
40 100 (31) 97.59 (11) 100 (6) 100 (4)
50 100 (33) 97.59 (11) 100 (6) 100 (5)
60 98.79 (9) 97.59 (12) 100 (6) 100 (6)

b. SRBCT dataset
No.of Clusters LDC QDC KNN SVM
30 93.13 (3) 96.07 (3) 98.03 (7) 97.06 (14)
40 96.07 (8) 96.07 (3) 96.07 (3) 99.01 (15)
50 96.07 (8) 96.07 (3) 96.07 (3) 98.03 (17)
60 97.05 (5) 97.05 (19) 99.01 (7) 96.07 (3)

c. Prostate dataset

Table 3. Comparison of Maximum Classification accuracy and number of genes se-
lected with other state of art methods

SRBCT PROSTATE COLON
Proposed Method 100(4) Proposed Method 99.01(7) Proposed method 98.38(32)

GS2+SVM[4] 100(96) GAKNN[17] 96.3(79) PSO+ANN[4] 88.7
GS1+SVM[4] 98.8(34) BIRS[18] 91.2(3) Yuechui and Yao[20] 90.3
Chos+SVM[4] 98.8(80) BIRSW[18] 85.48(3.50)
Ftest + SVM[4] 100(78) BIRSF[18] 85.48(7.40)
Fu and Liu[15] 100(19)
Tibsrani[19] 100(43)
Khan[16] 100(96)

Genes are clustered using NCUT based on maximal information compression
index as similarity measure. From each cluster the most informative gene is
selected using t-statistics. After collecting a pool of genes, a Forward Feature
Selection method is applied to get a sub-optimal set of genes which provides
maximum classification accuracy. Classification accuracy is calculated using leave-
one-out cross validation. The different classifiers used in our experiments are lin-
ear discriminant classifier(LDC), quadratic discriminant classifier(QDC),
k-nearest neighbor(KNN) and support vector machine(SVM). For KNN the op-
timal value of k is chosen. Linear kernel is used in SVM. The experiment was
conducted for different cluster sizes. The cluster sizes considered in our experi-
ments are 30, 40, 50 and 60. Table 2 depicts the maximum classification accuracy
along with the number of genes obtained by our proposed algorithm for different
cluster sizes. We can observe the following from Table 2:
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1. For Colon dataset a maximum accuracy of 98.38% is achieved with 32 genes
for LDC classifier. The maximum accuracy of 96.77% is achieved for KNN
and SVM with 11 and 19 genes respectively. For QDC a maximum accuracy
of 95.16% is achieved with 6 genes.

2. For SRBCT dataset maximum classification accuracy of 100% is achieved
for LDC, KNN and SVM with 31 , 6 and 4 genes respectively. For QDC a
maximum accuracy of 97.59% is achieved with 11 genes.

3. For prostate dataset maximum classification accuracy of 99.01% is achieved
for KNN and SVM with 7 and 15 genes respectively. For QDC and LDC a
maximum accuarcy of 97.05% is achieved with 19 and 5 genes respectively.

4. The performance of KNN is better in terms of number of genes in comparison
to other classifiers LDC, QDC and SVM for all three data sets.

It is observed that our proposed algorithm is able to achieve a high classification
accuracy with small number of genes. In Table 3, we have also compared per-
formance of our proposed method in terms of classification and number of genes
with some already existing gene selection methods in literature[15],[16],[17],[18],
[19],[4]and [20]. From Table 3, it can be observed that the performance of our
proposed algorithm is significantly better in terms of both classification accuracy
and number of genes selected.

5 Conclusion

In this paper, we have proposed a two stage algorithm for finding a small subset of
discriminatory genes responsible for classification in high dimensional microarray
datasets. The first stage involves partitioning of the original gene set into some
distinct subsets or clusters so that the genes within a cluster are highly correlated
to each other while those in different clusters are less correlated. We have used
NCUT clustering algorithm which is based on graph theoretic approach and
requires computation of similarity measures between genes. We have used a
novel similarity measure maximal information compression index which is not
used for microarray datasets earlier. Most informative gene from each cluster
is then selected to create a pool of non-redundant genes. The size of this set
is significantly small which allows us to use a wrapper approach at the second
stage. The use of wrapper method at the second stage gives a smaller subset of
genes which provides better classification accuracy. Experimental results show
that our proposed method is able to achieve a better accuracy with a small
number of genes. Comparisons with other state of art methods show that our
proposed algorithm is able to achieve better or comparable accuracy with less
number of genes with all the three datasets.
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Abstract. In this paper, a novel prototype reduction algorithm is pro-
posed, which aims at reducing the storage requirement and enhancing the
online speed while retaining the same level of accuracy for a K-nearest
neighbor (KNN) classifier. To achieve this goal, our proposed algorithm
learns the weighted similarity function for a KNN classifier by maxi-
mizing the leave-one-out cross-validation accuracy. Unlike the classical
methods PW, LPD and WDNN which can only work with K = 1, our
developed algorithm can work with K ≥ 1. This flexibility allows our
learning algorithm to have superior classification accuracy and noise ro-
bustness. The proposed approach is assessed through experiments with
twenty real world benchmark data sets. In all these experiments, the
proposed approach shows it can dramatically reduce the storage require-
ment and online time for KNN while having equal or better accuracy
than KNN, and it also shows comparable results to several prototype
reduction methods proposed in literature.

1 Introduction

We consider a general classification problem with C(≥ 2) classes and n training
instances. Each training instance consists of measurements x = (x1, . . . , xd)T

on d features and a known class label y = {1, 2, . . . , C}. The training data set
can be represented in the form of Ω = {(xi, yi), i = 1, . . . , n}. The goal of a
classification task is to correctly predict the class label of a query q ∈ �d.

The K-nearest neighbor (KNN) method is a simple and appealing approach
to this problem [3]. The KNN algorithm is also known as nearest neighbor (NN)
algorithm for K = 1. It is well known that the asymptotic error rate of the NN
rule is never more than twice the Bayes rate [1]. However, the major outstand-
ing drawback of the KNN algorithm is that the whole training data set must
be stored in memory to be used in the test phase. To identify the K nearest
neighbors in the test phase, the distances between q and all training instances
xi (i = 1, . . . , n) must be computed. This can result in a prohibitively large
storage requirement and slow testing speed. (Note that the term ‘testing speed’
and ‘online speed’ can be used interchangeably.) Also, the presence of noisy in-
stances (i.e., those with errors in the feature vector or class label, or those not
representative of typical cases) can also degrade the generalization performance
of KNN.
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Prototype reduction techniques are concerned with reducing the number of
training vectors (prototypes) to be used, which can reduce the storage require-
ment and increase the testing speed simultaneously. Some prototype reduction
methods identify the optimal subset of the representative instances from the
original data, while the other approaches generate an entirely new set of objects
as the artificial prototypes. Suppose the size of the stored training set is n, then
the testing time for KNN to classify one query is O(dn2). Hence, the reduction
in storage requirement can subsequently enhance the testing speed of a KNN
classifier. A comprehensive survey of the prototype reduction methods for KNN
can be found in [12].

A recent and very promising approach for prototype reduction, called Weighted
Distance Nearest Neighbor (WDNN) [2], is based on retaining the informative in-
stances and learning their weights for classification. The WDNN algorithm assigns
a weight wi(≥ 0) to each training instance xi at the training phase. Only the train-
ing instances and the corresponding weights with wi > 0 will be retained (as the
prototypes) in the test phase. Although only a fraction of the training set is re-
tained, the generalization performance of WDNN can be equal to or even better
than NN. To achieve this goal, the weights wi are determined by maximizing the
leave-one-out cross-validation (LOOCV) accuracy. At each iteration of a LOOCV
procedure, each training instance xi is regarded as the query and its class label
is predicted by using all the other training instances. This procedure is repeated
for i = 1, . . . , n. The WDNN algorithm is a hill climbing optimization technique
where each wi is updated by assuming all the other weights wj (j �= i) are given
and fixed, and the optimal wi is determined by considering the threshold value for
which xi will be the nearest neighbor of the other training instances. In [2], it has
been shown that the WDNN algorithm can reduce, on average, more than 80% of
the training set while retaining or improving the generalization accuracy of a NN
classifier over several real data sets. In the same paper, the WDNN algorithm has
also been shown to outperform several benchmarking prototype methods includ-
ing A-NN [11], PW [7] and LPD [6].

Although the WDNN algorithm is well formulated and shows encouraging
performance in practice, it can only work with K = 1. (Similarly, PW [7] and
LPD [6] also work with K = 1 only). However, it has been shown that the best
value of K is neither too large nor too small, and setting K > 1 can reduce
the sensitivity to noise and smooth the decision boundaries (see [1] and [3]). In
the case of K = 1, being a nearest neighbor of an instance and classifying this
instance to its class are the same thing. For K > 1, these two things are different
because the decision on the classification of a query is determined by K nearest
neighbors. This fact along with the possible tied votes make the weight learning
for K > 1 complicated and difficult.

In this paper, we extend the WDNN algorithm to a general weight learning al-
gorithm for KNN with K ≥ 1. Naturally, the developed algorithm is dubbed the
Weighted Distance K Nearest Neighbor (WDKNN) algorithm. In fact, WDNN
is a special case of WDKNN as NN is a special case of KNN. As with WDNN,
the WDKNN algorithm iteratively updates the instance weights by maximizing
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the LOOCV accuracy. However, the crucial difference between WDKNN and
WDNN is that the weights returned by WDKNN are derived from an explicit
objective function and model of the decision function. In addition, it has been
shown that the optimal weights can be determined by using a subset of the
training set only and the difficulties caused by K > 1 have been successfully
resolved by considering two threshold values in WDKNN.

The rest of this paper is organized as follows. In Section 2, the KNN classi-
fication rule combined with instance weights is introduced. Section 3 presents
our proposed WDKNN algorithm. The experiment results are given in Section
4. Some concluding remarks are given in Section 5.

2 KNN Classification with Weighted Instances

In this section, we introduce the KNN classification rule with the specified in-
stance weights wi (i = 1, . . . , n). Here, we assume that these weights have already
been learned by the WDKNN algorithm and we will present how they are learned
in the following section.

The K nearest neighbors of q are found by using the weighted similarity
between q and xi:

μw(q,xi) = wi · μ(q,xi), i = 1, . . . , n, (1)

where

μ(q,xi) = 1 −D(q,xi)/Dmax, (2)

D(q,xi) =

√√√√ d∑
j=1

(qj − xij)2. (3)

Here, Dmax is the maximum possible distance between two training instances in
the feature space, which is used to allow μ(q,xi) to fall into the interval of [0, 1].

That is, Dmax =
√∑d

j=1 Δ2
j and Δj represents the difference between maximum

and minimum values of feature j. If we denote the neighborhood around q by
N(q) and the Kth largest value of μw(q,xi) (i = 1, . . . , n) by ψ(q), then N(q)
can be represented as N(q) = {xl | μw(q,xl) ≥ ψ(q)}.

In the test phase, instead of using the traditional majority voting scheme on
the K neighbors, we use the following decision function to classify q:

F (q) = arg max
c

V K
c (q), (4)

where V K
c (q) represents the vote of class c obtained by using K nearest neighbors

and it can be determined by

V K
c (q) =

∑
xl∈N(q)

I(yl = c) μw(q,xl), (5)

where I(.) denotes an indicator function, whose value is 1 if its argument is true
and 0 otherwise.
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3 Learning the Instance Weights by WDKNN Algorithm

The WDKNN algorithm presented in this section is an extension of the WDNN
algorithm for K ≥ 1. The WDKNN algorithm assigns a weight wi(≥ 0) to each
training instance xi (i = 1, . . . , n) by maximizing the LOOCV accuracy. This
procedure is done in the training phase. Only the training instances and the
associated weights with wi > 0 are retained in the test phase.

The WDKNN algorithm is a hill climbing optimization technique for solving
wi, where the optimal weight w�

i is determined by assuming all the other weights
wj (j �= i) are given and fixed. We set wi = 1 ∀i as the initial values. At iteration
i (i = 1, . . . , n), the optimal weight w�

i can be found by maximizing the objective
function related to the LOOCV accuracy:

J(wi) =
∑

{xm∈Ω,xm �=xi}
I(F (xm|wi) = ym), (6)

where F (xm|wi) is the decision function of instance xm given that the weight
for xi is wi. Here, xm is treated as a query in the LOOCV procedure. Obviously,
the obtained w�

i is only suboptimal as the other weights change during the
optimization process. Thus, the algorithm will be restarted after a fixed number
of runs over the training data set. We follow [2] to restart the optimization
process after three runs over the entire data in all experiments conducted in
Section 4.

To optimize the weight wi for the training instance xi, we assume that xi is
consistent on all other training instances xm(m �= i) in the LOOCV test. Below
is the precise definition.

Definition: A training instance is consistent on a query if it can either make
this query be classified into its class or it is irrelevant of its prediction.

In our proposal, the decision function F (xm|wi) of instance xm is modeled as
follows:

F ′(xm|wi) = I(wi ≤ θm) F (xm|wi = 0) + I(wi > θm) yi, (7)

where F (xm|wi = 0) is the decision function with wi = 0, θm is a threshold
for wi. This model essentially means that xm will be classified without using
(xi, wi) unless they can make xm be classified into its class yi. It is easy to
see that F ′(xm|wi) = F (xm|wi) for K = 1. This model is illustrated in Figure
1, where a three-class classification problem in two-dimensional space has been
plotted. The class memberships of the training instances are distinguished by the
various shapes of the data points. The query q is denoted by a black square and
the instance xi is the data point with a green ‘+’ label. If we set wi = 0, wj =
1, ∀j �= i, then the K(= 7) nearest neighbors of q are drawn with connection
lines and q will be classified into the ‘triangle’ class. On the other hand, if
wi > 1.18, wj = 1, ∀j �= i, the nearest neighbor with the dashed connection line
will be replaced by xi and thus WDKNN will assign q into the ‘diamond’ class.
Hence, we have θm = 1.18 in this example.
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Fig. 1. An illustration of the model in equation (7)

The value of threshold θm can be specified for each xm by considering three
cases regarding the relationship between xm and (xi, wi).

Case 1: If we have F (xm|wi = 0) = yi, then w�
i will not depend on (xm, ym).

Proof. If F (xm|wi = 0) = yi, then according to the definition given in equation
(4), we have1

Vyi(xm|wi = 0) > Vc �=yi(xm|wi = 0). (8)

But, according to equation (5), we also have

Vyi(xm|wi > 0) ≥ Vyi(xm|wi = 0), (9)
Vc �=yi(xm|wi > 0) ≤ Vc �=yi(xm|wi = 0), (10)

which leads to
Vyi(xm|wi > 0) > Vc �=yi(xm|wi > 0), (11)

and thus
F (xm|wi > 0) = yi. (12)

Now,
F (xm|wi > 0) = F (xm|wi = 0), (13)

which implies that F (xm|wi) and hence I(F (xm|wi) = ym) will be a constant for
all values of wi ≥ 0. Therefore, the optimal value of wi is irrelevant of (xm, ym).
(Note that this proof is valid regardless the appropriateness of the model given
in equation (7).)

Case 2: If we have F (xm|wi = 0) �= yi, F (xm|wi = 0) �= ym and yi �= ym, then
w�

i will not depend on (xm, ym).

1 For the sake of clarity, the notation V K
c (q) is replaced by Vc(q) for the proof given

here.
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Proof. From the above given conditions, it is easy to arrive at

F ′(xm|wi) �= ym, ∀wi ≥ 0, (14)

leading to
I(F ′(xm|wi) = ym) = 0, ∀wi ≥ 0. (15)

Hence, it can be seen that xm will be misclassified for all values of wi in this
case.

Case 3: If we let Mi denote the collection of all training instances {(xm, ym) ∈
Ω | m �= i} that do not belong to Case 1 and 2. Then, the threshold value θm

can be determined for all (xm, ym) ∈ Mi as follows:

θm = max{ αm, βm}, (16)
αm = ψ(xm)/μ(xm,xi), (17)
βm = (max

c
V K−1

c (xm) − V K−1
yi

(xm))/μ(xm,xi). (18)

where ψ(xm) is the Kth largest value of μw(xm,xj) for j = 1, . . . , n and j �= i.

Proof. Equation (7) tells us that F ′(xm|wi) = yi if and only if wi > θm. Also,
according to the classification rule introduced in Section 2, F (xm|wi) = yi if and
only if two two conditions are satisfied: (a) (xi, yi) is selected as one of the K
nearest neighbors of xm; (b) the class vote for class yi is the largest among all
classes.

In order to satisfy condition (a), we must have

wi · μ(xm,xi) > ψ(xm), (19)

leading to
wi > ψ(xm)/μ(xm,xi). (20)

(b) After condition (a) is satisfied, the previous Kth neighbor of xm will be
replaced by (xi, yi). By equation (4) - (5),

wi · μ(xm,xi) + V K−1
yi

(xm) > V K−1
c (xm) ∀ c = 1, . . . , C, (21)

which leads to

wi > (max
c

V K−1
c (xm) − V K−1

yi
(xm))/μ(xm,xi). (22)

According to the above three cases, the optimal w�
i can be found based on all

xm ∈ Mi by maximizing the following criterion:

J ′(wi) =
∑

{xm∈Mi}
I(F ′(xm|wi) = ym). (23)

Assume there are L threshold values θm ranked in ascending order θ1 < θ2 <
. . . < θL. Then, L + 1 values of wi are examined and the best one can be found
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by using equation (23). The first and last values examined are 0 and θL + π,
respectively (π is a very small positive number). The rest values are chosen in
the middle of two successive θm.

The compression rate (CR) is used to compute the rate at which the proto-
types are reduced for a prototype reduction method:

CR = 1 − r/n, (24)

where r and n represent the reduced and original number of instances, respec-
tively. The KNN (and hence NN) classifier retains all training instances and thus
it has CR = 0.

4 Experiments

To validate the proposed WDKNN algorithm, we compared it with the tradi-
tional KNN (including NN) algorithm and several other state-of-the-art
prototype reduction methods in literature: learning vector quantization [4], learn-
ing prototypes and distances (LPD) [6], adaptive nearest neighbor (A-NN) [11],
prototype-dependent weighting (PW) [7], WDNN [2] and MWDNN [2]. Twenty
real world benchmark data sets taken from the UCI Machine Learning Repos-
itory2 are used throughout the experiments (see Table 1). We performed the
implementation using MATLAB R2007a on Windows XP with 2Duo CPU run-
ning on 3.16 GHz PC with 3.25 GB RAM.

4.1 Experiments on UCI Data Sets

We follow [7] [6] and [2] by using five-fold cross-validation (5-CV) to test the
performance of various methods. The average accuracy and compression rate for
various methods are compared. Both the KNN and WDKNN algorithms have a
tuning parameter: K (neighborhood size). They are determined by selecting the
integer ranging from 1 to 41 that corresponds to the maximal 5-CV accuracy on
each data set. The selected values of K for both algorithms on each data set are
reported in Table 1.

Figure 2 shows the LOOCV accuracies of WDNN and WDKNN during the
weight learning progress at the first iteration. This figure was plotted based on
one fold of a 5-CV test on the ionosphere data set and K = 4 was used for
WDKNN. The LOOCV accuracy was computed after each one of the weights
had been updated. It can be seen that the LOOCV accuracy for WDKNN never
increases during the learning process. Also, WDKNN has shown superior per-
formance to WDNN during the whole optimization process.

The mean classification accuracies and compression rates of the NN, KNN,
WDNN and WDKNN methods are summarized in Table 1. We noted that the
accuracy of WDKNN is higher than that of WDNN over all data sets. However,
this higher accuracy is achieved at the expense of lower compression rates. This
2 http://archive.ics.uci.edu/ml/index.html

http://archive.ics.uci.edu/ml/index.html
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Fig. 2. Leave-one-out cross-validation accuracy during the first iteration of the WDNN
and WDKNN (K = 4) algorithms on ionosphere data

Table 1. Classification accuracy (%) and compression rates (%) of four classifiers on
twenty real data sets

Data NN KNN CR WDNN CR WDKNN CR Kknn Kwdknn

Australian 79.28 86.52 0 82.75 91.88 86.67 79.67 33 24
Balance 80.48 90.08 0 86.72 93.32 91.36 70.96 20 36
Breast (Original) 95.90 97.07 0 96.63 98.72 97.22 96.82 5 7
Breast (Prognostic) 69.21 78.79 0 74.79 93.57 79.81 63.26 6 31
Dermatology 94.54 96.18 0 95.91 94.06 97.00 83.20 10 21
Diabetes 71.75 76.43 0 71.87 89.55 75.65 56.48 18 40
Ecoli 82.73 86.59 0 83.32 93.30 88.08 84.52 9 8
Flag 41.30 46.98 0 43.86 79.13 51.08 70.88 28 3
German 68.30 73.50 0 69.00 88.95 74.50 60.25 22 33
Glass 73.39 73.39 0 64.41 81.19 73.32 70.68 1 3
Haberman 65.34 74.53 0 70.93 94.28 76.17 71.41 11 29
Heart 78.15 84.07 0 82.22 91.02 84.81 83.61 29 3
Ionosphere 87.45 87.45 0 90.31 93.59 93.16 88.60 1 4
Iris 92.67 96.67 0 94.00 91.00 97.33 59.00 13 33
Liver 60.87 69.86 0 66.96 89.28 70.43 52.03 7 25
Soybean 95.56 95.56 0 84.67 73.93 97.78 55.87 1 7
Vehicle 70.69 73.88 0 63.31 84.43 71.52 53.99 5 29
Vote 93.11 93.11 0 90.95 94.72 95.28 84.16 1 14
Wine 95.51 97.75 0 95.49 93.96 98.30 82.86 33 12
Zoo 94.00 96.00 0 95.00 82.43 96.00 76.74 6 4
Average 79.51 83.72 0 80.16 89.62 84.77 72.25 13 18

The bold numbers represent the highest accuracy values for each data set.

is because setting a larger K usually requires more training instances to be
involved in the classification stage. It can be seen that WDKNN obtained the
overall highest accuracy and also achieved the best accuracy in 17 out of 20
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Fig. 3. The comparison of average online time (in seconds) between KNN and WDKNN
over the real data sets

cases (with 1 equal best one). Based on the accuracy values obtained by various
methods over twenty data sets, we used a one-tailed paired t-test to compare
WDKNN’s accuracies to those of NN, KNN and WDNN. We have statistical
evidence that the average accuracy of WDKNN is significantly higher than the
average accuracies of all of NN, KNN and WDNN for each significance level of
0.5%, 1% and 5%. Moreover, WDKNN achieves higher accuracy than KNN with
no more than 30% of the training data set on average.

Figure 3 shows the average online time required for KNN and WDKNN over
the twenty real data sets. In the figure, each data set was denoted by the order
in which they appeared in Table 1. We noted that the online time required for
WDKNN is less than that of KNN over all 20 data sets. The online speed of
WDKNN is 7.5 times faster than KNN for the breast cancer (original) data
set, and the average online speed of WDKNN over the twenty data sets is 2.6
times faster than that of KNN. Although the reduction in online time of KNN is
trivial for these small to medium sized data sets, the reduction can be dramatic
for large data sets and this property is crucial for a KNN classifier. If the size of
either the training set or the test set increases, the advantage of WDKNN over
KNN in terms of online execution speed will become more obvious.

Table 2 gives the average 5-CV accuracies of WDKNN in comparison with
the published results of several state-of-the-art prototype reduction methods.
The data sets used by these methods are taken from the Statlog project, so
we only display WDKNN’s results on these data sets. The experimental proce-
dures for the competing methods are the same as those of WDKNN except that
the feature weighting methods have only been used in PW, LPD, MDNN and
MWDNN. In this paper, we focus on instance weighting, and thus we only em-
ploy the basic Euclidean distance, which implicitly assumes that all features have
equal weight. Hence, the accuracies of WDKNN would be consistently higher if
the feature weighting scheme had also been used in WDKNN. Despite this un-
fairness for WDKNN, it still achieves the best average accuracy on all data sets.
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Table 2. Classification accuracies (%) of the WDKNN algorithm in comparison with
other algorithms in literature

Data WDKNN LVQ1 LVQ2 LVQ3 A-NN PW LPD WDNN MWDNN
Australian 86.67 66.7 66.0 68.9 75.91 83.05 86.1 85.48 85.01
Balance 91.36 83.7 85.3 83.7 89.88 86.56 83.7 89.14 90.32
Breast (Original) 97.22 95.6 95.5 95.8 97.14 96.68 96.6 97.52 97.88
Diabetes 75.65 73.6 74.2 74.0 71.86 72.61 74.0 75.96 76.31
German 74.50 69.9 71.5 71.3 61.89 71.68 74.0 75.84 73.89
Glass 73.32 60.4 57.6 58.5 71.22 73.72 72.0 71.34 70.81
Heart 84.81 64.0 66.0 66.0 67.45 81.06 81.4 83.91 84.91
Liver 70.43 67.5 67.3 66.4 65.12 63.78 66.7 68.31 65.39
Vehicle 71.52 61.8 68.0 65.6 66.28 70.69 72.6 70.14 69.15
Vote 95.28 92.4 93.8 94.3 93.31 94.49 96.3 92.29 91.37
Wine 98.30 70.3 74.2 70.8 84.82 98.65 95.0 96.61 96.04
Average 83.6 73.3 74.5 74.1 76.8 81.2 81.7 82.4 81.9

The bold numbers represent the highest accuracy values for each data set.

Using the one-tailed paired t-test (with a significance level of 5%), we have sta-
tistical evidence that WDKNN outperforms all the competing methods. It must
be noted that the A-NN and PW methods do not reduce the training size. In
addition, these results obtained by WDKNN are comparable to or better than
those obtained by other state-of-the-art methods recently published on the same
tasks [9,8,5].

4.2 Effect of Noise

Since WDKNN is designed to be more robust in the presence of noise than
WDNN, the experiments conducted in Section 4.1 were repeated with 20% uni-
form class noise artificially added to each data set. This was done by randomly
changing the class label of 20% of the training instances to an incorrect value
(with an equal probability for each of the incorrect classes). The class labels of
the test instances are not noisy. Note that the experimental settings here are the
same as those in [2]. The performance of NN, KNN, WDNN and WDKNN were
tested to see their robustness of noise.

Table 3 reports the average accuracies and compression rates of each method
over twenty data sets. As can be seen, the accuracy of WDKNN is much better
than that of WDNN. This is consistent with our motivation that using K > 1
can reduce WDNN’s sensitivity of noise. The average values of K for both KNN
and WDKNN on the noisy data become larger compared to the real data sets.
This also suggests that a larger K is more suitable for the noisy data sets. WD-
KNN achieves the highest accuracy value averaged over the entire data set. Also,
the accuracy given by WDKNN is the best in 10 out of 20 cases. Using the one-
tailed paired t-test (for both the 1% and 5% significance level), we have statis-
tical evidence that WDKNN outperforms NN and WDNN in terms of accuracy,
and we have no statistical evidence that the average accuracy of WDKN is larger
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Table 3. Classification accuracies (%) and compression rates (%) of four classifiers on
the noisy data sets

Data NN KNN CR WDNN CR WDKNN CR Kknn Kwdknn

Australian 66.67 85.51 0 77.25 88.99 85.94 67.07 39 31
Balance 69.60 88.96 0 80.96 90.16 88.00 62.36 23 38
Breast (Original) 80.09 96.48 0 93.56 89.89 96.05 89.42 28 33
Breast (Prognostic) 64.69 78.33 0 69.24 89.77 78.31 66.55 10 14
Dermatology 74.07 95.36 0 91.27 91.60 95.08 74.59 11 36
Diabetes 62.11 73.17 0 66.67 86.72 72.14 60.41 36 18
Ecoli 65.17 84.51 0 79.74 91.52 84.81 69.79 14 39
Flag 36.65 47.49 0 42.31 81.19 50.05 64.17 33 11
German 63.60 72.60 0 64.90 88.03 73.20 67.13 30 18
Glass 62.20 65.49 0 64.50 82.36 67.32 76.52 4 1
Haberman 60.15 74.53 0 71.59 92.81 73.55 73.29 23 17
Heart 64.81 84.44 0 72.96 86.76 83.70 59.26 26 38
Ionosphere 77.77 85.17 0 85.45 89.74 88.89 71.37 10 12
Iris 69.33 95.33 0 88.67 88.67 96.67 66.00 13 25
Liver 55.07 66.09 0 58.55 85.51 65.80 41.88 26 35
Soybean 80.89 93.33 0 86.89 75.48 93.56 49.43 4 11
Vehicle 57.09 69.98 0 61.59 84.49 67.49 56.74 15 26
Vote 71.96 93.11 0 85.39 89.22 93.55 65.20 16 38
Wine 80.37 97.17 0 92.13 91.15 96.63 68.26 37 29
Zoo 71.14 93.05 0 86.14 78.97 93.10 73.27 5 6
Average 66.67 82.01 0 75.99 87.15 82.19 66.14 20 24

The bold numbers represent the highest accuracy values for each data set.

than that of KNN. On average, WDKNN achieves the same level of accuracy as
KNN by using no more than 35% of the training data set. In addition, we also
found that the online time required for WDKNN is less than that of KNN over
all noisy data sets. Specifically, the average online speed of WDKNN over the
twenty noisy data sets is 2.2 times faster than that of KNN.

5 Conclusions

In this paper, a novel prototype reduction method for KNN has been proposed.
This method removes the instances that are more of a computational burden but
do not contribute to better classification accuracy and it also assigns a weight
to each retained training instance. These weights are learned by maximizing the
leave-one-out cross-validation classification accuracy, which is the true estimate
of the generalization ability of a classifier. Empirical results have shown that
WDKNN considerably reduces the size of the training set while retaining or
improving the classification accuracy of KNN. In fact, the proposed method
may also be useful for other lazy learning methods such as ALH [10] in terms of
storage requirement and online speed.
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Abstract. This paper presents a novel scheme for face feature extraction, 
namely, the generalized two-dimensional Fisher’s linear discriminant  
(G-2DFLD) method. The G-2DFLD method is an extension of the 2DFLD 
method for feature extraction. Like 2DFLD method, G-2DFLD method is also 
based on the original 2D image matrix. However, unlike 2DFLD method, which 
maximizes class separability either from row or column direction, the G-
2DFLD method maximizes class separability from both the row and column 
directions simultaneously. In G-2DFLD method, two alternative Fisher’s 
criteria have been defined corresponding to row and column-wise projection 
directions. The principal components extracted from an image matrix in 2DFLD 
method are vectors; whereas, in G-2DFLD method these are scalars. Therefore, 
the size of the resultant image feature matrix is much smaller using G-2DFLD 
method than that of using 2DFLD method. The proposed G-2DFLD method 
was evaluated on two popular face recognition databases, the AT&T (formerly 
ORL) and the UMIST face databases. The experimental results show that the 
new G-2DFLD scheme outperforms the PCA, 2DPCA, FLD and 2DFLD 
schemes, not only in terms of computation times, but also for the task of face 
recognition using a multi-class support vector machine. 

Keywords: Generalized two-dimensional FLD, Feature extraction, Face 
recognition. 

1   Introduction 

The Fisher’s linear discriminant (FLD) method has been widely used for feature 
extraction and dimension reduction in pattern recognition and computer vision 
domains. The key idea of the FLD technique is to find the optimal projection that 
maximizes the ratio of the between-class and the within-class scatter matrices of the 
projected samples. A difficulty in using the FLD technique in face recognition is the 
“small sample size (SSS)” problem [1]. This problem usually arises when the number 
of samples is smaller than the dimension of the samples. In face recognition domain, 
the dimension of a face image is generally very high. Therefore, the within-class 
scatter matrix is almost always singular, thereby making the implementation of FLD 
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method impossible. One direct solution of the SSS is to down sample the face images 
into a considerably small size and then perform FLD technique. However, this process 
is not computationally efficient as the pre-processing of images takes considerable 
amount of time before actual application of the FLD technique. Er et al. [2] proposed 
a PCA+FLD technique to avoid the SSS problem. In [2], face features are first 
extracted by the principal component analysis (PCA) method and then the resultant 
features are further processed by the FLD technique to acquire lower-dimensional 
discriminant features. An improved PCA technique, the two-dimensional PCA 
(2DPCA), was proposed by Yang et al. [3]. Unlike PCA, which works on the 
stretched image vector, the 2DPCA works directly on the original 2D image matrix. 
The 2DPCA is not only computationally efficient, but also superior for the task of 
face recognition and image reconstruction than the conventional PCA technique [3]. 
However, the PCA techniques yield projection directions that maximize the total 
scatter across all classes, i.e., across all face images. Therefore, the PCA retains 
unwanted variations caused by lighting, facial expression, and other factors [2], [4]. 
The PCA techniques do not provide any information for class discrimination but 
dimension reduction [2]. Recently, Xiong et al. [5] proposed a two-dimensional FLD 
(2DFLD) method, which also works directly on the original 2D image matrix and 
maximizes class separability either from row or column direction. The so called SSS 
problem does not arise in 2DFLD method as the size of its scatter matrices is much 
smaller. The 2DFLD method is found to be superior to the PCA and 2DPCA in terms 
of feature extraction and face recognition [5].  

In this paper, we have extended the 2DFLD algorithm [5] and present a novel 
generalized two-dimensional FLD (G-2DFLD) technique, which maximizes class 
separability from both the row and column directions simultaneously. Like 2DFLD 
method, G-2DFLD method is also based on the original 2D image matrix. In G-
2DFLD method, two alternative Fisher’s criteria have been defined corresponding to 
row and column-wise projection directions. Unlike 2DFLD method, the principal 
components extracted from an image matrix by the G-2DFLD method are scalars. 
Therefore, the size of the resultant image feature matrix is much smaller using the G-
2DFLD method than that of using the 2DFLD method. The experimental results on 
the AT&T and the UMIST databases show that the new G-2DFLD scheme 
outperforms the PCA, 2DPCA, FLD and 2DFLD schemes, not only in terms of 
computation time, but also for the task of face recognition using a multi-class support 
vector machine (SVM).  

The remaining part of the paper is organized as follows. Section 2 describes the 
procedure of extracting face features using 2DFLD technique. Section 3 presents the 
key idea and algorithm of the proposed G-2DFLD method for feature extraction.  
The experimental results on the AT&T and the UMIST face databases are presented 
in Section 4. Finally, Section 5 draws the conclusion remarks. 

2   Two-Dimensional FLD (2DFLD) Method for Feature Extraction 

The 2DFLD [5] method is based on the 2D image matrix. It does not need to form a 
stretched large image vector from the 2D image matrix. The key idea is to project an 
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image matrix X, an m×n random matrix, onto a projection matrix A of dimension n×k 
(k≤n) to get an image feature matrix Y of dimension m×k by the following linear 
transformation [5]: 

XAY =  (1) 

Let there are N training images, each one is denoted by m×n image matrix Xi (i=1, 2, 
…, N). The training images contain C classes (subjects), and the cth class Cc has Nc 

samples (∑ =
=C

c c NN
1

). Let the mean image of the training samples is denoted by 

µ and the mean image of the cth class is denoted by µc. The between-class and within-
class scatter matrices Gb and Gw, respectively are defined as follows: 

)()(NG c

C

c

T
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Then the two-dimensional Fisher’s criterion J(Q) is defined as follows: 

QGQ

QGQ
QJ

w
T

b
T

=)(  (4) 

where Q is the projection matrix. 
It may be noted that the size of both the Gb and Gw is n×n. If Gw is a nonsingular 

matrix, the ratio in (4) is maximized when the column vectors of the projection matrix 

Q, are the eigenvectors of 1−
wbGG . The optimal projection matrix Qopt is defined as 

follows: 

1maxarg −= wb
Q

opt GGQ  

   = [q1, q2, …, qk] 
(5) 

where {qi | i=1, 2, …, k} is the set of normalized eigenvectors of 1−
wb GG  

corresponding to k largest eigenvalues {λi | i=1, 2, …, k}.  
Now, each face image Xi (i=1, 2, …, N) is projected into the optimal projection 

matrix Qopt to obtain its (m×k)-dimensional 2DFLD-based features Yi, which is 
defined as follows:  

NiQXY optii ,...,2,1; ==  (6) 

where iX  is mean-subtracted image of Xi  
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3   Generalized Two-Dimensional FLD (G-2DFLD) Method for 
Feature Extraction 

3.1   Key Idea and the Algorithm 

Like 2DFLD method, the generalized two-dimensional FLD (G-2DFLD) method is 
also based on 2D image matrix. The only difference is that, it maximizes class 
separability from both the row and column directions simultaneously by the following 
linear transformation: 

XVU  Z T=  (7) 

where U and V are two projection matrices of dimension m×p (p≤m) and n×q (q≤n), 
respectively. Therefore, our goal is to find the optimal projection directions U and V 
so that the projected vector in the (p×q)-dimensional space reaches its maximum class 
separability. 

3.1.1   Alternate Fisher’s Criteria 
We have defined two alternative Fisher’s criteria J(U) and J(V) corresponding to row 
and column-wise projection directions as follows: 

UGU
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We call the matrices Gbr, Gwr, Gbc and Gwc, as image row between-class scatter 
matrix, image row within-class scatter matrix, image column between-class scatter 
matrix and image column within-class scatter matrix, respectively. It may be noted 
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that size of the scatter matrices Gbr and Gwr is m×m, whereas, for Gbc and Gwc the size 
is n×n. The sizes of these scatter matrices are much smaller than that of the 
conventional FLD algorithm, whose scatter matrices are mn×mn in size. For a square 

image, m=n and we have Gbr = T
bcG  and Gwr = T

wcG  and vice-versa.  

The ratios in (8) and (9) are maximized when the column vectors of the projection 

matrix U and V, are the eigenvectors of 1−
wrbr GG  and 1−

wcbcGG , respectively. The 

optimal projection (eigenvector) matrix Uopt and Vopt are defined as follows: 

1maxarg −= wrbr
U

opt GGU  

  = [u1, u2, …, up] 

(14) 

1maxarg −= wcbc
V

opt GGV  

  = [v1, v2, …, vq] 
(15) 

where {ui | i=1, 2, …, p} is the set of normalized eigenvectors of 1−
wrbrGG  

corresponding to p largest eigenvalues {λi | i=1, 2, …, p} and {vj | j=1, 2, …, q} is the 

set of normalized eigenvectors of 1−
wcbc GG  corresponding to q largest eigenvalues {αj 

| j=1, 2, …, q}. 

3.1.2   Feature Extraction 
The optimal projection matrices Uopt and Vopt are used for feature extraction. For a 
given image sample X, an image feature is obtained by the following linear 
projection: 

qjpi ,...,2,1;,...,2,1, === j
T

iij Xvu  z  (16) 

The zij (i=1, 2, …, p; j=1, 2, …, q) is called a principal component of the sample 
image X. It should be noted that each principal component of the 2DFLD method is a 
vector, whereas, the principal component of the G-2DFLD method is a scalar. The 
principal components thus obtained are used to form a G-2DFLD-based image feature 
matrix Z of dimension p×q (p≤m, q≤n), which is much smaller than the 2DFLD-
based image feature matrix Y of dimension m×k (k≤n). Therefore, in this case an 
image matrix is reduced considerably in both the row and column directions 
simultaneously.  

4   Experimental Results 

The performance of the proposed method has been evaluated on the AT&T 
Laboratories Cambridge database (formerly ORL database) [6] and the UMIST face 
database [7]. The AT&T database is used to test performance of the proposed method 
under the condition of minor variations of rotation and scaling and the UMIST 
database is used to examine the performance of the method when the angle of rotation 
of the facial images is quite large. The experiments were carried out in two different 
strategies; randomly partitioning the database and n-fold cross validation test.  
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We have designed a multi-class support vector machine (SVM) using Gaussian 
kernels for classification of the images to test the effectiveness of the G-2DFLD 
algorithm. The SVM has been recently proposed by Vapnik et al. [8] for binary 
classification and found to be very effective for pattern recognition. A SVM finds the 
hyperplane that separates the samples of two classes while maximizing the distance 
from either class to the hyperplane. This hyperplane is called Optimal Separating 
Hyperplane (OSH), which minimizes the risk of misclassification of both the training 
and test samples. A multi-class SVM has been designed by combining two class 
SVMs. In particular, we have adopted the one-against-all strategy to classify samples 
between each class and all the remaining classes. The one-against-all strategy is 
discussed as follows: 

Let the training set (Xi, ci) consists of N samples of M classes, where ci 

)M,...,2,1c( i ∈  represents the class label of the sample Xi. An SVM is constructed 

for each class by discriminating that class from the remaining (M-1) classes. Thus the 
number of SVMs used in this approach is M. A test pattern X is classified by using 
the winner-takes-all decision strategy, i.e., the class with the maximum value of the 
discriminant function f(X) is assigned to it. All the N training samples are used in 
constructing an SVM for a class. The SVM for class k is constructed using the set of 
training samples and their desired outputs, (Xi, yi). The desired output yi for a training 
sample Xi is defined as follows: 

⎩
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The samples with the desired output yi = +1 are called positive samples and the 
samples with the desired output yi = -1 are called negative samples. 

4.1   Experiments on the AT and T Face Database 

The AT&T database contains 400 gray-scale images of 40 persons. Each person has 
10 gray-scale images, having a resolution of 112×92 pixels. Images of the individuals 
have been taken by varying light intensity, facial expressions (open/closed eyes, 
smiling/not smiling) and facial details (glasses/no glasses) and against a dark 
homogeneous background, with tilt and rotation up to 20o and scale variation up to 
10%. Sample face images of a person are shown in Fig. 1.  

4.1.1   Randomly Partitioning the Database 
In this experimental strategy, we randomly select d images from each subject to form 
the training set and the remaining images are included in the test set. To ensure 
sufficient training and to test the effectiveness of the proposed technique for different 
sizes of the training sets, we choose the value of d as 3, 4, 5, 6 and 7. It should be 
noted that there is no overlap between the training and test images. To reduce the 
influence of performance on the training and test sets, for each value of d, experiment 
is repeated 20 times with different training and test sets. Since the numbers of 
projection vectors p and q have a considerable impact on the performance of the G-
2DFLD algorithm, we perform several experiments by varying the values of p and q. 
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Fig. 1. Sample images of a subject from the AT&T database 

Fig. 2 shows the recognition rates of the G-2DFLD algorithm using a multi-class 
support vector machine (SVM). For each value d, average recognition rates are 
plotted by varying the values of p and q. For d=3, 4, 5, 6 and 7 the best average 
recognition rates are found to be 92.82%, 95.94%, 97.68%, 98.72% and 98.42%, 
respectively and the dimension (p×q) of the corresponding image feature matrices are 
(16×16), (16×16), (14×14), (14×14) and (8×8), respectively.  

 

Fig. 2. Average recognition rates of the G-2DFLD algorithm on the AT&T database for 
different values d by varying the values of p and q 

4.1.2   N-Fold Cross Validation Test 
In this experiment, we divide the AT&T database (formerly ORL database) into ten-
folds randomly, taking one image of a person into a fold. Therefore, each fold consists 
of 40 images, each one corresponding to a different person. For ten-folds cross 
validation test, in each experimental run, nine folds are used to train the multi-class 
SVM and remaining one fold for testing. Therefore, training and test sets consist of 
360 and 40 images, respectively. The average recognition rates by varying the image 
feature matrix (i.e. p×q) are shown in Fig. 3. The best average recognition rate is 
found to be 99.75% using image feature matrix of size (8×8).  
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Fig. 3. Average recognition rates of the G-2DFLD algorithm on the AT&T database for 10-
folds cross validation test by varying the values of p and q. The upper and lower extrema of the 
error bars represent the maximum and minimum values, respectively. 

4.1.3   Comparison with Other Methods 
For a fair comparison, we have implemented the PCA, 2DPCA, PCA+FLD and 2DFLD 
algorithms and used the same multi-class SVM and parameters for classification. The 
comparisons of the best average recognition rates of the PCA, 2DPCA, PCA+FLD and 
2DFLD algorithms along with the proposed G-2DFLD algorithm using the two different 
experimental strategies are shown in Table 1. It may be noted that in all the cases the 
performance of the G-2DFLD method is better than the PCA, 2DPCA, PCA+FLD and 
2DFLD methods. 

Table 1. Comparison of different methods in terms of average recognition rates (%) on the 
AT&T database. Figures within the parentheses denote the number of features. 

Experiment Method d=3 d=4 d=5 d=6 d=7 

G-2DFLD 92.82 
(16×16) 

95.94 
(16×16) 

97.68 
(14×14) 

98.72 
(14×14) 

98.42 
(8×8) 

PCA 85.58 
(60) 

89.42 
(60) 

93.10 
(60) 

95.28 
(60) 

96.01 
(60) 

2DPCA 91.27 
(112×16) 

94.33 
(112×16) 

96.83 
(112×14) 

97.72 
(112×14) 

97.79 
(112×8) 

PCA+FLD 83.65 
(25) 

88.65 
(25) 

92.60 
(25) 

95.30 
(25) 

95.83 
(25) 

Randomly 
partition, d 

images/subject 

2DFLD 92.30 
(112×16) 

95.08 
(112×16) 

97.50 
(112×14) 

98.26 
(112×14) 

97.88 
(112×8) 

G-2DFLD 99.75 (8×8) 

PCA 97.00 (60) 

2DPCA 99.25 (112×8) 

PCA+FLD 98.25 (25) 

10-folds cross 
validation test 

2DFLD 99.00 (112×8) 
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Table 2.  Comparison of average feature extraction time (in seconds) using 200 training and 
200 test images on the AT&T database 

Method # of features Time (seconds) 

G-2DFLD 14×14 = 196 12.95 

PCA 60 55.10 

2DPCA 112×14 = 1568 32.55 

PCA+FLD 25 55.75 

2DFLD 112×14 = 1568 22.35 

 
Table 2 shows the average time (in seconds) taken by the G-2DFLD, PCA, 

2DPCA, PCA+FLD and 2DFLD methods for feature extraction on the AT&T 
database using an IBM Intel Pentium 4 Hyper-Threading technology, 3.0 GHz, 2 GB 
DDR-II RAM computer running on Fedora 9 Linux Operating Systems. It may be 
again noted that the proposed G-2DFLD method is more efficient than the PCA, 
2DPCA, PCA+FLD and 2DFLD methods in term of computation time. 

4.2   Experiments on the UMIST Face Database 

The UMIST1 face database is a multi-view database, consisting of 575 gray-scale 
images of 20 people (subject), each covering a wide range of poses from profile to 
frontal views. Each image has a resolution of 112×92 pixel. Each subject also covers a 
range of race, sex and appearance. Unlike the ORL database, the number of images 
per people is not fixed; it varies from 19 to 48. Fig. 4 shows some of the sample 
images of a subject from the database.  

     

     

Fig. 4. Some sample images of a subject from the UMIST database 

4.2.1   Randomly Partitioning the Database 
Like AT&T database, we randomly select d images from each subject to form the 
training set and the remaining images are included in the test set. We choose the value 
of d as 4, 6, 8 and 10. It should be again noted that there is no overlap between the 
training and test images. For each value of d, experiment is repeated 20 times with 
                                                           
1 At present UMIST database contains 475 images. However, we have used the earlier version 

of the UMIST database to test with more number of images. 
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different training and test sets. Fig. 5 shows the recognition rates of the G-2DFLD 
algorithm using a multi-class SVM. For each value d, average recognition rates are 
plotted by varying the values of p and q. For d=4, 6, 8 and 10 the best average 
recognition rates are found to be 86.22%, 92.28%, 95.54% and 96.92%, respectively 
and the dimension (p×q) of the corresponding image feature matrices are (14×14), 
(14×14), (14×14) and (18×18), respectively.  

 

Fig. 5. Average recognition rates of the G-2DFLD algorithm on the UMIST database for 
different values d by varying the values of p and q 

 

Fig. 6. Average recognition rates of the G-2DFLD algorithm on the UMIST database for 19-
folds cross validation test by varying the values of p and q. The upper and lower extrema of the 
error bars represent the maximum and minimum values, respectively. 

4.2.2   N-Fold Cross Validation Test 
Since the number of images per subject varies from 19 to 48, we have randomly 
divided the database into 19 folds, taking one image of a subject into a fold. 
Therefore, in each fold there are 20 images, each one corresponding to a different 
subject. For 19-folds cross validation test, in each experimental run, 18 folds are used 
to train the multi-class SVM and remaining one fold is used for testing. Therefore, 
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training and test sets consist of 360 and 20 images, respectively in a particular 
experimental run. The average recognition rates by varying the image feature matrix 
(i.e. p×q) are shown in Fig. 6. The best average recognition rate is found to be 
98.95% using image feature matrix of size (14×14).  

4.2.3   Comparison with Other Methods  
For a fair comparison, like AT&T database, we have implemented the PCA, 2DPCA, 
PCA+FLD and 2DFLD algorithms and used the same multi-class SVM and parameters 
for classification. The comparisons between the best average recognition rates of the 
PCA, 2DPCA, PCA+FLD and 2DFLD algorithms along with the propose G-2DFLD 
method using the two different experimental strategies are shown in Table 3. It may be 
again noted that in all the cases the performance of the G-2DFLD method is better than 
the PCA, 2DPCA, PCA+FLD and 2DFLD methods, excepts in 19-folds cross 
validation test, where the performance of the 2DPCA method matches with that of the 
proposed G-2DFLD method. 

Table 3. Comparison of different methods in terms of average recognition rates (%) on the 
UMIST database. Figures within the parentheses denote the number of features. 

Experiment Method d=4 d=6 d=8 d=10 

G-2DFLD 86.22 
(14×14) 

92.28 
(14×14) 

95.54 
(14×14) 

96.92 
(18×18) 

PCA 80.72 
(60) 

86.53 
(60) 

94.01 
(60) 

95.11 
(60) 

2DPCA 85.70 
(112×14) 

91.91 
(112×14) 

95.07 
(112×14) 

96.60 
(112×18) 

PCA+FLD 76.31 
(25) 

85.69 
(25) 

90.93 
(25) 

93.72 
(25) 

Randomly 
partition, d 

images/subject 

2DFLD 86.12 
(112×14) 

92.16 
(112×14) 

95.25 
(112×14) 

96.55 
(112×18) 

G-2DFLD 98.95 (14×14) 

PCA 98.68 (60) 

2DPCA 98.95 (112×14) 

PCA+FLD 96.36 (25) 

19-folds cross 
validation test 

2DFLD 98.68 (112×14) 

5   Conclusion 

In this paper, we have presented a novel scheme for face feature extraction, namely, 
generalized two-dimensional FLD (G-2DFLD) method, which is based on the original 
2D image matrix. The G-2DFLD algorithm maximizes class separability from both the 
row and column directions simultaneously, resulting in a smaller image feature matrix. 
To realize this, we have defined two alternative Fisher’s criteria corresponding to row 
and column-wise projection directions. The principal components extracted from an 
image matrix by the G-2DFLD method are scalars. Since the size of the scatter 
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matrices in the proposed G-2DFLD algorithm is much smaller than those in the 
conventional PCA and FLD schemes, the computational time for feature extraction is 
much less. The experimental results on the AT&T and UMIST databases show that the 
G-2DFLD method is more efficient than the PCA, 2DPCA, PCA+FLD, and 2DFLD 
methods, not only in terms of computation times, but also for the task of face 
recognition using a multi-class support vector machine (SVM).  
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Abstract. The problems of variable selection and inference of statistical
dependence have been addressed by modeling in the gradients learning
framework based on the representer theorem. In this paper, we propose
a new gradients learning algorithm in the Bayesian framework, called
Gaussian Processes Gradient Learning (GPGL) model, which can achieve
higher accuracy while returning the credible intervals of the estimated
gradients that existing methods cannot provide. The simulation examples
are used to verify the proposed algorithm, and its advantages can be seen
from the experimental results.

1 Introduction

Analyzing data sets associated with many variables or coordinates has become
increasingly challenging in many circumstances, especially in biological and phys-
ical sciences [1]. A wide range of machine learning algorithms based on the
regularization theory such as support vector machines (SVMs) [2] have been
proposed to solve the predictive problems in the past two decades. Although
these approaches demonstrate quite acceptable and robust performances in a
lot of experiments and applications, sometimes one also wants to get an insight
into the relationships between the coordinates and the influence of the coor-
dinates/attributes/features on the outputs. For example, it is very interesting
to investigate which covariant is most significant for prediction and how the
variables vary with respect to each other in estimation.

The gradient of the target function provides a valuable measure to charac-
terize the relationships [3,4,5,1] and it has been used in many approaches and
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applications. For example, the minimum average variance estimation (MAVE)
method and the outer product of gradients (OPG) estimation approach pro-
posed by [3] focus on finding the effective dimension reduction (e.d.r.) space
in the data sets by using the gradients of the training data implicitly and
explicitly, respectively. These models show better performance in the estima-
tion of e.d.r. space than others, but learning gradient information would fail
in the “large m (dimension), small n (size of the dataset)” paradigm [6]. Re-
cently, [4] and [5] proposed a method to learn the gradient of a target function
directly from a given data set based on the Tikhonov regularization method,
which avoided the overfitting problem in the “large m, small n” settings. The
most significant statistical measure we can get by those nonparametric
kernel based models is the gradient outer product (GOP) matrix, which can
interpret the importance of the coordinates for the prediction and the covari-
ation with respect to each other. In addition, with the assistance of spectral
decomposition of the gradient outer product matrix, the e.d.r. directions can
be directly estimated [1]. Furthermore [7] extended gradient learning algorithm
from the Euclidean space to the manifolds setting, and provided the conver-
gence rate dependent on the intrinsic dimension of the manifold rather than
the dimension of the ambient space. This is very important in the “large m,
small n” settings. Except for the application examples proposed in the avail-
able literature, gradient learning from scattered data sets is particularly im-
portant for surfaces reconstruction in computer graphics where, when
visually scaled geometric surfaces constructed from scattered data, analytical
expression (or rules) of gradients was highly desirable in calculating the nor-
mals at any given point needed in most surface reconstruction algorithms
(see [8]).

However, these direct gradient learning methods cannot offer any reasonable
error bars for the estimated gradients because essentially the task of estimating
gradients is the problem of point estimation. In many application scenarios, a
confidence interval on the estimates is very important, such as found in computer
graphics.

In this paper, we propose a new gradient learning approach under the Bayesian
framework based on Gaussian Processes (GPs) [9]. Compared to the learning
gradients method in [4], not only can our algorithm apply in the “large m, small
n” cases and achieve higher accuracy, but it can also return the error bars of
the estimated gradients, which provide us with an estimate of the uncertainty
of stability. We will verify these features in Sections 5.

The rest of this paper is organized as follows. In Section 2, we introduce
the statistical foundation for learning gradients. The gradients learning method
with Gaussian Processes will be proposed in Section 3, which includes a brief
introduction of the Gaussian Processes regression. The algorithm derivation
is illustrated in Section 4. Then, simulated data are used to verify our algo-
rithm in Section 5. Finally, closing remarks and comments will be given in
Section 6.
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2 The Statistical Foundation for Learning Gradients

2.1 Notations

Denote data D = {(xi, yi)}n
i=1 where xi is a vector in a m-dimensional compact

metric subspace X ⊂ Rm and yi ∈ Rp is a vector too. Without loss of generality,
we will assume that p = 1. Our approach can be easily extended to the case
of vectorial value outputs y. Typically we assume that the data are drawn i.i.d.
from a joint distribution, (xi, yi) ∼ p(X, Y ). In the standard regression problem,
we want to model the regression function F defined by the conditional mean of
Y |X , i.e., F = EY [Y |X ]. The gradient of F is a vectorial value function with m
components, if all the partial derivatives exist,

f(x) � ∇F = (f1(x), ..., fm(x))T =

(
∂F (x)
∂x1

, · · · ,
∂F (x)
∂xm

)T

(1)

where xi are the components of the vector x and f(x) = (f1(x), ..., fm(x)).
The gradient and the issues of variable selection and coordinate covariation

are relevant because the gradient can provide following information [4]:

1. Variable selection: the norm of the partial derivative

∥∥∥∥∥ ∂F

∂xi

∥∥∥∥∥ indicates the

significance of the variables for the prediction because a small norm implies
a slight change in the function F with respect to the i-th coordinate.

2. Coordinate covariation: the inner product of the partial derivatives with

respect to different dimensions
〈 ∂F

∂xi
,
∂F

∂xj

〉
indicates the covariance of the

i-th and j-th coordinates.

A central concept in all gradients learning approaches, called the gradient outer
product (GOP) matrix, is defined by

Γij = E〈
∂F

∂xi
,

∂F

∂xj
〉 (2)

The GOP has a deep relation with the so-called effective dimension reduction
(e.d.r.) space and the relationship was exploited in several gradient regression
methods such as MAVE and OPG [3] and [4,5].

2.2 Learning Gradients

To propose our approach for gradients learning, let us focus on the introduction
of those available algorithms of learning the gradients from the data. Recall that
the MAVE and OPG suffer from the problem of the overfitting in the “large
m, small n” paradigm, so the so-called regularized framework has been used to
overcome the overfitting based on the kernel representer theorem. Actually the
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kernel representer theorem is also the motivation for our algorithm in the next
section. The algorithms based on the kernel representer theorem show better
performance than the MAVE and OPG [1].

Our goal is to design a model for the gradient estimate directly from data. The
conventional methods usually take a two-steps procedure by first learning a re-
gression function F and then calculating the gradients of the F . However a direct
gradients learning algorithm may have more advantages than the conventional
ways, as demonstrated in [4,1].

Essentially, all of those kinds of models are motivated by the Taylor expansion
of the target function:

yi ≈ yj + f(xi)T (xi − xj) for xi ≈ xj (3)

A model for gradients leaning from an observation dataset D is defined as

f := argmin
f

⎧⎨⎩ 1
n2

n∑
i,j=1

wij [yi − yj + f(xi)T (xj − xi)]2 + λ‖f‖2

⎫⎬⎭ (4)

where wij is called weights and defined as wij = 1
σm+2 exp

{
− ‖xi−xj‖2

2σ2

}
where

σ2 is set to the median of the input data. When xj is far away from xi, the
Taylor expansion of the function F (xj) at xi makes less contribution to the
regression objective.

According to the representer theorem [10], the optimal solution to (4) is the
linear combination of kernel function defined on the data points, thus the prob-
lem is actually transformed to solving a linear systems problem, see [4].

Due to regularization, this model can prevent overfitting in the “large m, small
n” paradigm and obtain fairly remarkable performance. However, sometimes it
is also important that we want to know the error bars of the point estimation
for the gradient, which can not be provided by those kinds of models.

An alternative method is to define the model under the Bayesian learning
and inference framework. We aim to use the Gaussian Processes (GPs) model
which is also based on the kernel and can be viewed as the exhibition of the
representer theorem. So motivated by the model in [4] and associated it with the
GPs, we will show how to improve the accuracy and compute the error bars of
the estimated gradient in the following section.

3 Gradients Learning with Gaussian Processes

3.1 Gaussian Processes Regression

Given the data set which consists of the i.i.d. samples from unknown distribu-
tion D = {(x1, y1), · · · , (xn, yn)} ⊂ Rm × Rp The standard Gaussian Process
regression is concerned with the case when p = 1. The goal is to estimate the
p(y|x∗) for a test data x∗. In the standard Gaussian processes (GPs) regression
model, a latent variable f is introduced in the model defined by

y = f(x) + ε
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where ε is the additive noise, specified by the likelihood p(y|f, x) = p(y|f). This
model is nonparametric because the latent variable f is random function which
follows the Gaussian Process with zero mean and covaiance function k(·, ·). Also
the likelihood follows a Gaussian distribution with zero mean and covariance σ2

t .
Denote by X = {xi}n

i=1. Due to the independence of the samples D, its
likelihood under the model is the product of p(yi|f(xi)) which is a Gaussian
too. Given a test point x∗, it is easy to check that the joint distribution of the
latent function is given by, see [9],[

f
f∗

]
∼ N

(
0,

[
KXX KXx∗

Kx∗X Kx∗x∗

])
(5)

where K are matrix of the kernel function values at the corresponding points
and N (μ, Σ) denotes the Gaussian distribution with mean μ and covariance Σ.

Under the Gaussian likelihood assumption, we can simply add the covariance
of the noise to the GP prior due to the independence assumption of the noise.
So the predictive distribution on the observation is

f∗|x∗, X, y ∼ N (Kx∗X(KXX + σ2
t I)

−1y, Kx∗x∗ −Kx∗X(KXX + σ2
t I)

−1KXx∗)
(6)

where the variance of the conditional distribution illustrates the uncertainty of
the prediction and the mean can be written as f(x∗) =

∑n
i=1 αiK(xi, x

∗), where
α = (KXX + σ2

t I)
−1y. This form of the prediction exhibits the fact that the GP

can be represented in terms of a number of basis function is one feature of the
representer theorem.

3.2 Gradients Estimation Model with Gaussian Processes

To apply the Gaussian Process model in the case of gradients learning, we have
to overcome two hurdles. First, the regression model (4) shows that we are
dealing with a multi-task regression problem as the gradient f is a vectorial
function, so we have to generalize the standard Gaussian Process regression to
multi-task case. This has been done in the recent works such as [11]. Second, the
i.i.d. assumption for the data set can not be used to produce a joint likelihood
which is the product of individual likelihood at each data point. In fact, when we
transform (4) into probabilistic formulation, we see that the coupling between
data makes learning and inference more complicated. However, we can still define
a likelihood for the whole data set D rather than a likelihood for each data pair.

Under the above modification, we can formulate the gradients learning model
in the Bayesian framework based on the GPs, named Gaussian Process Gradient
Learning (GPGL) model, and we will show the advantages in Section 5.

Based on the analysis we have just given, a new likelihood formulation by
extending the datum-based likelihood to dataset-based likelihood is defined as

p(Y |X, f) ∝ exp

⎧⎨⎩−1
2

n∑
i,j=1

wij [yi − yj + f (xi)T (xj − xi)]2

⎫⎬⎭ (7)
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Let us introduce the following notation, the scalar c =
∑n

i,j=1 wij(yi − yj)2, the
m × m matrices Bi =

∑n
j=1 wij(xi − xj)(xi − xj)T , and the m dimensional

vectors hi =
∑n

j=1 wij(yi − yj)(xi − xj), i = 1, 2, ..., n. We will use the same
weights wij as [4] for comparison. Furthermore define B = UT diag(B1, B2, · · · ,
Bn)U and a column vector of dimension mn h = UT [hT

1 , hT
2 , · · · , hT

n ]T , where U
is a permutation matrix. Similarly define the column vector (of dimension mn)
f = [fT

1 , fT
2 , ..., fT

m]T where f i = [fi(x1), fi(x2), ..., fi(xn)]T .
Under the above notation, it is easy to validate that the likelihood (7) of the

observation dataset D can be written as

p(Y |X, f) =
1
M

exp

{
−

1
2
(fT Bf − 2hT f + c)

}
(8)

where M is the normalized constant.
The variable f collects the information of m partial derivatives over the given

input data X . In our model formulation, the variable f is assumed to be a
Gaussian Processes while the covariance function is Σ = Kff ⊗ KXX . So the
Gaussian processes prior is

p(f |X, θ) =
1

|2πΣ|1/2
exp

{
−

1
2
fT Σ−1f

}
(9)

where Kff ∈ Rm×m is the coordinate-similarity matrix, KXX ∈ Rn×n is the
covariance matrix of the samples X , and θ is the parameters of the covariance
function.

By using the Bayesian formulation, the posterior of f given the dataset is

p(f |X, Y, θ) =
p(Y |X, f)p(f |X, θ)

p(Y |X, θ)
(10)

As all the densities in the above relation are Gaussian, it is easy to derive, see
Appendix A of [9], the posterior of f

p(f |X, Y, θ) =
1

|2πE|1/2
exp

{
−

1
2
(f − Eh)T E−1(f − Eh)

}
(11)

where E = (B + Σ−1)−1.
For a new data x∗, we want to estimate f∗ = f(x∗) based on the observation

data. According to the predictive distribution of Gaussian processes, we have

f∗|f , x∗, X, θ∼N ((Kf⊗K∗X)T Σ−1f , Kf⊗K∗∗−(Kf ⊗K∗X)T Σ−1(Kf⊗K∗X))
(12)

where K∗X = K(X, x∗), K∗∗ = K(x∗, x∗). By integrating over the uncertainty
f according to the posterior (11), we can get the gradients predictive distribution
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p(f∗|x∗, X, Y ) =
∫

p(f∗|f , x∗, X)p(f |X, Y )df

=
1

|2πQ|1/2
exp

{
−

1
2
(f∗ − P )T Q−1(f∗ − P )

}
(13)

That is, the gradients predictive distribution is a Gaussian with the mean P and
the covariance Q. Thus the gradient estimate is given by

P = (Kff ⊗K∗X)T (BΣ + I)−1h (14)

and the error bar is given by

Q = Kff ⊗K∗∗ − (Kff ⊗K∗X)T (Σ + B−1)−1(Kff ⊗K∗X). (15)

4 Learning Kernel Hyperparameters

To develop an approach for learning coordinate-similarity matrix Kff and the
kernel hyperparameters, we use gradient-based optimization of the marginal like-
lihood p(Y |X, θ). Without loss of generality, we just consider Kff as unit matrix.
Since Kff controls the correlations between m dimensions of the gradients, the
simplicity means that we are assuming the independence of different coordinates.
Actually the optimization with respect to the parameters in Kff can be dealt
with in the same way as follows [11].

Then the log marginal likelihood log p(Y |X, θ) is given by

L = −
1
2
log|B−1 + Σ| −

1
2
hT (B−1 + Σ)−1h + C. (16)

where C is a constant independent of the parameter θ, which can be ignored in
optimizing L with respect to θ. To work out a formula for the derivatives of L
with respect to θ, we refer to the matrix reference manual for the notation [12].

Denote by F1 = − log|B−1 + Σ|, then dF1 = −(B−1 + Σ)−1 :T d(Σ) : .
Similarly, we have dF2 =

(
(B−1 + Σ)−1hhT (B +−1 +Σ)−1

)
:T d(Σ) : , where

F2 = −hT (B−1 + Σ)−1h,
According to the derivative formula for the Kronecker product of matrices,

we have d(Σ) = d(Kff ⊗KXX) = (Im,m ⊗ Tn,m ⊗ In,n)(Kff : ⊗In2,n2)dKXX :,
where Tm,n, called the vectorized transpose matrix, is the mn×mn permutation
matrix whose (i, j)-th elements is 1 if j = 1 + m(i − 1) − (mn − 1)� i−1

n 	 or 0
otherwise.

So the derivatives of L with respect to θ is

∂L

∂θ
=

1
2

[
−((B−1 + Σ)−1 :)T + ((B−1 + Σ)−1hhT (B−1 + Σ)−1 :)T

]
(Im,m ⊗ Tn,m ⊗ In,n)(Kff : ⊗In2,n2)

dKXX

dθ
. (17)
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In our experiments, we learn the parameters of the models so as to maximize
the marginal likelihood using gradient-based search. The code is based on Neil
D. Lawrence’s MATLAB packages Kern and Optimi1.

We have seen that (B−1 + Σ)−1 needs to be inverted for both making pre-
dictions and learning the hyperparameters in time O(m3n3). This can lead to
computational problems if mn is large. Although we only use cholesky decompo-
sition and singular value decomposition to accelerate computation, the efficient
approximation method in [11] can be directly used in our GPGL algorithm to
reduce the computational complexity.

5 Experiments

In this section we will verify our GPGL algorithm in two simulated data sets to
show the higher accuracy of the estimation and the credible intervals that the
gradient learning methods in [4], named Mukherjee’s algorithm in the following,
can not gain. In the first data set, we generate some samples from four simple
functions which can compute the real gradients for comparison. Another high-
dimensional data set is used to test that our algorithm can be applied to show
the variable selection and coordinate covariance like Mukherjee’s algorithm.

5.1 Error Bar Estimation

We illustrate how GPGL can be used to estimate the credible intervals of the
estimated gradient and compare Mukherjee’s algorithm with GPGL to show
higher accuracy that GPGL demonstrates.

Given four representative elementary regression models y = exp(x); y =
ln(x); y = x2; y = sin(x), where {(xi, yi)}n

i=1 ∈ R × R and xi ∼ N(1, 0.1). In
our experiment, we sampled 100 points from the Gaussian distribution. The
true derivatives are given by y′ = exp(x); y′ = 1/x; y′ = 2 ∗ x; y′ = cos(x),
respectively. The comparison of the results between proposed GPGL algorithm
and Mukherjee’s algorithm is shown in Figures 1 to 4. We use the mean squared
error between the true derivative and learned derivative to measure the quality
of learning algorithm. The smaller MSE means that a better performance of the
algorithm. All the MSEs for those four functions with different algorithms are
collected in Table 1. It can be seen that the proposed GPGL algorithm gives
better performance in terms of lower MSEs for three out of the four functions.

Although for the functions y = exp(x) and y = x2, Mukherjee’s algorithm
gives slightly better results, the proposed GPGL algorithm outperforms Mukher-
jee’s Algorithm in other cases. However, in the experiment, we find that Mukher-
jee’s algorithm is sensitive to the value of regularization parameter and the
percentage of the eigenvalues parameters (see the code in [4]) that need to
be chosen manually, especially the regularization parameter. Sometimes, it is
hard to choose them optimally, although a standard cross validation can be

1 http://www.cs.manchester.ac.uk/~neil/software.html

http://www.cs.manchester.ac.uk/~neil/software.html
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Fig. 1. The Result for function y = exp(x)
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Fig. 2. The Result for function y = ln(x)
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Fig. 3. The Result for function y = x2
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Fig. 4. The Result for function y = sin(x)

Table 1. The Mean Squared Error

Algorithm y = exp(x) y = ln(x) y = x2 y = sin(x)
GPGL 19.6275 12.8840 7.9557 1.3999

Mukherjee’s 12.0330 80.8199 2.7621 15.9319

applied. However, the proposed GPGL method does not suffer from this prob-
lem and is more stable with ability to automatically adapt parameters. In ad-
dition, the error bars can be obtained from our algorithm along with gradient
estimation.

5.2 High-Dimensional Data Set

Definition 1. The empirical gradient matrix (EGM), Fz , is the m × n matrix
whose columns are f(xj) with j = 1, · · · , n. The empirical covariance matrix
(ECM), is the m × m matrix of inner products of the directional derivative of
two coordinates, which can be denoted as Cov(f ) := [〈(f )p, (f )q〉K ]mp,q=1.

The ECM gives us the covariance between the coordinates while the EGM
provides us information about how the variables differ over different sections of
the space.

For a fair comparison, we construct the same artificial data as those used in
[4]. By creating a function in an m = 80 dimensional space which consists of
three linear functions over different partitions of the space, we generate n = 30
samples as follows:

1. For samples {xi}10
i=1,

xj ∼ N (1, σx), for j = 1, · · · , 10;

xj ∼ N (0, σx), for j = 11, · · · , 80;
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Fig. 5. a). The data matrix x; b). The vector of y values; c). The RKHS norm for each
dimension; d). An estimate of the gradient at each sample; e). The empirical covariance
matrix

2. For samples {xi}20
i=11,

xj ∼ N (1, σx), for j = 11, · · · , 20;

xj ∼ N (0, σx), for j = 1, · · · , 10, 21, · · · , 80;

3. For samples {xi}30
i=21

xj ∼ N (1, σx), for j = 41, · · · , 50;

xj ∼ N (0, σx), for j = 1, · · · , 40, 51, · · · , 80;

A representation of this X matrix is shown in Figure 5(a). Three vectors with
support over different dimensions were constructed as follows:

w1 = 2 + 0.5 sin(2πi/10) for i = 1, · · · , 10 and 0 otherwise,
w2 = −2 + 0.5 sin(2πi/10) for i = 11, · · · , 20 and 0 otherwise,
w3 = 2 − 0.5 sin(2πi/10) for i = 41, · · · , 50 and 0 otherwise,

Then the function is defined by

1. For samples {yi}10
i=1 yi = xi � w1 +N (0, σy),

2. For samples {yi}20
i=11 yi = xi � w2 +N (0, σy),

3. For samples {yi}30
i=21 yi = xi � w3 +N (0, σy).

A draw of the y values is shown in Figure 5(b). In Figure 5(c), we plot the norm
of each component of the estimate of the gradient using the GPGL algorithm.
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The norm of each component gives an indication of the importance of a variable
and variables with small norms can be eliminated. Note that the coordinates
with nonzero norm are the ones we expect, l = 1, · · · , 20, 41, · · · , 50. In Figure
5(d) we plot the EGM, while the ECM is displayed in Figure 5(e). The blocking
structure of the ECM indicates the coordinates that covary. The similar result
can be found in [4].

6 Conclusions

In this paper we have proposed a direct gradient learning algorithm from sample
dataset in the Bayesian framework. The Gaussian Processes Gradient Learning
(GPGL) model we propose can be seen as the manifestation of the representer
theorem which is the basis of Mukherjee’s algorithm. However, only the GPGL
model can provide the error bars of the estimated gradients which characterize
the uncertainty of the estimation. Besides, the GPGL model is stable and shows
higher accuracy than Mukherjee’s algorithm in terms of MSE in some circum-
stances. Another advantage is that GPGL model is more stable with automatical
parameter adapting while the result from Mukherjee’s algorithm heavily depends
on the better tuning of the regularization parameters. In future work we plan to
extend GPGL to sparse model to improve the generalization capability that is
especially useful in the “large m, small n” setting.
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Abstract. The Radial Coordinate Visualization (Radviz) technique has
been widely used to effectively evaluate the existence of patterns in highly
dimensional data sets. A crucial aspect of this technique lies in the ar-
rangement of the dimensions, which determines the quality of the poste-
rior visualization. Dimension arrangement (DA) has been shown to be an
NP-problem and different heuristics have been proposed to solve it using
optimization techniques. However, very little work has focused on under-
standing the relation between the arrangement of the dimensions and the
quality of the visualization. In this paper we first present two variations
of the DA problem: (1) a Radviz independent approach and (2) a Rad-
viz dependent approach. We then describe the use of the Davies-Bouldin
index to automatically evaluate the quality of a visualization i.e., its
visual usefulness. Our empirical evaluation is extensive and uses both
real and synthetic data sets in order to evaluate our proposed methods
and to fully understand the impact that parameters such as number of
samples, dimensions, or cluster separability have in the relation between
the optimization algorithm and the visualization tool.

1 Introduction

Visualization tools focus on graphically representing high dimensional and mul-
tivariate data with enough clarity to allow for data exploration. Low dimensional
data sets have traditionally been represented using either simple line graphs or
scatter plots. Nevertheless, in the case of high dimensional data sets, special
techniques for data visualization such as Parallel Coordinates [6], Star Glyphs
[7], Circle Segments [2] or Radviz [11] are used. One of the key problems of these
techniques is the dimension arrangement problem (DA), which evaluates from
an algorithmic perspective which arrangement of the dimensions facilitates more
the comprehension of the data. Ankerst et. al [1] formalized the DA problem and
proved that it is NP-complete similarly to the traveling salesman problem. In
this paper we present two reformalization of it designed to explore a search space
whose non-convexity makes it more probable to find the desired global maxima
(minima). The evaluation of the effectiveness of the arrangement in terms of vi-
sual information is typically carried out by means of human intervention. Most
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of the papers focusing on visualization techniques have generally assumed that
the better the solution for the dimension arrangement optimization problem, the
better the visual usefulness of the projected data. In this paper, we present an
initial approach to formally determine such relation, making use of the Davies-
Bouldin index for cluster analysis in order to compute the visual quality of the
information being plotted by Radviz by an extensive empirical evaluation on
synthetic and real datasets.

2 Related Work

There is a wide variety of visualization techniques for multidimensional data
that present a circular arrangements of the dimensions, like Star Coordinates
[7], Circle Segments [2] and Circle Graphs [14]. We focus our analysis on Radviz
[4] which we further explain in Section 3. The problem of dimension arrange-
ment is common for all circular and non-circular visualization techniques and
was formalized by Ankerst et al. as an optimization problem where the similar-
ity between dimensions located next to each other had to be maximized. to be
NP-complete. So far, very little work has been done to automatically understand
(without human intervention) the quality of the visualization for the projected
data. Ankerst et al. evaluate the goodness of their dimension arrangement algo-
rithms by simply stating that the results show clearly superiority. Yang et al. [12]
proposed an interactive hierarchical ordering of the dimensions based on their
similarities, thus improving the manageability of high-dimensional datasets and
reducing the complexity of the ordering. Weng et al. [10] formalize the concept
of clutter in various visualization techniques and present it as a dimension ar-
rangement optimization problem whose solutions will improve the detection of
structure in the projected data. Yang et. al [13] present a visualization technique
where the user can interactively navigate through the dimensions and visually
determine the quality of the re-arrangement. VizRank [9] is one of the few works
that attempts to automate the visual quality evaluation process, by assessing
data projections and ranking them according to their ability to visually dis-
criminate between classes. The quality of the class separation is estimated by
computing the predictive accuracy of the k-nearest neighbour classifier. Our eval-
uation scheme is faster and simpler than the VizRank approach and does not
suffer from the typical k-NN problems such as the computation of an adequate
value for k or the computational complexity (O(n2)).

3 Radviz’s Algorithm

RadViz (Radial Coordinate visualization) [4][5] is a visualization technique based
on Hooke’s law that maps a set of n-dimensional points into a plane: each point
is held in place with springs that are attached at the other end to the feature
anchors. The stiffness of each spring is proportional to the value of the corre-
sponding feature and the point ends up at the position where the spring forces
are in equilibrium. Prior to visualization, feature values are scaled to lie between
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0 and 1. Radviz offers a unique method which can help to identify relations
among data. Its main advantage is that it needs no feature projections and pro-
vides a global view on the multidimensional, multivariate data. The condition
of equilibrium for a single object u is given by

∑n−1
i=0 (Ai − u) ∗ yi = 0.

Radviz faces several open problems: overlapping (different objects can be
placed in the same 2D point), visual clutter (different instances could be placed
close to each other) and NP-completeness (the final effectiveness of the approach
depends on the dimension arrangement). Despite that, no study has shown yet
whether there exists a relation between the solution provided by the optimization
algorithm and the improvement in the visual usefulness of the projection.

4 Dimension Arrangement Formalizations

Although the DA problem has already been formalized in a generic context
by Ankerst et al. [1], here we present new formalizations within the context of
Radviz with the goal of providing a better exploration of the search spaces.

4.1 Independent DA

Let us assume that we have a dataset with points m that represent information
represented with d dimensions. We define the similarity matrix as a symmetric
matrix of dimensions d × d, where each element Si,j represents the similarity
between dimensions i and j. Each dimension i is represented as a distribution of
m elements, where each element is taken from the i− th dimension of each point
in the dataset. In the experimental section we will describe the various metrics
we have used to compute such similarity metric. Additionally, we define the
neighborhood matrix N of dimensions d×dwhich describes the circular distance
between any two dimensions located in the circle. In particular, we calculate each
Ni,j as 1 − cdist(i,j)

(d/2) , where d is the total number of dimensions and cdist(i, j)
represents the circular distance between dimensions i and j located on the circle.
This distance is calculated as the number of dimensions on the circle between i
and j through the shortest circular path. The larger the value of Ni,j, the closer
the dimensions i and j are on the circle.

Thus, we can then formalize the dimension arrangement problem for a pair
of similarity matrix S and neighborhood matrix N as a maximization problem
where

∑d−1
i=0

∑d−1
j=0 Ni,j ∗ Si,j achieves its maximum value (i.e., the more similar

two dimensions are, the closer they should be located in the arrangement.

4.2 Radviz-Dependent DA

Our second DA formalization focuses on using Radviz to evaluate the quality of
the arrangement. Again, we start with the similarity matrix S of dimensions d×d.
For each possible dimension arrangement, this matrix represents a measure of the
similarities across dimensions. For each specific matrix S, we project each row
in S onto the circle using Radviz. The idea is that the projected dimension should
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be as close to its dimension on the circle as possible. If that does not happen, it
may be either that the dimensions are highly correlated or that the dimension
arrangement is not good. Thus, for each dimension arrangement, each dimension
i in the graph will have two representations: its coordinates on the circle, and
its projected coordinates inside the circle, where the arranged dimensions are
located according to the angular positions and the projected dimensions are
calculated with respect to the Radviz formula.

Thus, the dimension arrangement problem can be defined as an optimiza-
tion problem where for a given similarity matrix S, the optimal dimension ar-
rangement is given by minimizing the sum of Euclidean distances between the
arranged and the projected dimensions within the graph. This formalization fol-
lows the fact that the shorter the distance between an arranged dimension and
its projection, the better the quality of the arrangement.

5 Experimental Setting

We want to focus our analysis on the relationship between the multiple DAs, the
optimization functions, and the quality of visualization. For that purpose, in our
analysis we make use of datasets with a limited number of dimensions that will
allow us to fully explore, through a brute-force analysis, all the range of possible
solutions. Our aim is twofold:

– To understand whether the formalization of the optimization problem as well
as the metrics to measure similarity play a role in the way the search space
(of the dimension arrangements) is explored.

– To carry an extensive experimental evaluation with both real and synthetic
datasets to determine the relationship between the dimension arrangements
and the quality of their associated data projections, studying the impact of
various parameters like number of instance, dimensions, classes, and over-
lapping of the classes.

Regarding the synthetic data generation, we define four parameters for our algo-
rithm: the number of classes nc (values from 2 to 100); the number of dimensions
nd1; the number of instances ni (values from 100 to 10000) and the percentage
p overlap (up to 40%)2 of instances that are randomly moved from one class
to another. For each possible combination of nc, nd and ni, we create random
instances within each class such that the clusters representing the classes are
initially separated by equal distances. Finally, we modify the membership of a
percentage p overlap of the instances such that the boundaries between classes
become blurry and classes start to overlap. We then used several real datasets
from the UCI Machine Learning Repository3.

The DA formalizations we have proposed are based on similarity measure-
ments between dimensions. Although there exist many metrics to measure the
1 We imposed a max # of dimensions (8 ) to be able to fully explore all possible DAs.
2 Larger values did not add any extra overlap and were not considered.
3 Datasets available at http://archive.ics.uci.edu/ml/datasets.html

http://archive.ics.uci.edu/ml/datasets.html
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similarity, we make use of the the Kullback-Leibler divergence [15] and the Co-
sine Similarity. The Kullback-Leibler (KL) divergence measures the difference
between two probability distributions P and Q with cardinality d4:

∑d
i=1 Pi ∗

log2( Pi

Qi
). The inverse of it represents the similarity between them. On the other

hand, Cosine similarity is calculated as the dot product between the distributions
P and Q divided by the product of their norms. In order to study the relation-
ship between a dimension arrangement and the visual usefulness of its projected
data in Radviz, we first need to determine how visual usefulness is measured.
The quality of the projected data onto the circle is related to the quality of the
clusters obtained i.e., the better the separation across clusters and instances,
the more information the visual representation will convey to the data analyst.
Thus, we measure visual usefulness of a data projection (and its corresponding
dimension arrangement) using the Davies-Bouldin index (DB) [3]. DB is known
to be one of the best indices to measure both the inter- and intra-cluster separa-

tion [8]. The DB index is computed as 1
n ∗
∑n

i=1

i�=j
max

{
Sn(Qi)+Sn(Qj)

Sn(Qi,Qj)

}
, where

n is the number of clusters, Sn(Qi) is the average Euclidean distance from each
instance in cluster Qi to its cluster centroid, and S(Qi, Qj) is the Euclidean
distance between cluster centers (Qj can be any one of the clusters, a part from
Qi). Hence, the smaller the ratio, the more compact and separated the clusters
are. Consequently, we seek dimension arrangements whose corresponding data
projections have small DB indices associated. However, it may be the case that
an initial dataset of instances with d dimensions shows a very high DB index in
the d dimensional space, and thus it becomes very hard for its projected dataset
to offer a good visualization. Thus, instead of measuring the DB of a projection,
we measure the ratio R between the DB in the original data and the DB in the
2-dimensional mapping. Higher values of R correspond to higher visualization
quality of the projected data. The first objective of the experimental evaluation
is to be able to determine the relationship between the dimension arrangement
and the quality of the associated visualization for each combination of the fol-
lowing parameters: (i) a specific dataset, either real or synthetic, (ii) a specific
formalization of the DA problem, and (iii) a specific metric. Figure 1(a) shows an
example result with the function Radviz-dependent. The number of points repre-
sents the number of dimension arrangements, while the black line represents the
average values of a sliding window that captures the trend of density. We can
observe that low values of the optimization function correspond to high values
of R (minimization problem). The relation will be inverse when considering the
function independent (maximization problem). Figures 1(b) and 1(c) show the
Radviz projections associated to the worst value of R and the best value of R
respectively. In Figure 2(a) we can observe that as the number of samples in
the initial dataset increases, the best visual quality values R for the projected
data decreases logarithmically. Figure 2(b) shows the visual information R ver-
sus the value of the optimization function for all possible DAs of datasets with
4, 6, and 8 dimensions. We can infer a general trend whereby as the number

4 We used a symmetric version of the original Kullback-Leibler divergence.
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(a) Trend (b) Worst R (c) Best R

Fig. 1. (a) shows the correlation between the optimization function Radviz-dependent
and the visual usefulness R of the DAs (the green points), using a synthetic dataset
with 5 classes, 1000 instances, 8 dimensions and 10% of overlap. (b) and (c) show the
projections with the best and the worst value of R.

of dimensions increases, the visual usefulness also improves following a linear
curve. This result implies that as the number of dimensions grow, the Radviz
technique manages to better maintain the initial distribution of the dataset i.e,
the more dimensions, the better the samples can be characterized and the better
Radviz will perform. Furthermore, this result confirms previous reports stating
that the Radviz technique is useful for highly dimensional datasets [11]. Figure
2(c) shows the visual quality R of the Radviz projections of datasets containing
from 5 to 100 different classes. Similarly to the number of instances, we ob-
serve that as the number of classes increases, the quality of the projected data
decreases logarithmically. Figure 2(d) that the maximum value of R is linearly
reduced as the percentage of overlap increases (a bad Radviz projection may
be bad because of the technique itself or may be bad due to the fact that the
initial dataset is hardly separable). Thus, the computation of the DB index for
the initial dataset can give us an insight on how well the Radviz visualization
can do. Moreover, we want to understand whether the formalization of the op-
timization function that explores the DA has an impact in the way the optimal
solution is obtained. The optimization function associates a numerical value to
each of the DAs. Our Independent function (indep) looks for the highest value
(maximization problem), and our dependent function (dep) looks for the smallest
value (minimization problem). In order to understand the quality of the search
space, we evaluate its non-convexity. The non-convexity of the search space gives
a measure of the probability that the optimization function will fall into a lo-
cal minima. The smaller the non-convexity of the search space, the higher the
probability of a local minima (or maxima) being a global minima (or maxima).
We calculate the non-convexity of the search spaces using the Haussdorf dis-
tance as λ(A) = supx∈co A infy∈A ‖ x − y ‖ where A is the set of points in the
space search and co A represents its convex hull. We compute the non-convexity
for the DA formalizations presented in Section 4: Independent function indep,
Radviz-dependent function dep and the binary neighborhood matrix initially
described by Ankerst et al. [1] (referred from now on as Original). As we can
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observe in Figure 2(e), the Original function presented in [1] has a search area
that is much less convex than the other two optimization functions for all possi-
ble combination of parameters and datasets. Still, such gap grows as the number
of dimensions increases. These results indicate a higher probability of finding a
global minimum (or maximum) when using the formalizations proposed in this
paper.From previous analysis, the metric does not seem to impact the visual
quality of the projections in terms of number of instances, classes, dimensions
or percentage of overlap. In fact, we observe similar R values for both KL and
COS across all the analysis. However, we want to understand whether the met-
ric has an impact in the way the search space is explored i.e., whether the
selection of a metric can help decrease the chances of the optimization algo-
rithm falling into a local minima (or maxima). For that purpose, we compute
the non-convexity of the search spaces explored when using any combination of
parameters. Figure 2(f) shows the trend between the non-convexity values of
all combinations of parameters for each KL and COS metric. We can observe
that the COS metric has smaller non-convexity values than KL. Hence, al-
though in principle both metrics can potentially find solutions with similar visual
quality R, the COS metric decreases the chances of the optimization function
falling into local minima (or maxima), thus increasing the probability of finding a
better DA.

(a) Visual quality: instances (b) Visual quality: dimensions (c) Visual quality: classes

(d) Visual quality: overlap (e) Non-convexity (opt.functions) (f) Non-convexity (metrics)

Fig. 2. Impact of the parameters in the visual quality of the projections: (a) instances,
(b) dimensions, (c) classes, and (d) overlap; analysis of non-convexity according to (e)
optimization functions and (f) metrics with both real and synthetic data
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6 Conclusions

Radviz (and radial visualizations) is one of the most common techniques to help
in the process of detecting patterns when visualizing high dimensional data. One
of the main problems of these techniques is that the usefulness of the projections
highly depends on the dimension arrangement (DA), which is a NP-complete
problem. In this paper, we have presented two novel variants for the formaliza-
tion of the DA problem showing that they allow to explore a search space whose
non-convexity makes it more probable to find the desired global maxima (min-
ima). Then, we have presented a technique to automatically evaluate the visual
usefulness of a projection by means of the Davies-Bouldin index, studying the
relationships and the impact of various metrics and parameters in the quality of
the visualization.
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Abstract. Subgraph mining algorithms aim at the detection of dense
clusters in a graph. In recent years many graph clustering methods
have been presented. Most of the algorithms focus on undirected or un-
weighted graphs. In this work, we propose a novel model to determine
the interesting subgraphs also for directed and weighted graphs. We use
the method of density computation based on influence functions to iden-
tify dense regions in the graph. We present different types of interesting
subgraphs. In experiments we show the high clustering quality of our
GDens algorithm. GDens outperforms competing approaches in terms of
quality and runtime.

1 Introduction

Today’s complex data can often be described by graphs. The nodes in a graph
are objects while the edges illustrate connections between the objects. Exam-
ples include biological networks or social networks. A common property of such
graphs is the existence of densely connected subgraphs. These clusters or com-
munities are separated by less dense regions in the graph. We can gain a benefit
of finding such interesting subgraphs. Based on a biological network, the devel-
opment of useful drugs deduced from functional modules in protein interaction
networks, is one example. In online commercial systems one can use interesting
subgraphs for target delivery of customers. Customers in the same interesting
subgraph show similar behavior.

Beside the connections between the objects in many cases also the directions
and the weights are given. Let us consider a graph that represents the network
traffic e.g. of the Internet. Edges that connect the routers of an ISP usually have
higher weights/traffic amount than edges to nodes reflecting an end-user PC.
These weights are important to identify the core and hence the dense subgraph
of the total graph. Second, in general end-users generate more downlink traffic
than uplink traffic; thus, the ingoing and outgoing edges are not identical and
should be treated separately. Another example is an author graph where the
edge weights can be interpreted as the number of co-written papers and the
direction as the first author vs. co-author relationship. Overall, the identification
of interesting subgraphs based on directed and weighted graphs is an important
research field.
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Related Work. Several graph mining algorithms have been presented to the
community. The identification of optimal dense subgraphs based on some ob-
jective function is usually a hard problem [1], so that approximations or simple
models are used. Some simple models for the detection of dense subgraphs in-
clude the identification of cliques or more meaningful of quasi-cliques [2, 3].
These algorithms usually generate a huge output, even if we retain only the
maximal quasi-cliques, and the subgraphs overlap to a very high extend, result-
ing in marginal differences between subgraphs. Furthermore only undirected and
unweighted graphs are used.

Another area is graph partitioning. Algorithms from this area try to divide
the graph in flat parts; within these parts the nodes are strongly connected
while between different subgraphs only loose connectivity exists. Models based
on the maximum flow principle [4] or the k-partite graph partitioning [5] follow
this paradigm. Another approach using physical principles is presented in [6].
Further techniques are the spectral clustering [7] or relational clustering [8]. One
problem is that usually the number of interesting subgraphs or the size of the
groups must be given. Furthermore, each node belongs to or is considered as a
cluster even it is not well suited for this. Thus, the SCAN model [9] additionally
identifies hubs or outliers; noise nodes are not included in the clusters. Directed
and weighted graphs are not considered.

Moreover, several hierarchical/recursive methods exist that split up the graph
step by step in smaller subgraphs, e.g. based on the cut-principle [10–12]. Par-
adigms based on edge betweenness are also used [13] and were extended to
allow overlapping subgraphs [14, 15]. However, expensive recalculations are often
performed. The modularity [16–18] is another well know measure, which is used
for the recursive identification of subgraphs. All methods generate a complete
hierarchy of interesting subgraphs. Each cut through this hierarchy represents
a more or less meaningful partitioning of the graph in interesting subgraphs.
However, many cuts are possible and the user is cluttered with a huge amount
of subgraphs. Additionally, the construction of a complete hierarchy results in a
high runtime.

Our Contributions. Our model is able to determine the interesting subgraphs
on directed and weighted graphs. The direction of edges is a particular aspect,
which leads to different definitions of dense subgraphs. Furthermore we present
a definition of our interesting subgraphs based on the principle of density calcu-
lation. The number of clusters and their sizes are automatically determined and
the clusters are not obfuscated by noisy nodes, i.e. nodes that do not belong to
any interesting subgraph.

2 Mining Interesting Subgraphs

In this section we present our model for the mining of interesting subgraphs.
Section 2.1 starts with some preliminaries. In Section 2.2 the density calculation
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on graphs is described, followed by our dense subgraph definitions in Section 2.3.
In Section 2.4 algorithmic aspects are discussed and Section 2.5 concludes with
some complexity results.

2.1 Preliminaries

A directed and weighted graph G is a tuple (V, E, w) with nodes V , edges E ⊆
V × V , and a weighting function w : E → R+. A path in G is a list of nodes
< p1, . . . , pn > with (pi, pi+1) ∈ E. A node v is reachable from u along a set of
nodes M , if there exists a path < p1, . . . , pn > with p1 = u, pn = v and pi ∈ M .
Usually M = V , i.e. one can use all nodes in the graph for the path.

For density calculation, each object influences any other object with a cer-
tain value. The sum of influences determines the density of an object/a point in
the data space. The influence value is usually based on two criteria. First, one
calculates the distance between the objects, e.g. for two vectors o, p the Euclidean
distance d2(o, p). Second, the distances are weighted according to a weighting
function W : R → R. For this purpose often kernel functions are used as the
Uniform, the Gaussian or the Epanechnikov kernel. The Epanechnikov kernel is
known to be efficient and effective [19]. The overall influence of an object o on
another object p is obtained by influence(o, p) = W(d(o,p)

h ). The factor h is used
to scale the distances. The smaller the distance between two objects the higher is
their influence on each other. The overall density of an object p is then calculated
as the sum of influences influence(o, p) for each object o in the database.

2.2 Density Computation on Graphs

The challenge in our task is to consider the underlying graph structure to define
a meaningful density calculation. Thus, in a first step we have to use graph
based distances. Nodes that are ’stronger’ connected, i.e. are more similar with
respect to the selected distance function, should have a higher influence on each
other. For ease of presentation we assume that smaller edge weights correspond
to higher connectivity of the nodes. If the reverse is true, e.g. the number of co-
written papers should be high for a strong connection between two nodes in an
author graph, we can simply transform the weights to 1/w(u, v). In our approach
we use the shortest path distance between two nodes s, d as a representative for
a graph based distance function.
Definition 1. Shortest path distance and influence
Given a weighted graph G = (V, E, w), the shortest path distance between node
s and d is defined as

dmin−path(s, d) = min
path <p1,...,pn>

{
n−1∑
i=1

w(pi, pi+1) | p1 = s ∧ pn = d}

The influence based on the Epanechnikov kernel is defined by

influence(s, d) = W(dmin−path(s,d)
h ) with W(x) =

{
3
4 (1 − x2) |x| ≤ 1
0 else
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By this definition the influence decreases quadratically with the distance and the
influence of a node s is not restricted to its direct neighbors but we affect also
nodes that are reachable over longer paths. Thus, the connectivity of the nodes is
more precisely reflected. In Figure 1 the node d3 is influenced by s even though
it is not a direct neighbor. Furthermore, we do not simply count the number
of near located nodes but we weight them according to their distance. Or even
stronger, with the non-linear weighting of W a single very close node results in a
higher influence than two not as close nodes. Due to the compact support of the
Epanechnikov kernel W we only have to calculate the shortest path distances up
to h, i.e. we do not need to analyze all nodes; in contrast to functions with a non-
compact support as the Gaussian kernel. Thereby we increase the efficiency of
our method. In contrast to classical density computation our influence function
need not to be symmetric, i.e. influence(s, d) �= influence(d, s) is possible. This
non-symmetry is particularly appropriate for directed graphs.

Another important aspect in graphs is the possible influence on nodes that
are at a first glance not influenced. In Figure 1 for example the edge between
the nodes s and d2 has a too high weight; thus, s does not influence d2 based
on this edge. However, we can use a ’detour’ including other nodes to get an
positive influence. Therefore, we distinguish two different node sets: First, the
overall set of nodes on which the node s has influence on, the so called influence
region. Second, the directly influenced nodes that correspond to closely located
neighboring nodes.

Definition 2. Influence region and direct influence
Given a graph G and a node s, the influence region region(s) of s is defined by

d ∈ region(s) ⇔ influence(s, d) > 0
The set direct(s) contains all nodes that are directly influenced by s and is de-
fined by

d ∈ direct(s) ⇔ (s, d) ∈ E ∧ w(s, d) < h

This distinction is based on the intuition that one only interacts with good friends
that are directly known to oneself, e.g. to spread a rumor. However, a rumor
spreaded by a person can also reach persons not only in its neighborhood, but
along a path of good friends. In Figure 1 we get region(s) = {s, d1, d2, d3} and
direct(s) = {d1} and obviously direct(s) ⊆ region(s) holds. By our definition,
the influence region is connected. Even stronger, s can reach all other nodes in
its influence region.
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Now we are able to calculate the density of a node d. We have to determine
all nodes that have an influence on d; in contrast to the nodes which d itself
influences, according to the non-symmetry. We call this set of objects the reverse
influence region and define revRegion(d) = {s ∈ V | d ∈ region(s)}. The density
of a node d is the sum of all influences from the objects in this set.
Definition 3. Density of a node
The density of a node d is defined by

density(d) =
∑

s∈revRegion(d)
influence(s, d)

In Figure 1 the reverse influence region of node d2 is {s, d1, d2}. The actual
density can be calculated based on the individual influence values. The higher
the density the more interesting is the node in our graph.

2.3 Density Based Clusters on Graphs

Our idea is to identify interesting subgraphs, i.e. subgraph clusters, by dense
areas that are separated by sparse areas. For vector spaces similar approaches
show good performance even in the presence of noise [20, 21]. We will call a
node dense if its density exceeds a threshold τ . All nodes fulfilling this minimal
density criterion are the core nodes, as these nodes are the candidates that build
the cores of different clusters.
Definition 4. Core nodes
Given a graph G and a minimal density τ , the set of core nodes is defined by

coreNodes = {v ∈ V | density(v) ≥ τ}
Starting with a core node, we add further core nodes, which are in a certain
range of the node, to our cluster to let it grow. In this step we have to take care
of the underlying graph structure. Two aspects are important and have to be
considered.

Aspect 1: We have to grow the clusters along our direct influence definition. A
node only interacts with the nodes in its direct influence region; thus, if these
nodes are core nodes they should belong to the same cluster. In Figure 2 a
directed graph is given where the core nodes are marked with solid lines and
the non-core nodes with dashed lines. For ease of presentation we do not show
the densities or edge weights. If we select v1, the nodes {v3, v4} = direct(v1) ∩
coreNodes should correspond to the same dense region and hence to the same
interesting subgraph. Because a directed graph is given, also the predecessors
{s ∈ coreNodes | v1 ∈ direct(s)} = {v2} have to be included. This is equivalent
to v1 ∈ direct(v2) ∩ coreNodes. The same procedure is now applied for v2, v3

and v4, so that we add the nodes v5 and v6 to the cluster.

Definition 5. Core of a cluster
A non-empty subset C ⊆ coreNodes is a core of a cluster iff

∀ v ∈ C : ∀ s ∈ coreNodes : s ∈ direct(v) ∨ v ∈ direct(s) ⇒ s ∈ C

and C is minimal among these sets.
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By this definition, a cluster grows until for each node the required property is
fulfilled. In Figure 2 the two minimal sets that fulfill this property are highlighted.
These minimal sets are the dense areas that build our clusters cores. In Figure 3
we show examples for the identification of two different cores to point out the
advantages of our definition. In Figure 3(a) we get two cores even though the
two core nodes v1 and v2 are connected. The connection is only very loose; thus,
both nodes do not influence each other. In Figure 3(b) we get two cores even if
v1 and v2 are reachable over a path. This path, however, has to use the non-core
node v3. This non-core node indicates the existence of two different clusters.

v2v1
10

(a)

v2v1

v3

1 1

(b)

Fig. 3. Examples for the identification of two different cores

Aspect 2: The second aspect we have to consider is the non-symmetry of our
direct influence region, i.e. we can have d ∈ direct(s) �⇔ s ∈ direct(d). Why are
directed graphs a particular challenge? For this, we first consider the Definition 5
for undirected graphs. Consequently with our model we get d ∈ direct(s) ⇔ s ∈
direct(d) and Definition 5 simplifies to

∀ v ∈ C : ∀ s ∈ coreNodes : s ∈ direct(v) ⇒ s ∈ C

⇔ ∀v ∈ C : coreNodes ∩ direct(v) ⊆ C

for a minimal non-empty set C.
A useful property for interpreting the cores is the core path property. A path

(within a cluster core) that uses only direct influence edges and that connects s
with d is called a core path for s and d. Formally we define the existence of such
a path with respect to a cluster core C and two nodes by:

corePathC(s, d) = TRUE ⇔ ∃v1, . . . , vn ∈ C :
v1 = s ∧ vn = d ∧ vi+1 ∈ direct(vi) ∧ vi ∈ coreNodes

In Figure 4(a) the node set C = {v1, . . . , v7} is a valid cluster core. The nodes
v4 and v7 for example are connected via a core path. The path < v4, v1, v5, v7 >
uses only nodes within C and each successor is in the direct influence region of
its predecessor. If each pair of nodes within the core C is connected via a core
path, C fulfills the core path property. In Figure 4(a) this property holds.

Definition 6. Core path property
The core C fulfills the core path property iff

∀s, d ∈ C : corePathC(s, d) = TRUE
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v6
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(a) undirected graph

v4

v2v5

v6
v1

v3
v7

(b) directed graph

Fig. 4. Core path property and strong cluster cores

One can prove that a cluster core in an undirected graph always fulfills the
core path property. Furthermore, a cluster core C is maximal with respect to
the core path property, i.e. there exists no C′ ⊃ C that fulfills also the core path
property. In Figure 4(a) we cannot add further nodes to C without violating the
core path property. Thus, in an undirected graph the cluster cores correspond
to the maximal sets that fulfill the core path property.

For a directed graph the Definition 5 and the maximal sets with respect to
the core path property do not necessarily lead to the same results. In Figure 4(b)
we get the cluster core C = {v1, . . . , v7}. However, as one can see the node v4 is
not connected to v7 via a core path; the nodes v3 and v5 are not connected at
all. In directed graphs the core path property is a more restrictive criterion for a
cluster. The Definition 5 is fulfilled by the nodes {v1, . . . , v7} in Figure 4(b) while
the core path property e.g. only for the nodes {v1, v2} or {v5, v6, v7}. These sets
are highlighted in Figure 4(b). Thus, for directed graphs we can define another
stronger definition for a core of a cluster:

Definition 7. Strong core of a cluster
A non-empty subset C ⊆ coreNodes is a strong core of a cluster iff C fulfills the
core path property and C is maximal.

Obviously each strong core SC is a subset of a core C, i.e. SC ⊆ C. Thus, we
have the restrictive strong core property, which yields small cluster cores, and the
weaker core property, which yields larger clusters. We want to analyze a further
version in between these extremes. In contrast to the strong core property, where
each pair of nodes is reachable in both directions, we make a relaxation that only
requires a core path in one direction.

Definition 8. Semi-strong core of a cluster
A non-empty subset C ⊆ coreNodes is a semi-strong core of a cluster iff

∀s, d ∈ C : corePathC(s, d) = TRUE ∨ corePathC(d, s) = TRUE

and C is maximal.

In Figure 4(b) for example the node set C = {v1, v2, v3, v4} forms a semi-strong
core. The node v3 can reach all nodes in C via a core path, v2 the nodes {v1, v4}
and v1 the nodes {v2, v4}. For each pair we get at least one core path in a single
direction.



140 S. Günnemann and T. Seidl

Precluster and postcluster. The cores are the most important nodes that
form the clusters. Additionally, two other sets of nodes can be defined. Given
a cluster core C, the densities of all nodes within the core exceed a certain
threshold. Thus, an interesting node set contains all nodes that account for the
density of the core, i.e. removing one of these nodes the densities of the core
nodes change. We call this set a precluster. On the other hand we can also
define the postcluster of C. This set contains all objects that are influenced by
the core.

Definition 9. Precluster and postcluster
Given a cluster core C, the precluster Pre(C) and postcluster Post(C) contain
the nodes

Pre(C) =
(⋃

d∈C revRegion(d)
)
\C and Post(C) =

(⋃
d∈C region(d)

)
\C

2.4 Graph-Theoretic View and Algorithmic Aspects

In the following we want to point out a graph-theoretic view of our model that
helps us to implement an efficient algorithm. We first transform our graph. We
remove all non-core nodes and those edges that do not contribute to a direct
influence. Only along the remaining nodes and edges a core could grow. Overall,
this so called residual graph is defined by V ′ = coreNodes and E′ = {(s, d) ∈
E|d ∈ direct(s) ∧ {s, d} ⊆ coreNodes}. In Figure 5 we show an original graph;
non-core nodes are highlighted with dashed lines. The two edges labeled with
’noise edge’ should indicate, that v3 and the other node are not directly influ-
enced by v2 even if they are connected. If we remove these two edges as well as
the nodes n1 and n2, the residual graph on the right is obtained.

v4

v2
v5

v6

v1

v3
n2v7

n1

noise
edge

noise
edge

transfor-
mation

v4

v2
v5

v6

v1

v3v7

Fig. 5. Graph transformation to the residual graph

v4

v5,v6,
v7

v1,v2

v3

Fig. 6. Quotient
graph

The weak components [22] of the residual graph are our cluster cores following
Definition 5. The strong components [22] build our strong cluster cores following
Definition 7. In Figure 5 (right) we highlighted these node sets. The semi-strong
cores obey a more complex structure. Derived from the strong components we
can construct a quotient graph. Each node in the quotient graph corresponds
to a strong component (cf. Fig. 6). The nodes are connected with a directed
edge if at least one edge in the original graph exists between these node sets.
This quotient graph is a DAG (directed acyclic graph). Each maximal path from
a root node to a leaf node is then a semi-strong component. In Figure 6 we get the
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two paths < {v3}, {v1, v2}, {v4} > and < {v5, v6, v7}, {v1, v2}, {v4} > that define
the two semi-strong cores. Thus, the strong, semi-strong and weak components
in the residual graph correspond to the definitions of the cluster cores. Due to
space limitations we omit the proof.

A comparison of the three definitions yields an interesting conclusion. While
the weak and strong components are disjoint sets, the semi-strong node sets
can overlap. The cores of our clusters following the semi-strong definition are
allowed to share some objects. This overlap or disjointness is already visible in
our example in Figure 5 and 6 respectively.

Based on the graph-theoretic properties, our algorithm can efficiently deter-
mine the interesting subgraphs. We call our algorithm GDens, due to the density
calculation in graphs. First, for our density calculation we have to determine the
shortest path distances. We use an adaption of Dijkstra’s algorithm. By this we
can use an early stopping of the density calculation if the distances exceed the
maximal distance h. We have to apply Dijkstra’s algorithm for each node to
determine the overall densities.

After the density calculation step we have to determine the cores of the clus-
ters. For our weak core definition we have to identify the weak components in the
residual graph; this can be done by a depth-first search procedure. The strong-
components and hence the quotient graphs within each weak component are
identified by Tarjan’s algorithm. Finally, we generate the maximal paths within
the quotient graphs to identify the semi-strong cores.

Summarized, our GDens utilizes efficient graph algorithm methods for iden-
tifying the interesting subgraphs. Our beforehand defined core definitions can
be reduced to well known properties in the residual graph and hence emphasize
the use of these cluster cores. In total, we get the possibility to flexibly identify
and interpret different interesting subgraphs based on the density calculation
technique in directed and weighted graphs.

2.5 Complexity Analysis

We briefly analyze the complexity of our algorithm with respect to a graph
G = (V, E, w). Let us assume that in average the influence is larger than zero
for a fraction of x percent of all nodes. Based on the complexity of Dijkstra’s
algorithm and as we have to use Dijkstra’s algorithm for each node to determine
the densities, the overall complexity for the density computation step is

O (|V | · [ x · |V | · log(x · |V |) + x · |E| ]) = O(x · |V |2 · log(x · |V |) + x · |V | · |E|)

Obviously in the worst case the influence is larger than zero for all nodes, i.e.
x = 1, and we have a dense graph, i.e. O(|E|) = O(|V |2). In this case we can
infer the worst case complexity of

O
(
|V |2 · log|V |+ V · |V |2

)
= O(|V |3)

If we assume the positive influence of a node is restricted to a constant number
of nodes, i.e. x = O(1/|V |), and a sparse graph with e.g. O(|E|) = O(c · |V |) is
given, we get a complexity of
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O(1/|V | · |V |2 · log(1/|V | · |V |) + 1/|V | · |V | · c · |V |) = O(c · |V |)

In the second step, we have to determine the cores. The depth-first procedure
for identifying the weak-components in the residual graph has a complexity of
O(|V | + |E|). Tarjan’s algorithm for identifying the strong-components has a
complexity of O(Vmax + Emax), if Vmax is the maximal number of nodes for all
weak components and Emax is the maximal number of edges. For the semi-strong
core definition we additionally have to generate the maximal paths within the
quotient graph. Assuming that we identify k quotient graphs each with n strong
components we get an additional complexity of O(k · en/e) (proof skipped). In
realistic scenarios we have k, n � |V | and hence the term is almost negligible.

3 Experiments

In the next section we analyze the runtime and quality of our GDens algorithm.

Setup. We use two variants of our algorithm. GDens (core) uses the identified
cluster cores as the interesting subgraphs. GDens (all) includes the precluster
and postcluster to build the interesting subgraphs. For comparison we use the
algorithms of [6], called Voltage, and [13], called Edge Betweenness. All input
parameters are optimized. All implementations are in Java. For runtime and
quality comparison we generate synthetic data following the methods in [13, 18]
and adding uniformly distributed edge weights. In average, edge weights within
clusters are two times smaller than edge weights between clusters. As not stated
otherwise we hide 20 clusters with 10.000 nodes and 30.000 edges. Clustering
quality is measured with the F1 score [23, 24]. The F1 value is the harmonic
mean of precision and recall, i.e. an identified subgraph has to detect most of
the nodes (recall) but also only the nodes (precision) of a hidden cluster. Keep
in mind that for our algorithm two F1 scores can be calculated based on GDens
(core) or GDens (all).

Cluster core definitions. In Figure 7 we analyze the effects of our different
cluster core definitions. On the left the F1 value is illustrated. The solid bars
correspond to the quality for GDens (all). The white bars inside correspond to
the quality if only the core is considered, i.e. GDens (core) is used. The quality
of GDens (core) decreases slightly with a more restrictive core definition. The
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cores following the strong cluster core definition are very small and hence we
cannot detect all nodes of the clusters. However, if we include the pre/postcluster
the quality for all cluster core definitions is high. In the middle the runtime is
analyzed. The weak and semi core definitions run in nearly equal time, while the
semi-strong core needs more calculations. The determination of the paths within
the quotient graph is a more complex task. On the right, the number of subgraphs
in the mining result is printed. As expected the weak core definition yields the
fewest clusters, while the other two definitions split the weak component in
several smaller ones. In the following experiments we focus on the weak core
definition as the quality is high and the runtime is low.

Noise. In Figure 8 we increase the number of noise edges in the graph, i.e.
we add edges that do not belong to the communities. The higher the value the
more difficult is the identification of interesting subgraphs. The quality of GDens
(core) is not affected by adding noise; the dense areas are still identified. The
high quality of GDens (all) decreases slightly because the pre/postcluster include
more and more nodes that do not belong to the cluster. However, even for very
high percentages of noise GDens shows in both variants high quality. The quality
of the Voltage algorithm remains unchanged with very low quality results. Edge
betw. reaches a very high quality for zero percentage of noise but then it rapidly
decreases. Both algorithms cannot identify the true hidden clusters.

Number of nodes. In Figure 9 (left) we plot the runtime of the algorithms
with respect to the number of nodes. Our GDens algorithm is far more efficient
than the other approaches. The Edge betw. method did not even finish within
12 hours for a dataset with 12500 nodes. Additionally in Figure 9 (right) we
analyze the quality. While the quality of GDens in both variants stays on a high
level or even increases a bit, the quality of Voltage decreases. In large graphs this
algorithm cannot identify good patterns. Edge betw. has always low quality.

Hidden clusters. In the next experiment we analyze the effects if the num-
ber of hidden clusters in the graph is altered. Due to the high runtime of Edge
betw. the number of nodes is set to 2000. As depicted in Figure 10 (left), with
increasing number of clusters the quality of GDens is not or only less affected.
With increasing number of clusters and fixed number of nodes, the interesting
subgraphs get smaller and hence their identification is harder. The Edge betw.



144 S. Günnemann and T. Seidl

1

GDens (all) GDens (core) Voltage Edge betw.

0,8

1

0,6

0,8

ue

0,4F1
va
lu

0,2

0

5 10 15 20 25 50

number of hidden clusters

1000000

GDens Voltage Edge betw.

100000

1000000

10000

100000

m
se
c]

1000

nt
im

e
[

100

ru
n

10

5 10 15 20 25 50

number of hidden cluster

Fig. 10. Quality and runtime w.r.t. number of hidden cluster

algorithm shows a similar decrease but on a much lower quality level. Interest-
ingly the quality of Voltage increases. The algorithm is better in the detection
of small clusters. However, the quality of GDens (all) is never reached by this
algorithm. Considering the runtime of the algorithms in Figure 10 (right), we
see that the quality increase of Voltage is paid with a high and also increasing
runtime. The runtime of GDens is orders of magnitudes lower. Furthermore, with
more and hence smaller subgraphs the runtime even decreases.

Summarized, our GDens outperforms the competing algorithms in quality as
well as in runtime. It is able to detect the interesting subgraphs also in noisy
settings and automatically identifies the number of clusters.

Parameter variation. In our next experiment in Figure 11 we vary the param-
eter τ . On the right y-axis we indicate the number of identified clusters. First,
the number increases because the hidden clusters are split-up in several smaller
ones due to a higher τ . Afterwards, the number decreases to zero because no
more core objects are identified. Correspondingly, the quality of the clustering
(left y-axis) based on the core objects decreases. Considering GDens (all) the
quality drops but at a later step. The objects that are included in the hidden
clusters but not identified by the cores are now contained in the pre/postclusters.

DBLP data. To analyze real world data, we use the DBLP data set where nodes
represent authors and edges/edge-weights the number of co-written papers. We
generate a graph based on all publications from 2004-2008 and we extracted the
largest connected component with 228k nodes and 1458k edges. In Figure 12 we
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GDens (core) GDens (all)
weak semi strong weak semi strong

weighted graph 0.72 0.68 0.68 0.99 0.98 0.98
unweighted graph 0.36 0.26 0.23 0.96 0.96 0.96

Fig. 13. Clustering quality (F1 value) for weighted vs. unweighted graphs

present some results with respect to a varying τ value. The F1 value cannot be
determined for this data set because the true clustering structure is not known.
Instead we plot the number of identified cluster cores with more than 5 nodes,
i.e. these clusters correspond to large collaboration groups. Additionally, the
runtime of the algorithm is presented. Both measures decrease continuously, i.e.
we identify less collaboration groups but increase the efficiency. We want to point
out the high efficiency of our GDens algorithm also on this large DBLP data set.

Unweighted graphs. In the next experiment we want to focus on the advantage
of our algorithm to handle weighted graphs. In Figure 13 we show the difference
in clustering quality if instead of the weighted graph an unweighted one is used,
i.e. we ignore the weights by setting these to a constant value. As one can see
in all cases the quality of the unweighted clustering is smaller. Especially if we
only consider the core of the cluster (middle column) the quality decreases. This
experiment supports the need for interesting subgraph mining algorithms that
incorporate the weights of edges as our model does.

4 Conclusion

We introduce a novel technique to identify interesting subgraphs using the method
of influence functions for calculating the densities of nodes. Our model can handle
directed and weighted graphs and we show in experiments that using this infor-
mation increases the quality of the clustering result. We present three types of
dense subgraphs that account for the direction of edges in the graph. Our GDens
algorithm identifies the number of clusters automatically and it is robust with re-
spect to noise. In experiments we demonstrate the high quality and low runtime
of our GDens algorithm compared to other subgraph mining methods.
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Abstract. Itemset mining and graph mining have attracted consider-
able attention in the field of data mining, since they have many impor-
tant applications in various areas such as biology, marketing, and social
network analysis. However, most existing studies focus only on either
itemset mining or graph mining, and only a few studies have addressed
a combination of both. In this paper, we introduce a new problem which
we call itemset-sharing subgraph (ISS) set enumeration, where the task
is to find sets of subgraphs with common itemsets in a large graph in
which each vertex has an associated itemset. The problem has various
interesting potential applications such as in side-effect analysis in drug
discovery and the analysis of the influence of word-of-mouth communica-
tion in marketing in social networks. We propose an efficient algorithm
ROBIN for finding ISS sets in such graph; this algorithm enumerates
connected subgraphs having common itemsets and finds their combina-
tions. Experiments using a synthetic network verify that our method
can efficiently process networks with more than one million edges. Ex-
periments using a real biological network show that our algorithm can
find biologically interesting patterns. We also apply ROBIN to a citation
network and find successful collaborative research works.

1 Introduction

Since the origin of the field of data mining, frequent pattern mining has been
one of the main topics of interests for researchers in this field. These researchers
initially worked on itemset patterns [1, 2] in the context of market basket anal-
ysis; these studies were later extended to event sequence patterns [3]. Recently,
graph-structured data have attracted considerable attention [4–6] because graph
pattern mining can be applied to many interesting application areas such as bi-
ological networks, social networks, and the Web. While itemset mining seeks
frequent combinations of items in a set of tuples, graph mining seeks frequent
subgraphs in a set of graphs. Most of the prior studies have addressed only one
type of their patterns, and only a few studies have considered combinatorial
mining of two types of data structures [7–9].

In this paper, we consider a new combinatorial mining problem of itemsets and
subgraphs, which we call the itemset-sharing subgraph (ISS) set enumeration prob-
lem. Let us assume that we have a graph in which each vertex is associated with
an itemset (Fig. 1(A)). We refer to this graph as an itemset-associated graph. Our
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(A) Example of IA graph ( Graph and itemsets on each vertex ) (B) Itemset-sharing subgraphs with 

Fig. 1. An example of itemset-sharing subgraph

task is to enumerate the patterns that we call the ISS set, which is a set of large
subgraphs in which all vertices share a large common itemset. The ISS set shown
in Fig. 1(B) consists of two subgraphs depicted by the bold lines. All vertices in the
ISS set share the itemset {i1, i2}. Although the subgraph consisting of only v8 also
shares the itemset, it is not included in the ISS set since it is quite small. Similarly,
although the subgraph consisting of {v0, v1, v4, v5} shares {i1}, it is not sufficient
to be an ISS set since the shared itemset is very small. The ISS set enumeration
problem differs from other graph mining problems in the sense that the subgraphs
included in an ISS set need not be identical.

We now illustrate how ISS sets are used in drug discovery. Let us consider
the metabolic pathway networks, which describe biochemical processes occurring
within a cell. A pathway is represented as a graph, where vertices denote genes
and chemical compounds and edges denote chemical reactions among the genes
and the compounds. The pathway networks play a considerably important role
in drug discovery, because by finding a sub-pathway that is closely related to a
disease, we can determine the target genes or chemical compounds on which the
drug candidate should act. However, the drug candidate can affect several dif-
ferent pathways simultaneously, which may lead to unexpected outcomes. Such
phenomena are called side effects. We would like to not only find the drug targets
but also predict the side effects that may be caused by the action of the drug
on the targets. Taking the drugs into account, we considered a pathway network
to be an itemset-associated graph (Fig. 1(A)), where each vertex (a gene or a
chemical compound) is associated with an itemset that indicates the set of drugs
activating the gene or the compound ({i1, i2, . . . , i5} shown in Fig. 1(A)). In the
above context, an ISS set (Fig. 1(B)) corresponds to a set of sub-pathways that
share the common activation drug; this implies that there are hidden or unknown
connections among the sub-pathways and that the drugs designed to target genes
or compounds in one sub-pathway might also act on the other sub-pathways. In
Fig. 1(B), the sub-pathway consisting of only v8 is also activated by the drugs
{i1, i2}. However, this sub-pathway is very small, which implies that the acti-
vation would result from accidental observations. Large sub-pathways are more
reliable and indicate that the side effects are more serious because these effects
cover a wide range of pathway networks. Similarly, we expect that as the size of
the set of common activation drugs increases, the possibility of the occurrence of
side effects increases. Therefore, networks that consist of the large sub-pathways
with a large set of activation drugs are important clues in predicting side effects
for drug discovery and biological experimental design.
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Let us now consider a marketing scenario in social network analysis. In social
networks, vertices are considered to be participants, and edges are considered
to be the relationships between these participants (e.g., friendships). Let us as-
sume that each participant (vertex) is associated with the items that he or she
has bought. The network can be considered to be an itemset-associated graph,
and the subgraphs with large common itemsets can be regarded as underlying
communities. Further, in a social network, common itemsets shared by many
communities are considered as the (sets of) products that can be easily mar-
keted through word-of-mouth communication; hence, the products with common
features would be suitable for social marketing.

In order to solve the ISS set enumeration problem, one approach is to use an
itemset mining technique [1, 2] to obtain all the frequent itemsets and then check-
ing the connections between the itemsets in the networks. However, the itemset
mining in real dataset are very long computation time because the supports
(frequencies) of the items included in the ISS sets are usually low. To overcome
the computation time problem, we propose an efficient algorithm called ROBIN.
The ROBIN algorithm consists of two stages; it enumerates subgraphs that are
larger than a specified threshold value at the first stage, and then it combines
them at the second stage. By introducing effective pruning techniques in both
the stages, we can enumerate the graphs very efficiently.

Finally, the efficiency of the proposed algorithm is shown in the experiments
by using a synthetic dataset. ROBIN can solve problems with more than 100K
vertices and 1, 000K edges for about a half hour. In the experiments using a
real biological network, we discover hidden connections in metabolic pathways;
this suggests the practical utility of ROBIN in the context of drug discovery.
Furthermore, by applying ROBIN to a citation network, we find interesting pat-
terns indicating successful collaborative works containing well-known database
research topics. In both of the real dataset experiments, we show that execution
time of ROBIN are faster than that of the method which first enumerates the
itemset and then checks their connectivity.

Our contributions are summarized as follows:

1. We introduce the ISS set enumeration problem, which has sound potential
applications in various real-world problems including finding side effects in
drug discovery and estimating effects of word-of-mouth communication in
marketing in social networks.

2. We propose a very efficient algorithm called ROBIN to solve the ISS set
enumeration problem; In the ISS enumeration stage, we develop a novel
pruning technique using hash tables called a visited itemset table, which
stores itemsets shared by generated subgraphs, and allows us to enumerate
ISSes very efficiently. In the ISS combination stage, we propose an efficient
algorithm for finding ISS sets using an extend depth-first search (DFS) tree
called ISS tree, which enables us to generate combinations of ISSes without
unnecessary checking of graph inclusion.

3. We conduct experiments using two real-world network data, a biological net-
work and a citation network, and show scenarios where the ISS set
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enumeration problem is useful. The results also show that ROBIN is much
faster than the itemset-enumeration approach.

2 Itemset-Sharing Subgraph (ISS) Set Enumeration
Problem

In this section, we introduce a novel data mining problem for analyzing itemset-
associated graphs, which we refer to as the ISS set enumeration problem.

Let G be an undirected1, unlabelled, and unweighted graph with an itemset
on each vertex. We refer to this graph as an itemset-associated graph (IA graph).
Let V (G), E(G) and I(G) respectively signify a set of the vertices in G, a set of
edges in G and a set of itemsets on vertices in G. Note that the size of graph G
is given as the number of edges, i.e., |G| = |E(G)|.

We next define subgraphs whose vertices share itemsets.

Definition 1. (Shared Itemset) Let G′ be a connected subgraph of an IA graph
G, where G′ is also an IA graph. We define I(G′) as I(G′) =

⋂
v∈V (G′) I(v),

and refer to I(G′) as a shared itemset of G′.

Among the subgraphs having a shared itemset, we focus on an important subset,
which cannot be expanded while retaining the currently shared itemsets.

Definition 2. (Itemset-Sharing Subgraph (ISS)) We call G′ an itemset-sharing
subgraph (ISS) with I(G′) if I(G′) �= φ and I(v) �⊇ I(G′) for any vertex v in the
neighbor vertices of G′.

Note that the itemset shared by an ISS is defined without reference to its edges.
Now, we define the sets of ISSes that we want to enumerate in our task. As

described in Section 1, sets of ISSes are useful in the context of drug discovery
and marketing in social networks.

Definition 3. (ISS Set) Let G = {G1, G2, . . . , Gn} be a set of ISSes, where each
Gi is an ISS. Define I(G) as I(G)=

⋂
G∈G I(G). Note that I(G)=

⋂
G∈G

⋂
v∈G I(v).

We call G an ISS set with I(G), if all of the following conditions are satisfied:
(1) V (Gi) ∩ V (Gj) = φ for any Gi and Gj (i �= j) in G. (2) I(v) �⊇ I(G) for
any vertex v in the neighbor vertices of G′ ∈ G. (3) |Gi| ≥ θS, where θS is a
user-specified value. (4) No ISS G′ with I(G) exists except in G.

The first two conditions are an extension of the definition of ISS for dealing with
multiple ISSes. The third condition gives the minimum size of the obtained ISSes
because larger ISSes are of greater interest to us. The last condition ensures the
maximality of the found ISS sets. Let |G| indicate the number of disconnected
components of G, and hence, |G| = n.

Finally, we define our new data mining problem where the task is to enumerate
all ISS sets from a given IA graph.

1 Although for simplicity, we assume that G is undirected, our method can be used
for directed graphs in the same manner.
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Definition 4. (ISS Set Enumeration Problem) Given an IA graph and user-
specified values θS, θI and θF , from the IA graph, enumerate all ISS sets G
satisfying |G| ≥ θF , |I(G)| ≥ θI for any ISS set G ∈ G, and |G| ≥ θS for any
ISS G ∈ G in any ISS set G ∈ G.

3 Proposed Method

In this section, we propose an efficient algorithm called ROBIN (RelatiOn Be-
tween Items and Networks) for solving the ISS set enumeration problem. To
solve the problem, one strategy first enumerates all the itemsets such as Apri-
ori [1] and FP-trees [2], and then check the connectivity between the itemsets.
The other strategy first enumerates the subgraphs, and then check the condi-
tions of the subgraphs. Here, we use the latter method. We will show that the
computing time of the former method requires longer than the latter method
using real dataset in Section 4.

Robin consists of two stages. In the first stage, we enumerate all the ISSes
efficiently by introducing DFS itemset tree and visited itemset table. Their de-
tails are described in Section 3.1. In the second stage, we generate ISS sets by
combining the ISSes according to Section 3.2. In order to enumerate the ISS sets
efficiently, we introduce an ISS prefix tree that contains the prefix of itemsets
and their associated ISSes.

3.1 ISS Enumeration

In the first stage of the ROBIN, we enumerate ISSes from the given IA graph.
We introduce efficient techniques for the enumeration of ISSes in this section. In
the second stage of ROBIN, the obtained ISSes are combined with the generated
ISS sets (Section 3.2).

We use a depth-first search (DFS) tree for enumerating ISSes G where |G| ≥ θS

and |I(G)| ≥ θI for G ∈ G. Each node of the tree contains a vertex and an
itemset related to the path from the root to the node. We denote the tree as a
DFS itemset tree. On the DFS itemset tree, we do not need to maintain edges
because I(G) can be computed from vertices and their itemsets.

The generation of the subgraphs itself is considered to be a simplified version
of the DFS lexicographic order used in the gSpan algorithm [6], and hence, this
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DFS itemset tree can avoid duplicate generation of identical graphs. Fig. 2 shows
the DFS itemset tree for the IA graph in Fig. 1(A). Each node in the DFS itemset
tree contains a vertex and an itemset. The vertices included in the path from
the root to the tree node represent the vertices of the subgraph.

Thanks to the following monotonic property of ISS about itemset size, we can
prune subtrees in the DFS itemset tree, which dramatically reduces the search
space.

Property 1. Let us denote two ISSes by G′ and G′′, and let V (G′) ⊃ V (G′′).
Then, I(G′) ⊆ I(G′′) holds.

The tree nodes indicated by dotted boxes in Fig. 2 can be pruned by using this
property when θI = 2.

The next theorem allows us to avoid generating subgraphs that have the
same vertices as those of already generated subgraphs and have itemsets that
are subsets of itemsets associated with the already generated graphs.

Theorem 1. Let n1 and n2 be a pair of nodes of the DFS itemset tree, where
n1 was generated before n2. If vertices associated with n1 and n2 are identical,
and I(n1) ⊇ I(n2), no ISS exists in a descendant of n2.

This theorem implies that if we visit one of already visited vertices and the
common itemset of the current path is identical to or a subset of one of the
itemsets of the previously visited vertices, we can prune the subtree rooted by
the current node in the DFS itemset tree. Therefore, this property is useful for
avoiding unnecessary exploration of subgraphs.

Theorem 1 prompts us to make the hash table from nodes to their related
itemsets for efficient pruning of subgraphs. We call the hash table a visited item-
set table and build it while constructing a DFS itemset tree.

Using the DFS itemset tree, we can generate all ISSes whose subgraph size is
greater than θS and common itemset size is greater than θI . Fig. 3(A) illustrates
the ISSes and their associated itemsets. We refer to this table as the ISS table.
In the next section, in order to enumerate ISS sets efficiently, we introduce an
efficient method of generating combinations of the ISSes.

3.2 ISS Set Combination

In this section, we introduce an efficient method for enumerating ISS sets from
the ISS table created in the previous section. One simple method for computing
the ISS sets is to generate combinations of all the ISSes. However, this procedure
is quite redundant because different combinations of ISSes may result in the same
shared itemset. Our method generates ISS sets efficiently by grouping ISSes by
shared itemsets. Once we fix one itemset, an ISS set sharing the itemset is
uniquely determined. Therefore, one approach to enumerating all ISS sets is
to generate all itemsets that can be associated with ISS sets. For the efficient
generation of the itemsets, we use the depth first search.

Definition 5. (ISS Tree) Let TI be a tree, each of whose node n contains itemset
I(n) and a set of ISSes G(n) which shares I(n). The root of TI contains an
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itemset including all items and a vacant set of ISSes. Let n1 and n2 be a pair of
nodes of TI. When n1 is an ascendant of n2, I(n1) ⊇ I(n2).

We call the tree ISS tree. Nodes closer to the root contain larger itemset. A
child of a node in the ISS tree can be generated by adding an ISS to a parent
node’s ISSes, and its shared itemset can be computed. Thanks to the monotonic
property of itemset size, we can prune subtrees in the ISS tree.

Although we can enumerate all the combinations of ISSes by the simple DFS
method, the size of ISS tree may increase considerably especially when the num-
ber of ISSes is large. In order to efficiently generate the ISS tree, we add a group
of ISSes sharing an itemset to ISSes in its parent node.

We here divide ISS sets into two types: explicit ISS sets and implicit ISS
sets. Explicit ISS sets are associated with itemset appeared in an ISS table,
while implicit ISS sets are associated with itemset which is a subset of itemsets
appeared in the ISS table. We first generate explicit ISS sets quickly using prefix
tree structure, and then produce implicit ISS sets by the combinations of explicit
ISS sets.

Definition 6. (Explicit and Implicit ISS Set) Let G be all the ISSes in an ISS
table, and I(G) be itemsets associated with ISSes in G. Let GI be an ISS set
with I. When I ∈ I(G), we call GI an explicit ISS set; otherwise we call GI an
implicit ISS set.

Basis of the above definition, any ISS set can be classified as explicit or implicit.
For the efficient generation of all ISS sets, we first extract all of the explicit ISS

sets, and then generate ISS sets by removing overlapping ISSes. The following
theorem guarantees us to generate all the ISS sets.

Theorem 2. Let GI be GC − {G | G ⊆ G′ where G, G′ ∈ Gc}. Then, GI is an
ISS set with I.

This theorem allows us to generate the explicit ISS sets with I. All the explicit
ISS sets can be generated by computing GI for all the itemsets in the ISS table.
However, the procedure requires many checks related to the inclusion relations
among graphs. Here, we introduce an efficient way to generate explicit ISS sets
by using a prefix tree representing itemsets.

Definition 7. (ISS Prefix Tree) Let TP be a tree, each of whose nodes n contains
an item in and an ISS set G(n). Let denote two nodes in TP by n1 and where
n1 is an ascendant of n2. Then, in1 < in2 holds. Any itemset I in the ISS table
is represented by a path in TP . The ISS set in node n in TP shares an itemset
represented by a corresponding path from the root to n.

We call the tree an ISS prefix tree. Using the ISS prefix tree, we represent all the
associations between the itemsets contained in the ISS table and the ISSes. Fig.
3(B) represents the ISS prefix tree of Fig. 3(A). We put no ISSes to nodes whose
depth is less than θI because none of the nodes generate ISS sets. Thanks to this
prefix tree structure, we can accelerate the finding of the associations between
itemsets and explicit ISS sets.
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Table 1. Parameters for ROBIN

Name Description Default
Parameters for ISS sets

|I| Size of the itemset shared 10
by an ISS set

S ISS size 7
F Size of ISS set 5
P Number of ISS sets patterns 10
Q Number of ISSes not included |V |/30

in ISS sets

Name Description Default
Parameters for graphs and itemsets

|V | Number of vertices 15,000
|E| Number of edges 10 ×|V |
N Number of items 100
|T | Avg. size of itemsets in a vertex 10

User-specified thresholds
θS Minimum ISS size S − 1
θI Minimum shared itemset size |I| − 1
θF Minimum size of ISS set P − 1

We here generate itemsets shared by implicit ISS sets by using the combination
of two explicit ISS sets. From the itemset, we generate ISS sets by using the
ISS prefix tree. The following theorem guarantees that the combinations can
enumerate all of the implicit ISS sets.

Theorem 3. Any itemset shared by an implicit ISS set is represented by the
intersection of the itemsets shared by some of the explicit ISS sets.

On the basis of this theorem, we can generate implicit ISS sets by using com-
binations of the itemsets shared by explicit ISS sets. Therefore, we generate
a DFS tree each of whose nodes contains an itemset and an ISS set. We can
prune the branches in the ISS tree from the monotonic property in Definition 5.
Furthermore, the following property substantially reduces the search space.

Property 2. Let node n contain an itemset I(n) and an ISS set G(n). If I(n)
and an itemset I ′ of an existing node are identical, we need not traverse the
branch rooted by n.

To use these pruning techniques, we need not calculate inclusion relations be-
tween graphs in ISSes.

4 Experiments

In this section, we present the results of our experiments using a synthetic dataset
and two real-world datasets.

4.1 Results for a Synthetic Network

We generated a synthetic network dataset in order to evaluate the performance
of the ROBIN algorithm. The parameters for ROBIN and their default values are
presented in Table 1. We generated synthetic datasets having |V | vertices and |E|
edges. Each dataset includes P ISS sets whose shared itemset size is |I| and size
of ISS set is F . Moreover, we add the fake itemsets whose size is 1.7 × |I|. The
detail procedure is omitted due to the space limitation. All experiments were
performed using a 3.2 GHz AMD R© OpteronTM machine with 1 GB memory
running on Linux kernel 2.6. We implemented ROBIN in JavaTM 5.

We investigated the efficiency of the ROBIN algorithm by using the synthetic
network data and varying the size of the network, the average size of itemsets,
and the parameters for ROBIN.
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Fig. 4. Performance study with respect to overall graph size

In order to investigate the efficiency of enumerating combinations of the ISSes
in ROBIN, we measured the execution times in the case of ROBIN (labeled as
“ROBIN”) and the times in the case of the algorithm in which we replace the
ISS tree and the groups of ISSes generated by ISS prefix tree with the standard
DFS tree by adding single ISS to its parent node to generate combinations of
ISSes (labeled as “DFS tree”). We also show the execution times required for
enumerating ISSes (Section 3.1) because these times are independent of the
approach we choose. The differences between the execution times of ROBIN
and ISS enumeration and those of the DFS tree approach and ISS enumeration
indicate the computing time required to enumerate the combinations of ISSes.

Fig. 4(A) presents the execution times by varying the number of nodes in the
network. This figure depicts that our method is more scalable than the alter-
native approach. The largest network in this experiment has 100K vertices and
one million edges. The execution times increase quadratically with respect to the
increase in the number of vertices. In particular, the larger the graph becomes,
the larger is the execution time difference between the two approaches. Because
the support (ratio of the number of vertices in ISS sets to the total number of
vertices) was F ×S/|V | = 0.0023, when the values were set to the default values,
it is difficult to find itemset patterns using the Apriori algorithm [1] and the
FP-trees [2]. In contrast, ROBIN can work with such a low support and can still
find important itemsets because it uses subgraphs that connect the itemsets.

Fig. 4(B) shows the execution times by varying the number of degrees in the
network. In general, the execution time increases rapidly according to the density
of the graph, because we need to check many neighbor vertices. However, our
result demonstrates that the execution time of ROBIN increases rather gradually.
We can observe that as the degree of the graph increases, the difference between
the execution times of the two methods increases. This observation verifies the
computational efficiency of ROBIN.

Next, we investigate the performance of ROBIN by varying the itemset size
shared in ISSes. The dependence of the execution time on the itemset size is
shown in Fig. 4(C). As shown in the figure, the average itemset size is not
significant impact to ROBIN. Note that the algorithms succeeded in finding
ISS sets with relatively large itemsets (more than 10 items). This result is in
contrast to that of the existing studies on mining long patterns [10], in which
finding low-frequency itemset patterns efficiently is difficult.
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Fig. 5. One of the ISS sets found in the real biological network. All of the vertices
sharing five stress conditions.

Table 2. All of the ISS sets found in the DBLP citation network

No. Authors # of # of # of
ISSes refs. papers

1 Rajeev Rastogi, 3 30 23
Abraham Silberschatz

2 Amr El Abbadi, 2 40 25
Divyakant Agrawal

3 Riccardo Torlone, 2 13 11
Paolo Atzeni

No. Authors # of # of # of
ISSes refs. papers

4 Marc Gyssens, 2 12 11
Dirk Van Gucht

5 Ling Liu, Calton Pu 2 11 11
6 Raghu Ramakrishnan, 2 11 11

Praveen Seshadri

4.2 Results for a Biological Network

We applied ROBIN to a real metabolic pathway dataset with 6, 152 vertices
and 3, 318 edges; here, the vertices and edges represent genes and chemical in-
teractions, respectively. The dataset was obtained under 173 different stressed
conditions [11] by using yeast microarrays. Each of the conditions causes stim-
uli to cells, and finding stimuli associated with treatments of diseases is a good
starting point for development of new drugs. Therefore, we used the set of the
conditions as the items. In biological systems, highly expressed genes play an
important role within the cells. Therefore, we converted the quantitative values
into Boolean values using a threshold t. We set the parameters as t = 1.5, θS = 7,
θI = 5 and θF = 4. The average itemset size in the dataset was 4.78, and its exe-
cution time was 35.9 seconds. We extracted eight ISS sets in total. One of the ISS
sets depicted in Fig. 5 was associated with the conditions of 8 hours, 10 hours,
1 day, 2 days and 3 days grown under YPD condition at 30 degree Celsius; all
of these conditions are high-nutrition and high-temperature conditions. Conse-
quently, our algorithm could extract biologically consistent conditions automat-
ically. The four connected graphs were associated with four biological metabolic
pathways. Some genes in Fig. 5(C) are known as the activator of the TCA cy-
cle including Fig. 5(A). Also associated pathways with Fig 5(D) are related to
TCA cycle, and hence, the relationship between these two ISS sets is biologically
reasonable.

4.3 Results for a Citation Network

We applied ROBIN to a citation network consisting of academic papers to
demonstrate that ROBIN can extract successful collaborative researches auto-
matically.

We create a citation network from the DBLP dataset [12], which is a snapshot
of the DBLP as of April 12, 2006. Each vertex in the network corresponds to a
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paper and is associated with an itemset representing the author of the paper.
Each edge indicates a citation. The DBLP network has 22, 178 vertices (papers),
112, 304 edges (citations), and 16, 638 items (authors). All papers have at least
one author and one reference. The average number of authors for a paper is 2.29.
We set the parameters for ROBIN as θI = 2, θS = 10, and θF = 2.

Table 2 summarizes the six ISS sets found by ROBIN. The columns represent
the ISS sets number, co-authors, numbers of disconnected networks, number of
references in the ISS set, and number of papers in the ISSes. For example, the
ISS set No.1 consists of three different ISSes, and the ISS set contains 23 papers
and 30 references.

The research topics corresponding to the three ISSes in the ISS set No.1 are
multi-databases, video-on-demand storage, and main memory databases. This
result implies that Rajeev Rastogi and Abraham Silberschatz have successfully
collaborated on three different research topics.

5 Related Work

In recent years, graph mining has received increasing interest from researchers.
Frequent subgraph discovery methods [4–6, 13] enable us to enumerate all fre-
quent common-structured subgraphs in a graph database. In this study, we are
not concerned about the structure of the subgraph, and the existing methods
cannot handle itemsets on subgraphs, hence we cannot apply the existing meth-
ods to our problem directly.

For the discovery of ISS sets, one straightforward approach might be to use
the frequent pattern or closed itemset mining methods [1, 2, 14, 15] and then
to check the connection among the found itemsets in the networks. However, in
Section 4, we demonstrated that this approach is not efficient and requires huge
amount of memory, which implies the effectiveness of ROBIN’s approach which
enumerates all subgraphs first.

The combinatorial mining of networks with numerical vectors has been studied
in constrained clustering [7, 9]. The studies attempt to find the simultaneous
clustering of the vertices in a network and the numerical vectors associated with
the vertices. One significant difference between our problem and these problems
is that the associated features on every vertex are discrete values in our problem.
This property makes it difficult to apply the constrained clustering methods to
our problem. MATISSE [16] and CoPaM [17] study the combinatorial mining of
networks with feature vectors. Both methods find dense subgraphs whose vertices
having similar features. However, we are not concerned about the density of the
subgraph, and our method can find the sparse hub network shown in Fig. 5(A).
Hashimoto et al. [8] proposed a combinatorial mining of sequence structured data
and tree structured data. Their approach can be naturally extended to handle
graph structured data, but the goal of our problem is not the enumeration of
frequent subgraphs. Seki and Sese [18] introduced a problem to find the largest
connected common pattern graph. However in the present paper, we focus on
enumerating frequent disconnected graphs.
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6 Concluding Remarks

In this paper, we introduced a novel problem called ISS set enumeration prob-
lem, which enumerates a set of large disconnected subgraphs in which all vertices
share a large common itemset. The problem has wide application such as in side
effect analysis for drug discovery and in viral-marketing effect investigations.
However, it is difficult to find the graphs because of the difficulty of handling
itemsets and a graph structure simultaneously. We designed a novel algorithm
called ROBIN in order to solve this problem efficiently. Our demonstration with
synthetic data showed that our algorithm is effective even in the case of a large
and dense graph. Using our method, we found interesting graphs and itemsets
from both a biological network and a citation network. From a biological net-
work, we demonstrated the applicability in biological research and drug discov-
ery. From a citation network, we found interesting patterns indicating successful
collaborative works.

The problem of finding ISS sets is quite general and applicable to other
itemset-associated graphs, and we are going to extend the applications to the
others such as marketing in social networks and text analyses with Web links.
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Abstract. We design and develop an SQL-based approach for querying
and mining large graphs within a relational database management sys-
tem (RDBMS). We propose a simple lightweight framework to integrate
graph applications with the RDBMS through a tightly-coupled network
layer, thereby leveraging efficient features of modern databases. Com-
parisons with straight-up main memory implementations of two kernels -
breadth-first search and quasi clique detection - reveal that SQL
implementations offer an attractive option in terms of productivity and
performance.

Keywords: Graph mining, SQL-based approach, Relational databases.

1 Introduction

Over the past few years data generated from real-world processes have increas-
ingly attracted the attention of researchers from all domains. A lot of effort has
gone into analyzing this data from different perspectives to extract valuable in-
formation. In this respect, mining of graph data has always demanded its share of
lime-light. This is primarily because graphs are ubiquituous and many real world
scenarios are modeled as graphs. For example, the physical interactions between
proteins in an organism are modeled as a protein interaction graph with pro-
teins as vertices and their interactions as edges. Protein interaction graphs are a
major resource for knowledge discovery: detecting protein complexes, predicting
protein functions and reliabilities of interactions [10].

There are many efficient techniques developed for storing and manipulating
graphs in main memory (RAM): for traversals, answering reachability queries,
mining frequent patterns, etc. [5] However, as more and more graph data is
accumulated, it is not feasible to store and manipulate entire graphs in main
memory. Therefore, graphs are stored on disks and efficiently fetched into main
memory in parts for manipulation [2]. The computational power of processors
is increasing, while the speed gap between main and secondary (disk) memo-
ries is widening. Therefore, graphs are compressed and stored on disks so that
they can be retrieved in parts with as little I/O reads as possible, and uncom-
pressed quickly in main memory [1]. To summarize, these approaches used to
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handle graphs can be classified broadly into two categories: (a) efficient stor-
age and manipulation of graphs in main memory; (b) efficient storage and in-
dexing of graphs on disks and their retrieval into main memory (out-of-core
approach).

As graph sizes continue to grow larger, it will be interesting to look at alter-
native approaches to mine large graphs (any data in general). The SQL-based
approach for integrating mining with RDBMS (relational database manage-
ment systems) was proposed long back (in 1998) for association rule mining [9],
followed by k-way join variants for association rule mining in 2003 [6], Subdue-
based substructure mining in 2004 [3], and frequent subgraphs mining in 2008 [4].
The SQL-based approach proposed storing data in relational databases and min-
ing it using SQL queries. Even though this approach was considered novel and
promising, the idea was mainly constrained to transactional datasets, and never
became popular for mining graphs. One probable reason, we believe, was the
complications (awkwardness) involved in “mapping” graphs onto the relational
framework of a RDBMS. This involved expressing the whole problem (graph
data, storage and manipulation) declaratively (using SQL).

In spite of the non-trivial nature of the SQL-based approach, it can be very
useful and promising. The RDBMS displays data to the designers and pro-
grammers as relational structures, while internally it stores this data on disk
blocks using efficient disk-based data structures (example, B+ trees). Hence,
if we can reasonably “map” graph data structures and algorithms onto re-
lational structures, then we can leverage all the services RDBMS can offer:
handling dynamic updates, buffer management, indexing and retrieval, and par-
allelism. After all, more than two decades of research has gone into making
database systems fast, scalable, robust, and concurrent. Secondly, in many in-
stances, main memory and out-of-core implementations can get exceedingly non-
trivial. However, the development and deployment time of SQL-based code can
be significantly shorter because one can avoid denormalizing data and storing
into flat files prior to data mining, and also writting code for indexing and
retrieval [9].

Fig. 1. Proposed framework for SQL-based mining of graphs on RDBMS
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2 Our Proposed Framework

The main contribution of our work is to propose a lightweight framework for
SQL-based mining of graphs on RDBMS. It is shown in Figure 1. This framework
is designed for making effective use of the RDBMS features for efficient handling
of large graphs. The network layer forms the most important component of
the framework. Several graph mining applications can be “mapped” onto the
RDBMS through the services offered by this layer.

2.1 The Network Layer

The network layer rests conceptually within the RDBMS (see Figure 1) and runs
in the same address space as the RDBMS. It is implemented using procedural
SQL (stored procedures using Oracle’s PL/SQL [8]). The advantage of imple-
menting this way is that the network layer is tightly-coupled to the RDBMS: it
has direct access to all the services offered by the RDBMS. This layer provides
the necessary graph-abstraction to abstract away all the complications involved in
handling large graphs. It houses all the basic table designs and ‘utilities’. Graph
applications can either be implemented loosely-coupled or tightly-coupled to the
RDBMS. For loosely-coupled applications, the network layer acts as a transla-
tion layer (For example, converting C or Java calls into SQL queries), while for
tightly-coupled applications (written in procedural SQL), it provides ready-to-
use libraries and utilities.

2.2 Efficient Storage of Graphs in the Network Layer

The basic schema design consists of storing all graphs G = {G1, G2, .., Gk}
in a hierarchical ‘master-detail’ fashion in the following tables: a graph ta-
ble Graph(GraphId, NoOfVertices, NoOfEdges), a vertex table Vertex(GraphId,
VertexId), and a connectivity table AdjMatrix (GraphId, Vertex1, Vertex2). For
every graph Gi = (Vi, Ei) ∈ G, there is a record (tuple) in Graph, uniquely iden-
tified by the primary key {GraphId} ← {Gi}. For every vertex v ∈ Vi of graph
Gi, there is a record in Vertex, uniquely identified by primary key {GraphId,
VertexId} ← {Gi, v}. The whole connectivity structure is then stored as records
in AdjMatrix. For every edge (u, v) ∈ Ei, there is a record in AdjMatrix uniquely
identified by the primary key {GraphId, Vertex1, Vertex2} ← {Gi, u, v}. Notice
how GraphId is propagated as part of the primary key in all tables. The whole
graph Gi can be uniquely queried from the tables using GraphId.

2.3 Implementing a Basic Utility within the Network Layer: BFS

We next describe how a basic utility like the breadth-first search (BFS) on a
graph is efficiently implemented within the network layer.

The BFS algorithm on a graph Gi = (Vi, Ei) and its SQL-based design are
shown in Algorithm 1. We first store the graph Gi in the above-proposed tables.
To simulate the FIFO queue used in BFS, we design a table Queue (Line: 1).
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Algorithm 1. BFS(G, s)
1: Initialize queue Q; /* Create table: Queue(GraphId, VertexId, position) */
2: enqueue(Q, s);
3: while Q �= empty do
4: v ← dequeue(Q); /* Query: SELECT record with MIN position */
5: for each unvisited neighbor u of v do
6: enqueue(Q,u); /* Insert into Queue. */
7: mark u as ‘visited’; /* Update: ‘visited’ in Discovery. */
8: assign a discovery number to u;
9: end for

10: if commitCnt ≥ commitFreq then
11: COMMIT and reset commitCnt; /* Controlled COMMITs to restrict I/O.*/
12: end if
13: end while
14: Output the vertices in discovery sequence;

For every vertex v ∈ Vi that is enqueued, there is a record in Queue, uniquely
identified by {GraphId, VertexId} ← {Gi, v}. The position attribute in Queue
gives the position of v in the queue. The smaller the position, the earlier v
will be dequeued. Additionally, for every vertex v ∈ Vi, there is a record in
table Discovery, uniquely identified by the primary key {GraphId, VertexId} ←
{Gi, v}. There are attributes visited and discoveryNo to keep track of whether v
has been visited and its order in the visited sequence.

The BFS algorithm begins by inserting the source s into Queue (Line: 2). In
each iteration, the vertex v with the minimum position is selected (Line: 4) from
Queue. All unvisited neighbors u of v (Line: 5) are then selected from the join:
AdjMatrix A ��A.V ertex1=v ∧ A.V ertex2=D.V ertexId ∧ D.V isited=FALSE Discovery D.
These vertices are inserted into Queue (Line: 6) and updated as ‘visited’ in Dis-
covery (Line: 7, 8). These iterations continue till Queue is empty.

2.4 Extending to Graph Mining: Quasi Clique Detection

Quasi cliques are very interesting structures from the point of view of graph
mining. Very simply, a quasi clique in a graph is an ‘almost’ complete subgraph.
Quasi cliques are used to model real-world communities in protein networks,
social networks, scientific collaboration networks, etc. [10]

There are several ways to model quasi cliques; one way is by the notion of a
γ-quasi clique. Given a graph G = (V, E), a subgraph Q = (VQ, EQ), VQ ⊆ V
and EQ ⊆ E, is called a quasi clique with clustering co-efficient 0 ≤ γ ≤ 1 if,
|EQ| is at least a γ-fraction of the total possible number of edges in a subgraph
of the same size. This is given by: |EQ| ≥ γ.

(|VQ|
2

)
. Therefore, the number of

edges missing in Q is given by: λ ≤ (1 − γ).
(|VQ|

2

)
.

To study quasi clique detection on our framework, we chose the algorithm
proposed in [10]. We only give the essense of the algorithm here so that the
purpose of our work is served; for details see [10]. The inputs to the algorithm
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are graph G = (V, E), and fixed parameters k > 0 and λ ≥ 0. The algorithm
performs a bounded recursive search to find a quasi clique Q ⊆ V of size at
most k with at most λ edges missing. The time complexity of the algorithm is
O(3k+λ.fpoly(|V |)). The recursive search procedure makes the algorithm highly
memory-intensive with the amount of additional memory required per search-
path being O((k +λ).gpoly(|V |)), which can be very large. This also reflects how
non-trivial the memory management can be in such applications, especially when
implemented in-memory or out-of-core.

2.5 The RCR Strategy in SQL-Based Approach

In order to implement the quasi clique algorithm using the SQL-based approach,
we made use of the earlier proposed table designs. Additionally, we designed the
following interesting strategy, which we call replicate-cleanup-rebuild (RCR).
This strategy can be adopted to other recursive algorithms as well.

Algorithm 2. bool QCRecursive (G, Q, V \ Q, k, λ): recursive call
1: I = {G, Q, V \ Q, k, λ}; /* Input I from parent call.*/
2: c = generateCallNo();

3: Working(GraphId, CallNo, Info) ← {G, c, I}; /* Replicate into Working. */

4: Pick an edge (u, v);
5: I′ = {G′, Q′ = Q ∪ {u}, V \ Q′, k′ = k − 1, λ}; /* Include u into solution.*/
6: if Q′ is the required solution then return TRUE along with Q′;
7: r = QCRecursive(G′, Q′, V \ Q′, k′, λ′); /* Send new values to first child. */
8: if r = TRUE then return TRUE along with the solution;

9: I′ = ∅; /* Clean-up current values. */

10: I′ ← Working(G, c); /* Rebuild from Working.*/

11: Repeat for subsequent children.

In this strategy, each call replicates (stores an additional copy) all the val-
ues received from its parent into a working table Working (see Algorithm 2).
It makes its computations on the received values and passes the results to its
child. When the child backtracks, instead of reverting back each computation,
the current computed values are blindly cleaned-up (discarded), and the original
values are rebuilt (queried) from Working. Subsequently, new computations are
performed on these original values and sent to the next child. Also, when a child
call backtracks, its records are permanently deleted from Working. The records
stored for each call c are uniquely identified by the primary key {GraphId,
CallNo} ← {Gi, c} in Working. Considering hpoly(|V |) number of records in-
serted per call, the total number of records in Working is O((k + λ).hpoly(|V |)).

Notice the intuition behind this strategy: to remove all the non-trivial memory
management (local storage of values, and reverting back of computations from
unsuccessful paths) within the calls and instead rely on the RDBMS for efficient
mechanisms. It also illustrates how code development time can be significantly
shorter using the SQL approach.
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3 Empirical Evaluation

We compared SQL-based implementations against straight-up main memory im-
plementations for: (a) breadth-first search (BFS) as a basic graph utility, and
(b) quasi clique detection as a graph mining application. We implemented the
main memory versions of the algorithms in C++ using the g++ 4.1.2 compiler
on the GNU/Linux Debian distribution (2.6 kernel) installed on an Intel Xeon
Dual Core 2.4GHz machine with 3GB RAM, 2.7GB swap partition and 250GB
hard disk. Whenever the memory requirement was more than 3GB we relied on
virtual memory. The procedural SQL versions were implemented in PL/SQL [8]
on Oracle 10g on the same machine.

3.1 Evaluation of Breadth-First Search

We first compared the two implementations of BFS: (a) main memory (referred
as BFSiMM) versus (b) procedural SQL (referred as BFSiSQL).

We generated random networks of n nodes and m = 4n edges by replacement
(that its, selecting m times nodes u and v such that u �= v and removing the edges
between duplicated pairs). Figure 2(a) shows the comparison plots of runtimes
(seconds) on networks for n between 216 to 223. The figure shows that even
though BFSiMM performed better than BFSiSQL for small networks, BFSiSQL
outperformed BFSiMM for large networks.

3.2 Evaluation of Quasi Clique Detection

We next compared the two implementations of the quasi clique algorithm: (a) main
memory (referred as QiMM) versus (b) procedural SQL (referred as QiSQL).

We generated scale-free networks with n = 10K to 90K (∼ 213.28 to ∼ 216.45),
and random networks with n = 10K to 40K (∼ 213.28 to ∼ 215.28) vertices. We
clustered them and stored co-clustered vertices on close-by disk blocks. Very
small quasi cliques are easy to find and are not interesting, therefore we set
k = 25 and λ = 180, giving γ ≥ {

(
k
2

)
− λ}/

(
k
2

)
= 0.4. In each execution, 20

γ-quasi cliques were detected by iteratively deleting the current quasi clique
and searching for the next one in the remaining network. Figure 2(b) shows
the comparison of runtimes (in lg scale) for QiMM and QiSQL. It shows that
even though QiMM performed better than QiSQL for small networks, QiSQL
outperformed QiMM for large networks. For scale-free networks, this cross-over
occurred around 60K (∼ 215.7) nodes. For random networks of size 25K (∼ 214.6),
QiMM continuously aborted finding only 13 quasi cliques, while QiSQL found
all 20 quasi cliques.

We next considered a variety of real-world networks obtained from [7]. These
included social (Epinions: Ep’03, Slashdot: Sd’08 and Sd’09), scientific collabora-
tions (Astro-physics: AP’03, General Relativity: GR’07) and protein interaction
networks (Gavin: GA’06, Krogan: KN’06). Figure 2(c) shows the comparisons
for fixed k and λ. It shows that QiSQL outperformed QiMM for all networks,
except the small ones like PPI GA’06 and KN’06.
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Fig. 2. (a) BFSiMM Vs BFSiSQL; (b) QiMM Vs QiSQL on scale-free and random
networks; (c) QiMM Vs QiSQL on real-world networks

Analysis of deteriorating performance of QiMM: Even though the synthetic
and real-world networks considered in the quasi clique experiments resided com-
pletely in main memory, QiMM displayed worse behavior compared to QiSQL
for the larger networks. This was primarily because of the significant amount
of additional memory required for recursive calls, which subjected QiMM to
heavy thrashing. See Figure 2(c). Snapshots of memory usage (from top and
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vmstat) of the overall system when QiMM was executing showed 100% RAM and
100% CPU usage. The high swap-in (si) and swap-out (so) values (always zero
while not thrashing) clearly indicated critical thrashing. The high scan indicated
wastage of CPU cycles while waiting for the page handler to scan for free pages.

4 Conclusions and Future Work

In this work we have proposed a lightweight framework to extend the SQL-based
approach to mine large graphs. We showed that this approach outperformed
straight-up main memory implementations for BFS and quasi clique detection on
large graph datasets. It will be interesting to realize our framework on grid tech-
nologies (like Oracle 10g/11g) for mining large graphs in a parallel distributed
fashion.
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Abstract. We present a novel and efficient algorithm for solving the
most reliable subgraph problem with multiple query nodes on undirected
random graphs. Reliable subgraphs are useful for summarizing connec-
tivity between given query nodes. Formally, we are given a graph G =
(V, E), a set of query (or terminal) nodes Q ⊂ V , and a positive inte-
ger B. The objective is to find a subgraph H ⊂ G containing Q, such that
H has at most B edges, and the probability that H is connected is max-
imized. Previous algorithms for the problem are either computationally
demanding, or restricted to only two query nodes. Our algorithm ex-
tends a previous algorithm to handle k query nodes, where 2 ≤ k ≤ |V |.
We demonstrate experimentally the usefulness of reliable k-terminal sub-
graphs, and the accuracy, efficiency and scalability of the proposed algo-
rithm on real graphs derived from public biological databases.

1 Introduction

Graphs and networks are powerful means of representing information in various
domains such as biology, sociology, and communications. However, large graphs
are difficult to understand and use by humans. Given that the user is interested
in some particular nodes and their connectivity, a large fraction of the original
graph is often irrelevant. Subgraph extraction addresses this problem.

As an example application, consider Biomine, a biological graph consisting
roughly of a million nodes and eight million edges [1]. One form of a query to
Biomine is to specify a small number of query nodes, such as a gene and a disease,
and extract a small subgraph that maximally connects the gene to the disease.
A subgraph of few dozens of nodes typically already gives a good picture of the
connectivity—not only the best paths, but a subgraph describing the network
that connects the given nodes. At the same time, almost all of the millions of
edges and nodes are irrelevant to how the gene is related to the disease.

In the most reliable subgraph problem [2], the user gives query nodes (also
called terminals) and a budget, and the task is to extract a subgraph maximally
relevant with respect to the given query nodes, but with a size within the given
budget. The problem is defined for simple (Bernoulli) random graphs, where
edge weights are interpreted as probabilities of the edges, and where a natural
definition for “relevance” is network reliability (see Section 2).
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In this paper, we propose a novel, efficient algorithm for extracting a reliable
subgraph given an arbitrary number of query nodes. Previous work on the most
reliable subgraph problem suffers either from a limitation to exactly two query
nodes, or from computational complexity. Our work builds on a recent, efficient
method for two query nodes, called Path Covering [3].

2 The Most Reliable k-terminal Subgraph Problem

We define the problem of finding the most reliable k-terminal subgraph, loosely
following conventions and notations from previous work [4]. Let G = (V, E) be
an undirected graph where V is the set of nodes and E the set of edges. G is
a Bernoulli random graph where each edge e has an associated probability pe.
The interpretation is that edge e ∈ E exists with probability pe, and conversely
e does not exist, or is not true with probability 1− pe. Given edge probabilities,
the states of edges are mutually independent. Nodes are static.

Given a set Q ⊂ V of nodes, or terminals, the network reliability R(G, Q) of G
is defined as the probability that Q is connected, i.e., that any node in Q can be
reached from any other node in Q [5]. In the most reliable subgraph problem we
are looking for a subgraph H ⊂ G connecting the terminals in Q, such that H
has at most B edges and a maximal reliability with respect to the terminals, i.e.,
find H∗ = arg maxH⊂G,||H||≤B R(H, Q). Although the problem can be defined
for directed graphs as well [2], we focus on undirected graphs in this paper. This
problem, like reliability problems in general [6], is inherently difficult: efficient
solutions are available only for restricted classes of graphs, but cases on general
graphs are most likely intractable [2].

We now introduce some additional notation used in the later sections.
Given a graph G, V (G) is the node set of G and E(G) the edge set of G.

Given a set of edges S ⊂ E, we say S induces a graph G(S) = (V ′, S), where V ′

consists of the endpoints of the edges in S.
The union between two graphs G1 = (V1, E1) and G2 = (V2, E2) is a new

graph H = G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). Other set operations for graphs are
defined analogously. For notational convenience, we treat paths, trees and edges
as (induced) graphs when there is no risk of confusion. This makes it notationally
easy, e.g., to add a path P to a graph G by writing simply G ∪ P instead
of G ∪ G(P ), or to denote the edges of a tree T as E(T ) instead of E(G(T )).

Finally, a path with endpoints u and v is said to be a u–v-path.

Related Work. The most reliable subgraph problem was introduced recently [2],
but algorithms were given only for the two-terminal case. We are aware of two
previous solutions for the general case. One, proposed by Kroese et al., is based
on the cross-entropy method [7]. De Raedt et al. give other solution to the general
case in the setting of theory compression for ProbLog [8,9]. Unfortunately, these
methods do not scale well to large databases, where input graphs may have
hundreds or thousands of edges. Other closely related work includes connection
subgraphs [10], center-piece subgraphs [11], and proximity graphs [12].
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Recently, a novel Monte-Carlo sampling based algorithm Path Covering (PC)
has been proposed for the two-terminal case [3]. The method proposed in this
paper is based on the ideas of PC, so we briefly review its principles. The al-
gorithm has two phases: a path sampling phase and a subgraph construction
phase. In the path sampling phase, the goal is to identify a small set C of paths
that have high probabilities and are relatively independent of each other. This
is achieved by approximately maximizing the probability that at least one path
P ∈ C is true. We denote this probability by Pr(C) = Pr(

∨
P∈C P ).

In the subgraph construction phase, PC chooses a set of solution paths S ⊂ C
such that the probability Pr(S) = Pr(

∨
P∈S P ) is maximized and ||G(S)|| ≤ B,

where ||G|| denotes the number of edges in G. PC does not maximize R(G(S))
directly, but works on its lower bound Pr(S) instead. Concisely put, PC gen-
erates S iteratively by choosing at each iteration the path P ∗ which gives the
maximal per-edge increase to the (estimated) probability Pr(S), that is

P ∗ = arg max
P∈C\S

Pr(S ∪ P ) − Pr(S)
|E(P ) \ E(H)| , (1)

where H = G(S) is the result subgraph being constructed. At each iteration,
paths that become included into H are removed from C. To satisfy the budget
constraint, paths P ∈ C for which ||H ||+ |E(P ) \E(H)| > B are also removed.
The algorithm stops when ||H || = B or C \ S = ∅, and returns the subgraph H .

3 Algorithms

We propose a novel, efficient algorithm for the problem of extracting a reliable
k-terminal subgraph from an undirected graph. The proposed algorithm is a
generalization of the Path Covering (PC) method [3] (see Section 2 for a brief
overview) to more than two query nodes. The basic principles remain the same:
the two phases, use of Monte Carlo simulations, as well as many subtle details.
However, whereas PC uses paths connecting the two given query nodes as its
building blocks (set C) in the subgraph construction phase, here we consider
spanning trees connecting the k query nodes, with 2 ≤ k ≤ |V |. Similarly, set S
in the objective function (1) consists of spanning trees instead of paths as in PC.

In the first phase, the algorithm extracts a set of trees from the original
graph G. Each of the trees connects the given k query nodes; by construction,
they are spanning trees having the query nodes as leaves. In the second phase,
these trees are used as building blocks to construct the result of the algorithm
just like PC uses paths as its building blocks. We focus on the novel aspects
of the proposed algorithm, the ones that allow solving the k-terminal problem.
For brevity, we omit technical details shared with Path Covering and described
in depth elsewhere [3]. We begin by presenting the general aspects of the new
algorithm and then proceed to more detailed description.

Input and output data. The first phase of the algorithm (Algorithm 1) takes
a random graph G and a set Q ⊂ V of query nodes as its input. The algorithm



Fast Discovery of Reliable k-terminal Subgraphs 171

outputs a set C of trees such that each tree connects all the query nodes. We
call these trees candidate trees. C is used as an input in the second phase of the
algorithm (Algorithm 2).

Producing candidate trees. At the first iteration, (|Q|2 − |Q|)/2 new can-
didate trees are generated (Lines 2–3). Each tree connects one pair of query
nodes and each query node pair is connected by one tree. Later, as the algo-
rithm proceeds, new trees are added one by one; each of the later trees is also
initially formed as a path between two query nodes. During the algorithm, indi-
vidual trees are created and grown iteratively. In each iteration, either a branch
is added to an existing incomplete tree (a tree that does not yet connect all query
nodes) so that a new query node is connected to the tree, or a new initial tree
is generated. At the end of the algorithm we output only complete trees (trees
that connect all query nodes).

Edge sampling. The algorithm is stochastic. At each iteration it randomly
decides, according to the probabilities pe, which edges exist and which do not
(Line 5). Only edges that are included in at least one candidate tree are decided.
All other edges are considered to exist. The next step is to determine if any of
the previous candidate trees exist in the current graph realization (Line 9). If one
does not exist a new candidate tree is generated (Lines 14–15). If a previously
discovered tree exists, the first such tree is taken into examination (Line 10). If
the tree is complete, the algorithm proceeds directly to the next iteration. Oth-
erwise the tree is extended (Lines 17–21) before continuing to the next iteration.

Tree construction. A new tree is formed by the best path connecting two
query nodes (Line 15). A previously established incomplete tree is extended by
connecting a new query node to it with the best path between some node in
the tree and the new query node (Lines 18–20). The probabilities of all edges
in the tree are set to 1 prior to the search of the best path (Line 17), while
the probabilities of other edges remain the same. As a result the new branch
is formed by the best path between the new query node and the tree. Edges
that do not exist at the iteration are not used. All edge weights are set to their
original values before proceeding to the next iteration (Line 21).

Choosing query nodes. When a new tree is formed, the algorithm decides
randomly which two query nodes are included in the initial tree. Later on when
an incomplete tree is extended, the algorithm again randomly selects the new
query node to connect to the tree. This is to avoid unnecessary complexity: in
our experiments this solution produced better results and shorter running times
than selecting the node to be added based on its distance from the tree (results
not shown).

Discovering strong trees. The collection C of candidate trees is organized as a
queue, i.e., the oldest candidate trees are always considered first. This drives the
algorithm to complete some trees first (the oldest ones) rather than extending
them in random order and not necessarily up to a completion. On the other hand,
the stochasticity of the algorithm favors strong trees: they are more likely to be
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true at any given iteration and thus more likely to be extended. The algorithm
also has a tendency to avoid similar trees: when two (partial) trees are true at
the same time, only the oldest one is potentially extended.

Algorithm 1. Sample trees
Input: Random graph G, set Q ⊂ V of query nodes, number of trees to be generated
Output: Collection C of trees connecting all query nodes
1: C ← ∅
2: for each node pair vi, vj ∈ Q, vi �= vj do
3: Add the best vi–vj-path from G to C
4: repeat
5: Decide each e ∈ E(C) by flipping a coin biased by the probability of e
6: Let ES contain the successful edges and EF contain the failed edges
7: TS ← ∅
8: for i = 1 to |C| do
9: if E(Ci) ⊂ ES then

10: if Q ⊂ V (Ci) then
11: continue at line 5
12: TS ← Ci

13: continue at line 17
14: Randomly select u and v ∈ Q, u �= v
15: Add the best u–v-path from G− EF to C
16: continue at line 5
17: Set the probability of e to 1 for all e ∈ E(TS)
18: Randomly select u ∈ Q ∩ V (TS) and v ∈ Q \ V (TS)
19: PS ← the best u–v-path from G−EF

20: Add all e ∈ E(PS) to E(TS) and all v ∈ V (PS) to V (TS)
21: Reset edge weights for all e ∈ E(TS)
22: until the stopping condition is satisfied
23: return C (after removing all incomplete trees)

Stopping condition. We use the number |C| of complete trees generated as the
stopping condition for the first phase. The number of iterations would be another
alternative (see Section 4). Using the number of trees seems a better choice than
using the number of iterations, since the minimum number of iterations needed to
produce a single complete tree increases when the number of query nodes increase.

4 Experiments

We have implemented and experimentally evaluated the proposed algorithm on
random graphs derived from public biological databases. In this section, we ex-
amine the usefulness of k-terminal subgraphs: do they maintain the k-terminal
reliability of input graphs, and what is the amount of random variance in the
results? We demonstrate the efficiency and scalability of our algorithm for large
input graphs. Finding a suitable stopping criterion for Algorithm 1 is difficult;
we also address this issue. Finally, we compare the algorithm against a baseline
method based on enumerating the best paths between the query nodes.
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Algorithm 2. Select trees
Input: Random graph G, collection C of trees, budget B ∈ N

Output: Subgraph H ⊂ G with at most B edges
1: S ← ∅
2: while ||G(S)|| ≤ B and C \ S �= ∅ do

3: Find T = arg maxT∈C\S
Pr(S∪T )−Pr(S)
|E(T )\E(G(S))|

4: S ← S ∪ T
5: for all T ∈ C do {remove useless trees}
6: if T ⊂ G(S) or ||G(S)||+ |E(T ) \ E(G(S))| > B then
7: C ← C \ {T}
8: return H = G(S)

4.1 Test Set-Up

Test data and query nodes. We use Biomine database [1] as our data source.
Biomine is a large index of various interlinked public biological databases, such
as EntrezGene, UniProt, InterPro, GO, and STRING. Biomine offers a uniform
view to these databases by representing their contents as a large, heterogeneous
biological graph. Nodes in this graph represent biological entities (records) in
the original databases, and edges represent their annotated relationships. Edges
have weights, interpreted as probabilities [1]. We evaluated the proposed method
using six source graphs of varying sizes (Table 1) and a set of up to ten query
nodes. They were obtained as follows.

Table 1. Sizes of source graphs used in the experiments

Name of G = (V, E) 400 500 700 1000 2000 5000

Number of edges, |E| = ||G|| 395 499 717 1046 2019 4998
Number of nodes, |V | 153 189 260 336 579 1536
Reliability of G with |Q| = 4 0.46 0.46 0.50 0.56 0.59 0.60

First, the largest subgraph, consisting of approximately 5000 edges and 1500
nodes, was retrieved from the Biomine database using Crawler, a subgraph re-
trieval component proprietary to Biomine. For this initial retrieval, we used eight
randomly selected query nodes.

Second, a set of ten query nodes to be used in the experiments was de-
fined by randomly picking nodes from the subgraph of 5000 edges. The query
node identifiers are EntrezGene:348, EntrezGene:29244, EntrezGene:6376, En-
trezGene:4137, UniProt:P51149, UniProt:Q91ZX7, EntrezGene:14810, UniProt:
P49769, EntrezGene:11810, and UniProt:P98156.

Third, smaller subgraphs were retrieved with Crawler by a sequence of sub-
graph retrievals, always extracting the next smaller subgraph from the previous
subgraph, using the ten query nodes given above.

We also used two additional source graphs when evaluating the scalability of
the algorithm to large source graphs. The smaller one consisted of 51,448 edges
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and 15,862 nodes. The size of the larger graph was 130,761 edges and 66,990
nodes. The smaller graph was a subgraph of the larger one and all other source
graphs used in the experiments were subgraphs of both.

Biomine Crawler. The subgraph retrieval component of the Biomine system,
“Crawler”, was used to extract the source graphs, and it will also be used below in
a comparative experiment to assess the effectiveness of the proposed algorithm.
Crawler is currently undocumented. Given a source graph, a set of query nodes,
and a node budget, it works roughly as follows. It first finds a large set of best
paths between all pairs of query nodes. It then picks those paths sequentially
between the node pairs, until the subgraph induced by the chosen paths reaches
the specified number of nodes. The method is somewhat similar to the BPI
algorithm [4], but works for multiple query nodes. Even though the Crawler
works with random graphs, it does not try to optimize the k-terminal reliability.

Stopping condition. We used the number of complete candidate trees generated
as the stopping condition for Algorithm 1. Another obvious alternative would be
the number of iterations. Neither condition is perfect: for instance, the number
of query nodes has a strong effect on the number of trees needed to find a good
subgraph. On the other hand, the number of query nodes has also a strong
effect on the number of iterations needed to produce a sufficient amount of
trees. A single fixed number of candidate paths is a suitable stopping condition
for the two-terminal case [3] but it is problematic in the k-terminal case where
the building blocks are trees consisting of multiple branches. For the current
experiments, we believe a fixed number of candidate trees gives a fair impression
of the performance of the method.

Parameters. The experiments have been performed using the following param-
eter values; the default values we have used throughout the experiments, unless
otherwise indicated, are given in boldface.

– Size of source graph G (Table 1): ||G|| = 400, 500, 700, 1000, 2000, 5000
– Number of query nodes: |Q| = 1, 2, 3, 4, . . ., 10
– Size of extracted subgraph: ||H || = 10, 20, 30, . . ., 60, . . ., 100, 150, 200
– Number of complete trees (stopping condition of Algorithm 1): |C| = 10, 20,

30, . . ., 100, 150, 200

To control random variation, the values reported below are averages over 10
independent runs.

4.2 Results

Let us first take a look at how well the method manages to extract a reliable
subgraph (Fig. 1). For three to four query nodes (|Q|), a subgraph of only 20–30
edges manages to capture 80% of the reliability of the source graph of 500 edges.
For a large number of query nodes, the problem seems much more challenging.
It seems obvious, that larger subgraphs are needed for a larger number of query
nodes, if the reliability should be preserved.
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Fig. 1. Relative reliability of a subgraph as
a function of its size, for various numbers of
query nodes

The number |C| of candidate trees
produced in the first phase of the al-
gorithm has an effect on the relia-
bility of the extracted subgraph, but
we discovered that sampling a rela-
tively small number of trees is enough
to produce good subgraphs (approxi-
mately 50 trees for four query nodes;
results not shown). An experimental
analysis of the running time indicates
that the method scales linearly with
respect to the number of candidate
trees generated.

The scalability of the new algo-
rithm to large source graphs (Fig. 2,
left) is clearly superior to previous methods (see Section 1). Source graphs of
thousands of edges are handled within a second or two. Scalability is close to
linear, which is expected: the running time of the algorithm is dominated by
Monte-Carlo simulation, whose complexity grows linearly with respect to the
input graph size and the number of iterations. Running times for the two ad-
ditional large source graphs (51,448 edges and 130,761 edges) are not shown in
the figure, but the average running times over ten independent runs are approx-
imately 16 (standard deviation 0.57) and 53 seconds (standard deviation 2.8),
respectively. Limiting the length of tree branches might shorten running times
in some cases.
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Fig. 2. Running time and reliability as functions of the size of the input graph

The right panel of Fig. 2 indicates the original reliability of the growing source
graph, as well as the reliability of the extracted subgraph (of a fixed size of
60 edges). The relative difference in reliability is less than 20% in all cases,
emphasizing the ability of the algorithm to preserve strong connectivity between
the query nodes. These results suggest that the algorithm is competitive for
interactive visualization.
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Fig. 3. Comparison with Biomine Crawler
with 4 query nodes

Finally, we compare the new algo-
rithm to the Biomine Crawler (Fig. 3),
as it is the only available method for
comparison on this scale. The com-
parison is not completely fair, as the
Crawler does not aim to optimize the
k-terminal reliability, but the general
goal of extracting a subgraph connect-
ing the query nodes is the same. In
the experiments, the proposed algo-
rithm produces significantly more re-
liable subgraphs, especially when the
extracted subgraphs are small. Both
methods converge towards the relia-
bility of the source graph. However, where the new method reaches 80% of
the original reliability with only 30 edges, the Crawler needs 60 edges for the
same.

5 Conclusions

We gave an efficient algorithm for solving the most reliable subgraph extraction
problem for more than two query nodes. This is a significant improvement over
state-of-the-art that could efficiently only handle exactly two query nodes.

Experimental results with real biological data indicate that the problem and
the proposed method have some very useful properties. First, reliable k-terminal
subgraphs of fairly small sizes seem to capture essential connectivity well. Sec-
ond, the proposed method extracts a reliable subgraph in a matter of seconds,
even from a source graph of thousands of edges; the time complexity seems to
be linear with respect to the size of the original graph.

There are many possible variants of the approaches described in this paper
that could be explored to find better solutions. For instance, how to choose
which partial tree to expand and how to expand it, or how to efficiently use
partial trees also in the second phase? Another interesting approach could be
using (approximated) Steiner trees as spanning trees.

Future experiments include systematic tests to find out robust sets of param-
eters that perform reliably over wide range of input graphs and query nodes,
and more extensive comparisons with related methods. Possible extension of the
proposed algorithm for directed variant of the problem is an open question.
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Abstract. The mining of a complete set of frequent subgraphs from
labeled graph data has been studied extensively. Recently, much atten-
tion has been given to frequent pattern mining from graph sequences.
In this paper, we propose a method to improve GTRACE which mines
frequent patterns called FTSs (Frequent Transformation Subsequences)
from graph sequences. Our performance study shows that the proposed
method is efficient and scalable for mining both long and large graph
sequence patterns, and is some orders of magnitude faster than the con-
ventional method.

Keywords: Frequent Pattern, Graph Sequence, Labeled Union Graph.

1 Introduction

Studies on data mining have established many approaches for finding charac-
teristic patterns from various structured data. Graph Mining [5,12,9], which
efficiently mines all subgraphs appearing more frequently than a given thresh-
old from a set of graphs, focuses on the topological relations between vertices
in the graphs. Although the major methods for Graph Mining are quite effi-
cient in practice, they require much computation time to mine complex frequent
subgraphs due to the NP-completeness of subgraph isomorphism matching [4].
Accordingly, these conventional methods are not suitable for complex graphs
such as graph sequences.

However, graph sequences can be used to model objects for many real world
applications. For example, a human network can be represented as a graph where
each human and each relationship between two humans correspond to a vertex
and an edge, respectively. If a human joins (or leaves) the community in the
human network, the numbers of vertices and edges in the graph increase (or
decrease). Similarly, a gene network consisting of genes and their interactions
produces a graph sequence in the course of their evolutionary history by acquiring
new genes, deleting genes, and mutating genes.

Recently, much attention has been given to frequent pattern mining from
graph sequences [6,2,1,7]. Figure 1 (a) shows an example of a graph sequence
consisting of 4 steps where each contains vertices denoted by 5 unique IDs.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 178–188, 2010.
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In [6], we proposed a new method, called GTRACE (Graph TRAnsformation
sequenCE mining), for mining frequent patterns as shown in Fig. 1 (b) from
graph sequences under the assumption that the change in each graph is gradual,
and applied it to graph sequences generated from the Enron dataset. Although
GTRACE is tractable for the Enron graph sequences containing about 7 steps
and 100 unique IDs, it is intractable for graph sequences containing more steps
and unique IDs than those in the Enron graph sequences.

In this paper, we propose a method to improve the efficiency of GTRACE
mining frequent patterns called FTSs (Frequent Transformation Subsequences)
from graph sequences. Our performance study shows that the proposed method
is efficient and scalable for mining both long and large graph sequence patterns,
and is some orders of magnitude faster than GTRACE. Although this paper
focuses on undirected graphs where only the vertices have labels, the proposed
method is applicable to both directed graph and undirected graphs where the
edges also have labels without loss of generality.

2 Representation of Graph Sequences

In this section, we briefly review a compilation used to compactly represent graph
sequences in GTRACE. Figure 1 (a) shows an example of a graph sequence. The
graph g(j) is the j-th labeled graph in the sequence. The problem we address
in this paper is how to mine patterns that appear more frequently than a given
threshold from a set of graph sequences. In [6], we proposed transformation rules
to represent graph sequences compactly under the assumption that “the change
over adjacent graphs is gradual”. In other word, only a small part of the graph
changes between two successive graphs g(j) and g(j+1) in a graph sequence, while
the other parts remain unchanged. In the aforementioned human networks and
the gene networks, these assumptions certainly hold, since most of the changes
of the vertices are progressive over successive steps. The direct representation
of a graph sequence is not compact, because many parts of a graph remain
unchanged over several steps and are therefore redundant in the representation.
On the other hand, a graph sequence is compactly represented by introducing a
representation of graph transformation based on rules of insertion, deletion, and
relabeling of vertices and edges under the assumption of gradual changes.

A labeled graph g is represented as g = (V, E, L, f), where V = {v1, · · · , vz}
is a set of vertices, E = {(v, v′) | (v, v′) ∈ V × V } is a set of edges, and L is
a set of labels such that f : V → L. V (g), E(g), and L(g) are sets of vertices,
edges and labels of g, respectively. A graph sequence is represented as d =
〈g(1) g(2) · · · g(n)〉, where the superscript integer of each g is the ordered step in

Fig. 1. Examples of a graph sequence and a mined frequent pattern
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the graph sequence. We assume that each vertex v is mutually distinct from the
others in any g(j) and keeps a unique ID id(v) in d. We define the set of unique
IDs to be IDV (d) = {id(v) | v ∈ V (g(j)), g(j) ∈ d} and the set of pairs of unique
IDs to be IDE(d) = {(id(v), id(v′)) | (v, v′) ∈ E(g(j)), g(j) ∈ d}.

Example 1. In the human network mentioned in Section 1, each person has a
unique ID, and his/her gender is an example of a vertex label.

To compactly represent a graph sequence, we focus on the differences between
two successive graphs g(j) and g(j+1) in the sequence.

Definition 1. Given a graph sequence d = 〈g(1) · · · g(n)〉, each graph g(j) in d
is called an “interstate”. Moreover, The differences between the graphs g(j) and
g(j+1) are interpolated by a virtual sequence 〈g(j,1)g(j,2) · · · g(j,mj)〉, where g(j,1) =
g(j) and g(j,mj) = g(j+1). Each graph g(j,k) is called an “intrastate”. The graph
sequence d is represented by the interpolations as d = 〈s(1)s(2) · · · s(n−1)〉. �
The order of interstates represents the order of graphs in a sequence. On the other
hand, the order of intrastates is the order of graphs in the artificial interpolation,
and there can be various interpolations between the graphs g(j) and g(j+1). We
limit the interpolations to be compact and unambiguous by choosing one with
the shortest length in terms of graph edit distance.

Definition 2. Let a transformation of a graph by insertion, deletion or relabel-
ing of a vertex or an edge be a unit, and let each unit have edit distance 1. An
“intrastate sequence” s(j) = 〈g(j,1)g(j,2) · · · g(j,mj)〉 is defined as the interpola-
tion in which the edit distance between any two successive intrastates is 1, and
in which the edit distance between any two intrastates is minimum. �

The transformation is represented by the following “transformation rule (TR)”.

Definition 3. A transformation rule (TR) which transforms g(j,k) to g(j,k+1)

is represented by tr
(j,k)
[ojk,ljk], where

– tr is a transformation type which is either insertion, deletion, or relabeling
of a vertex or an edge,

– ojk is an element in IDV (d) ∪ IDE(d) to be transformed, and
– ljk ∈ L is a label to be assigned to the vertex by the transformation. �

For the sake of simplicity, we denote the transformation rule by omitting the
subscripts of ojk and ljk except in the case of ambiguity. We introduced five
TRs defined in Table 1. In summary, we give the following definition of a trans-
formation sequence.

Definition 4. An intrastate sequence s(j) = 〈g(j,1) · · · g(j,mj)〉 is represented by
seq(s(j)) = 〈tr(j,1)

[o,l] · · · tr
(j,mj−1)

[o,l] 〉. This is called an “intrastate transformation
sequence”. Moreover, a graph sequence d = 〈g(1) · · · g(n)〉 is represented by an
“interstate transformation sequence” seq(d) = 〈seq(s(1)) · · · seq(s(n−1))〉. �
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Table 1. Transformation rules (TRs) to represent graph sequence data

Vertex Insertion Insert a vertex with label l and unique ID u into g(j,k)

vi
(j,k)
[u,l] to transform to g(j,k+1).

Vertex Deletion Delete an isolated vertex with unique ID u

vd
(j,k)
[u,•] in g(j,k) to transform to g(j,k+1).

Vertex Relabeling Relabel a label of a vertex with unique ID u

vr
(j,k)
[u,l] in g(j,k) to be l to transform to g(j,k+1).

Edge Insertion Insert an edge between 2 vertices with unique IDs u1 and u2

ei
(j,k)
[(u1,u2),•] into g(j,k) to transform to g(j,k+1).

Edge Deletion Delete an edge between 2 vertices with unique IDs u1 and u2

ed
(j,k)

[(u1,u2),•] in g(j,k) to transform to g(j,k+1).
Arguments l of the transformations of vertex deletion vd, edge insertion ei, and edge
deletion ed are dummy and represented by ‘•’.

Fig. 2. A graph sequence and its TRs

The notation of the intrastate transformation sequence is far more compact
than the original graph based representation, since only differences between two
successive intrastates appear in the sequence. In addition, computing a sequence
of TRs based on differences between two graphs is solvable in linear time, because
all vertices have unique IDs.

Example 2. In Fig. 2 (a), a graph sequence is represented by a sequence of in-
sertions and deletions of vertices and edges as shown in Fig. 2 (b). The sequence
is compiled into 〈vi

(1,1)
[4,C]vi

(2,1)
[5,C]ei

(2,2)
[(3,4),•]ed

(2,3)
[(2,3),•]vd

(2,4)
[2,•] ed

(3,1)
[(1,3),•]vd

(3,2)
[1,•] 〉.

3 Mining Frequent Transformation Subsequences

In this section, we briefly review how GTRACE mines frequent transformation
subsequences (FTSs) from a given set of graph sequences. To mine FTSs from a
set of compiled graph sequences, we define an inclusion relation between trans-
formation sequences. When a transformation sequence seq(d) includes another
transformation sequence seq(d′), it is denoted by seq(d′) % seq(d) whose detail
definition is provided in [6].

As mentioned in [6], to mine FTSs consisting of mutually relevant vertices
only, we define the relevancy between unique IDs of vertices and edges as follows.
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Definition 5. Unique IDs in d = 〈g(1) · · · g(n)〉 are relevant one another, and d
is called a “relevant graph sequence”, if the union graph gu(d) of d is a connected
graph. We define the union graph of d to be gu(d) = (Vu, Eu) where

Vu = {id(v) | v ∈ V (g(j)), g(j) ∈ d}, and (1)
Eu = {(id(v), id(v′)) | (v, v′) ∈ E(g(j)), g(j) ∈ d}. (2)

�
This union graph of the transformation sequence seq(d) is also defined similar
to Definition 5.

Given a set of data DB = {〈id, d〉 | d = 〈g(1) · · · g(n)〉}, the support value
σ(seq(d′)) of a transformation subsequence seq(d′) is defined to be

σ(seq(d′)) = |{id | 〈id, d〉 ∈ DB, seq(d′) % seq(d)}|.

We call a transformation subsequence whose support value is greater than or
equal to a minimum support threshold σ′ a “frequent transformation subse-
quence (FTS)”. The anti-monotonicity of this support value holds. That is, if
seq(d′1) � seq(d′2) then σ(seq(d′1)) ≥ σ(seq(d′2)). Using these settings, we state
our mining problem as follows.

Problem 1. Given a dataset DB = {〈id, d〉 | d = 〈g(1)g(2) · · · g(n)〉} and a mini-
mum support threshold σ′ as the input, enumerate all relevant FTSs (rFTSs).

To enumerate all rFTSs efficiently, GTRACE first generates a union graph for each
graph sequence in DB based on the definition of a union graph. Subsequently, all
connected frequent subgraphs in these union graphs are enumerated by using the
conventional Graph Mining algorithm. At each time the algorithm outputs a con-
nected frequent subgraph, an altered version of PrefixSpan [10] is called to mine
rFTSs from transformation subsequences generated by the following projection.

Definition 6. Given a graph sequence 〈id, d〉 ∈ DB and a connected graph g,
we define a function “proj1” to project seq(d) to its subsequences.

proj1(〈id, d〉, g) = {〈id′, seq(d′)〉 | id = id′, seq(d′) % seq(d) s.t. gu(d′) = g}. �

A data ID id′ is attached to each transformation subsequence produced by the
projection to calculate the exact support value of each rFTS, since multiple
transformation subsequences are produced from a graph sequence 〈id, d〉 in the
projection. Since the union graph of an rFTS is also frequent in the union graphs
of all 〈id, d〉 ∈ DB, we can enumerate all rFTSs from the projected transforma-
tion subsequences if all connected frequent subgraphs among the union graphs
of all 〈id, d〉 are given.

Example 3. Given the graph sequence d in Fig. 3 (a), seq(d) is represented by
seq(d) = 〈vi

(1,1)
[3,C]ei

(1,2)
[(1,3),•]ei

(1,3)
[(2,3),•]vi

(2,1)
[4,A]ei

(2,2)
[(1,4),•]ed

(2,3)
[(1,3),•]〉, and its union graph

gu(d) is depicted in Fig. 3 (b). Given a graph g which is a subgraph of gu(d) as
shown in Fig. 3 (d), one of transformation sequences in proj1(〈id, seq(d)〉, g) is
〈id, seq(d′)〉 = 〈id, 〈vi

(1,1)
[3,C]ei

(1,2)
[(1,3),•]ei

(1,3)
[(2,3),•]ed

(2,1)
[(1,3),•]〉〉 as depicted in Fig. 3 (c),

where this subsequence matches with the underlined rules in seq(d).
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Fig. 3. An example of the projection

1) GTRACE(DB, σ′)
2) Gu = {gu(d) | 〈id, d〉 ∈ DB}
3) for g =FrequentSubgraphMiner(Gu, σ′); untill g �= null{
4) proj1(DB, g) =

⋃
〈id,d〉∈DB proj1(〈id, d〉, g)

5) F ′ = FTSMiner(proj1(DB, g), σ′)
6) F = F ∪ {α | α ∈ F ′ ∧ gu(α) = g}
7) }

Fig. 4. Algorithm for mining rFTSs

Figure 4 shows an algorithm for enumerating all rFTSs F from DB. First, a set
Gu of the union graphs of graph sequences DB is generated in Line 2. Assuming
that the function call “FrequentSubgraphMiner” [8] repeatedly and exhaustively
outputs connected frequent subgraphs g in Gu one at a time in Line 3, FTSMiner,
which is the altered PrefixSpan [10,6], is called in Line 5 with the transformation
sequences projected in Line 4 to mine rFTSs from proj1(DB, g). Finally, rFTSs
mined from proj1(DB, g) =

⋃
〈id,d〉∈DB proj1(〈id, d〉, g), whose union graphs are

isomorphic to g, are added to F in Line 6. These processes are continued until
the connected frequent subgraph g is exhausted in FrequentSubgraphMiner. We
have implemented FrequentSubgraphMiner using AcGM [8] which is one of the
conventional Graph Mining methods.

4 Proposed Method: GTRACE2

Most of the computation time of GTRACE is used to run the altered PrefixSpan.
The reason why the PrefixSpan used in GTRACE needs so much computation
time is as follows. Let Gu and g be a set of union graphs of all 〈id, d〉 ∈ DB
and a frequent connected subgraph mined by FrequentSubgraphMiner from Gu,
respectively. The union graphs in Gu are often dense even if each interstate in
graph sequences is sparse, since a union graph in Gu is generated by superim-
posing interstates in a graph sequence. In addition, since the union graph of a
graph sequence is a graph with no labels, there exist many injective functions
V (g) → V (gu) between g and a dense union graph gu(d) ∈ Gu such that g is a
subgraph of gu(d). Therefore, many projected transformation subsequences are
produced from the graph g and one graph sequence d such that g is a subgraph
of gu(d) according to the definition of projection.
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Fig. 5. Union Graph and Labeled Union Graph

To reduce the number of transformation subsequences produced by the pro-
jection, we redefine the union graph as follows:

Definition 7. We redefine a union graph of d as gu(d) = (Vu, Eu, L∪ {l+}, fu)
such that

fu(o)|o∈Vu
=

⎧⎨⎩
l if always f(v) = l for v ∈ V (g(j))

such that g(j) ∈ d and id(v) = o
l+ otherwise

(3)

where Vu and Eu are given by Eqs. (1) and (2), respectively. L is a set of vertex
labels in d, f is a function to assign vertex label l ∈ L to each vertex in interstates
in d, and l+ /∈ L. �

The union graph defined here is a labeled graph, although the union graph
defined in Section 3 is an unlabeled graph. So, we call the union graph we
have defined here a labeled union graph. A label assigned to each vertex in the
labeled union graph is determined by Eq. (3). If the vertices with unique ID o
in interstates in d always have the identical label l ∈ L, a vertex o in the labeled
union graph of d has the label l. Otherwise, the vertex o has a label l+ such that
l+ /∈ L.

Example 4. Figure 5 shows a union graph and a labeled union graph generated
from the same graph sequence. Since two vertices with unique ID 1 in the graph
sequence d have different labels, the corresponding vertex in the labeled union
graph has a label l+.

As mentioned in Section 3, GTRACE generates union graphs of all graph se-
quences in DB and mines all frequent connected subgraph patterns using AcGM.
In this process, AcGM checks whether a pattern is included in each union graph.
Since vertices with label l+ in a labeled union graph should match any vertex
in a pattern, the subgraph isomorphism test used in AcGM is altered as follows.
Given two graphs g(V, E, L, f) and g′(V ′, E′, L′, f ′), g′ is a subgraph of g, if there
exists an injective function φ : V ′ → V that satisfies the following conditions for
∀v, v1, v2 ∈ V ′.

1. (φ(v1), φ(v2)) ∈ E, if (v1, v2) ∈ E′, and
2. f(φ(v)) = f ′(v) or f(φ(v)) = l+.

By integrating the definition of the labeled union graph and the subgraph iso-
morphism test with GTRACE, we propose a new method called GTRACE2 to
mine all rFTSs from graph sequences. According to the following lemma, we
reduce the computation time to mine all rFTSs from graph sequences.
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Fig. 6. Inputs of projection of GTRACE and GTRACE2

Lemma 1. If g1 is an unlabeled graph generated by removing all labels from a
labeled graph g2 to be used as input of projection in GTRACE2, then

| ∪〈id,d〉∈DB proj2(〈id, d〉, g2)| ≤ | ∪〈id,d〉∈DB proj1(〈id, d〉, g1)|,

where proj1 and proj2 are functions to project a graph sequence in GTRACE
and GTRACE2, respectively. In addition, for 〈id2, seq(d2)〉 ∈ proj2(〈id2, d〉, g2),
there must exists a transformation sequence 〈id1, seq(d1)〉 ∈ proj1(〈id1, d〉, g1)
such that id1 = id2 and seq(d2) % seq(d1). Therefore, the average number of
TRs in transformation sequences in ∪〈id,d〉∈DBproj2(〈id, d〉, g2) is less than or
equal to the average number of TRs in transformation sequences in
∪〈id,d〉∈DBproj1(〈id, d〉, g1). �
The proof of Lemma 1 is omitted due to the lack of space, but an example is
given in Example 5. As shown in the experiments in [10], the computation time
to run PrefixSpan is proportional to the number of sequences in its input, and
it increases exponentially when the average number of items in the sequences
increases. According to Lemma 1, since the number of transformation sequences
generated by the projection in GTRACE2 usually decreases and the average
number of TRs in the transformation sequences usually becomes less than in the
original GTRACE, the computation time for running the altered PrefixSpan in
GTRACE2 is reduced.
Example 5. The graph sequence 〈1, d〉 at the center of Fig. 5 is represented as
〈1, 〈vi

(1,1)
[1,A]vi

(1,2)
[2,B]ei

(1,3)
[(1,2),•]vi

(2,1)
[3,C]ei

(2,2)
[(1,3),•]vr

(2,3)
[1,B]〉〉, and its union graph and labeled

union graph are shown in Fig. 5. Given the graph g1 shown in Fig. 6 (a) as input
of the projection in GTRACE, two vertices in g1 correspond to vertices with
unique IDs 1 and 2 or vertices with unique IDs 1 and 3 in the union graph gu(d).
Therefore, proj1(〈1, d〉, g1) is

{〈1, 〈vi
(1,1)
[1,A]vi

(1,2)
[2,B]ei

(1,3)
[(1,2),•]vr

(2,3)
[1,B]〉〉, 〈1, 〈vi

(1,1)
[1,A]vi

(2,1)
[3,C]ei

(2,2)
[(1,3),•]vr

(2,3)
[1,B]〉〉}.

On the other hand, given the graph g2 shown in Fig. 6 (b) as input of the
projection in GTRACE2, proj2(〈1, d〉, g2) is

{〈1, 〈vi
(1,1)
[1,A]vi

(1,2)
[2,B]ei

(1,3)
[(1,2),•]〉〉},

since two vertices with unique ID 1 and 2 in the input graph g2 correspond
to vertices with unique IDs 1 and 2 in the labeled union graph gu(d), respec-
tively. This projected transformation sequence does not include vr

(2,3)
[1,B] to satisfy

gu(d) = g in Definition 8.
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Table 2. Results for the Enron dataset

|IDV (d)| 80 90 100 110 120 140 150 170 182
GTRACE comp. time 0.18 42.0 1509.5 – – – – – –

comp. time for PrefixSpan 0.048 37.7 1407.7 – – – – – –
# of subgraph patterns 4 7 10 – – – – – –
avg. # of trans. seq. 809 19249 269726 – – – – – –
avg. # of TRs 10.3 23.4 30.1 – – – – – –

GTRACE2 comp. time 0.14 0.25 0.34 0.39 0.63 0.67 1.2 3.8 4.1
comp. time for PrefixSpan 0.015 0.062 0.078 0.11 0.22 0.20 0.45 2.5 2.7
# of subgraph patterns 22 26 28 29 36 39 45 50 52
avg. # of trans. seq. 197 415 585 656 813 892 1333 2078 2201
avg. # of TRs 4.7 6.2 6.5 6.4 6.7 6.7 7.0 7.9 7.9

σ′, n 60% 50% 40% 20% 5% 2% 5 6 7
GTRACE comp. time 7.5 132.4 – – – – – – –

comp. time for PrefixSpan 1.7 60.9 – – – – – – –
# of subgraph patterns 4 7 – – – – – – –
avg. # of trans. seq. 41334 202432 – – – – – – –
avg. # of TRs 16.8 22.3 – – – – – – –

GTRACE2 comp. time 0.52 0.92 1.2 2.7 25.6 327.3 1.3 2.2 4.1
comp. time for PrefixSpan 0.03 0.11 0.17 1.4 24.0 325.5 0.50 0.97 2.7
# of subgraph patterns 13 24 29 46 81 124 44 47 52
avg. # of trans. seq. 3288 2906 3028 2424 1468 991 1940 2293 2201
avg. # of TRs 4.7 6.0 6.6 7.7 8.2 8.7 6.0 6.7 7.9

comp. time: computation time [sec],
comp. time for PrefixSpan: total computation time to run the altered PrefixSpan,
# of subgraph patterns: the number of frequent connected subgraphs mined by AcGM,
avg. # of trans. seq.: the average number of transformation sequences in proji(DB, g),
avg. # of TRs: the average number of TRs in transformation sequences in proji(DB, g)
Default: minimum support σ′ =15%, # of vertex labels |Lv| = 8, # of edge labels |Le| = 1,

# of persons |IDV (d)| = 182, # of interstates in a graph sequence n=7.

5 Experiment and Discussion

The proposed method was implemented in C++. The experiments were executed
on an HP xw4600 with an Intel Core 2 8600 3.33 GHz processor and 2 GB of main
memory and running Windows XP. The performance of the proposed method
was evaluated using both artificial and real world graph sequence data. Due to
the lack of space, we report the experiments using the real world data.

To assess the practicality of the proposed method, it was applied to the Enron
Email Dataset [3]. We assigned a unique ID to each person participating in email
communication, and assigned an edge to a pair communicating via email on a
particular day, thereby obtaining a daily graph g(j). In addition, one of the
vertex labels {CEO, Employee, Director, Manager, Lawyer, President, Trader,
Vice President} was assigned to each vertex. We then obtained a set of weekly
graph sequence data DB. The total number of weeks, i.e., number of sequences,
was 123. We randomly sampled |IDV (d)|(= 1 ∼ 182) persons to form DB.

Table 2 shows the computation times [sec] to run GTRACE and GTRACE2,
total computation times [sec] to run the altered PrefixSpan, the numbers of
frequent connected subgraphs mined by AcGM, the average numbers of trans-
formation sequences in proji(DB, g), and the average numbers of transformation
sequences in proji(DB, g) obtained for various numbers of unique IDs (persons)
|IDV (d)|, minimum support σ′, and numbers of interstates n in each graph se-
quence of the dataset. All the other parameters were set to the default values
indicated at the bottom of the table. Thus, the dataset with the default values
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as contained 123 graph sequences each consisting of 182 persons (unique IDs)
and 7 interstates. The parameter n =5, 6, or 7 indicates that each sequence d in
DB consists of 5, 6, or 7 steps (interstates) from Monday to Friday, Saturday,
or Sunday, respectively. When the required computation time exceeds two hours
or a memory overflow occurs, the results are indicated by “-”.

The upper, lower left, and lower right parts of the table show experimental
results with regard to the number of persons (unique IDs), the minimum sup-
port threshold, and the number of interstates in graph sequences in the graph
sequence database, respectively. The table indicates that GTRACE proved in-
tractable for the graph sequence dataset generated from the default values,
althought the proposed method GTRACE2 is tractable with respect to the
database. In addition, the computation times for both GTRACE and GTRACE2
are exponential with respect to the increases of the number of |IDV (d)| and the
number of interstates in the graph sequence database and with respect to the
decrease of the minimum support threshold. The main reason that the compu-
tation time increases is the increase in the number of frequent patterns.

The computation times for GTRACE2 are much smaller than those for
GTRACE, although the number of times to call the altered PrefixSpan increases.
Most of computation time of GTRACE is used running the altered PrefixSpan.
As shown in [10], the computation time of PrefixSpan is proportional to the
number of sequences in its input and increase exponentially with respect to the
average number of items in sequences in its input. The scalability of GTRACE2
comes from reducing the number of transformation sequences and the number of
TRs in transformation sequences in the projected database by using the labeled
union graph proposed in Section 4. GTRACE2 is practical, because it can be
applied to graph sequences that are both longer and larger than those to which
GTRACE can be applied.

6 Conclusion

In this paper, we proposed a method to improve GTRACE which mines a set
of relevant frequent transformation subsequences (rFTSs) from given graph se-
quences by defining the labeled union graph. We developed a graph sequence
mining program GTRACE2, and confirmed its efficiency and practical per-
formance through computational experiments using artificial and real world
datasets. Our performance study showed that the proposed method is some
orders of magnitude faster than the conventional method, and is efficient and
scalable for mining both long and large graph sequence patterns. Recently, we
have proposed a method for mining another class of frequent patterns, called
FRISSs (Frequent, Relevant, and Induced Subgraph Subsequences), from graph
sequence [7]. The principle proposed in this paper using labeled graphs can be
applied to the method. In real applications, it is hard to enumerate usefule and
interesting FTSs which are exactly included in graph sequences. In future work,
we plan to extend GTRACE2 to mine FTSs which are approximately included in
graph sequences by using sliding windows and time constraints proposed in [11].
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Abstract. Semi-supervised clustering is often viewed as using labeled
data to aid the clustering process. However, existing algorithms fail to
consider dual constraints between data points (e.g. documents) and fea-
tures (e.g. words). To address this problem, in this paper, we propose a
novel semi-supervised document co-clustering model OSS-NMF via or-
thogonal nonnegative matrix tri-factorization. Our model incorporates
prior knowledge both on document and word side to aid the new word-
category and document-cluster matrices construction. Besides, we prove
the correctness and convergence of our model to demonstrate its mathe-
matical rigorous. Our experimental evaluations show that the proposed
document clustering model presents remarkable performance improve-
ments with certain constraints.

Keywords: Semi-supervised Clustering, Pairwise Constraints, Word-
Level Constraints, Nonnegative Matrix tri-Factorization.

1 Introduction

Providing a meaningful cluster hierarchy to a document corpus has always been
a major goal for the data mining community. Approaches to solve this problem
have focused on document clustering algorithms, which are widely used in a
number of different areas of text mining and information retrieval. One of a
latest presented approach for obtaining document cluster is Non-negative Matrix
Factorization (NMF) [1], which aimed to provide a minimum error non-negative
representation of the term-document matrix. This technique can be considered
as co-clustering [2], which aimed to cluster both the rows and columns of the
original data simultaneously by making efficient use of the duality between data
points (e.g. documents) and features (e.g. words). Put it another way, document
clustering and word clustering are performed in a reinforcing manner.

However, traditional clustering algorithms fail to take advantage of knowledge
fromdomain experts. Incorporating the additional information cangreatly enhance
the performance of clustering algorithms. In recent years, a great amount of effort
has been made for clustering document corpus in a semi-supervised way, aiming to
cluster the document set under the guidance of some supervisory information.
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Unfortunately, traditional approaches to semi-supervised document clustering
inherently strongly depend on constraints within document themselves while
ignore the useful semantic correlation information hidden within the words of
the document corpus. We believe that adding word semantic information (such as
word clusters indicating word semantics) as additional constraints can definitely
improve document clustering performance. Thereafter how to effectively combine
both document-level and word-level constraints to guide the process of document
clustering is a problem that is definitely worthy of researching.

Based on the above considerations, in this paper, we propose a novel semi-
supervised document co-clustering method via non-negative factorization of the
term-document matrix for the given document corpus. We have extended the
classical NMF approach by introducing both document-level and word-level con-
straints based on some prior knowledge. Our clustering model encodes the user’s
prior knowledge with a set of constraints to the objective function, and the
document clustering task is carried out by solving a constrained optimization
problem. Specifically, we propose a semi-supervised co-clustering framework to
cluster the words and documents simultaneously. Meanwhile, we derive iterative
algorithms to perform orthogonal non-negative tri-factorization. The correctness
and convergence of these algorithms are proved by showing that the solution
satisfied the KKT optimality and these algorithms are guaranteed to converge.
Experiments performed on various publicly available document datasets demon-
strate the superior performance of the proposed work.

The basic outline of this paper is as follows: Section 2 introduces related
works. Section 3 presents the semi-supervised orthogonal nonnegative matrix
tri-factorization. The experiments and results are given in Section 4. Lastly, we
conclude our paper in Section 5.

2 Related Work

This section briefly reviews related work about NMF and semi-supervised doc-
ument clustering.

The classical NMF algorithms [3] aim to find two matrix factors for a matrix
X such that X ≈ WHT , where Wm×k and Hn×k are both nonnegative matrices.
Ding et al.[4] made systematical analysis of NMF and introduced 3-factor NMF.
They demonstrated that the orthogonality constraint leads to rigorous clustering
interpretation. When 3-factor NMF is applied to the term-document matrix X ,
each column Xj of X is an encoding of an original document and each entry xij

of vector Xj is the significance of term i with respect to the semantics of Xj ,
where i ranges across the terms in the dictionary. Thereafter, Orthogonal NMF
factorizes X into three non-negative matrices

X = FSGT , (1)

where G is the cluster indicator matrix for clustering of documents of X and F is
the word cluster indicator matrix for clustering of rows of X . The simultaneous
row/column clustering can be solved by optimizing
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J = min
F≥0,S≥0,G≥0

∥∥X − FSGT
∥∥2

F
s.t FT F = I, GT G = I. (2)

The Frobenius norm is often used to measure the error between the original
matrix X and its low rank approximation FSGT . The rank of the approximation,
k, is a parameter that must be set by users.

Several formulations of co-clustering problem are proposed in the past decade
and they are superior to traditional one-side clustering. Dhillon [2] proposed a bi-
partite spectral graph partitioning approach to co-cluster words and documents.
Long et al.[5] presented a general principled model, called relation summary
network to co-cluster the heterogeneous data on a k-partite graph. As for semi-
supervised co-clustering algorithms, Chen et al.[6] presented a semi-supervised
document clustering model with simultaneous text representation and catego-
rization. Fei et al.[7] proposed a semi-supervised clustering algorithm via matrix
factorization. Li et al.[8] presented an interesting word-constrained clustering al-
gorithm. The way of incorporating word constraints is very appealing and sets a
good foundation for our model formulation. Even though these semi-supervised
algorithms have shown to be superior to traditional clustering method, very little
is known about the combination of constraints on both documents and words.
One recent work came from Li et al.[9]. They have demonstrated a non-negative
matrix tri-factorization approach to sentiment classification with prior knowl-
edge about sentiment words in the lexicon and partial labels on documents.

3 Semi-supervised Orthogonal Nonnegative Matrix
Tri-factorization for Co-clustering

In this section, we first describe how we integrate two different constraints in our
model in Sect. 3.1. We then derive the OSS-NMF model, prove the correctness
and convergence of the algorithm in Sect. 3.2 and Sect. 3.3 respectively.

3.1 Incorporating Document-Level Constraints

Our model treats the prior knowledge on the word side as categorization of
words, represented by a complete specification F0 for F . The prior knowledge
on document-level is provided in the form of two sets of pairwise constraints on
documents: two documents are known to be highly related and must be grouped
into the same document cluster; or two documents that are irrelevant and can
not be grouped into the same cluster.

We make use of set Aml to denote that must-link document pairs (di1 , dj1)
are similar and must be clustered into the same document cluster:

Aml = {(i1; j1); . . . ; (ia; ja)}; a = |Aml|. (3)

It is easy to demonstrate that the must-link constraints represent equivalence
relation. Therefore, we can compute a collection of transitive closures from Aml.
Each pair of documents in the same transitive closure must be in the same cluster
in the clustering result.
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Meanwhile, cannot-link document pairs are collected into another set:

Bcl = {(i1; j1); . . . ; (ib; jb)}; b = |Bcl|, (4)

where each pair of documents are considered dissimilar and ought not to be
clustered into the same document cluster.

We then encode the must-link document pairs as a symmetric matrix A whose
diagonal entries are all equal to one and the cannot-link document pairs as
another matrix B.

Suppose each document in the corpus either completely belongs to a particular
topic, or is more or less related to several topics. We can then regard these con-
straints as the document class posterior probability on G. A must-link pair (i1; j1)
implies that the overlap gi1kgj1k > 0 for some class k, and therefore

∑
k

gi1kgj1k =

(GGT )i1j1 should be maximized. The must-link condition can be presented as

max
G

∑
i,j∈A

(GGT )ij =
∑
ij

Aij(GGT )ij =TrGT AG. (5)

In terms of cannot-link pairs (i2; j2), gi2kgj2k = 0 for all k. Likewise, we take
the cannot-link constraints and minimize

∑
k

gi2kgj2k = (GT G)i2j2 . Since gik are

nonnegative, we write this condition as:∑
i,j∈B

(GGT )ij =TrBGGT = 0, or min
G

TrGT BG. (6)

3.2 Algorithm Derivation

Combining the above constraints together, we define the objective function of
OSS-NMF as:

J = min
F≥0,S≥0,G≥0

||X − FSGT || + α ‖F − F0‖2
F + Tr(−βGAGT + γGBGT ),

s.t. FFT = I, GGT = I, (7)

where α, β and γ are positive trade-off parameters that control the degree of
enforcement of the user’s prior knowledge. The larger value the parameters take,
the stronger enforcement of the users prior knowledge we will have; vise versa.

An iterative procedure to solve the optimization problem in Eq.(7) can be
summarized as follows.

Computation of S. Optimizing Eq.(7) with respect to S is equivalent to
optimizing

J1 = min
F≥0,S≥0,G≥0

∥∥X − FSGT
∥∥2

F
. (8)

Setting ∂J1
∂S = 0 leads to the following updating formula:

Sik = Sik

√
(FT XG)ik

(FT FSGT G)ik
. (9)
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Computation of F . Optimizing Eq.(7) with respect to F is equivalent to
optimizing

J2 = min
F≥0,S≥0,G≥0

∥∥X − FSGT
∥∥2

F + α ‖F − F0‖2
F , s.t. FFT = I. (10)

We present an iterative multiplicative updating solution. After introducing the
Lagrangian multiplier, the Lagrangian function is stated as

L(F ) =
∥∥X − FSGT

∥∥2
F + α ‖F − F0‖2

F + Tr[λ1(FT F − I)]. (11)

This takes the exact form as Li demonstrated in [8], thereby we can update F
as follows:

Fik = Fik

√
(XGST + αF0)ik

(FFT XGST + αFFT F0)ik
. (12)

Computation of G. Optimizing Eq.(7) with respect to G is equivalent to
optimizing

J3 = min
F≥0,S≥0,G≥0

∥∥X − FSGT
∥∥2

F +Tr(−βGT AG+γGT BG), s.t. GGT = I.

(13)
Similar with the computation of F , we introduce the Lagrangian multiplier, thus
the Lagrangian function is

L(G) =
∥∥X − FSGT

∥∥2 + Tr(−βGT AG + γGT BG) + Tr[λ2(GT G − I)]. (14)

We show that G can be iterated as:

Gik = Gik

√
(XT FS + βAG)ik

(G(SFT FST + λ2) + γBG)ik
. (15)

The detailed analysis of computation of G is shown in the optimization section.
When the iteration starts, we update one factor with others fixed.

3.3 Algorithm Correctness and Convergence

To prove the correctness and convergence of our algorithm, we will make use of
optimization theory, matrix inequalities and auxiliary functions that used in [3].

Correctness

Theorem 1. If the update rule of S, F and G in Eq.(9), Eq.(12) and Eq.(15)
converge, then the final solution satisfies the KKT optimality condition, i.e., the
algorithm converges correctly to a local optima.
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Proof: Following the standard theory of constrained optimization, we intro-
duce the Lagrangian multipliers λ1, λ2 and construct the following Lagrangian
function:

L = ‖X − FSGT ‖ + α‖F − F0‖ + Tr[λ1(FT F − I)]
+ Tr[−βGAGT + γGBGT + λ2(GT G − I)]
= Tr[XT X − 2GT XT FS + GT GSFT FS + α(FFT − 2FFT

0 + F0F
T
0 )]

− βGT AG + γGT BG + λ1(FT F − I) + λ2(GT G− I)]. (16)

The correctness of updating rules for S in Eq.(9) and F in Eq.(12) have been
proved in [8]. Therefore, we only need to proof the correctness of updating rules
for G. Fixing F , S, we can get that the KKT complementary condition for the
non-negativity of G

[−2XTFS + 2G(SFT FST + λ2)− 2βAG + 2γBG]ikGik = 0. (17)

We then obtain the Lagrangian multiplier, it is obvious that at convergence the
solution satisfy

[−2XTFS + 2G(SFT FST + λ2)− 2βAG + 2γBG]ikG2
ik = 0. (18)

We can see that this is identical to the KKT condition. The above equation
denotes that either the first factor equals to zero, or Gik is zero. If the first
factor is zero, the two equations are identical. If Gik is zero, then G2

ik is zero
as well, vice versa. Thus, we have proved that if the iteration converges, the
converged solution satisfies the KKT condition, i.e., it converges correctly to a
local minima.

Proof is completed.

Convergence. We demonstrate that the above objective function decreased
monotonically under these three updating rules. Before we proof the convergence
of the algorithm, we need to construct the auxiliary function similar to that used
in Lee and Seung [3]. We first introduce the definition of auxiliary function.

Definition 1. A function Z(H, H ′) is called an auxiliary function of L(H) if it
satisfies

Z(H, H ′) ≥ L(H), Z(H, H) = L(H). (19)

Lemma 1. If Z(H, H ′) is an auxiliary function, then L is non-increasing under
the update

H(t+1) = argmin
H

Z(H, Ht). (20)

By construction L(H(t)) = Z(H(t), H(t)) ≥ Z(H(t+1), H(t)) ≥ L(H(t+1)),
L(H(t+1)) is monotonic decreasing (non-increasing).

Lemma 2. For any nonnegative matrices A ∈ Rn×n,B ∈ Rk×k,S ∈ Rn×k,S′ ∈
Rn×k , A, B are symmetric, the following inequality holds[10]:

n∑
i=1

k∑
p=1

(AS′B)ipS
2
ip

S′
ip

≥ tr(ST ASB). (21)
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Theorem 2. The above iterative algorithms converge.

Proof: To proof the algorithm converges, the key step is to find an appropriate
auxiliary function Z(G, G′) of L(G) in Eq.(14). We show that the following
function

Z(G, G′) =
∑

ik [−2G′
ik(1 + log

Gik

G′
ik

)(XT FS)ik +
[G′(SFT FS + λ2)]ikG2

ik

G′
ik

− βG′
ik(AG′)ik(1 + log

G2
ik

G′
ik

) + γ
(BG′)ikG2

ik

G′
ik

]. (22)

is its corresponding auxiliary function.
First, it is obvious that when G = G′, the equality holds. Second, the inequal-

ity holds Z(G, G′) ≥ L′(G). This is based on the following: a) The first term
and third term in Z(G, G′) are always smaller than the corresponding terms in
L′(G) because of the inequality z ≥ 1 + log(z) ∀z > 0; b) The second and last
term in Eq.(24) are always bigger than the corresponding terms in L′(G), due
to Lemma 2. Putting these together, we can guarantee that Z(G, G′) ≥ L′(G).

To find the minimum of Z(G, G′), we take

∂Z(G, G′)
∂Gik

=
∑

ik [−2
G′

ik

Gik
(XT FS)ik + 2

[G′(SFT FS + λ2)]ikGik

G′
ik

− 2β
G′

ik(AG′)ik

Gik
+ 2γ

(BG′)ikGik

G′
ik

] (23)

and the Hessian matrix of Z(G, G′)

∂2Z(G, G′)
∂Gik∂Gjl

=
∑

ik [2
G′

ik

G2
ik

(XT FS)ik + 2
[G′(SFT FS + λ2)]ik

G′
ik

+ 2β
G′

ik(AG′)ik

G2
ik

+ 2γ
(BG′)ik

G′
ik

]δijδkl (24)

is a diagonal matrix with positive diagonal elements.
Thus Z(G, G′) is a convex function of G. Therefore, we can obtain the global

minimum of Z. The minimum value is obtained by setting ∂Z(G,G′)
∂Gik

= 0, we get

G′
ik

Gik
(XT FS + βAG)ik =

Gik

G′
ik

(G′(SFT FST ) + λ2 + γBG′)ik. (25)

We can thereafter derive the updating rule of Eq.(16)

Gik = Gik

√
(XT FS + βAG)ik

(G(SFT FST + λ2) + γBG)ik
. (26)

Under this updating rule, L′(G) decreases monotonically, where the Lagrangian
multiplier k-by-k matrix λ2 for enforcing the orthogonality and GT G = I is
given by

λ2 = GT XT FS + βGT AG − γGT BG − SFT FST . (27)

Proof is completed.
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4 Experiments

This section provides empirical evidence to show the benefits of our model OSS-
NMF. We compared our method with Constrained-Kmeans[11], Information-
Theoretic Co-clustering, which is referred to as IT-Co-clustering[12], ONMF-W
denoting Orthogonal NMF with word-level constraints[8], ONMF-D representing
Orthogonal NMF with document-level constraints. Constrained K-means is the
representative semi-supervised data clustering method; Information-Theoretic
Co-clustering is one of the most popular co-clustering method; ONMF-W and
ONMF-D are two derived algorithms from our approach.

The requirement of word constraints is the specification of word catego-
rization. Similar with Li [8], we took advantage of the ACM term taxonomy,
which come naturally and strictly decide the taxonomy of computer society. The
document-level constraints were generated by randomly selecting pairs of doc-
uments. If the labels of this document pair are the same, then we generated a
must link. In contrast, if the labels are different, a cannot link is generated. The
amounts of constraints were determined by the size of input data. Incorporating
dual constraints on our model, we believe that our approach should perform
better given reasonable amount of labeled data.

4.1 Datasets

Three different datasets widely used as benchmark data sets in clustering liter-
ature were used.

Citeseer dataset: Citeseer collection was made publicly available by
Lise Getoor’s research group at University of Maryland. We end up with a sam-
pling of Citeseer data containing 3312 documents. These data are classified into
one of the following six classes: Agents, Artificial Intelligence, Data Base, Infor-
mation Retrieval, Machine Learning, Human Computer Interaction.

DBLP Dataset: This dataset is downloaded from DBLP Computer Science
Bibliography spanning from 1999 to 2004. We extract the paper titles to form
our dataset from 5 categories, which contains 2170 documents.

URCS Technical Reports: This dataset is composed of abstracts of tech-
nical reports published in the Department of Computer Science at Rochester
University. There are altogether 512 reports abstracts grouped according to 4
categories.

We pre-processed each document by tokenizing the text into bag-of-words.
Then we applied stopwords removing and stemmed words. In particular, words
that occur in less than three documents are removed. We used the weighted
term-frequency vector to represent each document.

4.2 Evaluation Metrics

We adopt the clustering accuracy and normalized mutual information as our per-
formance measures. These performance measures are standard measures widely
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used for clustering. Clustering accuracy measures the cluster performance from
the one-to-one relationship between clusters and classes point of view, which is
defined as:

Acc = max

N∑
i=1

δ(map(ri), di)

N
, (28)

where ri denotes the cluster label of a document and di denotes the true class
label, N is the total number of documents, δ(x, y) is a function which equals one
if x = y and equals zero otherwise, map(ri) is the permutation function which
maps each cluster label to the corresponding label of the data set.

NMI measures how closely the clustering algorithm could reconstruct the
underlying label distribution in the data. It is defined as:

NMI =
I(Z ′; Z)

(H(Z ′) + H(Z))/2
, (29)

where I(Z ′; Z) = H(Z)−H(Z|Z ′) is the mutual information between the random
variables Z ′ and Z, H(Z) is the Shannon entropy of Z, and H(Z|Z ′) is the
conditional entropy of Z given Z ′. In general, the larger the NMI value is, the
better the clustering quality is.

4.3 Clustering Results

Considering the document constraints are generated randomly, we run each al-
gorithm 20 times for each dataset and took the average as statistical results. To
give these algorithms some advantage, we set the number of clusters equal to
the real number of all the document clusters and word clusters.

Overall Evaluation. Table 1 shows the cluster accuracy and normalized mu-
tual information of all the algorithms on all the data sets. From the experimental
comparisons, we observe that our proposed method OO-SNMF effectively com-
bined prior knowledge from the word side with constraints on the document side
for improving clustering results. Moreover, our model outperforms most of the
clustering methods on all the data sets. In summary, the experimental results
match favorably with our hypotheses and encouraged us to further explore the
reasons.

The superiority of our model arises in the following three aspects: (1) the
mechanism of tri-factorization for term-document matrix allows setting different
classes of terms and documents, which is in line with the real applications; (2) co-
clustering the terms and documents with both constraints leads to improvement
in the clustering of documents; (3) last but not least, the constraints on word-
level are quite different from that of document-level, which means our model can
incorporate distinguished semantic information on both sides for clustering.

Effect of the Size of Words. In this section, we describe the effect of the
size of words on clustering. These words can be used to represent the underlying
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Table 1. Comparison of four algorithms on different datasets

(a) Clustering Accuracy
Data Sets Citeseer DBLP URCS

Constrained-Kmeans 0.5124 0.4215 0.5923
IT-Co-clustering 0.5765 0.4873 0.6214

ONMF-W 0.5514 0.4812 0.6052
ONMF-D 0.6142 0.5321 0.6812
OSS-NMF 0.7235 0.6823 0.8368

(b) Normalized Mutual Information
Data Sets Citeseer DBLP URCS

Constrained-Kmeans 0.5813 0.5312 0.6358
IT-Co-clustering 0.6521 0.5821 0.7389

ONMF-W 0.6722 0.6312 0.7548
ONMF-D 0.7214 0.6523 0.7964
OSS-NMF 0.8345 0.7643 0.9124

‘concept’ of the corresponding category cluster. We follow the term frequency
criteria to select word. The performance results with different numbers of words
on all of the datasets are demonstrated.
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(a) Cluster Accuracy with different num-
bers of words on 3 dataset.
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on 3 dataset.

Fig. 1. Accuracy and NMI results with different numbers of words on 3 dataset

Both Accuracy and NMI show clear benefits of having more words: the perfor-
mance increases as the amount of words grows, as shown in Fig.1. This indicates
the addition of word semantic information can greatly help the clustering per-
formance. It also shows a great variation with the increase of words. When the
size of words increases beyond a certain value, the quality of clustering fluctuates
and suddenly drops and then becomes stable.

Experiments on Pairwise Constraint of Documents. We conducted ex-
periments for our framework by varying the number of pairwise constraints and
size of words. Results from all these document collections indicate that gener-
ally as more and more constraints are added to the dataset being clustered, the
performance of the clustering method becomes better, confirming previous dis-
cussion on the effect of increase of more labeled data. Due to the limitation of
this paper, we only present NMI and Cluster Accuracy on Citeseer in Fig.2.

Our finding can be summarized as follows: (1) As long as the constraints are
provided, our model always outperforms the traditional constrained methods.
(2) The model performs much better with the increase of constraints.
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Fig. 2. Accuracy and NMI results with different numbers of words and pairwise doc-
uments on Citeseer

5 Conclusions and Future Work

In this paper, we consider the problem of semi-supervised document co-clustering.
We have presented a novel orthogonal semi-supervised nonnegative matrix tri-
factorization model. We also have provided theoretical analysis of the correctness
and convergence of the algorithm. The ability of our proposed algorithm to inte-
grate double constraints makes it efficient for document co-clustering.

Our work leads to several questions. We incorporated the word prior knowl-
edge as a specification of the initial word cluster. It would also be interesting to
make use of pairwise constraints on the word side. In particular, a further in-
teresting direction is to actively select informative document pairs for obtaining
user judgments so that the clustering performance can be improved with as few
supervised data as possible.
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Abstract. In this paper, we study the problem of rule synthesizing from
multiple related databases where items representing the databases may
be different, and the databases may not be relevant, or similar to each
other. We argue that, for such multi-related databases, simple rule syn-
thesizing without a detailed understanding of the databases is not able
to reveal meaningful patterns inside the data collections. Consequently,
we propose a two-step clustering on the databases at both item and rule
levels such that the databases in the final clusters contain both similar
items and similar rules. A weighted rule synthesizing method is then ap-
plied on each such cluster to generate final rules. Experimental results
demonstrate that the new rule synthesizing method is able to discover
important rules which can not be synthesized by other methods.

Keywords: Association rule mining, rule synthesizing, multiple databases,
clustering.

1 Introduction

Advances in data gathering, storage and distribution technologies introduce in-
evitable challenges of extracting meaningful patterns from related databases
at distributed sites for unbiased pattern discovery and rapid decision mak-
ing [11, 13]. Consider retail stores such as Walmart [10], which has more than
3800 stores in the US alone (and many more in other countries), each of which
produces a huge number of transactions on a daily basis. The transactions are
typically stored locally, which leads to a large number of related transaction
databases. Notice that items sold in different countries/regions are rarely the
same, such transaction databases are related to each other in terms of the data
distributions and items representing the databases. Developing effective data
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mining techniques to discover patterns from multiple related databases thus
becomes crucial for these types of applications. Many methods exist for dis-
covering patterns from databases sharing identical items, and existing solutions
roughly fall into the following two categories: (1) collective mining – aggre-
gating data from different databases to a centralized database for centralized
processing [2, 5]; and (2) distributed mining – selecting important local rules
from each individual database and synthesizing the local rules to form meaning-
ful patterns over all related databases [7–9].

Compared to collective mining, distributed mining has the advantages of low
transmission costs and low data privacy concerns [12, 16]. Therefore it attracts
much attention recently. However, existing rule synthesizing methods for dis-
tributed mining commonly assumes that related databases are relevant, share
similar data distributions, and have identical items. This is equivalent to the
assumption that all stores have the same type of business with identical meta-
data structures, which is hardly the case in practice. The irrelevance among
related databases raises significant research issues to the rule synthesizing pro-
cess, mainly from the following three challenges. (1) Databases with different
items. Rule synthesizing is only able to synthesize rules containing items shared
by all databases, but has to eliminate rules containing items unique in a few
databases, even though the rules are locally significant. Therefore, in addition
to discovering significant rules for all databases, solutions are needed to discover
meaningful rules, which are locally significant and unique, for items which ap-
pear only in a few databases. (2) Databases with similar items but different rules.
Although many databases may contain similar items, the rules underneath the
data may vary significantly. Under such scenarios, the rule synthesizing process
should produce meaningful rules which are locally significant and globally infor-
mative. (3) Customized rule synthesizing. For some applications, users may be
either interested in rules related to some specific items, or a few items with the
highest supports. This assumption is especially true when databases are collected
from the Web, journals, books, etc. Under such a scenario, the rule synthesizing
process should generate meaningful rules which make sense with respect to the
users’ queries or constraints.

In this paper, we report our recent work in addressing the above challenges,
where the essential goal is to employ a two-step clustering based approach at
the item and rule levels to ensure that important rules can be synthesized from
related databases. For databases with different items (Challenge 1 above), clus-
tering at the item level generates high-frequency items across all data collections.
As a result, we only apply a rule synthesizing method on databases containing
similar items. Such a clustering at the item level also helps to customize the
rule synthesizing since the databases can be clustered according to the distance
function built on the items specified by the users (Challenge 3). For databases
sharing similar items but different rules (Challenge 2), the clusters generated
from the item-level clustering are further clustered using a rule based distance
function. So databases are clustered according to the high-frequency association
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rules they contain. Thus the final clusters contain not only similar high-frequency
items but also similar high-frequency rules associated with these items.

The remainder of the paper is structured as follows. In Section 2 we summarize
related work. In Section 3 we present the proposed two-step clustering based rule
synthesizing framework, followed by experimental comparisons in Section 4. The
concluding remarks are reported in Section 5.

2 Related Work

Existing research on association rule mining from related databases roughly falls
into the following two categories: (1) collective mining – aggregating data
from different sources to a centralized database for centralized processing [2,
5]; and (2) distributed mining – selecting important local rules from each
individual source and synthesizing rules to form meaningful patterns over all
related databases [7–9].

For collective pattern mining, aggregating data from related sources is the
most straightforward method but is not practical due to concerns such as band-
width limitations, data ownership, and data privacy [16]. Alternatively, many
methods exist for association rules mining without data integration [18–20].
Among them, count distribution, data distribution, and candidate distribution
are three basic mechanisms [15]. For example, in [17], the authors proposed a
fast distributed association rule mining method, where pattern pruning consid-
ers both local supports and the polling results exchanged between sites. In their
problem setting, a dedicated master site is used to control related databases to
carry out pattern mining. The main theme of collective mining methods, from
distributed association rule mining perspective, is to discover association rules
which are globally significant from all related databases’ point of view. The
primary technical challenge is to minimize the communication cost between dis-
tributed sites in order to accelerate the pattern pruning process. For all above
methods, the underlying databases must have identical items. In comparison,
our research does not intend to find rules globally significant, but focuses on
discovering rules from databases with different items.

Different from collective mining, where both related databases and the mas-
ter site are involved to achieve a mining goal, in distributed mining, the pri-
mary focus is to combine mining results from distributed sites to synthesize
new/significant rules [1, 21]. Under this framework, the related databases inde-
pendently carry out the mining activities, and the results (rules) are aggregated
to synthesize global interesting rules. Wu and Zhang [7, 8] proposed a weighting
model to effectively synthesize local promising rules. After all promising rules
are selected from different databases using normal association rule mining algo-
rithms such as Aprior [4], a weight is then assigned to each rule, according to the
number of databases that contain the rule. Then a weight for each database is
computed according to their rules and the rule weight values. Using the weights,
a global support for each rule is computed and is used to determine signifi-
cant rules overall all data collections. However, the weighting model assumes
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the databases are relevant and share highly-similar items and rules so it can not
handle irrelevant databases properly. Since the model doesn’t do clustering, we
call it simple synthesizing algorithm. The synthesized rules of this algorithm are
always highly frequent globally.

Adhikari and Rao [9] proposed an algorithm to synthesize heavy association
rules, which are the rules whose global supports are higher than a user given
threshold. This criterion is the same as the measure defined in [7]. They also ob-
served the cases that heavy association rules may not be shared by all databases.
Therefore they defined a highly-frequent rule as the rule shared by at least n×γ1

databases and an exceptional rule as the rule shared by no more than n × γ2

databases, where n is the number of databases, and γ1 and γ2 are user defined
thresholds. Then they synthesized the local rules and reported whether the rules
are highly-frequent or exceptional. However, the algorithm still ignores the possi-
ble irrelevances among the databases. Since it synthesizes only heavy association
rules, it is not able to report rules for items unique to certain groups of databases,
and it is not able to report association rules for items the user inputs. What’s
more, the user needs to define both the highly-frequent and exceptional thresh-
olds. As a conclusion, they addressed a different problem and their algorithm is
not able to solve the challenges in Section 1.

3 Rule Synthesizing Based on Both Items and Rules

Intuitively, given a number of related databases, many rules may be frequent
in only a few databases and a rule tends to be more significant if it is highly
frequent in more databases. Accordingly, we define that a rule is meaningful if
its support is higher than a given threshold t (we call t the support threshold)
in a cluster of at least k similar databases(we call k the cluster size threshold),
where t and k are given by users. Based on this definition, our two-step cluster-
ing method mainly aims to maximize the chance of capturing meaningful rules
for synthesizing databases with dissimilar items and data distributions. It helps
detect data similarities at both item and rule levels since databases may be dis-
similar to each other at either level. Notice that if k = 1, the problem becomes
simply mining normal frequent rules in individual databases, which collects sig-
nificant rules from each database. If k equals the total number of databases,
the simple synthesizing algorithm [7] works well since it always synthesizes rules
globally, namely it considers all databases as in one cluster.

We define r-RepItem (Representative Items) as the r items with the highest
supports in the list of items whose supports are greater than minsupport. The
r-RepItem can also be r items of the user input if there is any. Then the item
based similarity function is defined as

ISim(Ii, Ij) =
|Ii ∩ Ij |
|Ii ∪ Ij |

where Ii, Ij are r-RepItem sets for data sources Di, Dj. In the remaining of the
paper, we will just use all items with supports higher than minsupport as the
representative items.
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3.1 Item Based Clustering Algorithm

We apply a maximal clique algorithm to generate appropriate clusters. We re-
quire for any two databases Di, Dj in the same cluster, sim(Di, Dj) ≥ α. The ba-
sic idea is to build a graph G=(V ,E), where V =D1, D2, ..., Dm is the m databases
while ei,j ∈ E when sim(Ii, Ij) ≥ α, Ii is a representative item set of Di, and α
is the threshold of similarity. We enumerate all maximal cliques from the graph,
using the popular algorithm from Bron and Kerbosch [6]. These maximal cliques
can overlap with each other such that the clustering always exits for any thresh-
old α. This is useful when the user input threshold is allowed. If we do not allow
clusters to overlap, namely if we require sim(Ii, Ij) < α for Di and Dj in dif-
ferent clusters, the clusters may not exist for some threshold. Each clique will
be assigned one cluster label. Since the maximal cliques are always the same
for a given graph, the clustering result never changes with the order of input
databases. We call this algorithm Maximal Clique Clustering Algorithm
(MCCA).

Our purpose is to find a clustering where databases from the same cluster
are similar to each other while databases from different clusters are different
from each other. Therefore a key challenge is to design an evaluation function
which has a unique polar-point, namely a unique minimum or maximum value,
for a set of given databases and thus can be used to select the best clustering
automatically by the algorithm shown in Figure 1. We define a distance function
as follows.

V alue(Cα) =
i�=j∑

Ii,Ij∈Cα

(1 − ISim(Ii, Ij)) (1)

dist(Ci, Cj) =
∑

Ii∈Ci,Ij∈Cj

((1 − ISim(Ii, Ij)) (2)

Goodness(C, α) = Σn
i=1V alue(Cα

i ) (3)

distance(C, α) = Goodness(C, α) −
∑
i�=j

(dist(Ci, Cj)) (4)

Here C stands for clusters, Cα stands for the clusters when the similarity thresh-
old is α. Cα

i stands for the ith cluster when the similarity threshold is α. ISim
stands for item based similarity, and dist(Ci, Cj) is the distance between two
clusters. The smaller the distance function distance(C, α) is, the better a clus-
tering is. This function has at least one polar-point for a set of given databases
since its value can never be infinite and its value decreases first and then in-
creases. Therefore it can be used to select the best clustering automatically.

The distance function in Equation 4 has a unique polar-point such that the
algorithm shown in Figure 1 can be applied directly to select the best clustering.

Lemma 1. Distance function distance(C, α)=Goodness(C, α)-
∑
i�=j

(dist(Ci, Cj))

has a unique polar-point.
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Select Best Clustering Algorithm
Input: D1, D2, ..., Dt: databases; λ: the amount the threshold being updated each time
Output: set of clusters;
Given any similarity threshold α, we can obtain a set of clusters by MCCA, Cluster ←
MCCA(D1, D2, ..., Dt, α), for distance function distance(Cluster, α). We want to find the opti-
mal α automatically.
1: Initialize α1 ← 1;

value of distance function x1 ← distance(Cluster, α1);
2: Do

Reduce α1 each time by λ.
Record old α1, x1 and new threshold α2 ← α1 − λ,
new distance value x2 ← distance(Cluster, α2);

While (the value of distance function decreases, namely x2 ≤ x1)
3: If value of distance function starts to increase, namely x2 ≥ x1

Apply binary search on the range [α2, α1] to find the α such that the corresponding
x ← distance(Cluster, α) is the polar-point of the distance function.

4: output cluster ← MCCA(D1, D2, ..., Dt, α);

5: end all.

Fig. 1. Select Best Clustering Algorithm

The proof of Lemma 1 is omitted due to space restrictions. Since we allow over-
lapping among different clusters, a best clustering always exists.

Given that the distance function has a unique polar-point, we are able to
find the polar-point automatically, using the algorithm shown in Figure 1. The
algorithm initializes the similarity threshold as 1 and then keeps on decreasing
the threshold by a small number λ until it locates a small region that contains
the polar-point. Then it uses binary search to find the polar-point. It is straight-
forward to see the correctness of the algorithm. The distance function where
ISim(Ii, Ij) is used can be applied to the algorithm to select the best clustering.
We call the algorithm using ISim(Ii, Ij) RuleBasedClustering Algorithm. In the
algorithm, we set λ = maxSim/20 where maxSim is the maximum similarities
among all databases, and the denominator is set to 20 empirically.

We observe that the maximal clique clustering algorithm may not be feasible
to a large dense graph where the number of edges is close to O(n2) and n is the
number of nodes. This is because the number of maximal cliques may increase
exponentially with the number of edges. Based on this observation, we propose a
Greedy Clique Clustering Algorithm (GCCA). A maximum clique, which
is of the largest size among all maximal cliques, is found at first, then all the
nodes in the clique are removed from the graph. Then the next maximum clique is
found in the remaining graph. The algorithm runs until there is no more node to
remove. However, the greedy selection of the maximum clique may not generate
the best clustering since once the nodes of a maximum clique are removed, the
process cannot be reverted. If there are several maximum cliques, we select the
one with the smallest value as defined in Formulae 1 and 5, respectively. Since the
characteristics of clusters generated by GCCA are the same as those generated
by MCCA, the new distance function can be applied to MCCA directly such
that a best clustering at each step can be found automatically. One problem of
GCCA is it may produce some small clusters whose sizes are smaller than the
given cluster size threshold k since databases are removed at each step. Therefore
the possibly important rules from these clusters may be missing. To address this
problem, we take the rules from these clusters to be synthesized using the method
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in [7], which always synthesizes rules globally without clustering. This guarantees
that GCCA captures more meaningful rules than the method in [7].

3.2 Rule Based Clustering Algorithm

Once the representative item based clustering is done, we obtain a set of clusters
where databases inside the same cluster contain similar representative items.
However, even though the databases in one cluster are relevant to each other,
namely they contain similar representative items, they may still contain very
different rules related to these items. These rules will not be generated by the
synthesizing algorithm even though they are actually very meaningful.

To solve this problem, we need to apply step two of our clustering algorithm,
namely rule based clustering, on each cluster obtained from the item based
clustering (we call these clusters Step 1 Clusters). The clustering process is
similar to the item based one, but with a different similarity function. We first
need to select global representative items in each step 1 cluster. We can apply the
weighting model on items for each step 1 cluster and select the first r items with
the highest global weights. If the user inputs r items that they are interested
in, these items will then be used instead of the r items with the highest global
weights. Then for each such item, we mine association rules related to the item
(namely rules contain the item) in the databases in each step 1 cluster. We
then define a similarity function for these rules. Let Di, Dj be two databases,
Si, Sj be the sets of association rules from Di, Dj related to item d, respectively,
and |S| be the number of association rules in set S. We define the rule based
similarity between Di and Dj as

RSim(d, Si, Sj) =
|Si ∩ Sj |
|Si ∪ Sj |

V alue(Cα) = Σi�=j
Si,Sj∈Cα(1 −RSim(d, Si, Sj)) (5)

dist(Ci, Cj) = ΣSi∈Ci,Sj∈Cj((1 −RSim(d, Si, Sj)) (6)

Here C stands for a cluster, and RSim stands for rule based similarity. The
distance function of rule based clustering will be the same as the one from item
based clustering while using rule based Value and dist functions. The Rule-
BasedClustering algorithm is the same as the ItemBasedClustering algorithm
with the only difference that RSim(d, Si, Sj) is used in the algorithm. Once the
best clustering is selected, the weighting model will be applied to each subcluster
to generate high-frequency rules related to each global representative item.

3.3 Weighting Model for Rule Synthesizing

After the two-step clustering, we have clusters of databases which share simi-
lar items and similar rules. We then apply the weighting model [7] as shown in
Figure 2 to synthesize rules on each cluster. The model is shown to be effective
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RuleSynthesizing Algorithm
Input: S1, S2, · · · , Sm: rule sets; minsupp: threshold value;
Output: X → Y : synthesized association rules;
1. let S ← {S1, S2, · · · , Sm};
2. for each rule R in S do
3. let Num(R) ← the number of data sources that

contain rule R in S;

4. let wR ← Num(R)∑
R′∈S

Num(R′) ;

5. for i = 1 to m do

6. let wi ←
∑

Rk∈Si
Num(Rk)∗wRk∑m

j=1
∑

Rh∈Sj
Num(Rh)∗wRh

;

7. for each rule X → Y ∈ S do
8. let suppw ← w1 ∗ supp1 + w2 ∗ supp2 + · · · + wm ∗ suppm;
9. rank all rules in S by their supports;
10. output the high-rank rules in S whose supports are at least minsupp;

11. end all.

Fig. 2. Rule Synthesizing Algorithm [7]

Two-Step Clustering Based Rule Synthesizing Algorithm
Input: D1, D2, ..., Dm databases, minsupp, threshold α, the number of representative items r.
Output: C1, C2, ..., Ck clusters, X → Y : synthesized association rules for each cluster, r-RepItem
for each cluster.
1. generate r-RepItem I1, I2, ..., Im;
2. generate Step 1 clusters [C11, C12, ..., C1h] ← ItemBasedClustering(I1 , I2, ..., Im);
3. for 1 ≤ i ≤ h do
4. generate r-RepItem for Step 1 cluster C1i.

I ← ItemSynthesizing(C1i, minsupp);
5. for item d ∈ I do
6. generate rule sets S1, S2, ..., St for

D1, D2, ..., Dt ∈ C1i;
7. generate Step 2 clusters [C21, C22, ..., C2k] ← RuleBasedClustering(S1 , S2, ..., St);
8. for 1 ≤ j ≤ k do
9. synthesize rule set Si,j ← RuleSynthesizing(C2j , minsupp);
10. output item d, rule set Si,j and cluster C2j ;
11. end for
12. end for

13. end for

Fig. 3. Two-Step Clustering Based Rule Synthesizing Algorithm. ItemBased
Clustering() and RuleBasedClustering() apply the MCCA or GCCA in SelectBest-
ClusteringAlgorithm.

in synthesizing rules from multiple databases. After all promising rules are se-
lected from different databases using normal association rule mining algorithms
such as Apriori [4] , a weight is then assigned to each rule, according to the
number of databases that contain the rule. Then a weight for each database is
computed according to their rules and the rule weight values. Using the weights,
a global support for each rule is computed, and is used to determine significant
rules over all data collections. We show our two-step clustering based algorithm
in pesudocode in Figure 3. The algorithm selects best clustering using the above
representative item-based distance function and then synthesize the items to
generate representative items for each cluster. Then it further selects the best
clustering for each Step 1 cluster using the rule-based distance function. Finally
it synthesizes the rules from databases in each final cluster. The functions Item-
Synthesizing and RuleSynthesizing both use the weighting model on items and
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database #items #transactions size of transaction

Balance 23 625 5
BC 53 286 10

Nursery 32 12960 9

Fig. 4. Characteristics of databases Balance, Breast Cancer, Nursery

rules, respectively. Globally meaningful items and rules on each input cluster are
then generated by these two functions.

4 Experimental Results

We implemented our two-step clustering based algorithm on a 2.8GHz P4 CPU
with 512MB memory. To demonstrate the algorithm performance on real-world
data, we applied it to several machine learning benchmark datasets from the UCI
data repository [22]. In order to construct appropriate transaction databases,
we consider each different value of each attribute including the class attribute
as an item and each instance as a transaction. Therefore all the values in the
same line are the items in the same transaction. We construct the transaction
databases from three databases: Balance, BC (Breast Cancer) and Nursery. The
characteristics of each database are summarized in Figure 4.

4.1 Experimental Results on Similar Databases

We first conducted the experiments on the transaction database transferred
from the Balance dataset. We randomly split the transaction database into 10
databases of roughly equal sizes. Then we apply the two-step clustering based
algorithm on the 10 databases. We set the minsupport as 0.02. We also set the
cluster size threshold as 2, given that there are only 10 databases. Therefore
the synthesized rules are meaningful if their supports are higher than 0.02 in a
cluster of at least two databases. We apply MCCA as our clustering method.
We compared the number of meaningful rules captured from each database by
four methods: regular Apriori on each database, synthesizing without cluster-
ing [7], synthesizing with item-based clustering only and synthesizing with the
two-step clustering based algorithm. For the Apriori algorithm, we simply se-
lect significant rules whose supports are greater than the minsupport from each
database.These numbers illustrate our method filters out lots of rules significant
in only individual databases. Our algorithm runs for a few seconds. We show the
experimental results in the left graph of Figure 5. As we expected, the item-based
clustering only algorithm and the two-step clustering based algorithm capture
much more meaningful rules with high supports in at least two databases than
the simple synthesizing method does. We can also observe that item-based only
algorithm and two-step clustering based algorithm capture the same number of
rules. This is because in each database the number of items is very small com-
pared to the number of transactions (23 vs. 62 × 25). Once the databases are
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Fig. 5. Experiments on similar and dissimilar databases generated by splitting the
Balance and BC databases into 10 databases of similar sizes, respectively. For similar
databases, Representative Item support threshold = 0.1. Rule support threshold =
0.02. Cluster size threshold = 2. For dissimilar databases, Representative Item support
threshold = 0.02. Rule support threshold = 0.04. Cluster size threshold = 2.

clustered based on item distance, the databases in the same cluster contain
similar items. Since the item number is small, most transactions will contain
similar items, which generates similar rules. Therefore these databases are similar
on the rule level and the clusters remain unchanged after rule-based clustering.

4.2 Experimental Results on Dissimilar Databases

In order to illustrate the benefits of our algorithm, we conducted the second
set of experiments on the transaction database transferred from the BC dataset.
Again, we split the transaction database into 10 databases of roughly equal sizes.
However, for the second half of the databases, we injected random transactions
containing different items selected from a randomly generated itemset. The in-
jected transactions are of different sizes. The number of injected transactions
for each database is the same as that of the original database. Therefore, after
the injection, the injected databases are highly possibly less similar to the un-
changed databases while the unchanged databases are still similar to each other.
The minsupport for item-based clustering and rule-based clustering are fixed as
0.02 and 0.04, respectively. The cluster size threshold is again fixed as 2. We
compare the numbers of meaningful rules captured from each database by the
simple synthesizing method [7] and our two step clustering based method. We use
GCCA for clustering. Our two-step clustering based algorithm ran for around
1 minute. We show the experimental results in the right graph of Figure 5. The
item-based clustering correctly clusters the unchanged databases (databases 1
to 5) which are more similar to each other. For the databases with injected
transactions (databases 6 to 10), since the transactions are injected randomly,
these injected databases are more likely to be different from each other but may
still stand a chance to be similar to other databases (databases 6, 7, e.g.). For
the clusters whose size is less than two, the two-step clustering based algorithm
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Fig. 6. The original database Nursery was first transferred to a transaction database
and then was split into 300 databases of equal size. Representative Item support thresh-
old = 0.1. Rule support threshold = 0.08.

simply takes the rules synthesized by the simple synthesizing method. That’s
why the number of synthesized rules for some databases such as databases 8, 9,
10, are the same for both methods. The two-step clustering based algorithm using
GCCA always captures no less meaningful rules than the simple synthesizing
method does. Those newly captured rules are all highly frequent in at least two
similar databases. If we use MCCA, an optimal clustering will be found and we
can capture more meaningful rules from those databases which are in clusters of
size less than two by GCCA. Due to space restrictions, a comparison between
MCCA and GCCA is omitted.

4.3 Scalability Assessment

The last experiment is to show that our algorithm is able to scale up to a large
number of databases. We conduct the experiment on the Nursery database. This
database is much larger than the previous two databases. We randomly split the
database into 300 databases of equal size. Again, we inject random transactions
to half of them, however, unlike the previous experiment, we inject random trans-
actions alternatively to the database, namely random transactions are injected
for databases with each odd index in the range of [1, 300]. The two-step clus-
tering algorithm ran for 104 minutes. We show the numbers of meaningful rules
captured from each database by the four methods in Figure 6. To illustrate how
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the databases are clustered, we didn’t set the cluster size threshold. Since the
number of databases is relatively big, for illustration purpose, we use GCCA for
clustering. As we can see in the first plot for the Apriori algorithm, since random
transactions were injected to all databases with an odd index, these databases
contain more rules, while the remaining unchanged databases contain less rules.
A similar rule number distribution can be observed for the simple synthesiz-
ing method where the number of meaningful rules captured in each database is
much less than that by the Apriori algorithm. For Item-based only synthesiz-
ing and two-step clustering based synthesizing, we re-arrange the indices of the
databases such that the databases in the same cluster are indexed close to each
other. Clearly we can see the databases are clustered into a few clusters where
the distributions of the numbers of meaningful rules for the databases in each
cluster are similar. Again, the number of meaningful rules captured by the two-
step clustering based algorithm is more than the item-based only algorithm. One
more observation is although we didn’t fix the cluster size threshold, it is easy
to see that there are many clusters of sizes more than ten after the item-based
only clustering and the two-step clustering. The numbers of highly frequent rules
from them are many more than those from the simple synthesizing method. It
indicates if we set the cluster size threshold as 10, our method is able to capture
much more meaningful rules.

5 Conclusions

In this paper, we proposed a general rule synthesizing framework for association
rule mining from multiple related databases. We argued that due to realities that
(1) multi-related data collections may have different items, (2) local patterns in
the related databases may be largely different, and (3) users may require a
rule synthesizing process to be customized to some specific items, existing rule
synthesizing methods are ineffective in solving all these challenges. Alternatively,
we proposed a two-step clustering based rule synthesizing framework, which
clusters the data at both item and rule levels, to synthesize association rules from
multiple related databases. In our definition, a synthesized rule is meaningful if
its support is frequent in a cluster of related databases. A synthesizing algorithm
is then applied on the final clusters to find significant rules for representative
items of the clusters. Experimental results and comparisons indicated that the
proposed two-step clustering based rule synthesizing method is able to capture
meaningful rules that are otherwise incapable of being synthesized by other
methods.
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Abstract. Orthogonal Nonnegative Matrix Tri-Factorization (ONMTF),
a dimension reduction method using three small matrices to approxi-
mate an input data matrix, clusters the rows and columns of an input
data matrix simultaneously. However, ONMTF is computationally ex-
pensive due to an intensive computation of the Lagrangian multipliers for
the orthogonal constraints. In this paper, we introduce Fast Orthogonal
Nonnegative Matrix Tri-Factorization (FONT), which uses approximate
constants instead of computing the Lagrangian multipliers. As a result,
FONT reduces the computational complexity significantly. Experiments
on document datasets show that FONT outperforms ONMTF in terms
of clustering quality and running time. Moreover, FONT is further ac-
celerated by incorporating Alternating Least Squares, and can be much
faster than ONMTF.

Keywords: Nonnegative Matrix Factorization, Orthogonality, Alterative
Least Square.

1 Introduction

Dimension reduction is a useful method for analyzing data of high dimensions so
that further computational methods can be applied. Traditional methods, such as
principal component analysis (PCA) and independent component analysis (ICA)
are typically used to reduce the number of variables and detect the relationship
among variables. However, these methods cannot guarantee nonnegativity, and
are hard to model and interpret the underlying data. Nonnegative matrix factor-
ization (NMF) [7,8], using two lower-rank nonnegative matrices W ∈ R

m×k and
H ∈ Rk×n to approximate the original data V ∈ Rm×n (k � min(m, n)), has
gained its popularity in many real applications, such as face recognition, text
mining, signal processing, etc [1].

Take documents in the vector space model for instance. The documents are
encoded as a term-by-document matrix V with nonnegative elements, and each
column of V represents a document and each row a term. NMF produces k basic
topics as the columns of the factor W and the coefficient matrix H . Observed
from H , it is easy to derive how each document is fractionally constructed by
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the resulting k basic topics. Also, the factor H is regarded as a cluster indicator
matrix for document clustering, each row of which suggests which documents are
included in a certain topic. Similarly, the factor W can be treated as a cluster
indicator matrix for word clustering. Traditional clustering algorithms, taking
k-means for instance, require the product between the row vectors or column
vectors to be 0 that only one value exists in each row of H ; thus each data point
only belongs to one cluster, which leads to a hard clustering. It was proved that
orthogonal nonnegative matrix factorization is equivalent to k-means cluster-
ing [4]. Compared to rigorous orthogonality of k-means, relaxed orthogonality
means each data point could belong to more than one cluster, which can im-
prove clustering quality [5,10]. Simultaneous clustering refers to clustering of
the rows and columns of a matrix at the same time. The major property of si-
multaneous clustering is that it adaptively performs feature selection as well as
clustering, which improves the performance for both of them [2,3,6,12]. Some ap-
plications such as clustering words and documents simultaneously for an input
term-by-document matrix, binary data, and system log messages were imple-
mented [9]. For this purpose, Orthogonal Nonnegative Matrix Tri-Factorization
(ONMTF) was proposed [5]. It produces two nonnegative indictor matrices W
and H , and another nonnegative matrix S such that V ≈ WSH . Orthogonality
constraints were imposed on W and H to achieve relaxed orthogonality. How-
ever, in their methods, to achieve relaxed orthogonality, Lagrangian multipliers
have to be determined for the Lagrangian function of ONMTF. Solving the La-
grangian multipliers accounts for an intensive computation of update rules for
the factors, especially the factor W whose size is larger than other factors. In
this paper, we introduce Fast Orthogonal Nonnegative Matrix Tri-Factorization
(FONT), whose computational complexity is decreased significantly by setting
the Lagrangian multipliers as approximate constants. In addition, FONT is fur-
ther accelerated by using Alternating Least Squares [11], which leads to a fast
convergence.

The rest of the paper is organized as follows. In Section 2, related work is re-
viewed, including NMF and ONMTF. Section 3 introduces our methods in detail,
followed by the experiments and evaluations in Section 4. Finally, conclusions
are described in Section 5.

2 Related Work

Given a data matrix V = [v1, v2, ..., vn] ∈ R
m×n, each column of which rep-

resents a sample and each row a feature. NMF aims to find two nonnegative
matrices W ∈ Rm×k, H ∈ Rk×n, such that V ≈ WH , where k � min(m, n).
There is no guarantee that an exact nonnegative factorization exists. Iterative
methods become necessary to find an approximate solution to NMF which is a
nonlinear optimization problem with inequality constraints. To find an approxi-
mate factorization of NMF, an objective function has to be defined by using some
measurements of distance. A widely used distance measurement is the Euclidean
distance which is defined as:
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min
W,H

‖V −WH‖2 s.t. W ≥ 0, H ≥ 0 (1)

where the ‖·‖ is Frobenius norm. To find a solution to this optimization problem,
the multiplicative update rules were first investigated in [8] as follows:

W := W ∗ (V HT )/(WHHT ) (2)

H := H ∗ (WT V )/(WT WH) (3)

where * and / denote elementwise multiplication and division, respectively. ON-
MTF was conducted for the application of clustering words and documents si-
multaneously by imposing additional constraints on W and/or H . The objective
function for ONMTF can be symbolically written as:

F = min
W,S,H≥0

‖V −WSH‖2 s.t. HHT = D, WT W = D (4)

where D is a diagonal matrix. By introducing the Lagrangian multipliers the
Lagrange L is:

L = ‖V −WSH‖2 + Tr[λw(WT W −D)] + Tr[λh(HHT −D)] (5)

The multiplicative update rules for (8) can be computed as follows:

W = W ∗ (V HT ST )/(W (HHT + λw)) (6)

S = S ∗ (WT WHT )/(WT SHHT ) (7)

H = H ∗ (ST WT V )/((WT W + λh)H) (8)

By solving the minimum W (t+1) and H(t+1), respectively [5]. λw and λh can be
approximately computed as follows:

λw = D−1WT V HT ST −HHT (9)

λh = D−1ST WT V HT H −WT W (10)

Substituting λw and λh in (7) and (8) respectively, we obtain following update
rules:

W = W ∗ (V HT ST )/(WWT V HT ST ) (11)

H = H ∗ (ST WT V )/(ST WT V HT H) (12)

Based on matrix multiplication, the computational complexity of NMF based on
the Euclidean distance metric at each iteration is O(mnk), and that of ONMTF
is O(m2n). The computation of the Lagrangian multipliers accounts for an in-
tensive computation. It becomes worse when m increases, which represents the
number of words in a vector space model.
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3 Fast Orthogonal Nonnegative Matrix Tri-Factorization

It was proved that the Lagrange L is monotonically non-increasing under the
above update rules by assuming WT W + λw ≥ 0 and HHT + λh ≥ 0 [5]. We
note that λw and λh are approximately computed under these assumptions, and
from (9) and (10) we can see that λw and λh are symmetric matrices of size
k ∗ k. Since achieving relaxed orthogonality is the purpose of orthogonal matrix
factorization in this paper, and computing the lagrangian multipliers accounts for
an intensive computation, we would use constants for λw and λh for decreasing
computational complexity. By normalizing each column vector of W and each
row vector of H to unitary Euclidean length at each iteration, λw and λh can
be approximately denoted by minus identity matrix (λw = λh = −I). Thus,
we introduce our method Fast Orthogonal Nonnegative Matrix Tri-Factorization
(FONT).

3.1 FONT

The Lagrange L is rewritten as:

L = min
W,S,H≥0

(‖V −WSH‖2 + Tr(I −WT W ) + Tr(I −HHT )) (13)

where I is the identity matrix. Noting ‖V−WSH‖2 = Tr(V V T )−2Tr(WSHV T )
+ Tr(WSHHT ST WT ), the gradient of L with respect to W and H are:

∂L/∂W = −2V HT ST − 2W + 2WSHHT ST (14)

∂L/∂H = −2ST WT V − 2H + 2ST WT WSH (15)

By using the Karush-Kuhn-Tucker conditions the update rules for W and H can
be inferred as follows:

W = W ∗ (V HT ST + W )/(WSHHT ST ) (16)

H = H ∗ (ST WT V + H)/(ST WT WSH) (17)

Because of no orthogonality constraint on S, the update rule for S, in both
FONT and ONMTF, is the same. The computational complexity of FONT, at
each iteration, is O(mnk), far less than O(m2n) because k � min(m, n).
Now we give the convergence of this algorithm by using the following theorem
(we use H as an example here, and the case for W can be conducted similarly):

Theorem 1. The Lagrange L in (13) is non-increasing under the update rule
in (17).

To prove this theorem, we use the auxiliary function approach [8]. G(h, h′) is an
auxiliary function for F (h) if the conditions G(w, w′) ≥ F (w) and G(w, w) =
F (w) are satisfied. If G is an auxiliary function, then F is nonincreasing under
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the updating rule wt+1 = arg minw G(w, wt). Because F (wt+1) ≤ G(wt+1, wt) ≤
G(wt, wt) = F (wt) [8]. So it is crucial to find an auxiliary function. Now we show
that

G(h, ht
ij) = Lij(ht

ij)+L′
ij(h

t
ij)(h−ht

ij)+ (h−ht
ij)

2 ∗ (ST WT WSH)ij/ht
ij (18)

is an auxiliary function for L.

Proof. Apparently, G(h, h) = Lij(h), so we just need to prove that G(h, ht
ij) ≥

Lij(h). We expand Lij(h) using Taylor series.

Lij(h) = Lij(ht
ij) + L′

ij(h
t
ij)(h − ht

ij) + [(ST WT WS)ii − 1](h− ht
ij)

2 (19)

Meanwhile,

(ST WT WSH)ij =
∑k

p=1(S
T WT WS)ipHpj

≥ (ST WT WS)iiHij > ((ST WT WS)ii − 1)ht
ij

(20)

Thus we have G(h, ht
ij) ≥ Lij(h). Theorem 1 then follows that the Lagrangian

L is nonincreasing.

3.2 FONT + ALS

However, we still note that the factor W accounts for a larger computation than
the other two factors, thus we consider to compute W by using Alternating Least
Squares (ALS). ALS is very fast by exploiting the fact that, while the optimiza-
tion problem of (1) is not convex in both W and H , it is convex in either W or
H. Thus, given one matrix, the other matrix can be found with a simple least
squares computation. W and H are computed by equations WT WH = WT V
and HHT WT = HAT , respectively. Reviewing (4) for W , F can be rewritten
as:

(WT W + SHHT ST )WT = WT + SHV T (21)

Then an approximate optimal solution to W is obtained by using ALS. To main-
tain nonnegativity, all negative values in W should be replaced by zero.

4 Experiments

5 document databases from the CLUTO toolkit (http://glaros.dtc.umn.edu/
gkhome/cluto/cluto/download) were used to evaluate our algorithms. They
are summarized in Table 1. Considering the large memory requirement for the
matrix computation, we implemented all algorithms in Matlab R2007b on a 7.1
teraflop computing cluster which is an IBM e1350 with an 1 4-way (Intel Xeon
MP 3.66GHz) shared memory machine with 32GB. The memory was requested
between 1G to 15G for different datasets. 15G memory was required for the
ONMTF algorithm to run on 2 largest datasets la12 and class.

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
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Table 1. Summary of Datasets

Dataset Source # Classes # Documents # Words
classic CACM/CISI/Cranfield/Medline 4 7094 41681
reviews San Jose Mercury(TREC) 5 4069 18483

klb WebACE 6 2340 21839
la12 LA Times(TREC) 6 6279 31472

ohscal OHSUMED-233445 10 11162 11465

4.1 Evaluation Metrics

We also use purity and entropy to evaluate the clustering performance [5]. Purity
gives the average ratio of a dominating class in each cluster to the cluster size
and is defined as:

P (kj) =
1
kj

max(h(cj , kj)) (22)

where h(c, k) is the number of documents from class c assigned to cluster k. The
larger the values of purity, the better the clustering result is.
The entropy of each cluster j is calculated using the Ej =

∑
i pij log(pij), where

the sum is taken over all classes. The total entropy for a set of clusters is com-
puted as the sum of entropies of each cluster weighted by the size of that cluster:

EC =
m∑

j=1

(
Nj

N
× Ej) (23)

where Nj is the size of cluster j, and N is the total number of data points.
Entropy indicates how homogeneous a cluster is. The higher the homogeneity of
a cluster, the lower the entropy is, and vice versa.

4.2 Performance Comparisons

In contrast to document clustering, there is no prior label information for word
clustering. Thus, we adopt the class conditional word distribution that was used
in [5]. Each word belongs to a document class in which the word has the high-
est frequency of occurring in that class. All algorithms (FONTALS stands for
FONT combined with ALS) were performed by using the stopping criterion
1 − F t+1/F t ≤ 0.01, where F is ‖V − WSH‖2 and calculated by every 100
iterations. The comparison for both word and document clustering are shown
in Table 2 and Table 3 respectively. All results were obtained by averaging 10
independent trails.

We observe that the FONT algorithms (including FONTALS) achieve better
purity than ONMTF for both words and documents clustering. It also shows
that FONT obtains lower entropy for word clustering than ONMTF. But for
document clustering, the clusters obtained by ONMTF are more homogenous
than FONT and FONTALS . Meanwhile, in Table 4, it is shown that FONT and
FONTALS are significantly faster than ONMTF. In particular, the running time
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Table 2. Comparison of Word Clustering

Dataset
Purity Entropy

ONMTF FONT FONTALS ONMTF FONT FONTALS

classic 0.5077 0.5153 0.5577 0.6956 0.6881 0.6309
reviews 0.5905 0.6298 0.6001 0.6850 0.6656 0.7003

klb 0.7258 0.7356 0.7335 0.4546 0.4486 0.4478
la12 0.4612 0.4823 0.4721 0.7693 0.7569 0.7794

ohscal 0.3740 0.4056 0.2991 0.7601 0.7297 0.8331

Table 3. Comparison of Document Clustering

Dataset
Purity Entropy

ONMTF FONT FONTALS ONMTF FONT FONTALS

classic 0.5484 0.5758 0.6072 0.6246 0.6359 0.6661
reviews 0.7312 0.7635 0.7540 0.7775 0.8097 0.8126

klb 0.8021 0.8095 0.8118 0.8317 0.8389 0.8366
la12 0.4978 0.5176 0.5379 0.5665 0.5883 0.6063

ohscal 0.3581 0.3983 0.3616 0.4305 0.4682 0.4340

of FONTALS is 12.16 seconds on the largest dataset classic, compared to 36674
seconds ONMTF used and 1574.2 seconds NMTF used, which indicates that the
FONT algorithms are effective in terms of clustering quality and running time.

Table 4. Comparison of Running Time (s)

Dataset ONMTF FONT FONTALS

classic 3.6674e+4 1.5985e+3 12.16
reviews 2.0048e+4 370.36 25.12

klb 1.0852e+4 275.94 14.07
la12 4.5239e+4 1.0496e+3 41.45

ohscal 1.0051e+4 767.86 37.29

5 Conclusions

The Orthogonal Nonnegative Matrix Tri-Factorization algorithm needs a large
computation to achieve relaxed orthogonality, which makes it infeasible for clus-
tering large datasets in terms of computational complexity and a large require-
ment of memory. In our research, to achieve relaxed orthogonality, we have
introduced our method Fast Nonnegative Matrix Tri-Factorization (FONT). By
using unitary matrix to estimate the Lagrangian multipliers, the computational
complexity is reduced and clustering quality is improved as well. Meanwhile, by
using Alternating Least Squares, FONT is further accelerated, which leads to a
significant decrease of running time.
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Abstract. Despite of the wide diversity of web-pages, web-pages re-
siding in a particular organization, in most cases, are organized with
semantically hierarchic structures. For example, the website of a com-
puter science department contains pages about its people, courses and
research, among which pages of people are categorized into faculty, staff
and students, and pages of research diversify into different areas. Uncov-
ering such hierarchic structures could supply users a convenient way of
comprehensive navigation and accelerate other web mining tasks. In this
study, we extract a similarity matrix among pages via in-page and cross-
page link structures, based on which a density-based clustering algorithm
is developed, which hierarchically groups densely linked webpages into
semantic clusters. Our experiments show that this method is efficient
and effective, and sheds light on mining and exploring web structures.

1 Introduction

Web page clustering has been studied extensively in the literature as a means
to group pages into homogeneous topic clusters. However, much of the existing
study [1] [7] [18] [9] is based on any arbitrary set of pages, e.g., pages from mul-
tiple websites. Limited work has been done on clustering pages from a specific
website of an organization. Despite of the wide diversity of webpages, webpages
residing in a particular organization, in most cases, have some semantically hi-
erarchic structures. For example, the website of a computer science department
may contain a large set of pages about its people, courses, news and research,
among which pages of people can be categorized into the ones of faculty, staff
and students, and pages of research may diversify into different areas. Uncovering
such hierarchic structures could supply users a convenient way of comprehen-
sive navigation, accelerate other searching and mining tasks, and enables us to
provide value-added services.

This is, however, a challenging task due to the semantic and structural het-
erogeneity of the webpages. Nevertheless, one can observe that the information
in a site is usually organized according to certain logical relationships, e.g., re-
lated items are often organized together in a way that is easier for users to find
relevant information items. For example, in a university department, there is
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usually a page about its faculty, a page about its courses, etc.. Exploring such
site organizational information, i.e., information item togetherness, will help us
cluster the items of the same type.

From an implementation point of view, such togetherness is typically man-
ifested in HTML code through two means: in-page structures and cross-page
hyper-links. Information items of the same type are usually coded as sibling
nodes of the same parent in the HTML tag tree (i.e., DOM tree), and links that
represent similar items often reside together in a page as siblings, forming paral-
lel links of a page. Such page structure and parallel links provide an important
clue in the design of similarity functions for meaningful clustering.

Based on this idea, we develop a novel method, HSClus, for hierarchical site
clustering of webpages in order to discover the inherent semantic structure of an
organization’s website. Our major contributions include:

1. Deriving from DOM trees, a novel concept called parallel links is proposed,
based on which a new similarity function between pages is developed.

2. A new clustering algorithm called HSClus is designed to group densely linked
webpages into semantic clusters and identify their hierarchical relationships.

Our experiments show that HSClus is efficient and effective at uncovering web-
page structures at some organization’s website, which sets a foundation for fur-
ther mining and exploring web semantic structures.

2 Related Work

Spectral partitioning [5] is a group of one-level network clustering algorithms,
which targets to cutting a graph into a set of sub-graphs, i.e., clusters, with an
object function that minimizes the number of cross-cluster edges and maximizes
the number of in-cluster edges. Because its solution relies on the calculation of
eigen values, the time complexity is square to the number of edges. Agglomerative
hierarchical clustering [11] [3] treats each data point as a singleton cluster, and
then successively merges clusters until all points have been merged into a single
remaining cluster. However, these methods are sensitive to outliers. DOM tree
structures have been widely used for webpage segmentation and partitioning. As
the correspondence of in-page parallel links in this paper, [14] enhances web page
classification by utilizing labels and contents information from sibling pages. Web
patterns [10] are formalized descriptions of common features of objects on web
pages. Each page is presented by a vector of pattern weights, which record the
extent of importance of the pattern for the web page. Based on pattern vectors,
similarity between pages is defined. To automatically extract main classes of
pages offered by a website, [4] compares structures of DOM trees. In order to
improve search results via text contents [1] uses the path length and [7] uses
weighted path between two pages to adjust clusters. [19] combines out-links, in-
links and terms in page contents to improve the clustering quality on web search
results. [2] finds dense units by density-based algorithms, and then merges units
by agglomerative hierarchical clustering.
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3 Similarity Matrix

This section takes a set of pages P = {p0, . . . , pn−1} at an organization’s website
as input objects, and outputs a similarity matrix among pages in P for the
clustering algorithm introduced in latter sections.

Web pages contain abundant information about link structures that can help
discovering web clusters, which is mainly in two categories: cross-page link-
structures and in-page link-structures. The former one refers to the link graph
among webpages, while the latter one refers to the organization of links inside
an individual page. If we regard cross-page link-structures as web structures
at the macro-level, then in-page link-structures are the one at the micro-level.
Combining macro- and micro-levels of web structures will gain great power for
link-based web page clustering.

3.1 Cross-Page Link-Structures

Co-citation [15] and bibliography-coupling [8] are two popular measures in the
analysis of link graph. Concretely, for pages pi and pj , their co-citation C(i, j)
and bibliography-coupling B(i, j) are defined as the frequencies of common in-
links and out-links, respectively, saying C(i, j) =

∑
k E(i, k)E(j, k) and B(i, j) =∑

k E(k, i)E(k, j), where E(i, j) = 1 if there is a hyper-link in pi pointing to pj

and otherwise E(i, j) = 0. We use Cosine function to calculate the similarity
SimCB(i, j) gained from C(i, j) and B(i, j) for pages pi and pj

1:

SimCB(i, j) =
C(i, j)√

C(i, i) · C(j, j)
+

B(i, j)√
B(i, i) ·B(j, j)

(1)

3.2 In-Page Link-Structures

The DOM (Document Object Model) is a platform- and language-independent
standard object model for representing HTML or XML documents. Building
DOM trees from input web pages is a necessary step for many data extraction
algorithms. Furthermore, nodes in DOM trees are written in the form of tags,
indicating the structure in a web page and a way of hierarchically arranging text-
based contents. Formally, we use DOM(i) to denote the DOM tree extracted
from the source code of a particular web page pi with trivial HTML tags removed.
For a tree node μ in DOM(i), the sub-tree rooted at μ is denoted by DOMμ(i).

In this sub-section, we will introduce Parallel Link as a novel concept derived
from DOM trees. Note parallel links are independently extracted from each page
of the targeting website, which reasonably assumes the homogeneity of the layout
and the contents inside one particular page, e.g., the homepage of a laboratory
may list hyper-links to its professors together and the link of each professor is
followed by the professor’s name and then by the email. Here the consecutive
positions of these hyper-links and the homogeneous organization of each profes-
sor’s information are good examples of in-page link-structures, which give strong
1 Many other functions analyzed in [16] may also be good choices.
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hints of the semantic meaning of these professors’ pages. It is necessary to un-
derstand that it does not make any assumptions about the homogeneity of pages
among the whole website.

Concretely, for sibling sub-trees2 DOMμ1(i), DOMμ2(i), · · · , DOMμk
(i), they

become a group of Parallel Sub-Trees if DOMμs(i) and DOMμt(i) for any s, t ∈
1..k are exactly the same (including the tree structures and the HTML tags).
Tree nodes ν1, ν2, · · · , νk form a group of Parallel Nodes if they locate in
the same position of DOMμ1(i), DOMμ2(i), · · · , DOMμk

(i), respectively, and
furthermore become a group of Parallel Links if their HTML tags are ‘hyper-
links’ (i.e., <a>). Finally, we scan pages in P one by one, and extract all groups
of parallel links with the size no less than 4. The similarity SimP (i, j) of pages
pi and pj gained from in-page link-structures equals to how many times pi and
pj appear in a group of parallel links.

3.3 Consolidating with Content-Based Similarities

The final similarity Sim(i, j) for pages pi and pj is:

SIM(i, j) = SIMCB(i, j) + w2 · SIMP (i, j) + w1 · SIMcontent(i, j) (2)

Here SIMcontent(i, j) can be obtained by any kind of content-based similarity
functions [6] [20]. w1 and w2 are parameters that tunes linear weights among
the three parts. Different values of w1 and w2 express different emphasis to
structure-based and content-based similarities. There could be more than one
good answers for a page clustering task. It is not a competition between two
runners (i.e., structure-based and content-based similarities) to see which one has
the better performance, instead we are installing two engines for more effective
similarity functions as well as clustering results.

4 Hierarchical Clustering

Although there have been many clustering algorithms developed for web ap-
plications, we choose to further develop the density-based approach with the
following reasoning.

1. Web clusters may have arbitrary shapes and the data points inside a cluster
may be arbitrarily distributed. Density-based clustering is good at generating
clusters of arbitrary shapes.

2. Web datasets are usually huge. Density-based clustering can be linear to the
number of edges. Moreover, since the average number of hyper-links inside
one page is regarded as a constant, the number of edges is approximately
linear to the number of vertices.

3. Web clusters may vary a lot in size, and web datasets contain noises. Spectral
partitioning algorithms have constraints on cluster sizes, and agglomerative
hierarchical clustering methods are sensitive to outliers.

2 Two sub-trees are siblings if they have the same parent.
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SCAN [17] is a one-level density-based network clustering algorithm, of which
one clear advantage is its linear time complexity that out-performs other meth-
ods. However, SCAN requires two parameters, and the optimal parameters that
lead to the best clustering performance are given by human via visualization.
In this section, we extend SCAN to a hierarchical clustering algorithm, called
HSClus.

Algorithm Framework. It is natural to derive HSClus from SCAN by itera-
tively applying SCAN to each cluster obtained by SCAN in the previous step.
However, since different sets of pages may have different optimal parameters, it
is infeasible to select two fixed parameters as the input for each call of SCAN. To
solve this problem, HSClus (i) tests SCAN with different pairs of parameters, (ii)
uses a scoring function to evaluate the clustering results under different parame-
ters, and (iii) finally clusters pages by the optimal parameters. For each resulting
cluster, HSClus repeats the same procedure until termination conditions are met.
Because of the space limitation, details are omitted.

Complexity Analysis. Usually, the number of levels L in a clustering hierarchy
is small (e.g., no more than 10), and we select a constant number (say K) of
parameters to test. Since SCAN is linear to the number of edges m, the time
complexity of HSClus is also linear, which is O(LKm).

5 Experiments

In this section, we evaluate the efficiency and the effectiveness of HSClus on both
synthetic and real datasets. All algorithms are implemented in Java Eclipse and
Microsoft Visual Studio 2008, conducted in a PC with 1.5GHz CPU and 3GB
main memory. We compare HSClus with two algorithms: (i) k-medoids [13] and
(ii) FastModularity [3].

5.1 Effectiveness

A real dataset UIUC CS is the complete set of pages in the domain of cs.uiuc.edu
crawled down by Oct. 3, 2008. It has 12, 452 web-pages and 122, 866 hyper-links.
The average degree of each page is 19.7, and 33, 845 groups of parallel links are
discovered.

To evaluate the usefulness of parallel links, Figue. 1 and 2 show the clus-
tering results with and without similarities gained from in-page link structure.
As observed, the two figures are generally the same at high levels; in low lev-
els, Figue. 2 may mix pages that are in different kinds but have close se-
mantic meanings, e.g., Research/Faculty and Research/Area alternate, and
Undergraduate/T ransfer is in the middle of Undergraduate/Course.

Figue. 3 and 4 are the results generated by FastModularity and k-medoids
(some parts are omitted), respectively. We can observe that, the clustering qual-
ity is much lower than HSClus.
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Fig. 2. Result of HSClus without the similarities gained from parallel links
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5.2 Efficiency

To verify that HSClus is as fast as linear against networks of different sizes,
we generate 8 synthetic graphs, whose numbers of edges range from 2, 414 to
61, 713, 102, to test corresponding running times. We can see in Figue. 5 that
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Fig. 5. Efficiency comparison

the running time (in second) of HSClus is linear against the input size (number of
edges); FastModularity increases more quickly than linear; and k-medoids rises
dramatically.

6 Conclusion

This paper develops a novel method for hierarchical clustering of webpages in an
organization in order to discover the inherent semantic structure of the website.
Both cross-page link structure and in-page link organizations are explored to
produce a new similarity function, and a new density-based clustering algorithm
is developed to group densely linked webpages into semantic clusters and iden-
tifies their hierarchical relationships. Our experiments show that this method is
efficient and effective at uncovering webpage structures at some organizations
websites and sheds light on mining and exploring web semantic structures.
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Abstract. We propose a system that enables us to search with ranges
of numbers. Both queries and resulting strings can be both strings and
numbers (e.g., “200–800 dollars”). The system is based on suffix-arrays
augmented with treatment of number information to provide search for
numbers by words, and vice versa. Further, the system performs cluster-
ing based on a Dirichlet Process Mixture of Gaussians to treat extracted
collection of numbers appropriately.

Keywords: Number Mining, Suffix Arrays, Dirichlet Process Mixture,
Clustering.

1 Introduction

Texts often contain a lot of numbers. However, they are stored simply as strings
of digits in texts, and it is not obvious how to treat them as not strings but
numeric values. For example, systems that treat numbers simply as strings of
digits have to treat all numbers “1”, “2”, “213”, and “215” as different, or all
of them in the same way (e.g., by replacing them with “0”). In this paper, we
propose treating numbers more flexibly, such as similar numbers like “1” and
“2” should be treated as the same, “213” and “215” should also be treated the
same, but “1” and “213” should be treated as different. Range of numbers is a
representation of number collections that is appropriate for this purpose. In the
above case, the collection of “1” and “2” can be expressed by the range “1..2”
and the collection of “213” and “215” can be expressed by “213..215”. Not only it
can represent a lot of numbers compactly, but also it covers the numbers similar
to the given collections not found in the given collection.

We propose a system that provides the following two basic indispensable func-
tions for treating a range of numbers as normal strings:

– the function to derive appropriate number ranges from a collection of
numbers,

– the function to search texts by using number range queries.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 230–237, 2010.
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The former is to find the range of numbers inherent in a collection of numbers
and the latter is to use the extracted number ranges for further processing.

For the former problem of finding number ranges, the system dynamically
clusters the numbers in the search results based on the Dirichlet process mixture
(DPM) [1] clustering algorithm, which can automatically estimate the appropri-
ate number of clusters. Our DPM model for number clustering is a mixture of
Gaussians [2], which is a very popular example of DPM models. Inference for
cluster assignment for DPM models has been extensively studied for many pre-
vious papers, including MCMC [3], variational Bayes [4], and A* or beam search
[5]. However, our task is somewhat different from the ones discussed in these
papers, because our task is to derive appropriate number ranges, which require
constraints to be put on the derived cluster assignments that each cluster must
consist of contiguous regions, and it is unobvious how to incorporate them into
existing inference algorithms. To the best of our knowledge, no previous studies
have discussed how to derive such number ranges on DPM models.

For the latter problem of the number range search, we propose using suffix
arrays for the basic index structures. We call the resulting index structure number
suffix arrays. The following operations are possible on number suffix arrays.

TF calculation: obtaining the counts for the queries that contain the range of
numbers.

Adjacent string calculation: obtaining the strings (or tries) next to the range
of numbers.

Search engine providers are one of many groups that have extensively studied
indexing for searching by range of numeric values. Fontoura et al. [6] proposed
an indexing method with inverted-indexes to efficiently restrict a search to the
range of values of some of the numeric fields related to the given documents.
In particular, Google search (“search by numbers”) in English provides a search
option “..” to indicate the number ranges. The inverted-index based methods
for number range retrieval are for returning the positions of the numbers in the
given range. On the other hand, our number suffix arrays not only return the
positions, but also return the suffix array for the strings adjacent to the query,
which can be used as a trie of the strings adjacent to the query and can be
used for many text mining applications. These applications include extracting
frequent adjacent string patterns for further text mining operations like synonym
extraction (as shown in the later sections). In other words, number suffix arrays
can be regarded as the extended version of the normal indexes for number ranges
that are more appropriate for text mining tasks.

2 Number Suffix Arrays

The main component of our number mining system is number suffix arrays,
which are based on suffix arrays [7] and can enable searches by numbers. Suffix
arrays are data structures that represent all the suffixes of a given string. They
are sorted arrays of (positions of) all suffixes of a string. By use of the suffix
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array constructed from the corpus S, all the positions of any substring s of S
can be obtained quickly (in O(|s| log |S|) time, where |x| is the length of x) for
any s by using binary search on the suffix array. Suffix arrays require 2|S| bytes1

of additional space to store indices and even more space for construction. We
assume that both the corpus and the suffix array are stored in memory. We
denote by S[i..] the suffix of S starting from index i.

Our algorithm for searching for a range of numbers is defined as follows.
Assume that the input query is a string s1.[lb1..ub1].s2.[lb2..ub2]...sn where “.”
means concatenation of adjacent strings, and lbk and ubk are integers. Strings
surrounded by [ and ] in a query represent the range of numbers from the
number on the left of .. to the number on the right of ... For the query
q =KDD-[2000..2005], s1=KDD-, lb1 = 2000, ub1 = 2005, and s2=“” (null
string), where n = 2. Setting the current index array ca = sa (sa is a suffix
array of the whole input document), our algorithm iterates the following steps
for k = 1, 2, ..., n.

1. Search for string sk on the array ca, and obtain the resulting range of indices
[x . . . y]. Create a new array sa2 of strings adjacent to sk by letting sa2[i] =
sa[x + i] + |sk|2. Let ca = sa2.

2. Search for all digits that follow sk. This is done by searching for the index of
the character 0 on ca, and obtain the resulting index i1, and in the same way,
searching for the index of the character 9 on ca, and obtain the resulting
index i2. For each i1 ≤ j ≤ i2, parse the consecutive digits in the prefix of
S[sa2[j]..] (suffixes of S starting from the position sa2[j]), and obtain the
resulting value d. If lbk ≤ d ≤ ubk, add the index i3 (i3: index of the end of
the digits) to a new array sa3. 3

3. Sort the array sa3 according to the alphabetic order of S[sa3[j]..]. Let ca =
sa3.

In general, the range [i1 . . . i2] in step-2 in the above algorithm will not be so large
because it is only covers the suffixes that are at least preceded by s1 and start
with digits. However, if s1 is null (i.e., the query starts by the range of numbers
such as [100..200] years old), the range [i1 . . . i2] will be considerably large
(it will be the number of all numbers in the text), which means scanning the range
will be prohibitively time-consuming. Our basic idea to solve this problem is to
make an additional array, which we call a number array, that retains numeric
ordering. The number array na for corpus S is the array of indices that all point
to the start point of all consecutive digits in S. It is sorted by the numeric order
of the numbers represented by the digits that start from each position pointed
to by the indices, and we can find (ranges of) numbers by performing binary
search on this array with numeric-order comparison.
1 This is if each index is represented by four bytes and each character takes two bytes.
2 Here, |s| is the length of string s.
3 We do not use an approach to modify the corpus by replacing numbers with one

character representing the value because it reduces the system’s ability in some cases,
e.g., it will limit variety of possible values to 2sizeof(char), disable digit-pattern-
matching queries such as “Boeing 7*7”, etc.
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3 Number Clustering by Dirichlet Process Mixture
Models

Search results for number suffix arrays also may contain numbers. Number suf-
fix arrays can describe collections of different numbers by number ranges, i.e.,
by the smallest and largest values, such as “[20..50]” for the collection of 20,
23, 30, 35, 42, and 50. The problem here is that these values do not always
appropriately represent the collection. For instance, expressing the collection
< 1, 2, 3, 4, 1000, 1001, 1002 > as [1..1002] loses the information that values in
the collection are concentrated in two ranges (i.e., [1..4] and [1000..1002]). This
problem can be avoided by dividing the collection into clusters.

Clustering algorithms that need to set the number of clusters (e.g., K-means)
are not appropriate for our situation because the appropriate number of clusters
is different for each collection of numbers. Of the clustering algorithms that do
not need data on the number of clusters, we selected the DPM [1] clustering
algorithm because it provides the principles to probabilistically compare clus-
tering results even if the number of clusters differs among distinct clustering
results.

Given the collection of numbers x1, · · · , xn
4, assume there exists the hidden

parameter θi for each number xi. The Dirichlet process [8] is a distribution over
distributions and generates a discrete (with probability one) distribution over a
given set (which is all the real numbers in our case). Let G be a distribution
drawn from the Dirichlet process. Each value θi is drawn from G, where each ob-
servation xi is generated from a distribution with parameter θi: G ∼ DP (α, G0),
θi ∼ G, and xi ∼ f(θi). The parameters of the Dirichlet process are base distri-
bution G0 and concentration parameter α.

The Dirichlet process can give the probability of clusters of θi when G is
integrated out. Here, θi and θj (, and thus xi and xj) are in the same cluster if
θi = θj . Let Cj be a cluster of indices cj1, cj2, · · · , cj|Cj | so that θcj1 = θcj2 =
· · · = θcj|Cj | . We denote the collection of all Cj as C. Then, the probability of

the collection of θi is given as p(θ) = α|C|
α(n)

∏|C|
j=1 G0(θ′j)(|Cj | − 1)! where |C| is

the number of clusters, |Cj | is the number of observations in the jth cluster and
α(n) = α(α + 1)(α + 2) · · · (α + n − 1). θ′j is the value for the jth cluster (i.e.,
θ′j = θj1 = θj2 = · · · = θj|Cj |).

We use a DPM of Gaussians (or, equivalently, the infinite Gaussian mixture
[2]) model. In our model, both G0 and f are assumed to be Gaussians, with
(mean,deviation) being (μ1, σ1) for the former and (θi, σ2) for the latter: G0 =
N (μ1, σ1), and fi = N (θi, σ2).5

4 We use the logarithm of each number in search results as xi, which is based on the
observation that relative sizes are appropriate as similarities between numbers rather
than as absolute difference values.

5 σ1, σ2 and μ1 are fixed to reduce computation time. We set μ1 to 0 and σ1 to 100.0
to resemble the uniform distribution for the prior probability of θi to minimize bias
in the value of θi. Other parameters are currently set to α = 1.0 and σ2 = 1.0.
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The joint distribution of x = (x1, x2, · · · , xn) and θ is thus

p(x, θ)=
α|C|

α(n)

|C|∏
j=1
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2πσ1

exp
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2
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}

We integrate out θ′ because we need only cluster assignments, not parameter
values themselves. This results in the the objective function to maximize (which
indicates the goodness of clustering), which is denoted by f(C).

f(C) =
α|C|
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n
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The algorithm searches for the best cluster assignment that maximizes the
objective function (1). Note that the objective function (1) is defined as the
product of g for each cluster, which means that the function is “context-free” in
the sense that we can independently calculate score g(Cj) and then multiply it to
calculate f because the value of g(Ci) is not affected by changes in other clusters
Ci s.t. i �= j. Note that our purpose in clustering is to appropriately divide a
given number collection into continuous regions. Therefore, we do not need to
consider the case where a cluster is not a region (i.e., elements in the cluster are
separated by elements in another cluster, such as a case where C1 = {1, 5} and
C2 = {2, 6}.)

In this situation, the best cluster assignment can be found by a naive dynamic
programming approach. We call this approach the baseline algorithm or CKY
algorithm because it is a bottom-up style algorithm performed in the same way as
the Cocke-Younger-Kasami (CKY)-parsing algorithm for context free grammar,
which is popular in the natural language processing community.

In our approach, we accelerate the search further by using a greedy search
strategy. Starting from no partition (i.e., all elements are in the same region
(cluster)), the algorithm divides each region into two sub-regions to best increase
the objective function (1) and then recursively divides the sub-regions. If it is not
possible to divide a region into two sub-regions without decreasing the objective
function value, division stops.

More precisely, number clustering is done by calling the following function
partition(A), where A is the collection of all numbers input to the algorithm.
After that, we obtain C as the clustering result.

Partition(N): Find the best partition left′(N) and right′(N) that maximizes
g(left(N))g(right(N)). If α·g(left′(N))g(right′(N)) ≤ g(N), then add N to
C (i.e., partitioning of N stops and N is added to the resulting cluster set).
Otherwise, call partition(left′(N)) and partition(right′(N)) recursively.
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Here, α is multiplied with g(left′(N))g(right′(N)) because partitioning in-
creases the number of clusters |C| that appear as α|C| in objective function (1).

4 Experiments: Synonym Extraction

Our flexible number handling is useful in many text-mining tasks, especially
when we want to use the numbers as some kind of contexts. A typical example is
measuring the semantic similarities of words. When measuring word similarities,
we typically calculate the distributions of words related to word w (e.g., distri-
bution of words around w, distribution of words that have dependency relations
with w, etc.) as the contexts of w, and measure the similarities of the meanings
of the words w1 and w2 by calculating the similarities of their contexts.

A direct application of measuring similarities of words is synonym extraction.
Especially, we developed an algorithm to dynamically extract synonyms of given
queries using suffix arrays [9]. To find words similar to a given query q, the
algorithm extracts context strings (i.e., strings that precede or follow q) by
using suffix arrays6, which in turn are used to find strings surrounded by these
extracted contexts.

We enhanced the algorithm by adding the ability to appropriately treat num-
bers in context strings in number suffix arrays. For example, we can use the
context strings “[10..20] persons” to cover all numbers between 10 and 20 pre-
ceding the word “persons”, while in naive suffix arrays, only raw strings such as
“11 persons” and “17 persons” can be used as contexts. Our number suffix arrays
can thus improve coverage of contexts and extracted collections of synonyms.

We evaluate the performance of synonym extraction with number suffix ar-
rays to investigate whether number suffix arrays enhance text mining. We used
aviation-safety-information texts from Japan Airlines that had been de-identified
for data security and anonymity. The reports were in Japanese, except for some
technical terms in English. The size of the concatenated documents was 6.1
Mbytes. Our text-mining system was run on a machine with an Intel Core Solo
U1300 (1.06 GHz) processor and 2 GByte memory. All algorithms were imple-
mented in Java. The size of the number array for each (normal or reversed) suffix
array was 60,766.

To evaluate the performance of the system, we used a thesaurus for this corpus
that was manually developed and independent of this research. The thesaurus
consists of (t, S(t)) pairs, where t is a term and S(t) is a set of synonyms of t. We
provided t as a query to the system, which in turn returned a list of synonym
candidates 〈c1, c2, ..., cn〉 ranked on the basis of their similarities to the query.
S(t) was used as a correct answer to evaluate the synonym list produced by the
system. The number of queries was 404 and the average number of synonyms
was 1.92.

We compared the average precision [10] of our algorithm with the baseline (us-
ing naive suffix arrays) and the no-clustering version (using number suffix arrays
6 We use two suffix arrays: one is a normal suffix array and the other is a reversed

suffix array, which is a suffix array constructed from the reversed original text.
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Table 1. Results of Synonym Extraction. σ1 was set to 100.0. AvPrec is the average
precision (per cent) and Time is the average execution time (per second) for each query.

Algorithm AvPrec Time
Baseline 40.66 2.294
No Clustering 41.30 10.272
Our Algorithm 41.68 7.837

Table 2. (Left:) Execution Time (Per Second) for Number Queries. NumStart is for
Queries that Start with Number Ranges, and NotNumStart is for Queries that Start
with Non-digit Characters. (Right:) Execution time (per second) and total log likeli-
hood of number clustering.

Algorithm NumStart NotNumStart
Baseline 169.501 0.711
w/ Number Arrays 12.87 0.632

Algorithm Time Log Likelihood
CKY 102.638 -168021.7
Greedy 0.170 -168142.2

without number clustering). The results are shown in Table 1. We observed
that the performance was improved by using number suffix arrays by about 0.6
percent, which was improved further by about an additional 0.4 percent by per-
forming number clustering. However, the average execution time for each query
became 3.5–4.5 times larger than that of the baseline. For practical use, we will
have to reduce the execution time by reducing the number of range-starting
queries (i.e., the queries that start with a range of numbers).

4.1 Results: Speed and Accuracy of the Algorithm

We stored all the queries to the number suffix arrays and all the collections
of numbers for number clustering that appeared in the above experiments. We
randomly selected 200 queries that included the range of numbers for each suf-
fix array (normal and reversed), resulting in 400 queries in total. Of each 200
queries, 100 started with a range of numbers (indicated as “NumStart”), and the
remaining 100 started with non-digit characters (indicated as “NotNumStart”).
We also randomly selected 1000 collections of numbers, and used them to mea-
sure the accuracy and execution time of our number clustering algorithms.7

The result of the query-time experiment is shown in Table 2 (left). We ob-
served that the search time for queries starting with a range of numbers was
drastically reduced by using the number arrays. Considering the large ratio of
the search time of NumStart and NotNumStart, using the number arrays is an
efficient way to conduct a number search.

The results of a comparison of two clustering algorithms are shown in Table 2
(right). The greedy algorithm was much faster than the baseline CKY algorithm.
The important point here is that the difference of total log-likelihood values
7 Only collections whose sizes were from 50 to 1000 were selected. The average size of

collections was 98.9.
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between the greedy (approximate) algorithm and the baseline was quite small,
which suggests that using the greedy algorithm for number clustering achieves
much faster processing with almost no sacrifice of quality of the clustering results.

5 Conclusion and Future Work

We described number suffix arrays, which enable us to search for numbers in
text. The system is based on suffix arrays and DPM clustering. We also showed
applications of number suffix arrays to text mining, including synonym extrac-
tion, where the performance could be improved by using number suffix arrays.
Future work includes developing more sophisticated preprocessing for numbers
such as normalization of number expressions.
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Abstract. There is an exponential growth in user-generated contents in the form 
of customer reviews on the Web. But, most of the contents are stored in either 
unstructured or semi-structured format due to which distillation of knowledge 
from this huge repository is a challenging task. In addition, on analysis we 
found that most of the users use fuzzy terms instead of crisp terms to express 
opinions on product features. Considering these facts, in this paper, we present 
an opinion-based query answering framework which mines product features and 
opinionated words to handle user queries over review documents. The proposed 
framework uses BK-FIRM (Bandler-Kohout Fuzzy Information Retrieval 
Model) that facilitates the formulation of imprecise queries using linguistic 
qualifiers, retrieves relevant opinion documents, and presents them in the order 
of their degree of relevance. The efficacy of the system is established through 
experiments over customer reviews on different models of digital camera, and 
mp3 player. 

Keywords: Opinion Mining, Sentiment Analysis, Opinion-Based Query 
Answering, Imprecise Query Processing, Natural Language Processing. 

1    Introduction 

Due to easy accessibility of Web, numerous forums, discussion groups, and blogs 
exist and individual users are participating more actively and are generating vast 
amount of new data – termed as user-generated contents. These new web contents 
include customer reviews and blogs that express opinions on products and services – 
which are collectively referred to as customer feedback data on the Web. As customer 
feedback on the Web influences other customer’s decisions, these feedbacks have 
become an important source of information for businesses to take into account when 
developing marketing and product development plans. Now much of the information 
is publicly available on the Web. As a result, the number of reviews that a product 
receives grows rapidly. Some popular products can get hundreds of reviews or more 
at some large merchant sites. Many reviews are also long, which makes it hard for 
potential customers to read them to make an informed decision on whether to 
purchase the product. A large number of reviews for a single product may also make 
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it harder for individuals to evaluate the true underlying quality of a product. In these 
cases, customers may naturally gravitate to reading a few reviews in order to form a 
decision regarding the product and he/she only gets a biased view of the product. 
Similarly, manufacturers want to read the reviews to identify what elements of a 
product affect sales most. And, the large number of reviews makes it hard for product 
manufacturers or business to keep track of customer’s opinions and sentiments on 
their products and services. Recent work has shown that the distribution of an 
overwhelming majority of reviews posted in online markets is bimodal [7]. Reviews 
are either allotted an extremely high rating or an extremely low rating. In such 
situations, the average numerical star rating assigned to a product may not convey a 
lot of information to a prospective buyer. Instead, the reader has to read the actual 
reviews to examine which of the positive and which of the negative aspect of the 
product are of interest. Several sentiment analysis approaches have proposed to tackle 
this challenge up to some extent. However, most of the classical sentiment analysis 
mapping the customer reviews into binary classes – positive or negative, fails to 
identify the product features liked or disliked by the customers. 

In this paper, we present an opinion-based query answering framework that mines 
product features and opinionated words from opinion texts. The proposed framework 
uses BK-FIRM (Bandler-Kohout Fuzzy Information Retrieval Model) to handle 
opinion-oriented imprecise user queries over review documents. Linguistic and 
semantic analyses are applied to identify key information components that are 
centered on product features. Since, on analysis we found that most of the users use 
fuzzy terms instead of crisp terms to express opinions on product features, an 
information component is defined as a triplet <F, M, O> where, F represents a product 
feature, O represents opinion words associated with F and M is an optional component 
representing adverbs that act as modifier and used to intensify the opinion O. M is also 
used to capture the negative opinions explicitly expressed in the review. The novelty 
of the system lies in mining associated modifiers with opinions. For example, 
consider following snippets of opinion sentences: (i) the picture quality is very good; 
(ii) the picture quality is almost good. In both of the sentences the opinion word is 
good but the associated modifiers are different to express different levels of customer 
satisfaction on picture quality. For each extracted feature, the list of opinions and 
associated modifiers are compiled and stored in a structured repository to answer user 
query over it.  

The remaining paper is structured as follows: Section 2 presents a brief review on 
opinion mining. It also presents the overview of the BK-FIRM model and its 
working principles. In section 3, we present the opinion-based query answering 
framework. The experimental setup and evaluation results are presented in section 4. 
Finally, section 5 concludes the paper with possible enhancements to the proposed 
system. 

2   Related Work 

In this section, we present a summarized view of the existing works on opinion 
mining and sentiment analysis which is followed by a brief introduction of the  
BK-FIRM model and its working principles. 
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2.1   Opinion Mining and Sentiment Analysis 

Research on opinion mining started with identifying opinion bearing words, e.g., 
great, amazing, wonderful, bad, poor etc. In literature, a reasonable number of 
attempts have been made to mine such words and identifying their semantic 
orientations [3,5]. The history of the phrase “sentiment analysis” parallels that of 
opinion mining in certain respects. A sizeable number of papers mentioning sentiment 
analysis focus on the specific application of classifying customer reviews as to their 
polarity – positive or negative [10,11]. Although, classical sentiment classification 
attempts to assign the review documents either positive or negative class, it fails to 
find what the reviewer or opinion holder likes or dislikes. A positive document on an 
object does not mean that the opinion holder has positive opinions on all aspects or 
features of the object. Likewise, a negative document does not mean that the opinion 
holder dislikes everything about the object. In an evaluative document (e.g., a product 
review), the opinion holder typically writes both positive and negative aspects of the 
object, although the general sentiment on the object may be positive or negative. To 
obtain detailed aspects, feature-based opinion mining is proposed in literature [3,4,6]. 
In [4], a supervised pattern mining method is proposed. In [3, 6], an unsupervised 
method is used. A lexicon-based approach has been shown to perform quite well in 
[2, 3]. The lexicon-based approach basically uses opinion words and phrases in a 
sentence to determine the orientation of an opinion on a feature. 

Although, some opinion mining methods extract features and opinions from 
document corpora, most of them do not explicitly exploit the semantic relationships 
between them. The proposed method differs from all these approaches predominantly 
in its use of pure linguistic techniques to identify only those features for which 
customers have commented using opinionated words. Extraction of associated 
modifiers used in review documents to represent the degree of expressiveness of 
opinions is unique in our work. Moreover, to the best of our knowledge, none of the 
above-cited works attempted to use the mined features and opinions for query 
answering. 

2.2   BK-FIRM 

Different from traditional information retrieval theories, BK-FIRM uses the concept 
of fuzzy relation to retrieve documents based on semantics and it has basic functions 
such as automated building of a thesaurus and ranking the retrieved documents. BK-
FIRM has two operations, (i) R-request operation which expands semantics of a term, 
and (ii) FS-request operation which analyzes user query and retrieves documents 
relevant to the given query [1]. The procedure of BK-FIRM is as follow. Assume that 
there are a document set D={d1, d2, …, dk}, a term set T={t1, t2, …, tn} and a fuzzy 
relation ℜF (equation 1) between the document set and the term set. When query Q as 
FS-request is given from a user, the fuzzy relation ℜF applied to the query Q gets a 
fuzzy set DF (equation 2), which means the suitability of the query Q to document set. 
Then, an α-cut is applied to the fuzzy set DF to get a resultant document set DR 
(equation 3). 
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3   Proposed Framework 

Fig. 1 presents the architectural details of the proposed opinion-based query 
answering framework which consists of two major modules – Feature and Opinion 
Learner, and Opinion-Based Query Processor. The working principles of these 
components are explained in the following sub-sections. 

3.1   Feature and Opinion Learner 

In this section, we present the working details of the feature and opinion learner 
module which completes its task in the following three steps (i) Document processing 
and subjectivity analysis, (ii) Document parsing, and (iii) Feature and opinion 
extraction.  

3.1.1   Document Processing and Subjectivity Analysis 
We employ document processing to divide an unstructured web document into 
individual record-size chunks, to clean them by removing ML tags, and to present 
them as individual unstructured record documents for further processing. The cleaned 
documents are converted into numeric-vectors using unigram model for the purpose 
of subjectivity analysis. In document vectors a value represents the likelihood of each 
word being in a subjective or objective sentence.  

According to Pang and Lee [9] subjective sentences are expressive of the 
reviewer's sentiment about the product, and objective sentences do not have any direct 
or obvious bearing on or support of that sentiment. Therefore, the idea of subjectivity 
analysis is used to retain segments (sentences) of a review that are more subjective in 
nature and filter out those that are more objective. This increases the system 
performance both in terms of efficiency and accuracy. The idea proposed by Yeh [8] 
 



242 M. Abulaish et al. 

 

 

Fig. 1. Proposed opinion-based query answering framework 

is used to divide the reviews into subjective parts and objective parts. In [8], the idea 
of cohesiveness is used to indicate segments of a review that are more subjective in 
nature versus those that are more objective. We have used a corpus of subjective and 
objective sentences used in [9] for training purpose.  The training set is used to get the 
probability for each word to be subjective or objective, and the probability of a 
sentence to be subjective or objective is calculated using the unigram model. The 
Decision Tree classifier of Weka1 is trained to classify the unseen review sentences 
into subjective and objective classes. 

3.1.2   Document Parsing 
Since our aim is to extract product features and the opinions from text documents, all 
subjective sentences are parsed using Stanford Parser2 which assigns Parts-Of-Speech 
(POS) tags to English words based on the context in which they appear. The POS 
information is used to locate different types of information of interest inside the text 
documents. For example, generally noun phrases correspond to product features, 
adjectives represent opinions, and adverbs are used as modifiers to represent the 
degree of expressiveness of opinions. Since, it is observed that opinion words and 
product features are not independent of each other rather, directly or indirectly inter-
related through some semantic relations, each sentence is converted into dependency 
tree using Stanford Parser. The dependency tree, also known as word-word 
relationship, encodes the grammatical relations between every pair of words. A 
sample POS tagged sentence and the corresponding dependency tree generated using 
Stanford Parser is shown in Fig. 2(a) and 2(b) respectively. 

3.1.3   Feature and Opinion Extraction 
This process takes the dependency tree generated by document parser as input and 
output feasible information components after analyzing noun phrases and the 
associated adjectives possibly preceded with adverbs. On observation, we found that 
 

                                                           
1 http://www.cs.waikato.ac.nz/~ml/weka/  
2 http://nlp.stanford.edu/software/lex-parser.shtml  
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Fig. 2. (a) A POS-tagged sentence, (b) the corresponding dependency tree generated by 
Stanford Parser, and (c) extracted information components 

product features are generally noun phrases and opinions are either only adjectives or 
adjectives preceded by adverbs. For example, consider the following opinion 
sentence: 

(ROOT(S(NP(NP (DT The) (NN battery) (NN life))(PP (IN of) 
(NP (NNP Nokia) (NNP N95))))(VP (VBZ is)(ADJP (RB very) 
(JJ good)))(. .))) 

In the above sentence, “battery life” is a noun phrase and appears as one of the 
features of Nokia N95 whereas, the adjective word “good” along with the adverb 
“very” is an opinion to express the concern of reviewer. Therefore, we have defined 
the information component as a triplet <F, M, O> where, F is a noun phrase and O is 
adjective word possibly representing product feature. M represents adverb that acts as 
modifier to represent the degree of expressiveness of O. M is also used to capture 
negative opinions explicitly expressed in reviews. The information component 
extraction mechanism is implemented as a rule-based system which analyzes 
dependency tree to extract information components. Some sample rules are presented 
below to highlight the function of the system.  
 

Rule 1: In a dependency tree T , if there exists a subj(wi , wj) relation such that POS(wi) 
= JJ*, POS(wj) = NN*, wi and wj are not stop-words3 then wj is assumed to be a feature 
and wi as an opinion. Thereafter, the relation advmod(wi , wk) relating wi with some 
adverbial words wk is searched. In case of presence of advmod relation, the information 
component is identified as <wj, wk, wi> otherwise <wj, -, wi>.  
 

Rule 2: In a dependency tree T , if there exists a subj(wi , wj) relation such that POS(wi) 
= VB*, POS(wj) = NN*, and wj is not a stop-word then we search for acomp(wi, wm) 
relation. If acomp relation exists such that POS(wm) = JJ* and wm is not a stop-word 
then wj is assumed to be a feature and wm as an opinion. Thereafter, the modifier is 
searched and information component is generated in the same way as in rule 1.  
                                                           
3  A list of 571 stop-words available at http://www.aifb.uni-karlsruhe.de/WBS/ 
aho/clustering  

 
 
 

Its/PRP$ zoom/NN is/VBZ very/RB 

amazing/JJ and/CC the/DT pictures/NNS 

come/VBP out/IN very/RB clear/JJ ./. 

 
(a) A POS-tagged sentence (b) Dependency tree 

<zoom, very, amazing> // Extracted information component through Rule-1 

<pictures, very, clear> // Extracted information component through Rule-2 

(c) Extracted Information Components 
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Fig. 2(c) presents two sample information components extracted by applying these 
rules on the dependency tree shown in figure 2(b). Though a large number of 
commonly occurring noun and adjective phrases are eliminated due to the design of 
the information component itself, it is found that further processing is necessary to 
consolidate the final list of information components and thereby the product features 
and opinions. During the consolidation process, we take care of two things. In the first 
stage, since product features are the key noun phrases on which opinions are applied, 
so a feasible collection of product features is identified using mutual information [12] 
value calculated using equation (4). In the second stage of analysis, however, for each 
product feature the list of all opinions and modifiers is compiled that are used later for 
indexing and query answering purpose.  

The mutual information measure, I(x, y), is used to compare the probability of 
observing x and y together with the probabilities of observing x and y independently. 
If there is a genuine association between x and y, then the joint probability P(x, y) will 
be much larger than P(x).P(y), and consequently I(x, y) >> 0. If there is no interesting 
relationship between x and y, then P(x, y)≈ P(x).P(y), and thus, I(x, y) ≈ 0. If x and y 
are in complementary distribution, then P(x, y) will be much less than P(x).P(y), 
forcing I(x, y) << 0. The probabilities P(x) and P(y) are estimated by counting the 
number of observations of x and y in a corpus, f(x) and f(y), and normalizing by N, the 
size of the corpus. The joint probabilities, P(x, y), are estimated by counting the 
number of times that x is followed by y or y is followed by x in a window of 5 words 
to consider structural relationship, and normalizing by N. In our application, a list of 
seed opinion words (positives and negatives) is compiled and mutual information 
value for a feature word with each of them is calculated. If the cumulated sum value 
for a feature is zero (i.e., the feature is not associated with any seed opinion word) the 
feature and the corresponding information component is filtered out, otherwise 
retained. Thereafter, for each retained feature, the list of opinion words and modifiers 
are compiled from information components and are stored in a structured form. A 
partial list of product features, opinions, and modifiers extracted from a corpus of 86 
customer reviews on digital camera (obtained from www.ebay.com) and from 95 
review on mp3 player (used in [3]) is shown in table 1. 
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Table 1. A partial list of extracted features, opinions and modifiers for digital camera 

Product Feature Modifier Opinion 

picture not, really, very 
beautiful, clear, fantastic, good, great, 
professional, sharp 

battery Very decent, excellent, rechargeable, short, long D
ig

it
al

 
C

am
er

a 

price --- cheap, excellent, good, great, high 

player Very 
awesome, delicate, perfect, fast, good, great, 
terrific, large, excellent 

Sound pretty, very, indeed 
excellent, good, wonderful,  excellent, great, 
awesome 

m
p3

 P
la

ye
r 

Software very, somewhat, enough 
great, easy, nice, awful, good, smooth, quick, 
decent, inferior, awesome, installed, bad 
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3.2   Opinion-Based Query Processor 

In this section, we present the query processing mechanism using BK-FIRM model 
over structured repository of features and opinions extracted by Feature and Opinion 
Learner module. To apply BK-FIRM in our case, D is the set of all review documents 
under consideration; the set T is generated for each product feature and it contains all 
opinion words associated with a particular feature. Thus, for each feature, a fuzzy 
relation matrix ℜF is generated in which contents are normalized tf-idf values. In 
order to handle queries on multiple features a user can use fuzzy logic connectives 
such as AND, OR and NOT, and fuzzy quantifiers as defined in equations (5) to (9). 

))(),(max()()( bababORa μμμμ =∨=  (5) 

))(),(min()()( bababANDa μμμμ =∧=  (6) 

)(1)( aaaNOT μμ −=¬=  (7) 

2)]([))(( aaQaVERY very μμ ==  (8) 

2
1

)]([))(( aaQaFAIRLY FAIRLYy μμ ==  (9) 

To illustrate this process, a partial view of fuzzy relations ℜpicture and ℜprice for two 
camera features picture and price are shown in equations (10) and (11) respectively. 
Given a query Q = VERY(sharp) AND FAIRLY(high), i.e., camera with very sharp 
picture quality and fairly high price, we get a fuzzy set DF (equation 12) which 
represents the suitability between documents and the query. When α-cut = 0.7 is 
applied, we can get the documents d1 and d2 in this order of relevance. 
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4   Experimental Results 

In this section, we present the experimental details of the feature and opinion mining 
process.  For subjectivity analysis, we used the subjectivity dataset4 v1.0 from Cornell 
for training purpose. The dataset consists of 5000 subjective sentences and 5000 
objective sentences. A Java program is written to extract features using unigram 
model from this dataset and to convert each sentence into equivalent numeric vector 
where a value represents likelihood of each word being in a subjective or objective 
sentence. Thereafter, the Decision Tree classifier of Weka is trained to classify the 
unseen sentences into subjective and objective classes. The accuracy of the classier on 
10-fold cross validation is 82%. The data sample used in our work to mine features 
and opinions for customer reviews summarization consists of 86 review documents on 
different models of digital camera (Canon: 60, Panasonic: 26) – all obtained from 
www.ebay.com, and 95 documents on mp3 player used in [3]. The feature and 
opinion extraction process described in section 3.1.3 was implemented using Java to 
mine features and opinionated words along with modifiers from the subjective review 
sentences. Initially, a total of 48 and 227 for digital camera and mp3 player 
respectively were extracted out of which only 33 and 151 were retained after 
feasibility analysis. For each retained feature, the list of both opinions and modifiers 
were compiled, a partial view of which is shown in table 1, and stored in structured 
database. Thereafter, queries were processed over this database using BK-FIRM 
model to extract relevant review documents.  

4.1   Evaluation Methods 

The performance of the whole system is analyzed by taking into account the 
performance of the feature and opinion extraction process only as it is difficult to 
provide a performance analysis of the query-processing module, since no benchmark 
set of queries are available for judging the performance of such a system. Since the 
information components are finally stored in a database, the system can obviously 
retrieve all exact matches correctly. When it comes to judging the relevance of 
answers to fuzzy query, the quality of retrieval is dependent on the similarity 
computation procedure. For example, it can be seen from the examples cited above 
that in some cases, the fuzzy Min-Max function seems to be too restrictive, though we 
have chosen it since this provides a standard way of interpreting AND and OR 
boolean operators. We refrain from giving any relevance figure for this module, since 
acceptability of an answer generated is largely dependent on the user’s perspective. 

We now present a discussion on the performance of the whole system which is 
analyzed by taking into account the performance of the feature and opinion extraction 
process. Since terminology and complex proper names are not found in Dictionaries, 
an obvious problem of any automatic method for concept extraction is to provide 
objective performance evaluation. Therefore manual evaluation has been performed 
to judge the overall performance of the system. For evaluation of the experimental 
results, we use standard Information Retrieval performance measures. From the 
extraction results, we calculate the true positive TP (number of correct feature-
opinion pairs the system identifies as correct), the false positive FP (number of 
incorrect feature-opinion pairs the system falsely identifies as correct), true negative 
                                                           
4 http://www.cs.cornell.edu/people/pabo/movie-review-data/ 



 Opinion-Based Imprecise Query Answering 247 

TN (number of incorrect feature-opinion pairs the system identifies as incorrect), and 
the false negatives FN (number of correct feature-opinion pairs the system fails to 
identify as correct). By using these values we calculate the following performance 
measures: 

Precision (π): the ratio of true positives among all retrieved instances. 

FPTP

TP

+
=π  (13)

Recall (ρ): the ratio of true positives among all positive instances. 

FNTP

TP

+
=ρ  (14) 

F1-measure (F1): the harmonic mean of recall and precision. 

πρ
πρ

+
= 2

1F  (15) 

Accuracy (τ): the ratio of sum of TPs and TNs over total positive and negative 
instances. 

TNFNFPTP

TNTP

+++
+=τ  (16) 

The values of the above performance measures are calculated for each category of 
experimental data. In order to present a synthetic measure of performance over all 
categories, we present the macro-averaged performance which consists in simply 
averaging the result obtained on each category. Table 2 summarizes the performance 
measure values for our system in the form of a misclassification matrix. The recall 
value is lower than precision indicating that certain correct feature-opinion pairs could 
not be recognized by the system correctly. This is justified since most of the reviewers 
do not follow grammatical rules strictly while writing reviews due to which the parser 
fails to assign correct POS tag and thereby correct dependency relations between 
words. However, almost all identified feature-concept pairs are correct, which leaves 
scope for enhancing our grammar to accommodate more dependency relations. After 
analyzing the review documents manually we also found that some review documents 
contain junk sentences too which opens a new direction of research – review spam 
analysis. 

Table 2. Performance evaluation of feature-opinion extraction process 

Product Name TP FP FN TN Precision 
(%) 

Recall (%) F1-measure 
(%) 

Accuracy 

Canon 34 03 26 314 91.89 56.67 70.10 92.30 

D
ig

it
al

 
C

am
er

a 

Panasonic 31 03 17 174 91.18 64.58 75.61 91.11 

mp3 player 264 33 149 1287 88.89 63.92 74.37 89.50 

Macro-Average 90.65 61.72 73.36 90.97 
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5   Conclusion and Future Work 

In this paper, we have proposed an opinion-based query answering framework which 
performs linguistic and semantic analysis of text to identify product features and 
opinions from review documents. We have also proposed a method using BK-FIRM 
model to handle imprecise user queries, formulated using fuzzy quantifiers, over 
review documents. Presently, we are refining the rule-set to consider more 
dependency relations to improve the precision and recall values of the system. Instead 
of directly using standard membership functions for fuzzy quantifiers and ignoring the 
one present in review documents for relevance computation, we are also exploring a 
fuzzy similarity computation method that would consider both the quantifiers present 
in user query and in retrieved documents for relevance computation.  
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Abstract. Recently, as blog is becoming a popular medium to express opinions, 
blog opinion retrieval excites interest in the field of information retrieval. It 
helps to find and rank blogs by both topic relevance and opinion relevance. This 
paper presents our topic-opinion mixture model based approach to blog opinion 
retrieval in the TREC 2009 blog retrieval task. In our approach, we assume each 
topic has its own opinion relevance model. A topic-opinion mixture model is 
introduced to update original query model, and can be regarded as a mixture of 
topic relevance model and opinion relevance model. By pseudo-relevance 
feedback method, we can estimate these two models from topic relevance 
feedback documents and opinion relevance feedback documents respectively. 
Therefore our approach does not need any annotated data to train. In addition, 
the global representation model is used to represent an entire blog that contains 
a number of blog posts. Experimental results on TREC blogs08 collection show 
the effectiveness of our proposed approach.  

Keywords: topic-opinion mixture model, blog, opinion retrieval, rank. 

1   Introduction 

In resent years, blog is becoming an increasingly popular form of communication on 
the World Wide Web. The blogosphere is a rich information source of public voice, 
and is useful in extracting and mining public opinions towards some objects or events. 
Different from other kinds of online textual information, the main characteristics[1] of 
a blog are: 1) Information provided is often opinion-oriented; 2) Containing numbers 
of documents that cover a wide range of topics. The need to find appropriate retrieval 
techniques to track the way bloggers react to products, persons and events raises some 
challenging problems in the field of information retrieval[2]. Blog opinion retrieval is 
a task to save the challenge and serve the growing interest in IR. 

In this paper, blog opinion retrieval is defined as a task to search blogs with a 
recurring interest and opinion towards a given topic. Similar to traditional retrieval 
system, blog opinion retrieval has two basic tasks: 1) search the relevant documents to 
a user’s query, and 2) ranking these documents according to the level of relevance. 
However, blog opinion retrieval has several special characteristics to be taken into 
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consideration. The goal of blog opinion retrieval is to find blogs that are principally 
devoted to certain topics over the time span of the blogs, and to recommend user to 
subscribe as an interesting feed about the topic (i.e. users may add the interesting feed 
to their RSS readers). This requires the retrieval unit to be the entire blog containing a 
number of posts, but not a single post document. Since a blog contains both relevant 
posts and non-relevant posts to a topic, the overall relevance of a blog must be 
measured in a proper way. Besides, the blog opinion retrieval goes beyond topic 
relevance and integrates the opinion relevance in the evaluation of the retrieved blogs. 
This requires the system to determine whether a blog expresses opinions or facts.  

TREC 2009 Blog Track1 highlights its interest in blog retrieval, and introduces the 
Faceted Blog Distillation Task. This task takes into account a number of attributes of 
facets such as opinion, personality and in-depth facets. This paper mainly focuses on 
the blog retrieval on opinion facet. Technically, there are two typical approaches to 
the blog opinion retrieval in previous works: two-stage approach based on 
classification and mixture of language models approach. The two-stage approach is 
often used in previous TREC Blog Track. There are two basic components in this 
approach[3]: the retrieval component and the opinion classification component. The 
former carries out basic relevance retrieval for each query whereas the latter classifies 
each blog into two categories, namely, opinionated category and factual category. 
SVM and the maximum entropy classifiers are used in many cases. Mixture of 
language models approach[4, 5] assumes that a blog is generated by sampling words 
from a mixture model involving a background language model, a topic language 
model, and an opinion language model.  

In this paper, we present our approach based on the topic-opinion mixture model. It 
is similar to the above mentioned mixture of language model approach. However, 
their approaches assume the content of opinion model is the same for all topics, or 
require models to be trained for every topic by annotated data, or manually input 
subjective keywords. In our approach, we assume the text opinion expression is 
dependent on the topic. We first make use of pseudo feedback documents from wiki 
corpus to construct the topic relevance model, and then some words are automatically 
selected from a subjective/objective lexicon by the semantic association extent with 
the topic. Then we combine these words with original query to re-retrieve and get the 
opinion feedback documents. An opinion relevance model is constructed by these 
feedback documents. Finally, a topic-opinion mixture model is combined from topic 
relevance model and opinion relevance model. This model contains topic features and 
their associated opinion features. So it is effective to evaluate the level of topic 
relevance and opinion relevance of a blog. 

We conduct experiments in this paper on TREC blogs08 datasets, with each blog 
post being considered as a web page. Moreover, the opinion lexicon (subjective or 
objective lexicon) used is domain-independent. Hence our proposed approach is 
applicable to all opinion retrieval tasks on any text resource contained information 
about topic and opinion, such as product reviews. 

The rest of the paper is organized as follows. In Section 2, we briefly introduce the 
related works in the field. The problem is defined in Section 3. The whole approach is 
described in Section 4. The experiments and result analysis are presented in Section 5. 
Finally we conclude the paper and discuss the future work in Section 6. 

                                                           
1 http://ir.dcs.gla.ac.uk/wiki/TREC-BLOG 
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2   Related Works 

There are many related works in the TREC Blog Track. First introduced in TREC 
2006, the blog track explores the information seeking behavior in the blogosphere. In 
the past years, the track had two main tasks: the opinion finding task and the blog 
distillation task. Normally a two-stage process is used to address the opinion finding 
task. At the first stage, documents are ranked using modern and effective document 
ranking functions such as BM25[6], language models (LM) and divergence from 
randomness (DFR) models[7]. A relevance score is allocated to each document. At 
the second stage of the retrieval process, the classifier [8-12] is used to determine 
whether a document is opinionated or factual, and an opinionated score is assigned for 
the document. Next the retrieved documents are re-ranked according to the combined 
score of the relevance score and the opinion score. Most solutions use a linear 
combination of relevance score and opinion score, whereas a quadratic combination 
solution[13] is proposed and achieve a significant improvement.  

For the blog distillation task, there are three main solutions: expert finding, pseudo-
cluster selection and federated search model. Expert finding solution[7, 14] regards 
the blog distillation task as an association finding task, between topics and bloggers. 
blogger model and posting model are proposed for modeling blog distillation[15]. The 
blogger model represents the blog as a as a multinomial probability distribution over 
the vocabulary terms. It then computes probability of a query given a blogger. While 
in the posting model, each post is computed by query likelihood scoring method 
followed by combining the score for each post. Pseudo-cluster selection solution[16] 
samples K relevant posts from a blog, and then virtually combines these posts into a 
topic-dependent pseudo-cluster. Federated search model solution[17] ranks blogs by 
the estimated number of relevant documents. Pseudo-cluster selection and federated 
search model solutions use small document model which treats posts of a blog 
individually. In expert finding solution, large document model which treats all posts 
of a blog as a whole can achieve a better performance than the small document model. 
All solutions use language model as the basic retrieval method. 

In TREC 2009 Blog Track, the opinion finding task and the blog distillation task 
are merged into a new task, called faceted blog distillation. Opinion is one of three 
facets. This paper mainly focuses on the opinion facet. We use a mixture of topic and 
opinion language models to solve the problem of blog opinion retrieval. A mixture of 
language models is commonly used in IR application. The basic idea[18] is to infer 
language models corresponding to unobserved features in the corpus, with the hope 
that the features learned represent topic and opinion. An example of these works is 
from Koji and Victor[5], in which sentiment relevance models and topic relevance 
models are combined based on Generative Models. Mei ant others[4] first introduced 
Topic-sentiment Mixture model (TSM), which can reveal the latent topical facets in a 
blog collection, the subtopics in the results of an ad hoc query, and their associated 
opinions. Their TSM model is a special case of CPLSA model[19], which mixes 
themes with different views. TSM attempts to learn a general opinion model to all 
topics, based on the assumption that the opinion model is independent to the topic 
model. However, in reality, there is a correlation between opinion model and topic 
model. For example, in topic “wii exercise”, the words represent opinion such as 
“magical”, “disgust”, “silly” have a higher probability of occurrence; while in topic 



252 P. Jiang et al. 

“westerns movies and novels”, the opinionated words such as “flawless”, “oddities”, 
“propitiously” are more likely to appear. Our approach assumes each topic has its 
own opinion relevance model. The opinion relevance model can be estimated by 
pseudo-relevance feedback, and then combined with topic relevance model which is 
estimated by wiki pseudo-relevance feedback.  

3   Problem Definition 

The aim of opinion blog retrieval task is to “find opinionated or factual blogs that are 
principally devoted to a given topic2 over the timespan of the blog”. Inspired by 
TREC 2009 Blog Track, we define the opinion blog retrieval task as follows: 

Given a topic T, find blogs related to T, rank them by topic relevance and opinion 
relevance. The system should provide three blog ranking results according to 
opinionated relevance, factual relevance and topic relevance as the baseline 
respectively. The retrieval unit is a blog containing a number of blog posts which can 
be viewed as web documents. 

The previous solution to blog opinion retrieval problem adopted a two-stage 
strategy: 1) Topic relevance retrieval that finds all topic relevant blogs, regardless of 
the opinion relevance; 2) Using different classification techniques to compute the 
opinion relevance of all retrieved blogs, followed by re-ranking them. In the 
following section, we introduce our approach based on the topic-opinion mixture 
model to address the blog opinion retrieval task. 

4   Our Approach to Blog Opinion Retrieval 

4.1   Blog Representation and Query Generation 

Following the works of [17, 20], we choose Global Representation Model to represent 
blog. This model treats a blog as a virtual document which is composed of all posts of the 
blog. Because this model considers all posts over the timespan of the blog, it can factually 
reflect the recurring interest of the blog. In addition, since we use language model based 
approach to rank, Global Representation Model, which combines many posts into a large 
document, can avoid the problem of sparsity of words as much as possible.  

In our approach, title, description and narrative fields of a topic are used for query 
string generation. First, we filter out unnecessary punctuation marks in the above 
fields. All verbs are replaced by their infinitives and all nouns by their singular forms. 
After this, we extract the keywords to build the bag of words. The basic Indri3 query 
Q is defined as: 

#combine(w1 w2 …wn) 

w1 w2 …wn are the keywords in the bag. We use the following Indri query template to 
generate query string for a given topic: 

                                                           
2 Topic in TREC mainly includes three fields: title, description and narrative. 
3 Indri is a search engine from the Lemur project.  
  http://www.lemurproject.org/indri/ 
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#weight(0.5 Qtitle 0.3 Qdescription 0.2 Qnarrative) 

where Qtitle, Qdescription and Qnarrative are basic Indri queries generated by title, 
description and narrative field of the topic. 

4.2   Basic Retrieval Model  

Using the language model approach in IR has shown its effectiveness and simplicity.  
The general language model approach[21] is decomposed into three components: 1) 
query model Q; 2) document model D; 3) matching strategy between query model 
and document model. In our approach, we choose KL-divergence to measure the 
distance between Q and D, and rank blogs by the following formula: 
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Because the constant cons( Q) does not affect the ranking results, we do not compute 
it in our system. Thus, the main task is to estimate Q and D. For blog retrieval in the 
paper, the document model D is a multinomial distribution whose parameters are 
represented by unigram language models. We assume that blog documents are 
generated by D, which can be estimated by the following formula: 
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where p(w|C) is a background language model, d is a post of blog D, c(w,d) is the 
count of w occurs in d, and μ is a Dirichlet smoothing parameter. We use μ=2000 in 
this paper, which is optimal in most cases[22]. 

In traditional approach[21], Q will be updated by feedback documents model that 
can be obtained by the relevant documents judged by users, or top documents from 
initial retrieval. To address the special need for blog opinion retrieval, we introduce 
Topic-opinion Mixture model TO, and interpolate it with the original query model Q 
to obtain the updated query model Q’, and then assign a score to blog D by Formula 
(1). The updated query model Q’ is: 

( )' 1Q Q TOθ α θ αθ= − +  (3)

where α controls the influence of topic-opinion mixture model TO. In Section 4.3, we 
describe how to estimate topic-opinion mixture model TO. 

4.3   Topic-Opinion Mixture Model 

The topic-opinion mixture model TO in Formula (3) is the language model which 
reflects the information need for both topic and opinion; hence a mixture of language 
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models is used to estimate TO. In our solution, we define two language models, 
namely, topic relevance model T and opinion relevance model O. The topic-opinion 
mixture model TO is a linear combination of the two language models: 

( )1TO T Oθ β θ βθ= − +  (4)

where β is used to control influence of opinion relevance model O.  
In general, the topic relevance model T in Formula (4) can be obtained by pseudo-

relevance feedback method (PRF). PRF assumes the k top-retrieved documents are 
relevant to the original query and extracts highly discriminative words from those 
documents to update the original query model. We use divergence minimization 
algorithm[21] to estimate T. The divergence minimization algorithm assumes that the 
topic relevance model is very close to each language model of feedback documents, 
and uses KL-divergence as the distance between two language models. In order to 
obtain the feedback documents with high relevance, we index the Wikipedia corpus4 
and treat the k top-retrieved wiki pages as the relevance feedback documents. Given a 
topic T, let F= {d1, … dk} be a set of top k retrieved feedback documents from 
Wikipedia corpus. So the distance can be represented as: 
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Where Wiki is the Wikipedia corpus language model, λ∈[0, 1) is the factor that 
controls the weight of Wikipedia corpus language model. Following [21], p(w| T) can 
be computed as follows: 
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According to Formula (6), words that are common in the feedback documents, but not 
common in the entire Wiki corpus will be assigned a higher probability. In our 
system, k=25, λ=0.5, the feedback terms count is set to be 100. 

Next we must estimate the opinion relevance model O in Formula (4). O reflects 
the users’ information need for opinion. Some bloggers provide opinionated content 
for their interested topics, while others report factual information. So we need to 
estimate two O, one for opinionated information and the other for factual information. 
Previous works show that the opinion always has an association with topic. Different 
topics may have a different opinion expression. But training different models on 
annotated data for different topic is usually unpractical.  

The basic procedure of our approach has two steps. The first step is to expand 
original query with some subjective words or objective words, and then use the 
expanded query to obtain the top k ranked results as pseudo-feedback documents. The 
second step is to make use of pseudo-relevance feedback method to estimate O. For 
the first step, the most important thing is to select m subjective/objective words that 
have the closest association with a given topic. In our solution, we use a subjective 
lexicon and an objective lexicon. The subjective lexicon contains 8821 words that are 

                                                           
4 http://download.wikimedia.org/enwiki/  
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used in OpinionFinder[23]. The words in objective lexicon are selected from 
SentiWordNet[24]. Similar to [25], we use the Pointwise Mutual Information (PMI) 
to measure the semantic association between subjective/objective word w and the 
query string Q of a given topic: 
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where |C| is the total number of documents in corpus. We make use of blog collection 
index to estimate PMI. hits(w) and hits(Q) are the counts of retrieved documents 
which contain subjective/objective word w and query string Q respectively. 
hits(#uw15(w  Q)) is the count of retrieved documents containing w and Q 
simultaneously in an unordered window of 15 terms. The reason why we use a fixed 
size window instead of a sentence is that: it is time-consuming and unpractical to split 
all text into sentences, and the inaccuracy can be ignored when large corpus is used. 
To avoid division by zero, 0.01 is added to the number of hits. Finally we 
choose the top 30 subjective/objective words according to the PMI value, and 
use them to expand original query. The feedback documents can be used to build 
opinion relevance model O by Formula (6).  

5   Experiments 

5.1   Experiment Setup 

5.1.1   Data Sets 
We use TREC Blogs08 collection as required by TREC 2009 Blog Track to evaluate 
our approach. The summary statistics of this collection is shown in Table 1. We 
actually use the permalinks and homepages in our approach. Blog feeds collection is 
not used. It is because the text in the feed pages usually contains a few sentences of 
each post and therefore cannot reflect the topic or opinion well. The permalinks and 
homepages are encoded by HTML. We use Indri to index them respectively. The 
Krovetz stemmer and a list with 450 stop words are used to pre-process. 

Table 1. Summary statistics of data sets 

Data Set Doc number Size (Uncompressed) Time span 
homepages 1,011,733 56G 

feeds 1,303,520 808G 
permalinks 28,488,767 1445G 

14/01/2008 
~ 

10/02/2009 

5.1.2   Evaluation 
There are 13 opinion topics provided by TREC 2009 Blog Track (see Table 2). The 
evaluation metrics used are standard IR measures[26], such as mean average precision 
(MAP), R-Precision (R-prec), and precision at top 10 results (p@10). The relevance 
and opinion judgments adopt the TREC 2009 Blog Track standards: not judged (-1), 
not relevant (0), relevant (1), relevant and opinionated (2) and relevant and factual 
(3). All results are assessed by the evaluation tool provided by TREC. 



256 P. Jiang et al. 

There are four approaches in our experiments for comparative studies: (1) Our 
Topic-opinion Mixture Model (TOM) (2) MEClassifier. It is a traditional approach 
based on classifier. We trained a maximum entropy classifier on Movie Review Data. 
The classifier takes blog text vector as input, and outputs opinionated or factual label 
and an associated score, which is combined with original relevance score. Blogs is 
then re-ranked by the combined score. (3) SingleModel. It combines all topic models 
with the same opinion model. This approach is introduced in [4], which treats the 
opinion model the same for all topics in a collection. (4) Baseline. It only considers 
the topic relevance score while ranking the opinionated and the actual blogs.  

Table 2. Opinion topics in TREC Blog 2009 

No. Title No. Title No. Title 
1103 farm subsidies 1125 cosmetic surgery 1141 sciatica remedies 
1106 taiwan politics 1132 gun control dc 1144 future of journalism 
1111 jazz music 1134 new orleans after katrina 1150 NASA space program 
1116 homeopathic medicine 1137 civil unions   
1119 no child left behind 1140 scientology   

5.2   Experimental Results 

5.2.1  Overview of Experimental Results 
Result comparisons of each approach are presented in Table 3 and Fig.1. The results 
show that all approaches outperform the baseline. Comparing with other approach, 
our approach achieves the best retrieval performances except for R-prec and P@10 of 
factual blog retrieval in Table 3. This demonstrates that our proposed approach is 
effective especially for opinionated blog retrieval.  

Fig. 2 (a) and (b) show the performance improvements over baseline on each topic 
in terms of MAP and R-prec. The average improvements on all topics for opinionated 
blogs retrieval are 48.87% and 26.39% in terms of MAP and R-prec. The average 
improvements for factual blogs retrieval are 22.69% and 8.82% in terms of MAP and 
R-prec. We note that there is a slight improvement over baseline in factual blog 
retrieval. The explanation is that, ranking by topic and factual relevance does not have 
much difference from ranking only by topic relevance. Only topic 1134 and 1150 get 
decreased performance. In terms of MAP, there are 5 topics which have no 
improvement over baseline for factual blogs retrieval, comparing with 2 topics for 
opinion blogs retrieval. In terms of R-prec, there are 7 topics which have no 
improvement over baseline for factual blogs retrieval, comparing with 5 topics for 
opinion blogs retrieval. This proves that our approach is more effective for opinionated 
blogs retrieval than factual blogs retrieval. 

Table 3. Performance comparison among different approaches 

MAP R-prec P@10 Approaches 
opinionated factual opinionated factual opinionated factual 

Baseline 0.0573 0.1124 0.1027 0.1270 0.0923 0.0846 
MEClassifer 0.0693 0.1236 0.1298 0.1402 0.1000 0.1077 
SingleModel 0.0732 0.1159 0.1302 0.1305 0.1154 0.1231 

TOM 0.0853 0.1379 0.1317 0.1382 0.1231 0.1154 
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(a) Opinionated blogs retrieval                 (b) Factual blogs retrieval 

Fig. 1. Comparison of recall-precision curves among different approaches 
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 (a) MAP improvement over baseline        (b) R-prec improvement over baseline 

Fig. 2. Performance improvements over baseline on each topic 

5.2.2   Analysis of Parameters of Topic-Opinion Mixture Model  
In our approach, the parameter β of the topic-opinion mixture model controls influence of 
opinion relevance model O. Specifically, β is used to adjust the ratio of topic relevance 
and opinion relevance in topic-opinion mixture model. In order to analyze the effect of β, 
we note that parameter α in Formula (3) may affect the final performance. The difference 
can be observed in Fig. 3 (a), in which we show the changing performances by changing 
α from 0 to 1, with a step up size of 0.1. In this experiment, we set β=0, thus, TO actually 
becomes the topic relevance model T. Therefore the experiment actually evaluates the 
effects of feedback documents from Wiki corpus. We notice that using feedback model 
from wiki documents can generally improve the performance. But when it is too large 
approaching 1, the performance is extremely bad and is even worse than the performance 
without using feedback model. We choose α=0.5, which is a value that can usually 
achieve better performance than other values. 

Fig. 3 (b) shows how MAP, R-prec varies accordingly with β, when α is fixed at 
0.5. Note that performance at β=0 is actually the baseline performance. Overall, when 
the β value increases, the overall performance improves. But when β is too large, the 
overall performance deteriorates sharply. Be more specific, when β=0.5 the 
opinionated blog retrieval achieves its best performance; when β=0.3 the factual blog 



258 P. Jiang et al. 

retrieval achieves its best performance. This is because the topic relevance model 
helps to focus on the topic, while the opinion relevance model can supplement 
subjective or objective words for the purpose of opinion retrieval. When β is too 
large, there will be many opinionated or factual blogs with no topic relevance. 
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Fig. 3. Performance sensitivity to parameters 

5.2.3   Analysis of Samples from Topic-Opinion Mixture Model 
Table 4 presents sample probabilities using topic-opinion mixture model. Samples are 
divided into the two topics: “jazz music” and “no child left behind”. The “Topic 
model” columns contain the topic words. These words may come from the subtopic of 
the corresponding topic, such as “musician”, “band”, “Africa”, “educate”, “fund”, etc. 
So they can be treated as supplement for the original query. The “Opinionated model” 
columns contain subjective words related to the corresponding topic. As we have 
discussed above, the opinionated relevance model varies significantly with topics. For 
instance, for “jazz music” topic, the subjective words “limitless”, “entertaining” have 
relatively higher probability of occurrence; whereas for “no child left behind” topic, 
the associated subjective words are “willing”, “supportive”, etc. In the “Factual 
model” columns, the words are found to be neutral, without any semantic orientation. 
Some words appear in many topics, such as “comment”, “state”, etc. This reflects that 
the factual relevance model has low association with topics. 

Table 4. Sample probabilities from topic-opinion mixture model. The top 10 words with 
high probability of occurrence are selected. Results of two topics are presented corresponding 
to the three language models: topic relevance model, opinionated model and factual model. 

Topic 1111 jazz music Topic 1119 no child left behind 
Topic model Opinionated model Factual model  Topic model Opinionated model Factual model 

w p(w|θT) w p(w|θO) w p(w|θO) w p(w|θT) w p(w|θO) w p(w|θO) 
jazz 0.0730 exclusive 0.0137 comment 0.0141 school 0.0343 willing 0.0036 comment 0.0194 

music 0.0303 like 0.0137 new 0.0119 student 0.0313 rightly 0.0035 learn 0.0183 
play 0.0163 inestimably 0.0040 clear 0.0041 state 0.0263 supportive 0.0035 state 0.0062 

musician 0.0148 limitless 0.0040 state 0.0040 nclb 0.0258 benefit 0.0035 question 0.0057 
style 0.0133 entertaining 0.0026 profile 0.0039 educate 0.0223 clearly 0.0035 address 0.0052 
blue 0.0119 goodly 0.0023 concert 0.0038 fund 0.0219 contentment 0.0035 break 0.0048 
new 0.0119 friendly 0.0020 old 0.0037 federal 0.0119 important 0.0035 require 0.0047 
band 0.0111 willing 0.0017 live 0.0037 assess 0.0104 transparent 0.0034 public 0.0040 

america 0.0107 great 0.0015 swing 0.0032 child 0.0074 winnable 0.0034 legal 0.0039 
africa 0.0100 creative 0.0013 classic 0.0031 support 0.0070 justly 0.0027 educational 0.0038 
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6   Conclusions 

In this paper, we present an approach to the task of blog opinion retrieval. This 
approach uses topic-opinion mixture model to solve the problem of ranking blog not 
only by topic relevance but also by opinion relevance. Comparing with previous 
work, this model can effectively learn opinion relevance model without training on 
annotated data. In addition, the opinion relevance models vary with topics so that the 
model’s effectiveness to different topics is ensured. We evaluate our model on TREC 
Blogs08 collection, and the experimental results show that the topic-opinion mixture 
model approach achieves a better performance than other approaches for most of the 
opinion topics in TREC 2009 Blog Track. 

In general, performance of the blog opinion retrieval is worse than traditional text 
retrieval. There is still a huge potential space for further research to improve the 
performance of blog opinion retrieval. In addition, it would be interesting to explore 
the knowledge behind topic and opinion from the perspective of time dimension of 
blogs. Another interesting future research direction is to use the mixture language 
model to explore the other blog attributes or facets such as writing style, authority, 
etc. 
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Abstract. An open problem in machine learning-based sentiment classification 
is how to extract complex features that outperform simple features; figuring out 
which types of features are most valuable is another. Most of the studies focus 
primarily on character or word Ngrams features, but substring-group features 
have never been considered in sentiment classification area before. In this 
study, the substring-group features are extracted and selected for sentiment 
classification by means of transductive learning-based algorithm. To 
demonstrate generality, experiments have been conducted on three open 
datasets in three different languages: Chinese, English and Spanish. The 
experimental results show that the proposed algorithm’s performance is usually 
superior to the best performance in related work, and the proposed feature 
subsumption algorithm for sentiment classification is multilingual. Compared to 
the inductive learning-based algorithm, the experimental results also illustrate 
that the transductive learning-based algorithm can significantly improve the 
performance of sentiment classification. As for term weighting, the experiments 
show that the “tfidf-c” outperforms all other term weighting approaches in the 
proposed algorithm. 

Keywords: Sentiment, Transductive, Substring-group, Multilingual. 

1   Introduction 

With the growing availability and popularity of online user-generated information, 
including reviews, forum discussions, and blogs, sentiment analysis and opinion 
mining (“sentiment analysis” and “opinion mining” denote the same field of study 
[1]) have become one of the key technologies for handling and analyzing the text data 
from internet. One of the most widely-studied sub-problems of opinion mining is 
sentiment classification, which classifies evaluative documents, sentences or words as 
positive or negative (in some cases, the neutral class is used as well) [2] to help 
people automatically identify the viewpoints underlying the online user-generated 
information [3]. Since sentiment classification concerns the opinion expressed in a 
text rather than its topic, it challenges data-driven methods and resists conventional 
text classification techniques [4]. 
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Up to this date, machine learning-based methods have been commonly adopted for 
sentiment classification due to their outstanding performance [3, 4]. An open problem 
in machine learning-based sentiment classification is how to extract complex features 
that outperform simple features; figuring out which types of features are most 
valuable is another [5]. Most of the existing research focus on simple features, 
including single words [6], character Ngrams [7, 8], word Ngrams [3, 4, 8], phrases 
[5] and the combination of above features, but substring-group features have never 
been considered in sentiment classification. In fact, the substring-group features based 
classification approaches have at least the following potential advantages [9], 
allowing sub-word features and super-word features to be exploited automatically. 
With such approaches, the messy and rather artificial problem of defining word 
boundaries in some Asian languages can be avoided, and non-alphabetical features 
can be taken into account. Furthermore, different types of documents can be dealt 
with in a uniform way. 

In this study, the substring-group features are extracted and selected for sentiment 
classification by means of the transductive learning-based algorithm. Firstly, the 
substring-group features are extracted from the suffix tree constructed by the training 
and unlabeled test documents, based on the transductive learning theory [10]. Since 
the substring-groups include several continuous words or even sentences, the 
substring-group features facilitate the incorporation of word sequence information to 
sentiment classification. Also, since the suffix tree is constructed by both training 
documents and unlabeled test documents, the structural information of unlabeled test 
documents is incorporated to feature extraction. Secondly, the extracted substring-
group features are further selected to eliminate the redundancy among them. At last, 
SVM is adopted to classify the unlabeled test documents based on the selected 
features. Experiments have been conducted on three open datasets in three different 
languages, Chinese, English and Spanish, and the experimental results demonstrate 
the effectiveness of the proposed algorithm.  

The rest of this paper is organized as follows. Section 2 reviews the learning 
paradigms and the related work. The proposed algorithm is described in detail in 
Section 3. The experimental setup is illustrated in Section 4 and the results are given 
and analyzed in Section 5. Finally, this paper is summarized in Section 6. 

2   Learning Paradigms and Related Work 

Learning paradigms: Given an example x and a class label y, the standard statistical 
classification task is to assign a probability, Pr(y|x), to x of belonging to class y. In 

sentiment classification, the labels are Y∈{‘positive’, ‘negative’}. The data for the 
sentiment classification task consists of two disjoint subsets: the training set (Xtrain, 
Ytrain) = {(x1, y1), ···, (xN, yN)}, available to the model for its training, and the test set 
Xtest =(x1, ···, xM), upon which we want to leverage the trained classifier to make 
predictions. 

In the paradigm of inductive learning, (Xtrain, Ytrain) are known, while both Xtest and 
Ytest are completely hidden during training time. In the case of semi-supervised 
inductive learning [10-12], the learner is also provided with auxiliary unlabeled  
data Xauxiliary, that is not part of the test set. Another setting that is closely related to 
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semi-supervised learning is transductive learning [10, 13, 14], in which Xtest (but, 
importantly, not Ytest), is known at training time. One can think of transductive 
learning as a special case of semi-supervised learning in which Xauxiliary = Xtest. 

Related work: Sentiment classification can be performed on word level, sentence 
level and document level. In this paper, we focus on document sentiment 
classification. Previous studies for sentiment classification on document level can be 
generally classified into two categories, unsupervised approaches and supervised 
approaches.  

The unsupervised approaches focus on identifying semantic orientation of 
individual words or phrases, and then classifying each document in terms of the 
number of these words or phrases contained in each document. Turney determines 
semantic orientation by phrase Pointwise Mutual Information (PMI) based on pre-
defined seed words  [15] and rates reviews as thumbs up or down [16]. Kim and Hovy 
[17] build three models to assign a sentiment category to a given sentence by 
combining the individual sentiments of sentiment-bearing words. Liu et al. classify 
customer reviews using a holistic lexicon [18, 19]. Kennedy and Inkpen determine the 
sentiment of customer reviews by counting positive and negative terms and taking 
into account contextual valence shifters, such as negations and intensifiers [20]. 
Devitt and Ahmad explore a computable metric of positive or negative polarity in 
financial news text [21]. Wan uses bilingual knowledge and ensemble techniques for 
unsupervised Chinese sentiment analysis [22]. 

The supervised approaches focus on training a sentiment classifier using labeled 
corpus. Since the work of Pang et al. [4], various classification models and linguistic 
features have been proposed. Dave et al. use machine learning based methods to 
classify reviews on several kinds of products [23]. Pang and Lee report 86.4% 
accuracy rate of sentiment classification of movie reviews by using word unigrams 
features for SVMs [3].  Mullen and Collier also employ SVMs to bring together 
diverse sources of potentially pertinent information, including several favorability 
measures for phrases and adjectives and knowledge of the topic of the text [24]. Most 
recently, Li and Sun compare the performance of four machine learning methods for 
sentiment classification of Chinese reviews using Ngrams features [8]. Blitzer et al. 
investigate domain adaptation for sentiment classifier [25]. Songbo et al. combine 
learn-based and lexicon-based techniques for sentiment detection without using 
labeled examples [26]. 

To the best of our knowledge, though substring-group features have been used for 
topic, authorship and genre classification [9], they have not yet been considered in 
sentiment classification. Moreover, the structural information of unlabeled test 
documents is used in this paper by transductive learning, which has not been studied 
in any related work of sentiment classification. Furthermore, the synergetic effect of 
feature extracting and feature selecting has been reflected in this study. 

3   The Proposed Algorithm 

According to the conclusions from the learning paradigms in subsection 2.1, not only 
the training documents, but also the unlabeled test documents can be used at training 
time by the transductive learning-based algorithm [10]. The proposed algorithm takes 
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the training documents (both text and class labels) and the unlabeled test documents 
(only text) as input, and outputs the predicted classifications of the unlabeled test 
documents. The framework of the proposed algorithm is shown in Figure 1, including 
four stages: substring-group feature extracting, term weighting, feature selecting and 
classifying.  

3.1   Substring-Group Feature Extracting 

The unique substring-group features are extracted by the following steps.  
Step (a) aims to construct a suffix tree using all the strings of both training 

documents and unlabeled test documents. The suffix tree is constructed by Ukkonen’s 
algorithm with O(n) time complexity, where n is the number of characters in the text 
corpus [27]. This step shows the incorporation of transductive learning. 

In step (b), the key-nodes are extracted from the constructed suffix tree. For an m-
character text corpus, the constructed suffix tree has m leaf-nodes and at most m-1 
internal nodes [28]. The text corpus’s length m is usually a very large number, so it’s 
necessary to extract the key-nodes from the (2m-1) nodes. The key-node extracting 
criteria proposed in [9] is used in this paper, and the recommended values are 
adopted: L=20, H=8000, B=8, P=0.8 and Q=0.8. The meanings of the parameters are 
listed in Table 1. 

In step (c), every suffix of each document is matched with the suffix tree, and all the 
IDs of the matched key-nodes are taken as the content of the corresponding document. 

In step (d), from the training part of the converted documents, all the unique key-
node IDs are extracted as features for sentiment classification. This step guarantees 
that the evaluation of the following experiments is open test. 

In step (e), all the converted documents are translated into corresponding vectors 
using the unique feature table produced by step (d). 

 

Fig. 1. The framework of the proposed algorithm 

According to the definition of suffix tree [28], each node of the suffix tree 
represents a substring-group of the text corpus. Therefore, the extracted key-node IDs 
are also called substring-group features in this paper. Moreover, the time complexity 
of the computing steps a, b and c is linear, which has been proved in [9]. 
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Table 1. The key-nodes extracting parameters 

 

3.2   Term Weighting 

Term frequency has traditionally been used in the standard text classification, but 
Pang et al. [4] obtained better performance by using presence rather than frequency. 
Consequently, both term presence (“bool”, “three”) and term frequency (“tf” and 
“tfidf-c”) are used in this paper. The “tfidf-c” is the variants of standard “tfidf”, and it 
is widely used in text classification [29, 30]. The four adopted term weighting 
approaches are defined as formulas 1, 2, 3, and 4. 

 :      1 , 00 , 0 (1) 

 :    2 , 11 , 10 , 0 (2) 

 : ,  (3) 

 
- :      ,

∑ ,  
(4) 

Here,  denotes a distinct term corresponding to a single feature; ,  represents 
the number of times term  occurs in the document  ;  is the number of 
documents the term  occurs in; N is the total number of training documents. 

3.3   Feature Selecting 

Document frequency (DF) is the number of documents in which a term occurs. It is 
the simplest criterion for feature selection and can be easily scaled to a large dataset 
with linear computation complexity. It is a simple but effective feature selection 
method for text categorization [31]. In this study, DF is used to pick out the 
discriminating substring-group features for training and classification. 

For DF (Document Frequency) calculation, we compute the document frequency 
for each feature in the training corpus and then select the top N features with the 
highest scores. The basic assumption is that the rare features are either non-
informative for class prediction, or not influential in global performance. 

L The minimum frequency. A node is not extracted, if it has less than L leaf-nodes in the 
suffix tree. 

H The maximum frequency. A node is not extracted, if it has more than H leaf-nodes in 
the suffix tree. 

B The minimum number of children. A node is not extracted, if it has less than B children. 

P The maximum parent-child conditional probability. A node u is not extracted, if the 
probability Pr(v|u) = freq(v)/freq(u)    P, where u is the parent node of v. 

Q The maximum suffix-link conditional probability. A node s(v) is not extracted, if the 
probability Pr(v|s(v)) = freq(v)/freq(s(v))  Q, where the suffix-link of v points to s(v). 
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3.4   Classifying 

In this step, the sentiment classifier is trained by machine learning algorithms to 
predict the classifications of the unlabeled test documents. Due to SVMs’ outstanding 
performance [3, 4, 6, 8, 24, 32], SVMs are adopted in this paper. The SVMlight 
package is used for training and testing with default parameters. 

4   Experimental Setup 

4.1   Datasets 

The proposed algorithm has been tested on three open datasets in three different 
languages: Chinese, English and Spanish. Table 2 gives a short summary of these 
open datasets. 

Table 2. The summary of the open datasets 

Language Positive Negative n-fold CV Encoding 
Chinese_160001 8000 8000 4 GB2312 
English_14002 700 700 3 ASCII 
Spanish_4003 200 200 3 ISO-8859-2 

These 160,000 Chinese hotel reviews were crawled from the website 
http://www.ctrip.com/, which is one of the most well-known websites in 
China for hotel and flight reservation. The “English_1400” is most commonly used 
for sentiment classification in English. The Spanish corpus is a collection of 400 
reviews on cars, hotels, washing machines, books, cell phones, music, computers, and 
movies. Each category contains 50 positive and 50 negative reviews, defined as 
positive or negative based on the number of stars given by the reviewers.  

In order to compare the results from the related works on these open datasets, 4-
fold, 3-fold and 3-fold cross validation are used respectively in the following 
experiments. 

4.2   Evaluation Metrics 

To evaluate the performance of the proposed algorithm for sentiment classification, 
we adopted traditional evaluation metric accuracy that is generally used in text 
categorization [30]. In addition,   microF1 and macroPrecision are also computed to 
compare with the related work. 

                                                           
1 http://nlp.csai.tsinghua.edu.cn/~lj/pmwiki/ 
 index.php?n=Main.DataSet 
2 http://www.cs.cornell.edu/people/pabo/ 
 movie-review-data/mix20_rand700_tokens.zip 
3 http://www.sfu.ca/~mtaboada/research/SFU_Review_Corpus.html 
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5   Experimental Results 

5.1   Comparisons 

To compare to the algorithms in related work, the best performances of the existing 
typical methods on each dataset are listed in Table 3, respectively. The column 
“#Features” is the number of features when the best performance is achieved. 

Table 3. Comparisons with the best performance of the existing typical methods 

 

As illustrated in Table 3, although the proposed algorithm (shown in gray 
background) does not use any preprocessing steps, such as word segmentation and 
stemming, it outperforms the character or word Ngrams based methods on three 
different language datasets. Note that all these datasets are processed by the proposed 
algorithm in a uniform way rather than different language-specific ways. Another 
observation is that the number of features (#Features) used in the proposed algorithm 
is larger than most other algorithms, which indicates that the promising performance 
of the proposed algorithm is at the cost of high feature dimension. 

5.2   Multilingual Characteristics 

Since the proposed algorithm treats the input documents as character sequences 
regardless of their syntax or semantic structures, no word segmentation technology is 
needed. Consequently, the proposed algorithm can deal with any language in any 
encoding, which has been demonstrated by the experiments in Table 3. 

Furthermore, the proposed algorithm is capable of handling text corpus containing 
both English and Chinese words at the same time. We conduct an experiment on the 
mixed-language dataset, including the “English_1400” corpus and 1,400 Chinese 
reviews (700 pos + 700 neg) randomly selected from the “Chinese_16000” corpus. 
Three-fold cross validation is adopted. The experimental results are shown in Figure 
2. As is shown in Figure 2, the proposed algorithm achieves promising performance 
(shown in dark blue curve) on the mixed-language dataset, which is even better than 
the performance obtained by using only the English corpus. 

Language Techniques
Best

Performance(%)
#Features 

Chinese

(16,000)

SVM(word bigrams, tfidf-c) [8] 91.2microF1 251,289 
SVM(character bigrams, tfidf-c) [8] 91.6microF1 128,049 
SVM(key substring-groups + DF, tfidf-c) 94.0

microF1 41,454 
English

(1,400) 
SVM(character unigrams, bool) [4] 82.9accuracy 16,165 
SVM(key substring-groups + DF, tfidf-c) 84.3

accuracy 28,726 
Spanish

(400)
No existing work has used this corpus yet. 
SVM(key substring-groups + DF, tfidf-c) 78.7

accuracy 2,519 
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Fig. 2. The experiment on the mixed-language dataset (DF+“tfidf-c”) 

5.3   Feature Frequency vs. Feature Presence 

The performance of sentiment classifier is highly affected by the text representation. To 
show the impact of the term weighting approaches, we conduct a series of experiments. 

As demonstrated in Figure 3, different term weighting approaches lead to different 
classifying performances. Among all the term weighting methods, the “tfidf-c” 
outperforms all other approaches on the three open datasets in different languages, 
while the “tf” performs the worst. The “bool” always achieves better performance 
than the “three”.  

This observation agrees with Pang’s finding: the better performance is achieved by 
accounting only for feature presence (“bool”), not feature frequency (“tf”) [4]. 
However, the advanced feature frequency (“tfidf-c”) is superior to the feature 
presence (“bool”) in the proposed algorithm. Consequently, the “tfidf-c” is used in 
every experiment in the following subsections. 

5.4   Influence of Feature Selecting 

Figure 3 also displays the effectiveness of feature selecting to sentiment classification. 
As illustrated in Figure 3, the DF-based feature selection method can eliminate up to 
50% or more of the unique substring-group features with either an improvement or no 
loss in classification accuracy, especially the “tfidf-c” curves (shown in green). In 
addition, Table 3 shows that all the best performances achieved by the proposed 
algorithm have used DF-based feature selection methods. 

Based on above observations, we draw the following conclusions: the extracted 
substring-group features in step 1 are redundant and the feature selecting methods 
should be further used to eliminate the redundancy among the extracted substring-
group features. 

5.5   Transductive Learning vs. Inductive Learning 

The following experiments show the effectiveness of using the transductive learning-
based algorithm instead of inductive methods. Figure 4 gives the experimental results 
on the three open datasets in three different languages. 
 

75%

80%

85%

90%

95%

8% 20
%

30
%

40
%

50
%

60
%

68
%

75
%

81
%

90
%

98
%

A
cc

ur
ac

y

topN Percent of Features

English_1400+Chinese_1400

English_1400
Chinese_1400



 Feature Subsumption for Sentiment Classification in Multiple Languages 269 

 

 

 

 

Fig. 3. The accuracies achieved by the 
proposed algorithm on three open 
sentiment datasets in different languages 

Fig. 4. Comparisons of transductive 
learning (green and red) and inductive 
learning (dark blue) 

As demonstrated in Figure 4, the transductive learning (shown in green and red 
curves) based algorithm is well situated for sentiment classification. With the growth 
of the unlabeled test documents added in the suffix tree construction, the 
performances of transductive learning based algorithms improve significantly. 

Seen from the data shown in white background in Table 3 and the dark blue curves 
in Figure 4, another interesting observation is that the substring-group based 
algorithms in inductive learning setting is inferior to the algorithms using character or 
word Ngrams features, which illustrate transductive learning’s importance to 
sentiment classification from another perspective.  

The reason for the improvement by transductive learning is that the more unlabeled 
test documents are added to the construction of the suffix tree, the more complete the 
structure of suffix tree becomes. This, in turn, renders the suffix tree more 
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representative of the text corpus. This leads to extracting more representative 
substring-group features from the suffix tree. Result is the converted documents being 
more representative of the original text documents. So the unlabeled test documents’ 
structural information used at the beginning step indirectly contributes to the feature 
subsumption for sentiment classification. 

6   Conclusion 

In this study, both feature extracting and feature selecting are incorporated into 
sentiment classification, and the synergetic effect of them is studied. Moreover, the 
proposed algorithm combines the substring-group features with transductive learning.  

Experiments have been conducted on three open datasets in three different 
languages, including Chinese, English and Spanish. The results show that the 
proposed algorithm achieves better performance than the existing algorithms, without 
any preprocessing steps (word segmentation, stemming, etc.). Furthermore, the 
proposed algorithm proves to be multilingual, and it can be directly used for 
sentiment classification with any language in any encoding. In terms of term 
weighting approaches, the “tfidf-c” performs best in the proposed algorithm. 
Experimental results also demonstrate that the transductive learning based algorithm 
can significantly improve the classifiers’ performance by incorporating the structural 
information of unlabeled test documents.  

In the future, we will examine the wrong classifications to get insights on how to 
improve the classifier. In addition, more feature extracting methods will be explored 
to improve the overall performance of sentiment classification. 
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Abstract. User-generated content (UGC) from Internet users has significant
value only when its credibility can be established. A basic approach to estab-
lishing credibility is to take an average of scores from annotators, while more so-
phisticated approaches have been used to eliminate anomalous scoring behaviour
by giving different weights to scores from different annotator profiles. A number
of applications such as file sharing and article reviewing use a decentralised archi-
tecture. While computing a weighted average of static values in a decentralised
application is well studied, sophisticated UGC algorithms are more complicated
since source values to be aggregated and their weights may change in time. In
our work we consider a centralised credibility management algorithm, Score-
Finder, as an example, and show both structured and unstructured approaches for
computing time-dependent weighted average values in peer-to-peer (P2P) net-
works. Experimental results on two real data sets demonstrate that our approaches
converge and deliver results comparable to those from the centralised version of
ScoreFinder.

1 Introduction

User-Generated Content (UGC) is an increasingly important information source on the
Web. UGC applications process individual data streams from a large number of Internet
users and make this information available globally, e.g. Social Networking, Collabora-
tive Content Publishing, File Sharing, Virtual Worlds and other collaborative activities.
Examples of UGC include purported factual information, user opinions or reviews on
public events and issues, files and documents. The value of the information from these
applications is proportional to the information credibility – users need to be able to
ascertain the credibility of the information in the UGC.

Confirming the credibility of a given content item using a centralised authority is
infeasible due to the scale of UGC, and so most systems allow the users themselves
to provide feedback, or score the content items that other users have provided. Score-
Finder [4] was proposed addressing the problem of aggregating feedback.

Not all UGC applications can be hosted centrally. For example, file sharing applica-
tions are more effective when they are decentralised, using a peer-to-peer (P2P) model,
and it is widely accepted that the P2P model is applicable to a large range of UGC appli-
cations. Such applications are emerging, and they do not have a central trusted authority
that will undertake the computations in a secure way. Indeed one of the motivations for

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 272–282, 2010.
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these applications is to the contrary that there is no central authority in which trust must
be placed. The distribution of trust therefore removes the so called “trust bottleneck”
but creates a different problem of distributed trust. Furthermore, distributed functional-
ity that benefits the majority of peers in a peer-to-peer system, such as UGC scoring,
is likely to be supported in the sense that the required computational load put onto the
peers will be accepted. As a result, sophisticated UGC credibility methods are very
desirable but significantly challenging to apply in a decentralised system.

Both structured and unstructured peer-to-peer networks are considered in this pa-
per, and different strategies are accordingly used. Structured networks provide unified
access to each shared resource, namely all peers in a structured network can map an
arbitrary resource identifier – usually file names or hash values of the file content – to
a certain host. On the other hand, each peer in an unstructured peer-to-peer network
sees only a local area of the network, and searches intended resources by propagating
request messages.

In this paper we consider the problem of aggregating users’ feedback for both a
structured and an unstructured P2P architecture, and we use ScoreFinder as an instance
of sophisticated credibility management algorithms. We provide a structured P2P ap-
proach for implementing ScoreFinder, and show how is it implemented on a structured
peer-to-peer platform. We also provide an unstructured P2P approach for implementing
ScoreFinder, based on gossiping. Particularly, the method of using time-slots defined
on the Real-Time Clock to synchronise decentralised computation is novel and useful
in other gossiping protocols where restricted synchronisation is required. We simulate
network topology and churn to show its affect, as compared to a centralised or ideal
computation.

2 Related Work

2.1 Article-Annotator Model and ScoreFinder

We in [4] introduce a model of credibility management, called the Article-Annotator (A-
A) model and a comprehensive framework for Credibility Management, called Score-
Finder. The participants and shared content items are named Annotators and Articles
respectively, and the evaluations made by annotators are called Scores, which are num-
bers between 0 and 1.

The key operation of ScoreFinder, denoted as ExpertnessEstimation, is to
iteratively calculate the weight of each score contributed by annotators to articles,
and accordingly calculate the weighted average of scores to an article as the infer-
ence of the value or quality of the article, denoted as AggregateResult. An ad-
ditional operation is to shift scores from each user to remove general biases, denoted as
ScoreShifting.

2.2 Decentralised Frameworks

There are decentralised frameworks for implementing algorithms in structured and un-
structured peer-to-peer networks. In unstructured p2p networks, there are algorithms
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employing flood or gossip messages to gradually aggregate values distributed over all
peers. In [5], the authors proposed an approach to compute an overall average of values
on each peer by continuously exchanging the status in each small-scaled sub-network
(particularly, between the direct neighbourhoods). Similar approaches are adopted in
GossipTrust [11], where opinions are uninterruptedly exchanged between each peer
and a randomly selected peer (or all other peers) to reach the commonly agreed values.
In [1], a general model of such problems is established for computing a linear combina-
tion of values distributed in peer-to-peer networks. More emphasis in the paper is placed
on privacy of participants. On the other hand, most structured networks maintain a Dis-
tributed Hash Table (DHT) among peers. A DHT provides a many-to-one map between
keys and peers; in most cases the distribution of keys over peers is uniformly random. It
can be used for distributing data or for assigning logical roles over peers. Upon a given
set of peers, a search to a given key always hits the same peer. These characteristics
are employed in our framework, among other things, to map each of items to a peer
that is in charge of organising the computation. Sophisticated frameworks also provide
the ability of maintaining integrity of the Hash Table, by duplicating and/or migrating
data items from left peers to other available peers. In practice, we used Pastry [9] as the
DHT in our experiments; other DHT platforms like CAN [7] and Chord [10] provide
the same function.

3 Decentralisation of ScoreFinder

3.1 Decentralisation in Structured Peer-to-Peer Networks

In this section we explain how we implemented a structured P2P application that uses
ScoreFinder to rank articles. A decentralised architecture is proposed in Figure 1. The
centralised ScoreFinder algorithm is simply split into two parts, the annotator compo-
nent and the tracker component that could run on each peer; data exchange between
such peers is through the underlying structured peer-to-peer network. The principles in
splitting the centralised algorithm are: (1) to minimise the network transfer, and (2) to
minimise computation on the tracker side because trackers are likely to become bottle-
necks in the system. Thereby, the annotator component provides its expertness estimate
and score shifting factor (respectively e and b) to each related tracker (i.e. trackers host-
ing articles that this annotator has read) and the tracker component provides the most
recent results (r = {rj}) on hosted articles to the annotators that have read them.

Algorithm 1 and Algorithm 2 outline the computation in the tracker component and
the annotator component, respectively. ST , ET and rT denote the relevant part (i.e.
those for articles hosted in this peer) of S, E and r in each tracker peer, while SA and
rA denote the relevant part of S and r in each annotator peer. In particular, rAT denotes
the set of temporary results in the intersection of the corresponding rA and rT . We
use BT to denote the score shifting vector (i.e. bi) from annotators who gave scores to
articles that are hosted by this tracker.

These two algorithms continue to iterate for the lifetime of the objects which instan-
tiate them. We consider that in a peer-to-peer network, there are always new peers, new
content items and new annotations to be included, so the process of refining the ranking
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Fig. 1. Decentralising ScoreFinder on structured peer-to-peer networks

Algorithm 1. Process on Each Tracker
Require: All sij and score shifting factors
Ensure: Temporary result of each content item hosted by this tracker

1: loop
2: ST′ ← ScoreShifting(ST,BT)
3: rT ← AggregateResult(ST′

,ET)
4: for all connected annotators do
5: SendToAnnotator(rAT)
6: end for
7: Wait A Random Period
8: end loop

Algorithm 2. Process on Each Annotator (i)
Require: All sij and the temporary result vector r
Ensure: The expertness and score shifting factor of this annotator

1: loop
2: e← ExpertnessEstimation(rA,SA)
3: b← ScoreShiftingFactor(rA,SA)
4: for all connected trackers do
5: SendToTracker(e, b)
6: end for
7: Wait A Random Period
8: end loop

is continuously running across the life cycle of the peer-to-peer application. Further-
more, there is no synchronisation between peers, i.e. every peer arbitrarily sends its
most recent data at any time, and is always ready to receive messages from others. Af-
ter receiving an update message, e.g. updating e or ri, the peer updates its local cache,
and uses the cache to continue with the next round of computation. Between each loop,
the algorithm pauses for a short period. Network conditions largely influence the selec-
tion of this period. In our experiment, the period is set to 4 seconds since messages are
delivered through an application level route, which usually consists of 2 or 3 hops.
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3.2 Decentralisation in Unstructured Peer-to-Peer Networks

The ScoreFinder algorithm is also implemented in unstructured peer-to-peer networks
using a gossip-based approach. We note that peers in unstructured peer-to-peer net-
works do not have a global perspective to the whole network, instead each peer sees a
relatively small set of peers, called its neighbours. Therefore, there is no well-known
peers, like trackers in a structured peer-to-peer network, which can be in charge of or-
ganising computation for each article; instead peers continuously exchange information
with neighbours to propagate the influence of each original value to the whole network.

Also considered is the time-dependent change of values and their weights. Because
of our expertise and score adjustment operations, the shifted scores (ST′

) and the ex-
pertise estimates for each annotator (e) change in time. We need to compute time-
dependent weighted average values, as shown in the following formula, for coping such
changes:

f(v,w, t) =
∑

i

wi(t)vi(t), (1)

where v = {vi(t)} and w(t) = {wi(t)} are two sets of time-depending functions. We
define

∑
i wi(t) = 1 for any t. A number of studies have focused on computing time-

dependent weighted average values (as shown in Formula 1) in peer-to-peer networks
using gossiped messages. The algorithm introduced in [3] uses epochs to divide the
continuous computation into segments, in each segment the computation is restarted to
validate changed values on each peer or values from new joiners. Peers in the network
are synchronised by a broadcasting protocol.We then implemented ScoreFinder based
on our time-slot based protocol.

Article Overlay Network. Considering the very large number of articles that are
shared in current Internet applications, it is infeasible to store the status for all arti-
cles in each peer. In our approach, each node maintains a separate neighbour set for
each annotated article, and exchanges messages only with peers that have the same an-
notated articles. This is equivalent to building an overlay network for each article over
the original peer-to-peer network, and computing the weighted average score for the
article on this overlay network. Figure 2(a) shows two overlay networks for article 101
and article 102 resp., built upon the original peer-to-peer network. Each contains all the
peers giving scores to the article. Each peer finds peers that annotated same articles by
flooding search messages.

Time-slots and Gossip Messages. To compute average values that always reflect the
recent status of the peer-to-peer system, we use time-slots to synchronise the computa-
tion between peers. Time slots are periods that are predefined on the Real-Time Clock
(RTC) and known by all peers. For example, the application could define every 5 min-
utes from 0:00 o’clock to be a time-slot, i.e. there are 288 slots in 24 hours. Nowadays, a
large number of computers, including desktop computers, servers, mainframes and even
mobile devices, could maintain a precise Real-Time Clock by frequently synchronising
their local clock with Network Time Protocol (NTP) servers. Therefore, a time-slot is
started and terminated nearly simultaneously on all such peers. In the beginning of each
time-slot, computation is restarted from a new status, in which scores and weights are
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(a) Overlay networks for articles are built
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work. It is shown that peer x and peer y
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(b) Gossip messages are sent between
each pair of directly connected peers. The
ID of the current time-slot is sent in each
message along with i, w and v. It is shown
that before sending the three messages,
peer x has v101 = 1.8 and w101 = 2.7

Fig. 2. Unstructured network overlay

both updated based on the recent results from the last time-slot, and weighted average
values reflecting those updated parameters are reached in the end of the time-slot.

Figure 2(b) shows an example of three gossip messages exchanged between peers.
Each node maintains two values for each annotated articles (identified by i): the summed
weights, wi, and the summed product of weights and scores, vi. Assuming that a node
is directly connected to k peers for article i, in each step (the length of which is ran-
domly determined by the node, usually 3-5 seconds) this node sends a message to each
of the k peers as well as to itself. Each message consists of i, v

k+1 , w
k+1 and the ID of the

current time-slot (τ ). Afterwards, this peer re-compute its wi and vi by adding v and
w in all messages received in the past step that have the correct slot ID. It is noticeable
that there could be zero or multiple messages from the same peer that are received in
a step, which does not influence the validity of the algorithm. This cycle is repeated
until the end of the current time-slot, then all peers update the result of each annotated
article by computing rτ

i = vi

wi
, and update their expertness (eτ ). Before starting the new

time-slot, each peer re-evaluate its vi and wi by (eτsτ
ij) and eτ . This process is shown

in Algorithm 3.

4 Experiments

4.1 Outline of Experiment

In evaluating ScoreFinder, we implemented a simulator to imitate the scenario that con-
tent items are shared and annotated in peer-to-peer networks, including structured and
unstructured models. In our experimental unstructured peer-to-peer network, the boot-
strap is done by propagating messages in a flooding way to find peers that annotated
same articles. Each peer keeps at least 5 neighbours for each overlay network (i.e. for
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Algorithm 3. The Algorithm in each peer in a unstructured peer-to-peer network
τ ← NewTimeSlotID(); eτ ← 0.5; Sτ ← S; rτ ← S
loop

for all annotated articles : i do
vi ← eτ × sτ

i

wi ← eτ

end for
repeat

for all annotated articles : i do
if there are peers connected for i then

for all connected peers and this peer do
SendMessage(i, vi

k+1
, wi

k+1
, τ )

end for
vi ←sum of received v
wi ←sum of received w

end if
end for
Clear Received Messages
Wait A Random Period

until the end of the time-slot
τ ← NewTimeSlotID()
for all annotated articles : i do

if wi > 0 then
rτ

i ← vi
wi

end if
end for
Sτ ← ScoreShifting(S,rτ )
eτ ← ExpertnessEstimation(Sτ , rτ )

end loop

each annotated article, a peer connects to 5 other peers giving scores to this article too),
and propagates search messages through the p2p network in bootstrap or when a neigh-
bour is found to be unavailable. Each search message has a Time-to-live (TTL) field to
limit the diameter of the propagation. Each peer receiving the message retransmits the
message to a limited number of neighbours until a peer annotating the same article is
found or the TTL is exhausted. The targeted peer then sends back an acknowledgement
message to the inquirer establishing a connection with it. We used the MovieLens data
set [8], containing 10 million ratings for 10681 movies from 71567 volunteers,to evalu-
ate our algorithms; the data set was shuffled and randomly re-sampled to a smaller data
set in each trial. The two decentralised variants of ScoreFinder were examined in the
experiment.

4.2 Evaluation Method

We evaluated our results with a supervised approach. In contrast of the size of our
samples (150 annotators), we chose movies that received more than 2000 scores in each
of the two data sets, so the average scores from such a large number of annotators could
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Fig. 3. Performance evaluation on improvements to the baseline

be regarded as the common agreed opinion, and used as the reference. The evaluation
function used in the experiment was the Mean Squared Error (MSE) between inferred
credibility values and the reference; a smaller evaluation value denotes a more accurate
result. In peer-to-peer networks, results on each peer could be different to each other,
so we accumulated errors along each annotation, i.e. if an article is annotated by two
peers, the error between the oracle score and the final result on each of the two peers is
taken into the MSE.

4.3 Results and Discussion

Accuracy. Figure 3(a) shows the distribution of accuracy improvement in 60 trials,
each was on a randomly re-sampled data set from respectively the MovieLens data set
and the Netflix data set. There were 150 annotators and 2000 content items selected
for building each re-sampled data set, as well as all scores between those selected enti-
ties. In this figure, our algorithms have a general better performance than the baseline.
The performance of the unstructured peer-to-peer implementation stably follows the
centralised implementation, where the performance of the structured peer-to-peer im-
plementation has a larger variance to the centralised implementation. This could be
explained by the difference on the extents of synchronisation of the two decentralised
implementations. In the unstructured network, the algorithm closely follow the steps
of the centralised ScoreFinder, namely each iteration is strictly synchronised by time-
slots; whereas in the structured network, it does not follow the steps of the centralised
ScoreFinder, namely all peers arbitrarily change their scores and weights any time, and
the scores are gradually injected from the annotators to the trackers. This inconsistency
made the latter one may have larger variance than the centralised algorithm. We also
note that there is difference between average values calculated on different peers in the
end of each time-slot, this led the accuracy of ScoreFinder in unstructured peer-to-peer
networks consistently lower than the centralised implementation.

Looking into a single trial, the speed of convergence of the two ScoreFinder variants
is analysed in Figure 3(b) and Figure 3(c). Both variants converged in the trial, nonethe-
less the unstructured variant consumed more time to reach convergence. This is because
agreed weighted average values are reached after a round of exchanging messages in
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structured networks, but in unstructured networks it needs a whole time-slot to reach
the agreed average values.

Robustness. To reveal the robustness of ScoreFinder in a variable network circum-
stance, we simulated two types of network conditions with different strengths. First,
we randomly discarded messages between peers to examine the influence from packet
loss. Second, we randomly shut down a number of peers in every 10 seconds to see
how our algorithms reacted to variance on availability of peers. The same data set was
used in the two simulations to facilitate comparison. Figure 4(a) and Figure 4(b) show
the results in different packet loss rates and invalid peer ratios; in each condition the
experiment was run 5 times. It is showed that the variant for unstructured networks is
more sensitive to packet loss, whereas that for structured networks is more sensitive to
churn.
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Fig. 4. Robustness testing; the error evaluations are showed by the relative ratios to the re-
sults from the baseline; the error-bars show the maximum and minimum relative errors in each
condition

5 Conclusion

We introduced two decentralised variants of ScoreFinder, a credibility management
framework, for respectively structured and unstructured peer-to-peer network applica-
tions. The performance of our algorithm is examined in an experiment using two real
world data sets. The results reveal the merit of our approach by comparing to two base-
lines that are widely used in real applications. A number of issues regarding attacks and
misbehaviour of users are discussed in the paper.

The primary challenge to decentralise ScoreFinder is to compute weighted aver-
age scores from parameters that change in time, by this means two approaches are
used in different network models to synchronise distributed computation. In struc-
tured peer-to-peer networks, tracker components are hosted in peers which have
addresses that are closest to the identification of articles, whereas globally agreed time-
slots are used to coordinate paces of computation in unstructured peer-to-peer net-
works. The approach of using time-slots to synchronising computation across peers
is equal to building a logic-time framework in a distributed environment, by which
highly synchronised algorithms can be decentralised. Influence from churn and net-
work conditions to the accuracy of the decentralisation methods was examined in the
experiments.
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5.1 Future Study

In this paper, no methods for identifying cliques and reducing their influence are con-
sidered. Annotators in cliques are only penalised by degrading their individual expert-
ness levels considering that their scores may differ from other experts not in the clique.
Nonetheless, unbiased scores from an annotator who gives biased scores to only a small
subset of the content items are all lower weighted, hence we need an approach to say
which part of their scores is unbiased and which part is not. Still, the criteria for clique
identification could be closely related to the application, which is need to be further
investigated.

In [6], the authors argue that weighted average values could be computed along span-
ning trees which is formed by multi-casting messages. We noticed that there are two ad-
vantages using spanning trees instead of exchanging gossip messages in implementing
ScoreFinder. First, spanning tree-based algorithms have significantly faster convergence
speed than gossip message approaches; furthermore, the upper bound of the number of
messages to be exchanged before all peers reaching to an agreement is definite in a tree.
Second, a peer in a spanning tree may change its local score and weight at any time,
and the new agreement of weighted average value that reflects those changes will be
reached in each peer under the same upper bound; namely no synchronising mecha-
nisms, like time-slots or super peers, are necessary for spanning-tree styled algorithms.
SCRIBE [2], CAN [7] and other multi-casting algorithms are useful platform, whereby
spanning trees are built in unstructured peer-to-peer networks.
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Abstract. Automatic data-driven analysis of mood from text is an
emerging problem with many potential applications. Unlike generic text
categorization, mood classification based on textual features is compli-
cated by various factors, including its context- and user-sensitive nature.
We present a comprehensive study of different feature selection schemes
in machine learning for the problem of mood classification in weblogs.
Notably, we introduce the novel use of a feature set based on the affective
norms for English words (ANEW) lexicon studied in psychology. This fea-
ture set has the advantage of being computationally efficient while main-
taining accuracy comparable to other state-of-the-art feature sets exper-
imented with. In addition, we present results of data-driven clustering
on a dataset of over 17 million blog posts with mood groundtruth. Our
analysis reveals an interesting, and readily interpreted, structure to the
linguistic expression of emotion, one that comprises valuable empirical
evidence in support of existing psychological models of emotion, and in
particular the dipoles pleasure–displeasure and activation–deactivation.

1 Introduction

Mood is a state of the mind such as being happy, sad or angry. It is a com-
plex cognitive process which has received extensive research effort, and debate,
among psychologists about its nature and structure [9,10,6]. But better scien-
tific understanding of what constitutes a ‘mood’ has ramifications beyond psy-
chology alone: for neuroscientists, it might offer insight into the functioning of
the human brain; for medical professionals working in the domain of mental
health, it might enable better monitoring and intervention for individuals and
communities.

Research like that cited above aims to understand psychological drives and
structures behind human mental states, and typically does so with expensive
methodologies involving questionnaires or interviews that limit the number of
participants. By contrast, our work aims to classify and cluster mood based
on pre-existing content generated by users, which is collected unobtrusively – a
sub-problem known as mood analysis in sentiment analysis [8]. Text-based mood
classification and clustering, as a sub-problem of opinion and sentiment mining,
have many potential applications identified in [8].

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 283–290, 2010.
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However, text-based mood analysis poses additional challenges beyond stan-
dard text categorization and clustering. The complex cognitive processes of mood
formulation make it dependent on the specific social context of the user, their
idiosyncratic associations of mood and vocabulary, syntax and style which re-
flect on language usage, or the specific genre of the text. In the case of weblogs,
these challenges are highlighted by bloggers in the expression of diverse styles,
relatively short text length, and informal language, such as jargon, abbrevia-
tions, and grammatical errors. This leads us to investigate whether machine
learning-based feature selection methods for general text classification are still
effective for blog text. Feature selection methods available in machine learning
are often computationally expensive, relying on labeled data to learn discrimi-
native features; but the blogosphere is vast (reaching almost 130 million1) and
continuing to grow, making desirable a feature set that works without requiring
supervised feature training to classify mood. To this end, we turn our atten-
tion to the result of a study that intersects psychology and linguistics known
as affective norm for English words (ANEW) [1], and propose its use for mood
classification.

In addition to classification, clustering mood into patterns is also an impor-
tant task as it might provide vital clues about human emotion structure and
has implications for sentiment-aware applications. While the structure of mood
organization has been investigated from a psychological perspective for some
time [9], to our knowledge, it has not been investigated from a data-driven and
computational point of view. We provide an analysis of mood patterns using an
unsupervised clustering approach and a dataset of more than 17 millions blog
posts manually groundtruthed with users’ moods.

Our contribution is twofold. First, we provide a comparative study of ma-
chine learning-based text feature selection for the specific problem of mood clas-
sification, elucidating insights into what can be transferred from a generic text
categorization problem for mood classification. We then formulate a novel use
of a psychology-inspired set of features for mood classification which does not
require supervised feature learning, and is thus very useful for large-scale mood
classification. Second, we provide empirical results for mood organization in the
blogosphere on the largest dataset with mood groundtruth available today. To
our knowledge, we are the first to consider the problem of data-driven mood
pattern discovery at this scale.

The rest of this paper is organized as follows. Related work to feature selection
methods for classification and clustering tasks in general text and in sentiment
analysis is presented in Section 2. Work related to emotion measures in psychol-
ogy is also examined in this section. Next, we present machine learning based
feature selection schemes, together with the proposed ANEW feature set and lin-
guistic analysis, applied to mood classification in two large datasets in Section 3.
Section 4 presents the results of mood pattern discovery using an unsupervised
learning technique, and is followed by some concluding remarks.

1 From the state of the blogosphere 2008 at http://technorati.com

http://technorati.com
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2 Related Background

For generic text categorization, a wide range of feature selection methods in
machine learning has been studied. Most noticeably, Yang and Pedersen [14]
conduct a comparative study on different feature selection schemes including
information gain (IG), mutual information (MI ), and χ2 statistic (CHI ).

Other than term-class interaction based, another approach for selecting fea-
tures is to consider term statistics. Thresholds for term frequency (TF ) or docu-
ment frequency (DF ) are commonly used in feature reduction in data mining. A
joint from these two, the term frequency–inverse document frequency (TF.IDF )
scheme, is also popular in text mining which often outperform TF and DF. Some
works perform feature searching in narrower sets than over the entire vocabulary
such as linguistic groups like the parts of speech (POS ).

Related work making use of emotion bearing lexicon for sentiment analysis
includes [2], where Dodds and Danforth use the valence values of ANEW [1] for
estimating happiness levels in song lyrics, blogs, and the State of the Union.

Work related to mood clustering includes [5], where Leshed and Kaye group
blog posts based on their moods to find mood synonymy.

Generally, emotions have been represented in dimensional and discrete per-
spectives. In the first methodology, emotion states are coded as combinations of
some factors like valence and arousal. In contrast, the latter argues that each
emotion has unique coincidence of experience, psychology, and behaviour [6].
We base our work on the dimensional mode for estimating the emotion sphere
in blogosphere. Specifically, we use the circumplex model of affect [9,10] since it
conceptualizes emotion states simply via valence and arousal dimensions, which
can be computed using ANEW.

3 Textual-Based Mood Classification

3.1 Feature Selection Methods

Denote by B the corpus of all blogposts and by M= {sad, happy, ...} the set
of all mood categories. In a standard feature selection setting, each blogpost
d ∈ B is also labeled with a mood category ld ∈ M and the objective is to
extract from d a feature vector x(d) being as discriminative as possible for d to
be classified as ld. For example, if we further denote by V =

{
v1, . . . , v|V |

}
the

set of all terms, then the feature vector x(d) = [. . . , x(d)
i , . . .] might take a simple

counting with its i-component x
(d)
i represents the number of times the term vi

appears in blogpost d, a scheme widely known as bag-of-word representation.

Term-based selection. These are features derived with respect to a term v.
Two common features are term and document frequencies where term frequency
TF (v, d) represents the number of times the term v appears in document d,
whereas document frequency DF (v) is the number of blogposts containing the
term v. It is also well-known in text mining that TF.IDF (v, d) weighting scheme
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can potentially improve discriminative power where TF.IDF (v, d) = TF (v, d)×
IDF (v) with IDF (v) = |B|/DF (v) is the inverse document frequency. In this
work, a term v will be selected if it has high DF (v) value, or high average values
of TF (v, d) or TF.IDF (v, d) across all documents d over a threshold.

Term-Class interaction-based selection. The essence of these methods is to
capture the dependence between terms and corresponding class labels during the
feature selection process. Three common selection methods falling into this cate-
gory are information gain IG(v), mutual information MI(v, l) and χ2-statistics
CHI (v, l)[14]. IG (v) captures the information gain (measured in bits) when a
term v is present or absent; MI (v, l) measures the mutual information between a
term v and a class label l; and lastly CHI (v, l) measures the dependence between a
term and a class label by comparing against one degree of freedom χ2 distribution.

Affective Norms for English Words (ANEW ). Apart from feature sets
learned from data, for sentiment analysis, some emotion bearing lexicons have
been subjectively chosen by labor power could help. Among them is ANEW [1],
a set of 1034 sentiment conveying English words. These words are rated in terms
of valence, arousal, and dominance they could convey. We apply the proposed
set of 1034 words in ANEW exclusively as the feature vector, which means each
blogpost is represented as a sparse counting vector for these ANEW words.

3.2 Mood Classification Results

It has been shown that linguistic components such as specific use of adverbs,
adjectives or verbs can be a strong indicator for mood inference [8]. Therefore,
in this paper, we further run a part-of-speech tagger to identify all terms that can
be tagged as verbs, adjectives and adverbs. The tagger used is the SS-Tagger [12]
ported to the Antelope NLP framework, giving a reasonable accuracy2. Three
term weighting-based (TF, DF, TF.IDF ) and three term-class interaction-based
(IG, MI, CHI ) selection methods are employed in this experiment. These feature
selection methods shall be applied either on all terms (unigrams) or with respect
to a subset of terms tagged with a specific POS.

Our experimental design is to compare and contrast which feature selection
methods work best and to examine the effect of specific linguistic components
in the context of mood classification. For classification methods, we have exper-
imented with many off-the-shelf classifiers such as SVM, IBK, C4.5 and so on,
however, the naive Bayes classifier (NBC) consistently outperforms these meth-
ods and therefore we shall only report the results w.r.t NBC. For each run, we
use ten-fold cross-validation and repeat 10 runs and report the average result.
To evaluate the results, we report two commonly-used measures: accuracy and
F-score (which is measured based on recall and precision).

Effect of feature selection schemes and linguistic components. We use
two datasets, namely WSM09 and IR05, for the task of mood classification. The
first, WSM09, is provided by Spinn3r as the benchmark dataset for ICWSM
2 www.proxem.com

www.proxem.com
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2009 conference3 which contains 44 millions blogposts crawled between August
and October 2008. We extract a subset from this dataset consisting only blog-
posts from LiveJournal and query LiveJournal to obtain the mood groundtruth
entered by the user when the posts were composed. We only consider the moods
predefined by LiveJournal and discard others, resulting in approximately 600,000
blogposts. To validate the generalization of a feature selection scheme, we also
run it on another dataset (IR05) created in [7] which contains 535,844 posts
tagged the predefined moods. To make comparison with previous results in [11],
we examine three popular moods {sad, happy, angry} in this experiment. The
full set of 132 mood categories will be reported in the next section.

We run the experiment over combination of feature selection methods on
different linguistic subsets and report the top ten best results in Table 1.

Table 1. Mood classification results for different feature selection schemes and for
different part-of-speech subsets. Different combinations of feature selection methods
and POS subsets are run, but we report only the top ten results sorted in ascending
order of F-score.

WSM09 IR05
Selection
method

Linguistic
subsets Accuracy F-score

Selection
method

Linguistic
subsets Accuracy F-score

ANEW 0.713 0.697 IG Adjective 0.738 0.709
IG Verb 0.714 0.7 ANEW 0.734 0.712

TF.IDF unigram 0.744 0.738 TF.IDF AdjVbAdv 0.759 0.749
DF AdjVbAdv 0.75 0.745 TF AdjVbAdv 0.76 0.75
TF AdjVbAdv 0.751 0.745 DF AdjVbAdv 0.76 0.75

TF.IDF AdjVbAdv 0.754 0.748 TF.IDF unigram 0.765 0.756
DF unigram 0.753 0.752 DF unigram 0.765 0.762
TF unigram 0.753 0.752 TF unigram 0.765 0.762
IG AdjVbAdv 0.762 0.756 IG AdjVbAdv 0.773 0.763
IG unigram 0.776 0.774 IG unigram 0.791 0.788

With respect to feature selection scheme, information gain (IG) is observed
to be the best selection scheme. Other term-class interaction based methods do
not perform well, noticeably mutual information (MI ) does not appear in any
of the top ten results. These observations are consistent with what reported in
[14] for text categorization problem. However, different with conclusions in [14],
we found that CHI performs badly for mood classification task and does not ap-
pear in any top ten results. Surprisingly, both TF and DF performs better than
TF.IDF in all-term (unigram) cases, which otherwise has been known oppositely
in text mining that IF.IDF is often superior although much more computation-
ally expensive. Thus, TF or DF should be the alternative candidates for IG for
the trade-off of computational cost.

The performance of feature selection schemes experimented is also agreeable
well across two datasets as can be seen in Table 1, except for the first few
3 http://www.icwsm.org/2009/data/

http://www.icwsm.org/2009/data/
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Fig. 1. Discovered mood structure map. Each cluster is annotated with the top six
mood categories (best viewed in colour).

rows. Our best result stands at 77.4% F-score for WSM09 and 78.8% for IR05,
which is higher than what reported in [11] (66.1%). With respect to the effect of
linguistic components (which are not experimented in [11] and [5]), a combination
of adjectives, verbs and adverbs (AdjVbAdv) dominates the top ten results and
gives a very close performance to using all terms; noticeably using verbs or
adjectives alone shows a good performance.

Performance of ANEW. Without the need of supervised feature selection
stage, the result of ANEW feature is found to be very encouraging, appears in
both top ten results across two datasets. The results across two datasets are also
consistent, stand at approximately 70% F-score (still better than the best result
reported in [11]).

4 Mood Pattern Discovery

While most of existing work has focused on supervised classification of mood, we
are interested in discovering intrinsic patterns in mood structure using unsuper-
vised learning approaches. Using a large, groundtruthed dataset of more than
17 millions posts introduced in [5], we aim to seek empirical evidences to answer
various questions which have often posed in psychological studies. For example,
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does mood follow a continuum in its transition from ‘pleasure’ to ‘displeasure’,
or from ‘activation’ to ‘deactivation’? Is ‘excited’ closer to ‘aroused’ or ‘happy’?
Does ‘depressed’ transit to ‘calm’ before reaching ‘happy’?

We use a total of 132 predefined moods defined by livejournal.com4 for the
clustering task. Given a corpus of more than 17 millions posts, it means that
feature selection schemes presented in section 3.1 are very expensive to per-
form; for example, computing MI(v, l) for each pair (term, mood label) will
take O (|M| × |V|) where |M| = 132 (number of moods) and |V| is the number
of unique terms which could be in the order of hundreds of thousands. Since
our results in section 3.2 have shown that the proposed ANEW feature set gives
comparable results, marginally lower (∼8%) in the classification compared to the
best result but can totally avoid the expensive feature selection step, we shall
employ ANEW as the feature vector in this section.

We choose multidimensional scaling, in particular, self-organizing map (SOM)
[3] for clustering purpose. We use the SOM-PAK package [4] and the SOM
Toolbox for Matlab [13] to train and visualize the map. For training, an 9 × 7
map is used which accounts for nearly a half of the mood classes. Using the
recommendations in [3], the horizontal axis is roughly 1.3 that of the vertical
axis; the node topology is hexagonal, and the number of training steps is 32,000
(about 500 times of the number of nodes).

Due to space restriction, we omit coarse-level results and present in the Fig-
ure 1 the structures of the clusters discovered in which top six moods in each
cluster are included.

Several interesting patterns emerge from this analysis. At the highest level, one
can observe the general transition of mood from an extreme of pleasure (clusters
II, III, and V) to displeasure (clusters IV, VI, VII). On the pleasure polar we
observe the moods having very high valence values5 such as good (7.47), loved
(8.64) or relaxed (7), whereas on the displeasure end, we observe the moods
having low valence values such as enraged (2.46) or stressed (2.33). Certain
mood transition is also evidential, for example the cluster path IV-II-III presents
a transition pattern from infuriated to relaxed and then to good. Though not
strongly emerging as in the case of pleasure ↔ displeasure, a global pattern of
activation ↔ deactivation is also observed based on the analysis of the arousal
measure as shown in Figure 1. Our results are indeed favorable of the core
affect model for human emotion structure studied in psychology [9,10], generally
agreeable with the global mood structure proposed in there.

5 Conclusion

We addressed the problem of mood classification and pattern discovery in we-
blogs. While the problem of machine learning based feature selection for text
categorization has been intensively investigated, little work is found for textual
based mood classification which is often more challenging. Our first contribution
4 These moods can be viewed at http://www.livejournal.com
5 Measured based on a study on ANEW reported in [1].

http://www.livejournal.com
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is a comprehensive comparison of different selection schemes across two large
datasets. In addition, we propose a novel use of ANEW features which do not
require a supervised selection phase, and thus, can be applied for mood analy-
sis at a much larger scale. Our results have recalled similar findings in previous
results, but also brought to light discoveries peculiar to the problem of mood clas-
sification. Our newly proposed feature set has also performed comparatively well
at a fraction of the computational cost of supervised schemes, and was further
validated by the results of an unsupervised clustering exercise, which clustered
17 million blog posts, and provided a unique view of mood patterns in the blogo-
sphere. In particular, this study manifests global patterns of mood organization
that are analogous to the pleasure–displeasure and activation–deactivation di-
mensions proposed independently in the psychology literature, such as the core
affect model for the structure of human emotion. This data-driven organization
of mood could be of interest to a wide range of practitioners in the humanities,
and has many potential uses in sentiment-aware applications.
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Abstract. In this paper, we present a method to generate an extractive
summary from a single document using subjective logic. The idea behind
our approach is to consider words and their co-occurrences between sen-
tences in a document as evidence of their relatedness to the contextual
meaning of the document. Our aim is to formulate a measure to find
out ‘opinion’ about a proposition (which is a sentence in this case) using
subjective logic in a closed environment (as in a document). Stronger
opinion about a sentence represents its importance and are hence con-
sidered to summarize a document. Summaries generated by our method
when evaluated with human generated summaries, show that they are
more similar than baseline summaries.

Keywords: subjective logic, opinions, evidence, events, summarization,
information extraction.

1 Introduction

It is sometime necessary to analyse a single document for intelligent decision
making purpose in the absence of prior domain knowledge. In such a scenario,
significant sentences from a document or rather gist of that document can only
let an user know about what it is all about. Based on this filtered information,
the user can decide what kind of measures to be taken to perform the analysis;
thus, single-document summarization is one of the best ways to do this.

One way to do text summarization is by text extraction, which means to
extract pieces of original text on statistical basis or heuristic methods and put
them together to a new shorter text with as much information as possible pre-
served [9]. The concept of extracting significant sentences from a document for
generating extractive summaries has drawn attention in the literature.

In this paper, our approach is not mere assigning scores to a sentence. When
a document is looked from the perspective of human, they analyse it by finding
what the main idea of the source text is and filtering what is essential in the
information conveyed by the text. In [10], the authors have pointed out that a
given piece of text is interpreted by different person in a different fashion espe-
cially in the way how they understand and interpret the context. Thus we see

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 291–298, 2010.
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that human understanding and reasoning is subjective in nature unlike proposi-
tional logic which deals with either truth or falsity of a statement. So, to deal
with this kind of situation we used subjective logic to find out sentences which
are significant in the context and can be used to summarize a document.

2 Modeling ‘Opinions’ about a Sentence in a Document
Using Subjective Logic

In this section, we present how we formulate ‘opinion’ about a sentence using
subjective logic. Subjective logic [3] is a logic which operates on subjective beliefs
about the world, and use the term opinion to denote the representation of a sub-
jective belief. An opinion can be interpreted as a probability measure containing
secondary uncertainty, and as such subjective logic can be seen as an extension of
both probability calculus and binary logic. It is a type of probabilistic logic that
explicitly takes uncertainty and belief into account. It is suitable for modeling
and analysing situations involving uncertainty and incomplete knowledge [3], [4].

2.1 Interpretation of Evidence in a Document

How can we define evidence in a document? This is what we are building here
automatically. We consider words, phrases or co-occurrence of words, or a sen-
tence itself to be evidence present in a document. Now, based on this, our basic
motivation is to formulate ‘opinion’ about a proposition, which is a sentence
in this case. Stronger the opinions about a sentence, more is its significance in
the document. These opinions are measured by probability expectation of a sen-
tence. Greater the probability expectation, more significant is the sentence. If
probability expectation of two sentences are similar, then we need to look at the
sentence with lower uncertainty to fetch the important one [4] between two.

Assumptions: We propose the following framework for the practical application
of subjective logic in a document computing context.
1. All the words or terms (removing the stop words) in a document are atomic.
2. The sentences are unique, i.e., each of them occur only once in a given
document.

Representation of a document: A document consists of sentences. In this paper,
a sentence is considered to be a set of words. In a document, sentences are sep-
arated by stop marks (“.”, “!”, “?”). Terms (stop words excluded) are extracted
and the frequencies (i.e. number of occurrences) of the words in each sentence
are calculated.

Let us now define the notations which we will be using in the rest of the equa-
tions and explanations. Θ is the frame of discernment. We represent a document
as a collection of words, which is

Θ = Dw = {w1, w2, ..., wn} (1)
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where, Dw is a document consisting of words like w1, w2...wn and |Dw| = n.
Now,

ρ(Θ) = {{w1}, {w2}, ..., {w1, w2, w3, ..., wn}} ≡ 2Θ (2)

|ρ(Θ)| = 2n (3)

Since a document is a collection of sentences, it can be represented as

Ds = {s1, s2, ..., sm} (4)

where m is a finite integer and each si is an element of ρ(Θ). Each sentence is
comprised of words, which belong to the whole word collection of the document
Dw. We thus represent each sentence by,

Sl = {wiwk...wr} ∈ Θ (5)

where, 1 ≤ i, k, r ≤ n and Sl ∈ ρ(Θ).

2.2 Definitions of ‘Subjective Logic’ and Our Conceptualization

In fig.1, we present a model of a document with four sentences (s1, s2, s3, and s4)
and five words (w1, w2, w3, w4, and w5) respectively. Let frequency of occurrence
of each word in each sentence be one for simplicity. The words and sentences
(atomic and non atomic states) represent evidence. Now, we use the original
definitions from [4], and explain our formulation.

S1
S2

S3

W1 W2 

W3 

W4 

W5 

S4

Fig. 1. Example of a document

The first step in applying evidential reasoning is to define a set of possible
situations which is called the frame of discernment, Θ. A frame of discernment
delimits a set of possible states of the world, exactly one of which is assumed
to be true at any one time. In the given example, total number of all possible
states are 25 for 5 words given.

Definition 1 (Belief Mass Assignment). Let Θ be a frame of discernment.
If with each substate x ∈ 2Θ a number mΘ(x) is associated such that:

1. mΘ(x) ≥ 0
2. mΘ(∅) = 0
3.
∑

x∈2Θ mΘ(x) = 1
then mΘ is called a belief mass assignment in Θ, or BMA for short. For each
substate x ∈ 2Θ, the number mΘ(x) is called the belief mass of x.
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We calculate BMA for each event by,

m(x) =
F (x)

Z
, (6)

where F (x) =
∑N

k=1 fxk
, where N is the total number of sentences in the docu-

ment, x ∈ 2Θ, and fxk
is the frequency of occurrence of event x in sentence k. In

words, it is the total frequency of that event in all the sentences (or the whole
document).

Z =
∑
∀x �=∅
fx �=0

F (x), x ∈ 2Θ (7)

Z is the total frequency of the all the events which has valid evidence of truth
(whose frequency is non zero). In the given example, we have 7 valid states and
their corresponding frequencies in the document are: {F (w1) = 1, F (w2) =
2, F (w3) = 1, F (w4) = 2, F (w5) = 1, F (w1, w2) = 1, F (w2, w3, w4) = 1}.
Therefore, Z = 9 in this case. Using (6), we calculate BMA for each of the states
(or events) in the given example.

Definition 2 (Belief Function). Let Θ be a frame of discernment, and let mΘ

be a BMA on Θ. Then the belief function corresponding with mΘ is the function
b : 2Θ → [0, 1] defined by:

b(x) =
∑
y⊆x

mΘ(y), x, y ∈ 2Θ (8)

We calculate the belief of a sentence of the example as, b(s1) = m(w1)+m(w2)+
m(w1, w2).

Definition 3 (Disbelief Function). Let Θ be a frame of discernment, and let
mΘ be a BMA on Θ. Then the disbelief function corresponding with mΘ is the
function d : 2Θ → [0, 1] defined by:

d(x) =
∑

y∩x=∅
mΘ(y), x, y ∈ 2Θ. (9)

We calculate disbelief of s1 by d(s1) = m(w3) + m(w4) + m(w5).

Definition 4 (Uncertainty Function). Let Θ be a frame of discernment, and
let mΘ be a BMA on Θ. Then the uncertainty function corresponding with mΘ

is the function u : 2Θ [0, 1] defined by:

u(x) =
∑

y∩x �=∅
y�x

mΘ(y), x, y ∈ 2Θ. (10)

From Josang’s idea, we can get the Belief Function Additivity which is ex-
pressed as:

b(x) + d(x) + u(x) = 1, x ∈ 2Θ, x �= ∅. (11)

Now, one can simply calculate the uncertainty of a sentence by using (11), i.e.,
u(s1) = 1 − (b(s1) + d(s1)).
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Definition 5 (Relative Atomicity). Let Θ be a frame of discernment and
let x, y ∈ 2Θ. Then for any given y �= ∅ the relative atomicity of x to y is the
function a : 2Θ → [0, 1] defined by:

a(x/y) =
|x ∩ y|
|y| , x, y ∈ 2Θ, y �= ∅. (12)

It can be observed that x∩y = ∅ ⇒ a(x/y) = 0 and that y ⊆ x ⇒ a(x/y) = 1.
In all other cases relative atomicity will be a value between 0 and 1. The relative
atomicity of an atomic state to its frame of discernment, denoted by a(x/Θ), can
simply be written as a(x). If nothing else is specified, the relative atomicity of a
state then refers to the frame of discernment. In this case, we get the following
relative atomicity for sentence s1 as:

a(s1/w1) = |s1∩w1|
|w1| = 1

1 = 1

a(s1/w2) = |s1∩w2|
|w2| = 1

1 = 1

a(s1/{w1, w2}) = a(s1, s1) = |s1∩{w1,w2}|
|{w1,w2}| = 2

2 = 1...

a(s1/w5) = a(s1/s4) = |s1∩w5|
|w5| = 0

1 = 0
Likewise, we calculate the atomicity for other sentences.

Definition 6 (Probability Expectation). Let Θ be a frame of discernment
with BMA mΘ then the probability expectation function corresponding with mΘ

is the function E : 2Θ → [0, 1] defined by:

E(x) =
∑

y

mΘ(y)a(x/y), y ∈ 2Θ. (13)

So, for the given example, we calculate ProbExp for sentence s1 as follows:
E(s1) = m(w1)a(s1/w1) + m(w2)a(s1/w2) + m({w1, w2})a(s1/{w1, w2}) + ... +
m(w5)a(s1/w5) For compactness and simplicity of notation we will in the follow-
ing denote belief, disbelief, uncertainty, relative atomicity and opinion functions
as bx, dx, ux, ax and ωx respectively. Thus opinion (ωs1 or ω(s1))about a sentence
s1 can be expressed using these four parameters as, ω(s1) = (b(s1), d(s1), u(s1),
a(x)).

In this context, we order sentences based on descending order of their probabil-
ity expectation and ascending order of their uncertainty; sentence with stronger
‘opinion’ has greater significance in a document.

3 Method

3.1 Data Processing

In this experiment we used DUC2001 data set [1] for evaluation. The documents
are grouped based on a specific topic. Our main aim is to see how our model
works on single documents for content analysis purposes, so we focussed on this
kind of data set unlike other information retrieval areas. These documents were
parsed, tokenized, cleaned, and stemmed. The cleaning is done by removing
the stop words. DUC2001 comes with human generated summaries and baseline
summaries, providing a good platform for evaluation.
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3.2 Generation of Summaries

Summaries are broadly classified into text extraction and text abstraction [7], [5].
For text extraction, sentences from the documents are used as summaries and for
text abstraction important pieces of information are extracted and then stitched
together to form summaries following some linguistic rules. This evidence based
model can be used as a text extraction as we use the original sentences. We
compared our method and DUC baseline summaries with the human generated
summaries provided by them.

Evidence based model (PEU): In sec.2, we described our method of sentence
ranking; subjective logic based where we ranked the sentences based on the
descending order probability expectation and ascending order of uncertainty
(PEU) of that sentence in the document. We took 30% [2] of the top ranked
sentences and used them as summary.

3.3 Evaluation by ROUGE

ROUGE [6] stands for Recall-Oriented Understudy for Gisting Evaluation. It
includes measures to automatically determine the quality of a summary by com-
paring it to other (ideal) summaries created by humans. ROUGE is a recall
based metric for fixed length summaries. The measures count the number of
over lapping units such as n-gram, word sequences, and word pairs between the
computer-generated summary to be evaluated and the ideal summaries created
by humans.

In this experiment, we present the result with ROUGE-1 (n-gram, where n=1)
at 95% confidence level. ROUGE is sensitive to the length of the summaries [8];
hence we fixed the length to 100 words for the evaluation.

4 Results

We used DUC2001 dataset for this experiment. Among different document sets,
we presented here the evaluation with ‘daycare’, ‘healthcare’ and ‘pres92’. We
compared our method (PEU) and baseline summaries (denoted by LP) with two
different human assessors. For each set the assessors are different. The average
(table.1) results show that our method out performs the baseline summaries.

Figures 2(a) and 2(b) show the evaluation comparison using daycare data,
where Acc d and Acc i are two human assessors. In both the figures 2(a) and
2(b), our method outperforms the baseline summaries (90% of documents with
Acc d and 80% of documents with Acc i).

Now, figures 3(a) and 3(b) present the results with healthcare data set. Here
Acc b and Acc j are the two human assessors. There was no baseline summary
for the 7th document in this series. So, in both the figures we have value as 0
in the comparison results. In fig.3(a), ROUGE score for PEU with Acc b is higher
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Fig. 2. Daycare dataset
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Fig. 3. Healthcare dataset
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Fig. 4. Pres92 dataset

than baseline on average except for 30% of the documents. In fig.3(b), baseline
shows higher similarity with Acc j than PEU in 60% documents.

In figures 4(a) and 4(b), PEU outperforms the baseline summaries (90% of
documents with each assessors). In table.1, Acc1 and Acc2 are alias of human
assessors used in each case. Except for Acc2 in healthcare data, PEU has out-
performed all the baseline summaries.

From these results, we can see that summaries produced by humans are ab-
stract. So overlap with human generated of summaries with automated ones
can vary a lot unless they are compared with extractive summaries created by
humans selecting the original sentences from documents.
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Table 1. Summary of all three sets of results (ROUGE-1 Recall)

LP-Acc1 LP-Acc2 PEU-Acc1 PEU-Acc2

daycare 0.19 0.26 0.24 0.32

healthcare 0.27 0.35 0.29 0.29

pres92 0.20 0.19 0.24 0.28

Avg 0.22 0.27 0.25 0.29

5 Conclusion

In this paper we presented an evidence based sentence extraction method for
single document summarization. We used enhanced subjective logic to formu-
late the whole process. Here standard methods for evaluating data are used; in
the whole process we figured out that summarization is subjective to the user.
In our system we basically used word frequency and co-occurrence concept for
formulating subjective logic; rather superficial knowledge. But the results are
good in the sense that they have outperformed baseline summaries as illustrated
in the results. For our future work we will extend this method to perform deeper
semantic analysis of the text and redefine some features of subjective logic in
document computing context.
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Abstract. Mining of data streams must balance three evaluation dimen-
sions: accuracy, time and memory. Excellent accuracy on data streams
has been obtained with Naive Bayes Hoeffding Trees—Hoeffding Trees
with naive Bayes models at the leaf nodes—albeit with increased run-
time compared to standard Hoeffding Trees. In this paper, we show
that runtime can be reduced by replacing naive Bayes with perceptron
classifiers, while maintaining highly competitive accuracy. We also show
that accuracy can be increased even further by combining majority vote,
naive Bayes, and perceptrons. We evaluate four perceptron-based learn-
ing strategies and compare them against appropriate baselines: simple
perceptrons, Perceptron Hoeffding Trees, hybrid Naive Bayes Perceptron
Trees, and bagged versions thereof. We implement a perceptron that uses
the sigmoid activation function instead of the threshold activation func-
tion and optimizes the squared error, with one perceptron per class value.
We test our methods by performing an evaluation study on synthetic and
real-world datasets comprising up to ten million examples.

1 Introduction

In the data stream model, data arrive at high speed, and algorithms that process
them must do so under very strict constraints of space and time. Consequently,
data streams pose several challenges for data mining algorithm design. First,
algorithms must make use of limited resources (time and memory). Second, they
must deal with data whose nature or distribution changes over time.

An important issue in data stream mining is the cost of performing the learn-
ing and prediction process. As an example, it is possible to buy time and space
usage from cloud computing providers [25]. Several rental cost options exist:

– Cost per hour of usage: Amazon Elastic Compute Cloud (Amazon EC2) is
a web service that provides resizable compute capacity in the cloud. Cost
depends on the time and on the machine rented (small instance with 1.7 GB,
large with 7.5 GB or extra large with 15 GB).

– Cost per hour and memory used: GoGrid is a web service similar to Amazon
EC2, but it charges by RAM-Hours. Every GB of RAM deployed for 1 hour
equals one RAM-Hour.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 299–310, 2010.
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It is crucial to find mining methods that use resources efficiently. In this spirit, we
propose in this paper the Hoeffding Perceptron Tree for classification, as a faster
method compared to the state-of-the-art Hoeffding Tree with naive Bayes leaves.
The idea is to implement perceptron classifiers at the leaves of the Hoeffding
Tree, to potentially increase accuracy, but mainly to reduce runtime.

We introduce the use of RAM-Hours as an evaluation measure of the resources
used by streaming algorithms. The paper is structured as follows: related work is
presented in Section 2. Hoeffding Perceptron Trees and bagging of such trees are
discussed in Section 3. An experimental evaluation is conducted in Section 4. Fi-
nally, conclusions and suggested items for future work are presented in Section 5.

2 Related Work

Standard decision tree learners such as ID3, C4.5, and CART [18,21] assume
that all training examples can be stored simultaneously in main memory, and
are thus severely limited in the number of examples they can learn from. In
particular, they are not applicable to data streams, where potentially there is
no bound on the number of examples and these arrive sequentially.

Domingos et al. [6,14] proposed the Hoeffding tree as an incremental, anytime
decision tree induction algorithm that is capable of learning from data streams,
assuming that the distribution generating examples does not change over time.

Hoeffding trees exploit the fact that a small sample can often suffice to choose
a splitting attribute. This idea is supported by the Hoeffding bound, which
quantifies the number of observations (in our case, examples) needed to estimate
some statistics within a prescribed precision (in our case, the goodness of an
attribute). More precisely, the Hoeffding bound states that with probability 1−δ,
the true mean of a random variable of range R will not differ from the estimated
mean after n independent observations by more than:

ε =

√
R2 ln(1/δ)

2n
.

A theoretically appealing feature of Hoeffding Trees not shared by other incre-
mental decision tree learners (ID4 [22], ID5 [24]) is that it has sound guarantees
of performance. Using the Hoeffding bound one can show that its output is
asymptotically nearly identical to that of a non-incremental learner using in-
finitely many examples. CVFDT [14] is an extension of the Hoeffding Tree to
evolving data streams, but does not exhibit theoretical guarantees.

Outside the data stream world, there is prior work on using perceptrons or
similar classifiers in decision trees. Utgoff [24] presented the Perceptron Decision
Tree as a decision tree in which each leaf node uses the perceptron as a classifier
of the input instances. Bennett et al. [2] showed that maximizing margins in
perceptron decision trees can be useful to combat overfitting. Zhou [26] proposed
Hybrid Decision Trees as a hybrid learning approach combining decision trees
with neural networks.

Frank et al. [7] investigated using Model Trees for classification problems.
Model trees are decision trees with linear regression functions at the leaves.
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Logistic Model Trees [17] are model trees that use logistic regression instead
of linear regression. They have been shown to be very accurate and compact
classifiers, but their induction is very time-consuming.

The LTree algorithm of Gama [8] embodies a general framework for learn-
ing functional trees, multivariate classification or regression trees that can use
combinations of attributes at decision nodes, leaf nodes, or both.

In the data streams literature, Ikonomovska et al. [15] presented FIMT, a
fast incremental model tree for regression on static data streams. To deal with
concept drift, Ikonomovska et al. [16] proposed FIRT-DD as an adaption of
the FIMT algorithm to time-changing distributions. FIMT and FIRT-DD use a
perceptron learner at the leaves to perform regression. Considering classification
methods for data streams, Bifet et al. [4] presented two new ensemble learning
methods: one using bagging with decision trees of different size and one using
ADWIN, an adaptive sliding window method that detects change and adjusts the
size of the window correspondingly. We revisit the latter approach in this paper.

3 Perceptrons and Hoeffding Perceptron Trees

In this section, we present the perceptron learner we use, and the Hoeffding Per-
ceptron Tree based on it. We also consider bagging trees with change detection.

3.1 Perceptron Learning

We use an online version of the perceptron that employs the sigmoid activation
function instead of the threshold activation function and optimizes the squared
error, with one perceptron per class value.

Given a data stream 〈xi, yi〉, where xi is an example and yi is its example
class, the classifier’s goal is to minimize the number of misclassified examples.
Let hw(xi) be the hypothesis function of the perceptron for instance xi. We
use the mean-square error J(w) = 1

2

∑
(yi − hw(xi))2 instead of the 0-1 loss

function, since it is differentiable.
The classic perceptron takes a linear combination and thresholds it. The pre-

dicted class of the perceptron is hw(xi) = sgn(wT xi), where a bias weight
with constant input is included. Our hypothesis function hw = σ(wT x) in-
stead uses the sigmoid function σ(x) = 1/(1 + e−x) since it has the property
σ′(x) = σ(x)(1−σ(x)). Thus, we can compute the gradient of the error function

∇J = −
∑

i

(yi − hw(xi))∇hw(xi)

where for sigmoid hypothesis

∇hw(xi) = hw(xi)(1 − hw(xi))

obtaining the following weight update rule

w = w + η
∑

i

(yi − hw(xi))hw(xi)(1 − hw(xi))xi
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Because we work in a data stream scenario, rather than performing batch
updates, we use stochastic gradient descent where the weight vector is updated
after every example. As we deal with multi-class problems, we train one per-
ceptron for each class. To classify an unseen instance x, we obtain the pre-
dictions hw1(x), . . . , hwn(x) from the perceptrons, and the predicted class is
argmaxclass hwclass(x). The pseudocode is shown in Figure 1.

Perceptron Learning(Stream,η)
1 for each class
2 do Perceptron Learning(Stream, class, η)

Perceptron Learning(Stream, class, η)
1 � Let w0 and w be randomly initialized
2 for each example (x, y) in Stream
3 do if class = y
4 then δ = (1− hw (x)) · hw (x) · (1− hw (x))
5 else δ = (0− hw (x)) · hw (x) · (1− hw (x))
6 w = w + η · δ · x

Perceptron Prediction(x)
1 return arg maxclass hwclass(x)

Fig. 1. Perceptron algorithm

3.2 Hoeffding Perceptron Tree

Hoeffding trees [6] are state-of-the-art in classification for data streams and they
perform prediction by choosing the majority class at each leaf. Their predictive
accuracy can be increased by adding naive Bayes models at the leaves of the trees.
However, Holmes et al. [12] identified situations where the naive Bayes method
outperforms the standard Hoeffding tree initially but is eventually overtaken.
They propose a hybrid adaptive method that generally outperforms the two
original prediction methods for both simple and complex concepts. We call this
method Hoeffding Naive Bayes Tree (hnbt). This method works by performing
a naive Bayes prediction per training instance, and comparing its prediction
with the majority class. Counts are stored to measure how many times the naive
Bayes prediction gets the true class correct as compared to the majority class.
When performing a prediction on a test instance, the leaf will only return a naive
Bayes prediction if it has been more accurate overall than the majority class,
otherwise it resorts to a majority class prediction.

We adapt this methodology to deal with perceptrons rather than naive Bayes
models. A Hoeffding Perceptron Tree (hpt) is a Hoeffding Tree that has a per-
ceptron at each leaf. Similarly to hnbt, predictions by the perceptron are only
used if they are more accurate on average than the majority class. It improves
on hnbt in terms of runtime because it does not need to estimate the statistical
distribution for numeric attributes and calculate density values based on the



Fast Perceptron Decision Tree Learning from Evolving Data Streams 303

exponential function, and for discrete attributes it does not need to calculate
divisions to estimate probabilities.

Finally, a Hoeffding Naive Bayes Perceptron Tree (hnbpt) is a Hoeffding Tree
that has three classifiers at each leaf: a majority class, naive Bayes, and a per-
ceptron. Voting is used for prediction. It is slower than the Hoeffding Perceptron
Tree and the Hoeffding Naive Bayes Tree, but it combines the predictive power
of the base learners.

3.3 Bagging Trees with ADWIN

ADWIN [3] is a change detector and estimator that solves in a well-specified way
the problem of tracking the average of a stream of bits or real-valued numbers.
ADWIN keeps a variable-length window of recently seen items, with the prop-
erty that the window has the maximal length statistically consistent with the
hypothesis “there has been no change in the average value inside the window”.

ADWIN is parameter- and assumption-free in the sense that it automatically
detects and adapts to the current rate of change. Its only parameter is a confi-
dence bound δ, indicating how confident we want to be in the algorithm’s output,
inherent to all algorithms dealing with random processes.

Also important for our purposes, ADWIN does not maintain the window explic-
itly, but compresses it using a variant of the exponential histogram technique.
This means that it keeps a window of length W using only O(log W ) memory
and O(log W ) processing time per item.

ADWIN Bagging is the online bagging method of Oza and Russell [19] with
the addition of the ADWIN algorithm as a change detector. When a change is
detected, the worst classifier of the ensemble of classifiers is removed and a new
classifier is added to the ensemble.

4 Comparative Experimental Evaluation

Massive Online Analysis (MOA) [13] is a software environment for implementing
algorithms and running experiments for online learning from data streams. All
algorithms evaluated in this paper were implemented in the Java programming
language by extending the MOA software.

We use the experimental framework for concept drift presented in [4]. Con-
sidering data streams as data generated from pure distributions, we can model
a concept drift event as a weighted combination of two pure distributions that
characterizes the target concepts before and after the drift. This framework de-
fines the probability that a new instance of the stream belongs to the new concept
after the drift based on the sigmoid function.

Definition 1. Given two data streams a, b, we define c = a ⊕W
t0 b as the data

stream built by joining the two data streams a and b, where t0 is the point of
change, W is the length of change, Pr[c(t) = b(t)] = 1/(1 + e−4(t−t0)/W ) and
Pr[c(t) = a(t)] = 1 − Pr[c(t) = b(t)].

In order to create a data stream with multiple concept changes, we can build new
data streams joining different concept drifts, i. e. (((a⊕W0

t0 b)⊕W1
t1 c)⊕W2

t2 d) . . ..
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4.1 Datasets for Concept Drift

Synthetic data has several advantages – it is easier to reproduce and there is
little cost in terms of storage and transmission. For this paper we use the data
generators most commonly found in the literature.

SEA Concepts Generator. This artificial dataset contains abrupt concept
drift, first introduced in [23]. It is generated using three attributes, where
only the two first attributes are relevant. All the attributes have values be-
tween 0 and 10. The points of the dataset are divided into 4 blocks with
different concepts. In each block, the classification is done using f1 + f2 ≤ θ,
where f1 and f2 represent the first two attributes and θ is a threshold value.
The most frequent values are 9, 8, 7 and 9.5 for the data blocks. In our
framework, SEA concepts are defined as follows:

(((SEA9 ⊕W
t0 SEA8) ⊕W

2t0 SEA7) ⊕W
3t0 SEA9.5)

Rotating Hyperplane. This data was used as a testbed for CVFDT versus
VFDT in [14]. Examples for which

∑d
i=1 wixi ≥ w0 are labeled positive,

and examples for which
∑d

i=1 wixi < w0 are labeled negative. Hyperplanes
are useful for simulating time-changing concepts, because we can change the
orientation and position of the hyperplane in a smooth manner by changing
the relative size of the weights.

Random RBF Generator. This generator was devised to offer an alternate
complex concept type that is not straightforward to approximate with a
decision tree model. The RBF (Radial Basis Function) generator works as
follows: A fixed number of random centroids are generated. Each center has
a random position, a single standard deviation, class label and weight. New
examples are generated by selecting a center at random, taking weights into
consideration so that centers with higher weight are more likely to be chosen.
A random direction is chosen to offset the attribute values from the central
point. Drift is introduced by moving the centroids with constant speed.

LED Generator. This data source originates from the CART book [5]. An im-
plementation in C was donated to the UCI [1] machine learning repository
by David Aha. The goal is to predict the digit displayed on a seven-segment
LED display, where each attribute has a 10% chance of being inverted. The
particular configuration of the generator used for the experiments (led) pro-
duces 24 binary attributes, 17 of which are irrelevant.

4.2 Real-World Data

The UCI machine learning repository [1] contains some real-world benchmark
data for evaluating machine learning techniques. We consider three of the largest:
Forest Covertype, Poker-Hand, and Electricity.

Forest Covertype. Contains the forest cover type for 30 x 30 meter cells ob-
tained from US Forest Service (USFS) Region 2 Resource Information Sys-
tem (RIS) data. It contains 581, 012 instances and 54 attributes, and it has
been used in several papers on data stream classification [10,20].
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Table 1. Comparison of Perceptron, Naive Bayes and Hoeffding Tree. The best indi-
vidual accuracies are indicated in boldface.

Perceptron Naive Bayes Hoeffding Tree
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

RBF(0,0) 1.83 72.69 ± 0.28 0.01 4.15 72.04 ± 0.06 0.01 5.84 86.75 ± 0.83 1.56
RBF(50,0.001) 2.67 65.33± 0.04 0.01 5.02 53.23 ± 0.05 0.01 6.40 52.52 ± 0.17 1.50
RBF(10,0.001) 1.82 74.11 ± 0.09 0.01 4.14 75.79 ± 0.06 0.01 5.80 83.72 ± 0.58 1.55
RBF(50,0.0001) 2.64 69.34± 0.07 0.01 4.99 53.82 ± 0.04 0.01 7.04 55.78 ± 0.33 1.86
RBF(10,0.0001) 1.85 73.92 ± 0.16 0.01 4.14 75.18 ± 0.09 0.01 5.94 83.59 ± 0.50 1.62
HYP(10,0.001) 1.55 92.87± 0.43 0.01 3.91 77.64 ± 3.74 0.01 5.37 73.19 ± 2.60 1.60
HYP(10,0.0001) 1.56 93.70± 0.03 0.01 3.90 90.23 ± 0.76 0.01 4.99 76.87 ± 1.46 1.40
SEA(50) 1.17 87.15± 0.05 0.00 1.54 85.37 ± 0.00 0.00 2.54 85.68 ± 0.00 0.56
SEA(50000) 1.31 86.85± 0.04 0.00 1.69 85.38 ± 0.00 0.00 2.71 85.59 ± 0.04 0.56
LED(50000) 6.64 72.76± 0.01 0.02 8.97 54.02 ± 0.00 0.04 12.81 52.74 ± 0.15 4.98
CovType 12.21 81.68 0.05 22.81 60.52 0.08 13.43 68.30 2.59
Poker 5.36 3.34 0.01 9.25 59.55 0.02 5.46 73.62 1.11
Electricity 0.53 79.07 0.01 0.55 73.36 0.01 0.86 75.35 0.12
CovPokElec 20.87 13.69 0.06 56.52 24.34 0.11 42.82 72.63 10.03

69.04 Acc. 67.18 Acc. 73.31 Acc.
0.12 RAM-Hours 0.41 RAM-Hours 37 RAM-Hours

Poker-Hand. Consists of 1, 000, 000 instances and 11 attributes. Each record
of the Poker-Hand dataset is an example of a hand consisting of five playing
cards drawn from a standard deck of 52. Each card is described using two
attributes (suit and rank), for a total of 10 predictive attributes. There is
one class attribute that describes the “Poker Hand”.

Electricity. is another widely used dataset described by M. Harries [11] and
analysed by Gama [9]. This data was collected from the Australian New
South Wales Electricity Market. In this market, prices are not fixed and are
affected by demand and supply of the market. They are set every five min-
utes. The ELEC dataset contains 45, 312 instances. The class label identifies
the change of the price relative to a moving average of the last 24 hours.

We use normalized versions of these datasets, so that the numerical values are
between 0 and 1. With the Poker-Hand dataset, the cards are not ordered, i.e.
a hand can be represented by any permutation, which makes it very hard for
propositional learners, especially for linear ones. We use a modified version,
where cards are sorted by rank and suit, and have removed duplicates. This
dataset loses about 171, 799 examples, and comes down to 829, 201 examples.

These datasets are small compared to synthetic datasets we consider. Another
important fact is that we do not know when drift occurs or indeed if there is
any drift. We may simulate concept drift, joining the three datasets, merging
attributes, and supposing that each dataset corresponds to a different concept

CovPokElec = (CoverType⊕5,000
581,012 Poker) ⊕5,000

1,000,000 ELEC

As all examples need to have the same number of attributes, we simply concate-
nate all the attributes, and set the number of classes to the maximum number
of classes of all the datasets.
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4.3 Results

We use the datasets explained in the previous sections for evaluation. The exper-
iments were performed on a 3 GHz Intel 64-bit machine with 2 GB of memory.
The evaluation methodology used was Interleaved Test-Then-Train on 10 runs:
every example was used for testing the model before using it to train. This inter-
leaved test followed by train procedure was carried out on 10 million examples
from the hyperplane and RandomRBF datasets, and one million examples from
the SEA dataset. The parameters of these streams are the following:

– RBF(x,v): RandomRBF data stream with x centroids moving at speed v.
– HYP(x,v): Hyperplane data stream with x attributes changing at speed v.
– SEA(v): SEA dataset, with length of change v.
– LED(v): LED dataset, with length of change v.

Tables 1, 2 and 3 report the final accuracy, and speed of the classification mod-
els induced on the synthetic data and the real datasets: Forest CoverType,
Poker Hand, Electricity and CovPokElec. Accuracy is measured as the
final percentage of examples correctly classified over the test/train interleaved
evaluation. Time is measured in seconds, and memory in MB. The classifica-
tion methods used are the following: perceptron, naive Bayes, Hoeffding Naive
Bayes Tree (hnbt), Hoeffding Perceptron Tree (hpt), Hoeffding Naive Bayes
Perceptron Tree (hnbpt), and ADWIN bagging using hnbt, hpt, and hnbpt.

The learning curves and model growth curves for the Led dataset are plotted
in Figure 2. We observe that ht and hpt are the fastest decision trees. As the
trees do not need more space to compute naive Bayes predictions at the leaves,
hnbt uses the same memory as ht, and hpnbt uses the same memory as hpt. On
accuracy, ht is the method that adapts more slowly to change, and during some
time intervals hpt performs better than hnbt, but in other intervals performs
worse. hnbpt is always the most or very close to the most accurate method as
it is capable of making use of the decision of the majority class, naive Bayes and
perceptron.

Table 1 shows the accuracy, speed and memory usage of a naive Bayes learner,
a perceptron with η = 1 and a classic Hoeffding Tree with majority class learn-
ing at the leaves. As naive Bayes uses a Gaussian distribution to model numeric
attributes, with different variances for each class, it does not yield a linear sep-
arator as the perceptron does. In general terms, we see that the perceptron and
the Hoeffding Tree are the fastest methods, but the Hoeffding Tree needs more
memory. Comparing using RAM-Hours, naive Bayes needs 3.5 times more RAM-
Hours than the perceptron, and the Hoeffding Tree needs 89 more RAM-Hours
than naive Bayes. Note that using η = 1 we obtain a very fast adaptive method,
but for some datasets like Poker, the results are worse than obtained using a
more conservative rate like η = 0.01. Choosing an optimal η remains an open
problem for further research.

Table 2 shows, for the Hoeffding tree models, their accuracy, speed and mem-
ory. We see that hpt is much faster than hnbt, and more accurate in several
streams. hnbpt is more accurate than hnbt and hpt, but it needs more time.
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Fig. 2. Accuracy, runtime and memory on the LED data with three concept drifts
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Table 2. Comparison of hnbt, hpt, and hnbpt algorithms. The best individual
accuracies are indicated in boldface.

hnbt hpt hnbpt
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

RBF(0,0) 9.03 90.78 ± 0.46 1.57 8.04 90.33 ± 0.49 2.30 10.77 91.07 ± 0.44 2.30
RBF(50,0.001) 10.98 57.70 ± 0.22 1.51 8.66 68.95 ± 0.31 2.20 11.32 68.65 ± 0.32 2.20
RBF(10,0.001) 9.07 87.24 ± 0.29 1.56 8.03 87.61 ± 0.36 2.28 10.77 87.98 ± 0.32 2.28
RBF(50,0.0001) 11.62 69.00 ± 0.46 1.86 9.54 79.91 ± 0.42 2.72 12.45 79.88 ± 0.39 2.72
RBF(10,0.0001) 9.28 88.47 ± 0.37 1.63 8.20 89.37 ± 0.32 2.38 10.98 89.74 ± 0.33 2.39
HYP(10,0.001) 9.73 83.24 ± 2.29 1.61 7.57 82.74 ± 1.13 2.34 11.45 84.54 ± 1.40 2.34
HYP(10,0.0001) 9.37 88.42 ± 0.36 1.40 7.08 82.59 ± 0.62 2.04 11.30 88.40 ± 0.36 2.04
SEA(50) 3.70 86.63 ± 0.00 0.57 4.65 86.73 ± 0.01 1.23 5.49 87.41 ± 0.01 1.24
SEA(50000) 4.51 86.44 ± 0.03 0.57 4.85 86.41 ± 0.07 1.23 5.64 87.12 ± 0.07 1.24
LED(50000) 21.28 68.06 ± 0.10 4.99 18.64 68.87 ± 0.07 6.00 24.99 70.04 ± 0.03 6.00
CovType 24.73 81.06 2.59 16.53 83.59 3.46 22.16 85.77 3.46
Poker 9.81 83.05 1.12 8.40 74.02 1.82 11.40 82.93 1.82
Electricity 0.96 80.69 0.12 0.93 84.24 0.21 1.07 84.34 0.21
CovPokElec 68.37 83.41 10.05 49.37 73.33 13.53 69.70 83.28 13.53

81.01 Acc. 81.33 Acc. 83.65 Acc.
61.58 RAM-Hours 68.56 RAM-Hours 93.84 RAM-Hours

Table 3. Comparison of ADWIN bagging with hnbt, hpt, and hnbpt. The best indi-
vidual accuracies are indicated in boldface.

ADWIN Bagging hnbt ADWIN Bagging hpt ADWIN Bagging hnbpt
Time Acc. Mem Time Acc. Mem Time Acc. Mem

RBF(0,0) 102.22 94.30 ± 0.07 16.22 88.84 93.70 ± 0.10 23.35 115.31 94.36 ± 0.07 23.98
RBF(50,0.001) 88.75 67.67 ± 0.16 0.12 41.15 74.82 ± 0.26 2.27 76.34 74.13 ± 0.40 2.84
RBF(10,0.001) 97.65 89.74 ± 0.09 12.97 80.65 90.36 ± 0.11 20.44 106.64 90.55 ± 0.10 19.73
RBF(50,0.0001) 90.64 84.99 ± 0.17 1.33 61.82 87.24 ± 0.14 9.66 94.22 87.97 ± 0.11 9.39
RBF(10,0.0001) 100.21 91.97 ± 0.07 13.81 82.54 92.53 ± 0.12 21.56 109.59 93.01 ± 0.05 21.32
HYP(10,0.001) 90.77 89.92 ± 0.31 3.02 31.86 91.20 ± 0.99 1.11 69.23 91.45 ± 0.81 2.43
HYP(10,0.0001) 107.36 91.30 ± 0.21 8.22 30.77 93.63 ± 0.21 0.08 50.57 93.61 ± 0.24 0.11
SEA(50) 44.48 88.22 ± 0.22 4.33 54.09 88.08 ± 0.07 11.07 59.19 88.60 ± 0.09 10.17
SEA(50000) 41.03 88.61 ± 0.07 2.69 53.44 87.85 ± 0.07 10.78 54.07 88.65 ± 0.05 6.83
LED(50000) 150.62 73.14 ± 0.02 5.09 93.09 72.82 ± 0.03 14.84 130.56 73.02 ± 0.02 8.45
CovType 165.75 85.73 0.80 50.06 86.33 1.66 115.58 87.88 1.25
Poker 57.40 74.56 0.09 37.14 65.76 0.21 73.41 74.36 0.16
Electricity 3.17 84.36 0.13 2.59 85.22 0.44 3.55 86.44 0.30
CovPokElec 363.70 78.96 1.18 118.64 67.02 1.13 402.20 78.77 1.54

84.53 Acc. 84.04 Acc. 85.91 Acc.
1028.02 RAM-Hours 957.38 RAM-Hours 1547.33 RAM-Hours

Comparing RAM-Hours, hpt needs 1.11 times more RAM-Hours than hnbt,
and 2.54 more RAM-Hours than ht, and hnbpt needs 1.37 more than hpt.

Table 3 reports the accuracy, speed and memory of ADWIN bagging using hnbt,
hpt, and hnbpt. ADWIN bagging using hnbpt is the most accurate method, but
it uses more time and memory than the other variants. In RAM-Hours, it needs
1.62 times more than ADWIN bagging using hpt, and 1.51 times more than ADWIN
bagging using hnbt. ADWIN bagging using hpt needs fewer resources than ADWIN
bagging using hnbt.

Comparing hnbpt from Table 2 with the single perceptron from Table 1, we
obtain a 20% better accuracy, but at a cost of 780 times the amount of RAM-
Hours. Comparing ADWIN bagging using hnbpt (Table 3) with a single hnbpt
(Table 2) we obtain a 3% better accuracy, at 16.50 times the RAM-Hours.

Concept drift is handled well by the proposed ADWIN bagging algorithms, exclud-
ing the poor performance of the hpt-based classifier on CovPokElec, which is



Fast Perceptron Decision Tree Learning from Evolving Data Streams 309

due to the nature of the Poker dataset. Decision trees alone do not deal as well
with evolving streaming data, as they have limited capability of adaption.

A tradeoff between RAM-Hours and accuracy could be to use single per-
ceptrons when resources are scarce, and ADWIN bagging methods when more
accuracy is needed. Note that to gain an increase of 24% in accuracy, we have to
increase by more than 10, 000 times the RAM-Hours needed; this is the differ-
ence of magnitude between the RAM-Hours needed for a single perceptron and
for a more accurate ADWIN bagging method.

5 Conclusions

We have investigated four perceptron-based methods for data streams: a single
learner, a decision tree, a hybrid tree, and an ensemble method. These methods
use perceptrons with a sigmoid activation function, optimizing the squared error,
with one perceptron per class value. We observe that perceptron-based methods
are competitive in accuracy and use of resources. We have introduced the use of
RAM-Hours as a performance measure. Using RAM-Hours, it is easy to compare
resources used by classifier algorithms.

As future work, we would like to build new methods based on the perceptron,
with an adaptive learning rate. We think that in changing scenarios, using a
flexible learning rate may allow us to obtain more accurate methods, without
incurring large additional runtime or memory costs.
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Abstract. We present ActMiner, which addresses four major chal-
lenges to data stream classification, namely, infinite length, concept-drift,
concept-evolution, and limited labeled data. Most of the existing data
stream classification techniques address only the infinite length and
concept-drift problems. Our previous work, MineClass, addresses the
concept-evolution problem in addition to addressing the infinite length
and concept-drift problems. Concept-evolution occurs in the stream when
novel classes arrive. However, most of the existing data stream classifi-
cation techniques, including MineClass, require that all the instances in
a data stream be labeled by human experts and become available for
training. This assumption is impractical, since data labeling is both time
consuming and costly. Therefore, it is impossible to label a majority of
the data points in a high-speed data stream. This scarcity of labeled data
naturally leads to poorly trained classifiers. ActMiner actively selects
only those data points for labeling for which the expected classification
error is high. Therefore, ActMiner extends MineClass, and addresses the
limited labeled data problem in addition to addressing the other three
problems. It outperforms the state-of-the-art data stream classification
techniques that use ten times or more labeled data than ActMiner.

1 Introduction

Data stream classification is more challenging than classifying static data because
of several unique properties of data streams. First, data streams are assumed to
have infinite length, which makes it impractical to store and use all the historical
data for training. Therefore, traditional multi-pass learning algorithms are not
directly applicable to data streams. Second, data streams observe concept-drift,
which occurs when the underlying concept of the data changes over time. In or-
der to address concept-drift, a classification model must continuously adapt itself
to the most recent concept. Third, data streams also observe concept-evolution,
which occurs when a novel class appears in the stream. In order to cope with
concept-evolution, a classification model must be able to automatically detect
novel classes when they appear, before being trained with the labeled instances
of the novel class. Finally, high speed data streams suffer from insufficient labeled
data. This is because, manual labeling is both costly and time consuming. There-
fore, the speed at which the data points are labeled lags far behind the speed
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at which data points arrive in the stream, leaving most of the data points in
the stream as unlabeled. So, supervised classification techniques suffer from the
scarcity of labeled data for learning, resulting in a poorly built classifier. Most
existing data stream classification techniques address only the infinite length,
and concept-drift problems [1–3]. Our previous work MineClass [4] addresses
the concept-evolution problem in addition to the infinite length and concept-
drift problems. However, it did not address the limited labeled data problem.
Our current work, ActMiner, extends MineClass by addressing all the four prob-
lems and providing a more realistic data stream classification framework than
the state-of-the-art.

A solution to the infinite length problem is incremental learning, which re-
quires a single pass over the training data. In order to cope with concept-drift,
a classifier must be continuously updated to be consistent with the most recent
concept. ActMiner applies a hybrid batch-incremental process [2, 5] to solve the
infinite length and concept-drift problems. It divides the data stream into equal
sized chunks and trains a classification model from each chunk. An ensemble of
M such models is used to classify the unlabeled data. When a new data chunk
becomes available for training, a new model is trained, and an old model from
the ensemble is replaced with the new model. The victim for the replacement
is chosen by evaluating the accuracy of each model on the latest labeled chunk.
In this way, the ensemble is kept up-to-date. ActMiner also solves the concept-
evolution problem by automatically detecting novel classes in the data stream.
In order to detect novel class, it first identifies the test instances that are well-
separated from the training data, and tag them as Raw outlier. Then raw outliers
that possibly appear as a result of concept-drift or noise are filtered out. If a
sufficient number of such strongly cohesive filtered outliers (called F -outliers)
are observed, a novel class is assumed to have appeared, and the F -outliers are
classified as novel class instances. Finally, ActMiner solves the limited labeled
data problem by requiring only a few selected instances to be labeled. It iden-
tifies the instances for which the classification model has the highest expected
error. This selection is done without knowing the true labels of those instances.
By selecting only a few instances for labeling, it saves 90% or more labeling time
and cost, than traditional approaches that require all instances to be labeled.

We have several contributions. First, we propose a framework that addresses
four major challenges in data stream classification. To the best of our knowl-
edge, no other existing data stream classification technique addresses all these
four problems in a single framework. Second, we show how to select only a few
instances in the stream for labeling, and justify this selection process both the-
oretically and empirically. Finally, our technique outperforms state-of-the-art
data stream classification techniques using ten times or even less amount of la-
beled data for training. The rest of the paper is organized as follows. Section 2
discusses the related works in data stream classification. Section 3 describes the
proposed approach. Section 4 then presents the experiments and analyzes the
results. Section 5 concludes with directions to future work.
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2 Related Work

Related works in data stream classification can be divided into three groups:
i) approaches that address the infinite length and concept-drift problems, ii)
approaches that address the infinite length, concept-drift, and limited labeled
data problems, and iii) approaches that address the infinite length, concept-drift,
and concept-evolution problems. Groups i) and ii) again can be subdivided into
two subgroups: single model and ensemble classification approach.

Most of the existing techniques fall into group i). The single-model approaches
in group i) apply incremental learning and adapt themselves to the most recent
concept by continuously updating the current model to accommodate concept
drift [1, 3, 6]. Ensemble techniques [2, 5] maintain an ensemble of models, and
use ensemble voting to classify unlabeled instances. These techniques address
the infinite length problem by keeping a fixed-size ensemble, and address the
concept-drift problem by updating the ensemble with newer models. ActMiner
also applies an ensemble classification technique. Techniques in group ii) goes
one step ahead of group i) by addressing the limited labeled data problem. Some
of them apply active learning [7, 8] to select the instances to be labeled, and
some [9] apply random sampling along with semi-supervised clustering. ActMiner
also applies active learning, but its data selection process is different from the
others. Unlike other active mining techniques such as [7] that requires extra
computational overhead to select the data, ActMiner does the selection on the
fly during classification. Moreover, none of these approaches address the concept-
evolution problem, but ActMiner does.

Techniques in group iii) are the most rare. An unsupervised novel concept
detection technique for data streams is proposed in [10], but it is not applicable to
multi-class classification. Our previous work MineClass [4] addresses the concept-
evolution problem on a multi-class classification framework. It can detect the
arrival of a novel class automatically, without being trained with any labeled
instances of that class. However, it does not address the limited labeled data
problem, and requires that all instances in the stream be labeled and available for
training. ActMiner extends MineClass by requiring only a few chosen instances
to be labeled, thereby reducing the labeling cost by 90% or more.

3 ActMiner: Active Classification and Novel Class
Detection

In this section we discuss ActMiner in details. Before describing ActMiner, we
briefly introduce MineClass, and present some definitions.

3.1 Background: Novel Class Detection with MineClass

ActMiner is based on our previous work MineClass [4], which also does data
stream classification and novel class detection. MineClass is an ensemble clas-
sification approach, which keeps an ensemble L of M classification models, i.e.,
L={L1,...,LM} . First, we define the concept of novel class and existing class.
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Definition 1 (Existing class and Novel class). Let L be the current ensem-
ble of classification models. A class c is an existing class if at least one of the
models Li ∈ L has been trained with class c. Otherwise, c is a novel class.
The basic assumption in novel class detection lies in the following property.

Property 1. Let x be an arbitrary instance belonging to a class c′, and c be any
class other than c′. Also, let λc′,q(x) be the q-nearest neighbors of x within class
c′, and λc,q(x) be the q-nearest neighbors of x within class c. Then the mean
distance from x to λc′,q(x) is less than the mean distance from x to λc,q(x), for
any class c �= c′.

In other words, property 1 states that an instance is closer to other same class
instances and farther from the instances of any other class. Therefore, if a novel
class arrives, the instances belonging to that class must be closer to other novel
class instances and far from any existing class instances. This is the basic idea
in detecting novel class with MineClass. MineClass detects novel classes in three
steps: i) creating decision boundary for a classifier during its training, ii) detect-
ing and filtering outliers, and iii) computing cohesion among the outliers, and
separation of the outliers from the training data.

The decision boundaries are created by clustering the training data, and saving
the cluster centroids and radii as pseudopoints. Each pseudopoint represents a
hypersphere in the feature space. Union of all the hyperspheres in a classification
model constitutes the decision boundary for that model. The decision boundary
for the ensemble of models is the union of the decision boundaries of each model
in the ensemble. Any test instance falling outside the decision boundary of the
ensemble of models is considered an outlier, called F -outlier.

Definition 2 (F−outlier). A test instance is an F−outlier (i.e., filtered out-
lier) if it is outside the decision boundary of all classifiers Li ∈ L.

If any test instance x is inside the decision boundary, then it can be shown that
there is at least one existing class instance x′, such that the mean distance from
x to the existing class instances is less than the mean distance from x′ to the
existing class instances. Therefore, according to property 1, x must be an ex-
isting class instance. Any F -outlier is a potential novel class instance, because
it is outside the decision boundary of the ensemble of models, and therefore,
we its membership in the existing classes cannot be guaranteed. However, only
one F -outlier does not imply a novel class. We need to know whether there are
enough F -outliers that are sufficiently close to each other and far from the ex-
isting class instances. This is done by computing the cohesion among F -outliers
and separation of F -outliers from existing class instances. This is done using
the following equation: q-NSC(x) = bmin(x)−a(x)

max(bmin(x),a(x)) , where x is an F -outlier,
bmin(x) is the mean distance from x to its q-nearest existing class instances and
a(x) is the mean distance from x to its q-nearest F -outlier instances. A positive
value indicates that x is closer to other F -outlier instances than the existing
class instances. If q-NSC(x) is positive for at least q F -outlier instances, then a
novel class is assumed to have arrived. This is the basic working principle of the
DetectNovelClass() function in algorithm 1.
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3.2 ActMiner Algorithm

ActMiner, which stands for Active Classifier for Data Streams with novel class
Miner, performs classification and novel class detection in data streams while
requiring very small amount of labeled data for training. The top level algorithm
is sketched in algorithm 1.

Algorithm 1. ActMiner
1: L ← Build-initial-ensemble(), L ← empty //training data
2: while true do
3: Dn ← the latest data chunk in the stream
4: //Classification, outlier detection, novel class detection
5: buf ← empty //temporary buffer
6: for each xk ∈ Dn do
7: < fout, ŷk > ← Classify(xk ,L) //ŷk is the predicted class label of xk

8: if fout = true then buf ⇐ xk //enqueue into buffer
9: else output prediction < xk, ŷk > end if

10: end for
11: found ← DetectNovelClass(L,buf) //(see section 3.1)
12: if found=true then
13: for each novel class instance xk ∈ buf do ŷk ← “novel class” end for
14: end if
15: for each instance xk ∈ buf output prediction < xk, ŷk > end for
16: //Label the chunk
17: for each xk ∈ Dn do
18: if xk is an weakly classified instance (WCI)
19: then L ⇐ < xk, yk > //label it and save (yk is the true class label of xk)
20: else L⇐< xk, ŷk >//save in training buffer with the predicted class label
21: end if
22: end for
23: //Training
24: L′ ← Train-and-save-decision-boundary (L) //(see section 3.1)
25: L ← Update(L,L′,L)
26: L ← empty
27: end while

The algorithm starts with building the initial ensemble L = {L1, ..., LM}
with the first few data chunks of the stream (line 1), and initializing the training
buffer. Then a while loop (line 2) runs indefinitely until the stream is finished.
Within the while loop, the latest data chunk Dn is examined. Each instance xk

in Dn is first passed to the Classify() function, which uses the existing ensemble
to get its predicted class ŷk and its F -outlier status (line 7). If it is identified as
an F -outlier, then it is temporarily saved in a buffer buf for further inspection
(line 8), otherwise, we output its predicted class (line 9). Then we call the De-
tectNovelClass() function to inspect buf to detect whether any novel class has
arrived (line 11). If a novel class has arrived then the novel class instances are
classified as “novel class” (line 13). Then the class predictions of all instances in
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buf are sent to the output (line 15). We then select the instances that need to
be labeled (lines 17-22). Only the instances identified as Weakly Classified In-
stance (WCI) are required to be labeled by human experts, and they are saved
in the training buffer with their true class labels (line 19). We will explain WCI
shortly. All other instances remain as unlabeled, and they are saved in the train-
ing buffer with their predicted class labels (line 20). A new model L′ is trained
with the training buffer (line 24), and this model is used to update the existing
ensemble L (line 25). Updating is done by first evaluating each model Li ∈ L on
L, and replacing the worst (based on accuracy) of them with L′. ActMiner can
be applied to any base learning algorithm in general. The only operation that
needs to be specific to a learning algorithm is train and save decision boundary.

3.3 Data Selection for Labeling

Unlike MineClass, ActMiner does not need all the instances in the training data
to have true labels. Only those instances need to be labeled about whose class
labels MineClass is the most uncertain. We call these instances as “weakly classi-
fied instances” or WCIs. ActMiner finds the WCIs and presents them to the user
for labeling, because the ensemble has the highest uncertainty in classifying the
WCIs. In order to perform ensemble voting on an instance xj , first we initialize
a vector V = {v[1], ..., v[C]} to zeros, where C is the total number of classes, and
each v[k] represents a real value. Let classifier Li predicts the class label of xj

to be c, where c ∈ {1, ..., C}. Then we increment v[c] by 1. Let v[max] represent
the maximum among all v[i]. Then the predicted class of xj is max. An instance
xj is a WCI if either i) The instance has been identified as an F -outlier (see
definition 2), or ii) The ratio of its majority vote to its total vote is less than
the Minimum Majority Threshold (MMT), a user-defined parameter.

For condition i), consider that F -outliers are outside the decision boundary
of all the models in the ensemble. So the ensemble has the highest uncertainty in
classifying them. Therefore, F -outliers are considered as WCIs and need to be
labeled. For condition ii), let us denote the ratio with Majority to Sum (M2S)
ratio. Let v[max] be maximum in the vector V , and let s =

∑C
i=1 v[i]. There-

fore, the M2S ratio of xj is given by: M2S(xj) = v[max]
s . The data point xj is

considered to be a WCI if M2S(xj) < MMT. A lower value of M2S(xj) indicates
higher uncertainty in classifying that instance, and vice versa.

Next we justify the reason for labeling the WCIs of the second type, i.e.,
instances that have M2S(xj) < MMT. We show that the ensemble classification
error is higher for the instances having lower M2S.

Lemma 1. Let A and B be two sets of disjoint datapoints such that for any
xa ∈ A, and xb ∈ B, M2S(xa) < M2S(xb). Then the ensemble error on A is
higher than the ensemble error on B.

Proof. Given an instance x, the posterior probability distribution of class c is
p(c|x). Let C be the total number of classes, and c ∈ {1, ..., C}. According to
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Tumer and Ghosh [11], a classifier is trained to learn a function fc(.) that
approximates this posterior probability (i.e., probability of classifying x into
class c): fc(x) = p(c|x) + ηc(x) where ηc(x) is the error of fc(x) relative to
p(c|x). This is the error in addition to Bayes error and usually referred to as the
added error. This error occurs either due to the bias of the learning algorithm,
and/or the variance of the learned model. According to [11], the expected added

error can be obtained from the following formula: Error =
σ2

ηc(x)

s where σ2
ηc(x)

is the variance of ηc(x), and s is the difference between the derivatives of p(c|x)
and p(¬c|x), which is independent of the learned classifier.

Let L = {L1, ..., LM} be an ensemble of M classifiers, where each classifier
Li is trained from a data chunk. If we average the outputs of the classifiers in
a M -classifier ensemble, then according to [11], the probability of the ensemble
in classifying x into class c is: favg

c (x) = 1
M

∑M
m=1 fm

c (x) = p(c|x) + ηavg
c (x),

where favg
c (x) is the output of the ensemble L, fm

c (x) is the output of the m-th
classifier Lm, and ηavg

c (x) is the added error of the ensemble, given by:
ηavg

c (x) = 1
M

∑M
m=1 ηm

c (x), where ηm
c (x) is the added error of the m-th classifier

in the ensemble. Assuming the error variances are independent, the variance of
ηavg

c (x), i.e., the error variance of the ensemble, σ2
ηavg

c (x), is given by:

σ2
ηavg

c (x) =
1

M2

M∑
m=1

σ2
ηm

c (x), (1)

where σ2
ηm

c (x) is the variance of ηm
c (x).

Also, let σ2
ηavg

c (xa)(A), and σ2
ηavg

c (xb)
(B) be the variances of the ensemble error

on A, and B, respectively. Let zc(x) be 1 if the true class label of x is c, and
zc(x) be 0, otherwise. Also, let fm

c (x) be either 0 or 1. The error variance of
classifier Lm on A is given by [7]:

σ2
ηm

c (xa)(A) =
1
|A|

∑
xa∈A

(zc(xa) − fm
c (xa))2, (2)

where (zc(xa) − fm
c (xa))2 is the squared error of classifier Lm on in-

stance xa. Since we assume that fm
c (xa) is either 0 or 1, it follows that

(zc(xa) − fm
c (xa))2 = 0 if the prediction of Lm is correct, and = 1, other-

wise. Let xa be an arbitrary instance in A, and let r(xa) be the majority
vote count of xa. Also, let us divide the classifiers into two groups. Let
group 1 be {Lmj}

r(xa)
j=1 , i.e., the classifiers that contributed to the majority

vote, and group 2 be {Lmj}M
j=r(xa)+1, i.e., all other classifiers. Since we

consider that the errors of the classifiers are independent, it is highly un-
likely that majority of the classifiers will make the same mistake. Therefore,
we may consider the votes in favor of the majority class to be correct.
So, all classifiers in group 1 has correct prediction, and all other classifiers
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have incorrect predictions. The combined squared error (CSE) of the individual
classifiers in classifying xa into class c is:

M∑
m=1

(zc(xa)− fm
c (xa))2 =

r(xa)∑
j=1

(zc(xa)− f
mj
c (xa))2 +

M∑
j=r(xa)+1

(zc(xa)− f
mj
c (xa))2

= 0 +
M∑

j=r(xa)+1

(zc(xa)− f
mj
c (xa))2 (3)

Note that CSE is the sum of the squared errors of individual classifiers in the
ensemble, not the error of the ensemble itself. Also, note that each component
of group 2 in the CSE, i,e,. each (zc(xa)− f

mj
c (xa))2, j > r(xa) contributes 1 to

the sum (since the prediction is wrong). Now we may proceed as follows:

M2S(xa) < M2S(xb) ⇒ r(xa) < r(xb) (since the total vote = M) (4)
This implies that the size of group 2 for xa is larger than that for xb.
Therefore, the CSE in classifying xa is greater than that of xb, since
each component of group 2 in CSE contributes 1 to the sum. Continuing from
eqn (4),

⇒
M∑

j=r(xa)+1

(zc(xa) − fmj
c (xa))2 >

M∑
j=r(xb)+1

(zc(xb) − fmj
c (xb))2

⇒
M∑

m=1

(zc(xa) − fm
c (xa))2 >

M∑
m=1

(zc(xb) − fm
c (xb))2 (using eqn 3) (5)

Now, according to the Lemma statement, for any pair (xa ∈ A, xb ∈ B),
M2S(xa) < M2S(xb) holds, and hence, inequality (5) holds. Therefore, the
mean CSE of set A must be less than the mean CSE of set B, i.e.,

⇒ 1
|A|

∑
xa∈A

M∑
m=1

(zc(xa) − fm
c (xa))2 >

1
|B|
∑
xb∈B

M∑
m=1

(zc(xb) − fm
c (xb))2

⇒
M∑

m=1

(
1
|A|

∑
xa∈A

(zc(xa) − fm
c (xa))2) >

M∑
m=1

(
1
|B|
∑
xb∈B

(zc(xb) − fm
c (xb))2)

⇒
M∑

m=1

σ2
ηm

c (xa)(A) >
M∑

m=1

σ2
ηm

c (xb)
(B) (using eqn 2)

⇒ σ2
ηavg

c (xa)(A) > σ2
ηavg

c (xb)
(B) (using eqn 1)

That is, the ensemble error variance, and hence, the ensemble error (since error
variance is proportional to error) on A is higher than that of B. �

4 Experiments

In this section we describe the datasets, experimental environment, and discuss
and analyze the results.
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4.1 Data Sets and Experimental Setup

We use two synthetic and two real datasets for evaluation. These are: Syn-
thetic data with only concept-drift (SynC), Synthetic data with concept-drift
and novel-class (SynCN), Real data - KDDCup 99 network intrusion detection
(KDD), and Real data - Forest cover dataset from UCI repository (Forest).
Due to space limitation, we omit the details of the datasets. Details can be found
in [4]. We use the following parameter settings, unless mentioned otherwise: i)
K (number of pseudopoints per classifier) = 50, ii) q (minimum number of in-
stances required to declare novel class) = 50, iii) L (ensemble size) = 6, iv) S
(chunk size) = 2,000. v) MMT (minimum majority threshold) = 0.5.

4.2 Baseline Approach

We use the same baseline techniques that were used to compare with MineClass
[4]. Since to the best of our knowledge, there is no technique that can both
classify and detect novel class in data streams, a combination of two baseline
techniques are used in MineClass: OLINDDA [10], and Weighted Classifier
Ensemble (WCE) [2], where the former works as novel class detector, and the
latter performs classification. For each chunk, we first detect the novel class
instances using OLINDDA. All other instances in the chunk are assumed to be
in the existing classes, and they are classified using WCE. We use OLINDDA
as the novelty detector, since it is a recently proposed algorithm that is shown
to have outperformed other novelty detection techniques in data streams [10].

However, OLINDDA assumes that there is only one “normal” class, and all
other classes are “novel”. So, it is not directly applicable to the multi-class nov-
elty detection problem, where any combination of classes can be considered as the
“existing” classes. We propose two alternative solutions. First, we build parallel
OLINDDA models, one for each class, which evolve simultaneously. Whenever
the instances of a novel class appear, we create a new OLINDDA model for
that class. A test instance is declared as novel, if all the existing class models
identify this instance as novel. We will refer to this baseline method as WCE-
OLINDDA PARALLEL. Second, we initially build an OLINDDA model with
all the available classes. Whenever a novel class is found, the class is absorbed into
the existing OLINDDA model. Thus, only one “normal” model is maintained
throughout the stream. This will be referred to as WCE-OLINDDA SINGLE.
In all experiments, the ensemble size and chunk-size are kept the same for both
these techniques. Besides, the same base learner is used for WCE and ActMiner.
The parameter settings for OLINDDA are the same as in [4].

In this experiment, we also use WCE-OLINDDA Parallel and
WCE-OLINDDA Single for comparison, with some minor changes. In order to
see the effects of limited labeled data on WCE-OLINDDA models, we run two dif-
ferent settings for WCE-OLINDDA Parallel and WCE-OLINDDA Single. First,
we run WCE-OLINDDA Parallel ( WCE-OLINDDA Single) with all instances
in each chunk labeled. We denote this setting as WCE-OLINDDA Parallel-
Full (WCE-OLINDDA Single-Full). Second, we run WCE-OLINDDA Parallel
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(WCE-OLINDDA Single) with exactly the same instances labeled as were
labeled by ActMiner, plus any instance identified as novel class by
WCE-OLINDDA Parallel (WCE-OLINDDA Single). We denote this set-
ting as WCE-OLINDDA Parallel-Partial (WCE-OLINDDA Single-Partial). We
will henceforth use the acronyms AM for ActMiner, WOPf for WCE-
OLINDDA Parallel-Full, WOSf for WCE-OLINDDA Single-Full, WOPp for
WCE-OLINDDA Parallel-Partial, and WOSp for WCE-OLINDDA Single-
Partial.

4.3 Evaluation

Evaluation approach: Let Fn = total novel class instances misclassified as ex-
isting class, Fp = total existing class instances misclassified as novel class, Fe

= total existing class instances misclassified (other than Fp), Nc = total novel
class instances in the stream, N = total instances the stream. We use the fol-
lowing performance metrics to evaluate our technique: Mnew = % of novel class
instances Misclassified as existing class = Fn∗100

Nc
, Fnew = % of existing class

instances Falsely identified as novel class = Fp∗100
N−Nc

, ERR = Total misclassifica-

tion error (%)(including Mnew and Fnew) = (Fp+Fn+Fe)∗100
N . From the definition

of the error metrics, it is clear that ERR is not necessarily equal to the sum of
Mnew and Fnew. Also, let Lp be the percentage of instances in the data stream
required to have labels for training.

Evaluation is done as follows: we build the initial models in each method with
the first init number labeled chunks with all instances in each chunk labeled.
In our experiments, we set init number = 3. From the 4th chunk onward, we
evaluate the performances of each method on each data point. We update the
models with a new chunk whenever all weakly classified instances (WCIs) in that
chunk are labeled.

Results: Figures 1(a1),1(b1) show the ERR of each baseline technique and fig-
ures 1(a2),1(b2) show the percentage of data labeled (Lp) corresponding to each
technique on a real (Forest) and a synthetic (SynCN) dataset with decision
tree. Corresponding charts for other datasets and k-NN classifier are similar,
and omitted due to the space limitation. Figure 1(a1) shows the ERR of each
technique at different stream positions for Forest dataset. The X axis in this
chart corresponds to a particular stream position, and the corresponding value
at the Y axis represents the ERR upto that position. For example, at X=200,
corresponding Y values represent the ERR of a technique on the first 200K in-
stances in the stream. At this position, corresponding Y values (i.e., ERR) of
AM, WOPf , WOPP , WOSf and WOSp are 7.5%, 10.8%, 56.2%, 12.3%, and
63.2%, respectively. The percentage of data required to be labeled (LP ) by each
of these techniques for the same dataset (Forest) is shown in figure 1(a2). For ex-
ample, at the same X position (X=200), the LP values for AM, WOPf , WOPP ,
WOSf and WOSp are 8.9%, 100%, 12.7%, 100%, and 9%, respectively. Therefore,
from the first 200K instances in the stream, AM required only 8.9% instances to
have labels, whereas, its nearest competitor (WOPf ) required 100% instances to
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Fig. 1. Overall error (ERR), percentage of data required to be labeled (Lp), total novel
instances missed, and encountered by each method

have labels. So, AM, using 11 times less labeled data, achieves lower ERR rates
than WOPf . Note that ERR rates of other methods such as WOPp, which uses
less than 100% labeled data, are much worse.

Figures 1(c1),1(d1) show the number of novel instances missed (i.e., misclassi-
fied as existing class) by each baseline technique, and figures 1(c2),1(d2) report
the total number of novel instances encountered by each technique on the same
real (Forest) and synthetic (SynCN) datasets with decision tree classifier. For
example, in figure 1(c1), for X=200, the Y values represent the total number of
novel class instances missed by each technique within the first 200K instances
in the stream. The corresponding Y values for AM, WOPf , WOPP , WOSf and
WOSp are 366, 5,317, 13,269, 12,156 and 14,407, respectively. figure 1(c2) shows
the total number of novel instances encountered by each method at different
stream positions for the same dataset. Different approaches encounter different
amount of novel class instances because the ensemble of classifiers in each ap-
proach evolve in different ways. Therefore, a class may be novel for one approach,
and may be existing for another approach.

Table 1 shows the summary of the evaluation. The table is split into two parts:
the upper part shows the ERR and Mnew values, and the lower part shows the
Fnew and Lp values. For example, consider the upper part of the table corre-
sponding to the row KDD under Decision tree. This row shows the ERR and
Mnew rates for each of the baseline techniques on KDD dataset for decision tree
classifier. Here AM has the lowest ERR rate, which is 1.2%, compared to 5.8%,
64.0%, 6.7%, and 74.8% ERR rates of WOPf , WOPp, WOSf and WOSp, re-
spectively. Also, the Mnew rate of AM is much lower (1.4%) compared to any
other baselines. Although WOSf and WOPf have lower ERR rates in SynC
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Table 1. Performance comparison

Classifier Dataset
ERR Mnew

AM WOPf WOPp WOSf WOSp AM WOPf WOPp WOSf WOSp

Decision tree
SynC 13.4 14.1 42.5 12.8 42.3 - - - - -
SynCN 0.3 8.9 38.4 13.9 55.7 0.0 26.5 31.0 96.2 96.3
KDD 1.2 5.8 64.0 6.7 74.8 1.4 13.2 22.4 96.9 96.1
Forest 6.3 7.9 74.5 8.5 77.4 4.6 30.7 69.3 70.1 83.1

k-NN
SynC 0.0 2.4 2.4 1.1 1.1 - - - - -
SynCN 0.0 8.9 17.2 13.9 36.0 0.0 26.5 26.3 96.2 98.9
KDD 1.1 4.9 15.3 5.2 63.2 6.2 12.9 76.1 96.5 99.1
Forest 7.1 4.1 16.9 4.6 37.8 15.4 32.0 28.6 70.1 82.2

Classifier Dataset
Fnew Lp

AM WOPf WOPp WOSf WOSp AM WOPf WOPp WOSf WOSp

Decision tree
SynC 0.0 2.4 2.4 1.1 1.0 1.04 100 3.41 100 2.05
SynCN 0.0 1.6 1.5 0.1 0.1 9.31 100 12.10 100 9.31
KDD 1.1 4.3 4.5 0.03 0.03 3.33 100 8.82 100 3.34
Forest 3.0 1.1 1.1 0.2 0.2 6.51 100 8.08 100 6.56

k-NN
SynC 0.0 2.4 2.4 1.1 1.1 0.0 100 2.46 100 1.09
SynCN 0.0 1.6 1.7 0.1 0.1 8.35 100 12.73 100 8.35
KDD 0.9 4.4 4.8 0.03 0.03 1.73 100 7.94 100 1.73
Forest 1.9 1.1 1.0 0.2 0.2 5.05 100 6.82 100 5.20

(decision tree), and Forest (k-NN), respectively, they use at least 20 times more
labeled data than AM in those datasets, which is reported in the lower right
part of the table (under Lp), and their Mnew rates are much higher than AM.
Note that Lp is determined from the WCIs, i.e., what percentage of instances are
weakly classified by the ensemble. Therefore, it is different for different datasets.
Some readers might find it surprising that active learning outperforms learn-
ing with full labels. However, it should be noted that ActMiner outperforms
other proposed techniques, not MineClass itself. MineClass, using 100% labeled
instances for training, still outperforms ActMiner because ActMiner uses less la-
beled instance. However, other proposed techniques (like WOP) have too strong
requirement about class properties. For example, OLINDDA requires the classes
to have convex shape, and assumes similar density of each class of data. On the
other hand, ActMiner does not have any such requirement. Therefore, in most
real world scenarios, where classes have non-convex shape, and different classes
have different data densities, ActMiner performs much better than OLINDDA
in detecting novel class, even with much less label information.

Figure 2(left) shows the effect of increasing the minimum majority threshold
(MMT) on ERR rate, and figure 2(right) shows the percentage instances labeled
for different values of MMT on SynC. For AM, the ERR rate starts decreasing
after MMT=0.5. This is because there is no instance for which the M2S (majority
to sum) ratio is less than 0.5. So, Lp remains the same (1%) for MMT=0.1 to 0.5
(see figure 2(b)), since the only instances needed to be labeled for these values
of MMT are the F -outlier instances. However, when MMT=0.6, more instances
needed to be labeled (Lp=3.2%) as the M2S ratio for these (3.2-1.0=) 2.2%
instances are within the range [0.5,0.6). The overall ERR also reduces since more
labeled instances are used for training. Sensitivity of AM to other parameters
are similar to MineClass [4], and omitted here due to space limitations.
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Fig. 2. Effects of increasing the minimum majority threshold (MMT)

Table 2. Running time comparison in all datasets

Dataset
Time(sec)/1K Time(sec)/1K

(including labeling time)
AM WOPf WOSf AM WOPf WOSf

SynC 0.32 0.41 0.2
SynCN 1.6 14.3 3.1
KDD 1.1 24.0 0.6 34.4 1,024.0 1,000.6
Forest 0.87 8.5 0.5 66.0 1,008.5 1,000.5

Table 2 reports the running times of AM and other baseline techniques
on different datasets with decision tree. Running times with k-NN also have
similar characteristics. Since WOPf and WOPp have the same running times,
we report only WOPf . The same is true for WOSf and WOSp. The columns
headed by “Time (sec)/1K ” show the average running times (train and test)
in seconds per 1000 points excluding data labeling time, and the columns
headed by “Time (sec)/1K (including labeling time)” show the same including
data labeling time. For example, excluding the data labeling time, AM takes
1.1 seconds to process 1K instances on the KDD dataset, whereas WOPf ,
WOPp takes 24.0, and 0.5 seconds, respectively. In general, WOPf is much
slower than AM, requiring about C times more runtime than AM. This is
because WOP maintains C parallel OLINDDA models to detect novel classes.
Besides, OLINDDA creates clusters using an internal buffer every time it
encounters an instance that is identified as unknown, which consumes much
of its running time. On the other hand, WOSf runs slightly faster than AM
in three datasets. But this advantage of WOSf is undermined by its much
poorer performance in classification accuracy than AM. If we consider the
data labeling time, we get a more compelling picture. We consider the labeling
times only for real datasets. Suppose the labeling time for each data point
for the real datasets is 1 sec, although in real life, data labeling may require
much longer time [12]. Out of each 1000 instances, AM requires only 33, and
65 instances to have labels for the KDD, and Forest datasets, respectively
(see table 1 under Lp). Whereas WOPf and WOSf require all the 1000
instances to have labels. Therefore, the total running time of AM per 1000
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instances including data labeling time is only 3.4% and 6.5% of that of WOPf

and WOSf for KDD and Forest datasets, respectively. Thus, AM outperforms
the baseline techniques both in classification accuracies and running times.

5 Conclusion

Our approach, ActMiner, provides a more complete framework for data stream
classification than existing techniques. ActMiner integrates the solutions to four
major data stream classification problems: infinite length, concept-drift, concept-
evolution, and limited labeled data. Most of the existing techniques address only
two or three of these four problems. ActMiner reduces data labeling time and cost
by requiring only a few selected instances to be labeled. Even with this limited
amount of labeled data, it outperforms state-of-the-art data stream classification
techniques that use ten times or more labeled data. In future, we would like to
address the dynamic feature set problem and multi-label classification problems
in data stream classification.
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Abstract. The ever growing presence of data streams led to a large
number of proposed algorithms for stream data analysis and especially
stream classification over the last years. Anytime algorithms can deliver
a result after any point in time and are therefore the natural choice
for data streams with varying time allowances between two items. Re-
cently it has been shown that anytime classifiers outperform traditional
approaches also on constant streams. Therefore, increasing the anytime
classification accuracy yields better performance on both varying and
constant data streams. In this paper we propose three novel approaches
that improve anytime Bayesian classification by bulk loading hierarchical
mixture models. In experimental evaluation against four existing tech-
niques we show that our best approach outperforms all competitors and
yields significant improvement over previous results in term of anytime
classification accuracy.

1 Introduction

With an abundance of streaming data due to widely deployed sensors or other
data gathering devices, analysis of streaming data such as stream classification
has recently received much attention in data mining research. Algorithms that
work on data streams have to cope with the limited and often also varying
amount of computation time. Traditionally they got for a certain task a fixed
time budget which was known in advance, i.e. they were tailored to the specific
application. These budget algorithms can neither provide a results in less time
nor exploit additional time to improve their result. In contrast, so called anytime
algorithms can provide a result after a very short initialization, improve their
result incrementally when more time is available and hold the most recent result
ready at any time. In data mining anytime solutions have been proposed for
many tasks such as clustering [10], top-k processing [2] and classification [5,16].

Anytime algorithms are the natural choice for varying data streams since they
flexibly exploit all available time to improve the quality of their result. Recently it
has been shown in [12] that also on constant data streams anytime classifiers can
improve the classification accuracy over that of traditional budget approaches.
With their superiority on varying and constant data streams, applications for
anytime classifiers are numerous and range from industrial applications, such as
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machine monitoring, over sorting tasks to robotics and health applications. [11].
Our focus is on improving the performance of anytime Bayesian classification.
Improving the anytime accuracy together with the results from [12] leads to
better classification results on both constant and varying data streams.

2 Related Work

Classification aims at determining the class label of unknown objects based on
training data. Different classification approaches are discussed in the literature
including nearest neighbor classifiers, decision trees or support vector machines.
Bayes classifiers constitute a statistical approach that has been successfully used
in numerous application domains. Another classification approach is represented
by Bayesian classification using kernel density estimation [9]. Especially for huge
data sets the estimation error using kernel densities is known to be very low and
even asymptotically optimal [3].

Anytime classification is real time classification up to a point of interruption.
In addition to high classification accuracy as in traditional classifiers, anytime
classifiers have to make best use of the limited time available, and, most notably,
they have to be interruptible at any given point in time. This point in time is
usually not known in advance and may vary greatly. Anytime classification has
for example been discussed for support vector machines [5] or nearest neighbor
classification [16].

For Bayesian classification based on kernel densities an anytime algorithm
called Bayes tree has been proposed in [15]. The Bayes tree is a balanced tree
structure and is basically an extension of the R-tree [8]. It stores in each entry
a pointer and a minimum bounding rectangle (MBR) and additionally a cluster
feature representing the corresponding subtree. In [15] the tree is constructed
trough iterative insertion, i.e. no optimization is performed with respect to over-
lapping or quality of the resulting mixture densities. In this paper we propose
several methods for bulk loading mixture densities in the Bayes tree and show
in experimental evaluation that they outperform the results from [15].

3 Bulk Loading Mixture Densities

Before going into detail on the different bulk loading approaches in Sections 3.2
and 3.3 we briefly review Bayesian classification and describe the structure and
working of the Bayes tree proposed in [15].

3.1 Bayesian Classification and the Bayes Tree

Given a set of classes C and an object space X a classifier is a function G that
assigns the class label G(x) to an object x ∈ X . Based on a statistical model
of the distribution of class labels the Bayes classifier assigns to an object x the
class ci with the highest posterior probability P (ci|x). With Bayes rule it holds:

G(x) = argmax
ci∈C

{P (ci|x)} = argmax
ci∈C

{P (ci) · p(x|ci)}
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In the Bayes tree the class-conditional density p(x|ci) is estimated using
Gaussian mixture models in the inner nodes and Gaussian kernel estimators at
the leaf level. Iterative refinement of mixture components enables anytime kernel
density estimation for efficient and interruptible classification. The general idea
of the Bayes tree is a hierarchy of mixture densities stored in a multidimensional
index. Each level of the tree stores a complete model of the entire data at a dif-
ferent granularity. The node entries consist of pointers to a subtree and a single
Gaussian representing the objects in the subtree. All objects stored in the leaves
of the Bayes tree are d-dimensional kernels. The mean μs and the variance vector
σ2

s can be computed from the cluster features.
Answering a probability density query uses a complete model which is avail-

able at each level of the tree. Besides these full models, the Bayes tree allows
for local refinement of the model (to adapt flexibly to the query) and thus pro-
vides models composed of coarser and finer representations. The current mixture
model components, i.e. their corresponding entries, are stored in a frontier. The
current entries in the frontier have to represent each stored object exactly once.
This is made sure by removing the entry es that is refined from the frontier and
adding its child entries es◦j , j = 1 . . . νs instead. The probability density for a
query object is then calculated with respect to the current frontier.

For tree traversal best first descent using a probabilistic priority measure has
proven to yield the best results in [15]. One Bayes tree is built per class, therefore
several improvement strategies have been proposed to decide which tree has the
right to refine its model in the next time step. Extensive experiments showed
that refining the k most probable classes (qbk) in turns yielded the best results
throughout. k = min{2, �log(m)	}, where m is the number of classes, showed the
best performance on all tested data sets. For more details please refer to [15].

3.2 Machine Learning and Statistical Approaches

Our goal in this work is to improve the performance of the Bayes tree. The ac-
curacy of the Bayes tree results is based on the quality of the mixture densities
stored in its entries. The iterative insertion performed in [15] does not consider
the quality of the resulting Gaussian components. We develop and evaluate sev-
eral bulk loading approaches that try to overcome this shortcoming and improve
the quality of the mixture densities.

Goldberger. Since the Bayes tree is a statistical approach to classification we
looked for statistical methods to create a smaller mixture model from a given
mixture model. Starting bottom up with a mixture model that contains a kernel
estimator for each training set item we create successively coarser models that
represent good approximations.

Our first statistical approach is based on [7] and is called Goldberger in the
following. The Goldberger approach assumes two initial mixture models f and
g to be given, where f is the finer model with r components and g an approxi-
mation with s components, hence r > s. Each component is assigned a weight
and is specified by its mean and covariance matrix. To measure the quality of
the approximation [7] defines the distance between two mixture densities as:
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Definition 1. Let f =
∑r

i=1 αifi and g =
∑s

j=1 βjgj be two mixture densities
containing r and s Gaussian components fi and gj with their respective weights
αi and βj. The distance between f and g is then defined using the Kullback-
Leibler divergence KL [4] as follows

d(f, g) =
r∑

i=1

αi ·
s

min
j=1

{KL(fi, gj)}

The optimal model ĝ reducing f to s components is ĝ = arg ming(d(f, g)). Since
there is no closed form to compute ĝ, a local optimum is computed iterating the
following two steps until the distance d(f, g) does no longer decrease. Therein
π(i) : {1 . . . r} → {1 . . . s} is a mapping function that assigns each component in
f to a component in g.

– Regroup: update π: π(i) = argmins
j=1{KL(fi, gj)}

– Refit: for each component gj recompute weight βj , mean μj and covariance
matrix Σj as follows
• βj =

∑
i,π(i)=j αi

• μj = 1
βj

∑
i,π(i)=j αiμi

• Σj = 1
βj

∑
i,π(i)=j αi

(
Σj + (μi − μj)

2
)

We devise a bulk loading technique based on [7] as follows. To initialize the
mixture g we compute a first mapping π0 by assigning 0.75 ·M components from
f to one component in g according to the z-curve order of their mean values. M
is given through the fanout, which in turn is dictated by the page size. When
no more changes occur in step 2, the resulting components gj are converted
to Bayes tree nodes containing the entries fi with π(i) = j. Since the final
π might map more than M components from f to a single component in g, we
investigated several strategies to restrict the fanout to the given boundaries. First
we reformulated the regroup step into an integer linear program with constraints
regarding the resulting fanout. However, for realistic problem sizes, this approach
took way too long to compute a complete bulk loading. Hence, we decided for a
post processing after the mapping π was computed, which splits the nodes that
contain too many entries. Therefore two representatives are computed by moving
the mean along the dimension a with the highest variance σa by an ε = σa/2
in both direction. A Gaussian is placed over the two representatives and the
mapping of the entries to the representatives is computed as in the regroup step.
If a node contains too few entries it is merged with the node closest to it in
terms of the Kullback-Leibler divergence.

Virtual sampling. The second approach, called virtual sampling, uses the work
presented in [17] and does not rely on the KL divergence. The virtual sampling
approach assumes a given mixture model f =

∑
i=1..r αi · fi containing r com-

ponents and computes a coarser mixture model g =
∑

j=1..s αj · gj with s < r
components. The components fi = G(x, μi, σi) constitute multivariate Gaus-
sian normal distributions with their respective weight αi (analogue for gj). To
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derive an algorithm the following model is utilized: the mixture g can be com-
puted using samples R1 . . . Rr from each component in f with R = ∪i=1..rRi

and |Ri| = αi · |R|. Assuming independence of the sample points from different
components in f yields the assumption that they can be assigned to different
components in g while samples from the same fi are likely to be assigned to
the same gj. Based on this assumption hidden variables zij are introduced that
indicate for each component fi its assignment to the corresponding gj. While the
zij are binary during initialization, they can take values between 0 and 1 during
the iterations. The hidden variables are used in a modified Expectation Maxi-
mization algorithm to compute the coarser mixture g as follows (superscripts f

and g are added for readability to indicate the origin of the components):

– Expectation: zij =

[
G(μf

i ,μg
j ,Σg

j )e
− 1

2 trace{(Σg
j
)−1Σ

f
i
}
]|Ri|

·αg
j∑ s

k=1

[
G(μf

i ,μg
k,Σg

k)e− 1
2 trace{(Σg

k
)−1Σ

f
i
}
]|Ri|

·αg
k

– Maximization:
• αg

j = 1
r

∑r
i=1 zij μg

j =
∑ r

i=1 zij |Ri|μf
i∑

r
i=1 zij |Ri|

• Σg
j = 1∑ r

i=1 zij |Ri|

[∑r
i=1 zij |Ri|Σf

i +
∑r

i=1 zij |Ri|
(
μf

i − μg
j

)2
]

The above equations are independent of the actual samples Ri and can be com-
puted directly from the mixture components in f , hence virtual sampling. To
use the described bottom up method for bulk loading we have to provide an
initialization for the hidden variables zij . The initialization of the mixture g is
done as in the goldberger approach described above. After getting the final val-
ues for zij from the virtual sampling algorithm, we assign each fi to that gj with
the maximum zij for all j. Moreover, the result has to comply with the fanout
parameters m and M of the Bayes tree. This is achieved through merging and
splitting of the resulting components gj. If a component gj is assigned less than
m components fi, these components from f are assigned to the gj′ with the
second highest zij′ . If more than M components fi are assigned to one gj , gj

is duplicated while moving the resulting two means in opposite direction along
the dimension with the highest variance. The respective fi are reassigned to the
more probable candidate according to the density of their mean μi. After merg-
ing and splitting the corresponding mixture parameters are adapted following
the above equations.

EMTopDown. Besides the above mentioned bottom up approaches we imple-
mented a top down approach that recursively splits the training set into several
clusters. In contrast to the previous approach, where Gaussian components were
merged and mapped, we now operate solely on the data objects. More precisely,
we start by applying the EM [6] algorithm to the complete training set. The
desired number M of resulting clusters is always set to the fanout which is again
given through the page size. If the EM returns less than m clusters, the biggest
resulting cluster is split again such that the total number of resulting clusters is
at most M . In the rare case that the EM returns a single cluster, this cluster is
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split by picking the two farthest elements and assigning the remaining elements
to the closest of the two. Finally, if a resulting cluster contains more than L
objects (the capacity of a leaf node), the cluster is recursively split using the
procedure described above. Otherwise the items contained in that cluster are
stored in a leaf node, its corresponding entry is calculated and returned to build
the Bayes tree. The EM approach may result in an unbalanced tree, which differs
from the primary Bayes tree idea. However, as we will see in the experimental
section, the results show that this is not a drawback but even leads to better
anytime classification performance.

3.3 Data Base Driven Approaches

Since the Bayes tree extends the R-tree, we employ traditional R-tree bulk load-
ing algorithms for comparison. We implemented two types of space filling curves,
namely Hilbert curve and z-curve. We briefly describe the Hilbert curve ap-
proach, the z-curve bulk loading works analogously. The bulk loading according
to the Hilbert curve is a bottom up approach where in the first step the Hilbert
value for each training set item is calculated. Next the items are ordered ac-
cording to their Hilbert value and put into leaf nodes w.r.t. the page size. After
that the corresponding entry for each resulting node is created, i.e. MBR, cluster
features (CF) and the pointer. These steps are repeated using the mean vectors
as representatives until all entries fit into one node, the root node. Theory on
creating multidimensional Hilbert curves can be found in [1], for implementa-
tion guide lines see [13]. Additionally we implemented the partitioning approach
presented in [14] that is called sort-tile-recursive. The basic idea is to build a hier-
archy of rectangles which have, at the same level of the hierarchy, approximately
the same expansion in each dimension. For details please refer to [14].

4 Experiments

The three proposed bulk loading techniques Goldberger, virtual sampling and
EMTopDown are compared to the existing R-tree bulk loading approaches
Hilbert, z-curve and STR and the previous results from [15] (called Iterative
in the graphs since it performs iterative insertion of objects). We also used the
same settings as in [15], i.e. we use the same data sets, performed 4-fold cross
validation and show the classification accuracy after each node averaged over
the four folds. We used global best descent and the qbk improvement strategy
as they showed the best results in [15]. Please note that the bulk loading is done
per fold once and offline and the resulting classifier is then used on the data
stream. Since our focus is on anytime classification, we do not study the time
performance of the bulk loading algorithm but the performance of the resulting
classifier, i.e. its anytime classification accuracy.

The top left part of figure 1 shows the results for the pendigits data set. The
Goldberger approach fails to improve the accuracy over the iterative insertion
for the first 50 nodes. After that it performs slightly better, but cannot increase
the accuracy by more than 1%. Virtual sampling performs worst on this data set.
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Fig. 1. Anytime classification accuracy and a ranking of all approaches according to
the area for Pendigits (left) and Letter (right)

The Hilbert and z-curve bulkload yield comparable results, their corresponding
curves show a steep increase similar to the iterative insertion and show bet-
ter performance in most cases. After falling behind during the first nodes, STR
performs equaly well compared to Iterative. The EMTopDown bulkload outper-
forms all other approaches and improves the accuracy over the iterative insertion
constantly by 3% or more on this data set.

The performance of the Goldberger bulkload stayed below the iterative inser-
tion in the majority of our experiments. Just on the Letter data set it improved
the accuracy for larger time allowances (cf. Figure 1, right). For the first 40
nodes Goldberger and Iterative perform equally well, after that the accuracy of
Iterative stays behind that of Goldberger. While the virtual sampling and STR
bulkload shows similar performance to Iterative, Hilbert and z-curve (which are
again in close proximity to each other) show constantly better accuracy than It-
erative. The EMTopDown again constantly yields the best accuracy up to 13%
better than the iterative insertion.

To facilitate an easier comparison between the different approaches we report
the values for the normalized area under the anytime curves for Pendigits, Letter,
Vowel, USPS and Verbmobil in Figures 1 (bottom) and 2 (top) respectively.
Throughout the data sets Hilbert and z-curve show nearly the same performance,
while z-curve is usually slightly behind Hilbert except for the USPS data set.
STR ranges between these two and the iterative insertion; it is never better
than the former and never beaten by the latter. Surprisingly both statistical
approaches exhibit the same weakness as STR, i.e. they never outperform the
z-curve bulk load (except Goldberger on Letter) and several times show even
worse performance than iterative insertion. This is especially interesting since
both approaches are initialized using the z-curve, however, only with 0.75 · M
entries per node (cf. Section 3.2). We discuss the reasons for this shortcoming of
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Fig. 2. Top: Comparison of all approaches on Vowel, USPS and Verbmobil data sets.
Bottom: Anytime classification accuracy on Gender (left) and Covertype (right).

the statistical approaches at the end of the section where we analyze the structure
of the resulting trees. Finally, the EMTopDown bulk load shows constantly the
best performance on all data sets despite the unbalanced resulting trees. Again
we defer the analysis to the end of the section and first discuss a different issue.

Figure 2 (bottom) shows the results for the gender and covertype data sets.
For readability only the results for Hilbert and EMTopDown are shown. For both
data sets k = 2 for the qbk improvement strategy (cf. Section 3.1). The graphs for
EMTopDown and Hilbert using the global best descent (glo) show an oscillating
behavior on both data sets. For comparison we recapitulated the breadth first
traversal (bft), the results are plotted as well. As was found in [15], the global
best descent performs better than breadth first traversal. However, the graphs
for bft do not show the oscillating behavior mentioned above. Since k = 2, there
is obviously a certain percentage of object whose class decision changes in favor
of (or against) the tree which is currently refined. More precisely, these objects
are likely positioned on the decision boundary between the two most probable
classes. In global best descend refining mixture components close to the objects,
and hence close to the decision boundary, affects the corresponding posterior
probabilities more heavily than refinement of a farther component as in breadth
first traversal. If we assume the oscillation to be a higher frequency added to
a smooth underlying anytime curve, the percentage of these borderline objects
corresponds to the amplitude. However, on balance, the oscillating behavior does
not affect the superiority of the bulk loading over the iterative insertion.

To find reasons for the surprising ranking of the individual algorithms, we
analyzed the structure of the resulting trees. Since more entries in a node cor-
respond to more detailed information compared to less entries, we looked at the
degree to which the nodes were filled in the different approaches. To this end we
computed the average fanout per level of the trees from root to leaf. However,
the resulting figures did not reveal any correlation to the found ranking of the ap-
proaches. For example, both space filling curve approaches always fill the nodes
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to nearly 100% (except for the last one per level and the root), but the EMTop-
Down sometimes produces less than M entries for a given node.

We found a correlation between the performance of the algorithm and the
variance of the mixture components in the resulting trees. More precisely, we
calculated the average variance of all entries per level, Figure 3 shows the result-
ing numbers for Hilbert, Goldberger, EMTopDown and Iterative on the Letter
and Gender data sets. The variances are normalized by the variance of the entire
data set per class. Level 0 corresponds to the leaves, Level 1 is above the leaves
etc. The trees resulting from different approaches can have different heights as
can be seen in the graphs. Hilbert bulk load fills each node to 100% and con-
sequently yields the smallest trees, while the unbalanced trees resulting from
EMTopDown are up to twice as high on the Gender data set.

EMTopDown and Hilbert show significantly smaller average variances com-
pared to the iterative insertion. While the corresponding variances for Gold-
berger are smaller than those of Iterative for the Letter data set they are larger
on the Gender data set. This is in line with the observed anytime classification
performances. We found comparable similarities between the two measures on
the other data sets. The average variances per level achieved by the EMTopDown
bulk load were constantly amongst the lowest compared to all other approaches.
This explains and underlines the superior performance of EMTopDown.

In general the EMTopDown shows the best results in terms of anytime classi-
fication accuracy on all tested data sets and continuously improves the accuracy
over that of the previous results in [15] up to 13%. This proves the effectiveness
of our bulk loading approach for hierarchical anytime classifiers.

5 Conclusion

We proposed three bulk loading approaches for hierarchical mixture models to
improve Bayesian classification on data streams using the Bayes tree. We com-
pared our approaches to the previously proposed iterative insertion [15] and
three known R-tree bulk loading algorithms on a range of real world data sets.
Experimental results showed that our novel EMTopDown bulk load constantly
outperformed all other approaches and improved the accuracy by up to 13%.
Surprisingly our two statistical approaches were outperformed by existing R-
tree bulk loadings based on space filling curves. Further analysis attributed this



334 P. Kranen et al.

shortcoming to a structural property of the resulting Bayes trees. The results of
the analysis were in line with the classification results found in the experiments
confirming the superior performance of our new EMTopDown bulk loading in
terms of anytime classification accuracy.
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Abstract. When dealing with potentially infinite data streams, storing
the whole data stream history is unfeasible and providing a high-quality
summary is required. In this paper1, we propose a summarization method
for multidimensional data streams based on a graph structure and taking
advantage of the data hierarchies. The summarization method considers
the data distribution and thus overcomes a major drawback of the Tilted
Time Window common framework. We adapt this structure for synthe-
sizing frequent itemsets extracted on temporal windows. Thanks to our
approach, as users do not analyze any more numerous extraction results,
the result processing is improved.

1 Introduction

With the rapid development of information technology, many applications (web
log analysis, medical equipment monitoring, etc.) have to deal with data streams.
A data stream is defined as a potentially infinite sequence of precise and changing
data arriving at an intensive rate. Due to the high-speed constraint, stream data
can be read only once (one-pass constraint [1]) and storing the whole stream his-
tory is impossible. Nevertheless, decision makers need to analyze the data stream
history, leading us to propose data stream summarization methods. As most of
stream data are multidimensional and can be considered at multiple levels of
precision (referred to as MD/MT data), providing an on-line multidimensional
and multilevel analysis on such data streams would be interesting in order to
make profit of the OLAP technology in static datawarehouses.

To the best of our knowledge, only two approaches profit from OLAP technolo-
gies for the MD/ML data stream summarization. In [2], the temporal dimension
is compressed thanks to Tilted Time Windows [3] (TTW). The most recent his-
tory is registered at the finest granularity while the older history is registered
at coarser granularity. The user habits are exploited to choose the materialized
cuboids. In spite of an interesting architecture, the storage cost can be reduced.
[4] overcame this drawback by introducing precision functions which define for
each granularity level of every dimension the minimal interval of a TTW to avoid
storing unqueried or computable data. Globally, the existing approaches focus
1 Part of the MIDAS project funded by the French ANR (ANR-07-MDCO-008).
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on which cuboids must be materialized but none of them reconsiders the use of
TTWs. In spite of a good compression ratio, changing the time granularity at
regular intervals can lead to an important loss of precision. Indeed, this mecha-
nism does not take the data distribution into account. For instance, if an item
rarely occurs in the stream, it could be useful to keep precise informations about
its occurrences. However, with the TTW mechanism, this information would be
lost after the first aggregation.

In this paper, we thus propose a graph-based framework for summarizing
MD/ML data streams In this approach, if an item frequently appears in the
stream, it is useless to conserve the precise history of its occurrences. Conversely,
rare items are kept as conserving their precise occurrences could be useful for
supporting decisions. Thanks to dynamic lists, aggregations are performed only if
an item occurs in several close windows of the stream. On the contrary, non-close
occurrences are kept during a significant period.

2 Problem Statement

MT/ML Data. Let D = {D1, ..., DM} be a set of M dimensions. Every dimen-
sion Di is defined over a (finite or not) set of values Dom(Di). Every dimension
Di can be considered at several levels of granularity, composing a hierarchy
Hi where: maxi is the number of levels in Hi with Hmaxi

i the finest level and
H1

i the coarsest. Note that for every dimension we consider a value * which
can be defined as all the values. We have x ∈ Dom(Dj

i ) if x is defined on the
level Hj

i . For instance, a hierarchy of a geographic dimension DGeo could be
HGeo = {H1 = ALL, H2 = Continent, H3 = Country, H4 = City} and we
have France ∈ Dom(D3

Geo). A (multidimensional) item t is then defined as
t = (d1, ..., dM ) so that for every i = 1...M , di ∈ Dom(Di). t is said to be a
Lowest Level Item (LLI) if ∀di ∈ [1, M ], di ∈ Dom(Dmaxi

i ). On the opposite, t
is said to be a Highest Level Item (HLI).

Mining Multidimensional Items in Data Streams. A data stream S =
B0, B1, ..., Bn is an infinite sequence of batches (temporal windows), where every
batch is associated with a timestamp t (denoted by Bt). A batch Bi is defined
as a set of transactions appearing over the stream at the ith time unit. In a
MD data stream context, the support is defined as: suppBi(X) = count(X)/|Bi|
where count(X) is the number of transactions of Bi in which X appears and
|Bi| the number of transactions in Bi.

Tilted Time Windows. In stream data analysis, users are usually interested
in recent changes at a fine granularity, and in long term changes at coarse scale.
Tilted Time Window [3] have thus been introduced, and the degree of coarseness
depends on the application requirements and on how old the time point is (see
Figure 1(a)). However, changing the time granularity at regular intervals can
lead to an important loss of precision. For instance, Figure 1(b) shows an item
i that occurs rarely: classical TTW would rapidly aggregate these occurrences.
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(a) A natural TTW illustration (b) TTW and sparse data

Fig. 1. TTW: illustration and drawback

3 Raw Stream Data Summarization

The hierarchies associated to the dimensions compose the base-structure. These
nodes are structural and do not store anything. As multidimensional items keep
coming, nodes storing the summary at different levels of granularity are created,
updated or deleted dynamically. To overcome the above-mentioned drawback of
TTW, the history of each LLI is conserved in dynamic lists which store the pre-
cise occurrences. Thus, aggregations are not performed at regular time intervals
but only when some conditions (e.g., temporal proximity between elements of
the list) are validated. Higher granularity nodes store classical TTWs. Figure
2 displays a simple example. Due to the potentially infinite length of a stream,

Fig. 2. Proposed structure. Item (Water,LA) occurs once in the batch t10 and 8 times
in batch t12. More general items (e.g., (Drink, USA)) are kept in TTWs.

the accumulation of occurrences in dynamic lists is impossible. Mechanisms for
aggregating or merging data are thus proposed:

1. If the same item appears in close temporal windows, they are merged and
the result of this merging is propagated along the item generalizations.

2. A maximum size for each list is fixed. When a list reaches its maximal size,
the oldest element is deleted.

3.1 Description of the Structure

Initially, the graph structure is composed by the dimension hierarchies. These
nodes are called structural nodes SN . Histories of LLIs are stored in nodes
called the Lowest Level Nodes (LLN). Let NX = (X, HistX) be a LLN node so
that X is a LLI and HistX is a list containing pairs < W : CountW > where
W is a time interval and CountW is the number of occurences of XR in W .



338 Y. Pitarch, A. Laurent, and P. Poncelet

If W represents more than one time unit, Wbeg and Wend denote the bounds
of the interval. Otherwise, the notation W is used. HLI are represented in our
structure by High Level Nodes (HLN). Let MX = (X, TX) be an HLN so that
X is an HLI and TX is a TTW storing the history of X .

3.2 Updating the Structure

A distance measure between LLI. Since stream data arrives at a very low
level of granularity, the number of potential items can be huge. [2] proposes to
tackle this problem by electing the lowest level of granularity which is inter-
esting for the user (m-layer). Data are systematically aggregated to this level
of granularity. Sometimes, users need to keep a track of precise data. In such
a context, two items could be different but semantically close. For this pur-
pose, we propose a hierarchy-based distance dist. Let A = {XA

1 , XA
2 , ..., XA

N} et
B = {XB

1 , XB
2 , ..., XB

N} be two LLI. We define dist(A, B) as:

dist(A, B) = 1 −
∑

1≤j≤N
1

lv(NCA(x1,x2))2

N

where N is the number of dimensions, lv(x) the level of granularity of x (with
lv(x) = 1 if x is a sheet of the hierarchy) and NCA(x1, x2) is the nearest
common ancestor of x1 and x2. Two items A and B are semantically close if
dist(A, B) < distMax where distMax is a user-defined threshold.

Example 1. Let A=(Wine,Paris) and B=(Wine,Lyon) be two LLI. We have
NCA(Wine, Wine) = IdProduct (prox(Wine, WIne) = 1) and NCA(Paris,
Lyon) = Country (Prox(Paris, Lyon) = 1

22 ). Thus dist(A, B) = 1 − 1+0.25
2 .

When a node NX (where NX is an LLN) already exists, it must be updated if
X reappears (in the batch t for instance). Indeed, the pair < t, countt > is to
HistX . Due to the storage constraint, a merge mechanism is proposed.

The Merge Operation. If an item occurs in close time intervals, it is unec-
essary to keep all its occurrences. Merging these occurrences in a naive manner
would perturb the propagation on the HLN . For instance, let us consider the
LLN (Wine,NY) and the TTW displayed on Figure 2 where an agregation is
performed every three time units. Considering the aggregated value of [T0; T3],
it cannot be inserted in the second window of the TTW because it overlaps the
first two windows. Indeed, each value in the second window represents three time
units (more generally, each value stored in a window k represents the aggrega-
tion of W1 × ...×Wk−1 time units). So, a merging can be performed if and only
if the impacted interval represents one temporal granularity of the TTW.

Merging pairs stored in a node NX and propagating the aggregated values
along the generalization of X is performed as follows. Firstly, the pair f aris-
ing from the merging is computed and the associated pairs are deleted from
HistX . This process launches a propagation along the generalization of the con-
cerned item. The nodes sharing the same generalization are sought. Every Hist
is scanned for locating entries to participate to the aggregation. A pair cannot
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participate to two different merge operations. So, every located pair is marked.
Lastly, the aggregated value is inserted at the appropriate position in the TTWs
corresponding to the generalizations of X .

Example 2. Let us consider the example from Figure 2 and let us suppose that
a merging has to be performed on the (Water-LA) node. The pairs < t10 : 1 >
and < t12 : 8 > are aggregated. Then, nodes sharing the same generalization
(i.e., (Drink-USA)) are sought, retrieving the node Wine-NY. Its list contains
< t11, 5 >, which can participate to the aggregation.

Limiting the Size of the Lists. The merge mechanism allows for compression
of lists but is insufficient to guarantee that the structure fits in main memory.
Additional methods must be proposed in order to avoid memory overflows. A
merging is performed if the interval represents one temporal granularity of the
TTW. But it is unrealistic to consider all the granularities. Let us suppose that
the TTW displayed in Figure 1(a) is used. Considering the whole TTW for the
merging mechanism implies that we can potentially wait for 1 year before any
merging. Storing a so long history in each list is inconceivable. So, we introduce a
user-defined numerical parameter, WMAX , which means that the maximum size
of the possibly merged interval is W1 × ... ×WMAX − 1. Secondly, the merging
mechanism is not sufficient to limit the number of elements stored in a list.
In fact, it is not possible to determine the data distribution in a stream and,
consequently, it is impossible to predict the number of merging operations. So,
a user-defined numerical parameter, MAX-SIZE, is introduced.Since the MAX-
SIZE th element of the list can be possibly merged in the future, we authorize
MAX-SIZE +(W1 × ... ×WMAX − 1)− 1 elements per list.

Example 3. Let us consider the TTW from Figure 2, with MAX-SIZE= 3 and
WMAX = W3. The maximum size of the list is then 3 + (3 × 3)− 1 = 11.

General Update Algorithm. When updating an LLN, the size of Hist is
evaluated and compared to MAX-SIZE. If the size is smaller than MAX-SIZE, we
check in the list if a merge operation is possible. If necessary, a merge operation
is performed. Otherwise, the pair is inserted at the end of the Hist. If the size of
the Hist is greater than or equal to MAX−SIZE, we get the MAX−SIZEth

element in Hist and we check if a merge operation is possible. Otherwise, we
check if tc − tm < (W1 × ... ×WMAX − 1). This check allows us to verify if the
MAX − SIZEth element could be merged in the future. Otherwise, the list is
full and any element could be merged. The oldest pair is thus deleted.

4 Frequent Itemset Synthesis

Frequent itemsets extracted over temporal windows can be considered as an
interresting data stream summarization technique. However, we discussed the
difficulty for decision makers to analyze the numerous and independent set of
results manually. In this section, the minor adjustments to perform in order to
take into account such specific input are presented.
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Storing frequent itemsets instead of items requires that dynamic lists (resp.
TTWs) cannot be stored in LLN (resp. HLN). So, some definitions must be
adapted. Indeed, LLN and HLN nodes are now considered as structural nodes
and do not store any history. Likewise LLIs, the history of each LLIS is stored
in nodes named the Lowest Level Itemset Nodes (LLISN ). Let NX = (X :
HistX) be a LLISN node so that X is a LLIS and HistX is a set of pairs
< W : SuppW > where W is a time interval and SuppW is the support of X
in W . If W represents more than one time unit, we note Wbeg (resp. Wend) the
beginning (resp. the end) of the interval. On the contrary, the notation W is
used. HLIS are stored in nodes called Highest Level Itemset Nodes (HLISN).
Let R = (X : T ) be an HLR so that X is an HLI and T is a TTW.

Methods presented in Section 3 can easily transposed to the synthesis of fre-
quent itemsets. Due to both the lack of space and the extreme proximity with
the above-written algorithms, they are not given here.

5 Experiments

The feasibility of our approach is evaluated by considering the update time of the
data structure and the main memory consumption. Experiments are conducted
on a Intel(R) Xeon(R) CPU E5450@3.00GHz with 2GB of main memory, running
Ubuntu 9.04. The methods are written in Java 1.6. We report and discuss here
the most representative ones. Refer to our website2 for complete results.

5.1 Synthetic Datasets

The data stream is simulated using a multidimensional random data generator
(following a Random Uniform Distribution). D10L3C5W20T100SM10 stands for
10 dimensions, 3 granularity levels per dimension (except level *), node fan-out
factor (cardinality) of 5 (i.e., 5 children per node), 20K temporal windows of
100 tuples each and proper-approach parameters of SIZE-MAX=10. Figure 3
presents a representative result obtained during the experimentations. On Figure
3(b), three distinct behaviors can be observed: quick increase of the memory
consumption (no merging performed) then fair increase of the RAM consumption
(occurrence of two concurrent phenomena: merging and filling up lists), and
finally, stabilization of the memory usage because all the potential LN are created
and insertions in lists are balanced by merging. Regarding the update time per
window (Figure 3(a)), three distinct time scales can be noticed. The lowest
one corresponds to a node creation or to a simple insertion in a list (performed
almost instantaneously), the second one corresponds to merging and aggregation
mechanisms (approximately 15ms) and the highest one is explainable by both
insertion and merging (approximately 20ms).

Due to the Random Uniform Distribution of data, paramaters which impact
directly the number of potential items to store have a logical influence on both
time and memory consumption performances. Indeed, the higher the number of
2 http://www.lirmm.fr/~pitarch/PAKDD10/experiments.html
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Fig. 4. Experiments conducted on frequent itemsets

items, the longer the time to perform a merge operation. Nevertheless, it can
be noticed that performances become critical when the parameter values are
extreme (e.g., when the depth of the hierarchies equals 7). In other experiments,
results show the feasibility of the proposed method.

5.2 Real Dataset

We consider here industrial pumps transmitting physical informations (e.g., pres-
sure, external temperature) over 10 dimensions. Hierarchies were arbitrarily built
with the following characteristics. Every dimension has 3 levels of granularity
and the average fan-out factor is 100. the dataset is dense. The input file is
divided into windows containing 100 tuples.

Summarizing Items. We observe that memory is rapidly bounded as the
dataset is very dense. The average insertion time is 50ms, and distinct time
scales are observable. Moreover, the insertion time is relatively stable and this
time is at worst 230ms.

Synthesizing Frequent Itemsets. Multidimensional itemsets and customer
sequences were arbitrarily built. The average number of items per itemset is 25
and the average number of customers per client is 100. Then, a frequent item-
set mining algorithm was applied3 with a minSupp=10%. The average number
of frequent itemsets per window is approximatively 100. Finally, we run our
3 We use the implementation of FP-Growth provided by the Illimine project.



342 Y. Pitarch, A. Laurent, and P. Poncelet

algorithm on those frequent itemsets. Figure 4(b) displays the results of memory
consumption. The memory consumption stabilizes quickly (the frequent itemsets
are almost the same on the whole data stream). The two off-peaks can be ex-
plained by the garbage collector. Regarding the insertion time, it can be noted
that the simple insertions or list creations are a little slower than with items.
This is explainable by the higher complexity of itemsets in comparison to items.
Several merging and generalization mechanisms can also be observed.

6 Conclusion

In this paper, we tackle the problem of summarizing multidimensional and mul-
tilevel data stream thanks to a graph structure and provide efficient algorithm
for updating this structure. Moreover, thanks to dynamic lists, we overcome the
major drawback of the TTW: taking the data distribution into account. Finally,
we show how frequent itemsets can be synthesized in order providing a comfort-
able solution for decision support. Our experiment study on both synthetic and
real datasets shows that our summarization structure is efficient in both time
and space, allowing us to consider numerous possible extensions.
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Abstract. Data streams constitute the core of many traditional (e.g. financial)
and emerging (e.g. environmental) applications. The sources of streams are ubiq-
uitous in daily life (e.g. web clicks). One feature of these data is the high speed
of their arrival. Thus, their processing entails a special constraint. Despite the ex-
ponential growth in the capacity of storage devices, it is very expensive - even
impossible - to store a data stream in its entirety. Consequently, queries are eval-
uated only on the recent data of the stream, the old ones are expired. However,
some applications need to query the whole data stream. Therefore, the inability
to store a complete stream suggests the storage of a compact representation of its
data, called summaries. These structures allow users to query the past without an
explosion of the required storage space, to provide historical aggregated informa-
tion, to perform data mining tasks or to detect anomalous behavior in computer
systems. The side effect of using summaries is that queries over historical data
may not return exact answers, but only approximate ones.

This paper introduces a new approach which is a trade-off between the accu-
racy of query results and the time consumed in building summaries.

1 Introduction

A data stream is an ordered, continuous sequence of timestamped data elements [8].
The information naturally occurs in the form of a sequence of data values; examples
include sensor data, Internet traffic, financial tickers, transaction logs, etc. The poten-
tially infinite nature of data streams and their high arrival rate imply an inability to store
a data stream in its entirety and restrict queries and algorithms to process the data of a
stream on the fly in a one pass fashion (i.e: without a prior data storage). In order to be
processed in real time, queries must be specified before the beginning of streams. These
queries run continuously over a period of time and incrementally return new results as
new data arrive. The inability to store a complete stream suggests the use of approxi-
mate summary structures, referred to in the literature as synopses [9] or digests [3]. By
definition, a summary is an incomplete representation of the historical data of a stream.
Summarizing online data streams has been largely studied with several techniques like
sketching, sampling, building histograms, and wavelets [2] [7] [11].

In this paper, we investigate using both sampling and clustering processes to make
historical summaries on data streams. The sampling method is known to be fast and

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 343–353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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efficient for answering important classes of queries, but this technique does not give
good results for historical queries [4]. The clustering process enables to maintain a good
performance for queries applied on distant past. By taking advantages of the sampling
and the clustering processes, we show in this paper that we can make a summary of the
whole data stream. Through our performance measurements, we show that the data kept
using our algorithm, allow us to have good results for queries that cover a very distant
past.

In this paper, we are interested in querying the whole data stream specially, the
historical part of the stream. We study the multi-dimensional and numerical data
stream produced by a source ’F’. Each data stream can be viewed as a sequence of
< ti, v1, v2, ..., vn > where: v1, v2, ...vn represent the element values for each attribute
and ti is the time when the reading element was produced by the source ’F’. We assume
that the elements come under increasing timestamps. The study of delay in the arrival
of elements can be managed by our approach but it is not the purpose of this paper.

We are interested in aggregating the stream values within a time interval [6]. This
means answering range queries. A range query is a pair Q < Agg, [tstart, tend] >
where Agg represents an aggregate operation (sum, count, etc.) and [tstart, tend] are
the bounds of the time period over which the aggregate is calculated. The aggregate
operation is computed over the data stream’s summary.

We present the Reservoir Hybrid (RH) approach in order to build historical sum-
maries of data streams. It is a two stage summary: initially the summary is in the form
of samples then, the elements of these samples evolve to make part of a cluster sum-
mary. This proposal offers a good compromise in terms of accuracy and run-time.

2 Related Work

In this section, we briefly describe the CluStream and StreamSamp approaches which
are used to create the RH approach for summarizing data streams.

CluStream [1] is based on clustering of quantitative data but it can provide a structure
particularly suited for the data stream summary. The objective is to build a summary as
evolutionary micro-clusters including snapshots which are stored regularly. Aggarwal
was inspired by the BIRCH algorithm [12] using the CFV structure (Cluster Feature
Vector) to represent clusters and expands on this concept by adding temporal features.
The CFV structure maintains statistical data that summarize all the elements of micro-
clusters.

CluStream proceeds in two steps: the first one is the building of a data summary after
the initialization of k micro-clusters (using the k-means algorithm). This step consists
on the micro-clusters creation and maintenance. When a new stream element enters the
Clustream process, its distance to the centroid of each micro-cluster is calculated and
then assigned to the nearest micro-cluster. The CFV of this cluster is updated without
storing the belonging of this element to the cluster. The second step is characterized
by post-analysis which can be applied to the stored snapshots. At each clock time, the
algorithm takes a snapshot and saves it according to a pyramidal time frame1. This

1 Snapshots are stored at different levels of granularity. This structure favors recent time frames
to older ones.
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consists of storing on disk the CFV of all micro-clusters. For post-analysis purposes
CFVs allow the subtraction of two snapshots. Approximation of results for statistical
queries can be computed over the pre-specified time horizon.

CluStream keeps representative snapshots even for old stream elements. This allows
the monitoring of the data stream over time. However, one weakness of the algorithm
is that the process of distance calculations is expensive. A second limitation consists of
the high number of parameters which depend on the nature of the stream and the arrival
speed of elements.

StreamSamp [5] is based on sampling a data stream. It was developed to overcome
the limitations of CluStream. It combines a memory-based reduction method which is
random sampling and a time-based reduction system which is tilted windows 2. The
algorithm proceeds in two steps: the first one is the building of data summary by sam-
pling and re-sampling stream elements. Upon arrival, the data are sampled in a purely
random way with a fixed sampling rate, α, and placed in samples of size T . When T is
reached StreamSamp, stores on the disk the sample elements and its starting and ending
timestamps of constitution. The weight 1 is attributed to this sample. As it is impossible
to keep all samples, when L samples of size T are filled, StreamSamp merges the two
oldest samples following the tilted windows system. The weight of the resultant sample
(created by random re-sampling) is multiplied by 2. It is a recursive operation. The sec-
ond step allows the exploitation and analysis of the created summary. It consists of the
exploration of the summary retained for a given period. The algorithm starts by con-
stituting the final sample by concatenating elements having different weights to restore
the flow of that period. Each element in this period is associated to its weight.

StreamSamp has the advantage of being fast on designing the data stream summary.
However, its performance degrades over time because old elements increase in weight
for a given sample size. Therefore, if a sample contains recent elements (much lower
weight) and some old elements, the latter will increase the errors in the results of query
answers.

3 Reservoir Hybrid Approach

The RH approach is presented as a trade-off between processing speed and accuracy in
summarized data streams. The basic idea of this algorithm is that the elements from the
data stream are first sent into StreamSamp to be processed. When the samples are no
longer representative in terms of the two criteria detailed below, the sample elements
are sent to CluStream. Depending on the chronological order, these elements are sent to
the reservoir before sending to CluStream. Since it involves CluStream, only numerical
data can be considered.

3.1 Representativeness of Samples

The representativeness of a sample is associated to two criteria: (i) the variance criterion
and, (ii) the position criterion of the centroids. These criteria are based on inherent

2 Summaries with a constant size are maintained covering time periods of varying sizes, shorter
for the present and longer for the distant past.
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features of the two processes: the random sampling for StreamSamp and the updating
evolutionary micro-clusters for CluStream. In order to preserve a summary with good
quality, we have to maintain a good quality for these two processes. The first criterion
is checked for each attribute while the second one is checked considering all attributes
together. The main idea is to transit from the StreamSamp process to CluStream based
on a simultaneous check of these two criteria.

Variance Criterion. One of the steps in the StreamSamp process is random re-
sampling. In this step, two samples E1 and E2, both of size N and covering respec-
tively the time [t1 − t2] and [t3 − t4], are merged into a new sample E3. The E3 sample
is created by randomly drawing N elements from E1 and E2 and covering the period
[t1 − t4]. This step leads to a degradation of the summary. The variance criterion mon-
itors random re-sampling and measures the ’quality’ of the resulting sample.
Definition 1. A sample has a good quality if it can generate, from stored data, an ap-
proximate response to aggregate queries such as mean, variance, etc.

We aim to control the quality of the sample resulting from the merger of independent
samples E1 and E2. We note that these samples have the same weight. The sample’s
quality is checked by controlling the accuracy of aggregate estimators. In this paper,
we check the accuracy of the mean estimator noted x. However, we could make this
criterion more severe by controlling the quality of all used aggregates (mean, median,
sum, etc). The goal of this criterion is to set a statistical bound on the mean estimator.
Since a sample and random sampling are used, we know that with a confidence of 95%,
we have the inequality:∣∣∣x − x̂(E1 ∪ E2)

∣∣∣ ≤ 1.96
√

V ar(x̂(E1 ∪ E2)). (1)

Were E1 and E2 are the two samples that have to be merged and x̂ is the estimator of
the mean.

The variance V ar(x̂(E1 ∪E2)) is estimated according to the following formula :

V ar(x̂(E1 ∪ E2)) = (1 − 2n

N
)(

1
2n

)[
1

2n− 1

∑
k∈E1∪E2

(xk − x)2]. (2)

Where n is the sample size and N is the size of the involved population
To ensure that merger quality is satisfied, we define a threshold B (user defined

parameter) that the error estimator must not exceed. The criterion is expressed using
the inequality :

1.96
√

V ar(x̂(E1 ∪ E2))

x̂(E1 ∪ E2)
≤ B (3)

However, even if the criterion is met, we do not decide to merge, unless the second
criterion, about the position of the centroids is checked.

Position Criterion of the Centroids. While the first criterion concerns the StreamSamp
process, the position criterion of the centroids is related to the CluStream process. The
random re-sampling process leads to a deterioration on the quality of the built summary.
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This may cause a considerable change on the position of the centroids which will be
calculated on the remaining samples. Consequently, the accuracy on the position of
the centroids deteriorates. Therefore, like the first criterion, a minimum precision on
the centroids position must be maintained by establishing a threshold over the distance
between the centroids.

Unlike the classical approach of CluStream in which the algorithm processes the
whole stream, in our CluStream version, the algorithm will only processes a sampled
stream.

In order to maintain this accuracy, we check the centroid’s precision at each re-
sampling step. We calculate the distance between the centroid (G) (calculated from the
samples to be merged (E1 and E2)) and the centroid (G) (calculated from the estimated
sample (E3)). This distance must be below a threshold D. Otherwise, the required pre-
cision is no longer respected.

D = ε×
∑

E1∪E2

(d2(x, xi)) (4)

Where ε is a user defined parameter fixed following the evolution of the centroids, and∑
E1∪E2

(d2(x, xi)) is the intra-cluster inertia of the sample made up from (E1 ∪ E2)

If one of these two criteria is no longer respected, the two corresponding samples
will be handled by CluStream.

3.2 Insertion of the Samples in CluStream

The insertion of elements in CluStream depends on two parameters: (1) the weight of
elements and, (2) the chronological insertion.

(1) To maintain the representativeness of the elements, the weight must be taken into
consideration. Two strategies can be applied for the insertion of elements into CluS-
tream: (i) each element i is inserted wi times (wi is the weight of the element i) or
(ii) each element is multiplied by its weight and inserted once in the nearest micro-
cluster. CluStream uses the Euclidean distance. It is not based on the correlation be-
tween attributes (i.e. Mahanalobis distance [10]). The two strategies offer the same
results. Consequently, each element is inserted once because the first strategy needs
O(p ∗ τ ∗ wi) times to insert an element i into the nearest micro-cluster (with p the
number of micro-clusters and τ the time needed to calculate the distance between an
element and a micro-cluster).

(2) In CluStream, Aggarwal added a temporal extension to the classical form of CFV.
In order to reflect the evolution of the stream data over a time period, it is necessary to
insert elements in chronological order. Thus, during their move from StreamSamp to
CluStream, data elements have to be processed according to the order of their respec-
tive timestamps: samples with higher weights must be moved away before the lower
weighted samples.

Following the chronological order some samples have to be moved to CluStream
only because they are older than another samples, although they still respect the merge
criteria. The early transmission of samples from StreamSamp to CluStream leads to the
following important drawbacks:
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– Unnecessary waste of accuracy, especially for classification tasks.
– Unnecessary waste of time as the clustering process of CluStream is slower than

sampling.
– StreamSamp empties quickly and once emptied we lose the performance of this

algorithm (fast processing data stream, fast building summaries, good accuracy of
the recent period, etc.).

To overcome these drawbacks, a buffer (referred to in the sequel as the reservoir) is
introduced between StreamSamp and CluStream. As StreamSamp processes data faster
than CluStream, the basic idea behind our proposal is to keep data in the StreamSamp
process as long as possible, i.e: as long as the representativeness criteria are respected.
The reservoir structure is filled with samples that: (i) do not satisfy the representative-
ness criteria and hence can not remain in the StreamSamp process; and (ii) can not be
moved yet to the CluStream process because there are older samples which are still in
the StreamSamp process. These samples are moved from the reservoir to CluStream
when the storage space allocated is reached. The data transfer between StreamSamp,
the reservoir and CluStream is based on two rules.

Rule for transmission to the reservoir. Let E1, E2 be the two oldest samples of a
weight i in the StreamSamp process. Assume that L (the maximum number of samples
of weight i) is reached and that E1 and E2 cannot be merged. In such case, we check an
eventual merger between E2 and E3 (the third oldest sample of weight i). If this merger
is possible, only E1 is sent to the reservoir, and the samples E2 and E3 are merged.
Otherwise, samples E1 and E2 are sent to the reservoir. As we cannot indefinitely send
samples to the reservoir, we need to vacuum it dynamically by sending elements to
CluStream.

Rule for transmission to the CluStream process. Once the reservoir is filled, the δ
oldest samples are sent to the CluStream process (δ is a user defined parameter). These
δ samples are jointly extracted from the StreamSamp process and from the reservoir.
They are sent to CluStream in chronological order from the oldest to the newest. The
storage space allocated for the reservoir is not predefined. Rather, as illustrated by the
following formula, a global space is shared between the StreamSamp summary and the
dynamic reservoir.

Size(Res) = Size(HSpace)− Size(SSamples) (5)

Res: Reservoir, HSpace: total space allowed for the hybrid approach, SSamples: Sam-
ples in StreamSamp. Such a sharing mechanism allows a flexible management of the
storage space. This is an important feature of our approach as the storage space re-
quired by StreamSamp from one hand and the reservoir from the other hand, highly
data-dependent on the quality of the built samples. Indeed, if the merger’s criteria
are often satisfied, StreamSamp needs more space than the reservoir as few sam-
ples are sent to the reservoir. In the opposite case, the reservoir needs more storage
space.
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4 Empirical Results

We aim at assessing the performance of our algorithm and comparing it with CluS-
tream and StreamSamp used on their own. To make the comparison fair, all algorithms
use the same amount of memory to store their summaries. The algorithm parameters are
presented in table 1. Real data sets KDD983 and CoverType4 are used to evaluate the
performance of the algorithms. In these evaluations, we are interested in the robustness
and efficiency of algorithms for estimating queries which are evaluated over a time pe-
riod that grows old over time. Thereby, we study the aging period [0-10000] at different
timestamps (t10000, t20000, etc.). We repeat the StreamSamp and the RH approach 100
times because they include the sampling step. The result corresponds to the mean of
these drawings.

Table 1. Parameters of Algorithms

StreamSamp CluStream RH approach
α = 1 Nb of clusters = 50 B = 0.25

T = 200 elements by sample Nb of snapshots by order = 32 D = 5.10−4

L = 8 samples by order δ = 2

For reasons of limited space, we just present in this section the results for median
as querying task and classification as data mining task. Furthermore, other kinds of
analysis tasks have been applied (e.g. Mean, clustering) and present good results for
the Reservoir Hybrid approach. Note that we also compared these algorithms with the
classical Hybrid Approach (without using a reservoir), in order to study the impact of
reservoir in the construction of the summary.

4.1 Median Evaluation

We study the performances of the different approaches on median estimation.
The estimated error is calculated according to its ranking values:error =
|EstimatedRank−RealRank|

WindowSize
The Real Rank is calculated over the original dataset (5000 in our case) while, the Esti-
mated Rank is calculated over the resulted summary and the Window Size represents the
number of elements studied for the median calculation(10000 in our case). The value
of the estimated rank depends on the algorithm used to design the summary:

1. With StreamSamp, the estimated rank is easily calculated because the sampling
process preserves the structure of elements. Firstly, all elements included on [0-
10000] are extracted and sorted according to the attribute value. We choose the

3 The dataset contains 95412 records and 481 attributes of information about people who have
made charitable donations. After examining the stationarity of the stream, we use only 4 nu-
merical attributes (from 54).

4 The data contains 581012 elements and is defined by 54 variables of different types. Each
element belongs to a class from 7 target classes. The goal is to predict the forest cover type
from these variables.
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element which divides the distribution into two equal parts. The estimated rank
corresponds to the rank of this element in the original data set.

2. With the CluStream algorithm, stream elements are absorbed inside the micro-
clusters. For that, on period [0-10000], we use the centroids of micro-clusters as
values of elements and the weight corresponds to the number of elements in the
micro-cluster. We extract the rank of the median value from the original data set.
While the value may not be found (micro-cluster centroid), we search the rank of
the nearest lowest value and the rank of the nearest highest value from the original
data set. The estimated rank is the mean of these borders.

3. Using the RH approach or the classical Hybrid approach, it is possible to have
the StreamSamp and the CluStream processes running in parallel. In this case, we
extract from StreamSamp’s summary and the reservoir, all elements included on [0-
10000]. For CluStream, we search the closest snapshots kept between 0 and 10000
to extract the statistics. We merge the elements from StreamSamp’s summary with
the centroids of micro-clusters. Then, we calculate the estimated rank on this new
set of data.

As shown in figure 1(a), the relative median error calculated on StreamSamp increases
with the aging period [0-10000]. This error is calculated once on CluStream given that
it keeps two snapshots. The RH approach adopts a similar behavior to StreamSamp for
the recent periods. Then, when the quality of summary deteriorates it converges to an
accuracy close to the CluStream behavior. This approach provides better performance
than either summarizing approaches can provide separately and provides greater accu-
racy in estimating the median than the classical Hybrid approach.
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4.2 Classification Evaluation

We evaluate the performances of the generated models using the different summa-
rizing algorithms. The models are constructed over the fixed period [0-10000] using
the CoverType dataset. This dataset contains 7 labels, however, predicting 7 labels is
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difficult. To achieve this, we transform the data set to 2 labels: most frequent label (a
majority), and all others. We compare the performance of the generated models with the
reference which is constructed on the original dataset ([0-10000] in this task). The better
algorithm had to develop a prediction model close to the reference. The classification
evaluation is done on three steps:

1. Extraction of the summary on the period [0-10000]:
– From StreamSamp built summary, we extract all the elements between times-

tamp 0 and 10000. The summary designed by StreamSamp has the advantage
of retaining the same structure as the original data set.

– The summary generated by CluStream only contains statistical data informa-
tion, therefore, values and labels are absorbed in the micro-cluster. A pre-
processing stage of data becomes necessary: (i) generating element values, (ii)
adding label attribute.
(i) For the first process, we use the information kept in micro-clusters to gener-
ate ni elements (ni is the number of elements in the micro-cluster i), following
a Gaussian distribution. This operation is repeated 100 times because of ran-
domly generation process. The result corresponds to the mean of these different
drawings.
(ii) For the second process, we have to associate each generated element to
one label. To distinguish element belonging their labels, we use a binary cod-
ing in order to transform the ’n’ labels in ’n’ binary attributes to the dataset.
Thereby, for each element, the value of the variable to predict is replaced by
a binary value: ’1’ if value equals the variable and ’0’ otherwise. Due to this
technique, we know for each micro-cluster the labels of the absorbed elements.
The generated elements are associated according to these labels.

– To extract the required part of summary built by the RH approach and the
classical Hybrid approach, we pick up all samples from StreamSamp. Then,
we concatenate this set of data by the elements generated from the CluStream
micro-clusters as described above.

2. Construction of the model: The C4.5 algorithm is used on the extracted summaries
in order to construct the models. However, other algorithms like CART or SVM
can be applied.

3. Evaluation of the model: Models are evaluated using the training/test method.

As shown in figure 1(b), we compared the derived models constructed by algorithms
to the reference model (without summarizing operations). StreamSamp built the closest
model for recent periods because it used the real data unlike CluStream which uses data
generated from micro-clusters. The classical Hybrid approach and the RH approach
present better results in more recent periods since they used data from StreamSamp.
For very distant past periods, the RH approach performances stabilize over time and
presents the best results while, the StreamSamp performances continue to degrade.

4.3 Runtime Evaluation

In a data stream context, the runtime execution is a very important feature of processing
stream data. We take account the global elapsed time for the data stream processing. We
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Fig. 2. a) Runtime Evaluation (logarithmic scale). b) Zoom on period [0-90000].

are not interested in the aging period [0-10000] but rather by the cumulative time for
processing the whole data stream. As shown in figure 2(a) (logarithmic scale), Stream-
Samp provides the best performance and CluStream the worst one. The runtime per-
formance of the RH approach remained between those of StreamSamp and CluStream.
They are close to the StreamSamp’s performance but still much faster than CluStream
(more than 10 times faster than CluStream). StreamSamp algorithm uses only merg-
ing and sampling tasks. CluStream is the slowest because of updating operations of the
CFV structures and the distance calculation between centroids.

The use of the reservoir provides a benefit in speed processing. The performance of
the RH approach are better than the classical Hybrid approach and much better than
CluStream. Furthermore, using the reservoir strategy, we avoid the heavy initialization
step (Runtime evaluation Zoom in figure 2(b)).

4.4 Conclusion

Summarizing data streams is a difficult problem as we need to take into account two
antagonistic problems: (i) the representativeness off kept data and hence, the accuracy
of queries results; and (ii) the speed processing which is crucial in a data stream context.
In this paper, we have developed an efficient method called Reservoir Hybrid Approach
(RH approach) for summarizing data stream. We present the results for median and clas-
sification task, however, other kinds of queries (e.g. mean), and data mining tasks (e.g.
clustering) was evaluated. All the evaluation results show that the RH approach solves
the two antagonistic problems and provides best results. It provides a better speed-
accuracy trade-off than existing approaches. The use of a reservoir makes summary
building speed close to StreamSamp performances with an accuracy close to CluStream
for distant past periods.

Future work includes the design of a query language allowing the exact querying of
current data as well as the approximate querying of historical data.
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Abstract. In this paper, we propose a method for online subsequence
matching between histogram-based stream synopsis structures under the
dynamic warping distance. Given a query synopsis pattern, the work
continuously identifies all the matching subsequences for a stream as the
histograms are generated. To effectively reduce the computation time, we
design a Weighted Dynamic Time Warping (WDTW) algorithm which
computes the warping distance directly between two histogram-based
synopses. Our experiments on real datasets show that the proposed
method significantly speeds up the pattern matching by sacrificing a
little accuracy.

1 Introduction

Subsequence matching is a popular application in a data stream environment
such as sensor network monitoring and financial data analysis. When given a
query sequence, users would have great interests in continuously monitoring
similar subsequences when a data stream keeps evolving. Therefore, a real-time
and space-saving approach is required.

The similarity measurement is an important factor of the subsequence match-
ing. Compared with the Euclidean distance, the dynamic time warping (DTW) [1]
distance is more robust since it offers elastic scaling and shifting capabilities in
time axis. To match two sequences of length M and N respectively, an intuitive
solution is to compute the DTW distances of all possible matchings. However,
the time complexity of this method is O(MN3) since it costs O(MN) to obtain
a DTW distance.

Various types of DTW algorithms on subsequence matching have been pro-
posed [2,3]. However, it is impractical for stream applications to preprocess the
whole data in advance as these methods did. Hence, Sakurai et al. [4] develop
an online subsequence matching algorithm named SPRING, which is based on
the DTW algorithm with relaxed boundary constraints. Given a query sequence
of length M , SPRING spends O(M) time to identify a matching subsequence at
each data point of a stream. However, for a stream of length N , the total time
cost of SPRING is O(MN), which is heavy especially when N and M are large.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 354–361, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Searching for a better solution, we notice a growing interest in synopsis tech-
niques [5] which meet the real-time requirement with a small accuracy loss in
stream applications. Similarly, synopsis structures for speeding up the DTW al-
gorithm are discussed. Keogh et al. proposed the PDTW algorithm which used a
piecewise aggregate approximation (PAA) approach with equal-width histogram-
based synopses to speeding up DTW [6]. In addition, synopsis structures with
arbitrary-width histograms are designed for better approximation accuracy. Ex-
amples include the adaptive piecewise constraint approximation (APCA) [7] and
the Haar wavelet reconstruction [8]. Chan et al. proposed a Haar wavelet-based
approximation method under the time warping distance, but the method cannot
deal with subsequences and has much overestimation [9].

For the above reasons, we present a new subsequence matching method under
the dynamic time warping distance for data streams that are summarized with an
arbitrary-width histogram-based synopsis structure. Each histogram contains a
value and a timestamp indicating the end of this histogram as shown in Fig. 1(a).
Given a query sequence Q with length M that summarized with m histograms,
we want to continuously report subsequences of stream with distances to Q not
greater than the threshold ε. We propose the Weighted Dynamic Time Warping
(WDTW) algorithm that derives these matching subsequences. In order not to
overestimate the warping distance, which could happen when one histogram of a
stream synopsis matches multiple histograms of the other one, we have designed
a method to lower the overestimated distance. The WDTW algorithm is shown
to have O(m) complexity in both time and space at the coming of each histogram
of the stream. After processing n histograms, the total time complexity of our
method is O(mn), where m � M and n � N for synopsis streams.

To evaluate the WDTW algorithm, we conduct two experiments using a real
dataset of time series. For comparisons, we implemented two other subsequence
matching methods, referred to as Synopsis-DTW and MicroCell-DTW. The ex-
perimental results show that, when compared with MicroCell-DTW, our method
and Synopsis-DTW have far low computational time costs. However, our method
has only a little trade-off in accuracy, which is not true for Synopsis-DTW.

2 Preliminaries

Dynamic Time Warping (DTW) is a widely used distance measurement in time
series applications. It can compute the distance between two series of different
lengths since it solves the problem of shifting and scaling in the time axis. In
essence, the DTW distance between two series X = {xi|1 ≤ i ≤ N} and Y =
{yj|1 ≤ j ≤ M} is computed as follows. First, the distance between two data
points is defined as d(i, j) = ‖xi−yj‖. If xi matches yj , we define it as a matching
pair (i, j). A sequence of all matching pairs from (1,1) to (N,M) between series
X and Y is called a warping path W . Then, a warping distance for the path W
is Distance(W ) =

∑
(i,j)∈W ‖xi − yj‖.

Obviously, there exists multiple warping paths between X and Y . The DTW
distance between X and Y is defined as the warping path with the smallest
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Distance(W ), which we defined as the optimal warping path. The dynamic
programming technique can solve the optimal warping path problem in O(MN)
time complexity. Please refer to [1] for more details.

3 Subsequence Matching over Stream Synopses

3.1 Problem Definition

Given a data stream of length N , an online stream is summarized as a se-
quence of histograms X = {x1, x2, .., xn}, each of which has a height xvi and
an endpoint xti as shown in Fig. 1(a). We can denote a stream synopsis as
X = {〈xv1, xt1〉 , ..., 〈xvn, xtn〉}. X [ts : te] is defined as a synopsis subsequence
which starts from time ts and finishes at te, where both ts and te have to be
endpoints of histograms of X . For ease of exposition, we denote a synopsis sub-
sequence as X [[i] : [j]] to mean that it starts from the ith to the jth histograms
of X . Given the notations, we now define the subsequence matching problem.

Definition 1 (Synopsis Subsequence Matching). Given an online running
stream synopsis X, a query synopsis subsequence Q, and a threshold ε, the goal
of synopsis subsequence matching is to locate all the subsequences X [ts : te] that
satisfy Dtw(X [ts : te], Q) ≤ ε

3.2 WDTW: A Weighted Algorithm for Dynamic Time Warping

To solve the above issue, we propose Weighted Dynamic Time Warping (WDTW)
method. When the distance between the stream synopsis X = {x1, x2, ..., xn}
and the query sequence Q = {q1, q2, ..., qm} is derived, an accumulated distance
matrix of n × m cells will be created to keep the histogram mapping informa-
tion sequentially. As Fig. 1(b) shows, each cell is divided by the bold-solid lines
according to width of each histogram. The cell (i, j) is constructed by the ith
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histogram of X and jth histogram of Q. The size of each cell is different due to
the different width of each histogram. Therefore, each cell can be further divided
into multiple square micro cells with side lengths equal to one time unit. For
example, in Fig. 1(b), the shaded cell (3, 3) contains 4× 2 micro cells. Later we
will show that in fact only the latest two rows of these cells need to be kept.

Similar to DTW, WDTW also works in a dynamic programming way. Intu-
itively, the warping distance at each cell is directly derived from three neighbor
cells of various sizes in the matching procedure. However, this will result in over-
estimated distance. Using Fig. 1(c) as an example, if we directly compute the
accumulating warping distance of the cell (3,3) from the cell (3,2), all the light
and dark shaded micro cells will be counted in. In fact, the distance contributed
by the dark shaded micro cells are redundant and should be eliminated.

To lower the overestimated distance, our WDTW works as follows. First, we
define D(i, j) as the minimum accumulated distance between X [[s] : [i]] and
Q[[1] : [j]], s = 1, 2, ..., i,

D(i, j) =

⎧⎨⎩
0, if j = 0,
∞, if i = 0, j �= 0,
min{Dd(i, j), Dl(i, j), Du(i, j)}, otherwise.

(1)

where Dd(i, j), Dl(i, j), and Du(i, j) denote the minimum distances for cell
(i, j) with warping paths through the cell (i − 1, j − 1), (i, j − 1), and (i − 1, j)
respectively. We now discuss how to compute these distances case by case.

Case 1: Minimum Distance Path from the Diagonal Cell
In this case, the warping path comes from the cell (i−1, j−1) to the current cell
(i, j) as Fig. 2(a) shows. The path implies that the histogram xi−1 matches the
histogram qj−1 and xi matches qj . The distance Dd(i, j) can de obtained from
sum of D(i − 1, j − 1) and the distance of the cell (i, j).

The sub-optimal path of the current cell (i, j) passes max{lxi, lqj} micro
cells, where lxi and lqj are the length of histogram xi and qj respectively.
The micro cells passed by the sub-optimal path are called steps in the rest
of this paper. Consequently, we can obtain the accumulated distance Dd(i, j) =
D(i − 1, j − 1) + di,j × max{lxi, lqj}, where di,j = ‖xvi − qvj‖. For example
in Fig.1(b), the D(3, 3) in the shaded area can be computed as: Dd(3, 3) =
D(2, 2) + d3,3 ×max{lx3, lq3} = 6 + (4 − 6)2 × 4 = 22. �
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Case 2: Minimum Distance Path from the Left Cell
The warping path from the cell (i, j − 1) to cell (i, j), as shown in Fig. 2(b), de-
notes that xi matches the consecutive histograms qj−1 and qj . We use a combined
calculation of the consecutive histograms in a row to lower the overestimated dis-
tance of Dl(i, j). Without loss of generality, we assume that the start histogram
of these consecutive ones is qs. Our major insight is that the consecutive his-
tograms that match the same histogram xi can be combined. In other words,
the consecutive cells (i, s) to (i, j), where s < j, will be considered as a cell com-
bination, where the sub-optimal warping path Ω goes from the upmost-leftmost
micro cell of (i, s) to the bottommost-rightmost micro cell of (i, j).

Definition 2 (The Adjustable Distance in the Vertical Direction). For
the warping path passes from the cell (i, s) to the cell (i, j), where s is the smallest
index of these consecutive ones as a combination, the value Ev(i, j) is defined to
represent the adjustable distance of cell (i, j) in the vertical direction as follows.

Ev(i, j) =
{

0 ,if lxi ≤
∑j

k=s lqk

min{di,s, ..., di,j} × (lxi −
∑j

k=s lqk) ,otherwise
(2)

Lemma 1. The total distance of the sub-path, in a cell combination from (i, s)
to (i, j), of any warping path that contains it is:

∑j
k=s (di,k × lqk) + E(i, j).

Proof. Based on case 1, the sub-optimal path of the cell combination passes
max{lxi,

∑j
k=s lqk} steps (micro cells). If

∑j
k=s lqk ≥ lxi as Fig.3(a) shows, the

distance of the sub-path would be
∑j

k=s (di,k × lqk) and Ev(i, j) would be 0. If
lxi >

∑j
k=s lqk as Fig.3(b) shows, in addition to the diagonal steps, the path has

to pass further lxi−
∑j

k=s lyk vertical steps. In order to obtain the optimal path,
the vertical steps must be in the cell which has minimum di,k, where k is from
s to j. In this condition, the adjustable distance in vertical direction is dmin ×
lxi−

∑j
k=s lyk = Ev(i, j), which is the dark shaded area in Fig.3(b) for example.

Therefore, the total distance of the sub-path is
∑j

k=s (di,k × lqk) + Ev(i, j). �
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In sum, Lemma 2 shows how to calculate the value of Dl(i, j).

Lemma 2. The accumulated distance Dl(i, j), where the path comes from the
cell (i, j − 1), can be obtained with following equation in O(1) time.

Dl(i, j) = D(i, j − 1) − Ev(i, j − 1) + di,j × lqj + Ev(i, j) (3)

Proof. Without loss of generality, for the sub-path from the cell (t, s) to the
cell (i, j), where t ≤ i and s < j, there are two cases of Ev(i, j − 1). When
Ev(i, j−1) = 0 as Fig. 3(a) and 3(c) show, no adjustable distance in the vertical
direction should be distributed to the next cell. Hence, Ev(i, j) is also equal to
0, and Eq. (3) is obtained in this case.

When Ev(i, j − 1) �= 0, as the dark shaded area shown in Fig. 3(b) and 3(d),
the vertical steps in the previous cells can be distributed to the cell (i, j). With
Lemma 1 and Definition 2, Dl(i, j) can be obtained as follows.

Dl(i, j) = D(t− 1, s− 1) +
i−1∑
k=t

(dk,s × lxk) +
j∑

k=s

(di,k × lqk) + Ev(i, j)

= D(i, j − 1) −Ev(i, j − 1) + di,j × lqj + Ev(i, j) �

Based on Lemma 2, the information required to calculate Dl(i, j) is only stored
in cell (i, j) and (i, j− 1). Since the computation time of El(i, j) and El(i, j− 1)
is constant, Dl(i, j) is obtained in constant time. We give an example of this
case. In Fig. 1(b), Ev(3, 3) = min{d3,2, d3,3} × (lx3 − lq2 − lq3) = 1 × (3 − 2) =
1, Dl(3, 3) = D(3, 2)−Ev(3, 2)+ d3,3× lq3 +Ev(3, 3) = 6− 3+4× 2+1 = 12. �

Case 3: Minimum Distance Path from the Up Cell
In this case, the warping path passes through cell (i−1, j) as Fig.2(c) shows. Since
this case is similar to case 2 despite the consecutive cells are in a column, Du(i, j)
can also be derived in constant time. In Fig. 1(b), Eh(3, 3) = 0, Du(3, 3) =
D(2, 3)− Eh(2, 3) + d3,3 × lx3 + Eh(3, 3) = 24− 0 + 1 × 4 + 0 = 28. �
After deriving the distance values of the three cases, the minimum accumu-
lated distance can be obtained. Continuing the previous example, D(3, 3) =
min{Dd(3, 3), Dl(3, 3), Du(3, 3)} = min{22, 12, 28} = 12.

We now describe how WDTW identifies matching subsequences. For each syn-
opsis histogram xi arriving at time ti, WDTW computes the ith row of the accu-
mulated distance matrix D(i, j) where j = 1, 2, ..., m. Then, the warping distance
of the most similar subsequence, X [ts : ti], to Q is Dtw(X [ts : ti], Q) = D(i, m).
To get the start time ts, each cell (i, j) keeps the start time index where the
warping distance comes from in the matrix S(i, j). Therefore, when construct-
ing the warping path, the start and end time of the most similar subsequence are
kept in the last cell (i, m) of this path. For example, in Fig. 1(b), ts = S(3, 2) =
S(2, 1) = t2. Hence, X [t2 : t3] is reported at t3 if Dtw(X [t2 : t3], Q) ≤ ε.

Notice that as we compute D(i, j), S(i, j) is also obtained. Since the com-
putation cost of each D(i, j) and S(i, j) is O(1), the computation time of m
histograms is O(m). Also, only the information of cell(i− 1, j− 1),(i, j− 1), and
(i − 1, j) is used. Therefore, WDTW only needs to keep the latest two rows of
cells, i.e., O(2 ×m) = O(m) in space.
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4 Performance Evaluation

4.1 Experiment Setup and Performance Metrics

The real datasets are downloaded from the UCR Time Series Classification /
Clustering Archive [10]. We choose time series in the posture dataset. The first
pattern in each series was used as the query patterns with length M = 1024,
while the rest part of the series as data streams with length N = 32768. The
synopsis histograms in the following experiments were built by Haar wavelet
decomposition with varied synopsis rate [8], which is defined as a ratio of the
number of histograms to the number of points in the original stream.

We compared our algorithm with two methods: MicroCell-DTW and Synopsis-
DTW. MicroCell-DTW divided each histogram into multiple one-time-unit his-
tograms. It computed the warping distance based on micro cells, not the cells,
and the matching problem was solved using the SPRING method [4]. On the
other hand, Synopsis-DTW computed warping distance directly on the cells as
WDTW did, but was regardless of handling the overestimated distance.

4.2 Experimental Results

The first experiment examined the accuracy of WDTW and Synopsis-DTW.
The subsequences produced by MicroCell-DTW were regarded as the benchmark
since it produced the correct warping distance based on the synopsis histograms.
The error rate is defined as the ratio of the sum of false alarms and misses to
the number of correct subsequences and the reported subsequences by either
WDTW or Synopsis-DTW. For each missed or false alarmed subsequence, the
penalty is the ratio of the time interval of the false alarmed/missed part to the
whole length of itself.

The results were shown in Fig. 4(a). When the synopsis rate decreased, the
error rate of Synopsis-DTW increased significantly. In contrast, the error rate of
WDTW increased much slightly. For example, the error rate of WDTW is 2.2%
while that of Synopsis-DTW is up to 19.7% when the synopsis rate is 0.06. This
shows the importance of dealing with the overestimated distance.
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The second experiment examined the speed of the three algorithms. The re-
sults are in Fig. 4(b). MicroCell-DTW was independent of the synopsis rate
since it examined each micro cells of a stream, where the number is equal to
the original stream length. Under the synopsis rate of 0.06, MicroCell-DTW can
only process 0.85 histograms each millisecond. In contrast, WDTW can pro-
cess 141 histograms under the same synopsis rate, which is 165 times faster
than MicroCell-DTW did. In other words, WDTW processed the online subse-
quence matching 165 times faster than MicroCell-DTW did. On the other hand,
WDTW and Synipsis-DTW had almost the same computation cost, which de-
creased along with the synopsis rates. This shows that the processing time of
the overestimated distance is very small. Concluded from Fig. 4(a) and 4(b),
WDTW processes the online subsequence matching efficiently while sacrificing
only a very little accuracy.

5 Conclusion

We presented WDTW, an efficient online subsequence matching algorithm un-
der dynamic time warping in a streaming environment. Once a various-width
synopsis histogram of a stream is generated, according to the query sequence,
WDTW reports all the matching subsequences. The experimental results show
that when compared with MicroCell-DTW and Synopsis-DTW, WDTW has a
low computation cost to meet the time and space constraints of streams, with a
little trade-off in accuracy.
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Abstract. Measuring similarity between objects is a fundamental issue
for numerous applications in data-mining and machine learning domains.
In this paper, we are interested in kernels. We particularly focus on kernel
normalization methods that aim at designing proximity measures that
better fit the definition and the intuition of a similarity index. To this
end, we introduce a new family of normalization techniques which ex-
tends the cosine normalization. Our approach aims at refining the cosine
measure between vectors in the feature space by considering another ge-
ometrical based score which is the mapped vectors’ norm ratio. We show
that the designed normalized kernels satisfy the basic axioms of a sim-
ilarity index unlike most unnormalized kernels. Furthermore, we prove
that the proposed normalized kernels are also kernels. Finally, we assess
these different similarity measures in the context of clustering tasks by
using a kernel PCA based clustering approach. Our experiments employ-
ing several real-world datasets show the potential benefits of normalized
kernels over the cosine normalization and the Gaussian RBF kernel.

Keywords: Kernels normalization, similarity indices, kernel PCA based
clustering.

1 Introduction

Measuring similarity between objects is a fundamental issue for numerous ap-
plications in data-mining and machine learning domains such as in clustering or
in classification tasks. In that context, numerous recent approaches that tackle
the latter tasks are based on kernels (see for example [1]). Kernels are special
dot products considered as similarity measures. They are popular because they
implicitly map objects initially represented in an input space, to a higher di-
mensional space, called the feature space. The so-called kernel trick relies on
the fact that they represent dot products of mapped vectors without having to
explicitly represent the latter in the feature space. From a practical standpoint,
kernel methods allow one to deal with data that are not easy to linearly separate
in the input space. In such cases, any clustering or classification method that
makes use of dot products in the input space is limited. By mapping the data
to a higher dimensional space, those methods can thus perform much better.
Consequently, many other kinds of complex objects can be efficiently treated by

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 362–373, 2010.
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using kernel methods. We have mentioned previously that kernels are generally
introduced as similarity measures but as underlined in [2], dot products in gen-
eral do not necessarily fit one’s intuition of a similarity index. Indeed, one could
find in the literature several axioms that clarify the definition of a similarity
index and in that context, any kernel does not necessarily satisfy all of them.
As an example, one of these conditions that a dot product, and thus a kernel,
does not always respect, is the maximal self-similarity axiom which states that
the object to which any object should be the most similar, is itself.

In this paper, we are interested in designing kernels which respect the basic
axioms of a geometrical based similarity index. In that context, kernels nor-
malization methods are useful. Basically, the most common way to normalize a
kernel so as to have a similarity index, is to apply the cosine normalization. In
that manner, maximal self-similarity for instance, is respected unlike for unnor-
malized kernels. In this work we propose a new family of kernel normalization
methods that generalizes the cosine normalization. Typically, the cosine normal-
ization leads to similarity measures between vectors that are based upon their
angular measure. Our proposal goes beyond the cosine measure by refining the
latter score by using another geometrical based measure which relies on the vec-
tors’ norm ratio in the feature space. We give the following example in order to
motivate such normalized kernels. Let us take two vectors which are positively
colinear in the feature space. In that case, their cosine measure is 1. However,
if their norms are not the same ones therefore, we cannot conclude that these
two mapped vectors are identical. Accordingly, their similarity measure should
be lower than 1. Unlike the cosine normalization, the normalization approaches
that we introduce in this paper aim at taking into consideration this point.

The rest of this paper is organized as follows. In section 2, we formally intro-
duce new normalization methods for kernels. Then, in section 3, we give several
properties of the resulting normalized kernels in the context of similarity indices.
We show that using normalization methods allows one to make any kernel satisfy
the basic axioms of a similarity index. Particularly, we prove that these kernel
normalizations define metrics. In other words, we show that normalized kernels
are kernels. In section 4, we illustrate the benefits of our proposal in the context
of clustering tasks. The method we use in that regard, relies on kernel PCA
based k-means clustering which can be understood as a combination between
kernel PCA [3] and k-means via PCA [4]. This two step approach is a spectral
clustering like algorithm. Using several datasets from the UCI ML repository
[5], we show that different normalizations can better capture the proximity rela-
tionships of objects and improve the clustering results of the cosine measure and
of another widely used normalized kernel, the Gaussian Radial Basis Function
(RBF) kernel. We finally conclude and sketch some future works in section 5.

2 Kernels and Normalization Methods

We first recall some basic definitions about kernel functions and their cosine
normalization. We then introduce our new kernel normalization methods.
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2.1 Kernel Definition and the Cosine Normalization

Let denote X the set of objects, represented in an input space, that we want to
analyze.

Definition 1 ((Positive semi-definite) Kernel). A function K : X×X → R

is a positive semi-definite kernel if it is symmetric, that is, K(x,y) = K(y,x)
for any two objects x,y in X and positive semi-definite, that is:

n∑
i=1

n∑
i′=1

cici′K(xi,xi′) ≥ 0 (1)

for any n > 0, any choice of n objects x1, . . . ,xn in X and any choice of any
numbers c1, . . . , cn in R.

In the sequel, we will simply use the term kernel instead of positive semi-definite
kernel. We have the following well-known property.

Theorem 1. For any kernel K on an input space X , there exists a Hilbert space
F , called the feature space, and a mapping φ : X → F such that for any two
objects x,y in X :

K(x,y) = 〈φ(x), φ(y)〉 (2)

where 〈., .〉 is the Euclidean dot product.

When the objects of X are vectors represented in an input space which is
an Euclidean space then, we can mention the following two well-known types of
kernel functions:

– Polynomial kernels: Kp(x,y) = (〈x,y〉 + c)d, with d ∈ N and c ≥ 0.
– Gaussian RBF kernels: Kg(x,y) = exp

(
− ‖x−y‖2

2σ2

)
, where ‖.‖ is the Eu-

clidean norm and σ > 0.

After having recalled basics about kernels, we recall the definition of the cosine
normalization of a kernel K, denoted K0.

K0(x,y) =
K(x,y)√

(K(x,x)K(x,y))
(3)

Since we have K(x,x) = ‖φ(x)‖2, it is easy to see that:

K0(x,y) = 〈 φ(x)
‖φ(x)‖ ,

φ(y)
‖φ(y)‖ 〉

Moreover, we have K0(x,x) = 1 for all objects in X . This means that the objects
in the feature space are projected on an unit hypersphere. In addition, we have
the following geometrical interpretation from the feature space representation
viewpoint:

K0(x,y) = cos(θ(φ(x), φ(y))) (4)

with θ(φ(x), φ(y)) being the angular measure between the vectors in the feature
space. In order to simplify the notations, we will denote θ for θ(x,y) and cos θ
for cos(θ(φ(x), φ(y))), thereafter.
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2.2 Kernel Normalization of Order t

The main purpose of this paper is to introduce a new family of kernel nor-
malization approaches that generalizes the cosine normalization. Our approach
amounts to integrating another geometrical based measure that allows us to re-
fine the cosine measure K0. This additional feature is related to the difference
between the norms of the two vectors in the feature space.

These normalization procedures involve generalized mean (also known as
power mean) operators which generalize the classical arithmetic mean. Given
a sequence of p values {ai}p

i=1 = {a1, a2, . . . , ap}, the generalized mean with
exponent t is given by:

Mt(a1, . . . , ap) =

[
1
p

p∑
i=1

at
i

] 1
t

(5)

Famous particular cases of (5) are given by t = −1, t → 0 and t = 1 which are
respectively the harmonic, geometric and arithmetic means.

Definition 2 (Kernels normalization of order t > 0). Given a kernel func-
tion K, the normalized kernel of order t > 0 for any two objects x and y of X ,
is denoted Kt(x,y) and is defined as follows:

Kt(x,y) =
K(x,y)

Mt(K(x,x), K(y,y))
(6)

Similarly to the cosine normalization, Kt(x,x) = 1 for all x ∈ X . As a result,
those normalization methods also amount to projecting the objects from the
feature space to an unit hypersphere. However, this family of normalized ker-
nels goes beyond the cosine measure since it extends the latter which actually
corresponds to the limit case t → 0.

In order to better interpret such measures, let us equivalently formulate
Kt(x,y) with respect to the following norm ratio measures, ‖φ(x)‖

‖φ(y)‖ and ‖φ(y)‖
‖φ(x)‖ .

We can easily show that:

Kt(x,y) =
cos θ

Mt
(

‖φ(x)‖
‖φ(y)‖ , ‖φ(y)‖

‖φ(x)‖
) (7)

This formulation expresses Kt(x,y) according to geometrical based measures.
However, let us introduce the following notation as well:

γ(φ(x), φ(y)) = max
(
‖φ(x)‖
‖φ(y)‖ ,

‖φ(y)‖
‖φ(x)‖

)
=

max(‖φ(x)‖, ‖φ(y)‖)
min(‖φ(x)‖, ‖φ(y)‖) (8)

γ(φ(x), φ(y)) lies within [1, +∞[ and is related to the difference between the
norm measures of φ(x) and φ(y). γ(φ(x), φ(y)) = 1 means that ‖φ(x)‖ = ‖φ(y)‖
and the greater the difference between the norms’ value, the higher γ(φ(x), φ(y)).
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Similarly to the angular measure, we will denote γ for γ(φ(x), φ(y)) in order to
simplify the notations. Using γ, we have the different formulations below:

Kt(x,y) = Kt(θ, γ) =
cos θ

Mt(γ, γ−1)
= cos θ

(
21/tγ

(1 + γ2t)1/t

)
(9)

The latter relation expresses Kt(x,y) as a multiplication between two factors.
On the one hand, we have the cosine index cos θ and on the other hand, we have
the following term which is only dependent on γ,

(
21/tγ

(1+γ2t)1/t

)
.

Following (9), we observe that ∀θ : cos θ ∈ [−1, 1] and ∀t > 0, ∀γ ≥ 1 :(
21/tγ

(1+γ2t)1/t

)
∈]0, 1]. As a result, one can see that ∀t > 0, ∀(x,y)∈X 2 : Kt(x,y) ∈

[−1, 1].
In what follows, we detail the roles the geometrical parameters θ and γ

play with respect to the introduced normalized kernels of order t. First, since
∀(φ(x), φ(y)) ∈ F2 : γ ≥ 1; Kt(θ, γ) is clearly a monotonically increasing func-
tion with respect to cos θ1. Then, using (9), we can better underline the effect
of the norm ratio γ on Kt(θ, γ). Indeed, by computing the first derivative with
respect to this parameter, we obtain:

∂Kt

∂γ
= cos θ

⎡⎣21/t(1 + γ2t)1/t
(
1 − 2γ2t

(1+γ2t)

)
(1 + γ2t)2/t

⎤⎦ (10)

With the following conditions, γ ≥ 1, t > 0, one can verify that in the numer-
ator of the second term of (10), the first factor is positive but the second one,(
1 − 2γ2t

(1+γ2t)

)
, is negative since 2γ2t

(1+γ2t) ∈ [1, 2[. Consequently, the sign of ∂Kt

∂γ is

the same as − cos θ. Therefore, for t > 0, Kt(θ, γ) is monotonically decreasing
with respect to γ providing that cos θ > 0 whereas, Kt(θ, γ) is monotonically
increasing with respect to γ as long as cos θ < 0 (see Fig. 1).

Intuitively, when t > 0, the norm ratio measure aims at refining the cosine
measure considering that the latter is less and less “reliable” for measuring prox-
imity, as the difference between the vectors’ norms becomes larger and larger.
Thereby, regardless the sign of the cosine index, the greater γ, the closer to 0
Kt(θ, γ). More formally, we have: ∀t > 0, ∀θ, limγ→+∞ Kt(θ, γ) = 0.

Notice that for t < 0, we observe the opposite effect since the sign of the
derivative ∂Kt

∂γ is the same as cos θ. Thus, in that case, when cos θ > 0 for
example, Kt(θ, γ) is monotonically increasing with respect to γ. This is not
a suitable behavior for a similarity measure, that’s the reason why we define
Kt(θ, γ) for t > 0 only.

In more general terms, the sign and the value of t respectively express the
nature and the degree of the influence of γ on Kt(θ, γ). First, when t is negative,
it defines a coefficient which is not appropriate for measuring similarity. On

1 Or a monotonically decreasing function with respect to θ as cos θ is a monotonically
decreasing function of θ.
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Fig. 1. Curves respectively representing different values of Kt(−1, γ) and Kt(1, γ) for
different t

the contrary, when t is positive it allows one to refine the cosine measure in
an appropriate way. Second, assuming that t > 0, when the latter increases, it
makes γ have a more and more important impact on Kt(θ, γ). In that context,
it is worthwhile to mention the two following limit cases: when t → 0 we obtain
the cosine index which is independent of γ, whereas when t → +∞ we have the
following index2:

K+∞(x,y) =
cos θ

max
(

‖φ(x)‖
‖φ(y)‖ , ‖φ(y)‖

‖φ(x)‖
) =

cos θ

γ
. (11)

To illustrate these points, we plotted in Fig. 1, the graphs corresponding to
Kt(θ, γ) for different values of t namely the limit when t → 0, t = 1, t = 10,
t = 100 and the limit when t → +∞. In the left-hand side graph, we fixed
cos θ = −1 and in the right-hand side graph, cos θ is set to 1. While the cosine
measure is fixed, γ varies from 1 to 2 (the horizontal axis). The goal of these
graphs is to represent the effects of the norm ratio parameter γ on the normalized
kernel value (the vertical axis) for different values of t and depending on the sign
of the cosine measure. For example, when cos θ = 1 and γ = 2, we can observe
that, in comparison with the case t → 0 for which the normalized kernel gives 1,
the value drops to 0.85 when t = 1 and it drops further to 0.5 when t → +∞.

3 Properties of Normalized Kernels as Similarity Indices

In this section, we want to better characterize the family of normalized kernels
that we have introduced. To this end, we give some relevant properties that they
respect. First, we show that Kt(x,y) with t > 0 satisfies the basic axioms of
geometrical based similarity indices. Second, we show that the normalized kernels
of order t > 0 are kernels. This result is the main theoretical contribution of this
paper.
2 Since we have, limt→+∞Mt(a1, . . . , ap) = max(a1, . . . , ap)
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3.1 Basic Properties of Kt

We start by giving some basic properties of Kt(x,y) with respect to the general
definition of similarity indices defined in a metric space (see for example [6]).
∀(x,y) ∈ X 2, we have:

1 ∀t > 0 : |Kt(x,y)| ≤ 1
2 ∀t > 0 : Kt(x,x) = 1
3 ∀t > 0 : Kt(x,y) = Kt(y,x)
4 ∀t > 0 : x = y ⇔ Kt(x,y) = 1

According to property 1, Kt(x,y) is bounded by −1 and 1 which is a common
axiom required for a similarity index. Notice that unnormalized kernels do not
respect this axiom in general.

Properties 2 and 3 respectively state that the normalized kernel of order t
respects the maximal self-similarity axiom3 and the symmetric axiom.

According to property 4, the situation Kt(x,y) = 1 corresponds to the case
where the vectors are strictly identical in the feature space. Indeed, considering
(9), we can see that the normalized kernel value is 1 if and only if cos θ = 1 and
γ = 1 which is the same as φ(x) = φ(y). Note that property 4 is not true for
the limit case t → 0 for which we only have φ(x) = φ(y) ⇒ K0(x,y) = 1. Since
for this case the norm ratio plays no role, it is only sufficient for the vectors to
be positively colinear to obtain the maximal similarity value 1. Once again, this
shows that the normalized kernels of order t > 0 are similarity measures that are
more discriminative than the cosine measure. It is also worth mentioning in that
context, the two other particular cases: both vectors are completely opposite to
each other when we observe Kt(x,y) = −1 (cos θ = −1 and γ = 1) and they are
geometrically orthogonal when Kt(x,y) = 0 (cos θ = 0).

In what follows, we focus on the different relationships between normalized
kernels of two distinct orders t and t′.

5 ∀t ≥ t′ > 0 : sign(Kt(x,y)) = sign(Kt′(x,y))

6 ∀t ≥ t′ > 0 :
{

Kt(x,y) ≤ Kt′(x,y) if cos θ > 0
Kt(x,y) ≥ Kt′(x,y) if cos θ < 0

7 ∀t ≥ t′ > 0 : |Kt(x,y)| ≤ |Kt′(x,y)|

Property 5 states that the sign of the similarity measure is independent of t.
More precisely, the sign is only dependent on the angular measure. This is a
consequence of (9) since Mt(γ, γ−1) is strictly positive.

Properties 6 and 7 must be put into relation with the comments we made
in section 2 and Fig. 1. Accordingly, these properties formally claim that as t
grows, Kt(x,y) makes the cosine measure less and less “reliable”. We previously
mentioned that, all other things being equal, the greater the difference between
the vectors’ norms in the feature space, the closer to 0 the normalized kernel

3 Since property 1 states that 1 is the maximal similarity value. Note that this axiom
is also called minimality when dealing with dissimilarity rather than similarity [6].



Normalized Kernels as Similarity Indices 369

value. These properties express the fact that this convergence is faster and faster
as t grows.

These aforementioned properties are direct consequences of the following re-
lations between generalized means, ∀0 < t′ ≤ t < ∞:

1

(
∏p

i=1 ai)
1/p

>
1

Mt′({ai}p
i=1)

≥ 1
Mt({ai}p

i=1)
>

1
max({ai}p

i=1)

To complete the analysis of the basic properties that Kt(x,y) respects with
regards to the general axioms required for a similarity index, we need to better
characterize the metric properties of the latter. We address this issue in the
following subsection.

3.2 Metric Properties of Kt

In this paragraph we denote Kt the similarity matrix of objects in X .

Theorem 2. The similarity matrix Kt with t > 0 and general term given by (6)
is positive semi-definite. In other words, any normalized kernel Kt with t > 0 is
a positive semi-definite kernel.

Proof (Proof of Theorem 2).
The proof of this result is based on Gershgorin circle theorem. Let A be a (n×n)
complex matrix with general term Aii′ . For each row i = 1, . . . , n, its associated
Gershgorin disk denoted Di is defined in the complex plane as follows:

Di = {z ∈ C : |z −Aii| ≤
∑
i′ �=i

|Aii′ |︸ ︷︷ ︸
Ri

} = D(Aii, Ri)

Given this definition, Gershgorin circle theorem (see for example [7]) states that
all eigenvalues of A lies within

⋃
i Di. Accordingly, if the norms of off-diagonal

elements of A are small enough then the eigenvalues are not “far” from the
diagonal elements. In other words, the lower the Ri quantities, the closer to the
diagonal elements the eigenvalues.

Now, let us consider normalized kernel matrices of order t > 0 of objects of
{xi; i = 1, . . . , n}. Let denote Kt

ii′ = Kt(xi,xi′). We first suppose the limit case
t′ → 0. We know that K0 is the cosine similarity matrix. As a consequence, K0 is
positive semi-definite and its eigenvalues are all non negative. Next, let us denote
Rt

i =
∑

i′ �=i |Kt
ii′ |. Then according to properties 2 and 7 given in subsection 3.1,

we have:

– ∀t > 0 and ∀i = 1, . . . , n : Kt
ii = 1,

– ∀t > t′ > 0 and ∀i = 1, . . . , n : Rt
i ≤ Rt′

i .

Therefore, when t grows, (6) defines a continuous and differentiable operator for
which the absolute value of off-diagonal elements of Kt, and consequently the
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quantities Rt
i; i = 1, . . . , n, are lower and lower while the diagonal entries of Kt

remain equal to 1. Thus, applying Gershgorin theorem, we can see that when
t increases, the spectrum of Kt is closer and closer to the vector of ones with
dimension n. As a consequence, since the eigenvalues of K0 are non negative then
so are the eigenvalues of Kt with t > t′ > 0 as the latter are closer to 1 than the
former. Finally, for t > 0, Kt is symmetric and has non negative eigenvalues.
These properties are equivalent to the conditions mentioned in Definition 1 thus,
for t > 0, we can conclude that Kt are positive semi-definite kernels. *+

Finally, a corollary of Theorem 2 [8], is that the related distance Dt(x,y) =√
2(1 −Kt(x,y)) respects the triangle inequality axiom, ∀(x,y, z) ∈ X 3:

8 ∀t > 0 : Dt(x,y) ≤ Dt(x, z) + Dt(z,y)

4 Applications to Clustering Tasks

In order to illustrate the potential benefits of our proposal, we tested different
normalized kernels of order t > 0 in the context of clustering tasks. The clustering
algorithm we used is based on kernel Principal Component Analysis (kernel
PCA) and the k-means algorithm. Our experiments concern 5 real-world datasets
from the UCI ML repository [5]. Our purpose is to show that the normalized
kernels that we have introduced, can better capture the proximity relationships
between objects compared with other state-of-the-art normalized kernels.

4.1 Kernel PCA Based k-means Clustering

Our clustering approach is a spectral clustering like algorithm (see for example
[9]). First, from a kernel matrix Kt, we proceed to its eigen-decomposition in
order to extract from the implicit high dimensional feature space F , an explicit
and proper low dimensional representation of the data. Then, we apply a k-means
algorithm in that reduced space in order to find a partition of the objects.

Principal Component Analysis (PCA) is a powerful and widely used statistical
technique for dimension reduction and features extraction. This technique was
extended to kernels in [3]. Formally, let denote λ1 ≥ λ2 ≥ . . . ≥ λk−1 the leading
k−1 eigenvalues of Kt and v1,v2, . . . ,vk−1 the corresponding eigenvectors. The
low dimensional space extracted from Kt that we used as data representation
for the clustering step is spanned according to:
(
√

λ1v1,
√

λ2v2, . . . ,
√

λk−1vk−1).
When applying dimension reduction techniques prior to a clustering algo-

rithm, an important issue is the number of dimensions that one has to retain.
In this paper, since we aim at using the k-means algorithm as the clustering
method, we follow the work presented in [4] that concerns the relationship be-
tween k-means and PCA. Accordingly, if k is the number of clusters to find then
we retain the k − 1 leading eigenvectors.

With regards to related works, we can cite the following papers that use Kernel
PCA based clustering in the contexts of image and text analysis respectively,
[10,11].
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4.2 Experiments Settings

The datasets that we used in our experiments are the following ones [5]:

– Iris (150 objects, 4 features in the input space, 3 clusters)
– Ecoli (336 objects, 7 features in the input space, 8 clusters)
– Pima Indian Diabetes (768 objects, 8 features in the input space, 2 clusters)
– Yeast (1484 objects, 8 features in the input space, 8 clusters)
– Image Segmentation (2310 objects, 18 features in the input space, 7 clusters)

For each data set, we first normalized the data in the input space by centering
and standardizing the features. Next, we applied different kernels K namely,
the linear kernel Kl(x,y) = 〈x,y〉 which is simply the dot product in the input
space, and the polynomial kernel Kp(x,y) = (〈x,y〉 + 1)2. For each type of
kernels, we computed different normalized kernels Kt by varying the value of t:
t → 0, t = 1, t = 10, and the limit t → +∞. To each of those similarity matrices,
we applied the kernel PCA clustering method described previously. Since the k-
means algorithm is sensitive with respect to the initialization, for all cases we
launched the algorithm 5 times with different random seeds and took the mean
average value of the assessment measures.

Since we deal with normalized kernels that amount to projecting the objects
on an unit hypersphere, we also tested the kernel PCA based k-means clustering
with the Gaussian RBF kernel which presents the same property. This case is our
first baseline. However, when using such a kernel, one has to tune a parameter
σ. In this paper, to get rid of this problem, we applied the approach proposed
in [12] which suggests to use the following affinity measure:

Kg(x,y) = exp
(
−‖x− y‖2

σxσy

)
(12)

where σx is set to the value of the distance between x and its 7th nearest
neighbor.

Besides, as our purpose is to show that taking into account the mapped vec-
tors’ norm ratio in addition to the cosine measure can be beneficial, we took the
case t → 0, which simply corresponds to the cosine index, as a baseline as well.

The assessment measure of the clustering outputs we used is the Normalized
Mutual Information (NMI) introduced in [13]. Let denote U the partition found
by the kernel PCA clustering and V the ground-truth partition. This evaluation
measure is denoted NMI(U, V ) and is given by:

NMI(U, V ) =

∑k
u=1

∑k
v=1 Nuv log

(
nNuv

Nu.N.v

)
√(∑k

u=1 Nu. log
(

Nu.

n

))(∑k
v=1 N.v log

(
N.v

n

)) (13)

where N is the contingency table between U and V and n the total number
of objects. NMI(U, V ) lies in [0, 1] and the higher the measure, the better the
clustering output U .
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Fig. 2. NMI measures for the different datasets with different kernels (Kl on the left
and Kp on the right) and different normalizations (t→ 0,t = 1,t = 10,t→ +∞)

4.3 Experiments Results

In Fig. 2, we report the results we obtained for each dataset. On the left-hand
side we give the results related to the linear kernel whereas on the right-hand
side, the NMI values correspond to the polynomial kernel. In both graphs, the
results provided by the Gaussian RBF kernel are shown (1st bar). Compared to
this baseline we can see that the cosine measure and the normalized kernels all
perform better on the datasets used in these experiments.

In comparison with the other baseline K0, we can observe that in most cases
there are normalized kernels of order t > 0 which can lead to better NMI val-
ues. When using the linear kernel, this is true for all Kt except for the Image
Segmentation dataset. Furthermore, for the Iris, Ecoli and Yeast datasets, as
t grows the performances are consistently better. This shows that taking into
account the vectors’ norm ratio in the feature space in order to refine the cosine
measure, is beneficial.

In the case of polynomial kernel, not all normalization techniques are inter-
esting since many normalized kernels do not outperform the cosine measure.
However, when using this kernel, it seems that taking K1

p as a normalization
method is a good choice. Particularly, K1

p leads to the best performances for
the Iris and the Pima Indian Diabetes datasets. Besides, concerning the Image
Segmentation dataset, we can see that unlike the linear kernel, the normalized
polynomial kernels can outperform the cosine index since the best result is ob-
tained with K10

p .

5 Conclusion and Future Work

We have introduced a new family of normalization methods for kernels which
extend the cosine normalization. We have detailed the different properties of
such methods and the resulting proximity measures with respect to the basic
axioms of geometrical based similarity indices. Accordingly, we have shown that
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normalized kernels are “proper” similarity indices that amount to projecting the
data on an unit hypersphere. We have, in addition, proved that these normalized
kernels are also kernels. From a practical standpoint, we have also validated the
utility of normalized kernels in the context of clustering tasks using several real-
world datasets. However, one remaining issue is the choice of the order t when
normalizing a kernel. We have shown from a theoretical and a practical point of
view that the norm ratio measure can make the normalized kernel more efficient
but still, the weight one should give to this parameter in comparison with the
angular measure is not straightforward to set. In our future work we intend to
further investigate this problem.
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Abstract. Several kernels over labelled graphs have been proposed in the liter-
ature so far. Most of them are based on the Cross Product (CP) Kernel applied
on decompositions of graphs into sub-graphs of specific types. This approach has
two main limitations: (i) it is difficult to choose a-priori the appropriate type of
sub-graphs for a given problem and (ii) all the sub-graphs of a decomposition
participate in the computation of the CP kernel even though many of them might
be poorly correlated with the class variable. To tackle these problems we pro-
pose a class of graph kernels constructed on the proximity space induced by the
graph distances. These graph distances address the aforementioned limitations by
learning combinations of different types of graph decompositions and by flexible
matching the elements of the decompositions. Experiments performed on a num-
ber of graph classification problems demonstrate the effectiveness of the proposed
approach.

1 Motivation and Related Work

Support Vector Machines (SVMs), and Kernel Methods in general, became popular
due to their very good predictive performance [1]. As most of the real-world data can
not be easily represented in an attribute-value format many kernels for various kinds
of structured data have been proposed [2]. In particular, graphs are a widely used tool
for modelling structured data in data mining / machine learning and many kernels over
these complex structures have been proposed so far. These kernels have been mainly
applied for predicting the activity of chemical molecules represented by sparse, undi-
rected, labelled and two-dimensional graphs.

However, due to the rich expressiveness of graphs it has been proved that kernels over
arbitrarily structured graphs, taking their full structure into account, can be neither com-
puted [3] nor even approximated efficiently [4]. The most popular approach to tackle
the above problem is based on decompositions of graphs into sub-graphs of specific
types which are compared via sub-kernels. The sub-graph types mainly considered are
walks [3, 5–8]. However, other researchers have experimented with shortest paths [9],
sub-trees [4, 10], cyclic and tree patterns [11] and more general sub-graphs [12, 13].

A common feature in all the above graph kernels is that the Cross Product (CP)
Kernel is used between the corresponding multi-sets of decompositions. More precisely,
for particular decompositions Gt

1 and Gt
2 of the graphs G1 and G2 into sub-structures

of type t the above kernels can be written as K(G1, G2) =
∑

(g1,g2)∈Gt
1×Gt

2
k(g1, g2)

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 374–385, 2010.
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where k is a kernel over a specific type t of graphs, and the summation over the elements
of the multisets takes into account their multiplicity.

One problem with the above kernel is that all the possible sub-graphs of a given type
are matched by means of a sub-kernel. This might adversely affect the generalization
of a large margin classifier since, due to the combinatorial growth of the number of dis-
tinct sub-graphs, most of the features in the feature space will be poorly correlated with
the target variable [12, 14]. Possible solutions to this problem include down-weighting
the contribution of larger sub-graphs [3, 15], using prior knowledge to guide the se-
lection of relevant parts [16], or considering contextual information for limited-size
sub-graphs [12]. Yet another solution was proposed in [10] in which only specific el-
ements of the corresponding multi-sets are matched in such a manner that the sum of
similarities of the matched elements is maximum. The underlying idea in this kernel is
that the actual matching will focus on the most important structural elements, neglect-
ing the sub-structures which are likely to introduce noise to the representation. The idea
of using specific pairs of points in a set kernel is promising, however, it is easy to show
that this kernel is not positive semi-definite (PSD) in general [17, 18].

More importantly, to the best of our knowledge, all existing graph kernels are cur-
rently limited to a single type of decomposition which is then, most often, used in the
context of the CP kernel. However, in general it is difficult to specify in advance the
appropriate type of sub-structures for a given problem. Although, it is in principle pos-
sible to simultaneously exploit kernels defined over different representations, this is
usually not done because there is a trade-off between the expressivity gained by enlarg-
ing the kernel-induced feature space and the increased noise to signal ratio (introduced
by irrelevant features). A common intuition is that by decomposing into more complex
sub-graphs the expressiveness, and consequently the performance, of resulting kernels
increases. This is, however, in contrast with some experimental evidence [12] which
suggest that decompositions into rather simple sub-structures perform remarkably well
with respect to more complex decompositions on a number of different datasets. A
simplified solution to the problem of representation selection is to select the decompo-
sition by cross-validation. However, this approach is problematic since it requires the
use of extra data and only one representation can be selected which limits the expres-
siveness of the resulting method. We can also directly learn to combine graph kernels
using multi-kernel learning methods, [19]. Nevertheless, the problem with learning ker-
nel combinations is that the combined elements should, obviously, be valid kernels.
However, as we saw previously this type of kernels are based on the CP kernel that re-
quires the complete matching of the components, raising the problems that we described
above.

To tackle the above problems we propose a class of adaptive graph kernels built on
proximity spaces [20]. The proximity spaces are induced by learned weighted combi-
nations of a given set distance measure on a number of decompositions of different
sub-graph types, and constructed on the basis of a representation set, typically the full1

training set. The weighted combinations are learned from the data, exploiting the NCA
method [21] developed for learning Mahalanobis metrics for vectors. By learning the

1 It is also possible to reduce the size of the representation set relying on feature selection in the
proximity space. However, this approach is not discussed in this paper.
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weights of the different decompositions we hope to obtain a combination of graph rep-
resentations that is expressive enough for the task at hand and does not overfit. Using the
set distance measures on the graph decompositions allows for flexible ways of mapping
the elements of these decompositions, namely it is not necessary to use all the elements
(sub-graphs) in the mapping. We originally explored the use of proximity spaces to de-
fine a graph kernel in [22]; however, there we were limited to a fixed decomposition
and did not consider learning the combinations of the different types of substructures.

In this paper we will experiment with, and learn combinations of, two types of de-
compositions: walks and unordered trees of various lengths and heights, respectively.
The former were shown to be very effective in chemical domains and achieved state-
off-the-art results [3, 5–8]. Decomposition kernels based on trees were first proposed
in [4], however, experimental evaluation was not performed. Kernels based on trees
were examined in [10]. Walks and trees can be easily compared by a graded similarity
(e.g. standard Euclidean metric for walks). Nevertheless, most of the kernels on graphs
use the Kronecker Delta Kernel (i.e. kδ(x, y) = 1 if x = y, kδ(x, y) = 0 otherswise) on
sub-parts. As a result, the ability to find partial similarities is lost and the expressivity of
these kernels is reduced [7]. A graded similarity on walks was considered in the graph
kernel presented in [7], however, it suffers from high computational complexity since
it requires taking powers of the adjacency matrix of the direct product graph, leading
to huge runtime and memory requirements [9]. Graded similarities on trees were also
used in [10]. Finally, we note that our framework is not limited only to walks and trees
and can be applied on decompositions of any type.

This paper is organized as follows. In Sect. 2 we define all the necessary notions of
graphs. In Sect. 3 we define the adaptive kernels on graphs in the proximity space in-
duced by the set distance measures. Experimental results are reported in Sect. 4. Finally,
Sect. 5 concludes the work.

2 Primer of Graph Theory

An undirected graph G = (V , E) is described by a finite set of vertices V = {v1, . . . , vk}
and a finite set of edges E , where E = {{vi, vj} : vi, vj ∈ V}; for directed graphs we
set E = {(vi, vj) : vi, vj ∈ V}. We shall also use the following notation for edges:
eij = {vi, vj} (or eij = (vi, vj)). For labelled graphs there is additionally a set of ver-
tex labelsLV and edge labelsLE together with functions lV : V → LV and lE : E → LE
that assign labels to vertices and edges, respectively. We will use lab(x) to denote, in
a more general form the label of x; whether lab(x) = lV(x) or lab(x) = lE(x) will
be clear from the type of the x argument, i.e. vertex or edge. In this work we assume
that the labels are vectors, i.e. LV ⊆ IRp and LE ⊆ IRn for some values of m and
n. By dim(lab(x)) we will denote the dimensionality of the label vector lab(x) which
obviously will be the dimensionality of either LV or LE , depending again on x.

Some special types of graphs that are relevant to our work are walks and trees.
A walk, W , in a graph G is a sequence of vertices and edges, W = [v1, e12, v2

, . . . , es,s+1, vs+1], such that vj ∈ V for 1 ≤ j ≤ s+1 and eij ∈ E for 1 ≤ i ≤ s. Walks
can also end to an edge, e.g. W = [v1, e12, v2, . . . , es,s+1]. The length l of a walk, W ,
is the number of vertices and edges in W . We denote the set of all walks of length l in a
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graph G by W(G)l. A tree T with vertices V and edges E of a graph G is a sub-graph
of G which is connected and acyclic. The root node of a tree is denoted as root(T ). In
this work we will only consider directed trees where the order is given from the root
node to the leafs. The height h of a tree T is the length of the longest walk from the
root node to any of the leaf nodes (similar to walks we allow that the trees have edges
as leafs). We denote the set of all directed trees of height h in a graph G by T (G)h. We
define the neighborhood of a node, v, in a tree as δ(v) = {e : e = (v, u) ∈ E}, and
the neighborhood of an edge, e, as δ(e) = {u : e = (v, u) ∈ E}, note that in fact the
neighborhood of an edge is a one element set, containing a single node.

3 Kernels on Graphs

We denote the decomposition of a graph, G, into the multi-set of sub-graphs of type t
by Gt. We focus on decompositions into walks of various lengths l, i.e. Gt = W(G)l,
and (directed) trees of various heights h, i.e. Gt = T (G)h. More generally, a graph G
can be represented by a tuple of m different decompositions as G = (Gt1 , . . . ,Gtm)T .

In this section we will define a class of adaptive kernels for labelled graphs. The
construction of these kernels is based on set distance measures which will be used to
compute the distances on the components of G. Since it is difficult to select a priori the
appropriate types of sub-structures, i.e. components of G, for a given problem, we pro-
pose a method which learns a weighted (quadratic) combination of a fixed set distance
on the different components of G. Finally, we use the learned weighted combination of
the set distance to induce a proximity space on which we define the final kernel.

Distances on Sets. The central idea in the set distance measures that we consider is
the definition of a mapping of the elements of one set to the elements of the other such
that the final distance is determined on the basis of specific pairs of elements from the
two sets. More precisely, consider two nonempty and finite sets A = {a} ⊆ X and
B = {b} ⊆ X . Let d(·, ·) be a distance measure defined on X . The set distance mea-

sure dset is defined on 2X as dset(A, B) =
∑

(a,b)∈F d(a,b)

|F | i.e. it is a normalized sum
of pairwise distances over specific pairs which are defined by F ⊆ A × B; different
F correspond to different set distance measures. Within this framework we can define
Average Linkage (dAL), Single Linkage (dSL), Complete Linkage (dCL), Sum of Min-
imum Distances (dSMD), Hausdorff (dH), RIBL (dRIBL), Tanimoto (dT), Surjections
(dS), Fair Surjections (dFS), Linkings (dL) and Matchings (dM) distance measures. De-
tailed description of these distance measures can be found in [23].

Distances Between Sets of Decompositions. We will now show how to use the above
set distance measures to compute distances between sets of decompositions of graphs
to sub-graphs of specific types. As already mentioned, we will focus on decompositions
into walks and (directed) trees of various lengths and heights. In the latter, we consider
unordered trees where the order among the siblings at a given height is not important.
Both types of decompositions are obtained from a depth first exploration emanating
from each node in a graph. We note that the walks and trees we consider in this work
are non-standard in the sense that a walk can end in an edge and a tree can have edges
as leafs.
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In our decompositions we do not allow repetitions of a node within a walk or a tree,
i.e. we do not allow cycles, in order to avoid the problem of tottering [6]. We exclude
from the graph decomposition walks of the form W = [v1, e12, v2, . . . , es,s+1,vs+1]
with vi = vi+2 for some i since these are likely to introduce redundancy. In the case of
trees we do not allow such walks in the trees’ descriptions. Even though tottering-free
graph representations do not seem to bring an improvement to the predictive perfor-
mance [6, 10], they have the advantage of inducing decompositions smaller in size.
This has a direct influence on the computational complexity of the set distance mea-
sures applied over this representation.

The main difficulty in applying the set distance measures from the previous section
is to define the distance, d, between the elements of the sets, i.e. walks or trees. To
define a distance measure over walks we exploit the (normalized) Euclidean metric.
More precisely, the distance of two walks Wi and Wj of equal length l is defined as
the Euclidean metric between the labels of the elements of the walks d2

W (Wi, Wj) =∑ l
k=1 d2

lab(lab(Wi[k]),lab(Wj [k]))

N where W [k] is the k-th element of walk W , and dlab(·, ·)
is the Euclidean metric between the labels of corresponding walks. Obviously, Wi[k]
and Wj [k] are of the same type and they will be either edges or vertices. The N in
the denominator is a normalization factor and corresponds to the sum of the dimen-
sionalities of the label vectors of the l elements that make up the paths, obviously
N =

∑l
k=1 dim(lab(Wi[k]) =

∑l
k=1 dim(lab(Wj [k]). We have 0 ≤ d2

W(·, ·) ≤ 1.
Lets now define a distance, dT(Ti, Tj), between two trees, Ti, Tj ; we should note

here that unlike walks, trees do not have to be of the same height. Let x, y, be two
elements of the two trees found at the same height h. These elements will be either
two vertices, u, v, or two edges ei, ej . Then the (squared) distance between x and y,
d2
t (x, y), is recursively defined as:⎧⎪⎨⎪⎩

d2
lab(lab(x),lab(y))+d2

M(δ(x),δ(y))
N ′ if δ(x) �= ∅ ∧ δ(y) �= ∅

d2
lab(lab(x),lab(y))

N ′ if δ(x) = ∅ ∧ δ(y) = ∅
d2
lab(lab(x),lab(y))+1

N ′ if δ(x) = ∅ ⊗ δ(y) = ∅

where ⊗ is the logical XOR; dlab(lab(x), lab(y)) is the Euclidean metric between the
labels of the x, y; δ(x) is the neighbourhood function, defined in Sect. 2, that returns
either: the set of edges to which a vertex connects to as a starting vertex, if x is of
type vertex, or the vertex to which an edge arrives if x is of type edge; finally dM is
the matching set distance measure between the sets of elements that are found in the
neighborhoods of x and y. The N ′ in the denominator is also a normalization factor that
corresponds to the dimensionality of the label vectors of x and y plus one to account
for the set distance dimension, i.e. N ′ = dim(lab(x)) + 1 = dim(lab(y)) + 1. The
matching distance dM will establish the best mapping among the elements of δ(x), δ(y),
letting outside, and penalizing for, sub-structures that cannot be matched. In a discrete
case scenario it is equivalent to a frequency based distance, i.e. for each of the discrete
sub-structures in δ(x), δ(y), it will count how many times it appears and the final dis-
tance will be the sum of differences of these frequencies. Note here that dt(x, y) is a
recursive distance requiring the computation of set distances between the elements of
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the trees that are associated to x, y, at the h + 1 height. The final distance between two
trees, Ti, Tj , is given by dT(Ti, Tj) = dt(root(Ti), root(Tj)).

Combining Different Decompositions. Here we show how to combine different de-
compositions of labelled graphs in order to produce a final weighted graph distance.
Recall that two graphs G1 and G2 can be represented by m different decompositions
as (Gt1

1 , . . . ,Gtm
1 )T and (Gt1

2 , . . . ,Gtm
2 )T of types t = t1, . . . , tm. For a fixed set dis-

tance measure dset and the given m decompositions we define the vector d(G1, G2) =
(dset(Gt1

1 ,Gt1
2 ), . . . , dset(Gtm

1 , Gtm
2 ))T which consists of the distances over the differ-

ent decompositions. Then the weighted combination of these decompositions is defined
as

d2
A(G1, G2) = d(G1, G2)T AT A d(G1, G2) (1)

where A is a m×m matrix. It should be noted that for any matrix A the matrix AT A is
PSD, and hence dA is a pseudo-metric. Here we propose a method for learning the ma-
trix A of equation (1) directly from the data by casting the problem as an optimization
task.

To learn the matrix A we use the Neighborhood Component Analysis (NCA) method
from [21] which was originally developed for metric learning over vectorial data.2

This method attempts to directly optimize a continuous version of the leave-one-out
(LOO) error of the kNN algorithm on the training data. First, a conditional distri-
bution is introduced which for each example Gi selects another example Gj as its
neighbor with some probability pA(j|i), and inherits its class label from the point it
selects. The probability pA(j|i) is based on the softmax of the d2

A distance given by

pA(j|i) = e−d2
A(Gi,Gj )∑

k �=i e−d2
A

(Gi,Gk)
, p(i|i) = 0. We denote Ci as the set of points that share

the same class with Gi, i.e. Ci = {j | class(Gi) = class(Gj)}. The objective function
to be maximized, as described in [21], is FA =

∑
i log(

∑
j∈Ci

pA(j|i)).
It is clear that for full matrices A the number of parameters to estimate is m2. This

could be problematic in cases where m is large with respect to the number of instances
in the training database. One possible solution to overcome this problem is to add a soft
constraint to the above objective function which results in the following regularized
objective function F reg

A =
∑

i log(
∑

j∈Ci
pA(j|i)) + λ‖A‖2

F where ‖A‖F denotes a
Frobenious norm of matrix A and λ > 0 is a regularization parameter. The other solu-
tion is to restrict matrix A to be diagonal resulting in a weighted combination of dis-
tances for different decompositions (we denote NCA where optimization is performed
over a diagonal matrix by NCAdiag). The main advantage of the NCA algorithm is that
it is non-parametric, making no assumptions about the shape of the class conditional
distributions [21]. Its main problem is that the objective function is not convex, hence
some care should be taken to avoid local optima.

Adaptive Matching Based Kernels. Here we exploit the adaptive combinations of
decompositions presented in Sect. 3, and the notion of proximity spaces, to define a
class of adaptive matching based kernels over labelled graphs. The proximity space is

2 We also experimented with other metric learning methods; however, due to the lack of space,
these results are not reported in this paper.
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defined by an instantiation of dA from equation (1) and a representation set (i.e. set of
prototypes) of learning instances. More precisely, consider a graph G which is decom-
posed in m different ways as G = (Gt1 , . . . ,Gtm)T . For a given representation set S =
{G1, . . . , Gp} (we assume that each graph is uniquely identified by its index) and a dis-
tance measure dA we define a mapping dA(G, S) = (dA(G, G1), . . . , dA(G, Gp))T .
Since distance measures dA are non-negative, all the data examples are projected as
points to a non-negative orthotope of that vector space. The dimensionality of this
space is controlled by the size of the set S. In this setting the adaptive graph ker-
nel in the proximity space between graphs G1 and G2 is defined as kdA(G1, G2) =
k(dA(G1, S), dA(G2, S)), where k denotes an elementary kernel in the proximity
space; k can be any standard kernel on vectorial data.

We mention that the complexity of computing the adaptive matching kernel between
two graphs (if the weights of different decompositions are known) can be shown to be
at most O{|S|m2|G|3(α3l + α3h)} where |S| is the cardinality of the representation
set, |G| is the number of vertices in graph G, α is the branching factor which can
be upper bounded by a small constant (usually 4), and m = l + h is the number of
decompositions. The complexity of learning the weight is at most O{m2(n2|G|3+n3)}
where n is the number of graphs in the training set.

4 Experiments

We will experiment with two graph classification problems: Mutagenesis and Carcino-
genicity. The application task in the Mutagenesis dataset is the prediction of mutagenic-
ity of a set of 188 aromatic and hetero aromatic nitro-compounds which constitute the
“regression friendly” version of this dataset. The other classification problem comes
from the Predictive Toxicology Challenge and is defined over carcinogenicity prop-
erties of chemical compounds. This dataset lists the bioassays of 417 chemical com-
pounds for four type of rodents: male rats (MR), male mice (MM), female rats (FR)
and female mice (FM) which give rise to four independent classification problems. We
transformed the original dataset (with 8 classes) into a binary problem by ignoring
EE (equivocal evidence), E (equivocal) and IS (inadequate study) classes, grouping SE
(some evidence), CE (clear evidence) and P (positive) in the positive class and N (nega-
tive) and NE (no evidence) in the negative one. After this transformation the MR, MM,
FR and FM datasets had 344, 336, 351 and 349 instances, respectively. References to
these datasets can be found in [22].

In the experiments we want to examine a number of issues related to our graph ker-
nels. More precisely, first, for different set distance measures we will explore the effect
of the length of walks (and the height of trees) on the performance of kdset , i.e. we fix the
walk length to a specific l for l = 1, . . . , 11 (and the height of a tree is fixed to a specific
h, h = 2, . . . , 5) and we use only the corresponding decomposition to construct the fi-
nal kernel; we do not combine decompositions. We will compare the performance of
the above simplified kernels with kdA where we combine all the different m = 11 + 4
decompositions. As the kernel k on the proximity space we will be always using the
linear kernel in order to make a fair comparison between the algorithms and to avoid
the situation where an implicit mapping given by a nonlinear kernel will influence the
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Fig. 1. Estimated accuracy of different kernels in the proximity space (kdset ) vs. different de-
compositions for different set distance measures in the Mutagenesis dataset. wl denotes walks of
length l whereas th denotes trees of height h. The last values in the plot denote the performance
of kdA where the different decompositions are combined.

results. Second, we will examine how the performance of the kernel kdA compares with
the following two set kernels based on averaging: (i) the direct sum kernel [1] based of
the cross product kernels applied on the different m = 11 + 4 decompositions with
the linear kernel (in case of walks) and the tree kernel3 (for trees) as kernels on the
sets’ elements (kΣ,CP), and (ii) the linear kernel in the proximity space induced by dA,
also over the combination of the different m = 11 + 4 decompositions, where dAL

set distance measure is applied over the decompositions. Finally, we will compare our
graph kernels with other graph kernels form the literature.

We use the SVM algorithm where the parameter C is optimized in an inner 10-fold
cross-validation loop over the set C = {0.1, 1, 10, 50}. In all the experiments, unless
stated otherwise, we use the regularized version of the NCA algorithm over full matri-
ces A, where the regularization parameter λ is internally 10-fold cross-validated over
λ = {0, 0.1, 1, 10}. In some experiments we also use the version of NCA, denoted as
NCAdiag, where A is limited to a diagonal matrix. Note that in the experiments we have
11 different instantiations of the kdA kernel, each one corresponding to one of the 11 set
distance measures. In all the experiments accuracy is estimated using stratified 10-fold
cross-validation and controlled for the statistical significance of observed differences
using McNemar’s test, with significance level of 0.05.

4.1 Results and Analysis

Performance of Individual vs. Combined Decompositions. We first examine the in-
fluence of the length of the walks and heights of the trees to the predictive performance
of SVM. The results for the Mutagenesis dataset are presented in Fig. 1. From the re-
sults it is clear that in Mutagenesis the optimal decomposition depends on the actual set
distance measure. For example, for dSMD the highest predictive accuracy is obtained

3 The definition of the tree kernel is based on recursive and alternating computations of the
linear and cross product kernels [1]; the way these kernels are combined to compute the final
tree kernel is similar to the definition of the tree distance from Sect. 3.
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Fig. 2. Relative importance of different decompositions (FM dataset) for the dSMD set distance
measure both for diagonal and full matrices A. wl denotes walks of length l whereas th denotes
trees of height h. It is represented as normalized weights A.

for walks of length 6, whereas for dS the best decomposition is into walks of length 10.
Additionally, with the exception of dSL, decompositions in walks in general outperform
decompositions into trees. For the other examined datasets the optimal decompositions
are different. Thus we have no way to know a-priori which type of decomposition is
appropriate. By combining them using NCA (results also given in Fig. 1) we get a clas-
sification performance that is in most cases as good as that of the single decompositions.
Indeed, in Mutagenesis the performance of NCA was significantly better in 68 cases,
in 92 cases the differences were not significantly meaningful, and in 5 cases it was sig-
nificantly worse.4 In FM the corresponding values are 7, 158 and 0; in FR: 5, 147 and
22; in MM: 12, 153 and 0; in MR: 81, 83 and 1. We should stress here that it is not
fair to compare NCA with the results of the best decomposition, since this estimate is
optimistically biased since we need to have the results of the cross-validation to deter-
mine which is the best decomposition. In a fair comparison NCA should be compared
to a model selection strategy in which the best decomposition is selected using an in-
ner cross-validation. However an inner cross-validation-based model selection strategy
does not make full use of the data, thus its estimates might not be reliable, and it is
computationally expensive.

The results of the optimization process that learns the optimal combination of de-
compositions can be graphically presented providing insight to the relative importance
of different decompositions. In Fig. 2 we give an example of such a visualization for
the FM dataset and the dSMD set distance measure. In the left graph of that figure the
optimization was performed for diagonal matrices using NCAdiag. The different ele-
ments in x-axis are the elements of the diagonal of the matrix A which correspond to a
decomposition into walks and trees whereas the y-axis represents the weights, normal-
ized by a Frobenious norm of A, returned by the optimization method. What we see
from the graph is that in FM the highest weights are assigned to walks of lengths longer
than 6 and all tress, independent of their heights. The right graph of Fig. 2 provides the
visualization of the optimization process for NCA, where now the matrix A is a full

4 The total number of comparisons is 165 = 11 walk decompositions x 11 set distances + 4 tree
decompositions x 11 set distances.
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Table 1. Accuracy and significance test results of SVM in the graph datasets (the + sign stands for
a significant win of the first algorithm in the pair, - for a significant loss and = for no significant
difference). The sign in the first parenthesis corresponds to the comparison of SVM vs. SVM with
kdA with dAL, while the sign in the second parenthesis compares SVM vs. SVM with kΣ,CP.

Set Distance Mutagenesis FM FR MM MR

dSL 81.91 (=)(=) 65.04 (=)(=) 67.23 (=)(=) 66.96 (=)(=) 63.95 (=)(+)
dCL 80.85 (=)(=) 60.46 (=)(=) 63.24 ( -)(=) 65.18 (=)(=) 67.73 (+)(+)
dSMD 89.36 (=)(+) 62.17 (=)(=) 67.52 (=)(=) 66.37 (=)(=) 65.99 (=)(+)
dH 85.11 (=)(=) 64.18 (=)(=) 66.09 (=)(=) 66.07 (=)(=) 65.11 (=)(+)
dRIBL 87.23 (=)(=) 64.76 (=)(=) 67.52 (=)(=) 66.66 (=)(=) 67.15 (+)(+)
dT 82.45 (=)(=) 64.76 (=)(=) 67.81 (=)(=) 68.45 (=)(+) 68.02 (+)(+)
dS 92.02 (+)(+) 64.18 (=)(=) 67.52 (=)(=) 66.96 (=)(=) 61.34 (=)(=)
dFS 86.70 (=)(=) 61.60 (=)(=) 64.10 (=)(=) 63.99 (=)(=) 61.34 (=)(=)
dL 86.17 (=)(=) 64.18 (=)(=) 65.81 (=)(=) 64.88 (=)(=) 66.28 (+)(+)
dM 84.57 (=)(=) 64.46 (=)(=) 66.66 (=)(=) 65.48 (=)(=) 67.73 (+)(+)
dAL 85.64 62.46 66.38 66.07 60.46
kΣ,CP 84.04 62.46 64.96 63.39 57.85

matrix (λ = 0). One surprising observation is that for NCA the decompositions into
trees and long walks are assigned low weights. At the same time combinations of trees
with long walks and combinations of shorter walks are of high importance.

Performance of Matchings Strategies. The next dimension of comparison is the rel-
ative performance of the instantiations of the kdA kernel for different set distances and
the following two set kernels based on averaging: (i) the direct sum kernel [1] based on
the cross product kernels applied on the different 15 decompositions (kΣ,CP), and (ii)
the linear kernel in the proximity space induced by dA, also over the combination of
the different 15 decompositions, with the dAL set distance measure.

The results are presented in Table 1. The relative performance of kernels based on
specific pairs of elements and kernels based on averaging depends on the actual appli-
cation. For Mutagenesis and MR there is an advantage of the kernels based on specific
pairs of elements, while for the remaining datasets the performances are similar. Over-
all, the choice of the appropriate way of matching the elements of two sets depends on
the application and ideally should be guided by domain knowledge, if such exists. Nev-
ertheless, the relative performance of the different kernels provides valuable informa-
tion about the type of problem we are facing. For example, by examining Mutagenesis
and MR we see that averaging performs poorly, indicating that the local structure of the
molecules is important, while in the remaining datasets both global and local structures
seem to be equally informative.

Comparison with Other Graph Kernels. In Table 2 we provide the best results re-
ported in the literature on the same benchmark datasets.5 Additionally, we report the
performance of kernels corresponding to dSMD and dT, both achieving stable good

5 We only cite works which use similar features to describe atoms and bonds. In particular our
results for Carcinogenicity are not directly comparable with the ones reported in [10].
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Table 2. Comparison with other related graph kernels

Graph kernels Mutagenesis FM FR MR MM

Best kernel from [5] 85.1 63.4 66.1 58.4 64.3
Best kernel from [8] 91.5 64.5 66.9 65.7 66.4
Based on dSMD 89.4 62.2 67.5 66.4 66.0
Based on dT 82.4 64.8 67.8 68.4 68.0
Our best kernel 92.0 65.0 67.8 68.5 68.0

results across the different datasets. The values in the ”Our best kernel” row correspond
to the best kernel for each dataset, selected over all the examined mappings. It is obvi-
ous that the latter results are optimistically biased since they are selected after extensive
experimentation with various set distance measures. However, the same could be ar-
gued for the results of all the other related kernels given in Table 2 since in all the cases
multiple results where available and we reported on the best. The corresponding results
show that if the mapping is carefully selected for a problem at hand, then the perfor-
mance of the corresponding kernel is better than the performance of the existing graph
kernels. At the same time kernels corresponding to dSMD and dT achieve stable results
which are close to the state-of-the-art for the considered datasets.

5 Conclusions and Future Work

It has been argued in [7] that a “good” kernel for graphs should fulfil at least the follow-
ing requirements: (i) should be a good similarity measure for graphs, (ii) its computa-
tional time should be possible in polynomial time, (iii) should be positive semi-definite
and (iv) should be applicable for various graphs. In this paper we proposed a class of
adaptive kernels for graphs which are based on walks and trees, that are computable
in polynomial time, that are PSD, and are applicable to a wide range of graphs. A
distinctive feature of our kernels is that they allow for (i) combinations of different
types of decompositions and (ii) specific types of mappings between sub-parts. The
effectiveness of the approach was demonstrated on problems of activity prediction of
chemical molecules. Finally, the ideas presented in this work are not limited to graphs
and can be directly exploited to define kernels over not only special kinds of graphs
like sequences and trees but also over instances described using first- (or higher-)order
logic [24].

In the future work we would like to examine decompositions of graphs into sub-
structures other than walks and trees (e.g. the cyclic patterns from [11]). Moreover, we
will apply the methods developed in this work on larger datasets, e.g. the HIV dataset
described in [12].
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10. Fröhich, H., Wegner, J., Sieker, F., Zell, A.: Optimal assignment kernels for attributed molec-

ular graphs. In: ICML (2005)
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Abstract. In this work we propose a novel framework for learning a
(dis)similarity function. We cast the learning problem as a binary classification
task or a regression task in which the new learning instances are the pairwise
absolute differences of the original instances. Under the classification approach
the class label we assign to a specific pairwise difference indicates whether the
two original instances associated with the difference are members of the same
class or not. Under the regression approach we assign positive target values to
the pairwise differences of instances from different classes and negative target
values to the differences of instances of the same class. The computation of the
(dis)similarity of two examples amounts to the computation of prediction scores
for classification, or the prediction of a continuous value for regression. The pro-
posed framework is very general as we are free to use any learning algorithm.
Moreover, our formulation generally leads to a (dis-)similarity which, depending
on the learning algorithm, can be efficient and simple to learn. Experiments per-
formed on a number of classification problems demonstrate the effectiveness of
the proposed approach.

1 Introduction

The k-Nearest Neighbour (kNN) algorithm is an effective method to address classifica-
tion problems that has proved its utility in many real-world applications [1]. Most com-
mon kNN classifiers use the Euclidean metric to measure the dissimilarities between
examples. This approach has the advantages of simplicity and generality, however, its
main limitation is that the Euclidean metric implies that the input space is isotropic
which is rarely valid in practical applications [2].

Since the Euclidean metric is not appropriate for many real-world learning problems
different researchers have recently proposed methods for learning the parameters of
a parametrized distance measure directly from the data, either in a fully supervised
setting [2–7] or using side information [8–10]. The distances in the above methods are
usually restricted to belong to a Mahalanobis metric family parametrized by a positive
semi-definite (PSD) matrix A.1 The goal in metric learning is to discover an “optimal”
matrix A that achieves a higher kNN predictive performance than the Euclidean metric.

1 The Mahalanobis metric is defined as: dA(xi, xj) = (xi − xj)T A(xi − xj).
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In most of the above metric learning methods the input information is given in the
form of equivalence relations. A widely used equivalence relation in the classification
setting indicates whether two instances, xi and xj , belong to the same class or not.
It is important to realize that the existing techniques do not require a direct access to
the instances, instead they access them through their pairwise distances, or equivalently
through their pairwise difference vectors |x|ij . The elements of the latter are the abso-
lute differences of the attributes of the two instances. More formally, for xi, xj ∈ IRp,
|x|ij is defined as:

|x|Tij = (|xi1 − xj1 |, . . . , |xip − xjp |)T (1)

where xil
denotes the l-th attribute of xi. Metric learning algorithm assign weights to

the attributes vectors of the form of (1), or to their pairwise products in the case of
quadratic metrics. The weighted differences are then aggregated to compute the final
Mahalanobis metric. In general, the metric learning methods assign the weights so that
under the new metric pairs of instances of the same class will be close together (i.e.
their Mahalanobis metric will have a value close to 0), and pairs of instances of different
classes will be far apart (i.e. their Mahalanobis metric will have larger values).

Based on the above observations we go one step further and use the pairwise differ-
ence vectors of the form given by equation 1 as our learning instances. More precisely,
our approach is based on casting the dissimilarity learning problem as a binary classi-
fication or a regression task defined over the space of the absolute difference vectors.
When we treat the problem as a classification task we assign negative labels to these
difference vectors that correspond to pairs of instances of the same class and posi-
tive labels to the difference vectors that correspond to pairs of instances from different
classes. In the regression scenario we assign negative and positive target values, respec-
tively. The construction of the learning problem in this new space is justified by the fact
that for instances of the original space that belong to the same class, some attributes of
|x|ij should have small values, while for instances of different classes these attributes
should have large values. Moreover, by exploring classification or regression algorithms
that produce models based on weighted combinations of the input attributes (e.g. Sup-
port Vector Machines or Logistic Regression), we expect that the non-discriminatory
attributes will be assigned low weights, and hence instances in the new space with posi-
tive and negative classes (or positive and negative numbers) will be moved respectively
far from and towards the origin of the new space. In our framework the computation
of a dissimilarity measure between two examples amounts to computing a prediction
score in classification or a continuous value in regression; the higher the predicted score
or the predicted value of the target variable, the more dissimilar are the corresponding
two input instances.

The paper is organized as follows. In Sect. 2 we present the existing metric learning
techniques under a common framework. This will directly motivate the main contribu-
tion of this work presented in Sect. 3, where we propose a new framework for learning
(dis-)similarity measures. Experimental results are reported in Sect. 4. Finally, we con-
clude with Sect. 5 where we discuss major open issues and future work.
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2 Metric Learning

In this section we will present the metric learning problem in a common framework that
will help us to motivate the main contribution of this work in Sect. 3. We begin with a
labeled set {(x1, y1), . . . , (xn, yn)} = (X ,Y) where xi ∈ IRp and yi ∈ {1, 2, . . . , c}.

Based on the notation from (1), we will represent in a compact way both Euclidean
and Mahalanobis metrics between two instances xi, xj ∈ IRp. More precisely, the
squared Euclidean metric can be defined as d2(xi, xj) = |x|Tij|x|ij while the squared
Mahalanobis metric, parameterized by a positive semi-definite matrix A ∈ IRp×p (A ,
0), can be represented as:

d2
A(xi, xj) = |x|TijA |x|ij . (2)

We note that it is sometimes useful to reparametrize the Mahalanobis metric as:

d2
W (xi, xj) = |x|TijW T W |x|ij (3)

where A = W T W and W ∈ IRp×p. For any W we have A = W T W , 0. In
what follows, to emphasize that all the above metrics between xi and xj depend only
on |x|ij , we will denote d2(xi, xj) and d2

L(xi, xj) (L = A or L = W ) as d2(|x|ij)
and d2

L(|x|ij), respectively.
A common approach in the existing metric learning methods is to provide informa-

tion in the form of equivalence relations as pairwise constraints on the input instances.
In the classification framework there is a natural equivalence relation, namely whether
two vectors share the same class label or not, i.e. S = {(xi, xj) : cij = 0} and
D = {(xi, xj) : cij = 1} where cij ∈ {0, 1} indicates whether or not the labels yi and
yj match:

cij =

{
0 if yi = yj

1 otherwise.
(4)

It should be stressed that the existing distance learning methods do not require a direct
access to the pairs of instances in either of the above sets S and D; instead, they access
the data through the distance functions dA or dW and hence only though pairwise
distance vectors |x|ij of the form given in (1). Consequently, to emphasize the above
fact, we will consider only the following versions of the equivalence relations S′ =
{|x|ij : cij = 0} and D′ = {|x|ij : cij = 1}.

The general problem of metric learning in a supervised setting can be now stated as
the following optimization problem:

min.
L

FL(S′,D′) + λΩ(L) (5)

where FL is a (possibly non-differentiable) cost function, L = A or L = W and
Ω(·) is a regularization term2 whose importance is controlled by the λ regularization
parameter. Additionally, the above optimization problem is possibly subject to a number

2 We set Ω(A) = Tr(A) and Ω(W ) = ‖W ‖2F , where Tr(·) and ‖ · ‖F denote the matrix
trace and the Frobenious norm, respectively.
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of constraints. For example, for the parametrization from (2) the optimization given in
(5) has to be constrained by A , 0. Depending on the actual form of the function FL

different instantiations of the algorithm can be obtained.
One possible problem with the optimization problem of (5) is that for full matrices

L the number of parameters to estimate is p2. For large p (i.e. in the order of few thou-
sands), this would render the optimization task non tractable as there will be too many
parameters to optimize over. We explore a solution to this problem that is based on re-
stricting matrices L to be diagonal, resulting in a weighted combination of features (this
restriction can be seen as a simple form of regularization since it reduces the effective
number of parameters from p2 to p). It should be noted that the approach based on diag-
onal matrices, although faster then the one based on full matrices, is also less expressive
since it does not account for interactions between different attributes. On the other hand,
it allows for the application of metric techniques also on high-dimensional datasets.3

In the rest of this section we will present 3 different instantiations of the above frame-
work which differ with respect to the objective function FL and hence the assumptions
they make for the data distribution. More precisely, in this work we will focus on the
following state-of-the-art metric learning algorithms: Large Margin Nearest Neighbor
(LMNN) [11], Maximally Collapsing Metric Learning (MCML) [4] and Neighborhood
Component Analysis (NCA) [3].

LMNN. The cost function FA of LMNN [2] is constructed in such a way that it
penalizes both large distances between each sample and its similarly labeled near-
est neighbors, and small distances between differently labeled instances. Equivalently,
the criterion of LMNN seeks for a metric in which each sample has a large margin
between nearest neighbors of same class and samples in different classes. We use
ηij ∈ {0, 1} to denote the neighbourhood relation between xi and xj where ηij = 1
indicates the sample xi is one of the neighbors of sample xj , and ηij = 0 other-
wise. The LMNN method can be now formulated as the following optimization prob-
lem min.A FA =

∑
ij ηijd

2
A(|x|ij) + μ

∑
il ηil(1 − cil)ξijl(A) where ξijl(A) =

max{0, 1 + d2
A(|x|ij) − d2

A(|x|il)}, μ is a constant (we fix μ = 1) and A , 0.

MCML. The MCML algorithm is based on the simple geometric intuition that all
points of the same class should be mapped onto a single location and far from points
of the other classes [4]. To learn the metric which would approximate this ideal ge-
ometrical setup a conditional distribution is introduced which for each example xi

selects another example xj as its neighbor with some probability pA(j|i), and xi in-
herits its class label from xj . The probability pA(j|i) is based on the softmin of the

d2
A distance measure, i.e. pA(j|i) = exp(−d2

A(|x|ij))∑
k �=i exp(−d2

A(|x|ik))
, pA(i|i) = 0. It can be

shown [4] that any set of points which has the distribution p0(j|i) ∝ 1 if |x|ij ∈ S′

and p0(j|i) = 0 if |x|ij ∈ D′ exhibits the desired ideal geometry. It is thus natural
to seek a matrix A such that pA(·|i) is as close (in the sense of the Kullback-Leibler
divergence) to p0(·|i). This, after a number of transformations [4], is equivalent to min-

imizing FA = −
∑

ij(1 − cij) ln( exp(−d2
A(|x|ij))∑

k �=i exp(−d2
A(|x|ik))

) subject to A , 0.

3 An alternative approach is to reduce the dimensionality of the input data to p′ (p′ � p); we
will also consider this solution in Sect. 4.
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NCA. The NCA method attempts to directly optimize a continuous version of the leave-
one-out error of the kNN algorithm on the training data. The main difference between
NCA and the two previous methods is that optimization in NCA is done with respect
to matrix W of (3). Its cost function FW is based on stochastic neighbor assignments
in the weighted feature space, which is based on pA(j|i) defined above where A is
replaced with W . Under this stochastic selection rule the probability pW (i) of correctly

classifying xi is given by
∑

j(1 − cij)
exp(−d2

W (|x|ij))∑
k �=i exp(−d2

W (|x|ik))
. In this work the actual

function to minimize is FW = −
∑

i ln{
∑

j(1 − cij)
exp(−d2

W (|x|ij))∑
k �=i exp(−d2

W (|x|ik))
} which

expresses the probability of obtaining an error free classification on the training set [3].

3 Scoring Based (Dis-)Similarity Learning

In this section we present the main contribution of this work and define a new frame-
work for (dis-)similarity learning over vectorial data. As already mentioned in Sect. 2,
most of the existing metric learning techniques do not require a direct access to the
training data; instead, the only ”interface” to the data is through the equivalence sets S′

and D′, the elements of which are the pairwise difference vectors as these were defined
in equation (1). Motivated by this observation, we will cast the problem of dissimilarity
learning as a problem of learning a binary classification scoring (or regression) function
from the training data constructed from S′ and D′. In classification the new labels will
be negative for elements of S′ and positive for elements of D′. In regression pairs of
instances of different and pairs of instances of the same class will be assigned positive
and negative numbers, respectively. More formally, the new training data is given as:

I = {
n⋃

i>j

(|x|ij , cij)} ∪ (0T , 0) (6)

where cij is defined in (4) and O denotes a vector of zeros; (0T , 0) is included in the
new training data as it models for the fact that duplicate instances share the same class.
It should be noted that the size of the training dataset from (6) scales as O(n2) (it con-
tains exactly (n−1)(n−2)

2 + 1 examples). In these settings, the learning phase amounts
to training a learning algorithm over the training data I, whereas the computation of
the (dis-)similarity between two examples xi and xj boils down to a computing pre-
diction score (for classification) or predicted depended variable (for regression) for an
instance |x|ij . In the remaining part of this work we will sometimes denote the scoring
(or regression) function for |x|ij as score(xi, xj) = score(|x|ij). The procedure of
classifying an instance xnew ∈ X by the kNN algorithm, that is based on computing
score(|x|ij) to select nearest neighbours, is presented in Algorithm 1.

It is important to realize that for the definition of cij from (4), we can interpret the
scoring function score(xi, xj) as a dissimilarity measure since it assigns lower values
to elements of S′ and higher values for elements of D′. However, by redefining cij from
(4) so that it assigns negative labels for elements of D′ and positive labels for elements
of S′, the corresponding scoring functions can be interpreted as a similarity measure.
In this study we will only focus on learning dissimilarity measures.
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Algorithm 1. kNN classification using scoring function.
1: kNN classify(xnew ,X ,Y, score(·), k))
2: // xnew: an instance to classify
3: // X ,Y: input data
4: // score(·): a scoring function learned on (6)
5: // k: number of nearest neighbours
6: S ← ∅
7: for i ∈ 1, . . . , n do
8: |x|Tnew,i ← (|xnew1 − xi1 |, . . . , |xnewp − xip |)T

9: S ← S ∪ score(|x|new,i)
10: end for
11: S ← sort(S, ascend)
12: N(xnew)← k nearest neighbors of xnew according to S
13: Nc(xnew)← elements of N(xnew) of class c
14: return argmaxc∈C

∑
x∈Nc(xnew) δ(class(x), c)

The proposed framework has several advantages over existing metric learning meth-
ods. First, it is very general as we are free to use almost any classification (or regression)
algorithm as long as its decision is based on a classification score (the predictions of
a regression algorithm could be interpreted right away as dissimilarities). The only re-
striction we put on the learner is that it should scale well with respect to the number
of input instances; this is due to the fact that the number of instances in the new train-
ing set I scales as O(n2), and hence any algorithm applied in the new space, whose
computational complexity is higher than say log-linear would be prohibitive but for toy
learning problems. Second, unlike most of the existing techniques, in general no semi-
definite programming or eigenvalue computations are required, and hence depending
on the employed learner the resulting dissimilarity can be efficiently learned. Finally,
our formulation generally leads to a dissimilarity that can be more expressive, and at
the same time simpler to learn, than the standard Mahalanobis metrics.

We also mention that there are two main drawbacks of our approach. First, in gen-
eral the learned dissimilarity measures are not valid metrics.4 However, several au-
thors have reported state-of-the-art classification performance of kNN over a variety of
learning problems where the underlying distance measures were not valid metrics, see
e.g. [12, 13]. In particular, most of the examined non-metric distance measures do not
satisfy the triangle inequality; the latter guarantees that if a point xi is close to xj and
close to xl then xj will be also close to xk. Moreover, as we will see in the experimen-
tal part of this study, the kNN algorithm, where the nearest neighbors are selected using
score(|x|ij), generally outperforms kNN with adaptive metrics that are learned using
different state-of-the-art metric learning techniques. This might suggest that the metric
conditions of a dissimilarity function are not necessary for kNN to achieve good pre-
dictive performance. However, the dissimilarity measures that are not metrics might be

4 Technically, a function d : X ×X → IR is a metric if it is: (i) non-negative (d(x, y) ≥ 0), (ii)
reflexive (d(x, x) = 0), (iii) strict (d(x, y) = 0⇒ x = y), (iv) symmetric (d(x, y) = d(y, x))
and (v) satisfies triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)), ∀x,y,z∈X .
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not adequate for some applications.5 We will discuss both the forms and characteristics
of our dissimilarities in the remainder of this section.

The second, and potentially more severe, problem is that the learning instances from
(6) are not independent. This renders the application of the learning algorithms in the
new space questionable, as the basic assumption that training instances should be in-
dependently and identically distributed (i.i.d) does not hold. However, the good experi-
mental performance of our framework reported in Sect. 4 suggests that this difficulty is
lifted by the above mentioned flexibility of learned dissimilarities. In other words, the
advantage of using very flexible dissimilarities might overcome the problem of non-
independently distributed data.

In the remainder of this section we will describe 3 different instantiations of our
framework that differ with respect to the employed learning algorithm. As already men-
tioned, the two requirements we put on the learning algorithms applied in the new space
are that they should (i) output a function indicating how similar are two instances and
(ii) scale well with respect to the number of instances in I. To perform a fair compari-
son with the existing metric learning techniques we will only focus on algorithms that
produce linear models whose parameters are directly related with the parameters of the
Mahalanobis metric. Based on the above considerations, in this study we focused on
two classification (Linear Support Vector Machines and Logistic Regression) and one
regression algorithm (Ridge Regression) which fulfil the above requirements.

Support Vectors Machines. In Linear Support Vector Machines (L-SVM) the learn-
ing phase amounts to solving the following unconstrained quadratic optimization prob-
lem [15]:6 min.w∈IRp

∑
ij max{0, 1 − cij〈w, |x|ij〉} + λ‖w‖2, where λ is a user-

defined regularization parameter and i = 1, . . . , n; j = i, . . . , n. The dissimilarity be-
tween xi, xj is given as: score(xi, xj) = 〈w∗, |x|ij〉, where w∗ is a solution of the
optimization problem of SVM. It is easy to verify that the above function is not a metric
as it can take negative values and does not satisfy the triangle inequality, however, it is
reflexive, strict (assuming a non-degenerate w∗) and symmetric. For solving the opti-
mization problem of L-SVM we exploit the algorithm recently proposed in [15] that
scales linearly with respect to the number of instances in I, i.e. its computational com-
plexity is O(n2). It is worth noting that the method from [5] also exploits the notion of
SVM to learn a metric. The main difference from our framework is that this method is a
local one that aims to determine a stretched neighbourhood around each query instance
such that class conditional probabilities are likely to be constant. Moreover, [5] exploits
the softmax function to obtain a valid metric. We plan to perform a detailed comparison
of the two approaches in the future.

Logistic Regression. Logistic Regression (LR) [1] is a well known binary classification
method where the classification decisions are based on a scoring function score(|x|ij)
that can be interpreted as a probability pij that an instance |x|ij belongs to the positive

class. More formally, score(xi, xj) is modelled as: score(xi,xj)≡pij=
exp(〈w,|x|ij〉)

1+exp(〈w,|x|ij〉) ,

5 We also note that the metric conditions are crucial if one employs efficient nearest neighbour
search strategies that are based on storing training examples in hierarchical data structures [14].

6 As we will exploit the learned weights only to compute a scoring function we do not include
in L-SVM (and in Logistic Regression) the bias term b.
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where w ∈ IRp are parameters of the logistic regression model; score(xi, xj) is non-
negative and symmetric, but does not satisfy the triangle inequality and is neither strict
nor reflexive. We will exploit the regularized version of LR where the optimal solution
w∗ is obtained by solving the following optimization problem: min.w∈IRp −

∑
ij(1−

cij) ln( exp(〈w,|x|ij〉)
1+exp(〈w,|x|ij〉) ) + λ‖w‖2.

Ridge Regression. We also experimented with one regression method, namely the
Ridge Regression (RR) algorithm [1] that solves the following optimization problem:
min.w∈IRp

∑
ij(〈w, |x|ij〉 − cij)2 + λ‖w‖2. In this context, the dissimilarity func-

tion has an identical form (and properties) as in the case of L-SVM score(xi, xj) =
〈w∗, |x|ij〉, where w∗ ∈ IRp is a solution of the optimization problem.

4 Experiments

We evaluated the performance of the proposed approach on a number of real-world
classification problems. The goal is to examine whether the three instantiations of our
dissimilarity learning framework from Sect. 3 (i.e. the L-SVM, LR and RL linear algo-
rithms) achieve better predictive performance than a number of existing metric learning
algorithms. The quality of the different dissimilarity measures will be only compared in
the context of kNN (we will not use the underlying algorithms such as logistic regres-
sion directly for classification).

We compared the above 3 methods with the LMNN, MCML and NCA state-of-
the-art metric learning algorithms. We experimented with 2 instantiations of the above
metric learning techniques, over full and diagonal matrices denoted respectively as
METHODfull and METHODdiag, where METHOD is LMNN, MCML or NCA. For
comparison reasons we also provide the performance of the standard kNN algorithm
with the Euclidean metric. We experimented with different values of k (k = 1, 3, 10);
the relative performance of the different methods did not vary with k, we report results
only for k = 1. In all the above methods we set the λ parameter to 1. In all the experi-
ments we estimate accuracy using 10-fold cross-validation and control for the statistical
significance of observed differences using McNemar’s test [16] (sig. level of 0.05).

We experimented with 13 datasets. First, we used 4 standard datasets from the UCI
repository (Liver, Wdbc, Wine, BalanceScale); these datasets are standard benchmarks
used in the context of distance learning. Then, we have chosen to experiment with
high-dimensional data from two different application domains, namely genomics and
proteomics (description of these datasets can be found in [17]). The genomics datasets
correspond to DNA-microarray experiments. We worked with three different datasets:
colon cancer (Colon), central nervous system (Central) and Leukemia (Leuk). All pro-
teomics datasets come from the domain of mass spectrometry. We worked with 4 dif-
ferent datasets: ovarian cancer (Ovarian), prostate cancer (Prostate), an early stroke
diagnosis (Stroke), and MaleFemale (MaleF). In Ovarian, Prostate and Stroke we ex-
perimented with 2 versions of each of the above proteomics datasets where we used
different parameters in the prepossessing step for feature extraction (in MaleF we had
access only to one version of this dataset). All features correspond to intensities of mass
values and are continuous. All the above genomics and proteomics datasets, in addition
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Table 1. Accuracy and significance test results of kNN (with and without distance learning). The
numbers in parentheses indicate the number of significance points that the algorithm scores in
a given dataset; the algorithms with the highest score for each dataset are highlighted. n and p
denote respectively the number of instances and the dimensionality of the data.

Dataset n p LMNNdiag MCMLdiag NCAdiag L-SVM LR RR kNN
Liver 345 6 58.6 (3.5) 62.4 (4.0) 54.4 (2.0) 57.5 (3.5) 58.1 (3.5) 47.7 (0.5) 62.4 (4.0)
Wdbc 569 30 94.8 (3.5) 94.8 (3.5) 95.0 (3.5) 93.4 (3.5) 84.5 (1.0) 71.6 (2.5) 95.5 (3.5)
Wine 178 13 96.7 (4.5) 94.9 (4.0) 91.7 (3.0) 97.4 (4.5) 73.3 (1.0) 55.2 (0.0) 94.9 (4.0)
Balance 625 4 77.7 (3.0) 77.4 (3.0) 75.5 (2.5) 76.0 (2.5) 76.2 (2.5) 76.1 (3.0) 79.4 (4.5)
Colon 62 2000 82.1 (3.0) 80.4 (3.0) 77.5 (2.5) 85.4 (3.5) 85.4 (3.5) 87.1 (4.0) 73.8 (1.5)
Central 60 7129 60.0 (3.0) 56.7 (3.0) 48.3 (2.0) 66.7 (3.5) 70.0 (3.5) 61.7 (3.0) 56.7 (3.0)
Leuk 72 7129 97.1 (4.0) 97.1 (4.0) 87.5 (1.0) 95.7 (3.5) 97.1 (4.0) 97.1 (4.0) 84.9 (0.5)
MaleF 134 1524 77.6 (4.0) 68.8 (2.5) 55.7 (0.5) 84.2 (4.5) 83.4 (4.5) 81.9 (4.5) 55.5 (0.5)
Ovarian1 253 385 96.8 (4.5) 93.0 (1.0) 91.5 (1.0) 97.6 (4.5) 98.0 (4.5) 96.8 (4.5) 92.2 (1.0)
Ovarian2 253 10361 95.7 (4.5) 86.6 (1.0) 88.0 (1.0) 95.7 (4.5) 95.0 (3.5) 97.6 (5.0) 90.6 (1.5)
Stroke1 208 172 68.6 (4.0) 63.9 (3.0) 58.1 (2.5) 60.4 (2.5) 63.9 (3.0) 60.7 (3.0) 64.1 (3.0)
Stroke2 208 2810 69.0 (4.0) 60.1 (1.5) 63.5 (3.0) 70.7 (4.0) 68.7 (3.5) 70.1 (4.0) 55.5 (1.0)
Prostate1 322 390 85.8 (5.0) 78.3 (2.0) 70.8 (0.5) 86.1 (5.5) 82.6 (3.5) 78.6 (2.0) 82.4 (2.5)
Prostate2 322 12600 90.3 (3.5) 83.3 (1.0) 85.0 (2.5) 92.3 (4.0) 92.0 (4.0) 94.2 (4.5) 82.2 (1.5)

Average rank 3.86 2.61 1.96 3.86 3.29 3.14 2.29

to large number of features, are also characterized by a small number of observations,
making these datasets a difficult learning scenario. In all the above datasets the numeric
attributes were normalized so that they takes values between 0 and 1. In Table 1 we
provide the number of instances and attributes in the examined datasets.

To better understand the relative performances of the examined algorithms we es-
tablished a ranking schema of these algorithms based on the results of the pairwise
comparisons. More precisely, if an algorithm is significantly better than another it is
credited with 1 point; if there is no significant difference between two algorithms then
they are credited with 0.5 points; if an algorithm is significantly worse than another it is
credited with 0 point. Thus, in the case m algorithms are examined, an algorithm that is
significantly better than all the others for a given dataset is assigned a score of m− 1.

Experiments on these datasets have 2 goals. First, we study the relative performance
of our methods with the existing metric learning algorithms. In these experiments we
use the diagonal versions of the existing metric learning techniques as it allows for
a fair comparison with the proposed framework; similar to the metric learning tech-
niques based on diagonal matrices, L-SVM, LR and RR do not account for interactions
between different attributes. Second, we compare the predictive performance of our
method with the metric learning methods based on full matrices. For the latter methods
applied on the high-dimensional datasets (i.e. all the genomics and proteomics clas-
sification problems) we exploited the PCA method to reduce the data dimensionality;
this procedure was widely used in the context of metric learning [2]. More precisely,
the training instances are projected into a lower dimensional subspace accounting for at
least 99 % of the data’s total variance.
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Results and Analysis. In Table 1 we present the results (with the score ranks) of the
comparison between LMNNdiag, MCMLdiag, NCAdiag, L-SVM, LR, RR and the stan-
dard kNN (recall that the maximum score for an algorithm in a given dataset is 6). From
these results we can make several observations. First, with the exception of the Liver
and Balance datasets, there is at least one adaptive method that outperforms the stan-
dard kNN algorithm (in Liver and Balance, kNN is placed in the first position according
to our ranks). Second, the developed dissimilarity methods based on L-SVM, LR and
RR generally outperform both MCMLdiag and NCAdiag; the advantage of our methods
is most visible in the genomics and proteomics high dimensional datasets. Finally, the
methods that most often win are LMNNdiag, L-SVM, LR and RR.

To quantify the relative performances of the different algorithms we computed for
each method its average rank over all the examined datasets. These ranks are presented
in the last row of Table 1. We observe that the best performance of 3.86 points is ob-
tained for the margin based methods (L-SVM and LMNNdiag), which have a similar
computational complexity both in theory (they scale as O(n2)) and in practice (they
had similar running times). This result is remarkable since L-SVM, which is based on
a simple idea, performs equally well as the more elaborate metric learning algorithm
that has been reported to consistently outperform other metric learning techniques over
a number of of non-trivial learning problems [2]. Finally, we mention that the surpris-
ingly poor performance of NCAdiag might be explained by the fact that its cost function
is not convex and hence it is sensitive to the initializations of W .

In the second set of experiments we compare the performance of the metric learning
methods with the full matrix to that of metric learning with diagonal matrix. Here we
want to examine whether methods that account for feature interaction outperform the
methods proposed in Sect. 3. As already mentioned, we first reduced the dimensional-
ity of all the high-dimensional datasets by mapping the instances to lower dimensional
subspaces defined by the PCA method; depending on the datasets, the dimensionali-
ties of the subspaces, that account for at least 99 % of the data’s total variance, were
between 50 and 178. The results are presented in Table 2. From these results we can
see that with the exception of NCAfull in Liver and Prostate1, all the metric learning
with full matrix have similar or worse performances than their corresponding versions
with diagonal matrices (the first signs in parenthesis are mostly ”=” or ”-”). This could
suggest that even though the data dimensionality is significantly reduced, the metric
learning algorithms based on full matrices might still be prone to overfitting (the other
explanation might be simply that by removing features that have low variance we also
remove important discriminatory information).

We have also compared the performances of full matrix metric learning methods
with that of L-SVM, LR and RR; the significance tests results corresponding to this
comparison are given by the 2nd, 3th and 4th signs in parenthesis in Table 2. From
these results we can see that the relative performances between metric learning meth-
ods that are based on full matrices and the methods from Sect. 3 depend on the actual
dataset. Indeed, in the first 3 UCI datasets (Liver, Wdbc and Wine) there is an advan-
tage of full matrix metric learning algorithm; in Balance, Central and Stroke1 there is
almost no difference in performances; in Prostate1 no conclusions can be drawn; and
in all the remaining datasets the L-SVM, LR and RR methods generally outperform
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Table 2. Accuracy and significance test results of the algorithms based on full matrices. The
4 signs in parenthesis correspond to a comparison between METHODfull and METHODdiag,
L-SVM, LR and RR, respectively (the ”+” sign stands for a significant win of a the first algorithm
in a pair, ”-” for a significant loss, and ”=” for no significant difference).

Dataset LMNNfull MCMLfull NCAfull Dataset LMNNfull MCMLfull NCAfull

Liver 55.4 (====) 61.5 (===+) 62.4 (+==+) MaleF 67.4 (- - - -) 60.3 (= - - -) 57.1 (=- - -)
Wdbc 94.8 (==+=) 94.8 (==+=) 95.5 (==+=) Ovarian1 93.4 (- - - =) 87.8 (- - - -) 91.8 (=- - -)
Wine 95.5 (==++) 96.8 (==++) 94.9 (==++) Ovarian2 97.2 (====) 74.7 (- - - -) 90.5 (=- =-)
Balance 77.6 (====) 77.4 (====) 76.1 (====) Stroke1 66.1 (====) 57.6 (====) 65.1 (====)
Colon 66.7 (- - - -) 65.0 (- - - -) 72.1 (=- - -) Stroke2 58.7 (- - - -) 55.5 (=- - -) 56.4 (=- - -)
Central 60.0 (====) 58.3 (====) 55.0 (==- =) Prostate1 83.6 (==+=) 78.3 (=- - =) 83.0 (+=+=)
Leuk 83.2 (- - - -) 83.2 (- - - -) 84.9 (=- - -) Prostate2 84.2 (=- - -) 72.5 (- - - -) 82.2 (=- - -)

the metric learning techniques based on full matrices. These results suggest that in the
majority of the high dimensional datasets, the feature interactions are not important,
and hence the methods that do not account for feature interactions have in general bet-
ter performances. Alternatively, it might suggest that stronger regularization is needed.
Moreover, it is interesting to note that the cases for which the full matrix metric learn-
ing methods are good are mostly the UCI datasets that correspond to rather not difficult
classification problems. This hints that there might be a bias of method development
towards methods that perform well on UCI datasets; however, one can argue that they
are really representative of the real world.

5 Conclusions and Future Work

In this paper we prosed a novel framework for learning a (dis-)similarity function over
vectorial data, where the learning problem is cast as a binary classification or regression
task defined over the space of pairwise differences of the input instances. Our approach
generally leads to adaptive (dis-)similarities that are not valid metrics; however, we ar-
gue that by learning (dis-)similarities that do not fulfil metric conditions (and are not of
the Mahalanobis type) we might have more freedom in adapting these (dis-)similarities
for a given problem. Our claim is supported by experimental evidence that, in terms of
predictive performance, shows that our framework compares favourably with alterna-
tive state-of-the-art distance learning techniques which are trained to learn both full and
diagonal Mahalanobis metrics.

In the future we want to exploit other learning techniques applied over the new data
representation (e.g. decision trees). We also plan to investigate a Non-Linear version
of Support Vectors Machines (NL-SVM) to learn the higher-order interaction between
features, similar to that modelled in the Mahalanobis metric. This can be achieved by
exploiting the polynomial kernel of degree 2 that induces a feature space that is in-
dexed by all the monomials of degree 2. Since we will not be able to rely on efficient
implementation of L-SVM, the main challenge here is to make NL-SVM scalable and
practical. Moreover, we plan to test more carefully the pros and cons of the L-SVM and
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LMNN methods that in our experiments had similar performance and outperformed
other algorithms. Finally, we would like to compare our framework with the approach
from [5] as the latter also exploits the notion of SVM to locally learn a metric.
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Semantic-Distance Based Clustering for XML
Keyword Search

Weidong Yang and Hao Zhu

School of Computer Science, Fudan University,
Handan Road 220, Shanghai, China

Abstract. XML Keyword Search is a user-friendly information discov-
ery technique, which is well-suited to schema-free XML documents. We
propose a novel scheme for XML keyword search called XKLUSTER,
in which a novel semantic-distance model is proposed to specify the set
of nodes contained in a result. Based on this model, we use clustering
approaches to generate all meaningful results in XML keyword search.
A ranking mechanism is also presented to sort the results.

Keywords: XML, Keyword Search, Clustering.

1 Introduction

Keyword search in database is gaining a lot of attentions [1-11]. Many exist-
ing methods about XML keyword search are based on LCA (lowest common
ancestor) model. A typical one of them is the SLCA (smallest LCA) method
[2, 3, 5], which returns a group of smallest answer subtrees of an XML tree. A
smallest answer subtree is defined as: a subtree which includes all the keywords
and any subtree of it doesn’t contain all the keywords. The root of a smallest
answer subtree is called a SLCA. However, SLCA method probably omits some
meaningful results. Example 1.1 shown in Fig. 1 illustrates a tree structure of
an XML document, in which every node is denoted as its label and the number
below it is the Dewey number.

DBLP

Article

Title Authors

MichaelHTML1

0

0.0

0.0.0 0.0.1

David
0.0.0.0 0.0.1.0 0.0.1.1

Article

Title Authors

MichaelXML2
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0.2.0 0.2.1

David
0.2.0.0 0.2.1.0 0.2.1.2

cite

Article

Title Authors

MichaelXML3

0.2.2.0

0.2.2.0.0 0.2.2.0.1

David
0.2.2.0.0.0 0.2.2.0.1.0 0.2.2.0.1.1

Article

Title Authors

MichaelXML1

0.1

0.1.0 0.1.1

John
0.1.0.0 0.1.1.0 0.1.1.1

0.2.2

Michael
0.2.1.1

x1 x2 x3 x4 x5 x6 x7 x8

x9 x10 x11

Fig. 1. Tree Structure of an XML document (Example 1.1)

Suppose that keywords are “XML”, “Michael” and “David” are submitted
to search in the document, and the nodes containing keywords are marked in
red. If SLCA method is applied, the result would be a subtree rooted at node
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Article (0.2.2.0). The searching semantics is most likely to be “which papers
about XML have been written by Michael and David”, and obviously it finds
the paper “XML3” while omitting the paper “XML2”. Moreover, users may
have other reasonable searching intentions, like “which papers are written by
Michael and David” and “which papers about XML are written by Michael
OR David”. For these two requests, paper “HTML1” and “XML1” are both
contented results but also omitted. If we regard any node set which contains
all the keywords as a candidate results, actually what SLCA method does is
picking out some “optimal” ones from all the candidate results, and it considers
a candidate result to be “optimal” when its LCA is relatively lowest, so those
candidate results with higher LCAs are discarded, this is the essential reason for
SLCA method losing some meaningful results. Besides, SLCA method still has
some other drawbacks: (1) all the results are isolated, which means any node only
can exist in one result, and apparently it is inappropriate in some situations; (2)
each result is demanded to contain all the keywords, means that SLCA methods
only support “AND” logic between all keywords.

This paper presents a novel approach based on clustering techniques for XML
keyword search, which can solve all above problems. Main contributions include:
We propose a novel semantic distance model for XML keyword search in section
2; three clustering algorithms are designed in section 3, which are graph-based
(GC), core-driven (CC) and loosened core-driven (LCC) algorithms; a ranking
mechanism is proposed to sort all the searching results in section 4.

2 Search Semantics and Results

We define the keywords submitted by users as a set containing t keywords L =
{ki|i = 1, . . . , t},and the XML document as an XML document tree.

Definition 2.1 (Search Semantics and Results). An XML document tree
is a tree coded by Dewey numbers, and denoted as:d = (V, E, X, label(id),
pl(id1, id2), depth(id), dwcode(id), lca(V ′)), in which: (1)V is the set of all the
nodes, in which each node corresponds to an element or an attribute or a value
in the document and has a unique identifier as well as a Dewey number; (2)
E ⊆ V × V , is the set of edges in the tree; (3) label(id), is a function which can
get the label of the node whose identifier is id ;(4)X ⊆ V , is the set of keyword
nodes in the tree, and a keyword node is a node whose label contains any key-
word; (5)pl(id1, id2), is a function to obtain the path length between two nodes,
in which id1 and id2 must have an ancestor-descendant relation, and the func-
tion returns the number of edges between them; (6) depth(id) is a function to
get the depth of the node whose identifier is id (the depth of the root is 1); (7)
dwcode(id), is a function to get the Dewey number of the node whose identifier
is id ; (8) lca(V ′), is a function to get the LCA of all nodes in V ′, and V ′ ⊆ V .

Definition 2.2 (Shortest Path). The shortest path between two nodes The
shortest path between two nodes xi and xj is the sum of the path between
xi and lca(xi, xj) and the path between xj and lca(xi, xj). Meanwhile, the
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function spl(xi, xj) is used to obtain the length of the shortest path. Apparently,
spl(xi, xj) = pl(lca(xi, xj), xi) + pl(lca(xi, xj), xj).

Definition 2.3 (Semantic Distance). The semantic distance between any
two keyword nodes xi and xj is defined as a function dis(xi, xj): dis(xi, xj) =

spl(xi,xj)
depth(lca(xi,xj))

.
In the rest, semantic distance is called distance for short. In the formula of the

distance function, the numerator and the denominator are the length of shortest
path and the depth of LCA respectively. Obviously, the semantic distance of
two keyword nodes is smaller when their shortest path is shorter or the depth of
their LCA is lower. Assume the height (maximum depth) of the tree is h, then
the range of spl(xi, xj) is [0, 2h] and the range of depth(lca(xi, xj)) is [1, h], so
the range of dis(xi, xj) is [0, 2h]. In Example 1.1, evaluating all the distances
between any two keyword nodes can get a semantic distance matrix (Fig. 2).
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6�00 6�00 6�00 6�00 2�00 0

6�00 6�00 6�00 6�00 2�00 0�67 0

x1 x7x3x2 x6x4 x5

x7

x6

x1

x2

x3

x4

x5

6�00 6�00 6�00 6�00 2�00 0�67 0�67x8

x8

0

x10x9 x11

8�00 8�00 8�00 8�00 3�00 3�00 3�00

8�00 8�00 8�00 8�00 3�00 3�00 3�00x10

x9

8�00 8�00 8�00 8�00 3�00 3�00 3�00x11

3�00

3�00

3�00

0

1�00 0
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Fig. 2. Semantic Distance Matrix (Example 1.1)

From Fig. 2, it can be found that the few smallest distances (0.40 and 0.67) are
between two authors of a paper, and any largest distances (8.00) is between titles
or authors of different papers which have no citation relation. The values of the
distancesmatch the practicalmeanings. Strictly speaking, the searching intentions
of users can never be confirmed accurately; so different than existing researches,
we suggest that all keyword nodes are useful more or less and should be included in
results. Based on the semantic distance model, we divide the set of keyword nodes
X into a group of smaller sets, and each of them is called a “cluster”.

Definition 2.4 (Cluster). A cluster Ci is a set of keyword nodes, which means
Ci ⊆ X ; and if C = {Ci|i = 1, . . . , m} is the set of all clusters generated, then⋃m

i=1 Ci = X .
We set a distance threshold to confine the size of clusters that the distance of

any two keyword nodes in a cluster must be less equal to ω. It actually means,
two keyword nodes are regarded semantically related if their semantic distance is
less than to ω. Besides, there isn’t any restriction for which keywords can exist in
one cluster, which means both of the “AND” and “OR” logic between keywords
can be supported. Nevertheless, given a distance threshold, there will be massive
clusters satisfying the request, and many of them have inclusion relations with
each other, so a concept of “optimal cluster” is proposed.
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Definition 2.5 (Optimal Cluster). Given a distance threshold ω, a set of
keyword nodes Ci ⊆ X is called an optimal cluster iff: (1) ∀xi, xj ∈ Ci, s.t.
dis(xi, xj) ≤ ω; (2) ∀xa, (xa ∈ X)and(xa /∈ Ci), ∃xb ∈ Ci s.t. dis(xa, xb) > ω.

Example 2.1: Assume the value of distance threshold is 2.0, then there are only
part of the distances can be retained in the table shown in Fig. 2 (marked in blue),
four optimal clusters is easily to be obtained: C1 = x1, x2, C2 = x3, x4, C3 =
x5, x6, x7, x8andC4 = x9, x10, x11, which actually correspond to the contents of
four papers respectively in Fig. 1.

Finding the optimal clusters is definitely not the last step. Actually a cluster
is only a set of keyword nodes, how to generate enough useful information from
clusters is another point. A simple approach is: for each cluster Ci, return the
whole subtree rooted at lca(Ci) to users. However many these subtrees will have
inclusion relations (for example the subtree rooted at lca(C3) and the subtree
rooted at lca(C4) in Example 2.1), especially when the depth of some lca(Ci)
is high, this kind of problems become serious. Moreover, it would cause some
results being too large to be returned and for users to obtain useful information.
So, for each (optimal) cluster, we generate and return a “minimum building tree”
of it.

Definition 2.6 (Minimum Building Tree). A minimum building tree (MBT)
of any cluster Ci is a tree whose root is lca(Ci) and leaves are all the nodes
in descendants(Ci). The function descendants(Ci) returns all the nodes in Ci

which doesn’t have any descendant node in Ci.
Two extra operations are provided to expand the MBTs: (1) the “expansion”

of any node, which would add the subtree rooted at the node into the MBT.
For example for the MBT of C2 in Example 2.1, users can expand the node
Authors(0.1.1) to get another author of the paper John (0.1.1.1); (2) the “ele-
vation” of the root, which will find the parent node of the MBT root and add it
into the MBT, for example for the MBT of C1 in Example 2.1, users can elevate
the root Authors(0.0.1) and get its parent node Article(0.0). Thus, users can
expand each MBT optionally according to their needs until satisfactory infor-
mation is found.

Definition 2.7 (XML Keyword Search). XML keyword search is a process
that: for a set of keywords L submitted by users and a distance threshold ω
set in advance, a set of MBTs are obtained by searching an XML document d;
moreover, each MBT could be expanded according to the demands of users.

3 Clustering Algorithms

Since our goal is to divide a set of keyword nodes into groups according to the
distances between keyword nodes, if each keyword node is regarded as an object,
it is very natural to achieve our goal through clustering techniques, so we develop
three clustering algorithms for XML keyword search: GC, CC, and LCC.

Lemma 3.1. For an XML document tree d, any number of nodes which have
the same depth are picked out, and sorted in preorder to form a list I. For any
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node xi in I, traverse leftwards (rightwards) from it, then the distance between
xi and the node each time met is non-decreasing.

Lemma 3.2. The list I is defined as the same as in Lemma 3.1, also a similar
list I ′ is defined. Assume that the depth of the nodes in I ′ is higher (lower)
than that of the nodes in I, xi is an arbitrary node in I, and x′

i is the ancestor
(descendant) node of xi in I ′ (x′

i doesn’t have to exist in I ′ or even in the tree, we
can add one in the corresponding position of I ′ if it’s inexistent). When traverse
leftwards (rightwards) from x′

i in I ′, the distance between xi and the node each
time met is non-decreasing.

Proof: For any node xj in I ′, equals to spl(x′
i, xj) plus spl(xi, x

′
i)(spl(x′

i, xj) mi-
nus spl(xi, x

′
i)), and since spl(xi, x

′
i) is invariable, spl(xi, xi) will become greater

along with spl(xi’, xj) (spl(xi’, xj) is non-decreasing). Otherwise, it is obvious
that depth(lca(xi, xj)) is non-increasing, according to the formula of semantic
distance, is non-decreasing.

After the ω is set and the keywords are submitted, we traverse the XML tree
in preorder, find all the keyword nodes and put them into a hierarchical data
structure.

Definition 3.1 (Hierarchical Data Structure). Assume the height of the
XML document tree is h; the hierarchical data structure H is a data structure
which contains h ordered lists of keyword nodes, and the depth of any node in
the ith list is i.

When we traverse the XML tree in preorder, each node met would be added
into the end of corresponding list in H if its label contains some keyword. Con-
sequently, after the traversal is finished, H will contain all keyword nodes, and
because in any list of it all nodes are added in preorder, Lemma 3.1 and Lemma
3.2 hold true in H.

3.1 GC: Graph-Based Clustering Algorithm for XML Keyword
Search

In algorithm GC, firstly we traverse H and connect any two nodes between which
the distance is less equal to the distance threshold ω with a link. After that a
weighted undirected graph whose vertices are all the keyword nodes is obtained.
Afterwards, a graph-partition algorithm is used to find all the maximal complete
subgraphs (cliques); apparently the vertex set of each clique is an optimal cluster.
H is accessed from top to bottom, and for each list, nodes are traversed from left
to right. Assume xi is the node currently being accessed, we check the distances
between xi and some neighbors which are right of or below xi, and because of
the accessing order, the nodes left of or above xi needn’t be considered. Assume
xj is a node right of xi in the same list, according to Lemma 3.1, dis(xi, xj)
is non-decreasing when the position of xj moves rightwards, so if dis(xi, xj) is
greater than ω, all nodes right of xj in the same list needn’t be regarded.

For thenodes in lower lists, firstly it shouldbe confirmthathowmany lists should
be taken into account. For any node xj below xi, dis(xi,xj)=

spl(xi,xj)
depth(lca((xi,xj)))

≤ ω,
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also because that depth(xi) ≥ depth(lca((xi, xj))) , then we can easily get that
spl(xi,xj)
depth(xi)

≤ spl(xi,xj)
depth(lca((xi,xj)))

≤ ω, which indicates that spl(xi, xj) ≤ depth(xi)×ω,
so only lists below xi need to be taken into account. Obviously, even there exists
a descendant of xi in the (floor(depth(xi) × ω) + 1)th lower list, the distance
overflows.

For each of these (floor(depth(xi) × ω) lists, first we find the position of the
descendant node of xi in it (the descendant node of xi doesn’t have to exist), then
traverse leftwards (rightwards) from the position until the distance overflows, and
according to Lemma 3.2, all other nodes in the list needn’t be considered.

Each time the distance between two nodes is found to be less equal to ω, these
two nodes are linked (by adding cursors point to each other) to build an edge,
and the value of distance is recorded as the edge’s weight. A weighted undirected
graph is obtained, and then a simple graph-partition algorithm is used to get
all the cliques. The pseudocode of GC is given in Fig. 3. The graph-partition
algorithm is not given here for the sake of space of this paper. We can show that
the total cost of finding descendant’s position is h2 ·O(log n) + h · O(n).

It is easy to find that the time complexity of GC not only depends on the total
number of keyword nodes, but also strongly relies on the distance threshold. The
disadvantage of GC is the uncontrollable efficiency, especially when the distance
threshold is large. So, we propose two other algorithms: CC and LCC.

H
C

l H
xi l

xj

dis xi xj

link xi xj

xj

l' floor depth xi · l
p findDescPosition xi, l'

p
xi

C

findDescPosition xi, l' xi l'
xi' xj l'

xi l
p position xj l'

l' cursor p xj

l' cursor p
p

Fig. 3. Algorithm GC

l r

l r l r

l rl-1 r+1

Fig. 4. Illustration of Cores

3.2 CC: Core-Driven Clustering Algorithm for XML Keyword
Search

GC is node-driven, which gathers some keyword nodes close enough to each other
together. While the idea of algorithm CC is “divide-and-conquer”: finds some
keyword node sets which are called “cores” in the first place, all the nodes in a
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core can definitely be clustered together; afterwards, each of which affirmatively
contains at least one optimal cluster; finally optimal clusters are obtained from
these core sets.

Definition 3.2 (Core). Given a distance threshold ω, a keyword node set
R ⊆ X is called a core iff the distance between any two nodes in R is less equals
to ω.

An optimal cluster is a core, but a core is not necessarily an optimal cluster.

Lemma 3.3. Assume xl and xr are any two nodes in the same list of H, and xl

is left of xr. Given a distance threshold ω and dis(xl, xr) ≤ ω, then the set of
nodes from xl to xr (including them) is a core.

Proof: Take any two nodes xa and xb from the (r − l + 1) nodes from xl to xr ,
and let xa be left of xb. According to Lemma 3.1, dis(xa, xb) ≤ dis(xa, xr) ≤
dis(xl, xr) ≤ ω, so the distance between any two nodes isn’t greater than ω. At
the beginning of algorithm CC, we traverse H and divide all keyword nodes in
H into a number of cores, each of which is called a “core origin”.

Definition 3.3 (Core Origin). Oi is a set of certain keyword nodes in H ; it
is called a core origin iff: (1) Oi is a core; (2) all the nodes in Oi are in the same
list I of H ; (3) there doesn’t exist a core O′

i which satisfies Oi ⊂ O′
i and all the

nodes in O′
i are in I.

A core origin is actually an optimal cluster in one list. As illustrated in Fig.
4 (a): assume I is a list in H, xl−1, xl, xr and xr+1 are four nodes in I and their
positions are just as the same as illustrated in the figure, also dis(xl, xr) ≤ ω,
dis(xl−1, xl) ≥ ω, and dis(xr, xr+1) ≥ ω. According to Lemma 3.3, xl, . . . , xr is
a core, and easily find: for any node xa in it, dis(xl−1, xa) > dis(xl−1, xl) > ω,
and dis(xa, xr+1) > dis(xr, xr+1) > ω. On account of Lemma 3.1, the distance
between xa and any node left of xl−1 or right of xr+1 is greater than ω, conse-
quently xl, . . . , xr is a core origin. It denotes that the positions of a core origin’s
nodes are continuous in the list.

After getting all the cores origin from H, some cores around each core origin
Oi are considered for the purpose of finding optimal clusters which contain all the
nodes in Oi. As illustrated in Fig.4 (b), xl, . . . , xr is a core origin, and according to
previous discussions, all other nodes in the same list needn’t be regarded. Assume
I ′ is a lower list, x′

l, . . . , xl” is a set of nodes in I ′ whose distances to xl are all less
equal to ω, and x′

r, . . . , xr” is a set in I ′ of nodes whose distances to xr are all less
equal to ω. If the intersection ofx′

l, . . . , x
′′
l and x′

r, . . . , x
′′
r is null, affirmatively there

isn’t any node in I ′ could be added into x′
r, . . . , x

′′
r to form a core; if the intersection

isn’t null, it must be x′
r, . . . , x

′′
l (it is easy to prove that x′

l can’t be right of x′
r and

x′′
r can’t be left of x′′

l ), therefore we can get a lemma as follows.

Lemma 3.4. If x′
r, . . . , x

′′
l is a core, then: (1) the union of xl, . . . , xr and

x′
r, . . . , x

′′
l is a core; (2) any node in I ′ other than the nodes of x′

r , . . . , x
′′
l cannot

be added into xl, . . . , xr to build a core.

Proof: For the first thesis, xl, . . . , xr and x′
r, . . . , x

′′
l are both cores, so the only

thing needs to be proved is the distance between any two nodes from different
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sets is less equal to ω. Assume xa is an arbitrary node in xl, . . . , xr, x′
a is an

arbitrary node in x′
r, . . . , xl′′, and dis(xa, x′

a) > ω, then according to Lemma 3.2:
if dis(xl, xa′) ≤ ω, the position of x′

a’s ancestor in I is left of xa; if dis(xr, x
′
a) ≤

ω, the position of x′
a’s ancestor in I is right of xa. However, dis(xl, x

′
a) and

dis(xr, x
′
a) are both less equal to ω, the position of x′

a’s ancestor node in I
conflicts, so dis(xa, x′

a) ≤ ω. For the second thesis, apparently, the distance
between xr and any node left of x′

r and the distance between xl and any node
left of x′′

l all exceed ω.
In the same way, we can prove that, when I ′ is an upper list Lemma 3.4 still

holds. Otherwise, when x′
r, . . . , x

′′
l is not a core, we can divide it into several

cores, and for each core Lemma 3.4 holds. The similar cores as x′
r, . . . , x

′′
l are

called “related cores” of xl, . . . , xr. After all the related cores of xl, . . . , xr being
found, we choose one core from each list except I, along with the core origin
xl, . . . , xr a core set is obtained, and obviously some optimal clusters containing
all the nodes of xl, . . . , xr can be found from it. The pseudocode of algorithm
CC is given in Fig. 5, and for simplicity it only considers the case that x′

r, . . . , x
′′
l

is a core.
Line 1-11 of Algorithm 2 costs O(n); line 6-9 in function findRelatedCores

costs O(log n), and line 11 costs O(n), so the total cost of findRelatedCores is
O(log n) + O(n). For the function findOptimalClusters at line 14 of Algorithm
2, its purpose is to find all optimal clusters which contain all nodes in a cluster
origin O. Detailed code is omitted here. It is similar to searching cliques in a
graph, but the difference is that we consider cores instead of nodes. The core
set S contains a number of cores and each of which comes from a distinct list;
assume there are t cores in S, then they have 2t possible combinations at most;
for each of the combination a function similar to findRelatedCores needs to be
invoked for at most t2 times; because t is always a small number (less than
h), we can see that the complexity of function findOptimalClusters is same as
findRelatedCores.

Also we propose two extreme cases here: (1) when ω is really large, then m is
a small number, and the complexity will be O(n); (2) when ω is very small, m
tends to n, however line 11 in findRelatedCores will cost O(1), so the complexity
will be O(n · log n). Moreover, in the worst case the complexity is O(n2).

3.3 LCC: Loosened Core-Driven Clustering Algorithm for XML
Keyword Search

In most cases users don’t have accurate requests for the returned results; we
can loosen the restrictions of results for the purpose of improving efficiency. At
the beginning of algorithm LCC, H is also traversed to get all the cores origin.
Afterwards for each list I in H, two additional lists are built: a head node list
HNL and a tail node list TNL. HNL and TNL orderly store the first nodes and
the last nodes of cores origin in I respectively. Thereafter, for each core origin O,
we find some cores origins close enough, and then instead of looking for optimal
clusters out of them, we easily add all nodes of them into O to form a result.
The pseudocode of LCC is in Fig. 6. Line 1 of Algorithm 3 is to find all the cores
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origin, the processing is the same which in Algorithm 2. For line 4-8 in function
findRelatedCoresOrigin, the time complexity of each step is O(log n); and for
line 10, the related cores origin only need to be recorded with identifiers rather
than be traversed. Assume the number of cores origin is m, then apparently the
time complexity of algorithm LCC is O(n)+O(m · log n); the worst case happens
when m tends to n, then it comes to O(n · logn); otherwise, when m is a small
number, it is O(n).

4 Ranking of Results

The whole process of ranking mechanism is: firstly sort all the clusters gener-
ated by clustering algorithms using the scoring function, and then transform
them into MBTs orderly, finally return top-k or all ordered MBTs to users. The
first criterion of the scoring function is the number of keywords, obviously con-
taining more keywords indicates a better cluster, and the best clusters are those
which contain all the keywords. On the other hand we consider the occurrence
frequencies of keywords having no influence on ranking. For those clusters con-
tain the same number of keywords, the criterion of comparison is the average
distances of clusters.

Definition 4.1 (Average Distance). The average distance of a cluster Ci is
the average value of all the distances between any two nodes in Ci. Assume Ci
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contains m nodes, and function dismean(Ci) is used to get the average distance

of Ci, then, dismean(Ci) =
∑

xi,xj∈Ci;xi �=xj
dis(xi,xj)

2C2
m

, m > 1
Assume h is the tree height, then the range of dismean(Ci) is [1/h, 2h]. Ap-

parently for a cluster Ci, a smaller dismean(Ci) indicates that all nodes of Ci are
more compact in the tree. Otherwise, if Ci only contains one node, the average
distance cannot be defined on it, however we can see that the MBT of it also
contains a single node and means almost nothing to users, so this kind of clusters
are worst for users. We define function keywordNum(Ci) to get the number of
keywords, and score(Ci) as the scoring function of clusters, moreover our final
scoring function is as follows:

score(Ci) =
{

h · keywordNum(Ci) + 1
dismean(Ci)

m > 1
0 m = 1

Example 4.1: For the four optimal clusters obtained in Example 2.1, their scores
are: score(C1) = 13.50, score(C2) = 12.50, score(C3) = 18.75 and score(C4) =
19.25 respectively. So, the order of clusters is: C4, C3, C1, C2.

5 Experiments

The environment of our experiments is a PC with a 2.8GHZ CPU and 2G RAM;
and the software includes: Windows XP, JDK 1.6, and the parser “Xerces”. The
data sets used to compare three clustering algorithms are DBLP (size 127M,
6332225 nodes) and Treebank (size 82M, 3829511) [12]. We build a vocabulary for
each data set, which stores some terms existing in the document; the occurrence
frequency of each term is between 5,000 and 15,000. We randomly choose several
ones from vocabularies as keywords to search in the documents. The process is
repeated for forty times and afterwards the average values are evaluated as the
final results.

From Fig. 7 it’s easy to find that: (1) given certain keywords and distance
threshold, the time costs of three algorithms is ranked as “GC, CC, LCC” (from
big to small) except when the distance threshold is very small; (2) with the
increasing of the distance threshold, time cost of GC always increases, while
time costs of CC and LCC both first increase and then decrease. In Fig. 8 (a),
when the distance threshold equals to 0.0, the returned results are those nodes
whose labels contain multiple keywords, because each of them is considered as
some different nodes; when the distance threshold equals to 6.0, almost all the
keyword nodes gather into a few large clusters; also with the threshold increasing,
the amount of clusters except single-node ones firstly increases and then reduces
to 1. Similar situations happen in other subfigures in Fig 8. We have evaluated
the average distances of returned clusters: the results of GC and CC are the
same, and LCC’s only very litter larger than them (at 4 decimal places). So, the
results of GC and CC are the same (all the optimal clusters), and the results
of LCC are less and bigger but not quite worse than them. we can see that in
any case DBLP has more average keyword nodes, however, Fig. 7 indicates that
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Fig. 8. Result Quantities of Clustering Algorithms

any of the three algorithms costs more time in Treebank than in DBLP with the
same conditions, which means the topology of the XML document tree definitely
affect the efficiency strongly. The efficiencies become lower when the height is
larger and the topology is more complicated.

6 Conclusion

In this paper, to obtain all fragments of the XML document meaningful to
users, we propose a novel approach called XKLUSTER, which include a novel
semantic distance model, three clustering algorithms (GC, CC, LCC); a ranking
mechanism.
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Abstract. Given a large, weighted graph, how can we find anomalies?
Which rules should be violated, before we label a node as an anomaly?
We propose the OddBall algorithm, to find such nodes. The contribu-
tions are the following: (a) we discover several new rules (power laws)
in density, weights, ranks and eigenvalues that seem to govern the so-
called “neighborhood sub-graphs” and we show how to use these rules for
anomaly detection; (b) we carefully choose features, and design OddBall,
so that it is scalable and it can work un-supervised (no user-defined con-
stants) and (c) we report experiments on many real graphs with up to
1.6 million nodes, where OddBall indeed spots unusual nodes that agree
with intuition.

1 Introduction

Given a real graph, with weighted edges, which nodes should we consider as
“strange”? Applications of this setting abound: For example, in network intru-
sion detection, we have computers sending packets to each other, and we want
to know which nodes misbehave (e.g., spammers, port-scanners). In a who-calls-
whom network, strange behavior may indicate defecting customers, or telemar-
keters, or even faulty equipment dropping connections too often. In a social
network, like FaceBook and LinkedIn, again we want to spot users whose behav-
ior deviates from the usual behavior, such as people adding friends indiscrimi-
nately, in “popularity contests”.

The list of applications continues: Anomalous behavior could signify irregu-
larities, like credit card fraud, calling card fraud, campaign donation irregulari-
ties, accounting inefficiencies or fraud [6], extremely cross-disciplinary authors in
an author-paper graph [29], network intrusion detection [28], electronic auction
fraud [10], and many others.

In addition to revealing suspicious, illegal and/or dangerous behavior, anomaly
detection is useful for spotting rare events, as well as for the thankless, but ab-
solutely vital task of data cleansing [12]. Moreover, anomaly detection is inti-
mately related with the pattern and law discovery: unless the majority of our
nodes closely obey a pattern (say, a power law), only then can we confidently
consider as outliers the few nodes that deviate.

Most anomaly detection algorithms focus on clouds of multi-dimensional points,
as we describe in the survey section. Our goal, on the other hand, is to spot strange
nodes in a graph, with weighted edges. What patterns and laws do such graphs
obey? What features should we extract from each node?

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 410–421, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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We propose to focus on neighborhoods, that is, a sphere, or a ball (hence the
name OddBall) around each node(the ego): that is, for each node, we consider
the induced sub-graph of its neighboring nodes, which is referred to as the egonet.
Out of the huge number of numerical features one could extract from the egonet
of a given node, we give a carefully chosen list, with features that are effective
in revealing outliers. Thus, every node becomes a point in a low-dimensional
feature space.

Main contributions of this work are:

1. Egonet patterns: We show that egonets obey some surprising patterns (like
the Egonet Density Power Law (EDPL), EWPL, ELWPL, and ERPL), which
gives us confidence to declare as outliers the ones that deviate. We support
our observations by showing that the ERPL yields the EWPL.

2. Scalable algorithm: Based on those patterns, we propose OddBall, a scalable,
un-supervised method for anomalous node detection.

3. Application on real data: We apply OddBall1 to numerous real graphs (DBLP,
political donations, and other domains) and we show that it indeed spots
nodes that a human would agree are strange and/or extreme.

Of course, there are numerous types of anomalies - we discuss several of them in
our technical report [2], but, for brevity, we focus on only the following major
types (see Fig.1 for examples and Section 2 for the dataset description):

1. Near-cliques and stars: Those nodes whose neighbors are very well con-
nected (near-cliques) or not connected (stars) turn out to be “strange”: in
most social networks, friends of friends are often friends, but either extreme
(clique/star) is suspicious.

2. Heavy vicinities: If person i has contacted n distinct people in a who-calls-
whom network, we would expect that the number of phone calls (weight)
would be a function of n. Extreme total weight for a given number of contacts
n would be suspicious, indicating, e.g., faulty equipment that forces redialing.

3. Dominant heavy links: In the who-calls-whom scenario above, a very heavy
single link in the 1-step neighborhood of person i is also suspicious, indi-
cating, e.g., a stalker that keeps on calling only one of his/her contacts an
excessive count of times.

The upcoming sections are as follows: We describe the datasets; the proposed
method and observed patterns; the experimental results; prior work; and finally
the conclusions.

2 Data Description

We studied several unipartite/bipartite, weighted/unweighted large real-world
graphs in a variety of domains, described in detail in Table 1. Particularly, uni-
partite networks include the following: Postnet contains post-to-post links in a
1 Source code of our algorithm can be found at www.cs.cmu.edu/~lakoglu/#tools
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(a) Near-star (b) Near-clique (c) Heavy vicinity (d) Dominant edge

Fig. 1. Types of anomalies that OddBall detects. Top row: toy sketches of egonets (ego
shown in larger, red circle). Bottom row: actual anomalies spotted in real datasets. (a)
A near-star in Postnet : instapundit.com/archives/025235.php, an extremely long
post on Hurricane Katrina relief agencies with numerous links to diverse other posts
about donations. (b) A near-clique in Postnet : sizemore.co.uk, who often linked to
its own posts, as well as to its own posts in other blogs. (c) A heavy vicinity in Postnet :
blog.searchenginewatch.com/blog has abnormally high weight w.r.t. the number of
edges in its egonet. (d) Dominant edge(s) in Com2Cand : In FEC 2004, George W. Bush
received a huge donation from a single committee: Democratic National Committee
(̃ $87M)(!) - in fact, this amount was spent against him; next heaviest link (̃ $25M):
from Republican National Committee.

set of blogs[21], Enron contains emails at Enron collected from about 1998 to
2002 (made public by the Federal Energy Regulatory Commission during its
investigation), and Oregon contains AS peering information inferred from Ore-
gon route-views BGP data. Bipartite networks include the following: Auth2Conf
contains the publication records of authors to conferences from DBLP, and
Don2Com and Com2Cand are from the U.S. Federal Election Commission in
20042, a public record of donations between donors and committees and be-
tween committees and political candidates, respectively.

For Don2Com and Com2Cand, the weights on the edges are actual weights rep-
resenting donation amounts in dollars. For the remaining weighted datasets, the
edge weights are simply the number of occurrences of the edges. For instance, if
post i contains k links to another post j, the weight of the edge ei,j is set to k.

In our study, we specifically focused on undirected graphs, but the ideas can
easily be generalized to directed graphs.

3 Proposed Method

Borrowing terminology from social network analysis (SNA), “ego” is an individ-
ual node.
2 Parsed dataset from all cycles can be found at www.cs.cmu.edu/~mmcgloho/

fec/data/fec data.html
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Table 1. Datasets studied in this work

Name N E Weights Structure Description

Postnet 223K 217K Yes Unipartite Network of posts based on citations
Auth2Conf 421K 1M Yes Bipartite DBLP Author/Conference associations
Com2Cand 6K 125K Yes Bipartite 2004 US FEC Committee to Candidate

donations
Don2Com 1,6M 2M Yes Bipartite 2004 US FEC Donor to Committee do-

nations
Enron 36K 183K No Unipartite Email associations at Enron
Oregon 11K 38K No Unipartite AS peering connections

Informally, an ego (=node) of a given network is anomalous if its neighborhood
significantly differs from those of others. The basic research questions are: (a)
what features should we use to characterize a neighborhood? and (b) what does
a ‘normal’ neighborhood look like?

Both questions are open-ended, but we give some answers below. First, let’s
define terminology: the “k -step neighborhood” of node i is the collection of node
i, all its k-step-away nodes, and all the connections among all of these nodes –
formally, this is the “induced sub-graph”. In SNA, the 1-step neighborhood of a
node is specifically known as its “egonet”.

How should we choose the value of k steps to study neighborhoods? Given that
real-world graphs have small diameter [3], we need to stay with small values of k,
and specifically, we recommend k=1. We report our findings only for k=1, because
using k > 1 does not provide any more intuitive or revealing information, while it
has heavy computational overhead, possibly intractable for very large graphs.

3.1 Feature Extraction

The first of our two inter-twined questions is which statistics/features to extract
from a neighborhood.

There is an infinite set of functions/features that we could use to characterize
a neighborhood (number of nodes, one or more eigenvalues, number of triangles,
effective radius of the central node, number of neighbors of degree 1, etc etc).
Which of all should we use?

Intuitively, we want to select features that (a) are fast-to-compute and (b)
will lead us to patterns/laws that most nodes obey, except for a few anomalous
nodes. We spend a lot of time experimenting with about a dozen features, trying
to see whether the nodes of real graphs obey any patterns with respect to those
features (see our technical report [2]). The majority of features lead to no obvious
patterns, and thus we do not present them.

The trimmed-down set of features that are very successful in spotting pat-
terns, are the following:

1. Ni: number of neighbors (degree) of ego i,
2. Ei: number of edges in egonet i,
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3. Wi: total weight of egonet i,
4. λw,i: principal eigenvalue of the weighted adjacency matrix of egonet i.

The next question is how to look for outliers, in such an n-dimensional feature
space, with one point for each node of the graph. In our case, n=4, but one
might have more features depending on the application and types of anomalies
one wants to detect. A quick answer to this would be to use traditional outlier
detection methods for clouds of points using all the features.

In our setting, we can do better. As we show next, we group features into
carefully chosen pairs, where we show that there are patterns of normal behavior
(typically, power-laws). We flag those points that significantly deviate from the
discovered patterns as anomalous. Among the numerous pairs of features we
studied, the successful pairs and the corresponding type of anomaly are the
following:

– E vs N : CliqueStar : detects near-cliques and stars
– W vs E: HeavyVicinity: detects many recurrences of interactions
– λw vs W : DominantPair : detects single dominating heavy edge (strongly

connected pair)

3.2 Laws and Observations

The second of our research questions is what do normal neighborhoods look like.
Thus, it is important to find patterns (“laws”) for neighborhoods of real graphs,
and then report the deviations, if any. In this work, we report some new, sur-
prising patterns:

For a given graph G, node i ∈ V(G), and the egonet Gi of node i;

Observation 1 (EDPL: Egonet Density Power Law). The number of nodes
Ni and the number of edges Ei of Gi follow a power law.

Ei ∝ Nα
i , 1 ≤ α ≤ 2.

In our experiments the EDPL exponent α ranged from 1.10 to 1.66. Fig. 2
illustrates this observation, for several of our datasets. Plots show Ei versus Ni

for every node (green points); the black circles are the median values for each
bucket of points (separated by vertical dotted lines) after applying logarithmic
binning on the x-axis as in [23]; the red line is the least squares(LS) fit on the
median points. The plots also show a blue line of slope 2, that corresponds to
cliques, and a black line of slope 1, that corresponds to stars. All the plots are
in log-log scales.

Observation 2 (EWPL: Egonet Weight Power Law). The total weight Wi

and the number of edges Ei of Gi follow a power law.

Wi ∝ Eβ
i , β ≥ 1.
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Fig. 3 shows the EWPL for (only a subset of) our datasets (due to space limit).
In our experiments the EWPL exponent β ranged up to 1.29. Values of β > 1
indicate super-linear growth in the total weight with respect to increasing total
edge count in the egonet.

Observation 3 (ELWPL: Egonet λw Power Law). The principal eigenvalue
λw,i of the weighted adjacency matrix and the total weight Wi of Gi follow a power
law.

λw,i ∝ W γ
i , 0.5 ≤ γ ≤ 1.

Fig. 4 shows the ELWPL for a subset of our datasets. In our experiments the
ELWPL exponent γ ranged from 0.53 to 0.98. γ=0.5 indicates uniform weight
distribution whereas γ̃ 1 indicates a dominant heavy edge in the egonet, in which
case the weighted eigenvalue closely follows the maximum edge weight. γ=1 if
the egonet contains only one edge.

Observation 4 (ERPL: Egonet Rank Power Law). The rank Ri,j and the
weight Wi,j of edge j in Gi follow a power law.

Wi,j ∝ Rθ
i,j , θ ≤ 0.

Here, Ri,j is the rank of edge j in the sorted list of edge weights. ERPL suggests
that edge weights in the egonet have a skewed distribution. This is intuitive; for
example in a friendship network, a person could have many not-so-close friends
(light links), but only a few close friends (heavy links).

Next we show that if the ERPL holds, then the EWPL also holds. Given an
egonet Gi, the total weight Wi and the number of edges Ei of Gi, let Wi denote
the ordered set of weights of the edges, Wi,j denote the weight of edge j, and
Ri,j denote the rank of weight Wi,j in set Wi. Then,

Lemma 1. ERPL implies EWPL, that is: If Wi,j ∝ Rθ
i,j, θ ≤ 0, then

Wi ∝ Eβ
i

{ β = 1, if −1 ≤ θ ≤ 0
β > 1, if θ < −1

Proof. For brevity, we give the proof for θ < −1 – other cases are similar. If
Wi,j = cRθ

i,j , then Wmin = cEθ
i –the least heavy edge l with weight Wmin is

ranked the last, i.e. Ri,l = Ei. Thus we can write Wi as

Wi = WminE−θ
i

⎛⎝ Ei∑
j=1

jθ

⎞⎠ ≈ WminE−θ
i

(∫ Ei

j=1

jθdj

)

= WminE−θ
i

(
jθ+1

θ + 1

∣∣∣Ei

j=1

)
= WminE−θ

i

(
1

−θ − 1
− 1

(−θ − 1)E−θ−1
i

)

For sufficiently large Ei and given θ < −1, the second term in parenthesis goes
to 0. Therefore; Wi ≈ c′E−θ

i , c′ = Wmin

−θ−1 . Since θ < −1, β > 1. *+
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3.3 Anomaly Detection

We can easily use the observations given in part 3.2 in anomaly detection since
anomalous nodes would behave away from the normal pattern. Let us define
the y-value of a node i as yi and similarly, let xi denote the x-value of node i
for a particular feature pair f(x, y). Given the power law equation y = Cxθ for
f(x, y), we define the outlierness score of node i to be

out-line(i) =
max(yi, Cxθ

i )
min(yi, Cxθ

i )
∗ log(|yi − Cxθ

i | + 1)

Intuitively, the above measure is the “distance to fitting line”. Here we penalize
each node with both the number of times that yi deviates from its expected value
Cxθ

i given xi, and with the logarithm of the amount of deviation. This way, the
minimum outlierness score becomes 0 –for which the actual value yi is equal to
the expected value Cxθ

i .
This simple and easy-to-compute method not only helps in detecting outliers,

but also provides a way to sort the nodes according to their outlierness scores.
However, this method is prone to miss some outliers and therefore could yield
false negatives for the following reason: Assume that there exist some points
that are far away from the remaining points but that are still located close to
the fitting line. In our experiments with real data, we observe that this usually
happens for high values of x and y. For example, in Fig. 2(a), the points marked
with left-triangles (�) are almost on the fitting line even though they are far
away from the rest of the points.

We want to flag both types of points as outliers, and thus we propose to
combine our heuristic with a density-based outlier detection technique. We used
LOF [7], which also assigns outlierness scores out-lof(i) to data points; but any
other outlier detection method would do, as long as it gives such a score. To
obtain the final outlierness score of a data point i, one might use several methods
such as taking a linear function of both scores and ranking the nodes according
to the new score, or merging the two ranked lists of nodes, each sorted on a
different score. In our work, we simply used the sum of the two normalized(by
dividing by the maximum) scores, that is, out-score(i) = out-line(i)+out-lof(i).

4 Experimental Results

CliqueStar. Here, we are interested in the communities that the neighbors of a
node form. In particular, CliqueStar detects anomalies having to do with near-
cliques and near-stars. Using CliqueStar, we were successful in detecting many
anomalies over the unipartite datasets (although it is irrelevant for bipartite
graphs since by nature the egonet forms a “star”).

In social media data Postnet, we detected posts or blogs that had either all
their neighbors connected (cliques) or mostly disconnected (stars). We show
some illustrative examples along with descriptions from Postnet in Fig. 1. See
Fig.2a for the detected outliers on the scatter-plot from the same dataset.
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Fig. 2. Illustration of the Egonet Density Power Law (EDPL), and the corresponding
anomaly CliqueStar, with outliers marked with triangles. Edge count versus node count
(log-log scale); red line is the LS fit on the median values (black circles); dashed black
and blue lines have slopes 1 and 2 respectively, corresponding to stars and cliques. Most
striking outlier: Ken Lay (CEO of Enron), with a star-like neighborhood. See Section
5.1.1 for more discussion and Fig.1 for example illustrations from Postnet.

In Enron(Fig.2b), the node with the highest anomaly score turns out to be
“Kenneth Lay”, who was the CEO and is best known for his role in the Enron
scandal in 2001. Our method reveals that none of his over 1K contacts ever sent
emails to each other.

In Oregon (Fig.2c), the top outliers are the three large ISPs (“Verizon”,
“Sprint” and “AT&T”).

HeavyVicinity. In our datasets, HeavyVicinity detected “heavy egonets”, with
considerably high total edge weight compared to the number of edges. We mark
the anomalies in Fig.3 for several of our datasets. See [2] for results on all the
datasets and further discussions.

In Com2Cand(Fig.3a), we see that “Democratic National Committee” gave
away a lot of money compared to the number of candidates that it donated to.
In addition, “(John) Kerry Victory 2004” donated a large amount to a single
candidate, whereas “Liberty Congressional Political Action Committee” donated
a very small amount ($5), again to a single candidate. Looking at the Candidates
plot for the same bipartite graph (Fig.3b), we also flagged “Aaron Russo”, the
lone recipient of that PAC. (In fact, Aaron Russo is the founder of the Consti-
tution Party which never ran any candidates, and Russo shut it down after 18
months.)

In Don2Com(Fig.3c), we see that “Bush-Cheney ’04 Inc.” received a lot of
money from a single donor. On the other hand, we notice that the “Kerry Com-
mittee” received less money than would be expected looking at the number of
checks it received in total. Further analysis shows that most of the edges in its
egonet are of weight 0, showing that most of the donations to that committee
have actually been returned.

DominantPair. Here, we find out whether there is a single dominant heavy
edge in the egonet. In other words, this method detected “bursty” if not exclusive
edges.
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Fig. 3. Illustration of the Egonet Weight Power Law (EWPL) and the weight-edge
anomaly HeavyVicinity. Plots show total weight vs. total count of edges in the egonet
for all nodes (in log-log scales). Detected outliers include Democratic National Com-
mittee and John F. Kerry (in FEC campaign donations). See Section 5.2.1 for more
discussions.

Fig. 4. Illustration of the Egonet λw Power Law (ELWPL) and the dominant heavy
link anomaly DominantPair. Top anomalies are marked with triangles and labeled.
See Section 5.2.2 for detailed discussions for each dataset and Fig.1 for an illustrative
example from Com2Cand.

In Postnet(Fig.4a) nodes such as “ThinkProgress”’s post on a leak scandal3 and
“AFreethinker’s Paradise” post4 linking several times to the “ThinkProgress” post
were both flagged. On another note, the slope of the fitting line is close to 0.5,
pointing to uniform weight distribution in egonets overall. This is expected as most
posts link to other posts only once.

In Com2Cand(Fig.4b), “Democratic National Committee” is one of the top
outliers. We would guess that the single large amount of donation was made
to “John F. Kerry”. Counterintuitively, however, we see that that amount was
spent for an opposing advertisement against “George W. Bush”.

DominantPair flagged extremely focused authors (those publish heavily to one
conference) in the DBLP data, shown in Fig.3c. For instance, “Toshio Fukuda”
has 115 papers in 17 conferences (at the time of data collection), with more than
half (87) of his papers in one particular conference (ICRA). In addition, “Averill

3 www.thinkprogress.org/leak-scandal
4 leados.blogs.com/blog/2005/08/overview of cia.html
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M. Law” has 40 papers published to the “Winter Simulation Conference” and
nowhere else. On the other extreme, another interesting point is “Wei Li”, with
many papers, who gets them published to as many distinct conferences, probably
once or twice to each conference (uniform rather than ‘bursty’ distribution).

See [2] for results on all the datasets and further discussions.

5 Related Work

5.1 Outlier Detection

Outlier detection has attracted wide interest, being a difficult problem, despite
its apparent simplicity. Even the definition of the outlier is hard to give: For
instance, Hawkins [16] defines an outlier as “an observation that deviates so
much from other observations as to arouse suspicion that it was generated by a
different mechanism.” Similar, but not identical, definitions have been given by
Barnett and Lewis [5], and Johnson [19].

Outlier detection methods form two classes, parametric (statistical) and non-
parametric (model-free). The former includes statistical methods that assume
prior knowledge of the underlying data distribution [5,16]. The latter class in-
cludes distance-based and density-based data mining methods. These methods
typically define as an outlier the (n-D) point that is too far away from the rest,
and thus lives in a low-density area [20]. Typical methods include LOF [7] and
LOCI [27]. These methods not only flag a point as an outlier but they also give
outlierness scores; thus, they can sort the points according to their “strangeness”.
Many other density-based methods especially for large high-dimensional data sets
are proposed in [1,4,11,15]. Finally, most clustering algorithms [9,17,25] reveal
outliers as a by-product.

5.2 Anomaly Detection in Graph Data

Noble and Cook [26] detect anomalous sub-graphs using variants of the Mini-
mum Description Length (MDL) principle. Eberle and Holder [13] use MDL as
well as other probabilistic measures to detect several types of anomalies (e.g.
unexpected/missing nodes/edges). Frequent subgraph mining [18,30] is used to
detect non-crashing bugs in software flow graphs [22]. Chakrabarti [8] uses MDL
to spot anomalous edges. Sun et al. [29] use proximity and random walks, to as-
sess the normality of nodes in bipartite graphs. OutRank and LOADED [14,24]
use similarity graphs of objects to detect outliers.

In contrast to the above, we work with unlabeled graphs. We explicitly focus on
nodes, while interactions are also considered implicitly as we study neighborhood
sub-graphs. Finally, we consider both bipartite and unipartite graphs as well as
edge weights.

6 Conclusion

This is one of the few papers that focus on anomaly detection in graph data,
including weighted graphs. We propose to use “egonets”, that is, the induced
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sub-graph of the node of interest and its neighbors; and we give a small, carefully
designed list of numerical features for egonets. The major contributions are the
following:

1. Discovery of new patterns that egonets follow, such as patterns in density
(Obs.1: EDPL), weights (Obs.2: EWPL), principal eigenvalues (Obs.3: EL-
WPL), and ranks (Obs.4: ERPL). Proof of Lemma 1, linking the ERPL to
the EWPL.

2. OddBall, a fast, un-supervised method to detect abnormal nodes in weighted
graphs. Our method does not require any user-defined constants. It also
assigns an “outlierness” score to each node.

3. Experiments on real graphs of over 1M nodes, where OddBall reveals nodes
that indeed have strange or extreme behavior.

Future work could generalize OddBall to time-evolving graphs, where the chal-
lenge is to find patterns that neighborhood sub-graphs follow and to extract
features incrementally over time.
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Abstract. We present a method to find outliers using ‘commute dis-
tance’ computed from a random walk on graph. Unlike Euclidean dis-
tance, commute distance between two nodes captures both the distance
between them and their local neighborhood densities. Indeed commute
distance is the Euclidean distance in the space spanned by eigenvectors
of the graph Laplacian matrix. We show by analysis and experiments
that using this measure, we can capture both global and local outliers
effectively with just a distance based method. Moreover, the method can
detect outlying clusters which other traditional methods often fail to cap-
ture and also shows a high resistance to noise than local outlier detection
method. Moreover, to avoid the O(n3) direct computation of commute
distance, a graph component sampling and an eigenspace approximation
combined with pruning technique reduce the time to O(nlogn) while pre-
serving the outlier ranking.

Keywords: outlier detection, commute distance, eigenspace embedding,
random walk, nearest neighbor graph.

1 Introduction

Unlike other data mining techniques which extract common or frequent patterns,
the focus of outlier detection is on finding abnormal or rare observations in the
data. Standard techniques for outlier detection include statistical [7,14], distance
based [2,10] and density based [3] approaches. However, standard statistical and
distance based approaches can only find global outliers which are extremes with
respect to all observations in the dataset. On the other hand local outliers are
extremes with respect to their neighborhood observations, but may not be ex-
tremes with respect to all other observations in the dataset [16]. A well-known
method for detecting local outliers is the Local Outlier Factor (LOF), which
is a density based approach [3]. The downside of LOF is the outlier score of
each observation only considers its local neighborhood and does not have the
global view over all the dataset. Recently, Moonesinghe and Tan [13] proposed
a method called OutRank to detect outlier using a random walk on graph. The
outlier score is the connectivity of each node which is computed from a station-
ary random walk. This method cannot find outlying clusters where the node

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 422–434, 2010.
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Fig. 1. Example of CD. Edge e12 has a larger CD than all edges in the cluster while
its Euclidean distance is the same or smaller than their Euclidean distances.

connectivities are still high. An excellent survey by Chandola et. al [4] provides
a more detailed view on outlier detection techniques.

In this paper, we present a new method to find outliers using a measure
called commute time distance, or commute distance for short (CD)1. CD is a
well-known measure derived from a random walk on graph [11]. The CD between
two nodes i and j in the graph is the number of steps that a random walk, starting
from i will take to visit j and then come back to i for the first time. Indeed CD
is a Mahalanobis distance in the space spanned by eigenvectors of the graph
Laplacian matrix. Unlike traditional Mahalanobis distance, CD between two
nodes can capture both the distance between them and their local neighborhood
densities so that we can capture both global and local outliers using distance
based methods such as methods in [2,10]. Moreover, the method can be applied
directly to graph data.

To illustrate, consider a graph of five data points shown in Figure 1, which
is built from a dataset of five observations. Denote dED(i, j) and dCD(i, j) as
an Euclidean distance and a CD between observations i and j, respectively. The
distances between all pairs of observations are in Table 1.

Table 1. The Euclidean distance and CD for the graph in Figure 1

Euclidean Distance Commute Distance
Index 1 2 3 4 5 1 2 3 4 5

1 0 1.00 1.85 1.85 2.41 0 12.83 19.79 19.79 20.34
2 1.00 0 1.00 1.00 1.41 12.83 0 6.96 6.96 7.51
3 1.85 1.00 0 1.41 1.00 19.79 6.96 0 7.51 6.96
4 1.85 1.00 1.41 0 1.00 19.79 6.96 7.51 0 6.96
5 2.41 1.41 1.00 1.00 0 20.34 7.51 6.96 6.96 0

It can be seen that dCD(1, 2) is much larger than dCD(i, j) ((i, j) ∈ {2, 3, 4, 5}
, i �= j) even though dED(i, j) have the same or larger Euclidean distances than
dED(1, 2). The CD from an observation outside the cluster to an observation
inside the cluster is significantly larger than the CDs of observations inside the
cluster. Since CD is a metric, a distance based method can be used to realize
that point 1 is far away from other points using CD. Therefore, the use of CD is
promising for identifying outliers. The contributions of this paper are as follows:
1 A preliminary version of this work appeared as a technical report [8].
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– We prove that CD can naturally capture the local neighborhood density and
establish a relationship between CD and local outlier detection.

– We propose an outlier detection method using the CD metric to detect global
and local outliers. The method can also detect outlying clusters which tra-
ditional methods often fail to capture. Moreover, the method is shown to be
more resistant to noise than other local outlier detection methods.

– We accelerate the computation of CD using a graph component sampling
and an eigenspace approximation to avoid O(n3) computation. Furthermore,
pruning technique is used to calculate the CD ‘on demand’. All of them speed
up the method significantly to O(nlogn) while preserving the outlier ranking.

The remainder of the paper is organized as follows. Section 2 reviews the theory
of random walk on graph and CD. In Section 3, we introduce the method to
detect outliers with the CD measure. Section 4 presents a way to approximate
CD and accelerate the algorithm. In Section 5, we evaluate our approach using
experiments on real and synthetic datasets. Section 6 is the conclusion.

2 Background

2.1 Random Walk on Graph and Stationary Distribution

The random walk on a graph is a sequence of nodes described by a finite Markov
chain which is time-reversible [11]. The probability that the random walk on node
i at time t selects node j at time t + 1 is determined by the edge weight on the
graph: pij = P (s(t + 1) = j|s(t) = i) = wij/dii where dii =

∑
j∈adj(i) wij and

adj(i) is a set of neighbors of node i.
Let P be the transition matrix with entry pij , A is the graph adjacency matrix,

and D is the diagonal matrix with entries dii. Then P = D−1A. Denote πi(t) as
the probability of reaching node i at time t, π(t) = [π1(t), π2(t), ..., πn(t)]T as the
state probability distribution at time t, the state on transforming is π(t + 1) =
PTπ(t) and thus π(t) = (PT)tπ(0) where π(0) is an initial state distribution.
The distribution π(t) is stationary if π(t) = π(0) for all t > 0.

2.2 Commute Distance

This section reviews two measures of a random walk called hitting time h(i, j)
and commute time c(i, j) [11]. The hitting time h(i, j) is the expected number
of steps a random walk starting at i will take to reach j for the first time:

h(i, j) =

{
0 if i = j

1 +
∑

k∈adj(i) pikh(k, j) otherwise.
(1)

The commute time, which is known to be a metric and that is the reason for
the term ‘commute distance’ [6], is the expected number of steps that a random
walk starting at i will take to reach j once and go back to i for the first time:

c(i, j) = h(i, j) + h(j, i). (2)
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The CD can be computed from the Moore-Penrose pseudoinverse of the graph
Laplacian matrix [9,6]. Denote L = D−A and L+ as the graph Laplacian matrix
and its pseudoinverse respectively, the CD is:

c(i, j) = VG(l+ii + l+jj − 2l+ij), (3)

where VG =
∑n

i=1 dii is the volume of the graph and l+ij is the (i, j) element of
L+. Equation 3 can be written as

c(i, j) = VG(ei − ej)TL+(ei − ej), (4)

where ei is the i-th column of an (n × n) identity matrix I [15]. Consequently,
c(i, j)1/2 is a distance in the Euclidean space spanned by the ei’s.

3 Commute Distance Based Outlier Detection

3.1 A Proof of Commute Distance Property for Outlier Detection

We now show that CD is a good metric for local outlier detection.

Lemma 1. The expected number of steps that a random walk which has just
visited node i will take before returning back to i is VG/dii.

Proof. For the proof of this Lemma, see [11].

Theorem 1. Given a cluster C and a point s outside C connected to a point t
on the boundary of C (Fig. 2a). If C becomes denser (by adding more points or
edges), the CD between s and t increases.

Proof. From Lemma 1, the expected number of steps that a random walk which
has just visited node s will take before returning back to s is VG/dss = VG/wst.
Since the random walk can only move from s to t, VG/wst = h(s, t) + h(t, s) =
c(s, t) (Fig. 2b). If cluster C becomes denser, there are more edges in cluster C.
As a result, VG increases while wst is unchanged. So the CD between s and t (i.e
c(s, t)) increases. *+

As shown in Theorem 1, the denser the cluster, the larger the CD between a
point s outside the cluster to a point t in the cluster. That is the reason why we
can effectively detect local outliers using CD.

3.2 Outlier Detection Using Commute Distance

This section introduces a method based on CD to detect outliers. As CD is a met-
ric and captures both the distance between nodes and their local neighborhood
densities, we can use a CD based method to find global and local outliers.

First, a mutual k1-nearest neighbor graph is constructed from the dataset.
The mutual k1-nearest neighbor graph connects nodes u and v if u belongs to
the k1 nearest neighbors of v and v belongs to the k1 nearest neighbors of u. The
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s t

(a) (b)

Fig. 2. The CD from an outlier to an observation in a cluster increases when the cluster
is denser

reason for choosing mutual k1-nearest neighbor graph is that this graph tends
to connect nodes within cluster of similar densities, but does not connect nodes
from clusters of different densities [12]. Therefore, outliers are isolated and data
clusters form graph components in mutual k1-nearest neighbor graph. Moreover,
the mutual k1-nearest neighbor graph with n nodes (k1 � n) is usually sparse,
which has an advantage in computation. If the data has coordinates, we can
use kd-tree to avoid O(n2) searching of nearest neighbors. The edge weights
are inversely proportional to their Euclidean distances. However, it is possible
that the mutual k1-nearest neighbor graph is not connected so that we cannot
apply random walk on the whole graph. One approach to make the graph con-
nected is to find its minimum spanning tree and add the edges of the tree to the
graph.

Then the graph Laplacian matrix L and its pseudoinverse L+ are computed.
After that the pairwise CDs between any two observations are calculated from
L+. Finally, the distance based outlier detection using CD with pruning tech-
nique proposed by Bay and Schwabacher [2] is used to find the top N outliers.
The main idea of pruning is that an observation is not an outlier if its average dis-
tance to k2 current nearest neighbors is less than the score of the weakest outlier
among top N found so far. Using this approach, a large number of non-outliers
can be pruned without carrying out a full database scan. The outlier score used
is the average distance of an observation to its k2 nearest neighbors. Suitable
values for k1 (for building the nearest neighbor graph) and k2 (for estimating
the outlier score) will be presented in the experiments.

4 Graph Component Sampling and Eigenspace
Approximation

While CD is a robust measure for detecting both global and local outliers, its
main drawback is its computational time. The direct computation of CD from L+

is proportional to O(n3) which is not feasible for large graphs (n is the number
of nodes). In this work, the graph components are sampled to reduce the graph
size and then eigenspace approximation in [15] is applied to approximate the CD
on the sampled graph.
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4.1 Graph Sampling

An easy way to sample a graph is selecting nodes from it uniformly at random.
However, sampling in this way can break the graph geometry structure and
outliers may not be chosen in sampling. To resolve this, we propose a sampling
strategy called component sampling. After creating the mutual k1-nearest neigh-
bor graph, the graph tends to have many connected components corresponding
to different data clusters. Outliers are either isolated nodes or nodes in very
small components. For nodes in normal components (we have a threshold to dis-
tinguish between normal and outlying components), they are uniformly sampled
with the same ratio p = 50k1/n, which is chosen from experimental results. For
nodes in outlying components, we sample all of them. Then we rebuild a mu-
tual k1-nearest neighbor graph for the sampled data. Sampling in this way will
maintain the geometry of the original graph and the relative densities of normal
clusters. Outliers are also not sampled in this sampling strategy.

4.2 Eigenspace Approximation

Because the Laplacian matrix L (n×n) is symmetric and has rank n−1 [5], it can
be decomposed as L = V SV T, where V is the matrix containing eigenvectors of
L as columns and S is the diagonal matrix with the corresponding eigenvalues
λ1 = 0 < λ2 < ... < λn on the diagonal. Then L+ = V S+V T where S+ is the
diagonal matrix with entries λ+

1 = 1/λ2 > λ+
2 = 1/λ3 > ... > λ+

n−1 = 1/λn >
λ+

n = 0. Equation 4 can be written as c(i, j) = VG(xi − xj)T(xi − xj) where
xi = S+1/2V Tei [15]. Therefore, the CD between nodes on the graph can be
viewed as the Euclidean distance in the space spanned by eigenvectors of the
graph Laplacian matrix.

Denote Ṽ , S̃ as a matrix containing m largest eigenvectors of L+ and its
corresponding diagonal matrix, and x̃i = S̃+1/2Ṽ Tei, the approximate CD is

c̃(i, j) = VG(x̃i − x̃j)T(x̃i − x̃j), (5)

The CD c(i, j) in an n dimensional space is transformed to the CD c̃(i, j) in
an m dimensional space. Therefore, we just need to compute the m smallest
eigenvectors with nonzero eigenvalues of L (i.e the largest eigenvectors of L+)
to approximate the CD. This approximation is bounded by ‖c(i, j) − c̃(i, j)‖ ≤
VG

∑m
i=1 λ+

i [15].

4.3 Algorithm

The proposed method is outlined in Algorithm 1. We create the sampled graph
from the data using graph components sampling. Then the graph Laplacian
L of the sampled graph and matrix Ṽ (m smallest eigenvectors with nonzero
eigenvalues of L) are computed. Since we use the pruning technique, we do not
need to compute the approximate CD for all pairs of points. Instead, we compute
it ‘on demand’ using the formula in equation 3 where l̃+ij =

∑m
k=1 λ+

k vikvjk, vjk

and vjk are entries of matrix Ṽ .
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4.4 The Complexity of the Algorithm

The k-nearest neighbor graph with n nodes is built in O(nlogn) using kd-tree
with the assumption that the dimensionality of the data is not very high. The
average degree of each node is O(k) (k � n). So the graph is sparse and thus
finding connected components take O(kn). After sampling, the size of graph is
O(ns) (ns � n). The standard method for eigen decomposition of L is O(n3

s).
Since L is sparse, it would take O(Nns) = O(kn2

s) where N is the number of
nonzeros. The computation of just the m smallest eigenvectors (m < ns) is less
expensive than that.

The typical distance based outlier detection takes O(n2
s) for the neighborhood

search. Pruning can scale it nearly linear. We only need to compute the CDs
O(ns) times each of which takes O(m).

So the time needed for two steps is proportional to O(nlogn + kn + kn2
s +

mns) = O(nlogn) as ns � n.

Algorithm 1. Commute Distance Based Outlier Detection with Graph Com-
ponent Sampling and Eigenspace Approximation.
Input: Data matrix X, the numbers of nearest neighbors k1 and k2, the numbers of
outliers to return N
Output: Top N outliers

1: Construct the mutual k1-nearest neighbor graph from the dataset
2: Do the graph component sampling
3: Reconstruct the mutual k1-nearest neighbor graph from sampled data
4: Compute the Laplacian matrix of the sampled graph and its m smallest eigenvectors
5: Find top N outliers using the CD based technique with pruning rule (using k2)
6: Return top N outliers

5 Experiments and Analysis

In this section, the effectiveness of CD as a measure for outlier detection is
evaluated. Firstly, the ability of the distance based technique using CD (de-
noted as CDOF) in finding global, local outliers, and outlying clusters was
tested in a synthetic dataset. The distance based technique using Euclidean
distance [2] (denoted as EDOF), LOF [3], and OutRank [13] (denoted as ROF
and the same graph of CDOF was used) were also used to compare with CDOF.
Secondly, the effectiveness of CDOF was evaluated in a real dataset. Thirdly,
we have shown that CDOF is more resistant to small perturbations to data
than LOF. Finally the performance and effectiveness of approximate CDOF
were evaluated. The experiments were conducted on a workstation with an
3GHz Intel Core2 Duo processor and 2GB of main memory in Windows
XP.
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Fig. 3. Comparison of the results of EDOF, LOF, ROF, and CDOF. CDOF can detect
all global, local outliers, and outlying clusters effectively.

5.1 Synthetic Dataset

Figure 3a shows a 2-dimensional synthetic dataset. It contains one dense cluster
of 500 observations (C1) and one sparse cluster of 100 observations (C2). More-
over, there are three small outlying clusters with 12 observations each (C3−5)
and four outliers (O1−4). All the clusters were generated from a Normal distri-
bution. O2, O3, O4 are global outliers which are far away from other clusters.
O1 is a local outlier of dense cluster C1.

In the following experiments for this dataset, the numbers of nearest neigh-
bors are k1 = 10 (for building the graph), k2 = 15 (for estimating the outlier
score. Since the size of outlying clusters is twelve, fifteen is a reasonable number
to estimate the outlier scores), and the number of top outliers is N = 40 (the
total observations in three outlying clusters and four outliers). The results are
shown in Figure 3. The ‘x’ signs mark the top outliers found by each method.
The figure shows that EDOF cannot detect local outlier O1. Both EDOF and
LOF cannot find two outlying cluster C3 and C4. The reason is those two clus-
ters are near each other with similar densities and consequently for each point
in the two clusters the average distance to its nearest neighbors is small and the
relative density is similar to that of its neighbors. Moreover, ROF outlier score
is actually the node probability distribution when the random walk is stationary
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[13]. Therefore, it is dii/VG [11], which is small for outliers2. Therefore, it cannot
capture nodes in the outlying clusters where dii is large. For degree one outlying
nodes, ROF and CDOF have similar scores. The result in Figure 3b shows that
CDOF can identify all the outliers and outlying clusters. The key point is in
CD, inter-cluster distance is significantly larger then intra-cluster distance even
if the two clusters are near in the Euclidean distance.

5.2 Real Dataset

In this experiment, CDOF was used to find outliers in an NBA dataset. The
dataset contains information of all the players in the famous basketball league
in the US in year 1997-1998. There were 547 players and six attributes were
used: position, points per game, rebounds per game, assists per game, steals
per game and blocks per game. Point and assist reflect the offensive ability of a
player while steal and block show how good a player is in defending. Rebound
can be either offensive or defensive but total rebound is usually an indicator of
defensive ability. The results are shown in Table 2 with the ranking and statistics
of top five outliers. The table also shows the maximums, averages, and standard
deviations for each attribute over all players.

Table 2. The outlying NBA players

Rank Player Position Points Rebounds Assists Steals Blocks
1 Dikembe Mutombo Center 13.43 11.37 1.00 0.41 3.38
2 Dennis Rodman Forward 4.69 15.01 2.88 0.59 0.23
3 Michael Jordan Guard 28.74 5.79 3.45 1.72 0.55
4 Shaquille O’neal Center 28.32 11.35 2.37 0.65 2.40
5 Jayson Williams Forward 12.88 13.58 1.03 0.69 0.75

Max 28.74 15.01 10.54 2.59 3.65
Average 7.69 3.39 1.78 0.70 0.40
Standard deviation 5.65 2.55 1.77 0.48 0.53

Dikembe Mutombo was ranked as the top outlier. He had the second highest
blocks (5.6 times of standard deviation away from mean), the highest rebounds
for center players, and high points. It is rare to have good scores in three or
more different statistics and he was one of the most productive players. Dennis
Rodman and Michael Jordan took the second and third positions because of their
highest scores in rebound and point (4.6 and 3.7 times of standard deviation away
from mean, respectively). Dennis Rodman was a rare case because his points were
quite low among high rebound players as well. The next was Shaquille O’Neal
who had the second highest points and high rebounds. He was actually the best
scoring center and is likely a local outlier among center players. Finally, Jayson
Williams had the second highest rebounds. It is interesting to note that except
for Dennis Rodman because of his bad behaviour in the league, the other four
players were listed in that year as members of All-Stars team [1].
2 This score has not been explicitly stated in the ROF paper.
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5.3 Sensitivity to Data Perturbation

In this section LOF and CDOF were compared on their ability to handle ‘noise’
perturbations in data. Recall that LOF (p) is the ratio between the average rela-
tive density of the nearest neighbors q of p over the relative density of p. LOF (p)
is high (i.e p is outlier) if p’s neighborhood area is sparse and q’s neighborhood
area is dense. Suppose that noise is uniformly distributed in the data space, it
is obvious that the noise will have more effect on outliers than points in clus-
ters. The noise data can be neighbors of outliers and their neighborhood are
also sparse. Thus the numerator in LOF (p) formula where p is outlier reduces
considerably while the denominator increases. As a result, LOFs of outliers may
reduce significantly but they does not change much for points inside the clus-
ters. Therefore, the relative rankings of data may not be preserved. On the other
hand, uniform noise changes the nearest neighbor graph for CDOF in the way
that degrees of outliers will increase but are still much smaller than degree of
points inside the clusters. Thus there will still be a big difference between inter-
cluster and intra-cluster CDs. That maintains the higher scores for outliers than
the points inside the cluster.

To show this, we randomly added 10% noise from a uniform distribution to
the synthetic dataset in Section 5.1 and applied LOF and CDOF in the new
dataset. Then noise data was removed from the ranking. Two criteria were used
to compare two methods: Spearman rank test for the ranking of the whole dataset
and the similarity between the sets of top outliers before and after adding noise.
The results were averaged over ten trials. Spearman rank test in LOF was 0.01
while the it was 0.48 for CDOF. It shows the relative ranking by LOF changes
significantly due to noise effect. After adding noise, there were 62% of the original
outliers still in the top outlier list for LOF while it was 92% for CDOF. CDOF
is less sensitive as it combines local and global views of the data.

Since noise is a kind of outlier, we cannot distinguish between outliers and
noise but the preliminary results for noise effect show that the proposed method
is more resistance to noise than the local outlier detection method.

5.4 Performances of the Proposed Method

In the following experiments, we compared the performances of EDOF, LOF,
and approximate CDOF mentioned in Section 4. The experiment was performed
using five synthetic datasets, each of which contained different clusters gener-
ated from Normal distributions and a number of random points. The number of
clusters, the sizes, and the locations of the clusters were also chosen randomly.
The results are shown in Figure 4a where the horizontal axis represents the
dataset sizes in the ascending order and the vertical axis is the corresponding
computational time. The result of approximate CDOF was averaged over ten
trials of data sampling. It is shown that approximate CDOF is faster than LOF
and slower than EDOF. This reflects the complexities of O(n), O(nlogn), and
O(n2) for EDOF, approximate CDOF, and LOF, respectively.

In order to validate the effectiveness of approximate CD, we used CD and
approximate CD to find outliers in five synthetic datasets generated in the same
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Fig. 4. Performances of the method using approximate commute distance

way as the experiment noted above with smaller sizes due to the high computa-
tion of CDOF. The results were averaged over ten trials. The results in Figure
4b shows approximate CDOF (aCDOF) is much faster than CDOF but still
preserves a high percentage (86.2% on average) of top outliers found by CDOF.

5.5 Impact of Parameter k

In this section, we investigate how the number of nearest neighbors affects
CDOF. Denote kmin as the maximum number of nodes that a cluster is an
outlying cluster and kmax as the minimum number of nodes that a cluster is
a normal cluster. There are two situations. If we choose the number of nearest
neighbors k2 < kmin, nodes in an outlying cluster do not have neighbors outside
the cluster. As a result, their outlier factors are small and we will miss them as
outliers. On the other hand, if we choose k2 > kmax, nodes in a normal clus-
ter have neighbors outside the cluster. And it is possible that some nodes in
the cluster will be falsely recognized as outliers. The value of kmin and kmax

can be considered as the lower and upper bounds for the number of nearest
neighbors. They can be different depending on the application domains. In the
experiment in Section 5.1, we chose k2 = 15, which is just greater than the sizes
of all outlying clusters (i.e 12) and is less than the size of the smallest normal
cluster (i.e 100). The same result can be obtained with 15 < k2 < 100 but it re-
quires longer computational time. k2 is also chosen as a threshold to distinguish
between normal and outlying clusters.

Note that k2 mentioned in this section is the number of nearest neighbors
for estimating the outlier scores. For building mutual k1-nearest neighbor graph,
if k1 is too small, the graph is very sparse and may not represent the dataset
densities properly. In the experiment in Section 5.1, if k1 = 5, the algorithm
misclassifies some nodes in the smaller normal cluster as outliers. If k1 is too
large, the graph tend to connect together clusters whose sizes are less than k1
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and are close to each other. Then some outlying clusters may not be detected if
they connect to each other and form a normal cluster. k1 = 10 is found suitable
for many synthetic and real datasets.

6 Conclusions

We have proposed a method for outlier detection using ‘commute distance’ as
a metric to capture global, local outliers, and outlying clusters. The CD cap-
tures both distances between observations and their local neighborhood densi-
ties. We observed and proved a property of CD which is useful in capturing local
neighborhood density. The experiments have shown the effectiveness of the pro-
posed method in both synthetic and real datasets. Moreover, graph component
sampling and eigenspace approximation used to approximate CD and the use
of pruning rule can accelerate the algorithm significantly while still maintaining
the accuracy of the detection. Furthermore preliminary experiments suggest that
CDOF is less sensitive to perturbations in data than other measures.
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Abstract. We report a surprising, persistent pattern in large sparse so-
cial graphs, which we term EigenSpokes. We focus on large Mobile Call
graphs, spanning about 186K nodes and millions of calls, and find that
the singular vectors of these graphs exhibit a striking EigenSpokes pat-
tern wherein, when plotted against each other, they have clear, separate
lines that often neatly align along specific axes (hence the term “spokes”).
Furthermore, analysis of several other real-world datasets e.g., Patent Ci-
tations, Internet, etc. reveals similar phenomena indicating this to be a
more fundamental attribute of large sparse graphs that is related to their
community structure.

This is the first contribution of this paper. Additional ones include
(a) study of the conditions that lead to such EigenSpokes, and (b) a fast
algorithm for spotting and extracting tightly-knit communities, called
SpokEn, that exploits our findings about the EigenSpokes pattern.

1 Introduction

Given a large phone-call network, how can we find communities of users? While
the behavior of users in landline networks has been examined before [4], we
study here the phone call network of mobile users in cellular networks. The
analysis of mobile phone graphs is interesting for multiple reasons as mobile
phones are ubiquitous and are a key conduit for Internet access too. Several
recent studies have used mobile call graph data to examine and characterize
the social interactions of cell phone users, with a focus on understanding the
structural properties of the graph [13,11,21], the evolution of social groups and
the spread of new products and services [14].
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Our objective in this paper is to identify if and to what extent do well-defined
social groups of callers exist in such networks. We emphasize that understanding
the entire graph structure is not our goal. Indeed, in large social networks, not
every node can be expected to belong to a community. Hence, extraction of
community-like structures, which can be independently analyzed, is the focus
of this paper rather than graph-partitioning. This approach based on chipping
off communities is also supported by recent studies [10] that have shown the
presence of small communities loosely connected with the remaining “core” of the
graph. Furthermore, when we applied well-known graph clustering techniques on
our datasets, none of them provided much insight into chipping off interesting
community structures for further analysis, since these techniques are geared
towards partitioning the entire graph. What was surprising, though, was our
discovery of the ‘spokes’ (or EigenSpokes) phenomenon (see Figure 1(b)): the
singular vectors of the Mobile Call graph, when plotted against each other,
often have clear separate lines, typically aligned with axes. We term such plots
EigenEigen (or EE) plots.
We concentrate on three key questions in this paper:

1. Cause: What causes these spokes?
2. Ubiquity: Do they occur across varied datasets to be worth studying?
3. Community Extraction: How can we exploit them, to chip off meaningful

communities from large graphs?

We answer these three questions on graphs of Table 1. Our primary dataset in
this paper is an anonymized social graph based on mobile calls made from/to
callers located within a geographically contiguous urban area. In this social
graph, callers are represented as nodes, and edges represent calls between nodes.
This Mobile Call graph captures activity over the duration of a month (mil-
lions of successfully completed calls) and consists of about 186, 000 nodes and
464, 000 edges. We also investigate similar Mobile Phone graph datasets obtained
from other geographic areas, to support our findings. Since these graphs are dis-
connected, we focus on the largest connected component. Our graphs exhibit
characteristics such as degree distributions and generative processes similar to
those of other mobile call graphs [11,21].

Table 1. Graph datasets used in this paper

Name Description Nodes Edges
Mobile Call graph Calls between callers/callees 186,000 464,000
Patent Citations Citations between patents 3,774,768 14,970,767
Internet routers Network links between routers 124,651 207,214
Dictionary words Words are connected if they 52,652 178,076

differ by a single letter

In addition to the above, we also investigate several other datasets (Table 1) in
the public domain1 which allow us to determine the generality of our observations
1 http://www.cise.ufl.edu/research/sparse/matrices/

http://www.cise.ufl.edu/research/sparse/matrices/
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and the underlying phenomenon. Also, they have meta-information that helps
us demonstrate that our algorithm chips-off meaningful communities.

The following sections discuss the related work, problems with traditional
methods, explain the EigenSpokes pattern, develop the SpokEn algorithm and
finally present many surprising communities found in the datasets.

2 Related Work

Graph partitioning is a popular approach for studying community structure in
graphs. Popular methods include Spectral clustering (see [24] for a survey), a
“cut-based” method for understanding graph structures, which has been suc-
cessful in machine-learning and image segmentation. Similar approaches (e.g.
[19,16]) use the eigenvectors of the adjacency matrix. Lastly, spectral inspired
methods have been used to learn model parameters for well-separated Gaussian
mixtures [22]. Alternative cut-based multilevel approaches like Metis [8] and Gr-
aclus [5,20] coarsen the graph by coalescing nodes and then apply refinement
steps to recover partitions. We address both the Spectral and multi-level parti-
tioning techniques in greater detail in § 3.

Cross-Association [2] partitions the graph so as to maximize information com-
pression, but is limited to bi-partite structures. Co-clustering [6] trys to maxi-
mize mutual information, but like k-means, requires a priori information on the
number of clusters. More generally in terms of clique extraction, [15] trys to
extract quasi-cliques from graphs. Our focus however is on chipping out general
community structures.

Modularity based approaches compare a graph’s community structure against
a random graph. Studies have proposed using modularity based Laplacian-like
matrices [12,25] or greedy heuristics [3] for graph clustering. However all these
techniques also partition the entire graph rather than extract relevant commu-
nities, which is our objective.

In terms of social network analysis, [18] extracts communities from an In-
stant Messenger Network by applying Co-clustering. [7] proposes flow-based
techniques to identify Web-based communities. However, it identifies commu-
nities for a set of known nodes, while our objective is to extract all nodes that
constitute communities. Also, although the focus of [26] is on randomness mea-
sures, they observed quasi-orthogonal spectral lines in context of small cavemen-
like graphs. To the best of our knowledge the EigenSpokes pattern has not been
observed in any real, large social networks.

3 Why Not Traditional Methods?

We analyzed the mobile call graph using well-known spectral clustering [24] and
multi-level graph partitioning [8,5] techniques. Our goal here is to explore if these
methods can help us extract communities of nodes for further analysis. Although
remarkably successful in other settings like image segmentation etc., we find, as
shown below, that these methods do not yield good communities in our graph.
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Fig. 1. (a) Typical Partition using Lrw (b),(c) EigenSpokes in Region 1 & Time 1

Spectral Clustering: Lrw, Lsym, . . . Many “Laplacian” matrices can be de-
fined on a graph G = (V , E) (see [24]). We applied the Lrw method [24] on
our primary data set to obtain k-way partitions from k = 2 to k = 100. As in
recent studies ([9], [10]), we found that the application of the technique yields :a)
skewed partitions consisting of very small clusters and a large ’core’ and b) the
clusters lack internal coherence. The partitions we got from Lrw while lowering
the N-cut value had no or little internal coherence with long chains and most
nodes connected to 1 or 2 other nodes (see Figure 1(a)). We experimented with
several other Laplacians including Lsym [24] and LQ (based on modularity) [25]
but obtained similar results of limited utility.

Graph Partitioning Methods Prevailing multilevel algorithms for graph
partitioning like Metis [8] and their improvements like Graclus [5] and MCR-
MCL [20] are based on repeated coarsening and refinements of nodes with em-
phasis on balanced cuts. To explore how well multilevel algorithms perform, we
ran Graclus on the Mobile Call graph to obtain k partitions. We invoked the
algorithm with various values for k from k = 2 to k = 10, 000. While Graclus
yields more balanced clusters than Spectral partitioning, we observed that, as
before, the clusters lack internal coherence. This can be attributed, again, to the
following two causes : a) these algorithms also utilize a cut-based metric and b)
their objective is to partition the entire graph; as shown by our results as well
as [10], this is not feasible when applied to social graphs that comprise of a large
set of random nodes and small communities.

4 EigenSpokes

As demonstrated in the previous section (and prior work), Laplacians in certain
large graphs yield communities that have a low cut but possess little internal coher-
ence. Hence, we investigate using the adjacency matrix itself. This leads to several
interesting observations, andmotivates our approach for community identification.

4.1 A Surprise: Spokes

Recall that the Singular Value Decomposition (SVD) of an m × n matrix W
is a factorization defined as: W = UΣV T , where U and V are m × m and
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n × n size matrices respectively, and Σ is an m × n diagonal matrix comprised
of the singular values. Taking the top K values of Σ yields the best rank-K
approximation (w.r.t. the Frobenius norm) to the original matrix [23].

(a) Region 2, Time 2 (b) Region 3, Time 3

Fig. 2. EE-plots for Mobile Call graphs for differ-
ent geographic regions and time periods: note the
persistence of EigenSpokes

We define the EE-plot as the
scatter plot of vector Ui and
Uj , for any i and j, i.e., they
plot one point (Uin, Ujn) for
each node n in the graph. Sur-
prisingly, we find that the EE-
plots for our Mobile Call graph
show clear separate straight
lines that are often aligned
with axes2! We call this the
EigenSpokes pattern. This is
demonstrated in Figure 1(b),
where we plot the first K = 18 singular vectors pairwise. Even more striking
is that, as shown in Figure 2, these spokes occur in many Mobile Call graphs
collected at various points of time (separated by several months) and at various
geographic regions.

Some intuition: We delve further into the EigenSpokes pattern by identifying
the nodes that lie on the extremities of the “spokes”; more precisely, for each of
the first 9 singular vectors, we identify the 20 nodes that had the highest mag-
nitude projection along that vector. We then plot the induced sub-graph of these
nodes (see Figure 1(c)). Clearly, almost all of the induced sub-graphs contain near-
cliques. These observations hint toward a strong connection between EigenSpokes
and communities, and raise the following questions : are these spokes representa-
tive of fundamental community structures; do they occur elsewhere? What is their
origin and how exactly can they be used for chipping off communities?

(a) (b) Patents (c) Dictionary (d) Internet

Fig. 3. (a) EEE -plot for Mobile Call graph and EigenSpokes in other Real-World Data
Sets (b),(c),(d)

We answer these questions next: in § 4.2, we provide a rigorous basis for the link
between EigenSpokes and communities; in § 4.3, we show that EigenSpokes can
be observed in several real-world graphs; and in § 4.4, we demonstrate the various
conditions that lead to thepresence (andabsence) of theEigenSpokes phenomenon.

2 Axis-alignment is distinct from orthogonality of the vectors.
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4.2 Justification and Proofs

Our focus in this paper is on undirected graphs, which implies that the adjacency
matrix A is a square, symmetric matrix. For such a matrix, it is well known that
the singular values are absolute values of the non-zero eigenvalues: σi = |λi|
and the singular vectors coincide with the non-null eigenvectors. Due to the
equivalence between singular vectors and eigenvectors for the (symmetric) graphs
considered in this paper, we abuse language and often refer to singular vectors
as being the spectra of A.

Given the presence of EigenSpokes , is it reasonable to expect the nodes lying
along the extremes to have similar connectivity patterns?

EigenSpokes, Connectivity and Communities: The presence of spokes in
EE-plots (axis-aligned or not) implies that nodes close to each other on a line
have similar scores along two eigenvectors (‘score’ of node n along vector Ui is
Uin). In fact, plots of the first 3 eigenvectors, or EEE-plots (see Figure 3) show
lines too. This strongly suggests similar scores for the nodes in many vectors.
Specifically, consider two nodes i and j whose connectivity information is rep-
resented by their rows Ai and Aj in A. If the kth eigenvector is denoted by
Uk, then AiUk and AjUk are the ith and jth components of Uk. These will be
equal if Ai = Aj . Hence, the two nodes will have the same components along
the eigenvectors. In general, we expect that nodes with similar connectivity will
have similar scores along the vectors of U .

Is the converse also true? We can prove the following lemma to this end (note
that 〈x, y〉 = xT y denotes the dot-product of two column vectors x and y):

Lemma 1. For any real, symmetric adjacency matrix A, if for any i and j,
∀k, |〈(Ai −Aj)T , Uk〉| ≤ ε, then ∀k, |Aik −Ajk| ≤ (ε

√
N) as well.

Proof. As A is real symmetric, by the Spectral Theorem, it is orthogonally diago-
nalizable. Hence, it is non-defective and has a full basis of eigenvectors. Consider
any vector C =

∑
k ckUk written using the basis consisting of the eigenvectors.

Then,

〈(Ai −Aj)T , C〉 =
∑

k

ck〈(Ai −Aj)T , Uk〉

≤
√∑

k

c2
k

√∑
k

〈(Ai −Aj)T , Uk〉2 ≤
√∑

k

c2
k

√
N ε

where we use the Cauchy-Schwartz inequality in step 2 and given bound in step
3. Use the above inequality for C = ek (indicator vector which is zero everywhere
except at index k where it is 1), for every k. Also, note that orthogonal transfor-
mations preserve the norm of a vector - hence,

√∑
k c2

k =‖ C ‖, which would be
equal to 1 for our choice of C’s. Therefore, we get: ∀k, |Aik −Ajk| ≤ (ε

√
N). *+

Note that the above proof holds for any orthogonal basis set of vectors U ; but
our basis set U is also a carefully chosen set: it is the set of singular vectors.
Hence, we expect the bound to be tighter in practice.
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In view of the above, we expect that nodes lying close to each other on a spoke
will have similar neighbor sets. But what is the link between similar neighbor sets
and communities in the graph? Consider the following two (sufficient) conditions
that result in similar neighbor sets:

1. Cliques (or near-cliques) result in exactly the same 3 (or similar) adjacency
rows for nodes in the cliques.

2. Perfect (or near-perfect) Bipartite-cores also result in the same (or similar)
adjacency rows for nodes in the two cores.

Consequently, we expect to see communities in the form of (near-)cliques or
(near-)bi-partite cores among the nodes in the spokes.

Axis-alignment (or not): Recall another striking feature of the EE-plots : the
presence of largely axis-aligned spokes. From the preceding discussion, given the
presence of EigenSpokes , we should traverse the extreme points on each spoke to
extract communities. This reduces to searching for ’high-scoring’ nodes in each
singular vector separately, since axis-alignment implies that the extreme points
have high values only in one of the vectors. In fact, prior work [1] has already
shown that nodes with scores at the extreme ends of the principal eigenvector
of Erdos-Renyi graphs do belong to the same clique. However, some spokes are
not axis-aligned (as in the last EE-plot of Figure 1(b)). This implies that some
nodes have significant scores along multiple singular vectors. In the specific case
of EE-plots the linear nature of spokes means that the scores of the nodes are
linearly correlated. Hence, exploring dominant nodes along one singular vector
should be sufficient to extract nodes of a community.

4.3 Ubiquity of Spokes

Apart from Mobile Call graphs, we have observed the EigenSpokes pattern
with singular vectors of several other real world graphs. We show the EE-plots
for Patents, Dictionary and Internet router connectivity in Figure 3(b), 3(c)
and 3(d) ([17] contains more detailed plots). In all three cases, we see that
most pairwise combinations align in a spoke pattern, with some exceptions in
the Dictionary graph. We also observe that some of these spoke patterns are
not axis-aligned; as discussed earlier though, the linear correlation between the
scores of the nodes is preserved. Thus the EigenSpokes pattern is persistent
across a wide array of diverse datasets.

4.4 Recreating Spokes

So far, we have provided some insight into why spokes arise. We now demon-
strate exactly which features of graphs and community structure result in spokes
using both synthetic and real graphs. Synthetic graphs, in particular, allow us to
experiment with various parameters and characteristics, and observe their effect
on their EE-plots. We show that the key factors responsible for these patterns
are a large number of well-knit communities embedded in very sparse graphs.
3 Not considering self-edges.
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(a) No Commu-
nities

(b) 40 Commu-
nities

(c) 400 Com-
munities

Fig. 4. Genesis of EigenSpokes: synthetic heavy-tailed ran-
dom graphs with community structure

We started with a
synthetic random heavy-
tailed graph with the
same number of nodes
and degree distribu-
tion as our Mobile
Call graph but with no
community structure.
The EE-plots don’t ex-
hibit any spokes pat-
tern (Figure 4(a)) but,
when we synthetically
introduce 40 communities (near-cliques of sizes 31 − 50, with a probability 0.8
of an intra-community edge) into the above random graph, in Figure 4(b), we
observe the emergence of the spokes pattern. When we increase the number of
communities to 400, in Figure 4(c), the spoke pattern becomes more clear, and
resembles Figure 2. Further, we verified that the nodes at the extremities do
indeed form the artificially embedded communities. We also found that the na-
ture of the communities, including the level of internal connectivity, does not
affect the emergence of the spokes pattern as long as such connectivity is signif-
icant. Thus we infer that one of the important causes for a spokes pattern is
the presence of a large number of tightly knit communities in the graph.

Due to lack of space we omit details about the effect of sparsity and degree
density; they are demonstrated in greater detail in [17].

5 SpokEn: Exploiting EigenSpokes

Based on the insights from previous sections, we now develop our community
identification approach SpokEn, that exploits EigenSpokes . While developing
SpokEn, we also use experiments with synthetically generated graphs to help
us choose from the various algorithmic choices. Our approach differs from prior
work on graph partitioning as for certain classes of graphs, we observe a specific
structural property and exploit it. While this may not apply to all graphs, our
approach is highly effective for the large sparse graphs we consider, as shown by
our results later in the paper.

5.1 Designing SpokEn

Our proposed approach is based on the key property of EigenSpokes highlighted
in § 4.2: the existence of EigenSpokes indicates the presence of well-knit com-
munities whose nodes have a significant component in that singular vector. Thus
an appropriate traversal of each singular vector in isolation can extract these
communities. A good traversal should select only the nodes which belong to a
coherent community. We now discuss where to start the traversal, how to grow
the community and finally, when to stop.
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Initialization: We choose the node with the score of maximum magnitude as
the seed for the community. We multiply the given singular vector Ui by −1 if
necessary to ensure that the score with the largest magnitude is positive.

Discovery: A simple algorithm for discovery is one that picks nodes in decreas-
ing order of their scores. Such an algorithm can pick a node that is disconnected
from all the nodes chosen previously. Hence, we propose the following: let C
denote the set of all nodes that have been discovered so far; the next node that
we select is the node with the largest score that is connected to some node in C.
Formally, we augment C with a node n∗ that satisfies n∗ = arg maxn∈NC Ui(n),
where NC is the neighborhood of C4. This algorithm is intuitive and keeps C
always connected.

Termination and Trimming: For termination, we need to use a metric that
quantifies the quality of the community extracted so far. We propose to use a
novel hybrid approach based on conductance [24] for cut and modularity (actu-
ally relative modularity) for coherence. The process discovers and adds nodes to
the set C as long as the relative modularity increases and terminates once it re-
duces indicating reduction in community structure. We finally use a conductance
based method to trim out the remaining false positives.

5.2 Discussion

Relative Modularity: In large graphs such as ours, underlying communities
are typically small (10 ≈ 100 in a million node-graph) [10]. The equation for
modularity5 indicates that when extracting a single small community from a
large graph, the modularity metric computed on such a highly unbalanced par-
tition would be dominated by the larger partition and not the discovered com-
munity, thus rendering it useless. This was also empirically observed in extensive
evaluations over our datasets.

To resolve this problem, we once again utilize the concept of scores. When
traversing a singular vector (say Ui), as a pre-processing step, we construct
a new sub-graph Gε = (Vε, Eε) from G wherein we discard all nodes n with
values Ui(n) below a certain threshold ε. The modularity computation is then
conducted w.r.t. Gε (hence relative modularity). This is justified since in the first
place, we do not expect the discarded nodes to belong to the community under
consideration. The removal of such nodes induces a more balanced partition
and makes the modularity values more meaningful. We set ε = 10−4 in our
experiments as several tests showed the results were insensitive around it.

Trimming using Conductance: As shown later in § 5.3, conductance as a
termination criterion results in premature termination of the discovery process,

4 NC is the set of nodes not in C and are connected to at least one node in C.
5 The modularity of a graph partition C = {C1, C2, . . .} is Q(C) =

1
2m

∑
C∈C

∑
i,j∈C∩V

[
Aij − kikj

2m

]
, where ki is the degree of a node and Aij an element

of the adjacency matrix.
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causing several false negatives while relative modularity as a termination metric
often results in overshooting and hence false positives. These two observations
indicate that modularity and conductance are complementary in the role of a ter-
mination metric which is why we adopt a hybrid approach. Hence as mentioned
before, after a community is extracted using relative modularity (to discover all
relevant nodes at the cost of false positives), a standard spectral technique (Lrw)
is used to trim-out false positives by further bisection to determine a better cut.
We give the pseudo-code of SpokEn in Algorithm 1.

Algorithm 1. SpokEn
Require: Symmetric binary adjacency matrix A
1: U = get first several eigenvectors of A
2: Stop if U has no EigenSpokes pattern
3: for all eigenvectors v = Uk do
4: Construct Gε = (Vε, Eε) such that Vε = {i : v(i) > ε}
5: Initialize outputSet using seed //see Initialization
6: //see relative modularity in Termination
7: while modularity(outputSet, Gε) increases do
8: Expand outputSet //see Discovery
9: end while

10: Ck = trim outputSet using conductance //see Triming using Conductance
11: end for
12: return {Ck}

5.3 Empirical Results

To evaluate the performance of our discovery process and termination crite-
rion, we applied SpokEn on various synthetically generated graphs with known
ground truths in each case (like the ones described in § 4.4 including an ER
graph embedded with bi-partite cores). While the detailed results are provided
in [17], we found that conductance as a termination criterion undershot and
hence detected fewer communities (about 60% with almost no false positives).
On the other hand, modularity discovered about 80% communities but with 4%
false positives. Their combination, SpokEn, was able to identify 76-90% of the
embedded communities with almost no false positives.

Speed : The computation time is mainly dominated by the eigenvector calcula-
tion which is linear in edges. We ran SpokEn on graphs of various sizes on a Dell
Server with an Intel Xeon 3 GHz processor and 4 GB of RAM. In each case, we
computed 100 singular vectors and mined communities from them. Figure 5(a)
plots the computation time required by SpokEn to extract communities as a
function of the number of edges of the graph. As expected, it clearly shows the
processing time is linear in the number of graph edges, which is a key indication
of scalability.
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6 Successes with Real-World Graphs

We applied SpokEn to our real-world datasets and found that it extracts several
interesting communities that reveal useful and relevant information about the
connectivity patterns.

We illustrate four typical communities extracted by SpokEn from our Mo-
bile Call graph. Figure 5(b) presents the spy plots which clearly show that the
communities are well-connected (the communities are red nodes on the top de-
lineated by black boxes). To show the success of our terminating criterion, we
plot additional nodes that would have been explored by the discovery process
without termination. Notice that SpokEn does indeed typically stop at points
where a community appears to have ended. In the bottom left case, however,
it overshoots and combines what appear to be two near-cliques into the same
community. We observe similar results for the other singular vectors as well:
SpokEn extracts communities of nodes with good internal coherence though it
sometimes clubs together two such communities into one.

The prevalence of such close-knit communities of more than 10 nodes in a
Mobile Call graph was quite unexpected to us. Temporal analysis of the usage
of at least a few communities leads us to believe that these communities arise
from users of the same organization.
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Fig. 5. (a) SpokEn: Computation Time is linear in #(edges) (b) Four communities
(delimited by black box and red dots) extracted by SpokEn from Mobile Call graph
(spy plots). To illustrate the success of the termination criterion, we plot additional
nodes in the order of discovery. Notice the near-clique (= near block diagonal) behavior.

Next, we analyze a few typical communities from other data sets. Figure 6(a)
plots the connectivity between nodes of a community extracted from the Patent
citation dataset. Notice the striking bipartite nature of the community. Upon
further investigation, we find that the bipartite nature arises because of patents
filed by the same organization on related topics reuse the bibliography entries.
In the example shown here, one-half of the bi-partite graph comprises of about
25 patents that were filed in a period of 1998 − 1999 by (the same) authors
from Kimberly-Clark in the area of photosensitive pigments for color printers.
The bi-partite nature of the graph arises because all these 25 patents cited the
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same set of past references. This also illustrates a crucial aspect of SpokEn: it
extracts communities of nodes with similar connectivity. This may or may not
imply mutual connectivity.

Figure 6(b) shows a typical community extracted from the Dictionary graph.
Recall that this dataset connects two words if they differ by exactly one letter.
The clique shown in Figure 6(b) arises from three-letter words that all end
with ‘on‘. We found many similar cases including words that end with ‘an‘, ‘ll‘,
etc. Finally, Figure 6(c) shows a community extracted from the router graph.
The community highlights the tiering relationship typical in the Internet. The
community consists of 4 UUNET back-bone routers (first and third row) from
the Tier-1 layer that serve as gateways for a large community of Tier-2 Verizon
Business and other small business (the second row) and are also connected to
other Tier-1 routers (Sprint, AT&T etc., last row).
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Fig. 6. Structures extracted by SpokEn from real-world graphs. (a) A typical bi-
partite community extracted from the Patent graph. It arises due to “cut-and-paste”
bibliography generation. On the left, we plot a portion of the community for visual un-
derstanding, and the entire spy plot on the right. (b) A typical near-clique subgraph
of words from the Dictionary graph. The words all differ by exactly one letter from
each of the others. (c) Internet router connectivity from one provider to customers
causing a bipartite community.

7 Conclusions

In answer to the questions we posed earlier in § 1, we find that:

1. Cause: Spokes can be strongly associated with the presence of well-defined
communities like cliques and bi-partite cores in sparse graphs.

2. Ubiquity: Apart from Mobile Call graphs, they occur in a variety of data-
sets such as Patent citations, Dictionary and Internet.

3. Community Extraction: The spokes pattern allows us to construct an
efficient and scalable algorithm “SpokEn” that helps us chip off communities
thereby revealing several interesting structures in Mobile Call graphs as well
as the other datasets.
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Abstract. Given a social network, who is the best person to introduce
you to, say, Chris Ferguson, the poker champion? Or, given a network
of people and skills, who is the best person to help you learn about, say,
wavelets? The goal is to find a small group of ‘gateways’: persons who
is close enough to us, as well as close enough to the target (person, or
skill) or, in other words, are crucial in connecting us to the target.

The main contributions are the following: (a) we show how to formu-
late this problem precisely; (b) we show that it is sub-modular and thus
it can be solved near-optimally; (c) we give fast, scalable algorithms to
find such gateways. Experiments on real data sets validate the effective-
ness and efficiency of the proposed methods, achieving up to 6,000,000x
speedup.

Keywords: Gateway, Sub-modularity, Scalability, Graph-Mining.

1 Introduction

What is the best gateway between a source node and a target node, in a net-
work? This is a core problem that appears under several guises, with numerous
generalizations. Motivating applications include the following:

1. In a corporate social network, which are the key people that bring or hold
different groups together? Or, if seeking to establish a cross-division project,
who are the best people to lead such an effort?

2. In an immunization setting, given a set of nodes that are infected, and a set
of nodes we want to defend, which are the best few ‘gateways’ we should
immunize?

3. Similarly, in a network setting, which are the gateway nodes we should best
defend against an attack, to maximize connectivity from source to target.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 449–463, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



450 H. Tong et al.

The problem has several, natural generalizations: (a) we may be interested in
the top k best gateways (in case our first few choices are unavailable); (b) we
may have more than one source nodes, and more than one target nodes, as
in the immunization setting above; (c) we may have a bi-partite graph with
relationships (edges) between different node types, as in the last example above.
Our main contributions in this paper are:

– A novel ‘gateway-ness’ score for a given source and target, that agrees with
human intuition. Its generalization to the case where we have a group of
nodes as the source and the target;

– Two algorithms to find a set of nodes with the highest ‘gateway-ness’ score,
which (1) are fast and scalable; and (2) lead to near-optimal results;

– Extensive experimental results on real data sets, showing the effectiveness
and efficiency of the proposed methods.

The rest of the paper is organized as follows: We give the problem definitions
in Section 2; present ‘gateway-ness’ scores in Section 3; and deal with the com-
putational issues in Section 4. We evaluate the proposed methods in Section 5.
Finally, we review the related work in Section 6 and conclude in Section 7.

Table 1. Symbols

Symbol Definition and Description
A, B, . . . matrices (bold upper case)
A(i, j) the element at the ith row and jth column of matrix A
A(i, :) the ith row of matrix A

A(:, j) the jth column of matrix A
A′ transpose of matrix A
a,b, . . . column vectors
p, q, . . . ordered sequences
S ,T , . . . sets (calligraphic)
n number of nodes in the graph
m number of edges in the graph
g(s, t, I) the ‘Gateway-ness’ score for the subset of nodes I wrt s and t
g(S ,T , I) the ‘Gateway-ness’ score for the subset of nodes I wrt S and T
r(s, t) the proximity score from s to t
rI(s, t) the proximity score from s to t by setting the subset of

nodes indexed by I as sinks

2 Problem Definitions

Table 1 lists the main symbols we use throughout the paper. In this paper, we
focus on directed weighted graphs. We represent the graph by its normalized
adjacency matrix (A). Following standard notation, we use capital bold letters
for matrices (e.g., A), lower-case bold letters for vectors (e.g., a), and calli-
graphic fonts for sets (e.g., S). We denote the transpose with a prime (i.e., A′
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is the transpose of A). We use arrowed lower-case letters for paths on the graph
(e.g., p), which are ordered sequences. We use parenthesized superscripts to
represent source/target information for the corresponding variables. For example
p(s,t) = {s = u0, u1, ..., ul = t} is a path from the source node s to the target
node t. If the source/target information is clear from the context, we omit the
superscript for brevity. A sink node i on the graph is a node without out-links
(i.e., A(:, i) = 0). We use subscripts to denote the corresponding variable after
setting the nodes indexed by the subscripts as sinks. For example, p

(s,t)
I is the

path from the source node s to the target node t, which does not go through any
nodes indexed by the set I (i.e., ui /∈ I, i = 0, ..., l). With the above notations,
our problems can be formally defined as follows:

Problem 1. (Pair-Gateway)

Given: A weighted directed graph A, a source node s, a target node t, and a
budget (integer) k;

Find: A set of at most k nodes which has the highest ‘gate-way-ness’ score wrt
s and t.

Problem 2. (Group-Gateway)

Given: A weighted directed graph A, a group of source nodes S, a group of
target nodes T , and a budget (integer) k;

Find: A set of at most k nodes which has the highest ‘gate-way-ness’ score wrt
S and T .

In both Problem 1 (Pair-Gateway) and Problem 2 (Group-Gateway), there are
two sub-problems: (1) how to define the ‘gateway-ness’ score of a given subset
of nodes I; (2) how to find the subset of nodes with the highest ‘gateway-ness’
score. In the next two sections, we present the solutions for each, respectively.

3 Proposed ‘Gateway-ness’ Scores

In this section, we present our definitions for ‘Gateway-ness’. We first focus on
the case of a single source s and a single target t (Pair-Gateway). We then
generalize to the case where both the source and the target are a group of nodes
(Group-Gateway)

3.1 Node ‘Gateway-ness’ Score

Given a single source s and a single target t, we want to measure the ‘Gateway-
ness’ score for a given set of nodes I. We first give the formal definitions in such
a setting and then provide some intuitions for our definitions.

For a graph A, we can use random walk with restart to measure the proxim-
ity (i.e., relevance/closeness) from the source node s to the target node t, which
is defined as follows: Consider a random particle that starts from node s. The
particle iteratively transits to its neighbors with probability proportional to the
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corresponding edge weights. Also at each step, the particle returns to node s
with some restart probability (1− c). The proximity score from node s to node t
is defined as the steady-state probability r(s, t) that the particle will be on node
t [15]. Intuitively, r(s, t) is the fraction of time that the particle starting from
node s will spend on node t of the graph, after an infinite number of steps.

Intuitively, a set of nodes I are good gateways wrt s and t if they play an
important role in the proximity measure from the source to the target. Therefore,
our ‘Gateway-ness’ score can be defined as follows:

g(s, t, I) � Δr(s, t) � r(s, t) − rI(s, t) (1)

where rI(s, t) is the proximity score from source s to t after setting the subset
of nodes indexed by I as sinks.

3.2 Group ‘Gateway-ness’ Score

Here we consider the case where the source and/or target consist of more than
one nodes. Suppose we have a group of source nodes S and a group of target
nodes T . Then, the ‘Gateway-ness’ score for a given set of nodes I can be defined
in a similar way:

g(S ,T , I) �
∑

s∈S,t∈T
Δr(s, t) �

∑
s∈S,t∈T

(r(s, t)− rI(s, t)) (2)

where rI(s, t) is the proximity score from s to t by setting the subset of nodes
indexed by I as sinks (i.e., delete all out-edges, by setting A(:, i) = 0 for all
i ∈ I).

4 BASSET: Proposed Fast Solutions

In this section, we address how to quickly find a subset of nodes of the highest
‘Gateway-ness’ score. We start by showing that the straight-forward methods (re-
ferred to as ‘Com-RWR’) are computationally intractable. Then, we present the
proposed BASSET (BASSET-N for Pair-Gateway and BASSET-G for Group-
Gateway). For each case, we first present the algorithm and then analyze its
effectiveness as well as its computational complexity.

4.1 Computational Challenges

Here, we present the computational challenges and the way we tackle them. For
the sake of succinctness, we mainly focus on BASSET-N.

There are two main computational challenges in order to find a subset of
nodes with the highest ‘Gateway-ness’ score. First of all, we need to compute
the proximity from the source to the target on different graphs, each of which
is a perturbed version of the original graph. This essentially means that we
cannot directly apply some powerful pre-computational method to evaluate the
proximity from the source to the target (after setting the subset of nodes indexed
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by I as sinks). Instead, we have to rely on on-line iterative methods, whose
computational complexity is O(m). The challenges are compounded by the need
to evaluate g(s, t, I) (eq. (1)) or g(S, T , I)(eq. (2)) an exponential number of
times (

(
n
k

)
). Putting these together, the straightforward way to find k nodes with

the highest ‘Gateway-ness’ score is O(
(

n
k

)
m). This is computationally intractable.

Suppose on a graph with 1, 000, 000 nodes, we want to find the best k = 5
gateway nodes. If computing each proximity score takes 0.001 seconds, then
2.64× 1017 years are needed to find the gateways. This is much longer than the
age of the universe.1

To tackle such challenges, we resort to two main ideas, which are summarized
in Theorem 1. According to Theorem 1, in order to evaluate the ‘Gateway-
ness’ score of a given set of nodes, we do not need to actually set these nodes
as sinks and compute the proximity score on the new graph. Instead, we can
compute it from the original graph. In this way, we can utilize methods based
on pre-computation to accelerate the process. Furthermore, since g(s, t, I) and
g(S, T , I) are sub-modular wrt I, we can develop some greedy algorithm to
avoid exponential enumeration, and still get some near-optimal solution. In The-
orem 1, A is the normalized adjacency matrix of the graph. It is worth pointing
out that The proposed methods (BASSET-N and BASSET-G) we will intro-
duce are orthogonal to the specific way of normalization. For simplicity, we use
column-normalization throughout this paper. Also, Q(I, I) is a |I|× |I| matrix,
containing the elements in the matrix Q which are at the rows/columns indexed
by I. Similarly, Q(t, I) is a row vector with length |I|, containing the elements
in the matrix Q which are at the tth row and the columns indexed by I. Q(I, s)
is a column vector with length |I|, containing the elements in the matrix Q
which are at the sth column and the rows indexed by I.

Theorem 1. Core Theorem. Let A be the normalized adjacency matrix of the
graph, and Q = (1−c)(I−cA)−1. For a given source s and target t, the ‘Gateway-
ness’ score of a subset of nodes I defined in eq. (1) satisfies the properties P1 and
P2. For a given source group S and target group T , the ‘Gateway-ness’ score of
a subset of nodes I defined in eq. (2) satisfies the properties P3 and P4, where
s �= t, s, t /∈ I, S

⋂
T = ∅, S

⋂
I = ∅, and T

⋂
I = ∅.

P1. g(s, t, I) = Q(t, I)Q(I, I)−1Q(I, s);
P2. g(s, t, I) is sub-modular wrt the set I.
P3. g(S, T , I) =

∑
s∈S,t∈T Q(t, I)Q(I, I)−1Q(I, s);

P4. g(S, T , I) is sub-modular wrt the set I.

Proof of P1: WLOG, we assume that I = {n − k + 1, ...n}. Let A and Ã be
the normalized adjacency matrices of the graph before/after we set the subset
of nodes in I as sinks. Write A and Ã in block form:

A =
(
A1,1 A1,2

A2,1 A2,2

)
, Ã =

(
Ã1,1 Ã1,2

Ã2,1 Ã2,2

)
=
(
A1,1 0
A2,1 0

)
(3)

1 According to Wikipedia, (http://en.wikipedia.org/wiki/Age of the universe),
the age of the universe is about 1.4× 1010 year.



454 H. Tong et al.

where 0 is a matrix with all zero elements.
Let Q̃ = (1 − c)(I− cÃ)−1. We can also write Q̃ and Q in block form:

Q = (1− c)(I− cA)−1 =
(
Q1,1 Q1,2

Q2,1 Q2,2

)
= (1− c)

(
I− cA1,1 −cA1,2

−cA2,1 I− cA2,2

)−1

Q̃ =
(
Q̃1,1 Q̃1,2

Q̃2,1 Q̃2,2

)
= (1− c)

(
I− cA1,1 0
−cA2,1 I

)−1

Applying the block matrix inverse lemma [12] to Q̃ and Q, we get the following
equations:

Q̃1,1 = (1− c)(I− cA1,1)−1, Q̃1,2 = 0

Q̃2,1 = c(1− c)A2,1(I− cA1,1)−1, Q̃2,2 = (1− c)I

Q1,1 = (1− c)(I− cA1,1)−1 + c2(I− cA1,1)−1A1,2Q2,2A2,1(I− cA1,1)−1

Q1,2 = c(I− cA1,1)−1A1,2Q2,2

Q2,1 = cQ2,2A2,1(I− cA1,1)−1 (4)

Therefore, we have

Q̃1,1 = Q1,1 −Q1,2Q
−1
2,2Q2,1 (5)

On the other hand, based on the properties of random walk with restart [15],
we have r(i, j) = Q(j, i), and rI(i, j) = Q̃(j, i),(i, j = 1, ..., n). Together with
eq. (5), we have

g(s, t, I) = r(s, t)− rI(s, t) = Q1,1(t, s)− Q̃1,1(t, s) = Q1,2(t, :)Q−1
2,2Q1,2(:, s) (6)

which completes the proofs of P1. *+
Proof of P3: Since P1 holds, we have

g(S ,T , I) =
∑

s∈S,t∈T
Δr(s, t) =

∑
s∈S,t∈T

g(s, t,I) =
∑

s∈S,t∈T
Q(t, I)Q(I, I)−1Q(I, s)(7)

which completes the proofs of P3. *+
Proof of P2: Let I,J ,K be three subsets and I ⊆ J . We will first prove by
induction that, for any integer power j, the following inequality holds element-
wise.

Aj
I −Aj

I
⋃

K ≥ Aj
J −Aj

J
⋃

K (8)

It is easy to verify the base case (i.e.,j = 1) for eq. (8) holds. Next, assume that
eq. (8) holds for j = 1, ..., j0, and we want to prove that it also holds for the case
j = j0 + 1:

Aj0+1
I −Aj0+1

I
⋃

K = Aj0+1
I −Aj0

I
⋃

KAI + Aj0
I
⋃

KAI −Aj0+1
I
⋃

K

= (Aj0
I −Aj0

I
⋃

K)AI + Aj0
I
⋃

K(AI −AI
⋃

K)

≥ (Aj0
J −Aj0

J
⋃

K)AI + Aj0
I
⋃

K(AJ −AJ
⋃

K)

≥ (Aj0
J −Aj0

J
⋃

K)AJ + Aj0
J
⋃

K(AJ −AJ
⋃

K) = Aj0+1
J −Aj0+1

J
⋃

K(9)
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In eq. (9), the first inequality holds because of the induction assumption. The
second inequality holds because AI ≥ AJ ≥ 0 holds element-wise, and AI⋃ K ≥
AJ ⋃ K ≥ 0 holds element-wise.

Since Q̃ = (1 − c)(I− cÃ)−1 = (1 − c)
∑∞

j=0(cÃ)j , we have

g(s, t, I ∪ K)− g(s, t, I) = (1− c)
∞∑

j=0

((cAI)j(t, s)− (cAI
⋃

K)j(t, s))

≥ (1− c)
∞∑

j=0

((cAJ )j(t, s)− (cAJ
⋃

K)j(t, s))

= g(s, t,J ∪ K) − g(s, t,J ) (10)

Therefore, g(s, t, I) is sub-modular, which completes the proof of P2. *+
Proof of P4: Since g(S, T , I) =

∑
s∈S,t∈T g(s, t, I) (In other words, g(S, T , I)

is a non-negative linear combination of sub-modular functions) , according to
the linearity of sub-modular functions [8], we have that g(S, T , I) is also sub-
modular, which completes the proof of P4. *+

4.2 BASSET-N for Problem 1

BASSET-NAlgorithm. Our fast solution forProblem1is summarized inAlg. 1.
InAlg. 1, after initialization (step1),wefirstpick anode i0with thehighest r(s,i)r(i,t)

r(i,i)

(step 3). Then, in steps 4-14, we find the rest of the nodes in a greedy way. That is,
in each outer loop, we try to find one more node while keeping the current I un-
changed.According toP1 of theorem1,v(i) computed in step 7 is the gateway score
for the subset J .2 If the current subset of nodes I can completely disconnect the
source and the target (by setting them as sinks), we will stop the
algorithm (step 12). Therefore, Alg. 1 always returns no more than k nodes. It is
worth pointing out that in Alg. 1, all the proximity scores are computed from the
original graph A. Therefore, we can utilize some powerful methods based on pre-
computation to accelerate the whole process. To name a few, for a medium size
graphA (e.g., a few thousands of nodes), we can pre-compute and store the matrix
Q = (1 − c)(I − cA)−1; for large unipartite graphs and bipartite graphs, we can
use the NB LIN and BB LIN algorithms, respectively [15].

Analysis of BASSET-N. In this subsection, we analyze the effectiveness and
the efficiency of Alg. 1. First, the effectiveness of the proposed BASSET-N is
guaranteed by the following lemma. According to Lemma 1, although BASSET-
N is a greedy algorithm, the results it outputs are near-optimal.

Lemma 1. Effectiveness of BASSET-N. Let I be the subset of nodes se-
lected by Alg. 1 and |I| = k0. Then, g(s, t, I) ≥ (1 − 1/e)max|J |=k0 g(s, t,J ),
where g(s, t, I), and g(s, t,J ) are defined by eq. (1).

Proof: It is easy to verify that the node i0 selected in step 10 of Alg. 1 satisfies
i0 = argmaxj /∈I,j �=s,j �=tg(s, t, I

⋃
j). Also, we have g(s, t, φ) = 0, where φ is an

2 This is because in random walk with restart, we have r(i, j) = Q(j, i) for any i, j [15].
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Algorithm 1. BASSET-N
Input: the normalized adjacency matrix A, the source node s, the target node t, the

budget k and the parameter c
Output: a set of nodes I, where |I| ≤ k.
1: initialize I to be empty.
2: compute the proximity score r(s, t) from the source node s to the target node t.
3: find i0 = argmaxi

r(s,i)r(i,t)
r(i,i)

, where i = 1, ..., n and i �= s, i �= t. add i0 to I.
4: for j = 2 to k do
5: for i = 1 to n, and i �= s, i �= t and i /∈ I do
6: let J = I ∪ i.
7: compute v(i) = r(J , t)′r(J ,J )−1r(s,J )′

8: end for
9: if maxiv(i) ≤ r(s, t) then

10: find i0 = argmaxiv(i); add i0 to I.
11: else
12: break;
13: end if
14: end for
15: return I

empty set. On the other hand, according to Theorem 1, g(s, t, I) is sub-modular
wrt the subset I. Therefore, we have g(s, t, I) ≥ (1 − 1/e)max|J |=k0 g(s, t,J ),
which completes the proof. *+
Next, we analyze the efficiency of BASSET-N, which is given in Lemma 23. We
can draw the following two conclusions, according to Lemma 2: (1) the proposed
BASSET-Nachieves a significant speedup over the straight-forwardmethod (O(n ·
k4) vs. O(

(
n
k

)
m)). For example, in the graph with 100 nodes and 1,000 edges, in

order to find the gateway with k = 5 nodes, BASSET-N is more than 6 orders
of magnitude faster, and the speedup quickly increases wrt the size of the graph;
(2) the proposed BASSET-N is applicable to large graphs since it is linear wrt the
number of the nodes.

Lemma 2. Efficiency of BASSET-N. The computational complexity of Alg. 1
is upper bounded by O(n · k4).
Proof: The cost for steps 1-2 is constant. The cost for step 3 is O(n). At each
inner loop (steps 6-7), the cost is O(nj3 + nj2). The cost for steps 9-13 is O(n).
The outer loop has no more than k − 1 iterations. Putting these together, the
computational cost for BASSET-N is:

Cost(BASSET-N) ≤ n +
k∑

j=1

(nj3 + nj2 + n)

= n + nk + n
k(k + 1)(2k + 1)

6
+ n

k2(k + 1)2

4
= O(nk4) (11)

which completes the proof. *+
3 Here, we assume that the cost to get one proximity score is constant, which can be

achieved with pre-computation methods [15].
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4.3 BASSET-G for Problem 2

BASSET-G Algorithm. Our fast solution for Problem 2 is summarized in
Alg. 2. It works in a similar way as Alg. 1: after initialization (step 1), we first
pick a node i0 with the highest

∑
s∈S, t∈T

r(s,i)r(i,t)
r(i,i) (step 3). Then, in steps

4-14, we find the rest of the nodes in a greedy way. That is, in each outer-loop,
we try to find one more node while keeping the current I unchanged. If the
current subset of the nodes I can completely disconnect the source group and
the target group (by setting them as sinks), we will stop the algorithm (step 10).
As in Alg. 1, all the proximity scores are computed from the original graph A.
Therefore, we can again utilize those powerful pre-computation based methods
to accelerate the whole process.

Algorithm 2. BASSET-G
Input: the normalized adjacency matrix A, the source group S , the target group T ,

the budget k and the parameter c
Output: a set of nodes I, where |I| ≤ k.
1: initialize I to be empty.
2: compute the proximity score

∑
s∈S, t∈T r(s, t) from the source group S to the target

group T .
3: find i0 = argmaxi

∑
s∈S, t∈T

r(s,i)r(i,t)
r(i,i)

, where i = 1, ..., n and i �= s, i �= t; add i0
to I.

4: for j = 2 to k do
5: for i = 1 to n, and i �= s, i �= t and i /∈ I do
6: let J = I ∪ i.
7: compute v(i as v(i) =

∑
s∈S, t∈T r(J , t)′r(J ,J )−1r(s,J )′

8: end for
9: if maxiv(i) ≤

∑
s∈S, t∈T r(s, t) then

10: find i0 = argmaxiv(i); add i0 to I.
11: else
12: break;
13: end if
14: end for
15: return I

Analysis of BASSET-G. The effectiveness and efficiency of the proposed
BASSET-G are given in Lemma 3 and Lemma 4, respectively. Similar as BASSET-
N, the proposed BASSET-G is (1) near-optimal; and (2) fast and scalable for large
graphs.
Lemma 3. Effectiveness of BASSET-G. Let I be the subset of nodes se-
lected by Alg. 2 and |I| = k0. Then, g(S, T , I) ≥ (1− 1/e)max|J |=k0 g(S, T ,J ),
where g(S, T , I), and g(S, T ,J ) are defined by eq. (2).

Proof: Similar as for Lemma 1. Omitted for brevity. *+
Lemma 4. Efficiency of BASSET-G. The computational complexity of Alg. 2
is upper bounded by O(n · (max(k, |S|, |T |))4).
Proof: Similar as for Lemma 2. Omitted for brevity. *+
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5 Experimental Evaluations

In this section we present experimental results. All the experiments are designed
to answer the following questions:

– Effectiveness: how effective are the ‘Gateway-ness’ scores in real graphs?
– Efficiency: how fast and scalable are BASSET-N and BASSET-G?

5.1 Data Sets

We used three real data sets, which are summarized in table 2.

Table 2. Summary of the data sets

Name n m Weight

PolBooks 105 882 No
AA 418,236 2,753,798 Yes

NetFlix 2,667,199 56,919,190 No

The first data set (PolBooks) is a co-purchasing book network.4 Each node
is a political book and there is an edge between two books if purchased by the
same person. Overall, we have n = 105 nodes and m = 882 edges.

The second data set (AA) is a co-authorship network, where each node is an
author and the edge weight is the number of the co-authored papers between
the two corresponding persons. Overall, we have n = 418, 236 nodes and m =
2, 753, 798 edges.

The last data set (NetFlix) is from the Netflix prize5. Rows represent users
and columns represent movies. If a user has given a particular movie positive
ratings (4 or 5), we connect them with an edge. In total, we have 2,667,199 nodes
(2,649,429 users and 17,770 movies), and 56,919,190 edges.

5.2 Effectiveness

Here, we evaluate the effectiveness of the proposed ‘Gateway-ness’ scores. We
first compare with several candidate methods in terms of separating the source
from the target. And then, we present various case studies.

Quantitative Comparisons. The basic idea of the proposed ‘Gateway-ness’
scores is to find a subset of nodes which collectively play an important role in
measuring the proximity from the source node (or source group) to the target
node (or target group). Here, we want to validate this basic assumption. We
compare it with the following alternative choices: (a) selecting k nodes with the
highest center-piece AND score (CePS-AND) [13]; (b) selecting k nodes with
the highest center-piece OR score (CePS-OR) [13]; (c) randomly selecting k

4 http://www.orgnet.com/
5 http://www.netflixprize.com/
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Table 3. Effectiveness comparison be-
tween BASSET-N and alternatives. x-axis
is the budget k and y-axis is the normal-
ized decay of proximity. Higher is better.
The proposed BASSET-N is the best.
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Table 4. BASSET-N on PolBooks
Graph. (‘c’ for ‘conservative’, ‘l’ for ‘lib-
eral’, and ‘n’ for ‘neutral’)

Node Book Title Label

10 Bush country c
13 Off with their heads c
103 Back up such up l
5 Sleeping with the devil n
8 Ghost wars n
77 Plan of attack n
78 Bush at war c
59 Rise of the vulcanes c
52 Allies c
42 The Bushes c

nodes (Rand); (d) randomly selecting k nodes from the neighboring nodes of
the source node and the target node (Neighbor-Rand); (e) selecting k nodes
with the highest r(s,i)r(i,t)

r(i,i) (Topk-Ind). We randomly select a source node s and
a target node t,6 and then use the different methods to select a subset I with k
nodes. Figure 2 presents the comparison results, where the x-axis is the number
of nodes selected (k), and the y-axis is the normalized decay in terms of the
proximity score from the source node s to the target node t ( r(s,t)−rI(s,t)

r(s,t) ). The
resulting curves are averaged over 1,000 randomly chosen source-target pairs.
From table 3, we can see that (1) the proposed BASSET-N performs best in
terms of separating the source from the target; (2)Topk-Ind, where we simply
select k nodes with highest r(s,i)r(i,t)

r(i,i) , does not perform as well as BASSET-N,
where we want to find a subset of k nodes which collectively has the highest score
r(I, t)′r(I, I)−1r(s, I)′.

Case Studies. Next, we will show some case studies, to demonstrate the effec-
tiveness of BASSET-N and BASSET-G.

PolBooks. For this data set, the nodes are political books and the existence of
the edge indicates the co-purchasing (by the same person) of the two books. Each
book is annotated by one of the following three labels: ‘liberal’, ‘conservative’ and
‘neutral’. We pick a ‘liberal’ book (‘The Price of Loyalty’) as the source node, and
a ‘conservative’ book (‘Losing Bin Laden’) as the target node. Then, we ran the
proposed BASSET-N to find the gateway with 10 nodes. The result is presented in
table 4. The result is again consistent with human intuition, - the resulting gate-
way books are either popular books in one of the two communities (‘conservative’
vs. ‘liberal’) such as, ‘Bush country’ from ‘conservative’, ‘Back up suck up’ from
‘liberal’, etc; or those ‘neutral’ books which are likely to be purchased by readers
from both communities (e.g., ‘Sleeping with the devil’, etc).
6 The result when source and target are a group of nodes is similar, and omitted for

brevity.
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Table 5. BASSET-G on AA Network

(a) A group of people in ‘text’ to a group of people in ‘databases’

(b) A group of people in ‘theory ’ to a group of people in ‘bioinfomatics’

AA. We use this data set to perform case studies for the proposed BASSET-
G. We choose (1) a group of people from a certain field (e.g., ‘text’, ‘theory’,
etc) as the source group S; and (2) another group of people in some other field
(e.g., ‘databases’, ‘bioinfomatics’, etc) as the target group T . Then, we ran the
proposed BASSET-N to find the gateway with k = 10 nodes. Table 5 lists some
results. They are all consistent with human intuition, - the resulting authors are
either productive authors in one of the two fields, or multi-disciplinary, who have
close collaborations to both the source and the target groups of authors.

5.3 Efficiency

We will study the wall-clock running time of the proposed BASSET-N and
BASSET-G here. Basically, we want to answer the following two questions:

1. (Speed) What is the speedup of the proposed BASSET-N and BASSET-G
over the straightforward methods?

2. (Scalability) How do BASSET-N and BASSET-G scale with the size of the
graph (n and m)?

First, we compare BASSET-N and BASSET-G with two straightforward meth-
ods: (1) ‘Com-RWR’, where we use combinatorial enumeration to find the gateway
and, for each enumeration, we compute the proximity from the new graph; and (2)
‘Com-Eval’, where we use combinatorial enumeration to find the gateway, and for
each enumeration, we compute the proximity from the original graph. Figure 1
shows the comparison on PolBooks graph. We can draw the following conclusions.
(1) Straightforward methods (‘Com-RWR’ and ‘Com-Eval’) are computationally
intractable even for a small graph. For example, it takes more than 1, 000 seconds
and 100, 000 seconds to find the k = 5 gatewayby ‘Com-Eval’ and by ‘Com-RWR’,
respectively. (2) The speedup of the proposed BASSET-N and BASSET-G over
both ‘Com-Eval’ and ‘Com-RWR’ is significant - in most cases, we achieve several
(up to 6) orders of magnitude speedups. (3) The speedup of the proposedBASSET-
N and BASSET-G over both ‘Com-RWR’ and ‘Com-Eval’ quickly increases wrt
the size of the gateway k. Note that we stop running the program if it takes more
than 100,000 seconds (i.e., longer than a day).
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Fig. 1. Comparison of speed on PolBooks graph. Wall-clock time vs. k. Lower is better.
Time is in logarithm scale. The proposed BASSET-N and BASSET-G (red star) are
significantly faster.

1 2 3 4 5 6

x 10
7

0

2

4

6

8

10

12

14

16

18

20

# of edges

w
al

l−
cl

oc
k 

tim
e 

(s
ec

on
ds

)

k=1
k=2
k=5
k=10
k=15

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
6

0

1

2

3

4

5

6

7

8

9

10

# of nodes

w
al

l−
cl

oc
k 

tim
e 

(s
ec

on
ds

)

k=1
k=2
k=5
k=10
k=15

wall-clock time vs. m wall-clock time vs. n
(fix n = 2, 667, 199) (fix m = 23, 874, 700)

(a) BASSET-N

1 2 3 4 5 6

x 10
7

0

5

10

15

20

25

# of edges

w
al

l−
cl

oc
k 

tim
e 

(s
ec

on
ds

)

k=1
k=2
k=5
k=10
k=15

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
6

0

2

4

6

8

10

12

# of nodes

w
al

l−
cl

oc
k 

tim
e 

(s
ec

on
ds

)

k=1
k=2
k=5
k=10
k=15

wall-clock time vs. m wall-clock time vs. n
(fix n = 2, 667, 199) (fix m = 23, 874, 700)

(b) BASSET-G

Fig. 2. Scalability of BASSET. Wall-clock time vs. the size of the graph. Lower is
better. |S| = |T | = 5.



462 H. Tong et al.

Next, we evaluate the scalability of the proposed BASSET-N and BASSET-G
wrt the size of the graph, using the largest data set (NetFlix). From figure 2,
we can make the following conclusions: (1) if we fix the number of nodes (n)
in the graph, the wall-clock time of both BASSET-N and BASSET-G is almost
constant wrt the number of edges (m); and (2) if we fix the number of edges (m)
in the graph, the wall-clock time of both BASSET-N and BASSET-G is linear
wrt the number of nodes (n). Therefore, they are suitable for large graphs.

6 Related Work

In this section, we review the related work, which can be categorized into three
parts:

Betweenness centrality. The proposed ‘Gateway-ness’ scores relate to mea-
sures of betweenness centrality, both those based on the shortest path [4], as
well as those based on random walk [10]. When the gateway set size is k = 1,
the proposed ‘Gateway-ness’ scores can be viewed as query-specific betweenness
centrality measures. Moreover, in the proposed BASSET-N and BASSET-G, we
aim to find a subset of nodes collectively, wherein traditional betweenness cen-
trality, we usually calculate the score for each node independently (and then
might pick k nodes with the highest individual scores).

Connection subgraphs. In the proposed BASSET-N, the idea of finding a
subset of nodes wrt the source/target is also related to the concept of connection
subgraphs, such as [3,7,13]. However, in connection subgraphs, we aim to find a
subset of nodes which have strong connections among themselves for the purpose
of visualization. While in the proposed BASSET-N, we implicity encourage the
resulting subset of nodes to be disconnected with each other so that they are
able to collectively disconnect the target node from the source node to the largest
extent (if we set them as sinks).
Graph proximity. The basic idea of the proposed BASSET-N and BASSET-G
is to find a subset of nodes which will bring the largest decrease of the prox-
imity score from the source node (or the source group) to the target node (or
the target group). Graph proximity itself is an important building block in many
graph mining settings. Representative work includes the BANKS system [1], link
prediction [9], content-based image retrieval [6], cross-modal correlation discov-
ery [11], pattern matching [14], ObjectRank [2], RelationalRank [5], etc.

7 Conclusion

In this paper, we study how to find good ‘gateway’ nodes in a graph, given one
or more source and target nodes. Our main contributions are: (a) we formulate
the problem precisely; (b) we develop BASSET-N and BASSET-G, two fast
(up to 6,000,000x speedup) and scalable (linear wrt the number of the nodes
in the graph) algorithms to solve it in a provably near-optimal fashion, using
sub-modularity. We applied the proposed BASSET-N and BASSET-G on real
data sets to validate the effectiveness and efficiency.
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Abstract. It is well known that diversity among component classifiers is cru-
cial for constructing a strong ensemble. Most existing ensemble methods achieve
this goal through resampling the training instances or input features. Inspired by
MTForest and AODE that enumerate each input attribute together with the class
attribute to create different component classifiers in the ensemble. In this paper,
we propose a novel general ensemble method based on manipulating the class
labels. It generates different biased new class labels through the Cartesian prod-
uct of the class attribute and each input attribute, and then builds a component
classifier for each of them. Extensive experiments, using decision tree and naive
Bayes as base classifier respectively, show that the accuracy of our method is
comparable to state-of-the-art ensemble methods. Finally, the bias-variance de-
composition results reveal that the success of our method mainly lies in that it
can significantly reduce the bias of the base learner.

1 Introduction

Ensemble learning algorithms train multiple base learners and then combine their pre-
dictions to make final decision. Since the generalization ability of an ensemble could be
significantly better than that of a single learner, studying the methods for constructing
good ensembles has attracted a lot of attentions in machine learning literature during
the past decade [17]. Generally, the design of a classifier ensemble contains two subse-
quent steps, i.e. constructing multiple component classifiers and then combining their
predictions.

It is well-recognized that in order to get a strong ensemble, the component classifiers
should be with high accuracy as well as high diversity [9,22]. Most existing ensemble
methods achieve this goal through resampling the training instances or input features.
Among them, Bagging [3], Boosting [10], and Random Subspace [14] are three gen-
eral techniques widely used in many applications. Both Bagging and Boosting train
base classifiers by resampling training instances, while Random Subspace trains base
classifiers by using different random subsets of input features.

Another general method for constructing classifier ensemble is to manipulate the
class labels that given to the base classifier, i.e. by transforming the learning problem
into a collection of related learning problems that use the same input instances but dif-
ferent assignment of the class labels. Most existing methods of this type achieve this by
converting the given learning problem into a collection of different but related binary

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 464–475, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Ensemble Learning Based on Multi-Task Class Labels 465

learning problems and then learning a component classifier for each of them. Repre-
sentative examples include Error-Correcting Output Codes (ECOC)[8] and pairwise
ensemble(also known as round robin ensemble) [12], etc. The main deficiency of ex-
isting ensemble methods based on manipulating the class labels lies in that, first, they
can only be applied to multi-class learning problem; second, although they often can
improve the classification accuracy of the base classifiers, their performance gain often
is not as large as AdaBoost [12].

Inspired by MTForest[19] and AODE[20] that enumerate each input attribute to-
gether with the class attribute to create different component classifiers in the ensemble.
In this paper, we propose a novel way to manipulate the class labels for constructing
strong ensemble of classifiers by generating different biased new class labels through
the Cartesian product of class attribute and each input attribute. This method can be
applied to both binary and multi-class learning problems. Extensive experiments show
that its performance is superior to AdaBoost. Bias-variance decomposition shows that,
the success of it mainly owe to its ability to significantly reduce the bias of the base
learner.

The rest of this paper is organized as follows. In section 2, we introduce the back-
ground and give a brief review on related work. In section 3, we propose the MACLEN
(Multi-tAsk Class Labels based ENsemble) method. Then we report our experimental
results in section 4. Finally, we conclude the paper in section 5.

2 Background and Related Work

2.1 Multi-Task Learning

Multi-Task Learning (MTL) trains multiple tasks simultaneously while using a shared
representation and has been the focus of much interest in machine learning community
over the past decade. It has been empirically [5] as well as theoretically [1] shown can
often significantly improve performance relative to learning each task independently.
When the training signals are for multiple tasks other than the main task, from the point
of view of the main task, the other tasks are serving as a bias [5]. This multi-task bias
causes the learner to prefer hypotheses that can explain more than one task, i.e. it must
be biased to prefer hypotheses that have utility across these multiple tasks.

In most machine learning applications, however, we are only given the training data
which is composed of input attributes and class attribute (main task) and we do not have
any other related tasks information. So how to derive related tasks from the given data
is crucial for utilizing MTL paradigm to improve the generalization performance. It has
been shown in [6] that some of the attributes that attribute selection process discards
can beneficially be used as extra related tasks for inductive bias transfer.

2.2 MTForest

Because in multi-task learning extra task is served as additional inductive bias, an en-
semble can be constructed by using different extra task to bias each component learner
in the ensemble so as to generate different component learners [19]. The multi-task
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learning theory reveals that the component learner will often be with higher accuracy if
the extra task is related to the main task and the component learner will be with diversity
if the each extra task represents different bias.

Inspired by this, we propose the MTForest [19] algorithm which enumerates each
input attribute as extra task to introduce different additional inductive bias to generate
component decision trees in the ensemble. In MTForest, the construction of each com-
ponent decision trees is related to both the class attribute and the given input attribute.
The learning process is similar to standard C4.5 decision tree learning algorithm except
that the Information Gain criteria of each split Si is calculated by combine the class
attribute and the given input attribute, showing below:

MTIG(Si) = ClassAttributeIG(Si) + weight ∗ InputAttributeIG(Si)

The prediction of the ensemble is produced by aggregating the predictions of all these
component decision trees. Experimental results show that MTForest can achieve signif-
icant improvement over Bagging and is robust to noise.

2.3 Averaged One-Dependence Estimators

Naive Bayes is an efficient and effective learning algorithm. Denote an instance x as a
vector 〈a1, a2, ..., an〉, where ai is the value of i-th attribute, and c is the class value .
Naive Bayes simply assumes that the attributes are independent given the class, i.e.

P (x|c) =
n∏

i=1

P (ai|c)

The conditional independence assumption unable to capture important attribute depen-
dence information which sometimes hamper the performance of it seriously. So it needs
to relax the assumption effectively to improve its classification performance.

In last fewer years, numerous semi-naive Bayesian classifiers that try to exploit
attribute dependencies in moderate orders have been proposed and demonstrate im-
proved performance on naive Bayes. Among those classifiers, approaches that utilize
ODE(One-Dependence Estimator) have demonstrated remarkable performance
[11,15,18,20]. Representative examples include TAN and SPTAN[11], HNB[15],
SNODE[18] AODE and its variants, etc. ODE paradigm learning restricts that each
attribute can only depend on one parent in addition to the class, and thus it follows that

P (x|c) =
n∏

i=1

P (ai|pa(i), c)

where pa(i) denotes the parent attribute of the i-th attribute, and is determined in the
structure learning process.

Averaged One-Dependence Estimators(AODE) [20] is the ensemble technique of
utilizing ODE. For simplicity and to avoid structure learning, AODE built an ODE for
each attribute, in which the attribute is simply set to be the parent of all other attributes.
The final prediction is produced by aggregating the predictions of all these ODEs. A
lot of empirical study show that AODE can achieve significant improvement over naive
Bayes and AdaBoost [15,20].
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3 The MACLEN Method

The success of MTForest and AODE show that enumerating each input attribute to-
gether with the class attribute to create different component classifier is a powerful way
to construct strong ensemble. However, MTForest and AODE are specifically for en-
sembling decision tree and naive bayes, respectively. Both of them need to revise the
base classifiers to incorporate the information from the given input attribute. While most
general ensemble method, such as Bagging, AdaBoost, Random Subspace, is transpar-
ent to the base classifier and can easily be applied to any base classifier. Therefore, it will
be interesting to ask whether there exists another way to incorporate the information of
the input attribute into the base classifier while is transparent to the base classifier.

In this and subsequent sections, we will argue and show that this can be achieved
based on generating new class labels through the Cartesian product of the input attribute
and class attribute. Since every new class label contains the information of both the
class and input attribute, we call it multi-task class label and the ensemble method as
MACLEN (Multi-tAsk Class Labels based ENsemble).

3.1 MACLEN: Algorithm Definition

In this subsection, we present the MACLEN method in detail. Assume that the instance
in the training data set is represented by n + 1-dimension vector 〈A1, A2, ..., An, C〉
where Ai is the i-th input attribute and C is the class attribute. An instance x is rep-
resented by a vector 〈a1, a2, ..., an, c〉, where ai is the value of attribute Ai and c is
the value of class attribute C respectively. For the sake of simplicity, in this paper, we
suppose that all the input attributes are discrete.

In MACLEN (see Algorithm 1), an ensemble is constructed by using each input
attribute together with the class attribute to generate different but related learning prob-
lems independently. When given an input attribute Ai, a new attribute C∗

i is constructed
whose values are the Cartesian product of class attribute and this attribute. We then
create a new data representation from the original input data by removing this at-
tribute and class attribute and setting the new attribute C∗

i as the class attribute, i.e.
the new data representation is 〈A1, ..., Ai−1, Ai+1, ..., An, C∗

i 〉. Next, each instance
x : 〈a1, a2, ..., an, c〉 in the original input is transformed into the new data representa-
tion by deleting the value ai and setting the class value as cai, i.e. the new transformed
instance is 〈a1, ..., ai−1, ai+1..., an, cai〉. Finally, this new relabeled data set is given to
the base learning algorithm, which constructs a classifier hi. By enumerating each input
attribute, we obtain an ensemble of n component classifiers {h1, h2, ... , hn}.

To classify an unlabeled instance, x : 〈a1, a2, ..., an〉, we employ the following method.
Each component classifier hi in the ensemble provides probabilities for the class mem-
bership of x while the possible class labels is C∗

i . Since the probability output of hi can be
seen as the joint probability distribution of class attribute C and attribute Ai, we can de-
rive the probability of x belonging to original class label c using the marginal probability,
i.e.:

P̂hi(c|x) =
∑
a∈Ai

P̂ ∗
hi

(ca|x) (1)
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Algorithm 1. MACLEN
Input: BaseClassifier - the base learning algorithm.

T - training data set in which instance is represented by n + 1-dimension vector
〈A1, A2, ..., An, C〉.

Output: A ensemble of base classifiers E
E={};
for each attribute Ai in the input

1. Construct a new attribute C∗
i whose values are the Cartesian product of class attribute C

and attributeAi.
2. Generate a new data representation from the original input by removing attribute Ai and

class attribute C and setting the new attribute C∗
i as class attribute.

3. Generate a new data set T ∗ by transforming each original input instance x in T into the
new data representation.

4. hi=BaseClassifier(T ∗).
5. E=E

⋃
hi.

return E

where P̂hi(c|x) is the estimated probability of instance x belonging to original class
label c according to classifier hi, and P̂ ∗

hi
(ca|x) is the estimated probability of x be-

longing to new class label ca according to classifier hi. Furthermore, if the value of
attribute Ai is given (denoted as ai), we can also derive the probability of x belonging
to original class label c using the conditional probability, i.e.:

P̂hi(c|x) =
P̂ ∗

hi
(cai|x)∑

y∈C P̂ ∗
hi

(yai|x)
(2)

Compared to marginal probability (Eq.1), the conditional probability (Eq.2) can utilize
extra information about the value of attribute Ai. So, in our implementation, we first
choose Equation (2) to calculate the class membership probabilities of each component
classifier, only when the Equation (2) is undefined 1, we then turn to use Equation (1)
to calculate the class membership probabilities.

Then we compute the class membership probabilities for the entire ensemble as:

P̂ (c|x) =
∑n

i=1(P̂hi(c|x))
n

(3)

where P̂ (c|x) is the probability of x belonging to class c. At last, we select the most
probable class as the label for x, i.e. E(x) = arg maxc∈C P̂ (c|x).

It is noteworthy that for MTCLAN, it enumerates each input attribute to generate
each component classifiers in the ensemble, hence its ensemble size is equal to the
number of input attributes which is same as MTForest and AODE but is different from
most other ensemble methods such as Bagging and Boosting that need to specify the
ensemble size. In addition, the building process of each component classifiers do not
depend on each other, so MACLEN can easily be parallelized.

1 The denominator of Equation (2) is 0 (For example, when decision tree is chosen as base
classifier and some leafs do not contain revelent labels) or the value of attribute Ai is missing.
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To illustrate this algorithm, consider the learning problem described in UCI data set
adult [2]. In this problem, we are given 14 attributes representing 14 different aspect
information of a person, such as the age, martial-status, workclass, education, occupa-
tion, race, sex, and so on, and the class attribute indicating whether the annual income of
this person is larger than 50k or not. Our goal is to build a predictive model from the la-
beled training data which can be used to predict the income type of an unlabeled person
given the values of these 14 attributes. In MACLEN, we use each of these 14 input at-
tributes to generate different but related learning problems. For example, if attribute sex
whose values are {male, female} is chosen, we construct a new attribute as the class
attribute whose values are {male :> 50k, male :≤ 50k, female :> 50k, female :≤
50k} . This new learning problem is different from the original problem because it not
only has to predict the income type of the person, but also the sex type of the person.
Then we can construct a base classifiers hsex. Assume that when to classify an unla-
beled example and the given sex value is female, we can derive the probabilities for the
original class membership > 50k and ≤ 50k only from the predicted probabilities of
new class membership female :> 50k and female :≤ 50k in hsex. Through using
different attribute we construct different learning problems which have different class
labels, while these learning algorithms are also related to each other since they all have
to predict the income type of the person.

3.2 Discussion

In MACLEN, we only deal with discrete input attributes. For numeric input attribute,
some discretize method must be used ahead. Since discretize methods based on different
split criteria often result in different number of discrete values and different intervals for
the same numerical attribute, this provides a way to build several different component
classifiers from a single numerical attribute which can be used to enlarge the ensemble
size of the MACLEN.

Note that the existing of discrete attributes which have large number of values may
hamper the performance of MACLEN. These attributes make the corresponding new
class label set very large. Since the given training instance number is fixed, the instance-
to-class ratio will decrease dramatically, which likely to result in inaccurate component
classifier. So it may be better to cluster the values of these attributes into small number
of groups respectively, and assign all the values in the same group the same discrete
value. By using different cluster method, we can also build several different component
classifiers from a single discrete attribute.

4 Experiments and Results

4.1 Experimental Setup

We conduct experiments under the framework of Weka[21]. For the purpose of our
study, we use the 30 well-recognized data sets from the UCI repositories [2] which rep-
resent a wide range of domains and data characteristics. A brief description of these
data sets is shown in Table 1. We adopted the following three steps to preprocess each
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Table 1. Description of the data sets used in the experiments

Datasets Size Attribute Classes Datasets Size Attribute Classes
adult 48842 15 2 ionosphere 351 35 2
anneal 898 39 6 iris 150 5 3
autos 205 26 7 kr-vs-kp 3196 37 2
balance-scale 625 5 3 letter 20000 17 26
breast-cancer 286 10 2 mushroom 8124 23 2
car 1728 7 4 nursery 12960 9 5
colic 368 23 2 primary-tumor 339 18 21
credit-a 690 16 2 segment 2310 20 7
credit-g 1000 21 2 sick 3772 30 2
diabetes 768 9 2 soybean 683 36 19
glass 214 10 7 vehicle 846 19 4
heart-c 303 14 5 vowel 990 14 11
heart-h 294 14 5 waveform 5000 41 3
hepatitis 155 20 2 yeast 1484 10 10
hypothyroid 3772 30 4 zoo 101 18 7

data set. First, missing values in each data set are filled in using the unsupervised filter
ReplaceMissingValues in Weka; Second, numeric attributes are discretized using the
supervised filter Discretize in Weka which use the MDL discretization method; Third,
we use the unsupervised filter Remove in Weka to delete attributes that do not provide
any information to the class, two occurred within the 30 data sets, namely Sequence
Name in data set yeast and Animal in data set zoo.

In our experiments, we compare MACLEN to Bagging, Boosting and Random For-
est when using C4.5 as base classifier. It is well recognized that Bagging is often unable
to enhance the performance of stable classifiers. So we compare MACLEN to Boost-
ing and AODE when using naive Bayes as base classifier. And we study MTCLAN
for naive Bayes using the Laplace estimation and M-estimation to smooth probability
esitmation which is denoted as MACLAN(L) and MACLAN(M) , respectively. The
C4.5, Bagging, Boosting (we use the multi-class version AdaBoost.M1 [10]), Random
Forest, Naive Bayes and AODE are all already implemented in Weka, so we only imple-
ment our algorithm under the framework of Weka. We set the ensemble size as 50 for
all compared methods and keep other parameters at their default values in Weka. It is
noteworthy that for our method, the ensemble size is just the number of input attributes
which is often far smaller than 50 on these data sets. The classification accuracy and
standard deviation of each algorithm on a data set was obtained via 10 runs of ten-fold
cross validation. Runs with the various algorithms were carried out on the same training
sets and evaluated on the same test sets.

To compare two learning algorithms across all these domains, we first adopt the
widely used pairwise two-tailed t-test with 95% confidence level to compare our al-
gorithm with other algorithms. Recently, it has been proposed that the best method to
compare multiple algorithms over multiple data sets is to compare their overall ranks
[7]. So, we also present the overall ranks of our algorithm and other ensemble methods
compared. Note that the smaller the rank, the better the method.
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4.2 Experimental Results

Table 2 shows the detailed experimental results of the mean classification accuracy and
standard deviation of C4.5, Random Forest and three ensemble methods using C4.5 as
base classifier on each data set. And the mean values, overall ranks and the pairwise
t-test results are summarized at the bottom of the table. From Table 2 we can see that
MACLEN can achieve substantial improvement over C4.5 on most data set (11 wins
and 3 losses) which suggests that MACLEN is potentially a good ensemble technique
for decision trees. MACLEN can also gain significantly improvement over Bagging
(7 wins and 2 losses) and is comparable to two state-of-the-art ensemble technique for
decision trees, AdaBoost (6 wins and 4 losses) and RandomForest (4 wins and 4 losses).
The overall rank of MACLEN on these 30 data sets is 2.22 which the smallest among
all these ensemble methods.

Table 3 shows the detailed experimental results of the mean classification accuracy
and standard deviation of naive Bayes, AODE, MACLAN(L) and MACLAN(M) using
naive Bayes as base classifier on each data set. The mean values, overall ranks and the
pairwise t-test results are also summarized at the bottom of the table. From Table 3,
we can see that MACLEN(M) is significantly better than MACLEN(L). This is very
likely due to that, compared to original problem, the number of instance belong to each
new class label is smaller and the number of class labels is larger. Thus , compared to
Laplace estimation, the M-estimation which places more emphasis on data than prior
could make probability estimation effectively in this situation. MACLEN can achieve
substantial improvement (12 wins and 1 loss, 16 wins and 1 loss, respectively) over
naive Bayes and gain improvement over AdaBoost (8 wins and 5 losses, 9 wins and
5 loss, respectvely). Furthermore, MACLEN(M) is comparable to AODE which is the
state-of-the-art ensemble method for naive Bayes. Note that MACLEN is a general
ensemble method while AODE not.

We also test our method on these 30 UCI data sets under artificial noise in the class
labels to study its robustness. Following the method in [4], the noisy version of each
training data set is generated by choosing 5% instances and changing their class labels
to other incorrect labels randomly. Due to space limited, we do not list the detailed
results of the accuracy and standard deviation on each data set here. The experimental
results show that MACLEN can significantly outperform AdaBoost (12 wins 1 loss
for C4.5 as base classifier, 13 wins 2 losses for naive Bayes as base classifier)in this
situation, and is comparable to RandomForest and AODE respectively.

4.3 Bias-Variance Decomposition

To understand the working mechanism of MACLEN, we use the bias-variance decom-
position to analysis it. The bias-variance decomposition is a powerful tool for investi-
gating the working mechanism of learning algorithms. Given a learning target and the
size of training set, it breaks the expected error of a learning approach into the sum
of three non-negative quantities, i.e. the intrinsic noise, the bias, and the variance. At
present there exist several kinds of bias-variance decomposition schemes [13]. In this
paper, we adopt the one proposed by [16] which has already been implemented in weka.

The training data are divided into training and test sets each containing half the data.
50 local training sets are sampled from the training set, each local set containing 50% of
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Table 2. Accuracy and standard deviation of C4.5, Bagging, AdaBoost, Random Forest and
MACLEN on the 30 UCI data sets. Bottom rows of the table present the mean values, overall
ranks and Win-Loss-Tie (w/l/t) comparisons between MACLEN against other algorithms using
pairwise t-tests at 95% significance level, respectively.

Data sets C4.5 Bagging AdaBoost Random Forest MACLEN
adult 86.74±0.39 86.94±0.36 85.49±0.40 85.59±0.40 85.79±0.37
anneal 98.78±0.91 98.79±0.87 99.61±0.62 99.42±0.84 99.19±0.82
autos 76.39±9.55 83.89±8.51 86.38±6.94 87.06±6.86 87.02±7.64
balance-scale 69.32±3.89 69.26±3.81 69.31±3.90 69.01±3.84 69.39±3.72
breast-cancer 75.26±5.04 73.76±5.85 66.04±8.21 70.37±7.34 67.82±7.22
car 92.22±2.01 93.59±1.79 96.72±1.50 94.42±1.54 94.43±1.71
colic 84.72±5.94 85.10±5.68 79.48±6.36 73.29±5.52 84.48±5.26
credit-a 86.58±3.53 86.17±3.56 82.72±4.36 84.36±4.01 84.71±3.98
credit-g 72.17±3.49 73.66±3.69 71.69±3.98 73.76±3.63 72.59±3.44
diabetes 77.34±4.91 77.33±4.72 77.16±4.38 76.59±4.78 77.19±4.60
glass 75.23±9.46 77.10±9.13 75.28±9.41 76.94±8.07 76.99±9.21
heart-c 77.32±6.20 80.41±6.38 79.57±6.57 80.78±5.83 80.23±5.61
heart-h 80.96±6.91 80.04±7.25 82.34±6.32 81.84±6.35 81.31±6.97
hepatitis 81.32±9.48 83.26±10.18 83.61±8.93 85.52±8.03 83.94±9.74
hypothyroid 99.28±0.42 99.31±0.41 99.50±0.37 99.27±0.40 99.44±0.38
ionosphere 89.49±5.12 91.03±5.33 93.11±4.08 92.99±3.88 91.77±4.49
iris 93.87±4.89 94.47±5.02 94.61±5.42 94.19±5.81 94.87±5.35
kr-vs-kp 99.44±0.37 99.46±0.37 99.60±0.31 99.23±0.46 99.54±0.36
letter 78.75±0.78 81.87±0.95 89.94±0.75 92.01±0.61 90.72±0.68
mushroom 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00
nursery 97.18±0.46 97.42±0.43 99.75±0.17 99.06±0.33 98.85±0.35
primary-tumor 41.01±6.59 45.19±6.16 42.63±6.61 41.27±6.09 43.16±6.52
segment 95.23±1.37 95.67±1.22 96.51±1.22 96.91±1.05 97.02±1.01
sick 97.82±0.75 97.84±0.76 97.63±0.78 97.70±0.73 97.81±0.76
soybean 92.63±2.71 94.05±2.61 94.04±2.61 93.73±2.69 93.44±2.73
vehicle 70.77±3.86 70.84±4.01 72.53±3.95 73.25±3.72 72.29±4.10
vowel 79.54±4.01 82.41±3.72 86.48±3.25 90.04±3.02 86.59±3.19
waveform 76.36±1.77 78.78±1.77 82.19±1.59 84.47±1.54 83.71±1.62
yeast 59.46±3.40 59.76±3.46 59.46±3.41 59.50±3.42 60.14±3.69
zoo 92.61±7.33 93.10±7.48 96.07±5.89 92.85±7.07 93.41±7.28
mean value 83.26±3.85 84.35±3.84 84.66±3.74 84.85±3.60 84.93±3.76
overall rank – 2.68 2.57 2.53 2.22
w/l/t 11-3-16 7-2-21 6-4-20 4-4-22 –

the training set, which is 25% of the full data set. A classifier is constructed from each
local training set and bias, variance, and error are estimated on the test set. Since the
bias-variance evaluation procedure utilizes training sets containing only 25% of each
data set, we only do this decomposition on the 12 UCI data set which size is larger
than 1000. Table 4 shows the detailed decomposition results of C4.5 , Naive Bayes and
MACLEN using each of them as base learners respectively. Note that the actual bias-
variance decomposition scheme of [16] generates a bias term that includes the intrinsic
noise, so the errors shown in Table 4 are only composed of bias and variance.
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Table 3. Accuracy and standard deviation of Naive Bayes, AdaBoost, AODE and MACLEN using
Laplace estimation and M-estimation naive Bayes respectively, on the 30 UCI data sets. Bottom
rows of the table present the mean values, overall ranks and Win-Loss-Tie (w/l/t) comparisons
between MACLEN(L) and MACLAN(M) against other algorithms using pairwise t-tests at 95%
significance level, respectively.

Data sets Naive Bayes AdaBoost AODE MACLEN(L) MACLEN(M)
adult 84.07±0.42 85.19±0.41 85.20±0.41 85.04±0.39 85.10±0.37
anneal 96.13±2.16 99.32±0.86 98.05±1.37 96.85±1.93 97.11±1.79
autos 72.30±10.31 81.28±8.45 81.14±8.50 78.45±9.30 81.95±8.35
balance-scale 71.08±4.29 71.08±4.29 69.34±3.82 69.26±3.83 69.21±3.83
breast-cancer 72.94±7.71 68.87±8.64 72.73±7.01 72.35±7.10 70.95±7.69
car 85.46±2.56 90.25±2.48 91.41±2.06 91.51±2.06 91.76±2.04
colic 81.39±5.74 81.28±6.84 82.37±5.72 82.53±5.56 82.39±5.62
credit-a 86.25±4.01 85.83±3.92 86.55±3.82 86.32±3.82 86.23±3.89
credit-g 75.42±3.84 75.22±3.91 76.44±3.89 75.80±3.92 75.84±3.97
diabetes 77.85±4.67 77.84±4.74 78.07±4.56 78.06±4.51 78.02±4.50
glass 74.39±7.95 74.34±8.10 76.49±7.71 75.10±8.19 76.99±8.36
heart-c 83.60±6.42 83.26±6.48 83.26±6.19 83.33±6.25 83.33±6.29
heart-h 84.46±5.92 83.51±6.32 84.43±5.92 84.53±5.89 84.49±5.87
hepatitis 84.22±9.41 85.76±7.93 85.42±8.96 84.61±9.37 85.38±9.24
hypothyroid 98.48±0.59 99.32±0.41 98.74±0.54 98.55±0.56 98.78±0.54
ionosphere 90.77±4.76 93.62±4.08 92.97±4.32 92.99±4.07 93.32±3.83
iris 94.47±5.61 94.53±5.87 93.20±5.76 93.27±5.65 93.33±5.61
kr-vs-kp 87.79±1.91 95.14±1.23 91.03±1.66 89.24±1.86 89.29±1.87
letter 74.00±0.88 74.00±0.88 88.76±0.70 86.65±0.72 88.53±0.67
mushroom 95.52±0.78 100.0±0.00 99.95±0.07 99.35±0.29 99.81±0.16
nursery 90.30±0.72 91.91±0.76 92.73±0.62 92.60±0.62 92.60±0.63
primary-tumor 47.19±6.02 47.19±6.02 47.87±6.37 48.14±6.45 48.64±5.77
segment 91.71±1.68 93.21±1.46 95.77±1.24 95.06±1.40 96.48±1.14
sick 97.10±0.84 97.01±0.81 97.39±0.79 97.29±0.80 97.26±0.81
soybean 92.20±3.23 91.99±3.49 93.31±2.85 92.78±3.01 93.61±2.78
vehicle 62.51±3.81 62.52±3.81 72.31±3.62 71.44±3.46 72.24±3.38
vowel 65.23±4.53 72.08±4.73 80.88±3.81 79.96±4.09 83.72±3.73
waveform 80.72±1.50 80.72±1.50 86.03±1.56 82.25±1.31 82.34±1.30
yeast 59.16±3.80 59.16±3.80 59.72±3.86 59.54±3.85 59.81±3.79
zoo 93.21±7.35 93.61±7.02 94.66±6.38 94.66±6.38 97.21±5.13
mean value 81.66±4.11 82.97±3.97 84.54±3.80 83.92±3.89 84.52±3.76
overall rank – 3.05 2.07 2.78 2.10
w/l/t 12-1-17 8-5-17 0-8-22 – –
w/l/t 16-1-13 9-5-16 3-4-23 7-0-23 –

From Table 4, we can see that in most cases, the error reduction of MACLEN com-
pared to its base learners is mainly due to its improvement of the bias. The mean values
shown at the bottom of the table also clearly demonstrate this. In summary, the success of
MACLEN mainly lies in that it can significantly reduce the bias of the base learner. This
suggests that MACLEN is similar to Boosting style algorithm which has been shown that
its improvement is mainly due to its ability to reduce the bias of the base learner.
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Table 4. Bias-variance decomposition results of C4.5, Naive Bayes and MACLEN using each of
them as base classifier respectively for the 12 UCI data sets which size are larger than 1000

Data sets
MACLEN(C4.5) C4.5 MACLEN(NB) Naive Bayes

Error Bias Var Error Bias Var Error Bias Var Error Bias Var
adult 0.152 0.110 0.041 0.141 0.121 0.020 0.153 0.145 0.008 0.162 0.156 0.006
car 0.128 0.065 0.062 0.157 0.092 0.064 0.128 0.069 0.058 0.166 0.098 0.067
credit-g 0.284 0.182 0.101 0.290 0.204 0.085 0.245 0.192 0.052 0.246 0.195 0.050
hypothyroid 0.013 0.008 0.005 0.015 0.012 0.004 0.024 0.020 0.004 0.025 0.021 0.004
kr-vs-kp 0.015 0.008 0.007 0.020 0.011 0.009 0.121 0.094 0.026 0.136 0.109 0.027
letter 0.181 0.087 0.092 0.312 0.164 0.147 0.186 0.139 0.047 0.280 0.228 0.051
mushroom 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.010 0.002 0.062 0.058 0.003
nursery 0.049 0.021 0.028 0.066 0.038 0.028 0.075 0.063 0.011 0.094 0.083 0.011
segment 0.056 0.035 0.021 0.105 0.064 0.040 0.065 0.045 0.020 0.097 0.073 0.023
sick 0.025 0.019 0.006 0.025 0.019 0.006 0.024 0.021 0.002 0.025 0.022 0.002
waveform 0.237 0.122 0.115 0.281 0.159 0.120 0.179 0.166 0.013 0.191 0.179 0.012
yeast 0.431 0.317 0.113 0.453 0.328 0.124 0.419 0.338 0.080 0.419 0.339 0.079
mean 0.131 0.081 0.049 0.155 0.101 0.054 0.136 0.108 0.027 0.159 0.130 0.028

5 Conclusion

In this paper, we propose the MACLEN method, a new general ensemble method based
on manipulating the class labels. It has several appealing properties: first, it can be
applied to both binary and multi-class learning problems; second, its performance is
superior to AdaBoost; third, it is simple, easy to parallelized and robust to noise. These
demonstrate that manipulating class labels is also a general powerful way to generate
strong ensemble besides the popular way of resampling the input instances or features.
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Abstract. Traditional supervised learning learns from whatever train-
ing examples given to it. This is dramatically different from human
learning; human learns simple examples before conquering hard ones to
minimize his effort. Effort can equate to energy consumption, and it
would be important for machine learning modules to use minimal energy
in real-world deployments. In this paper, we propose a novel, simple and
effective machine learning paradigm that explicitly exploits this impor-
tant simple-to-complex (S2C) human learning strategy, and implement
it based on C4.5 efficiently. Experiment results show that S2C has sev-
eral distinctive advantages over the original C4.5. First of all, S2C does
indeed take much less effort in learning the training examples than C4.5
which selects examples randomly. Second, with minimal effort, the learn-
ing process is much more stable. Finally, even though S2C only locally
updates the model with minimal effort, we show that it is as accurate
as the global learner C4.5. The applications of this simple-to-complex
learning strategy in real-world learning tasks, especially cognitive learn-
ing tasks, will be fruitful.

Keywords: supervised learning, decision tree, minimal effort.

1 Introduction

Traditional supervised learning learns from whatever training examples given
to it. This is dramatically different from human learning; human learns simple
examples before conquering hard ones to minimize his effort. For example, infants
learn from simple words and sentences first and gradually learn complex ones
through repeated exposures from parents and care takers. Adults, on the other
hand, often learn from simple to complex through repeated reviews of the same
materials.

In the human learning research area, the “i+1” education theory suggests
that human learns a small piece of new knowledge (“1”) based on a large body
of previously learned knowledge (“i”) [1]. Originally, the “i+1” theory describes
that the best methods to acquire a second language are those that supply “com-
prehensible input” and allow students to produce when they are ready [1,2]. We
show that the “i+1” human learning theory can be applied in supervised ma-
chine learning: a learning algorithm will take less effort when it learns the next
easiest thing based on the current learned knowledge.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 476–487, 2010.
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In this paper, we propose a novel, simple and effective machine learning paradigm
that explicitly exploits this important simple-to-complex learning strategy, called
S2C (Simple to Complex). S2C builds its model with simple examples first. More
specifically, it selects those examples that are close to the current model’s predic-
tion (thus simple), and updates the model with them. S2C works iteratively in
this way which is almost the same as the human learning from simple to complex
process.

Experiment results show that our new learning paradigm S2C has several
distinctive advantages over C4.5 that takes the training examples in random
order. First of all, S2C does indeed take much less effort in building its model
than C4.5. This would be important in building machine learning modules that
use minimal energy. Energy consumption control is highly important in real-
world field deployments [3]. [4] indicates that when modules consume too much
energy, they may run out of the batteries quickly and must be aggressively
cooled; otherwise they would be unreliable and oftentimes be unavailable for use
by the application scientists.

Second, minimal effort learning implies that the process of learning and the
final learned model are more stable and reliable. This is certainly crucial for
human learning, as well as for machine learning applications. To contrast the
difference between S2C and C4.5 taking examples randomly, we also implement
an “aggressive” learner who chooses examples from complex to simple. We show
that the “aggressive” learner takes even more effort than C4.5.

Finally, even though S2C only locally updates the model with minimal effort,
we show that it is as accurate as the global learner C4.5. One might think
that as S2C always takes the simplest example to update its model locally and
incrementally, it may not predict as accurately as the global learner C4.5 which
builds its model on the whole dataset. Our experiment results show that S2C
predicts only slightly worse than C4.5. In addition, we design a ”mini-review”
process, and add it into S2C. S2C then becomes less myopic and is shown to
predict just as well as C4.5.

We explicitly exploit and implement this simple-to-complex learning strategy,
a ubiquitous human learning strategy, in the machine learning research. Its ap-
plications in human-oriented learning tasks, especially cognitive learning tasks,
will be fruitful.

The rest of this paper is organized as follows. Several previous works related
to learning from simple to complex are reviewed in Section 2. Section 3 describes
a generic S2C paradigm. We discuss an efficient implementation of S2C based on
the decision tree learning algorithm in Section 4. Experiment results are shown
in Section 5. We conclude our work in Section 6.

2 Related Work

Learning from simple to complex gradually may look similar to incremental
learning previously studied [5,6], but they are much different. Incremental learn-
ing builds classifiers gradually based on whatever the data given passively. How-
ever, the S2C learning paradigm actively selects simpler examples first to learn,
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and then complex ones. However, the S2C learning paradigm is different from
the traditional active learning [7,8]. Active learning selects the unlabeled exam-
ples that are most uncertain and acquires their labels from an oracle. Then it
rebuilds a completely new model with all the labeled examples. The object of
active learning is to learn a model with fewer labelings from the oracle. The S2C
learning paradigm, on the other hand, builds a model with simple-to-complex
labeled examples (no oracle is required) to reduce the effort.1

Ferr, etc. proposed delegating classifiers [9], and its main idea is divide-and-
conquer. The learner builds the first classifier with all the training examples, and
delegates those examples that cannot be predicted well (complex examples) to
build delegating classifiers. However, it is difficult to determine how complex for
examples to be delegated. Another potential issue is that the delegated examples
probably are not sufficient which may affect the reliability of the delegating
classifiers. However, S2C learns examples from simple to complex gradually.
Thus S2C has neither threshold nor the difficulty of insufficient examples.

A similar idea to S2C is curriculum learning [10]. It learns by assigning the easier
examples with higher weights first and then increasing the weights of the complex
examples gradually, which is based on the idea that human or animal learns much
better when the examples are organized in gradually more complex order [11]. The
difficulty in this method is that the so-called easier or harder examples are given
by human, which may be unreasonable and infeasible. However, S2C is a learner-
centric paradigm. It means that it is the learner who decides what examples are
simple or complex, which is much more realistic and appropriate.

Lifelong learning [12] addresses the situations in which a learner faces a series
of different learning tasks providing the opportunity to transfer knowledge. Re-
cently, a number of the transfer knowledge researches have been done in different
applications, such as, Web document classification [13,14], sentiment classifica-
tion [15], reinforcement learning [16], etc. The object of transfer learning is to
transfer knowledge of other related, but different source data to the current
learning data, such that a good model can be learned with fewer examples. The
simple-to-complex strategy in S2C is similar to transfer learning. The difference
is that it transfers knowledge that is learned from simple examples to complex
examples, such that complex ones can be learned easier. From this perspective,
S2C belongs to the vertical transfer learning more; the traditional transfer learn-
ing is more similar to the horizontal transfer learning in the psychology research
area [17,18].

Deep structure learning attempts to learn high level features by the compo-
sition of lower level features [10]. It starts training on simpler human-crafted
features and tries to get abstract high level features. One conceivable method is
by training each layer one after the other [19,20]. It is also very different from
S2C, as S2C learns simpler examples first and then complex examples.

1 Reducing effort means less energy, e.g. power, that the algorithm needs to consume.
IBM Research shows that power consumption is a major problem in designing com-
puters to simulate human brain. http://spectrum.ieee.org/computing/hardware/
ibm-unveils-a-new-brain-simulator

http://spectrum.ieee.org/computing/hardware/ibm-unveils-a-new-brain-simulator
http://spectrum.ieee.org/computing/hardware/ibm-unveils-a-new-brain-simulator
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3 S2C Learning

Our novel simple-to-complex learning strategy models the adult iterative-learning
process in which the same set of materials is repeatedly studied, and for each it-
eration only the currently simple cases are learned.

The rationale behind S2C is that learning is a gradual process of accumulating
knowledge. Learning simple examples first may make the learning of harder
examples easier, thus the whole learning process becomes easier (less effort) and
more reliable. (See Section 3.2 for evaluation metrics for S2C).

3.1 S2C Learning Paradigm

At a high level, S2C is very simple, and it can use any classifier that can produce
a refined class probability estimation (see later for details) as its base learner.
Generally speaking, for each iteration, S2C selects the simplest example based
on the current model and updates the model locally with the selected example,
until all examples have been learned.

However, several important issues deserve further explanations. First, how can
S2C select the simplest example? Second, how can S2C select the first simplest
example before any model is built? Third, how can S2C select the simplest
example when tie happens?

The first issue, how to select the simplest example, is crucial for the S2C learn-
ing paradigm. Without a proper measurement, S2C cannot choose the simplest
example correctly. Here we propose a simple and effective measurement, which
uses the prediction error of the current model for an example to measure how
simple the example is. The smaller the error, the simpler the example is for the
current model. Thus a base learner that can generate a refined class probability
estimation is a requirement of S2C, as we mentioned before. Also the measure-
ment is consistent with human intuition about simplicity: the less the surprise
(i.e., difference or error), the simpler it is.

The second issue of selecting the first simplest example can be tricky, as the
current model is empty. We design a simple and effective strategy for S2C. S2C
scans over all the training examples to pick up the most frequent example. If no
example appears more than once in the training set, then an example from the
majority class will be chosen randomly.

The third issue, the tie-breaking strategy, can be crucial, if tie happens often
when S2C selects the simplest example with the current model. If ties happen,
S2C must choose one randomly. This may affect the performance of S2C. Indeed,
for some algorithms, such as C4.5 (the base learner for S2C in this paper), ties
do happen often. This is because C4.5 predicts all examples falling in the same
leaf with the same prediction (i.e., same label and same probability estimation).
For those algorithms, effective tie-breaking strategies are necessary. For C4.5,
we use the Euclidean distance between positive and negative examples and the
numbers of positive and negative examples in each node as heuristic information
for the tie breaking. Details are presented in Section 4.
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3.2 Measurements

In this subsection, the key issue we will discuss is how to evaluate S2C and
compare it with other supervised learning algorithms. Since minimal effort is
our target, effort is the crucial measurement in our paper. In addition, volatility
is also important to measure how stable an algorithm is. Therefore, we present
two measurements, effort and volatility, in the following.

Effort is a crucial measurement in this paper. Effort indicates how much
work a learner has to do to learn certain examples. Intuitively the effort can be
computed through energy usage, or computer time, etc. The problem is that it
is difficult to measure them since they are related to hardware performances,
the efficiency of programming language, etc. As a result, we choose two different
methods to reflect the effort indirectly.

One method is using the prediction error to approximate the effort. We call
it error-based effort, which is almost the same as the measurement for selecting
the simplest example (in Section 3.1). The difference is that the measurement in
Section 3.1 is used to measure how simple an example is, while the error-based
effort here is about a learning model. At the same time, they are close related. If
an example is the simplest one for a model, the model will take the least effort
to learn it. The other method to reflect the effort is the size of the model being
built, called size-based effort. Size can reflect how much effort is needed to build
the model. Usually the larger the size of a model is, the more effort the model
needs. For a decision tree, size-based effort can be the number of the nodes in
the tree. These two (error-based effort and size-based effort) are good, universal
approximation because they are independent of hardwares or other factors, and
can be used to evaluate any learning algorithms easily.

The other important measurement, volatility, is used to evaluate how stable
a learner is. If the error rate (accuracy) of a learner varies greatly from different
runs, its volatility should be high. Volatility is thus the average value of the
standard deviation of the prediction error rate for all of the current models. The
volatility reflects the varying range of the error of a learner from different runs.
Thus it is also one of the essential measurements to assess a learner.

We have presented the main strategies of the S2C learning paradigm in a high
level. In the next section, we will present it with a specific base learner, C4.5.

4 S2C with Decision Tree

As we mentioned, the S2C learning paradigm can take most of the classification
algorithms as its base learner easily. In this paper, we combine it with one of
the most popular algorithms, C4.5. Originally, C4.5 builds a global tree in “one
shot”. However, S2C only provides C4.5 examples one by one in a simple-to-
complex manner, such that it builds a tree locally and gradually. In the following,
we will introduce this cooperation between S2C and C4.5 specifically.

As we discussed in Section 3.1, S2C selects one of the majority examples
randomly (assume no repeated examples in datasets) for its base learner, C4.5,
to build the first tree model - only a one-leaf tree. Then based on the current
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tree, S2C selects the simplest example, which is the one that is predicted most
correctly by the current tree, and updates the current tree with it. S2C iterates
this selecting and updating process until all the training examples are learned.

However, tie can happen often in decision trees, because a tree returns the
label prediction and probability of an example according to the numbers of the
positive and negative examples in the node that the example falls in. Thus, two
different kinds of tie may happen when S2C selects the simplest example. One is
that those examples that fall into the same leaf node. The other one is that those
examples that fall into different nodes but have the same probability estimation.
S2C could solve these tie problems by selecting one example randomly. However,
inevitably this random manner would affect its performance severely. Better
strategies are needed to judge which of the equally simple examples is simpler
than the others. Two different tie-breaking strategies are given as follows.

Firstly, we design a novel tie-breaking strategy to solve the tie happening
in the same leaf. In this situation, the equally simple examples belong to one
class, say positive. The simplest positive example should be far away from any
negative examples. Thus the tie-breaking strategy is to choose the example that
has the furthest distance to its closest negative example comparing to other
equally simple ones. That is to say, S2C calculates the Euclidean distance for
each equally simple positive example to all the negative examples. It records the
closest distance for each positive example, and selects the example having the
greatest distance.

xi = argmax
i

(min
j

(dij)) 0 ≤ i < n1; 0 ≤ j < n0. (1)

where, dij is the distance from example xi to xj ; xi and xj belongs to positive
and negative respectively; n1 is the number of the equally simple examples and
n0 is the number of the negative training examples.

In addition, an efficient strategy also is needed to break the ties among the
examples that fall in different leaves but with the same probability estimation.
Two factors can be considered for this tie-breaking. One is the number of the
examples in the leaves that tie happens. Intuitively, the more examples a leaf
has, the more reliable the leaf is in terms of probability estimation. The other
factor is the different depths of leaves in the tree. Intuitively the closer a leaf
is to the root, the more preferred the example that falls in the leaf is. For the
first factor, if two positive examples fall into two positive leaves, say, A and B,
and A has 9 positive examples and 1 negative, and B has 18 positive examples
and 2 negative, the predictions for the two examples would be tied . However,
B should be preferred over A when breaking this tie because B is more reliable.
For the second factor, if a leaf C is on the first level and D is on the fifth level,
and both C and D have, say, 9 positive examples and 1 negative, the example
that falls in C should be preferred over the one that falls in D, since only one
attribute is needed to predict its label. By combining the two factors, we propose
Formula 2 as a heuristic for the tie-breaking. The preference of an example xi

can be defined as:
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Preference =
1 + N1−N0

Nroot

2
∗ 1

Lpath
(2)

where, N1 and N0 are the numbers of the positive and negative examples re-
spectively in the leaf node that xi falls in; Nroot is the number of the examples
in the root node; Lpath is the length from the root to the leaf that xi falls in.

In Formula 2, the value of
1+

N1−N0
Nroot

2 corresponds to the first factor we dis-
cussed. It indicates how positive xi is. If N1 = N0, the value will be 1/2 ; if N1

is very small, its value will be close to zero (more negative); otherwise, it will be
close to 1 (more positive). 1/Lpath corresponds to the second factor. The closer
a leaf to its root, the more preferred the example is.

During the iterative process of selecting the simplest example and updating
the current tree, two issues need to be explained further. One is that if tie still
happens with Formula 1 or Formula 2, S2C will select one example randomly.
The other one is that S2C will only split the fringe node if needed when updating
the current tree model. That is to say, if an example agrees with the fringe node
it enters, S2C will not change the tree structure; otherwise it will split the fringe
node according to the traditional C4.5 algorithm. This fringe-node-split strategy
reduces the size-based effort effectively.

As we have discussed earlier, two measurements, effort (error-based and size-
based effort) and volatility, can be used to evaluate the S2C paradigm effectively.
Here we provide the details of how to evaluate the tree-based S2C in terms of
effort first. The error-based effort can be calculated by the prediction error of
the current model. For a decision tree, the prediction error of the current tree Ti

for a positive example xi is (1 − p(1|xi)), where p(1|xi) is calculated by k/n. k
is the number of the positive examples and n the total number of the examples
in the node that xi falls in. As discussed, another way to measure effort is the
size-based effort. For a decision tree Ti, the size-based effort can be the number
of the nodes in Ti. The more nodes in a tree, the more size-based effort is needed
to build the tree.

The other important measurement, volatility, as discussed in Section 3.2, is
the standard deviation of the prediction error rate . It indicates how volatile a
learner is.

As we have presented, the S2C learning paradigm can easily take C4.5 as
its base learner and works in a simple and effective manner. With the two new
measurements, we will show that S2C indeed has several advantages over other
learning algorithms in the next section.

5 Experiments

To illustrate the performance of S2C, we choose 10 UCI [21] datasets, including
anneal, autos, breast cancer, colic, diabetes, ecoli, glass, heart-h, sonar and vote,
which are commonly used in the supervised learning research area. Originally
autos and glass are multi-class. However, to compare with the other binary-class
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datasets, we transform them to binary-class datasets, autos new and glass new,
by keeping the majority class and merging all the other classes. All the algorithms
are implemented based on the WEKA [22] source code. In the experiments, 5-fold
cross validation is used and the t-test results are with 95% confidence.

5.1 Comparison of Effort

We first compare S2C with C4.5 in terms of effort. C4.5 selects a new example
from the training data randomly (not from simple to complex). In addition,
instead of updating the current tree locally in S2C, C4.5 rebuilds a tree based
on the current examples it has.2

To further contrast the differences between S2C and C4.5, we also implement
a maximal effort learner, called Jump-start, which is very similar to S2C in
framework but works in an opposite way. The Jump-start learner selects the
most complex example (be predicted most wrongly) based on the current model
and updates the current model with it iteratively until all the examples are
learned. The rationale behind Jump-start is that the complex examples are more
informative and useful to improve the current model. To make the comparison
meaningful, Jump-start also takes C4.5 as its base learner.

As discussed in Section 4, we concern two kinds of effort, error-based effort
and size-based effort. The error-based effort on the whole training set is the
sum of the error when the learning algorithms process and learn every training
example. Similarly, size-based effort of decision trees on the whole training set is
the sum of the node number of the trees when each training example is learned.

We conduct the t-test on all the 10 datasets to compare the error-based effort
between S2C, C4.5 and Jump-start. The results show that S2C takes much less
error-based effort than C4.5 on 9 datasets, ties with C4.5 on only one dataset
and loses on no dataset. However, the performance of Jump-start is poor. It
loses to S2C and C4.5 on all of the 10 datasets. To further show the differences
among the three algorithms, we present the average of error-based effort of the
5 runs on each dataset in the upper part of Table 1. On average C4.5 and Jump-
start take about 1.3 times and 2 times as much as the error-based effort of S2C
respectively. Thus it is clear that S2C needs much less error-based effort than
C4.5 to learn all the training examples.

We also conduct the t-test on all the 10 datasets to compare the size-based
effort. The results show that S2C wins C4.5 and Jump-start on all the 10 datasets
significantly without exception, while Jump-start loses to S2C and C4.5 on all
the datasets. We also present the average of size-based effort of the 5 runs on
each dataset in the lower part of Table 1. On average, C4.5 and Jump-start take
about 2.6 times and 6 times as much as the size-based effort of S2C. Obviously,
S2C takes the least size-based effort to build a model, because it updates tree
models locally instead of rebuilding trees, which saves much effort.

2 We may also use ID5 [23], an incremental version of C4.5 to update the tree. However,
it is shown [23] that ID5 produces identical tree as C4.5; thus we use C4.5 on the
current training dataset directly.
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Table 1. The comparison of effort among the three learning algorithms

anneal auto n b cancer colic diabetes ecoli glass n heart-h sonar vote
Error-based Effort

S2C 6.9 7.6 10.0 16.0 41.0 7.0 11.6 13.3 12.5 7.1
C45 7.1 10.5 12.0 22.0 59.0 8.0 16.0 20.3 16.2 9.0
JS 23.7 14.5 23.0 30 73.5 19.3 20.1 22.3 21.4 15.9

Size-based Effort
S2C 3357 1198 3141 2841 21157 1478 1470 1792 2711 465
C45 14747 2937 12163 7482 49042 4399 4309 4665 3824 1034
JS 51327 7427 27501 14019 95623 12057 7343 9055 10107 3721

The experiment results have convinced us that the performances of S2C are
excellent on both kinds of effort. Jump-start is the worst and C4.5 is in-between.
Both the error-based effort and the size-based effort can be translated directly
to how much energy that the computer running the program will take; however
it is beyond this paper and will be our future work.

5.2 Comparison of Volatility

We have already learned that S2C needs much less effort to learn all the training
examples. Less effort implies that the learned model should be less volatile. As
discussed in Section 4, to compute the volatility, we run the each algorithm on
each dataset for 5 times and compute the standard deviation of the error rate.
We compare S2C with C4.5 and Jump-start and show the results in Table 2.

Table 2 shows the volatility of the three learning algorithms on each dataset.
The volatility of S2C is almost 0 on all the datasets. On average, C4.5 is thou-
sands of times more volatile than S2C, and Jump-start is about 3 times as volatile
as C4.5. Thus it is clear that S2C is stable, while C4.5 and Jump-start are much
more volatile. The reason is that no matter what sequence of the training exam-
ples is, S2C always results in a similar model. Learning algorithms with small
volatility are important in learning real time data.

Also in Figure 1, we show that the error rate of S2C decreases more stably
than C4.5 and Jump-start with more training examples taken in. We conduct
the experiments on the 10 datasets, however, because of the limited space we
only show the typical results of two datasets, colic and heart-h, in Figure 1. The
x axis indicates the times of updating the trees and the y axis is about the error
rate. Since the S2C model takes in all the examples of majority class first, it is
only a one-leaf tree. The true building tree process only starts from taking in the
first minority example. Thus its updating time is much less than that of C4.5
and Jump-start. From the figure, we can tell that the learning process of S2C is
much shorter than the other two.

Figure 1 shows that with the increasing number of examples taken in, the
error rate of Jump-start fluctuates very often at the beginning. C4.5 is a little
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Table 2. The comparison of volatility among the three learning algorithms

anneal auto n b cancer colic diabetes ecoli glass n heart-h sonar vote
S2C 5.6E-7 0.0 2.4E-8 3.1E-6 0.0 1.2E-8 0.0 4.7E-7 3.8E-6 5.6E-6
C45 0.011 0.032 0.016 0.003 0.024 0.039 0.039 0.032 0.067 0.020
JS 0.030 0.051 0.012 0.025 0.027 0.023 0.024 0.028 0.068 0.071
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Fig. 1. The error rate on two datasets: (a) colic and (b) heart-h

better than Jump-start; however it still trembles at the beginning on most of
the data. On the other hand, the error rate of S2C decreases more stably than
the other two.

5.3 Comparison of Error Rate

As discussed in Section 4, S2C only updates the current tree at its fringe when
the new simplest example is selected. It is extremely local and myopic. On the
other hand, C4.5 rebuilds a tree with all the examples it has, and its final tree is
built on the whole dataset. Thus C4.5 is a “global” tree. One might expect that
S2C does not predict as well as C4.5. To compare the final error rate between
S2C, C4.5 and Jump-start, we perform the t-test on the 10 datasets, after taking
in the whole training set. We find that S2C is slightly worse than C4.5. It ties
with C4.5 on 7 datasets, but loses on 3 datasets. The results were shown in the
upper part of Table 3. This is expected as S2C updates the tree locally.

To avoid the greedy updating strategy of S2C without increasing the effort
too much, we design a “mini-review” strategy. The strategy is that after learning
K examples S2C will “review” them and use them together to expand the fringe
of the tree. This “mini-review” process is similar to the summarizing process in
human learning. The lower part of Table 3 gives the experiment results of the
10 datasets when K=10. It shows that S2C has almost the same low error rate
as the “global” tree C4.5. Also we find that the error-rate performance of Jump-
start is fairly good, and only loses to S2C and C4.5 on one dataset respectively.
However, this similar performance costs Jump-start extraordinary effort.

The experiment results illustrate that S2C can work as well as the global
algorithm C4.5 on error rate. However, it does take much less effort than C4.5
and Jump-start. In addition, S2C is much more reliable than the other two
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Table 3. The t-test results on error rate (L: lose; T: tie; W: win)

anneal auto n b cancer colic diabetes ecoli glass n heart-h sonar vote
K = 1

S2C vs. C45 L L T T T L T T T T
C45 vs. JS W T T T T W T T W T
JS vs. S2C T T T T T L T T T T

K = 10
S2C vs. C45 T T T T T T T T T T
C45 vs. JS W T T T T T T T T T
JS vs. S2C L T T T T T T T T T

algorithms. These are crucial to learning algorithms. All the experimental results
show that the simple-to-complex learning strategy has distinctive advantages in
the machine learning area.

6 Conclusions

In this paper we present the S2C learning paradigm, which exploits the simple-
to-complex human learning strategy in the supervised learning research area, and
implement it with C4.5 as its base learner. Experimental results show that S2C
does take much less effort to learn a model than C4.5 and reaches very similar
low error rate. Furthermore, S2C is much less volatile than C4.5. In our future
work, we will apply S2C to more learning tasks, especially cognitive learning
tasks.
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Abstract. One of the more challenging problems faced by the data mining
community is that of imbalanced datasets. In imbalanced datasets one class
(sometimes severely) outnumbers the other class, causing correct, and useful
predictions to be difficult to achieve. In order to combat this, many techniques
have been proposed, especially centered around sampling methods. In this paper
we propose an ensemble framework that combines random subspaces with sam-
pling to overcome the class imbalance problem. We then experimentally verify
this technique on a wide variety of datasets. We conclude by analyzing the per-
formance of the ensembles, and showing that, overall, our technique provides a
significant improvement.

1 Introduction

A common problem faced in data mining is dealing with “imbalanced datasets”, or
datasets in which one class vastly outnumbers the other in the training data. For most
classifiers this causes a problem, as merely classifying every instance as the majority
class present in the training data can result in very high accuracy. Therefore when deal-
ing with imbalanced datasets, sampling methods such as oversampling, undersampling,
and sampling by synthetically generating instances, SMOTE, have become standard
approaches for improving classification performance [1]. Performance is improved as
the sampling methods alter the training data distribution, biasing the data towards the
minority class.

In addition to sampling methods, ensemble methods [2] have also been used to
improve performance on imbalanced datasets. They combine the power of multiple
(usually weak) classifiers trained on similar datasets to provide accurate predictions for
future instances. The training data is often varied in such a way as to give each classifier
a (slightly) different dataset so as to avoid overfitting. The popular ensemble methods,
bagging [3] and boosting [4], have been adapted with sampling strategies to counter the
issue of high class imbalance [5–7]. These methods work on the entire feature space as
they focus on modifying the selection of instances in the ensemble training sets.

We posit that sampling methods, especially SMOTE, might stand to gain more when
working in a reduced feature space as doing so will not only inject more diversity into
the ensemble via the learning algorithm, but also via the bias of the sampling algorithm.
To this end, we propose an extension to the random subpace method [8] that integrates
SMOTE (in Section 2). We test on 21 widely available datasets with varying degrees

M.J. Zaki et al. (Eds.): PAKDD 2010, Part II, LNAI 6119, pp. 488–499, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of class imbalance (Section 4 includes the results). We comprehensively compare the
proposed random subspace and SMOTE combination with bagging, AdaBoost, random
subspaces, random forest, and the combination of random subspace and undersampling.
Using the statistical tests recommended by Demšar, we determine the statistical signif-
icance of results. We show that sampling methods, combined with random subspaces
are more effective than the other combinations of ensemble and sampling methods. We
explain this behavior by invoking the notion of diversity.

To summarize, the contributions of this paper are as follows:
1. An extension to the random subspace method to deal with the class imbalance prob-

lem.
2. Empirical evaluation on a wide variety of imbalanced datasets, and establishing the

superiority of the new ensemble framework.
3. Analyzing the performance of the methods using the measures of diversity.

2 Using Random Subspaces to Improve Performance on
Imbalanced Datasets

The random subspace method (RSM) [8], described in Algorithm 1, is an ensemble
method in which multiple classifiers are learned on the same dataset, but each classifier
only actively uses a subset of the available features.

Because each classifier learns on incomplete data, each individual classifier is less
effective than a single classifier trained on all of the data. However since the RSM
combines multiple classifiers of this type, each with its own bias based on the features
it sees, it sees an increase in performance over the base classifier.

Algorithm 1. The random subspace method.
Require: Training set X with n instances and m features, number of features to consider 0 <

m′ < m, and number of classifiers to train e > 0.
Ensure: CLASSIFIER is the model trained on training set X, consisting of e classifiers.

for i = 1 to e do
Select F , a random subset of the features such that |F | = m′.
Let X ′ ← X.
for all f such that f is a feature of X ′ do

if f /∈ F then
Remove feature f from X ′

end if
end for
Train CLASSIFIERi on dataset X ′.

end for

2.1 Random Subspace Method + Sampling

Sampling is a popular methodology to counter the problem of class imbalance.
However sampling methods, especially SMOTE, work with the entire set of features
or dimensions and may not be as effective in reducing the sparsity of the data. High
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Algorithm 2. The random subspace method with an added resampling step.
Require: Training set X with n instances and m features, number of features to consider 0 <

m′ < m, number of classifiers to train e > 0, and sampling function S which takes a dataset
as a parameter, and returns a dataset.

Ensure: CLASSIFIER is the model trained on training set X, consisting of e classifiers.
for i = 1 to e do

Select F , a random subset of the features such that |F | = m′.
Let X ′ ← X.
for all f such that f is a feature of X ′ do

if f /∈ F then
Remove feature f from X ′

end if
end for
X ′

s ← S(X ′).
Train CLASSIFIERi on dataset X ′

s.
end for

dimensionality is an Achilles’ heel for sampling approaches like SMOTE, as they can
lead to a higher degree of variance given low density and separation among classes
because of the features’ spread. Intuitively, applying SMOTE to reduced subspaces at a
time will also control the amount of variance that SMOTE may introduce.

Sampling methods consider the class skew and properties of the dataset as a whole.
Datasets often exhibit characteristics and properties at a local, rather than global level.
Hence, it becomes important to analyze and consider the datasets in the reduced sub-
space. We also posit that by first randomly selecting a reduced subspace, sampling along
that subspace, and then learning a classifier will induce a higher diversity, which is a
necessary condition for improved performance of classifiers.

To this end we propose using SMOTE within each randomly selected subspace. Since
SMOTE creates synthetic instances by interpolating feature values based on neighbors,
we see that it is dependent upon the distance metric used to determine nearest neigh-
bors. Thus by removing features from the feature space, we see that we are altering the
distance between instances, and therefore (potentially) changing the way in which each
classifier modifies its training data. That is, we create a hybrid of the RSM by combining
it with SMOTE to create RSM+SMOTE. Just like in the RSM during the training phase
each classifier is trained on a subset of the data in which some features are removed.
After removing a subset of the features, SMOTE is then applied to the dataset which is
subsequently used to train the classifier. Since SMOTE is dependent upon the features,
and since in ensemble methods having classifiers with different biases is optimal, this
should provide better performance over other techniques.

A generalized version of this algorithm (RSM+sampling) is given in Algorithm 2.
In this algorithm as opposed to explicitly using SMOTE, a generic sampling method is
supplied as a parameter for use in the algorithm. That is, RSM+SMOTE is a special case
of RSM+sampling curried with SMOTE as the sampling method. In our tests we also
consider using random undersampling as the sampling method. This lacks the appeal
of SMOTE, however, as it does not depend upon the subspace chosen, and is thus more
like random forests.
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Note that while in principal any classifier can be learned, we use C4.5 decision trees
as is common in the literature. In order to determine the predicted class of the ensem-
ble, we consider simple majority voting of the classifiers, similar to the other ensemble
methods discussed. As an area of future work Chawla and Sylvester [9] outline a pro-
cedure for weighted voting as applied to imbalance datasets. We will also be including
Hellinger Distance Decision Trees as part of future work [10].

Complexity Analysis. When discussing ensemble methods, an important consider-
ation is the method’s computational complexity. In this section we therefore give an
overview of the complexity of the scheme considered in the paper. That is we only
consider the case of RSM+SMOTE with C4.5 decision trees as the classifier.

Let us now consider building an ensemble of e C4.5 decision trees using random
subspaces and SMOTE on a dataset D consisting of n instances and m features. From
the pseudo-code given in Algorithm 2, we see that each iteration of the for-loop first
selects m′ features O(m′). The algorithm then (in our case) applies SMOTE which
has a complexity of O(n2

p), where np denotes the number of positive (minority) class
examples in D. Applying SMOTE to the dataset results in additional instances being
added to the dataset, leaving us with n′ instances. Finally a C4.5 decision tree is learned
on the resulting dataset which has complexity O(n′m′ log n′). Combining this, we see
that each iteration of the loop has a complexity of O(m′ +n2

p +n′m′ log n′) = O(n2
p +

n′m′ log n′). Therefore the complexity of constructing RSM+SMOTE is O(e · (n2
p +

n′m′ log n′)).
As with most ensembles, we can achieve an order e speedup to our method if we

instead build each tree in parallel. That is we break the task up into e jobs and distribute the
tree building process to e cores. Additionally since the voting function is simple majority
voting, the trees can remain distributed if the cost of transferring them is too high.

Table 1. Legend of abbreviations

Full Name Abbreviation
Bagging BG

AdaBoost BT
Random Subspace Method RSM

Random Forest RF
Synthetic Minority SMOTE

Over-sampling Technique
Undersampling usamp

Random Subspace Method RSM+SMOTE
with SMOTE

Random Subspace Method RSM+usamp
with Undersampling

3 Experimental Design

We used the open source tool Weka, and implemented our classifier RSM+sampling. In
order to test the robustness of our method compared to existing methods, we



492 T.R. Hoens and N.V. Chawla

Table 2. Details of the datasets in this report

Dataset # Features # Examples CV Dataset # Features # Examples CV

boundary 175 3505 0.93 hypo 25 3163 0.90
breast-w 9 699 0.31 ism 6 11180 0.95
breast-y 9 286 0.41 oil 49 937 0.91

cam 132 18916 0.90 page 10 5473 0.80
compustat 20 13657 0.92 phoneme 5 5404 0.41
covtype 10 38500 0.86 PhosS 480 11411 0.89
credit-g 20 1000 0.40 pima 8 768 0.30
estate 12 5322 0.76 satimage 36 6430 0.81

fourclass 2 862 0.29 SVMguide1 4 3089 0.29
germannumer 24 1000 0.40 tic-tac-toe 9 958 0.31

heart-v 13 200 0.49

included AdaBoostM1 (BT), bagging (BG), Random Forests (RF), and Random Sub-
spaces (RSM) in our experiments. We also applied SMOTE and undersampling (usamp)
to the entire dataset and then learned a single classifier. For all of the methods we use
the J48 decision tree as the base classifier with Laplace smoothing and no pruning. As
each of the ensemble methods requires a number of classifiers to train, we train 100
classifiers for each. See Table 1 for the entire set of classifiers used in this paper.

We evaluated each of the classifiers on the twenty-one datasets from a number of
different resources, including finance, biology, oil spill, medicine, UCI and LibSVM
data repositories (Table 2) [10–12]. Similar to [13], we use the coefficient of variation
(“CV”) to measure imbalance. To determine the CV, we calculate the ratio of the mean
and standard deviation of the class counts in the dataset. As we seek to determine our
classifiers’ performance on imbalanced datasets, we choose to test on datasets with a CV
above 0.28. This corresponds to a dataset for which less than 35% of the instances are
minority class. In general, the larger the value of CV, the more imbalanced the dataset.

3.1 Experiments

In order to compare the classifiers, we use 10-fold cross validation. In 10-fold cross
validation, each dataset is broken into 10 disjoint sets such that each set has (roughly)
the same distribution. The classifier is learned 10 times such that in each iteration a dif-
ferent set is withheld from the training phase, and used instead to test the classifier. We
then compute the AUROC (Area Under the Receiver Operating Characteristic) value as
the average of each of these runs.

3.2 Statistical Tests

While many different techniques have been applied to attempt to compare classifier
performance across multiple datasets, Demšar suggests comparisons based on ranks.
Following the strategy outlined in [14], we rank the performance of each classifier by
its average AUROC, with 1 being the best. Since we seek to determine whether or not
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our new methods are statistically significantly better than the existing methods, we use
the Friedman and Bonferroni-Dunn tests [14].

The Friedman test is first applied to determine if there is a statistically significant
difference between the rankings of the classifiers. That is, it tests to see if the rankings
are not merely randomly distributed. Next, as recommended by Demšar, we preform
the Bonferroni-Dunn test to compare each classifier against the control classifier.

4 Results

From Table 3 it is apparent that RSM+SMOTE performs significantly better than the
other classifiers, achieving an average ranking that is over a full rank better than the next
best classifier, RSM+usamp. This is further reinforced by noting that RSM+SMOTE is
the best classifier in 12 of the 21 datasets, and second best on 5. RSM+SMOTE not
only outperforms bagging and boosting, but also applying SMOTE on the entire dataset
before learning a classifier. The results of using SMOTE on the entire dataset are not
included in this paper due to space restrictions, as well as to keep the focus on ensemble
based methods.

Out of all of the datasets, RSM+SMOTE achieves its worst rank of 4 on the four-
class dataset. This is unsurprising, however, as fourclass is not a suitable dataset to use
RSM+SMOTE on, as it only has 2 features. Since RSM chooses a subspace of the fea-
tures to learn on, it is necessary that there are enough features to gain power from only

Table 3. Rank of each classifier on the datasets

RSM+SMOTE RSM+usamp RF RSM BG BT
breast-w 2.0 1.0 3.0 4.0 5.0 6.0
breast-y 3.0 1.0 5.0 2.0 4.0 6.0

pima 1.0 2.0 5.0 3.0 4.0 6.0
hypo 1.0 2.0 5.0 3.0 4.0 6.0

phoneme 3.0 5.0 1.0 4.0 2.0 6.0
ism 1.0 2.0 4.0 3.0 5.0 6.0

SVMguide1 2.0 4.0 5.0 3.0 1.0 6.0
cam 1.0 2.0 5.0 3.0 4.0 6.0

credit-g 1.0 3.0 4.0 2.0 5.0 6.0
ion 1.0 3.0 4.0 2.0 5.0 6.0

covtype 1.0 5.0 2.0 4.0 3.0 6.0
satimage 2.0 3.0 1.0 4.0 5.0 6.0

PhosS 2.0 1.0 5.0 3.0 4.0 6.0
fourclass 4.0 5.0 1.0 6.0 3.0 2.0
tic-tac-toe 3.0 5.0 1.0 6.0 2.0 4.0
compustat 1.0 4.0 2.0 5.0 3.0 6.0

estate 1.0 3.0 4.0 5.0 2.0 6.0
heart-v 2.0 1.0 5.0 3.0 4.0 6.0

boundary 1.0 2.0 4.0 3.0 5.0 6.0
oil 1.0 3.0 4.0 2.0 5.0 6.0

page 1.0 2.5 5.0 2.5 4.0 6.0
Average 1.667 2.833 3.571 3.452 3.762 5.714
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Table 4. Table denoting whether or not RSM+SMOTE is statistically significantly better than all
other classifiers at various confidence levels on the datasets

Confidence Level RSM+usamp RF RSM BG BT
99% � � � �
95% � � � � �
90% � � � � �

considering such a subset. Since fourclass only has 2 features, however, each classifier
only classifies based on one feature. Similarly when SMOTE is applied to the feature
there is only one axis of freedom, and the effect is that of placing instances somewhat
randomly on a line. Intuitively this does not seem like an optimal strategy, and explains
the poor performance of the classifier on the dataset. This also leads us to not recom-
mend using RSM+SMOTE on such low dimensional datasets.

RSM+usamp also performs very well when compared to the other classifiers. On 10
of the 21 datasets it obtains the best or second best AUROC among the tested methods.
This points to the sampling of individual subspaces to be a robust technique, as the two
presented techniques offer a great advantage over the other classifiers.

In order to measure the statistical significance of the results, we use the methods
outlined in Section 3.2. The results of the tests are presented in Table 4. In this fig-
ure we show the results of the Friedman and Bonferroni-Dunn tests which show that
RSM+SMOTE performs statistically significantly better than all classifiers at the 95%
confidence level. At 99% confidence it outperforms all of the classifiers except for RSM+
usamp. This is a strong result as it shows that the RSM can benefit greatly from applying
sampling at the individual classifier level in addition to using a subspace of the features.

5 Analysis of Ensembles Using Diversity

When considering an ensemble of classifiers, the ideal situation would be a case where
no two classifiers agree on instances on which they err. Given the nature of classifiers
and data, however, achieving this ideal is highly unlikely. In order to determine how
close an ensemble comes to the ideal, we measure the diversity by the degree to which
an ensemble of classifiers disagree on such instances. Kuncheva and Whitaker [15]
show that such diversity is an important property for achieving a good performance
from ensembles.

In order to measure the diversity of the ensembles, we use the κ metric defined by
Dietterich [16] as:

Θ1 =
∑T

i=1 Cii

m
,

Θ2 =
T∑

i=1

⎛⎝ T∑
j=1

Cij

m

T∑
j=1

Cji

m

⎞⎠ ,

κ =
Θ1 −Θ2

1 −Θ2
,
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where T is the number of classes, C is a T ×T matrix such that Cij denotes the number
of instances assigned to class i by the first classifier and class j by the second classifier,
and m is the number of instances. Given this, Θ1 measures the degree of agreement, and
Θ2 is the degree of agreement expected at random. κ is then the measure of diversity,
where 0 denotes agreement purely by chance, and 1 (−1) denotes perfect agreement
(disagreement). The κ values can then be plotted against the accuracy for each pair of
classifiers in the ensemble in order to obtain a graphical representation of the diversity
of the ensemble. The x-axis is the κ value and the y-axis is the accuracy.

Fig. 1. κ plots for RSM+SMOTE (left) and AdaBoost (right) on the oil dataset

We now show some of the representative results explaining the behavior. We consider
three representative results. Figure 1 shows the κ plot of RSM+SMOTE and AdaBoost
on the oil dataset. Given the two plots, it becomes apparent why RSM+SMOTE outper-
forms AdaBoost on this dataset. While RSM+SMOTE shows some agreement among
the classifiers along with high accuracy, AdaBoost shows much lower agreement (in
fact almost completely random agreement) with similar accuracy. Since the classifiers
in AdaBoost are agreeing almost at random, and the problem is very imbalanced, this
is close to what we would expect of random classifiers which are biased towards the
majority class. Alternatively, RSM+SMOTE shows very high accuracy with non neg-
ligible agreement. This points to highly accurate classifiers which agree when they are
correct, and disagree on incorrectly classified instances, as desired.

While the previous example showed RSM+SMOTE performing well, Figure 2 de-
picts it being outperformed by RF. While AdaBoost underperformed for being too dis-
similar, RSM+SMOTE underperformed for being too similar. As can be seen in the
figure, RSM+SMOTE has a cluster of points at κ = 1. This means that the classifiers
were in perfect agreement on every example. This adversely affects the diversity of
the ensemble, effectively adding weighted classifiers to the ensemble. RF, on the other
hand, shows highly accurate, yet diverse, classifiers.

Finally we show an instance where RSM+SMOTE outperforms RSM+usamp in
Figure 3. This plot shows precisely the desired results for RSM+SMOTE. That is, since
the classifiers are highly accurate, they should have a high κ value which is approxi-
mately twice the error rate. While the κ values are in the higher strata, none of them
are actually 1, which means that classifiers never have a perfect agreement and are
diverse, despite high accuracies. RSM+usamp, on the other hand, shows similar high
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Fig. 2. κ plots for RSM+SMOTE (left) and RF (right) on the phoneme dataset

Fig. 3. κ plots for RSM+SMOTE (left) and RSM+usamp (right) on the covtype dataset

accuracies, yet many classifiers overlap as demonstrated by the number of points at
κ = 1. As aforementioned this directly affects the diversity, and it is therefore unsur-
prising that RSM+SMOTE outperformed RSM+usamp.

6 Related Work

One popular approach towards improving performance on classification problems is to
use ensembles. When using ensembles one attempts to leverage the classification power
of multiple classifiers (learned on different subsets of the training data), to overcome
the downsides of traditional classification algorithms, such as over fitting. Dietterich
[2] provides a broad overview as to why ensemble methods often outperform a single
classifier. In fact Hansen and Salamon [17] prove that under certain constraints (the
average error rate is less than 50% and each classifier is erroneous independent of the
others), the expected error rate of an instance can go to zero as the number of classifiers
goes to infinity. Thus when seeking to build multiple classifiers, it is optimal to ensure
that the classifiers are diverse. One way of ensuring this is by modifying the training
data each classifier is learned on.

Two techniques for modifying the training data used by each classifier are bagging
[3] and AdaBoost [4]. In bagging, introduced by Breiman, each training set is chosen by
sampling (with replacement) from the original training set T . In AdaBoost introduced
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by Freund and Schapire, however, each training set is iteratively chosen based on the
difficult to classify instances. That is classifiers are iteratively learned, and misclassified
instances are more likely to be chosen in later training sets.

Both of the aforementioned techniques have their advantages and disadvantages.
Bagging is trivially parallelizeable, and thus more amenable to building a large en-
semble, however does not reduce the bias. AdaBoost, on the other hand reduces both
variance and bias and has theoretical guarantees, but is sensitive to noise. It is there-
fore dependent upon the dataset which technique will provide better results. Because of
this, Kotsiantis and Pintelas [18] devise a methodology of combining both bagging and
AdaBoost in order to create a better ensemble of classifiers.

While the previous techniques modified the training set by altering the distribution of
examples, the random subspace method [8] modifies the examples themselves. That is,
when attempting to build an ensemble with n classifiers, each classifier independently
chooses a subset of the features to use for training. Thus while most classifiers suffer
from the curse of dimensionality, the random subspace method mitigates this by pruning
the feature space.

Finally the random forest technique [19] combines the above techniques by using
bagging to create the training sets, and then (optionally) applying random subspaces to
each training set individually before learning the final classifier. This has the effect of
generally producing a highly effective ensemble on most datasets, as combining multi-
ple different sources of randomness leads increased diversity of the training data, and
thus increased diversity of the ensemble.

In addition to applying these traditional ensemble methods to the class imbalance
problem, modified versions have also been developed. Chawla et al. introduce SMOTE-
Boost [5], which combines boosting with SMOTE by, during each iteration of boosting,
using SMOTE on the hard to classify instances. Guo and Viktor develop another exten-
sion for boosting, DataBoost-IM, which identifies hard instances in order to generate
similar synthetic examples, and then reweights the instances to prevent a bias towards
the majority class [7]. Liu, Wu, and Zhou propose two methods, EasyEnsemble and
BalanceCascade [6], which generate training sets by choosing an equal number of ma-
jority and minority class instances from a larger training set. Finally Hido and Kashima
introduce a variant of bagging, “Roughly Balanced Bagging” (RB bagging) [20] which
alters bagging to emphasize the minority class.

In addition to ensemble methods to deal with the class imbalance problem, sampling
techniques can also be employed. The two simplest sampling techniques are oversam-
pling and undersampling. In oversampling, the minority class instances are replicated
to create a larger minority class set. Conversely, in undersampling majority class in-
stances are removed in order to level the class distribution. Both of these techniques,
among others, have been widely employed [21–23]

A more sophisticated technique which seeks to combat class imbalance is known as
SMOTE (Synthetic Minority Over-sampling Technique) [24]. When applying SMOTE,
the training set is altered by adding more minority class examples in order to force
the class distribution to become more balanced. Instead of simply oversampling the
minority class (i.e., duplicating minority examples at random), SMOTE creates new
synthetic minority examples by first selecting a minority example and its k nearest
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neighbors. The synthetic example is then created by choosing a neighbor and an feature.
As the two examples form a line segment in the chosen feature space, the synthetic
example’s value for the feature is chosen to lie along that line segment.

7 Conclusion

We proposed an extension to the RSM to mitigate the effects of class imbalance, called
RSM+Sampling, proposing SMOTE be used as the default sampling method. We then
compared this method and RSM+usamp against bagging, AdaBoost, random forest,
and the random subspace method. We posited that by applying SMOTE to subspaces
and then learning classifiers will lead to an improved performance due to more diverse
classifiers as well as less noise imputation due to SMOTE. The latter arises as SMOTE
is only applied to a much reduced set of features at a time, and is thus a more controlled
phenomenon. It is also not affected by the data sparsity and high dimensionality. To test
this hypothesis we ran experiments on 21 widely available imbalanced datasets.

The results on the selected datasets showed RSM+SMOTE outperformed all other
classifiers tested at the 95%, confidence level, and only did not outperform RSM+usamp
at the 99% confidence levels. From these results it is apparent that RSM+SMOTE is
well suited to overcoming the class imbalance problem. We argue that this is due to
the diversity that SMOTE adds to the ensemble. That is SMOTE adds perturbations
to the training data based on the features which has a positive effect on the diversity
of the ensemble, and therefore increases performance. Based on this and the statistical
significance tests, we recommend the use of RSM+SMOTE on imbalanced datasets.
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Abstract. Diversity plays an important role in the design of Multi-
Classifier Systems, but its relationship to classification accuracy is still
unclear from a theoretical perspective. As a step towards the solution
of this probelm, we take a different route and explore the relationship
between diversity and correlation. In this paper we provide a theoret-
ical analysis and present a nonlinear function that relates diversity to
correlation, which hence can be further related to accuracy. This paper
contributes to connecting existing research in diversity and correlation,
and also providing a proxy to the relationship between diversity and ac-
curacy. Our experimental results reveal deeper insights into the role of
diversity in Multi-Classifier Systems.

Keywords: Diversity, Correlation, Multi-Classifier System (MCS).

1 Introduction

The design of Multi-Classifier Systems (MCSs) is inspired by the group decision
making process [13,14]. The motivation behind MCSs is that each classifier has
its own strengths and weaknesses, and hence a group of classifiers could poten-
tially leverage the wisdom of crowds. If each classifier in an MCS has expertise
in classifying samples in some portions of a data space, the final output that
is aggregated from all classifiers would become more reliable. More precisely,
effective classifiers in an MCS are those that are accurate and independent. The
former means that a classifier in an MCS is expected to provide performance at
least better than random guessing, while the latter means that correlation be-
tween outputs of classifiers is expected to be small. This also implies that their
outputs are expected to be diverse.

Diversity could be captured by disagreements between classifiers in an MCS
and it plays a significant role in the success of MCSs [10]. However, the fol-
lowing research question becomes important for the design of MCSs: Is there a
relationship between diversity (between the member classifiers of an ensemble)
and accuracy (of the ensemble)? We address this research question by taking
a different route and building a relationship between diversity and correlation,
which could be related to accuracy.

Fig. 1 illustrates the focus of this paper. The relationship between diversity
and accuracy is ambiguous in theory (e.g. that elusive diversity [9]). The rela-
tionship between correlation and the accuracy is relatively clear to researchers.
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Fig. 1. Relationships among the accuracy, diversity, and correlation

Fig. 1 also gives two more examples of such relationships: Tumer and Ghosh
build such a relationship for simple averaging ensemble [15], while Bremian re-
lates correlation to performance of Random Forests [1].

This paper provides a proxy to the relationship between diversity and accu-
racy, while it has a potential to assist with a design guideline for MCSs.

The rest of this paper is structured as follows. Section 2 gives a theoretical
analysis and Section 3 discusses experimental results. Section 4 is a brief review
of some related work, while Section 5 gives conclusions and future work.

2 Theoretical Analysis of Diversity and Correlation

Diversity has been studied by many researchers [3,6], but its relationship to ac-
curacy is not clear. One difficulty is that there exists an elegant bias-variance-
covariance decomposition framework for regression tasks, but the framework does
not directly apply to classification tasks [4]. Here we do not directly connect diver-
sity to accuracy. Rather we build a relationship between diversity and correlation.
Notations. For a set of N instances and two classifiers, N11 and N00 denote
the numbers of instances for which both classifiers are correct and incorrect,
respectively; N10 and N01 denote the numbers of instances for which only the
first and the second classifier is correct, respectively. The following definitions
are with respect to outputs of classifiers i and j.

Definition 1. Disagreement measure (Dis) representing diversity [10].

Disi,j =
N01 + N10

N11 + N10 + N01 + N00
=

N01 + N10

N

Definition 2. Q-statistic or Q [10,11].

Qi,j =
N11 ·N00 −N01 · N10

N11 ·N00 + N01 · N10
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Definition 3. Correlation [10].

ρi,j =
N11 · N00 −N01 ·N10√

(N11 + N10) · (N01 + N00) · (N11 + N01) · (N10 + N00)

One could calculate system-wise values by averaging all pairs, so we ignore the
subscripts i and j for concise representation. Using these definitions and the in-
equality of arithmetic-geometric-harmonic means, we obtain Corollary 1, as given
below.

Corollary 1. Relationship between disagreement measure and Q-statistic.

Q ≤ (1 −Dis)2 · N2 − 4 ·Dis · N
(1 −Dis)2 · N2 + 4 ·Dis · N

Corollary 1 helps us connect diversity to correlation, since a connection between
Definition 2 and Definition 3 is that the absolute value of correlation will be
bounded by the absolute value of Q − statistic. Next we define f(x) based on
Corollary 1.

f(x) =
(1 − x)2 · N2 − 4 · x ·N
(1 − x)2 · N2 + 4 · x ·N , where x = Dis

Since x = Dis and hence x ∈ (0, 1), we have f(0) = 1 and f(1) = −1. As the
goal is to have zero correlation, we would like to know the interception of f(x)
and x-axis. We call the interception the critical value of x (xc) or the critical
point of Dis, and the following critical value is straightforward:

xc = (1 +
2
N

) − 2 ·
√

1
N

− 1
N2

Before this critical point, higher diversity reduces correlation. This supports the
intuition that higher diversity between classifiers is usually associated with a
better MCS. When diversity crosses the critical point, increasing diversity would
increase correlation while highly correlated classifiers usually correspond to an
inferior MCS.

3 Experiments and Discussion

For each trial for a data set, we randomly draw samples and accordingly train a
decision tree (without pruning). Similarly, we generate a disjoint set of samples
and use it as a test set for each trial for a data set. To control the variable in,
we create a dummy classifier for each decision tree. We repeat this 100 times
and create 100 pairs of classifiers in every experiment, using the corresponding
test set to evaluate each pair of classifiers, calculating values of disagreements,
Q − statistic, and correlation. Figures in Appendix illustrate the results. Our
findings are summarized as below:
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– The relationship between disagreementmeasure and Q−statistic is not linear.
Although curves of the theoretical upper bounds do not always match curves
of the observed values, they do indicate trends of curves of the observed values.

– For some data sets, the theoretical upper bounds of the values of Q−statistic
are close to the observed values. For all data sets, they are close when diver-
sity is lower and especially when N is smaller.

– There are exceptions that are larger than the theoretical upper bounds cor-
responding to them. They are exceptional cases where Q− statistic is 1.

– As N increases, curves move to the right. The critical point is a function of
N . This suggests that we need to increase diversity in order to obtain low
(or even 0) correlation when the number of training samples increases.

– It is not always the case that we observe critical points in experiments. For
those showing critical points, we observe that Q − statistic and correlation
move away from 0 as the diversity increases. This follows our analysis.

Now we take a couple of steps further and use our analysis result to explain some
interesting phenomenon. [7] showed theoretically that heterogeneity (i.e. using dif-
ferent algorithms in an MCS) would improve diversity among member classifiers
in an MCS. Furthermore, [8] showed empirically that one could obtain such an
improvement more often in bagging setting than in boosting setting; in addition
it empirically showed that AdaBoost with heterogeneous algorithms would work
better when the data set is larger. Compared to bagging, AdaBoost often provides
higher diversity. When we introduce heterogeneity into AdaBoost, diversity will
probably be increased. As discussed earlier, increasing diversity has positive effect
in the left region (between 0 and the critical point) of the graph of f(x), but it has
negative effect in the right region (between the critical point and 1) of the graph of
f(x). Moreover, the smaller the data set, the smaller the critical point, the smaller
the left region. Therefore, using heterogeneous algorithms in AdaBoost on small
data sets may actually have negative effect to the performance.

4 Related Work

The importance of reducing correlation between classifiers in an MCS has been
recognized [2]. Tumer and Ghosh discuss a framework that quantifies the need
to reduce correlation between classifiers in an MCS, and associate the number
of training samples (i.e. the size of the training set) with the effect of correlation
reduction [15]. Our analysis suggests that, for example, the critical point of Dis
depends on N . Mane et al. prove that classifiers trained by using independent
feature sets give more independent estimations and their combination gives more
accurate estimations [12].

The term anti-correlation is confusing. In [13] McKay and Abbass describe it as
a mechanism to promote diversity, but they do not explain why anti-correlation is
equivalent to diversity promoting. Our analysis, however, explains this: When we
promote diversity to a certain level (i.e. we have diversity in the neighborhood of
the critical point), we decrease the upper bound of the absolute value of correlation
and thus it is possible to observe very low or even negative correlation.



504 K.-W. Hsu and J. Srivastava

In [5] Chung et al. argue that, given the average the accuracy (or performance)
of classifiers, there is a linear relationship between correlation and disagreement
measure. Nevertheless, our analysis clearly shows that the relationship is not linear
and our experimental results do not reveal the linear relationship as given in [5].

5 Conclusions and Future Work

In this paper we explored the relationship between diversity, represented by dis-
agreement, and correlation between classifiers in MCSs, conducting a theoretical
analysis and experiments for the relationship between diversity and correlation.
As a result, we demonstrated a nonlinear function for the relationship, while
the experimental results reveal some interesting insights. Therefore, this paper
contributes to a better understanding of the role of diversity in MCSs.

Future work includes (1) investigating a tighter theoretical bound of Q-statistic,
(2) integrating our analysis into those proposed by others in order to build a more
elegant relationship between diversity and accuracy, and (3) using our analysis
result to assist with classifier selection and/or combination algorithms for MCSs.
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Appendix A Experimental Results

In these figures, the x-axis is the value of disagreement measure (representing
diversity) and y-axis corresponds to values of Q − statistic or correlation ρ.
A (blue) diamond and a (pink) square represent respectively an observed Q −
statistic and an observed correlation, while a (yellow) triangle gives an upper
bound of the corresponding value of Q-statistic. We report results for 100 and
1000 training samples for each data set.

Fig.A1. Results for Letter with 100 (left) and 1000 (right) samples

Fig.A2. Results for Splice with 100 (left) and 1000 (right) samples
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Fig.A3. Results for Waveform-5000 with 100 (left) and 1000 (right) samples

Fig.A4. Results for Nursery with 100 (left) and 1000 (right) samples

Fig.A5. Results for Optdigits with 100 (left) and 1000 (right) samples

Fig.A6. Results for Pendigits with 100 (left) and 1000 (right) samples
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Abstract. How to utilize data more sufficiently is a crucial considera-
tion in machine learning. Semi-supervised learning uses both unlabeled
data and labeled data for this reason. However, Semi-Supervised Sup-
port Vector Machine (S3VM) focuses on maximizing margin only, and it
abandons the instances which are not support vectors. This fact moti-
vates us to modify maximum margin criterion to incorporate the global
information contained in both support vectors and common instances.
In this paper, we propose a new method, whose special variant is a semi-
supervised extension of Relative Margin Machine, to utilize data more
sufficiently based on S3VM and LDA. We employ Concave-Convex Pro-
cedure to solve the optimization that makes it practical for large-scale
datasets, and then give an error bound to guarantee the classifier’s per-
formance theoretically. The experimental results on several real-world
datasets demonstrate the effectiveness of our method.

1 Introduction

Semi-supervised learning paradigm, which blossoms out to utilize data suffi-
ciently, has attracted more and more attention in machine learning commu-
nity [1]. Semi-Supervised Support Vector Machine(S3VM) [2, 3], the semi
supervised extension of support vector machine, is a state-of-the-art
semi-supervised learning algorithm. It uses all the data no matter labeled or not
to detect the margin and achieves significant improvement in practice. However,
S3VM abandons the instances which are not support vectors. The framework [4]
utilizes general unlabeled data, but still wasteful for non-support vectors, which
stops them from further improving the performance.

To utilize the data more sufficiently and efficiently, we notice that compact-
ness of projected data provides global information and thus is important for
classification. Linear Discriminant Analysis [5] is a successful algorithm to uti-
lize the information. Algorithm in [6] whitens the data when seeking decision
boundary. Gaussian Margin Machine [7] controls the projected data compact-
ness under a distribution assumption. Universum SVM [8] constrains range by
� This work is supported in part by Natural Science Foundation of China (No.

60275025).
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data that is related but not belonged to any category. Another criterion that
compresses the range of projected data is Relative Margin Machine[9] which is
motivated from an affine invariance perspective and some probabilistic prop-
erties. Although these algorithms balance global and local information, these
methods merely exploit labeled data but turn blind eyes to unlabeled data.

In this paper, we propose a method to use the information contained by
instances sufficiently. After brief introductions to S3VM and LDA in Section 2,
our framework incorporating LDA criterion with S3VM is presented in Section
3 and a relaxation of the criterion is given to make the optimization tractable.
We also derive a special variant which can be viewed as the semi-supervised
extension of Relative Margin Machine. The generalization bound is analyzed in
Section 4. Finally, the experimental results are reported in Section 5.

2 Background

Suppose that we are given labeled data set L = {(x1, y1), (x2, y2), . . . , (xl, yl)}
and unlabeled data set U = {xl+1,xl+2, . . . ,xl+u}, both of which are drawn i.i.d
from a certain data distribution D , where u - l, xi ∈ Rd (i = 1, 2, . . . , l + u)
and yj ∈ {−1, 1}, (j = 1, 2, . . . , l) is the label of instance xj . The problem we
want to solve is seeking a hypothesis h : Rd → {−1, +1} which can classify the
unlabeled data and unseen instances sampled from D.

2.1 Semi-supervised SVM(S3VM)

Many semi-supervised methods find the suitable hypothesis by minimizing the
criterion which utilize both labeled data and unlabeled data as

min
f

‖f‖HK + C1

∑l

i=1
�1(xi, yi; f) + C2

∑l+u

i=l+1
�2(xi; f) (1)

where H is the reproducing kernel Hilbert space introduced by kernel function K,
�1 is a common classification loss function, and �2 is another loss function which
utilizes unlabeled data only. S3VM employs hinge loss as �1 and symmetric hinge
loss as �2. C1 and C2 are the parameters to balance the loss between labeled
data, unlabeled data and function complexity. We take the set of linear form of
h = sign(f(x)), where f(x) = wT x+ b(w ∈ R

d, b ∈ R), as the hypothesis space.
So the formulation of (1) could be transformed as follow:

min
w,b,η,ξ≥0

1
2
‖w‖2 + C1

∑l

i=1
ηi + C2

∑l+u

i=l
ξi

s.t. yif(xi)≥1 − ηi, i = 1, . . . , l, |f(xi)|≥1 − ξi, i = l + 1, . . . , l + u.

(2)

2.2 Linear Discriminative Analysis(LDA)

The basic principle of LDA is projecting the data into a subspace in which the
instances in different categories can be scattered and the instances in the same
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category can be concentrated together. Let mi = 1
ni

∑
j∈Ci

xj , i ∈ {−1, +1}
is the sample mean of class Ci where ni is the number of samples in Ci, the
mean of projected instances is given by m̂i = 1

ni

∑
j∈Ci

f(xj) = wT mi + b, i ∈
{−1, +1}. So the distance between the projected means, between-class distance,
is ‖m̂−1 − m̂1‖ = ‖wTm−1 − wT m1‖. LDA seeks the largest between-class
distance relative to total within-class variance which is defined by

∑
i=−1,+1 si

where si =
∑

j∈Ci
(f(xj)−m̂i)2. The LDA criterion is defined as the ratio of the

between-class distance to total within-class variance, Jw = ‖m̂−1−m̂1‖∑
i=−1,+1 si

.

3 Compact Margin Machine

The data compactness after projecting is very important in reflecting the data
structure and can indeed help in classifying the data. It is necessary to restrict
the range of projected data while seeking the largest margin. Within-class vari-
ance defined in LDA provides us a natural way to measure the projected data
compactness. We modify si as

∑
j∈Ci

max{0, |f(xj)− m̂i| − ε}, i = {−1, +1} in-
stead of 2−norm form and introduce it as

∑l+u
i=1 �c(xi;L,U , f) =

∑
i=−1,+1 si to

S3VM. We propose the model, Compact Margin Machine, as follow (f(x) stands
for wT x + b):

min
w,b,{η,ξ,ζ}≥0,di={0,1}

1
2
‖w‖2 + C1

l∑
i=1

ηi + C2

l+u∑
i=l+1

ξi + C3

l+u∑
i=1

(ζ1,i + ζ0,i)

s.t. yif(xi) ≥ 1 − ηi, i = 1, . . . , l |f(xi)| ≥ 1 − ξi, i = l + 1, . . . , l + u

(3)

yi + 1
2

∣∣f(xi) −
∑l+u

i=l+1(1 − di)f(xi) +
∑l

i=1(
yi+1

2 )f(xi)

2u(1− r) +
∑l

i=1(
yi+1

2 )

∣∣ ≤ ε + ζ0,i (4)

1 − yi

2

∣∣f(xi) −
∑l+u

i=l+1 dif(xi) +
∑l

i=1(
1−yi

2 )f(xi)

u(2r − 1) +
∑l

i=1(
1−yi

2 )

∣∣ ≤ ε + ζ1,i (5)

(1 − di)
∣∣f(xi) −

∑l+u
i=l+1(1 − di)f(xi) +

∑l
i=1(

yi+1
2 )f(xi)

2u(1− r) +
∑l

i=1(
yi+1

2 )

∣∣ ≤ ε + ζ0,i (6)

di

∣∣f(xi) −
∑l+u

i=l+1 dif(xi) +
∑l

i=1(
1−yi

2 )f(xi)

u(2r − 1) +
∑l

i=1(
1−yi

2 )

∣∣ ≤ ε + ζ1,i (7)

where we introduce the class balancing constraint 1
u

∑l+u
i=l+1 di = 2r− 1 to avoid

the trivial solution that assigns all the instances the same label [10]. We can use
branch-and-bound algorithms to search the global optimal solution. However,
the computational complexity is too high. We relax the constraints to make the
optimization process easier and it can be proved that our relaxed constraints
imply upper bounds of original loss functions.
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Fig. 1. Relaxed compact ε-hinge loss and relaxed compact ε-symmetric hinge loss

Proposition 1. By replacing the constraints (4)-(7) with |wT xi+b| ≤ 1
2 (ε+ζi),

the loss will be no less than �c defined above.

Proof. As the constraints (4)-(7) have the same form, without loss of generality,
we consider the constraint (7) and the others are similar. Obviously, if there is
a solution w that satisfies |wTxi + b| ≤ 1

2 (ε + ζi), then we have

di

∣∣((wTxi + b)−
∑l+u

j=l+1 dj(wT xj + b) +
∑l

j=1(
1−yj

2 )(wT xj + b)∑l+u
j=l dj +

∑l
j=1(

1−yj

2 )

)∣∣ ≤
di

(
|wT xi + b| +

∣∣∑l+u
j=l+1 dj(wT xj + b) +

∑l
j=1(

1−yj

2 )(wT xj + b)∑l+u
j=l dj +

∑l
j=1(

1−yj

2 )

∣∣) ≤
|wT xi + b|+ 1

nj

∑
j∈Cyi

|wTxj + b| ≤ ε +
1
2
ζi +

1
2nj

∑
j∈Cyi

ζj

The inequality is derived from triangle inequality. We obtain that the relaxed
constraints provide an upper bound and

∑n
i=1 �c(xi;L,U , f) ≤

∑n
i=1 ζi. *+

Proposition 1 suggests that the relaxed constrains are helpful in reflecting the
projected data compactness. Mathematically, CMM is relaxed as:

min
w,b,{η,ξ,ζ}≥0

1
2
‖w‖2 + C1

l∑
i=1

ηi + C2

l+u∑
i=l+1

ξi + C3

l+u∑
i=1

ζi

s.t. yi(wT xi + b) ≥ 1 − ηi, i = 1, . . . , l

|wT xi + b| ≥ 1 − ξi, i = l + 1, . . . , l + u

|wT xi + b| ≤ ε + ζi, i = 1, . . . , l + u

(8)

Note that relaxed constraints modify both of the loss functions for labeled and
unlabeled data given by S3VM actually. The loss function for the labeled data
is �

′
1 = max{0, 1 − yf(x)} + C3

C1
max{0, |f(x)| − ε} which we named as relaxed

compact ε-hinge loss. On the other hand, the loss function of the unlabeled data
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is adapted as �
′
2 = max{0, 1 − |f(x)|} + C3

C2
max{0, |f(x)| − ε}, named as re-

laxed compact ε-symmetric hinge loss. The loss functions are shown above. It
is not easy to solve the optimization problem (8) directly because of the non-
convex property of relaxed compact ε-symmetric hinge loss. As [2], Mix Integer
Programming can find the global optimal solution of (8). However, the compu-
tational complexity of MIP is usually very high. By employing Concave-Convex
Procedure(CCCP) [11], (8) can be solved effciently [12]. We set xi = xi−u, i =
l + u +1, . . . , l + 2u, yi = 1, i = l + 1, . . . , l + u, yi = −1, i = l + u + 1, . . . , l + 2u
and rewrite the relaxed Compact Margin Machine criterion (8) as the sum of a
convex part

Jvex = 1
2‖w‖2 + C1

∑l
i=1 max{0, 1− yif(xi)} + C2

∑l+2u
i=l+1 max{0, 1− yif(xi)}

+ C3

∑l+2u
i=1 max{0, |f(xi)| − ε}

and a concave part Jcav = −C2

∑l+2u
i=l+1 max{0, δ − yif(xi)} where δ ∈ (−1, 0].

1 Initialize θ0 = (w0, b0) with a standard SVM solution on labeled data
2 Set

βi =
{

C2 if yifθ0(xi) < δ and i ≥ l + 1
0 otherwise

while βt+1 �= βt do
3 solve the convex problem where K is kernel

minα,γ ,γ̂≥0
1
2

(
(α−β) � y−γ+γ̂

)T
K
(
(α−β)�y−γ+γ̂

)
−αT 1+εγT 1+εγ̂T 1

subject to (β − α)T y + γT 1− γ̂T 1 = 0, γ̂ + γ ≤ C31

αi ≤ C1, i = 1, . . . , l, αi ≤ C2, i = 1 + 1, . . . , l + 2u

4 compute bt+1 by fθt+1(xi) =
(
(α − β) � y − γ + γ̂

)T
Ki• + bt+1

5 compute yifθt+1(xi), i = l + 1, . . . , l + 2u by KKT conditions
6 alternate β

βi =
{

C2 if yifθt+1(xi) < δ and i ≥ l + 1
0 otherwise

7 end

Algorithm 1. Concave-Convex Procedure for Relaxed CMM

At each iteration, CCCP solves minw,b Jvex(w, b) +J ′
cav(w

t, bt) · (w, b) until
convergence. The convergence of CCCP has been shown by [13]. The steps of
algorithm are shown in Algorithm 1.

3.1 Special Variant and the Relationship to RMM

In this section, we derive a special variant from (8) which can be solved more
efficiently. We set the parameters C2 = C3, ε = 0 in (8), so the loss function of
unlabeled data is the blue one in Fig.1. The mathematical form is as following:
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min
w,b,{η,ζ}≥0

1
2
‖w‖2

2 + C1

l∑
i=1

ηi + C2

l+u∑
i=1

(ζi + ζ̂i)

s.t. yi(wTxi + b) ≥ 1 − ηi, i = 1, . . . , l

wT xi + b ≤ ε + ζi,−(wTxi + b) ≤ ε + ζ̂i, i = 1, . . . , l + u

(9)

This special variant of relaxed Compact Margin Machine utilizes the labeled
data to control the margin and both the labeled and unlabeled data to compress
the range of projected data. It can be viewed as a semi-supervised extension of
RMM. RMM introduces the relaxed constraints (8) from the other motivations
such as affine invariance perspective and some probabilistic properties. From this
aspect, we can conclude that our model achieves the same properties that are
given by RMM.

4 Theoretical Analysis

In this section, we derive the empirical transductive Rademacher complexity [14]
for function classes relaxed Compact Margin Machine which can be plugged into
uniform Rademacher error bound directly.

Firstly, we define the function class of S3VM as HD = {wTx | 1
2w

T w ≤ D}
and the function class of relaxed Compact Margin Machine as FD,C3 = {wTx |
1
2w

Tw+ C3
2 ‖wT zi‖2

2 ≤ D, 1 ≤ i ≤ n} where Z = {z1, . . . , zn} is an extra dataset
drawn from the same distribution for convenience of proof. However, in practice,
we may use training dataset and testing dataset as the extra dataset. We can
derive the empirical transductive Rademacher complexity of relaxed CMM and
S3VM.

Lemma 2. The transductive Rademacher complexity of Semi-Supervised SVM

Rl+u(HD) ≤ 2
√

D
lu

∑r
i=1 λi, where {λi}r

i=1 are the singular eigenvalues of Gram
matrix of the data. *+

Lemma 3. The transductive Rademacher complexity of relaxed Compact Mar-
gin Machine Rl+u(FD,C3) ≤ minα≥0

1
l+u

∑l+u
i=1 xiKα,C3xi + lu

(m+u)2 D
∑n

i=1 αi,
where Kα,C3 =

∑n
i=1 αiI + C3

∑n
i αizizT

i . *+

Based on theorems in [14], the following corollary provides an upper bound on
the error rate:

Corollary 4. Fix γ > 0, let F be the set of function. Let c0 =
√

32 ln 4e
3 and

Q = l+u
lu . Then with probability at least 1− δ over the training set, the following

bound holds:

P [y �= sign(f(x))] ≤ 1
nγ

l∑
i=1

ξi +
Rl+u(F )

γ
+ c0Q

√
min{l, u}+

√
2Q ln

1
δ

where ξi = max{0, 1− yif(xi)}.
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Table 1. Experimental Results (Accuracy in percentage)

Performance Comparison on MNIST (mean%)

num #label/class 5 10 20 40 50 100 200
SVM 71.19 89.76 92.36 94.12 94.41 95.32 95.50
LDA 84.31 89.34 92.13 93.16 92.85 93.23 93.84
RMM 84.62 89.90 92.58 94.43 94.81 95.95 96.13400
TSVM 87.18 93.54 95.11 95.15 95.20 95.23 95.50

LapSVM 88.83 91.68 93.22 94.52 94.63 95.11 95.50
CMM 88.29 93.80 95.07 95.60 95.76 96.10 96.13

TSVM 90.32 93.59 94.76 95.20 95.26 95.72 96.22
600 LapSVM 91.23 92.31 93.50 94.33 94.69 95.39 96.47

CMM 90.73 94.62 95.27 95.83 96.01 96.33 96.72

TSVM 94.52 93.86 94.65 95.41 95.45 96.12 96.42
800 LapSVM 92.13 93.44 94.13 95.00 95.20 95.87 96.67

CMM 91.37 94.99 95.70 96.10 96.31 96.63 96.89

Performance Comparison on TDT2 (mean%)

num #label/class 5 15 50 150
SVM 87.09 93.62 96.38 98.00
LDA 93.44 96.33 94.45 94.74
RMM 94.39 96.84 97.60 98.55300
TSVM 96.48 95.95 97.73 98.00

LapSVM 89.12 95.79 97.52 98.00
CMM 94.90 97.72 98.52 98.55

TSVM 96.23 95.63 96.11 97.11
600 LapSVM 88.50 93.24 95.89 97.69

CMM 95.45 97.20 97.38 97.78

5 Experiment

The proposed algorithm is evaluated on two benchmark datasets, MNIST1 and
TDT22, to illustrate the effectiveness. We compare our model with SVM, Ker-
nel LDA, RMM, LapSVM and S3VM. We implement our algorithm, RMM and
LapSVM based on CVX3. The SVM and S3VM are solved by SVM light 4. Among
all the experiments, we select the best kernel by 10-fold cross-validation.The other
parameters are also tuned beforehand. We chose the digits “8” vs “9” from MNIST
dataset for binary classification problem because these two digits are difficult to
discriminate visually. In TDT2 dataset, we chose categories randomly. We conduct
experiments on several different amount of labeled and unlabeled data. The final
test accuracy is given as the average of 10 independent trials on the test dataset.

1 The MNIST dataset can be download from http://yann.lecun.com/exdb/mnist/
2 The TDT2 dataset can is available at
http://www.nist.gov/speech/tests/tdt/tdt98

3 The CVX matlab code be obtained from http://www.stanford.edu/~boyd/cvx/
4 The package of SVM light can be download from http://svmlight.joachims.org/

http://yann.lecun.com/exdb/mnist/
http://www.nist.gov/speech/tests/tdt/tdt98
http://www.stanford.edu/~boyd/cvx/
http://svmlight.joachims.org/
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The training data are selected randomly each time.We further select a certain num-
ber of labeled data from the selected training dataset randomly.

The weakness of large margin criterion can be observed from the results.
When labeled data are rare, the algorithms that compress the range of projected
data, such as LDA and RMM, perform better than SVM. Our semi-supervised
algorithm achieves significant improvement on the two datasets with benefit from
the compact margin. Fortunately, our algorithm suffers the slightest depression
compared with others when the unlabeled data hurt the classifiers.

6 Conclusion

We propose a novel semi-supervised algorithm which can utilize the data suffi-
ciently. To make our method capable to handle large-scale applications, we employ
Concave-Convex Procedure to solve the non-convex problem. A semi-supervised
extension of RMM can be derived from our model. Moreover, we provide theo-
retical analyses to guarantee the performance of our algorithm, and finally experi-
mental results show that the proposed algorithm improves the accuracy.A efficient
global optimization method for exact solution is our future direction.
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